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ABSTRACT. Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Con-
straint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and
given a CSP instance, the objective is to distinguish if the strong form can be satised vs. even
the weak form cannot be satised. Since their formal introduction by Austrin, Guruswami, and
Håstad [1], there has been a urry of works on PCSPs, including recent breakthroughs in ap-
proximate graph coloring [4, 24, 36]. The key tool in studying PCSPs is the algebraic framework
developed in the context of CSPs where the closure properties of the satisfying solutions known
as polymorphisms are analyzed.

The polymorphisms of PCSPs are signicantly richer than CSPs—this is illustrated by
the fact that even in the Boolean case, we still do not know if there exists a dichotomy result
for PCSPs analogous to Schaefer’s dichotomy result [33] for CSPs. In this paper, we study a
special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have
the predicate 𝑥 ≤ 𝑦. In the algebraic framework, this is the special case of Boolean PCSPs
when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs
exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [8] which is a perfect
completeness surrogate of the Unique Games Conjecture.

In particular, assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP
can be solved in polynomial time if for every 𝜖 > 0, it has polymorphismswhere each coordinate
has Shapley value at most 𝜖, else it is NP-hard. The algorithmic part of our dichotomy result is
based on a result that if a monotone Boolean function has all Shapley values small, then it has a
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large threshold function as a minor. For the conditional hardness result, we show that Shapley
value behaves in a consistent manner under a uniformly random 2-to-1 minor. As a structural
result of independent interest, we construct an example to show that the Shapley value can
behave inconsistently with respect to an arbitrary 2-to-1 minor.

1. Introduction

Constraint satisfaction problems (CSP) have played a very inuential role in the theory of
computation, providing an excellent testbed for the development of both algorithmic and
hardness techniques, which then extend to more general settings. A CSP over domain 𝐷 is
specied by a nite collection A of predicates over 𝐷, and is denoted as CSP(A). Given an input
containing 𝑛 variables with constraints on the variables using these predicates, the objective
is to identify if we can assign values from 𝐷 to the variables that satises all the constraints.
Examples of CSPs include classical problems such as 3-SAT and 3-Coloring of graphs.

When the domain is Boolean, Schaefer [33] proved that every CSP is either in P or is NP-
Complete. Feder and Vardi [14] conjectured that the same should hold over arbitrary domains
as well. They also showed that the then known algorithmic results all follow by the algebraic
closure properties of the CSPs. This notion was formalized by Jeavons, Cohen, and Gyssens [18,
17] and other works [10] that crystallized the (universal) algebraic approach to CSPs. In the
algebraic approach, the higher-order closure properties obeyed by the predicates, namely their
polymorphisms, are studied. A polymorphism is a function that, when applied coordinate-wise
to arbitrary satisfying assignments to the predicate, is guaranteed to produce an output that
satises the predicate. For example, consider an arbitrary instance 𝐼 of the 2-SAT problem
over 𝑛 variables, and suppose that x, y, z ∈ {0, 1}𝑛 are three assignments that satisfy all the
constraints in 𝐼 . Now, if we compute u ∈ {0, 1}𝑛 that is obtained by setting 𝑢𝑖 = MAJ(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)
for all 𝑖 ∈ [𝑛], the assignment u also satises all the constraints of 𝐼 . Thus, the majority function
on 3 bits is a polymorphism of the 2-SAT CSP. On the other hand, for the 3-SAT problem, it
is not hard to prove that the only polymorphisms are the dictator functions. The algebraic
approach has been immensely successful and culminated in the recent resolution of Feder-Vardi
conjecture by Bulatov [9] and Zhuk [37]. Further, these proofs yield a precise understanding
of the mathematical structure underlying ecient algorithms: if the CSP has a “non-trivial”
polymorphisms, the CSP is polytime solvable, and otherwise, it is NP-complete.

In this paper, we study Promise Constraint Satisfaction Problems (PCSPs) that vastly
generalize the CSPs. In the PCSPs, each predicate has a weak and a strong form–given an
instance of PCSP containing 𝑛 variables with the constraints, the goal is to distinguish between
the case that the stronger form can be satised vs. even the weaker one cannot be satised. A
classical example of a PCSP is the approximate graph coloring problem, where given a graph 𝐺,
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the goal is to distinguish between the cases that 𝐺 can be colored with 𝑐 colors vs. it cannot be
colored with 𝑠 colors for some 𝑐 ≤ 𝑠. Another example is the (1-in-3 SAT, NAE-3-SAT), wherein
given a 1-in-3-SAT instance that is promised to be satisable, the objective is to assign 0, 1 values
to the variables such that each constraint is satised as in a NAE-3-SAT instance, i.e., both 0
and 1 occur in every constraint. While the individual CSPs, namely 1-in-3-SAT and NAE-3-SAT
are both NP-hard, the above PCSP is in P. The study of PCSPs was formally initiated by Austrin,
Guruswami, and Håstad [1], and since then, there has been a lot of recent interest in PCSPs,
including the development of a systematic theory in [6, 4] and leading to breakthroughs in
approximate graph coloring [4, 24, 36].

The central question in the study of PCSPs is whether there exists a complexity dichotomy
for PCSPs, i.e., if every PCSP is either in P or is NP-complete. As is the case with CSPs, the key
tool towards establishing a potential dichotomy result is the algebraic approach. The Galois
correspondence from the CSP world extends to PCSPs, i.e., the polymorphisms fully capture
the computational complexity of the underlying PCSP [30, 6]. This has been extended to show
that just the identities satised by the polymorphisms suce to capture the computational
complexity of the underlying PCSP [4]. However, the polymorphisms of PCSPs are much richer,
and characterizing which polymorphisms lead to algorithms and which ones lead to hardness
has been a challenging problem. Conceptually, the principal diculty is that the polymorphisms
for CSPs are closed under composition (hence referred to as clones), whereas for PCSPs, this is
no longer the case.

As a result, even in the Boolean case, we do not have a dichotomy theorem for PCSPs.
Towards establishing a potential Boolean PCSP dichotomy, progress has been made by Ficak,
Kozik, Olsák and Stankiewicz [15], who obtained a dichotomy result when each predicate is
symmetric. In this paper, we study Boolean PCSPs that contain the simplest non-symmetric
predicate, 𝑥 → 𝑦. We call such Boolean PCSPs Ordered as we can also view the implication
constraint as an ordering requirement 𝑥 ≤ 𝑦 1.

Ordered Boolean PCSPs have come under recent study. The work of Petr [29] (inspired
by work of Barto [3, 2]) considered a special class of Ordered Boolean PCSPs which have an
additional predicate 𝑥 ≠ 𝑦 (this corresponds to allowing negations in the constraints) as well as
the requirement that the majority on three bits is not a polymorphism. In this setting Petr was
able to show that such Ordered Boolean PCSPs are NP-hard. However, the approach considered
does not seem immediately extendable to analyzing general Ordered Boolean PCSPs [2].

The main motivation for studying these PCSPs comes from the fact that adding the ad-
ditional 𝑥 ≤ 𝑦 predicate is equivalent to restricting the polymorphisms of the PCSPs to be
monotone functions. Monotonicity is an inuential theme in the study of Boolean functions
and complexity theory, and understanding the structure of polymorphisms in the monotone

1 As PCSPs have pairs of predicates, the ordering predicate pair has both the strong and weak forms as 𝑥 ≤ 𝑦, i.e.,
{(0, 0), (0, 1), (1, 1)}
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case is an important (and certainly necessary) subcase towards a general characterization of
polymorphisms vs. tractability for arbitrary Boolean PCSPs. For the special case of Boolean
Ordered PCSPs which include negation constraints, it was conjectured in [2] that polynomial
time tractability is characterized by the existence of majority polymorphisms of arbitrarily
large arity.

Our main result is that Boolean Ordered PCSPs exhibit a dichotomy, under the recently
introduced Rich 2-to-1 Conjecture of Braverman, Khot, and Minzer [8].

THEOREM 1.1. Assuming the Rich 2-to-1 Conjecture, every Ordered Boolean PCSP is either in P or
is NP-Complete. In particular, an Ordered PCSP Γ is in P if for every 𝜖 > 0, there are polymorphisms
of Γ with every coordinate having Shapley value at most 𝜖, else it is NP-Complete. Equivalently, Γ
is in P if it has threshold2 polymorphisms of arbitrarily large arity, else it is NP-Complete.

As a concrete example, recall the earlier mentioned example of (1-in-3-SAT, NAE-3-SAT). As
it has threshold polymorphisms of arbitrarily large arity, it remains polynomial time solvable
even after adding the predicate 𝑥 → 𝑦. However, if we also add another two-variable predicate
𝑥 ≠ 𝑦, the PCSP no longer has threshold polymorphisms, and by our above result, it becomes
NP-Complete.

We obtain the conditional dichotomy result by analyzing the polymorphisms of theOrdered
PCSPs. The key idea in the algebraic approach to PCSPs is that the PCSP is tractable if the
polymorphisms are close to symmetric, and the PCSP is hard if all the polymorphisms have
a small number of “important” coordinates. More concretely, on the algorithmic front, it has
been proved that symmetric polymorphisms of arbitrarily large arities lead to polynomial time
algorithms for PCSPs [7]. On the hardness side, if all the polymorphisms depend on a bounded
number of coordinates, then the underlying PCSP is NP-hard [1]. This has been extended to
various other notions, including combinatorial ones such as 𝐶-xing [5], and topological ones
such as having a bounded number of coordinates with non-zero winding number [24]. In this
paper, we study the monotone polymorphisms using analytical techniques.

