
1 / 110 2024 : 12

From Muller to Parity and Rabin
Automata: Optimal
Transformations Preserving
(History) Determinism

Received May 19, 2023
Accepted Jan 21, 2024
Published Apr 23, 2024

Key words and phrases
Emerson-Lei automata,
Good-for-games automata,
Paritizing methods,
Omega-regular languages.

Antonio Casaresa � �

Thomas Colcombetb,c � �

Nathanaël Fijalkowa,b,d � �

Karoliina Lehtinenb,e � �

a LaBRI, Université de Bordeaux,
France

b CNRS, France

c IRIF, Université Paris Cité,
France

d MIMUW, University of Warsaw,
Poland

e Aix-Marseille Université, LIS,
France

ABSTRACT. We study transformations of automata and games using Muller conditions into
equivalent ones using parity or Rabin conditions. We present two transformations, one that
turns a deterministic Muller automaton into an equivalent deterministic parity automaton, and
another that provides an equivalent history-deterministic Rabin automaton. We show a strong
optimality result: the obtained automata are minimal amongst those that can be derived from
the original automaton by duplication of states. We introduce the notions of locally bijective
morphisms and history-deterministic mappings to formalise the correctness and optimality of
these transformations.

The proposed transformations are based on a novel structure, called the alternating cycle
decomposition, inspired by and extending Zielonka trees. In addition to providing optimal
transformations of automata, the alternating cycle decomposition offers fundamental informa-
tion on their structure. We use this information to give crisp characterisations on the possibility

We want to thank Klara J. Meyer and Salomon Sickert for their comments and for spotting a mistake in a previous version. We
also thank Alexandre Duret-Lutz and Florian Renkin for stimulating discussions around the alternating cycle decomposition,
and Corto Mascle for his precious suggestions about the presentation of this paper. We thank the anonymous reviewers for
their valuable feedback.
Thomas Colcombet: Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No.670624) – DuaLL – and the DeLTA ANR project (ANR-16-CE40-0007).
This article is based on a paper that appeared at ICALP 2021 [23], and incorporates material from another paper that
appeared at ICALP 2022 [24].

Cite as Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, Karoliina
Lehtinen. From Muller to Parity and Rabin Automata: Optimal Transformations
Preserving (History) Determinism. TheoretiCS, Volume 3 (2024), Article 12, 1-110.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.12

ar
X

iv
:2

30
5.

04
32

3v
3

 [
cs

.F
L

]
 1

9
A

pr
 2

02
4

mailto:antoniocasaressantos@gmail.com
https://orcid.org/0000-0002-6539-2020
mailto:thomas.colcombet@irif.fr
https://orcid.org/0000-0001-6529-6963
mailto:nathanael.fijalkow@labri.fr
https://orcid.org/0000-0002-6576-4680
mailto:lehtinen@lis-lab.fr
https://orcid.org/0000-0003-1171-8790

2 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

of relabelling automata with different acceptance conditions and to perform a systematic study
of a normal form for parity automata.

This document contains hyperlinks. Each occurrence of a notion is linked to its definition. On
an electronic device, the reader can click on words or symbols (or just hover over them on some
PDF readers) to see their definition.

1. Introduction

Context

Games and automata for LTL synthesis. Games and automata over infinite words form
the theoretical basis for the verification and synthesis of reactive systems; we refer to chapters
2, 4, and 27 of the recent Handbook of Model Checking [79, 58, 5] for a broad exposition of this
research area. A milestone objective is the synthesis of reactive systems with specifications given
in Linear Temporal Logic (LTL). The original approach of Pnueli and Rosner [80] using automata
and games devised more than four decades ago is still at the heart of the state-of-the-art synthesis
tools [39,65, 70, 73]. The limiting factor in this method is the transformation of the LTL formula to
a deterministic parity automaton. This automaton is then used to build a game, and a controller
for the reactive system can be obtained from a winning strategy for this game. Most solutions to
this problem (including the top-ranked tools in the SyntComp competitions [48], Strix [65,69] and
ltlsynt [70]) first construct a Muller (or Emerson-Lei) automaton, and then transform it into
an equivalent parity automaton (we remark that, nevertheless, synthesis procedures avoiding
the construction of deterministic automata have been proposed, for example, via the use of
universal coBüchi automata [61]). The use of an intermediate Muller automaton is also present
(although sometimes implicitly) in the most recent improvements in the determinisation of Büchi
automata towards deterministic parity automata [64, 78, 88]. For this reason, understanding
transformations of Muller automata and finding efficient procedures for them is of great
importance.

Which are the simplest acceptance conditions? There exist multiple kinds of acceptance
conditions that are commonly employed by 𝜔-automata (Büchi, Rabin, Muller...). The use of
parity conditions for LTL synthesis is justified by both practical and theoretical reasons. Firstly,
there exist several high-performing algorithms solving parity games [33, 41, 48, 62, 92], so the
last step in the LTL synthesis method described above can be carried out smoothly once the
parity game is obtained. From a theoretical point of view, parity conditions can be considered
as the simplest family of conditions that can be used to recognise all 𝜔-regular languages with
deterministic automata; it could even be argued that there is a canonical aspect to them:

3 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

The optimal number of colours needed by a parity automaton to recognise a language 𝐿
reveals a fundamental piece of information about it, called its parity index. The parity
index (sometimes called Mostowski index) yields a strict hierarchy both for deterministic
automata over words and for non-deterministic automata over trees [74, 16] (and these
hierarchies are closely related [60, 76]). In both cases, this index is a measure of the
structural complexity of automata recognising 𝐿 [93, 76] and of its topological complexity [3,
90]. Whether we can decide the parity index of a language of infinite trees represented as a
non-deterministic parity tree-automaton is a long-standing open problem [75, 30], which is
tightly related with the alternation depth of fixpoint operators in 𝜇-calculus formulas [74]
Parity languages are exactly Muller languages corresponding to families F ⊆ 2Γ

+ of subsets
of colours such that both F and its complement are closed under union (Proposition 6.4).
Parity languages are bipositional [37] (in a parity game, both players can play optimally
using positional strategies, that is, strategies that use no memory). Moreover, over infinite
game graphs, these are the only bipositional languages [31], and over finite game graphs,
these are the unique bipositional Muller languages [94].
Solving parity games is both in NP and co-NP [38] (more precisely, the problem is in
UP ∩ co-UP [49]). They can be solved in quasi-polynomial time [18], and whether they can
be solved in polynomial time is a major open question. This contrasts with the complexity
of solving Rabin and Muller games, which is, respectively, NP-complete [36] and PSPACE-
complete [47].

However, these are not the only kind of conditions that deserve our attention. In this
work, we further investigate transformations producing automata using a Rabin acceptance
condition. Although in practice solvers for Rabin games are not as developed, Rabin languages
are a natural choice and interesting from a theoretical point of view: they are exactly the
half-positional Muller languages [94], there exists a correspondence between Rabin automata
and memory structures for Muller games [21, 24], and the determinisation of Büchi automata
naturally produces Rabin automata [40, 83, 88].

Transformations of games and automata. There are various existing techniques to trans-
form Muller automata or games into parity ones. The majority of these methods involve
composing the input automatonA with a deterministic parity automaton recognising the ac-
ceptance condition used byA. The first such parity automaton was introduced by Gurevich
and Harrington in the 1980s [43] and is known as the Latest Appearance Record (LAR). Löding
proved that the LAR is optimal in the worst case [63]: there exists a family of Muller languages 𝐿𝑖
for which the LAR is minimal amongst deterministic parity automata recognising 𝐿𝑖 . However,
the LAR is far from being minimal in every case, as it only uses the information about the
size of the alphabet. Since its introduction, many refinements of the LAR have been proposed
for subclasses of Muller languages [53, 63]. The approach using composition of automata has

4 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

one significant drawback: it disregards the structure of the original automaton, and only its
acceptance condition is taken into account. Some works have explored heuristics to improve
this aspect [54, 68, 81]. These refined transformations do still have the following property:
each original state 𝑞 is turned into multiple states of the form (𝑞, 𝑥) – although this is done in a
non-uniform way, with each state possibly being copied a different number of times. In this
work, we introduce morphisms of transition systems to formalise the idea of transformations
of automata and games; if a parity automaton B has been obtained as a transformation of a
Muller automatonA, there will be a morphism 𝜑 : B → A that sends states of the form (𝑞, 𝑥)
to 𝑞. A theory of morphisms of transition systems is developed in Section 3.

History-deterministic automata. For the purposes of LTL synthesis and game transforma-
tions, it is imperative to eliminate non-determinism from automata, since non-deterministic
automata do not yield correct games. Unfortunately, deterministic automata can be exponen-
tially larger than non-deterministic ones. Recently, an intermediate model of automata, named
history-deterministic (also called good-for-games), has received considerable attention. The
reason is that history-determinism exactly captures the features of deterministic automata
that make them suitable for synthesis purposes, while being a less restrictive model. A natural
question that arises is whether history-deterministic automata can be more succinct than de-
terministic ones, and, in that case, which languages and automata types can benefit from this
succinctness. It was not until several years after the introduction of history-determinism [44,
28] that an example of an 𝜔-regular language for which history-deterministic automata are
smaller than deterministic ones was exhibited [57] (and it was even conjectured that such an
automaton could not exist [27]). History-deterministic automata are the focus of several lines of
research (we refer to the survey [14] for a detailed exposition). Despite this, a complete under-
standing of history-deterministic automata remains elusive, and their scope of applicability is
still uncertain. One key aspect that has not yet been addressed is how to design techniques as
general as possible for building history-deterministic automata. To the best of our knowledge,
the only existing result in this direction is a polynomial-time algorithm to minimise coBüchi
history-deterministic automata [1].

The Zielonka tree and the alternating cycle decomposition. The starting point of our work
is the notion of Zielonka tree, introduced by Zielonka [94] as an informative representation
of Muller languages – languages that can be described by a boolean combination of atomic
propositions of the form “the letter ‘𝑎’ appears infinitely often”. The Zielonka tree captures
many important properties of Muller languages, such as being Rabin or parity [94], and, most
importantly, it characterises their exact memory requirements, both in two-player games [34]
and stochastic games [46].

The contribution at the core of this work is a generalisation of Zielonka trees to general
Muller automata recognising any 𝜔-regular language, which we call the alternating cycle

5 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

decomposition (ACD). The ACD, greatly inspired from Wagner’s work on 𝜔-automata [93], is a
data structure that provides an abridged representation of the accepting and rejecting cycles of
the automaton, encapsulating the interplay between the structure of the underlying graph and
the acceptance condition of a Muller automaton.

Contributions

In this work, we carry out an extensive study of transformations of Muller automata and games.
We outline next our main contributions.

1. Minimal automata for Muller languages. The basis on which we build up our work is a
study of minimal automata recognising Muller languages. Using the Zielonka tree, we
propose a construction of a deterministic parity automaton recognising a Muller language
(Section 4.2). This construction implicitly appears in the long version of [34]. We show a
strong optimality result: for all Muller language 𝐿, the parity automaton obtained from
the Zielonka tree is minimal both amongst deterministic and history-deterministic parity
automata recognising 𝐿 (Theorem 4.15).1 Moreover, it uses the optimal number of output
colours to recognise 𝐿 (Theorem 4.14). The optimality result we obtain is much stronger
than the worst case optimality result of the LAR transformation [63], since it applies to every
Muller language. In particular, our characterisation yields an algorithm to minimise deter-
ministic parity automata recognising Muller languages in polynomial time (Theorem 6.32).
In light of our result, we conclude that the use of history-determinism does not yield any
gain in the state complexity of parity automata recognising Muller languages.
We further propose a construction of a history-deterministic Rabin automaton recognis-
ing a Muller language (Section 4.3), and prove that this automaton is minimal amongst
history-deterministic Rabin automata (Theorem 4.51). This construction is also based on
the Zielonka tree.
In essence, our results reinforce the idea that the Zielonka tree precisely captures the
fundamental properties of Muller languages.

2. Introducing morphisms as witnesses of transformations. In order to formalise transfor-
mations of games and automata, we develop a theory of morphisms of transition systems
(Section 3). Intuitively, a morphism 𝜑 : B → A witnesses the fact that B has been obtained
fromA by blowing up each state 𝑞 ∈ A to the states in 𝜑−1(𝑞). However, this property on its
own does not suffice to guarantee the semantic equivalence ofA and B. It is for this reason
that we introduce different variants of morphisms, offering a range of definitions with
varying degrees of restrictiveness. Two kinds of morphisms will be of central importance:
(1) locally bijective morphisms, which generalise composition with deterministic automata

1 The optimality of the Zielonka-tree-parity-automaton amongst deterministic automata has also been obtained in the
independent unpublished work [68].

6 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

and preserve determinism, and (2) history-deterministic mappings (HD mappings), which
generalise composition by history-deterministic automata and are defined using a minimal
set of hypothesis guaranteeing the semantic equivalence ofA and B.

3. The alternating cycle decomposition and optimal transformations of Muller transition
systems. In order to generalise the fruitful applications of the Zielonka tree to Muller
automata and games, we introduce the alternating cycle decomposition (ACD), a data
structure that captures the interplay of the underlying graph of these transition systems
and their acceptance condition (Section 5). Using the ACD, we describe a construction that
transforms a Muller automatonA into an equivalent parity automaton B while preserving
the determinism of A (formally, there is a locally bijective morphism 𝜑 : B → A). This
transformation comes with a strong optimality guarantee: for any other parity automatonB′

admitting a locally bijective morphism (or even HD mapping) 𝜑′ : B′→ A, the automatonB
is smaller than B′ and it uses less output colours (Theorems 5.34 and 5.35). An interesting
corollary of our result is the following: ifB is an HD parity automaton that is strictly smaller
than any deterministic parity automaton recognising L(B), then B cannot be derived from
a deterministic Muller automaton (Corollary 5.39). This result sheds light on the difficulty
to obtain succinct HD automata and their potential applicability.
We also provide a transformation that translates a Muller automaton A into a history-
deterministic Rabin automaton B in an optimal way: for any other Rabin automaton B′

admitting an HD mapping 𝜑′ : B′→ A, the automaton B is smaller than B′.
4. Structural results for Muller transition systems. The ACD does not only provide optimal

transformations of games and automata, it also features some of their fundamental struc-
tural properties. As an application, we give a set of crisp characterisations for relabelling
automata with different classes of acceptance conditions (Section 6.1). For instance, we
show that given a Muller automatonA, we can define a Rabin condition over the underlying
graph ofA obtaining an equivalent automaton if and only if the union of rejecting cycles
ofA is again a rejecting cycle. Our results unify and extend those from [7, 11, 55, 94].
In Section 6.2, we conduct a comprehensive examination of a normal form for parity
automata. This normal form implicitly appears in [19], and has since proven instrumen-
tal in proofs about history-deterministic automata [1, 35, 57], positionality of 𝜔-regular
languages [15] and learning of 𝜔-automata [6]. Similar normalisation procedures are com-
monly applied to parity games to speed up algorithms solving them [41]. We use the ACD to
provide straightforward proofs of the fundamental properties which make automata in
normal form practical in both theoretical proofs and applications.

Our model: transition systems and acceptance over edges. We want to point out a few
technical details about the model used in this paper. First, we work with general transition
systems for two reasons: (1) to seamlessly encompass both automata and games models, and

7 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

(2) to emphasise that the ACD and the transformations we propose do only depend on the
underlying graph and the acceptance condition; we can view the input letters of an automaton,
or the partition of the vertices in a game, as add-ons that do not affect the core of our approach.

Also, we define acceptance conditions over the edges of transitions systems – instead of
over the vertices. This choice has been shown to yield more canonical results in theory, for
instance, in the study of strategy complexity for games [15, 21, 31, 94], the determinisation of
Büchi automata [32, 89], or the minimisation of history-deterministic automata [1, 35]. It has
also proven to be more applicable in practical scenarios [2, 42]. We believe that the present
work provides further evidence to this claim, as the minimal automaton obtained from the
Zielonka tree, as well as the transformations based on the ACD, substantially rely on the use of
edge-based acceptance.

Finally, we remark that in this work we are concerned with state complexity, that is, the
efficiency of a construction is measured based on the number of states of the resulting transition
system. We do not focus on the representation of the acceptance conditions; for instance, we will
not differentiate between Muller or Emerson-Lei conditions, as they have the same expressive
power (see also Remark 2.11).

Follow-up work. Despite its recent introduction [23], the alternating cycle decomposition
has already found applications in both practical and theoretical scenarios. The ACD-parity-
transform has been implemented in two open-source tools: Spot 2.10 [2] and Owl 21.0 [52], and
it is used in the LTL-synthesis tools ltlsynt [2] and Strix [69]. These implementations were
presented in the conference paper [25], where transformations based on the ACD are compared
to the state-of-the-art existing paritizing methods.

The typeness results stemming from the ACD (Section 6.1) have also been proven instru-
mental in theoretical applications. They have been used to show a correspondence between
Rabin automata and memory structures for games [21], and to provide lower bounds in the size
of deterministic Rabin automata [24].

2. Preliminaries

In this section, we introduce definitions that will be used throughout the paper.

Basic definitions. For a set 𝐴, we let |𝐴| denote its cardinality, 2𝐴 its power set and 2𝐴+ = 2𝐴\{∅}.
For natural numbers 𝑖 ≤ 𝑗, [𝑖, 𝑗] stands for {𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗}.

For a set Σ, a word over Σ is a sequence of elements from Σ. An 𝜔-word (or simply an
infinite word) is a word of length 𝜔. The sets of finite and infinite words over Σ will be written
Σ∗ and Σ𝜔, respectively, and we let Σ∞ = Σ∗ ∪ Σ𝜔. Subsets of Σ∗ and Σ𝜔 will be called languages.
For a word 𝑤 ∈ Σ∞ and 𝑖 ≥ 0 we write 𝑤𝑖 to represent the 𝑖-th letter of 𝑤. We let 𝜀 denote the

8 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

empty word, and let Σ+ = Σ∗ \ {𝜀}. The concatenation of two words 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ∞ is written
𝑢 · 𝑣, or simply 𝑢𝑣. If 𝑢 = 𝑣 · 𝑤, for 𝑣 ∈ Σ∗ and 𝑢, 𝑤 ∈ Σ∞, we say that 𝑣 is a prefix of 𝑢, and we
write 𝑣 ⊑ 𝑢. For a word 𝑤 ∈ Σ𝜔, we let Inf(𝑤) = {𝑎 ∈ Σ | 𝑤𝑖 = 𝑎 for infinitely many 𝑖 ∈ N}.

We say that a language 𝐿 ⊆ Σ𝜔 is prefix-independent if for all 𝑤 ∈ Σ𝜔 and 𝑢 ∈ Σ∗ we have
that 𝑢𝑤 ∈ 𝐿 if and only if 𝑤 ∈ 𝐿.

Given a map 𝛼 : 𝐴→ 𝐵, we will extend 𝛼 to words component-wise, i.e., 𝛼 : 𝐴∞ → 𝐵∞ will
be defined as 𝛼(𝑤0𝑤1𝑤2 . . .) = 𝛼(𝑤0)𝛼(𝑤1)𝛼(𝑤2) We will use this convention throughout
the paper without explicitly mentioning it. If 𝐴′ ⊆ 𝐴, we denote 𝛼|𝐴′ the restriction of 𝛼 to 𝐴′.
We let Id𝐴 be the identity function on 𝐴. We write 𝛼 : 𝐴⇀𝐵 if 𝛼 is a partial mapping (it is defined
only over some subset of 𝐴).

In this work, we will use the term graph to denote what is sometimes called a directed
multigraph: A graph is a tuple 𝐺 = (𝑉, 𝐸, Source, Target), where 𝑉 is a set of vertices, 𝐸 a set of
edges and Source : 𝐸 → 𝑉 and Target : 𝐸 → 𝑉 are maps indicating the source and target for each
edge. A path is a (finite or infinite) sequence 𝜌 = 𝑒0𝑒1... ∈ 𝐸∞ such that Source(𝑒𝑖) = Target(𝑒𝑖−1),
for all 𝑖 > 0. For notational convenience, we write 𝑣0

𝑒0−→ 𝑣1 · · ·
𝑒𝑛−1−−−→ 𝑣𝑛 to denote a finite

path from 𝑣0 = Source(𝑒0) to 𝑣𝑛 = Target(𝑒𝑛−1), and we let Source(𝜌) = 𝑣0 and Target(𝜌) = 𝑣𝑛.
For 𝐴 ⊆ 𝑉 , we let Pathfin

𝐴 (𝐺) and Path𝐴(𝐺) denote, respectively, the set of finite and infinite
paths on 𝐺 starting from some 𝑣 ∈ 𝐴 (we omit brackets if 𝐴 = {𝑣} is a singleton). We let
Path∞𝐴 (𝐺) = Pathfin

𝐴 (𝐺) ∪ Path𝐴(𝐺). For a subset of vertices 𝐴 ⊆ 𝑉 we write:
In(𝐴) = {𝑒 ∈ 𝐸 | Target(𝑒) ∈ 𝐴},
Out(𝐴) = {𝑒 ∈ 𝐸 | Source(𝑒) ∈ 𝐴}.

All graphs considered in this paper will be finite.
A graph is strongly connected if there is a path connecting each pair of vertices. A subgraph

of (𝑉, 𝐸, Source, Target) is a graph (𝑉 ′, 𝐸′, Source′, Target′) such that 𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸 and Source′

and Target′ are the restrictions of Source and Target to 𝐸′, respectively. A strongly connected
component (SCC) is a maximal strongly connected subgraph. We say that a SCC is final if there is
no edge leaving it. We say that a vertex 𝑣 is recurrent if it belongs to some SCC, and that it is
transient on the contrary.

2.1 Transition systems, automata and games

Transition systems. A pointed graph 𝐺 = (𝑉, 𝐸, Source, Target, 𝐼) is a graph together with a
non-empty subset of initial vertices 𝐼 ⊆ 𝑉 . An acceptance condition over 𝐺 is a tuple Acc =

(𝛾, Γ,W) where Γ is a finite set of colours, 𝛾 : 𝐸 → Γ ∪ {𝜀} is an edge-colouring of 𝐺 andW ⊆ Γ𝜔

is a language of infinite words called the acceptance set. We allow uncoloured edges (𝜀-edges),
but we impose the condition that no infinite path of 𝐺 is eventually composed exclusively of
𝜀-edges (that is, every cycle contains some edge 𝑒 with 𝛾(𝑒) ≠ 𝜀).

9 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

A transition system (abbreviated TS) is a tuple TS = (𝐺TS ,AccTS), consisting in a pointed
graph 𝐺TS = (𝑉, 𝐸, Source, Target, 𝐼), called the underlying graph of TS, and an acceptance
condition AccTS = (𝛾, Γ,W) over 𝐺TS. We will also refer to vertices and edges as states and
transitions, respectively. We write 𝑣

𝑐−→ 𝑣′ if there is 𝑒 ∈ 𝐸 such that Source(𝑒) = 𝑣, Target(𝑒) = 𝑣′

and 𝛾(𝑒) = 𝑐. We will assume for technical convenience that transition systems contain no sink,
that is, every vertex has at least one outgoing edge. For any non-empty subset of vertices 𝐼 ⊆ 𝑉 ,
we let TS𝐼 be the transition system obtained from TS by setting 𝐼 to be its set of initial vertices.
The size of a transition system TS is the cardinality of its set of vertices, written |TS|.

A run on a transition system TS (or on a pointed graph) is a (finite or infinite) path
𝜌 = 𝑒0𝑒1 · · · ∈ 𝐸∞ starting from an initial vertex, that is, Source(𝑒0) ∈ 𝐼 . We let Runfin(TS)
and Run (TS) be the set of finite and infinite runs on TS, respectively, and we let Run∞(TS) =
Runfin(TS) ∪ Run (TS). (We note that Run (TS) = Path 𝐼 (𝐺TS).)

The output of a run 𝜌 ∈ Run∞(TS) is the sequence of colours in Γ∞ obtained by removing
the occurrences of 𝜀 from 𝛾(𝜌); which we will also denote 𝛾(𝜌) by a small abuse of notation. A
run 𝜌 is accepting if 𝛾(𝜌) ∈ W, and rejecting otherwise (in particular, finite runs will be rejecting).
We write 𝜌 = 𝑣

𝑤
𝑣′ to denote a run with Source(𝜌) = 𝑣, Target(𝜌) = 𝑣′ and 𝛾(𝜌) = 𝑤.

We say that a vertex 𝑣 ∈ 𝑉 is accessible (or reachable) from a vertex 𝑣0 if there exists a
finite path from 𝑣0 to 𝑣. We say that 𝑣 is accessible if it is accessible from some initial vertex.
A set of states 𝐵 ⊆ 𝑉 is accessible if every state 𝑣 ∈ 𝐵 is accessible. The accessible part of a
transition system is the set of accessible states. We define analogously the accessible part from a
vertex 𝑣0.

A labelled graph (𝐺, (𝑙𝑉 , 𝐿𝑉), (𝑙𝐸, 𝐿𝐸)) is a graph together with labelling functions 𝑙𝑉 : 𝑉 →
𝐿𝑉 , 𝑙𝐸 : 𝐸 → 𝐿𝐸, where 𝐿𝑉 and 𝐿𝐸 are sets of labels for vertices and edges, respectively. If
only the first (resp. the second) of these labelling functions appears, we will use the terms
vertex-labelled (resp. edge-labelled) graphs. A labelled transition system is a transition system
with labelled underlying graph.

REMARK 2 .1. We remark that, whenever necessary, we can assume without loss of generality
that in the acceptance condition Acc = (𝛾, Γ,W) of a transition system, Γ = 𝐸 is the whole set of
edges and 𝛾 is the identity function. Indeed, an equivalent acceptance condition can always be
defined by using the acceptance setW′ = {𝑤 ∈ 𝐸𝜔 | 𝛾(𝑤) ∈ W} ⊆ 𝐸𝜔.

Automata. A (non-deterministic) automaton over Σ is an edge-labelled transition systemA =

(𝐺A ,AccA , (𝑙Σ, Σ)), where Σ is a finite set of input letters. Let A be an automaton with 𝐺A =

(𝑄, Δ, Source, Target, 𝐼) as underlying graph and AccA = (𝛾, Γ,W) as acceptance condition. We
write 𝑒 = 𝑞

𝑎:𝑐−−→ 𝑞′ to denote that 𝑒 ∈ Δ satisfies 𝑙Σ(𝑒) = 𝑎 and 𝛾(𝑒) = 𝑐. We can assume that
Δ ⊆ 𝑄 × Σ × Γ × 𝑄. We define:

𝛿(𝑞, 𝑎) = {(𝑞′, 𝑐) ∈ 𝑄 × Γ | there is 𝑒 = 𝑞
𝑎:𝑐−−→ 𝑞′ ∈ Δ}.

10 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We note that we can now recover the classical representation of an automaton as a tuple
A = (𝑄, Σ, 𝐼 , Γ, 𝛿,W), (or (𝑄, Σ, 𝐼 , Γ, Δ,W)) which we might use when working exclusively with
automata.

We say that an automaton A is deterministic if 𝐼 is a singleton and for every 𝑞 ∈ 𝑄 and
𝑎 ∈ Σ, |𝛿(𝑞, 𝑎) | ≤ 1. We say that A is complete if for every 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, |𝛿(𝑞, 𝑎) | ≥ 1. We
remark that we can assume that automata are complete without loss of generality by adding a
sink state.

Given an automaton A and a word 𝑤 ∈ Σ∞, a run over 𝑤 in A is a run 𝜌 = 𝑒0𝑒1 · · · ∈
Run∞(A) such that 𝑙Σ(𝑒𝑖) = 𝑤𝑖 for all 𝑖 ≥ 0. A word 𝑤 ∈ Σ𝜔 is accepted by A if there is a

run over 𝑤 that is accepting (that is, a run 𝜌 such that 𝛾(𝜌) ∈ W). The language accepted (or
recognised) by an automatonA is the set

L(A) := {𝑤 ∈ Σ𝜔 | 𝑤 is accepted byA}.

Two automata recognising the same language are said to be equivalent.
We remark that ifA is deterministic (resp. complete), there is at most one (resp. at least

one) run over 𝑤 for each 𝑤 ∈ Σ∞.
Given a subgraph 𝐺′ of the underlying graph of an automaton A and a subset of states

𝐼′ in 𝐺′, the subautomaton induced by 𝐺′ with initial states 𝐼′ is the automaton having 𝐺′ as
underlying graph, 𝐼′ as set of initial states, and whose acceptance condition and labelling with
input letters are the restrictions of those ofA.

History-deterministic automata. LetA be a (non-deterministic) automaton over Σ with Δ
as set of transitions and 𝐼 as set of initial states. A resolver for A is a pair (𝑟0, 𝑟), consisting
of a choice of an initial state,2 𝑟0 ∈ 𝐼 , and a function 𝑟 : Δ∗ × Σ → Δ such that for all words
𝑤 = 𝑤0𝑤1 · · · ∈ Σ𝜔, the sequence 𝑒0𝑒1 · · · ∈ Δ𝜔, called the run induced by 𝑟 over 𝑤 and defined
by 𝑒𝑖 = 𝑟(𝑒0 . . . 𝑒𝑖−1, 𝑤𝑖) is actually a run over 𝑤 inA starting from 𝑟0. We say that the resolver
is sound if it satisfies that for every 𝑤 ∈ L(A), the run induced by 𝑟 over 𝑤 is an accepting run.
In other words, 𝑟 should be able to construct an accepting run inA letter-by-letter with only
the knowledge of the word so far, for all words in L(A). An automaton A is called history-
deterministic (shortened HD, also called good-for-games in the literature) if there is a sound
resolver for it.

REMARK 2 .2. Deterministic automata are history-deterministic, and they admit a unique
resolver.

2 Sometimes in the literature [9, 14, 44] the initial state 𝑟0 is not required to be specified. This would permit to choose it
after the first letter 𝑤0 is given. We consider that a resolver constructing a run without guessing the future should
pick the initial state before the first letter is revealed, hence the introduction of 𝑟0 in the definition of a resolver. The
suitability of this choice will be further supported by the generalisation of HD automata to HD mappings (Section 3.3).

11 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

EXAMPLE 2 .3. In Figure 1, we show an automatonA over Σ = {𝑎, 𝑏, 𝑐} that is not deterministic
(as it has two 𝑏-transitions from 𝑞1) but is history-deterministic. Its set of output colours is
Γ = {1, 2} and its acceptance set isW = {𝑢 ∈ {1, 2}𝜔 | 𝑢 contains finitely many 1𝑠} (this is a
coBüchi condition, as introduced in the next section). It is easy to check thatA recognises the
language:

L(A) = {𝑤 ∈ Σ𝜔 | Inf(𝑤) ⊆ {𝑎, 𝑏} or Inf(𝑤) ⊆ {𝑏, 𝑐}}.

A resolver for A only has to take a decision when the automaton is in the state 𝑞1 and
letter 𝑏 is provided. In this case, a sound resolver is obtained by using the following strategy:
if the last letter seen was 𝑎, we take the transition leading to state 𝑞0; if it was 𝑐, we take the
transition leading to 𝑞2. This strategy ensures that, if eventually only letters in {𝑎, 𝑏} (resp.
{𝑏, 𝑐}) are seen, the run will end up in state 𝑞0 (resp. 𝑞2) and remain there indefinitely, without
producing any colour 1.

q0 q1 q2

a, b : 2

c : 1

a, b : 2 b, c : 2

a : 1

b, c : 2

Figure 1. An example of a history-deterministic automaton that is not deterministic. The acceptance
set isW = {𝑢 ∈ {1, 2}𝜔 | 𝑢 contains finitely many 1𝑠}. An arrow of the form 𝑞

𝑎,𝑏:2−−−−→ 𝑞′ represents two
different transitions with input letters 𝑎 and 𝑏, respectively. The initial state 𝑞0 is marked with one
incoming arrow.

■

We say that a state 𝑞 is reachable using the resolver (𝑟0, 𝑟) if there is a finite run 𝜌 = 𝑟0 𝑞

such that 𝜌 is the run induced by 𝑟 over some word 𝑤 ∈ Σ∗.
The next remark indicates that we can assume without loss of generality that all states in

an HD automaton are reachable using some sound resolver.

REMARK 2 .4. LetA be an HD automaton, let (𝑟0, 𝑟) be a sound resolver for it and let Ã be
the subautomaton induced by the set of states reachable using (𝑟0, 𝑟), with initial state 𝑟0. Then,
L(A) = L(Ã).

The next lemma provides a simplification for automata recognising prefix-independent
languages. Its proof can be found in Appendix C. Together with Remark 2.4, it indicates that
when dealing with HD automata for this kind of languages, we can assume that any state of the
automaton is the initial one. In particular there will be no need to specify the initial states of
subautomata induced by subgraphs of HD automata recognising prefix-independent languages.

12 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 2.5. Let A be a history-deterministic automaton recognising a prefix-independent
language and using as acceptance set a prefix-independent language. For any state 𝑞 ofA that
is reachable using some sound resolver, it holds thatA recognises the same language if we fix 𝑞
as initial state, that is, L(A) = L(A𝑞). Moreover,A𝑞 is also history-deterministic. In particular,
ifA is deterministic, this is the case for any reachable state 𝑞.

Games. A game is a vertex-labelled transition system G =
(
𝐺G ,AccG , (𝑙Players, {Eve,Adam})

)
,

with 𝐺G = (𝑉, 𝐸, Source, Target, 𝐼) a pointed graph, and 𝑙Players : 𝑉 → {Eve,Adam} a vertex-
labelling function inducing a partition of 𝑉 into vertices controlled by two players that we refer
to as Eve and Adam. We let 𝑉Eve = 𝑙

−1
Players(Eve) and 𝑉Adam = 𝑙−1

Players(Adam).
During a play, players move a token from one vertex to another for an infinite amount of

time. The player who owns the vertex 𝑣 where the token is placed chooses an edge in Out(𝑣)
and the token travels through this edge to its target. In this way, they produce an infinite run 𝜌

on G (that we also call a play). The objective of Eve is to produce an accepting run (a sequence
of colours inW), and Adam tries to prevent it.

A strategy from 𝑣 ∈ 𝑉 for Eve is a (partial) function strat𝑣 : Pathfin
𝑣 (G)⇀𝐸, defined for finite

paths from 𝑣 ending in a vertex in 𝑉Eve, that tells Eve which move to choose after any possible
finite play. We say that a play 𝜌 ∈ Path∞𝑣 (G) is consistent with the strategy strat𝑣 if after each
finite prefix 𝜌′ ⊑ 𝜌 ending in a vertex controlled by Eve, the next edge in 𝜌 is strat𝑣(𝜌′). We
say that strat𝑣 is a winning strategy for Eve if all infinite plays from 𝑣 consistent with strat𝑣 are
accepting. We say that Eve wins the game G from 𝑣 if there is a winning strategy from 𝑣 for her.
Strategies for Adam are defined dually.

Given a game G, the winning region of G for Eve, writtenWEve(G), is the set of initial
vertices 𝑣 ∈ 𝐼 such that she wins the game G from 𝑣. The full winning region of G for Eve is her
winning region in the game G𝑉 where all vertices are initial, that is, the set of vertices 𝑣 ∈ 𝑉
such that Eve wins the game G from 𝑣.

In some proofs, we will need to take a close look into the strategies used in games, for
which we need to introduce finite memory strategies. For a set 𝑋 (usually the set of edges
of a game), we define a memory skeleton over 𝑋 as an edge-labelled pointed graph M =

(𝑀, 𝐸𝑀 , Source, Target, 𝑚0) with a single initial state 𝑚0 and labels 𝑙𝑀 : 𝐸𝑀 → 𝑋 inducing a
deterministic structure, that is, satisfying that for each 𝑚 ∈ 𝑀 and 𝑥 ∈ 𝑋 there is at most
one transition 𝑒 ∈ Out(𝑚) labelled 𝑥. We denote 𝜇 : 𝑀 × 𝑋⇀𝑀 the update function given by

𝜇(𝑚, 𝑥) = 𝑚′ if𝑚 𝑥−→ 𝑚′ is the (only) transition from𝑚 labelled 𝑥. We extend 𝜇 to 𝜇 : 𝑀 ×𝑋∗⇀𝑀

by induction (𝜇(𝑚, 𝜀) = 𝑚 and 𝜇(𝑚, 𝑥1 . . . 𝑥𝑛) = 𝜇(𝜇(𝑚, 𝑥1 . . . 𝑥𝑛−1), 𝑥𝑛)). A memory structure (for
Eve) for a game G is a memory skeleton over the set 𝐸 of edges of G together with a next-move
function 𝜎 : 𝑉Eve × 𝑀 → 𝐸. We say that (M, 𝜎) implements a strategy strat𝑣 : Pathfin

𝑣 (G)⇀𝐸 if
for any finite play 𝜌 ∈ Pathfin

𝑣 (G) ending in 𝑉Eve, strat𝑣(𝜌) = 𝜎(Target(𝜌), 𝜇(𝑚0, 𝜌)). We remark

13 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that a memory structure for G implements at most one strategy from a given vertex. We say
that strat𝑣 is a finite memory strategy if it can be implemented by a finite memory structure.

Composition of a transition system and an automaton. We now present the construction
of the composition (or product) of a transition system with an automaton, which constitutes
the standard method for transforming a transition system that uses an acceptance setW1 to
another one using a different acceptance setW2. To guarantee the correctness of the resulting
transition system (that is, that it has the same semantic properties as the original one), the
automaton must be deterministic or history-deterministic (see Propositions 2.6, 2.7, and 2.8).

Let TS = (𝐺TS ,AccTS) be a transition system, with 𝐺TS = (𝑉, 𝐸, SourceTS , TargetTS , 𝐼TS)
and AccTS = (𝛾TS , Σ,WTS), and let A = (𝐺A ,AccA , (𝑙Σ, Σ)) be a complete automaton over the
alphabet Σ, where 𝐺A = (𝑄, Δ, SourceA , TargetA , 𝐼A) and AccA = (𝛾A , Γ,WA). The composition
of TS andA (also called their product) is the transition system TS ⋉A defined as follows:

The set of vertices is the cartesian product 𝑉 × 𝑄.
The set of initial vertices is 𝐼TS × 𝐼A .
The set of edges 𝐸⋉ contains a transition (𝑣, 𝑞) 𝑐−→ (𝑣′, 𝑞′) if there is 𝑎 ∈ Σ and transitions
𝑒1 = 𝑣

𝑎−→ 𝑣′ ∈ 𝐸 and 𝑒2 = 𝑞
𝑎:𝑐−−→ 𝑞′ ∈ Δ. It also contains 𝜀-edges (𝑣, 𝑞) 𝜀−→ (𝑣′, 𝑞) if 𝑣

𝜀−→ 𝑣′ ∈ 𝐸.
Formally,

𝐸⋉ = {(𝑒1, 𝑒2) ∈ 𝐸 × Δ | 𝛾TS (𝑒1) = 𝑙Σ(𝑒2)} ∪ {𝑒1 ∈ 𝐸 | 𝛾TS (𝑒1) = 𝜀} ⊆ (𝐸 × Δ) ∪ 𝐸.

The acceptance condition is inherited from that ofA: the colouring function 𝛾′ : 𝐸⋉ → Γ is
defined as 𝛾′(𝑒1, 𝑒2) = 𝛾A (𝑒2), and the acceptance set isWA ⊆ Γ𝜔.

We remark that if TS does not contain an uncoloured cycle, neither does TS ⋉A. Also,
TS ⋉A does not contain sinks by completeness ofA.

If TS is a labelled transition system, labelled by the functions 𝑙𝑉 and 𝑙𝐸, we consider TS⋉A
as a labelled transition system with the functions 𝑙⋉𝑉 (𝑣, 𝑞) = 𝑙𝑉 (𝑣) and 𝑙⋉𝐸 (𝑒1, 𝑒2) = 𝑙𝐸 (𝑒1) (resp.
𝑙⋉𝐸 (𝑒1) = 𝑙𝐸 (𝑒1) if 𝑒1 is an uncoloured edge).

Intuitively, a computation in TS ⋉A happens as follows: we start from a vertex 𝑣0 ∈ 𝐼TS
in TS and from 𝑞0 ∈ 𝐼A . When we are in a position (𝑣, 𝑞) ∈ 𝑉 × 𝑄, a transition 𝑒 between 𝑣 and
𝑣′ takes place in TS, producing a letter 𝑎 ∈ Σ as output. Then, the automatonA proceeds using
a transition corresponding to 𝑎, producing an output in Γ. In this way, a word in Γ𝜔 is generated,
and we can use the acceptance setWA ⊆ Γ𝜔 of the automaton as the acceptance set for TS ⋉A.

In particular, we can perform this operation if TS is an automaton. We obtain in this way
a new automaton that uses the acceptance condition ofA.

We could, of course, apply this construction to a game G, obtaining a new game G ⋉A
in which the player who makes a move in G also chooses a transition inA corresponding to
the letter produced by the selected move. However, in most applications, we intend to obtain
an asymmetric form of product game in which one player has full control of the transitions of

14 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

the automaton (we take the point of view of Eve and want her to choose these transitions). For
this reason, we restrain the class of games to which we can apply the product construction by a
non-deterministic automaton.

We say that a game is suitable for transformations if it satisfies that for every edge 𝑒 = 𝑣 −→ 𝑣′

such that 𝑣 ∈ 𝑉Adam, the edge 𝑒 is uncoloured (𝛾(𝑒) = 𝜀), 𝑣′ ∈ 𝑉Eve, and 𝑒 is the only incoming
edge to 𝑣′ (In(𝑣′) = {𝑒}). We remark that any game G can be made suitable for transformations
with at most a linear blow up on the size by inserting an intermediate Eve-vertex in each edge
outgoing from an Adam-vertex. A formal construction, as well as further motivation for this
definition, can be found in Appendix B.

The following results are well known and constitute the main application of automata
composition. They can be seen as corollaries of our results from Section 3.4, which generalise
them.

PROPOS IT ION 2 .6 (Folklore). Let B be an automaton with acceptance setWB and letA be
an automaton recognising L(A) = WB . Then, L(B ⋉A) = L(B). Moreover, if A and B are
deterministic (resp. history-deterministic), so is B ⋉A.

