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ABSTRACT. We consider zero-sum games on innite graphs, with objectives specied as
sets of innite words over some alphabet of colors. A well-studied class of objectives is the one
of 𝜔-regular objectives, due to its relation to many natural problems in theoretical computer
science. We focus on the strategy complexity question: given an objective, how much memory
does each player require to play as well as possible? A classical result is that nite-memory
strategies suce for both players when the objective is 𝜔-regular. We show a reciprocal of that
statement: when both players can play optimally with a chromatic nite-memory structure
(i.e., whose updates can only observe colors) in all innite game graphs, then the objective
must be 𝜔-regular. This provides a game-theoretic characterization of 𝜔-regular objectives,
and this characterization can help in obtaining memory bounds. Moreover, a by-product of our
characterization is a new one-to-two-player lift: to show that chromatic nite-memory structures
suce to play optimally in two-player games on innite graphs, it suces to show it in the
simpler case of one-player games on innite graphs. We illustrate our results with the family of
discounted-sum objectives, for which 𝜔-regularity depends on the value of some parameters.
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1. Introduction

Games on graphs and synthesis. We study zero-sum turn-based games on innite graphs. In
such games, two players, P1 and P2, interact for an innite duration on a graph, called an arena,
whose state space is partitioned into states controlled by P1 and states controlled by P2. The
game starts in some state of the arena, and the player controlling the current state may choose
the next state following an edge of the arena. Moves of the players in the game are prescribed
by their strategy, which can use information about the past of the play. Edges of the arena are
labeled with a (possibly innite) alphabet of colors, and the interaction of the players in the
arena generates an innite word over this alphabet of colors. These innite words can be used
to specify the players’ objectives: a winning condition is a set of innite words, and P1 wins a
game on a graph if the innite word generated by its interaction with P2 on the game graph
belongs to this winning condition — otherwise, P2 wins.

This game-theoretic model has applications to the reactive synthesis problem [4]: a system
(modeled as P1) wants to guarantee some specication (the winning condition) against an
uncontrollable environment (modeled as P2). Finding a winning strategy in the game for P1

corresponds to building a controller for the system that achieves the specication against all
possible behaviors of the environment.

Strategy complexity. We are interested in the strategy complexity question: given a winning
condition, how complex must winning strategies be, and how simple can they be? We are
interested in establishing the sucient and necessary amount of memory to play optimally.
We consider in this work that an optimal strategy in an arena must be winning from any state
from which winning is possible (a property sometimes called uniformity in the literature). The
amount of memory relates to how much information about the past is needed to play in an
optimal way. With regard to reactive synthesis, this has an impact in practice on the resources
required for an optimal controller.

Three classes of strategies are often distinguished, depending on the number of states
of memory they use: memoryless, nite-memory, and innite-memory strategies. A notable
subclass of nite-memory strategies is the class of strategies that can be implemented with
nite-memory structures that only observe the sequences of colors (and not the sequences of
states nor edges). Such memory structures are called chromatic [29]. By contrast, nite-memory
structures that have access to the states and edges of arenas are called general. Chromatic
memory structures are syntactically less powerful and may require more states than general
ones [11], but have the benet that they can be dened independently of arenas.

We seek to characterize the winning conditions for which chromatic-nite-memory strate-
gies suce to play optimally against arbitrarily complex strategies, for both players, in all
nite and innite arenas. We call this property chromatic-nite-memory determinacy. This
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property generalizesmemoryless determinacy, which describes winning conditions for which
memoryless strategies suce to play optimally for both players in all arenas. Our work follows a
line of research [6, 8] giving various characterizations of chromatic-nite-memory determinacy
for games on nite arenas (see Remark 2.3 for more details).

𝜔-regular languages. A class of winning conditions commonly arising as natural speci-
cations for reactive systems (it encompasses, e.g., linear temporal logic specications [38])
consists of the 𝜔-regular languages. They are, among other characterizations, the languages
of innite words that can be described by a nite parity automaton [36]. It is known that all
𝜔-regular languages are chromatic-nite-memory determined, which is due to the facts that
an 𝜔-regular language is expressible with a parity automaton, and that parity conditions ad-
mit memoryless optimal strategies [27, 43]. Multiple works study the strategy complexity of
𝜔-regular languages, giving, e.g., precise general memory requirements for all Muller condi-
tions [18] or a characterization of the chromatic memory requirements of Muller conditions [11,

Theorem 28].
A result in the other direction is given by Colcombet and Niwiński [17]: they showed that if

a prex-independent winning condition is memoryless-determined in innite arenas, then this
winning condition must be a parity condition. As parity conditions are memoryless-determined,
this provides an elegant characterization of parity conditions from a strategic perspective,
under prex-independence assumption.

Congruence. A well-known tool to study a language 𝐿 of nite (resp. innite) words is its right
congruence relation ∼𝐿: for two nite words 𝑤1 and 𝑤2, we write 𝑤1 ∼𝐿 𝑤2 if for all nite (resp.
innite) words 𝑤, 𝑤1𝑤 ∈ 𝐿 if and only if 𝑤2𝑤 ∈ 𝐿. There is a natural deterministic (potentially
innite) automaton recognizing the equivalence classes of the right congruence, called the
minimal-state automaton of ∼𝐿 [42, 35].

The relation between a regular language of nite words and its right congruence is given
by the Myhill-Nerode theorem [37], which provides a natural bijection between the states of the
minimal deterministic automaton recognizing a regular language and the equivalence classes
of its right congruence relation. Consequences of this theorem are that a language is regular if
and only if its right congruence has nitely many equivalence classes, and a regular language
can be recognized by the minimal-state automaton of its right congruence.

For the theory of languages of innite words, the situation is not so simple: 𝜔-regular
languages have a right congruence with nitely many equivalence classes, but having nitely
many equivalence classes does not guarantee 𝜔-regularity (for example, a language is prex-
independent if and only if its right congruence has exactly one equivalence class, but this does
not imply 𝜔-regularity). Moreover, 𝜔-regular languages cannot necessarily be recognized by
adding a natural acceptance condition (parity, Rabin, Muller. . . ) to the minimal-state automaton
of their right congruence [1]. There has been multiple works about the links between a language
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of innite words and theminimal-state automaton of its right congruence; one relevant question
is to understand when a language can be recognized by this minimal-state automaton [42, 35,
1].

Contributions. We characterize the 𝜔-regularity of a language of innite words𝑊 through
the strategy complexity of the zero-sum turn-based games on innite graphs with winning
condition𝑊 : the 𝜔-regular languages are exactly the chromatic-nite-memory determined
languages (seen as winning conditions) (Theorem 3.7). As discussed earlier, it is well-known
that 𝜔-regular languages admit chromatic-nite-memory optimal strategies [36, 43, 11] — our
results yield the other implication. This therefore provides a characterization of 𝜔-regular
languages through a game-theoretic and strategic lens.

Our technical arguments consist in providing a precise connection between the repre-
sentation of𝑊 as a parity automaton and a chromatic memory structure sucient to play
optimally. If strategies based on a chromatic nite-memory structure are sucient to play
optimally for both players, then𝑊 is recognized by a parity automaton built on top of the direct
product of the minimal-state automaton of the right congruence and this chromatic memory
structure (Theorem 3.6). This result generalizes the work from Colcombet and Niwiński [17] in
two ways: by relaxing the prex-independence assumption about the winning condition, and
by generalizing the class of strategies considered from memoryless to chromatic-nite-memory
strategies. We recover their result as a special case.

Moreover, we actually show that chromatic-nite-memory determinacy in one-player
games of both players is sucient to show 𝜔-regularity of a language. As 𝜔-regular languages
are chromatic-nite-memory determined in two-player games, we can reduce the problem of
chromatic-nite-memory determinacy of a winning condition in two-player games to the easier
chromatic-nite-memory determinacy in one-player games (Theorem 3.8). Such a one-to-two-
player lift holds in multiple classes of zero-sum games, such as deterministic games on nite
arenas [22, 6, 31] and stochastic games on nite arenas [23, 8]. The proofs for nite arenas all
rely on an edge-induction technique (also used in other works about strategy complexity in nite
arenas [28, 21, 13]) that appears unt to deal with innite arenas. Although not mentioned
by Colcombet and Niwiński, it was already noticed [29] that for prex-independent winning
conditions in games on innite graphs, a one-to-two-player lift for memoryless determinacy
follows from [17].

Related works. We have already mentioned [18, 43, 17, 30, 11] for fundamental results on
the memory requirements of 𝜔-regular conditions, [22, 23, 6, 8] for characterizations of “low”
memory requirements in nite (deterministic and stochastic) arenas, and [42, 35, 1] for links
between an 𝜔-regular language and the minimal-state automaton of its right congruence.

One stance of our work is that our assumptions about strategy complexity aect both
players. Another intriguing question is to understand when the memory requirements of only
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one player are nite. In nite arenas, a few results in this direction are sucient conditions for
the existence of memoryless optimal strategies for one player [28, 3], and a proof by Kopczyński
that the chromatic memory requirements of prex-independent 𝜔-regular conditions are
computable [30, 29].

Other articles study the strategy complexity of (non-necessarily 𝜔-regular) winning con-
ditions in innite arenas; see, e.g., [20, 25, 16]. In such non-𝜔-regular examples, as can be
expected given our main result, at least one player needs innite memory to play optimally,
or the arena model is dierent from ours (e.g., only allowing nite branching — we discuss
such dierences in more depth after Theorem 3.6). A particularly interesting example w.r.t.
our results is considered by Chatterjee and Fijalkow [15]. They study the strategy complexity of
nitary Büchi and parity conditions, and show that P1 has memoryless optimal strategies for
nitary Büchi and chromatic-nite-memory optimal strategies for nitary parity.1 However, for
these (non-𝜔-regular) winning conditions, P2 needs innite memory. This example illustrates
that our main result would not hold if we just focused on the strategy complexity of one player.

We mention other works on nite-memory determinacy in dierent contexts: nite are-
nas [34], non-zero-sum games [33], countable one-player stochastic games [26], concurrent
games [32, 7].

This paper extends and complements a preceding conference version [9] with additional
details and complete proofs of all the statements.

Structure. We x denitions and notations in Section 2. Our main results are discussed in
Section 3, and their proofs lie in Sections 4 and 5. We provide applications of our results to
discounted-sum, mean-payo, and total-payo winning conditions in Section 6.

2. Preliminaries

Let 𝐶 be an arbitrary non-empty set of colors. Given a set 𝐴, we write 𝐴∗ for the set of nite
sequences of elements of 𝐴 and 𝐴𝜔 for the set of innite sequences of elements of 𝐴.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (𝑆, 𝑆1, 𝑆2, 𝐸) such that
𝑆 = 𝑆1 ] 𝑆2 (disjoint union) is a non-empty set of states and 𝐸 ⊆ 𝑆 × 𝐶 × 𝑆 is a set of edges. The
sets of colors, of states, and of edges may be innite (of arbitrary cardinality), and we allow
arenas with innite branching. States in 𝑆1 are controlled by P1 and states in 𝑆2 are controlled
by P2. Given 𝑒 ∈ 𝐸, we denote by in, col, and out the projections to its rst, second, and third
component, respectively (i.e., 𝑒 = (in(𝑒), col(𝑒), out(𝑒))). We assume arenas to be non-blocking:
for all 𝑠 ∈ 𝑆, there exists 𝑒 ∈ 𝐸 such that in(𝑒) = 𝑠.

Let A = (𝑆, 𝑆1, 𝑆2, 𝐸) be an arena with 𝑠 ∈ 𝑆. We denote by Plays(A, 𝑠) the set of plays

1 We argue in Appendix A that their result also applies to our slightly different setting.
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ofA from 𝑠, that is, innite sequences of edges 𝜌 = 𝑒1𝑒2 . . . ∈ 𝐸𝜔 such that in(𝑒1) = 𝑠 and for all
𝑖 ≥ 1, out(𝑒𝑖) = in(𝑒𝑖+1). For 𝜌 ∈ Plays(A, 𝑠), we denote by col(𝜌) the innite sequence of colors
obtained from applying the col function to each edge in 𝜌. We denote by Hists(A, 𝑠) the set of
histories ofA from 𝑠, which are all nite prexes of plays ofA from 𝑠. We write Plays(A) and
Hists(A) for the sets of all plays of A and all histories of A (from any state), respectively. If
ℎ = 𝑒1 . . . 𝑒𝑘 is a history ofA, we dene in(ℎ) = in(𝑒1) and out(ℎ) = out(𝑒𝑘). For convenience,
for every 𝑠 ∈ 𝑆, we also consider the empty history 𝜆𝑠 from 𝑠, and we set in(𝜆𝑠) = out(𝜆𝑠) = 𝑠.
For 𝑖 ∈ {1, 2}, we denote by Hists𝑖 (A) the set of histories ℎ such that out(ℎ) ∈ 𝑆𝑖 .

An arenaA = (𝑆, 𝑆1, 𝑆2, 𝐸) is a one-player arena of P1 (resp. P2) if 𝑆2 = ∅ (resp. 𝑆1 = ∅).

Skeletons. A skeleton is a tuple M = (𝑀,𝑚init, 𝛼upd) such that 𝑀 is a nite set of states,
𝑚init ∈ 𝑀 is an initial state, and 𝛼upd : 𝑀 × 𝐶 → 𝑀 is an update function. We denote by 𝛼∗

upd
the natural extension of 𝛼upd to nite sequences of colors. We always assume that all states of
skeletons are reachable from their initial state. We dene the trivial skeletonMtriv as the only
skeleton with a single state. Notice that although we require skeletons to have nitely many
states, we allow them to have innitely many transitions (which happens when 𝐶 is innite).

For 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔, we dene skelM (𝑤) as the innite sequence (𝑚1, 𝑐1) (𝑚2, 𝑐2) . . . ∈
(𝑀 × 𝐶)𝜔 that 𝑤 induces in the skeleton (𝑚1 = 𝑚init and for all 𝑖 ≥ 1, 𝛼upd(𝑚𝑖 , 𝑐𝑖) = 𝑚𝑖+1).

Let M1 = (𝑀1, 𝑚
1
init, 𝛼

1
upd) and M2 = (𝑀2, 𝑚

2
init, 𝛼

2
upd) be two skeletons. Their (direct)

productM1 ⊗ M2 is the skeleton (𝑀,𝑚init, 𝛼upd) where 𝑀 = 𝑀1 ×𝑀2, 𝑚init = (𝑚1
init, 𝑚

2
init), and,

for all 𝑚1 ∈ 𝑀1, 𝑚2 ∈ 𝑀2, 𝑐 ∈ 𝐶, 𝛼upd((𝑚1, 𝑚2), 𝑐) = (𝛼1upd(𝑚1, 𝑐), 𝛼2upd(𝑚2, 𝑐)).

Strategies. LetA = (𝑆, 𝑆1, 𝑆2, 𝐸) be an arena and 𝑖 ∈ {1, 2}. A strategy of P𝑖 onA is a function
𝜎𝑖 : Hists𝑖 (A) → 𝐸 such that for all ℎ ∈ Hists𝑖 (A), out(ℎ) = in(𝜎𝑖 (ℎ)). We denote by Σ𝑖 (A) the
set of strategies of P𝑖 onA. Given a strategy 𝜎𝑖 of P𝑖 , we say that a play 𝜌 = 𝑒1𝑒2 . . . is consistent
with 𝜎𝑖 if for all nite prexes ℎ = 𝑒1 . . . 𝑒 𝑗 of 𝜌 such that out(ℎ) ∈ 𝑆𝑖 , 𝜎𝑖 (ℎ) = 𝑒 𝑗+1. For 𝑠 ∈ 𝑆, we
denote by Plays(A, 𝑠, 𝜎𝑖) the set of plays from 𝑠 that are consistent with 𝜎𝑖 .

ForM = (𝑀,𝑚init, 𝛼upd) a skeleton, a strategy 𝜎𝑖 ∈ Σ𝑖 (A) is based on (memory)M if there
exists a function 𝛼nxt : 𝑆 ×𝑀 → 𝐸 such that for all 𝑠 ∈ 𝑆𝑖 , 𝜎𝑖 (𝜆𝑠) = 𝛼nxt(𝑠, 𝑚init), and for all non-
empty paths ℎ ∈ Hists𝑖 (A), 𝜎𝑖 (ℎ) = 𝛼nxt(out(ℎ), 𝛼∗

upd(𝑚init, col(ℎ))). A strategy ismemoryless if
it is based onMtriv.

REMARK 2 .1. Ourmemorymodel is chromatic [29], i.e., it observes the sequences of colors and
not the sequences of edges of arenas, due to the fact that the argument of the update function of
a skeleton is in𝑀 × 𝐶. It was recently shown that the amount of memory states required to play
optimally for a winning condition using chromatic skeletons may be strictly larger than using
generalmemory structures (i.e., using memory structures observing edges) [11, Proposition 32],
disproving a conjecture by Kopczyński [29]. The example provided is a Muller condition (hence
an 𝜔-regular condition), in which both kinds of memory requirements are still nite. A result
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in this direction is also provided by Le Roux [32, Corollary 1] for games on nite arenas: it shows
that in many games, a strategy using general nite memory can be swapped for a (larger)
chromatic nite memory.

For games on innite arenas, which we consider in this article, we do not know whether
there exists awinning conditionwith nite generalmemory requirements, but innite chromatic
memory requirements. Our results focus on chromatic memory requirements.

Winning conditions. A (winning) condition is a set𝑊 ⊆ 𝐶𝜔. When a winning condition𝑊

is clear in the context, we say that an innite word 𝑤 ∈ 𝐶𝜔 is winning if 𝑤 ∈ 𝑊 , and losing if
𝑤 ∉𝑊 . For a winning condition𝑊 and a word 𝑤 ∈ 𝐶∗, we write 𝑤−1𝑊 = {𝑤′ ∈ 𝐶𝜔 | 𝑤𝑤′ ∈𝑊}
for the set of winning continuations of 𝑤. We write𝑊 for the complement 𝐶𝜔 \𝑊 of a winning
condition𝑊 .

A game is a tuple G = (A,𝑊) whereA is an arena and𝑊 is a winning condition.

Optimality and determinacy. Let G = (A = (𝑆, 𝑆1, 𝑆2, 𝐸),𝑊) be a game, and 𝑠 ∈ 𝑆. We say
that 𝜎1 ∈ Σ1(A) is winning from 𝑠 if col(Plays(A, 𝑠, 𝜎1)) ⊆ 𝑊 , and we say that 𝜎2 ∈ Σ2(A) is
winning from 𝑠 if col(Plays(A, 𝑠, 𝜎2)) ⊆ 𝑊 .

A strategy of P𝑖 is optimal for P𝑖 in (A,𝑊) if it is winning from all the states fromwhich P𝑖

has a winning strategy. We often write optimal for P𝑖 inA if the winning condition𝑊 is clear
from the context. We stress that this notion of optimality requires a single strategy to be winning
from all the winning states (a property sometimes called uniformity).

A winning condition𝑊 is determined if for all games G = (A = (𝑆, 𝑆1, 𝑆2, 𝐸),𝑊), for all
𝑠 ∈ 𝑆, either P1 or P2 has a winning strategy from 𝑠. LetM be a skeleton. We say that a winning
condition𝑊 is M-determined if (𝑖) 𝑊 is determined and (𝑖𝑖) in all arenas A, both players
have an optimal strategy based onM. A winning condition𝑊 is one-playerM-determined if
in all one-player arenasA of P1, P1 has an optimal strategy based onM and in all one-player
arenas A of P2, P2 has an optimal strategy based on M. A winning condition 𝑊 is (one-
player)memoryless-determined if it is (one-player)Mtriv-determined. A winning condition𝑊

is (one-player) chromatic-nite-memory determined if there exists a skeletonM such that it is
(one-player)M-determined.

REMARK 2 .2. In the (one-player)M-determinacy denition, we enforce thatM suces to play
optimally for both players (in their respective one-player arenas). The memory requirements of
players dier in general: a typical example is the case of Rabin conditions, for which P1 has
memoryless optimal strategies, but for which P2 (who tries to achieve a Streett condition) may
need memory [43]. In practice, if in all arenas, P1 has optimal strategies based on a skeletonM1

and P2 has optimal strategies based on a skeletonM2, then both players have optimal strategies
based on M1 ⊗ M2 (they can play the same strategies, simply not taking into account the
information given to them by the other skeleton); hence,𝑊 is (M1 ⊗ M2)-determined.
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REMARK 2 .3. It might seem surprising that for chromatic-nite-memory determinacy, we
require the existence of a single skeleton that suces to play optimally in all arenas, rather
than the seemingly weaker existence, for each arena, of a nite skeleton (which may depend on
the arena) that suces to play optimally. In innite arenas, it turns out that these notions are
equivalent.

LEMMA 2.4. Let𝑊 ⊆ 𝐶𝜔 be a winning condition. The following are equivalent:
1. for all arenasA, there exists a skeletonMA such that both players have an optimal strategy

based onMA inA;
2. 𝑊 is chromatic-nite-memory determined.