In particular, we use Shapley value to analyze the monotone polymorphisms. For a
monotone function 𝑓 : {0, 1}𝑛 → {0, 1}, the Shapley value of a coordinate 𝑖 is the probability
that on a randompath from {0, 0, . . . , 0} to {1, 1, . . . , 1}, the function value turns from0 to 1when
we switch the 𝑖th coordinate to 1. Initially studied to understand the power of an individual in
voting systems [34], Shapley value has now found applications in various settings, especially
in game theory [26, 27]. In our setting, there are two advantages of using Shapley value to
study the polymorphisms. First, it is a relative measure of the importance of a coordinate, as
opposed to other notions of Inuence which are absolute. This helps in bounding the number of
coordinates with Shapley value above a certain threshold. Second, it is a versatile measure with

2 We call a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} a threshold function if there is an integer 𝑡 such that for every x ∈ {0, 1}𝑛,
𝑓 (x) = 1 if and only if |{𝑖 ∈ [𝑛] : 𝑥𝑖 = 1}| ≥ 𝑡.
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combinatorial and analytical interpretations [11] which helps in proving that Shapley value
stays consistent under function minors3, a key property necessary in both the algorithm and
the hardness.

Algorithm Overview. Weobtain our algorithmic result by using the Basic Linear Programming
with Ane relaxation (BLP+Ane relaxation), combined with a structural result regarding
the monotone functions with bounded Shapley value. As mentioned earlier, PCSPs with sym-
metric polymorphisms of arbitrarily large arities can be solved in polynomial time using the
BLP+Ane relaxation algorithm [7]. Our main structural result is that Boolean functions with
bounded Shapley value have arbitrarily large threshold functions as minors. Since the set
of polymorphisms of a PCSP are closed under taking minors, this proves that the underlying
PCSP Γ has arbitrarily large threshold functions as polymorphisms, which then implies that Γ is
in P. The key tool underlying our structural result is a result of Kalai [19] that states that under
certain conditions, monotone Boolean functions with arbitrarily small Shapley value have a
sharp threshold.

Hardness Overview. We obtain our hardness result assuming the Rich 2-to-1 Conjecture.
Braverman, Khot, and Minzer [8] introduced the conjecture as a perfect completeness surrogate
of the well known Unique Games Conjecture [21]. They also proved that the conjecture is
equivalent to Unique Games Conjecture when we relax the perfect completeness requirement.
The reduction from the Rich 2-to-1 Conjecture to PCSPs follows using the standard Label Cover-
Long Code paradigm. The key ingredient in this reduction is a decoding of the Long Codes to
a bounded number of coordinates that is consistent under function minors. We decode each
Long Code function to the coordinates with Ω(1) Shapley value—as the sum of Shapley values
of all the coordinates of any monotone function is equal to 1, there is a bounded number of
such coordinates. We argue about the consistency of this decoding using a structural result that
states that under a uniformly random minor, Shapley value is roughly preserved.

On the necessity of “richness” in 2-to-1 Conjecture. A natural question is whether our
hardness result can be obtained using a weaker assumption such as the 2-to-1 conjecture (whose
imperfect completeness version was recently established [22, 12, 13, 23]). We shed some light on
this question by showing that there are monotone Boolean functions 𝑓 : {0, 1}2𝑛 → {0, 1} and
𝑔 : {0, 1}𝑛 → {0, 1} such that 𝑔 is a minor of 𝑓 with respect to the 2-to-1 function 𝜋, both the
functions 𝑓 and 𝑔 have exactly one coordinate 𝑖1, 𝑖2 respectively, with Ω(1) Shapley value, and
yet 𝜋(𝑖1) ≠ 𝑖2. Such an adversarial example is interesting from two angles: rst, it shows that
even using the 2-to-1 conjecture, the Shapley value based decoding is not consistent. Second, it

3 A minor(formally defined in Section 2) of a function 𝑓 : {0, 1}𝑚 → {0, 1} is a function 𝑔 : {0, 1}𝑛 → {0, 1} of smaller arity
𝑛 ≤ 𝑚 obtained from 𝑓 by identifying sets of variables together.
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gives an example of agents pairing up maliciously to completely alter the Shapley value. The
underlying phenomenon is that the rich 2-to-1 games have “subcode-covering” property, which
is absent in the standard 2-to-1 games, helping in preserving the consistency of any biased
inuence measure such as the Shapley value.

Organization. In Section 2, we formally dene PCSPs, polymorphisms, and Shapley value. We
present the algorithmic and hardness parts of our dichotomy result in Section 3 and Section 4
respectively. We present the adversarial example of a 2-to-1 minor that alters the Shapley value
in Section 5.

2. Preliminaries

Notations. We use [𝑛] to denote the set {1, 2, . . . , 𝑛}. For a 𝑘-ary relation 𝐴 ⊆ [𝑞]𝑘, we abuse the
notation and use 𝐴 both as a subset of [𝑞]𝑘, and also as a predicate 𝐴 : [𝑞]𝑘 → {0, 1}. Similarly,
for a function 𝑓 : {0, 1}𝑛 → 𝐷 and a set 𝑆 ⊆ [𝑛], we sometimes use 𝑓 (𝑆) to denote 𝑓 (v) where
𝑣𝑖 = 1 if 𝑖 ∈ 𝑆, and 0 otherwise. For a vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {0, 1}𝑛, we use hw(x) to denote∑𝑛

𝑖=1 𝑥𝑖 . For two vectors x, y ∈ {0, 1}𝑛, we say that x ≤ y if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 ∈ [𝑛]. A Boolean
function 𝑓 : {0, 1}𝑛 → {0, 1} is called monotone if 𝑓 (x) ≤ 𝑓 (y) for all x ≤ y.

PCSPs and Polymorphisms. We rst dene Constraint Satisfaction Problems(CSP).

DEF IN IT ION 2 .1. (CSP) Given a 𝑘-ary relation 𝐴 : 𝐷𝑘 → {0, 1} over a domain 𝐷, the Con-
straint Satisfaction Problem(CSP) associated with the predicate 𝐴 takes a set of variables
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} as input which are to be assigned values from 𝐷. There are 𝑚 constraints
(𝑒1, 𝑒2, . . . , 𝑒𝑚) each consisting of 𝑒𝑖 = ((𝑒𝑖)1, (𝑒𝑖)2, . . . , (𝑒𝑖)𝑘) ⊆ 𝑉𝑘 that indicate that the corre-
sponding assignment should belong to 𝐴. The objective is to identify if there is an assignment
𝑉 → 𝐷 that satises all the constraints.

In general, we can have multiple relations 𝐴1, 𝐴2, . . . , 𝐴𝑙, and dierent constraints can use
dierent relations. We denote such a CSP by 𝐶𝑆𝑃(𝐴1, 𝐴2, . . . , 𝐴𝑙).

We formally dene Promise Constraint Satisfaction Problems (PCSP).

DEF IN IT ION 2 .2. (PCSP) In a Promise Constraint Satisfaction Problem 𝑃𝐶𝑆𝑃(Γ) over a pair
of domains 𝐷1, 𝐷2, we have a set of pairs of relations Γ = {(𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑙, 𝐵𝑙)} such
that for every 𝑖 ∈ [𝑙], 𝐴𝑖 is a subset of 𝐷𝑘𝑖

1 and 𝐵𝑖 is a subset of 𝐷𝑘𝑖
2 . Furthermore, there is a

homomorphism ℎ : 𝐷1 → 𝐷2 such that for all 𝑖 ∈ [𝑙] and 𝑥 ∈ 𝐷𝑘𝑖
1 , 𝑥 ∈ 𝐴𝑖 implies ℎ(𝑥) ∈ 𝐵𝑖 .

Given a 𝐶𝑆𝑃(𝐴1, 𝐴2, . . . , 𝐴𝑙) instance, the objective is to distinguish between the two cases:
1. There is an assignment to the variables from 𝐷1 that satises every constraint when

viewed as 𝐶𝑆𝑃(𝐴1, 𝐴2, . . . , 𝐴𝑙).
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2. There is no assignment to the variables from 𝐷2 that satises every constraint when
viewed as 𝐶𝑆𝑃(𝐵1, 𝐵2, . . . , 𝐵𝑙).

We now dene Boolean Ordered PCSPs.

DEF IN IT ION 2 .3. (Boolean Ordered PCSP) A PCSP over a pair of domains 𝐷1, 𝐷2 with the set
of pairs of relations Γ = {(𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑙, 𝐵𝑙)} is said to be Boolean Ordered if the
following hold.

1. The domains are both Boolean i.e., 𝐷1 = 𝐷2 = {0, 1}.
2. There exists 𝑖 ∈ [𝑙] such that 𝐴𝑖 = 𝐵𝑖 = {(0, 0), (0, 1), (1, 1)}.

Associated with every PCSP, there are polymorphisms that capture the closure properties
of the satisfying solutions to the PCSP. More formally, we can dene polymorphisms of a PCSP
as follows.

DEF IN IT ION 2 .4. (Polymorphisms) For 𝑃𝐶𝑆𝑃(Γ) with Γ = {((𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑙, 𝐵𝑙))}
where for every 𝑖 ∈ [𝑙], 𝐴𝑖 : [𝑞1]𝑘𝑖 → {0, 1}, 𝐵𝑖 : [𝑞2]𝑘𝑖 → {0, 1}, a polymorphism of arity 𝑛 is a
function 𝑓 : [𝑞1]𝑛 → [𝑞2] that satises the below property for all 𝑖 ∈ [𝑙]. For all (v1, v2, . . . , v𝑘𝑖)
such that for all 𝑗 ∈ [𝑛], ((v1) 𝑗 , (v2) 𝑗 , . . . , (v𝑘𝑖) 𝑗) ∈ 𝐴𝑖 , we have

( 𝑓 (v1), 𝑓 (v2), . . . , 𝑓 (v𝑘𝑖)) ∈ 𝐵𝑖

We use Pol(Γ) to denote the family of all the polymorphisms of 𝑃𝐶𝑆𝑃(Γ).

A crucial property satised by Pol(Γ) is that the family of functions is closed under taking
minors. We rst dene the minor of a function formally.

