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ABSTRACT. Boosting is a celebrated machine learning approach which is based on the idea
of combining weak and moderately inaccurate hypotheses to a strong and accurate one. We
study boosting under the assumption that the weak hypotheses belong to a class of bounded
capacity. This assumption is inspired by the common convention that weak hypotheses are
“rules-of-thumbs” from an “easy-to-learn class”. (Schapire and Freund ’12, Shalev-Shwartz and
Ben-David ’14.) Formally, we assume the class of weak hypotheses has a bounded VC dimension.
We focus on two main questions:

(i) Oracle Complexity: How many weak hypotheses are needed to produce an accurate
hypothesis? We design a novel boosting algorithm and demonstrate that it circumvents a
classical lower bound by Freund and Schapire (1995, 2012). Whereas the lower bound shows
that Ω(1/𝛾2)weak hypotheses with 𝛾-margin are sometimes necessary, our new method requires
only �̃�(1/𝛾) weak hypothesis, provided that they belong to a class of bounded VC dimension.
Unlike previous boosting algorithms which aggregate the weak hypotheses by majority votes,
the new boosting algorithm uses more complex (“deeper”) aggregation rules. We complement
this result by showing that complex aggregation rules are in fact necessary to circumvent the
aforementioned lower bound.

(ii) Expressivity: Which tasks can be learned by boosting weak hypotheses from a bounded
VC class? Can complex concepts that are “far away” from the class be learned? Towards
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answering the first question we introduce combinatorial-geometric parameters which capture
expressivity in boosting. As a corollary we provide an affirmative answer to the second question
for well-studied classes, including half-spaces and decision stumps. Along the way, we establish
and exploit connections with Discrepancy Theory.

1. Introduction

Boosting is a fundamental and powerful framework in machine learning which concerns
methods for learning complex tasks using combinations of weak learning rules. It offers
a convenient reduction approach, whereby in order to learn a given classification task, it
suffices to find moderately inaccurate learning rules (called “weak hypotheses”), which are then
automatically aggregated by the boosting algorithm into an arbitrarily accurate one. The weak
hypotheses are often thought of as simple prediction-rules:

“Boosting refers to a general and provably effective method of producing a very accurate
prediction rule by combining rough and moderately inaccurate rules of thumb.” [32,

Chapter 1]

“. . . an hypothesis that comes from an easy-to-learn hypothesis class and performs just
slightly better than a random guess.” [33, Chapter 10: Boosting]

In this work we explore how does the simplicity of the weak hypotheses affects the com-
plexity of the overall boosting algorithm: let B denote the base-class which consists of the weak
hypotheses used in the boosting procedure. For example, B may consist of all 1-dimensional
threshold functions.1 Can one learn arbitrarily complex concepts 𝑐 : R → {±1} by aggregat-
ing thresholds in a boosting procedure? Can one do so by simple aggregation rules such as
weighted majority? How many thresholds must one aggregate to successfully learn a given
target concept 𝑐? How does this number scale with the complexity of 𝑐?

Target-Class Oriented Boosting (traditional perspective). It is instructive to compare
the above view of boosting with the traditional perspective. The pioneering manuscripts on
this topic (e.g. [20, 31, 12]) explored the question of boosting a weak learner in the Probably
Approximately Correct (PAC) setting [34]: letH ⊆ {±1}X be a concept class; a 𝛾-weak learner
forH is an algorithmW which satisfies the following weak learning guarantee: let 𝑐 ∈ H be an
arbitrary target concept and let 𝐷 be an arbitrary target distribution on X. (It is important to
note that it is assumed here that the target concept 𝑐 is inH .) The input toW is a confidence
parameter 𝛿 > 0 and a sample 𝑆 of 𝑚0 = 𝑚0(𝛿) examples (𝑥𝑖 , 𝑐(𝑥𝑖))), where the 𝑥𝑖 ’s are drawn

1 I.e., hypotheses ℎ : R→ {±1} with at most one sign-change.
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independently from 𝐷. The weak learning guarantee asserts that the hypothesis ℎ = W(𝑆)
outputted byW satisfies

E𝑥∼𝐷 [ℎ(𝑥) · 𝑐(𝑥)] ≥ 𝛾,

with probability at least 1 − 𝛿. That is,W is able to provide a non-trivial (but far from desired)
approximation to any target-concept 𝑐 ∈ H . The goal of boosting is to efficiently2 convertW to
a strong PAC learner which can approximate 𝑐 arbitrarily well. That is, an algorithm whose
input consist of an error and confidence parameters 𝜖, 𝛿 > 0 and a polynomial number of
𝑚(𝜖, 𝛿) examples, and whose output is an hypothesis ℎ′ such that

E𝑥∼𝐷 [ℎ′(𝑥) · 𝑐(𝑥)] ≥ 1 − 𝜖,

with probability at least 1 − 𝛿. For a text-book introduction see, e.g., [32, Chapter 2.3.2] and [33,

Definition 10.1].

Base-Class Oriented Boosting (this work). In this manuscript, we study boosting under
the assumption that one first specifies a fixed base-class B of weak hypotheses, and the goal is
to aggregate hypotheses from B to learn target-concepts that may be far-away from B. (Unlike
the traditional view of boosting discussed above.) In practice, the choice of B may be done
according to prior information on the relevant learning task.

Fix a base-class B. Which target concepts 𝑐 can be learned? How “far-away” from B can 𝑐
be? To address this question we revisit the standard weak learning assumption which, in this
context, can be rephrased as follows: the target concept 𝑐 satisfies that for every distribution 𝐷
over X there exists ℎ ∈ B such that

E𝑥∼𝐷 [ℎ(𝑥) · 𝑐(𝑥)] ≥ 𝛾.

(Notice that the weak learning assumption poses a restriction on the target concept 𝑐 by requiring
it to exhibit correlation ≥ 𝛾 withB with respect to arbitrary distributions.) The weak learnerW
is given an i.i.d. sample of 𝑚0(𝛿) random 𝑐-labelled examples drawn from 𝐷, and is guaranteed
to output an hypothesis ℎ ∈ B which satisfies the above with probability at least 1−𝛿. In contrast
with the traditional “Target-Class Oriented Boosting” perspective discussed above, the weak
learning algorithm here is a strong learner for the base-classB in the sense that whenever there
exists ℎ ∈ B which is 𝛾-correlated with a target-concept 𝑐 with respect to a target-distribution 𝐷,
thenW is guaranteed to find such an ℎ. The weakness ofW is manifested via the simplicity of
the hypotheses in B.

2 Note that from a sample-complexity perspective, the task of boosting can be analyzed by basic VC theory: by the
existence of a weak learner𝑊 whose sample complexity is 𝑚0, it follows that the VC dimension of H is 𝑂(𝑚0 (𝛿))
for 𝛿 = 1/2. Then, by the Fundamental Theorem of PAC Learning, the sample complexity of (strongly) PAC learning H is
�̃�((𝑑 + log(1/𝛿))/𝜖).
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This perspective of boosting is common in real-world applications. For example, the well-
studied Viola-Jones object detection framework uses simple rectangular-based prediction rules
as weak hypotheses for the task of object detection [35].

Main Questions. We are interested in the interplay between the simplicity of the base-class B
and the expressiveness and efficiency of the boosting algorithm. The following aspects will be
our main focus:

1. Expressiveness: Given a small edge parameter 𝛾 > 0, how rich is the class of
tasks that can be learned by boosting weak hypotheses from B? At what “rate”
does this class grow as 𝛾 → 0? How about when B is a well-studied class such as
Decision stumps or Halfspaces?

2. Oracle Complexity: How many times must the boosting algorithm apply a weak
learner to learn a task which is 𝛾-correlated with B? Can one improve upon the
�̃�(1/𝛾2) bound which is exhibited by classical algorithms such as Adaboost? Note
that each call to the weak learnerW amounts to solving an optimization problem
w.r.t. B. Thus, saving upon this resource can significantly improve the overall
running time of the algorithm.

The base-class oriented perspective has been considered by previous works such as [6, 13,
24, 14, 4, 21, 3, 28]. These works design specific learning algorithms that are based on aggregating
hypotheses from the base-class. In particular these works remove the weak learner in the sense
that the weak hypothesis which is obtained in each round is computed explicitly by optimizing
an appropriate function on the data (e.g., maximizing the “margin” [32] or the “edge” [6]). In
other words, instead of having an oracle access to an arbitrary learner which is only assumed
to satisfy the weak learning assumption, these works use carefully tailored way of picking the
next weak hypothesis from the base class 𝐵. Consequently, the notion of oracle-complexity
(which is a central resource in our framework) is irrelevant in these works. Furthermore,
these works focus only on the standard aggregation rule by weighted majority, whereas the
results in this manuscript exploit the possibility of using more complex rules and explore their
expressiveness.

Outline. We begin with presenting the main definitions and results in Section 2: in Section 2.1
we present a new boosting method whose oracle complexity is only �̃�(1/𝛾) weak hypothesis,
provided that they belong to a class of bounded VC dimension. We also analyze its generalization
performence. In Section 2.2 we study limits on the expressivity of base-classes; that is, we
address the questions which distributions can be learned by boosting an agnostic learner to a
given base-class 𝐵. Towards this end we identify to combinatorial-geometric dimensions called
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the 𝛾-VC dimension and 𝛾-interpolation dimension which provide quantitative bounds on the
expressivity.

In Section 3 we overview the main technical ideas used in our proofs, and finally Section 4
and Section 5 contain the proofs: In Section 4 we prove the results regarding oracle-complexity,
and in Section 5 the results regarding expressivity. Each of Section 4 and Section 5 can be
read independently after Section 2 with one exception: the oracle-complexity lower bound in
Section 4 relies on the theory developed in Section 5. Finally, Section 6 contains some suggestions
for future research.

2. Main Results

In this section we provide an overview of the main results in this manuscript.

Weak Learnability. Our starting point is a reformulation of the weak learnability assumption
in a way which is more suitable to our setting. Recall that the 𝛾-weak learnability assumption
asserts that if 𝑐 : X → {±1} is the target concept then, if the weak learner is given enough
𝑐-labeled examples drawn from any input distribution over X, it will return an hypothesis
which is 𝛾-correlated with 𝑐. Since here it is assumed that the weak learner is a strong learner
for the base-class B, one can rephrase the weak learnability assumption only in terms of B
using the following notion3:

DEF IN IT ION 2 .1 (𝛾-realizable samples/distributions). Let B ⊆ {±1}X be the base-class, let
𝛾 ∈ (0, 1). A sample 𝑆 = ((𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)) is 𝛾-realizable with respect to B if for any
probability distribution 𝑄 over 𝑆 there exists 𝑏 ∈ B such that

corr𝑄(𝑏) := E(𝑥, 𝑦)∼𝑄 [𝑏(𝑥) · 𝑦] ≥ 𝛾.

We say that a distribution 𝐷 over X × {±1} is 𝛾-realizable if any i.i.d. sample drawn from 𝐷 is
𝛾-realizable.4

Thus, the 𝛾-weak learnability assumption boils down to assuming that the target distribu-
tion is 𝛾-realizable.

Note that for 𝛾 = 1 the notion of 𝛾-realizability specializes to the classical notion of
realizability (i.e., consistency with the class). Also note that as 𝛾 → 0, the set of 𝛾-realizable
samples becomes larger.

3 In fact, 𝛾-realizability corresponds to the empirical weak learning assumption by [32, Chapter 2.3.2]. The latter is a
weakening of the standard weak PAC learning assumption which suffices to guarantee generalization.

4 We note that one can relax the definition of 𝛾-realizable distribution by requiring that a random sample from it is
𝛾-realizable w.h.p. (rather than w.p. 1). Consequently, the results in this paper which use this definition also hold w.h.p.
However, for the sake of exposition we work with the above definition.
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Quantifying Simplicity. Inspired by the common intuition that weak hypotheses are “rules-
of-thumb” [32] that belong to an “easy-to-learn hypothesis class” [33], we make the following
assumption:

ASSUMPT ION 2 .2 (Simplicity of Weak Hypotheses). Let B ⊆ {±1}X denote the base-class
which contains the weak hypotheses provided by the weak learner. Then, B is a VC class; that is,
VC(B) = 𝑂(1).

2.1 Oracle Complexity (Section 4)

2.1.1 Upper Bound (Section 4.1)

Can the assumption thatB is a VC class be utilized to improve upon existing boosting algorithms?
We provide an affirmative answer by using it to circumvent a classical lower bound on the
oracle-complexity of boosting. Recall that the oracle-complexity refers to the number of times
the boosting algorithm calls the weak learner during the execution. As discussed earlier, it is
an important computational resource and it controls a cardinal part of the running time of
classical boosting algorithms such as Adaboost.

A Lower Bound by [12] and [32, Chapter 13.2.2]. Freund and Schapire showed that for any
fixed edge parameter 𝛾, every boosting procedure must invoke the weak learner at least Ω(1/𝛾2)
times in the worst-case. That is, for every boosting algorithmA and every 𝛾 > 0 there exists a
𝛾-weak learnerW =W(A, 𝛾) and a target distribution such thatA must invokeW at least
Ω(1/𝛾2) times in order to obtain a constant population loss, say ≤ 1/10 [32, Chapter 13.2.2].

However, the “bad” weak learnerW is constructed using a probabilistic argument; in
particular the VC dimension of the corresponding base-class of weak hypotheses is 𝜔(1). Thus,
this result leaves open the possibility of achieving an 𝑜(1/𝛾2) oracle-complexity, under the
assumption that the base-class B is a VC class.

We demonstrate a boosting procedure called Graph Separation Boosting (Algorithm 1)
which, under the assumption thatB is a VC class, invokes the weak learner only �̃�( log(1/𝜖)

𝛾 ) times
and achieves generalization error ≤ 𝜖. We stress that Algorithm 1 is oblivious to the advantage
parameter 𝛾 and to the class B. (I.e., it does not not “know” B nor 𝛾.) The assumption that B is
a VC class is only used in the analysis.

It will be convenient in this part to weaken the weak learnability assumption as follows: for
any 𝛾-realizable distribution𝐷, ifW is fed with a sample𝑆′ ∼ 𝐷𝑚0 thenE𝑆′∼𝐷𝑚0

[
corr𝐷

(
W(𝑆′)

) ]
≥

𝛾/2. That is, we only require that expected correlation of the output hypothesis is at least 𝛾/2
(rather than with high probability).

The main idea guiding the algorithm is quite simple. We wish to collect as fast as possible
a set of weak hypotheses 𝑏1, . . . , 𝑏𝑇 ∈ B that can be aggregated into a consistent hypothesis. That
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Parameters: a base-class B, a weak learner W with sample
complexity 𝑚0, an advantage parameter 𝛾 > 0

Weak Learnability: for every distribution 𝐷 which is 𝛾-realizable
by B: E𝑆′∼𝐷𝑚0

[
corr𝐷

(
W(𝑆′)

) ]
≥ 𝛾/2

Input: a sample 𝑆 = ((𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)) which is 𝛾-realizable by B,
and a black-box oracle access to the weak learner W.

1: Define an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉 = [𝑚] and
{𝑖, 𝑗} ∈ 𝐸⇔ 𝑦𝑖 ≠ 𝑦𝑗.

2: Set 𝑡 ← 0
3: while 𝐸 ≠ ∅ do
4: 𝑡 := 𝑡 + 1
5: Define distribution 𝑃𝑡 on 𝑆 : 𝑃𝑡 (𝑥𝑖, 𝑦𝑖) ∝ 𝑑𝑒𝑔𝐺(𝑖).

> (deg𝐺(·) is the degree in the graph 𝐺.)

6: Draw a sample 𝑆𝑡 ∼ 𝑃𝑚0
𝑡

7: Set 𝑏𝑡 ← A(𝑆𝑡)
8: Remove from 𝐸 every edge {𝑖, 𝑗} such that 𝑏𝑡 (𝑥𝑖) ≠ 𝑏𝑡 (𝑥 𝑗)
9: Set 𝑇 ← 𝑡

10: Compute an aggregation rule 𝑓 : {±1}𝑇 → {±1} such that the
aggregated hypothesis 𝑓 (𝑏1, . . . 𝑏𝑇) is consistent with 𝑆.

> ( 𝑓 exists by Lemma 4.2.)

11: Output ℎ̂ = 𝑓 (𝑏1, . . . , 𝑏𝑇).

Algorithm 1. Graph Separation Boosting

is, a hypothesis ℎ ∈ {±1}𝑋 of the form

ℎ = 𝑓 (𝑏1, . . . , 𝑏𝑇 ),

for some aggregation rule 𝑓 : {±1}𝑇 → {±1} such that ℎ(𝑥𝑖) = 𝑦𝑖 for all examples (𝑥𝑖 , 𝑦𝑖) in the
input sample 𝑆. An elementary argument shows that such an ℎ exists if and only if for every
pair of examples (𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗) ∈ 𝑆 of opposite labels (i.e., 𝑦𝑖 ≠ 𝑦 𝑗) there is a weak hypothesis
that separates them. That is,

(∀𝑦𝑖 ≠ 𝑦 𝑗) (∃𝑏𝑘) : 𝑏𝑘 (𝑥𝑖) ≠ 𝑏𝑘 (𝑥 𝑗).

The algorithm thus proceeds by greedily reweighing the examples in 𝑆 in way which maximizes
the number of separated pairs.

The following theorem shows that the (expected) number of calls to the weak learner until
all pairs are separated is some 𝑇 = 𝑂(log( |𝑆 |)/𝛾). The theorem is stated in terms of the number
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of rounds, but as the weak learner is called one time per round, the number of rounds is equal
to the oracle-complexity.