PROOF. It is clear that 2. =⇒ 1., as 2. means that there is a (xed) skeleton that suces in
each arena. We now show 1. =⇒ 2. We proceed by contraposition. Assume that 2. does not
hold, i.e., that for all skeletons M, there exists AM = (𝑆M , 𝑆M1 , 𝑆M2 , 𝐸M) such that at least
one player does not have an optimal strategy based on M in AM . We consider the arena
A = (⊎M 𝑆M ,

⊎
M 𝑆M1 ,

⊎
M 𝑆M2 ,

⊎
M 𝐸M) consisting in the “disjoint union” over all skeletonsM

of the arenasAM . Clearly, no strategy based on a skeleton suces to play optimally inA; this
shows that 1. does not hold. �

When restricted to nite arenas, we do not have an equivalence between these two
notions (hence the distinction between nite-memory determinacy and arena-independent
nite-memory determinacy [6, 8]). Our proof of Lemma 2.4 exploits that an innite union of
arenas is still an arena, which is not true when restricted to nite arenas.

𝜔-regular languages. We dene a parity automaton as a pair (M, 𝑝) whereM is a skeleton
and 𝑝 : 𝑀 ×𝐶 → {0, . . . , 𝑛}; function 𝑝 assigns priorities to every transition ofM. This denition
implies that we consider deterministic and complete parity automata (i.e., in every state, reading
a color leads to exactly one state). Following [12], if M is a skeleton, we say that a parity
automaton (M′, 𝑝) is dened on top ofM ifM′ = M.

A parity automaton (M, 𝑝) denes a language 𝐿(M,𝑝) of all the innite words 𝑤 ∈ 𝐶𝜔

such that, for skelM (𝑤) = (𝑚1, 𝑐1) (𝑚2, 𝑐2) . . ., lim sup𝑖≥1 𝑝(𝑚𝑖 , 𝑐𝑖) is even. We say that𝑊 ⊆ 𝐶𝜔

is recognized by (M, 𝑝) if𝑊 = 𝐿(M,𝑝) . We emphasize that we consider here transition-based
parity acceptance conditions: we assign priorities to transitions, and not to states ofM. For
further information on links between state-based and transition-based acceptance conditions,
we refer to [11]. If a language of innite words can be recognized by a parity automaton, it is
called 𝜔-regular.

REMARK 2 .5. Formally, a deterministic parity automaton should be dened on a nite set
of colors, whereas here our set of colors 𝐶 can have any cardinality. However, given a parity
automaton (M = (𝑀,𝑚init, 𝛼upd), 𝑝), as there are nitely many states inM and nitely many
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priorities, there are in practice only nitely many “truly dierent” classes of colors: two colors
𝑐1, 𝑐2 ∈ 𝐶 can be assumed to be equal (w.r.t. (M, 𝑝)) if 𝛼upd(·, 𝑐1) = 𝛼upd(·, 𝑐2) and 𝑝(·, 𝑐1) =

𝑝(·, 𝑐2).

Right congruence. For ∼ an equivalence relation, we call the index of ∼ the number of
equivalence classes of ∼. We denote by [𝑎]∼ the equivalence class of an element 𝑎 for ∼.

Let𝑊 be a winning condition. We dene the right congruence ∼𝑊 ⊆ 𝐶∗ × 𝐶∗ of𝑊 as
𝑤1 ∼𝑊 𝑤2 if 𝑤−1

1 𝑊 = 𝑤−1
2 𝑊 (meaning that 𝑤1 and 𝑤2 have the same winning continuations).

Relation ∼𝑊 is an equivalence relation. When𝑊 is clear from the context, we write ∼ for ∼𝑊 .
We denote by 𝜀 the empty word. When ∼ has nite index, we can associate a natural skeleton
M∼ = (𝑀∼, 𝑚∼

init, 𝛼
∼
upd) to ∼ such that 𝑀∼ is the set of equivalence classes of ∼, 𝑚∼

init = [𝜀]∼,
and 𝛼∼

upd( [𝑤]∼, 𝑐) = [𝑤𝑐]∼. This transition function is well-dened since it follows from the
denition of∼ that if𝑤1 ∼ 𝑤2, then for all 𝑐 ∈ 𝐶,𝑤1𝑐 ∼ 𝑤2𝑐. Hence, the choice of representatives
for the equivalence classes does not have an impact in this denition. We call skeletonM∼ the
minimal-state automaton of ∼ [42, 35].

3. Concepts and characterization

We dene two concepts at the core of our characterization, one of them dealing with prexes and
the other one dealing with cycles. Let𝑊 ⊆ 𝐶𝜔 be a winning condition andM = (𝑀,𝑚init, 𝛼upd)
be a skeleton. We rst introduce some notations to refer to sequences of transitions of skeletons.

We say that a non-empty sequence 𝜋 = (𝑚1, 𝑐1) . . . (𝑚𝑘, 𝑐𝑘) ∈ (𝑀 × 𝐶)+ is a path of M
(from 𝑚1 to 𝛼upd(𝑚𝑘, 𝑐𝑘)) if for all 𝑖 ∈ {1, . . . , 𝑘 − 1}, 𝛼upd(𝑚𝑖 , 𝑐𝑖) = 𝑚𝑖+1. For convenience, we
also consider every element (𝑚, 𝜀) for 𝑚 ∈ 𝑀 and 𝜀 ∉ 𝐶 to be an empty path of M (from 𝑚

to 𝑚). A non-empty path of M from 𝑚 to 𝑚′ is a cycle of M (on 𝑚) if 𝑚 = 𝑚′. Cycles of M
are usually denoted by letter 𝛾. For 𝜋 = (𝑚1, 𝑐1) . . . (𝑚𝑘, 𝑐𝑘) a path of M, we dene st(𝜋) to
be the set {𝑚1, . . . , 𝑚𝑘}, and col(𝜋) to be the sequence 𝑐1 . . . 𝑐𝑘 ∈ 𝐶∗. For an innite sequence
(𝑚1, 𝑐1) (𝑚2, 𝑐2) . . . ∈ (𝑀 × 𝐶)𝜔, we also write col((𝑚1, 𝑐1) (𝑚2, 𝑐2) . . .) for the innite sequence
𝑐1𝑐2 . . . ∈ 𝐶𝜔. If (𝑚, 𝑐) ∈ 𝑀 × 𝐶 occurs in a path 𝜋 ofM, we call (𝑚, 𝑐) a transition of 𝜋 and we
write (𝑚, 𝑐) ∈ 𝜋.

For 𝑚,𝑚′ ∈ 𝑀 , we write Π𝑚,𝑚′ for the set of paths of M from 𝑚 to 𝑚′, Γ𝑚 for the set of
cycles of M on 𝑚, and ΓM for the set of all cycles of M (on any skeleton state). We extend
notation col to sets of paths or cycles (e.g., col(ΓM) = {col(𝛾) ∈ 𝐶+ | 𝛾 ∈ ΓM}).

Prefix-independence. Let ∼ be the right congruence of𝑊 .

DEF IN IT ION 3.1. Condition 𝑊 is M-prex-independent if for all 𝑚 ∈ 𝑀 , for all 𝑤1, 𝑤2 ∈
col(Π𝑚init,𝑚), 𝑤1 ∼ 𝑤2.

In other words,𝑊 is M-prex-independent if nite words reaching the same state of
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M from its initial state have the same winning continuations. The classical notion of prex-
independence is equivalent toMtriv-prex-independence (as all nite words have the exact same
set of winning continuations, which is𝑊). If ∼ has nite index,𝑊 is in particularM∼-prex-
independent: indeed, two nite words reach the same state of M∼ (if and) only if they are
equivalent for ∼. Any skeletonM such that𝑊 isM-prex-independent must have at least one
state for each equivalence class of ∼, but may have multiple states tied to the same equivalence
class.

Cycle-consistency. For 𝑤 ∈ 𝐶∗, we dene

Γwin,𝑤M = {𝛾 ∈ Γ𝑚 | 𝑚 = 𝛼∗
upd(𝑚init, 𝑤) and (col(𝛾))𝜔 ∈ 𝑤−1𝑊}

as the cycles on the skeleton state reached by𝑤 inM that induce winning words when repeated
innitely many times after 𝑤. We dene

Γlose,𝑤M = {𝛾 ∈ Γ𝑚 | 𝑚 = 𝛼∗
upd(𝑚init, 𝑤) and (col(𝛾))𝜔 ∈ 𝑤−1𝑊}

as their losing counterparts. We emphasize that cycles are allowed to go through the same edge
multiple times.

DEF IN IT ION 3.2. Condition𝑊 isM-cycle-consistent if for all 𝑤 ∈ 𝐶∗, (col(Γwin,𝑤M ))𝜔 ⊆ 𝑤−1𝑊

and (col(Γlose,𝑤M ))𝜔 ⊆ 𝑤−1𝑊 .

What this says is that after any nite word, if we concatenate innitely many winning
(resp. losing) cycles on the skeleton state reached by that word, then it only produces winning
(resp. losing) innite words.

EXAMPLE 3.3. For 𝑥 ∈ 𝐶, letBüchi(𝑥) be the set of innitewords on𝐶 that see color 𝑥 innitely
often. Let 𝐶 = {𝑎, 𝑏, 𝑐}. Condition𝑊 = Büchi(𝑎) ∩ Büchi(𝑏) is Mtriv-prex-independent, but
notMtriv-cycle-consistent: for any 𝑤 ∈ 𝐶∗, 𝑎 and 𝑏 are both in col(Γlose,𝑤Mtriv

) (as 𝑤𝑎𝜔 and 𝑤𝑏𝜔 are
losing), but word 𝑤(𝑎𝑏)𝜔 is winning. However,𝑊 is M-cycle-consistent for the skeleton M
with two states 𝑚init and 𝑚2 represented in Figure 1. For nite words reaching 𝑚init, the losing
cycles only see 𝑎 and 𝑐, and combining innitely many of them gives an innite word without 𝑏,
which is a losing continuation of any nite word. The winning cycles are the ones that go
to 𝑚2 and then go back to 𝑚init, as they must see both 𝑎 and 𝑏; combining innitely many of
them guarantees a winning continuation after any nite word. A similar reasoning applies to
state 𝑚2. Notice that𝑊 is alsoM-prex-independent. With regard to memory requirements,
condition𝑊 is notMtriv-determined but isM-determined. �

Properties of these concepts. BothM-prex-independence andM-cycle-consistency hold
symmetrically for a winning condition and its complement, and are stable by product with an
arbitrary skeleton (as products generate even smaller sets of prexes and cycles to consider).
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𝑚init 𝑚2

𝑏

𝑎, 𝑐

𝑎

𝑏, 𝑐

Figure 1. Skeleton M such that 𝑊 = Büchi(𝑎) ∩ Büchi(𝑏) is M-cycle-consistent (Example 3.3). In figures,
we use rhombuses (resp. circles, squares) to depict skeleton states (resp. arena states controlled by P1,
arena states controlled by P2).

LEMMA 3.4. Let𝑊 ⊆ 𝐶𝜔 be a winning condition andM be a skeleton. Then,𝑊 isM-prex-
independent (resp.M-cycle-consistent) if and only if𝑊 isM-prex-independent (resp.M-cycle-
consistent). If𝑊 isM-prex-independent (resp.M-cycle-consistent), then for all skeletonsM′,𝑊
is (M ⊗ M′)-prex-independent (resp. (M ⊗ M′)-cycle-consistent).

PROOF. LetM = (𝑀,𝑚init, 𝛼upd).
We assume that 𝑊 is M-prex-independent. Thus, for all 𝑚 ∈ 𝑀 , for all 𝑤1, 𝑤2 ∈

col(Π𝑚init,𝑚), 𝑤1 ∼ 𝑤2, i.e., 𝑤−1
1 𝑊 = 𝑤−1

2 𝑊 . This last equality is equivalent to 𝑤−1
1 𝑊 = 𝑤−1

2 𝑊 ,
which can be rewritten as 𝑤−1

1 𝑊 = 𝑤−1
2 𝑊 . This shows that𝑊 isM-prex-independent.

To show that𝑊 isM-cycle-consistent if and only if𝑊 isM-cycle-consistent, notice that
the winning cycles for𝑊 are exactly the losing cycles for𝑊 , and vice versa.

Let M′ = (𝑀′, 𝑚′
init, 𝛼

′
upd) be a skeleton. We assume that 𝑊 is M-prex-independent

and we show that𝑊 is (M ⊗ M′)-prex-independent. The sets of prexes to consider are
smaller in M ⊗ M′ than in M: for all (𝑚,𝑚′) ∈ 𝑀 × 𝑀′, col(Π(𝑚init,𝑚

′
init),(𝑚,𝑚′)) ⊆ col(Π𝑚init,𝑚).

Therefore, for all 𝑤1, 𝑤2 ∈ col(Π(𝑚init,𝑚
′
init),(𝑚,𝑚′)), we also have 𝑤1, 𝑤2 ∈ col(Π𝑚init,𝑚), so by M-

prex-independence, 𝑤1 ∼ 𝑤2.
We now assume that𝑊 is M-cycle-consistent and we show that𝑊 is (M ⊗ M′)-cycle-

consistent. The sets of winning and losing cycles to consider are smaller inM ⊗ M′ than inM:
for all 𝑤 ∈ 𝐶∗, col(Γwin,𝑤M⊗M ′) ⊆ col(Γwin,𝑤M ) and col(Γlose,𝑤M⊗M ′) ⊆ col(Γlose,𝑤M ). ByM-cycle-consistency,
for all 𝑤 ∈ 𝐶∗, we have (col(Γwin,𝑤M ))𝜔 ⊆ 𝑤−1𝑊 and (col(Γlose,𝑤M ))𝜔 ⊆ 𝑤−1𝑊 , so we also have
(col(Γwin,𝑤M⊗M ′))𝜔 ⊆ 𝑤−1𝑊 and (col(Γlose,𝑤M⊗M ′))𝜔 ⊆ 𝑤−1𝑊 . �

An interesting property of languages dened by a parity automaton (M, 𝑝) is that they
satisfy both aforementioned concepts with skeletonM.

LEMMA 3.5. Let𝑊 ⊆ 𝐶𝜔 be a winning condition and (M, 𝑝) be a parity automaton. If𝑊 is
recognized by (M, 𝑝), then𝑊 isM-prex-independent andM-cycle-consistent.

PROOF. By denition of the parity acceptance condition, any two nite words reaching the
same state of the skeleton have the same winning continuations. Therefore,𝑊 is M-prex-
independent.
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Also, the winning (resp. losing) cycles ofM after any nite word are exactly the ones that
have an even (resp. odd) maximal priority. Therefore, combining innitely many winning (resp.
losing) cycles can only produce a winning (resp. losing) innite word. �

Main results. We state our main technical tool. We recall that one-playerM-determinacy of a
winning condition𝑊 is both about one-player arenas of P1 (trying to achieve a word in𝑊 ) and
of P2 (trying to achieve a word in𝑊).

THEOREM 3.6. Let𝑊 ⊆ 𝐶𝜔 be a winning condition and ∼ be its right congruence.
1. If there exists a skeletonM such that𝑊 is one-playerM-determined, then ∼ has nite index

(in particular,𝑊 isM∼-prex-independent) and𝑊 isM-cycle-consistent.
2. If there exists a skeletonM such that𝑊 isM-prex-independent andM-cycle-consistent,

then𝑊 is 𝜔-regular and can be recognized by a deterministic parity automaton dened on
top ofM.

We prove this theorem in Sections 4 and 5. We state two consequences of this result that
were alreadymentioned in the introduction: a strategic characterization of𝜔-regular languages,
and a novel one-to-two-player-lift.

THEOREM 3.7 (Characterization). Let𝑊 ⊆ 𝐶𝜔 be a language of innite words. Language𝑊 is
𝜔-regular if and only if it is chromatic-nite-memory determined (in innite arenas).

PROOF. One implication is well-known [36, 43]: if𝑊 is 𝜔-regular, then it can be recognized
by a deterministic parity automaton whose skeleton can be used as a memory that suces
to play optimally for both players, in arenas of any cardinality. For the other direction, if𝑊
is chromatic-nite-memory determined, then there exists a skeleton M such that𝑊 is M-
determined. In particular,𝑊 is one-playerM-determined, so by Theorem 3.6, ∼ has nite index
and𝑊 isM-cycle-consistent. In particular, by Lemma 3.4,𝑊 is (M∼ ⊗ M)-prex-independent
and (M∼ ⊗ M)-cycle-consistent, so𝑊 is 𝜔-regular and can be recognized by a deterministic
parity automaton dened on top ofM∼ ⊗ M. �

THEOREM 3.8 (One-to-two-player lift). Let𝑊 ⊆ 𝐶𝜔 be a winning condition. Language𝑊
is one-player chromatic-nite-memory determined if and only if it is chromatic-nite-memory
determined.

PROOF. The implication from two-player to one-player determinacy is trivial. The other
implication is given by Theorem 3.6: if𝑊 is one-playerM-determined, then ∼ has nite index
and𝑊 isM-cycle-consistent. Again by Lemma 3.4 and Theorem 3.6, as𝑊 can be recognized
by a parity automaton dened on top ofM∼ ⊗ M,𝑊 is determined and strategies based on
M∼ ⊗ M suce to play optimally in all two-player arenas. �
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We discuss two specic situations in which we can easily derive interesting consequences
using our results: the prex-independent case, and the case where the minimal-state automaton
suces to play optimally.

Prefix-independent case. If a condition𝑊 is prex-independent (i.e.,∼ has index 1 andM∼ =

Mtriv), and skeletonM suces to play optimally in one-player games, then𝑊 is recognized by
a parity automaton dened on top ofMtriv ⊗ M, which is isomorphic toM. This implies that
the exact same memoryM can be used by both players to play optimally in two-player arenas,
with no increase in memory. Note that, in general, whenM suces to play optimally in one-
player arenas, we do not know whether taking the product ofM withM∼ is necessary to play
optimally in two-player arenas. Still, the question is automatically solved for prex-independent
conditions.

If, moreover,M = Mtriv (i.e., memoryless strategies suce to play optimally in one-player
arenas), we recover exactly the result from Colcombet and Niwiński [17]:𝑊 can be recognized
by a parity automaton dened on top ofMtriv, so we can directly assign a priority to each color
with a function 𝑝 : 𝐶 → {0, . . . , 𝑛} such that an innite word 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔 is in𝑊 if and
only if lim sup𝑖≥1 𝑝(𝑐𝑖) is even.

M∼-determined case. An interesting property of some 𝜔-regular languages is that they can
be recognized by dening an acceptance condition on top of the minimal-state automaton of
their right congruence [35], which is a useful property for the learning of languages [1]. Here,
Theorem 3.6 implies that𝑊 can be recognized by dening a transition-based parity acceptance
condition on top of the minimal-state automatonM∼ if and only if𝑊 isM∼-determined (and
more precisely, if and only if𝑊 isM∼-cycle-consistent). The transition-based parity acceptance
condition was not considered in the cited results [35, 1].

COROLLARY 3.9. Let𝑊 ⊆ 𝐶𝜔 be an 𝜔-regular language andM∼ be the minimal-state automa-
ton of its right congruence. The following are equivalent:

1. 𝑊 is recognized by dening a transition-based parity acceptance condition on top ofM∼;
2. 𝑊 isM∼-determined;
3. 𝑊 isM∼-cycle-consistent.

PROOF. Implication 1. =⇒ 2. follows from the memoryless determinacy of parity games [43].
Implication 2. =⇒ 3. follows from the rst item of Theorem 3.6. Implication 3. =⇒ 1. follows
from the second item of Theorem 3.6: we have by denition that𝑊 isM∼-prex-independent,
so if it is additionallyM∼-cycle-consistent, then𝑊 can be recognized by a parity automaton
dened on top ofM∼. �

Classes of arenas. We discuss how much Theorem 3.6 depends upon our model of arenas.
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There are multiple conditions that are chromatic-nite-memory determined if we only
consider nite arenas (nitely many states and edges), but which are not in innite arenas. A
few examples are discounted-sum games [41], mean-payo games [19], total-payo games [24],
one-counter games [10] which are all memoryless-determined in nite arenas but which require
innite memory to play optimally in some innite arenas (we discuss some of these in Section 6).
In particular, Theorem 3.7 tells us that the derived winning conditions are not 𝜔-regular.

Strangely, the fact that our arenas have colors on edges and not on states is crucial for the
result. Indeed, there exists a winning condition (a generalization of a parity condition with
innitely many priorities [25]) that is memoryless-determined in state-labeled innite arenas,
but not in edge-labeled innite arenas (as we consider here). This particularity was already
discussed [17], and it was also shown that the same condition is memoryless-determined in
edge-labeled arenas with nite branching. Therefore, the fact that we allow innite branching
in our arenas is also necessary for Theorem 3.7. Another example of a winning condition with
nite memory requirements in nitely branching arenas for one player but innite memory
requirements in innitely branching arenas is presented in [16, Section 4].

In Sections 4 and 5, we prove respectively the rst item and the second item of Theorem 3.6.

4. Two properties of one-player chromatic-finite-memory deter-
minacy

Let𝑊 ⊆ 𝐶𝜔 be a winning condition, ∼ be the right congruence of𝑊 , andM = (𝑀,𝑚init, 𝛼upd)
be a skeleton, xed for this section. We aim to show the rst item of Theorem 3.6, which is that
for a skeletonM, one-playerM-determinacy of𝑊 implies that ∼ has nite index and that𝑊 is
M-cycle-consistent.

Finite index of ∼. For 𝑤1, 𝑤2 ∈ 𝐶∗, we dene 𝑤1 � 𝑤2 if 𝑤−1
1 𝑊 ⊆ 𝑤−1

2 𝑊 (meaning that any
continuation that is winning after 𝑤1 is also winning after 𝑤2). Relation � ⊆ 𝐶∗ × 𝐶∗ is a
preorder. Notice that ∼ is equal to � ∩ �. We also dene the strict preorder ≺ = � \ ∼.