DEF IN IT ION 2 .5. (Minor of a function) For a Boolean function 𝑓 : [𝑞]𝑛 → [𝑞′] and an
integer 𝑚, the function 𝑔 : [𝑞]𝑚 → [𝑞′] is said to be a minor of 𝑓 with respect to the function
𝜋 : [𝑛] → [𝑚] if

𝑔 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑓 (𝑥𝜋(1) , 𝑥𝜋(2) , . . . , 𝑥𝜋(𝑛)) ∀𝑥1, 𝑥2, . . . , 𝑥𝑚 ∈ [𝑞] .

We say that a function 𝑔 is a minor of 𝑓 if there exists some 𝜋 such that 𝑔 is a minor of 𝑓 with
respect to 𝜋.

We are often interested in 2-to-1 minors. A function 𝑔 is said to be a 2-to-1 minor of 𝑓
if there exists a 2-to-1 function 𝜋 such that 𝑔 is a minor of 𝑓 with respect to 𝜋, where 2-to-1
function is dened below.

DEF IN IT ION 2 .6. (2-to-1 function) A function 𝜋 : [2𝑛] → [𝑛] is said to be a 2-to-1 function if

|𝜋−1(𝑖) | = 2 ∀𝑖 ∈ [𝑛]
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By the denition of the polymorphisms, we can infer that if 𝑓 ∈ Pol(Γ) for a PCSP Γ, then for
all functions 𝑔 such that 𝑔 is a minor of 𝑓 , we have 𝑔 ∈ Pol(Γ). Such a family of functions that is
closed under taking minors is called as aminion. We often refer to the family of polymorphisms
of a PCSP as the polymorphism minion.

We refer the reader to [4] for an extensive introduction to PCSPs and polymorphisms.

Shapley value. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone Boolean function. We can view the
monotone Boolean function 𝑓 as a voting scheme between two parties, and 𝑛 agents: the winner
of the voting scheme when the 𝑖th agent votes for x𝑖 ∈ {0, 1} is 𝑓 (x). The relative power of an
agent in a voting scheme is typically measured using the Shapley-Shubix Index, also known as
Shapley Value.

Informally speaking, the Shapley Value of a coordinate 𝑖 is the probability that the 𝑖th
agent is the altering vote when we start with all zeroes and ip the votes in a uniformly random
order. More formally,

DEF IN IT ION 2 .7. (Shapley value) Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone Boolean function.
Let 𝜎 ∈ 𝑆𝑛 be a uniformly random permutation of [𝑛]. For an integer 𝑗 ∈ [𝑛], let 𝑃 𝑗 denote the
the set of rst 𝑗 elements of 𝜎 i.e., 𝑃 𝑗 := {𝜎(1), 𝜎(2), . . . , 𝜎( 𝑗)}. The Shapley value Φ 𝑓 (𝑖) of the
coordinate 𝑖 ∈ [𝑛] is dened as

Φ 𝑓 (𝑖) := Pr𝜎
{
∃ 𝑗 ∈ [𝑛] : 𝜎( 𝑗) = 𝑖, 𝑓 (𝑃 𝑗−1) = 0, 𝑓 (𝑃 𝑗) = 1

}
We also give an alternate denition of Shapley value using the notion of boundary of a

coordinate. For a monotone Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and coordinate 𝑖 ∈ [𝑛], let
B 𝑓 (𝑖) denote the boundary of the coordinate 𝑖 i.e.,

B 𝑓 (𝑖) := {𝑆 ⊆ [𝑛] \ {𝑖} : 𝑓 ({𝑖} ∪ 𝑆) = 1, 𝑓 (𝑆) = 0}

By the monotonicity of 𝑓 , we can infer that B 𝑓 (𝑖) satises the following sandwich property that
will be useful later.

PROPOS IT ION 2 .8. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a monotone Boolean function and let 𝑖 ∈ [𝑛].
Then, for every pair of sets 𝑆1, 𝑆2 ∈ B 𝑓 (𝑖) with 𝑆1 ⊆ 𝑆2, we have 𝑆 ∈ B 𝑓 (𝑖) for all 𝑆 such that
𝑆1 ⊆ 𝑆 ⊆ 𝑆2.

PROOF . By themonotonicity of 𝑓 , we have 𝑓 (𝑆∪{𝑖}) ≥ 𝑓 (𝑆1∪{𝑖}) = 1, and thus, 𝑓 (𝑆∪{𝑖}) = 1.
Similarly, we have 𝑓 (𝑆) ≤ 𝑓 (𝑆2) = 0, and thus, 𝑓 (𝑆) = 0. �

For an index 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}, let 𝜇 𝑓 ( 𝑗) (𝑖) denote the fraction of subsets of [𝑛] of size 𝑗 that
are in B 𝑓 (𝑖) i.e.,

𝜇 𝑓 ( 𝑗) (𝑖) :=
���B 𝑓 (𝑖) ∩

([𝑛]
𝑗

) ��� / (𝑛𝑗 ) .
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We can rewrite the denition of Shapley value of the 𝑖th coordinate as the following [35]:

Φ 𝑓 (𝑖) =
∑𝑛−1

𝑗=0 𝜇 𝑓 ( 𝑗) (𝑖)

𝑛
. (1)

3. Algorithmwhen Shapley values are small

In this section, we show that monotone Boolean functions where each coordinate has bounded
Shapley value has arbitrarily large threshold functions as minors, thereby proving the algorith-
mic part of our dichotomy result.

Let 𝐿 be a positive integer and 0 ≤ 𝜏 ≤ 𝐿 + 1 be a non-negative integer. We let THR𝐿,𝜏 :
{0, 1}𝐿 → {0, 1} be the threshold function on 𝐿 variables with threshold 𝜏. More formally,

THR𝐿,𝜏 (x) :=

1 if hw(x) ≥ 𝜏

0 otherwise.

For a monotone Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and real number 𝑝 ∈ [0, 1], let
𝑃𝑝( 𝑓 ) denote the expected value of 𝑓 (𝑥) where each element 𝑥𝑖 , 𝑖 ∈ [𝑛] is independently set
to be 1 with probability 𝑝 and 0 with probability 1 − 𝑝. For every monotone function 𝑓 , the
function 𝑃𝑝( 𝑓 ) is a strictly monotone continuous function in 𝑝 on the interval [0, 1]. The value
𝑝𝑐 = 𝑝𝑐( 𝑓 ) at which 𝑃𝑝𝑐 ( 𝑓 ) = 1

2 is called the critical probability of 𝑓 .
Using the Russo-Margulis Lemma [32, 25] and Poincaré Inequality, we can show the

following lemma that we need later.

LEMMA 3.1 (Exercise 8.29(e) in [28]). Let 𝑓 be a non-constant monotone Boolean function with
critical probability 𝑝𝑐 ≤ 1

2 . Let 𝑝1 :=
1

(2𝜈)2 𝑝𝑐 for 𝜈 > 0. If 𝑝1 ≤ 1
2 , then 𝑃𝑝1 ( 𝑓 ) ≥ 1 − 𝜈.

We now dene the threshold interval of 𝑓 .

DEF IN IT ION 3.2. For a monotone function 𝑓 and 0 < 𝜖 < 1
2 , we dene 𝑇𝜖( 𝑓 ) := 𝑝2 − 𝑝1,

where 𝑝2 and 𝑝1 are such that 𝑃𝑝1 ( 𝑓 ) = 𝜖, 𝑃𝑝2 ( 𝑓 ) = 1 − 𝜖.

Kalai [19] proved the following result regarding monotone Boolean functions.

THEOREM 3.3. For every 𝑎, 𝜖, 𝛾 > 0, there exists 𝛿 := 𝛿(𝑎, 𝜖, 𝛾) > 0 such that for everymonotone
Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} with Φ 𝑓 (𝑖) ≤ 𝛿 for all 𝑖 ∈ [𝑛] and 𝑎 ≤ 𝑝𝑐( 𝑓 ) ≤ 1 − 𝑎, then
𝑇𝜖( 𝑓 ) ≤ 𝛾.

We will use this result to show that for every monotone function where each coordinate
has bounded Shapley value has arbitrarily large threshold functions as minor.
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LEMMA 3.4. For every 𝐿 ≥ 2, there exists a 𝛿 := 𝛿(𝐿) > 0 such that the following holds. For any
monotone Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} with

Φ 𝑓 (𝑖) ≤ 𝛿 ∀𝑖 ∈ [𝑛]

there exists a positive integer 𝐿′ ∈ {𝐿, 𝐿 + 1} and a non-negative integer 𝜏 such that THR𝐿′,𝜏 is a
minor of 𝑓 .

PROOF . We prove the lemma by taking a uniformly random minor of 𝑓 .
We rst obtain 𝛿 := 𝛿(𝐿) > 0 from Theorem 3.3 by setting 𝜖 = 1

2𝐿+1 , 𝛾 = 𝑎 = 1
𝐿3
. Our goal is

to show that for this parameter 𝛿, for every monotone Boolean function 𝑓 with each coordinate
having Shapley value at most 𝛿, there exists 𝐿′ ∈ {𝐿, 𝐿 + 1} and 𝜏 such that THR𝐿′,𝜏 is a minor
of 𝑓 .

We assume that 𝑓 is a non-constant function, else we have a trivial minor by setting 𝜏 = 0
or 𝜏 = 𝐿′. Let 𝑝𝑐 be the critical probability of 𝑓 .