PROPOS IT ION 2 .7 ([44]). Let G be a game that is suitable for transformations with acceptance
set WG, and let A be a history-deterministic automaton recognising L(A) = WG. Then, the
winning region of Eve in G is the projection of her winning region in G ⋉A, that is, Eve wins G
from an initial vertex 𝑣 if and only if she wins G ⋉A from (𝑣, 𝑞0), for 𝑞0 some initial vertex ofA.

Proposition 2.7 fails if the automaton is not HD. In fact, this property characterises history-
determinism, which is the reason why HD automata are also called good-for-games in the litera-
ture. However, it should be noted that history-determinism and good-for-gameness have been
generalised to other contexts in which they do not necessarily yield equivalent notions [13, 28].

PROPOS IT ION 2 .8 ([44]). Let A be an automaton recognisingWG ⊆ Σ𝜔 satisfying that for
every game G suitable for transformations with acceptance setWG , Eve wins the game G from an
initial vertex 𝑣 if and only if she wins G ⋉A from (𝑣, 𝑞0), for 𝑞0 some initial vertex ofA. Then,A
is history-deterministic.

2.2 Muller languages, cycles and the parity hierarchy

Languages commonly used as acceptance sets. We now define the main classes of
languages used by 𝜔-regular automata as acceptance sets. We let Γ stand for a finite set of
colours.

Büchi. Given a subset 𝐵 ⊆ Γ, we define the Büchi language associated to 𝐵 as:

BüchiΓ(𝐵) = {𝑤 ∈ Γ𝜔 | Inf(𝑤) ∩ 𝐵 ≠ ∅}.

15 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We say that a language 𝐿 ⊆ Γ𝜔 is a Büchi language if there is a set 𝐵 ⊆ Γ such that 𝐿 =

BüchiΓ(𝐵).
coBüchi. Given a subset 𝐵 ⊆ Γ, we define the coBüchi language associated to 𝐵 as:

coBüchiΓ(𝐵) = {𝑤 ∈ Γ𝜔 | Inf(𝑤) ∩ 𝐵 = ∅}.

We say that a language 𝐿 ⊆ Γ𝜔 is a coBüchi language if there is a set 𝐵 ⊆ Γ such that
𝐿 = coBüchiΓ(𝐵).

Rabin. A Rabin language is represented by a family 𝑅 = {(𝐺1, 𝑅1), . . . , (𝐺𝑟, 𝑅𝑟)} of Rabin pairs,
where 𝐺 𝑗 , 𝑅 𝑗 ⊆ Γ. The Rabin language associated to 𝑅 is defined as:

RabinΓ(𝑅) = {𝑤 ∈ Γ𝜔 | [Inf(𝑤) ∩ 𝐺 𝑗 ≠ ∅ and Inf(𝑤) ∩ 𝑅 𝑗 = ∅] for some index 𝑗}.

If [Inf(𝑤) ∩𝐺 𝑗 ≠ ∅ and Inf(𝑤) ∩ 𝑅 𝑗 = ∅], we say that 𝑤 is accepted by the Rabin pair (𝐺 𝑗 , 𝑅 𝑗).
We say that a language 𝐿 ⊆ Γ𝜔 is a Rabin language if there is a family of Rabin pairs 𝑅 such
that 𝐿 = RabinΓ(𝑅).

Streett. The Streett language associated to a family 𝑆 = {(𝐺1, 𝑅1), . . . , (𝐺𝑟, 𝑅𝑟)} of Rabin pairs is
defined as:

StreettΓ(𝑆) = {𝑤 ∈ Γ𝜔 | [Inf(𝑤) ∩ 𝐺 𝑗 ≠ ∅ implies Inf(𝑤) ∩ 𝑅 𝑗 ≠ ∅] for all indices 𝑗}.

We say that a language 𝐿 ⊆ Γ𝜔 is a Streett language if there is a family of Rabin pairs 𝑆 such
that 𝐿 = StreettΓ(𝑆).

Parity. We define the parity language over the alphabet [𝑑min, 𝑑max] ⊆ N as:

parity[𝑑min,𝑑max] = {𝑤 ∈ [𝑑min, 𝑑max]𝜔 | min Inf(𝑤) is even}.

We say that a language 𝐿 ⊆ Γ𝜔 is a [𝑑min, 𝑑max]-parity language if there is a mapping
𝜙 : Γ→ [𝑑min, 𝑑max] such that for all𝑤 ∈ Γ𝜔,𝑤 ∈ 𝐿 if and only if 𝜙(𝑤) ∈ parity[𝑑min,𝑑max] . We
say that 𝐿 is a parity language if there are 𝑑min, 𝑑max ∈ N such that 𝐿 is a [𝑑min, 𝑑max]-parity
language.

Muller. We define the Muller language associated to a family F ⊆ 2Γ
+ of non-empty subsets of Γ

as:
MullerΓ(F) = {𝑤 ∈ Γ𝜔 | Inf(𝑤) ∈ F }.

We say that a language 𝐿 ⊆ Γ𝜔 is a Muller language if there is a family F ⊆ 2Γ
+ such that

𝐿 = MullerΓ(F).

We drop the subscript Γ (resp. [𝑑min, 𝑑max]) whenever the set of colours is clear from
the context. We remark that all languages of the classes above are prefix-independent (for all
𝑤 ∈ Γ𝜔 and 𝑢 ∈ Γ∗, 𝑢𝑤 ∈ 𝐿 if and only if 𝑤 ∈ 𝐿).

16 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We say that an acceptance condition (resp. transition system, automaton) is an 𝑋 condition
(resp. 𝑋 transition system, 𝑋 automaton), for 𝑋 one of the classes of languages above, if its
acceptance set is an 𝑋 language. In the case of parity transition systems, we will always assume
that the set of colours is a subset of N and 𝜙 is the identity function.

We let DPA stand for deterministic parity automaton and DMA for deterministic Muller
automaton.

We discuss further classes of languages in Appendix A (generalised Büchi and coBüchi
languages, as well as generalised weak acceptance). We refer to the survey [8] for a more
detailed account on different types of acceptance conditions.

REMARK 2 .9 (Inclusions between classes). We observe that there are many inclusions be-
tween the classes of languages that we have introduced. For example, Büchi languages are
exactly [0, 1]-parity languages, and parity languages are Rabin languages [71]. In particular,
all classes above are special cases of Muller languages. The relations between these classes of
languages are outlined in Figure 2.

Büchi = [0, 1]-parity

coBüchi = [1, 2]-parity
Parity

Streett

Rabin
Muller

Figure 2. Relations between subclasses of Muller languages. An arrow from a class 𝑋 towards a class 𝑌

means that if a language 𝐿 ⊆ Γ𝜔 is an 𝑋 language, then it is also a 𝑌 language. Arrows obtained by
transitivity have been omitted. Inclusions are strict: if an arrow from 𝑋 to 𝑌 cannot be obtained by
transitivity, then there are 𝑋 languages that are not 𝑌 languages [94].

REMARK 2 .10. A language 𝐿 ⊆ Γ𝜔 is a Muller language if and only if it satisfies:

For all 𝑤,𝑤′ ∈ Γ𝜔, if Inf(𝑤) = Inf(𝑤′), then 𝑤 ∈ 𝐿 ⇐⇒ 𝑤′ ∈ 𝐿.

REMARK 2 .1 1 (Representation of acceptance conditions). In practice, there exists a variety
of ways to represent Muller languages and acceptance conditions of automata: using boolean
formulas (Emerson-Lei conditions), as a list of accepting subsets of edges, etc. The complexity
and practicality of algorithms manipulating automata and games may greatly differ depending
on the representation of their acceptance conditions [45, 47]. However, in this work, we are
mostly interested in the expressive power of acceptance conditions, and the results we present
will not depend on how they are represented.

EXAMPLE 2 .12. In Figure 3 we show three different types of automata over the alphabet
Σ = {𝑎, 𝑏} recognising the language

𝐿 = {𝑤 ∈ Σ𝜔 | 𝑤 = 𝑢𝑏𝜔 or
(
𝑤 = 𝑢𝑎𝜔 and 𝑢 has an even number of ‘b’s

)
}.

17 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

■

a : 1

b : 1

a : 0
b : 1

a : 1

a, b : 0

a : 0 b : 0

ND Büchi automaton

a : α

b : β

b : β

a : λ

Det. Muller automaton

F = {{α}, {β}}

a : 2

b : 1

a : 1

b : 2

b : 2a : 1

Det. coBüchi automaton

Figure 3. Different types of automata recognising the language
𝐿 = {𝑤 ∈ Σ𝜔 | 𝑤 = 𝑢𝑏𝜔 or

(
𝑤 = 𝑢𝑎𝜔 and 𝑢 has an even number of ‘b’s

)
}.

𝜔-regular languages. The class of 𝜔-regular languages plays a central role in the theory of
formal languages and verification. The significance of 𝜔-regular languages is (partly) due to
the robustness of its definition, as they admit multiple equivalent characterisations relating
different areas of study.

PROPOS IT ION 2 .13 ([71, 72]). Let 𝐿 ⊆ Σ𝜔 be a language of infinite words. The following
properties are equivalent:

𝐿 can be recognised by a non-deterministic Büchi automaton.
𝐿 can be recognised by a deterministic parity automaton.
𝐿 can be recognised by a non-deterministic Muller automaton.

A language satisfying the previous conditions is called 𝜔-regular. Many other equivalent
definitions exist. Notably, 𝜔-regular languages are exactly the languages that can be defined
using monadic second-order logic [17], those that can be described by using 𝜔-regular expres-
sions [67], and those that can be recognised by an 𝜔-semigroup [77, Chapter 2].

Cycles. Let TS be a transition system with𝑉 and 𝐸 as set of vertices and edges, respectively. A
cycle of TS is a subset ℓ ⊆ 𝐸 such that there is a finite path 𝑣0

𝑒0−→ 𝑣1
𝑒1−→ 𝑣2 −→ . . . 𝑣𝑟

𝑒𝑟−→ 𝑣0 with
ℓ = {𝑒0, 𝑒1, . . . , 𝑒𝑟}. We remark that we do not require this path to be simple, that is, edges and
vertices may appear multiple times. The set of states of the cycle ℓ is States(ℓ) = {𝑣0, 𝑣1, . . . 𝑣𝑟}.
The set of cycles of a transition system TS is written Cycles (TS). We will consider the set of
cycles ordered by inclusion. For a state 𝑣 ∈ 𝑉 , we denote Cycles𝑣(TS) the subset of cycles of TS
containing 𝑣. We remark that a vertex 𝑣 is recurrent if and only if Cycles𝑣(TS) ≠ ∅. We note that

18 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Cycles𝑣(TS) is closed under union; moreover, the union of two cycles ℓ1, ℓ2 ∈ Cycles (TS) is again
a cycle if and only if there is some state 𝑣 such that both ℓ1 and ℓ2 contain 𝑣.

Let TS be a Muller transition system with acceptance condition (𝛾, Γ,MullerΓ(F)). Given
a cycle ℓ ∈ Cycles (TS), we say that ℓ is accepting (resp. rejecting) if 𝛾(ℓ) ∈ F (resp. 𝛾(ℓ) ∉ F).
We remark that the maximal cycles of a transition system are exactly the sets of edges of
its strongly connected components. In particular, we can apply the adjectives accepting and
rejecting similarly to the SCCs of a Muller transition system.

We note that, by definition, the acceptance of a run in a Muller transition system only
depends on the set of transitions taken infinitely often. For any infinite run 𝜌 ∈ Run (TS), the set
of transitions taken infinitely often forms a cycle, Inf(𝜌) = ℓ𝜌 ∈ Cycles (TS), and 𝜌 is an accepting
run if and only if ℓ𝜌 is an accepting cycle.

The deterministic and history-deterministic parity hierarchy. As we have mentioned,
every 𝜔-regular language can be recognised by a deterministic parity automaton, but the
number of colours required to do so might be arbitrarily large. We can assign to each 𝜔-regular
language the optimal number of colours needed to recognise it using a deterministic automaton.
We obtain in this way the deterministic parity hierarchy, having its origins in the works of
Wagner [93], Kaminski [50], and Mostowski [71]. We represented this hierarchy in Figure 4. This
hierarchy is strict, that is, for each level of the hierarchy there are languages that do not appear
in lower levels [93]. It is known that we can decide in polynomial time the parity index of an
𝜔-regular language represented by a deterministic parity automaton [19], but this problem is
NP-complete if the language is given by a deterministic Rabin or Streett automaton [56].

[0, 0] [1, 1]
Weak1

[0, 1] [1, 2]
Weak2

[0, 2] [1, 3]
Weak3

...
...

...

Figure 4. The (history-)deterministic parity hierarchy.

DEF IN IT ION 2 .14 (Parity index of a language). Let 𝐿 ⊆ Σ𝜔 be an 𝜔-regular language. We
say that 𝐿 has parity index at least [0, 𝑑 − 1] (resp. [1, 𝑑]) if any DPA recognising 𝐿 with a parity
acceptance condition over the set of colours [𝑑min, 𝑑max] satisfies that 𝑑max − 𝑑min ≥ 𝑑 − 1, and
in case of equality 𝑑min is even (resp. odd). We say that the parity index of 𝐿 is [0, 𝑑 − 1] (resp.

19 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

[1, 𝑑]) if, moreover, there is a DPA recognising 𝐿 with a parity acceptance condition over the set
of colours [0, 𝑑 − 1] (resp. [1, 𝑑]).

We say that 𝐿 has parity index at least Weak𝑑 if any DPA recognising 𝐿 with a parity
acceptance condition over the set of colours [𝑑min, 𝑑max] satisfies that 𝑑max − 𝑑min ≥ 𝑑. We say
that the parity index of 𝐿 is Weak𝑑 if, moreover, there are DPAsA1 andA2 recognising 𝐿 with
parity acceptance conditions over the sets of colours [0, 𝑑] and [1, 𝑑 + 1], respectively.

If follows from the definition that for each 𝜔-regular language 𝐿, there is a unique 𝑑
such that either 𝐿 has parity index [0, 𝑑 − 1], [1, 𝑑] or Weak𝑑 , and these options are mutually
exclusive. See also Appendix A for more details about languages of parity index Weak𝑑 .

One of our contributions is to show that the parity index also applies to Muller automata:
any deterministic or HD Muller automaton recognising an 𝜔-regular language of parity index
[0, 𝑑 − 1] uses at least 𝑑 different colours (Proposition 6.14).

The following proposition states that the notion of parity index of a language does not
change by using HD automata instead of deterministic ones in the definition. However, for
non-deterministic automata, the hierarchy collapses at level [0, 1] (Büchi automata) [67].

PROPOS IT ION 2 .15 ([12, Theorem 19]). LetA be an HD parity automaton recognising a lan-
guage 𝐿, and assume that the parity index of 𝐿 is [0, 𝑑 − 1] (resp. [1, 𝑑]). Then, the acceptance
condition ofA uses at least 𝑑 output colours, and if it uses exactly 𝑑 colours, the least of them is
even (resp. odd). If the parity index of 𝐿 isWeak𝑑 , thenA uses at least 𝑑 + 1 output colours.

We show next that the parity index of an 𝜔-regular language can be read directly from a
deterministic Muller automaton.

Let TS be a transition system using the Muller acceptance condition (𝛾, Γ,MullerΓ(F)).
A 𝑑-flower over a state 𝑣 of TS is a set of 𝑑 cycles ℓ1, ℓ2, . . . , ℓ𝑑 ∈ Cycles𝑣(TS) such that ℓ𝑖 ⊋ ℓ𝑖+1

and 𝛾(ℓ𝑖) ∈ F ⇐⇒ 𝛾(ℓ𝑖+1) ∉ F . We say that it is a positive flower if 𝛾(ℓ1) ∈ F and that it is
negative otherwise.

LEMMA 2.16 (Flower Lemma, [76, 93]). LetA be a DMA. IfA admits an accessible positive
(resp. negative) 𝑑-flower, then L(A) has parity index at least [0, 𝑑 − 1] (resp. [1, 𝑑]). IfA admits
both accessible positive and negative 𝑑-flowers, then L(A) has parity index at leastWeak𝑑 .

Conversely, if an 𝜔-regular language 𝐿 has parity index at least [0, 𝑑 − 1] (resp. [1, 𝑑]), then
any DMA recognising 𝐿 admits a positive (resp. negative) 𝑑-flower.

2.3 Trees

We introduce some technical notations that will be used to define automata based on the
Zielonka tree (Sections 4.2 and 4.3) and the transformations based on the ACD (Sections 5.2
and 5.3).

20 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

A tree 𝑇 = (𝑁, ⪯) is a non-empty finite set of nodes 𝑁 equipped with an order relation ⪯
called the ancestor relation (we say that 𝑥 is an ancestor of 𝑦, or that 𝑦 is below 𝑥 if 𝑥 ⪯ 𝑦), such
that (1) there is a minimal node for ⪯, called the root, and (2) the ancestors of an element are
totally ordered by ⪯. The converse relation ⪰ is the descendant relation. Maximal nodes are
called leaves, and the set of leaves of 𝑇 is denoted by Leaves(𝑇). The minimal strict descendants
of a node are called its children. The set of children of 𝑛 in 𝑇 is written Children𝑇 (𝑛). The depth
of a node 𝑛 is the number of strict ancestors of it. We note it Depth(𝑛). The height of a tree 𝑇
is the maximal length of a chain for the ancestor relation. A subtree of 𝑇 = (𝑁, ⪯) is a tree
𝑇 ′ = (𝑁 ′, ⪯′) such that 𝑁 ′ ⊆ 𝑁 , ⪯′ is the restriction of ⪯ to 𝑁 ′ and Children𝑇 ′ (𝑛′) ⊆ Children𝑇 (𝑛′)
for all 𝑛′ ∈ 𝑁 ′. Given a node 𝑛 of a tree 𝑇 , the subtree of 𝑇 rooted at 𝑛 is the subtree of 𝑇 whose
nodes are the nodes of 𝑇 that have 𝑛 as ancestor. A branch is a maximal chain of the order ⪯.

An ordered tree is a tree 𝑇 = (𝑁, ⪯) together with a total order ≤𝑛 over Children𝑇 (𝑛), for
each node 𝑛 ∈ 𝑁 that is not a leaf. We remark that a subtree of an ordered tree can be seen as
an ordered tree with the restrictions of these total orders to the existing children. These orders
induce a total order ≤𝑇 on 𝑇 (the depth-first order): let 𝑛, 𝑛′ ∈ 𝑁 . If 𝑛 ⪯ 𝑛′, we let 𝑛 ≤𝑇 𝑛′. If 𝑛
and 𝑛′ are incomparable for the ancestor relation, let 𝑛𝑚 be the deepest common ancestor, and
let 𝑛1, 𝑛2 ∈ Children𝑇 (𝑛𝑚) such that 𝑛1 ⪯ 𝑛 and 𝑛2 ⪯ 𝑛′. We let 𝑛 ≤𝑇 𝑛′ if and only if 𝑛1 ≤𝑛𝑚 𝑛2.
In the latter case, we say that 𝑛 is on the left of 𝑛′.

We will make use of these orders through some auxiliary functions. The function Next(𝑛)
gives the next sibling of 𝑛 in the tree, in a cyclic order. Two examples are shown on the left
of Figure 5. The function Jump(𝑛, 𝑛𝑚) (for 𝑛𝑚 an ancestor of 𝑛) outputs the node given by the
following procedure: we go up the tree from 𝑛 to 𝑛𝑚; then, we change to the next branch below
𝑛𝑚 (in a cyclic way) and go down again taking the leftmost leaf below it. Examples are given on
the right of Figure 5.

0

1 2 3

4 5 6 7 8

Next(5) = 4 and Next(2) = 3.

0

1 2 3

4 5 6 7 8

Jump(5, 1) = 4 and Jump(6, 0) = 7.

Figure 5. Illustration of the functions Next and Jump.

We give the formal definition now. We also need to define these notions taking into account
some subtree 𝑇 ′ of 𝑇 : the input can be any node in 𝑇 , but the final output is restricted to be a
node in 𝑇 ′. Examples 4.5 and 5.5 further illustrate these notations.

21 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Let 𝑇 ′ be a subtree of 𝑇 and 𝑛′ a node of 𝑇 ′ that is not a leaf in 𝑇 ′. For 𝑛 ∈ Children𝑇 (𝑛′),
we let

Next𝑇 ′ (𝑛) =


min≤𝑛′ {𝑛′′ ∈ Children𝑇 ′ (𝑛′) | 𝑛 <𝑛′ 𝑛′′} if this set is not empty,

min≤𝑛′ {𝑛′′ ∈ Children𝑇 ′ (𝑛′)} otherwise.

That is, the function Next𝑇 ′ maps each child of 𝑛′ to a sibling that is its successor in 𝑇 ′ for the
≤𝑛-order, in a cyclic way.

Let 𝑇 ′ = (𝑁 ′, ⪯′) be a subtree of 𝑇 = (𝑁, ⪯). Let 𝑛′ ∈ 𝑁 ′ and 𝑛 ∈ 𝑁 such that 𝑛′ is a
(non-strict) ancestor of 𝑛 (𝑛′ ⪯ 𝑛). If 𝑛′ is a leaf of 𝑇 ′, we define Jump𝑇 ′ (𝑛, 𝑛′) = 𝑛′. For 𝑛′ = 𝑛,
we define Jump𝑇 ′ (𝑛, 𝑛′) to be the leftmost leaf of 𝑇 ′ below 𝑛′. In any other case, we define
Jump𝑇 ′ (𝑛, 𝑛′) = 𝑙dest ∈ Leaves(𝑇 ′) to be the only node satisfying that there are two children of 𝑛′

in 𝑇 , 𝑛1, 𝑛2 ∈ Children𝑇 (𝑛′) such that:
𝑛1 ⪯ 𝑛,
𝑛2 = Next𝑇 ′ (𝑛1) (in particular, 𝑛2 ∈ 𝑁 ′),
𝑙dest ⪰ 𝑛2 is the leftmost3 leaf in 𝑇 ′ (minimal for ≤𝑇 ′) below 𝑛2.

We remark that 𝑛1 = 𝑛2 if 𝑛1 is the only child of 𝑛′ in 𝑇 ′.
An 𝐴-labelled (ordered) tree is an (ordered) tree𝑇 together with a labelling function 𝜈 : 𝑁 →

𝐴. A set of trees is called a forest.

3. Morphisms aswitnesses of transformations

As mentioned in the introduction, all existing methods transforming a Muller into a parity
automaton follow a common approach: they turn each state 𝑞 into multiple states of the form
(𝑞, 𝑥), where 𝑥 stores some information about the acceptance condition. It is reasonable to
put forward this characteristic as the defining trait establishing that an automaton has been
obtained as a transformation of another. In this section, we introduce morphisms of transition
systems, which formalise this idea: a morphism 𝜑 : B → A witnesses that each state 𝑞 ∈ A has
been augmented to 𝜑−1(𝑞). To ensure that B is semantically equivalent to A, the morphism
has to grant a further guarantee, namely, we need to be able to simulate runs ofA in B. We
will examine two properties of morphisms that allow to do this: local bijectivity and history-
determinism for mappings.

We note that almost identical notions of morphisms were considered by Sakarovitch [84,
Section 2] and Sakarovitch and de Souza [85, Section 2.5] in the context of transducers over
finite words.4 Similar ideas to the ones presented here were used by Colcombet to characterise

3 The choice of the leftmost leaf is arbitrary. In all our uses of the function Jump, it could be replaced by any leaf
below 𝑛2.

4 We thank Géraud Sénizergues for pointing us to the works of Sakarovitch and De Souza.

22 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

history-deterministic automata: an automaton is history-deterministic if it is the homomorphic
image of a (possibly infinite) deterministic automaton for the same language [27, Definition 13].

In all of this section, TS = (𝐺,Acc) and TS′ = (𝐺′,Acc′) will stand for transition systems
with underlying graphs 𝐺 = (𝑉, 𝐸, Source, Target, 𝐼) and 𝐺′ = (𝑉 ′, 𝐸′, Source′, Target′, 𝐼′), and
acceptance conditions Acc = (𝛾, Γ,W) and Acc′ = (𝛾′, Γ′,W′).

3.1 Morphisms of transition systems

DEF IN IT ION 3.1. A morphism of graphs from 𝐺 to 𝐺′ is a pair of mappings 𝜑 = (𝜑𝑉 : 𝑉 →
𝑉 ′, 𝜑𝐸 : 𝐸 → 𝐸′) preserving edges, that is:

Source′(𝜑𝐸 (𝑒)) = 𝜑𝑉 (Source(𝑒)) for every 𝑒 ∈ 𝐸,
Target′(𝜑𝐸 (𝑒)) = 𝜑𝑉 (Target(𝑒)) for every 𝑒 ∈ 𝐸.

We say that 𝜑 is a morphism of pointed graphs if, moreover, it preserves initial vertices:
𝜑𝑉 (𝑣0) ∈ 𝐼′ for every 𝑣0 ∈ 𝐼 .

If (𝐺, (𝑙𝑉 , 𝐿𝑉), (𝑙𝐸, 𝐿𝐸)) and (𝐺, (𝑙′𝑉 , 𝐿′𝑉), (𝑙′𝐸, 𝐿′𝐸)) are labelled graphs, we say that 𝜑 is a morphism
of labelled graphs if, in addition, 𝐿𝑉 ⊆ 𝐿′𝑉 , 𝐿𝐸 ⊆ 𝐿′𝐸 and 𝜑 preserves labels:

𝑙′𝑉 (𝜑𝑉 (𝑣)) = 𝑙𝑉 (𝑣) for every 𝑣 ∈ 𝑉 ,
𝑙′𝐸 (𝜑𝐸 (𝑒)) = 𝑙𝐸 (𝑒) for every 𝑒 ∈ 𝑉 .

We will write 𝜑 : 𝐺 → 𝐺′ to denote a morphism 𝜑. We will drop the subscript in 𝜑𝑉 and
𝜑𝐸 whenever it can be deduced from its use. We say that 𝜑 is surjective (resp. injective) if 𝜑𝑉 is.

Note that the mapping 𝜑𝑉 does not completely determine a morphism 𝜑, as multiple edges
might exist between two given vertices. However, if 𝐺 has no isolated vertices, the mapping 𝜑𝐸
does determine it. It will be convenient nonetheless to also keep the notation for 𝜑𝑉 .

We remark that the image of a run in 𝐺 by a morphism of pointed graphs is a run in 𝐺′.
Therefore, a morphism of pointed graphs 𝜑 : 𝐺 → 𝐺′ induces a mapping

𝜑Runs : Run∞(𝐺) → Run∞(𝐺′).

DEF IN IT ION 3.2. Let TS and TS′ be two (labelled) transition systems. A weak morphism of
(labelled) transition systems 𝜑 : TS → TS′ is a morphism of (labelled) pointed graphs between
their underlying graphs, 𝜑 : 𝐺 → 𝐺′. We say that it is a morphism of (labelled) transition systems
if it preserves the acceptance of runs, that is:

for every infinite run 𝜌 ∈ Run (TS), 𝛾(𝜌) ∈ W ⇐⇒ 𝛾′(𝜑Runs (𝜌)) ∈ W′.

A morphism of labelled TS between automata (resp. between games) will be called a
morphism of automata (resp. morphism of games).

23 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We say that a morphism of TS 𝜑 : TS → TS′ is an isomorphism if 𝜑𝑉 and 𝜑𝐸 are bijective
and 𝜑−1 = (𝜑−1

𝑉 , 𝜑
−1
𝐸) is a morphism from TS′ to TS. In that case, we say that TS and TS′ are

isomorphic.

3.2 Local properties of morphisms

DEF IN IT ION 3.3. A morphism of pointed graphs 𝜑 : 𝐺 → 𝐺′ is called:
Locally surjective if it verifies:

1. For every 𝑣′0 ∈ 𝐼′ there exists 𝑣0 ∈ 𝐼 such that 𝜑(𝑣0) = 𝑣′0.
2. For every 𝑣 ∈ 𝑉 and every 𝑒′ ∈ Out(𝜑(𝑣)) there exists 𝑒 ∈ Out(𝑣) such that 𝜑(𝑒) = 𝑒′.

Locally injective if it verifies:
1. For every 𝑣′0 ∈ 𝐼′, there is at most one 𝑣0 ∈ 𝐼 such that 𝜑(𝑣0) = 𝑣′0.
2. For every 𝑣 ∈ 𝑉 and every couple 𝑒1, 𝑒2 ∈ Out(𝑣), 𝜑(𝑒1) = 𝜑(𝑒2) implies 𝑒1 = 𝑒2.

Locally bijective if it is both locally surjective and locally injective.

Equivalently, a morphism of pointed graphs 𝜑 is locally surjective (resp. locally injective) if
for every 𝑣 ∈ 𝑉 the restriction of 𝜑𝐸 to Out(𝑣) is a surjection onto Out(𝜑(𝑣)) (resp. an injection
into Out(𝜑(𝑣))), and the restriction of 𝜑𝑉 to 𝐼 is a surjection onto 𝐼′ (resp. an injection into 𝐼′).

Let 𝜑 : TS → TS′ be a (weak) morphism, and let 𝜌′ = 𝑣′0
𝑒′0−→ 𝑣′1

𝑒′1−→ . . . be a run in TS′. If 𝜑
is locally surjective, we can pick an initial vertex 𝑣0 in 𝜑−1(𝑣′0) and build step-by-step a run 𝜌 in
TS from 𝑣0 that is sent to 𝜌′ under 𝜑. If 𝜑 is moreover locally bijective, the choices of the initial
vertex and the edges at each step are unique, so runs in TS′ can be simulated in TS via 𝜑 in a
unique way. Said differently, if 𝜑 : TS → TS′ is a locally bijective morphism, we can see TS as
an automaton that processes runs of TS′ in a deterministic fashion (this idea is formalised in
Section 5.4.3). This property will allow us to show that a locally bijective morphism witnesses
the semantic equivalence of TS and TS′ (see Section 3.4).

We note that the notion of locally bijective morphisms of transition systems almost coincide
with the usual concept of bisimulation. The main difference is that locally bijective morphisms
treat the acceptance of a run as a whole; we do not impose the output colour of an edge 𝛾(𝑒) to
coincide with the colour 𝛾′(𝜑(𝑒)). This allows us to compare transition systems using different
types of acceptance conditions.

REMARK 3.4. Let 𝜑 be a morphism of pointed graphs.
1. If 𝜑 is locally surjective, then 𝜑Runs is surjective.
2. If 𝜑 is locally injective, then 𝜑Runs is injective.
3. If 𝜑 is locally bijective, then 𝜑Runs is bijective.

In the following, the weak morphisms under consideration will be locally surjective. The
next lemma ensures that we can assume that they are surjective without loss of generality.

24 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 3.5. If 𝜑 : TS → TS′ is a locally surjective weak morphism, it is onto the accessible
part of TS′. That is, for every accessible state 𝑣′ ∈ TS′, there exists some state 𝑣 ∈ TS such that
𝜑𝑉 (𝑣) = 𝑣′. In particular, if every state of TS′ is accessible, 𝜑 is surjective.

PROOF . Let 𝑣′ be an accessible state of TS′. By definition, there exists a finite run 𝜌′ from an
initial vertex of TS′ to 𝑣′. By surjectivity of 𝜑Runs , there is a finite run 𝜌 ∈ Runfin(TS) such that
𝜑Runs (𝜌) = 𝜌′. As 𝜑 is a morphism of graphs, we have that 𝜑(Target(𝜌)) = 𝑣′. ■

EXAMPLE 3.6. In Figure 6 we provide an example of a locally bijective morphism between the
two rightmost transition systems from Figure 3 (we have removed input letters for simplicity).
We recall that the acceptance set of the rightmost transition system is the Muller language
associated toF = {{𝛼}, {𝛽}}. The morphism is given by 𝜑𝑉 (𝑣1) = 𝜑𝑉 (𝑣2) = 𝑣′ and 𝜑𝑉 (𝑣2) = 𝑣′2. In
this case, the mapping 𝜑𝑉 determines a unique morphism; the (uniquely determined) mapping
𝜑𝐸 is represented by the colours of the edges in the figure. It is easy to check that this mapping
preserves the acceptance of runs and that it is locally bijective.

v1

v2

u1

2

1

21

1

2

v′ u′

α

β

β

λ

Figure 6. A locally bijective morphism from a parity TS to a Muller TS with acceptance set given by
F = {{𝛼}, {𝛽}}. We use dashed arrows to represent the images of vertices, and colours to represent the
image of edges (that can be inferred from 𝜑𝑉).

■

3.3 History-deterministic mappings

Locally bijective morphisms are a natural generalisation of the composition of a transition
system with a deterministic automaton. They guarantee the semantic equivalence of the two
involved transition systems, but at the cost of the use of some strong hypothesis, as the outgoing
edges of a vertex 𝑣 must exactly correspond to the outgoing edges of its image 𝜑(𝑣). We
can imagine correct transformations that do not satisfy this requirement. Notably, history-
deterministic automata have been introduced as a method to bypass this restriction, with the
hope of outperforming transformations that are witnessed by locally bijective morphisms. In

25 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

general, ifA is an HD automaton recognising the acceptance set ot TS, the composition TS ⋉A
does not admit a locally bijective morphism to TS, although it shares most semantic properties
with it (Proposition 2.7).

We introduce next HD mappings, which are weak morphisms with the minimal set of
hypothesis ensuring that, if 𝜑 : TS → TS′ is an HD mapping, we can simulate runs of TS′ in
TS via 𝜑 while preserving their acceptance. This will allow us to show that 𝜑 witnesses the
semantic equivalence of TS and TS′ (Section 3.4).

Morphisms

Loc. Injective
Morphisms

Loc. Surjective
Morphisms

Loc. Bijective
Morphisms

HD Mappings
Weak Morphisms

Figure 7. Different types of morphisms and the relations between them. The fact that locally surjective
morphisms are HD mappings is given by Lemma 3.12. Note that HD mappings are also locally surjective
weak morphisms (Remark 3.7).

History-deterministic mappings. Let TS and TS′ be transition systems and 𝜑 : TS → TS′ a
weak morphism between them. A resolver simulating 𝜑 consists in a pair of functions 𝑟Init : 𝐼′→ 𝐼

and 𝑟 : 𝐸∗ × 𝐸′→ 𝐸 such that:
1. 𝜑(𝑟Init(𝑣′0)) = 𝑣′0 for all 𝑣′0 ∈ 𝐼′,
2. 𝜑(𝑟(𝜌, 𝑒′)) = 𝑒′, for all 𝜌 ∈ 𝐸∗ and 𝑒′ ∈ 𝐸′,
3. if 𝑒′0 ∈ Out(𝐼′), Source(𝑟(𝜀, 𝑒′0)) = 𝑟Init(Source(𝑒′0)), and
4. if 𝜌 is a finite run in TS ending in 𝑣 and 𝑒′ ∈ Out(𝜑(𝑣)), then 𝑟(𝜌, 𝑒′) ∈ Out(𝑣).

Given a run 𝜌′ = 𝑒′0𝑒
′
1 · · · ∈ Run∞(TS′) starting in some 𝑣′0 ∈ 𝐼′, the run induced by 𝑟 is the

sequence 𝑟Runs (𝜌′) = 𝑒0𝑒1𝑒2 · · · ∈ Run∞(TS) defined by 𝑒𝑖 = 𝑟(𝑒0 . . . 𝑒𝑖−1, 𝑒
′
𝑖
), which is indeed a

run in TS. We say that the resolver is sound if for every accepting run 𝜌′ ∈ Run (TS′), the run
𝑟Runs (𝜌′) is accepting in TS. Note that we do not impose 𝑟Runs (𝜌′) to be rejecting if 𝜌′ is.

REMARK 3.7. Provided that all states of TS′ are accessible, a resolver simulating 𝜑 can only
exist if 𝜑 is a locally surjective weak morphism.

Said differently, a sound resolver simulating 𝜑 is a winning strategy for the player Dupli-
cator in the following game:

26 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

In round 0, Spoiler picks an initial vertex 𝑣′0 in TS′. Duplicator responds by picking an
initial vertex 𝑣0 in TS such that 𝜑(𝑣0) = 𝑣′0.
In round 𝑛 > 0, Spoiler picks an edge 𝑒′𝑛 in TS′, and Duplicator responds by picking an
edge 𝑒𝑛 in TS such that 𝜑(𝑒𝑛) = 𝑒′𝑛.
Duplicator wins if either 𝑒1𝑒2 . . . is an accepting run in TS from 𝑣0 or 𝑒′1𝑒

′
2 . . . is not an

accepting run in TS′ from 𝑣′0 (it is either not a run from 𝑣0 or not accepting). Spoiler wins
otherwise.

DEF IN IT ION 3.8. Let TS and TS′ be (labelled) transition systems. A history-deterministic
mapping (HD mapping) of transition systems from TS to TS′ is a pair of mappings 𝜑 = (𝜑𝑉 :
𝑉 → 𝑉 ′, 𝜑𝐸 : 𝐸 → 𝐸′) such that:

𝜑 is a weak morphism,
𝜑 preserves accepting runs: 𝜌 ∈ Run (TS) and 𝛾(𝜌) ∈ W =⇒ 𝛾′(𝜑Runs (𝜌)) ∈ W′, and
there exists a sound resolver simulating 𝜑.

Even if a history-deterministic mapping is not necessarily locally bijective (and not even a
morphism of transition systems), the existence of a sound resolver allows us to define a right
inverse to 𝜑Runs preserving the acceptance of runs.

LEMMA 3.9. Let 𝜑 : TS → TS′ be an HD mapping and let (𝑟Init, 𝑟) be a sound resolver simulating
it. The following holds:

𝜑Runs ◦ 𝑟Runs = IdRun∞(TS′) .
𝑟Runs preserves the acceptance of runs in TS′, that is, for every run 𝜌′ ∈ Run (TS′), 𝜌′ is
accepting if and only if 𝑟Runs (𝜌′) is accepting in TS.

PROOF . The first item follows from the fact that 𝜑(𝑟(𝜌, 𝑒′)) = 𝑒′ for every 𝜌 ∈ 𝐸∗ and 𝑒′ ∈ 𝐸′.
For the second item, the definition of a sound resolver imposes that if 𝜌′ is accepting, so

is 𝑟Runs (𝜌′). For the other direction, if 𝑟Runs (𝜌′) is accepting, then 𝜑Runs (𝑟Runs (𝜌′)) = 𝜌′ has to be
accepting, as an HD mapping preserves accepting runs. ■

EXAMPLE 3.10. In Figure 8 we give an example of a weak morphism 𝜑 : TS → TS′ that
is a history-deterministic mapping, but which is neither a morphism, nor locally bijective.
Transition system TS, on the left of the figure, is a parity TS (more precisely, a coBüchi TS).
Transition system TS′, depicted on the right of the figure, is a Muller TS using as acceptance
set the Muller language associated to F = {{𝛼}, {𝛼, 𝛽}, {𝛼, 𝜆}}; that is, a run in TS′ is accepting
if and only if it eventually avoids either transition 𝑒′ or transition 𝑓 ′. The weak morphism
we propose is given by: 𝜑(𝑣0) = 𝜑(𝑣1) = 𝜑(𝑣2) = 𝑣′, and 𝜑(𝑢1) = 𝜑(𝑢2) = 𝑢′. The image of
most edges is uniquely determined, and we use colours to represent them. We have named
the only edges whose image is not uniquely determined, and we define 𝜑(𝑒1) = 𝜑(𝑒2) = 𝑒′ and
𝜑(𝑓1) = 𝜑(𝑓2) = 𝑓 ′.

27 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

v2

v0

v1

u2

u11

1

1

1

2

2

2

2

e1 : 2

f1 : 1

e2 : 1

f2 : 2

v′ u′

α

α

e′ : β

f ′ : λ

Figure 8. A history-deterministic mapping from a parity TS to a Muller TS with acceptance set given by
F = {{𝛼}, {𝛼, 𝛽}, {𝛼, 𝜆}}. We use dashed arrows to represent the images of vertices, and colours to
represent the image of edges.

We remark that 𝜑 does not preserve rejecting runs. Indeed, a run in TS alternating
between 𝑣0 and 𝑢1, taking transition 𝑓1 infinitely often, is rejecting, but its image is accepting in
TS′. However, 𝜑 preserves accepting runs: a run is accepting in TS if and only if it eventually
stays in {𝑣1, 𝑢1} or in {𝑣2, 𝑢2}. In the first case, the image under 𝜑 avoids transition 𝑓 ′ in TS′,
and in the second case, its image avoids transition 𝑒′.

Finally, we describe a sound resolver simulating 𝜑. When simulating a run from TS′ in TS,
we have a choice to make only when we are in state 𝑣0. If the previous transition in TS′ was 𝑒′,
we will go up, that is, 𝑣′

𝛼−→ 𝑢′ is simulated by 𝑣0
1−→ 𝑢1 and 𝑣′

𝛼−→ 𝑣′ is simulated by 𝑣0
1−→ 𝑣1. If the

previous transition in TS′ was 𝑓 ′, we will go down symmetrically. In this way, if transition 𝑓 ′ is
eventually not visited by the run in TS′, we ensure to stay in {𝑣1, 𝑢1} in TS (and symmetrically,
we ensure to stay in {𝑣2, 𝑢2} if 𝑒′ is avoided in TS′). ■

History-deterministic-for-games mappings. In the case of games, we need to slightly
strengthen the definition of HD mappings to guarantee that, if there is a suitable mapping
𝜑 : G → G′, then G and G′ have the same winner. In order to show that if Eve wins G′ then
she wins G, we need a method to transfer strategies in G′ to G. A regular resolver simulating 𝜑
does not suffice to do this, as it does not take into account the partition into Eve and Adam
vertices. We need to be able to simulate a play of G′ in G in a two-players-game fashion, Adam’s
moves will be simulated by Adam, and Eve’s moves by Eve. This idea leads to the notion of
HD-for-games mapping.

Let G and G′ be two games, and 𝜑 : G → G′ be a weak morphism between them admitting
a resolver (𝑟Init, 𝑟) simulating 𝜑. Given runs 𝜌′ = 𝑒′0𝑒

′
1 · · · ∈ Run (G′) and 𝜌 = 𝑒0𝑒1 · · · ∈ Run (G),

we say that 𝜌 is consistent with (𝑟Init, 𝑟) over 𝜌′ if:
1. Source(𝑒0) = 𝑟Init(Source(𝑒′0),

28 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

2. 𝜑(𝑒𝑖) = 𝑒′𝑖 , and
3. for every finite prefix 𝑒0𝑒1 . . . 𝑒𝑛−1 ⊑ 𝜌 ending in a vertex controlled by Eve, the next edge

in 𝜌 is 𝑒𝑛 = 𝑟(𝑒0 . . . 𝑒𝑛−1, 𝑒
′
𝑛).