THEOREM 2.3 (Oracle Complexity Upper Bound). Let 𝑆 be an input sample of size 𝑚 which is
𝛾-realizable with respect to B, and let 𝑇 denote the number of rounds Algorithm 1 performs when
applied on 𝑆. Then, for every 𝑡 ∈ N

Pr[𝑇 ≥ 𝑡] ≤ exp
(
2 log𝑚 − 𝑡𝛾/2

)
.

In particular, this implies that E[𝑇 ] = 𝑂(log(𝑚)/𝛾).

Generalization Bounds (Section 4.1.1). An important subtlety in Algorithm 1 is that it does
not specify how to find the aggregation rule 𝑓 in Line 10. In this sense, Algorithm 1 is in fact a
meta-algorithm.

It is possible that for different classesB one can implement Line 10 in different ways which
depend on the structure of B and yields favorable rules 𝑓 .5 In practice, one might also consider
applying heuristics to find 𝑓 : e.g., consider the 𝑇 = 𝑂(log𝑚/𝛾) dimensional representation
𝑥𝑖 ↦→ (𝑏1(𝑥𝑖), . . . , 𝑏𝑇 (𝑥𝑖)) which is implied by the weak hypotheses, and train a neural network
to find an interpolating rule 𝑓 .6 (Recall that such an 𝑓 is guaranteed to exist, since 𝑏1, . . . , 𝑏𝑇

separate all opposite-labelled pairs.)
To accommodate the flexibility in computing the aggregation rule in Line 10, we provide a

generalization bound which adapts to complexity of the aggregation rule. That is, a bound which
yields better generalization guarantees for simpler rules. Formally, we follow the notation in
[32, Chapter 4.2.2] and assume that for every sequence of weak hypotheses 𝑏1 . . . 𝑏𝑇 ∈ B there
is an aggregation class

H = H(𝑏1, . . . , 𝑏𝑇 ) ⊆
{
𝑓 (𝑏1 . . . 𝑏𝑇 ) : 𝑓 : {±1}𝑇 → {±1}

}
,

such that the output hypothesis of Algorithm 1 is a member ofH . For example, for classical
boosting algorithms such as Adaboost,H is the class of all weighted majorities {sign(∑𝑖 𝑤𝑖 · 𝑏𝑖) :
𝑤𝑖 ∈ R}, and the particular weighted majority inH which is outputted depends on the input
sample 𝑆.

THEOREM 2.4 (Aggregation-Dependent Bounds). Assume that the input sample 𝑆 to Algo-
rithm 1 is drawn from a distribution 𝐷 which is 𝛾-realizable with respect to B. Let 𝑏1 . . . 𝑏𝑇 denote
the hypotheses outputted byW during the execution of 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1 on 𝑆, and letH = H(𝑏1 . . . 𝑏𝑇 )
denote the aggregation class. Then, the following occurs with probability at least 1 − 𝛿:

5 For example, when B is the class of one dimensional thresholds, see Section 4.1.

6 Observe in this context that the common weighted-majority-vote aggregation rule can be viewed as a single neuron
with a threshold activation function.
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1. Oracle Complexity: the number of times the weak learner is called satisfies

𝑇 = 𝑂
( log𝑚 + log(1/𝛿)

𝛾

)
.

2. Sample Complexity: the hypothesis ℎ ∈ H outputted by Algorithm 1 satisfies corr𝐷(ℎ) ≥
1 − 𝜖, where

𝜖 = 𝑂

( (
𝑇 · 𝑚0 + VC(H)

)
log𝑚 + log(1/𝛿)

𝑚

)
= �̃�

( 𝑚0

𝛾 · 𝑚 +
VC(H)
𝑚

)
,

where 𝑚0 is the sample complexity of the weak learnerW.

Theorem 2.4 demonstrates an upper bound on both the oracle and sample complexities of
Algorithm 1. The sample complexity upper bound is algorithm-dependent in the sense that it
depends on VC(H) the VC dimension ofH = H(𝑏1 . . . 𝑏𝑇 ) – the class of possible aggregations
outputted by the algorithm. In particular VC(H) depends on the base-class B and on the
implementation of Line 10 in Algorithm 1. Notice that the classH(𝑏1 . . . 𝑏𝑇 ) is data-dependent:
it is a function of the input sample of the algorithm. Thus, the generalization bound above does
not follow from standard VC generalization bounds that apply for fixed (and data-independent)
classes. The way we control this data dependency is via the notion of hybrid sample compression
schemes [32]; recall that in standard sample compression schemes, the output hypothesis is a
function of a (small) subset of the training examples. Hybrid sample compression schemes are
an extension of sample compression schemes in which the output hypothesis is instead selected
from a class of hypothesesH , where the class (rather than the hypothesis itself) is a function of
a (small) subset of the data. See Section 4.1.1 for more details.

How large can VC(H) be for a given class of simple aggregation rules? The following
combinatorial proposition addresses this question quantitatively. Here, it is assumed the
aggregation rule used by Algorithm 1 belong to a fixed class 𝐺 of “{±1}𝑇 → {±1}” functions.
For example, 𝐺 may consist of all weighted majority votes 𝑔 (𝑥1, . . . , 𝑥𝑇 ) = sign(∑𝑤𝑖 · 𝑥𝑖), for
𝑤𝑖 ∈ R, or of all networks with of some prespecified topology and activation functions, etcetera.

PROPOS IT ION 2 .5 (VC dimension of Aggregation). Let B ⊆ {±1}X be a base-class and let 𝐺
denote a class of “{±1}𝑇 → {±1}” functions (“aggregation-rules”). Then,

VC
({
𝑔 (𝑏1, . . . , 𝑏𝑇 ) |𝑏𝑖 ∈ B, 𝑔 ∈ 𝐺

})
≤ 𝑐𝑇 · (𝑇 · VC(B) + VC(𝐺)),

where 𝑐𝑇 = 𝑂(log𝑇 ). Moreover, even if 𝐺 contains all “{±1}𝑇 → {±1}” functions, then the
following bound holds for every fixed 𝑏1, 𝑏2, . . . , 𝑏𝑇 ∈ B

VC
({
𝑔 (𝑏1, . . . , 𝑏𝑇 ) |𝑔 : {±1}𝑇 → {±1}

})
≤

(
𝑇

≤ 𝑑∗

)
≤ (𝑒𝑇/𝑑∗)𝑑∗ ,

where 𝑑∗ is the dual VC dimension of B.
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So, for example if𝐺 consists of all possible majority votes then VC(𝐺) ≤ 𝑇 +1 (because𝐺 is a
subclass of𝑇 -dimensional halfspaces), and VC(H (𝑏1 . . . 𝑏𝑇 )) = 𝑂(VC(B) ·𝑇 log𝑇 ) = �̃�(VC(B)/𝛾).

Proposition 2.5 generalizes a result by [5] who considered the case when 𝐺 = {𝑔} consists
of a single function. (See also [11, 10]). In Section 4 we state and prove Proposition 4.9 which
gives an even more general bound which allows the 𝑏𝑖 ’s to belong to different classes B𝑖 ’s.

Note that even if Algorithm 1 uses arbitrary aggregation rules, Proposition 2.5 still provides
a bound of VC(H (𝑏1 . . . 𝑏𝑇 )) ≤ (𝑒𝑇/𝑑∗)𝑑

∗ , where 𝑑∗ is the dual VC dimension of B. In particular,
since B has VC dimension 𝑑 = 𝑂(1) then also its dual VC dimension satisfies 𝑑∗ = 𝑂(1) and we
get a polynomial bound on the complexity of Algorithm 1:7

COROLLARY 2 .6. Let B be the base-class, let 𝑑∗ denote its dual VC dimension, and assume
oracle access to a 𝛾-learner for B with sample complexity 𝑚0. Assume the input sample 𝑆 to
Algorithm 1 consists of 𝑚 examples drawn independently from a 𝛾-realizable distribution. Then
with probability 1 − 𝛿 the following holds:

1. Oracle Complexity: the number of times the weak learner is called is 𝑇 = 𝑂( log𝑚+log(1/𝛿)
𝛾 ).

2. Sample Complexity: The hypothesis ℎ ∈ H outputted by Algorithm 1 satisfies corr𝐷(ℎ) ≥
1 − 𝜖, where

𝜖 = 𝑂

( (
𝑇 · 𝑚0 + 𝑇𝑑

∗ ) log𝑚 + log(1/𝛿)
𝑚

)
= �̃�

( 𝑚0

𝛾 · 𝑚 +
1

𝛾𝑑
∗ · 𝑚

)
.

This shows that indeed the impossibility result by [32] is circumvented when B is a VC
class: indeed, in this case the sample size 𝑚 is bounded by a polynomial function of 1/𝜖, 1/𝛿.
Note however that obtained generalization bound is quite pessimistic (exponential in 𝑑∗) and
thus, we consider this polynomial bound interesting only from a purely theoretical perspective:
it serves as a proof of concept that improved guarantees are provably possible when the base-
class B is simple. We stress again that for specific classes B one can come up with explicit and
simple aggregation rules and hence obtain better generalization bounds via Theorem 2.4. We
refer the reader to Section 4 for a more detailed discussion and the proofs.

2.1.2 Oracle Complexity Lower Bound (Section 4.2)

Given that virtually all known boosting algorithms use majority-votes to aggregate the weak
hypotheses, it is natural to ask whether the 𝑂(1/𝛾) oracle-complexity upper bound can be
attained if one restricts to aggregation by such rules. We prove an impossibility result, which
shows that a nearly quadratic lower bound holds when B is the class of halfspaces in R𝑑 .

7 In more detail 𝑑∗ ≤ 2𝑑+1 − 1, and for many well-studied classes (such as halfspaces) the VC dimension and its dual are
polynomially related [2].
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THEOREM 2.7 (Oracle Complexity Lower Bound). Let 𝛾 > 0 be the edge parameter, and let
B = HS𝑑 be the class of 𝑑-dimensional halfspaces. LetA be a boosting algorithm which uses a
(possibly weighted) majority vote as an aggregation rule. That is, the output hypothesis ofA is of
the form

ℎ(𝑥) = sign
(
𝑤1 · 𝑏1(𝑥) + . . . + 𝑤𝑇 · 𝑏𝑇 (𝑥)

)
,

where 𝑏1 . . . 𝑏𝑇 are the weak hypotheses returned by the weak learner, and 𝑤1, . . . 𝑤𝑇 ∈ R. Then,
for every weak learnerW which outputs weak hypotheses from HS𝑑 there exists a distribution 𝐷
which is 𝛾-realizable by HS𝑑 such that ifA is given sample access to 𝐷 and oracle access toW,
then it must callW at least

𝑇 = Ω̃𝑑

( 1

𝛾2− 2
𝑑+1

)
times in order to output an hypothesis ℎ such that with probability at least 1 − 𝛿 = 3/4 it satisfies
corr𝐷(ℎ) ≥ 1 − 𝜖 = 3/4. The Ω̃𝑑 above conceals multiplicative factors which depend on 𝑑 and
logarithmic factors which depend on 1/𝛾.

Our proof of Theorem 2.7 is based on a counting argument which applies more generally;
it can be used to provide similar lower bounds as long as the family of allowed aggregation
rules is sufficiently restricted (e.g., aggregation rules that can be represented by a bounded
circuit of majority-votes, etc).

2.2 Expressivity (Section 5)

We next turn to study the expressivity of VC classes as base-classes in the context of boosting.
That is, given a class B, what can be learned using oracle access to a learning algorithmW
for B?

It will be convenient to assume that B ⊆ {±1}X is symmetric:

(∀𝑏 ∈ {±1}X) : 𝑏 ∈ B ⇐⇒ −𝑏 ∈ B.

This assumption does not compromise generality because a learning algorithm for B can be
converted to a learning algorithm for {±𝑏 : 𝑏 ∈ B} with a similar sample complexity. So, if B is
not symmetric, we can replace it by {±𝑏 : 𝑏 ∈ B}.

Our starting point is the following proposition, which asserts that under a mild condition,
any base-class B can be used via boosting to learn arbitrarily complex tasks as 𝛾 → 0.

PROPOS IT ION 2 .8 (A Condition for Universality). The following statements are equivalent
for a symmetric class B:

1. For every 𝑐 : X → {±1} and every sample 𝑆 labelled by 𝑐, there is 𝛾 > 0 such that 𝑆 is
𝛾-realizable by B.
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2. For every {𝑥1, . . . , 𝑥𝑛} ⊆ X, the linear-span of {(𝑏(𝑥1), . . . , 𝑏(𝑥𝑛)) ∈ R𝑛 : 𝑏 ∈ B} is 𝑛-
dimensional.

Item 1 implies that in the limit as 𝛾 → 0, any sample 𝑆 can be interpolated by aggregating
weak hypotheses from B in a boosting procedure. Indeed, it asserts that any such sample
satisfies the weak learning assumption for some 𝛾 > 0 and therefore given oracle access
to a sufficiently accurate learning algorithm for B, any boosting algorithm will successfully
interpolate 𝑆.

Observe that every class B that contains singletons or one-dimensional thresholds satisfies
Item 2 and hence also Item 1. Thus, virtually all standard hypothesis classes that are considered
in the literature satisfy it.

It is worth mentioning here that an “infinite” version of Proposition 2.8 has been estab-
lished for some specific boosting algorithms. Namely, these algorithms have been shown to be
universally consistent in the sense that their excess risk w.r.t. the Bayes optimal classifier tends
to zero in the limit, as the number of examples tends to infinity. See e.g. [7, 22, 23, 8, 19, 21, 36,
3].

2.2.1 Measuring Expressivity of Base-Classes

Proposition 2.8 implies that, from a qualitative perspective, any reasonable class can be boosted
to approximate arbitrarily complex concepts, provided that 𝛾 is sufficiently small. From a
realistic perspective, it is natural to ask how small should 𝛾 be in order to ensure a satisfactory
level of expressivity.

QUEST ION 2 .9. Given a fixed small 𝛾 > 0, what are the tasks that can be learned by boosting a
𝛾-learner for B? At which rate does this class of tasks grow as 𝛾 → 0?

To address this question we propose two combinatorial parameters called the 𝛾-VC dimen-
sion and the 𝛾-interpolation dimension which quantify the size/richness of the family of tasks
that can be learned by aggregating hypotheses from B.

DEF IN IT ION 2 .10 (𝛾-interpolation). Let B be a class and 𝛾 ∈ [0, 1] be an edge parameter.
We say that a set {𝑥1, . . . , 𝑥𝑑} ⊆ X is 𝛾-interpolated by B if for any 𝑐 : X → {±1}, the sample
𝑆 = ((𝑥1, 𝑐(𝑥1)), . . . , (𝑥𝑑 , 𝑐(𝑥𝑑)) is 𝛾-realizable with respect to B.

Intuitively, when picking a base-class B, one should minimize the VC dimension (because
then the weak-learning task is easier, and hence each call to the weak learner is less expensive),
while maximizing the family of 𝛾-interpolated sets (because then the overall boosting algorithm
can learn more complex tasks). This gives rise to the following definition, which has been
introduced by Chen, Minasyan, Lee, and Hazan [9].
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DEF IN IT ION 2 .1 1 (𝛾-interpolation dimension). Let B be a class and 𝛾 ∈ [0, 1] be an edge
parameter. The 𝛾-interpolation dimension of B, denoted ID𝛾 (B), is the maximal integer 𝑑 ≥ 0
for which every subset of X of size 𝑑 is 𝛾-interpolated. If B 𝛾-interpolates every finite subset
of X then its 𝛾-interpolation dimension is defined to be∞.

We note that this definition might be too restrictive in natural scenarios where it is impos-
sible to 𝛾-interpolate certain small degenerate sets. For example, consider a learning task where
X = R𝑑 and B is some geometrically defined class. In such cases, it might be more natural to
quantify only over 𝛾-interpolated sets that are in general position. Indeed, our results below
regarding the expressiveness of half-spaces and decision-stumps are based on such relevant
assumptions.

The following definition extends the classical VC dimension:

DEF IN IT ION 2 .12 (𝛾-VC dimension). Let B be a class and 𝛾 ∈ [0, 1] be an edge parameter.
The 𝛾-VC dimension of B, denoted VC𝛾 (B), is the maximal size of a set which is 𝛾-interpolated
by B. If B 𝛾-interpolates sets of arbitrarily large size then its 𝛾-VC dimension is defined to be∞.

Note that for 𝛾 = 1, the 𝛾-VC dimension specializes to the VC dimension, which is a standard
parameter for measuring the complexity of learning a target concept 𝑐 ∈ B. Thus, the 𝛾-VC
dimension can be thought of as an extension of the VC dimension to the 𝛾-realizable setting,
where the target concept 𝑐 is not in B and it is only 𝛾-correlated with B.

OBSERVAT ION 2 .13. For every class B and for every 𝛾 ∈ (0, 1):

ID𝛾 (B) ≤ VC𝛾 (B).

General Bounds on the 𝜸-VC Dimension. It is natural to ask how large can the 𝛾-VC dimen-
sion as a function of the VC dimension and 𝛾.

THEOREM 2.14. Let B be a class with VC dimension 𝑑. Then, for every 0 < 𝛾 ≤ 1:

VC𝛾 (B) = 𝑂
(
𝑑

𝛾2 log(𝑑/𝛾)
)
= �̃�

( 𝑑
𝛾2

)
.