Case 1: 𝑝𝑐 < 𝑎 = 1
𝐿3
. Let 𝑝1 = 𝐿2𝑝𝑐 <

1
𝐿 . Using Lemma 3.1, we can conclude that 𝑃𝑝1 ( 𝑓 ) ≥ 1− 1

2𝐿 .
As 𝑃𝑝( 𝑓 ) is monotone, we get that 𝑃 1

𝐿
( 𝑓 ) > 1 − 1

2𝐿 . We let 𝑔 : {0, 1}𝐿 → {0, 1} be a uniformly
random minor of 𝑓 i.e., we choose the function 𝜋 : [𝑛] → [𝐿] by choosing each value 𝜋(𝑖)
uniformly and independently at random from [𝐿], and we let 𝑔 to be theminor of 𝑓 with respect
to 𝜋.

Note that for every 𝑖 ∈ [𝐿], the distribution of 𝑔 ({𝑖}) over the randomminor 𝑔 is the same
as sampling a random input to 𝑓 where we set each bit to 1 with probability 1

𝐿 . As 𝑃 1
𝐿
( 𝑓 ) ≥ 1− 1

2𝐿 ,
we get that for each 𝑖 ∈ [𝐿], 𝑔 ({𝑖}) = 1 with probability at least 1 − 1

2𝐿 . By union bound, with
probability at least 12 , 𝑔 ({𝑖}) = 1 for all 𝑖 ∈ [𝐿]. As 𝑓 (0, 0, . . . , 0) = 0, 𝑔 (𝜙) = 0 as well. Thus, with
probability at least 1

2 , 𝑔 = THR𝐿,1. Hence, THR𝐿,1 is a minor of 𝑓 .

Case 2: 𝑝𝑐 > 1 − 𝑎 = 1 − 1
𝐿3
. Let 𝑓 † be the Boolean dual of 𝑓 dened as 𝑓 †(𝑥) = 1 − 𝑓 (𝑥). Note

that 𝑃𝑝( 𝑓 †) = 1 − 𝑃1−𝑝( 𝑓 ) for all 𝑝 ∈ [0, 1]. Thus, 𝑝𝑐( 𝑓 †) = 1 − 𝑝𝑐 < 𝑎. Using the previous case,
we can infer that THR𝐿,1 is a minor of 𝑓 † with respect to a funtion 𝜋 : [𝑛] → [𝐿]. The same
function 𝜋 proves that THR†

𝐿,1 = THR𝐿,𝐿 is a minor of 𝑓 .

Case 3: 𝑎 ≤ 𝑝𝑐 ≤ 1−𝑎. Using Theorem 3.3, we obtain 𝑝1 such that 𝑃𝑝1 ( 𝑓 ) ≤ 𝜖, and 𝑃𝑝1+𝛾 ≥ 1−𝜖,
where 𝜖 = 1

2𝐿+1 , 𝛾 = 1
𝐿3
. As 𝛾 < 1

𝐿(𝐿+1) , there exists 𝐿
′ ∈ {𝐿, 𝐿+1} and 𝜏 ∈ [𝐿′] such that 𝑝1 + 𝛾 < 𝜏

𝐿′

and 𝑝1 > 𝜏−1
𝐿′ . Thus, we get that 𝑃 𝜏

𝐿′
( 𝑓 ) > 1 − 𝜖 and 𝑃 𝜏−1

𝐿′
< 𝜖. Let 𝑔 : {0, 1}𝐿′ → {0, 1} be a

uniformly random minor of 𝑓 i.e., we choose 𝜋 : [𝑛] → [𝐿′] by setting each value uniformly
and independently at random from [𝐿′] and set 𝑔 to be the minor of 𝑓 with respect to 𝜋. For a
vector x ∈ {0, 1}𝐿′ with hw(x) = 𝜏, with probability greater than 1 − 1

2𝐿+1 , 𝑔 (x) = 1. Similarly,
for x ∈ {0, 1}𝐿′ with hw(x) = 𝜏 − 1, with probability greater than 1 − 1

2𝐿+1 , 𝑔 (x) = 0. Thus, with
non-zero probability, 𝑔 (x) = 1 for all 𝑥 ∈ {0, 1}𝐿′ with hw(x) = 𝜏 and 𝑔 (x) = 0 for all x ∈ {0, 1}𝐿′
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1 2 3 4 5 6
𝑓

1 2 3 4 5𝑓 ′

1 2 3𝑔

Figure 1. An illustration of the two step minor approach: Here 𝑓 : {0, 1}6 → {0, 1} is a Boolean function,
𝑓 ′ : {0, 1}5 → {0, 1} is a minor of 𝑓 with respect to the function 𝜋1 : [6] → [5] with 𝜋1(𝑖) = max(𝑖 − 1, 1),
and 𝑔 is a minor of 𝑓 ′ with respect to the function 𝜋2 : [5] → [3] with 𝜋2(𝑖) = d 𝑖+12 e.

with hw(x) = 𝜏 − 1. In other words, with non-zero probability, 𝑔 is equal to THR𝐿′,𝜏. Thus,
THR𝐿′,𝜏 is a minor of 𝑓 . �

Using the existence of arbitrarily large arity threshold minors, the algorithmic part of our
Dichotomy result follows immediately.

THEOREM 3.5. Let Γ be a Promise CSP template. Suppose that for every 𝜖 > 0, there exists a
function 𝑓 ∈ Pol(Γ), 𝑓 : {0, 1}𝑛 → {0, 1} such that Φ𝑖 ( 𝑓 ) ≤ 𝜖 for all 𝑖 ∈ [𝑛]. Then, PCSP(Γ) ∈ P.

PROOF . Using Lemma 3.4, we can conclude that there are innitely many positive integers 𝐿
such that there exists 𝜏 ∈ {0, 1, . . . , 𝐿} with THR𝐿,𝜏 ∈ Pol(Γ). As the threshold functions are
symmetric, Pol(Γ) has symmetric polymorphisms of innitely many arities. Thus, using the
BLP+Ane algorithm of [7], PCSP(Γ) can be solved in polynomial time. �

We remark that the above result is inspired by a special case shown by Barto [3] that a Boolean
Ordered PCSP is polytime tractable if it has cyclic polymorphisms of arbitrarily large arities.

4. Hardness Assuming Rich 2-to-1 Conjecture

In this section, we prove the hardness part of our dichotomy result. First, we prove that Shapley
value is preserved under uniformly random 2-to-1 minors, and then we use this to show the
hardness assuming the Rich 2-to-1 Conjecture.

4.1 Shapley value under random 2-to-1 minor

Let 𝑓 : {0, 1}2𝑛 → {0, 1} be a monotone Boolean function with Φ 𝑓 (1) ≥ 𝜆 for some absolute
constant 𝜆 > 0. Let 𝑔 : {0, 1}𝑛 → {0, 1} be a minor of 𝑓 with respect to the uniformly random
2-to-1 function 𝜋 : [2𝑛] → [𝑛]. Our goal in this subsection is to show that E𝜋 [Φ𝑔 (𝜋(1))] ≥ 𝛾 for
some function 𝛾 := 𝛾(𝜆) > 0. We prove this in two steps. (See Figure 1)
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1. First, we consider the minor of 𝑓 , 𝑓 ′ : {0, 1}2𝑛−1 → {0, 1} obtained with respect to 𝜋1 :
[2𝑛] → [2𝑛 − 1] where 𝜋1(1) = 𝜋1(2) = 1, 𝜋1(𝑖) = 𝑖 − 1∀𝑖 ∈ {3, 4, . . . , 2𝑛}. We show that
Φ 𝑓 ′ (1) ≥ 𝜆

2 .
2. Next, we consider a minor 𝑔 of 𝑓 ′ obtained with respect to the function 𝜋2 : [2𝑛−1] → [𝑛]

which has 𝜋2(1) = 1 while the remaining 2𝑛 − 2 values are chosen using a uniformly
random partition of [2𝑛 − 2] into 𝑛 − 1 pairs. We show that E𝜋2 [Φ𝑔 (1)] ≥ 𝛾 for some
function 𝛾 := 𝛾(𝜆) > 0.

The two steps together prove that when 𝑔 is a minor of 𝑓 with respect to the function 𝜋 : [2𝑛] →
[𝑛] that is a uniformly random 2-to-1 function conditioned on the fact that 𝜋(1) = 𝜋(2), we
have E𝜋 [Φ𝑔 (𝜋(1))] ≥ 𝛾 for some function 𝛾 := 𝛾(𝜆) > 0. Taking average over all 𝑖 such that
𝜋(1) = 𝜋(𝑖), we get the same claim when 𝑔 is a uniformly random 2-to-1 minor.

The rst step is captured by the following lemma.

LEMMA 4.1. Let 𝑓 : {0, 1}2𝑛 → {0, 1} and 𝑓 ′ : {0, 1}2𝑛−1 → {0, 1} be monotone Boolean
functions such that 𝑓 ′ is a minor of 𝑓 with respect to the function 𝜋1 : [2𝑛] → [2𝑛 − 1] dened as
𝜋1(𝑖) = max(𝑖 − 1, 1). If Φ 𝑓 (1) ≥ 𝜆, then Φ 𝑓 ′ (1) ≥ 𝜆

2 .