We will use preorder � to deduce that ∼ has nite index by showing that under hypothe-
ses about the optimality of strategies based on M in one-player arenas, (𝑖) on each subset
col(Π𝑚init,𝑚) of 𝐶∗ for 𝑚 ∈ 𝑀 , preorder � is total (Lemma 4.1) (𝑖𝑖) on each subset col(Π𝑚init,𝑚)
of 𝐶∗ for 𝑚 ∈ 𝑀 , preorder � has no innite increasing nor decreasing sequence (Lemma 4.2).

LEMMA 4.1. Assume P1 has optimal strategies based onM on all its one-player arenas. Then,
for all 𝑚 ∈ 𝑀 , preorder � is total on col(Π𝑚init,𝑚).

PROOF. Let 𝑚 ∈ 𝑀 . Let 𝑤1, 𝑤2 ∈ col(Π𝑚init,𝑚); we show that 𝑤1 6� 𝑤2 implies 𝑤2 � 𝑤1. If
𝑤1 6� 𝑤2, then there exists 𝑤′

1 ∈ 𝐶𝜔 such that 𝑤1𝑤
′
1 ∈𝑊 and 𝑤2𝑤

′
1 ∉𝑊 . We show that 𝑤2 � 𝑤1,

i.e., that 𝑤−1
2 𝑊 ⊆ 𝑤−1

1 𝑊 . Let 𝑤′
2 ∈ 𝑤−1

2 𝑊 . We build an innite one-player arena of P1, depicted
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𝑠

. . .

. . .

𝑤1

𝑤2

𝑤′
1

𝑤′
2

Figure 2. Arena built in the proof of Lemma 4.1. Squiggly arrows indicate a sequence of edges.

in Figure 2, that merges the ends of nite chains for 𝑤1 and 𝑤2 and the starts of the innite
chains for 𝑤′

1 and for 𝑤
′
2 in a state 𝑠.

It is possible to win after seeing 𝑤1 or 𝑤2, by choosing respectively 𝑤′
1 or 𝑤

′
2 in the merged

state 𝑠. Moreover, there must be a strategy based onM that wins from the starts of the chains
of both 𝑤1 and 𝑤2, which means that in both cases the same choice has to be made in 𝑠 (as
memory state 𝑚 is reached in both cases). Continuing to 𝑤′

1 in 𝑠 would be losing after 𝑤2, so 𝑤′
2

must be winning after 𝑤1. Therefore, 𝑤′
2 ∈ 𝑤−1

1 𝑊 . �

LEMMA 4.2. Assume P1 has optimal strategies based onM in all its one-player arenas. For all
𝑚 ∈ 𝑀 , there is no innitely decreasing sequence of nite words for � in col(Π𝑚init,𝑚).

PROOF. Let 𝑚 ∈ 𝑀 . Assume by contraposition that there is an innitely decreasing sequence
of nite words 𝑤1 � 𝑤2 � 𝑤3 � . . ., with 𝑤𝑖 ∈ col(Π𝑚init,𝑚) for 𝑖 ≥ 1. Then for all 𝑖 ≥ 1, there
exists𝑤′

𝑖
∈ 𝐶𝜔 such that𝑤𝑖𝑤

′
𝑖
∈𝑊 and𝑤𝑖+1𝑤′

𝑖
∉𝑊 . We create an innite one-player arena of P1

in which we merge the ends of chains for all 𝑤𝑖 to the starts of chains for all 𝑤′
𝑖
— as was done

in Figure 2, but with innitely many words entering 𝑠 and leaving 𝑠. In this arena, for all 𝑖 ≥ 1,
it is always possible to win from the start of the chain for 𝑤𝑖 , but there is no strategy based
onM winning from all the starts of the chains simultaneously. Therefore,M is not sucient to
play optimally in all one-player arenas of P1. �

We will also use this last lemma from the point of view of P2. If we were to dene a
preorder �′ for P2 (using winning condition𝑊), symmetrically to � for P1, we would obtain
𝑤1 �′ 𝑤2 if and only if 𝑤2 � 𝑤1 because for any nite word 𝑤 ∈ 𝐶∗, 𝑤−1𝑊 = 𝑤−1𝑊 .

We can now combine the results of Lemmas 4.1 and 4.2 to nd that ∼ has nite index if𝑊
is one-playerM-determined.

LEMMA 4.3. If both P1 and P2 have optimal strategies based onM in their one-player arenas
(i.e., if𝑊 is one-playerM-determined), then the right congruence ∼ has nite index.

PROOF. Using Lemma 4.2 along with the hypothesis about P1, we have that for all 𝑚 ∈ 𝑀 ,
there are no innitely decreasing sequence of words in col(Π𝑚init,𝑚) for �. Using the same
result replacing P1 with P2, we obtain that there is no innitely decreasing sequence for �′,
or in other words, that there is no innitely increasing sequence for �. For 𝑚 ∈ 𝑀 , as � is
total in col(Π𝑚init,𝑚) (Lemma 4.1), we conclude that there are only nitely many equivalence



16 / 48 P. Bouyer, M. Randour and P. Vandenhove

𝑠1 𝑠2
𝑤

𝑤1, 𝑤2, . . .

Figure 3. Infinite one-player arena of P2 used in the proof of Lemma 4.4. The thick squiggly arrow
indicates a choice between sequences of edges for any word in {𝑤1, 𝑤2, . . .}.

classes of ∼ in col(Π𝑚init,𝑚). As 𝑀 is nite, there are only nitely many equivalence classes of ∼
in

⋃
𝑚∈𝑀 col(Π𝑚init,𝑚) = 𝐶∗. �

Under one-player chromatic-nite-memory determinacy of𝑊 , we can therefore consider the
minimal-state automatonM∼ of ∼.

M-cycle-consistency of 𝑊. We now prove in a straightforward way that one-player M-
determinacy of𝑊 impliesM-cycle-consistency of𝑊 .

LEMMA 4.4. If both P1 and P2 have optimal strategies based onM in their one-player arenas
(i.e., if𝑊 is one-playerM-determined), then winning condition𝑊 isM-cycle-consistent.

PROOF. Let 𝑤 ∈ 𝐶∗ and 𝑚 = 𝛼∗
upd(𝑚init, 𝑤). We show that (col(Γwin,𝑤M ))𝜔 ⊆ 𝑤−1𝑊 . If col(Γwin,𝑤M )

is empty, this is true. If not, let𝑤1, 𝑤2, . . . be an innite sequence of nite words in col(Γwin,𝑤M ) —
we show that the innite word 𝑤1𝑤2 . . . is in 𝑤−1𝑊 . We consider the innite one-player arena
of P2 depicted in Figure 3: it starts with a chain for 𝑤 from a state 𝑠1 to a state 𝑠2, and 𝑠2 oers
a choice between cycles for each nite word in {𝑤1, 𝑤2, . . .}. In this arena, P2 has no winning
strategy based onM from 𝑠1, since the same memory state𝑚 is always reached in 𝑠2 (hence the
same choice must always be made in 𝑠2), and repeating any cycle in col(Γwin,𝑤M ) forever after 𝑤
is winning for P1 by denition of col(Γwin,𝑤M ). Therefore, P2 also has no winning strategy at all,
which means in particular that the innite word 𝑤1𝑤2 . . . must be a winning continuation of 𝑤
— 𝑤1𝑤2 . . . is in 𝑤−1𝑊 . Hence, (col(Γwin,𝑤M ))𝜔 ⊆ 𝑤−1𝑊 .

Using a similar one-player arena of P1, we can show symmetrically that (col(Γlose,𝑤M ))𝜔 ⊆
𝑤−1𝑊 for all 𝑤 ∈ 𝐶∗. �

The reciprocal of this result is false, as shown in the following example.

EXAMPLE 4.5. Let 𝐶 = {𝑎, 𝑏} and𝑊 = 𝑎𝑏𝐶𝜔. If we consider the skeletonM in Figure 4 (left),
then𝑊 isM-cycle-consistent: for all nite words 𝑤 except for 𝜀 and 𝑎, either all continuations
are winning (if 𝑤 ∈ 𝑎𝑏𝐶∗) or all continuations are losing. If 𝑤 is 𝜀 or 𝑎, then it reaches state𝑚init

ofM, and the only cycles on 𝑚init are in 𝑎+, are losing, and are losing when innitely many of
them are combined into an innite word. But this automaton does not suce to play optimally
in arenaA in Figure 4 (center), as seeing 𝑎 does not change the state.

Notice that the minimal-state automatonM∼, in Figure 4 (right), has four states (corre-
sponding to equivalence classes [𝜀]∼, [𝑎]∼, [𝑎𝑏]∼, and [𝑏]∼) and suces to play optimally. �
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𝑚init 𝑚2
𝑏

𝑎 𝑎, 𝑏 𝑎 𝑏 [𝜀]∼

[𝑎]∼ [𝑎𝑏]∼

[𝑏]∼

𝑎

𝑏

𝑏

𝑎, 𝑏

𝑎, 𝑏

Figure 4. Skeleton M (left), arena A (center) and skeleton M∼ (right) used in Example 4.5.

REMARK 4.6. As discussed in Section 3, Theorem 3.6 does not hold if we assume chromatic-
nite-memory determinacy in arenas in which states rather than edges are labeled with colors.
Lemma 4.4 is an example of a step in the proof of Theorem 3.6 that would not work with
state-labeled arenas: the construction in Figure 3 would not work (there would have to be a
color labeling 𝑠2 seen at the start of every cycle, but words 𝑤𝑖 cannot all start with the same
color in general). There is a winning condition that is memoryless-determined in state-labeled
arenas [25] for which it is straightforward to show that it is notMtriv-cycle-consistent.

We will often use a weaker implication of M-cycle-consistency, which is that a nite
combination of winning cycles is still a winning cycle (i.e., if 𝛾, 𝛾′ ∈ Γwin,𝑤M , then 𝛾𝛾′ ∈ Γwin,𝑤M ).

Wrap-up of the section. Thanks to the results from this section, we deduce the rst item of
Theorem 3.6.

COROLLARY 4.7 (First item of Theorem 3.6). If there exists a skeleton M such that𝑊 is
one-player M-determined, then ∼ has nite index (in particular,𝑊 is M∼-prex-independent)
and𝑊 isM-cycle-consistent.

PROOF. Follows from Lemmas 4.3 and 4.4. �

In particular, we obtain from the previous result that if both players have optimal strategies
based on M in their one-player arenas, then𝑊 is both (M∼ ⊗ M)-prex-independent and
(M∼ ⊗ M)-cycle-consistent (using Lemma 3.4).

REMARK 4.8. If we compare Example 3.3 (𝑊 = Büchi(𝑎) ∩ Büchi(𝑏)) and Example 4.5 (𝑊 =

𝑎𝑏𝐶𝜔), we see that we can easily classify the prexes of the former, but that information is not
sucient to play optimally: we need some more information to classify cycles. For the latter, it
is possible to nd a skeleton classifying cycles that is insucient to play optimally, but a good
classication of the prexes suces to play optimally. In general, in order to understand𝑊 , we
need to have information about prexes and about cycles, which is why, intuitively, skeleton
M∼ ⊗ M turns out to be useful.
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REMARK 4.9. In the proofs of this section, we only ever used arenas with countably many
states and edges. This implies that we can actually formulate a slightly stronger version of Theo-
rem 3.8 (one-to-two-player lift): chromatic-nite-memory determinacy in one-player countable
arenas is equivalent to chromatic-nite-memory determinacy in arenas of any cardinality.

5. From properties of a winning condition to𝝎-regularity

In this section, we x a language𝑊 ⊆ 𝐶𝜔 and a skeletonM = (𝑀,𝑚init, 𝛼upd), and we assume
that𝑊 isM-prex-independent andM-cycle-consistent. Our goal is to show that𝑊 can be
recognized by a parity automaton dened on top ofM and is thus 𝜔-regular. To do that, we
show in multiple steps how to assign a priority to each transition of M through a function
𝑝 : 𝑀 × 𝐶 → {0, . . . , 𝑛} so that𝑊 is recognized by the parity automaton (M, 𝑝).

Simplified notations. In this section, as we have M-prex-independence and M-cycle-
consistency assumptions about𝑊 , we extend some notations from Section 2 for conciseness.

As𝑊 isM-prex-independent, for𝑚 ∈ 𝑀 , we write𝑚−1𝑊 for the set of innite words that
equals 𝑤−1𝑊 for any 𝑤 ∈ col(Π𝑚init,𝑚). Notice in particular that 𝑚−1

init𝑊 = 𝜀−1𝑊 =𝑊 . Moreover,
as we consider the property ofM-cycle-consistency along withM-prex-independence, the
denition ofM-cycle-consistency can be written by only quantifying over states ofM and not
over all nite words. The reason is that there are then only nitely many classes of nite words
that matter, which correspond to the states ofM. We dene a few more notations that only
make sense under theM-prex-independent hypothesis. Let

Γwin𝑚 = {𝛾 ∈ Γ𝑚 | (col(𝛾))𝜔 ∈ 𝑚−1𝑊}

be the cycles on 𝑚 that induce winning words when repeated innitely many times from 𝑚,
and Γlose𝑚 be their losing counterparts. In this case,𝑊 isM-cycle-consistent if and only if for
all𝑚 ∈ 𝑀 , (col(Γwin𝑚 ))𝜔 ⊆ 𝑚−1𝑊 and (col(Γlose𝑚 ))𝜔 ⊆ 𝑚−1𝑊 . We call elements of Γwin𝑚 (resp. Γlose𝑚 )
winning (resp. losing) cycles on 𝑚. The set of winning (resp. losing) cycles ofM (on any state)
is denoted ΓwinM (resp. ΓloseM ). We write val(𝛾) for the value of a cycle: win if 𝛾 ∈ ΓwinM , and lose if
𝛾 ∈ ΓloseM .

Proof ideas. Our intermediate technical lemmas will focus on cycles ofM, how they relate to
each other, and what happens when we combine them. Our main tool is to dene a preorder
on cycles, which will help assign priorities to transitions of M — the aim being to dene a
parity condition on top ofM that recognizes𝑊 . Intuitively, for some state 𝑚 ofM, 𝛾 ∈ Γwin𝑚 ,
and 𝛾′ ∈ Γlose𝑚 , we look at which cycle “dominates” the other, that is whether the combined cycle
𝛾𝛾′ is in Γwin𝑚 (in which case 𝛾 dominates 𝛾′) or in Γlose𝑚 (in which case 𝛾′ dominates 𝛾). We will
formalize this and show how to extend this idea to cycles that may not share any common state.
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REMARK 5.1. One may wonder why we seek to dene a parity condition on top ofM to prove
that𝑊 is 𝜔-regular, rather than a more generalMuller conditionwhich would achieve the same
goal. Indeed, usingM-cycle-consistency and a recent result by Casares et al. [12, Section 5], it is
straightforward to show that we could relabel such a Muller automaton with a parity condition
dening the same language.

One of the obstacles in our context is that we may start with innitely many colors; in
order to prove 𝜔-regularity of𝑊 , we need to show at some point that many colors can be
assumed to be equal (for𝑊) in order to get nitely many classes of “equivalent” colors. The
way we manage that, using the aforementioned idea of ordering cycles, actually brings us very
close to directly dening a relevant parity condition on top ofM — it does not appear that our
proof technique can be easily simplied by trying to obtain a Muller condition.

Combining cycles on the same skeleton state. We rst prove that “shifting” the start of a
cycle does not alter its value.

LEMMA 5.2 (Shift independence). Let 𝑚1, 𝑚2 ∈ 𝑀 be two states ofM. Let 𝜋1 ∈ Π𝑚1,𝑚2 and
𝜋2 ∈ Π𝑚2,𝑚1; 𝜋1𝜋2 is a cycle on 𝑚1 and 𝜋2𝜋1 is a cycle on 𝑚2. Then, val(𝜋1𝜋2) = val(𝜋2𝜋1).

PROOF. For all 𝑤1 ∈ col(Π𝑚1,𝑚2) and 𝑤2 ∈ 𝐶𝜔, notice that

𝑤1𝑤2 ∈ 𝑚−1
1 𝑊 ⇐⇒ ∃𝑤 ∈ col(Π𝑚init,𝑚1), 𝑤1𝑤2 ∈ 𝑤−1𝑊

⇐⇒ ∃𝑤 ∈ col(Π𝑚init,𝑚1), 𝑤2 ∈ (𝑤𝑤1)−1𝑊
⇐⇒ ∃𝑤′ ∈ col(Π𝑚init,𝑚2), 𝑤2 ∈ (𝑤′)−1𝑊
⇐⇒ 𝑤2 ∈ 𝑚−1

2 𝑊.

The third equivalence is due to the fact that𝑤𝑤1 is in col(Π𝑚init,𝑚2) for the left-to-right implication,
and toM-prex-independence for the right-to-left implication; if there exists 𝑤′ ∈ col(Π𝑚init,𝑚2)
such that 𝑤2 ∈ (𝑤′)−1𝑊 , then the same is true for any word in col(Π𝑚init,𝑚2).

Going back to the statement of the lemma, we have that

𝜋1𝜋2 ∈ Γwin𝑚1

⇐⇒ (col(𝜋1𝜋2))𝜔 ∈ 𝑚−1
1 𝑊

⇐⇒ col(𝜋1) (col(𝜋2𝜋1))𝜔 ∈ 𝑚−1
1 𝑊 as (col(𝜋1𝜋2))𝜔 = col(𝜋1) (col(𝜋2𝜋1))𝜔

⇐⇒ (col(𝜋2𝜋1))𝜔 ∈ 𝑚−1
2 𝑊 by the above property as col(𝜋1) ∈ col(Π𝑚1,𝑚2)

⇐⇒ 𝜋2𝜋1 ∈ Γwin𝑚2
.

Hence, the values of 𝜋1𝜋2 and 𝜋2𝜋1 are always the same. �

In particular, this result implies that swapping two cycles on the same skeleton state does
not alter the value: if 𝛾, 𝛾′ ∈ Γ𝑚, then val(𝛾𝛾′) = val(𝛾′𝛾).
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The next two lemmas are used to show that although cycles ofM that are taken innitely
often might have an impact on the result of a play, their relative number of repetitions is not
relevant (i.e., val(𝛾𝛾′) = val(𝛾𝑘 (𝛾′)𝑙) for any 𝑘, 𝑙 ≥ 1). These two proofs and statements are very
close to [17, Lemmas 9, 10, and 11] and are a direct generalization to a larger class of winning
conditions.

LEMMA 5.3. Let 𝑚 ∈ 𝑀 . Let Λ,Λ′ ⊆ Γ𝑚 be non-empty sets of cycles on 𝑚. We have

∀𝛾′ ∈ Λ′, ∃𝛾 ∈ Λ, 𝛾𝛾′ ∈ Γwin𝑚 =⇒ ∃𝛾 ∈ Λ,∀𝛾′ ∈ Λ′, 𝛾𝛾′ ∈ Γwin𝑚 .

This lemma says that if all cycles from Λ′ can be made winning by adjoining them a cycle
from Λ, then we can actually nd a single cycle from Λ that makes all cycles from Λ′ winning.

PROOF. We assume the premise of the implication, and by contradiction, we assume that the
conclusion is false. We therefore assume that

∀𝛾′ ∈ Λ′, ∃𝛾 ∈ Λ, 𝛾𝛾′ ∈ Γwin𝑚 and ∀𝛾 ∈ Λ, ∃𝛾′ ∈ Λ′, 𝛾𝛾′ ∈ Γlose𝑚 .

Let 𝛾1 be anyword in Λ. We build inductively an innite sequence starting with 𝛾1 by alternating
the use of the two assumptions. For 𝑖 ≥ 1, we take 𝛾′

𝑖
∈ Λ′ such that 𝛾𝑖𝛾′𝑖 ∈ Γlose𝑚 (using the second

assumption), and we then take 𝛾𝑖+1 ∈ Λ such that 𝛾𝑖+1𝛾′𝑖 ∈ Γwin𝑚 (using the rst assumption).
We consider the innite sequence 𝛾1𝛾

′
1𝛾2𝛾

′
2𝛾3 . . . ∈ (𝑀 × 𝐶)𝜔 such that for all 𝑖 ≥ 1,

𝛾𝑖𝛾
′
𝑖
∈ Γlose𝑚 and 𝛾′

𝑖
𝛾𝑖+1 ∈ Γwin𝑚 (we use that the order of cycles on 𝑚 does not matter, shown in

Lemma 5.2). We show that the innite word col(𝛾1𝛾′1𝛾2𝛾′2 . . .) is both in 𝑚−1𝑊 and in 𝑚−1𝑊 by
pairing cycles in two dierent ways:

the innite sequence (𝛾1𝛾′1) (𝛾2𝛾′2) . . . is a sequence of losing cycles on𝑚 and its projection
to colors is therefore in 𝑚−1𝑊 by usingM-cycle-consistency.
the innite word col(𝛾1(𝛾′1𝛾2) (𝛾′2𝛾3) . . .) is in 𝑚−1𝑊 if and only if col((𝛾′1𝛾2) (𝛾′2𝛾3) . . .)
is in 𝑚−1𝑊 by using that 𝛾1 ∈ Γ𝑚 and M-prex-independence of 𝑊 . The sequence
(𝛾′1𝛾2) (𝛾′2𝛾3) . . . is a sequence of winning cycles on 𝑚 and its projection to colors is in
𝑚−1𝑊 by usingM-cycle-consistency.