We remark that there exists at least one run consistent with (𝑟Init, 𝑟) over 𝜌′, namely 𝑟Runs (𝜌′).
We say that (𝑟Init, 𝑟) is sound for G if it verifies that for any accepting run 𝜌′ ∈ Run (G′), all runs
consistent with (𝑟Init, 𝑟) over 𝜌′ are accepting in G.

Said differently, a resolver sound for G is a winning strategy for Duplicator in the following
game:

In round 0, Spoiler picks an initial vertex 𝑣′0 in G′. Duplicator responds by picking an
initial vertex 𝑣0 in G such that 𝜑(𝑣0) = 𝑣′0.
In round 𝑛 > 0, Spoiler picks an edge 𝑒′𝑛 in G′. If 𝑣𝑛−1 is controlled by Adam, Spoiler
chooses an edge 𝑒𝑛 = 𝑣𝑛−1 −→ 𝑣𝑛 ∈ Out(𝑣𝑛−1) such that 𝜑(𝑒𝑛) = 𝑒′𝑛. If 𝑣𝑛 is controlled by Eve,
it is Duplicator who chooses one such 𝑒𝑛.
Duplicator wins if either 𝑒1𝑒2 . . . is an accepting run in G from 𝑣0 or 𝑒′1𝑒

′
2 . . . is not an

accepting run in G′ from 𝑣′0. Spoiler wins otherwise.

DEF IN IT ION 3.1 1. An HD mapping of games 𝜑 : G → G′ is called history-deterministic-for-
games if it admits a resolver sound for G.

Whenever we apply the term HD-for-games to a map 𝜑 : TS → TS′, it will implicitly imply
thatTS andTS′ are games (that is, they have a fixed vertex-labelling 𝑙Players : 𝑉 → {Eve,Adam}),
and that 𝜑 preserves those vertex-labellings).

In the next lemma, we prove that HD and HD-for-games mappings are a strict generalisation
of locally surjective morphisms (and therefore, also of locally bijective ones). On the other hand,
we remark that HD mappings must be locally surjective, but they are not necessarily morphisms
(they might not preserve rejecting runs).

LEMMA 3.12. If 𝜑 : TS → TS′ is a locally surjective morphism, it is also an HD mapping. If TS
and TS′ are games, 𝜑 is moreover HD-for-games.

PROOF . We need to define a sound resolver simulating 𝜑. Let 𝑟Init : 𝐼′ → 𝐼 be any function
choosing initial vertices satisfying that 𝜑 ◦ 𝑟Init = Id𝐼 ′ (which exists by local surjectivity of
𝜑). For each 𝑣 ∈ 𝑉 and edge 𝑒′ ∈ Out(𝜑(𝑣)) we choose one edge 𝑓 (𝑣, 𝑒′) ∈ Out(𝑣) such that
𝜑(𝑓 (𝑣, 𝑒′)) = 𝑒′ (which exists by local surjectivity), and we let 𝑟 be the resolver induced by these
choices. Formally, we define 𝑟 : 𝐸∗ × 𝐸′→ 𝐸 recursively. For the base case, if 𝑒′0 ∈ Out(𝑣′), with
𝑣′ ∈ 𝐼′, we define 𝑟(𝜀, 𝑒′0) = 𝑓 (𝑟Init(𝑣′), 𝑒′0). Assume that 𝑟 has been defined for runs of length
≤ 𝑛, and let 𝜌 ∈ 𝐸∗ be of length 𝑛 + 1 and 𝑒′ ∈ 𝐸′. If 𝜌 is not a run or 𝑒′ ∉ Out(Target(𝜑(𝜌))),
we let 𝑟(𝜌, 𝑒′) be any edge in 𝜑−1(𝑒′). If not, let 𝑣 = Target(𝜌) and define 𝑟(𝜌, 𝑒′) to be the edge
𝑓 (𝑣, 𝑒′).

29 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

It is straightforward to check that (𝑟Init, 𝑟) is indeed a resolver (for every run 𝜌′ ∈ Run (TS′),
the sequence 𝑟Runs (𝜌′) is a run in TS and 𝜌′ is its image under 𝜑). Finally, since 𝜑 is a morphism,
for every 𝜌′ ∈ Run (TS′) and every 𝜌 ∈ Run (TS) consistent with (𝑟Init, 𝑟) over 𝜌′, 𝜌 is accepting in
TS if and only if 𝜌′ = 𝜑Runs (𝜌) is accepting in TS′. We conclude that (𝑟Init, 𝑟) is a sound resolver
(resp. sound for TS) and therefore 𝜑 is an HD mapping (resp. HD-for-games mapping). ■

Restrictions and extensions of initial sets. The following simple lemma states that reducing
the number of initial vertices preserves the history-determinism of mappings.

LEMMA 3.13. Let TS and TS′ be two TS such that there is an HD (resp. HD-for-games) mapping
𝜑 : TS → TS′. For any non-empty subset 𝐼 ⊆ 𝐼′, 𝜑 is also an HD (resp. HD-for-games) mapping
between the transition systems TS𝑟Init(𝐼) and TS′

𝐼
; that is, the transitions systems obtained by

setting 𝑟Init(𝐼) and 𝐼 as initial vertices, respectively.

For arbitrary acceptance conditions, enlarging the set of initial vertices does not preserve
history-determinism. However, for transition systems using the acceptance conditions consid-
ered in this work, we can enlarge the set of initial vertices without loss of generality. The proof
can be found in Appendix C.

LEMMA 3.14. LetTS andTS′ be two TS such that all their states are accessible, and let 𝜑 : TS →
TS′ be an HD (resp. HD-for-games) mapping between them. IfW andW′ are prefix-independent,
the mapping 𝜑 is also HD (resp. HD-for-games) when considered between the transition systems
TS𝑉 and TS′𝑉 ′ , consisting of the transition systems TS and TS′ where all the states are set to be
initial.

3.4 Preservation of semantic properties of automata and games

We start this section by showing that locally bijective morphisms and HD mappings are a
strict generalisation of compositions by deterministic and history-deterministic automata,
respectively (Proposition 3.15). Then, we prove that these mappings witness the semantic
equivalence of the transition systems under consideration. That is, (1) if 𝜑 : A → A′ is an HD
mapping of automata, then L(A) = L(A′), and if 𝜑 is locally bijective,A is deterministic (or
unambiguous) if and only ifA′ is (Proposition 3.16);5 and (2) if 𝜑 : G → G′ is an HD-for-games
mapping, G and G′ have the same winner (Proposition 3.18 and Corollary 3.19).

Morphisms generalise composition by an automaton.

5 The results in this section do not directly imply that if A is an automaton recognising the acceptance set of another
automaton B, then B ⋉A recognises the same language as B, if A is not history-deterministic (Proposition 2.6). In
that case, the equality L(B ⋉A) = L(B) follows from the idea that runs in B can be simulated in B ⋉A “guided by the
non-deterministic choices of A”, which we do not formalise in this work.

30 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROPOS IT ION 3.15. LetA be a complete automaton accepting the language L(A) =W ⊆ Σ𝜔,
and let TS be a (labelled) TS with acceptance setW. Then, there exists a locally surjective weak
morphism of (labelled) TS 𝜑 : TS ⋉A → TS that preserves accepting runs. Moreover:

1. IfA is deterministic, 𝜑 can be chosen to be a locally bijective morphism.
2. IfA is HD, then 𝜑 can be chosen to be an HD mapping.
3. If A is HD and TS is a game suitable for transformations, then 𝜑 can be chosen to be an

HD-for-games mapping.

PROOF . We recall that the set of states of TS ⋉ A is 𝑉 × 𝑄 and its set of transitions 𝐸⋉ is a
subset of (𝐸 × Δ) ⊔ 𝐸, where 𝑉 and 𝑄 (resp. 𝐸 and Δ) are the states (resp. transitions) of TS
andA, respectively. We letWA ⊆ Γ𝜔 be the acceptance set ofA. We define 𝜑𝑉 (𝑣, 𝑞) = 𝑣 and
𝜑𝐸 (𝑒1, 𝑒2) = 𝑒1 for (𝑒1, 𝑒2) ∈ 𝐸 × Δ and 𝜑𝐸 (𝑒1) = 𝑒1 for 𝑒1 ∈ 𝐸. It is immediate to check that 𝜑 is a
weak morphism.

Given a run 𝜌 = (𝑣0, 𝑞0)
𝑐0−→ (𝑣1, 𝑞1)

𝑐1−→ . . . in TS ⋉A, we can consider its projection over
TS, 𝜑Runs (𝜌) = 𝑣0

𝑎0−→ 𝑣1
𝑎1−→ We note that there must exist a unique run inA of the form

𝜑A (𝜌) = 𝑞0
𝑎0:𝑐0−−−→ 𝑞1

𝑎1:𝑐1−−−→

(Formally, some letters 𝑎𝑖 might equal 𝜀, and in this case 𝑞𝑖
𝑎𝑖 :𝑐𝑖−−−→ 𝑞𝑖+1 does not appear in the run

𝜑A (𝜌)).
We show that 𝜑 preserves accepting runs. Let 𝜌 be an accepting run in TS ⋉A. In that

case, 𝑐0𝑐1𝑐2 · · · ∈ WA , and therefore 𝜑A (𝜌) is an accepting run in A over 𝑎0𝑎1𝑎2 . . . , so we
conclude that 𝑎0𝑎1𝑎2 · · · ∈ W and 𝜑Runs (𝜌) is an accepting run in TS.

We prove next the local surjectivity of 𝜑. Clearly, 𝜑 induces a surjection between the initial
vertices of TS⋉A (which are 𝐼TS× 𝐼A) and those of TS. Let (𝑣, 𝑞) ∈ 𝑉 ×𝑄 and 𝑒1 = 𝑣

𝑎−→ 𝑣′ ∈ 𝐸. If
𝑎 = 𝜀, the edge 𝑒1 belongs to 𝐸⋉ and 𝜑(𝑒1) = 𝑒1. If 𝑎 ≠ 𝜀, sinceA is complete there is a transition
𝑒2 = 𝑞

𝑎−→ 𝑞′ ∈ Δ and 𝜑(𝑒1, 𝑒2) = 𝑒1, so 𝜑 is locally surjective.

1. Since A has a single initial state 𝑞0, 𝜑 induces a bijection between the initial vertices
of TS ⋉ A (which are 𝐼TS × {𝑞0}) and those of TS. Let 𝐸⋉col ⊆ 𝐸 × Δ and 𝐸⋉𝜀 ⊆ 𝐸 such
that 𝐸⋉ = 𝐸⋉col ∪ 𝐸

⋉
𝜀 . We remark that 𝜑|𝐸⋉𝜀 is the identity function (so injective) and that

𝜑(𝐸⋉col) ∩ 𝜑(𝐸
⋉
𝜀) = ∅ because 𝜑(𝐸⋉col) are exactly coloured transitions of TS. Finally, let

(𝑒1, 𝑒2) and (𝑒′1, 𝑒′2) in Out(𝑣, 𝑞) ∩ 𝐸⋉col. Their 𝜑(𝑒1, 𝑒2) = 𝜑(𝑒′1, 𝑒′2) if and only if 𝑒1 = 𝑒′1. Let
𝑎 ∈ Σ be the colour of 𝑒1. SinceA is deterministic, there is at most one transition from 𝑞

labelled by 𝑎, that must be 𝑒2 = 𝑒′2. We conclude that (𝑒1, 𝑒2) = (𝑒′1, 𝑒′2) and that 𝜑 is locally
injective.
Let 𝜌 be a rejecting run in TS ⋉ A (we use the notations introduced above). In that
case, 𝑐0𝑐1𝑐2 · · · ∉WA , and therefore 𝜑A (𝜌) is a rejecting run over 𝑎0𝑎1𝑎2 SinceA is
deterministic, this is the only run over 𝑎0𝑎1𝑎2 . . . , so we conclude that it does not belong
toW. We conclude that 𝜑Runs (𝜌) is a rejecting run in TS.

31 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

2. Let (𝑟0, 𝑟A) be a resolver for A. We define a resolver (𝑟Init, 𝑟𝜑) simulating 𝜑. First, we
let 𝑟Init(𝑣0) = (𝑣0, 𝑟0) for all 𝑣0 ∈ 𝐼TS. We define 𝑟𝜑 : 𝐸⋉∗ × 𝐸 → 𝐸⋉ by induction on the
length of the runs. Let 𝑒0 = 𝑣0

𝑎−→ 𝑣1 ∈ Out(𝑣0) be an edge in TS. If 𝑒0 is uncoloured
(𝑎 = 𝜀), we let 𝑟𝜑(𝜀, 𝑒0) = 𝑒0 = (𝑣0, 𝑟0)

𝜀−→ (𝑣1, 𝑟0). If not, we let 𝑟𝜑(𝜀, 𝑒0) = (𝑒0, 𝑒𝑎), where
𝑒𝑎 = 𝑟(𝜀, 𝑎). Assume that 𝑟𝜑 has been defined for sequences of edges of TS ⋉A of length
< 𝑛 and let 𝜌 = 𝑒0𝑒1 . . . 𝑒𝑛−1 ∈ 𝐸⋉∗ be a sequence length 𝑛 + 1 and 𝑒TS = 𝑣𝑛

𝑎𝑛−−→ 𝑣𝑛+1

be an edge in TS. If 𝜌 is not a run or if it does not end in 𝜑−1(𝑣𝑛), we let 𝑟𝜑(𝜌, 𝑒TS) be
any edge in 𝜑−1(𝑒TS). Assume that 𝜌 is a run ending in 𝜑−1(𝑣𝑛). If 𝑎𝑛 = 𝜀, we define
𝑟𝜑(𝜌, 𝑒TS) = 𝑒TS. As noted before, 𝜌 induces a run 𝜑A (𝜌) = 𝑞0

𝑎0:𝑐0−−−→ 𝑞1
𝑎1:𝑐1−−−→ . . . −→ 𝑞𝑛 in

A. We let 𝑒A = 𝑟A (𝜑A (𝜌), 𝑎𝑛) be the transition chosen by the resolver ofA after this run,
and we define 𝑟𝜑(𝜌, 𝑒TS) = (𝑒TS , 𝑒A).
It directly follows from this definition that (𝑟Init, 𝑟𝜑) is indeed a resolver. The proof that if
𝜌 ∈ Run (TS) is an accepting run then 𝑟𝜑,Runs (𝜌) is accepting follows the same lines as the
previous item.

3. We prove that, if TS is a game suitable for transformations, the resolver (𝑟Init, 𝑟𝜑) defined
in the previous item is sound for TS. We claim that if 𝜌 is a run in TS, the only run
consistent with (𝑟Init, 𝑟𝜑) over 𝜌 is 𝑟𝜑,Runs (𝜌). This follows from the fact that if (𝑣, 𝑞) is a
vertex in TS ⋉A controlled by Adam and 𝑒 ∈ Out(𝑣), then there is a unique 𝑒′ ∈ Out(𝑣, 𝑞)
such that 𝜑(𝑒′) = 𝑒. This is indeed the case: as TS is suitable for transformations, if 𝑣
is an Adam’s vertex, every 𝑒 ∈ Out(𝑣) is uncoloured, so by definition of 𝜑 we have that
𝜑(𝑒′) = 𝑒 =⇒ 𝑒′ = 𝑒. (This can be seen as that 𝜑 is locally bijective in Adam’s vertices).
We conclude that if 𝜌 is an accepting run in TS and 𝜌⋉ is a run consistent with (𝑟Init, 𝑟𝜑)
over 𝜌, then 𝜌⋉ = 𝑟𝜑,Runs (𝜌), which is accepting by soundness of the resolver (𝑟Init, 𝑟𝜑). ■

Morphisms witness equivalence of automata.

PROPOS IT ION 3.16. LetA,A′ be two automata over the same input alphabet such that there
is an HD mapping of automata 𝜑 : A → A′. Then, L(A) = L(A′), andA is HD if and only ifA′

is HD. If 𝜑 is moreover locally bijective and surjective,A is deterministic (resp. complete) if and
only ifA′ is.

PROOF . Since 𝜑 preserves accepting runs, it is clear that L(A) ⊆ L(A′). Since 𝜑 admits a
sound resolver (𝑟Init, 𝑟), if 𝜌 is an accepting run over 𝑤 ∈ Σ𝜔 inA′, then 𝑟Runs (𝜌) is an accepting
run over 𝑤 inA, so L(A′) ⊆ L(A).

Let (𝑟Init, 𝑟𝜑) be a sound resolver simulating 𝜑. Assume thatA is HD, admitting a resolver
(𝑟0, 𝑟). A resolver (𝑟′0, 𝑟′) forA′ can be obtained just by composing 𝑟𝜑 and 𝜑, that is: 𝑟′0 = 𝜑(𝑟0)
and for 𝜌′ ∈ Runfin(A′) and 𝑎 ∈ Σ, 𝑟′(𝜌′, 𝑎) = 𝜑(𝑟(𝑟𝜑,Runs (𝜌′), 𝑎))). That is, given a run 𝜌′ inA′,
we simulate it inA using 𝑟𝜑, then, we look at what is the continuation proposed by the resolver 𝑟
when we give the letter 𝑎, and we transfer back this choice toA′ using 𝜑. Assume now thatA′

32 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

is HD and that (𝑟′0, 𝑟′) is a resolver for it. We define a resolver (𝑟0, 𝑟) forA. We let 𝑟0 = 𝑟Init(𝑟′0),
and for 𝜌 ∈ Runfin(A) and 𝑎 ∈ Σ, 𝑟(𝜌, 𝑎) = 𝑟𝜑((𝜑Runs (𝜌), 𝑟(𝜑Runs (𝜌), 𝑎)). That is, given a run 𝜌

inA, we simulate it inA′ using 𝜑, then, we look at what is the continuation proposed by the
resolver 𝑟′ when we give the letter 𝑎, and we transfer back this choice to A using 𝑟𝜑. It is a
direct check that the resolvers defined this way witness thatA′ andA, respectively, are HD.

The proof thatA is deterministic (resp. complete) if and only ifA′ is deterministic (resp.
complete), assuming surjectivity and local bijectivity of 𝜑, follows the same lines. ■

A subclass of automata with a restrictive amount of non-determinism that is widely study
is that of unambiguous automata (we refer to [29, 20] for a detailed exposition). An automaton
is unambiguous if for every input word 𝑤 ∈ Σ𝜔 there is at most one accepting run over 𝑤, and
it is strongly unambiguous if there is at most one run over 𝑤. By Remark 3.4, locally bijective
morphisms also preserve (strongly) unambiguity: if 𝜑 : A → A′ is a locally bijective morphism
thenA is (strongly) unambiguous if and only ifA′ is.

Morphisms preserve winning regions of games.

LEMMA 3.17. Let G,G′ be two games, such that there is a weak morphism of games 𝜑 : G → G′

that is locally surjective and preserves accepting runs. If Eve wins the game G from an initial
vertex 𝑣, then she wins G′ from 𝜑(𝑣).

PROOF . Let 𝑣′ = 𝜑(𝑣), and let strat𝑣 : Pathfin
𝑣 (G) → 𝐸 be a strategy from 𝑣 for Eve in 𝐺. Intu-

itively, we will define a strategy in G′ as follows: for each finite run 𝜌′ from 𝑣′ in G′, we pick a
preimage 𝜌 ∈ 𝜑−1(𝜌′) in G, look at the decision made by strat𝑣 at the end of 𝜌 and transfer it
back to G′ via 𝜑. In order to define a correct strategy, the choices of the preimages have to be
made in a coherent manner. We formalise this idea next.

We will make use of a function choice𝑠𝑡 : Pathfin
𝑣′ (G′) → Pathfin

𝑣 (G) satisfying that for any
𝜌′ = 𝑒′0𝑒

′
1 . . . 𝑒

′
𝑛−1𝑒

′
𝑛 ∈ Pathfin

𝑣′ (G′):
The run choice𝑠𝑡 (𝜌′) has length 𝑛 + 1.
𝜑Runs (choice𝑠𝑡 (𝜌′)) = 𝜌′.
Monotonicity: if �̃�′ ⊑ 𝜌′ then choice𝑠𝑡 (�̃�′) ⊑ choice𝑠𝑡 (𝜌′).
If there exists 𝑒𝑛 ∈ 𝜑−1(𝑒′𝑛) such that choice𝑠𝑡 (𝑒′0𝑒′1 . . . 𝑒′𝑛−1)𝑒𝑛 is consistent with strat𝑣, then
choice𝑠𝑡 (𝜌′) is consistent with strat𝑣.

Assume for now that such a function exists, and define a strategy in G′ as

strat′𝑣′ (𝜌′) = 𝜑(strat𝑣(choice𝑠𝑡 (𝜌′))), for 𝜌′ ∈ Pathfin
𝑣′ (G′).

We prove that strat′𝑣′ is winning. Let 𝜌′ = 𝑒′0𝑒
′
1 · · · ∈ Run (G′) be an infinite play consistent with

strat′𝑣′ . For each finite prefix �̃�′ ⊑ 𝜌′, choice𝑠𝑡 (�̃�′) is a finite play in G, and by the monotonicity

33 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

assumption, we can define the limit of these runs as:

®𝜌 = 𝑒0𝑒1𝑒2 · · · ∈ Run (G), where 𝑒0𝑒1 . . . 𝑒𝑛 = choice𝑠𝑡 (𝑒′0𝑒′1 . . . 𝑒′𝑛),

which is indeed a run in G. We show that ®𝜌 is consistent with strat𝑣 by induction. Let 𝜌𝑛 =

𝑒0𝑒1 . . . 𝑒𝑛−1 be the prefix of size 𝑛 of ®𝜌, and suppose that it ends in a vertex 𝑣𝑛 controlled by Eve.
We want to show that 𝑒𝑛 = strat𝑣(𝜌𝑛). By definition of strat′𝑣′ , 𝑒

′
𝑛 = 𝜑(strat𝑣(𝜌𝑛)) = 𝜑(𝑒𝑛), and

as 𝑣𝑛 is controlled by Eve, strat𝑣(𝜌𝑛) is the only continuation of 𝜌𝑛 consistent with strat𝑣, so by
the last property of choice𝑠𝑡, 𝑒𝑛 has to coincide with strat𝑣(𝜌𝑛), as we wanted. As ®𝜌 is consistent
with the winning strategy strat𝑣, it is an accepting run in G, and since 𝜑 preserves accepting
runs, 𝜌′ = 𝜑Runs (®𝜌) is also an accepting run.

Finally, we show how to build a function choice𝑠𝑡 : Pathfin
𝑣′ (G′) → Pathfin

𝑣 (G) by induction
on the length of the runs. Assume that choice𝑠𝑡 has been defined for runs of length ≤ 𝑛, and let
𝑒′0𝑒
′
1 . . . 𝑒

′
𝑛 be a run of length 𝑛+1, with choice𝑠𝑡 (𝑒′0𝑒′1 . . . 𝑒′𝑛−1) = 𝑒0𝑒1 . . . 𝑒𝑛−1. If 𝑒0𝑒1 . . . 𝑒𝑛−1 is not

consistent with strat𝑣, it ends in a vertex 𝑣𝑛 controlled by Adam, or strat𝑣(𝑒0𝑒1 . . . 𝑒𝑛−1) ∉ 𝜑−1(𝑒𝑛),
we let 𝑒𝑛 ∈ 𝜑−1(𝑒𝑛) ∩ Out(𝑣𝑛) be any edge (one such edge exists by local surjectivity). On the
contrary, we let 𝑒𝑛 = strat𝑣(𝑒0𝑒1 . . . 𝑒𝑛−1). We define choice𝑠𝑡 (𝑒′0𝑒′1 . . . 𝑒′𝑛−1𝑒

′
𝑛) = 𝑒0𝑒1 . . . 𝑒𝑛−1𝑒𝑛.

By construction, the obtained function fulfils the 4 requirements. ■

PROPOS IT ION 3.18. Let G,G′ be two games such that there is an HD-for-games mapping
𝜑 : G → G′. Eve’s winning region in G′ is the projection of her winning region in G:WEve(G′) =
𝜑(WEve(G)).

PROOF . If Eve wins G from an initial vertex 𝑣, Lemma 3.17 guarantees that she wins G′ from
𝜑(𝑣).

Assume now that Eve winsG′ from an initial vertex 𝑣′with a strategy strat′𝑣′ : Pathfin
𝑣′ (G′) →

𝐸′. We need to show that she winsG from some initial vertex in 𝜑−1(𝑣′). Let (𝑟Init, 𝑟) be a resolver
simulating 𝜑 sound for G and let 𝑣 = 𝑟Init(𝑣′). We define

strat𝑣(𝜌) = 𝑟(𝜌, strat′𝑣′ (𝜑Runs (𝜌)), for 𝜌 ∈ Pathfin
𝑣 (G).

That is, strat𝑣 is a strategy in G from 𝑣 that, given a finite run 𝜌, simulates 𝜌 in G′, looks at the
move done by the strategy strat′𝑣′ in there, and transfers this choice back to G′ by using the
resolver 𝑟. We prove that strat𝑣 is winning for Eve in G. Let 𝜌 = 𝑒0𝑒1 · · · ∈ Path𝑣(G) be a play
consistent with strat𝑣. We claim that 𝜑(𝜌) is consistent with strat′𝑣′ and that 𝜌 is consistent with
(𝑟Init, 𝑟) over 𝜑(𝜌). This implies the desired result; consistency with strat′𝑣′ implies that 𝜑(𝜌) is
accepting, and since (𝑟Init, 𝑟) is sound for G, 𝜌 would be accepting in G.

We prove that 𝜑(𝜌) is consistent with strat′𝑣′ . Let 𝑒′0𝑒
′
1 . . . 𝑒

′
𝑛−1 be a subplay of 𝜑(𝜌) end-

ing in a vertex 𝑣𝑛 controlled by Eve. By definition of the strategy strat𝑣, we have that 𝑒𝑛 =

𝑟(𝑒0 . . . 𝑒𝑛−1, strat′𝑣′ (𝑒′0 . . . 𝑒′𝑛−1)), and by definition of a resolver (item 2), we obtain that 𝑒′𝑛 =

𝜑(𝑒𝑛) = strat′𝑣′ (𝑒′0 . . . 𝑒′𝑛−1)), as we wanted.

34 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

The fact that 𝜌 is consistent with (𝑟Init, 𝑟) over 𝜑(𝜌) follows directly from the definition
of strat𝑣. ■

The next corollary follows from the previous proposition and Lemma 3.14.

COROLLARY 3.19. Let G,G′ be two games whose states are accessible and such that their
acceptance setsWG andWG′ are prefix-independent. If there is an HD-for-games mapping 𝜑 : G →
G′, then Eve’s full winning region inG′ is the projection of her full winning region inG:WEve(G′𝑉 ′) =
𝜑(WEve(G𝑉)).

4. The Zielonka tree: An optimal approach toMuller languages

In this section, we take a close look into the Zielonka tree, a structure introduced (under the
name of split trees) to study Muller languages [94]. We show how to use the Zielonka tree
to construct minimal deterministic parity automata and minimal history-deterministic Rabin
automata recognising Muller languages. In Section 4.2, we describe the construction of a minimal
deterministic parity automatonAparity

ZF
for a given Muller language Muller(F). Theorem 4.15,

the main contribution of this section, states the minimality ofAparity
ZF

both amongst deterministic
and HD parity automata. Theorem 4.14 states the optimality on the number of colours of the
acceptance condition ofAparity

ZF
, and implies that we can determine the parity index of a Muller

language from its Zielonka tree. We will use the optimality of automatonAparity
ZF

to provide a
polynomial-time algorithm minimising DPAs recognising Muller languages in Section 6.3.

In Section 4.3, we describe the construction of a minimal history-deterministic Rabin
automaton ARabin

ZF for a Muller language Muller(F). Its minimality amongst HD automata is
shown in Theorem 4.51, by using the characterisation of the memory requirements of a Muller
language in terms of its Zielonka tree [34].

On the other hand, it has been shown that finding a minimal deterministic Rabin automaton
recognising a given Muller language is NP-complete, if the language is represented by a parity
or Rabin automaton, or even by its Zielonka tree [21]. Therefore, unless P = NP, there are Muller
languages for which minimal deterministic Rabin automata are strictly larger than minimal
HD Rabin automata. Some explicit such languages were shown in [24, Section 4]. A summary of
the minimal automata recognising Muller languages appears in Table 1.

4.1 The Zielonka tree

DEF IN IT ION 4.1 ([94]). Let F ⊆ 2Σ
+ be a family of non-empty subsets over a finite set Σ. A

Zielonka tree for F (over Σ),6 denotedZF = (𝑁, ⪯, 𝜈 : 𝑁 → 2Σ
+) is a 2Σ

+-labelled tree with nodes
partitioned into round nodes and square nodes, 𝑁 = 𝑁⃝ ⊔ 𝑁□, such that:

The root is labelled Σ.

35 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Type of
automata

Deterministic History-
deterministic

Parity Aparity
ZF

Aparity
ZF

Rabin
No characteri-

sation
ARabin
ZF

Table 1. Minimal automata recognising a Muller language Muller(F), according to the type of
acceptance condition (parity or Rabin) and the form of determinism.

If a node is labelled 𝑋 ⊆ Σ, with 𝑋 ∈ F , then it is a round node, and it has a child for each
maximal non-empty subset 𝑌 ⊆ 𝑋 such that 𝑌 ∉ F , which is labelled 𝑌 .
If a node is labelled 𝑋 ⊆ Σ, with 𝑋 ∉ F , then it is a square node, and it has a child for each
maximal non-empty subset 𝑌 ⊆ 𝑋 such that 𝑌 ∈ F , which is labelled 𝑌 .

REMARK 4.2. We note that for each family of subsets F ⊆ 2Σ
+, there is only one Zielonka tree

up to renaming of its nodes, so we will talk of the Zielonka tree of F .

For a family of subsets F ⊆ 2Σ and Σ′ ⊆ Σ, we write F |Σ′ = F ∩ 2Σ′ .

REMARK 4.3. We remark that if 𝑛 is a node ofZF , then the subtree ofZF rooted at 𝑛 is the
Zielonka tree for the family F |𝜈(𝑛) over the alphabet 𝜈(𝑛), that is, for the restriction of F to the
subsets included in the label of 𝑛.

REMARK 4.4. Let 𝑛 be a node of ZF and let 𝑛1 be a child of it. If 𝜈(𝑛1) ⊊ 𝑋 ⊆ 𝜈(𝑛), then
𝜈(𝑛1) ∈ F ⇐⇒ 𝑋 ∉ F ⇐⇒ 𝜈(𝑛) ∉ F . In particular, if 𝑛1, 𝑛2 are two different children of 𝑛,
then 𝜈(𝑛1) ∈ F ⇐⇒ 𝜈(𝑛2) ∈ F ⇐⇒ 𝜈(𝑛1) ∪ 𝜈(𝑛2) ∉ F .

We equip Zielonka trees with an order to navigate in them. That is, we equip each set
ChildrenZF (𝑛) with a total order, making ZF an ordered tree. The precise order considered
will be irrelevant for our purposes. From now on, we will assume that all Zielonka trees are
ordered, without explicitly mentioning it.

For a leaf 𝑙 ∈ Leaves(ZF) and a letter 𝑎 ∈ Σ we define Supp(𝑙, 𝑎) = 𝑛 to be the deepest
ancestor of 𝑙 (maximal for ⪯) such that 𝑎 ∈ 𝜈(𝑛).

EXAMPLE 4.5. We will use the Muller language associated to the following family of subsets
as a running example throughout the paper. Let Σ = {𝑎, 𝑏, 𝑐} and let F be:

F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}}.

6 The definition of ZF, as well as most subsequent definitions, do not only depend on F but also on the alphabet Σ.
Although this dependence is important, we do not explicitly include it in the notations in order to lighten them, as
most of the time the alphabet will be clear from the context.

36 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

In Figure 9 we show the Zielonka tree of F . We use Greek letters (in pink) to name the nodes of
the tree. Integers appearing on the right of the tree will be used in the next section.

We have that Supp(𝜉, 𝑐) = 𝜆 and Supp(𝜉, 𝑏) = 𝛼. Also, Jump(𝜉, 𝜆) = 𝜁 is the leaf reached by
going from 𝜉 to 𝜆, then changing to the next branch (in a cyclic way) and re-descend by taking
the leftmost path. Similarly, Jump(𝜉, 𝛼) = 𝜃.

The subtree rooted at 𝜆 contains the nodes {𝜆, 𝜉, 𝜁 }. We note that this is the Zielonka tree
of F |{𝑎,𝑐} = {{𝑎, 𝑐}} (over the alphabet {𝑎, 𝑐}). ■

a, b, c

a, b a, c

a a c

α

β λ

θ ξ ζ

1

2

3

Figure 9. Zielonka tree ZF for F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}}.

4.2 A minimal deterministic parity automaton

We present next the Zielonka-tree-parity-automaton, a minimal deterministic parity automa-
ton for a Muller language Muller(F) built from the Zielonka treeZF . Our construction will
furthermore let us determine the parity index of the language Muller(F) from its Zielonka tree.

4.2.1 The Zielonka-tree-parity-automaton

We associate a non-negative integer to each level of a Zielonka tree ZF = (𝑁, ⪯, 𝜈). We let
𝑝Z : 𝑁 → N be the function defined as:

if Σ ∈ F , 𝑝Z (𝑛) = Depth(𝑛),
if Σ ∉ F , 𝑝Z (𝑛) = Depth(𝑛) + 1.

We let minF (resp. maxF) be the minimum (resp. maximum) value taken by the function 𝑝Z .

REMARK 4.6. A node 𝑛 in the Zielonka tree ZF verifies that 𝑝Z (𝑛) is even if and only if
𝜈(𝑛) ∈ F . If Σ ∈ F , minF = 0 and maxF equals the height of the Zielonka tree minus one. If
Σ ∉ F , minF = 1 and maxF equals the height of the Zielonka tree.

EXAMPLE 4.7. The Muller language from Example 4.5 satisfies Σ ∉ F . The values taken by
the function 𝑝Z are represented at the right of the Zielonka tree in Figure 9. We have 𝑝Z (𝛼) = 1,
𝑝Z (𝛽) = 𝑝Z (𝜆) = 2 and 𝑝Z (𝜃) = 𝑝Z (𝜉) = 𝑝Z (𝜁) = 3, so minF = 1 and maxF = 3. ■

37 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

DEF IN IT ION 4.8 (Zielonka-tree-parity-automaton). Given a family of non-empty subsets
F ⊆ 2Σ

+, we define the ZT-parity-automatonAparity
ZF

= (𝑄, Σ, 𝑞0, [minF ,maxF], 𝛿,parity) as the
deterministic parity automaton given by:

𝑄 = Leaves(ZF),
𝑞0 is the leftmost leaf ofZF ,7

The transition reading 𝑎 ∈ Σ from 𝑞 ∈ 𝑄 goes to Jump(𝑞, Supp(𝑞, 𝑎)) and produces
𝑝Z (Supp(𝑞, 𝑎)) as output, that is,

𝛿(𝑞, 𝑎) = (Jump(𝑞, Supp(𝑞, 𝑎)), 𝑝Z (Supp(𝑞, 𝑎))) .

Intuitively, the transitions of the automaton are determined as follows: if we are in a leaf 𝑙
and we read a colour 𝑎, then we move up in the branch of 𝑙 until we reach a node 𝑛 that contains
the letter 𝑎 in its label. Then we pick the child of 𝑛 just on the right of the branch that we took
before (in a cyclic way), and we move to the leftmost leaf below it. The colour produced as
output is 𝑝Z (𝑛), determined by the depth of 𝑛.

EXAMPLE 4.9. In Figure 10 we show the ZT-parity-automatonAparity
ZF

of the family of subsets
from Example 4.5. ■

θ ξ ζ

a : 3

b : 2

c : 1

a : 3

b : 1

c : 2

a : 2

b : 1

c : 3

Figure 10. ZT-parity-automaton recognising the Muller language associated to F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}}.

Correctness of the Zielonka-tree-parity-automaton.

PROPOS IT ION 4.10 (Correctness). Let F ⊆ 2Σ
+ be a family of non-empty subsets. Then,

L(Aparity
ZF
) = MullerΣ(F).

That is, a word 𝑤 ∈ Σ𝜔 is accepted byAparity
ZF

if and only if Inf(𝑤) ∈ F .

The following useful lemma follows directly from the definition of Supp and Jump.

7 Any state can be chosen as initial state (see Lemma 2.5).

38 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 4.11. Let 𝑞 be a leaf ofZF and let 𝑛 be a node above 𝑞. Then, Supp(𝑞, 𝑎) is a descendant
of 𝑛 if and only if 𝑎 ∈ 𝜈(𝑛), and in this case, Jump(𝑞, Supp(𝑞, 𝑎)) is a descendant of 𝑛 too.

PROOF OF PROPOS IT ION 4.10 . Let 𝑤 = 𝑤0𝑤1𝑤2 · · · ∈ Σ𝜔 be an infinite word. For 𝑖 > 0,
let 𝑞𝑖 be the leaf ofZF reached after the (only) run over 𝑤0𝑤1 . . . 𝑤𝑖−1 inAparity

ZF
. For 𝑖 ≥ 0 let

𝑛𝑖 = Supp(𝑞𝑖 , 𝑤𝑖) be the “intermediate node” used to determine the next state and the output
colour of each transition, and let 𝑐𝑖 = 𝑝Z (𝑛𝑖) = 𝛾(𝑞𝑖 , 𝑤𝑖) ∈ [minF ,maxF] be that output colour
(the output of the run over 𝑤 being therefore 𝑐0𝑐1𝑐2 · · · ∈ N𝜔). Let 𝑞∞ be a node appearing
infinitely often in the sequence 𝑞0𝑞1𝑞2 . . . , and let 𝑛𝑤 be the deepest ancestor of 𝑞∞ such that
Inf(𝑤) ⊆ 𝜈(𝑛𝑤).

CLAIM 4.12. There is 𝐾 ∈ N such that for all 𝑖 ≥ 𝐾 , 𝑞𝑖 ⪰ 𝑛𝑤 and Supp(𝑞𝑖 , 𝑤𝑖) ⪰ 𝑛𝑤. In particular,
𝑐𝑖 ≥ 𝑝Z (𝑛𝑤) for 𝑖 ≥ 𝐾 .

Proof. Let 𝐾 ∈ N be a position such that 𝑤𝑖 ∈ Inf(𝑤) for all 𝑖 ≥ 𝐾 and 𝑞𝐾 = 𝑞∞. The claim
follows from Lemma 4.11 and induction. ■

CLAIM 4.13. Let 𝑛𝑤,1, . . . , 𝑛𝑤,𝑠 be an enumeration of ChildrenZF (𝑛𝑤) from left to right. It holds
that:

1. Supp(𝑞𝑖 , 𝑤𝑖) = 𝑛𝑤 infinitely often. In particular, 𝑐𝑖 = 𝑝Z (𝑛𝑤) for infinitely many 𝑖’s.
2. There is no 𝑛𝑤,𝑘 ∈ Children(𝑛𝑤) such that Inf(𝑤) ⊆ 𝜈(𝑛𝑤,𝑘).

Proof.We first remark that for all 𝑛𝑤,𝑘 there are arbitrarily large positions 𝑖 such that 𝑞𝑖 is not
below 𝑛𝑤,𝑘. Suppose by contradiction that this is not the case. Then, for all 𝑖 sufficiently large we
have that Supp(𝑞𝑖 , 𝑤𝑖) ⪰ 𝑛𝑤,𝑘, and by Lemma 4.11, Inf(𝑤) ⊆ 𝜈(𝑛𝑤,𝑘). In particular, 𝑞∞ is below
𝑛𝑤,𝑘, contradicting the fact that 𝑛𝑤 is the deepest ancestor of 𝑞∞ containing Inf(𝑤).

Let 𝐾 be like in the Claim 4.12. We show that if 𝑖 ≥ 𝐾 and 𝑞𝑖 ⪰ 𝑛𝑤,𝑘, then there is 𝑗 > 𝑖 such
that 𝑤 𝑗 ∉ 𝜈(𝑛𝑤,𝑘), Supp(𝑞 𝑗 , 𝑤 𝑗) = 𝑛𝑤 and 𝑞 𝑗+1 ⪰ 𝑛𝑤,𝑘+1 (by an abuse of notation we let 𝑠 + 1 = 1).
It suffices to consider the least 𝑗 ≥ 𝑖 such that Supp(𝑞 𝑗 , 𝑤 𝑗) ⪰̸ 𝑛𝑤,𝑘 (which exists by the previous
remark). Since Inf(𝑤) ⊆ 𝜈(𝑛𝑤) we have that Supp(𝑞 𝑗 , 𝑤 𝑗) = 𝑛𝑤, so 𝑤 𝑗 ∉ 𝜈(𝑛𝑤, 𝑗) (by Lemma 4.11)
and by definition of the transitions ofAparity

ZF
, 𝑞 𝑗+1 will be a leaf below 𝑛𝑤,𝑘+1.

The fact that 𝑞 𝑗+1 ⪰ 𝑛𝑤,𝑘+1 implies that for any child 𝑛𝑤,𝑘′ , infinitely many states 𝑞𝑖 will be
below 𝑛𝑤,𝑘′ (we go around the children in a round-robin fashion). Therefore, for any 𝑘, there
are arbitrarily large 𝑗 such that 𝑤 𝑗 ∉ 𝜈(𝑛𝑤, 𝑗) and Supp(𝑞 𝑗 , 𝑤 𝑗) = 𝑛𝑤, implying both items in the
claim. ■

Combining both claims, we obtain that the minimum of the colours that are produced as output
infinitely often is 𝑝Z (𝑛𝑤). By Remark 4.6, 𝑝Z (𝑛𝑤) is even if and only if 𝑛𝑤 is a round node (if
𝜈(𝑛𝑤) ∈ F). It remains to show that Inf(𝑤) ∈ F if and only if 𝜈(𝑛𝑤) ∈ F , which holds by the
second item in Claim 4.13 and Remark 4.4. ■

39 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

4.2.2 Optimality of the Zielonka-tree-parity-automaton

We now state and prove the main results of this section: the optimality of the ZT-parity-
automaton in both number of states (Theorem 4.15) and number of colours of the acceptance
condition (Theorem 4.14). The minimality of the ZT-parity-automaton comes in two versions. A
weaker one states its minimality only amongst deterministic automata (Theorem 4.18), and a
stronger one states its minimality amongst all history-deterministic automata (Theorem 4.15).
Although the weaker version is implied by the stronger one, we find it instructive to provide
a proof for this easier case. The proof of the stronger statement is one of the most technical
parts of the paper, but the argument used in its proof is just a careful refinement of the ideas
appearing in the weaker version.