PROOF . We recall a bit of notation: let B 𝑓 (1) denote the boundary of the coordinate 1 in the
function 𝑓 i.e., the family of all the sets 𝑆 ⊆ [2𝑛] \ {1} such that 𝑓 (𝑆) = 0, 𝑓 (𝑆 ∪ {1}) = 1. For
an integer 𝑗 ∈ {0, 1, . . . , 2𝑛 − 1}, let 𝜇 𝑓 ( 𝑗) (1) denote the fraction of subsets of [2𝑛] \ {1} of size 𝑗

that are in B 𝑓 (1). For ease of notation, we let 𝜇( 𝑗) = 𝜇 𝑓 ( 𝑗) (1) , and 𝜇′( 𝑗) = 𝜇 𝑓 ′ ( 𝑗) (1) . Consider a
set 𝑆 ⊆ [2𝑛] \ {1} such that 𝑆 ∈ B 𝑓 (1). Note that

𝑆′ = {𝑖 − 1 : 𝑖 > 2, 𝑖 ∈ 𝑆}

satises 𝑆′ ∈ B 𝑓 ′ (1). Suppose that 𝑆1, 𝑆2 ∈ B 𝑓 (1) such that |𝑆1 | = |𝑆2 | = 𝑗, 𝑆1 ≠ 𝑆2 and 2 ∉ 𝑆1 ∪ 𝑆2.
Then, the above denition satises 𝑆′1 ≠ 𝑆′2, 𝑆

′
1, 𝑆

′
2 ∈ B 𝑓 ′ (1) and |𝑆′1 | = |𝑆′2 | = 𝑗. This implies that���{𝑆 : 𝑆 ∈ B 𝑓 (1), |𝑆 | = 𝑗, 2 ∉ 𝑆}
��� ≤ ����B 𝑓 ′ (1) ∩

(
[2𝑛 − 1] \ {1}

𝑗

)����
Similarly, ���{𝑆 : 𝑆 ∈ B 𝑓 (1), |𝑆 | = 𝑗, 2 ∈ 𝑆}

��� ≤ ����B 𝑓 ′ (1) ∩
(
[2𝑛 − 1] \ {1}

𝑗 − 1

)����
Summing the two, we obtain that���{𝑆 : 𝑆 ∈ B 𝑓 (1), |𝑆 | = 𝑗}

��� ≤ ����B 𝑓 ′ (1) ∩
(
[2𝑛 − 1] \ {1}

𝑗 − 1

)���� + ����B 𝑓 ′ (1) ∩
(
[2𝑛 − 1] \ {1}

𝑗

)����
We can rewrite it as(

2𝑛 − 1
𝑗

)
𝜇( 𝑗) ≤

(
2𝑛 − 2

𝑗

)
𝜇′( 𝑗) +

(
2𝑛 − 2
𝑗 − 1

)
𝜇′( 𝑗 − 1) ∀ 𝑗 ∈ [2𝑛 − 2]
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As
(2𝑛−1

𝑗

)
=
(2𝑛−2

𝑗

)
+
(2𝑛−2
𝑗−1

)
for every 𝑗 ∈ [2𝑛 − 2], we get that

𝜇( 𝑗) ≤ 𝜇′( 𝑗) + 𝜇′( 𝑗 − 1)

for all 𝑗 ∈ [2𝑛 − 2]. Also note that 𝜇(0) = 𝜇′(0), and 𝜇(2𝑛 − 1) = 𝜇′(2𝑛 − 2). Summing over all
these inequalities, we get that∑︁

𝑗∈{0,1,...,2𝑛−2}
𝜇′( 𝑗) ≥ 1

2

∑︁
𝑗∈{0,1,...,2𝑛−1}

𝜇( 𝑗) ≥ 𝜆 (2𝑛)
2

= 𝑛𝜆

Thus,

Φ 𝑓 ′ (1) =
∑

𝑗∈{0,1,...,2𝑛−2} 𝜇
′( 𝑗)

2𝑛 − 1
≥ 𝜆

2
. �

Before proving the second step, we prove the following key lemma regarding the distribu-
tion of the boundary subsets.

LEMMA 4.2. Let 𝑓 ′ : {0, 1}2𝑛−1 → {0, 1} be a monotone Boolean function such that Φ 𝑓 ′ (1) = 𝜆

with 𝜆 ≥ 1
𝑛 . For an integer 𝑗 ∈ {0, 1, . . . , 2𝑛−2}, let 𝜇′( 𝑗) = 𝜇 𝑓 ′ ( 𝑗) (1) . Then, there exists an absolute

constant 𝛾 := 𝛾(𝜆) > 0 such that ∑𝑛−1
𝑗=0 𝜇

′(2 𝑗)
𝑛

≥ 𝛾

PROOF . We prove that there exist real numbers 𝑐1 < 𝑐2, 𝑐 > 𝜆2

4 , such that for all 𝑗 with
𝑐1𝑛 ≤ 𝑗 ≤ 𝑐2𝑛, we have 𝜇′( 𝑗) ≥ 𝑐, and 𝑐2 − 𝑐1 ≥ 𝜆2

8 . This directly implies the lemma with
𝛾 = Ω(𝜆4).

For a pair of integers 0 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 2, we dene the following parameter 𝜇′(𝑖, 𝑗) as the
fraction of the pair of subsets (𝑆, 𝑇 ) where 𝑆, 𝑇 ⊆ {2, 3, . . . , 2𝑛 − 1}, |𝑆 | = 𝑖, |𝑇 | = 𝑗, 𝑆 ⊆ 𝑇 that
satisfy 𝑆 ∈ B 𝑓 ′ (1), 𝑇 ∈ B 𝑓 ′ (1).

𝜇′(𝑖, 𝑗) =
��{(𝑆, 𝑇 ) : |𝑆 | = 𝑖, |𝑇 | = 𝑗, 𝑆 ⊆ 𝑇, 𝑆 ∈ B 𝑓 ′ (1), 𝑇 ∈ B 𝑓 ′ (1)}

��(2𝑛−2
𝑖

) (2𝑛−2−𝑖
𝑗−𝑖

)
We rst claim that there exist constants (depending on 𝜆) 𝑐1 < 𝑐2, 𝑐 > 0 such that

𝜇′(𝑐1𝑛, 𝑐2𝑛) ≥ 𝑐, and 𝑐2 − 𝑐1 ≥ 𝜆2

2 . Consider a uniformly random permutation of [2𝑛 − 1] \ {1}
denoted by 𝜎 = (𝜎(1), 𝜎(2), . . . , 𝜎(2𝑛 − 2)). For an integer 𝑗 ∈ {0, 1, . . . , 2𝑛 − 2}, let 𝑆 𝑗 be the
random variable that is the union of the prex of 𝜎 containing the rst 𝑗 elements.

𝑆 𝑗 := {𝜎(1), 𝜎(2), . . . , 𝜎( 𝑗)}, ∀ 𝑗 ∈ {0, 1, . . . , 2𝑛 − 2}.

For each 𝑗 ∈ {0, 1, . . . , 2𝑛 − 2}, the subset 𝑆 𝑗 is uniformly distributed in
([2𝑛−1]\{1}

𝑗

)
. For 𝑗 ∈

{0, 1, . . . , 2𝑛 − 2}, let 𝑋 𝑗 be the indicator random variable for the event that 𝑆 𝑗 ∈ B 𝑓 ′ (1). By the
denition of 𝜇′( 𝑗), we get

E[𝑋 𝑗] = 𝜇′( 𝑗) ∀ 𝑗 ∈ {0, 1, . . . , 2𝑛 − 2}.
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Let 𝑋 = 𝑋0 + 𝑋1 + . . . + 𝑋2𝑛−2 be the number of subsets in the set family (𝜙 = 𝑆0 ⊂ 𝑆1 ⊂ 𝑆2 . . . ⊂
𝑆2𝑛−2 = [2𝑛 − 1] \ {1}) that are in B 𝑓 ′ (1). Using Equation (1), we get

E[𝑋] = 𝜆 (2𝑛 − 1).

Using Jensen’s inequality, we get that

E

[(
𝑋

2

)]
≥

(
𝜆 (2𝑛 − 1)

2

)
=
1
2
· 𝜆 (2𝑛 − 1)

(
𝜆

2
(2𝑛 − 2) + 𝑛𝜆 − 1

)
≥ 𝜆2

2

(
2𝑛 − 1
2

)
wherein the nal inequality, we used the fact that 𝜆𝑛 ≥ 1. Note that for every 𝑖 < 𝑗, the marginal
distribution of (𝑆𝑖 , 𝑆 𝑗) is the uniform distribution over all the pairs of subsets (𝑆, 𝑇 ) where
𝑆, 𝑇 ⊆ {2, 3, . . . , 2𝑛 − 1}, |𝑆 | = 𝑖, |𝑇 | = 𝑗, 𝑆 ⊆ 𝑇 . Thus, by the denition of 𝜇′(𝑖, 𝑗), we get that
𝜇′(𝑖, 𝑗) = E[𝑋𝑖𝑋 𝑗], for 0 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 2. Therefore we have

E

[(
𝑋

2

)]
= E


∑︁

0≤𝑖< 𝑗≤2𝑛−2
𝑋𝑖𝑋 𝑗

 =
∑︁

0≤𝑖< 𝑗≤2𝑛−2
E[𝑋𝑖𝑋 𝑗] =

∑︁
0≤𝑖< 𝑗≤2𝑛−2

𝜇′(𝑖, 𝑗)

Thus, ∑︁
0≤𝑖< 𝑗≤2𝑛−2

𝜇′(𝑖, 𝑗) ≥ 𝜆2

2

(
2𝑛 − 1
2

)
This implies that the expected value (over 𝑖, 𝑗) of 𝜇′(𝑖, 𝑗) is at least 𝜆2

2 . Let 𝑝 denote the probability
(over 𝑖, 𝑗) that 𝜇′(𝑖, 𝑗) ≤ 𝜆2

4 . As the expected value of 𝜇
′(𝑖, 𝑗) is at least 𝜆2

2 , we have

𝑝 ·
(
𝜆2

4

)
+ (1 − 𝑝) · 1 ≥ 𝜆2

2

which implies that 𝑝 ≤ 1 − 𝜆2

4 . Thus, with probability (over 𝑖, 𝑗) at least
𝜆2

4 , we have 𝜇
′(𝑖, 𝑗) ≥ 𝜆2

4 .
Hence, there exist integers 𝑝, 𝑞 such that 𝑞 − 𝑝 ≥ 𝜆2

8 𝑛 and 𝜇′(𝑝, 𝑞) ≥ 𝜆2

4 . For ease of notation, let
𝑝 = 𝑐1𝑛, 𝑞 = 𝑐2𝑛 where 𝑐1, 𝑐2 are reals satisfying 𝑐2 − 𝑐1 ≥ 𝜆2