Moreover, this bound is nearly tight as long as 𝑑 is not very small compared to log(1/𝛾): for every
𝛾 > 0 and 𝑠 ∈ N there is a class B of VC dimension 𝑑 = 𝑂(𝑠 log(1/𝛾)) and

VC𝛾 (B) = Ω
(
𝑠

𝛾2

)
= Ω̃

( 𝑑
𝛾2

)
.

Thus, the fastest possible growth of the 𝛾-VC dimension is asymptotically ≈ 𝑑/𝛾2. We stress
that the upper bound here implies an impossibility result; it poses a restriction on the class of
tasks that can be approximated by boosting a 𝛾-learner for B.

Note that the above lower bound is realized by a class B whose VC dimension is at least
Ω(log(1/𝛾)), which deviates from our focus on the setting where the VC dimension is a constant
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and 𝛾 → 0. Thus, we prove the next theorem which provides a sharp, subquadratic, dependence
on 𝛾 (but a looser dependence on 𝑑).

THEOREM 2.15 (𝛾-VC dimension: improved bound for small 𝛾). Let B be a class with VC
dimension 𝑑 ≥ 1. Then, for every 0 < 𝛾 ≤ 1:

VC𝛾 (B) ≤ 𝑂𝑑

((
1
𝛾

) 2𝑑
𝑑+1

)
,

where 𝑂𝑑 (·) conceals a multiplicative constant that depends only on 𝑑. Moreover, the above
inequality applies for any class B whose primal shatter function8 is at most 𝑑.

As we will prove in Theorem 2.16, the dependence on 𝛾 in the above bound is tight. It will
be interesting to determine tighter bounds in terms of 𝑑.

Bounds for Popular Base-Classes. We next turn to explore the 𝛾-VC and 𝛾-ID dimensions
of two well studied geometric classes: halfspaces and decision stumps.

Let HS𝑑 denote the class of halfspaces (also known as linear classifiers) in R𝑑 . That is HS𝑑
contains all concepts of the form “𝑥 ↦→ sign(𝑤 · 𝑥 + 𝑏)”, where 𝑤 ∈ R𝑑 , 𝑏 ∈ R, and 𝑤 · 𝑥 denotes
the standard inner product between 𝑤 and 𝑥. This class is arguably the most well studied class
in machine learning theory, and it provides the building blocks underlying modern algorithms
such as Neural Networks and Kernel Machines. For HS𝑑 we give a tight bound on its 𝛾-VC

dimesion (in terms of 𝛾) of Θ𝑑

(
1
𝛾

) 2𝑑
𝑑+1 . The upper bound follows from Theorem 2.15 and the

lower bound is established in the next theorem:

THEOREM 2.16 (Halfspaces). Let HS𝑑 denote the class of halfspaces in R𝑑 and 𝛾 ∈ (0, 1]. Then,

VC𝛾 (HS𝑑) = Θ𝑑

((
1
𝛾

) 2𝑑
𝑑+1

)
.

Further, every set 𝑌 ⊆ R𝑑 of size Θ𝑑 (( 1𝛾 )
2𝑑
𝑑+1 ) is 𝛾-interpolated by HS𝑑 , provided that 𝑌 is dense in

the following sense: the ratio between the maximal and minimal distances among all distinct pairs
of points in 𝑌 is bounded by some 𝑂𝑑 ( |𝑌 |

1
𝑑 ).

Thus the class of halfspaces is rather expressive as a base-class; note that natural point sets
such as grids are dense and hence meet the condition for being 𝛾-interpolated by halfspaces.

We next study the 𝛾-VC and 𝛾 ID dimensions of the class of Decision Stumps. A 𝑑-dimensional
decision stump is a concept of the form sign(𝑠(𝑥 𝑗 − 𝑡)), where 𝑗 ≤ 𝑑, 𝑠 ∈ {±1} and 𝑡 ∈ R. In
other words, a decision stump is a halfspace which is aligned with one of the principal axes.

8 The primal shatter function of a class B ⊆ {±1}X is the minimum 𝑘 for which there exists a constant 𝐶 such that for every
finite 𝐴 ⊆ X, the size of B|𝐴 = {𝑏|𝐴 : 𝑏 ∈ B} is at most 𝐶 · |𝐴|𝑘. Note that by the Sauer–Shelah–Perles Lemma, the primal
shatter function is at most the VC dimension.
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This class is popular in the context of boosting, partially because it is easy to learn it, even in
the agnostic setting. Also note that the Viola-Jones framework hinges on a variant of decision
stumps [35].

THEOREM 2.17 (Decision Stumps). Let DS𝑑 denote the class of decision stumps in R𝑑 and
𝛾 ∈ (0, 1]. Then,

VC𝛾 (DS𝑑) = 𝑂
(
𝑑

𝛾

)
.

Moreover, the dependence on 𝛾 is tight, already in the 1-dimensional case. In fact, for every 𝛾 such
that 1/𝛾 ∈ N

ID𝛾 (DS1) ≥ 1/𝛾.

For 𝑑 > 1, the class of 𝑑-dimensional decision-stumps 𝛾-interpolates every set 𝑌 ⊆ R𝑑 of size 1/𝛾,
provided that there exists 𝑖 ≤ 𝑑 so that every pair of distinct points 𝑥, 𝑦 ∈ 𝑌 satisfy 𝑥𝑖 ≠ 𝑦𝑖 .

Thus, the class of halfspaces exhibits a near quadratic dependence in 1/𝛾 (which, by
Theorem 2.15, is the best possible), and the class of decision stumps exhibits a linear dependence
in 1/𝛾. In this sense, the class of halfspaces is considerably more expressive. On the other hand
the class of decision stumps can be learned more efficiently in the agnostic setting, and hence
the weak learning task is easier with decision stumps.

Along the way of deriving the above bounds, we analyze the 𝛾-VC dimension of one-
dimensional classes and of unions of one-dimensional classes. From a technical perspective,
we exploit some fundamental results in discrepancy theory.

3. Technical Overview

In this section we overview the main ideas which are used in the proofs. We also try to guide
the reader on which of our proofs reduce to known arguments and which require new ideas.

3.1 Oracle Complexity

3.1.1 Lower Bound

We begin with overviewing the proof of Theorem 2.7, which asserts that any boosting algorithm
which uses a (possibly weighted) majority vote as an aggregation rule is bound to call the weak
learner at least nearly Ω( 1

𝛾2 ) times, even if the base-class has a constant VC dimension.
It may be interesting to note that from a technical perspective, this proof bridges the

two parts of the paper. In particular, it relies heavily on Theorem 2.16 which bounds the 𝛾-VC
dimension of halfspaces.

The idea is as follows: let 𝑇 = 𝑇 (𝛾) denote the minimum number of times a boosting
algorithm calls a 𝛾-learner for halfspaces in order to achieve a constant population loss, say
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𝜖 = 1/4. We show that unless𝑇 is sufficiently large (nearly quadratic in 1
𝛾 ), then there must exists

a 𝛾-realizable learning task (i.e., which satisfies the weak learning assumption) that cannot be
learned by the boosting algorithm.

In more detail, by Theorem 2.16 there exists 𝑁 ⊆ R𝑑 of size 𝑛 := |𝑁 | which is nearly
quadratic in 1/𝛾 which is 𝛾-interpolated by 𝑑-dimensional halfspaces: that is, each of the 2𝑛

labelings 𝑐 : 𝑁 → {±1} are 𝛾-realizable by 𝑑-dimensional halfspaces. In other words, each of
these 𝑐’s satisfy the weak learnability assumption with respect to a 𝛾-learner for halfspaces.
Therefore, given enough 𝑐-labelled examples, our assumed boosting algorithm will generate a
weighted majority of 𝑇 halfspaces ℎ which is 𝜖-close to it.

LetH𝑇 denote the family of all functions ℎ : 𝑁 → {±1} which can be represented by a
weighted majority of𝑇 halfspaces. The desired bound on𝑇 follows by upper and lower bounding
the size ofH𝑇 : on the one hand, the above reasoning shows thatH𝑇 forms an 𝜖-cover of the
family of all functions 𝑐 : 𝑁 → {±1} in the sense that for every 𝑐 ∈ {±1}𝑁 there is ℎ ∈ H𝑇 that
is 𝜖-close to it. A simple calculation therefore showsH𝑇 must be large (has at least some exp(𝑛)
functions). On the other hand, we argue that the number of ℎ’s that can be represented by a
(weighted) majority of 𝑇 halfspaces must be relatively small (as a function of 𝑇 ). The desired
bound on 𝑇 then follows by combining these upper and lower bounds.

We make two more comments about this proof which may be of interest.
First, we note that the set 𝑁 used in the proof is a regular9 grid (this set is implied by
Theorem 2.16). Therefore, the hard learning tasks which require a large oracle complexity
are natural: the target distribution is uniform over a regular grid.
The second comment concerns our upper bound onH𝑑 . Our argument here can be used
to generalize a result by [5] regarding the composition of VC classes. They showed that
given classes B1 . . .B𝑇 such that VC(B𝑖) = 𝑑𝑖 and a function 𝑔 : {±1}𝑇 ↦→ {±1}, the class

{𝑔 (𝑏1 . . . 𝑏𝑇 ) : 𝑏𝑖 ∈ B𝑖}

has VC dimension𝑂((𝑑1 + . . . + 𝑑𝑇 ) log𝑇 ). Our argument generalizes the above by allowing
to replace 𝑔 by a class of functions 𝐺 = {𝑔 : {±1}𝑇 → {±1}} and showing that the class

{𝑔 (𝑏1 . . . 𝑏𝑇 ) : 𝑏𝑖 ∈ B𝑖 , 𝑔 ∈ 𝐺}

has VC dimension 𝑂((𝑑1 + . . . + 𝑑𝑇 + 𝑑) log𝑇 ), where 𝑑 = VC(𝐺). (See Proposition 4.9)

3.1.2 Upper Bound

Algorithm 1. We next try to provide intuition for Algorithm 1 and discuss some technical
aspects in its analysis. The main idea behind the algorithm boils down to a simple observation:

9 Let us remark in passing that 𝑁 can be chosen more generally; the important property it needs to satisfy is that the
ratio between the largest and smallest distance among a pair of distinct points in 𝑁 is 𝑂(𝑛1/𝑑), see [25, Chapter 6.4].
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let 𝑆 = (𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚) be the input sample. Let us say that 𝑏1 . . . 𝑏𝑇 ∈ B separate 𝑆 if for
every 𝑥𝑖 , 𝑥 𝑗 such that 𝑦𝑖 ≠ 𝑦 𝑗 there exists 𝑏𝑡 such that 𝑏𝑡 (𝑥𝑖) ≠ 𝑏𝑡 (𝑥 𝑗). That is, every pair of
input examples that have opposite labels are separated by one of the weak hypotheses. The
observation is that 𝑏1 . . . 𝑏𝑇 can be aggregated to an hypothesis ℎ = 𝑓 (𝑏1 . . . 𝑏𝑇 ) which is consistent
with 𝑆 if and only if the 𝑏𝑡’s separate 𝑆. This observation is stated and proved in Lemma 4.2.

Thus, Algorithm 1 attempts to obtain as fast as possible weak hypotheses 𝑏1 . . . 𝑏𝑇 that
separate the input sample 𝑆. Once 𝑆 is separated, by the above observation the algorithm can
find and return an hypothesis ℎ = 𝑓 (𝑏1, . . . , 𝑏𝑇 ) that is consistent with the input sample. To
describe Algorithm 1, it is convenient to assign to the input sample 𝑆 a graph 𝐺 = (𝑉, 𝐸), where
𝑉 = [𝑚] and {𝑖, 𝑗} ∈ 𝐸 if and only if 𝑦𝑖 ≠ 𝑦 𝑗 . The graph 𝐺 is used to define the distributions 𝑃𝑡
on which the weak learner is applied during the algorithm: at each round 𝑡, Algorithm 1 feeds
the weak learner with a distribution 𝑃𝑡 over 𝑆, where the probability of each example (𝑥𝑖 , 𝑦𝑖) is
proportional to the degree of 𝑖 in 𝐺. After receiving the weak classifier 𝑏𝑡 ∈ B, the graph 𝐺 is
updated by removing all edges {𝑖, 𝑗} which are separated by 𝑏𝑡 (i.e., such that 𝑏𝑡 (𝑥𝑖) ≠ 𝑏𝑡 (𝑥 𝑗)).
This is repeated until no edges are left, at which point the input sample is separated by 𝑏𝑡’s
and we are done. The analysis of the number of rounds 𝑇 which are needed until all edges
are separated appears in Theorem 2.3. In particular it is shown that 𝑇 = 𝑂(log𝑚/𝛾) with high
probability.

Generalization Guarantees. As noted earlier, Algorithm 1 is a meta-algorithm in the sense
that it does not specify how to find the aggregation rule 𝑓 in Line 10. In particular, this part of
the algorithm may be implemented differently for different base-classes. We therefore provide
generalization guarantees which adapt to the way this part is implemented. In particular, we get
better guarantees for simpler aggregation rules. More formally, following [32, Chapter 4.2.2] we
assume that with every sequence of weak hypotheses 𝑏1 . . . 𝑏𝑇 ∈ B one can assign an aggregation
class

H = H(𝑏1, . . . , 𝑏𝑇 ) ⊆
{
𝑓 (𝑏1 . . . 𝑏𝑇 ) : 𝑓 : {±1}𝑇 → {±1}

}
,

such that the output hypothesis of Algorithm 1 is a member of H . For example, in classical
boosting algorithms such as Adaboost,H is the class of all weighted majorities {sign{∑𝑖 𝑤𝑖 · 𝑏𝑖} :
𝑤𝑖 ∈ R}. Our aggregation-dependent generalization guarantee adapts to the capacity of H :
smaller H yield better guarantees. This is summarized in Theorem 2.4. From a technical
perspective, the proof of Theorem 2.4 hinges on the notion of hybrid-compression-schemes
from [32, Theorem 4.8].

Finally, we show that even without any additional restriction onB besides being a VC class,
it is still possible to use Theorem 2.4 to derive polynomial sample complexity. The idea here boils
down to showing that given the weak hypotheses 𝑏1 . . . 𝑏𝑇 ∈ B, one can encode any aggregated
hypothesis of the form 𝑓 (𝑏1 . . . 𝑏𝑇 ) using its values on the cells defined by the 𝑏𝑡’s: indeed, the
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Figure 1. A set of 4 halfplanes 𝑏1 . . . 𝑏4 and the induced partition of R2 to cells, where 𝑥′, 𝑥′′ ∈ R2 are in
the same cell if

(
𝑏1(𝑥′), 𝑏2(𝑥′), 𝑏3(𝑥′), 𝑏4(𝑥′)

)
=

(
𝑏1(𝑥′′), 𝑏2(𝑥′′), 𝑏3(𝑥′′), 𝑏4(𝑥′′)

)
. Any hypothesis of the form

𝑓 (𝑏1, 𝑏2, 𝑏3, 𝑏4) is constant on each cell in the partition.

𝑏𝑡’s partition X into cells, where 𝑥′, 𝑥′′ ∈ X are in the same cell if and only if 𝑏𝑡 (𝑥′) = 𝑏𝑡 (𝑥′′) for
every 𝑡 ≤ 𝑇 . For example, if the 𝑏𝑡’s are halfspaces in R𝑑 then these are exactly the convex cells
of the hyperplanes arrangement defined by the 𝑏𝑡’s. (See Figure 1 for an illustration in the plane.)
Now, since B is a VC class, one can show that the number of cells is at most 𝑂(𝑇𝑑∗), where 𝑑∗ is
the dual VC dimension of B. This enables a description of any aggregation 𝑓 (𝑏1 . . . 𝑏𝑇 ) using
𝑂(𝑇𝑑∗) bits.10 The complete analysis of this part appears in Proposition 2.5 and Corollary 2.6.

As discussed earlier, we consider that above bound of purely theoretical interest as it
assumes that the aggregation rule is completely arbitrary. We expect that for specific and
structured base-classesBwhich arise in realistic scenarios, one could find consistent aggregation
rules more systematically and get better generalization guarantees using Theorem 2.4.

3.2 Expressivity

We next overview some of main ideas which are used to analyze the notions of 𝛾-realizability
and the 𝛾-VC and 𝛾-ID dimensions.

A Geometric Point of View. We start with a simple yet useful observation regarding the notion
of 𝛾-realizability: recall that a sample 𝑆 = ((𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚)) is 𝛾-realizable with respect to B

10 Note that 𝑑∗ = 𝑂(1) since 𝑑∗ < 2𝑑+1 where 𝑑 = VC(B) = 𝑂(1), and therefore the number of bits is polynomial in 𝑇 [2]. We
remark also that many natural classes, such as halfspaces, satisfy 𝑑∗ ≈ 𝑑.
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if for every distribution 𝑝 over 𝑆 there is an hypothesis 𝑏 ∈ B which is 𝛾-correlated with 𝑆 with
respect to 𝑝. The observation is that this is equivalent to saying that the vector 𝛾 · ( 𝑦1 . . . 𝑦𝑚) (i.e.,
scaling ( 𝑦1 . . . 𝑦𝑚) by a factor 𝛾) belongs to the convex-hull of the set {(𝑏(𝑥1) . . . 𝑏(𝑥𝑚)) : 𝑏 ∈ B},
i.e., it is a convex combination of the restrictions of hypotheses in B to the 𝑥𝑖 ’s. This is proven
by a simple Minmax argument in Lemma 5.1.