As 𝑚−1𝑊 ∩𝑚−1𝑊 = ∅, we have our contradiction. �

LEMMA 5.4 (Repetition independence). Let 𝑚 ∈ 𝑀 . Let 𝛾, 𝛾′ ∈ Γ𝑚 such that 𝛾𝛾′ ∈ Γwin𝑚 . We
have 𝛾(𝛾′)+ ⊆ Γwin𝑚 .

PROOF. Wehave that 𝛾 or 𝛾′ is in Γwin𝑚 —otherwise, 𝛾𝛾′would be in Γlose𝑚 byM-cycle-consistency.
If 𝛾′ is in Γwin𝑚 , we notice that any element of 𝛾(𝛾′)+ can be written as (𝛾𝛾′) (𝛾′)𝑛 for some 𝑛 ≥ 0,
which is a combination of winning cycles on 𝑚. UsingM-cycle-consistency, we thus get that
𝛾(𝛾′)+ ⊆ Γwin𝑚 .

It is left to deal with the case 𝛾 ∈ Γwin𝑚 and 𝛾′ ∈ Γlose𝑚 . We rst show by induction that
for 𝑛 ≥ 1, 𝛾𝑛(𝛾′)𝑛 ∈ Γwin𝑚 . This is true by hypothesis for 𝑛 = 1. We now assume it is true for
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some 𝑛 ≥ 1, and we show it is true for 𝑛 + 1. By Lemma 5.2, we have that 𝛾𝑛+1(𝛾′)𝑛+1 ∈ Γwin𝑚

if and only if 𝛾𝑛(𝛾′)𝑛+1𝛾 = (𝛾𝑛(𝛾′)𝑛) (𝛾′𝛾) ∈ Γwin𝑚 , by swapping the order of 𝛾 and 𝛾𝑛(𝛾′)𝑛+1. By
induction hypothesis, 𝛾𝑛(𝛾′)𝑛 ∈ Γwin𝑚 ; by hypothesis and by Lemma 5.2, 𝛾′𝛾 ∈ Γwin𝑚 . Therefore, by
M-cycle-consistency, (𝛾𝑛(𝛾′)𝑛) (𝛾′𝛾) is also in Γwin𝑚 .

We now dene Λ = 𝛾+ and Λ′ = (𝛾′)+. We have that for all elements (𝛾′)𝑛 of Λ′ (with
𝑛 ≥ 1), we have that 𝛾𝑛 (an element of Λ) is such that 𝛾𝑛(𝛾′)𝑛 ∈ Γwin𝑚 . Therefore the hypothesis of
Lemma 5.3 is veried for Λ and Λ′, which implies that there exists 𝑛 ≥ 1 such that 𝛾𝑛(𝛾′)+ ⊆ Γwin𝑚 .

We assume w.l.o.g. that 𝑛 = min{𝑛 ∈ N | 𝛾𝑛(𝛾′)+ ⊆ Γwin𝑚 }. For all 𝑘, 𝑘 ≥ 𝑛, we also have that
𝛾𝑘 (𝛾′)+ = 𝛾𝑘−𝑛(𝛾𝑛(𝛾′)+) ⊆ Γwin𝑚 byM-cycle-consistency. We intend to show that 𝑛 = 1, which
would end the proof of the lemma as this would show that 𝛾1(𝛾′)+ = 𝛾(𝛾′)+ ⊆ Γwin𝑚 .

We assume by contradiction that 𝑛 > 1. Then there must exist 𝑘 ∈ N such that 𝛾𝑛−1(𝛾′)𝑘 ∈
Γlose𝑚 . We also have that (𝛾′)𝑘𝛾𝑛−1 is in Γlose𝑚 by Lemma 5.2, which implies that 𝛾𝑛−1(𝛾′)𝑘 (𝛾′)𝑘𝛾𝑛−1

is also in Γlose𝑚 byM-cycle-consistency. But then by Lemma 5.2, this cycle has the same value
as 𝛾2𝑛−2(𝛾′)2𝑘, which must therefore be in Γlose𝑚 . This is a contradiction since 𝑛 > 1 implies that
2𝑛 − 2 ≥ 𝑛.

We conclude that 𝛾(𝛾′)+ ⊆ Γwin𝑚 . �

Thanks to this result, we can now show that any two consecutive cycles can always be
swapped without changing the value of a longer cycle.

COROLLARY 5.5 (Cycle-order independence). Let 𝑚 ∈ 𝑀 . Let 𝛾1, 𝛾2, 𝛾3 ∈ Γ𝑚. Then,
val(𝛾1𝛾2𝛾3) = val(𝛾1𝛾3𝛾2).

PROOF. We assume by contradiction that cycles 𝛾1𝛾2𝛾3 and 𝛾1𝛾3𝛾2 have a dierent value;
w.l.o.g., that 𝛾1𝛾2𝛾3 ∈ Γwin𝑚 and that 𝛾1𝛾3𝛾2 ∈ Γlose𝑚 . By M-cycle-consistency, at least one cycle
among 𝛾1, 𝛾2 and 𝛾3 is winning and one is losing. We assume w.l.o.g. that 𝛾1 ∈ Γwin𝑚 and 𝛾2 ∈ Γlose𝑚 .
We also assume that 𝛾3 ∈ Γwin𝑚 ; the other case can be dealt with by symmetry. Notice that
we necessarily have that 𝛾3𝛾2 is in Γlose𝑚 ; otherwise, 𝛾1𝛾3𝛾2 = 𝛾1(𝛾3𝛾2) would be in Γwin𝑚 by
M-cycle-consistency. For the same reason, 𝛾2𝛾1 is in Γlose𝑚 . We have

win = val(𝛾1𝛾2𝛾3) by hypothesis

= val((𝛾3𝛾1)𝛾2) by Lemma 5.2

= val((𝛾3𝛾1) (𝛾2)2) by Lemma 5.4

= val(𝛾2𝛾3𝛾1𝛾2) by Lemma 5.2.

However, this last cycle can be written as a combination of two losing cycles (𝛾2𝛾3) and (𝛾1𝛾2),
and should therefore be losing byM-cycle-consistency. This is a contradiction. �

Combining cycles on different skeleton states. We can now also strengthen Lemma 5.4
(“repetition independence”) to show that even “non-consecutive subcycles” in a longer cycle
can be repeated without aecting the value of the long cycle.
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𝑚1 𝑚2𝛾1

𝛾1

𝛾2

𝛾2 𝑚1 𝑚2

𝜋1

𝜋2

𝜋′1

𝜋′2

Figure 5. Depiction of the statement of Corollary 5.6 (left) and Lemma 5.7 (right).

COROLLARY 5.6 (Repetition independence, strong version). Let 𝑚1, 𝑚2 ∈ 𝑀 . Let 𝛾1 ∈ Γ𝑚1 ,
𝛾2 ∈ Γ𝑚2 , 𝛾1 ∈ Π𝑚1,𝑚2 , and 𝛾2 ∈ Π𝑚2,𝑚1 . Then, val(𝛾1𝛾1𝛾2𝛾2) = val(𝛾1(𝛾1𝛾2)𝑛𝛾1𝛾2𝛾2) for all 𝑛 ≥ 0.

The situation is depicted in Figure 5 (left). Notice rst that we can see 𝛾1𝛾1𝛾2𝛾2 as a
combination of two cycles 𝛾1 and 𝛾1𝛾2𝛾2 on 𝑚1, we therefore already know that the value of
𝛾1𝛾1𝛾2𝛾2 on 𝑚1 is the same as the one of (𝛾1)𝑘 (𝛾1𝛾2𝛾2)𝑙 for all 𝑘, 𝑙 ≥ 1. This second cycle can be
seen as two cycles 𝛾2𝛾1 and 𝛾2 on 𝑚2, we therefore know that the value of 𝛾1𝛾2𝛾2 on 𝑚2 is the
same as the one of (𝛾2)𝑘 (𝛾2𝛾1)𝑙 for all 𝑘, 𝑙 ≥ 1. However, these two facts do not directly give the
result as cycle 𝛾1𝛾2 does not appear “consecutively” in 𝛾1𝛾1𝛾2𝛾2.

PROOF. We have that

val(𝛾1𝛾1𝛾2𝛾2) = val(𝛾1(𝛾1𝛾2𝛾2) (𝛾1𝛾2𝛾2)) by Lemma 5.4 on 𝑚1

= val(𝛾1𝛾1(𝛾2) (𝛾2𝛾1)𝛾2𝛾2)
= val(𝛾1𝛾1(𝛾2𝛾1) (𝛾2)𝛾2𝛾2) by Lemma 5.5 on 𝑚2

= val(𝛾1(𝛾1𝛾2)𝛾1(𝛾2)2𝛾2)
= val(𝛾1(𝛾1𝛾2)𝛾1𝛾2𝛾2) by Lemma 5.4 on 𝑚2.

This shows the result for 𝑛 = 1; applying Lemma 5.4 gives the result for all 𝑛 ≥ 1. �

Another important property that will help dene an interesting preorder on cycles is
that the value of a combination of two cycles is independent from the skeleton state chosen
to compare pairs of cycles: if two cycles both go through two states 𝑚1 and 𝑚2 of M, then
combining them around 𝑚1 or around 𝑚2 yields the same value.

LEMMA 5.7 (Crossing-point independence). Let 𝑚1, 𝑚2 ∈ 𝑀 be two states ofM. Let 𝜋1, 𝜋′1 ∈
Π𝑚1,𝑚2 and 𝜋2, 𝜋′2 ∈ Π𝑚2,𝑚1 . We have that val(𝜋1𝜋2𝜋′1𝜋′2) = val(𝜋2𝜋1𝜋′2𝜋′1).

The intuition of this lemma is that if we take two cycles (in the statement, 𝜋1𝜋2 and 𝜋′1𝜋
′
2)

that have two common states (𝑚1 and 𝑚2), the chosen starting state to combine the two cycles
(the combination is (𝜋1𝜋2) (𝜋′1𝜋′2) if𝑚1 is chosen, and (𝜋2𝜋1) (𝜋′2𝜋′1) if𝑚2 is chosen) has no impact
on the value of the combination. This situation is depicted in Figure 5 (right).
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PROOF. If 𝜋1𝜋2 and 𝜋′1𝜋
′
2 are both in Γwin𝑚1

or both in Γlose𝑚1
, then 𝜋2𝜋1 and 𝜋′2𝜋

′
1 are also re-

spectively both in Γwin𝑚2
or both in Γlose𝑚2

by Lemma 5.2. Therefore, we have our result using
M-cycle-consistency.

For the remaining cases, we assume w.l.o.g. that 𝜋1𝜋2 ∈ Γwin𝑚1
and 𝜋′1𝜋

′
2 ∈ Γlose𝑚2

. We will
assume (again w.l.o.g.) that combining them is winning, i.e., that 𝜋1𝜋2𝜋′1𝜋

′
2 ∈ Γwin𝑚1

. Our goal
is to show that 𝜋2𝜋1𝜋′2𝜋

′
1 is also in Γwin𝑚2

. We assume by contradiction that it is not, i.e., that
𝜋2𝜋1𝜋

′
2𝜋

′
1 ∈ Γlose𝑚2

.
Observe that as 𝜋1𝜋2𝜋′1𝜋

′
2 ∈ Γwin𝑚1

, we also have (𝜋2𝜋′1) (𝜋′2𝜋1) ∈ Γwin𝑚2
by Lemma 5.2. Hence,

at least one of 𝜋2𝜋′1 or 𝜋
′
2𝜋1 must be a winning cycle on 𝑚2, otherwise their combination would

be losing on 𝑚2 byM-cycle-consistency. Equivalently, by Lemma 5.2, at least one of 𝜋′1𝜋2 or
𝜋1𝜋

′
2 must be a winning cycle on 𝑚1.
Similarly, as 𝜋2𝜋1𝜋′2𝜋

′
1 is in Γlose𝑚2

, we have that (𝜋1𝜋′2) (𝜋′1𝜋2) is in Γlose𝑚1
. Hence, at least one

of 𝜋1𝜋′2 and 𝜋′1𝜋2 is a losing cycle on 𝑚1 byM-cycle-consistency.
Our conclusions imply that exactly one of 𝜋1𝜋′2 and 𝜋′1𝜋2 is winning on 𝑚1, and one is

losing on 𝑚1. Without loss of generality, we assume that 𝜋1𝜋′2 ∈ Γwin𝑚1
and 𝜋′1𝜋2 ∈ Γlose𝑚1

.
We now have a value for all four two-word cycles on 𝑚1 (and therefore for all four two-

word cycles on 𝑚2 by Lemma 5.2): 𝜋1𝜋2 and 𝜋1𝜋
′
2 are in Γwin𝑚1

, and 𝜋′1𝜋2 and 𝜋′1𝜋
′
2 are in Γlose𝑚1

. If
we look at four-word cycles, we have already assumed w.l.o.g. that 𝜋1𝜋2𝜋′1𝜋

′
2 ∈ Γwin𝑚1

and that
𝜋1𝜋

′
2𝜋

′
1𝜋2 ∈ Γlose𝑚1

. We still do not know whether 𝜋1𝜋2𝜋′1𝜋2 and 𝜋1𝜋
′
2𝜋

′
1𝜋

′
2 are winning or losing —

no matter how we express them as two two-word cycles, one two-word cycle is winning and
the other one is losing. We study the value of these two four-word cycles.

Consider the cycle (𝜋2𝜋′1𝜋′2𝜋1) (𝜋′2𝜋1𝜋2𝜋′1) on𝑚2. It is winning, since 𝜋2𝜋′1𝜋
′
2𝜋1 and 𝜋

′
2𝜋1𝜋2𝜋

′
1

are both in Γwin𝑚2
: this can be shown using Lemma 5.2 and the fact that 𝜋1𝜋2𝜋′1𝜋

′
2 is in Γwin𝑚1

. There-
fore, by shifting the start of the cycle, (𝜋′1𝜋′2𝜋1𝜋′2) (𝜋1𝜋2𝜋′1𝜋2) is in Γwin𝑚1

. ByM-cycle-consistency,
this means that at least one of 𝜋′1𝜋

′
2𝜋1𝜋

′
2 (equivalently, 𝜋1𝜋

′
2𝜋

′
1𝜋

′
2) and 𝜋1𝜋2𝜋

′
1𝜋2 is winning on𝑚1.

Similarly, we have that the cycle (𝜋2𝜋1𝜋′2𝜋′1) (𝜋′2𝜋′1𝜋2𝜋1) is in Γlose𝑚2
. Therefore, by shifting

the start of the cycle, (𝜋1𝜋′2𝜋′1𝜋′2) (𝜋′1𝜋2𝜋1𝜋2) is in Γlose𝑚1
. This means that at least one of 𝜋1𝜋′2𝜋

′
1𝜋

′
2

or 𝜋′1𝜋2𝜋1𝜋2 (equivalently, 𝜋1𝜋2𝜋
′
1𝜋2) is in Γlose𝑚1

.
Our conclusions imply that exactly one of 𝜋1𝜋2𝜋′1𝜋2 and 𝜋1𝜋

′
2𝜋

′
1𝜋

′
2 is winning on 𝑚1, and

one is losing on 𝑚1. We consider both cases and draw a contradiction in each case.
Assume that val(𝜋1𝜋2𝜋′1𝜋2) = lose. Now consider the cycle 𝜈 = (𝜋′2𝜋1) (𝜋2𝜋′1)2 on 𝑚2. We

have

val(𝜈) = val(𝜋′2𝜋1𝜋2𝜋′1) by Lemma 5.4

= val(𝜋1𝜋2𝜋′1𝜋′2) by Lemma 5.2

= win by hypothesis.
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However, we also have

val(𝜈) = val((𝜋1𝜋2𝜋′1𝜋2) (𝜋′1𝜋′2)) by Lemma 5.2,

and since val(𝜋1𝜋2𝜋′1𝜋2) = val(𝜋′1𝜋′2) = lose, we also have val(𝜈) = lose byM-cycle-consistency.
This is a contradiction.

Assume now that val(𝜋1𝜋′2𝜋′1𝜋′2) = lose. Now consider the cycle 𝜈 = (𝜋1𝜋2) (𝜋′1𝜋′2)2 on 𝑚1.
We have

val(𝜈) = val(𝜋1𝜋2𝜋′1𝜋′2) by Lemma 5.4

= win by hypothesis.

However, we also have

val(𝜈) = val((𝜋2𝜋′1) (𝜋′2𝜋′1𝜋′2𝜋1)) by Lemma 5.2,

and since val(𝜋′1𝜋2) = val(𝜋1𝜋′2𝜋′1𝜋′2) = lose, we also have val(𝜈) = lose byM-cycle-consistency.
This is a contradiction. �

REMARK 5.8. A consequence of the previous lemma is that when two cycles 𝛾, 𝛾′ ∈ ΓM share
at least one common state (i.e., st(𝛾) ∩ st(𝛾′) ≠ ∅), we can write 𝛾𝛾′ for any cycle that, starting
from a common state, sees rst 𝛾 and then 𝛾′, without necessarily specifying on which common
state the cycle starts; we allow such a shortcut as the value of 𝛾𝛾′ is not impacted by the choice
of the common skeleton state. This convention is used in the following denition.

Competing cycles.

DEF IN IT ION 5.9. Let 𝛾, 𝛾′ ∈ ΓM with val(𝛾) ≠ val(𝛾′). We say that 𝛾 and 𝛾′ are competing
if there exists 𝛾 ∈ ΓM such that st(𝛾) ∩ st(𝛾) ≠ ∅, st(𝛾′) ∩ st(𝛾) ≠ ∅, val(𝛾𝛾) = val(𝛾), and
val(𝛾′𝛾) = val(𝛾′). In this case, we say that 𝛾 is a witness that 𝛾 and 𝛾′ are competing, or that the
competition of 𝛾 and 𝛾′ is witnessed by 𝛾.

Our requirement for cycle 𝛾 means that it intersects the states of both 𝛾 and 𝛾′, but is
not inuential enough to “alter” the values of 𝛾 and 𝛾′ when it is combined with them. If
val(𝛾) ≠ val(𝛾′) and st(𝛾) ∩ st(𝛾′) ≠ ∅, then if val(𝛾𝛾′) = val(𝛾) (resp. val(𝛾𝛾′) = val(𝛾′)), we
have that 𝛾′ (resp. 𝛾) witnesses that 𝛾 and 𝛾′ are competing (the argument uses Lemma 5.4).
In short, any two cycles of opposite values that share a common state are competing, and two
cycles of opposite values that do not share a common state may or may not be competing.

If two cycles are competing, we want to determine which one dominates the other.

DEF IN IT ION 5.10. Let 𝛾, 𝛾′ ∈ ΓM with val(𝛾) ≠ val(𝛾′) be two competing cycles, and 𝛾 be a
witness of this competition. For some𝑚 ∈ st(𝛾) and𝑚′ ∈ st(𝛾′), it is thus possible to decompose 𝛾
as two (possibly empty) paths 𝛾1 and 𝛾2 such that 𝛾 = 𝛾1𝛾2, 𝛾1 ∈ Π𝑚,𝑚′, and 𝛾2 ∈ Π𝑚′,𝑚. We
dene that 𝛾 dominates 𝛾′ if val(𝛾𝛾1𝛾′𝛾2) = val(𝛾), and 𝛾′ dominates 𝛾 if val(𝛾𝛾1𝛾′𝛾2) = val(𝛾′).
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𝑚′
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𝛾2,2

𝛾′1 𝛾′2

Figure 6. Situation in the proof of Lemma 5.11.

To be well-dened, this domination notion needs to be independent from the choice of
witness.

LEMMA 5.11 (Witness independence). Let 𝛾, 𝛾′ ∈ ΓM with val(𝛾) ≠ val(𝛾′). Let 𝛾1, 𝛾2 ∈ ΓM be
two witnesses that 𝛾 and 𝛾′ are competing. Then, 𝛾 dominates 𝛾′ taking 𝛾1 as a witness if and only
if 𝛾 dominates 𝛾′ taking 𝛾2 as a witness.

PROOF. We assume w.l.o.g. val(𝛾) = win and val(𝛾′) = lose. As 𝛾1 witnesses that 𝛾 and 𝛾′

are competing, there exists 𝑚1 ∈ st(𝛾), 𝑚′
1 ∈ st(𝛾′) such that 𝛾1 = 𝛾1,1𝛾1,2 with 𝛾1,1 ∈ Π𝑚1,𝑚

′
1
,

𝛾1,2 ∈ Π𝑚′
1,𝑚1 . Similarly, as 𝛾2 witnesses that 𝛾 and 𝛾′ are competing, there exists 𝑚2 ∈ st(𝛾),

𝑚′
2 ∈ st(𝛾′) such that 𝛾2 = 𝛾2,1𝛾2,2 with 𝛾2,1 ∈ Π𝑚2,𝑚

′
2
, 𝛾2,2 ∈ Π𝑚′

2,𝑚2 . We can also write 𝛾 = 𝛾1𝛾2

with 𝛾1 ∈ Π𝑚1,𝑚2 and 𝛾2 ∈ Π𝑚2,𝑚1 , and 𝛾′ = 𝛾′1𝛾
′
2 with 𝛾1 ∈ Π𝑚′

1,𝑚
′
2
and 𝛾′2 ∈ Π𝑚′

2,𝑚
′
1
.

The situation is depicted in Figure 6. Note that it is possible that 𝑚1 = 𝑚2 (in which case
we can assume 𝛾 = 𝛾1, 𝛾2 = (𝑚1, 𝜀)) or similarly that 𝑚1 = 𝑚′

1, 𝑚
′
1 = 𝑚′

2, and/or 𝑚2 = 𝑚′
2.