Statement of the results.

THEOREM 4.14 (Optimality of the parity condition). The parity index of a Muller language
MullerΣ(F) is [minF ,maxF]. That is, the ZT-parity-automaton ofMullerΣ(F) uses the optimal
number of colours to recognise this language.

THEOREM 4.15 (Minimality of the ZT-parity-automaton). LetA be a history-deterministic
parity automaton recognising a Muller languageMullerΣ(F). Then, |Aparity

ZF
| ≤ |A|.

COROLLARY 4.16. For every Muller language 𝐿, a minimal deterministic parity automaton
recognising 𝐿 has the same size as a minimal HD parity automaton recognising 𝐿.

We remark that, nonetheless, there are non-trivial HD parity automata recognising Muller
languages. The automaton provided in Example 2.3 is an HD coBüchi automaton recognising a
Muller language that cannot be made deterministic just by removing transitions. We note that
the (deterministic) ZT-parity-automaton for this Muller language has only 2 states.

We say that an automatonA is determinisable by pruning if there is a subset Δ′ ⊆ Δ of its
transitions and an initial state 𝑞0 such that the subautomaton induced by Δ′ with initial state 𝑞0

is deterministic and recognises L(A).

PROPOS IT ION 4.17. There exists an HD parity automaton recognising a Muller language that
is not determinisable by pruning.

Optimality of the parity condition.

PROOF OF THEOREM 4.14 . Let 𝐿 = MullerΣ(F). The ZT-parity-automaton of 𝐿 is a parity
automaton recognising 𝐿 using colours in [minF ,maxF], therefore, the parity index of 𝐿 is at
most [minF ,maxF].

To prove that the parity index is not less than [minF ,maxF], we use the Flower Lemma 2.16.
The language 𝐿 is trivially recognised by a deterministic Muller automatonA𝐿 with just one

40 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

state 𝑞, transitions 𝑞
𝑎:𝑎−−→ 𝑞 for each 𝑎 ∈ Σ, and acceptance condition given by 𝐿 itself. Let 𝑛1 ⪯

𝑛2 ⪯ . . . ⪯ 𝑛𝑑 be a branch of maximal length ofZF (that must verify 𝑑 = maxF −minF , and that
the root 𝑛1 is a round node if and only if minF is even). If we let ℓ𝑖 be the cycle inA𝐿 containing
exactly the transitions corresponding to letters in 𝜈(𝑛𝑖), we obtain that ℓ1 ⊋ ℓ2 ⊋ · · · ⊋ ℓ𝑑 is a
𝑑-flower over 𝑞, which is positive if and only if 𝑛1 is a round node. Lemma 2.16 allows us to
conclude. ■

Minimality of the ZT-parity-automaton with respect to deterministic automata. Before
presenting the proof of Theorem 4.15, we prove a weaker result, namely, that the ZT-parity-
automaton is minimal amongst deterministic parity automata recognising a Muller language.

THEOREM 4.18 (Minimality of the Zielonka Tree automaton with respect to deterministic
automata). LetA be a DPA recognising a Muller languageMullerΣ(F). Then, |Aparity

ZF
| ≤ |A|.

We recall that, by Remark 2.4 and Lemma 2.5, we can assume that all the states of automata
recognising Muller languages are accessible, and that any of them can be chosen to be initial.
When considering subautomata of these automata, we will sometimes not mention their initial
state.

LetA = (𝑄, Σ, 𝐼 , Γ, Δ,W) be an automaton, and let 𝑋 ⊆ Σ be a subset of the input alphabet.
We say that a subgraph S of the underlying graph of A is 𝑋-closed if for every state 𝑞 in S
and every letter 𝑎 ∈ 𝑋 there is some transition 𝑞

𝑎:𝑐−−→ 𝑞′ in S. An 𝑋-final strongly connected
component (𝑋 -FSCC) ofA is an 𝑋 -closed final SCC in the graph obtained by taking the restriction
of the underlying graph of A to the edges labelled by letters in 𝑋 . We remark that a subset
𝑆 ⊆ 𝑄 is the set of states of an 𝑋 -FSCC if and only if:

for any two states 𝑞, 𝑞′ ∈ 𝑆 there is a finite word 𝑤 ∈ 𝑋∗ labelling a finite path from 𝑞 to 𝑞′,
and
if 𝑞 ∈ 𝑆 and there is a finite path from 𝑞 to 𝑞′ labelled with a word 𝑤 ∈ 𝑋∗, then 𝑞′ ∈ 𝑆.

LEMMA 4.19. LetA be a complete automaton. For every subset 𝑋 ⊆ Σ,A contains an accessible
𝑋 -FSCC.

PROOF . As any graph without sinks contains some final SCC, the accessible part of the restric-
tion ofA to edges labelled by letters in 𝑋 contains one. By completeness ofA, one such final
SCC has to be an 𝑋 -closed subgraph, so it is an 𝑋 -FSCC. ■

LEMMA 4.20. LetA be a DMA recognising a Muller languageMullerΣ(F), let 𝑋 ⊆ Σ and let S𝑋
be an accessible 𝑋 -FSCC ofA. Then, the automaton induced by S𝑋 is a deterministic automaton
recognisingMuller𝑋 (F |𝑋) = {𝑤 ∈ 𝑋𝜔 | Inf(𝑤) ∈ F }.

PROOF . Let A = (𝑄, Σ, 𝑞0, Γ, 𝛿,W) (whereW is a Muller language). Let 𝑞𝑆 be the state in S𝑋
chosen to be initial, and let 𝑢0 ∈ Σ∗ be a finite word such that the run over 𝑢0 from 𝑞0 ends in 𝑞𝑆.

41 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

By prefix-independence of Muller languages, a word 𝑤 ∈ 𝑋𝜔 belongs to MullerΣ(F) if and only
if 𝑢0𝑤 ∈ MullerΣ(F), and therefore, A accepts 𝑤 if and only if it accepts 𝑢0𝑤. Since the run
inA over 𝑢0𝑤 and the run in S𝑋 over 𝑤 have a suffix in common, and by prefix-independence
ofW, we have that 𝑤 ∈ L(S𝑋) if and only if 𝑢0𝑤 ∈ L(A) if and only if Inf(𝑤) ∈ F . ■

The next lemma states that, in a parity automaton, the union of two accepting cycles must
be accepting, and similarly for rejecting cycles. In Section 6.1, we will see that this property is
actually a characterisation of parity transition systems (Proposition 6.11).

LEMMA 4.21. LetA be a parity automaton. Let ℓ1, ℓ2 ∈ Cycles (A) be two cycles with some state
in common. If ℓ1 and ℓ2 are both accepting (resp. rejecting), then ℓ1 ∪ ℓ2 is also accepting (resp.
rejecting).

PROOF . Let 𝛾 : Δ → N be the colouring function of A. The cycles ℓ1 and ℓ2 are accepting if
and only if 𝑑𝑖 = min 𝛾(ℓ𝑖) is even, for 𝑖 = 1, 2. In this case, min 𝛾(ℓ1 ∪ ℓ2) = min{𝑑1, 𝑑2} is even.
The proof is symmetric if ℓ1 and ℓ2 are rejecting. ■

By a small abuse of notation, we will say that two SCC S1 and S2 are disjoint, and write
S1 ∩ S2 = ∅, if their sets of states are disjoint.

LEMMA 4.22. Let F ⊆ 2Σ
+ be a family of subsets with Zielonka tree ZF = (𝑁, ⪯, 𝜈), and

let A be a DPA recognisingMullerΣ(F). Let 𝑛 ∈ 𝑁 be a node of the Zielonka tree of F , and let
𝑛1, 𝑛2 ∈ ChildrenZF (𝑛) be two different children of 𝑛. If S1 and S2 are two accessible 𝜈(𝑛1)-FSCC
and 𝜈(𝑛2)-FSCC inA, respectively, then S1 ∩ S2 = ∅.

PROOF . Without loss of generality, we can assume that all states inA are accessible, and since
the language thatA recognises is prefix-independent, we can also suppose thatA is complete.
Let 𝑙Σ : Δ→ Σ be the labelling of the transitions ofA with input letters. Let S𝑖 be a 𝜈(𝑛𝑖)-FSCC
in A, for 𝑖 = 1, 2, and let ℓ𝑖 be its set of edges, which form a cycle satisfying 𝑙Σ(ℓ𝑖) = 𝜈(𝑛𝑖).
Suppose by contradiction that S1 ∩ S2 ≠ ∅. Then ℓ1 and ℓ2 have some state in common, and
their union is also a cycle satisfying 𝑙Σ(ℓ1 ∪ ℓ2) = 𝜈(𝑛1) ∪ 𝜈(𝑛2). By Lemma 4.21, we must have

ℓ1 accepting ⇐⇒ ℓ1 ∪ ℓ2 accepting,

contradicting the fact that 𝜈(𝑛1) ∈ F if and only if 𝜈(𝑛1) ∪ 𝜈(𝑛2) ∉ F (Remark 4.4). ■

PROOF OF THEOREM 4.18 . We proceed by induction in the height ofZF . For height 1, the
result is trivial, since |Aparity

ZF
| = 1. LetA be a DPA recognising MullerΣ(F). Let 𝑛0 be the root

of ZF and 𝑛1, 𝑛2, . . . , 𝑛𝑘 be an enumeration of the children of 𝑛0 in ZF . By Lemma 4.19, for
each 𝑖 ∈ {1, . . . , 𝑘},A contains some accessible 𝜈(𝑛𝑖)-FSCC S𝑖 , and by Lemma 4.22 these must be
pairwise disjoint. By Lemma 4.20, each S𝑖 induces a deterministic subautomaton recognising
Muller𝜈(𝑛𝑖) (F |𝜈(𝑛𝑖)). LetZ𝑖 by the subtree ofZF rooted at 𝑛𝑖 , which we recall that is the Zielonka

42 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

tree for F |𝜈(𝑛𝑖) . By induction hypothesis, it must be the case that |Leaves(Z𝑖) | ≤ |S𝑖 |, so we can
conclude:

|Aparity
ZF
| = |Leaves(ZF) | =

𝑘∑︁
𝑖=1
|Leaves(Z𝑖) | ≤

𝑘∑︁
𝑖=1
|S𝑖 | ≤ |A|. ■

Minimality of the ZT-parity-automaton with respect to HD automata. We intend to
prove Theorem 4.15, that is, that for any F ⊆ 2Σ

+, the automaton Aparity
ZF

is minimal amongst
HD parity automata recognising Muller(F). We will follow the same proof scheme than in
the deterministic case, performing an induction over the height of the Zielonka tree. Assume
thatA is an HD parity automaton for Muller(F) and that 𝑛0 is the root ofZF having 𝑛1, . . . , 𝑛𝑘

as children. For each child 𝑛𝑖 we want to find an HD subautomatonA𝑖 recognising the language
associated to F |𝜈(𝑛𝑖) in such a way that the automata A𝑖 are pairwise disjoint, which would
allow us to carry out the induction and obtain that |A| ≥ |Leaves(ZF) | = |Aparity

ZF
|. Our objective

will be therefore to prove:

PROPOS IT ION 4.23. Let 𝑛0 be the root of the Zielonka tree of F , and let 𝑛1, 𝑛2, . . . , 𝑛𝑘 be an
enumeration of the children of 𝑛0. If A is an HD automaton recognising MullerΣ(F), then, A
contains 𝑘 pairwise disjoint subautomataA1, . . . ,A𝑘 that are history-deterministic and such that
L(A𝑖) = Muller𝜈(𝑛𝑖) (F |𝜈(𝑛𝑖)).

The non-determinism ofA will make this task considerably more laborious than in the
previous paragraph, and we will have to thoroughly examine the strategies used by the resolvers
forA. By the inherently asymmetric semantics of non-deterministic automata, there are two
well-differentiated cases to consider, depending on whether the root of the Zielonka tree is
round (Σ ∈ F) or square (Σ ∉ F).

In order to simplify the proof, we will assume that all states are reachable using a sound
resolver and that all automata have a single initial state, which can be done without loss of
generality since a resolver for an HD automaton fixes such initial state in advance.

Case 1: The root of the Zielonka tree is a square node: Σ ∉ F . LetA = (𝑄, Σ, 𝑞0, Γ, Δ,W)
be a non-deterministic automaton. A memory structure forA is a memory skeletonM over Δ
together with a function 𝜎 : 𝑄 × 𝑀 × Σ → Δ, where 𝑀 is the set of states ofM. We say that
(M, 𝜎) implements a resolver (𝑞0, 𝑟) if for all 𝑎 ∈ Σ, 𝑟(𝜀, 𝑎) = 𝜎(𝑞0, 𝑚0, 𝑎) and for all 𝜌 ∈ Δ+,
𝑟(𝜌, 𝑎) = 𝜎(Target(𝜌), 𝜇(𝑚0, 𝜌), 𝑎), where 𝑚0 is the initial state ofM and 𝜇 : 𝑀 × Δ∗ → 𝑀 is its
update function.

LEMMA 4.24 ([9]). Every HD parity automaton admits a sound resolver implemented by a finite
memory structure.

AsM is a pointed graph labelled with the transitions ofA, we could consider the product
automatonA ⋉M. We want to furthermore restrict the transitions of this automaton to those

43 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that are indicated by the next-move function 𝜎. Given an automatonA and a memory structure
(M, 𝜎), we define their composition, which we writeA◁𝜎M = (𝑄×𝑀, Σ, (𝑞0, 𝑚0), Γ, Δ′,W) as the
automaton having transitions (𝑞, 𝑚) 𝑎:𝑐−−→ (𝑞′, 𝑚′) if 𝜎(𝑞, 𝑚, 𝑎) = 𝑒 = 𝑞

𝑎:𝑐−−→ 𝑞′ and 𝜇(𝑚, 𝑒) = 𝑚′

(formally, Δ′ is a subset of Δ × 𝐸M , where 𝐸M are the edges of the memory skeleton). We note
thatA ◁𝜎M is deterministic, and it is complete ifA is.

The following lemma follows directly from the definition of soundness of a resolver and
the definition of composition of an automaton and a memory structure.

LEMMA 4.25. Let A be an automaton and (M, 𝜎) a memory structure for A. The resolver
implemented by (M, 𝜎) is sound if and only ifA andA ◁𝜎M recognise the same language.

For the rest of the paragraph, we let A = (𝑄, Σ, 𝑞0,N, Δ,parity) be a complete history-
deterministic automaton recognising the Muller language MullerF (Σ) admitting a sound re-
solver (𝑞0, 𝑟) implemented by a memory structure (M, 𝜎). We let 𝜋A : A ◁𝜎M → A be the
morphism of automata given by the projection into the first component: 𝜋A,𝑉 (𝑞, 𝑚) = 𝑞 and
𝜋A,𝐸 (𝑒1, 𝑒2) = 𝑒1.

REMARK 4.26. If 𝜌 is a path in A ◁𝜎M that is labelled by input letters 𝑎0𝑎1 · · · ∈ Σ∞ and
producing output 𝑐0𝑐1 · · · ∈ N∞, then the 𝜋A-projection of 𝜌 is a path inA labelled by 𝑎0𝑎1 · · · ∈
Σ∞ and producing 𝑐0𝑐1 · · · ∈ N∞ as output.

LEMMA 4.27. Let 𝑋 ⊆ Σ and let S𝑋 be an accessible 𝑋 -FSCC ofA ◁𝜎M. Then, 𝜋A (S𝑋) induces
an HD subautomaton ofA recognisingMuller𝑋 (F |𝑋) = {𝑤 ∈ 𝑋𝜔 | Inf(𝑤) ∈ F }.

PROOF . Let 𝑞𝑆 be a state in 𝜋A (S𝑋) chosen to be initial. Let 𝑚𝑆 be a state inM such that
(𝑞𝑆, 𝑚𝑆) ∈ S𝑋 . By Lemma 4.20, S𝑋 induces a deterministic subautomaton with initial state
(𝑞𝑆, 𝑚𝑆) recognising Muller𝑋 (F |𝑋). On the one hand, since 𝜋A (S𝑋) is an accessible subautoma-
ton ofA having only transitions labelled by 𝑋 and by prefix-independence of L(A), we have
that

L(𝜋A (S𝑋)) ⊆ L(A) ∩ 𝑋𝜔 = Muller𝑋 (F
��
𝑋
).

On the other hand, the projection of any accepting run in S𝑋 provides an accepting run in
𝜋A (S𝑋) (by Remark 4.26), so

L(S𝑋) = Muller𝑋 (F
��
𝑋
) ⊆ L(𝜋A (S𝑋)).

Moreover, a sound resolver for 𝜋A (S𝑋) is implemented by (M𝑚𝑆 , 𝜎) (the memory structure
with initial state set to 𝑚𝑆). ■

LEMMA 4.28. Let 𝑛 ∈ 𝑁 be a square node of the Zielonka tree of F (𝜈(𝑛) ∉ F), and let
𝑛1, 𝑛2 ∈ ChildrenZF (𝑛) be two different children of 𝑛. If S1 and S2 are two accessible 𝜈(𝑛1)-FSCC
and 𝜈(𝑛2)-FSCC inA ◁𝜎M, respectively, then 𝜋A (S1) ∩ 𝜋A (S2) = ∅.

44 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF . Suppose by contradiction that there is some state 𝑞 in 𝜋A (S1) ∩ 𝜋A (S2), and let
𝑚1, 𝑚2 ∈ 𝑀 be such that (𝑞, 𝑚1) and (𝑞, 𝑚2) are states in S1 and S2, respectively. For 𝑖 = 1, 2,
let ℓ𝑖 ∈ Cycles (𝑞,𝑚𝑖) (A ◁𝜎M) be the cycle over (𝑞, 𝑚𝑖) containing all edges in S𝑖 . We note that
𝑙Σ(ℓ𝑖) = 𝜈(𝑛𝑖) and therefore min 𝛾(ℓ𝑖) has to be even (as A ◁𝜎M is deterministic), where 𝑙Σ
and 𝛾 are the labellings of A ◁𝜎 M with input letters and output colours, respectively. By
Remark 4.26, the 𝜋A-projections of ℓ1 and ℓ2 are cycles over 𝑞 in A labelled with 𝜈(𝑛1) and
𝜈(𝑛2) and in which the minimal colour appearing is even. By alternating these two cycles, we
can build an accepting run inA over a word 𝑤 ∈ Σ𝜔 with Inf(𝑤) = 𝜈(𝑛1) ∪ 𝜈(𝑛2), contradicting
the fact that 𝜈(𝑛1) ∪ 𝜈(𝑛2) ∉ F (Remark 4.4). ■

Lemmas 4.19, 4.27 and 4.28 imply Proposition 4.23 in the case in which the root of the
Zielonka tree is a square node.

Case 2: The root of the Zielonka tree is a round node: Σ ∈ F . Before presenting the
formal proof, let us discuss why considering these two cases separately is necessary. A first
idea to obtain the desired result would be to follow the same steps as in Case 1. However, this
approach encounters a major difficulty: the argument used in the proof of Lemma 4.28 is not
valid if Σ ∈ F . Indeed, even if we can find two rejecting cycles ℓ1, ℓ2 such that 𝑙Σ(ℓ𝑖) = 𝜈(𝑛𝑖),
their 𝜋A-projections could a priori have a state in common; this would imply the existence of a
rejecting run over the set of letters 𝜈(𝑛1) ∪ 𝜈(𝑛2) ∈ F , which is not enough to conclude, as the
non-determinism ofA leaves room for the existence of other accepting runs over this set of
letters. To circumvent this difficulty, we need to take a closer look at the strategies used by the
resolver. Rather than considering any finite memory strategy resolving the non-determinism of
A, we will show that we can choose a specific resolver for which we will be able to obtain a
result analogous to Lemma 4.28. To do this, we first construct the letter game ofA, as introduced
in [44], which is a Muller game satisfying that a strategy for it yields a resolver for A. The
strategy that we will use in this game is the one obtained by applying McNaughton’s algorithm
to solve Muller games [66] guided by the Zielonka tree, as presented in [34].

Let A = (𝑄, Σ, 𝑞0, [𝑑min, 𝑑max], Δ,parity) be a parity automaton recognising Muller(F),
and assume that Σ ∩ [𝑑min, 𝑑max] = ∅. The letter game forA is the game GA defined as follows:

The set of vertices is𝑉 = 𝑄⊔ (𝑄×Σ). Adam controls vertices in𝑄, and Eve controls vertices
in 𝑄 × Σ.
For each letter 𝑎 ∈ Σ and each 𝑞 ∈ 𝑄, there is an edge 𝑞

𝑎−→ (𝑞, 𝑎).
For each position (𝑞, 𝑎) ∈ 𝑄 × Σ, and for each transition 𝑞

𝑎:𝑐−−→ 𝑞′ in A, there is an edge
(𝑞, 𝑎) 𝑐−→ 𝑞′.
The set of colours is Γ = Σ ⊔ [𝑑min, 𝑑max], and the acceptance set is the Muller language
associated to

F → parity = {𝐶 ⊆ Γ | [𝐶 ∩ Σ ∈ F] =⇒ [min(𝐶 ∩ [𝑑min, 𝑑max]) is even]}.

45 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

That is, in the letter game, Adam provides input letters one by one, and Eve chooses transitions
corresponding to those letters in the automaton A. Eve wins this game if she manages to
build an accepting run every time that Adam gives as input an infinite word in the language
recognised byA.

q0 q1 q2

q0, a

q0, b

q1, a

q0, c

q1, b

q1, c

q2, a

q2, b

q2, c

a

b

c

a
b

c

a

b

c

2

2 1

2 2

2 2

1

2

2

Figure 11. Letter game for the HD automaton from Figure 1, recognising the Muller language associated
to F = {{𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}}. Squares represent Adam’s vertices (the states of the automaton) and
circles Eve’s ones. Blue edges correspond to input-letters, and orange edges to the choices of
transitions in the automaton after each input letter. The only vertex where Eve has a non-trivial choice
to make in order to resolve the non-determinism of the automaton is (𝑞1, 𝑏). In this example, Eve has a
winning strategy corresponding to the resolver described in Example 2.3.

We remark that a subgraph of GA induces a subautomaton ofA via the (partial) mapping

autA : GA⇀A that sends states of the form 𝑞 ∈ 𝑄 to 𝑞 and edges of the form (𝑞, 𝑎) 𝑐−→ 𝑞′ to
𝑞

𝑎:𝑐−−→ 𝑞′.

REMARK 4.29. A strategy for Eve in GA induces a resolver inA, which is sound if and only if
the strategy is winning.

REMARK 4.30. If two subsets of vertices of the letter game 𝑆1, 𝑆2 ⊆ 𝑉 are disjoint, then
autA (𝑆1) ∩ autA (𝑆2) = ∅.

REMARK 4.31. If 𝜌 is a play in GA , labelled 𝑎0𝑐0𝑎1𝑐1 · · · ∈ (Σ · [𝑑min, 𝑑max])∞, the autA-
projection of 𝜌 is a run inA over 𝑎0𝑎1 · · · ∈ Σ∞ producing 𝑐0𝑐1 · · · ∈ [𝑑min, 𝑑max]∞ as output.

LEMMA 4.32 ([44]). A parity automatonA is HD if and only if Eve wins the letter game from
some initial state ofA.

For a subset 𝑋 of vertices or edges of a game G, we define Eve’s attractor to 𝑋 as:

AttrG (𝑋) = {𝑣 ∈ 𝑉 | there is a strategy for Eve ensuring to eventually visit 𝑋 from 𝑣}.

For a colour 𝑐 ∈ Γ we note AttrG (𝑐) = AttrG (𝐸𝑐), where 𝐸𝑐 is the set of edges coloured 𝑐.

46 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

For the rest of the paragraph, let A = (𝑄, Σ, 𝑞0, [0, 𝑑], Δ,parity) be a complete history-
deterministic parity automaton recognising Muller(F). We can assume without loss of gener-
ality that the minimal colour that it uses is 0. We let 𝑉 and 𝐸 denote the sets of vertices and
edges, respectively, of the letter game and Γ = Σ ⊔ [0, 𝑑] its set of colours. Whenever we use
expressions like “the minimal colour appearing in a play”, it will refer to the restriction of Γ to
[0, 𝑑]. From the prefix-independence of Muller(F) we can moreover assume that Eve wins the
letter game from any vertex (see Lemma 2.5). We let 𝑛0 be the root of the Zielonka tree of F
(assumed to be round, that is 𝜈(𝑛0) ∈ F), let 𝑛1, . . . , 𝑛𝑘 be its children, and let Σ𝑖 = 𝜈(𝑛𝑖) ⊆ Σ
(note that Σ𝑖 ∉ F for 𝑖 ≥ 1).

Let us examine the condition F → parity used in the letter game a bit closer. The first
levels of the Zielonka tree of this condition are depicted in Figure 12. It is clear that a strategy
in GA ensuring to produce colour 0 infinitely often is winning. It might be the case that Adam
can prevent Eve from doing this, however, since Eve wins GA , in that case she could ensure to
produce infinitely often a set of colours included in some of the round nodes below the root,
that is, to either avoid colour 1, or to produce letters included in some Σ𝑖 . We use this idea to
define next attractor decompositions for GA .

Σ ∪ [0, d]

Σ ∪ [1, d]

Σ ∪ [2, d] Σ1 ∪ [1, d] · · · Σk ∪ [1, d]

...
...

...

Figure 12. First levels of the Zielonka tree of the Muller condition F → parity, which is the winning
condition of the letter game GA.

Given a subset of vertices𝑉 ′ ⊆ 𝑉 we write GA (𝑉 ′) to denote the subgame of GA containing
the vertices of 𝑉 ′ and the edges between them.

Let 𝑥 be an even integer. For a subgame G′ = GA (𝑉 ′) of GA with no colour strictly smaller
than 𝑥, we define an 𝑥-attractor decomposition of G′ as a partition of 𝑉 ′ into

𝑉 ′ = AttrG′ (𝑥) ⊔𝑉1 ⊔ 𝐴1 ⊔ · · · ⊔𝑉𝑙 ⊔ 𝐴𝑙,

satisfying:
AttrG′ (𝑥) is Eve’s attractor to 𝑥 in G′.
For each 𝑉 𝑗 , either (1) there is some 𝑖 ∈ {1, . . . , 𝑘} such that no colour of Σ \ Σ𝑖 appears in
GA (𝑉 𝑗), or (2) Eve has a winning strategy for GA (𝑉 𝑗) (from any vertex) avoiding colour

47 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

𝑥 + 1; and in both cases, if Adam can leave 𝑉 𝑗 taking an edge 𝑣
𝑎−→ 𝑣′ (𝑣 ∈ 𝑉 𝑗 , 𝑣′ ∉ 𝑉 𝑗), then

𝑣′ ∈ AttrG′ (𝑥) ⊔ 𝑉1 ⊔ 𝐴1 ⊔ . . . 𝑉 𝑗−1 ⊔ 𝐴 𝑗−1. In case (1) we say that 𝑉 𝑗 is a Σ𝑖-region of the
attractor decomposition and in case (2) that 𝑉 𝑗 is an 𝑥 + 1-avoiding region.
Eve wins GA (𝑉 𝑗) from every vertex for all 𝑗.
𝐴 𝑗 = AttrG 𝑗 (𝑉 𝑗), where G 𝑗 is the subgame induced by the subset of vertices given by
𝑉 \

(
AttrG′ (𝑥) ⊔𝑉1 ⊔ . . . ⊔𝑉 𝑗−1 ⊔ 𝐴 𝑗−1

)
(we note that this game does not contain edges

coloured with 𝑥).

If 𝑉 𝑗 is an 𝑥 + 1-avoiding region, we let G′
𝑗

be the subgame obtained from GA (𝑉 𝑗) by
removing the transitions labelled 𝑥 + 1.

An 𝑥-recursive attractor decomposition of G′ is:

DG′ = ⟨AttrG′ (𝑥), (𝑉1, 𝐴1,DG′1), (𝑉2, 𝐴2,DG′2), . . . , (𝑉𝑙, 𝐴𝑙,DG′𝑙)⟩,

where AttrG′ (𝑥) ⊔𝑉1 ⊔ 𝐴1 ⊔ · · · ⊔𝑉𝑙 ⊔ 𝐴𝑙 is an 𝑥-attractor decomposition of G′, and, if 𝑉 𝑗 is an
𝑥 + 1-avoiding region, thenDG′

𝑗
is an 𝑥 + 2-recursive attractor decomposition of G′

𝑗
. (If 𝑉 𝑗 is an

Σ𝑖-region,DG′
𝑗

can be disregarded).
A representation of an attractor decomposition appears in Figure 13.

RegionRegion
1-avoiding region

RegionRegion
Region Region

Figure 13. On the left, a 0-attractor decomposition of a game G. On the right, the coloured part
represents a 2-attractor decomposition of the subgame G′2 induced by the 1-avoiding region 𝑉2. Since
no 3-avoiding region appears on it, this is a full attractor decomposition of the game G, inducing a
partition into three different kinds of regions. The order over the Σ𝑖-regions is given by
𝑉1 <D 𝑉2,1 <D 𝑉2,2 <D 𝑉3. Adam can only force to decrease with respect to this order, that is, at each
sublevel of the decomposition, Adam cannot force to go to the right.

We say that a subgame S of G′ is a Σ𝑖-region of DG′ if it is a Σ𝑖-region of some of the
recursively defined attractor decompositions. Similarly, for 𝑦 > 𝑥 an odd integer, we say that S
is a 𝑦-avoiding region of DG′ if it is a 𝑦-avoiding region of some of the recursively defined

48 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

attractor decompositions. We say that the full game G′ is an 𝑥 − 1-avoiding region (note that 𝑥
might take the value 0). We remark that for any subset 𝑆 of vertices of G′ there is one and only
one minimal 𝑦-avoiding region ofDG′ containing 𝑆 (note that 𝑦 might equal −1).

REMARK 4.33. A 0-recursive attractor decompositionDGA of GA induces a partition of the
vertices into

𝑉 = 𝑆1 ⊔ · · · ⊔ 𝑆𝑟 ⊔ 𝐴1 ⊔ . . . 𝐴𝑟 ⊔ 𝐵1 ⊔ · · · ⊔ 𝐵𝑠,

such that:
𝑆 𝑗 is a Σ𝑖-region ofDGA , for some 𝑖 ∈ {1, . . . , 𝑘},
𝐴 𝑗 = AttrG 𝑗 (𝑆 𝑗) for some subgame G 𝑗 appearing at some level of the decomposition,
𝐵 𝑗 = AttrG′

𝑗
(𝑥) for some even integer 𝑥 and some 𝑥 − 1-avoiding region G′

𝑗
appearing at

some level of the decomposition.

Moreover, such a decomposition induces a total order over the Σ𝑖-regions: for two sets 𝑆𝑡, 𝑆𝑡′ ,
we write 𝑆𝑡 <D 𝑆𝑡′ if there are two regions𝑉 𝑗 ,𝑉 𝑗′ belonging to the same attractor decomposition
inDGA such that 𝑗 < 𝑗′, 𝑆𝑡 ⊆ 𝑉 𝑗 and 𝑆𝑡′ ⊆ 𝑉𝑘′ .

We call such a partition a full attractor decomposition of GA . We remark that, by definition
of an attractor decomposition, Eve wins GA (𝑆 𝑗) from every vertex for every 𝑆 𝑗 . See Figure 13
for an illustration.

The proof that GA admits a full attractor decomposition uses the ideas appearing in [34,
Section 3].

LEMMA 4.34. Let 𝑥 be an even integer. If G′ is a subgame of GA with no colour smaller than
𝑥 and such that Eve can win from every vertex, then it admits an 𝑥-attractor decomposition. In
particular, GA admits a full attractor decomposition.

PROOF . We assume without loss of generality that 𝑥 = 0. Suppose that 𝑉1, 𝐴1, . . . 𝑉 𝑗−1, 𝐴 𝑗−1

have already been defined and that they verify the desired properties. Suppose that the game
G 𝑗 with vertices 𝑉 \

(
AttrG′ (0) ⊔𝑉1 ⊔ . . . 𝑉 𝑗−1 ⊔ 𝐴 𝑗−1

)
is non-empty. First, note that Eve wins G 𝑗

from any position. Indeed, Eve wins G′ from any vertex 𝑣 in G 𝑗 (as we suppose that she can
win G′ starting anywhere); moreover, since 𝑣 ∉ 𝐴 𝑗′ for any 𝑗′ < 𝑗, Adam has a strategy from 𝑣

forcing to remain in G 𝑗 , and Eve has to be able to win against any such strategy.
We prove that either (1) there is some 𝑖 ∈ {1, . . . , 𝑘} and 𝑣 vertex in G 𝑗 such that Eve has a

winning strategy from 𝑣 forcing to produce no colour in Σ \ Σ𝑖 , or (2) there is some vertex 𝑣 in
G 𝑗 such that Eve has a winning strategy from 𝑣 avoiding colour 1. Suppose by contradiction
that this was not the case. Then, Adam can use the following strategy: first, he forces producing
colour 1, then, a colour not in Σ1, followed by a colour not in Σ2, and continues this pattern until
a colour not in Σ𝑙 is produced (and this without producing colour 0, since no 0-edge appears in
G 𝑗). Afterward, he continues repeating these steps in a round-robin fashion. This allows him to

49 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

produce a play winning for him (the word produced is in Muller(F) while the minimal number
produced is 1), contradicting the fact that Eve wins G 𝑗 from 𝑣.

We assume that we are in the case (1) (case (2) is identical), so from some vertices Eve can
win producing no colour in Σ \ Σ𝑖 . We let 𝑉 𝑗 be the set of such vertices, and for each of them
we fix a strategy strat𝑣 that is winning in G 𝑗 and avoids colours in Σ \ Σ𝑖 . By definition of 𝑉 𝑗 , if
𝜌 = 𝑣 𝑣′ is a finite play consistent with strat𝑣 in G 𝑗 , then 𝑣′ ∈ 𝑉 𝑗 (Eve can still win without
producing colours in Σ \ Σ𝑖), so Adam cannot force leaving 𝑉 𝑗 . This proves that:

1. strat𝑣 is winning in GA (𝑉 𝑗) from 𝑣,
2. if 𝑣 ∈ 𝑉 𝑗 is controlled by Adam and 𝑣 −→ 𝑣′ is an edge in GA , then 𝑣′ ∈ AttrG′ (0) ⊔𝑉1 ⊔ 𝐴1 ⊔

. . . 𝑉 𝑗−1 ⊔ 𝐴 𝑗−1 ⊔𝑉 𝑗 .

Also, if a vertex 𝑣 controlled by Adam is in 𝑉 𝑗 , no edge 𝑣
𝑎∉Σ𝑖−−−→ 𝑣′ appears in G 𝑗 , so no colour of

Σ \ Σ𝑖 appears in GA (𝑉 𝑗).
To finish the proof, we define 𝐴 𝑗 to be the attractor of 𝑉 𝑗 in G 𝑗 .
The existence of a full attractor decomposition for GA follows from the fact that any

𝑥 + 1-avoiding region of an 𝑥-attractor decomposition verifies the hypothesis of the lemma. ■

LEMMA 4.35 ([66]). Let G be a game using a Muller acceptance condition such that Eve wins G
from every vertex. Then, there is a finite memory structure (M, 𝜎) over G implementing a winning
strategy uniformly, that is, for every vertex 𝑣 of G there is a memory state 𝑚𝑣 inM such that the
memory structure (M𝑚𝑣 , 𝜎) implements a winning strategy from 𝑣.

For the rest of the paragraph, we fix a 0-recursive attractor decompositionDGA for GA
and let 𝑆1 <D 𝑆2 . . . <D 𝑆𝑟 be the Σ𝑖-regions of the induced full attractor decomposition. For
each region 𝑆 𝑗 we fix a memory structure (M 𝑗 , 𝜎 𝑗) uniformly implementing a winning strategy
for Eve in GA (𝑆 𝑗) (as given by Lemma 4.35). As in the previous paragraph, we can consider the
composition GA (𝑆 𝑗) ◁𝜎 𝑗 M 𝑗 consisting of the product game in which the choices for Eve are
restricted to those of the form (𝑣, 𝑚) 𝑐−→ (𝑣′, 𝑚′) if 𝜎 𝑗 (𝑣, 𝑚) = 𝑒 = 𝑣

𝑐−→ 𝑣′ and 𝜇 𝑗 (𝑚, 𝑒) = 𝑚′. By
definition, Eve does not have any choice in GA (𝑆 𝑗) ◁𝜎 𝑗 M 𝑗 , and since (M 𝑗 , 𝜎 𝑗) implements a
winning strategy, any infinite path in GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 produces a set of colours in F → parity.
We let 𝜋G : GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 → GA (𝑆 𝑗) be the projection into GA (𝑆 𝑗).

A subgraph 𝐺 𝑗 of GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 is 𝑋 -Adam-closed, for a subset 𝑋 ⊆ Σ, if for every vertex

(𝑞, 𝑚) controlled by Adam and every 𝑎 ∈ 𝑋 , the transition (𝑞, 𝑚) 𝑎−→ ((𝑞, 𝑎), 𝑚′) remains in 𝐺 𝑗 .
We say that 𝐺 𝑗 is an 𝑋 -FSCC if it is a final SCC of the restriction of GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 to the graph
where Adam’s choices are restricted to letters in 𝑋 that is moreover 𝑋-Adam-closed. We say
that a subgraph G of GA is an 𝑋 -closed subgame (with respect to the attractor decomposition
DGA and a family of finite memory strategies) if G = 𝜋G (𝐺 𝑗) for 𝐺 𝑗 some 𝑋 -Adam-closed SCC of
some product GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 .

50 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Intuitively, an 𝑋 -closed subgame G of the letter game is a subgame included in a region 𝑆 𝑗
of the full attractor decomposition such that, if Adam only provides letters in 𝑋 and Eve plays
according to the strategy defined by the memory structuresM 𝑗 , the play will never leave G.

LEMMA 4.36. Eve wins any 𝑋 -closed subgame of GA (from any vertex).

PROOF . In an 𝑋-closed subgame included in a region GA (𝑆 𝑗), Adam’s moves have been re-
stricted; however, all Eve’s moves coming from the strategy implemented by (𝑀 𝑗 , 𝜎 𝑗) are avail-
able. Therefore, this strategy is also winning in such a subgame, since it is winning in the full
GA (𝑆 𝑗). ■

Putting this lemma together with Remark 4.29 we obtain:

LEMMA 4.37. Let 𝑋 ⊆ Σ, and let G𝑋 ⊆ GA be an 𝑋 -closed subgame of GA . The subautomaton
ofA induced by autA (G𝑋) is HD and recognisesMuller𝑋 (F |𝑋).

LEMMA 4.38. If a product GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 does not contain any 𝑋 -Adam-closed subgraph, for
𝑋 ⊆ Σ, then from any vertex (𝑞, 𝑚) Adam can force leaving 𝑆 𝑗 while playing only letters in 𝑋 . That
is, there is a path (𝑞, 𝑚) (𝑞′, 𝑚′) in GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 producing exclusively letters in 𝑋 such that,
for some 𝑎 ∈ 𝑋 , the edge 𝑞′

𝑎−→ (𝑞′, 𝑎) does not belong to GA (𝑆 𝑗).

PROOF . If this was not the case, the subgraph of GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 consisting of the vertices that
can be reachable from (𝑞, 𝑚) by reading letters in 𝑋 would form an 𝑋 -Adam-closed subgraph. ■

LEMMA 4.39. For each label Σ𝑖 of the children of the root of ZF , GA admits some Σ𝑖-closed
subgame contained in a Σ𝑖-region ofDGA .

PROOF . Assume that the full attractor decomposition of GA induced byDGA is the following:

𝑉 = 𝑆1 ⊔ · · · ⊔ 𝑆𝑟 ⊔ 𝐴1 ⊔ . . . 𝐴𝑟 ⊔ 𝐵1 ⊔ · · · ⊔ 𝐵𝑠,

We fix the following strategy strat for Eve in the letter game:
whenever the play lands to 𝐵 𝑗 , where 𝐵 𝑗 = AttrG′

𝑗
(𝑥) for some even colour 𝑥, she forces

producing colour 𝑥,
whenever the play arrives to some 𝐴 𝑗 , she forces going to 𝑆 𝑗 ,
in regions 𝑆 𝑗 she uses the strategy (M 𝑗 , 𝜎 𝑗). More precisely, let 𝑚𝑣 be the state ofM 𝑗 such
that (M 𝑗,𝑣, 𝜎 𝑗) implements a winning strategy for GA (𝑉 𝑗) from (𝑣, 𝑚𝑣). Each time that the
play arrives to a vertex 𝑣 in 𝑉 𝑗 from a different region, Eve uses (M 𝑗,𝑣, 𝜎 𝑗).

CLAIM 4.40. Let 𝜌 be a play consistent with strat (from any vertex), and let 𝑦 ≥ −1 be the
maximal odd number such that Inf(𝜌) is contained in a 𝑦-avoiding regionS ofDGA . Then, either 𝜌
eventually stays in a Σ𝑖-region 𝑆 𝑗 contained in S, or the minimal colour produced infinitely often
by 𝜌 is 𝑦 + 1.