8 .
Next, we claim that 𝜇′( 𝑗) ≥ 𝜆2

4 for all 𝑗 such that 𝑐1𝑛 ≤ 𝑗 ≤ 𝑐2𝑛. Fix an integer 𝑗 with
𝑐1𝑛 ≤ 𝑗 ≤ 𝑐2𝑛. Consider a uniformly random sequence of subsets 𝑆1 ⊆ 𝑆2 ⊆ 𝑆3 ⊆ [2𝑛 − 1] \ {1}
such that |𝑆1 | = 𝑐1𝑛, |𝑆2 | = 𝑗, |𝑆3 | = 𝑐2𝑛. The probability that 𝑆1 ∈ B 𝑓 ′ (1), 𝑆3 ∈ B 𝑓 ′ (1) is
equal to 𝜇′(𝑐1𝑛, 𝑐2𝑛) which is at least 𝜆2

4 . Thus, using Proposition 2.8, with probability at least
𝜆2

4 , 𝑆2 ∈ B 𝑓 ′ (1). Note that the distribution of 𝑆2 is uniform in
([2𝑛−1]\{1}

𝑗

)
, and thus, we have

𝜇′( 𝑗) ≥ 𝜆2

4 .
The fact that 𝜇′( 𝑗) ≥ 𝜆2

4 for all 𝑗 such that 𝑐1𝑛 ≤ 𝑗 ≤ 𝑐2𝑛 together with 𝑐2 − 𝑐1 ≥ 𝜆2

8

completes a proof of the lemma. �

We now prove the second step in the proof.

LEMMA 4.3. Suppose that 𝑓 ′ : {0, 1}2𝑛−1 is a monotone Boolean function such that Φ 𝑓 ′ (1) ≥ 𝜆

with 𝜆 ≥ 1
𝑛 . Let 𝑔 be a random minor of 𝑓 ′ with respect to 𝜋2 : [2𝑛 − 1] → [𝑛] which is obtained

by setting 𝜋2(1) = 1, and for every 𝑖 > 1, we randomly choose 𝑗1, 𝑗2 ∈ [2𝑛 − 1] \ {1} (without
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replacements) and set 𝜋2( 𝑗1) = 𝜋2( 𝑗2) = 𝑖. In other words, we choose a uniformly random
partition of [2𝑛 − 1] \ {1} into 𝑛 − 1 pairs 𝑃2, 𝑃3, . . . , 𝑃𝑛 and set 𝜋2( 𝑗) = 𝑖 ∀ 𝑗 ∈ 𝑃𝑖 . Then, there
exists 𝛾 := 𝛾(𝜆) > 0 such that

E𝜋2 [Φ𝑔 (1)] ≥ 𝛾 .

PROOF . For ease of notation, we let 𝜇′( 𝑗) = 𝜇 𝑓 ′ ( 𝑗) (1) and 𝜇𝑔 ( 𝑗) = 𝜇𝑔 ( 𝑗) (1) . For a set 𝑆 ⊆ [𝑛]\{1}
and a function 𝜋2 : [2𝑛 − 1] → [𝑛] with 𝜋2(1) = 1, and |𝜋−1

2 (𝑖) | = 2 for all 𝑖 ∈ {2, 3, . . . , 𝑛}, let
𝜋−1
2 (𝑆) be the 2|𝑆 | sized subset of {2, 3, . . . , 2𝑛 − 1} dened as follows:

𝜋−1
2 (𝑆) := { 𝑗 ∈ {2, 3, . . . , 2𝑛 − 1} : 𝜋2( 𝑗) ∈ 𝑆}

For every set 𝑆 ⊆ {2, 3, . . . , 𝑛}, when 𝜋2 : [2𝑛 − 1] → [𝑛] is a uniformly random 2-to-1 minor
with 𝜋2(1) = 1, and the rest 2𝑛−2 elements are partitioned into 𝑛−1 pairs uniformly at random,
the set 𝜋−1

2 (𝑆) is distributed uniformly in
([2𝑛−1]\{1}

2|𝑆 |
)
. Also note that 𝑆 ∈ B𝑔 (1) if and only if

𝜋−1(𝑆) ∈ B 𝑓 ′ (1). Thus, for every set 𝑆 ⊆ {2, 3, . . . , 𝑛}, the probability that 𝑆 ∈ B𝑔 (1) (over the
choice of 𝜋2) is equal to 𝜇′(2|𝑆 |). Summing over all such sets of size 𝑗, we get that for every
𝑗 ∈ {0, 1, . . . , 𝑛 − 1}, the expected value of 𝜇𝑔 ( 𝑗) is equal to 𝜇′(2 𝑗).

E𝜋2 [𝜇𝑔 ( 𝑗)] = 𝜇′(2 𝑗) ∀ 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}

By using Lemma 4.2, we can infer that there exists 𝛾 = 𝛾(𝜆) > 0 such that
∑𝑛−1

𝑗=0 E𝜋2 [𝜇𝑔 ( 𝑗)] =∑𝑛−1
𝑗=0 𝜇

′(2 𝑗) ≥ 𝛾𝑛. Using Equation (1), we get

E𝜋2 [Φ𝑔 (1)] = E𝜋2

[∑𝑛−1
𝑗=0 𝜇𝑔 ( 𝑗)

𝑛

]
=

∑𝑛−1
𝑗=0 E𝜋2 [𝜇𝑔 ( 𝑗)]

𝑛
≥ 𝛾. �

Lemma4.1 andLemma4.3 together prove that Shapley value behaveswell under uniformly
random 2-to-1 minors for monotone Boolean functions.

LEMMA 4.4. Suppose that 𝑓 : {0, 1}2𝑛 → {0, 1} is a monotone Boolean function such that
Φ 𝑓 (1) ≥ 𝜆 for some absolute constant 𝜆 > 0 with 𝜆 ≥ 1

𝑛 . Then, there exists 𝛾 := 𝛾(𝜆) > 0 such
that

E𝜋 [Φ𝑔 (𝜋(1))] ≥ 𝛾

where 𝑔 is a minor of 𝑓 with respect to the uniformly random 2-to-1 function 𝜋.

PROOF . Combining Lemma 4.1 and Lemma 4.3, we can conclude that for every 𝑖 ∈ [2𝑛], 𝑖 > 1,
when 𝜋 : [2𝑛] → [𝑛] is a uniformly random2-to-1minor conditioned on the fact that 𝜋(1) = 𝜋(𝑖),
we have E𝜋 [Φ𝑔 (𝜋(1))] ≥ 𝛾. Taking average over all the 𝑖 ∈ [2𝑛], 𝑖 > 1, we get a proof that the
same inequality holds when 𝜋 is a uniformly random 2-to-1 minor. �

4.2 Reduction

We rst formally dene the Label Cover problem and state the Rich 2-to-1 Conjecture.
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DEF IN IT ION 4.5. (Label Cover) In the Label Cover problem G = (𝐺, Σ𝐿, Σ𝑅,Π), the input is a
bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) with projection constraint Π𝑒 : Σ𝐿 → Σ𝑅 on every edge 𝑒 ∈ 𝐸. A
labeling 𝜎 which assigns values from Σ𝐿 to 𝐿 and from Σ𝑅 to 𝑅 satises the constraint Π𝑒 on the
edge 𝑒 = (𝑢, 𝑣) if Π𝑒(𝜎(𝑢)) = 𝜎(𝑣). The objective is to identify if there is a labeling that satises
all the constraints.

For every constant 𝜖 > 0, it is NP-hard [31] to distinguish between the case that a given Label
Cover instance has a labeling that satises all the constraints vs. no labeling can satisfy more
than 𝜖 fraction of the constraints. This hardness result for Label Cover has been instrumental
in showing numerous strong, and sometimes optimal, inapproximability results for various
computational problems. However, the standard Label Cover seems insucient as a starting
point towards proving hardness results for approximate graph coloring and other 2-variable
PCSPs. To circumvent this, the hardness of Label Cover on structured instances such as Unique
Games, smooth Label Cover, etc. has been studied.

In his celebrated work proposing the Unique Games Conjecture [20], Khot also proposed
the “2-to-1 conjecture” that the strong hardness of Label Cover holds when all the constraints
of the Label Cover are 2-to-1 functions. The imperfect completeness version of this conjecture
was recently established in a striking sequence of works [22, 12, 13, 23]. Braverman, Khot, and
Minzer [8] put forth a stronger conjecture that states that the hardness of Label Cover holds
when the distribution of 2-to-1 functions on edges incident on every vertex 𝑢 ∈ 𝐿 is the uniform
distribution. For ease of notation, for an integer 𝑛, we use F2→1(𝑛) to denote the set of all the
2-to-1 functions from [2𝑛] to [𝑛].

DEF IN IT ION 4.6. (Rich 2-to-1 Label Cover instances) We call a Label Cover instance G =

(𝐺, Σ𝐿, Σ𝑅,Π) with 𝐺 = (𝐿 ∪ 𝑅, 𝐸) a rich 2-to-1 instance if the following hold.
1. There exists an integer Σ such that Σ𝐿 = [2Σ], Σ𝑅 = [Σ], and every projection constraint Π𝑒,

𝑒 ∈ 𝐸 is a 2-to-1 function.
2. For every vertex 𝑢 ∈ 𝐿, the distribution of 2-to-1 functions P𝑢 obtained by rst sampling

a uniformly random neighbor 𝑣 of 𝑢, and then picking Π𝑒, 𝑒 = (𝑢, 𝑣), is uniform over
F2→1(Σ).

CONJECTURE 4.7. (Rich 2-to-1 Conjecture) [8] For every 𝜖 > 0, there exists an integer Σ = Σ(𝜖)
such that given a rich 2-to-1 Label Cover instance G = (𝐺, Σ𝐿, Σ𝑅,Π) with Σ𝐿 = [2Σ], it is NP-Hard
to distinguish between the following.