We assume by contradiction that 𝛾 dominates 𝛾′ taking 𝛾1 as a witness, but that 𝛾′

dominates 𝛾 taking 𝛾2 as a witness. In other words, val(𝛾1𝛾2𝛾1,1𝛾′1𝛾′2𝛾1,2) = win and
val(𝛾2𝛾1𝛾2,1𝛾′2𝛾′1𝛾2,2) = lose. We consider the concatenation of both these cycles, shifting the
second one to make it a cycle on 𝑚1,

𝜈 = (𝛾1𝛾2𝛾1,1𝛾′1𝛾′2𝛾1,2) (𝛾1𝛾2,1𝛾′2𝛾′1𝛾2,2𝛾2).

It is possible to express 𝜈 directly as a combination of two losing cycles: 𝛾1,1𝛾′1𝛾
′
2𝛾1,2 is losing (by

denition of witness), and

val(𝛾1𝛾2,1𝛾′2𝛾′1𝛾2,2𝛾2𝛾1𝛾2)
= val(𝛾2,1𝛾′2𝛾′1𝛾2,2(𝛾2𝛾1)2) by Lemma 5.2

= val(𝛾2,1𝛾′2𝛾′1𝛾2,2𝛾2𝛾1) by Lemma 5.4

= lose as 𝛾′ dominates 𝛾 taking 𝛾2 as a witness.

Cycle 𝜈 is therefore losing byM-cycle-consistency.
Now, notice that 𝜈 can be written as three cycles on𝑚′

2 after being shifted in the following
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𝑚1 𝑚2

𝑐 | 3

𝑏 | 1
𝑎 | 2

𝑎 | 2
𝑏, 𝑐 | 0

[(𝑚1, 𝑐)]'

[(𝑚1, 𝑎) (𝑚2, 𝑎)]'

[(𝑚1, 𝑏)]'

[(𝑚2, 𝑏)]'

C

C

C

Figure 7. A parity automaton (M, 𝑝) (left) with 𝐶 = {𝑎, 𝑏, 𝑐} used in Example 5.12. Notation 𝑐 | 𝑘 on a
transition from a state 𝑚 means that 𝑝(𝑚, 𝑐) = 𝑘. A diagram (right) showing the relations between the
elements of ΓM/' ordered by partial preorder C, discussed in Example 5.15.

way:
val(𝜈) = val((𝛾′2𝛾1,2𝛾1𝛾2,1) (𝛾′2𝛾′1) (𝛾2,2𝛾2𝛾1𝛾2𝛾1,1𝛾′1)).

By Lemma 5.5 (“cycle-order independence”), it has the same value as

val(𝜈) = val((𝛾′2𝛾1,2𝛾1𝛾2,1) (𝛾2,2𝛾2𝛾1𝛾2𝛾1,1𝛾′1) (𝛾′2𝛾′1)).

As before, this cycle can be shifted and written as two winning cycles 𝛾1𝛾2,1𝛾2,2𝛾2 and
𝛾1𝛾2𝛾1,1(𝛾′1𝛾′2)2𝛾1,2 and is therefore winning byM-cycle-consistency.

Cycle 𝜈 is both winning and losing, a contradiction. �

EXAMPLE 5.12. We illustrate competition and domination of cycles on a parity automaton
(even though at this point in the proof, we have not yet shown that𝑊 is 𝜔-regular). We consider
the parity automaton (M, 𝑝) from Figure 7 (left), with winning condition𝑊 = 𝐿(M,𝑝) . Condi-
tion𝑊 isM-prex-independent andM-cycle-consistent (Lemma 3.5). We give a few examples
of competition and domination between cycles. The winning cycle (𝑚1, 𝑎) (𝑚2, 𝑎) dominates
losing cycle (𝑚1, 𝑏) but is dominated by losing cycle (𝑚1, 𝑐). Cycle (𝑚2, 𝑏) is winning but is not
competing with (𝑚1, 𝑏). In particular, their competition is not witnessed by (𝑚1, 𝑎) (𝑚2, 𝑎) since
combining it with (𝑚1, 𝑏) alters its value ((𝑚1, 𝑏) is losing but (𝑚1, 𝑏) (𝑚1, 𝑎) (𝑚2, 𝑎) is winning)
— another potential witness is (𝑚1, 𝑐) (𝑚1, 𝑎) (𝑚2, 𝑎), but combining it with (𝑚2, 𝑏) alters its
value. However, cycle (𝑚2, 𝑏) is competing with and dominated by (𝑚1, 𝑐): their competition is
witnessed, e.g., by (𝑚1, 𝑎) (𝑚2, 𝑎) and by (𝑚1, 𝑏) (𝑚1, 𝑎) (𝑚2, 𝑎). �

Preorder on cycles. For a winning (resp. losing) cycle 𝛾 ∈ ΓM , we dene comp(𝛾) as the set of
losing (resp. winning) cycles that 𝛾 is competing with, and domBy(𝛾) as the set of losing (resp.
winning) cycles from comp(𝛾) that are dominated by 𝛾.

We dene an ordering C of cycles based on these notions. Wewrite 𝛾′ C 𝛾 if 𝛾′ ∈ domBy(𝛾).
We extend this denition to cycles with the same value: if val(𝛾1) = val(𝛾2) and there exists a
cycle 𝛾′ such that val(𝛾′) ≠ val(𝛾1) with 𝛾2 ∈ domBy(𝛾′) and 𝛾′ ∈ domBy(𝛾1), we write 𝛾2 C 𝛾1

— intuitively, this condition implies that 𝛾2 is less powerful than 𝛾1 as we can nd a cycle
dominating 𝛾2 that is itself dominated by 𝛾1. We show that relation C is a strict preorder (which
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𝛾1

𝛾1

𝛾2

𝛾′1,1

𝛾′1,2

𝛾′1

𝛾′2

𝛾2,1

𝛾2,2

𝛾′′1

𝛾′′2

𝛾′2

Figure 8. Situation to show transitivity of C in Lemma 5.13.

is not total in general).

LEMMA 5.13. Relation C is a strict preorder.

PROOF. Werst prove thatC is irreexive, i.e., that for all 𝛾 ∈ ΓM , 𝛾 6C 𝛾. If 𝛾 C 𝛾, since val(𝛾) =
val(𝛾), there exists 𝛾′ ∈ ΓM such that val(𝛾′) ≠ val(𝛾), 𝛾 ∈ domBy(𝛾′), and 𝛾′ ∈ domBy(𝛾). But
that is not possible since when 𝛾 and 𝛾′ are competing, they cannot both dominate the other
(no matter the choice of witness, as shown in Lemma 5.11).

We now prove that C is transitive. We distinguish four cases (we rename cycles in each
case to ease the reading by making it so that cycles with a prime symbol have a dierent value
from cycles without a prime symbol).

If 𝛾2 C 𝛾′ and 𝛾′ C 𝛾1 with val(𝛾2) ≠ val(𝛾′) and val(𝛾′) ≠ val(𝛾1), then val(𝛾2) = val(𝛾1),
and 𝛾2 C 𝛾1 by denition.

Let 𝛾′2 C 𝛾2 and 𝛾2 C 𝛾1 with val(𝛾′2) ≠ val(𝛾2) and val(𝛾2) = val(𝛾1). We assume w.l.o.g.
that val(𝛾2) = val(𝛾1) = win, so there exists 𝛾′1 ∈ ΓM such that val(𝛾′1) = lose, 𝛾2 C 𝛾′1 and 𝛾′1 C 𝛾1.
We assume that 𝛾′1 C 𝛾1 is witnessed by 𝛾, that 𝛾2 C 𝛾′1 is witnessed by 𝛾′ and that 𝛾′2 C 𝛾2 is
witnessed by 𝛾′′. We assume that 𝛾 = 𝛾1𝛾2, 𝛾′1 = 𝛾′1,1𝛾

′
1,2, 𝛾

′
= 𝛾′1𝛾

′
2, 𝛾2 = 𝛾2,1𝛾2,2, and 𝛾′′ = 𝛾′′1𝛾

′′
2 .

We use Figure 8 to illustrate the situation and explain where the common states of these cycles
are.

We want to show that 𝛾′2 C 𝛾1. To do so, we show that for 𝜈1 = 𝛾1𝛾
′
1,1𝛾

′
1𝛾2,1𝛾

′′
1 and 𝜈2 =

𝛾′′2𝛾2,2𝛾
′
2𝛾

′
1,2𝛾2, 𝜈 = 𝜈1𝜈2 is a witness that 𝛾1 and 𝛾′2 are competing, and that 𝛾1𝜈1𝛾′2𝜈2 is winning:

Cycle 𝛾1𝜈 is winning. We can split this cycle into 𝛾′1,2𝛾2𝛾1𝛾1𝛾
′
1,1 and 𝛾′1𝛾2,1𝛾

′′
1𝛾

′′
2𝛾2,2𝛾

′
2. The

former cycle can be shifted (Lemma 5.2) to 𝛾1𝛾1𝛾
′
1,1𝛾

′
1,2𝛾2, which is winning since 𝛾

′
1 C 𝛾1.

The latter cycle has the same value as 𝛾′1(𝛾2,2𝛾2,1)𝛾2,1𝛾
′′
1𝛾

′′
2𝛾2,2𝛾

′
2 (Lemma 5.6), which can

be shifted to (𝛾′2𝛾
′
1𝛾2,2𝛾2,1) (𝛾2,1𝛾

′′
1𝛾

′′
2𝛾2,2). Both these cycles are winning since 𝛾′ and 𝛾′′ are

witnesses for competitions involving 𝛾2.
Cycle 𝛾′2𝜈 is losing. We can split this cycle into 𝛾′′1𝛾

′
2𝛾

′′
2 (losing because 𝛾

′′ witnesses a com-
petition involving 𝛾′2) and 𝛾2,2𝛾

′
2𝛾

′
1,2𝛾2𝛾1𝛾

′
1,1𝛾

′
1𝛾2,1. This latter cycle has the same value

as the cycle 𝛾2,2𝛾
′
2(𝛾′1,2𝛾′1,1)𝛾′1,2𝛾2𝛾1𝛾′1,1𝛾

′
1𝛾2,1 (Lemma 5.6), which can itself be split into

𝛾′1,2𝛾2𝛾1𝛾
′
1,1 (losing because 𝛾 witnesses a competition involving 𝛾′) and 𝛾′2𝛾

′
1,2𝛾

′
1,1𝛾

′
1𝛾2,1𝛾2,2

(losing because 𝛾2 C 𝛾′1).
Cycle 𝛾1𝜈1𝛾′2𝜈2 is winning. Using Lemma 5.6, we can show that 𝛾1𝜈1𝛾′2𝜈2 has the same value
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as 𝛾1𝜈1(𝛾′′2𝛾2,2𝛾2,1𝛾
′′
1 )𝛾′2𝜈2. We can split this cycle into 𝛾1𝜈1𝜈2 = 𝛾1𝜈 (which is winning, as

shown above) and 𝛾′′2𝛾2,2𝛾2,1𝛾
′′
1𝛾

′
2 (winning since 𝛾

′
2 C 𝛾2).

This shows that 𝛾′2 C 𝛾1.
There are still two cases left to consider. The case 𝛾′2 C 𝛾′1 and 𝛾

′
1 C 𝛾1with val(𝛾′2) = val(𝛾′1)

and val(𝛾′1) ≠ val(𝛾1) can be dealt with in the same way as the previous case (after noticing that
there exists 𝛾2 ∈ ΓM such that 𝛾′2 C 𝛾2, 𝛾2 C 𝛾′1 and val(𝛾2) = val(𝛾1)).

If 𝛾3 C 𝛾2 and 𝛾2 C 𝛾1 with val(𝛾3) = val(𝛾2) = val(𝛾1), then there exists in particular
𝛾′ ∈ ΓM such that 𝛾3 C 𝛾′, 𝛾′ C 𝛾2 and val(𝛾3) ≠ val(𝛾′). By a previous case, we conclude from
𝛾′ C 𝛾2 and 𝛾2 C 𝛾1 that 𝛾′ C 𝛾1. As 𝛾3 C 𝛾′ and 𝛾′ C 𝛾1, we have 𝛾3 C 𝛾1 as desired. �

We dene an equivalence relation on the cycles: we write 𝛾1 ' 𝛾2 if val(𝛾1) = val(𝛾2),
comp(𝛾1) = comp(𝛾2), and domBy(𝛾1) = domBy(𝛾2). We show that cycles that are equivalent
for ' are in relation with the same elements for C.

LEMMA 5.14. Let 𝛾1, 𝛾2, 𝛾′ ∈ ΓM . If 𝛾1 ' 𝛾2 and 𝛾′ C 𝛾1, then 𝛾′ C 𝛾2. If 𝛾1 ' 𝛾2 and 𝛾1 C 𝛾′, then
𝛾2 C 𝛾′. In other words, preorder C is compatible with '.

PROOF. The rst item is trivial, as the elements smaller than 𝛾1 for C are determined by
domBy(𝛾1), and domBy(𝛾1) = domBy(𝛾2). For the second item, we distinguish two cases:

if val(𝛾1) ≠ val(𝛾′), then 𝛾1 C 𝛾′ means that 𝛾′ ∈ comp(𝛾1) and 𝛾′ ∉ domBy(𝛾1). If 𝛾1 ' 𝛾2,
the same properties also hold for 𝛾2, so 𝛾2 C 𝛾′.
if val(𝛾1) = val(𝛾′), then 𝛾1 C 𝛾′ means that there exists 𝛾′′ with val(𝛾1) ≠ val(𝛾′′) such that
𝛾1 ∈ domBy(𝛾′′) and 𝛾′′ ∈ domBy(𝛾′). By the previous case, if 𝛾1 ' 𝛾2, then 𝛾2 C 𝛾′′, so
𝛾2 C 𝛾′ as well.

�

Partial preorder C therefore also induces a partial preorder on ΓM/' .

EXAMPLE 5.15. We represent the relations between all elements of ΓM/' for the parity
automaton considered in Example 5.12 in their “Hasse diagram”, depicted in Figure 7 (right). El-
ements that are linked by a line segment are comparable for C, and elements that are above are
greater for C. There are four equivalence classes of cycles, two of themwinning and two of them
losing. Notice for instance that any cycle going through transition (𝑚1, 𝑐) is equivalent (for ') to
cycle (𝑚1, 𝑐): indeed, it is necessarily a losing cycle competing with and dominating all the win-
ning cycles in this skeleton. Other examples are given by (𝑚1, 𝑎) (𝑚2, 𝑎) ' (𝑚1, 𝑎) (𝑚2, 𝑏) (𝑚2, 𝑎)
and (𝑚2, 𝑏) ' (𝑚2, 𝑐). �

We now prove niteness of the index of ', by showing that
the height of partial preorder C is nite, i.e., there is no innite increasing nor decreasing
sequence for C (Lemma 5.18);
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𝑚

𝛾1

𝛾2

𝛾1

𝛾2

𝛾′ 𝛾 𝛾′1𝛾 𝛾′2

Figure 9. Situation in the proof of Lemma 5.16 (left) and in the proof of Lemma 5.17 (right).

the width of partial preorder C on ΓM/' is nite, i.e., there is no innite set of elements in
ΓM/' that are all pairwise incomparable for C (Lemma 5.19).

We start with two technical lemmas about competition between cycles.

LEMMA 5.16. Let 𝛾1, 𝛾2, 𝛾′ ∈ ΓM be such that val(𝛾1) = val(𝛾2) ≠ val(𝛾′), 𝛾2 C 𝛾′, and 𝛾′ C 𝛾1.
Let 𝛾 be a witness that 𝛾2 and 𝛾′ are competing such that st(𝛾) ∩ st(𝛾1) ∩ st(𝛾2) ≠ ∅. Then, 𝛾 also
witnesses that 𝛾1 and 𝛾′ are competing.

PROOF. We already know that val(𝛾′𝛾) = val(𝛾′) and that st(𝛾′) ∩ st(𝛾) ≠ ∅ (as 𝛾 witnesses
a competition involving 𝛾′) and that st(𝛾1) ∩ st(𝛾) ≠ ∅ (by hypothesis). It is left to show that
val(𝛾1𝛾) = val(𝛾1). Let 𝑚 ∈ st(𝛾) ∩ st(𝛾1) ∩ st(𝛾2); we represent the situation in Figure 9 (left),
with 𝛾 = 𝛾1𝛾2. Consider rst cycle 𝛾1𝛾2𝛾2: this cycle is a witness that 𝛾1 and 𝛾′ are competing,
since it has common states with those cycles, val(𝛾1(𝛾1𝛾2𝛾2)) = val(𝛾1) (both 𝛾1 and 𝛾1𝛾2𝛾2

have the same value), and val(𝛾′(𝛾2𝛾2𝛾1)) = val(𝛾′) (since 𝛾2 C 𝛾′ and 𝛾 is a witness of the
competition). Therefore, as 𝛾′ C 𝛾1, the cycle 𝜈 = 𝛾1𝛾1𝛾

′𝛾2𝛾2 has the same value as 𝛾1. By
Lemma 5.6, cycle 𝜈 has the same value as 𝛾1(𝛾1𝛾2)𝛾1𝛾′𝛾2𝛾2, which can be split into 𝛾1𝛾

′𝛾2𝛾2

(which has the same value as 𝛾′ since 𝛾2 C 𝛾′ and 𝛾 is a witness of the competition) and 𝛾1𝛾1𝛾2.
Therefore, 𝛾1𝛾1𝛾2 = 𝛾1𝛾 cannot have the same value as 𝛾′, otherwise 𝜈 would also have the
same value as 𝛾′ byM-cycle-consistency. �

LEMMA 5.17. Let 𝛾, 𝛾′1 ∈ ΓM be such that val(𝛾) ≠ val(𝛾′1) and 𝛾′1 C 𝛾. Let 𝛾′2 be a cycle such
that val(𝛾′2) = val(𝛾′1) and st(𝛾′2) ∩ st(𝛾′1) ≠ ∅. Then, 𝛾 and 𝛾′2 are competing.

PROOF. Let 𝛾 be a witness that 𝛾 and 𝛾′1 are competing; we represent the situation in Figure 9
(right). We show that 𝛾𝛾′1 is a witness that 𝛾 and 𝛾′2 are competing. As st(𝛾) ∩ st(𝛾) ≠ ∅, we have
st(𝛾𝛾′1) ∩ st(𝛾) ≠ ∅. Similarly, as st(𝛾′1) ∩ st(𝛾′2) ≠ ∅, we have st(𝛾𝛾′1) ∩ st(𝛾′2) ≠ ∅. As 𝛾′1 C 𝛾

with witness 𝛾, we have that val(𝛾(𝛾𝛾′1)) = val(𝛾). Moreover, since 𝛾 is a witness for 𝛾′1 (and 𝛾′),
val(𝛾𝛾′1) = val(𝛾′1). Therefore val(𝛾𝛾′1) = val(𝛾′2), which implies by M-cycle-consistency that
val(𝛾′2(𝛾𝛾′1)) = val(𝛾′2). �

LEMMA 5.18. The height of partial preorder C is nite.

PROOF. By contradiction, let 𝛾0 B 𝛾′0 B 𝛾1 B 𝛾′1 B 𝛾2 B . . . be an innitely decreasing sequence
for C. We assume w.l.o.g. that for all 𝑖 ≥ 0, val(𝛾𝑖) = win and val(𝛾′

𝑖
) = lose (if two consecutive
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𝑚1
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𝑚

𝑚′
1

𝑚′
2

𝛾𝑖,1

𝛾𝑖,2 𝛾′
𝑖,1𝛾′

𝑖,2

𝛾′𝑖,1

𝛾′𝑖,2

𝛾𝑖

𝛾𝑖+1

𝛾𝑖

𝛾′
𝑖

𝛾′𝑖

Figure 10. Situation in the proof of Lemma 5.18. Competition of 𝛾𝑖 and 𝛾′𝑖 is witnessed by 𝛾𝑖, and
competition of 𝛾′𝑖 and 𝛾𝑖+1 is witnessed by 𝛾′𝑖. State 𝑚′ appears somewhere along 𝛾′𝑖 and is not
represented.

cycles are, for example, bothwinning, we can always insert an intermediate losing cycle between
them, by denition).

For 𝑖 ≥ 0, let 𝑚 (resp. 𝑚′) be a state ofM that is part of innitely many sets st(𝛾𝑖) (resp.
st(𝛾′

𝑖
)) — such states necessarily exist as the state space ofM is nite. Thanks to transitivity

of C (Lemma 5.13), by keeping only winning cycles 𝛾𝑖 such that 𝑚 ∈ st(𝛾𝑖) alternating with
losing cycles 𝛾′

𝑖
such that 𝑚′ ∈ st(𝛾′

𝑖
), we keep an innitely decreasing sequence for C. We can

therefore assume w.l.o.g., up to renaming cycles, that for all 𝑖 ∈ N, 𝑚 ∈ st(𝛾𝑖) and 𝑚′ ∈ st(𝛾′
𝑖
).