51 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Proof. Let AttrS (𝑦 + 1) ⊔𝑉1⊔ 𝐴1⊔ , 𝑉𝑙 ⊔ 𝐴𝑙 be the attractor decomposition of S appearing
inDGA . By definition of an attractor decomposition, each time that the play leaves a 𝑉 𝑗 region,
the next vertex is in 𝑣′ ∈ AttrS (𝑦 + 1) ⊔𝑉1 ⊔ 𝐴1 ⊔ . . . 𝑉 𝑗−1 ⊔ 𝐴 𝑗−1. First, if 𝑉 𝑗 is a 𝑦 + 2-avoiding
region, 𝜌 cannot stay in it (by maximality of 𝑦). Thus, if 𝜌 does not eventually stay in a Σ𝑖-region,
it leaves regions 𝑉 𝑗 infinitely often, so it must produce 𝑦 + 1 infinitely often too. Since S is a
𝑦-avoiding region, no colour smaller than 𝑦 + 1 is produced. ■

We obtain as a consequence that strat is winning for Eve from any initial position: any play
staying in a 𝑦-avoiding region and producing infinitely many 𝑦 + 1’s is winning, and if a play
eventually stays in a Σ𝑖-region 𝑆 𝑗 , it has to be winning since the strategy implemented by (M 𝑗 , 𝜎 𝑗)
is winning in there.

We remark that we can extract a Σ𝑖-FSCC from any Σ𝑖-Adam-closed subgraph of GA (𝑆 𝑗) ◁𝜎 𝑗
M 𝑗 , that will be contained in the Σ𝑖-region 𝑆 𝑗 , so it suffices to prove the existence of such Σ𝑖-
Adam-closed subgraphs. We also recall that in GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 all choices are left to Adam, so he
can choose to produce any path in this product whenever the play arrives to a vertex 𝑣 in 𝑆 𝑗 .

Suppose by contradiction that no accessible Σ𝑖-Adam-closed subgraph exists in any of the
products. We consider a play in which Adam does the following:

(a) the letters that he gives form a word 𝑤 ∈ Σ𝜔 such that Inf(𝑤) = Σ𝑖 ,
(b) each time that the play arrives to a region 𝑆 𝑗 , he exists this region in a finite number of

steps.

Indeed, he can ensure to exit regions 𝑆 𝑗 while only producing letters in Σ𝑖 by Lemma 4.38. By
Claim 4.40, the minimal colour produced infinitely often by such a play is even. By Remark 4.31,
we can project such a play in the automaton A, obtaining an accepting run over 𝑤. This is
a contradiction, since 𝑤 ∉ Muller(F) = L(A) (because Σ𝑖 ∉ F). We conclude that some
GA (𝑆 𝑗) ◁𝜎 𝑗M 𝑗 admits a Σ𝑖-FSCC, and therefore GA admits some Σ𝑖-closed subgame. ■

We can now infer Proposition 4.23 in the case in which the root of ZF is round: from
Lemma 4.39, we obtain Σ𝑖-closed subgames in GA for each 𝑖 ∈ {1, . . . , 𝑘} that are moreover
contained in Σ𝑖-regions. Therefore, their autA-projections are disjoint (Remark 4.30), and each
of these projections induces an HD-subautomaton recognising F |Σ𝑖 (Lemma 4.37).

4.3 A minimal history-deterministic Rabin automaton

In this section, we present the construction of a history-deterministic Rabin automatonARabin
ZF

for a Muller language Muller(F) using the Zielonka treeZF , and prove its minimality (Theo-
rem 4.51). The automaton ARabin

ZF can be seen as a quotient of the ZT-parity-automaton; that
is, ARabin

ZF is obtained by merging some states of Aparity
ZF

. Thus, we replace the complexity in
the number of states by complexity in the acceptance condition. The size of the automaton
ARabin
ZF is a well-studied parameter of Zielonka trees: its round-branching width, rbw(ZF). This

52 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

parameter was introduced by Dziembowski, Jurdziński and Walukiewicz [34] (under the name
of memory ofZF) and shown to coincide with the memory required by Eve to win in games
using Muller(F) as an acceptance condition (see Proposition 4.52 below). In this paper, we are
not concerned with the memory of winning conditions, but we will use the result from [34] to
obtain the minimality ofARabin

ZF .
We note that this construction is asymmetric, in the sense that we show it for Rabin

automata, but not for Streett automata (their dual notion). The reason why we cannot dualize
the construction is due to the semantics of non-deterministic automata. However, we could use
the same idea to obtain a minimal universal history-deterministic Streett automaton (we refer
to [12] for the definition of universal HD automata).

4.3.1 The Zielonka-tree-HD-Rabin-automaton

DEF IN IT ION 4.41 ([34]). Let 𝑇 be a tree with nodes partitioned into round and square nodes,
and let𝑇1, . . . , 𝑇𝑘 be the subtrees of𝑇 rooted at the children of the root of𝑇 . We define inductively
the round-branching width of 𝑇 , denoted rbw(𝑇) as:

rbw(𝑇) =


1 if 𝑇 has exactly one node,

max{rbw(𝑇1), . . . , rbw(𝑇𝑘)} if the root is square,
𝑘∑
𝑖=1

rbw(𝑇𝑖) if the root is round.

The next lemma directly follows from the definition of rbw(𝑇).

LEMMA 4.42. Let 𝑇 = (𝑁 = 𝑁⃝ ⊔𝑁□, ⪯) be a tree with nodes partitioned into round and square
nodes. There exists a mapping 𝜂 : Leaves(𝑇) → {1, 2, . . . , rbw(𝑇)} satisfying:

If 𝑛 ∈ 𝑁 is a round node with children 𝑛1 ≠ 𝑛2, for any pair

of leaves 𝑙1 and 𝑙2 below 𝑛1 and 𝑛2, respectively, 𝜂(𝑙1) ≠ 𝜂(𝑙2). (★)

EXAMPLE 4.43. Let F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}} be the family of subsets considered in Exam-
ple 4.5. The round-branching width ofZF is rbw(ZF) = 2. A labelling 𝜂 : Leaves(ZF) → {1, 2}
satisfying Property★ is given by 𝜂(𝜃) = 𝜂(𝜉) = 1 and 𝜂(𝜁) = 2. This labelling is represented in
the Zielonka treeZF on the left of Figure 14. ■

DEF IN IT ION 4.44 (Zielonka-tree-HD-Rabin-automaton). Let F ⊆ 2Σ
+, letZF = (𝑁 = 𝑁⃝ ⊔

𝑁□, ⪯) be its Zielonka tree and 𝜂 : Leaves(ZF) → {1, 2, . . . , rbw(ZF)} be a mapping satisfying
Property (★). We define the ZT-HD-Rabin-automaton ARabin

ZF = (𝑄, Σ, 𝐼 , Γ, Δ,RabinΓ(𝑅)) as a
(non-deterministic) automaton using a Rabin acceptance condition, where:

𝑄 = {1, 2, . . . , rbw(ZF)},
𝐼 = 𝑄,8

53 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Γ = 𝑁 (the colours of the acceptance condition are the nodes of the Zielonka tree),
𝛿(𝑞, 𝑎) = {

(
Jump(𝑙, Supp(𝑙, 𝑎)), Supp(𝑙, 𝑎)

)
| 𝑙 ∈ Leaves(ZF) such that 𝜂(𝑙) = 𝑞},

𝑅 = {(𝐺𝑛, 𝑅𝑛)}𝑛∈𝑁⃝ , where 𝐺𝑛 and 𝑅𝑛 are defined as follows: Let 𝑛 be a round node and 𝑛′

be any node ofZF ,
𝑛′ ∈ 𝐺𝑛 if 𝑛′ = 𝑛,

𝑛′ ∈ 𝑅𝑛 if 𝑛′ ≠ 𝑛 and 𝑛 is not an ancestor of 𝑛′.

REMARK 4.45. Although we will usually say thatARabin
ZF is the ZT-HD-Rabin-automaton of F ,

the structure of this automaton is not unique, it depends on two choices: the order over the
nodes of the Zielonka tree and the mapping 𝜂.

The intuition behind this definition is the following. The automatonARabin
ZF has rbw(ZF)

states, and each of them can be associated to a subset of leaves ofZF by 𝜂−1(𝑞). The mapping 𝜂
is such that the lowest common ancestor of two leaves in 𝜂−1(𝑞) is a square node. As for the
ZT-parity-automaton, for each leaf of 𝑙 ∈ Leaves(ZF) and letter 𝑎 ∈ Σ, we identify the deepest
ancestor 𝑛 = Supp(𝑙, 𝑎) containing 𝑎 in its label, and, using the Jump function, pick a leaf 𝑙′ below
the next child of 𝑛. We add a transition 𝑞

𝑎:𝑛−−→ 𝑞′ if there are leaves 𝑙 ∈ 𝜂−1(𝑞) and 𝑙′ ∈ 𝜂−1(𝑞′)
giving such a path (we note that the output colour is given by 𝑛 = Supp(𝑙, 𝑎), although this node
does not appear as a state of the automaton). This way, we can identify a run in the automaton
ARabin
ZF with a promenade through the nodes of the Zielonka tree in which jumps between leaves

with the same 𝜂-image are allowed. If during this promenade a unique minimal node (for ⪯) is
visited infinitely often, it is not difficult to see that the sequence of input colours belongs to F if
and only if the label of this minimal node belongs to F (it is a round node). The Rabin condition
over the set of nodes of the Zielonka tree is devised so that it accepts exactly these sequences of
nodes (see Lemma 4.49 below).

Another way of presenting the automatonARabin
ZF is as a quotient of the deterministic parity

automaton Aparity
ZF

. Indeed, the graph structure and the labelling by input letters of ARabin
ZF is

obtained by merging the states ofAparity
ZF

(which are the leaves ofZF) with the same 𝜂-image,
and keeping all the transitions between them. However, a parity acceptance condition over this
smaller structure is no longer sufficient to accept Muller(F).

EXAMPLE 4.46. The ZT-HD-Rabin-automaton ARabin
ZF of the family F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}}

from Example 4.5 is shown on the right of Figure 14. The Zielonka treeZF appears on the left
of the figure, and the labelling 𝜂 : Leaves(ZF) → {1, 2} is represented by the numbers below
its branches.

8 Any non-empty subset of 𝑄 can be chosen as the set of initial states.

54 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

The Rabin condition of this automaton is given by two Rabin pairs (corresponding to the
round nodes of the Zielonka tree):

𝐺𝛽 = {𝛽}, 𝑅𝛽 = {𝛼, 𝜆, 𝜉, 𝜁 },
𝐺𝜆 = {𝜆}, 𝑅𝜆 = {𝛼, 𝛽, 𝜃}.

We note that the automatonARabin
ZF is obtained by merging the states 𝜃 and 𝜉 from the

ZT-parity-automatonAparity
ZF

appearing in Figure 10, and replacing the output colours by
suitable nodes from the Zielonka tree. ■

a, b, c

a, b a, c

a a c

α

β λ

θ ξ ζ

1 1 2

1 2a : θ

b : β c : α

a : ξ
b : α

c : λ

a : λ

b : α

c : ζ

Figure 14. On the left, the Zielonka tree of F = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏}}. On the right, the ZT-HD-Rabin-
automaton ARabin

ZF . Blue transitions correspond to those coming from leaf 𝜃, and green ones to those
originating from leaf 𝜉.

REMARK 4.47. We observe that the automaton from Figure 14 presents duplicated edges, in
the sense that there are two transitions 𝑞

𝑎:𝑥−−→ 𝑞′ and 𝑞
𝑎:𝑦
−−→ 𝑞′ between the same pair of states

and reading the same input letter. We can always avoid this and remove duplicated edges from
any automaton. We provide a proof in Appendix D (Proposition D.1). For the language from the
previous example, an equivalent automaton is proposed in Figure 19

Correctness of the Zielonka-tree-HD-Rabin-automaton.

PROPOS IT ION 4.48 (Correctness). Let F ⊆ 2Σ
+ be a family of non-empty subsets. Then,

L(ARabin
ZF) = MullerΣ(F).

Moreover, the automatonARabin
ZF is history-deterministic.

LEMMA 4.49. Let 𝑢 = 𝑛0𝑛1𝑛2 · · · ∈ 𝑁𝜔 be an infinite sequence of nodes of the Zielonka tree. The
word 𝑢 belongs to Rabin𝑁 (𝑅), for 𝑅 = {(𝐺𝑛, 𝑅𝑛)}𝑛∈𝑁⃝ the Rabin condition ofARabin

ZF , if and only if
there is a unique minimal node for the ancestor relation in Inf(𝑢) and this minimal node is round
(recall that the root is the minimal element for ⪯).

55 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF . Assume that there is a unique minimal node in Inf(𝑢), called 𝑛, and that 𝑛 is round.
We claim that 𝑢 is accepted by the Rabin pair (𝐺𝑛, 𝑅𝑛). It is clear that Inf(𝑢) ∩ 𝐺𝑛 ≠ ∅, because
𝑛 ∈ 𝐺𝑛. It suffices to show that Inf(𝑢) ∩ 𝑅𝑛 = ∅: By minimality, any other node 𝑛′ ∈ Inf(𝑢) is a
descendant of 𝑛 (equivalently, 𝑛 is an ancestor of 𝑛′), so 𝑛′ ∉ 𝑅𝑛.

Conversely, assume that 𝑢 ∈ Rabin𝑁 (𝑅). Then, there is some round node 𝑛 ∈ 𝑁⃝ such
that Inf(𝑢) ∩ 𝐺𝑛 ≠ ∅ and Inf(𝑢) ∩ 𝑅𝑛 = ∅. Since 𝐺𝑛 = {𝑛}, we deduce that 𝑛 ∈ Inf(𝑢). Moreover,
as Inf(𝑢) ∩ 𝑅𝑛 = ∅, all nodes in Inf(𝑢) are descendants of 𝑛. We conclude that 𝑛 is the unique
minimal node in Inf(𝑢), and it is round. ■

LEMMA 4.50. There exists a morphism of automata 𝜑 : Aparity
ZF

→ ARabin
ZF .

PROOF . We define the morphism 𝜑 as follows:
𝜑𝑉 (𝑙) = 𝜂(𝑙), for 𝑙 ∈ Leaves(Aparity

ZF
),

for a transition 𝑒 = 𝑙
𝑎:𝑐−−→ 𝑙′ inAparity

ZF
, we let 𝜑𝐸 (𝑒) = (𝜂(𝑙), 𝑎, Supp(𝑙, 𝑎), 𝑙′).

It is clear that 𝜑 is a weak morphism. We prove that it preserve the acceptance of runs. Let
𝜌 = 𝑙0

𝑤0−−→ 𝑙1
𝑤1−−→ 𝑙2

𝑤2−−→ · · · ∈ Run (Aparity
ZF
) be an infinite run in Aparity

ZF
(the only run over

𝑤0𝑤1𝑤2 · · · ∈ Σ𝜔), and let 𝑛𝑖 = Supp(𝑙𝑖 , 𝑤𝑖). By definition of the morphism, the output of the run
𝜌′ = 𝜑Runs (𝜌) inARabin

ZF is 𝛾′(𝜌′) = 𝑛0𝑛1𝑛2 · · · ∈ 𝑁𝜔. In the proof of Proposition 4.10, we proved
(Claims 4.12 and 4.13) that there exists a unique node 𝑛𝑤 appearing infinitely often in 𝛾′(𝜌′).
Moreover, we proved that 𝜌 is accepting inAparity

ZF
if and only if 𝑛𝑤 is round. Lemma 4.49 allows

us to conclude that 𝜑Runs (𝜌) is accepting inARabin
ZF if and only if 𝜌 is accepting inAparity

ZF
. ■

PROOF OF PROPOS IT ION 4.48 . L(ARabin
ZF) ⊆ MullerΣ(F): Let 𝑤 ∈ L(ARabin

ZF) and let
𝑢 ∈ 𝑁𝜔 be the sequence of nodes produced as output of an accepting run over 𝑤 in ARabin

ZF .
By Lemma 4.49, there is a unique minimal node 𝑛 for ⪯ appearing infinitely often in 𝑢 and
moreover 𝑛 is round. Let 𝑛1, . . . , 𝑛𝑘 be an enumeration of the children of 𝑛 (from left to right),
with labels 𝜈(𝑛𝑖) ⊆ Σ (we remark that 𝜈(𝑛𝑖) ∉ F , for 1 ≤ 𝑖 ≤ 𝑘). We will prove that Inf(𝑤) ⊆ 𝜈(𝑛)
and Inf(𝑤) ⊈ 𝜈(𝑛𝑖) for 1 ≤ 𝑖 ≤ 𝑘. By definition of the Zielonka tree, as 𝑛 is round, this implies
that Inf(𝑤) ∈ F .

Since eventually all nodes produced as output are descendants of 𝑛 (by minimality), Inf(𝑤)
must be contained in 𝜈(𝑛) (by definition of the transitions ofARabin

ZF).
We suppose, towards a contradiction, that Inf(𝑤) ⊆ 𝜈(𝑛 𝑗) for some 1 ≤ 𝑗 ≤ 𝑘. Let

𝑄𝑖 = {𝜂(𝑙) : 𝑙 is a leaf below 𝑛𝑖} be the set of states corresponding to leaves under 𝑛𝑖 , for
1 ≤ 𝑖 ≤ 𝑘. We can assume that the leaves corresponding to transitions of an accepting run over
𝑤 are all below 𝑛, and therefore, transitions of such a run only visit states in

⋃𝑘
𝑖=1𝑄𝑖 . Indeed,

eventually this is going to be the case, because if some leaves 𝑙, 𝑙′ corresponding to a transition
(𝑞, 𝑎, 𝑛′, 𝑞′) are not below 𝑛, then 𝑛′would not be a descendant of 𝑛 (since 𝑛′ is the least common
ancestor of 𝑙 and 𝑙′). Also, by Property (★), we have 𝑄𝑖 ∩ 𝑄 𝑗 = ∅, for all 𝑖 ≠ 𝑗. By definition of
the transitions ofARabin

ZF , if 𝑎 ∈ Σ is a letter in 𝜈(𝑛) but not in 𝜈(𝑛𝑖), all transitions from some

56 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

state in 𝑄𝑖 reading the colour 𝑎 go to 𝑄𝑖+1, for 1 ≤ 𝑖 ≤ 𝑘 − 1 (and to 𝑄1 if 𝑖 = 𝑘). Also, if 𝑎 ∈ 𝜈(𝑛𝑖),
transitions from states in 𝑄𝑖 reading 𝑎 stay in 𝑄𝑖 . We deduce that a run over 𝑤 will eventually
only visit states in 𝑄 𝑗 , for some 𝑗 such that Inf(𝑤) ⊆ 𝜈(𝑛 𝑗). However, the only transitions from
𝑄 𝑗 that would produce 𝑛 as output are those corresponding to a colour 𝑎 ∉ 𝜈(𝑛 𝑗), so the node 𝑛
is not produced infinitely often, a contradiction.

MullerΣ(F) ⊆ L(ARabin
ZF) and history-determinism: We claim that the existence of a

morphism 𝜑 : Aparity
ZF

→ ARabin
ZF (Lemma 4.50) and the correctness ofAparity

ZF
(Proposition 4.10)

imply that L(ARabin
ZF) = L(A

parity
ZF
) = Muller(F). Indeed, if 𝜌 is an accepting run over 𝑤 ∈ Σ𝜔 in

Aparity
ZF

, then 𝜑Runs (𝜌) is an accepting run over 𝑤 inARabin
ZF . We can moreover useAparity

ZF
and 𝜑

to define a sound resolver (𝑟0, 𝑟) forARabin
ZF : we let 𝑟0 = 𝜑(𝑞0) be the image of the initial state of

Aparity
ZF

. If 𝜌𝑅 ∈ Runfin(ARabin
ZF) is the image under 𝜑Runs of some finite run 𝜌𝑃 ∈ Runfin(Aparity

ZF
),

we let 𝑟(𝜌𝑅, 𝑎) = 𝜑(𝑒), where 𝑒 is the only 𝑎-labelled transition from Target(𝜌𝑃). We define 𝑟
arbitrarily in other case. This way, for every 𝑤 ∈ Σ𝜔, the run induced by 𝑟 over 𝑤 is the image
of a run over 𝑤 inAparity

ZF
, which must be accepting if 𝑤 ∈ Muller(F). ■

4.3.2 Optimality of the Zielonka-tree-HD-Rabin-automaton

We devote this section to the proof of the optimality ofARabin
ZF .

THEOREM 4.51 (Optimality of the ZT-HD-Rabin-automaton). LetA be a history-deterministic
Rabin automaton accepting a Muller languageMullerΣ(F). Then, |ARabin

ZF | ≤ |A|.

PROPOS IT ION 4.52 ([34]). Let 𝐿 = MullerΣ(F) be a Muller language.
1. If Eve wins a game with 𝐿 as acceptance set from a position 𝑣, there is a winning strategy

from 𝑣 for her implemented by a memory structure of size rbw(ZF).
2. There exists a game G using 𝐿 as acceptance condition in which Eve can win from a position

𝑣, but there is no winning strategy from 𝑣 for her implemented by a memory structure of
size strictly smaller than rbw(ZF).

LEMMA 4.53 ([51, 94]). Rabin languages are positionally determined, that is, if Eve wins a game
using a Rabin acceptance condition from a position 𝑣, there is a winning strategy from 𝑣 for her
implemented by a memory structure of size 1.

COROLLARY 4.54. Let A be a history-deterministic Rabin automaton. Then, if Eve wins a
game withW = L(A) as acceptance set from a position 𝑣, there is a winning strategy from 𝑣 for
her implemented by a memory structure of size |A|.

PROOF . Let G be a game with W = L(A) as acceptance set. In order to be able to take
the product by A and obtain an equivalent game, we transform G into a game suitable for
transformations. Let G̃ be the game obtained from G in the following way: for every edge

57 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

𝑒 = 𝑣
𝑎−→ 𝑣′ in G, we add a position (𝑣, 𝑒) controlled by Eve and replace edge 𝑒 by 𝑣

𝜀−→ (𝑣, 𝑒) 𝑎−→ 𝑣′.
It is clear that Eve wins G from a vertex 𝑣 if and only if she wins G̃ from that same vertex. By
Proposition 2.7, if Eve wins G from a vertex 𝑣, she wins G̃ ⋉A from a vertex (𝑣, 𝑞0), where 𝑞0

is an initial vertex of A. Moreover, the game G̃ ⋉ A uses the acceptance set from A, which
is a Rabin language, so, by Lemma 4.53, she can win using a strategy given by a function
𝜎 : �̃�Eve → 𝐸, where 𝑄 is the set of states of A and �̃�Eve the vertices controlled by Eve in G̃ (a
subset of (𝑉Eve ⊔ (𝑉 × 𝐸)) × 𝑄). We build a memory structure (M, 𝜎M) of size |𝑄| that projects
the strategy implemented by 𝜎 onto G:

its set of states is 𝑀 = 𝑄,
the initial state is 𝑞0,
the update function 𝜇 : 𝑀 × 𝐸 → 𝑀 sends 𝜇(𝑞, 𝑒) = 𝑞′ if 𝜎((𝑣, 𝑒), 𝑞) = ((𝑣, 𝑒), 𝑞) −→ (𝑣′, 𝑞′)
is the move chosen by 𝜎 from vertex ((𝑣, 𝑒), 𝑞),
for 𝑣 ∈ 𝑉Eve, 𝑞 ∈ 𝑀 , we let 𝜎M (𝑣, 𝑞) = 𝑒 if 𝑒 is the move chosen by 𝜎 from (𝑣, 𝑞), that is, if
𝜎(𝑣, 𝑞) = (𝑣, 𝑞) −→ ((𝑣, 𝑞), 𝑒).

Since 𝜎 implements a winning strategy in G̃ ⋉ A from (𝑣, 𝑞0), its projection onto G via the
memory structure (M, 𝜎M) is a strategy that verifies that any play consistent with it produces
as output a word in L(A), so it is winning. ■

Theorem 4.51 is obtained by combining the fact that |ARabin
ZF | = rbw(ZF) with Proposi-

tion 4.52 (second item) and Corollary 4.54.

5. The alternating cycle decomposition: An optimal approach to
Muller transition systems

In Section 4, we have provided minimal parity and Rabin automata for Muller languages,
using the Zielonka tree. We can use these automata to transform Muller transition systems,
by applying the product construction. However, this approach overlooks the structure of the
transition system, meaning it does not take into account the relevant interplay between the
underlying graph and the acceptance condition.

In this section, we present our main contributions: optimal transformations of Muller tran-
sition systems into parity and Rabin ones. The key novelty is that they precisely capture the way
the transition system interacts with the acceptance condition. This is achieved by generalising
Zielonka trees from Muller languages to Muller transition systems; we define the alternating
cycle decomposition (ACD), consisting in a collection of Zielonka-tree-like structures subsuming
all the structural information of the transition system necessary to determine whether a run is
accepting or not. More precisely, the ACD is a succinct representation of the alternating chains
of loops of a Muller automaton, in the sense of Wagner [93]. The alternating chains of loops
of a DMA are known to determine the parity index of the language it recognises [93], and, as

58 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

we will show, they also capture the essential information to define optimal transformations of
automata.

We start with the definition of the alternating cycle decomposition in Section 5.1. In
Section 5.2, we describe the ACD-parity-transform, turning a DMAA into an equivalent DPA
ACDparity(A). Formally, the validity of this transformation is witnessed by a locally bijective
morphism 𝜑 : ACDparity(A) → A (Proposition 5.19). In Section 5.3, we describe the ACD-
HD-Rabin-transform that turns a DMA A into an equivalent history-deterministic Rabin au-
tomaton ACDRabin(A). The validity of the transformation is witnessed by an HD mapping
𝜑 : ACDRabin(A) → A (Proposition 5.28). These constructions grant strong optimality guaran-
tees. The automaton ACDparity(A) (resp. ACDRabin(A)) has a minimal number of states amongst
parity (resp. Rabin) automata admitting an HD mapping toA (Theorems 5.35 and 5.36). We
note that this implies minimality amongst automata admitting a locally bijective morphism
toA. Moreover, the acceptance condition of ACDparity(A) uses an optimal number of colours
(Theorem 5.34). The optimality of these constructions is shown in Section 5.4. We are able to
prove the optimality of both constructions at the same time, by reducing the problem to an
application of the minimality of the ZT-parity-automaton and the ZT-HD-Rabin-automaton.

In all this section, we let TS = (𝐺TS ,AccTS) be a Muller transition system with under-
lying graph 𝐺TS = (𝑉, 𝐸, Source, Target, 𝐼) and using a Muller acceptance condition AccTS =

(𝛾, Γ,MullerΓ(F)).

5.1 The alternating cycle decomposition

DEF IN IT ION 5.1. Let ℓ0 ∈ Cycles (TS) be a cycle. We define the tree of alternating subcycles
of ℓ0, denoted AltTree(ℓ0) = (𝑁, ⪯, 𝜈 : 𝑁 → Cycles (TS)) as a Cycles (TS)-labelled tree with nodes
partitioned into round nodes and square nodes, 𝑁 = 𝑁⃝ ⊔ 𝑁□, such that:

The root is labelled ℓ0.
If a node is labelled ℓ ∈ Cycles (TS), and ℓ is an accepting cycle (𝛾(ℓ) ∈ F), then it is a
round node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such
that ℓ′ is rejecting (𝛾(ℓ′) ∉ F).
If a node is labelled ℓ ∈ Cycles (TS), and ℓ is a rejecting cycle (𝛾(ℓ) ∉ F), then it is a square
node, and its children are labelled exactly with the maximal subcycles ℓ′ ⊆ ℓ such that ℓ′

is accepting (𝛾(ℓ′) ∈ F).

For a Cycles (TS)-labelled tree 𝑇 = (𝑁, ⪯, 𝜈 : 𝑁 → Cycles (TS)) and 𝑛 ∈ 𝑁 , we let 𝜈States(𝑛) =
States(𝜈(𝑛)) be the set of states of the cycle labelling 𝑛.

REMARK 5.2. Let 𝑛 be a node of AltTree(ℓ0) and let 𝑛1 be a child of it. If ℓ′ is a cycle such that
𝜈(𝑛1) ⊊ ℓ′ ⊆ 𝜈(𝑛), then 𝜈(𝑛1) is accepting ⇐⇒ ℓ′ is rejecting ⇐⇒ 𝜈(𝑛) is rejecting.

59 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

DEF IN IT ION 5.3 (Alternating cycle decomposition). Let TS be a transition system, and let
ℓ1, ℓ2, . . . , ℓ𝑘 be an enumeration of its maximal cycles (that is, the edge set of its SCCs). We define
the alternating cycle decomposition of TS as the forestACDTS = {AltTree(ℓ1), . . . , AltTree(ℓ𝑘)}.

We let𝑁ℓ𝑖 be the set of nodes of AltTree(ℓ𝑖), and 𝑛ℓ𝑖 its root. We will assume that𝑁ℓ𝑖∩𝑁ℓ 𝑗 = ∅
if 𝑖 ≠ 𝑗.

We define the set of nodes of ACDTS to be Nodes(ACDTS) =
⋃𝑘
𝑖=1 𝑁ℓ𝑖 , and we let

Nodes⃝ (ACDTS) (resp. Nodes□(ACDTS)) be the subset of round (resp. square) nodes. As for
Zielonka trees, from now on we equip the trees of ACDTS with an arbitrary order making
them ordered trees, without explicitly mentioning it.

We remark that for a recurrent vertex 𝑣 of TS, there is one and only one tree AltTree(ℓ𝑖)
inACDTS such that 𝑣 ∈ 𝜈States(𝑛ℓ𝑖). On the other hand, transient vertices do not appear in the
trees ofACDTS .

If 𝑣 is a recurrent vertex of TS, we define the local subtree at 𝑣, noted T𝑣, as the subtree
of AltTree(ℓ𝑖) containing the nodes 𝑁𝑣 = {𝑛 ∈ 𝑁ℓ𝑖 | 𝑣 ∈ 𝜈States(𝑛)}. If 𝑣 is a transient vertex, we
define T𝑣 to be a tree with a single node.

For 𝑣 recurrent, as 𝑁𝑣 is a subset of the nodes of AltTree(ℓ𝑖), the tree T𝑣 inherits the order
from AltTree(ℓ𝑖), as well as its partition into round and square nodes, 𝑁𝑣 = 𝑁𝑣,⃝ ⊔ 𝑁𝑣,□. Also, it
inherits the labelling given by the mapping 𝜈, whose restriction to T𝑣 has an image in Cycles𝑣(TS).

REMARK 5.4. Let 𝑣 ∈ 𝜈States(𝑛ℓ𝑖). If 𝑛 ∈ 𝑁𝑣 and 𝑛′ is an ancestor of 𝑛 in AltTree(ℓ𝑖), then
𝑛′ ∈ 𝑁𝑣. In particular, T𝑣 is indeed a subtree of AltTree(ℓ𝑖). Also, we note that the root of T𝑣 is 𝑛ℓ𝑖 .

For a node 𝑛 ∈ 𝑁ℓ𝑖 and an edge 𝑒 ∈ ℓ𝑖 we define Supp(𝑛, 𝑒) = 𝑛′ to be the deepest ancestor
of 𝑛 such that 𝑒 ∈ 𝜈(𝑛′). We remark that if 𝑒 = 𝑣 −→ 𝑣′, then Supp(𝑛, 𝑒) is a node in both T𝑣 and
T𝑣′ .

EXAMPLE 5.5. We will use the transition system TS from Figure 15 as a running example.
We have named the edges of TS with letters from 𝑎 to 𝑙, that are also used as the output colours
of the acceptance condition. The acceptance set of TS is the Muller language associated to:

F = {{𝑐, 𝑑, 𝑒}, {𝑒}, {𝑔, ℎ, 𝑖}, {𝑙}, {ℎ, 𝑖, 𝑗, 𝑘}, { 𝑗, 𝑘}}.

The initial vertex of TS, 𝑣0, is its only transient vertex, all the others vertices are recurrent.
TS has 2 strongly connected components, corresponding to cycles ℓ1 and ℓ2.

The alternating cycle decomposition of TS is shown in Figure 16. It consists of two trees,
AltTree(ℓ1) and AltTree(ℓ2). We use Greek letters (in pink) to name the nodes of the tree. Inside
each node we indicate both its label 𝜈(𝑛) and the set of states of it. For example, 𝜈(𝜅) = {𝑔, ℎ, 𝑖}
and 𝜈States(𝜅) = {𝑣3, 𝑣4}. We have that Supp(𝜏, 𝑔) = 𝜅 and Supp(𝜏, 𝑗) = 𝜆. We highlight in bold
orange the local subtree at 𝑣4, T𝑣4 . The tree T𝑣0 , consisting in a single node, does not appear in
the figure. The numbering on the right of the trees will be used in the next section. ■

60 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

v0 v1 v2

v3 v4 v5

ℓ1

ℓ2

a

b

c

f

d
e

g

h

i

j

k l

Figure 15. Transition system TS using a Muller acceptance condition given by F = {{𝑐, 𝑑, 𝑒}, {𝑒}, {𝑔, ℎ, 𝑖},
{𝑙}, {ℎ, 𝑖, 𝑗, 𝑘}, { 𝑗, 𝑘}}. The two maximal cycles, ℓ1 and ℓ2, are encircled by blue and red dashed lines,
respectively.

c,d,e
v1, v2

c,d
v1, v2

2

3

α

β

AltTree(ℓ1)

g,h,i,j,k,l
v3, v4, v5

g,h,i
v3, v4

l
v5

h,i,j,k
v3, v4, v5

g
v3

h,i
v3, v4

h,i
v3, v4

1

2

3

λ

κ ζ
χ

ξ τ θ

AltTree(ℓ2)

Figure 16. Alternating cycle decomposition of TS. In bold orange, the local subtree at 𝑣4, T𝑣4 .

REMARK 5.6. Let TS be a Muller TS using as acceptance setW = MullerΓ(F), and let TS
be the TS obtained by replacingW withW = Γ𝜔 \W (which is a Muller language). Then, the
ACD of TS coincides with that of TS, with the only difference that the partition into round
and square nodes is inverted: Nodes⃝ (ACDTS) = Nodes□(ACDTS) and Nodes□(ACDTS) =
Nodes⃝ (ACDTS).

We note that ifA is a DMA recognising 𝐿 ⊆ Σ𝜔, the automatonA is a DMA recognising Σ𝜔\𝐿.

REMARK 5.7. The Zielonka tree can be seen as a special case of the alternating cycle decom-
position. Indeed, a Muller language MullerΣ(F) can be trivially recognised by a DMAA with
a single state 𝑞 and self-loops 𝑞

𝑎:𝑎−−→ 𝑞. The ACD of this automaton is exactly the Zielonka tree
of F .

REMARK 5.8 (Size and computation of the ACD). Let TS be a Muller TS and letZF be the
Zielonka tree of its acceptance set. It can be shown that for each vertex 𝑣 of TS we have that

61 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

|T𝑣 | ≤ |ZF |, and therefore the size ofACDTS is polynomial inZF . This, and the question of
the complexity of computing the ACD is the subject of an independent work [26].

Local Muller languages. For a recurrent state 𝑣 of TS, we define the local Muller language of
TS at 𝑣 as the Muller language defined over the alphabet Γ𝑣 = Cycles𝑣(TS) associated to:

LocalMullerTS (𝑣) = {C ⊆ Cycles𝑣(TS) |
⋃
ℓ∈C

ℓ is an accepting cycle}.

We note that LocalMullerTS (𝑣) is determined by singletons (C ∈ LocalMullerTS (𝑣) if and
only if {⋃ℓ∈C ℓ} ∈ LocalMullerTS (𝑣)). For simplicity, and by a slight abuse of notation, we
will work as if LocalMullerTS (𝑣) ⊆ Cycles𝑣(TS). Also, to lighten notations, we will just write
LocalMullerTS (𝑣) to denote Muller(LocalMullerTS (𝑣)) whenever no confusion arises.

The following lemma directly follows from the definition of T𝑣 and that of the Zielonka
tree. It provides insight in the structure of the trees T𝑣, and it will be a key ingredient in the
proof of the optimality of the transformations based on the alternating cycle decomposition.

LEMMA 5.9. The tree T𝑣 is the Zielonka tree of the family LocalMullerTS (𝑣),9 for any recurrent
vertex 𝑣.

5.2 An optimal transformation to parity transition systems

We now define the ACD-parity-transform, an optimal transformation turning a Muller TS into a
parity TS while preserving determinism. In order to obtain the optimality in the number of
output colours, we need to pay attention to the parity of the minimal colour used in different
SCCs. To incorporate this parameter in the transformation, we define positive and negative ACDs.

Let TS be a Muller transition system and letACDTS = {AltTree(ℓ1), . . . , AltTree(ℓ𝑘)} be
its alternating cycle decomposition.

We say that a tree AltTree(ℓ𝑖) ∈ ACDTS is positive if ℓ𝑖 is an accepting cycle, and that it is
negative otherwise. We say that the alternating cycle decomposition of TS is positive if all the
trees of maximal height ofACDTS are positive, that it is negative if all trees of maximal height
are negative, and that it is equidistant if there are positive and negative trees of maximal height.

As for the Zielonka tree, we associate a non-negative integer to each level of the trees of
ACDTS via a function 𝑝ACD (𝑛) : Nodes(ACDTS) → N. Let ℓ𝑖 be a maximal cycle of TS and
𝑛 ∈ 𝑁ℓ𝑖 .

IfACDTS is positive or equidistant:
𝑝ACD (𝑛) = Depth(𝑛), if ℓ𝑖 is accepting,

9 Formally, the labelling 𝜈 of T𝑣 goes to Cycles𝑣(TS), and not to 2Cycles𝑣 (TS)
+ , as required by the definition of the Zielonka tree.

To obtain a proper Zielonka tree with a labelling of nodes 𝜈′ : 𝑁𝑣 → 2Cycles𝑣 (TS)
+ , we would have to define 𝜈′ (𝑛) = {ℓ′ ∈

Cycles𝑣(TS) | ℓ′ ⊆ 𝜈(𝑛)}.

62 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

𝑝ACD (𝑛) = Depth(𝑛) + 1, if ℓ𝑖 is rejecting.
IfACDTS is negative:

𝑝ACD (𝑛) = Depth(𝑛) + 2, if ℓ𝑖 is accepting,
𝑝ACD (𝑛) = Depth(𝑛) + 1, if ℓ𝑖 is rejecting.

We let minTS (resp. maxTS) be the minimum (resp. maximum) value taken by the function 𝑝ACD .

REMARK 5.10. A node 𝑛 in AltTree(ℓ𝑖) verifies that 𝑝ACD (𝑛) is even if and only if 𝜈(𝑛) is an
accepting cycle (that is, if 𝑛 is a round node).

REMARK 5.1 1. It is satisfied:
minTS = 0 ifACDTS is positive or equidistant,
minTS = 1 ifACDTS is negative.

EXAMPLE 5.12. In the previous Example 5.5, AltTree(ℓ1) is a positive tree and AltTree(ℓ2) is
negative. As AltTree(ℓ2) is the tree of maximal height,ACDTS is negative. The function 𝑝ACD

is represented in Figure 16 by the integers on the right of each tree. It takes values 2 and 3
over AltTree(ℓ1) (𝑝ACD (𝛼) = 2 and 𝑝ACD (𝛽) = 3), becauseACDTS is negative. In this example,
minTS = 1 and maxTS = 3. We note that if we had associated integers 0 and 1 to the levels of
AltTree(ℓ1), we would have used 4 integers in total, instead of just 3 of them. ■

DEF IN IT ION 5.13 (ACD-parity-transform). LetTS be a Muller TS withACDTS = {AltTree(ℓ1)
, . . . , AltTree(ℓ𝑘)}. We define the ACD-parity-transform of TS be the parity TS ACDparity(TS) =
(𝐺′,Acc′), with 𝐺′ = (𝑉 ′, 𝐸′, Source′, Target′, 𝐼′), and Acc′ = (𝛾′, [minTS ,maxTS],parity) defined
as follows.

Vertices. The set of vertices is

𝑉 ′ =
⋃
𝑣∈𝑉
({𝑣} × Leaves(T𝑣)) .

Initial vertices. 𝐼′ = {(𝑣0, 𝑛) | 𝑣0 ∈ 𝐼 and 𝑛 is the leftmost leaf in T𝑣0}.

Edges and output colours. For each (𝑣, 𝑛) ∈ 𝑉 ′ and each edge 𝑒 = 𝑣 −→ 𝑣′ ∈ Out(𝑣) in TS we

define an edge 𝑒𝑛 = (𝑣, 𝑛)
𝛾′ (𝑒𝑛)−−−−→ (𝑣′, 𝑛′). Formally,

𝐸′ =
⋃
𝑒∈𝐸

(
{𝑒} × Leaves(TSource(𝑒))

)
.

If 𝑣 and 𝑣′ are not in the same SCC, we let 𝑛′ be the leftmost leaf in T𝑣′ and 𝛾′(𝑒𝑛) = minTS .10 If 𝑣
and 𝑣′ belong to the same SCC, we let:

𝑛′ = JumpT𝑣′ (𝑛, Supp(𝑛, 𝑒)),
𝛾′(𝑒𝑛) = 𝑝ACD (Supp(𝑛, 𝑒)).

10 The colours associated to transitions changing of SCC are almost arbitrary (we could even leave them uncoloured).
We define them to be the minimal colour used so that the obtained transition system is normalised in the sense of
Section 6.2.

63 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Labellings. If TS is a labelled transition system, with labels 𝑙𝑉 : 𝑉 → 𝐿𝑉 and 𝑙𝐸 : 𝐸 → 𝐿𝐸, we
label ACDparity(TS) by 𝑙′𝑉 ′ (𝑣, 𝑛) = 𝑙𝑉 (𝑣) and 𝑙′𝐸′ (𝑒𝑛) = 𝑙𝐸 (𝑒).

Intuitively, a run in the transition system ACDparity(TS) follows a run in TS with some
extra information, updated in the same manner as it was the case with the ZT-parity-automaton.
To define transitions in ACDparity(TS), we move simultaneously in TS and inACDTS . When we
take a transition 𝑒 in TS that goes from 𝑣 to 𝑣′, while being in a node 𝑛 in the ACD, we climb the
branch of 𝑛 searching the lowest node �̃� with 𝑒 and 𝑣′ in its label (�̃� = Supp(𝑛, 𝑒)). We produce
as output the colour corresponding to the level reached. If no such node exists in the current
tree (this occurs if we change of SCC), we jump to the root of the tree containing 𝑣′. After having
reached the node �̃�, we move to its next child in the tree T𝑣′ (in a cyclic way), and we pick the
leftmost leaf under it.