This basic observation is later used to prove Proposition 2.8 via elementary linear algebra.
(Recall that Proposition 2.8 asserts that under mild assumptions on B, every sample 𝑆 is 𝛾-
realizable for a sufficiently small 𝛾.)

This geometric point of view is also useful in establishing the quadratic upper bound on the
𝛾-VC dimension which is given in Theorem 2.14. The idea here is to use the fact that the scaled
vector 𝛾 · ( 𝑦1 . . . 𝑦𝑚) can be written as a convex combination of the 𝑏’s to deduce (via a Chernoff
and union bound) that ( 𝑦1 . . . 𝑦𝑚) can be written as a majority vote of some 𝑂(log𝑚/𝛾2) of 𝑏’s
in B. Then, a short calculation which employs the Sauer–Shelah–Perles Lemma implies the
desired bound.

Discrepancy Theory. There is an intimate relationship between Discrepancy theory and
the 𝛾-VC dimension: consider the problem of upper bounding the 𝛾-VC dimension of a given
class B; say we want to show that VC𝛾 (B) < 𝑛. In order to do so, we need to argue that
for every 𝑥1 . . . 𝑥𝑛 ∈ X there are labels 𝑦1 . . . 𝑦𝑛 ∈ {±1} such that the combined sample 𝑆 =

(𝑥1, 𝑦1) . . . (𝑥𝑛, 𝑦𝑛) is not 𝛾-realizable. That is, we need to show that 𝑆 exhibits < 𝛾 correlation
with every 𝑏 ∈ B with respect to some distribution on 𝑆.

How does this relate to Discrepancy theory? Let 𝐹 be a family of subsets over [𝑛], in the
context of discrepancy theory, the goal is to assign a coloring 𝑐 : [𝑛] → {±1} under which
every member 𝑓 ∈ 𝐹 is balanced. That is, for every 𝑓 ∈ 𝐹 the sets {𝑖 ∈ 𝑓 : 𝑐(𝑖) = +1} and
{𝑖 ∈ 𝑓 : 𝑐(𝑖) = −1} should be roughly of the same size. A simple argument shows that one
can identify with every class B and 𝑥1 . . . 𝑥𝑛 ∈ X a family of subsets 𝐹 over [𝑛] such that a
balanced coloring 𝑐 : [𝑛] → {±1} yields a sample 𝑆 = (𝑥1, 𝑐(1)) . . . (𝑥𝑛, 𝑐(𝑛)) which exhibits low
correlation with every 𝑏 ∈ B w.r.t. to the uniform distribution over 𝑥1 . . . 𝑥𝑛. To summarize:

Balanced colorings imply upper bounds on the 𝛾-VC dimension.

A simple demonstration of this connection is used to prove Theorem 2.15 which gives an
upper bound on the 𝛾-VC dimension with a subquadratic dependence on 𝛾 (hence improving
Theorem 2.14).

To conclude, the results in discrepancy are directly related to 𝛾-realizability when the
distribution over the sample 𝑆 is uniform. However, arbitrary distributions require a special
care. In some cases, it is possible to modify arguments from discrepancy theory to apply to non-
uniform distributions. One such example is our analysis of the 𝛾-VC dimension of halfspaces in
Theorem 2.16, which is an adaptation of (the proof of) a seminal result in Discrepancy theory
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due to [1]. Other cases, such as the analysis of the 𝛾-VC of decision stumps require a different
approach. We discuss this in more detail in the next paragraph.

Linear Programming. Theorem 2.17 provides a bound of Θ𝑑 (1/𝛾) on the 𝛾-VC dimension
of the class DS𝑑 of 𝑑-dimensional decision stumps (i.e., axis aligned halfspaces). The upper
bound (which is the more involved direction) is based on a geometric argument which may
be interesting in its own right: let 𝑚 = VC𝛾 (DS𝑑); we need to show that if 𝐴 = {𝑥1 . . . 𝑥𝑚} ⊆ R𝑑

satisfies that each of the 2𝑚 labelings of it are 𝛾-realizable by DS𝑑 then 𝛾 ≤ 𝑂(𝑑/𝑚) (this implies
that 𝑚 ≤ 𝑂(𝑑/𝛾) as required). In other words, we need to derive 𝑚 labels ®𝑦 = ( 𝑦1 . . . 𝑦𝑚) and a
distribution ®𝑝 = (𝑝1 . . . 𝑝𝑚) over {𝑥1 . . . 𝑥𝑚} such that

(∀𝑏 ∈ DS𝑑) :
∑︁
𝑖

𝑝𝑖 · 𝑦𝑖 · 𝑏(𝑥𝑖) = 𝑂(𝑑/𝑚). (1)

In a nutshell, the idea is to consider a small finite set of decision stumps 𝑁 ⊆ DS𝑑 of size
|𝑁 | ≤ 𝑚/2 with the property that for every decision stump 𝑏 ∈ DS𝑑 there is a representative
𝑟 ∈ 𝑁 such that the number of 𝑥𝑖 ’s where 𝑏(𝑥𝑖) ≠ 𝑟(𝑥𝑖) is sufficiently small (at most 𝑂(𝑚/𝑑)).
That is, 𝑏 and 𝑟 agree on all but at most a 𝑂(1/𝑑) fraction of the 𝑥𝑖 ’s. The existence of such a set
𝑁 follows by a Haussler’s Packing Lemma [18]. Now, since |𝑁 | ≤ 𝑚/2, we can find many pairs
( ®𝑝, ®𝑦) such that

(∀𝑟 ∈ 𝑁) :
∑︁
𝑖

𝑝𝑖 · 𝑦𝑖 · 𝑟(𝑥𝑖) = 0. (2)

This follows by a simple linear algebraic consideration (the intuition here is that there are
only 𝑚/2 constraints in Equation (2) but 𝑚 degrees of freedom). We proceed by using a Linear
Program to define a polytope which encodes the set of all pairs ( ®𝑝, ®𝑦) which satisfy Equation (2),
and arguing that a vertex of this polytope corresponds to a pair ( ®𝑝, ®𝑦)which satisfies Equation (1),
as required.

The above argument applies more generally for classes which can be represented as a
small union of 1-dimensional classes (see Proposition 5.8).

4. Oracle-Complexity

In this section we state and derive the oracle-complexity upper and lower bounds. We begin
with the upper bound in Section 4.1, where we analyze Algorithm 1, and then derive the lower
bound in Section 4.2, where we also prove a combinatorial result about composition of VC
classes which may be of independent interest.

4.1 Oracle Complexity Upper Bound

Our results on the expressivity of boosting advocate choosing a simple base-class B, and use
it via boosting to learn concepts which may be far away from B by adjusting the advantage
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parameter 𝛾. We have seen that the overall boosting algorithm becomes more expressive
as 𝛾 becomes smaller. On the other hand, reducing 𝛾 also increases the difficulty of weak
learning: indeed, detecting a 𝛾-correlated hypothesis in B amounts to solving an empirical risk
minimization problem over a sample of 𝑂(VC(B)/𝛾2) examples. It is therefore desirable to
minimize the number of times the weak learner is applied in the boosting procedure.

Improved Oracle Complexity Bound. The optimal oracle complexity was studied before in
[32, Chapter 13], where it was shown that there exists a weak learnerW such that the population
loss of any boosting algorithm after 𝑡 interactions withW is at least exp(−𝑂(𝑡𝛾2)).

One of the main points we wish to argue in this manuscript is that one can “bypass”
impossibility results by utilizing the simplicity of the weak hypotheses. We demonstrate this
by presenting a boosting paradigm (Algorithm 1) called ”Graph-Separation Boosting” which
circumvents the lower bound from [32].

Parameters: a base-class B, a weak learner W with sample
complexity 𝑚0, an advantage parameter 𝛾 > 0.

Weak Learnability: for every distribution 𝐷 which is 𝛾-realizable
by B: E𝑆′∼𝐷𝑚0

[
corr𝐷

(
W(𝑆′)

) ]
≥ 𝛾/2.

Input: a sample 𝑆 = ((𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)) which is 𝛾-realizable by B,
and a black-box oracle access to the weak learner W.

1: Define an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉 = [𝑚] and
{𝑖, 𝑗} ∈ 𝐸⇔ 𝑦𝑖 ≠ 𝑦𝑗.

2: Set 𝑡 ← 0.
3: while 𝐸 ≠ ∅. do
4: 𝑡 := 𝑡 + 1.
5: Define distribution 𝑃𝑡 on 𝑆 : 𝑃𝑡 (𝑥𝑖, 𝑦𝑖) ∝ 𝑑𝑒𝑔𝐺(𝑖).

> (deg𝐺(·) is the degree in the graph 𝐺)

6: Draw a sample 𝑆𝑡 ∼ 𝑃𝑚0
𝑡 .

7: Set 𝑏𝑡 ← A(𝑆𝑡).
8: Remove from 𝐸 every edge {𝑖, 𝑗} such that 𝑏𝑡 (𝑥𝑖) ≠ 𝑏𝑡 (𝑥 𝑗).
9: Set 𝑇 ← 𝑡.

10: Compute an aggregation rule 𝑓 : {±1}𝑇 → {±1} such that the
aggregated hypothesis 𝑓 (𝑏1, . . . 𝑏𝑇) is consistent with 𝑆.

> ( 𝑓 exists by Lemma 4.2)

11: Output ℎ̂ = 𝑓 (𝑏1, . . . , 𝑏𝑇).

Algorithm 2. Algorithm 1 Restated
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Similarly to previous boosting algorithms, the last step of our algorithm involves an
aggregation of the hypotheses 𝑏1, . . . , 𝑏𝑇 returned by the weak learnerW into a consistent
classifier ℎ(𝑥) = 𝑓 (𝑏1(𝑥), . . . , 𝑏𝑇 (𝑥)), where 𝑓 : {±1}𝑇 → {±1} is the aggregation function.
While virtually all boosting algorithms (e.g., AdaBoost and Boost-by-Majority) employ majority
vote rules as aggregation functions, our boosting algorithm allows for more complex aggregation
functions. This enables the quadratic improvement in the oracle complexity.

We now describe and analyze our edge separability-based boosting algorithm. Throughout
the rest of this section, fix a base-class B ⊆ {±1}X, an edge parameter 𝛾 > 0, and a weak
learner denoted byW. We let 𝑚0 denote the sample complexity ofW and assume that for
every distribution 𝐷 which is 𝛾-realizable with respect to B:

E𝑆∼𝐷𝑚0 [corr𝐷(W(𝑆))] ≥ 𝛾/2, (3)

where corr𝐷(ℎ) = E(𝑥, 𝑦)∈𝐷 [ℎ(𝑥) · 𝑦] is the correlation of ℎ with respect to 𝐷.
The main idea behind the algorithm is simple. We wish to collect as fast as possible a

sequence of base classifiers 𝑏1, . . . , 𝑏𝑇 ∈ B that can be aggregated to produce a consistent
hypothesis, i.e., a hypothesis ℎ ∈ {±1}X satisfying ℎ(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ∈ [𝑚]. The next definition
and lemma provide a sufficient and necessary condition for reaching such hypothesis.

DEF IN IT ION 4.1. Let 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) be a sample and let 𝑏1, . . . , 𝑏𝑇 ∈ {±1}X be
hypotheses. We say that 𝑏1, . . . , 𝑏𝑇 separate 𝑆 if for every 𝑖, 𝑗 ∈ [𝑚] with 𝑦𝑖 ≠ 𝑦 𝑗 , there exists
𝑡 ∈ [𝑇 ] such that 𝑏𝑡 (𝑥𝑖) ≠ 𝑏𝑡 (𝑥 𝑗).

LEMMA 4.2 (A Condition for Consistent Aggregation). Let 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) be a
sample and let 𝑏1, . . . , 𝑏𝑇 ∈ {±1}X be hypotheses. Then, the following statement are equivalent.

1. There exists a function ℎ := 𝑓 (𝑏1, . . . , 𝑏𝑇 ) ∈ {±1}𝑋 satisfying ℎ(𝑥𝑖) = 𝑦𝑖 for every 𝑖 ∈ [𝑚].
2. 𝑏1, . . . , 𝑏𝑇 separate 𝑆.

PROOF . Assume that 𝑏1, . . . , 𝑏𝑡 separate 𝑆. Then, for any string 𝑏 ∈ {±1}𝑇 , the set

{ 𝑦𝑖 : (𝑏1(𝑥𝑖), . . . , 𝑏𝑇 (𝑥𝑖)) = 𝑏 }

is either empty or a singleton. This allows us aggregating 𝑏1, . . . , 𝑏𝑇 into a consistent hypothesis.
For example, we can define

𝑓 (𝑏) =

+1 ∃𝑖 ∈ [𝑚] s.t. (𝑏1(𝑥𝑖), . . . , 𝑏𝑇 (𝑥𝑖)) = 𝑏 & 𝑦𝑖 = 1

−1 otherwise

This proves the sufficiency of the separation condition. Suppose now that 𝑏1, . . . , 𝑏𝑇 do not
separate 𝑆. This implies that there exist 𝑖, 𝑗 ∈ [𝑚] such that 𝑦𝑖 ≠ 𝑦 𝑗 and (𝑏1(𝑥𝑖), . . . , 𝑏𝑇 (𝑥𝑖)) =
(𝑏1(𝑥 𝑗), . . . , 𝑏𝑇 (𝑥 𝑗)). Then any classifier of the form ℎ = 𝑓 (𝑏1, . . . , 𝑏𝑇 ) must satisfy either ℎ(𝑥𝑖) ≠
𝑦𝑖 or ℎ(𝑥 𝑗) ≠ 𝑦 𝑗 . ■
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On a high level, Algorithm 1 attempts to obtain as fast as possible weak hypotheses 𝑏1 . . . 𝑏𝑇

that separate the input sample 𝑆 = (𝑥1, 𝑦1) . . . (𝑥𝑚, 𝑦𝑚). To facilitate the description of Algo-
rithm 1, it is convenient to introduce an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 = [𝑚] and
{𝑖, 𝑗} ∈ 𝐸 if and only if 𝑦𝑖 ≠ 𝑦 𝑗 .

The graph 𝐺 changes during the running of the algorithm: on every round 𝑡, Algorithm 1
defines a distribution 𝑃𝑡 over 𝑆, where the probability of each example (𝑥𝑖 , 𝑦𝑖) is proportional
to the degree of 𝑖. Thereafter, the weak learner W is being applied on a subsample 𝑆𝑡 =

(𝑥𝑖1 , 𝑦𝑖1) . . . (𝑥𝑖𝑚0
, 𝑦𝑖𝑚0
) which is drawn i.i.d. according to 𝑃𝑡. After receiving the weak classifier

𝑏𝑡 ∈ B, the graph 𝐺 is updated by removing all edges {𝑖, 𝑗} such that 𝑥𝑖 , 𝑥 𝑗 are separated by 𝑏𝑡.
This is repeated until no edges are left (i.e., all pairs are separated by some 𝑏𝑡). At this point, as
implied by Lemma 4.2, Algorithm 1 can find and return an hypothesis ℎ̂ := 𝑓 (𝑏1, . . . , 𝑏𝑇 ) ∈ {±1}X

that is consistent with the entire sample.

THEOREM 4.3 (Oracle Complexity Upper Bound (Theorem 2.3 restated)). Let 𝑆 be an input
sample of size 𝑚 which is 𝛾-realizable with respect to B, and let 𝑇 denote the number of rounds
Algorithm 1 performs when applied on 𝑆. Then, for every 𝑡 ∈ N

Pr[𝑇 ≥ 𝑡] ≤ exp
(
2 log𝑚 − 𝑡𝛾/2

)
.

In particular, this implies that E[𝑇 ] = 𝑂(log(𝑚)/𝛾).

PROOF . Let 𝐸𝑡 denote the set of edges that remain in 𝐺 after the first 𝑡 − 1 rounds. An edge
{𝑖, 𝑗} ∈ 𝐸𝑡 is not removed on round 𝑡 only if 𝑏𝑡 errs either on 𝑥𝑖 or on 𝑥 𝑗 , namely

{𝑖, 𝑗} ∈ 𝐸𝑡+1 =⇒ 𝑦𝑖 · 𝑏𝑡 (𝑥𝑖) + 𝑦 𝑗 · 𝑏𝑡 (𝑥 𝑗) ≤ 0. (4)

Let corr𝑡 (ℎ) := E𝑥𝑖∼𝑃𝑡 [ 𝑦𝑖 · ℎ(𝑥𝑖)]. Therefore, by the definition of 𝑃𝑡:

corr𝑡 (𝑏𝑡) =
∑︁
𝑖

𝑃𝑡 (𝑥𝑖 , 𝑦𝑖)𝑏𝑡 (𝑥𝑖) 𝑦𝑖 =
∑
𝑖 𝑑𝑒𝑔𝑡 (𝑖)𝑏𝑡 (𝑥𝑖) 𝑦𝑖∑

𝑖 𝑑𝑒𝑔𝑡 (𝑖)
(𝑑𝑒𝑔𝑡 (·)) denotes the degree in 𝐸𝑡.)