We show that the competition of each contiguous pair in sequence 𝛾0, 𝛾′0, 𝛾1, 𝛾
′
1, 𝛾2, . . . has

a witness that intersects the winning cycle at 𝑚, and the losing cycle at 𝑚′. For all 𝑖 ≥ 0, let
𝛾𝑖 = 𝛾𝑖,1𝛾𝑖,2 be a witness that 𝛾𝑖 and 𝛾′

𝑖
are competing, and 𝛾′𝑖 = 𝛾′𝑖,1𝛾

′
𝑖,2 be a witness that 𝛾′𝑖

and 𝛾𝑖+1 are competing. Let 𝑖 ≥ 0; we depict part of the situation in Figure 10, with 𝛾′
𝑖
= 𝛾′

𝑖,1𝛾
′
𝑖,2.

Based on the cycles that we already know, we consider the cycle 𝜈𝑖 = 𝛾𝑖,1𝛾
′
𝑖,1𝛾

′
𝑖,1𝛾𝑖+1𝛾

′
𝑖,2𝛾

′
𝑖,2𝛾𝑖,2.

We have that 𝑚,𝑚′ ∈ st(𝜈𝑖) since 𝛾𝑖+1 and 𝛾′
𝑖
are part of 𝜈. We show that 𝜈𝑖 witnesses that 𝛾𝑖

and 𝛾′
𝑖
are competing:

val(𝛾𝑖𝜈𝑖) = win since 𝛾𝑖𝜈𝑖 can be split into 𝛾′
𝑖,2𝛾𝑖,2𝛾𝑖𝛾𝑖,1𝛾

′
𝑖,1 (winning since 𝛾𝑖 B 𝛾′

𝑖
) and

𝛾′𝑖,1𝛾𝑖+1𝛾
′
𝑖,2 (winning since 𝛾

′
𝑖 witnesses a competition involving 𝛾𝑖+1);

val(𝛾′
𝑖
𝜈𝑖) = lose since 𝛾′

𝑖
𝜈𝑖 can be split into 𝛾′𝑖𝛾𝑖,2𝛾𝑖,1 (losing since 𝛾𝑖 witnesses a competition

involving 𝛾′
𝑖
) and 𝛾′

𝑖,1𝛾
′
𝑖,1𝛾𝑖+1𝛾

′
𝑖,2𝛾

′
𝑖,2 (losing since 𝛾

′
𝑖
B 𝛾𝑖+1). We use Remark 5.8 in order to

write “𝛾′
𝑖
𝜈𝑖”.

We can perform a symmetric reasoning to show that the competition of any pair 𝛾′
𝑖
, 𝛾𝑖+1,

𝑖 ≥ 0, is witnessed by a cycle 𝜈′𝑖 ∈ ΓM such that 𝑚′, 𝑚 ∈ st(𝜈′𝑖).
By Lemma 5.16, 𝜈′𝑖 is not only awitness that 𝛾′𝑖 and 𝛾𝑖+1 are competing, but also that 𝛾𝑖 and 𝛾′𝑖

are competing (indeed, val(𝛾𝑖) = val(𝛾𝑖+1) ≠ val(𝛾′
𝑖
), 𝛾𝑖+1 C 𝛾′

𝑖
, 𝛾′

𝑖
C 𝛾𝑖 , 𝜈′𝑖 witnesses that 𝛾𝑖+1

and 𝛾′
𝑖
are competing, and 𝑚 ∈ st(𝜈′𝑖) ∩ st(𝛾𝑖) ∩ st(𝛾𝑖+1)).

For 𝑖 ≥ 0, we can write 𝜈′𝑖 = 𝜈′𝑖,1𝜈
′
𝑖,2 with 𝜈′𝑖,1 ∈ Π𝑚′,𝑚 and 𝜈′𝑖,2 ∈ Π𝑚,𝑚′. We now consider the
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innite sequence
𝜉 = 𝛾0𝜈

′
0,2𝛾

′
0𝜈

′
0,1𝛾1𝜈

′
1,2𝛾

′
1𝜈

′
1,1𝛾2 . . .

Notice that for all 𝑖 ≥ 0, 𝛾𝑖𝜈′𝑖,2𝛾′𝑖𝜈
′
𝑖,1 is a winning cycle on𝑚 since 𝛾𝑖 B 𝛾′

𝑖
; hence col(𝜉) ∈ 𝑚−1𝑊 by

M-cycle-consistency. Also, for all 𝑖 ≥ 0, 𝜈′𝑖,2𝛾′𝑖𝜈
′
𝑖,1𝛾𝑖+1 is a losing cycle on 𝑚 since 𝛾′

𝑖
B 𝛾𝑖+1; hence

col(𝜉) ∈ 𝑚−1𝑊 byM-prex-independence andM-cycle-consistency. This is a contradiction.
A proof for innitely increasing sequences can be done in a symmetric way. �

LEMMA 5.19. The width of partial preorder C on ΓM/' is nite.

PROOF. We recall thatM = (𝑀,𝑚init, 𝛼upd). We will show that any two cycles 𝛾1 and 𝛾2 such
that st(𝛾1) = st(𝛾2) are necessarily comparable for ' or C. This will show that the cardinality of
a maximal set of pairwise incomparable (for C) elements in ΓM/' is necessarily bounded by
2|𝑀 |, which implies that the width of partial preorder C is nite. Let 𝛾1 and 𝛾2 be two cycles such
that st(𝛾1) = st(𝛾2) (we recall that there are innitely many transitions inM if 𝐶 is innite, and
that two cycles going through the same states may use dierent transitions and have a dierent
value).

If val(𝛾1) ≠ val(𝛾2), then as 𝛾1 and 𝛾2 share a common state, they are competing — we
have either 𝛾1 C 𝛾2 or 𝛾2 C 𝛾1 (depending on the value of 𝛾1𝛾2).

We now assume that val(𝛾1) = val(𝛾2); we assume w.l.o.g. that 𝛾1 and 𝛾2 are winning. If 𝛾1
and 𝛾2 are such that comp(𝛾1) = comp(𝛾2), then they can necessarily be compared with ' or C;
indeed,

if domBy(𝛾1) = domBy(𝛾2), then 𝛾1 ' 𝛾2;
if domBy(𝛾1) ≠ domBy(𝛾2), then there is 𝑖 ∈ {1, 2} and a losing cycle 𝛾′ in domBy(𝛾𝑖) that
is competing with 𝛾3−𝑖 but that is not an element of domBy(𝛾3−𝑖). Therefore, 𝛾3−𝑖 C 𝛾′ C 𝛾𝑖 ,
which means that 𝛾3−𝑖 C 𝛾𝑖 .

It is left to deal with the case comp(𝛾1) ≠ comp(𝛾2). W.l.o.g., let 𝛾′ be in comp(𝛾1) \ comp(𝛾2).
There are two cases to discuss: whether 𝛾1 C 𝛾′ or 𝛾′ C 𝛾1.

Assume 𝛾1 C 𝛾′. By Lemma 5.17, as val(𝛾1) = val(𝛾2) and st(𝛾1) ∩ st(𝛾2) ≠ ∅, 𝛾′ is also
competing with 𝛾2, which is a contradiction.
Assume 𝛾′ C 𝛾1. Let 𝛾 be a witness that 𝛾1 and 𝛾′ are competing. We therefore have that 𝛾1𝛾
is winning and 𝛾′𝛾 is losing. As 𝛾2 is not competing with 𝛾′, 𝛾 cannot be a witness that 𝛾2
and 𝛾′ are competing. Since st(𝛾1) = st(𝛾2) has a non-empty intersection with st(𝛾), the
only possibility for that to happen is that 𝛾2𝛾 is losing (all other conditions are satised).
This means that 𝛾 must itself be a losing cycle. But then, observe that 𝛾 is competing both
with 𝛾1 and 𝛾2 (as 𝛾 has a common state with and a dierent value than 𝛾1 and 𝛾2) and
𝛾2 C 𝛾 C 𝛾1 (as 𝛾2𝛾 is losing and 𝛾1𝛾 is winning). This implies that 𝛾2 C 𝛾1.

�
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Lemmas 5.18 and 5.19 imply together that ' has nite index, and thus that C (partially)
orders only nitely many classes of cycles in ΓM/' . Therefore, for some 𝑛 ∈ N, there exists a
function 𝑝Γ : ΓM/' → {0, . . . , 𝑛} that is a monotonic function (assuming ΓM/' is preordered
with C and {0, . . . , 𝑛} is ordered with the usual order on N); such a function is sometimes called
a linear extension of the partial order. We extend it to a function 𝑝Γ : ΓM → {0, . . . , 𝑛} such that
𝑝Γ(𝛾) = 𝑝Γ( [𝛾]'). Moreover, we assume w.l.o.g. that val(𝛾) = win if and only if 𝑝Γ(𝛾) is even
(this might require to increase 𝑛, but it is always possible).

We x 𝑛 and any such function 𝑝Γ for the rest of the proof.

Parity automaton on top ofM. At this point, it would already be possible to describe words
of𝑊 in terms of the cycles ofM that they visit through function skelM (there may be multiple
such decompositions) and their values by 𝑝Γ, but that does not directly correspond to a classical
acceptance condition for automata on innite words. We can actually obtain something more
satisfying: we show that we can assign priorities to transitions ofM to recognize𝑊 , in a way
that corresponds to a parity acceptance condition on transitions. We transfer function 𝑝Γ to
transitions ofM: for (𝑚, 𝑐) ∈ 𝑀 × 𝐶, we dene

𝑝(𝑚, 𝑐) = min{𝑝Γ(𝛾) | 𝛾 ∈ ΓM , (𝑚, 𝑐) ∈ 𝛾}. (1)

We now have a well-dened function assigning priorities to every transition ofM.

EXAMPLE 5.20. We illustrate our denitions for 𝑝Γ and 𝑝. We again consider the example
from Figure 7 (for which, unlike𝑊 , we already know that it describes an 𝜔-regular language).
For the sake of the example, let us ignore the already-dened priority function 𝑝 of this parity
automaton. We show that we can recover priorities dening the same language starting from
our preorder C and our denitions for 𝑝Γ and 𝑝. There were four equivalence classes of ',
ordered as follows: [(𝑚1, 𝑏)]' C [(𝑚1, 𝑎) (𝑚2, 𝑎)]' C [(𝑚1, 𝑐)]' and [(𝑚2, 𝑏)]' C [(𝑚1, 𝑐)]'.
Function 𝑝Γ must be any function that respects the order given by the diagram and that assigns
even priorities towinning classes of cycles, and odd priorities to losing classes. One such possible
choice is 𝑝Γ( [(𝑚1, 𝑐)]') = 5, 𝑝Γ( [(𝑚1, 𝑎) (𝑚2, 𝑎)]') = 2, 𝑝Γ( [(𝑚2, 𝑏)]') = 4, and 𝑝Γ( [(𝑚1, 𝑏)]') =
1. From this choice of function 𝑝Γ, our denition (1) of function 𝑝 entails 𝑝((𝑚1, 𝑐)) = 5,
𝑝((𝑚1, 𝑎)) = 𝑝((𝑚2, 𝑎)) = 2, 𝑝((𝑚2, 𝑏)) = 𝑝((𝑚2, 𝑐)) = 4, and 𝑝((𝑚1, 𝑏)) = 1. This choice of
priorities denes the same language as the original parity automaton. �

We will prove that (M, 𝑝) recognizes the language𝑊 . In our proof, we will need to relate
the cycles dominated by a cycle 𝛾 and the ones dominated by cycles in a “decomposition” of 𝛾,
i.e., cycles that can be obtained from iteratively removing cycles from 𝛾. We formally dene
this notion and prove two related results.
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DEF IN IT ION 5.21 (Cycle decomposition). Let 𝛾 = (𝑚1, 𝑐1) . . . (𝑚𝑘, 𝑐𝑘) ∈ ΓM , and 𝛾1, . . . , 𝛾𝑙 ∈
ΓM . We say that (𝛾1, . . . , 𝛾𝑙) is a cycle decomposition of 𝛾 if

either 𝑙 = 1 and 𝛾 = 𝛾1,
or 𝑙 > 1 and there exist 𝑖, 𝑖′ ∈ {1, . . . , 𝑘}, 𝑖 ≤ 𝑖′, such that cycle 𝛾1 = (𝑚𝑖 , 𝑐𝑖) . . . (𝑚𝑖 ′, 𝑐𝑖 ′),
and (𝛾2, . . . , 𝛾𝑙) is a cycle decomposition of the smaller cycle

(𝑚1, 𝑐1) . . . (𝑚𝑖−1, 𝑐𝑖−1) (𝑚𝑖 ′+1, 𝑐𝑖 ′+1) . . . (𝑚𝑘, 𝑐𝑘).

LEMMA 5.22. Let 𝛾, 𝛾1, 𝛾2, 𝛾′ ∈ ΓM be cycles such that 𝛾 = 𝛾1𝛾2. If 𝛾′ C 𝛾1, then 𝛾′ C 𝛾.

PROOF. We assume 𝛾′ C 𝛾1.
If val(𝛾1) ≠ val(𝛾), then 𝛾1 C 𝛾 — indeed, they share at least one state and 𝛾1𝛾 = (𝛾1)2𝛾2

has the same value as 𝛾1𝛾2 = 𝛾 by Lemma 5.4. Therefore, by transitivity of C (Lemma 5.13),
𝛾′ C 𝛾.

We now assume val(𝛾1) = val(𝛾) and val(𝛾′) ≠ val(𝛾1). Let 𝛾 be a witness that 𝛾′ and 𝛾1

are competing. We prove that 𝛾 also witnesses that 𝛾′ and 𝛾 are competing: to do so, it is left to
show that 𝜈 = 𝛾𝛾 has the same value as 𝛾. We have that 𝜈 can be written as 𝛾𝛾1,1𝛾2𝛾1,2 for some
paths 𝛾1,1 and 𝛾1,2 such that 𝛾1 = 𝛾1,1𝛾1,2. Cycle 𝜈 has the same value as 𝛾(𝛾1,1𝛾1,2)𝛾1,1𝛾2𝛾1,2 by
Lemma 5.6. This last cycle can be split into 𝛾𝛾1 and 𝛾, which both have the same value as 𝛾.
Therefore 𝛾 is also a witness that 𝛾′ and 𝛾 are competing. We can show with a very similar
argument that 𝛾′𝛾1𝛾𝛾2 also has the same value as 𝛾, hence 𝛾′ C 𝛾.

If val(𝛾1) = val(𝛾) and val(𝛾′) = val(𝛾1), then there exists 𝛾′′ with val(𝛾′′) ≠ val(𝛾1) such
that 𝛾′ ∈ domBy(𝛾′′) and 𝛾′′ ∈ domBy(𝛾1), so 𝛾′ C 𝛾′′ C 𝛾1. By the previous case, 𝛾′′ C 𝛾, and by
transitivity, 𝛾′ C 𝛾. �

LEMMA 5.23. Let 𝛾 be a cycle of M and (𝛾1, . . . , 𝛾𝑙) be a cycle decomposition of 𝛾. For all
𝑖 ∈ {1, . . . , 𝑙}, for all 𝛾′ ∈ ΓM , if 𝛾′ C 𝛾𝑖 , then 𝛾′ C 𝛾.

PROOF. We proceed by induction on 𝑙. If 𝑙 = 1, then the statement is trivial as 𝛾 = 𝛾1. For 𝑙 > 1,
we now assume that the property holds for 𝑙 − 1, and we show that it also holds for 𝑙. Up to a
shift of 𝛾 and of the cycle decomposition, we assume that 𝛾 is equal to 𝛾1𝜈, where (𝛾2, . . . , 𝛾𝑙) is
a cycle decomposition of 𝜈.

Let 𝛾′ ∈ ΓM be such that 𝛾′ C 𝛾𝑖 for some 𝑖 ∈ {1, . . . , 𝑙}. This implies that 𝛾′ C 𝛾1 if 𝑖 = 1 or,
using the induction hypothesis, that 𝛾′ C 𝜈. In any case, by Lemma 5.22, we immediately have
that 𝛾′ C 𝛾. �

We can now prove that𝑊 is recognized by the parity automaton (M, 𝑝). We do this in
the next two results. First, we show that winning cycles ofM are exactly the ones that have an
even maximal priority given by 𝑝. It is then straightforward to conclude that innite words in
𝑊 are exactly the ones whose maximal innitely visited priority is even.
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𝑚1 𝑚2

𝑚3𝑚𝑘

𝑒1

𝜋1

𝑒2
𝜋2𝑒𝑘

𝜋𝑘

Figure 11. Situation in the proof of Lemma 5.24, with 𝛾 = 𝑒1 . . . 𝑒𝑘.

LEMMA 5.24. Let 𝛾 = (𝑚1, 𝑐1) . . . (𝑚𝑘, 𝑐𝑘) ∈ ΓM . Then, 𝛾 is winning if and only if
max1≤𝑖≤𝑘 𝑝(𝑚𝑖 , 𝑐𝑖) is even.

PROOF. For conciseness, let 𝑝∗ = max1≤𝑖≤𝑘 𝑝(𝑚𝑖 , 𝑐𝑖) and 𝑒𝑖 = (𝑚𝑖 , 𝑐𝑖). By denition of func-
tion 𝑝, for all 𝑖 ∈ {1, . . . , 𝑘}, 𝑝(𝑒𝑖) ≤ 𝑝Γ(𝛾). Hence, 𝑝∗ ≤ 𝑝Γ(𝛾). We want to show that 𝛾 is winning
if and only if 𝑝∗ is even. By contradiction, we assume that we do not have this equivalence.
We assume w.l.o.g. that 𝛾 is losing and that 𝑝∗ is even; we could obtain in a symmetric way a
contradiction for 𝛾 winning and 𝑝∗ odd.

As 𝛾 is losing, we have that 𝑝Γ(𝛾) is odd — as 𝑝∗ is even, 𝑝∗ < 𝑝Γ(𝛾). We assume (up to a
shift of the transitions) that 𝑝∗ = 𝑝(𝑒1). Since 𝑝∗ < 𝑝Γ(𝛾), there exists, for all 𝑖 ∈ {1, . . . , 𝑘}, a
cycle 𝛾𝑖 ≠ 𝛾 such that 𝑒𝑖 ∈ 𝛾𝑖 and 𝑝(𝑒𝑖) = 𝑝Γ(𝛾𝑖). We assume 𝛾𝑖 = 𝑒𝑖𝜋𝑖 for a suitable path 𝜋𝑖 . The
situation is represented in Figure 11.

The rest of the proof consists in exhibiting two cycles, building on the ones we know,
showing that one of them is winning and one of them is losing, and nally showing that they
must have the same value, which provides a contradiction.

We will rst consider cycle 𝑒1 . . . 𝑒𝑘𝜋𝑘 . . . 𝜋1 (on 𝑚1). We will prove by induction that it is
winning. First, 𝑒1𝜋1 is winning since 𝑝Γ(𝑒1𝜋1) = 𝑝∗ is even. Assume now that for 1 < 𝑙 ≤ 𝑘,
𝑒1 . . . 𝑒𝑙−1𝜋𝑙−1 . . . 𝜋1 is winning. We show that 𝑒1 . . . 𝑒𝑙−1(𝑒𝑙𝜋𝑙)𝜋𝑙−1 . . . 𝜋1 is winning.

If 𝑒𝑙𝜋𝑙 is a winning cycle, it follows fromM-cycle-consistency.
If 𝑒𝑙𝜋𝑙 is a losing cycle, we distinguish two cases. If 𝑒2 . . . 𝑒𝑙−1(𝑒𝑙𝜋𝑙)𝜋𝑙−1 . . . 𝜋2 is winning,
then so is 𝑒1 . . . 𝑒𝑙−1(𝑒𝑙𝜋𝑙)𝜋𝑙−1 . . . 𝜋1 because we just concatenate the winning cycle 𝜋1𝑒1

to a winning cycle (M-cycle-consistency). If 𝑒2 . . . 𝑒𝑙−1(𝑒𝑙𝜋𝑙)𝜋𝑙−1 . . . 𝜋2 is losing, then
𝑒2 . . . 𝑒𝑙−1𝜋𝑙−1 . . . 𝜋2 witnesses that 𝑒1𝜋1 and 𝑒𝑙𝜋𝑙 are competing. Since 𝑝Γ(𝑒𝑙𝜋𝑙) is odd, and
𝑝Γ(𝑒1𝜋1) is even and is equal to the maximum of 𝑖 ↦→ 𝑝Γ(𝑒𝑖𝜋𝑖), we have that 𝑝Γ(𝑒𝑙𝜋𝑙) <

𝑝Γ(𝑒1𝜋1). Since 𝑝Γ is monotonic and 𝑒1𝜋1 and 𝑒𝑙𝜋𝑙 are competing, this implies 𝑒𝑙𝜋𝑙 C 𝑒1𝜋1.
Thus 𝑒1 . . . 𝑒𝑙−1(𝑒𝑙𝜋𝑙)𝜋𝑙−1 . . . 𝜋1 is winning.

We now consider the cycle 𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘) (on 𝑚1). We show by induction that it is
losing. We start from 𝛾, which is losing by hypothesis, and we add cycles 𝜋𝑖𝑒𝑖 one by one. We
denote 𝛾(𝑙) = 𝑒1(𝜋1𝑒1) . . . 𝑒𝑙 (𝜋𝑙𝑒𝑙)𝑒𝑙+1 . . . 𝑒𝑘. Assume that 𝛾(𝑙−1) is losing for 1 < 𝑙 ≤ 𝑘. We want
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to show that 𝛾(𝑙) is also losing.