EXAMPLE 5.14. We show in Figure 17 the ACD-parity-transform ACDparity(TS) of the transition
system TS from Figure 15 (Example 5.5). For each vertex 𝑣 in TS, we make as many copies as
leaves of the tree T𝑣. We note that, as 𝑣0 is transient, the tree T𝑣0 consists of a single node (by
definition), that we name 𝜄. Transitions are of the form (𝑒, 𝑙), for 𝑒 a transition from TS and 𝑙 a
leaf of some local subtree; these are denoted 𝑒𝑙 in the figure for the sake of space convenience.
These labels simply indicate the names of the edges, they should not be interpreted as input
letters (ACDparity(TS) is not an automaton).

We observe that the mappings 𝜑𝑉 (𝑣, 𝑙) = 𝑣 and 𝜑𝐸 (𝑒𝑙) = 𝑒 define a locally bijective
morphism of transition systems from ACDparity(TS) to TS.

v0, ι v1, β v2, β

v3, ξ

v3, τ

v3, θ

v4, τ

v4, θ

v5, ζ

v5, χ

aι : 1

bι : 1

cβ : 3

fβ : 1

dβ : 3 eβ : 2

gξ : 3

hξ : 2

gτ : 2 hτ : 3
gθ : 1

hθ : 3

iτ : 3

jτ : 1

iθ : 3

jθ : 2

kχ : 2

lχ : 1
kζ : 1

lζ : 2

Figure 17. ACD-parity-transform ACDparity(TS) of the transition system TS from Figure 15.

Another example can be found in Figure 18. ■

64 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

REMARK 5.15. The size of the ACD-parity-transformation of TS is:

|ACDparity(TS)| =
∑︁
𝑣∈𝑉
|Leaves(T𝑣) | =

∑︁
𝑣∈𝑉rec

|Leaves(T𝑣) | + |𝑉trans |,

where 𝑉rec and 𝑉trans are the sets of recurrent and transient vertices of TS, respectively.

REMARK 5.16. We remark that ifTS = (𝐺TS ,AccTS) is already a parity TS, then the underlying
graphs of ACDparity(TS) and TS are isomorphic. In fact, by Proposition 5.19, ACDparity(TS) and
TS will also be isomorphic as transition systems. In this case, the construction of ACDparity(TS)
boils down to the application of the procedure described by Carton and Maceiras [19].

REMARK 5.17. The ACD-parity-transform is oblivious to the labelling 𝛾 of the acceptance
condition of TS; the only information taken into account to define the graph of ACDparity(TS)
and its output colours is the structure of the trees of ACDTS. That is, the definition of this
transformation is independent of the actual representation of the acceptance condition of TS
(whether it is Emerson-Lei, Muller, Rabin...), and we only use that any such representation
induces a mapping 𝑓 : Cycles (TS) → {Accept,Reject}.

REMARK 5.18. The ZT-parity-automaton can be seen as a special case of the ACD-parity-
transform, asAparity

ZF
coincides with the DPA ACDparity(A), where A is the DMA with a single

state recognising Muller(F) (see Remark 5.7).

Correctness of the ACD-parity-transform.

PROPOS IT ION 5.19 (Correctness of the ACD-parity-transform). Let TS be a (labelled) Muller
TS and let ACDparity(TS) be its ACD-parity-transform. There is a locally bijective morphism of
(labelled) transition systems 𝜑 : ACDparity(TS) → TS.

The following lemma, analogous to Lemma 4.11 from Section 4.2, follows from the defini-
tion of the ACD-parity-transform.

LEMMA 5.20. Let 𝑛 be a node of AltTree(ℓ𝑖), let �̃� be an ancestor of 𝑛 and let 𝑒 = 𝑣 −→ 𝑣′ be
an edge in ℓ𝑖 . Then, Supp(𝑛, 𝑒) is a descendant of �̃� if and only if 𝑒 ∈ 𝜈(�̃�), and in this case, if
𝑒𝑛 = (𝑣, 𝑛) −→ (𝑣′, 𝑛′) is an edge of ACDparity(TS), then 𝑛′ is a descendant of �̃� too.

PROOF OF PROPOS IT ION 5.19 . We consider the mapping 𝜑 = (𝜑𝑉 , 𝜑𝐸) naturally defined
by 𝜑𝑉 (𝑣, 𝑛) = 𝑣 and 𝜑𝐸 (𝑒𝑛) = 𝑒. It is immediate to check that 𝜑 is a weak morphism of transition
systems (it preserves initial states and transitions). Also, it is easy to see that it is locally bijective:
for each initial state 𝑣0 ∈ 𝐼 , there is exactly one node in 𝐼′ of the form (𝑣0, 𝑛): the node where 𝑛
is the leftmost leaf of T𝑣; and for each vertex (𝑣, 𝑛) and edge 𝑒 ∈ Out(𝑣) of TS, we have defined
exactly one edge outgoing from (𝑣, 𝑛) corresponding to 𝑒.

65 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We prove that 𝜑 preserves the acceptance of runs, following the proof scheme from
Proposition 4.10. We can assume w.l.o.g. (see Remarks 2.1 and 5.17) that the set of output colours
used by TS is its set of edges 𝐸. Let 𝜌 ∈ Run (ACDparity(TS)) be an infinite run in ACDparity(TS).
Eventually, 𝜌 will remain in one SCC, and Inf(𝜌) will form a cycle that is accepting if and only if
𝜌 is an accepting run. We will assume that all the edges in 𝜌 appear infinitely often and belong
to this cycle (we can do it by using a similar argument as the one presented in the proof of
Proposition 4.10), and we let:

𝜌 = (𝑣0, 𝑛0)
𝑥0−→ (𝑣1, 𝑛1)

𝑥1−→ (𝑣2, 𝑛2)
𝑥3−→

The projection of 𝜌 under 𝜑 is:

𝜑Runs (𝜌) = 𝑣0
𝑒0−→ 𝑣1

𝑒1−→ 𝑣2
𝑒3−→

We note that the edges {𝑒0, 𝑒1, . . . } form a cycle in TS, that we will call ℓ𝜌. In particular,
ℓ𝜌 is contained in some maximal cycle ℓmax, and all the nodes 𝑛𝑖 belong to the same tree
AltTree(ℓmax) of the ACD. Our objective is to show that ℓ𝜌 is an accepting cycle in TS if and only
if min{𝑥0, 𝑥1, 𝑥2, . . . } is even. We let �̃�𝑖 = Supp(𝑛𝑖 , 𝑒𝑖) be the node ofACDTS determining the
ith transition of 𝜌, so we have that 𝑥𝑖 = 𝑝ACD (�̃�𝑖). Finally, let 𝑛𝜌 be the deepest ancestor of 𝑛0

such that ℓ𝜌 ⊆ 𝜈(𝑛𝜌).

CLAIM 5.21. For all 𝑖 ≥ 0, 𝑛𝑖 ⪰ 𝑛𝜌 and �̃�𝑖 ⪰ 𝑛𝜌 (that is, all nodes appearing in 𝜌 are below 𝑛𝜌).
In particular, 𝑥𝑖 ≥ 𝑝ACD (𝑛𝜌).

Proof. The claim follows from Lemma 5.20 and induction. ■

CLAIM 5.22. Let 𝑛𝜌,1, . . . , 𝑛𝜌,𝑠 be an enumeration of ChildrenAltTree(ℓmax) (𝑛𝜌). It holds that:
1. Supp(𝑛𝑖 , 𝑒𝑖) = 𝑛𝜌 infinitely often. In particular, 𝑥𝑖 = 𝑝ACD (𝑛𝜌) for infinitely many 𝑖’s.
2. There is no 𝑛𝜌,𝑘 ∈ Children(𝑛𝜌) such that ℓ𝜌 ⊆ 𝜈(𝑛𝜌,𝑘).

Proof. The proof is identical to that of Claim 4.13, from Proposition 4.10. ■

We conclude that min{𝑥0, 𝑥1, 𝑥2, . . . } = 𝑝ACD (𝑛𝜌), which is even if and only if ℓ𝜌 is an
accepting cycle, by Remarks 5.2 and 5.10. ■

REMARK 5.23. We can give an alternative interpretation of the previous proof. Given a run 𝜌
in TS and a vertex 𝑣 appearing infinitely often in 𝜌, we can decompose the run into:

𝜌0
𝑣

𝜌1
𝑣

𝜌2
𝑣

𝜌3
𝑣

𝜌4
. . . ,

where the finite runs 𝜌𝑖 are cycles over 𝑣, for 𝑖 > 0. Therefore, the sequence of these cycles
can be processed by the ZT-parity-automaton corresponding to the local Muller condition
LocalMullerTS (𝑣). By Lemma 5.9 and the correctness of the ZT-parity-automaton, the minimal

66 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

colour produced by a run over this sequence of cycles in Aparity
ZLocalMullerTS (𝑣)

coincides with the

minimal output colour produced by the run 𝜑−1
Runs (𝜌) in the ACD-parity-transform ACDparity(TS)

(disregarding the initial path 𝜌0). This colour is exactly the one corresponding to the deepest
node in T𝑣 above the leftmost leaf containing Inf(𝜌).

The locally bijective morphism given by Proposition 5.19 witnesses that ACDparity(TS)
shares the same semantic properties as TS. The next corollaries follow from Proposition 3.16
and Corollary 3.19 (and the fact that the choice of initial vertices in ACDparity(TS) is arbitrary).

COROLLARY 5.24. Let A be a Muller automaton and let ACDparity(A) be its ACD-parity-
transform. Then, L(A) = L(ACDparity(A)), andA is deterministic (resp. history-deterministic) if
and only if ACDparity(A) is deterministic (resp. history-deterministic).

COROLLARY 5.25. Let G be a Muller game and let ACDparity(G) be its ACD-parity-transform.
Eve wins ACDparity(G) from a vertex of the form (𝑣, 𝑛) if and only if she wins G from 𝑣.

5.3 An optimal history-deterministic transformation to Rabin transition systems

In this section we describe the ACD-HD-Rabin-transform, an optimal transformation of Muller TS
to Rabin TS preserving history-determinism. This construction generalises that from Section 4.3.

DEF IN IT ION 5.26 (ACD-HD-Rabin-transform). Let TS be a Muller TS. For each vertex 𝑣 ∈ 𝑉
we let 𝜂𝑣 : Leaves(T𝑣) → {1, . . . , rbw(T𝑣)} be a mapping satisfying Property (★) from Lemma 4.42.

We define the ACD-HD-Rabin-transform of TS to be the Rabin TS ACDRabin(TS) = (𝐺′,Acc′),
with 𝐺′ = (𝑉 ′, 𝐸′, Source′, Target′, 𝐼′), and Acc′ = (𝛾′,Nodes(ACDTS),Rabin(𝑅)) defined as
follows.

Vertices. The set of vertices is

𝑉 ′ =
⋃
𝑣∈𝑉
({𝑣} × {1, . . . , rbw(T𝑣)}) ,

where rbw(T𝑣) is the round-branching width of T𝑣.

Initial vertices. 𝐼′ = {(𝑣0, 𝑥) | 𝑣0 ∈ 𝐼 and 𝑥 ∈ {1, . . . , rbw(T𝑣0)}}.

Edges and output colours. We let

𝐸′ =
⋃
𝑒∈𝐸

(
{𝑒} × Leaves(TSource(𝑒))

)
.

For each edge 𝑒 = 𝑣 −→ 𝑣′ ∈ 𝐸 in TS and 𝑥 ∈ {1, . . . , rbw(T𝑣)}, we will place one edge from (𝑣, 𝑥)
for each leaf 𝑙 of T𝑣 such that 𝜂𝑣(𝑙) = 𝑥. More precisely, we let (𝑣, 𝑥) 𝑛−→ (𝑣′, 𝑥′) ∈ 𝐸′ if either

𝑣 and 𝑣′ are not in the same SCC (in this case the output colour 𝑛 is irrelevant), or
𝑣 and 𝑣′ are in the same SCC and there are leaves 𝑙 and 𝑙′ of T𝑣 and T𝑣′ , respectively, such
that:

67 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

𝜂𝑣(𝑙) = 𝑥, 𝜂𝑣′ (𝑙′) = 𝑥′,
𝑙′ = JumpT𝑣′ (𝑙, Supp(𝑙, 𝑒)),
𝑛 = Supp(𝑙, 𝑒).

Rabin condition. 𝑅 = {(𝐺𝑛, 𝑅𝑛)}𝑛∈Nodes⃝ (ACDTS) , where 𝐺𝑛 and 𝑅𝑛 are defined as follows: Let 𝑛
be a round node, and let 𝑛′ be any node in Nodes(ACDTS),

𝑛′ ∈ 𝐺𝑛 if 𝑛′ = 𝑛,

𝑛′ ∈ 𝑅𝑛 if 𝑛′ ≠ 𝑛 and 𝑛 is not an ancestor of 𝑛′.

Labellings. If TS is a labelled transition system, with labels 𝑙𝑉 : 𝑉 → 𝐿𝑉 and 𝑙𝐸 : 𝐸 → 𝐿𝐸, we
label ACDRabin(TS) by 𝑙′𝑉 ′ (𝑣, 𝑥) = 𝑙𝑉 (𝑣) and 𝑙′𝐸′ (𝑒′) = 𝑙𝐸 (𝑒), if 𝑒′ ∈ 𝐸′(𝑒).

This construction generalises the ZT-HD-Rabin-automaton in the same way as the ACD-
parity-transform generalises the ZT-parity-automaton. Intuitively, a run in ACDRabin(TS) can
be identified with a promenade through the nodes of the ACD, which are used as the output
colours to define the Rabin acceptance condition.

REMARK 5.27. The size of the ACD-HD-Rabin-transform of TS is:

|ACDRabin(TS)| =
∑︁
𝑣∈𝑉

rbw(T𝑣) =
∑︁
𝑣∈𝑉rec

rbw(T𝑣) + |𝑉trans |,

where 𝑉rec and 𝑉trans are the sets of recurrent and transient vertices of TS, respectively.

Correctness of the ACD-HD-Rabin-transform. To obtain the correctness of the ACD-HD-
Rabin-transform, we follow the same steps as in the proof of the correctness of the ZT-HD-Rabin-
automaton (Proposition 4.48).

PROPOS IT ION 5.28 (Correctness of the ACD-HD-Rabin-transform). Let TS be a (labelled)
Muller TS and let ACDRabin(TS) be its ACD-HD-Rabin-transform. There is an HD mapping of
(labelled) transition systems 𝜑 : ACDRabin(TS) → TS.

The proof of the next two lemmas are completely analogous to those of Lemmas 4.49
and 4.50.

LEMMA 5.29. Let𝑢 = 𝑛0𝑛1𝑛2 · · · ∈ Nodes(ACDTS)𝜔 be an infinite sequence of nodes of the ACD
of TS. The word 𝑢 belongs to Rabin(𝑅), for 𝑅 = {(𝐺𝑛, 𝑅𝑛)}𝑛∈Nodes⃝ (ACDTS) the Rabin condition of
ACDRabin(TS), if and only if there is a unique minimal node for the ancestor relation in Inf(𝑢) and
this minimal node is round.

LEMMA 5.30. There exists a morphism of transition systems 𝜑 : ACDparity(TS) → ACDRabin(TS).

Using these lemmas we can prove Proposition 5.28.

68 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF OF PROPOS IT ION 5.28 . We define the mapping 𝜑 : ACDRabin(TS) → TS in the
natural way: 𝜑𝑉 (𝑣, 𝑥) = 𝑣 and 𝜑𝐸 (𝑒, 𝑙) = 𝑒. It is immediate to check that 𝜑 is a weak morphism.
The fact that 𝜑 preserves accepting runs can be proven analogously to the fact that L(ARabin

ZF) ⊆
MullerΣ(F) in Proposition 4.48 (by using Lemma 5.29).

Definition of a sound resolver for 𝜑: In order to show how to simulate runs of TS in
ACDRabin(TS), we use the fact that we can see ACDRabin(TS) as a quotient of ACDparity(TS)
(Lemma 5.30). Let �̃� : ACDparity(TS) → TS be the locally bijective morphism given by Propo-
sition 5.19, and let �̂� : ACDparity(TS) → ACDRabin(TS) be the morphism given by Lemma 5.30.
Since �̃� is locally bijective, �̃�Runs is a bijection between the runs of the transitions systems
ACDparity(TS) and TS, admitting an inverse �̃�−1

Runs . Composing this mapping with �̂�, we obtain a
way to simulate the runs from TS in ACDRabin(TS):

�̂�Runs ◦ �̃�−1
Runs : Run∞(TS) → Run∞(ACDRabin(TS)).

This composition of mappings provides a sound resolver simulating 𝜑. Formally, let
(𝑟Init, 𝑟) be the resolver defined as follows. The choice of initial vertices 𝑟Init : 𝐼 → 𝐼′ is given by
𝑟Init(𝑣0, 𝑥) = 𝑣0. The function 𝑟 : 𝐸′∗ × 𝐸 → 𝐸′ associates to a finite run 𝜌 ∈ 𝐸′∗ and 𝑒 ∈ 𝐸 the last
edge of the run �̂�(�̃�−1(𝜑(𝜌)𝑒)) (subscripts have been omitted for legibility). It is easy to check
that (𝑟Init, 𝑟) indeed defines a resolver simulating 𝜑. Its soundness follows from the fact that �̃�
and �̂� preserve the acceptance of runs. ■

From Proposition 3.16 we obtain:

COROLLARY 5.31. LetA be a Muller automaton and let ACDRabin(A) be its ACD-HD-Rabin-
transform. Then, L(ACDRabin(A)) = L(A). Moreover, ACDRabin(A) is history-deterministic if
and only ifA is history-deterministic.

ACD-HD-Rabin-transform-for-games. In Section 2.1, we discussed some technical difficul-
ties appearing when we wanted to define the composition of a game G and an HD automaton:
as the output of such operation, we would like to obtain a game in which Eve always chooses
the transitions taken in the automaton, even if it is Adam who makes a move in the game, which
is not the case if G is an arbitrary game. Also, in Section 3.3 we had to introduce HD-for-games
mappings in order to formalise correct transformations of games. A similar difficulty appears
in the context of the ACD-HD-Rabin-transform; we can see the ACD-HD-Rabin-transform of a
game G as a game in which, at each moment, first, a move takes place in G, and then a choice is
made to update the current node inACDG . With the current definition of ACDRabin(G), it is the
player who makes the move in the game component who chooses how to update the node in
ACDG . This is potentially a problem, as in order to obtain an equivalent game we would like
that Eve had full control to decide how to update the nodes inACDG , even when it was Adam
who moved in the game component (we note that in Proposition 5.28 we did not claim that

69 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

there is an HD-for-games mapping 𝜑 : ACDRabin(TS) → TS). In order to obtain a transformation
working for games, we need to slightly modify the definition of the ACD-HD-Rabin-transform.

For a Muller game G suitable for transformations, we define its ACD-HD-Rabin-transform-
for-games, written ACDgame

parity(G). The idea is simply to take from Adam the power to update the
ACDG-component of vertices. The update of this information is delayed of one transition, so it
is Eve who makes the choice of how to move in the ACD. To do this, we need to introduce some
additional vertices controlled by Eve. The formal details of this construction and the proof of
correctness can be found in Appendix B.

PROPOS IT ION 5.32 (Correctness of the ACD-HD-Rabin-transform-for-games). Let G be a
Muller game suitable for transformations, and let ACDgame

parity(G) be its ACD-HD-Rabin-transform-
for-games. Then, there is an HD-for-games mapping 𝜑 : ACDgame

parity(G) → TS.

COROLLARY 5.33. Let G be a Muller game suitable for transformations, and let ACDgame
parity(G)

be its ACD-HD-Rabin-transform-for-games. Then, Eve’s full winning region in G is the projection
of her full winning region in ACDgame

parity(G).

5.4 Optimality of the ACD-transforms

We now state and prove the optimality of both the ACD-parity-transform (Theorems 5.34
and 5.35) and the ACD-HD-Rabin-transform (Theorem 5.36). The proofs of these results will use
the optimality of the automata based on the Zielonka tree (c.f. Section 4) as a black-box, which
will allow us to prove the optimality of both transformations at the same time. The key idea is
that if 𝜑 : TS → TS′ is an HD mapping, we can see TS as an HD automaton recognising the
accepting runs of TS′. We can then use local Muller conditions at vertices of TS′ to reduce the
problem to automata recognising Muller languages.

5.4.1 Statement of the optimality results

We state the optimality of the transformations based on the ACD. All the results below apply to
labelled transition systems too. For technical reasons, we need to suppose that all the states
of transition systems under consideration are accessible, an hypothesis that can always be
made without loss of generality. We recall that HD mappings are in particular locally bijective
morphisms and HD-for-games mappings (c.f. Figure 7).

THEOREM 5.34. Let TS be a Muller TS whose states are accessible and let T̃S be a parity TS. If
T̃S admits an HD mapping 𝜑 : T̃S → TS, then, its acceptance condition uses at least as many
colours as that of ACDparity(TS).

THEOREM 5.35. Let TS be a Muller TS whose states are accessible and let T̃S be a parity TS. If
T̃S admits an HD mapping 𝜑 : T̃S → TS, then, |ACDparity(TS)| ≤ |T̃S|.

70 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

THEOREM 5.36. Let TS be a Muller TS whose states are accessible and let T̃S be a Rabin TS. If
T̃S admits an HD mapping 𝜑 : T̃S → TS, then, |ACDRabin(TS)| ≤ |T̃S|.

We obtain an analogous optimality result for the ACD-HD-Rabin-transform-for-games. In
this case, the bound is not tight due to the additional vertices that are added to ACDgame

parity(G) (see
Appendix B for details).

COROLLARY 5.37. Let G be a Muller game suitable for transformations whose states are
accessible and let G̃ be a Rabin game. If G̃ admits an HD-for-games mapping 𝜑 : G̃ → G, then,
|ACDgame

parity(G)| ≤ 2|G̃ |.

5.4.2 Discussion: Limits on the applicability of HD automata and preservation of
minimality

Before presenting the proofs of the optimality theorems, we discuss some consequences and
limitations of our results.

Difficulty of finding succinct history-deterministic automata. As mentioned in the intro-
duction, several years had to pass after the introduction of history-deterministic automata [44]
before finding HD automata that were actually smaller than equivalent deterministic ones [57].
As of today, we only know a handful of examples of 𝜔-regular languages admitting succinct HD
automata [1, 57, 24], and their applicability in practice has yet to be fully determined. We assert
that we can derive from our results some enlightening explanations on the difficulty of finding
succinct HD parity automata, and set some limits in their usefulness in practical scenarios such
as LTL synthesis.

First, Corollary 4.16 already sets the impossibility of the existence of small HD parity
automata recognising Muller languages. Corollary 5.39 states that if an HD parity automatonA
has been obtained as a transformation of a DMAB, thenA is not strictly smaller than a minimal
deterministic parity automaton for L(A).

COROLLARY 5.38. Let TS be a Muller TS. A minimal parity TS admitting an HD mapping to
TS has the same size than a minimal parity TS admitting a locally bijective morphism to TS.

COROLLARY 5.39. Let A be a history-deterministic parity automaton. Assume that there
exists a DMA B such thatA admits an HD mapping to B. Then, there exists a DPAA′ recognising
L(A) such that |A′| ≤ |A|.

Both corollaries follow from an immediate application of Theorem 5.35.

The ACD-transform does not preserve minimality. A natural question is whether the
ACD-parity-transform preserves minimality of automata, that is, given a DMAA with a min-

71 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

imal number of states for the language it recognises, is ACDparity(A) minimal amongst DPAs
recognising L(A)?11 The answer to this question is negative, as we show now.

PROPOS IT ION 5.40. There exists a DMAA that is minimal amongst DMAs recognising L(A),
but such that its ACD-parity-transform ACDparity(A) is not a minimal DPA.

We consider the alphabet Σ = {𝑎, 𝑏, 𝑐} and the language

𝐿 = {𝑤 ∈ Σ𝜔 | 𝑐 ∈ Inf(𝑤) and 𝑤 contains infinitely often the factor 𝑎𝑏}.

A minimal DMA for 𝐿 is depicted in Figure 18a. Its minimality follows simply from the
fact that, as 𝐿 is not a Muller language ((𝑎𝑏𝑐)𝜔 ∈ 𝐿 but (𝑏𝑎𝑐)𝜔 ∉ 𝐿, c.f. Remark 2.10), a DMA
with just one state cannot recognise 𝐿. In Figure 18 we show its alternating cycle decomposition
and its ACD-parity-transform that has 4 states. However, we can find a DPA with just 3 states
recognising 𝐿, as shown in Figure 18d.

q0 q1

c : α

b : λ

a : λ
a : λ

b : β

c : α

(a) A Muller automaton with acceptance set
given by F = {{𝛼, 𝛽, 𝜆}}.

α, β, λ
q0, q1

α, λ
q0, q1

β, λ
q0, q1

0

1

ξ τ

(b) Alternating cycle decomposition of A. To
indicate the labels of the nodes of this ACD, we
include just the colours of the corresponding
edges.

q0, ξ q1, ξ

q0, τ q1, τ

c : 1b : 1
a : 1

a : 1

b : 0c : 1

c : 0

b : 1
a : 1

a : 1

b : 1

c : 0

(c) ACD-parity-transform of A, ACDparity(A),
with 4 states.

p0 p1 p2

b, c : 1

a : 1 b : 0

c : 1

a : 1

c : 0

a, b : 1

(d) A parity automaton recognising 𝐿 with only 3
states .

Figure 18. A minimal DMA whose ACD-parity-transform is not a minimal DPA.

11 This question was left open as a conjecture in the conference version of this paper [23].

72 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

5.4.3 Optimality of the parity condition of ACDparity(TS)

We show next the proof of Theorem 5.34. To prove this result, we would like to use the Flower
Lemma 2.16, however, the statement of Theorem 5.34 does not involve 𝜔-regular languages. In
order to set up a context in which apply the Flower Lemma, we show that, whenever we have a
morphism 𝜑 : TS → TS′, TS can be seen as an automaton reading the runs of TS′.

Let TS = (𝐺,Acc) and TS′ = (𝐺′,Acc′) be transition systems with underlying graphs
𝐺 = (𝑉, 𝐸, Source, Target, 𝐼) and 𝐺′ = (𝑉 ′, 𝐸′, Source′, Target′, 𝐼′), and acceptance conditions
Acc = (𝛾, Γ,W) and Acc′ = (𝛾′, Γ′,W′). A weak morphism of transition systems 𝜑 : TS → TS′

provides a labelling of the edges ofTS by 𝜑𝐸 : 𝐸 → 𝐸′. Therefore, we can seeTS as an automaton
with input alphabet 𝐸′, inheriting the underlying graph and acceptance condition from TS. We
say that this is the automaton of morphism 𝜑 and denote it byA𝜑.

We define the language of accepting runs of a transition system TS as:

LRuns (TS) = {𝜌 ∈ 𝐸𝜔 | 𝜌 is an accepting run in TS}.

LEMMA 5.41. Let TS and TS′ be transition systems with a single initial state, let 𝜑 : TS → TS′

be a weak morphism of transition systems, and letA𝜑 be its automaton. Then, 𝜑 is an HD mapping
if and only if the automatonA𝜑 is history-deterministic, and, in this case,

L(A𝜑) = LRuns (TS′).

PROOF . We first note that a resolver forA𝜑 (in the sense of HD automata) is a mapping of the
form 𝑟 : 𝐸∗ × 𝐸′→ 𝐸, as 𝐸′ is the input alphabet of this automaton. A resolver simulating 𝜑 (in
the sense of HD mappings) is a mapping of the same form. It is straightforward to check that
(𝑞0, 𝑟) is a sound resolver forA𝜑 if and only if (𝑟Init, 𝑟) is a sound resolver simulating 𝜑 (where
𝑟Init(𝑞′0) = 𝑞0 is the only possible choice of initial vertex).

We prove that L(A𝜑) = {𝜌′ ∈ Run (TS′) | 𝜌′ is an accepting run}. First, we remark that if
𝜌 is a run inA𝜑 over 𝜌′ ∈ Run (TS′), then 𝜌′ = 𝜑Runs (𝜌), since the labelling ofA𝜑 by input letters
is given exactly by 𝜑 itself. Therefore, if 𝜌′ ∈ L(A𝜑), there exists an accepting run 𝜌 over 𝜌′,
and since 𝜑 preserves accepting runs, 𝜌′ = 𝜑Runs (𝜌) is accepting in TS′, proving the inclusion
from left to right. For the other inclusion, we let (𝑟Init, 𝑟) be a sound resolver simulating 𝜑. If 𝜌′

is an accepting run in TS′, then 𝑟Runs (𝜌′) is an accepting run over 𝜌′ inA𝜑. ■

We recall that [minTS ,maxTS] are the colours used by the ACD-parity-transform of TS,
which coincides with the maximal height of a tree inACDTS . We also recall that minTS = 0 if
ACDTS is positive or equidistant, and that minTS = 1 ifACDTS is negative.

LEMMA 5.42. Let TS be a Muller TS, and let AltTree(ℓ) ∈ ACDTS be a positive (resp. negative)
tree of the ACD of TS of height 𝑑. Then, TS admits a positive (resp. negative) 𝑑-flower.

73 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF . We use the same argument as the one used in the proof of Theorem 4.14. Let 𝑛1 ⪯
𝑛2 ⪯ . . . ⪯ 𝑛𝑑 be a branch of length 𝑑 of AltTree(ℓ) (where 𝑛1 is the root and 𝑛𝑑 is a leaf of the
tree). Let 𝑣 ∈ 𝜈States(𝑛𝑑) be a vertex appearing in the leaf. Then, the whole branch is contained
in T𝑣 (by Remark 5.4), that is, 𝜈(𝑛𝑖) ∈ CyclesTS (𝑣). Moreover, 𝜈(𝑛1) ⊋ 𝜈(𝑛2) ⊋ . . . 𝜈(𝑛𝑑) is a chain
that alternates accepting and rejecting cycles, so it is a 𝑑-flower that is positive if and only if
𝜈(𝑛1) = ℓ is an accepting cycle, that is, if AltTree(ℓ) is positive. ■

LEMMA 5.43. Let TS be a Muller TS with a single initial vertex and whose vertices are all
accessible. Then, the parity index of LRuns (TS) is:

[minTS ,maxTS] ifACDTS is positive or negative,
WeakmaxTS ifACDTS is equidistant.

PROOF . We consider the identity morphism IdTS : TS → TS and its automatonAIdTS , which is
a deterministic automaton trivially recognising LRuns (TS) (that is, we see TS as an automaton
reading its own edges as input letters). The result follows from the Flower Lemma 2.16 and
the fact that a tree AltTree(ℓ) ∈ ACDTS of height 𝑑 provides a 𝑑-flower that is positive if ℓ is
accepting and negative if ℓ is rejecting (Lemma 5.42). These flowers are accessible as we have
supposed that all the vertices of TS are accessible. ■

The previous lemmas allow us to obtain Theorem 5.34 for transition systems with a single
initial vertex. We introduce some further notations to deal with the general case.

For a Muller TSTS and a vertex 𝑣, we letACD (TS,𝑣) be the alternating cycle decomposition
of the accessible part of TS from 𝑣. We note that the trees of ACD (TS,𝑣) are a subset of the
trees ofACDTS: a tree AltTree(ℓ𝑖) ∈ ACDTS appears inACD (TS,𝑣) if and only if the cycle ℓ𝑖
is accessible from 𝑣. Accordingly, for each vertex 𝑣 of TS we let min(TS,𝑣) (resp. max(TS,𝑣)) be
the minimum (resp. maximum) value taken by the function 𝑝ACD when restricted to the trees
ofACD (TS,𝑣) .

REMARK 5.44. For every transition system TS, one of the two following statements holds:
There is some vertex 𝑣 such that [minTS ,maxTS] = [min(TS,𝑣) ,max(TS,𝑣)].
There are two vertices 𝑣0 and 𝑣1 such that min(TS,𝑣0) = 0, max(TS,𝑣0) = maxTS − 1 and
min(TS,𝑣1) = 1, max(TS,𝑣1) = maxTS .

Moreover, if all the states of TS are accessible, we can choose 𝑣 (resp. 𝑣0 and 𝑣1) to be an initial
vertex.

We can finally deduce Theorem 5.34 from the preceding lemmas.

PROOF OF THEOREM 5.34 . We assume that we are in the first case of Remark 5.44 (a
proof for the second case follows easily). First, we show that we can suppose that T̃S and
TS have a single initial vertex. Let 𝑣 be an initial vertex of TS such that [minTS ,maxTS] =

74 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

[min(TS,𝑣) ,max(TS,𝑣)]. Let 𝜑 : T̃S → TS be an HD mapping, and let (𝑟Init, 𝑟) be a sound resolver
simulating it. We let �̃� = 𝑟Init(𝑣) be the initial vertex in T̃S chosen by the resolver. It suffices
then to prove the result for the accessible part of T̃S from �̃�, the transition system TS𝑣, and the
restriction of 𝜑 to these transition systems.

From now on, we assume that both T̃S and TS have a single initial vertex. By Lemma 5.43
and Proposition 2.15, a parity history-deterministic automaton recognising LRuns (TS) uses
at least | [minTS ,maxTS] | colours. By Lemma 5.41, the automaton A𝜑 of the morphism 𝜑 is
a parity history-deterministic automaton recognising LRuns (TS), and therefore uses at least
| [minTS ,maxTS] | colours. Since the acceptance condition of T̃S is exactly the same as that of
A𝜑, we can conclude. ■

5.4.4 Optimality of the sizes of ACDparity(TS) and ACDRabin(TS)

We prove now Theorems 5.35 and 5.36.

SKETCH OF THE PROOF . Let 𝜑 : T̃S → TS be an HD mapping, and let 𝑣 be a vertex in TS.
We can see the set 𝜑−1(𝑣) as the states of an HD automaton reading finite runs in TS looping
around 𝑣. This allows to define an HD automaton having 𝜑−1(𝑣) as set of states and recognising
LocalMullerTS (𝑣). As the Zielonka tree of LocalMullerTS (𝑣) is the tree T𝑣, by optimality of the ZT-
parity-automaton (resp. the ZT-HD-Rabin-automaton), we deduce that |𝜑−1(𝑣) | ≥ |Leaves(T𝑣) |
(resp. |𝜑−1(𝑣) | ≥ rbw(T𝑣)). ■

DEF IN IT ION 5.45. Let TS and TS′ be two transition systems, and let (𝛾, Γ,MullerΓ(F))
be the acceptance condition of TS. Let 𝜑 : TS → TS′ be a weak morphism of transition
systems that is locally surjective, and let 𝑣′ be an accessible recurrent state of TS′. For each
ℓ′ ∈ Cycles𝑣′ (TS

′) we let 𝜌ℓ′ be a finite path starting and ending in 𝑣′ visiting exactly the edges
of ℓ′. We define the cycle-preimage-automaton at 𝑣′ to be the Muller automaton A(𝜑−1,𝑣′) =

(𝑄𝑣′ , Cycles𝑣′ (TS
′), 𝑄𝑣′ , 2Γ

+, 𝛿,Muller2Γ
+
(𝐹)) over the input alphabet CyclesTS′ (𝑣′) defined as:

the set of states is 𝑄𝑣′ = 𝜑−1(𝑣′),
all the states are initial,
the output colours are non-empty subsets of the colours used by TS,
(𝑞2, 𝐶) ∈ 𝛿(𝑞1, ℓ

′) if there is a finite path 𝜌 ∈ Pathfin
𝑞1
(TS) from 𝑞1 to 𝑞2 such that 𝜑(𝜌) = 𝜌ℓ′

producing as output the colours in 𝐶 ⊆ Γ, that is 𝛾(𝜌) = 𝐶. If 𝐶 is empty, this corresponds
to an uncoloured edge 𝑞1

ℓ′:𝜀−−→ 𝑞2. We remark that, since 𝜑 is assumed locally surjective,
there is at least one such path 𝜌.
{𝐶1, . . . , 𝐶𝑘} ∈ 𝐹 if and only if ∪𝑘

𝑖=1𝐶𝑖 ∈ F .

We remark that a transition 𝑒 = 𝑞1
ℓ′:𝐶−−−→ 𝑞2 in A(𝜑−1,𝑣′) induces a finite path Unfold(𝑒) =

𝑞1
𝐶
𝑞2 in TS called the unfolding of 𝑒, producing as output the set of colours 𝐶 and such

75 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that 𝜑(Unfold(𝑒)) = ℓ′. In particular, a run 𝜌 inA(𝜑−1,𝑣′) is accepting if and only if Unfold(𝜌) is
accepting.

LEMMA 5.46. If 𝐿 = MullerΓ(F) is a parity (resp. Rabin) language, then, so is the language
�̃� = Muller2Γ

+
(𝐹) used by the acceptance condition ofA(𝜑−1,𝑣′) .

PROOF . Assume that 𝐿 is a parity language, that is, there are 𝑑min ≤ 𝑑max and 𝜙 : Γ →
[𝑑min, 𝑑max] such that for any non-empty subset 𝐶 ⊆ Γ, 𝐶 ∈ F if and only if min𝜙(𝐶) is even.
We define �̃� : 2Γ

+ → [𝑑min, 𝑑max] as: �̃�(𝐶) = min𝜙(𝐶). It is immediate to see that {𝐶1, . . . , 𝐶𝑘} ∈ 𝐹
if and only if min �̃�({𝐶1, . . . , 𝐶𝑘}) is even.

Assume now that 𝐿 is a Rabin language represented by the Rabin pairs {(𝐺1, 𝑅1), . . . ,
(𝐺𝑟, 𝑅𝑟)}. We define a family of Rabin pairs �̃� = {(�̃�1, �̃�1), . . . , (�̃�𝑟, �̃�𝑟)} for �̃� as: {𝐶1, . . . , 𝐶𝑘} ∈ 𝐺𝑖
(resp. ∈ 𝑅𝑖) if ∪𝑘

𝑖=1𝐶𝑖 ∈ 𝐺𝑖 (resp. ∈ 𝑅𝑖). It is immediate to see that �̃� = Rabin2Γ
+
(�̃�). ■

LEMMA 5.47. Let TS and TS′ be two Muller TS, 𝜑 : TS → TS′ a weak morphism of TS, and 𝑣′

an accessible recurrent state of TS′. If 𝜑 is an HD mapping, then the automaton A(𝜑−1,𝑣′) is
history-deterministic and recognises the local Muller condition of TS′ at 𝑣′.

PROOF . L(A(𝜑−1,𝑣′)) ⊆ LocalMuller𝑣′ (TS): Let ℓ′1ℓ
′
2 · · · ∈ Cycles𝑣(TS)𝜔 be a sequence of cycles

accepted by A(𝜑−1,𝑣′) . By prefix-independence of Muller languages we can assume that all

the cycles ℓ′
𝑖

appear infinitely often. Let 𝜌 = 𝑞0
ℓ′1:𝐶1
−−−→ 𝑞1

ℓ′2−→ 𝑞2 −→ . . . be an accepting run
in A(𝜑−1,𝑣′) over ℓ′1ℓ

′
2 . . . , and let Unfold(𝜌) be its unfolding. As 𝜌 is an accepting run, so is

Unfold(𝜌), and since 𝜑 preserves accepting runs, 𝜑(Unfold(𝜌)) is an accepting run in TS′. The
edges visited by 𝜑(Unfold(𝜌)) form the cycle ∪𝑖≥1ℓ

′
𝑖
, which is therefore an accepting cycle, so

ℓ′1ℓ
′
2 · · · ∈ LocalMuller𝑣′ (TS) by definition of local Muller condition.

LocalMullerTS′ (𝑣′) ⊆ L(A(𝜑−1,𝑣′)) and history-determinism: Let 𝑟𝜑 : 𝐸∗ × 𝐸′ → 𝐸 be a
sound resolver simulating 𝜑. We will transfer the strategy given by 𝑟𝜑 to define a resolver
𝑟A : Δ∗ × Cycles𝑣′ (TS

′) → Δ forA(𝜑−1,𝑣′) , where Δ is the set of transitions of the automaton. Let
𝜌′0 ∈ Runfin(TS′) be a finite run reaching 𝑣′, and let 𝜌0 = 𝑟𝜑,Runs (𝜌′0) the preimage given by the
resolver, ending in some 𝑞0 ∈ 𝑄𝑣′ that is going to by used as initial state for A(𝜑−1,𝑣′) . For a
sequence 𝑒1𝑒2 . . . 𝑒𝑘 ∈ Δ∗ and ℓ′ ∈ Cycles𝑣′ (TS

′), we let

𝑟A (𝑒1𝑒2 . . . 𝑒𝑘, ℓ
′) = 𝑟𝜑(𝜌′0𝜌′1 . . . 𝜌′𝑘, 𝜌ℓ′),

12

where 𝜌′
𝑗
= 𝜑(Unfold(𝑒 𝑗)) and 𝑣′

𝜌ℓ′
𝑣′ is the finite run corresponding to ℓ′ fixed in the

definition ofA(𝜑−1,𝑣′) . By definition, the obtained resolver satisfies the following property:

If 𝑒1𝑒2 · · · ∈ Δ𝜔 is the run induced by 𝑟A over ℓ′1ℓ
′
2 · · · ∈ Cycles𝑣′ (TS

′)𝜔,
then 𝜌0Unfold(𝑒1𝑒2 . . .) = 𝑟𝜑,Runs (𝜌′0𝜌′1𝜌′2 . . .).

12 Here we use a slight abuse of notation, since, formally, 𝑟𝜑 takes as input elements in 𝐸∗ × 𝐸′, but 𝜌ℓ′ ∈ 𝐸′∗. We can
naturally extend 𝑟𝜑 to 𝐸′∗ by induction. Equivalently, we can say that 𝑟A (𝑒1𝑒2 . . . 𝑒𝑘 , ℓ

′) is a suffix of 𝑟𝜑,Runs (𝜌′0𝜌′1 . . . 𝜌′𝑘𝜌ℓ′).

76 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

This gives us:⋃
Inf(ℓ′1, ℓ′2, . . .) is accepting cycle in TS′ ⇐⇒ 𝜌′0𝜌

′
1𝜌
′
2 . . . is accepting run in TS′ =⇒

=⇒ 𝜌0Unfold(𝑒1𝑒2 . . .) accepting run in TS ⇐⇒ 𝑒1𝑒2 . . . accepting run inA(𝜑−1,𝑣′) .