1. There is a labeling that satises all the constraints of G.
2. No labeling can satisfy more than 𝜖 fraction of the constraints of G.

We are now ready to state the hardness part of our dichotomy. It is proved using the Label
Cover-Long Code framework. This reduction is standard in the PCSP literature, see e.g., [4].
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THEOREM 4.8. Assume the Rich 2-to-1 Conjecture. Let PCSP(Γ) be a Boolean Ordered PCSP
such that there exists an absolute constant 𝜆 > 0 with max𝑖∈[𝑛] Φ 𝑓 (𝑖) ≥ 𝜆 for all functions
𝑓 : {0, 1}𝑛 → {0, 1}, 𝑓 ∈ Pol(Γ). Then PCSP(Γ) is NP-Hard.

PROOF . Let Γ = {(𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑙, 𝐵𝑙)} be the PCSP under consideration, where
each 𝐴𝑖 is a subset of {0, 1}𝑘𝑖 for all 𝑖 ∈ [𝑙], and similarly, each 𝐵𝑖 is a subset of {0, 1}𝑘𝑖 for all
𝑖 ∈ [𝑙]. We start from a rich 2-to-1 Label Cover instance G = (𝐺, [2Σ], [Σ],Π) with 𝐺 = (𝐿∪ 𝑅, 𝐸).
For ease of notation, we use Σ𝑤 to denote 2Σ if𝑤 ∈ 𝐿, and Σ if𝑤 ∈ 𝑅. For every vertex𝑤 ∈ 𝐿∪ 𝑅,
we have a set of 2Σ𝑤 nodes denoted by 𝐿𝑤 = {𝑤} × {0, 1}Σ𝑤 referred to as the long code corre-
sponding to 𝑤. The elements of our output PCSP instance 𝑉 is the union of all the long code
nodes.

𝑉 =
⋃

𝑤∈𝐿∪𝑅
𝐿𝑤

We add two types of constraints.
1. Polymorphism Constraints. For every 𝑖 ∈ [𝑙], we add the following constraints using the

pair of predicates (𝐴𝑖 , 𝐵𝑖). For every 𝑤 ∈ 𝐿 ∪ 𝑅, and multiset of vectors x1, x2, . . . , x𝑘𝑖 ∈
{0, 1}Σ𝑤 satisfying

(x1𝑗 , x
2
𝑗 , . . . , x

𝑘𝑖
𝑗
) ∈ 𝐴𝑖 ∀ 𝑗 ∈ [Σ𝑤],

we add the constraint on the 𝑘𝑖 nodes {𝑤, x1}, {𝑤, x2}, . . . , {𝑤, x𝑘𝑖}.
2. Equality Constraints. For every edge 𝑒 = (𝑢, 𝑣) of the Label Cover instance with the

constraint Π𝑒 : [2Σ] → [Σ], we add the following set of equality constraints. For every
x ∈ {0, 1}2Σ and y ∈ {0, 1}Σ such that for all 𝑗 ∈ [2Σ], x 𝑗 = yΠ𝑒 ( 𝑗) , we add an equality
constraint between {𝑢, x} and {𝑣, y} ensuring that the two nodes are assigned the same
value. The fact that we can add the equality constraints follows either by identifying the
variables together, or by observing that the polymorphism minion of any PCSP remains
the same when we add the equality predicate (see e.g., [4, 16]).

Completeness. Suppose that there exists a labeling 𝜎 that satises all the constraints of the
Label Cover instance. For every node {𝑤, x} ∈ 𝑉 , we assign the dictator function x𝜎(𝑤) ∈ {0, 1}.
By the way we have added the polymorphism constraints, any dictator assignment satises
them. The equality constraints are also satised as the labeling satises all the constraints of G.

Soundness. Suppose that there exists an assignment 𝑓 : 𝑉 → {0, 1} that satises all the
polymorphism constraints and the equality constraints. Then, we claim that there exists a
labeling 𝜎 that satises 𝜖 := 𝜖(𝜆) > 0 fraction of the constraints of the Label Cover instance G.

For a vertex 𝑤 ∈ 𝐿 ∪ 𝑅, let 𝑓𝑤 : {0, 1}Σ𝑤 → {0, 1} denote the function 𝑓 restricted to 𝐿𝑤.
Note that 𝑓𝑤 is a polymorphism of the PCSP Γ for all 𝑤 ∈ 𝐿 ∪ 𝑅. As every polymorphism of Γ
has a coordinate with Shapley value at least 𝜆, for every 𝑢 ∈ 𝐿, we dene the set 𝑆(𝑢) that is
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non-empty as follows:
𝑆(𝑢) = {𝑖 ∈ [2Σ] : Φ 𝑓𝑢 (𝑖) ≥ 𝜆}

As
∑

𝑖∈[𝑛] Φ 𝑓 (𝑖) = 1 for all functions 𝑓 : {0, 1}𝑛 → {0, 1}, we have |𝑆(𝑢) | ≤ 1
𝜆 for all 𝑢 ∈ 𝐿.

As a corollary of Lemma 4.4, we can conclude that there exists 𝛾 = 𝛾(𝜆) > 0 such that
for every monotone Boolean function 𝑓 : {0, 1}2Σ → {0, 1} with Φ 𝑓 (𝑖) ≥ 𝜆, when 𝑔 is a minor
of 𝑓 with respect to a uniformly random 2-to-1 function 𝜋 : [2Σ] → [Σ], Φ𝑔 (𝜋(1)) ≥ 𝛾

2 with
probability at least 𝛾

2 . Note that applying Lemma 4.4 requires that 𝜆 ≥ 1
Σ . However, even when

𝜆 < 1
Σ , by picking the coordinate with the largest Shapley value, we can still assume that in

every long code function, there is a coordinate with Shapley value at least 1
2Σ = Θ(𝜆), and then

apply Lemma 4.4. Using this 𝛾, for every 𝑣 ∈ 𝑅, we dene the set 𝑆(𝑣) as

𝑆(𝑣) =
{
𝑖 ∈ [Σ] : Φ 𝑓𝑣 (𝑖) ≥

𝛾

2

}
.

By denition, we have |𝑆(𝑣) | ≤ 2
𝛾 for all 𝑣 ∈ 𝑅. As the Label Cover instance is rich 2-to-1, for

every 𝑢 ∈ 𝐿, when we pick a uniformly random edge 𝑒 = (𝑢, 𝑣) adjacent to 𝑢 with constraint
Π𝑒 : [2Σ] → [Σ], with probability at least 𝛾

2 , there exist 𝑖1 ∈ [2Σ], 𝑖2 ∈ [Σ] such that Φ 𝑓𝑢 (𝑖1) ≥ 𝜆,
Φ 𝑓𝑣 (𝑖2) ≥

𝛾
2 , and Π𝑒(𝑖1) = 𝑖2.

We now pick a labeling 𝜎 of G by picking uniformly random label from 𝑆(𝑤) for all
𝑤 ∈ 𝐿∪𝑅. By the above argument, for every 𝑢 ∈ 𝐿, the expected number of constraints of G that
are adjacent to 𝑢 that the labeling 𝜎 satises is at least 𝛾

2 · 𝜆
𝛾
2 . Summing over all 𝑢 ∈ 𝐿, 𝜎 satises

at least Ω(𝜆𝛾2) fraction of the constraints of G in expectation. Thus, there exists a labeling to G
that satises 𝜖 = Ω(𝜆𝛾2) > 0 fraction of the constraints, which completes the proof. �

5. Adversarial 2-to-1 minor

We construct an example of a 2-to-1 minor where the Shapley value alters completely after
taking the minor.

THEOREM 5.1. Let 𝑛 ≥ 2 be a positive integer. There exist two monotone Boolean functions
𝑓 : {0, 1}2𝑛 → {0, 1} and 𝑔 : {0, 1}𝑛 → {0, 1} such that 𝑔 is a 2-to-1minor of 𝑓 with respect to the
2-to-1 function 𝜋 : [2𝑛] → [𝑛] dened as 𝜋(𝑖) = d 𝑖2e. Furthermore,

1. Φ𝑔 (1) = Ω(1), and Φ𝑔 ( 𝑗) = 𝑜(1) for all 𝑗 > 1.
2. Φ 𝑓 (3) = Ω(1), and Φ 𝑓 (𝑖) = 𝑜(1) for all 𝑖 ∈ [2𝑛], 𝑖 ≠ 3.

PROOF . Similar to the proof of Theorem 4.8, we construct the minor function pair in two steps.
1. First, we construct Boolean monotone functions 𝑓 ′ : {0, 1}2𝑛−1 → {0, 1} and 𝑔 : {0, 1}𝑛 →

{0, 1} such that 𝑔 is a minor of 𝑓 with respect to the function 𝜋 : [2𝑛− 1] → [𝑛] dened as
𝜋(𝑖) = d 𝑖+12 e for all 𝑖. Furthermore, Φ𝑔 (1) = Ω(1), and Φ𝑔 ( 𝑗) = 𝑜(1) for all 𝑗 > 1. We also
have Φ 𝑓 ′ (2) = Ω(1), and Φ 𝑓 ′ (𝑖) = 𝑜(1) for all 𝑖 ∈ [2𝑛 − 1], 𝑖 ≠ 2.
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2. We dene the function 𝑓 : {0, 1}2𝑛 → {0, 1} as

𝑓 ( 𝑦1, 𝑦2, . . . , 𝑦2𝑛) = 𝑓 ′( 𝑦1, 𝑦3, . . . , 𝑦2𝑛)

Note that 𝑔 is a minor of 𝑓 with respect to the 2-to-1 function 𝜋 : [2𝑛] → [𝑛] dened as
𝜋(𝑖) = d 𝑖2e. Furthermore, by denition, we have Φ 𝑓 (3) = Ω(1), and Φ 𝑓 (𝑖) = 𝑜(1) for all
𝑖 ∈ [2𝑛], 𝑖 ≠ 3.