=

∑
{𝑖, 𝑗}∈𝐸𝑡

(
𝑏𝑡 (𝑥𝑖) 𝑦𝑖 + 𝑏𝑡 (𝑥 𝑗) 𝑦 𝑗

)
2|𝐸𝑡 |

≤ 2|𝐸𝑡 \ 𝐸𝑡+1 |
2|𝐸𝑡 |

=
|𝐸𝑡 \ 𝐸𝑡+1 |
|𝐸𝑡 |

(by Equation (4))

Thus, corr𝑡 (𝑏𝑡) ≤ |𝐸𝑡\𝐸𝑡+1 |
|𝐸𝑡 | . Now, since 𝑆 is 𝛾-realizable, Equation (3) implies that

E
[
corr𝑡 (𝑏𝑡)

��� 𝐸𝑡] ≥ 𝛾2 .
Therefore,

E
[ |𝐸𝑡 \ 𝐸𝑡+1 |
|𝐸𝑡 |

��� 𝐸𝑡] ≥ E[corr𝑡 (𝑏𝑡)��� 𝐸𝑡] ≥ 𝛾2 =⇒ E
[
|𝐸𝑡 \ 𝐸𝑡+1 |

��� 𝐸𝑡] ≥ 𝛾2 · |𝐸𝑡 |
=⇒ E

[
|𝐸𝑡+1 |

�� 𝐸𝑡] ≤ (
1 − 𝛾

2

)
· |𝐸𝑡 |
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Thus, after 𝑡 rounds, the expected number of edges is at most
(𝑚

2
)
· (1 − 𝛾/2)𝑡. Hence, the total

number of rounds 𝑇 satisfies:

Pr[𝑇 ≥ 𝑡] = Pr[|𝐸𝑡 | > 0] ≤ E[|𝐸𝑡 |] ≤
(
𝑚

2

)
·
(
1 − 𝛾

2

) 𝑡
≤ exp

(
2 log(𝑚) − 𝑡 · 𝛾

2

)
,

where in the second transition we used the basic fact that Pr[𝑋 > 0] ≤ E[𝑋] for every random
variable 𝑋 ∈ N. To get the bound on E[𝑇 ], note that:

E[𝑇 ] =
∞∑︁
𝑡=1

Pr[𝑇 ≥ 𝑡] ≤
∞∑︁
𝑡=1

min
{
1,

(
𝑚

2

)
· (1 − 𝛾)𝑡

}
= 𝑂

( log𝑚
𝛾

)
,

where in the first transition we used that E[𝑋] = ∑∞
𝑡=1 Pr[𝑋 ≥ 𝑡] for every random variable

𝑋 ∈ N. ■

4.1.1 Aggregation-Dependent Generalization Bound

As discussed in Section 2.1, Algorithm 1 is a meta-algorithm in the sense that it does not specify
how to find the aggregation rule 𝑓 in Line 10. In particular, this part of the algorithm may be
implemented in different ways, depending on the choice of the base-class B. We therefore
provide here a generalization bound whose quality adapts to the complexity of this stage. That
is, the guarantee given by the bound improves with the “simplicity” of the aggregation rule.

More formally, we follow the notation in [32, Chapter 4.2.2] and assume that for every
sequence of weak hypotheses 𝑏1 . . . 𝑏𝑇 ∈ B there is an aggregation class

H = H(𝑏1, . . . , 𝑏𝑇 ) ⊆
{
𝑓 (𝑏1 . . . 𝑏𝑇 ) : 𝑓 : {±1}𝑇 → {±1}

}
,

such that the output hypothesis of Algorithm 1 is a member ofH . For example, for classical
boosting algorithms such as Adaboost,H is the class of all weighted majorities {sign(∑𝑖 𝑤𝑖 · 𝑏𝑖) :
𝑤𝑖 ∈ R}.

THEOREM 4.4 (Aggregation Dependent Bounds (Theorem 2.4 restatement)). Assume that
the input sample 𝑆 to Algorithm 1 is drawn from a distribution 𝐷which is 𝛾-realizable with respect
to B. Let 𝑏1 . . . 𝑏𝑇 denote the hypotheses outputted byW during the execution of 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1
on 𝑆, and let H = H(𝑏1 . . . 𝑏𝑇 ) denote the aggregation class. Then, the following occurs with
probability at least 1 − 𝛿:

1. Oracle Complexity: the number of times the weak learner is called is

𝑇 = 𝑂
( log𝑚 + log(1/𝛿)

𝛾

)
.

2. Sample Complexity: The hypothesis ℎ ∈ H outputted by Algorithm 1 satisfies corr𝐷(ℎ) ≥
1 − 𝜖, where

𝜖 = 𝑂

( (
𝑇 · 𝑚0 + VC(H)

)
log𝑚 + log(1/𝛿)

𝑚

)
= �̃�

( 𝑚0

𝛾 · 𝑚 +
VC(H)
𝑚

)
,
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where 𝑚0 is the sample complexity of the weak learnerW.

PROOF . Let 𝑆 ∼ 𝐷𝑚 be the input sample. First, 𝑆 is 𝛾-realizable and therefore by Theorem 2.3,
the bound on 𝑇 in Item 1 holds with probability at least 1 − 𝛿

2 .
For Item 2, we use the hybrid-compression generalization bound from [32]: recall that in

standard sample compressions, the output hypothesis is a function of a (short) tuple of the
training examples. Hybrid sample compression schemes are an extension of sample compres-
sion schemes in which the output hypothesis is instead selected from a class of hypothesesH ,
where the class (rather than the hypothesis itself) is a function of a (short) tuple of the training
examples. Specifically, we use the following result:

THEOREM 4.5 ([32, Theorem 4.8]). Suppose a learning algorithm based on a hybrid compression
scheme of size 𝜅 is provided with a random training set 𝑆 of size 𝑚. Suppose further that for
every 𝜅-tuple, the resulting class F has VC-dimension at most 𝑑. Assume 𝑚 ≥ 𝑑 + 𝜅. Then, with
probability at least 1 − 𝛽, any hypothesis ℎ produced by this algorithm that is consistent with 𝑆
has error at most

2𝑑 log
(
2𝑒(𝑚 − 𝜅)/𝑑

)
+ 2𝜅 log𝑚 + 2 log(2/𝛽)

𝑚 − 𝜅 .

To derive Item 2, notice that each 𝑏𝑖 for 𝑖 = 1, . . . , 𝑇 is determined by the tuple of the
𝑚0 examples which were fed as input to the weak learnerW at the 𝑖’th iteration. Thus, the
classH(𝑏1, . . . 𝑏𝑇 ) is determined by the concatenated tuple of 𝑇 · 𝑚0 =: 𝜅 training examples.
Therefore, Theorem 4.8 in [32] implies11 that also the bound on 𝜖 in Item 2 holds with probability
at least 1 − 𝛿

2 . That is, with probability at least 1 − 𝛿
2 :

𝜖 = 𝑂

( (
𝑇 · 𝑚0 + VC(H)

)
log𝑚 + log(1/𝛿)

𝑚

)
.

Thus, with probability at least 1 − 𝛿 both Items 1 and 2 are satisfied. ■

Theorem 2.4 demonstrates an upper bound on both the oracle and sample complexities of
Algorithm 1. The sample complexity upper bound is algorithm-dependent in the sense that it
depends on VC(H) the VC dimension ofH = H(𝑏1 . . . 𝑏𝑇 ) – the class of possible aggregations
outputted by the algorithm. In particular VC(H) depends on the base-class B and on the
implementation of Line 10 in Algorithm 1.

One example where one can find a relatively simple aggregation class H is when B is
the class of one-dimensional thresholds. In this case, one can implement Line 10 such that
VC(H) = 𝑂(1/𝛾). This follows by showing that if 𝑆 is 𝛾-realizable by thresholds then it has
at most 𝑂(1/𝛾) sign-changes and that one can choose 𝑓 = 𝑓 (𝑏1 . . . 𝑏𝑇 ) to have at most 𝑂(1/𝛾)

11 Note that in the bound stated in Theorem 2.4 both 𝑇 and VC(H) are random variables, while the corresponding
parameters 𝜅 and 𝑑 in Theorem 4.8 in [32] are fixed. Thus, in order to apply this theorem, we use a union bound by
setting 𝛿𝑘 = 𝛿

100𝑘2 , for each possible fixed value 𝑘 = 𝑇 ·𝑚0 + VC(H). The desired bound then follows simultaneously for
all 𝑘 since ∑

𝑘 𝛿𝑘 ≤ 𝛿.
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sign-changes as well. So,H in this case is the class of all sign functions that change sign at most
𝑂(1/𝛾) times whose VC dimension is 𝑂(1/𝛾). Note that in this example the bound on VC(H)
does not depend on 𝑚, which is different (and better) then the bound whenH is defined with
respect to aggregation by weighted majority. More generally, the following proposition provides
a bound on VC(H) when it is known that the aggregation rule belongs to a restricted class 𝐺:

PROPOS IT ION 4.6 (VC Dimension of Aggregation (Proposition 2.5 restatement)). Let B ⊆
{±1}X be a base-class and let 𝐺 denote a class of “{±1}𝑇 → {±1}” functions (“aggregation-rules”).
Then,

VC
({
𝑔 (𝑏1, . . . , 𝑏𝑇 ) |𝑏𝑖 ∈ B, 𝑔 ∈ 𝐺

})
≤ 𝑐𝑇 · (𝑇 · VC(B) + VC(𝐺)),

where 𝑐𝑇 = 𝑂(log𝑇 ). Moreover, even if 𝐺 contains all “{±1}𝑇 → {±1}” functions, then the
following bound holds for every fixed 𝑏1, 𝑏2, . . . , 𝑏𝑇 ∈ B

VC
({
𝑔 (𝑏1, . . . , 𝑏𝑇 ) |𝑔 : {±1}𝑇 → {±1}

})
≤

(
𝑇

≤ 𝑑∗

)
≤ (𝑒𝑇/𝑑∗)𝑑∗ ,

where 𝑑∗ is the dual VC dimension of B.

PROOF . The first part follows by plugging B1 = B2 = . . . = B𝑇 = B in Proposition 4.9 which is
stated in Section 4.2.1.

For the second part, let 𝐴 ⊆ X with |𝐴| >
( 𝑇
≤𝑑∗

)
. We need to show that 𝐴 is not shattered by

the above class. It suffices to show that there are distinct 𝑥′, 𝑥′′ ∈ 𝐴 such that 𝑏𝑖 (𝑥′) = 𝑏𝑖 (𝑥′′) for
every 𝑖 ≤ 𝑇 . Indeed, by the Sauer–Shelah–Perles Lemma applied on the dual class of {𝑏1 . . . 𝑏𝑇 }
we get that ���{(𝑏1(𝑥), . . . , 𝑏𝑇 (𝑥)) : 𝑥 ∈ X}

��� ≤ (
𝑇

≤ 𝑑∗

)
< |𝐴| .

Therefore, there must be distinct 𝑥′, 𝑥′′ ∈ 𝐴 such that 𝑏𝑖 (𝑥′) = 𝑏𝑖 (𝑥′′) for every 𝑖 ≤ 𝑇 . ■

The second part in Proposition 2.5 shows that even if the aggregation-rule used by Algo-
rithm 1 is an arbitrary “{±1}𝑇 → {±1}” function, one can still bound the VC dimension of all
possible aggregations of any 𝑇 weak hypotheses 𝑏1 . . . 𝑏𝑇 ∈ B in terms of the dual VC dimension
of B in a way that is sufficient to give generalization of Algorithm 1 whenever B is a VC class.
This is summarized in the following corollary.

COROLLARY 4.7 (Corollary 2.6 restatement). Let B be the base-class, let 𝑑∗ denote its dual
VC dimension, and assume oracle access to a 𝛾-learner for B with sample complexity 𝑚0. Assume
the input sample 𝑆 to Algorithm 1 consists of 𝑚 examples drawn independently from a 𝛾-realizable
distribution. Then with probability 1 − 𝛿 the following holds:

1. Oracle Complexity: the number of times the weak learner is called is 𝑇 = 𝑂( log𝑚+log(1/𝛿)
𝛾 ).
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2. Sample Complexity: The hypothesis ℎ ∈ H outputted by Algorithm 1 satisfies corr𝐷(ℎ) ≥
1 − 𝜖, where

𝜖 = 𝑂

( (
𝑇 · 𝑚0 + 𝑇𝑑

∗ ) log𝑚 + log(1/𝛿)
𝑚

)
= �̃�

( 𝑚0

𝛾 · 𝑚 +
1

𝛾𝑑
∗ · 𝑚

)
,

As discussed earlier, we consider the above bound of purely theoretical interest as it
assumes that the aggregation rule is completely arbitrary. We expect that for specific and
structured base-classesBwhich arise in realistic scenarios, one could find consistent aggregation
rules more systematically and as a result to also get better guarantees on the capacity of the
possible aggregation rules.

4.2 Oracle Complexity Lower Bound

We next prove a lower bound on the oracle complexity showing that if one restricts only to
boosting algorithms which aggregate by weighted majorities then a near quadratic dependence
in 1/𝛾 is necessary to get generalization, even if the base-class B is assumed to be a VC class.
In fact, the theorem shows that even if one only wishes to achieve a constant error 𝜖 = 1/4
with constant confidence 𝛿 = 1/4 then still nearly 1/𝛾2 calls to the weak learner are necessary,
where 𝛾 is the advantage parameter.

THEOREM 4.8 (Oracle Complexity Lower Bound (Theorem 2.7 restated)). Let 𝛾 > 0 be the
edge parameter, and let B = HS𝑑 be the class of 𝑑-dimensional halfspaces. LetA be a boosting
algorithm which uses a (possibly weighted) majority vote as an aggregation rule. That is, the
output hypothesis ofA is of the form

ℎ(𝑥) = sign
(
𝑤1 · 𝑏1(𝑥) + · · · + 𝑤𝑇 · 𝑏𝑇 (𝑥)

)
,

where 𝑏1 . . . 𝑏𝑇 are the weak hypotheses returned by the weak learner, and 𝑤1, . . . 𝑤𝑇 ∈ R. Then,
for every weak learnerW which outputs weak hypotheses from HS𝑑 there exists a distribution 𝐷
which is 𝛾-realizable by HS𝑑 such that ifA is given sample access to 𝐷 and oracle access toW,
then it must callW at least

𝑇 = Ω̃𝑑

( 1

𝛾2− 2
𝑑+1

)
times in order to output an hypothesis ℎ such that with probability at least 1 − 𝛿 = 3/4 it satisfies
corr𝐷(ℎ) ≥ 1 − 𝜖 = 3/4. The Ω̃𝑑 above conceals multiplicative factors which depend on 𝑑 and
logarithmic factors which depend on 1/𝛾.

PROOF . Let us strengthen the weak learnerW by assuming that whenever it is given a sample
from a 𝛾-realizable distribution 𝐷 then it always outputs a ℎ ∈ HS𝑑 such that corr𝐷(ℎ) ≥ 𝛾 (i.e.,
it outputs such an ℎ with probability 1). Clearly, this does not affect generality in the context of
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proving oracle complexity lower bounds (indeed, if the weak learner sometimes fails to return
a 𝛾-correlated hypothesis then the number of oracle calls may only increase).

Let 𝑇 (𝛾, 𝜖, 𝛿) denote the minimum integer for which the following holds: given sample
access to a 𝛾-realizable distribution 𝐷, the algorithmA makes at most 𝑇 calls toW and outputs
an hypothesis ℎ such that corr𝐷(ℎ) ≥ 1 − 𝜖 with probability at least 1 − 𝛿. Thus, our goal is to
show that 𝑇 = 𝑇 (𝛾, 1/4, 1/4) ≥ Ω̃𝑑 (1/𝛾

2𝑑
𝑑+1 ).

By Theorem 2.16 there exists 𝑁 ⊆ R𝑑 of size 𝑛 := |𝑁 | = Ω𝑑 (1/𝛾
2𝑑
𝑑+1 ) such that each labeling

𝑐 : 𝑁 → {±1} is 𝛾-realizable by HS𝑑 . Let 𝑢 denote the uniform distribution over 𝑁 . Since for
every 𝑐 : 𝑁 → {±1} the distribution defined by the pair (𝑢, 𝑐) is 𝛾-realizable it follows that
given sample access to examples (𝑥, 𝑐(𝑥)) where 𝑥 ∼ 𝑢, the algorithmA makes at most 𝑇 calls
toW and outputs ℎ of the form

ℎ(𝑥) = sign
(
𝑤1 · 𝑏1(𝑥) + . . . + 𝑤𝑇 · 𝑏𝑇 (𝑥)

)
𝑏𝑖 ∈ HS𝑑 , (5)

such that with probability at least 3/4,

𝑑 (𝑐, ℎ) := Pr
𝑥∼𝑢
[𝑐(𝑥) ≠ ℎ(𝑥)] = 1

𝑛

��{𝑥 ∈ 𝑁 : ℎ(𝑥) ≠ 𝑐(𝑥)
}�� ≤ 1/4.

LetH𝑇 denote the set of all functions ℎ : 𝐴→ {±1}which can be represented like in Equation (5).
The proof follows by upper and lower bounding the size ofH𝑇 .

H𝑻 is Large. By the above consideration it follows that

(∀𝑐 ∈ {±1}𝑁 ) (∃ℎ ∈ H𝑇 ) : 𝑑 (𝑐, ℎ) ≤ 1/4.

In other words, each 𝑐 ∈ {±1}𝑁 belongs to a hamming ball of radius 1/4 around some ℎ ∈ H𝑇 .
Thus, if 𝑉 (𝑝) denotes the size of a hamming ball of radius 𝑝 in {±1}𝑁 , then 𝑉 (1/4) · |H𝑇 | ≥ 2𝑛

and therefore
|H𝑇 | ≥

2𝑛

𝑉 (1/4) ≥ 2
(
1−h2( 1

4 )
)
𝑛, (6)

where h2(𝑥) = −𝑥 log(𝑥) − (1− 𝑥) log(1− 𝑥) is the binary entropy function. Indeed, Equation (6)
follows from the basic inequality 𝑉 (𝑝) ≤ 2ℎ(𝑝)·𝑛 (see, e.g., [15, Theorem 3.1]).