Which allows us to conclude that the A(𝜑−1,𝑣′) recognises LocalMuller𝑣′ (TS) and that 𝑟A is a
sound resolver. ■

COROLLARY 5.48. Let TS and T̃S be a Muller and a parity transition system, respectively,
and let 𝜑 : T̃S → TS be an HD mapping. Let 𝑣 be an accessible recurrent state of TS. Then,

|𝜑−1(𝑣) | ≥ |Leaves(ZLocalMullerTS (𝑣)) | = |Leaves(T𝑣) |.

PROOF . By Lemma 5.47, the automatonA(𝜑−1,𝑣) is a history-deterministic automaton recog-
nising LocalMuller𝑣(TS) of size |𝜑−1(𝑣) |, and by Lemma 5.46, it is a parity automaton. The
optimality of the ZT-parity-automaton (Theorem 4.15) gives us the first inequality. The second
equality follows from the fact that T𝑣 is the Zielonka tree of LocalMullerTS (𝑣) (Lemma 5.9). ■

The next corollary admits an identical proof, using the optimality of the ZT-HD-Rabin-
automaton (Theorem 4.51).

COROLLARY 5.49. Let TS and T̃S be a Muller and a Rabin transition system, respectively,
and let 𝜑 : T̃S → TS be an HD mapping. Let 𝑣 be an accessible recurrent state of TS. Then,

|𝜑−1(𝑣) | ≥ |rbw(ZLocalMullerTS (𝑣)) | = |rbw(T𝑣) |.

Theorems 5.35 and 5.36 follow from these two corollaries, the formulas for the size of
the ACD-transforms (Remarks 5.15 and 5.27) and the fact that a locally surjective morphism
𝜑 : T̃S → TS is surjective if all vertices of TS are accessible (Lemma 3.5).

6. Corollaries

In this section, we discuss some further applications of the Zielonka tree and the alternating
cycle decomposition. In Section 6.1, we use the insights gained from the ACD to conduct a
comprehensive study of typeness results for deterministic Muller automata (that is, when can
we relabel a DMA with an equivalent and simpler acceptance condition). In Section 6.2 we
present a normal form for parity transition systems and prove the main properties exhibited
by TS in this form. In Section 6.3, we provide a polynomial-time algorithm minimising DPA
recognising Muller languages.

77 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

6.1 Typeness results

As we have seen, there are many different types of acceptance conditions for𝜔-regular automata.
An important question is the following:

Question: Given a Muller automatonA, can we define a simpler acceptance condition over the
underlying graph ofA obtaining an equivalent automatonA′?

This question was first studied (in the context of automata using state-based acceptance)
by Krishnan, Puri and Brayton [55, 56], who showed how to determine if a DMA can be re-
labelled with an equivalent Büchi condition. Their work was generalised to parity automata
by Boker, Kupferman and Steinitz [11], and related questions about typeness were studied for
non-deterministic automata by Kupferman, Morgenstern and Murano [59], and for history-
deterministic automata by Boker, Kupferman and Skrzypczak [10].

In this section, we provide new general characterisations of typeness for Muller transition
systems. The main contributions of this section appear in Propositions 6.9, 6.10 and 6.11, which
characterise when a Muller TS can be relabelled with equivalent parity, Rabin, or Streett
conditions in terms of properties of the cycles of the TS. For instance, Proposition 6.9 states that
a Muller TS can be relabelled with an equivalent Rabin condition if and only if its rejecting
cycles are closed under union. The “only if” part of these results was already known [63],
but the fact that this is indeed a characterisation is a novel result, for which the use of the
ACD is essential. These characterisations directly imply the results from [11, 55, 56]. We also
show how to use the ACD to determine the parity index of the language recognised by a DMA
(Proposition 6.13), which can be seen as a simplification of the results from [56, Section 3.2].
Further results concerning generalised Büchi languages and weak automata can be found in
Appendix A.

6.1.1 Typeness for Muller languages

We first present some results proven by Zielonka [94, Section 5] that show how we can use the
Zielonka tree to deduce if a Muller language is a Rabin, a Streett or a parity language. These
results are generalised to transition systems in the next subsection. A study of further types of
Muller languages can be found in Appendix A.

We do not include the proofs of the results of this section in the main body of the paper, as
they are known results [94, Section 5] and they are special cases of the proofs in Section 6.1.2.
Nevertheless, we include them in Appendix E.

We first introduce some definitions. The terminology will be justified by the upcoming
results.

DEF IN IT ION 6.1. Let 𝑇 be a tree with nodes partitioned into round nodes and square nodes.
We say that 𝑇 has:

78 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Rabin shape if every round node has at most one child.
Streett shape if every square node has at most one child.
Parity shape if every node has at most one child.

PROPOS IT ION 6.2. Let F ⊆ 2Γ
+ be a family of non-empty subsets. The following conditions are

equivalent:
1. MullerΓ(F) is a Rabin language.
2. 2Γ

+ \ F is closed under union: If 𝐶1 ∉ F and 𝐶2 ∉ F , then 𝐶1 ∪ 𝐶2 ∉ F .
3. ZF has Rabin shape.

PROPOS IT ION 6.3. Let F ⊆ 2Γ
+ be a family of non-empty subsets. The following conditions are

equivalent:
1. MullerΓ(F) is a Streett language.
2. The family F is closed under union.
3. ZF has Streett shape.

PROPOS IT ION 6.4. Let F ⊆ 2Γ
+ be a family of non-empty subsets. The following conditions are

equivalent:
1. MullerΓ(F) is a parity language.
2. Both F and 2Γ

+ \ F are closed under union: If 𝐶1 ∈ F ⇐⇒ 𝐶2 ∈ F , then, 𝐶1 ∪ 𝐶2 ∈ F ⇐⇒
𝐶1 ∈ F .

3. ZF has parity shape.

Moreover, if some of these conditions is satisfied,MullerΓ(F) is a [minF ,maxF]-parity language.

COROLLARY 6.5. A Muller language 𝐿 ⊆ Γ𝜔 is a parity language if and only if it is both a Rabin
and a Streett language.

6.1.2 Typeness for Muller transition systems and deterministic automata

We start this subsection by introducing the necessary definitions about equivalence of accep-
tance conditions and typeness. Then, we state and prove our main contributions concerning
typeness of transition systems.

Equivalence of acceptance conditions and typeness. Let TS1 = (𝐺,Acc1) and TS2 =

(𝐺,Acc2) be two transitions systems over the same underlying graph 𝐺, with acceptance condi-
tions Acc𝑖 = (𝛾𝑖 , Γ𝑖 ,W𝑖), for 𝑖 ∈ {1, 2}. We say that Acc1 and Acc2 are equivalent over 𝐺, written
Acc1 ≃𝐺 Acc2, if for all runs 𝜌 ∈ Run (𝐺), 𝜌 is accepting for TS1 if and only if it is accepting for
TS2; that is, 𝛾1(𝜌) ∈ W1 ⇐⇒ 𝛾2(𝜌) ∈ W2.

79 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We write TS1 ≃ TS2 if TS1 and TS2 are isomorphic. We recall that two transition systems
are isomorphic if there is a morphism of transition systems 𝜑 : TS1 → TS2 whose inverse is
also a morphism, that is, 𝜑 and 𝜑−1 preserve the acceptance of runs.

REMARK 6.6. If 𝜑 : TS1 → TS2 is an isomorphism, then (𝛾2 ◦ 𝜑, Γ2,W2) is an acceptance
condition over the underlying graph of TS1 that is equivalent to (𝛾1, Γ1,W1) over this graph.

Conversely, if two acceptance conditions Acc1 and Acc2 are equivalent over a same graph𝐺,
then the identity function is an isomorphism between TS1 = (𝐺,Acc1) and TS2 = (𝐺,Acc2).

For 𝑋 one of types of languages defined in Section 2.2 (Büchi, parity, Muller, etc...), we say
that a transition system TS is 𝑋 type if there exists an isomorphic transition system TS′ ≃ TS
using an 𝑋 acceptance condition. We note that, by the previous remark, in that case an 𝑋

acceptance condition can be defined directly over the underlying graph of TS.
We remark that, given a pointed graph 𝐺 (whose states are accessible), the equivalence

classes of Muller acceptance conditions for the relation ≃𝐺 are given exactly by the mappings
𝑓 : Cycles (𝐺) → {Accept,Reject}.

The ACD determines the type of transition systems.

DEF IN IT ION 6.7. Let TS be a Muller transition system with a set of states 𝑉 . We say that its
alternating cycle decompositionACDTS is a:

Rabin ACD if for every state 𝑣 ∈ 𝑉 , the tree T𝑣 has Rabin shape.
Streett ACD if for every state 𝑣 ∈ 𝑉 , the tree T𝑣 has Streett shape.
Parity ACD if for every state 𝑣 ∈ 𝑉 , the tree T𝑣 has parity shape.
[0, 𝑑 − 1]-parity ACD (resp. [1, 𝑑]-parity ACD) if it is a parity ACD, trees ofACDTS have
height at most 𝑑 and trees of height 𝑑 are positive (resp. negative).

REMARK 6.8. ACDTS is a parity ACD if and only if it is both a Rabin and a Streett ACD.

PROPOS IT ION 6.9. Let TS = (𝐺TS ,AccTS) be a Muller transition system whose states are
accessible. The following conditions are equivalent:

1. TS is Rabin type.
2. For every pair of rejecting cycles ℓ1, ℓ2 ∈ Cycles (TS) with some state in common, ℓ1 ∪ ℓ2 is a

rejecting cycle.
3. ACDTS is a Rabin ACD.

PROOF . (1⇒ 2) Let Acc𝑅 = (𝛾, Γ,Rabin(𝑅) be the Rabin acceptance condition equivalent to
AccTS, and let 𝑅 = (𝐺1, 𝑅1), . . . , (𝐺𝑟, 𝑅𝑟) be its Rabin pairs. Let ℓ1 and ℓ2 be two cycles with a
state in common, and suppose that ℓ1 ∪ ℓ2 is accepting; we show that either ℓ1 or ℓ2 is accepting.
The cycle ℓ1 ∪ ℓ2 is accepted by some Rabin pair (𝐺 𝑗 , 𝑅 𝑗), so for all edges 𝑒 ∈ ℓ1 ∪ ℓ2, 𝛾(𝑒) ∉ 𝑅 𝑗 ,

80 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

and there is some 𝑒0 ∈ ℓ1 ∪ ℓ2 such that 𝛾(𝑒0) ∈ 𝐺 𝑗 . If 𝑒0 belongs to ℓ1, then ℓ1 is accepted by the
Rabin pair (𝐺 𝑗 , 𝑅 𝑗), and if 𝑒0 ∈ ℓ2, then ℓ2 is accepted by it.
(2⇒ 3) Let 𝑣 be a vertex of TS and T𝑣 the local subtree at 𝑣. Suppose that there is a round node
𝑛 ∈ T𝑣 with two different children 𝑛1 and 𝑛2. The cycles 𝜈(𝑛1) and 𝜈(𝑛2) are rejecting cycles
over 𝑣, but their union is an accepting cycle (by Remark 5.2).
(3⇒ 1) We observe thatACDTS is a Rabin ACD if and only if rbw(T𝑣) = 1 for all vertices 𝑣 ofTS.
In particular, the ACD-HD-Rabin-transform of TS does not add any state to TS. It is immediate to
check that the morphism 𝜑 : ACDRabin(TS) → TS given by 𝜑𝑉 (𝑣, 𝑥) = 𝑣, 𝜑𝐸 (𝑒, 𝑙) = 𝑒 defined in
the proof of Proposition 5.28 is an isomorphism, and TS uses a Rabin acceptance condition. ■

PROPOS IT ION 6.10. Let TS = (𝐺TS ,AccTS) be a Muller transition system. The following
conditions are equivalent:

1. TS is Streett type.
2. For every pair of accepting cycles ℓ1, ℓ2 ∈ Cycles (TS) with some state in common, ℓ1 ∪ ℓ2 is

an accepting cycle.13

3. ACDTS is a Streett ACD.

PROOF . Implications (1⇒ 2) and (2⇒ 3) are analogous to those from Proposition 6.9.

(3⇒ 1) We consider the transition system TS obtained by complementing the acceptance set
of AccTS . By Remark 5.6, the ACD of TS is obtained fromACDTS by turning round nodes into
square nodes and vice-versa. Thus, the ACD of TS is a Rabin ACD, and by applying the previous
proposition we can define a Rabin condition Acc𝑅 = (𝛾, Γ,RabinΓ(𝑅)) such that the transition
system (𝐺TS ,Acc𝑅) is isomorphic to TS. Since StreettΓ(𝑅) is the complement language of
RabinΓ(𝑅), we obtain that Acc𝑆 = (𝛾, Γ,StreettΓ(𝑅)) is a Streett acceptance condition equivalent
to AccTS over 𝐺TS . ■

PROPOS IT ION 6.1 1. Let TS = (𝐺TS ,AccTS) be a Muller transition system. The following
conditions are equivalent:

1. TS is parity type.
2. For every pair of accepting (resp. rejecting) cycles ℓ1, ℓ2 ∈ Cycles (TS) with some state in

common, ℓ1 ∪ ℓ2 is an accepting (resp. rejecting) cycle.
3. ACDTS is a parity ACD.

Moreover, if some condition is satisfied, TS is [0, 𝑑 − 1] (resp. [1, 𝑑])-parity type if and only if
ACDTS is a [0, 𝑑 − 1](resp. [1, 𝑑])-parity ACD.

PROOF . (1⇒ 2) Proven in Lemma 4.21.

13 This property was introduced by Le Saëc under the name cyclically closed automata [82]. We point out that the “if”
direction of the result stated in [82, Theorem 5.2] does not hold. That statement can be rephrased as: If a DMA A is
cyclically closed, then the parity index of A is [0, 1]. We refer to Proposition 6.13 for a correct characterisation.

81 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

(2⇒ 3) Admits an analogous proof to the corresponding implication in Proposition 6.9.
(3⇒ 1) By definition,ACDTS is a parity ACD if and only if Leaves(T𝑣) is a singleton for each
vertex 𝑣 of TS. In particular, the ACD-parity-transform of TS does not add any state to TS.
It is immediate to check that the morphism 𝜑 : ACDparity(TS) → TS defined in the proof of
Proposition 5.19 is an isomorphism. Therefore, TS and ACDparity(TS) are isomorphic transition
systems, and the latter uses a parity acceptance condition that is a [0, 𝑑 − 1] (resp. [1, 𝑑])-parity
condition ifACDTS is a [0, 𝑑 − 1] (resp. [1, 𝑑])-parity ACD. IfACDTS is not a [0, 𝑑 − 1](resp.
[1, 𝑑])-parity ACD, then the number of colours cannot be reduced by the optimality of the
number of colours of the ACD-parity-transform (Theorem 5.34). ■

COROLLARY 6.12. A Muller transition system is parity type if and only if it is both Rabin and
Streett type.

The ACD and the parity index of 𝝎-regular languages.

PROPOS IT ION 6.13. LetA be a deterministic Muller automaton whose states are accessible.
Then, the parity index of L(A) is:

[0, 𝑑 − 1] (resp. [1, 𝑑]) if and only if:
trees ofACDA have height at most 𝑑,
there is at least one tree of height 𝑑, and
trees of height 𝑑 are positive (resp. negative).

Weak𝑑 if and only if:
trees ofACDA have height at most 𝑑,
there is at least one positive tree of height 𝑑, and
there is at least one negative tree of height 𝑑.

PROOF . We prove the right-to-left implication for the case Weak𝑑 . Assume thatACDA verifies
the previous list of conditions (in particular, it is equidistant). Then, the ACD-parity-transform
ACDparity(A) is a DPA recognising L(A) using colours in [0, 𝑑]. In order to obtain a DPA for
L(A) with colours in [1, 𝑑 + 1] we need to introduce a small modification to the function 𝑝ACD .
For ℓ𝑖 a maximal cycle ofA and 𝑛 ∈ 𝑁ℓ𝑖 we define:

𝑝′ACD (𝑛) = Depth(𝑛) + 2, if ℓ𝑖 is accepting,
𝑝′ACD (𝑛) = Depth(𝑛) + 1, if ℓ𝑖 is rejecting.

It is a routine check to see that the version of the ACD-parity-transform using 𝑝′ACD is indeed a
correct parity automaton using colours in [1, 𝑑 + 1].

To prove that no DPA recognising 𝐿 uses less than 𝑑 colours, it suffices to use the Flower
Lemma 2.16 and the fact that a branch of length 𝑑 in a tree of the ACD induces a 𝑑-flower inA,
which is positive if and only if the corresponding tree is positive (Lemma 5.42).

82 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

This is indeed a complete characterisation, since for any ACD there is a minimal 𝑑 such that
ACDA lies in one and only one of the classes specified in the statement of the proposition. ■

PROPOS IT ION 6.14. Let 𝐿 ⊆ Σ𝜔 be an 𝜔-regular language of parity index at least [0, 𝑑 − 1]
(resp. [1, 𝑑]). Any history-deterministic Muller automaton recognising 𝐿 uses an acceptance
condition with at least 𝑑 different output colours.

PROOF . We first prove the result for deterministic automata. LetA be a DMA recognising 𝐿
using the acceptance condition (𝛾, Γ,MullerΓ(F)). By Proposition 6.13, there is a tree AltTree(ℓ𝑖)
in the ACD ofA of height at least 𝑑. We define 𝛾ACD : Nodes(ACDTS) → Γ to be the function
that assigns to each node of the ACD the colours appearing in it, that is: 𝛾ACD (𝑛) = 𝛾(𝜈(𝑛)). We
remark that if 𝑛′ is a descendant of 𝑛 then 𝛾ACD (𝑛′) ⊆ 𝛾ACD (𝑛), and that a node 𝑛 is round
if and only if 𝛾ACD (𝑛) ∈ F . Therefore, by the alternation of round and square nodes, if 𝑛′ is
a strict descendent of 𝑛, 𝛾ACD (𝑛′) ⊊ 𝛾ACD (𝑛). We conclude that the root of AltTree(ℓ𝑖) must
contain at least 𝑑 different colours.

In order to obtain the result for history-deterministic automata we use finite-memory
resolvers as defined in Section 4.2. IfA is a history-deterministic Muller automaton, it admits
a sound resolver implemented by a finite memory structure (M, 𝜎) (Lemma 4.24). Then, the
compositionA ◁𝜎M is a DMA using the same number of colours, that has to be at least 𝑑. ■

The following result (which was already known, as it is a consequence of the construction
by Carton and Maceiras [19]), is refined and proven in Appendix A (Corollary A.16).

PROPOS IT ION 6.15. Let A be a deterministic parity automaton such that all its states are
accessible and the parity index of L(A) is [0, 𝑑 − 1] (resp. [1, 𝑑]). Then, A is [0, 𝑑 − 1] (resp.
[1, 𝑑])-parity type.

The previous result does not hold for history-deterministic automata, as we could artifi-
cially add transitions augmenting the complexity of the structure of the automaton (enlarging
the flowers of the automaton) without modifying the language it recognises. Nevertheless, some
analogous results applying to HD automata can be obtained. Boker, Kupferman and Skrzypczak
proved that any HD parity automaton recognising a language of parity index [0, 1] (resp. [1, 2])
admits an equivalent HD subautomaton using a Büchi (resp. coBüchi) condition [10, Theorems 10
and 13]. We do not know whether the result holds for languages of arbitrary parity index.

Typeness for deterministic automata. Two automataA1 andA2 such thatA1 ≃ A2 recog-
nise the same language: L(A1) = L(A2). However, the converse only holds for deterministic
automata.

LEMMA 6.16. LetA1 andA2 be two deterministic automata over the same underlying graph
and with the same labelling by input letters. Then, L(A1) = L(A2) if and only ifA1 ≃ A2.

83 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF . The implication from right to left is trivial. For the other implication, suppose that
L(A1) = L(A2), and let 𝜌 ∈ Run (A1) = Run (A2) be an infinite run over the underlying graph
ofA1. Let 𝑤 ∈ Σ𝜔 be the word over the input alphabet Σ labelling the run 𝜌. SinceA1 andA2

are deterministic, 𝜌 is the only run over 𝑤, and therefore:

𝜌 is accepting forA1 ⇐⇒ 𝑤 ∈ L(A1) = L(A2) ⇐⇒ 𝜌 is accepting forA2. ■

COROLLARY 6.17 (First proven in [11, Theorem 7]). Let 𝐺A be the underlying graph of a
deterministic automaton. Then, there are Rabin and Streett conditions Acc𝑅 and Acc𝑆 such that
L(𝐺A ,Acc𝑅) = L(𝐺A ,Acc𝑆) if and only if there is a parity condition Acc𝑝 such thatL(𝐺A ,Acc𝑝) =
L(𝐺A ,Acc𝑅) = L(𝐺A ,Acc𝑆).

We remark that the hypothesis of determinism in the previous corollary is necessary, as it
has been shown that an analogous result does not hold for non-deterministic automata [11].

PROPOS IT ION 6.18 (First proven in [55, Theorem 15]). LetA be a deterministic Rabin (resp.
Streett) automaton, and assume that L(A) can be recognised by a deterministic Büchi (resp.
coBüchi) automaton; that is, the parity index of L(A) is at most [0, 1] (resp. at most [1, 2]).
Then,A is Büchi type (resp. coBüchi type).

PROOF . We do the proof for the case Rabin-Büchi. We can assume that all the states ofA are
accessible, as we can define a trivial acceptance condition in the part ofA that is not accessible.
Since L(A) has parity index at most [0, 1], the trees of the ACD ofA have height at most 2, and
trees of height 2 are positive (the root is a round node), by Proposition 6.13. AsA is a Rabin
automaton, its ACD has Rabin shape (Proposition 6.9), so round nodes have at most one child.
We conclude that the trees of the ACD ofA have a single branch, so it is a [0, 1]-parity ACD, and
by Proposition 6.11,A is Büchi type. ■

6.2 A normal form for parity transition systems

In this section, we propose a definition of a normal form of parity automata. This is exactly the
form of automata resulting by applying the procedure defined by Carton and Maceiras [19],
or, equivalently, of automata resulting from the ACD-parity-transform (Corollary 6.24). These
automata satisfy that they are parity-index-tight, that is, their acceptance condition uses the
minimal possible number of colours. But they offer some further convenient properties, stated
in Propositions 6.25 and 6.27, which make them particularly well-suited for reasoning about
deterministic parity automata.

This normal form, or partial versions of it, have already been used in the literature to
prove results about parity automata in different contexts, such as history-deterministic coBüchi
automata [1, 35, 57], positionality of languages defined by deterministic Büchi automata [15]
or learning of DPAs [6]. The normalisation of transition systems also facilitates solving parity

84 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

games in practice [41]. However, the application of this normal form in the literature is limited
to specific cases, and no prior works have provided a formal and systematic study of it.

From our results we obtain three equivalent ways of defining the normal form of a parity
transition system TS. Informally, they can be stated as:

1. TS use the smallest possible colour in each of its transitions (Definition 6.20).
2. TS = ACDparity(TS) (Corollary 6.24).
3. Paths in TS producing colour 𝑑 > 0 can be closed into a cycle producing 𝑑′ as minimal

colour, for all 𝑑′ ≤ 𝑑 (Theorem 6.28).

REMARK 6.19. If Acc = (𝛾, [𝑑min, 𝑑max],parity) is a parity acceptance condition over a pointed
graph 𝐺 , we can always assume that 𝑑min is 0 or 1. Indeed, define 𝜒 = 𝑑min if 𝑑min is even, and
𝜒 = 𝑑min − 1 if 𝑑min is odd. The parity acceptance condition (𝛾′, [𝑑min − 𝜒, 𝑑max − 𝜒],parity)
defined as 𝛾′(𝑒) = 𝛾(𝑒) − 𝜒 is equivalent to Acc over 𝐺 .

Definition of the normal form. Just as in the definition of the ACD-parity-transform we had
to define positive and negative ACDs to obtain an accurate optimality result in the number of
colours, we need now to take care of a small technical detail so that TS in normal form are
parity-index-tight.

We say that a transition system TS is negative ifACDTS is negative, that is, if for some 𝑑
TS contains a negative 𝑑-flower but contains no positive 𝑑-flower. Intuitively, a parity TS is
negative if and only if the minimal colour used by a parity acceptance condition using an
optimal number of colours is 1.

DEF IN IT ION 6.20 (Normal form). Let TS = (𝐺TS ,AccTS) be a parity transition system using
a colouring function 𝛾. If TS is not negative, we say that TS is in normal form if any other parity
acceptance condition equivalent to AccTS over 𝐺TS using a colouring function 𝛾′ satisfies that
for every edge 𝑒:

𝛾(𝑒) ≤ 𝛾′(𝑒).

If TS is negative, we say that it is in normal form if any other equivalent colouring 𝛾′ not
using colour 0 satisfies that for any edge 𝑒:

1 ≤ 𝛾(𝑒) ≤ 𝛾′(𝑒).

If TS is in normal form, we will also say that its acceptance condition or the colouring function
it uses are in normal form.

EXAMPLE 6.21. Parity transition systems from Figures 3, 10, 17 and 18 are all in normal form.
Parity automata appearing in Figures 10 and 17 are negative (the minimal colour used by an
optimal acceptance condition is odd), whereas parity automata in Figure 18 are not.

85 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

On the other hand, the automaton from Figure 1 is not in normal form (even if it uses an
optimal number of colours). We can put it in normal form by assigning colour 1 to transitions
𝑞1

𝑎,𝑏−−→ 𝑞0 and 𝑞1
𝑏,𝑐−−→ 𝑞2. The automaton obtained in this way recognises the same language. ■

PROPOS IT ION 6.22. Let TS = (𝐺TS ,AccTS) be a parity transition system with a colouring
function 𝛾. There is a unique parity acceptance condition equivalent to AccTS over 𝐺TS in normal
form. Moreover, this acceptance condition is exactly the parity condition of the ACD-parity-
transform of TS.

Before showing the proof of Proposition 6.22, we prove a useful technical lemma.

LEMMA 6.23. Let TS be a parity transition system with colouring function 𝛾. If ℓ1 ⊋ ℓ2 ⊋ · · · ⊋
ℓ𝑘 is a positive (resp. negative) 𝑘-flower of TS, then min 𝛾(ℓ𝑘) ≥ 𝑘 − 1 (resp. min 𝛾(ℓ𝑘) ≥ 𝑘).

PROOF . We show the result for negative flowers. Let 𝑑𝑖 = min 𝛾(ℓ𝑖). We show that 𝑑𝑖 ≥ 𝑖 by
induction. Since ℓ𝑖 is an accepting cycle if and only if 𝑖 is even, we have that 𝑑𝑖 is even if and
only if 𝑖 is even. Clearly, 𝑑1 ≥ 1, as 1 is the least odd number. Also, 𝑑𝑖+1 ≥ 𝑑𝑖 , since ℓ𝑖+1 ⊆ ℓ𝑖 , and
the inequality is strict by the alternation of the parity, concluding the proof. ■

PROOF OF PROPOS IT ION 6.22 . We first remark that the uniqueness is directly implied by
the definition of normal form.

We prove that the acceptance condition of the ACD-parity-transform is in normal form. We
note its colouring function by 𝛾ACD . The transitions not belonging to any SCC are coloured 0 if
TS is not negative and 1 if TS is negative, as desired. It suffices to prove the result for edges in
SCCs.

We assume that TS is not negative and we let S be an accepting SCC of TS (the proof
is similar for TS negative and a rejecting SCC). Let 𝑒 = 𝑣 −→ 𝑣′ be an edge in S, and let T𝑣
be the local subtree at 𝑣, which is composed of a single branch (see Proposition 6.11). We let
𝑛0 ⪯ 𝑛1 ⪯ . . . ⪯ 𝑛𝑟 be that branch, where 𝑛0 is the root and 𝑛𝑟 the leaf. Let 𝑛𝑘 be the deepest node
of T𝑣 such that 𝑒 ∈ 𝜈(𝑛𝑘). By definition of the ACD-parity-transform, 𝛾ACD (𝑒) = 𝑝ACD (𝑒) = 𝑘.
Also, 𝜈(𝑛0) ⪯ 𝜈(𝑛1) ⪯ . . . ⪯ 𝜈(𝑛𝑘) is a positive 𝑘 + 1-flower (by Lemma 5.42). Lemma 6.23
implies then that any equivalent parity condition using a colouring function 𝛾′ verifies 𝛾′(𝑒) ≥
𝛾ACD (𝑒) = 𝑘. ■

COROLLARY 6.24. The ACD-parity-transform ACDparity(TS) of any Muller transition system
TS is in normal form.

Fundamental properties of the normal form. We now state what we consider to be the two
fundamental properties of parity transition systems in normal form. Theorem 6.28 states that
these properties characterise the normal form.

86 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROPOS IT ION 6.25. Let TS be a parity transition system in normal form. If there is a path
𝑣 𝑣′ producing 𝑑 as minimal colour, then, either:

𝑣 and 𝑣′ are in different SCCs (and in this case 𝑑 ∈ {0, 1}), or
there is a path 𝑣′ 𝑣 producing no colour strictly smaller than 𝑑.

PROOF . By Proposition 6.22, we know that the colouring of TS is the one given by its ACD-
transform, that we note 𝛾ACD . If 𝑣 and 𝑣′ are in different SCCs the result is trivial. Let 𝑣 and
𝑣′ be in the same SCC, that we suppose to be an accepting SCC without loss of generality. Let
𝜌 = 𝑣

𝑒1−→ . . .
𝑒𝑘−→ 𝑣′ be a path from 𝑣 to 𝑣′ producing min 𝛾ACD (𝜌) = 𝑑 as minimal colour. We

remark that, as ACDTS is a parity ACD, each edge 𝑒 appears in one and only one branch of
ACDTS , and that 𝛾ACD (𝑒) equals the depth of the deepest node containing 𝑒. In particular, if
𝑒 ∈ 𝜈(𝑛) for some node 𝑒, 𝛾ACD (𝑒) ≥ Depth(𝑛). Our objective is to show that a similar result
holds for the path 𝜌 as a set of edges:

CLAIM 6.26. Let 𝑁𝜌 be the set of nodes ofACDTS containing the edges of the path 𝜌 in their
label, that is, 𝑁𝜌 = {𝑛 ∈ Nodes(ACDTS) | {𝑒1, . . . , 𝑒𝑘} ⊆ 𝜈(𝑛)}. Then, min(𝛾ACD (𝜌)) equals the
depth of a node of maximal depth of 𝑁𝜌.14

This claim allows us to conclude. Indeed, let 𝑛 be a node of maximal depth of 𝑁𝜌, verifying
Depth(𝑛) = 𝑑. Then, 𝜈(𝑛) is a cycle containing the vertices 𝑣 and 𝑣′, and for all the edges 𝑒 ∈ 𝜈(𝑛),
𝛾ACD (𝑒) ≥ Depth(𝑛) = 𝑑. This provides the desired path from 𝑣′ to 𝑣.

Proof of Claim 6.26. First, we remark that if ℓ1, ℓ2, . . . , ℓ𝑘 are cycles such that ℓ𝑖 and ℓ𝑖+1 have
some state in common, then ∪𝑘

𝑖=1ℓ𝑖 is a cycle. Let 𝑛 be a node of maximal depth in 𝑁𝜌. By the
previous remarks, 𝛾ACD (𝑒) ≥ Depth(𝑛). Suppose by contradiction that 𝛾ACD (𝜌) > Depth(𝑛).
Then, each edge 𝑒𝑖 of 𝜌 would appear in some strict descendant 𝑛𝑖 of 𝑛 (we can assume that 𝑛𝑖
is a child of 𝑛). Then, 𝜈(𝑛1), . . . , 𝜈(𝑛𝑘) would be cycles such that 𝜈(𝑛𝑖) and 𝜈(𝑛𝑖+1) have some
state in common (namely, Target(𝑒𝑖) = Source(𝑒𝑖+1)), so their union is a cycle. However, this is
not possible in a parity transition system, as 𝜈(𝑛) is accepting if and only if each of the 𝜈(𝑛𝑖) is
rejecting (see Lemma 4.21). ■

This completes the proof of Proposition 6.25. ■

PROPOS IT ION 6.27 (Normal flowers do not lack petals). Let 𝑣 be a state of a parity transition
system in normal form belonging to an accepting (resp. rejecting) SCC. Let ℓ ∈ Cycles𝑣(TS) be a
cycle over 𝑣 and let 𝑑ℓ be the minimal colour appearing in it.

If TS is not negative, for each 𝑥 ∈ [0, 𝑑ℓ] (resp. 𝑥 ∈ [1, 𝑑ℓ]) there is a cycle ℓ𝑥 ∈ Cycles𝑣(TS)
producing 𝑥 as minimal colour.

14 In fact, the nodes of 𝑁𝜌 are totally ordered by the ancestor relation, so there is a unique node of maximal depth in 𝑁𝜌.
This fact is not used in our proof.

87 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

If TS is negative, for each 𝑥 ∈ [2, 𝑑ℓ] (resp. 𝑥 ∈ [1, 𝑑ℓ]) there is a cycle ℓ𝑥 ∈ Cycles𝑣(TS)
producing 𝑥 as minimal colour.

PROOF . We do the proof for the case in which TS is not negative and 𝑣 belongs to an accepting
SCC. By Proposition 6.22, the colouring of TS is the one given by its ACD-transform, noted
𝛾ACD . Consider the local subtree at 𝑣, T𝑣, consisting in a single branch, as it has parity shape
(Proposition 6.11). Let 𝑛0 ⪯ . . . ⪯ 𝑛𝑘 be that branch, and let 𝑛𝑖 be the deepest node such that
ℓ ⊆ 𝜈(𝑛𝑖). We remark that, by definition of 𝛾ACD , 𝑑ℓ = Depth(𝑛𝑖) = 𝑖. The desired cycles are
obtained by taking ℓ𝑥 = 𝜈(𝑛𝑥), for 𝑥 ∈ [0, 𝑑ℓ]. ■

The next theorem states a simple characterisation of transition systems in normal form.
It provides a useful tool to show normality of parity TS in many proofs. In essence, it shows
that the two previous propositions characterise the normal form. We state it for non-negative
transition systems for simplicity; a similar characterisation for negative transition systems is
immediate.

We say that an SCC of a parity TS is positive if the minimal colour appearing on it is even,
and that it is negative if this minimal colour is odd.

THEOREM 6.28. A non-negative parity transition system is in normal form if and only if:
transitions changing of SCCs are coloured 0, and
if 𝑣 and 𝑣′ belong to a same positive (resp. negative) SCC and there is a transition 𝑣

𝑑−→ 𝑣′

producing colour 𝑑 > 0 (resp. 𝑑 > 1), then there are two paths 𝑣′ 𝑣 producing as minimal
colour 𝑑 and 𝑑 − 1, respectively.

PROOF . The fact that a TS in normal form satisfies these properties follows from the previous
propositions.

Let TS be a TS satisfying these properties and using 𝛾 as colouring function. Let 𝑒 =

𝑣
𝑑−→ 𝑣′ be an edge with 𝛾(𝑒) = 𝑑. We will show that for any other equivalent colouring 𝛾′,

we have 𝛾′(𝑒) ≥ 𝑑. This is trivial if 𝑑 = 0. If 𝑑 > 0, 𝑣 and 𝑣′ must be in the same SCC, that
we assume positive without loss of generality. By hypothesis, we can close cycles ℓ𝑑 and ℓ𝑑−1

over 𝑣 producing 𝑑 and 𝑑 − 1 as minimal colour, respectively. Cycle ℓ𝑑−1 can be decomposed
in 𝑣 −→ 𝑣′ 𝑣1

𝑑−1−−−→ 𝑣′1 𝑣. Applying the hypothesis over the edge 𝑣1
𝑑−1−−−→ 𝑣′1 gives a path

𝑣′1 𝑣1 producing 𝑑 − 2 as minimal colour, which can be merged with ℓ𝑑−1 to produce a
cycle ℓ𝑑−2 over 𝑣 producing 𝑑 − 2 as minimal colour. Iterating this process, we can find cycles
ℓ0 ⊇ ℓ1 ⊇ . . . , ⊇ ℓ𝑑 over 𝑣 such that ℓ𝑖 produces 𝑖 as minimal colour. Taking ℓ′

𝑖
= ∪𝑑

𝑗=𝑖
ℓ𝑖 , we obtain

a positive (𝑑 + 1)-flower ℓ′0 ⊋ ℓ
′
1 ⊋ · · · ⊋ ℓ′𝑑 , so by Lemma 6.23 we conclude that 𝛾′(𝑒) ≥ 𝑑. ■

Parity index from automata in normal form. The next definition constitutes a syntactic
version of the parity index, defined at the level of parity transition systems. The following

88 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

results establish the tight relation between the semantic notion of parity index and its syntactic
counterpart, and state that the parity index of a language can be directly read from a DPA in
normal form.

DEF IN IT ION 6.29. We say that a parity transition system TS = (𝐺TS ,AccTS) is parity-index-
tight if any other parity condition Acc′ over 𝐺TS such that Acc′ ≃𝐺TS AccTS uses at least as many
colours as AccTS .

We have shown in Corollary 6.24 that the ACD-parity-transform is always in normal form.
Therefore, the optimality properties of the colouring of ACDparity(TS) (Theorem 5.34) transfer
to parity transition systems in normal form.

COROLLARY 6.30. A parity transition system in normal form is parity-index-tight.

Moreover, the parity index of an 𝜔-regular language can be read from any DPA in normal
form recognising it.

COROLLARY 6.31. LetA be a deterministic parity automaton in normal form such that all its
states are accessible. IfA uses colours in [0, 𝑑 − 1] (resp. [1, 𝑑]), then the parity index of L(A) is
Weak𝑑−1 or [0, 𝑑 − 1] (resp.Weak𝑑−1 or [1, 𝑑]).

We prove this result in Appendix A (Corollary A.15), and we provide there a refined
characterisation by using generalised weak automata.

6.3 Minimisation of deterministic parity automata recognising Muller languages

The minimisation of 𝜔-automata is a fundamental problem of an intriguing complexity. In
2010, Schewe showed that the minimisation of deterministic Büchi and parity automata is
NP-complete, if the acceptance condition is defined over the states [86]. However, the reduction
of NP-hardness does not generalise to automata with edge-based acceptance. A surprising posi-
tive result was obtained in 2019 by Abu Radi and Kupferman: we can minimise in polynomial
time HD coBüchi automata using transition-based acceptance [1]. Schewe showed that the
minimisation was again NP-hard for HD automata with state-based acceptance [87]. To the
best of our knowledge, the only existing hardness result applying to transition-based automata
is Casares’ result about the NP-completeness of the minimisation of deterministic Rabin au-
tomata [21]. In fact, in [21] a stronger result is proven: it is NP-hard to minimise deterministic
Rabin automata recognising Muller languages.

In this section, we provide a polynomial-time algorithm for the minimisation of DPA
recognising Muller languages (with acceptance condition over transitions). By Proposition 4.10
and Theorem 4.15, we know that a minimal (history-)deterministic parity automaton recognising
a Muller language 𝐿 = MullerΣ(F) can be constructed in linear time from the Zielonka treeZF .

89 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We will therefore provide a polynomial-time algorithm computing this Zielonka tree from a
DPA recognising 𝐿.

THEOREM 6.32. LetA be a DPA recognising a Muller language 𝐿 = MullerΣ(F). We can find a
minimal deterministic (resp. history-deterministic) parity automaton recognising 𝐿 in polynomial
time in the size of the representation ofA.15

Description of the algorithm. Let A = (𝑄, Σ, 𝑞0, Γ, Δ,parity) be a DPA recognising 𝐿 =

MullerΣ(F). We outline a recursive algorithm buildingZF = (𝑁, ⪯, 𝜈) in a top-down fashion;
it starts from the root of the tree (which is always labelled Σ), and each time that some node
is added to 𝑁 , we compute its children. If we have builtZF up to a node 𝑛, we compute the
children of 𝑛 by using the procedure AlternatingSets described in Algorithm 1, which we
disclose next.

We assume without loss of generality that 𝑛 is round, that is, 𝜈(𝑛) ∈ F . First, we take the
restriction ofA to transitions labelled with letters in 𝜈(𝑛) and pick a final SCC on it. Such final
SCC induces a subautomaton A′ of A recognising Muller𝜈(𝑛) (F |𝜈(𝑛)) (see also Lemma 4.20).
Our objective is to find the maximal subautomata of A′ using as input letters sets 𝑋 ⊆ 𝜈(𝑛)
such that 𝑋 ∉ F . We will keep all such subsets 𝑋 in a list altSets. The labels of the children of
𝑛 will then correspond to the maximal sets appearing in this list, which are returned by the
algorithm AlternatingSets (Line 11). In order to find them, we remove the transitions using
the minimal colour inA′ (that is even, since 𝜈(𝑛) ∈ F) and compute a decomposition in strongly
connected components of the obtained graph. Let S be a component of this decomposition and
let ΣS ⊆ 𝜈(𝑛) be the input letters appearing in it. Then, ΣS ∉ F if and only if the minimal output
colour in S is odd (see Lemma 6.33 below). In this case, we add ΣS to altSets. On the contrary,
we remove the minimal (even) colour from S, and we start again finding a decomposition in
SCCs of the obtained graph.

We include the pseudocode for the procedure AlternatingSets in Algorithm 1. We use
the following notations:

Letters(S) is the set of input letters appearing in S,
MinColour(S) is the minimal output colour appearing in S (which determines whether
Letters(S) ∈ F , if S is strongly connected),
SCC-Decomposition(A) outputs a list of the strongly connected components ofA. IfA is
empty, it outputs an empty list.
MaxInclusion(lst) returns the list of the maximal subsets in lst.

15 We can assume that the representation of A has size polynomial in |𝑄| + |Σ|, where 𝑄 and Σ are the set of states and
the input alphabet of A. Indeed, as A is deterministic the number of transitions is at most |𝑄| · |Σ|, and we can assume
that A has no more output colours than transitions.

90 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Input: A strongly connected automaton A over Σ; L(A) = Muller(F)
Output: Maximal subsets Σ1, . . . , Σ𝑘 ⊆ Σ such that Σ𝑖 ∈ F ⇐⇒ Σ ∉ F

1: 𝑑← MinColour(A)
2: A>𝑑← restriction of A to transitions Δ>𝑑 = {𝑞

𝑎:𝑥−−→ 𝑞′ ∈ Δ | 𝑥 > 𝑑}
3: ⟨S1, . . . ,S𝑟⟩ ← SCC-Decomposition(A>𝑑)
4: altSets← {}
5: for 𝑖 = 1, . . . , 𝑟 do
6: if MinColour(S𝑖) is odd if and only if 𝑑 is even then
7: altSets← altSets ∪ {Letters(S𝑖)}
8: else
9: altSets← altSets ∪ AlternatingSets(S𝑖)

10: maxAltSets← MaxInclusion(altSets)
11: return maxAltSets

Algorithm 1. AlternatingSets(A): Computing the children of a node.