Henceforth, our goal is to construct a pair of functions as in the rst step above.
We dene a partial Boolean function to be a function from {0, 1}𝑛 to {0, 1, ?}. A partial

Boolean function 𝑓 on 𝑛 variables is monotone if for all p ∈ {0, 1}𝑛 and q ∈ {0, 1}𝑛 such that
p ≤ q, if 𝑓 (p) = 1, then 𝑓 (q) = 1, and if 𝑓 (q) = 0, then 𝑓 (p) = 0.

Now, consider 𝑔 : {0, 1}𝑛 → {0, 1} to be

𝑔 (x) =


1 if

∑𝑛
𝑗=2 𝑥 𝑗 ≥ 51𝑛

100

0 if
∑𝑛

𝑗=2 𝑥 𝑗 ≤ 49𝑛
100

𝑥1 if 49𝑛
100 <

∑𝑛
𝑗=2 𝑥 𝑗 <

51𝑛
100

Bydenition, 𝑔 is amonotone function, andusing Equation (1), we can infer thatΦ𝑔 (1) = 1
50 ,

and Φ𝑔 ( 𝑗) < 1
𝑛 for all 𝑗 > 1.

We now construct 𝑓 ′ in three steps. Start with 𝑓 ′ =′?′.
1. (Preserving the minor) First, set the value of entries of 𝑓 ′ that are of the form

(𝑥1, 𝑥2, 𝑥2, · · · , 𝑥𝑛, 𝑥𝑛) as

𝑓 ′(𝑥1, 𝑥2, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛) = 𝑔 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∀x ∈ {0, 1}𝑛

We then extend it both upwards and downwards i.e., if 𝑓 ′(p) is set to 1 and p ≤ q, then set
𝑓 ′(q) = 1 as well, and similarly, if 𝑓 ′(q) is set to 0, and p ≤ q, then we set 𝑓 ′(p) = 0. This
ensures that 𝑔 is a minor of 𝑓 ′ and that the partial function 𝑓 ′ is monotone.

2. (Destroying the inuence of 1) Next, we ensure that the Shapley value of the coordinate 1
is low by the following operation: consider all y such that 𝑓 ′(y) has not been set in the
rst step, 𝑦1 = 0 and 𝑓 ′(1, 𝑦2, · · · , 𝑦2𝑛−1) is already set to 1 in the rst step. Then set 𝑓 ′(y)
to be 1. Similarly, if y satises 𝑦1 = 1 and 𝑓 ′(0, 𝑦2, · · · , 𝑦2𝑛−1) is already set to 0 in the rst
step, set 𝑓 ′(y) to be 0 if it has not been set in the rst step.
We claim that the updated partial function 𝑓 ′ is still a monotone partial function. Consider
p, q ∈ {0, 1}2𝑛−1 such that p ≤ q. Suppose that 𝑓 ′(p) is set to be 1. If it is set in the rst
step, as we extended the partial function upwards in the rst step, 𝑓 ′(q) = 1 as well. If
𝑓 ′(p) is set to be 1 in the second step, it implies that 𝑓 ′(p′) has been set to 1 in the rst step,
where p′ is obtained from p by setting 𝑝1 to be 1. Let q′ ∈ {0, 1}2𝑛−1 be obtained from q by
setting 𝑞1 = 1. As p′ ≤ q′, 𝑓 ′(q′) has been set to 1 in the rst step as well. Thus, 𝑓 ′(q) is set
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to be 1 in the second step. The same argument can be used to show that if 𝑓 ′(q) = 0, then
𝑓 ′(p) = 0 as well.

3. (Adding inuence to 2) For all y for which 𝑓 ′(y) =′?′ set 𝑓 ′(y) = 𝑦2. The fact that the nal
function 𝑓 ′ is monotone follows from observing that any completion of a partial monotone
function using a monotone function results in a monotone function.

Finally, our goal is to argue about the Shapley value of the coordinates of the function 𝑓 ′.
First, we show that the Shapley value of the coordinate 1 in 𝑓 ′ is 𝑜(1). Suppose there exists
p = (0, 𝑦2, 𝑦3, · · · , 𝑦2𝑛−1) and q = (1, 𝑦2, 𝑦3, · · · , 𝑦2𝑛−1) such that 𝑓 ′(p) = 0 and 𝑓 ′(q) = 1. We
claim that both the values 𝑓 ′(p) and 𝑓 ′(q) are set in the rst step of the above procedure.
Suppose for contradiction that this is not the case. If neither of them is set in the rst step, then
they will not be set in the second step either, and in the third step, both of them will be assigned
the same value, a contradiction. If exactly one of them is set in the rst step, then in the second
step, the other value would be set to be equal to it, a contradiction as well. Thus, both the values
𝑓 ′(p) and 𝑓 ′(q) are set in the rst step.

Let 𝐵 = B𝑔 (1) ⊆ {0, 1}𝑛−1 be the boundary of the coordinate 1 in 𝑔. As 𝑓 ′(q) is set to
be 1 in the rst step, there exists x ∈ {0, 1}𝑛 such that 𝑔 (x) = 1 and (𝑥1, 𝑥2, 𝑥2, · · · , 𝑥𝑛, 𝑥𝑛) ≤
q. As (𝑥1, 𝑥2, 𝑥2, · · · , 𝑥𝑛, 𝑥𝑛) is not less than or equal to p, we can conclude that 𝑥1 = 1 and
𝑔 (0, 𝑥2, 𝑥3, · · · , 𝑥𝑛) = 0. In other words, (𝑥2, 𝑥3, · · · , 𝑥𝑛) ∈ 𝐵. Similarly, there exists x′ such that
𝑔 (x′) = 0 and (𝑥′1, 𝑥′2, 𝑥′2, · · · , 𝑥′𝑛, 𝑥′𝑛) ≥ p. By the same argument as above, we can conclude
that (𝑥′2, 𝑥′3, · · · , 𝑥′𝑛) ∈ 𝐵. Combining the both, we can conclude that there exist x, x′ ∈ 𝐵 such
that (𝑥2, 𝑥2, 𝑥3, 𝑥3, . . . , 𝑥𝑛, 𝑥𝑛) ≤ ( 𝑦2, 𝑦3, · · · , 𝑦2𝑛−2) ≤ (𝑥′2, 𝑥′2, 𝑥′3, 𝑥′3, . . . , 𝑥′𝑛, 𝑥′𝑛). Note that if the
above inequality is true for a ( 𝑦2, 𝑦3, · · · , 𝑦2𝑛−2), we directly get that ( 𝑦2, 𝑦3, · · · , 𝑦2𝑛−2) is in the
boundary of the coordinate 1 in 𝑓 ′.

Observe that the boundary of coordinate 1 in 𝑔 is the set of vectors (𝑥2, 𝑥3, · · · , 𝑥𝑛) such that
49
100𝑛 ≤ ∑𝑛

𝑗=2 𝑥 𝑗 ≤ 51
100𝑛. By the previous argument, we can deduce that the boundary 𝐵′ = B 𝑓 (1)

of the coordinate 1 in 𝑓 ′ is the set of vectors y = ( 𝑦2, 𝑦3, · · · , 𝑦2𝑛−1) that satisfy the following
property: The number of 𝑖 ∈ [𝑛 − 1] such that both 𝑦2𝑖 = 𝑦2𝑖+1 = 1 is at least 49

100𝑛. Similarly, the
number of 𝑖 ∈ [𝑛 − 1] such that 𝑦2𝑖 = 𝑦2𝑖+1 = 0 is at least 49

100𝑛. Observe that this implies that we
require that 49

50𝑛 ≤ ∑2𝑛−1
𝑗=2 𝑦 𝑗 ≤ 51

50𝑛. However, for every integer 𝑙 such that
49
50𝑛 ≤ 𝑙 ≤ 51

50𝑛, when
we sample a uniformly random vector y = ( 𝑦2, 𝑦3, . . . , 𝑦2𝑛−1) with

∑2𝑛−1
𝑗=2 𝑦 𝑗 = 𝑙, the probability

that the number of 𝑖 ∈ [𝑛 − 1] such that both 𝑦2𝑖 = 𝑦2𝑖+1 = 1 is at least 49
100𝑛 is 𝑜(1). Thus,

using Equation (1), we can infer that the Shapley value of the coordinate 1 in 𝑓 ′ is 𝑜(1).
We now show that the coordinate 2 has Ω(1) Shapley value in 𝑓 ′. Consider y = ( 𝑦1, 𝑦2, . . . ,

𝑦2𝑛−1) such that 49𝑛50 < hw(y) ≤ 51𝑛
50 . If the number of 𝑖 such that both 𝑦2𝑖 = 𝑦2𝑖+1 = 1 is less than

49
100𝑛, we have ( 𝑦1, 𝑦3, . . . , 𝑦2𝑛−1) ∈ B 𝑓 (2). However, for every integer 𝑙 such that 49

50𝑛 ≤ 𝑙 ≤ 51
50𝑛,

when we sample a uniformly random y with hw(y) = 𝑙, with probability 1 − 𝑜(1), the number
of 𝑖 such that both 𝑦2𝑖 = 𝑦2𝑖+1 = 1 is less than 49

100𝑛. Thus, using Equation (1), we can infer
that the Shapley value of the coordinate 2 is Ω(1) in the function 𝑓 ′. Finally, by symmetry, we
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can observe that Φ 𝑓 ′ (𝑖) = Φ 𝑓 ′ (3) for all 𝑖 ≥ 3, and thus, as
∑

𝑖 Φ 𝑓 ′ (𝑖) = 1, Φ 𝑓 ′ (𝑖) = 𝑜(1) for all
𝑖 ≥ 3. �
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