H𝑻 is Small. Let us now upper bound the size ofH𝑇 : each function inH𝑇 is determined by
(i) the restrictions to 𝑁 of the 𝑑-dimensional halfspaces 𝑏1 |𝑁 . . . 𝑏𝑇 |𝑁 ∈ {±1}𝑁 , and

(ii) the 𝑇 -dimensional halfspace defined by the 𝑤𝑖 ’s.

For (i), note that by the Sauer–Shelah–Perles Lemma, the total number of restriction of 𝑏 ∈ HS𝑑 ’s
to 𝑁 is 𝑂(𝑛𝑑) and therefore the number of ways to choose 𝑇 hypotheses 𝑏1 |𝑁 . . . 𝑏𝑇 |𝑁 is 𝑂(𝑛𝑑·𝑇 ).
For (ii), fix a sequence 𝑏1 |𝑁 . . . 𝑏𝑇 |𝑁 , and identify each 𝑥 ∈ 𝑁 with the 𝑇 -dimensional vector

𝑥 ↦→
(
𝑏𝑖 (𝑥)

)𝑇
𝑖=1.
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Thus, each function on the form

ℎ(𝑥) = sign
(
𝑤1 · 𝑏1(𝑥) + . . . + 𝑤𝑇 · 𝑏𝑇 (𝑥)

)
corresponds in a one-to-one manner to a halfspace in 𝑇 -dimensions restricted to the set

𝐵 =

{(
𝑏𝑖 (𝑥)

)𝑇
𝑖=1 : 𝑥 ∈ 𝑁

}
⊆ R𝑇 .

In particular, the number of such functions is 𝑂( |𝐵|𝑇 ) = 𝑂( |𝑁 |𝑇 ) = 𝑂(𝑛𝑇 ). To conclude,

|H𝑇 | ≤ 𝑂(𝑛𝑑·𝑇 ) · 𝑂(𝑛𝑇 ) = 𝑂(𝑛(𝑑+1)·𝑇 ). (7)

Combining Equations (6) and (7) we get that

2𝑛(1−h2(1/4)) ≤ 𝑂(𝑛(𝑑+1)·𝑇 ),

which implies that 𝑇 = Ω( 𝑛
𝑑 log 𝑛) = Ω̃𝑑 (1/𝛾

2𝑑
𝑑+1 ) and finishes the proof. ■

4.2.1 The VC Dimension of Composition

We conclude this part by demonstrating how the argument used in the above lower bound can
extend a classical result by [5].

PROPOS IT ION 4.9. Let B1 . . .B𝑇 ⊆ {±1}X be classes of X ↦→ {±1} functions and let 𝐺 be a
class of “{±1}𝑇 → {±1}” functions. Then the composed class

𝐺(B1 . . .B𝑇 ) = {𝑔 (𝑏1 . . . 𝑏𝑇 ) : 𝑏𝑖 ∈ B𝑖 , 𝑔 ∈ 𝐺} ⊆ {±1}X

satisfies
VC

(
𝐺(B1 . . .B𝑇 )

)
≤ 𝑐𝑇 · (VC(B1) + . . . + VC(B𝑇 ) + VC(𝐺)),

where 𝑐𝑇 = 𝑂(log𝑇 ).12

This generalizes a result by [5] who considered the case when 𝐺 = {𝑔} consists of a single
function.

PROOF . Without loss of generality we may assume that each 𝑑𝑖 ≥ 1 (indeed, else |B𝑖 | ≤ 1 and
we may ignore it). By the Sauer–Shelah–Perles Lemma, for every 𝐴 ⊆ X and for every 𝑖 ≤ 𝑇

|B𝑖 |𝐴 | ≤
(
|𝐴|
≤ 𝑑𝑖

)
≤ 2|𝐴|𝑑𝑖 .

Similarly, for every 𝐵 ⊆ {±1}𝑇 :

|𝐺 |𝐵 | ≤
(
|𝐵|
≤ 𝑑𝐺

)
≤ 2|𝐵|𝑑𝐺 .

12 Specifically, 𝑐𝑇 = 1
𝑇 ·𝑥 where 𝑥 < 1/2 is such that ℎ(𝑥) = 1

𝑇+1 , and ℎ(·) is the binary entropy function.
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Let 𝑁 ⊆ X of size 𝑛 := VC(𝐺(B1 . . .B𝑇 )). such that 𝑁 is shattered by 𝐺(B1 . . .B𝑇 ). Thus,���𝐺(B1 . . .B𝑇 ) |𝑁
��� = 2𝑛. (8)

On the other hand, note that each function 𝑔 (𝑏1 . . . 𝑏𝑇 ) |𝑁 is determined by
(i) the restrictions 𝑏1 |𝑁 . . . 𝑏𝑇 |𝑁 ∈ {±1}𝑁 , and

(ii) the identity of the composing function 𝑔 ∈ 𝐺 restricted to the set {(𝑏1 |𝑁 (𝑥), . . . , 𝑏𝑇 |𝑁 (𝑥)) :
𝑥 ∈ 𝑁} ⊆ {±1}𝑇 .

For (i), by the Sauer–Shelah–Perles Lemma the number of ways to choose 𝑇 restrictions 𝑏1 |𝑁 . . .
𝑏𝑇 |𝑁 where 𝑏𝑖 ∈ B𝑖 is at most (

𝑛

≤ 𝑑1

)
·
(
𝑛

≤ 𝑑2

)
· · · · ·

(
𝑛

≤ 𝑑𝑇

)
.

For (ii), fix a sequence 𝑏1 |𝑁 . . . 𝑏𝑇 |𝑁 , and identify each 𝑥 ∈ 𝑁 with the 𝑇 -dimensional boolean
vector

𝑥 ↦→
(
𝑏𝑖 (𝑥)

)𝑇
𝑖=1 .

By the Sauer–Shelah–Perles Lemma,���{𝑔 (𝑏1(𝑥) . . . 𝑏𝑇 (𝑥)) : 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑁
}��� ≤ (

𝑛

≤ 𝑑𝐺

)
.

Thus, ��𝐺(B1 . . .B𝑇 ) |𝑁
�� ≤ (

𝑛

≤ 𝑑1

)
· · · · ·

(
𝑛

≤ 𝑑𝑇

)
·
(
𝑛

≤ 𝑑𝐺

)
≤ 2𝑛·(ℎ(𝑑1/𝑛)+...+ℎ(𝑑𝑇/𝑛)+ℎ(𝑑𝐺/𝑛)) , (9)

where we used the basic inequality
( 𝑛
≤𝑘

)
≤ 2𝑛ℎ(𝑘/𝑛) , where ℎ(𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) is

the entropy function. Combining Equations (8) and (9) we get:

1 ≤ ℎ(𝑑1/𝑛) + · · · + ℎ(𝑑𝑇/𝑛) + ℎ(𝑑𝐺/𝑛)

≤ (𝑇 + 1) · ℎ
(𝑑1 + · · · + 𝑑𝑇 + 𝑑𝐺

𝑇 · 𝑛

)
, (by concavity of ℎ(·))

and therefore 𝑛 = VC(𝐺(B1 . . .B𝑇 )) must satisfy 1
𝑇+1 ≤ ℎ

(𝑑1+···+𝑑𝑇+𝑑𝐺
𝑇 ·𝑛

)
. So, if we let 𝑥 < 1/2 such

that ℎ(𝑥) = 1
𝑇+1 then, since ℎ(·) is monotone increasing on (0, 1/2), we have 𝑑1+···+𝑑𝑇+𝑑𝐺

𝑇 ·𝑛 ≥ 𝑥.
Therefore, 𝑛 ≤ 𝑐𝑇 · (𝑑1 + . . . + 𝑑𝑇 + 𝑑𝐺), where 𝑐𝑇 = 1

𝑇 ·𝑥 = 𝑂(log𝑇 ), as required. ■

5. Expressivity

Throughout this section we assume that the base-class B ⊆ {±1}X is symmetric in the following
sense:

(∀𝑏 ∈ {±1}X) : 𝑏 ∈ B ⇐⇒ −𝑏 ∈ B .
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Note that this assumption does not compromise generality because: (i) a learning algorithm for
B implies a learning algorithm for {±𝑏 : 𝑏 ∈ B}, and (ii) VC({±𝑏 : 𝑏 ∈ B}) ≤ VC(B) + 1. So, if B
is not symmetric, we can replace it by {±𝑏 : 𝑏 ∈ B}.

Organization. We begin with stating and proving a basic geometric characterization of 𝛾-
realizability in Section 5.1, which may also be interesting in its own right. This characterization is
then used to prove Proposition 2.8, which implies that virtually all VC classes which are typically
considered in the literature are expressive when used as base-classes. Then, in Section 5.2 we
provide general bounds on the growth rate of the 𝛾-VC dimension. We conclude the section by
analyzing the classes of Decision Stumps (Section 5.3) and of Halfspaces (Section 5.4).

5.1 A Geometric Perspective of 𝜸-realizability

The following simple lemma provides a geometric interpretation of 𝛾-realizability and the 𝛾-VC
dimension, which will later be useful.

LEMMA 5.1 (A Geometric Interpretation of 𝛾-Realizability). Let B ⊆ {±1}X be a symmetric
class and let 𝛾 > 0.

1. A sample 𝑆 = ((𝑥1, 𝑦1) . . . (𝑥𝑛, 𝑦𝑛)) is 𝛾-realizable with respect to B if and only if there is a
distribution 𝑞 over B such that

(∀𝑖 ≤ 𝑛) : E𝑏∼𝑞[ 𝑦𝑖 · 𝑏(𝑥𝑖)] ≥ 𝛾.

Equivalently, 𝑆 is 𝛾-realizable if and only if the vector 𝛾 · ( 𝑦1 . . . 𝑦𝑛) = (𝛾 𝑦1 . . . 𝛾 𝑦𝑛) is in the
convex-hull of {(𝑏(𝑥1) . . . 𝑏(𝑥𝑛)) : 𝑏 ∈ B}.

2. The 𝛾-VC dimension of B is the maximum 𝑑 such that the continuous 𝛾-cube [−𝛾, +𝛾]𝑑

satisfies
[−𝛾, +𝛾]𝑑 ⊆ CONV

({
(𝑏(𝑥1) . . . 𝑏(𝑥𝑑)) : 𝑏 ∈ B

})
for some 𝑥1 . . . 𝑥𝑑 ∈ X, where CONV(·) denote the convex hull operator.

Note that this lemma can also be interpreted in terms of norms. Indeed, since B is sym-
metric, the set

CONV
({
(𝑏(𝑥1) . . . 𝑏(𝑥𝑑)) : 𝑏 ∈ B

})
⊆ R𝑑

is a symmetric convex set and therefore defines a norm ∥ · ∥ on R𝑑 . Moreover, Lemma 5.1
implies that (𝑥1, 𝑦1) . . . (𝑥𝑑 , 𝑦𝑑) is 𝛾-realizable if and only if

( 𝑦1 . . . 𝑦𝑑)



 ≤ 1
𝛾
.

Consequently, the 𝛾-VC dimension of B is related to the Banach-Mazur distance (see e.g. [17]) of
that norm from ℓ∞ (e.g., if all samples ( 𝑦1 . . . 𝑦𝑑) ∈ {±1}𝑑 are 𝛾-realizable than that distance is
at most 1/𝛾).
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PROOF OF LEMMA5.1 . The proof is a simple application of the Minmax Theorem [29]: for
a sample 𝑆 = ((𝑥1, 𝑦1) . . . (𝑥𝑛, 𝑦𝑛)) define a zero-sum two-player game, where player 1 picks
𝑏 ∈ B and player 2 picks 𝑖 ≤ 𝑛, and player’s 2 loss is 𝑦𝑖 · 𝑏(𝑥𝑖). Notice that 𝛾-realizability of 𝑆
amounts to

min
𝑝∈Δ𝑛

max
𝑏∈B
E𝑖∼𝑝[ 𝑦𝑖 · 𝑏(𝑥𝑖)] ≥ 𝛾,

where Δ𝑛 denotes the 𝑛-dimensional probability simplex. By the Minmax Theorem, the latter is
equivalent to

max
𝑞∈Δ(B)

min
𝑖∈[𝑛]
E𝑏∼𝑞[ 𝑦𝑖 · 𝑏(𝑥𝑖)] ≥ 𝛾,

where Δ(B) is the family of distributions over B. Thus, 𝑆 is 𝛾-realizable if and only if there is a
distribution 𝑞 over B such that E𝑏∼𝑞[ 𝑦𝑖 · 𝑏(𝑥𝑖)] ≥ 𝛾 for every 𝑖 ≤ 𝑛. Since B is symmetric, the
latter is equivalent to the existence of 𝑞′ such that E𝑏∼𝑞′ [ 𝑦𝑖 · 𝑏(𝑥𝑖)] = 𝛾 for every 𝑖 ≤ 𝑛. This
finishes the proof of the Item 1. Item 2 follows by applying Item 1 on each of the 2𝑑 vectors
( 𝑦1 . . . 𝑦𝑑) ∈ {±1}𝑑 . ■

5.1.1 A Condition for Universal Expressivity

The following proposition asserts that under mild assumptions on B, every sample 𝑆 is 𝛾-
realizable for a sufficiently small 𝛾 = 𝛾(𝑆) > 0. This implies that in the limit as 𝛾 → 0, it is
possible to approximate any concept using weak-hypotheses from B.13

PROPOS IT ION 5.2 (A Condition for Universality (Proposition 2.8 restatement)). The fol-
lowing statements are equivalent for a symmetric class B:

1. For every 𝑐 : 𝑋 → {±1} and every sample 𝑆 labelled by 𝑐, there is 𝛾 > 0 such that 𝑆 is
𝛾-realizable by B.

2. For every {𝑥1, . . . , 𝑥𝑛} ⊆ X, the linear-span of {(𝑏(𝑥1), . . . , 𝑏(𝑥𝑛)) ∈ R𝑛 : 𝑏 ∈ B} is 𝑛-
dimensional.

Observe that every class B that contains singletons or one-dimensional thresholds satisfies
Item 2 and hence also Item 1. Thus, virtually all standard hypothesis classes that are considered
in the literature satisfy it.

PROOF . We begin with the direction 1 =⇒ 2. Let {𝑥1 . . . 𝑥𝑛} ⊆ X. By assumption, for every
( 𝑦1 . . . 𝑦𝑛) ∈ {±1}𝑛 there is 𝛾 > 0 such that the sample ((𝑥1, 𝑦1) . . . (𝑥𝑛, 𝑦𝑛)) is 𝛾-realizable. Thus,
by 𝐿𝑒𝑚𝑚𝑎 5.1, Item 1 there are coefficients 𝛼𝑏 ≥ 0 for 𝑏 ∈ B such that

∑
𝑏∈𝐵 𝛼𝑏 · 𝑏(𝑥𝑖) = 𝑦𝑖

for every 𝑖. This implies that every vector ( 𝑦1 . . . 𝑦𝑛) ∈ {±1}𝑛 is in the space spanned by
{(𝑏(𝑥1), . . . , 𝑏(𝑥𝑛)) ∈ R𝑛 : 𝑏 ∈ B} and hence this space is 𝑛-dimensional as required.

13 More precisely, it is possible to interpolate arbitrarily large finite restriction of any concept. We note in passing that a
result due to [3] provides an infinite version of the same phenomena: under mild assumptions on the base-class B,
they show that a variant of AdaBoost is universally consistent.
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We next prove 2 =⇒ 1: let 𝑆 = ((𝑥1, 𝑐(𝑥1) . . . (𝑥𝑛, 𝑐(𝑥𝑛))) be a sample labeled by a
concept 𝑐. We wish to show that 𝑆 is 𝛾-realizable for some 𝛾 > 0. By assumption, the set
{(𝑏(𝑥1) . . . 𝑏(𝑥𝑛)) : 𝑏 ∈ 𝐵} contains a basis, and hence there are coefficients 𝛼𝑏 ∈ R such that∑︁

𝛼𝑏 · 𝑏(𝑥𝑖) = 𝑐(𝑥𝑖)

for every 𝑖 ≤ 𝑛. By possibly replacing 𝑏 with −𝑏, we may assume that the coefficients 𝛼𝑏 are
nonnegative. By dividing 𝛼𝑏 by

∑
𝑏∈B 𝛼𝑏 it follows that the vector

1∑
𝑏∈B 𝛼𝑏

· (𝑐(𝑥1) . . . 𝑐(𝑥𝑛))

is in the convex hull of {(𝑏(𝑥1) . . . 𝑏(𝑥𝑛)) : 𝑏 ∈ B}, which by Lemma 5.1 implies that 𝑆 is
𝛾-realizable for 𝛾 = 1∑

𝑏∈B 𝛼𝑏
. ■

5.2 General Bounds on the 𝜸-VC Dimension

In the remainder of this section we provide bounds on the 𝛾-VC dimension for general as well
as for specific well-studied classes. As we focus on the dependence on 𝛾, we consider the VC
dimension 𝑑 to be constant. In particular, we will sometimes use asymptotic notations 𝑂𝑑 ,Ω𝑑

which conceal multiplicative factors that depend on 𝑑.