If 𝜋𝑙𝑒𝑙 is a losing cycle, it follows fromM-cycle-consistency.
If 𝜋𝑙𝑒𝑙 is a winning cycle, then as 𝑝Γ(𝜋𝑙𝑒𝑙) ≤ 𝑝∗ < 𝑝Γ(𝛾) and 𝜋𝑙𝑒𝑙 is competing with 𝛾

(they share common states), we have 𝜋𝑙𝑒𝑙 C 𝛾. Notice that (𝜋1𝑒1, . . . , 𝜋𝑙−1𝑒𝑙−1, 𝛾) is a cycle
decomposition of 𝛾(𝑙−1) as in Denition 5.21. Thus by Lemma 5.23, as 𝜋𝑙𝑒𝑙 C 𝛾, we also
have 𝜋𝑙𝑒𝑙 C 𝛾(𝑙−1) . We conclude that 𝛾(𝑙) is also losing.

We have now considered two cycles on 𝑚1: the winning 𝑒1 . . . 𝑒𝑘𝜋𝑘 . . . 𝜋1 and the losing
𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘). We show that it is possible to transform the latter into the former using
only value-preserving transformations (given by Lemmas 5.4 and 5.5), which provides the
desired contradiction.

We show inductively that for all 𝑙 ∈ {1, . . . , 𝑘}, cycle 𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘) can be trans-
formed into

𝜈(𝑙) = (𝑒1 . . . 𝑒𝑙𝜋𝑙 . . . 𝜋1𝑒1 . . . 𝑒𝑙)𝑒𝑙+1(𝜋𝑙+1𝑒𝑙+1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘)

using value-preserving transformations. Notice that 𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘) is equal to 𝜈(1) , which
deals with the base case of the induction. Now assume that 𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘) has the same
value as 𝜈(𝑙−1) for 1 < 𝑙 ≤ 𝑘. In the expression of 𝜈(𝑙−1) , notice that 𝜋𝑙−1 . . . 𝜋1𝑒1 . . . 𝑒𝑙−1 and 𝑒𝑙𝜋𝑙

are two consecutive cycles on 𝑚𝑙. By Lemma 5.5, they can thus be swapped while keeping a
cycle with the same value. Notice that this gives exactly the cycle 𝜈(𝑙) .

We obtain that 𝑒1(𝜋1𝑒1) . . . 𝑒𝑘 (𝜋𝑘𝑒𝑘) has the same value as 𝜈(𝑘) = 𝑒1 . . . 𝑒𝑘𝜋𝑘 . . . 𝜋1𝑒1 . . . 𝑒𝑘,
which has the same value as 𝑒1 . . . 𝑒𝑘𝜋𝑘 . . . 𝜋1 by Lemma 5.4. �

PROPOS IT ION 5.25. Let 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔 with skelM (𝑤) = (𝑚1, 𝑐1) (𝑚2, 𝑐2) . . . ∈ (𝑀 × 𝐶)𝜔.
Then,

𝑤 ∈𝑊 if and only if lim sup
𝑖≥1

𝑝(𝑚𝑖 , 𝑐𝑖) is even.

PROOF. Let 𝑝∗ = lim sup𝑖≥1 𝑝(𝑚𝑖 , 𝑐𝑖). Let 𝑗 ≥ 1 be an index such that for all 𝑖 ≥ 𝑗, 𝑝(𝑚𝑖 , 𝑐𝑖) ≤ 𝑝∗.
Let 𝐼∗ = {𝑖 ≥ 𝑗 | 𝑝(𝑚𝑖 , 𝑐𝑖) = 𝑝∗} be the innite set of indices of transitions with priority 𝑝∗

occurring after index 𝑗. We write 𝑖1, 𝑖2, . . . for the elements of 𝐼∗ in order. Let 𝑚∗ be a state
appearing innitely often in {𝑚𝑖 | 𝑖 ∈ 𝐼∗} (such a state exists necessarily as the state space
of M is nite). This implies that skelM (𝑤) can be written as the concatenation of a nite
prex (𝑚1, 𝑐1) . . . (𝑚𝑖1−1, 𝑐𝑖1−1) and innitely many cycles 𝛾𝑘 = (𝑚𝑖𝑘 , 𝑐𝑖𝑘) . . . (𝑚𝑖𝑘+1−1, 𝑐𝑖𝑘+1−1) with
𝑚𝑖𝑘 = 𝑚∗ and 𝑝(𝑚𝑖𝑘 , 𝑐𝑖𝑘) = 𝑝∗, for 𝑘 ≥ 1.

For all 𝑘 ≥ 1, we have that max𝑖𝑘≤𝑖<𝑖𝑘+1 𝑝(𝑚𝑖 , 𝑐𝑖) = 𝑝∗ (it is ≤ 𝑝∗ as 𝑖𝑘 ≥ 𝑗, and it is ≥ 𝑝∗ as
𝑝(𝑚𝑖𝑘 , 𝑐𝑖𝑘) = 𝑝∗). By Lemma 5.24, we conclude that cycles 𝛾𝑘 are all cycles on 𝑚∗ that have the
same value: they are winning if 𝑝∗ is even, and losing if 𝑝∗ is odd. ByM-prex-independence
andM-cycle-consistency, 𝑤 is in𝑊 if 𝑝∗ is even, and 𝑤 is in𝑊 if 𝑝∗ is odd. �

We have therefore reached our goal for this section.



36 / 48 P. Bouyer, M. Randour and P. Vandenhove

COROLLARY 5.26 (Second item of Theorem 3.6). If there exists a skeletonM such that𝑊 is
M-prex-independent andM-cycle-consistent, then𝑊 is 𝜔-regular and can be recognized by a
deterministic parity automaton dened on top ofM.

REMARK 5.27. As discussed in Remark 2.5, our proof shows as a by-product that even if 𝐶
is innite, many colors can be assumed to be equal (w.r.t.𝑊) — there are only nitely many
classes of truly dierent colors.

6. Applications

We provide a thorough application of our concepts to a discounted-sum winning condition. We
then discuss more briey mean-payo and total-payo winning conditions.

6.1 Discounted sum

We apply our results to a discounted-sum condition in order to illustrate our notions. A specicity
of this example is that its 𝜔-regularity depends on some chosen parameters — we use our
results to characterize the parameters for which it is 𝜔-regular or, equivalently (Theorem 3.7),
chromatic-nite-memory determined. The 𝜔-regularity of discounted-sum conditions has also
been studied in [14, 2] with dierent techniques and goals.

Let 𝐶 ⊆ Q be non-empty and bounded. For 𝜆 ∈ (0, 1) ∩ Q, we dene the discounted-sum
function DS𝜆 : 𝐶𝜔 → R such that for 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔,

DS𝜆 (𝑤) =
∞∑︁
𝑖=1

𝜆𝑖−1 · 𝑐𝑖 .

This function is always well-dened for a bounded 𝐶, and takes values in [ inf 𝐶1−𝜆 ,
sup𝐶
1−𝜆 ].

We dene the winning condition DS≥0
𝜆

= {𝑤 ∈ 𝐶𝜔 | DS𝜆 (𝑤) ≥ 0} as the set of innite
words whose discounted sum is non-negative, and let ∼ be its right congruence. We will analyze
cycle-consistency and prex-independence of DS≥0

𝜆
to conclude under which conditions (on 𝐶

and 𝜆) it is chromatic-nite-memory determined. First, we discuss a few properties of the
discounted-sum function.

Basic properties. We extend function DS𝜆 to nite words in a natural way: for 𝑤 ∈ 𝐶∗, we
dene DS𝜆 (𝑤) = DS𝜆 (𝑤0𝜔). For 𝑤 ∈ 𝐶∗, we dene |𝑤| as the length of 𝑤 (so 𝑤 ∈ 𝐶 |𝑤|). First, we
notice that for 𝑤 ∈ 𝐶∗ and 𝑤′ ∈ 𝐶𝜔, we have

DS𝜆 (𝑤𝑤′) = DS𝜆 (𝑤) + 𝜆 |𝑤|DS𝜆 (𝑤′).

Therefore,
𝑤𝑤′ ∈ DS≥0𝜆 ⇐⇒ DS𝜆 (𝑤)

𝜆 |𝑤| ≥ −DS𝜆 (𝑤′).
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𝑠1 𝑠2 𝑠3

1
1
2

...

−1
𝜆

−1
2𝜆

...
0

Figure 12. Arena with infinitely many edges in which P1 needs infinite memory to win for condition DS≥0
𝜆

from 𝑠1 for any 𝜆 ∈ (0, 1) ∩ Q, with 𝐶 = [−𝑘, 𝑘] ∩ Q for 𝑘 sufficiently large.

This provides a characterization of the winning continuations of a nite word 𝑤 ∈ 𝐶∗ by
comparing their discounted sum to the value DS𝜆 (𝑤)

𝜆 |𝑤 | .
This leads us to dene the gap of a nite word 𝑤 ∈ 𝐶∗, following ideas in [5], as

gap(𝑤) =


> if DS𝜆 (𝑤)

𝜆 |𝑤 | ≥ − inf 𝐶
1−𝜆 ,

⊥ if DS𝜆 (𝑤)
𝜆 |𝑤 | < −sup𝐶

1−𝜆 ,
DS𝜆 (𝑤)
𝜆 |𝑤 | otherwise.

Intuitively, the gap of a nite word 𝑤 ∈ 𝐶∗ represents how far it is from going back to 0: if
𝑤′ ∈ 𝐶𝜔 is such that DS𝜆 (𝑤′) = −gap(𝑤), then DS𝜆 (𝑤𝑤′) = 0. We can see that for all words
𝑤 ∈ 𝐶∗, if gap(𝑤) = >, then all continuations are winning (i.e., 𝑤−1𝑊 = 𝐶𝜔) as it is not possible
to nd an innite word with a discounted sum less than inf 𝐶

1−𝜆 . Similarly, if gap(𝑤) = ⊥, then all
continuations are losing (i.e., 𝑤−1𝑊 = ∅).

Cycle-consistency. We can show that DS≥0
𝜆

is alwaysMtriv-cycle-consistent.

PROPOS IT ION 6.1. For all bounded 𝐶 ⊆ Q, 𝜆 ∈ (0, 1) ∩ Q, winning condition DS≥0
𝜆

isMtriv-
cycle-consistent.

The proof of this result is elementary and is provided in Appendix B.

Prefix-independence. If 𝐶 = [−𝑘, 𝑘] ∩ Q for some 𝑘 ∈ N \ {0}, winning condition DS≥0
𝜆

is not
M-prex-independent for anyM, as ∼ has innite index. Indeed, for 𝑖 ≥ 1 and 𝑤𝑖 =

1
𝑖 ∈ 𝐶∗, we

have 𝑤1 � 𝑤2 � . . . —we can see how to use this to exhibit an arena in which P1 can win but
needs innite memory to do so in Figure 12.

For nite 𝐶 ⊆ Z, the picture is more complicated; for 𝐶 = [−𝑘, 𝑘] ∩ Z for some 𝑘 ∈ N,
we characterize when DS≥0

𝜆
isM-prex-independent for some nite skeletonM. We give an

intuition of the two situations in which that happens: (𝑖) if 𝐶 is too small, then the rst non-zero
color seen determines the outcome of the game, as it is not possible to compensate this color
to change the sign of the discounted sum; (𝑖𝑖) if 𝜆 = 1

𝑛 for some integer 𝑛 ≥ 1, then the gap
function actually takes only nitely many values, which is not the case for a dierent 𝜆.

PROPOS IT ION 6.2. Let 𝜆 ∈ (0, 1) ∩ Q, 𝑘 ∈ N, and 𝐶 = [−𝑘, 𝑘] ∩ Z. Then, the right congruence
∼ of DS≥0

𝜆
has nite index if and only if 𝑘 < 1

𝜆 − 1 or 𝜆 is equal to 1
𝑛 for some integer 𝑛 ≥ 1.
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PROOF. We denemaxDS =
sup𝐶
1−𝜆 = 𝑘

1−𝜆 andminDS = − 𝑘
1−𝜆 , as respectively the maximal and

minimal discounted-sum value achievable with colors in 𝐶.
The key property that wewill show is that gaps characterize equivalence classes of prexes:

for 𝑤1, 𝑤2 ∈ 𝐶∗,
𝑤1 ∼ 𝑤2 ⇐⇒ gap(𝑤1) = gap(𝑤2). (2)

Once this is proven, it is left to determine the number of dierent gap values, which will
correspond to the index of ∼. The right-to-left implication of (2) is clear: if the gaps are >, all
the continuations are winning; if the gaps are ⊥, all the continuations are losing; else, for any
continuation, the nal discounted-sum values will have the same sign. We prove the left-to-right
implication for each case of the disjunction from the statement and discuss the number of gap
values.

We rst assume 𝑘 < 1
𝜆 −1. The case 𝑘 = 0 is trivial (as all words are winning) —we assume

𝑘 ≥ 1. The inequality 𝑘 < 1
𝜆 − 1 is equivalent to 1

𝜆 > 𝑘
1−𝜆 . In this case, there are only three

possible gaps:
for 𝑤 ∈ 0∗, gap(𝑤) = 0.
for 𝑤 ∈ 0∗𝑐 with 𝑐 ≥ 1, then DS𝜆 (𝑤)

𝜆 |𝑤 | = 𝑐
𝜆 ≥ 1

𝜆 > 𝑘
1−𝜆 = −minDS— so for any word 𝑤 ∈ 0∗𝑐𝐶∗,

gap(𝑤) = >.
for 𝑤 ∈ 0∗𝑐𝐶∗ with 𝑐 ≤ −1, symmetrically, gap(𝑤) = ⊥.

These three possible gaps clearly correspond to dierent equivalence classes of the right con-
gruence ∼, so there are three such equivalence classes. Hence the minimal-state automatonM∼

has three states [𝜀]∼, [1]∼, and [−1]∼.
We now assume that 𝑘 ≥ d1𝜆 − 1e. The left-to-right implication of (2) is clear in the cases in

which all, or none, of the continuations are winning. The dicult case is when both 𝑤1 and 𝑤2

have a rational gap. We show that if their gaps are dierent rational numbers, then they have
dierent winning continuations. We assume w.l.o.g. that gap(𝑤2) < gap(𝑤1). We show that
there is an innite continuation that has a discounted sum exactly equal to −gap(𝑤1): this
innite continuation is winning after 𝑤1 but losing after 𝑤2.

Showing that there exists 𝑤 ∈ 𝐶𝜔 such that DS𝜆 (𝑤) = −gap(𝑤1) amounts to showing
that there is a representation of −gap(𝑤1) in the (rational but not necessarily integral) base 1

𝜆

with digits in 𝐶, with one digit before the decimal point. We can adapt the well-known greedy
expansion [40] to our context to show this (details in Appendix B, Proposition B.1).

It is left to show that there are nitely many gap values if and only if 𝜆 equals 1
𝑛 for some

integer 𝑛 ≥ 1. One implication is clear: if 𝜆 = 1
𝑛 for some integer 𝑛 ≥ 1, then there are nitely

many possible gaps as gaps are then always integers betweenminDS andmaxDS, >, or ⊥. We
illustrate this implication by depicting the minimal-state automaton of ∼ for 𝜆 = 1

2 and 𝑘 = 2 in
Figure 13. The proof of the other implication is provided in Appendix B, Proposition B.2. �
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0 2 >−2−4⊥

0

1−1

2−2

−1

0, 1, 2

−2
1

−2,−1

2

0

2

𝐶 \ {2}
𝐶𝐶

Figure 13. Minimal-state automaton of ∼DS≥0
𝜆

for 𝜆 = 1
2 and 𝐶 = {−2,−1, 0, 1, 2}. The value in a state is the

gap characterizing the equivalence class of ∼ corresponding to that state. Here, sup𝐶
1−𝜆 = 4 and inf 𝐶

1−𝜆 = −4.
The asymmetry around 0 comes from the ≥ 0 inequality in the definition of the condition: when state −4
is reached, there is exactly one winning continuation (2𝜔), but a state with gap value 4 would only have
winning continuations (hence, it is part of state >). Notice that we can define a parity condition on top
of this automaton that recognizes DS≥0

𝜆
: an infinite word is winning as long as it does not reach ⊥.

COROLLARY 6.3. Let 𝜆 ∈ (0, 1) ∩ Q, 𝑘 ∈ N, and 𝐶 = [−𝑘, 𝑘] ∩ Z.
If 𝑘 < 1

𝜆 − 1, then DS≥0
𝜆

is memoryless-determined.
If 𝑘 ≥ d1𝜆 − 1e, then DS≥0

𝜆
is chromatic-nite-memory determined if and only if 𝜆 is equal to 1

𝑛

for some integer 𝑛 ≥ 1.

PROOF. This follows from Propositions 6.1 and 6.2, thanks to Theorem 3.6. The only thing to
clarify is that memoryless strategies suce in case 𝑘 < 1

𝜆 − 1. The proof of Proposition 6.2 tells
us that in this case, DS≥0

𝜆
is 𝜔-regular and can be recognized by a parity automaton that can

be dened on top ofM∼ ⊗ Mtriv, which has three states. To use this skeleton as a memory, we
can notice that the game is already over in states [1]∼ and [−1]∼ (as every continuation wins
or every continuation loses). Thus, it is not necessary to use these states to play, and we can
consider that we always stay in state [𝜀]∼. �

6.2 Other winning conditions

Mean payoff. Let 𝐶 ⊆ Q be non-empty. We dene the mean-payo function MP : 𝐶𝜔 →
R ∪ {−∞,∞} such that for 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔,

MP(𝑤) = lim sup
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝑐𝑖 .

We dene the winning condition MP≥0 = {𝑤 ∈ 𝐶𝜔 | MP(𝑤) ≥ 0} as the set of innite words
whose mean payo is non-negative. This condition isMtriv-prex-independent for any set of
colors. However, it is known that innite-memory strategies may be required to play optimally
in some innite arenas [39, Section 8.10]; the example provided uses innitely many colors.
Here, we show that chromatic-nite-memory strategies do not suce to play optimally even
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when 𝐶 = {−1, 1}. Let us analyze cycle-consistency ofMP≥0. If we consider, for 𝑛 ∈ N,

𝑤𝑛 = 1 . . . 1︸︷︷︸
𝑛 times

−1 . . .−1︸     ︷︷     ︸
𝑛+1 times

,

wehave that (𝑤𝑛)𝜔 is losing for all 𝑛 ∈ N, but the inniteword𝑤0𝑤1𝑤2 . . . has amean payo of 0
and is thus winning. This shows directly thatMP≥0 is notMtriv-cycle-consistent. The argument
can be adapted to show thatMP≥0 is notM-cycle-consistent for any skeletonM (see Appendix B,
Lemma B.4).

REMARK 6.4. As memoryless strategies suce to play optimally for both players in nite
arenas for mean-payo games [19], winning conditionMP≥0 distinguishes nite-memory de-
terminacy in nite and in innite arenas. For a skeletonM,M-determinacy in nite arenas
has also been shown [22, 6] to be equivalent to the conjunction of a property about prexes
(M-monotony) and a property about cycles (M-selectivity). The concepts ofM-selectivity and
M-cycle-consistency share the similar idea that combining losing cycles cannot produce a
winning word, but they are distinct notions with dierent quantication on the families of
cycles considered. Here,MP≥0 isMtriv-selective but notMtriv-cycle-consistent.

Total payoff. Let 𝐶 ⊆ Q be non-empty. We dene the total-payo function TP : 𝐶𝜔 → R ∪
{−∞,∞} such that for 𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔,

TP(𝑤) = lim sup
𝑛→∞

𝑛∑︁
𝑖=1

𝑐𝑖 .

We dene the winning condition TP≥0 = {𝑤 ∈ 𝐶𝜔 | TP(𝑤) ≥ 0} as the set of innite words
whose total payo is non-negative.

The right congruence ∼ of TP≥0 does not have nite index, even for 𝐶 = {−1, 1}: we indeed
have that (−1) � (−1) (−1) � . . .. Condition TP≥0 is therefore notM-prex-independent for any
skeletonM. We can also show that TP≥0 is notM-cycle-consistent for anyM, using the exact
same argument as forMP≥0. Chromatic-nite-memory strategies are therefore insucient to
play optimally for TP≥0 in innite arenas. Once again, this situation contrasts with the case of
nite arenas, in which memoryless strategies suce to play optimally [24].

7. Conclusion

We proved an equivalence between chromatic-nite-memory determinacy of a winning con-
dition in games on innite graphs and 𝜔-regularity of the corresponding language of innite
words, generalizing a result by Colcombet and Niwiński [17]. A “strategic” consequence of our
result is that chromatic-nite-memory determinacy in one-player games of both players implies
the seemingly stronger chromatic-nite-memory determinacy in zero-sum games. A “language-
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theoretic” consequence is a relation between the representation of 𝜔-regular languages by
parity automata and the memory structures used to play optimally in zero-sum games, using as
a tool the minimal-state automata classifying the equivalence classes of the right congruence.

For future work, one possible improvement over our result is to deduce tighter chromatic
memory requirements in two-player games compared to one-player games. Our proof technique
gives as an upper bound on the two-player memory requirements a product between the
minimal-state automaton and a sucient skeleton for one-player arenas, but smaller skeletons
often suce. We do not know whether the product with the minimal-state automaton is
necessary in general in order to play optimally in two-player arenas (although it is necessary in
Theorem 3.6 to describe𝑊 using a parity automaton). This behavior contrasts with the case of
nite arenas, in which it is known that a skeleton sucient for both players in nite one-player
arenas also suces in nite two-player arenas [6, 8]. More generally, it would be interesting to
characterize precisely the (chromatic) memory requirements of 𝜔-regular winning conditions,
extending work on the subclass of Muller conditions [18, 11].
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Nathanaël Fijalkow. Optimal transformations of
games and automata using Muller conditions. 48th
International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198
of LIPIcs, 123:1–123:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021 DOI (8, 19).

[13] Krishnendu Chatterjee and Laurent Doyen.
Perfect-information stochastic games with
generalized mean-payoff objectives. Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA,
July 5-8, 2016, pages 247–256. ACM, 2016 DOI
(4).

[14] Krishnendu Chatterjee, Laurent Doyen, and
Thomas A. Henzinger. Expressiveness and closure
properties for quantitative languages. Proceedings
of the 24th Annual IEEE Symposium on Logic in
Computer Science, LICS 2009, 11-14 August 2009,
Los Angeles, CA, USA, pages 199–208. IEEE
Computer Society, 2009 DOI (36).

[15] Krishnendu Chatterjee and Nathanaël Fijalkow.
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A. Proof of claim from Section 1

We argue that the result on the strategy complexity of nitary games in [15, Theorem 2], men-
tioned in Section 1 (paragraph Related works), also apply to our setting. The main dierence is
that our setting considers arenas with edges labeled with colors rather than states. As we have
discussed, this dierence may in general have an impact on the strategy complexity [25, 17].
However, we argue that this dierence has no impact for the strategy complexity of nitary
games as dened in [15]. A similar argument was stated in [17] to transfer the memoryless
determinacy of parity conditions from state-labeled to edge-labeled arenas. We refer to [15]
for formal denitions of nitary conditions. Informally, nitary Büchi is a winning condition
dened over the alphabet of colors 𝐶 = {0, 1}. It contains the innite words for which there
exists a uniform bound 𝑁 ∈ N such that each 1 is followed by a 0 after at most 𝑁 steps.

LEMMA A.1 ([15, Theorem 2] for edge-labeled arenas). For nitary Büchi games, P1 has a
memoryless optimal strategy in all innite (edge-labeled) arenas.

PROOF (SKETCH) . Let 𝐶 = {0, 1}. LetA = (𝑆, 𝑆1, 𝑆2, 𝐸) be an (edge-labeled) arena, as dened
in Section 2, and𝑊 be a nitary Büchi condition. We transformA into a state-labeled arena
A′ = (𝑆′, 𝑆′1, 𝑆′2, 𝐸′, 𝑐) such that 𝐸′ ⊆ 𝑆 × 𝑆 and 𝑐 : 𝑆 → 𝐶 labels each state with a color. For each
edge 𝑒 ∈ 𝐸, we dene a new state 𝑠𝑒 to which we assign the color col(𝑒), and we insert this state
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between in(𝑒) and out(𝑒). To any other state, we assign the color 1. We dene

𝑆′1 = 𝑆1 ] {𝑠𝑒 | 𝑒 ∈ 𝐸, in(𝑒) ∈ 𝑆1}, 𝑆′2 = 𝑆2 ] {𝑠𝑒 | 𝑒 ∈ 𝐸, in(𝑒) ∈ 𝑆2}, 𝑆′ = 𝑆′1 ] 𝑆′2,

𝐸′ = {(in(𝑒), 𝑠𝑒) | 𝑒 ∈ 𝐸} ] {(𝑠𝑒, out(𝑒)) | 𝑒 ∈ 𝐸},
for 𝑠 ∈ 𝑆, 𝑐(𝑠) = 1, and for 𝑒 ∈ 𝐸, 𝑐(𝑠𝑒) = col(𝑒).

There is a natural bijection between strategies onA and strategies onA′ which preserves the
memoryless feature of strategies. Moreover, the winning feature of strategies is also preserved:
the innite words of colors seen in the state-labeled arena will be the same as the ones in the
edge-labeled arenas, with extra 1’s in every other position. This alteration does not change the
winning status of innite words for the nitary Büchi condition. We can therefore reuse [15,

Theorem 2] onA′, and recover a memoryless optimal strategy of P1 onA. �

An example showing that P2 needs innite memory to play optimally in some state-labeled
arena for nitary Büchi conditions [15, Example 1] can also be easily transformed to work with
edge-labeled arenas. Similar arguments can be used to show that P1 has optimal strategies
based on a skeleton for nitary parity conditions in edge-labeled arenas.

B. Missing proofs of Section 6

We prove statements that were given without proof in Section 6.1 about the discounted-sumwin-
ning condition: Proposition 6.1, as well as the two properties used in the proof of Proposition 6.2
(Propositions B.1 and B.2).

PROPOS IT ION 6.1. For all bounded 𝐶 ⊆ Q, 𝜆 ∈ (0, 1) ∩ Q, winning condition DS≥0
𝜆

isMtriv-
cycle-consistent.

PROOF. Let 𝑤 ∈ 𝐶∗. We show that (col(Γlose,𝑤Mtriv
))𝜔 ⊆ 𝑤−1DS≥0

𝜆
—we discuss how to adapt the

proof to show that (col(Γwin,𝑤Mtriv
))𝜔 ⊆ 𝑤−1DS≥0

𝜆
at the end. Let𝑤1, 𝑤2, . . . ∈ col(Γlose,𝑤Mtriv

). We want to

show that 𝑤𝑤1𝑤2 . . . ∈ DS≥0
𝜆
, i.e., that DS𝜆 (𝑤𝑤1𝑤2 . . .) < 0.

For 𝑘 ≥ 1, as 𝑤𝑘 ∈ Γlose,𝑤Mtriv
, we have DS𝜆 (𝑤𝑤𝜔

𝑘
) < 0. Since, moreover,

DS𝜆 (𝑤𝑤𝜔
𝑘 ) = DS𝜆 (𝑤) + 𝜆 |𝑤|DS𝜆 (𝑤𝜔

𝑘 )

= DS𝜆 (𝑤) + 𝜆 |𝑤|
∞∑︁
𝑖=0

𝜆𝑖 |𝑤𝑘 |DS𝜆 (𝑤𝑘)

= DS𝜆 (𝑤) + 𝜆 |𝑤|DS𝜆 (𝑤𝑘)
1

1 − 𝜆 |𝑤𝑘 |
,

we obtain

DS𝜆 (𝑤𝑘) < −DS𝜆 (𝑤)
1 − 𝜆 |𝑤𝑘 |

𝜆 |𝑤| . (3)
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In particular, for 𝑘 = 1, there exists 𝜀 > 0 such that

DS𝜆 (𝑤1) = −𝜀 − DS𝜆 (𝑤)
1 − 𝜆 |𝑤1 |

𝜆 |𝑤| . (4)

We have that

DS𝜆 (𝑤𝑤1𝑤2 . . .) = DS𝜆 (𝑤) + 𝜆 |𝑤|
∞∑︁
𝑘=1

𝜆
∑𝑘−1

𝑖=1 |𝑤𝑖 |DS𝜆 (𝑤𝑘)

≤ DS𝜆 (𝑤) − 𝜆 |𝑤|𝜀 − 𝜆 |𝑤|
∞∑︁
𝑘=1

𝜆
∑𝑘−1

𝑖=1 |𝑤𝑖 |DS𝜆 (𝑤)
1 − 𝜆 |𝑤𝑘 |

𝜆 |𝑤|

≤ DS𝜆 (𝑤) − 𝜆 |𝑤|𝜀 − DS𝜆 (𝑤)
∞∑︁
𝑘=1

𝜆
∑𝑘−1

𝑖=1 |𝑤𝑖 | (1 − 𝜆 |𝑤𝑘 |),

where the second line uses (4) for 𝑘 = 1, and (3) for 𝑘 ≥ 2. The series
∞∑︁
𝑘=1

𝜆
∑𝑘−1

𝑖=1 |𝑤𝑖 | (1 − 𝜆 |𝑤𝑘 |) =
∞∑︁
𝑘=1

𝜆
∑𝑘−1

𝑖=1 |𝑤𝑖 | − 𝜆
∑𝑘

𝑖=1 |𝑤𝑖 |

is telescoping (we can expand it as 1−𝜆 |𝑤1 |+𝜆 |𝑤1 |−𝜆 |𝑤1 |+|𝑤2 |+𝜆 |𝑤1 |+|𝑤2 |−. . .). As lim𝑘→∞ 𝜆
∑𝑘

𝑖=1 |𝑤𝑖 | = 0,
this series converges to 1. We conclude that

DS𝜆 (𝑤𝑤1𝑤2 . . .) ≤ −𝜆 |𝑤|𝜀 < 0,

as required. A proof that (col(Γwin,𝑤Mtriv
))𝜔 ⊆ 𝑤−1DS≥0

𝜆
can be done in a similar way, with no need

to extract an 𝜀 as we are then only looking for a non-strict inequality. �

We now prove the two properties used in Proposition 6.2 whose proofs were omitted. We
use notations from the proof of Proposition 6.2 itself.

PROPOS IT ION B .1. Let 𝜆 ∈ (0, 1) ∩ Q, 𝑘 ∈ Z such that 𝑘 ≥ d1𝜆 − 1e, and 𝐶 = [−𝑘, 𝑘] ∩ Z. For
any real number 𝑥, −𝑘

1−𝜆 ≤ 𝑥 ≤ 𝑘
1−𝜆 , there exists 𝑤 ∈ 𝐶𝜔 such that 𝑥 = DS𝜆 (𝑤).

PROOF. This problem can be rephrased as a number representation problem: we are looking
for a sequence of “digits” (𝑥𝑖)𝑖≥0 in 𝐶 such that 𝑥 = 𝑥0.𝑥1𝑥2 . . . in base 1

𝜆 , i.e., such that

𝑥 =

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 .

Notice that
∑∞

𝑖=0 𝑥𝑖𝜆
𝑖 = DS𝜆 (𝑥0𝑥1 . . .). It is known that every number 𝑥 ∈ [0, 1) has (at least) one

representation 0.𝑥1𝑥2 . . . in base 1
𝜆 with digits in {0, 1, . . . , d1𝜆 − 1e}, and one such representation

can be found using the greedy expansion [40].
We adapt this greedy expansion to our setting (for a potentially greater 𝑥 and larger set 𝐶

of digits). Let 𝑥 ∈ R such that −𝑘
1−𝜆 ≤ 𝑥 ≤ 𝑘

1−𝜆 . We deal with the case 𝑥 ≥ 0 — the negative case is
symmetric. We set 𝑥0 = min(𝑘, b𝑥c); clearly, 𝑥0 ≤ 𝑥. Then inductively, if 𝑥0, . . . , 𝑥𝑙−1 have been
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dened, we dene 𝑥𝑙 as the greatest integer in {0, . . . , 𝑘} such that
𝑙∑︁

𝑖=0
𝑥𝑖𝜆

𝑖 ≤ 𝑥.

The series
∑∞

𝑖=0 𝑥𝑖𝜆
𝑖 is converging, as every term is non-negative and it is bounded from above

by 𝑥. We show that it converges to 𝑥, which ends the proof. Let 𝜀 ≥ 0. Assume by contradiction
that

∑∞
𝑖=0 𝑥𝑖𝜆

𝑖 ≤ 𝑥 − 𝜀. Let 𝑗 be the least index such that 𝜆 𝑗 ≤ 𝜀. Clearly, for any 𝑗′ ≥ 𝑗, 𝑥 𝑗 ′ = 𝑘 —
otherwise, a greater digit could have been picked during the inductive greedy selection. Still,
not every digit 𝑥0, 𝑥1, . . . can be 𝑘, as

∑∞
𝑖=0 𝑘𝜆

𝑖 = 𝑘
1−𝜆 > 𝑥 − 𝜀. Let 𝑙 be the greatest index such

that 𝑥𝑙 ≠ 𝑘. We show that a digit ≥ 𝑥𝑙 + 1 should have been picked instead of 𝑥𝑙 for the digit at
index 𝑙, leading to a contradiction. To do so, it is sucient to show that

(𝑥𝑙 + 1)𝜆𝑙 +
𝑙−1∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 ≤ 𝑥.

We have

(𝑥𝑙 + 1)𝜆𝑙 +
𝑙−1∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 =

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 + 𝜆𝑙 −

∞∑︁
𝑖=𝑙+1

𝑥𝑖𝜆
𝑖

=

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 + 𝜆𝑙 −

∞∑︁
𝑖=𝑙+1

𝑘𝜆𝑖 as 𝑥𝑖 = 𝑘 for 𝑖 ≥ 𝑙 + 1

=

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 + 𝜆𝑙 − 𝑘𝜆𝑙+1

1 − 𝜆

=

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 + 𝜆𝑙 (1 − 𝑘𝜆

1 − 𝜆
).

Since 𝑘𝜆
1−𝜆 ≥ d 1𝜆−1e𝜆

1−𝜆 = d1−𝜆𝜆 e 𝜆
1−𝜆 ≥ 1, we have that 𝜆𝑙 (1 − 𝑘𝜆

1−𝜆 ) ≤ 0, which implies that

(𝑥𝑙 + 1)𝜆𝑙 +
𝑙−1∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 ≤

∞∑︁
𝑖=0

𝑥𝑖𝜆
𝑖 < 𝑥,

a contradiction. We conclude that 𝑥 = DS𝜆 (𝑥0𝑥1 . . .). �

PROPOS IT ION B .2. Let 𝜆 ∈ (0, 1) ∩ Q, 𝑘 ∈ Z such that 𝑘 ≥ d1𝜆 − 1e, and 𝐶 = [−𝑘, 𝑘] ∩ Z. If
𝜆 ≠ 1

𝑛 for all integers 𝑛 ≥ 1, the gap function takes innitely many values.

PROOF. We assume that 𝜆 =
𝑝
𝑞 with 𝑝, 𝑞 ∈ N co-prime, 𝑝 ≥ 2 and 𝑞 > 𝑝, and we show that the

gap function takes innitelymany values. To do so, we exhibit an innite word𝑤 = 𝑐1𝑐2 . . . ∈ 𝐶𝜔

such that the sequence of rationals (gap(𝑐1 . . . 𝑐𝑖))𝑖≥1 never takes the same value twice.
We will use the following inductive property of gaps: for 𝑤 ∈ 𝐶∗ and 𝑐 ∈ 𝐶,

gap(𝑤𝑐) = gap(𝑤)
𝜆

+ 𝜆 |𝑤|−1𝑐

𝜆 |𝑤| =
1
𝜆
(gap(𝑤) + 𝑐) , (5)
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unless some gap in this equation equals > or ⊥. Notice that under our hypotheses, d1𝜆 − 1e = b 1𝜆 c
(this equality is not veried when 𝜆 = 1

𝑛 for some integer 𝑛 ≥ 1).
We set 𝑐1 = 1. Then, gap(𝑐1) = 1

𝜆 =
𝑞
𝑝 . Inductively, if 𝑐1, . . . , 𝑐𝑖−1 are dened, we set

𝑐𝑖 = −bgap(𝑐1 . . . 𝑐𝑖−1)c (we remove the largest possible integer from the current gap, while
keeping a positive gap value). We set 𝑔𝑖 = gap(𝑐1 . . . 𝑐𝑖) for conciseness.

We rst show that if all 𝑔𝑖 ’s are rational, then no two 𝑔𝑖 ’s can be equal. To do so, we show
inductively that the reduced denominator of fraction 𝑔𝑖 is 𝑝𝑖 for all 𝑖 ≥ 1. This is true for 𝑖 = 1.
For 𝑖 > 1, assume it is true for 𝑖 − 1. Then, 𝑔𝑖−1 = 𝑚

𝑝𝑖−1
for some 𝑚 co-prime with 𝑝. Using (5),

𝑔𝑖 =
1
𝜆
· (𝑔𝑖−1 + 𝑐𝑖) =

1
𝜆
·
(
𝑚

𝑝𝑖−1
+ 𝑐𝑖

)
=
𝑞(𝑚 + 𝑐𝑖𝑝

𝑖−1)
𝑝𝑖

.

This last fraction is irreducible: 𝑞 and 𝑝 are co-prime, and the fact that 𝑚 and 𝑝 are co-prime
implies that 𝑚 + 𝑐𝑖𝑝

𝑖−1 and 𝑝 are co-prime.
We now prove by induction that our scheme is well-dened by showing that for all 𝑖 ≥ 1,

𝑐𝑖 ∈ 𝐶 and 0 < 𝑔𝑖 ≤ 1
𝜆 . This is true for 𝑖 = 1 (as 𝑘 ≥ 1 for any possible value of 𝜆). For 𝑖 > 1, if

this is true for 𝑖 − 1, then −𝑐𝑖 = b𝑔𝑖−1c ≤ b 1𝜆 c, so 𝑐𝑖 ∈ 𝐶. Moreover, 𝑔𝑖 = 1
𝜆 (𝑔𝑖−1 + 𝑐𝑖). Since 𝑔𝑖 ’s

cannot be integers (as their reduced denominator is not 1 by an earlier property), we have that
𝑔𝑖−1 + 𝑐𝑖 is not an integer either. Therefore, 0 < 𝑔𝑖−1 + 𝑐𝑖 < 1, so 0 < 𝑔𝑖 <

1
𝜆 . As

1
𝜆 < 𝑘

1−𝜆 = maxDS,
the values of the considered gaps are never > or ⊥. �

REMARK B .3. For 𝜆 ∈ (0, 1)∩Qwith 𝜆 ≠ 1
𝑛 for all integers 𝑛 ≥ 1, 𝑘 ≥ d1𝜆−1e, and𝐶 = [−𝑘, 𝑘]∩Z,

Proposition 6.2 along with Theorem 3.6 implies that any chromatic skeleton is insucient to
play optimally (for at least one player). However, this does not directly give an explicit arena in
which some player requires innite memory to play optimally. Here, we show how to construct
such an arena given the extra results from Appendix B.

The proof of Proposition B.2 gives us 𝑐1𝑐2 . . . ∈ 𝐶𝜔 such that (gap(𝑐1 . . . 𝑐𝑖))𝑖≥1 is a sequence
of distinct values in [0,maxDS]. Hence, by compacity of [0,maxDS], there exists a subsequence
(𝑖 𝑗) 𝑗≥1 and 𝑥 ∈ [0,maxDS] such that lim 𝑗→∞ gap(𝑐1 . . . 𝑐𝑖 𝑗) = 𝑥. We can further extract a
subsequence such that either all elements are greater than 𝑥, or all elements are less than 𝑥.
We assume w.l.o.g. that for all 𝑗 ≥ 1, gap(𝑐1 . . . 𝑐𝑖 𝑗) < 𝑥 (this implies that 𝑥 ≠ 0). The proof is
symmetric if all the gaps are greater than 𝑥 (which would imply that 𝑥 ≠ maxDS).

By Proposition B.1, for all 𝜀 > 0 suciently small, there exists𝑤𝜀 ∈ 𝐶𝜔 such that DS𝜆 (𝑤𝜀) =
−𝑥 + 𝜀. We can dene an innite arena in which P2 needs innite memory to win, depicted in
Figure 14. In this arena, P1 may choose to reach a gap arbitrarily close (but not equal) to 𝑥 in 𝑠2,
and then P2 is always able to bring the discounted sum below 0 by choosing a word reaching a
discounted sum suciently close to −𝑥.

We now prove the claim about the mean-payo condition (Section 6.2) stating that it is not
M-cycle-consistent for anyM.



48 / 48 P. Bouyer, M. Randour and P. Vandenhove

𝑠1 𝑠2 . . .

...𝑐1 . . . 𝑐𝑖1

𝑐1 . . . 𝑐𝑖2
...

𝑤1

𝑤1
2

...

Figure 14. Infinite arena in which P2 needs infinite memory to win from 𝑠1 for condition DS≥0
𝜆

for
𝜆 ∈ (0, 1) ∩ Q with 𝜆 ≠ 1

𝑛 for all integers 𝑛 ≥ 1, 𝑘 = d1𝜆 − 1e, and 𝐶 = [−𝑘, 𝑘] ∩ Z.

LEMMA B.4. For all skeletonsM,MP≥0 is notM-cycle-consistent.

PROOF. LetM = (𝑀,𝑚init, 𝛼upd) be a skeleton. For 𝑛 ∈ N, let

𝑤𝑛 = 1 . . . 1︸︷︷︸
𝑛 times

−1 . . .−1︸     ︷︷     ︸
𝑛+1 times

.

Let 𝑀𝑛 be the set of states 𝑚 ∈ 𝑀 such that there exists 𝑘 ≥ 1 with 𝑚 = 𝛼∗
upd(𝑚,𝑤𝑘

𝑛). Each 𝑀𝑛 is
non-empty as,𝑀 being nite, iterating the function𝑚 ↦→ 𝛼∗

upd(𝑚,𝑤𝑛) necessarily goes multiple
times through at least one state. Let 𝑚 ∈ 𝑀 be a state in set 𝑀𝑛 for innitely many 𝑛’s, and 𝑤

be any nite word in col(Π𝑚init,𝑚). Let 𝑛1, 𝑛2, . . . be the indices such that 𝑚 ∈ 𝑀𝑛𝑖 , and let
𝑘1, 𝑘2, . . . be such that 𝑚 = 𝛼∗

upd(𝑚,𝑤𝑘𝑖
𝑛𝑖). Every word 𝑤𝑘𝑖

𝑛𝑖 is a losing cycle after any nite word
(in particular after 𝑤). However, it is possible to nd a subsequence of (𝑤𝑘𝑖

𝑛𝑖)𝑖≥1 with a non-
negative mean payo by always taking a word 𝑤𝑛𝑖 that bring the sum of the colors above 0
during the rst 𝑛𝑖 1’s. �
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