THEOREM 5.3 (Theorem 2.14 restatement). Let B be a class with VC dimension 𝑑. Then, for
every 0 < 𝛾 ≤ 1:

VC𝛾 (B) = 𝑂
(
𝑑

𝛾2 log(𝑑/𝛾)
)
= �̃�

( 𝑑
𝛾2

)
.

Moreover, this bound is nearly tight as long as 𝑑 is not very small comparing to log(1/𝛾): for every
𝛾 > 0 and 𝑠 ∈ N there is a class B of VC dimension 𝑑 = 𝑂(𝑠 log(1/𝛾)) and

VC𝛾 (B) = Ω
(
𝑠

𝛾2

)
= Ω̃

( 𝑑
𝛾2

)
.

Thus, the fastest possible growth of the 𝛾-VC dimension is asymptotically ≈ 𝑑/𝛾2. We stress
however that the above lower bound is realized by a class B whose VC dimension is at least
Ω(log(1/𝛾)), which deviates from our focus on the setting the VC dimension is a constant and
𝛾 → 0. Thus, we prove the next theorem which provides a sharp, subquadratic, dependence
on 𝛾 (but a looser dependence on 𝑑).

THEOREM 5.4 (𝛾-VC dimension: improved bound for small 𝛾 (Theorem 2.15 restatement)).
Let B be a class with VC dimension 𝑑 ≥ 1. Then, for every 0 < 𝛾 ≤ 1:

VC𝛾 (B) ≤ 𝑂𝑑

((
1
𝛾

) 2𝑑
𝑑+1

)
,
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where 𝑂𝑑 (·) conceals a multiplicative constant that depends only on 𝑑. Moreover, the above
inequality applies for any class B whose primal shatter function14 is at most 𝑑.

As follows from Theorem 2.16, the dependence on 𝛾 in the above bound is tight.

5.2.1 Proof of Theorem 2.14

To prove the upper bound, let B have VC dimension 𝑑, let 𝛾 > 0, and let 𝐼 ⊆ X be a set of size
VC𝛾 (B) such that every labeling of it is 𝛾-realizable by B. Fix 𝑐 : 𝐼 → {±1}. By Lemma 5.1 there
is a probability distribution 𝑞 on B so that

(∀𝑥 ∈ 𝐼) : E𝑏∼𝑞
[
𝑏(𝑥) · 𝑐(𝑥)

]
≥ 𝛾.

This implies, using a Chernoff and union bounds, that 𝑐 is a majority of 𝑂( log|𝐼 |
𝛾2 ) restrictions

of hypotheses in B to 𝐼 . As this holds for any fixed 𝑐 it follows that each of the 2|𝐼 | distinct ±1
patterns on 𝐼 is the majority of a set of at most 𝑂( log|𝐼 |

𝛾2 ) restrictions of hypotheses in B to 𝐼 . By
the Sauer-Perles-Shelah Lemma [30] there are less than (𝑒|𝐼 |/𝑑)𝑑 such restrictions, and hence[(𝑒|𝐼 |

𝑑

)𝑑]𝑂(log|𝐼 |/𝛾2)
≥ 2|𝐼 | .

This implies that

|𝐼 | ≤ 𝑂
( 𝑑
𝛾2 log

( 𝑑
𝛾2

) )
,

completing the proof of the upper bound.

To prove the lower bound we need the following simple lemma.

LEMMA 5.5. Let 𝑣1, 𝑣2, . . . 𝑣𝑡 be pairwise orthogonal vectors in {±1}𝑡. Then for every probability
distribution 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑡) there is an 𝑖 so that the absolute value of the inner product of 𝑣𝑖
and 𝑝 is at least 1√

𝑡
.

Note that such vectors exist if and only if there is a 𝑡 × 𝑡 Hadamard matrix. In particular
they exist for every 𝑡 which is a power of 2 (and conjectured to exist for all 𝑡 divisible by 4).

PROOF . Since the vectors 𝑣𝑖/
√
𝑡 form an orthonormal basis,

𝑡∑︁
𝑖=1

1
𝑡
(𝑣𝑖 , 𝑝)2 = ∥𝑝∥22 =

𝑡∑︁
𝑖=1

𝑝2
𝑖 ≥
(∑𝑡

𝑖=1 𝑝𝑖)2

𝑡
=

1
𝑡
.

Thus, there is an 𝑖 so that the inner product ⟨𝑣𝑖 , 𝑝⟩2 ≥ 1
𝑡 , as needed. ■

14 The primal shatter function of a class B ⊆ {±1}X is the minimum 𝑘 for which there exists a constant 𝐶 such that for every
finite 𝐴 ⊆ X, the size of B|𝐴 = {𝑏|𝐴 : 𝑏 ∈ B} is at most 𝐶 · |𝐴|𝑘. Note that by the Sauer-Shelah-Perles Lemma, the primal
shatter function is at most the VC dimension.
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COROLLARY 5.6. If 𝑡 = 1/𝛾2 is a power of 2 then there is a collection of 2𝑡 vectors 𝑢𝑖 with {±1}-
coordinates, each of length 𝑡 so that for every vector ℎ ∈ {±1}𝑡 and every probability distribution
𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑡) on its coordinates there is a vector 𝑢𝑖 so that E 𝑗∼𝑝[ℎ( 𝑗) · 𝑣𝑖 ( 𝑗)] ≥ 𝛾.

PROOF . Let 𝑣1, . . . , 𝑣𝑡 be the rows of a 𝑡 × 𝑡 Hadamard matrix, and consider the 2𝑡 vectors in
the set {±𝑣𝑖 : 𝑖 ≤ 𝑡}. The desired result follows from Lemma 5.5. ■

We can now prove the lower bound in Theorem 2.14.

PROOF OF THEOREM 2.14 . Let 𝑡 = 1/𝛾2 be a power of 2, let 𝑠 ∈ N, and put 𝑚 = 𝑠 · 𝑡. Fix a
set 𝐹 of 2𝑡 vectors of length 𝑡 satisfying the assertion of Corollary 5.6 and let B be the collection
of all vectors obtained by concatenating 𝑠 members of 𝐹 (thus |B| = (2𝑡)𝑠). By applying the
above corollary to each of the 𝑠 blocks of 𝑡 consecutive indices it is not difficult to check that for
every vector 𝑐 ∈ {±1}𝑚 and for any probability distribution 𝑝 = (𝑝1, . . . , 𝑝𝑚), there is 𝑏 ∈ B so
that E𝑖∼𝑝[𝑏𝑖 · 𝑐𝑖] ≥ 𝛾. Therefore, we conclude that:

VC(B) ≤ log|B| = 𝑠 log
2
𝛾2 ,

VC𝛾 (B) ≥ 𝑠 · 𝑡 = 𝑠 ·
1
𝛾2 ≥

VC(B)
𝛾2 log(2/𝛾2) .

This completes the proof of Theorem 2.14. ■

5.2.2 Proof of Section 2.15: An Improved Bound using Discrepancy Theory

There is an intimate relationship between the 𝛾-VC dimension and Discrepancy Thoery (see,
e.g., the book [25]). As a first application of this relationship, we prove Theorem 2.15 by a
simple reduction to a classical result in Discrepancy Theory. We begin by introducing some
notation. Let 𝐹 be a family of sets over a domain 𝐴 and let 𝑛 denote the size of 𝐴. Discrepancy
theory studies how balanced can a coloring of 𝐴 be with respect to 𝐹. That is, for a coloring
𝑐 : 𝐴→ {±1} and a set 𝑓 ∈ 𝐹 define the discrepancy of 𝑐 with respect to 𝑓 by

disc(𝑐; 𝑓 ) =
���∑︁
𝑥∈ 𝑓

𝑐(𝑥)
���.

Define the discrepancy of 𝑐 with respect to 𝐹 by

disc(𝑐; 𝐹) = max
𝑓 ∈𝐹

disc(𝑐; 𝑓 ).

Finally, the discrepancy of 𝐹 is defined as the discrepancy of the “best” possible coloring:

disc(𝐹) = min
𝑐:𝐴→{±1}

disc(𝑐; 𝐹).

Low Discrepancy implies large 𝜸-VC Dimension. A classical result due to [27, 26] asserts
that every family 𝐹 of subsets over 𝐴 with a small VC dimension admits a relatively balanced
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coloring:
disc(𝐹) ≤ 𝐶𝑑 · |𝐴|

1
2−

1
2𝑑 , (10)

where 𝑑 is the VC dimension of 𝐴 and 𝐶𝑑 is a constant depending only on 𝑑 (see also Theorem
5.3 in [25]). Let B ⊆ {±1}X be a (symmetric) class and let 𝑑 := VC(B). Let 𝐴 ⊆ X be a set of
size |𝐴| = VC𝛾 (B) such that each of the 2|𝐴| possible labelings of 𝐴 are 𝛾-realizable by B. Pick a
coloring 𝑐 : 𝐴→ {±1} which witnesses Equation (10) with respect to the family

𝐹 :=
{
supp(𝑏) : 𝑏 ∈ B

}
, where supp(𝑏) = {𝑥 ∈ 𝐴 : 𝑏(𝑥) = 1}.

Note that since B is symmetric, it follows that supp(𝑏), supp(−𝑏) ∈ 𝐹 for every 𝑏 ∈ B, and also
note that VC(𝐹) = VC(B) = 𝑑. Let 𝑝 denote the uniform distribution over 𝐴. For every 𝑏 ∈ B:

E𝑥∼𝑝[𝑐(𝑥) · 𝑏(𝑥)] =
1
|𝐴|

∑︁
𝑥∈𝐴

𝑏(𝑥)𝑐(𝑥)

=
1
|𝐴|

∑︁
𝑥∈𝐴:𝑏(𝑥)=1

𝑐(𝑥) − 1
|𝐴|

∑︁
𝑥∈𝐴:𝑏(𝑥)=−1

𝑐(𝑥)

≤ 1
|𝐴|disc(𝑐; supp(𝑏)) + 1

|𝐴|disc(𝑐; supp(−𝑏))

≤ 1
|𝐴| · 2𝐶𝑑 |𝐴|

1
2−

1
2𝑑 = 2𝐶𝑑 |𝐴|−

1
2−

1
2𝑑 .

(by Equation (10) applied on the family 𝐹.)

In particular, as by assumption, the sample (𝑥, 𝑐(𝑥))𝑥∈𝐴 is 𝛾-realizable, it follows that 𝛾 ≤
2𝐶𝑑 |𝐴|−

1
2+

1
2𝑑 and therefore

VC𝛾 (B) = |𝐴| ≤ 𝑂𝑑

((
1
𝛾

) 2𝑑
𝑑+1

)
as required. □

5.3 Decision Stumps

We next consider the class of Decision Stumps. A 𝑑-dimensional decision stump is a concept of
the form sign(𝑠(𝑥 𝑗 − 𝑡)), where 𝑗 ≤ 𝑑, 𝑠 ∈ {±1} and 𝑡 ∈ R. In other words, a decision stump is a
halfspace which is aligned with one of the principal axes. This class is popular in the context of
boosting, partially because it is easy to learn it, even in the agnostic setting. Also note that the
Viola-Jones framework hinges on a variant of decision stumps [35].

THEOREM 5.7 (Theorem 2.17 restatement). Let DS𝑑 denote the class of decision stumps in R𝑑

and 𝛾 ∈ (0, 1]. Then,

VC𝛾 (DS𝑑) = 𝑂
(
𝑑

𝛾

)
.
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Moreover, the dependence on 𝛾 is tight, already in the 1-dimensional case. In fact, for every 𝛾 such
that 1/𝛾 ∈ N

ID𝛾 (DS1) ≥ 1/𝛾.

For 𝑑 > 1, the class of 𝑑-dimensional decision-stumps 𝛾-interpolates every set 𝑌 ⊆ R𝑑 of size 1/𝛾,
provided that there exists 𝑖 ≤ 𝑑 so that every pair of distinct points 𝑥, 𝑦 ∈ 𝑌 satisfy 𝑥𝑖 ≠ 𝑦𝑖 .

The proof of Theorem 2.17 follows from a more general result concerning the union of
classes with VC dimension equal to 1. We note that the bounds are rather loose in terms of 𝑑: the
upper bound yields a bound of 𝑂(𝑑/𝛾) while the lower bound gives only Ω(1/𝛾). Also note that
since the VC dimension of decision stumps is 𝑂(log 𝑑) (see [16] for a tight bound), Theorem 2.14
implies an upper bound of �̃�(log 𝑑/𝛾2). It would be interesting to tighten these bounds.

5.3.1 Proof of Theorem 2.17

Lower Bound on ID𝜸(DS1). We need to show that for every 𝛾 such that 1/𝛾 ∈ N every set
𝐴 ⊆ R of size 1/𝛾 satisfies that each of the 2|𝐴| labeling of 𝐴 are 𝛾-realizable by 1-dimensional
decision stumps (i.e., thresholds). Indeed, let 𝐴 = {𝑥1 < . . . < 𝑥𝑚} ⊆ R, let ( 𝑦1 . . . 𝑦𝑚) ∈ {±1}𝑚,
and let 𝑝 = (𝑝1 . . . 𝑝𝑚) be a distribution on 𝐴. We need to show that there exists a threshold
𝑏 ∈ DS1 such that E𝑥 𝑗∼𝑝[ 𝑦 𝑗 · 𝑏(𝑥 𝑗)] ≥ 1/𝑚. Consider the 𝑚 + 1 sums

𝑆𝑖 =
𝑖∑︁
𝑗=1

𝑦 𝑗 · 𝑝 𝑗 −
𝑚∑︁

𝑗=𝑖+1
𝑦 𝑗 · 𝑝 𝑗 , 0 ≤ 𝑖 ≤ 𝑚,

Note that since max𝑖 |𝑆𝑖 − 𝑆𝑖−1 | = max𝑖 2𝑝𝑖 ≥ 2/𝑚, there must be 𝑖 such that |𝑆𝑖 | ≥ 1/𝑚. The
proof of the lower bound is finished by noting that |𝑆𝑖 | = E𝑥 𝑗∼𝑝[ 𝑦𝑖 · 𝑏𝑖 (𝑥 𝑗)], where

𝑏𝑖 (𝑥) =

sign

(
𝑥 − 𝑥𝑖+𝑥𝑖+1

2
)

𝑆 𝑗 > 0,

sign
(
−(𝑥 − 𝑥𝑖+𝑥𝑖+1

2 )
)

𝑆 𝑗 < 0.

The case of 𝑑 > 1 follows by a simple reduction to the 𝑑 = 1 case: let 𝑌 ⊆ R𝑑 be of size 1/𝛾
such that there exists 𝑖 ≤ 𝑑 for which every pair of distinct points 𝑥, 𝑦 ∈ 𝑌 satisfy 𝑥𝑖 ≠ 𝑦𝑖 . Then,
by projecting 𝑌 on the first coordinate we obtain a 1-dimensional set which is 𝛾-interpolated
by DS1 by the above argument. Equivalently, 𝑌 is 𝛾-interpolated by decision-stumps that are
aligned with the 𝑖th axis. □

Upper Bound on VC𝜸(DS𝒅). The upper bound is a corollary of the next proposition:

PROPOS IT ION 5.8. Let B =
⋃𝑑
𝑖=1 B𝑖 where for all 𝑖 ∈ [𝑑], VC(B𝑖) ≤ 1. Then VC𝛾 (B) ≤ 𝑂(𝑑/𝛾).
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Note that Proposition 5.8 implies the upper bound Theorem 2.17 since

DS𝑑 =
𝑑⋃
𝑗=1

({
sign(𝑥 𝑗 − 𝑡) : 𝑡 ∈ R

}
∪

{
sign(−(𝑥 𝑗 − 𝑡)) : 𝑡 ∈ R

})
,

and each of the 2𝑑 classes that participate in the union on the right-hand side has VC dimension 1.
The proof of Proposition 5.8 uses Haussler’s Packing Lemma, which we recall next. Let 𝑝

be a distribution over X. 𝑝 induces a (pseudo)-metric over {±1}X , where the distance between
𝑏′, 𝑏′′ ∈ {±1}X is given by

𝑑𝑝(𝑏′, 𝑏′′) = 𝑝
(
{𝑥 : 𝑏′(𝑥) ≠ 𝑏′′(𝑥)}

)
.

LEMMA 5.9 (Haussler’s Packing Lemma [18]). Let B be a class of VC dimension 𝑑 and let 𝑝 be
a distribution on X. Then, for any 𝜖 > 0 there exists a set 𝑁 = 𝑁 (𝜖, 𝑝) ⊆ B of size |𝑁 | ≤ (20/𝜖)𝑑

such that
(∀𝑏 ∈ B)(∃𝑟 ∈ 𝑁) : 𝑑𝑝(𝑏, 𝑟) ≤ 𝜖.

Such a set 𝐶 is called an 𝜖-cover for B with respect to 𝑝.

PROOF OF THEOREM 5.8 . Let 𝐴 = {𝑥1, . . . , 𝑥𝑚} ⊆ X be a set of size 𝑚 := VC𝛾 (B) such that
each of the 2𝑚 possible labelings of it are 𝛾-realizable by B = ∪𝑖≤𝑑B𝑖 . We need to show that
𝛾 ≤ 𝑂(𝑑/𝑚). By applying Lemma 5.9 with respect to the uniform distribution over 𝐴, we
conclude that for every class B 𝑗 there is 𝑁 𝑗 ⊆ B 𝑗 such that |𝑁 𝑗 | ≤ 𝑚

2𝑑 , and

(∀𝑏 ∈ B 𝑗) (∃𝑟 ∈ 𝑁 𝑗) :
1
𝑚

���{𝑖 : 𝑏(𝑥𝑖) ≠ 𝑟(𝑥𝑖)
}��� ≤ 20

𝑚/2𝑑 =
40𝑑
𝑚

.

The proof idea is to derive labels ( 𝑦1 . . . 𝑦𝑚) ∈ {±1}𝑚 and a distribution 𝑝 over 𝐴 such that
(i) for every 𝑗, every 𝑟 ∈ 𝑁 𝑗 satisfies E𝑥𝑖∼𝑝[ 𝑦𝑖 · 𝑟(𝑥𝑖)] = 0, and (ii) 𝑝 is sufficiently close to the
uniform distribution over 𝐴 (in ℓ1 distance). Then, since 𝑝 is sufficiently close to uniform and
since the 𝑁 𝑗 ’s are 𝜖-covers for 𝜖 = 𝑂(𝑑/𝑚) with respect to the uniform distribution, it will follow
that E𝑥∼𝑝[𝑐(𝑥) · 𝑏(𝑥)] ≤ 𝑂(𝑑/𝑚) for all 𝑏 ∈ B, which will show that 𝛾 = 𝑂(𝑑/𝑚) as required.

To construct 𝑐 and 𝑝 we consider the polytope defined by the following Linear Program
(LP) on variables 𝑧1, . . . , 𝑧𝑚 with the following constraints:

− 1 ≤ 𝑧 𝑗 ≤ +1 (∀ 𝑗 ∈ [𝑑])
𝑚∑︁
𝑖=1

𝑧𝑖𝑟(𝑥𝑖) = 0 (∀ 𝑗 ∈ [𝑑]) (∀𝑟 ∈ 𝑁 𝑗)

Consider a vertex 𝑧 = (𝑧1, . . . , 𝑧𝑚) of this polytope. Since the number of equality constraints is
at most 𝑚/2, there are must be at least 𝑚/2 inequality constraints that 𝑧 meets with equality.
Namely, |𝑧𝑖 | = 1 for at least 𝑚/2 indices. This implies that 𝑍 := ∥𝑧∥1 ≥ 𝑚/2. We assign labels
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and probabilities as follows:

𝑦 𝑗 = sign(𝑧 𝑗), 𝑝 𝑗 =
|𝑧 𝑗 |
𝑍
, 𝑗 = 1, . . . , 𝑚.

Let 𝑏 ∈ B 𝑗 . Notice that

E𝑥𝑖∼𝑝[ 𝑦𝑖 · 𝑏(𝑥𝑖)] =
∑︁
𝑖

𝑝𝑖𝑏(𝑥𝑖) 𝑦𝑖 =
1
𝑍

∑︁
𝑖

|𝑧𝑖 | sgn(𝑧𝑖)𝑏(𝑥𝑖) =
1
𝑍

∑︁
𝑖

𝑧𝑖𝑏(𝑥𝑖).

Pick 𝑟 ∈ 𝑁 𝑗 such that 1
𝑚 |{𝑖 : 𝑏(𝑥𝑖) ≠ 𝑟(𝑥𝑖)}| ≤ 40𝑑

𝑚 . Denoting by 𝐼 = {𝑖 : 𝑏(𝑥𝑖) ≠ 𝑟(𝑥𝑖)} (i.e.,
|𝐼 | ≤ 40𝑑), the rightmost sum can be expressed as

1
𝑍

∑︁
𝑖

𝑧𝑖𝑏(𝑥𝑖) =
1
𝑍

∑︁
𝑖

𝑧𝑖𝑟(𝑥𝑖) +
1
𝑍

∑︁
𝑖∈𝐼

𝑧𝑖 (𝑏(𝑥𝑖) − 𝑟(𝑥𝑖))

= 0 + 1
𝑍

∑︁
𝑖∈𝐼

𝑧𝑖 (𝑏(𝑥𝑖) − 𝑟(𝑥𝑖)) ≤
2
𝑚

∑︁
𝑖∈𝐼
|𝑏(𝑥𝑖) − 𝑟(𝑥𝑖) | =

4|𝐼 |
𝑚
≤ 160𝑑

𝑚

Thus, every 𝑏 ∈ B = ∪𝑖≤𝑑B𝑖 satisfies E𝑥𝑖∼𝑝[ 𝑦𝑖 · 𝑏(𝑥𝑖)] ≤ 160𝑑
𝑚 , which implies that 𝛾 ≤ 160𝑑

𝑚 =

𝑂(𝑑/𝑚) (equivalently, VC𝛾 (B) = 𝑚 = 𝑂(𝑑/𝛾)) as required. ■

5.4 Halfspaces

For halfspaces in R𝑑 , we give a tight bound on its 𝛾-VC dimension (in terms of 𝛾) of Θ𝑑

(
1
𝛾

) 2𝑑
𝑑+1 .

The upper bound follows from Theorem 2.15 and the lower bound is established in the next
theorem, which also provides a natural condition on a given set of points which implies it can
be 𝛾-interpolated by halfspaces:

THEOREM 5.10 (Theorem 2.16 restatement). Let HS𝑑 denote the class of halfspaces in R𝑑 and
𝛾 ∈ (0, 1]. Then,

VC𝛾 (HS𝑑) = Θ𝑑

((
1
𝛾

) 2𝑑
𝑑+1

)
.

Further, every set 𝑌 ⊆ R𝑑 of size Θ𝑑 (( 1𝛾 )
2𝑑
𝑑+1 ) is 𝛾-interpolated by HS𝑑 , provided that 𝑌 is “dense”

in the following sense: the ratio between the maximal and minimal distances among all distinct
pairs of points in 𝑌 is bounded by some 𝑂𝑑 ( |𝑌 |

1
𝑑 ).

The proof of Theorem 2.16 is based on ideas from Discrepancy theory. In particular, it relies
on the analysis of the discrepancy of halfspaces due to [1] (see [25] for a text book presentation
of this analysis).

5.4.1 Tools and Notation from Discrepancy Theory

Weighted Discrepancy. Let 𝑝 a (discrete) distribution over X and let 𝑐 : X → {±1} be a
labeling of X which we think of as a coloring. For an hypothesis 𝑏 : X → {±1}, define the
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𝑝-weighted discrepancy of 𝑐 with respect to 𝑏 by

disc𝑝(𝑐; 𝑏) =
∑︁

𝑥:𝑏(𝑥)=1

𝑝(𝑥) · 𝑐(𝑥).

The following simple identity relates the weighted discrepancy with 𝛾-realizability. For
every distribution 𝑝, target concept 𝑐 : X → {±1} and hypothesis 𝑏 : X → {±1}:

E𝑥∼𝑝[𝑐(𝑥) · 𝑏(𝑥)] = disc𝑝(𝑐; 𝑏) − disc𝑝(𝑐;−𝑏). (11)

Motion Invariant Measures. The proof of Theorem 2.16 uses a probabilistic argument. In a
nutshell, the lower bound on the 𝛾-VC dimension follows by showing that if 𝐴 is dense then
each of its 2|𝐴| labelings are 𝛾-realizable. Establishing 𝛾-realizability is achieved by defining a
special distribution 𝜈 over halfspaces such that for every distribution 𝑝 on 𝐴 and every labeling
𝑐 : 𝐴→ {±1}, a random halfspace 𝑏 ∼ 𝜈 is 𝛾-correlated with 𝑐 with respect to 𝑝. That is,

E𝑏∼𝜈
[
E𝑥∼𝑝[𝑐(𝑥)𝑏(𝑥)]

]
≥ 𝛾.

The special distribution 𝜈 over halfspaces which has this property is derived from a motion
invariant measure: this is a measure over the set of all hyperplanes in R𝑑 which is invariant
under applying rigid motions (i.e., if 𝐿′ is a set of hyperplanes obtained by applying a rigid
motion on a set 𝐿 of hyperplanes, then the measure of 𝐿 and 𝐿′ is the same). It can be shown
that up to scaling, there is a unique such measure (similar to the fact that the Lebesgue measure
is the only motion-invariant measure on points in R𝑑). We refer the reader to [25, Chapter 6.4]
for more details on how to construct this measure and some intuition on how it is used in this
context.

One property of this measure that we will use, whose planar version is known by the name
the Perimeter Formula, is that for any convex set 𝐾 the set of hyperplanes which intersect 𝐾 has
measure equal to the boundary area of 𝐾 . Note that this implies that whenever the boundary
area of 𝐾 is 1, then this measure defines a probability distribution over the set of all hyperplanes
intersecting 𝐾 .

5.4.2 Proof of Theorem 2.16

The following lemma is the crux of the proof.

LEMMA 5.11. Let HS𝑑 be the class of 𝑑-dimensional halfspaces. Then, every dense set 𝐴 of size 𝑛
satisfies that for every 𝑐 : 𝐴→ {±1} and for every distribution 𝑝 on 𝐴 there is a halfspace 𝑏 ∈ HS𝑑
such that

disc𝑝(𝑐; 𝑏) = Ω(𝑛−1/2−1/2𝑑).
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Theorem 2.16 is implied by Lemma 5.11 as follows: let 𝐴 be a dense set as in 𝐿𝑒𝑚𝑚𝑎 5.11.
We need to show that each of the 2𝑛 labelings of 𝐴 are 𝛾-realizable by HS𝑑 for 𝛾 = Ω(𝑛−1/2−1/2𝑑).
Let 𝑐 : 𝐴→ {±1} and let 𝑝 be a distribution over 𝐴. By Lemma 5.11, there exists 𝑏 ∈ HS𝑑 such
that

disc𝑝(𝑐; 𝑏) ≥ Ω(𝑛−1/2−1/2𝑑).

We distinguish between two cases: (i) if disc𝑝(𝑐;−𝑏) ≤ 0, then by Equation (11):

E𝑥∼𝑝[𝑐(𝑥) · 𝑏(𝑥)] = disc𝑝(𝑐; 𝑏) − disc𝑝(𝑐;−𝑏) ≥ Ω(𝑛−1/2−1/2𝑑),

as required. (ii) Else, disc𝑝(𝑐;−𝑏) > 0 in which case let 𝑏+ be a halfspace which contains 𝐴 (i.e.,
𝑏+(𝑥) = +1 for all 𝑥 ∈ 𝐴), and notice that

E𝑥∼𝑝[𝑐(𝑥) · 𝑏+(𝑥)] = disc𝑝(𝑐; 𝑏) + disc𝑝(𝑐;−𝑏) ≥ Ω(𝑛−1/2−1/2𝑑).

Thus, in either way there exists a halfspace 𝑏 ∈ B as required.

PROOF . The proof follows along the lines of [25, Theorem 6.4]. The main difference is that we
consider weighted discrepancy whereas the proof in [25] handles the unweighted case. We
therefore describe the modifications needed to incorporate weights.

Following [25] we restrict our attention to the 2-dimensional case and to sets 𝐴 which
are 𝑛1/2 × 𝑛1/2-regular grids. The extension of our result to the general 𝑑-dimensional case is
identical to the extension described in [25, page 191].

Let 𝐴 ⊆ R2 be an 𝑛1/2 × 𝑛1/2 regular grid placed within the square S = [0, 1
4]

2. Let
𝑐 : 𝐴 → {±1} and 𝑝 be a distribution over 𝐴. Our goal is to derive a halfplane 𝑏 such that
disc𝑝(𝑐; 𝑏) = Ω(𝑛−1/2−1/2𝑑) = Ω(𝑛−3/4) (as 𝑑 = 2). The derivation of 𝑏 is done via a probabilistic
argument: that is, we define a distribution 𝜈 over halfplanes and show that on average, a
halfplane drawn from 𝜈 satisfies the desired inequality.

Following [25] denote by 𝜈 a motion-invariant measure on the set of lines which intersect
S. Note that 𝜈 is indeed a probability distribution, because the perimeter ofS is 1. By identifying
every line with the upper15 halfplane it supports, we view 𝜈 as a distribution over halfplanes.
We will prove that √︁

E𝑏∼𝜈[𝐷(𝑏)2] ≥ Ω(𝑛−3/4), (12)

where 𝐷(𝑏) = disc𝑝(𝑐; 𝑏). Note that this indeed implies the existence of a halfplane 𝑏 such that
𝐷(𝑏) ≥ Ω(𝑛−3/4), as required.

We define the functions 𝑓𝑥 : HS2 → R, 𝑥 ∈ A as follows. Let 𝐼𝑥 : HS2 → {0, 1} denote the
indicator function defined by

𝐼𝑥 (𝑏) =


1 𝑢(𝑥) = +1

0 𝑢(𝑥) = −1.

15 We may ignore vertical lines as their 𝜈-measure is 0.
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For some sufficiently small constant 𝛼 > 0 (to be determined later), let 𝑤 = 𝛼𝑛−1/2, and let w
denote the vertical vector (0, 𝑤) and let

𝑓𝑥 (𝑏) = 𝐼𝑥−2w(𝑏) − 4𝐼𝑥−w(𝑏) + 6𝐼𝑥 (𝑏) − 4𝐼𝑥+w(𝑏) + 𝐼𝑥+2w(𝑏).

Define 𝐹 (𝑏) = ∑
𝑥∈𝐴 𝑐(𝑥) 𝑓𝑥 (𝑏). By Cauchy-Schwarz inequality,√︁

E𝑏∼𝜈[𝐷2] ≥ E𝑏∼𝜈[𝐹 · 𝐷]√︁
E𝑏∼𝜈[𝐹2]

.

Equation (12) follows from bounding
√︁
E[𝐹2] and E[𝐹 · 𝐷] from above and from below,

respectively. The bound
E[𝐹2] = 𝑂(

√
𝑛), (13)

follows from exactly16 the same argument as in [25, pages 190–191]. To bound E[𝐹 · 𝐷], note that

E[𝐹 · 𝐷] = E𝑏∼𝜈
[(∑︁

𝑥

𝑐(𝑥) 𝑓𝑥 (𝑏)
) (∑︁

𝑥′
𝑝(𝑥′)𝑐(𝑥′)𝐼𝑥′ (𝑏)

)]
=

∑︁
𝑥

𝑝(𝑥)𝑐(𝑥)2E𝑏[ 𝑓𝑥 (𝑏)𝐼𝑥 (𝑏)] +
∑︁
𝑥

∑︁
𝑥′≠𝑥

𝑝(𝑥)𝑐(𝑥)𝑐(𝑥′)E𝑏[ 𝑓𝑥 (𝑏)𝐼𝑥′ (𝑏)]

=
∑︁
𝑥

𝑝(𝑥)
(
E𝑏[ 𝑓𝑥𝐼𝑥] +

∑︁
𝑥′≠𝑥

𝑐(𝑥)𝑐(𝑥′)E𝑏[ 𝑓𝑥𝐼𝑥′]
)

≥
∑︁
𝑥

𝑝(𝑥)

©­­­­­­«
E𝑏[ 𝑓𝑥𝐼𝑥] −

��� ∑︁
𝑥′≠𝑥

E𝑏[ 𝑓𝑥𝐼𝑥′]
���︸                            ︷︷                            ︸

∗∗∗

ª®®®®®®¬
, (14)

where in the last inequality we used that |𝑐(𝑥) | = 1 for all 𝑥 ∈ 𝐴. The following calculations are
derived in [25, pages 190–191] (recall that 𝑤 = 𝛼𝑛−1/2 where 𝛼 is a sufficiently small constant):

for any 𝑥 ∈ 𝐴,
E[ 𝑓𝑥𝐼𝑥] = 4𝑤 = 4𝛼𝑛−1/2,

for any 𝑥 ∈ 𝐴, ��� ∑︁
𝑥′≠𝑥

E[ 𝑓𝑥𝐼𝑥′]
��� = 𝑂(𝑛3/2𝑤4) = 𝑂(𝛼4𝑛−1/2)

Thus, by taking 𝛼 to be sufficiently small, the term (***) in Equation 14 is lower bounded by
Ω(𝑛−1/2). Since

∑
𝑝(𝑥) = 1 it follows that also

E[𝐹 · 𝐷] = Ω(𝑛−1/2). (15)

16 Note that 𝐹 is defined the same like in [25]. The weights only affect the definition of 𝐷.
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All in all, Equations (13) and (15) imply that√︁
E[𝐷2] ≥ E[𝐹 · 𝐷]√︁

E[𝐹2]
= Ω

(𝑛−1/2

𝑛1/4

)
= Ω(𝑛−3/4),

which establishes Equation (12) and finishes the proof. ■

6. Conclusion and Open Problems

We conclude the paper with some suggestions for future research:
Algorithm 1 suggests a possibility of improved boosting algorithms which exploit the
simplicity of the base-class and use more complex (“deeper”) aggregation rules. It will be
interesting to explore efficient realizations of Algorithm 1, for realistic base-classes B.
The bounds provided on the 𝛾-VC dimensions of halfspaces and decision stumps are rather
loose in terms of 𝑑. It will be interesting to find tight bounds. Also, it will be interesting
to explore how the 𝛾-VC dimension behaves under natural operations. For example, for
𝑘 > 0 consider the class B′ of all 𝑘-wise majority votes of hypotheses from B. How does
VC𝛾 (B′) behaves as a function of 𝑘 and VC𝛾 (B)?
Characterize for which classes B there exist boosting algorithms which output weighted
majorities of the base hypotheses using much less than �̃�(𝛾−2) oracle calls; e.g., for which
classes is it possible to use only �̃�(𝛾−1) oracle calls?
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