Correctness of the algorithm. Let 𝑛 be a node of the Zielonka tree ofF labelled with 𝜈(𝑛), and
letA𝑛 be an accessible subautomaton ofA over 𝜈(𝑛) recognising Muller𝜈(𝑛) (F |𝜈(𝑛)). We prove
that AlternatingSets(A𝑛) returns a list of sets corresponding to the labels of the children of 𝑛
inZF . We assume without loss of generality that 𝜈(𝑛) ∈ F and therefore the minimal colour 𝑑
inA𝑛 is even.

First, we observe that if 𝑋 ⊆ Σ is added to altSets during the execution of the procedure
AlternatingSets, then 𝑋 is the set of input letters appearing in a cycle whose minimal colour
is odd. Next lemma implies that in this case, 𝑋 ∉ F . In particular, no subset is added if 𝑛 is a
leaf ofZF .

LEMMA 6.33. LetA be a DPA such thatL(A) = MullerΣ(F). Let ℓ ∈ Cycles (A) be an accessible
cycle ofA. Let Σℓ ⊆ Σ be the input letters appearing in ℓ, and let 𝑑ℓ be the minimal colour on ℓ.
Then, Σℓ ∈ F if and only if 𝑑ℓ is even.

PROOF . Since ℓ is an accessible cycle, there is a word 𝑤 ∈ Σ𝜔 such that Inf(𝑤) = Σℓ and
verifying that the edges visited infinitely infinitely often by the (only) run over 𝑤 inA are the
edges of ℓ. Therefore 𝑤 ∈ L(A) if and only if 𝑑ℓ is even, and since L(A) is a Muller language,
𝑤 ∈ L(A) if and only if Inf(𝑤) = Σℓ ∈ F . ■

91 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

As the final output of the algorithm consists solely on the maximal subsets in altSets, and
no accepting set is added to this list, it suffices to show that each maximal rejecting subset
Σmax ⊆ 𝜈(𝑛) is added to altSets at some point.

Let Σmax ⊆ 𝜈(𝑛) be one of the maximal rejecting subsets of 𝜈(𝑛). Let S be a final SCC
of the restriction of A𝑛 to transitions labelled with letters in Σmax (by the previous lemma,
MinColour(S) is odd). We show that Σmax will eventually be considered by the recursive
procedure AlternatingSets, and therefore Σmax will be added to altSets We use of the following
remark:

CLAIM 6.34. If S′ is a strongly connected subautomaton ofA𝑛 such that S ⊊ S′ ⊆ A𝑛, then
the minimal colour in S′ is even.

Proof. Let Σ′ be the input letters appearing in S′. As S ⊊ S′ and no transition labelled with a
letter in Σmax leaves S, we must have Σmax ⊊ Σ′. The claim follows from Lemma 6.33. ■

Therefore, eitherS is one of the SCCs ofA>𝑑 (in this case, Σmax is added to altSets in Line 7),
or it is contained in one SCC of A>𝑑 whose minimal colour is even, and we can conclude by
induction.

Complexity analysis. We will show that the proposed algorithm works in time O(|𝑄|3 |Σ|2 |Γ|),
where 𝑄, Σ and Γ are the states, set of input letters and set of output colours of the automaton,
respectively. We remark that, sinceA is deterministic, |Δ| ≤ |𝑄| |Σ|.

First, we study the complexity of the procedure AlternatingSets(A). At each recursive
call, at least one edge is removed from Δ, and a decomposition in strongly connected components
of the automaton is performed, which can be done in O(|𝑄| |Σ|) [91]. Therefore, the children of
a node of the Zielonka tree can be computed in O(|𝑄|2 |Σ|2).

We perform this operation for each node of the Zielonka tree. By the optimality of the
ZT-parity-automaton (Theorems 4.14 and 4.15), we know that |𝑄| ≥ |Leaves(ZF) | and that the
height ofZF is at most |Γ|. Therefore, |ZF | ≤ |𝑄| |Γ|, and the procedure AlternatingSets is
called at most |𝑄| |Γ| times. We conclude that the proposed algorithm works in timeO(|𝑄|3 |Σ|2 |Γ|).

REMARK 6.35 (State-based automata). The acceptance condition of the parity automaton
obtained from the Zielonka tree appears naturally over the transitions of the automaton. In
order to make it a state-based automaton, we would need to add one state per colour it uses.
It turns out that, in this specific case, this is optimal, and the state-based parity automaton
we obtain is minimal. Therefore, we can also minimise in polynomial time state-based parity
automata recognising Muller languages. However, it is no longer possible to obtain optimal
transformations towards state-based parity automata based on the ACD (see [25, Section 5.3]
and [22, Section I.8] for further details).

92 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

7. Conclusion

In this work, we have carried out an extensive study of transformations of automata and
games that use Muller acceptance conditions. We have proposed different types of morphisms
to formalise the idea of valid transformations of transition systems, which distil the central
features of existing transformations. Our main contribution resides in the introduction of a
new structure, the alternating cycle decomposition, which is a succinct representation of the
alternating chains of loops of a Muller automaton – in the sense of Wagner [93] – and provides
the necessary information to understand the interplay between its acceptance condition and its
underlying graph.

Optimal and practical transformations of automata. We have presented a transformation
that, given a deterministic Muller automaton, provides an equivalent deterministic parity
automaton, and another that provides an equivalent history-deterministic Rabin automaton.
These transformations are optimal in a strong sense; the obtained automata have a minimal
number of states amongst those which accept a history-deterministic mapping to the original
Muller automaton. The first of these transformations has been implemented in the open-source
tools Spot 2.10 [2] and Owl 21.0 [52], and it has been shown to perform extremely well in
practice [25], as the natural definition of the ACD provides a fairly efficient way to compute the
transformation, while its optimality guarantees to produce automata as small as possible.

Understanding the limitations of history-deterministic automata. As a corollary of our
results, we have obtained that minimal deterministic and history-deterministic parity automata
recognising Muller languages have the same size (Corollary 4.16). Moreover, we have shown that
HD parity automata that are strictly smaller than equivalent deterministic ones cannot come
from a deterministic Muller automaton (Corollary 5.39). This provides a partial explanation
on the difficulty to find succinct HD parity automata, as we could argue that a simple way
to conceptualise 𝜔-regular languages is through deterministic Muller automata. Maybe most
importantly, this sets a limitation in the usefulness of history-determinism in practice, as
procedures that use a DMA as an intermediate step – as the ones from the tools Strix [65] and
ltlsynt [70], or automata determinisation [78, 88, 64] – cannot benefit from the succinctness
of HD automata.

On the other hand, we have shown that, if our objective is to obtain Rabin automata as
output, the ACD-HD-Rabin-transform allows us to benefit from succinct HD automata. In this
case, it has been shown that these automata can be exponentially smaller than equivalent
deterministic ones [24, Theorem 21].

Disclosing the structure of 𝜔-automata. As an application of the insights gained from the
alternating cycle decomposition, we have derived results concerning typeness of automata. In

93 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

particular, we have characterised when we can define a parity, Rabin or Streett condition on
top of a Muller automaton, obtaining an equivalent automaton (Propositions 6.9, 6.10 and 6.11).
These characterisations have already been proven instrumental in works about the memory
for games [21], and to obtain lower bounds on the size of deterministic Rabin automata [24].

We have also employed the ACD to present a normal form for parity transition systems
and systematically proved the most important properties that make this form a valuable tool
for manipulating parity automata. We believe that this normal form will be useful to extend
existing results about Büchi and coBüchi automata (as the ones in [1, 10, 15]) to parity automata.

References
[1] Bader Abu Radi and Orna Kupferman. Minimization

and canonization of GFG transition-based
automata. Logical Methods in Computer Science,
18(3), 2022. DOI (4, 6, 7, 70, 83, 88, 93)

[2] Alexandre Duret-Lutz, Etienne Renault,
Maximilien Colange, Florian Renkin,
Alexandre Gbaguidi Aisse,
Philipp Schlehuber-Caissier, Thomas Medioni,
Antoine Martin, Jérôme Dubois, Clément Gillard,
and Henrich Lauko. From Spot 2.0 to Spot 2.10:
what’s new? International Conference on
Computer-Aided Verification, CAV, volume 13372 of
Lecture Notes in Computer Science, pages 174–187,
2022. DOI (7, 92)

[3] André Arnold, Jacques Duparc, Filip Murlak, and
Damian Niwiński. On the topological complexity of
tree languages. Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 9–28,
2008. (3)

[4] Tomáš Babiak, František Blahoudek,
Alexandre Duret-Lutz, Joachim Klein,
Jan Křetínský, David Müller, David Parker, and
Jan Strejček. The Hanoi omega-automata format.
International Conference on Computer-Aided
Verification, CAV, pages 479–486, 2015. DOI
(107)

[5] Roderick Bloem, Krishnendu Chatterjee, and
Barbara Jobstmann. Graph games and reactive
synthesis. Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 921–962. Springer International
Publishing, 2018. DOI (2)

[6] León Bohn and Christof Löding. Constructing
deterministic parity automata from positive and
negative examples. CoRR, abs/2302.11043, 2023.
DOI (6, 83)

[7] Bernard Boigelot, Sébastien Jodogne, and
Pierre Wolper. On the use of weak automata for
deciding linear arithmetic with integer and real
variables. International Joint Conference on
Automated Reasoning, IJCAR, pages 611–625, 2001.
DOI (6, 101)

[8] Udi Boker. Why these automata types? Logic for
Programming, Artificial Intelligence and Reasoning,
LPAR, volume 57 of EPiC Series in Computing,
pages 143–163, 2018. DOI (16)

[9] Udi Boker, Denis Kuperberg, Orna Kupferman, and
Michał Skrzypczak. Nondeterminism in the
presence of a diverse or unknown future.
International Colloquium on Automata, Languages
and Programming, ICALP, pages 89–100, 2013. DOI
(10, 42)

[10] Udi Boker, Orna Kupferman, and
Michal Skrzypczak. How deterministic are
good-for-games automata? Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, volume 93,
18:1–18:14, 2017. DOI (77, 82, 93)

[11] Udi Boker, Orna Kupferman, and Avital Steinitz.
Parityizing Rabin and Streett. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, volume 8
of LIPIcs, pages 412–423, 2010. DOI (6, 77, 83)

[12] Udi Boker and Karoliina Lehtinen. Good for Games
Automata: From Nondeterminism to Alternation.
International Conference on Concurrency Theory,
CONCUR, volume 140, 19:1–19:16, 2019. DOI (19,
52)

[13] Udi Boker and Karoliina Lehtinen. History
determinism vs. good for gameness in quantitative
automata. Conference on Foundations of Software
Technology and Theoretical Computer Science,
FSTTCS, volume 213, 38:1–38:20, 2021. DOI (14)

[14] Udi Boker and Karoliina Lehtinen. When a little
nondeterminism goes a long way: an introduction
to history-determinism. ACM SIGLOG News,
10(1):24–51, 2023. DOI (4, 10)

[15] Patricia Bouyer, Antonio Casares,
Mickael Randour, and Pierre Vandenhove.
Half-positional objectives recognized by
deterministic Büchi automata. International
Conference on Concurrency Theory, CONCUR,
volume 243, 20:1–20:18, 2022. DOI (6, 7, 83, 93)

https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.48550/arXiv.2302.11043
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.29007/c3bj
https://doi.org/10.1007/978-3-642-39212-2_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.412
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20

94 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

[16] Julian C. Bradfield. Simplifying the modal
mu-calculus alternation hierarchy. Symposium on
Theoretical Aspects of Computer Science, STACS,
pages 39–49, 1998. DOI (3)

[17] J. Richard Büchi. On a decision method in
restricted second order arithmetic. Proceedings of
the International Congress on Logic, Methodology
and Philosophy of Science:1–11, 1960. (17)

[18] Cristian S. Calude, Sanjay Jain,
Bakhadyr Khoussainov,Wei Li, and Frank Stephan.
Deciding parity games in quasipolynomial time.
Symposium on Theory of Computing, STOC,
pages 252–263. ACM, 2017. DOI (3)

[19] Olivier Carton and Ramón Maceiras. Computing
the Rabin index of a parity automaton. Theoretical
Informatics and Applications, RAIRO:495–506, 1999.
DOI (6, 18, 64, 82, 83)

[20] Olivier Carton and Max Michel. Unambiguous
Büchi automata. Theoretical Computer Science,
297(1):37–81, 2003. DOI (32)

[21] Antonio Casares. On the minimisation of
transition-based Rabin automata and the chromatic
memory requirements of Muller conditions.
Computer Science Logic, CSL, volume 216,
12:1–12:17, 2022. DOI (3, 7, 34, 88, 93)

[22] Antonio Casares. Structural properties of automata
over infinite words and memory for games
(Propriétés structurelles des automates sur les
mots infinis et mémoire pour les jeux). PhD Thesis,
Université de Bordeaux, France, 2023. URL (91)

[23] Antonio Casares, Thomas Colcombet, and
Nathanaël Fijalkow. Optimal transformations of
games and automata using Muller conditions.
International Colloquium on Automata, Languages
and Programming, ICALP, volume 198, 123:1–123:14,
2021. DOI (1, 7, 71)

[24] Antonio Casares, Thomas Colcombet, and
Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in
Muller games. International Colloquium on
Automata, Languages and Programming, ICALP,
volume 229, 117:1–117:20, 2022. DOI (1, 3, 7, 34,
70, 92, 93)

[25] Antonio Casares, Alexandre Duret-Lutz,
Klara J. Meyer, Florian Renkin, and
Salomon Sickert. Practical applications of the
Alternating Cycle Decomposition. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
volume 13244 of Lecture Notes in Computer
Science, pages 99–117, 2022. DOI (7, 91, 92)

[26] Antonio Casares and Corto Mascle. The
complexity of simplifying 𝜔-automata through the
alternating cycle decomposition. CoRR,
abs/2401.03811, 2024. DOI (61)

[27] Thomas Colcombet. Forms of Determinism for
Automata (Invited Talk). Symposium on Theoretical
Aspects of Computer Science, STACS, volume 14,
pages 1–23, 2012. DOI (4, 22)

[28] Thomas Colcombet. The theory of stabilisation
monoids and regular cost functions. International
Colloquium on Automata, Languages and
Programming, ICALP, pages 139–150, 2009. DOI
(4, 14)

[29] Thomas Colcombet. Unambiguity in automata
theory. International Conference on Descriptional
Complexity of Formal Systems, DFCS, volume 9118
of Lecture Notes in Computer Science, pages 3–18,
2015. DOI (32)

[30] Thomas Colcombet and Christof Löding. The
non-deterministic Mostowski hierarchy and
distance-parity automata. International Colloquium
on Automata, Languages and Programming, ICALP,
volume 5126, pages 398–409, 2008. DOI (3)

[31] Thomas Colcombet and Damian Niwiński. On the
positional determinacy of edge-labeled games.
Theoretical Computer Science, 352(1-3):190–196,
2006. DOI (3, 7)

[32] Thomas Colcombet and Konrad Zdanowski. A tight
lower bound for determinization of transition
labeled Büchi automata. International Colloquium
on Automata, Languages and Programming, ICALP,
pages 151–162, 2009. DOI (7)

[33] Antonio Di Stasio, Aniello Murano,
Vincenzo Prignano, and Loredana Sorrentino.
Improving parity games in practice. Annals of
Mathematics and Artificial Intelligence, 2021. DOI
(2)

[34] Stefan Dziembowski, Marcin Jurdziński, and
Igor Walukiewicz. How much memory is needed to
win infinite games? Symposium on Logic in
Computer Science, LICS, pages 99–110, 1997. DOI
(4, 5, 34, 44, 48, 52, 56)

[35] Rüdiger Ehlers and Sven Schewe. Natural colors of
infinite words. Conference on Foundations of
Software Technology and Theoretical Computer
Science, FSTTCS, volume 250, 36:1–36:17, 2022.
DOI (6, 7, 83)

[36] E. Allen Emerson and Charanjit S. Jutla. The
complexity of tree automata and logics of
programs. SIAM Journal of Computing,
29(1):132–158, 1999. DOI (3)

[37] E. Allen Emerson and Charanjit S. Jutla. Tree
automata, mu-calculus and determinacy (extended
abstract). Symposium on Foundations of Computer
Science, FOCS, pages 368–377, 1991. DOI (3)

[38] E. Allen Emerson, Charanjit S. Jutla, and
A. Prasad Sistla. On model-checking for fragments
of 𝜇-calculus. International Conference on
Computer-Aided Verification, CAV, volume 697 of
Lecture Notes in Computer Science,
pages 385–396, 1993. DOI (3)

[39] Javier Esparza, Jan Křetínský,
Jean-François Raskin, and Salomon Sickert. From
LTL and limit-deterministic Büchi automata to
deterministic parity automata. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
pages 426–442, 2017. DOI (2)

[40] Seth Fogarty, Orna Kupferman, Moshe Y. Vardi,
and Thomas Wilke. Profile trees for Büchi word
automata, with application to determinization.
Information and Computation, 245:136–151, 2015.
DOI (3)

https://doi.org/10.1007/BFB0028547
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1051/ita:1999129
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://theses.hal.science/tel-04314678
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.48550/ARXIV.2401.03811
https://doi.org/10.4230/LIPIcs.STACS.2012.1
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/s10472-020-09721-3
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1016/j.ic.2014.12.021

95 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

[41] Oliver Friedmann and Martin Lange. Solving parity
games in practice. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, pages 182–196, 2009. DOI (2, 6, 84)

[42] Dimitra Giannakopoulou and Flavio Lerda. From
states to transitions: improving translation of LTL
formulae to Büchi automata. International
Conference on Formal Techniques for Distributed
Objects, Components, and Systems, FORTE,
pages 308–326, 2002. DOI (7)

[43] Yuri Gurevich and Leo Harrington. Trees, automata,
and games. Symposium on Theory of Computing,
STOC, pages 60–65, 1982. DOI (3)

[44] Thomas A. Henzinger and Nir Piterman. Solving
games without determinization. Computer Science
Logic, CSL, pages 395–410, 2006. DOI (4, 10, 14,
44, 45, 70)

[45] Florian Horn. Explicit Muller games are PTIME.
Conference on Foundations of Software
Technology and Theoretical Computer Science,
FSTTCS, pages 235–243, 2008. DOI (16)

[46] Florian Horn. Random fruits on the Zielonka tree.
Symposium on Theoretical Aspects of Computer
Science, STACS, volume 3, pages 541–552, 2009.
DOI (4)

[47] Paul Hunter and Anuj Dawar. Complexity bounds
for regular games. International Symposium on
Mathematical Foundations of Computer Science,
MFCS, pages 495–506, 2005. DOI (3, 16)

[48] Swen Jacobs, Guillermo A. Perez, Remco Abraham,
Veronique Bruyere, Michael Cadilhac,
Maximilien Colange, Charly Delfosse, Tom van Dijk,
Alexandre Duret-Lutz, Peter Faymonville,
Bernd Finkbeiner, Ayrat Khalimov, Felix Klein,
Michael Luttenberger, Klara Meyer,
Thibaud Michaud, Adrien Pommellet,
Florian Renkin, Philipp Schlehuber-Caissier,
Mouhammad Sakr, Salomon Sickert,
Gaetan Staquet, Clement Tamines,
Leander Tentrup, and AdamWalker. The reactive
synthesis competition (SYNTCOMP): 2018-2021,
2022. DOI (2)

[49] Marcin Jurdziński. Deciding the winner in parity
games is in UP ∩ co-UP. Information Processing
Letters, 68(3):119–124, 1998. DOI (3)

[50] Michael Kaminski. A classification of 𝜔-regular
languages. Theoretical Computer Science,
36:217–229, 1985. DOI (18)

[51] Nils Klarlund. Progress measures, immediate
determinacy, and a subset construction for tree
automata. Annals of Pure and Applied Logic,
69(2):243–268, 1994. DOI (56)

[52] Jan Kretínský, Tobias Meggendorfer, and
Salomon Sickert. Owl: A library for 𝜔-words,
automata, and LTL. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, volume 11138 of Lecture Notes in Computer
Science, pages 543–550, 2018. DOI (7, 92)

[53] Jan Křetínský, Tobias Meggendorfer,
Clara Waldmann, and Maximilian Weininger. Index
appearance record for transforming Rabin
automata into parity automata. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
pages 443–460, 2017. DOI (3)

[54] Jan Křetínský, Tobias Meggendorfer,
Clara Waldmann, and Maximilian Weininger. Index
appearance record with preorders. Acta
Informatica, 59:585–618, 2021. DOI (4)

[55] Sriram C. Krishnan, Anuj Puri, and
Robert K. Brayton. Deterministic 𝜔-automata
vis-a-vis deterministic Büchi automata.
International Symposium on Algorithms and
Computation, ISAAC, volume 834 of Lecture Notes
in Computer Science, pages 378–386, 1994. DOI
(6, 77, 83)

[56] Sriram C. Krishnan, Anuj Puri, and
Robert K. Brayton. Structural complexity of
omega-automata. Symposium on Theoretical
Aspects of Computer Science, STACS,
pages 143–156, 1995. DOI (18, 77)

[57] Denis Kuperberg and Michał Skrzypczak. On
determinisation of good-for-games automata.
International Colloquium on Automata, Languages
and Programming, ICALP, pages 299–310, 2015.
DOI (4, 6, 70, 83)

[58] Orna Kupferman. Automata theory and model
checking. Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 107–151. Springer International
Publishing, 2018. DOI (2)

[59] Orna Kupferman, Gila Morgenstern, and
Aniello Murano. Typeness for omega-regular
automata. International Journal on Foundations of
Computer Science, 17(4):869–884, 2006. DOI (77)

[60] Orna Kupferman, Shmuel Safra, and
Moshe Y. Vardi. Relating word and tree automata.
Symposium on Logic in Computer Science, LICS,
pages 322–332, 1996. DOI (3)

[61] Orna Kupferman and Moshe Y. Vardi. Safraless
decision procedures. Symposium on Foundations
of Computer Science, FOCS, pages 531–542, 2005.
DOI (2)

[62] Oebele Lijzenga and Tom van Dijk. Symbolic parity
game solvers that yield winning strategies.
International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF,
volume 326, pages 18–32, 2020. DOI (2)

[63] Christof Löding. Optimal bounds for
transformations of 𝜔-automata. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS,
pages 97–109, 1999. DOI (3, 5, 77)

[64] Christof Löding and Anton Pirogov.
Determinization of Büchi automata: unifying the
approaches of Safra and Muller-Schupp.
International Colloquium on Automata, Languages
and Programming, ICALP, 120:1–120:13, 2019. DOI
(2, 92)

https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/11874683_26
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1756
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1007/11549345_43
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/https://doi.org/10.1016/0304-3975(85)90043-X
https://doi.org/https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-59042-0_69
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1142/S0129054106004157
https://doi.org/10.1109/LICS.1996.561360
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.4204/EPTCS.326.2
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.120

96 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

[65] Michael Luttenberger, Philipp J. Meyer, and
Salomon Sickert. Practical synthesis of reactive
systems from LTL specifications via parity games.
Acta Informatica:3–36, 2020. DOI (2, 92)

[66] Robert McNaughton. Infinite games played on
finite graphs. Annals of Pure and Applied Logic,
65(2):149–184, 1993. DOI (44, 49)

[67] Robert McNaughton. Testing and generating
infinite sequences by a finite automaton.
Information and Control, 9(5):521–530, 1966. DOI
(17, 19)

[68] Philipp Meyer and Salomon Sickert. On the optimal
and practical conversion of Emerson-Lei automata
into parity automata, 2021. Personal
Communication (4, 5)

[69] Philipp J. Meyer and Salomon Sickert. Modernising
strix, 2021. URL (2, 7)

[70] Thibaud Michaud and Maximilien Colange.
Reactive synthesis from LTL specification with
Spot.Workshop on Synthesis, SYNT, Electronic
Proceedings in Theoretical Computer Science, 2018.
(2, 92)

[71] Andrzej W. Mostowski. Regular expressions for
infinite trees and a standard form of automata.
Symposium on Computation Theory, SCT,
pages 157–168, 1984. DOI (16–18)

[72] David E. Muller. Infinite sequences and finite
machines. Symposium on Switching Circuit Theory
and Logical Design, SWCT, pages 3–16, 1963. DOI
(17)

[73] David Müller and Salomon Sickert. LTL to
deterministic Emerson-Lei automata. International
Symposium on Games, Automata, Logics, and
Formal Verification, GandALF, pages 180–194, 2017.
DOI (2)

[74] Damian Niwiński. On fixed-point clones (extended
abstract). International Colloquium on Automata,
Languages and Programming, ICALP, volume 226,
pages 464–473, 1986. DOI (3)

[75] Damian Niwiński and Igor Walukiewicz. Deciding
nondeterministic hierarchy of deterministic tree
automata.Workshop on Logic, Language,
Information and Computation, WoLLIC, volume 123
of Electronic Notes in Theoretical Computer
Science, pages 195–208, 2004. DOI (3)

[76] Damian Niwiński and Igor Walukiewicz. Relating
hierarchies of word and tree automata. Symposium
on Theoretical Aspects of Computer Science,
STACS, pages 320–331, 1998. DOI (3, 19)

[77] Dominique Perrin and Jean-Eric Pin. Infinite words
- automata, semigroups, logic and games,
volume 141 of Pure and applied mathematics series.
Elsevier Morgan Kaufmann, 2004. (17)

[78] Nir Piterman. From nondeterministic Büchi and
Streett automata to deterministic parity automata.
Symposium on Logic in Computer Science, LICS,
pages 255–264, 2006. DOI (2, 92)

[79] Nir Piterman and Amir Pnueli. Temporal logic and
fair discrete systems. Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 27–73. Springer International
Publishing, 2018. DOI (2)

[80] Amir Pnueli and Roni Rosner. On the synthesis of a
reactive module. POPL, pages 179–190, 1989. DOI
(2)

[81] Florian Renkin, Alexandre Duret-Lutz, and
Adrien Pommellet. Practical “paritizing” of
Emerson-Lei automata. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, volume 12302 of Lecture Notes in Computer
Science, pages 127–143, 2020. DOI (4)

[82] Bertrand Le Saëc. Saturating right congruences.
Theoretical Informatics and Applications, RAIRO,
24:545–559, 1990. DOI (80)

[83] Schmuel Safra. On the complexity of 𝜔-automata.
Symposium on Foundations of Computer Science,
FOCS, pages 319–327, 1988. DOI (3)

[84] Jacques Sakarovitch. A construction on finite
automata that has remained hidden. Theoretical
Computer Science, 204(1-2):205–231, 1998. DOI
(21)

[85] Jacques Sakarovitch and Rodrigo de Souza.
Lexicographic decomposition of k-valued
transducers. Theoretical Computer Science,
47(3):758–785, 2010. DOI (21)

[86] Sven Schewe. Beyond
hyper-minimisation—minimising DBAs and DPAs is
NP-complete. Conference on Foundations of
Software Technology and Theoretical Computer
Science, FSTTCS, volume 8, pages 400–411, 2010.
DOI (88)

[87] Sven Schewe. Minimising Good-For-Games
automata is NP-complete. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS,
volume 182, 56:1–56:13, 2020. DOI (88)

[88] Sven Schewe. Tighter bounds for the
determinisation of Büchi automata. International
Conference on Foundations of Software Science
and Computation Structures, FoSSaCS,
pages 167–181, 2009. DOI (2, 3, 92)

[89] Sven Schewe and Thomas Varghese.
Determinising parity automata. International
Symposium on Mathematical Foundations of
Computer Science, MFCS, pages 486–498, 2014.
DOI (7)

[90] Michał Skrzypczak. Topological extension of parity
automata. Information and Computation,
228-229:16–27, 2013. DOI (3)

[91] Robert Tarjan. Depth first search and linear graph
algorithms. SIAM Journal on Computing,
1(2):114–121, 1972. DOI (91)

[92] Tom van Dijk. Oink: an implementation and
evaluation of modern parity game solvers.
International Conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS, volume 10805 of Lecture Notes in
Computer Science, pages 291–308, 2018. DOI (2)

[93] Klaus Wagner. On 𝜔-regular sets. Information and
Control, 43(2):123–177, 1979. DOI (3, 5, 18, 19, 57,
92)

https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/S0019-9958(66)80013-X
https://www7.in.tum.de/~sickert/publications/MeyerS21.pdf
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1016/j.entcs.2004.05.015
https://doi.org/10.1007/BFb0028571
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1051/ita/1990240605451
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1016/S0304-3975(98)00040-1
https://doi.org/10.1007/s00224-009-9206-6
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-662-44522-8_41
https://doi.org/https://doi.org/10.1016/j.ic.2013.06.004
https://doi.org/https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1016/S0019-9958(79)90653-3

97 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

[94] Wiesław Zielonka. Infinite games on finitely
coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science,
200(1-2):135–183, 1998. DOI (3, 4, 6, 7, 16, 34, 56,
77)

https://doi.org/10.1016/S0304-3975(98)00009-7

98 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

A. Generalised classes of acceptance conditions

Further acceptance conditions.

Generalised Büchi. Given 𝑘 non-empty subsets 𝐵1, . . . , 𝐵𝑘 ⊆ Γ, we define the generalised Büchi
language associated to 𝐵 = {𝐵1, . . . , 𝐵𝑘} as

genBüchiΓ(𝐵) = {𝑤 ∈ Γ𝜔 | Inf(𝑤) ∩ 𝐵𝑖 ≠ ∅ for all 𝑖 ∈ {1, . . . , 𝑘}}.

We say that a language 𝐿 ⊆ Γ𝜔 is a generalised Büchi language if there is a family of sets
𝐵 = {𝐵1, . . . , 𝐵𝑘} such that 𝐿 = genBüchiΓ(𝐵).

Generalised coBüchi. Given 𝑘 non-empty subsets 𝐵1, . . . , 𝐵𝑘 ⊆ Γ, we define the generalised
coBüchi language associated to 𝐵 = {𝐵1, . . . , 𝐵𝑘} as

genCoBüchiΓ(𝐵) = {𝑤 ∈ Γ𝜔 | Inf(𝑤) ∩ 𝐵𝑖 = ∅ for some 𝑖 ∈ {1, . . . , 𝑘}}.

We say that a language 𝐿 ⊆ Γ𝜔 is a generalised coBüchi language if there is a family of sets
𝐵 = {𝐵1, . . . , 𝐵𝑘} such that 𝐿 = genCoBüchiΓ(𝐵).

REMARK A.1. Deterministic generalised Büchi (resp. generalised coBüchi) automata have
the same expressive power than deterministic Büchi (resp. coBüchi) automata: they recognise
languages of parity index at most [0, 1] (resp. [1, 2]).

We will also define conditions that depend on the structure of the transition system and not
only on the set of colours.

Generalised weak transition systems. Let TS = (𝐺TS ,AccTS) be a transition system using a
parity condition AccTS = (𝛾, [𝑑min, 𝑑max],parity). We say that TS is Weak𝑑 if in each
strongly connected component S ⊆ 𝐺TS there are at most 𝑑 different colours that appear,
that is, |𝛾(𝐸S) | ≤ 𝑑, where 𝐸S is the set of edges of S.

As for the rest of conditions, we say that a transition system TS isWeak𝑑 type if there
exists an isomorphic parity transition system TS′ ≃ TS that is Weak𝑑 .

The adjective Weak has typically been used to refer to the condition corresponding to a
partition of TS into accepting and rejecting SCC. A run will be accepting if the component it
finally stays in is accepting. It corresponds to Weak1 with our notation.

As we will show (Corollary A.11), the notation is justified by the fact that an 𝜔-regular
language of parity index Weak𝑑 can be recognised by a deterministic Weak𝑑 automaton.

The Zielonka tree of generalised acceptance conditions.

DEF IN IT ION A.2. Let 𝑇 be a tree 𝑇 with nodes partitioned into round nodes and square nodes.
We say that 𝑇 has:

99 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Büchi shape if it has a single branch, height at most 2, and if it has height 2 its root is round.
coBüchi shape if it has a single branch, height at most 2, and if it has height 2 its root is
square.
Generalised Büchi shape if it has height at most 2, and if it has height 2 its root is round.
Generalised coBüchi shape if it has height at most 2, and if it has height 2 its root is square.

PROPOS IT ION A.3. Let F ⊆ 2Γ
+ be a family of non-empty subsets. ThenMullerΓ(F) is a Büchi

(resp. coBüchi) language if and only ifZF has Büchi (resp. coBüchi) shape.

PROOF . This is just a special case of Proposition 6.4. ■

PROPOS IT ION A.4. Let F ⊆ 2Γ
+ be a family of non-empty subsets. ThenMullerΓ(F) is a gener-

alised Büchi (resp. coBüchi) language if and only ifZF has generalised Büchi (resp. generalised
coBüchi) shape.

PROOF . We do the proof for the case generalised Büchi (symmetric for generalised coBüchi).
Assume that MullerΓ(F) = genBüchiΓ(𝐵) for some family 𝐵 = {𝐵1, . . . , 𝐵𝑘}. Then, Γ ∈ F , as
Γ∩ 𝐵𝑖 ≠ ∅, so the root ofZF is round. If 𝐶 ⊆ Γ is rejecting, 𝐶 ∩ 𝐵𝑖 = ∅ for all 𝑖, then it is the same
for any subset 𝐶′ ⊆ 𝐶, so square nodes ofZF are leaves andZF has height at most 2.

Conversely, assume thatZF has height 2 and that its root is round (Γ ∈ F). Let 𝐴1, . . . , 𝐴𝑘 be
the labels of the 𝑘 leaves ofZF and define 𝐵𝑖 = 𝐴𝑖 . We claim that MullerΓ(F) = genBüchiΓ(𝐵),
for 𝐵 = {𝐵1, . . . , 𝐵𝑘}. Indeed, if 𝐶 ∈ F if and only if 𝐶 ⊈ 𝐴𝑖 for any 𝑖 if and only if 𝐶 ∩ 𝐵𝑖 ≠ ∅ for
all 𝑖. ■

COROLLARY A.5. Let A be a deterministic generalised Büchi (resp. generalised coBüchi)
automaton recognising a Muller language 𝐿 = MullerΣ(F). There is a deterministicgeneralised
Büchi (resp. generalised coBüchi) automaton recognising 𝐿 with just one state, that can be
computed in polynomial time in the size of the representation ofA.

PROOF . We do the proof for the case generalised Büchi. By Remark A.1, the parity index of 𝐿
is at most [0, 1], so by Proposition 6.13, the Zielonka tree of F has generalised Büchi shape.
Therefore, by Proposition A.4, 𝐿 is a generalised Büchi that can be trivially recognised by a
generalised Büchi automaton with just one state.

The acceptance condition of such automaton can be deduced in linear time from the
Zielonka tree ZF , as indicated in the proof of Proposition A.4. The Zielonka tree ZF can
be computed from the original automaton A using a similar argument than in the proof of
Theorem 6.32. Suppose that the generalised Büchi condition used by A is given by the sets
𝐵1, . . . , 𝐵𝑘 ⊆ Γ. Then, for each 𝑖 ∈ {1, . . . , 𝑘} we compute the restriction ofA to the transitions
using colours in Γ \ 𝐵𝑖 , and perform a decomposition in SCCs of the obtained graph. If ΣS ⊆ Σ is
the set of input letters appearing in one of those SCC, then ΣS ∉ F . We put all the subsets of
letters obtained in that way in a list altSets. The leaves ofZF correspond then to the maximal
subsets of altSets. ■

100 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

ACD and typeness for generalised acceptance conditions.

DEF IN IT ION A.6. Let TS be a Muller transition system with a set of states 𝑉 . We say that its
alternating cycle decompositionACDTS is a:

Büchi ACD if it is a [0, 1]-parity ACD.
coBüchi ACD if it is a [1, 2]-parity ACD.
Generalised Büchi ACD if for every state 𝑣 ∈ 𝑉 , the tree T𝑣 has generalised Büchi shape.
Generalised coBüchi ACD if for every state 𝑣 ∈ 𝑉 , the tree T𝑣 has generalised coBüchi shape.
Weak𝑑 ACD if it is a parity ACD and trees ofACDTS have height at most 𝑑.

REMARK A.7. ACDTS is a Weak𝑑 ACD if and only if it is a [0, 𝑑]-parity ACD and a [1, 𝑑 + 1]-
parity ACD.

PROPOS IT ION A.8. A transition system TS is Büchi (resp. coBüchi) type if and only ifACDTS
is a Büchi ACD (resp. coBüchi ACD).

PROOF . This is a special case of Proposition 6.11. ■

PROPOS IT ION A.9. A transition system TS is generalised Büchi (resp. generalised coBüchi)
type if and only ifACDTS is a generalised Büchi ACD (resp. generalised coBüchi ACD).

PROOF . The result follows by applying the same argument and construction than in Proposi-
tion A.4, using as set of output colours the set of edges of TS. ■

PROPOS IT ION A.10. A transition system TS isWeak𝑑 type if and only ifACDTS is aWeak𝑑
ACD.

PROOF . Proposition 6.11 already provides that TS is parity type if and only if ACDTS is
a parity ACD. As in the proof of the aforementioned proposition, we observe that TS and
ACDparity(TS) are isomorphic. If ACDTS is a Weak𝑑 ACD, then ACDparity(TS) is Weak𝑑 . Con-
versely, if ACDTS is not a Weak𝑑 ACD, then TS contains a (𝑑 + 1)-flower, so the number of
colours cannot be reduced (using the same argument as in the proof of Theorem 5.34). ■

COROLLARY A.11. If 𝐿 ⊆ Σ𝜔 is an 𝜔-regular language of parity indexWeak𝑑 , then 𝐿 can be
recognised by a deterministicWeak𝑑 automaton.

PROOF . Let 𝐿 be of parity index Weak𝑑 . By definition, 𝐿 is recognised by parity automatonA
using colours in [0, 𝑑] (it is also recognised by an automaton using colours in [1, 𝑑 + 1]; we
make an arbitrary choice). We will prove thatA is in fact Weak𝑑 . We will show that its ACD
ACDA is Weak𝑑 type, which allows to conclude by Proposition A.10. Suppose that this was
not the case, that is, that some tree ofACDA has height at least 𝑑 + 1. In this case,A would
contain a (𝑑 + 1)-flower (Lemma 5.42), so by the Flower Lemma 2.16, 𝐿 has parity index at least
[0, 𝑑] or [1, 𝑑 + 1], a contradiction. ■

101 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

The following result generalises [7, Theorem 2].

COROLLARY A.12. A Muller transition system isWeak𝑑 type if and only if it is both [0, 𝑑] and
[1, 𝑑 + 1]-parity type.

Deterministic automata using generalised acceptance conditions.

COROLLARY A.13. Let 𝐺A be the underlying graph of a deterministic automaton. There are
[0, 𝑑 − 1] and [1, 𝑑]-parity conditions Acc𝑝,0 and Acc𝑝,1 such that L(𝐺A ,Acc𝑝,0) = L(𝐺A ,Acc𝑝,1)
if and only if there is a Weak𝑝 condition Acc𝑊 such that L(𝐺A ,Acc𝑊) = L(𝐺A ,Acc𝑝,0) =

L(𝐺A ,Acc𝑝,1).

PROPOS IT ION A.14. LetA be a deterministic Muller automaton, and assume that L(A) can
be recognised by a deterministic Büchi (resp. coBüchi) automaton; that is, the parity index of
L(A) is at most [0, 1] (resp. at most [1, 2]). Then,A is generalised Büchi type (resp. generalised
coBüchi type).

PROOF . We prove the result for the case generalised Büchi (analogous for coBüchi). We can
assume that all the states ofA are accessible, as we can define a trivial acceptance condition in
the part ofA that is not accessible. Since L(A) has parity index at most [0, 1], the trees of the
ACD ofA have height at most 2, and trees of height 2 are positive (the root is a round node),
by Proposition 6.13, so it is a generalised Büchi ACD, and by Proposition A.9,A is generalised
Büchi type. ■

Parity index from automata in normal form.

COROLLARY A.15. LetA be a deterministic parity automaton in normal form using colours
in [0, 𝑑 − 1] (resp. [1, 𝑑]) such that all its states are accessible. IfA isWeak𝑑−1, then the parity
index of L(A) isWeak𝑑−1. If not, the parity index of L(A) is [0, 𝑑 − 1] (resp. [1, 𝑑]).

PROOF . We assume that A uses colours in [0, 𝑑 − 1] (in particular, it is not negative). If A
is not Weak𝑑−1, there is an SCC containing all the colours [0, 𝑑 − 1]. By Proposition 6.27, such
SCC contains a positive 𝑑-flower, so by the Flower Lemma 2.16, the parity index of L(A) is
[0, 𝑑 − 1].

Suppose now thatA is Weak𝑑−1. Let ℓ be a cycle ofA in which the colour 𝑑 − 1 occurs.
By Proposition 6.27, ℓ contains a negative (𝑑 − 1)-flower. AsA is not negative, it also contains a
positive (𝑑 − 1)-flower. By the Flower Lemma 2.16, the parity index of L(A) is Weak𝑑−1. ■

COROLLARY A.16. Let A be a deterministic parity automaton such that all its states are
accessible and the parity index of L(A) is [0, 𝑑 − 1] (resp. [1, 𝑑] /Weak𝑑). Then,A is [0, 𝑑 − 1]
(resp. [1, 𝑑] /Weak𝑑)-parity type.

102 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF . We assume that L(A) has parity index [0, 𝑑 − 1] (the other cases are similar). By the
Flower Lemma 2.16,A does not contain any negative 𝑑-flower. By Proposition 6.13, the trees
of the ACD ofA have height at most 𝑑, and trees of height 𝑑 are positive. That is,ACDA is a
[0, 𝑑 − 1]-parity ACD, and we conclude by applying Proposition 6.11. ■

B. Transformations for games

Games suitable for transformations. As we have indicated throughout the paper, defining
transformations not preserving determinism in the case of games poses certain formal chal-
lenges. This difficulties appear both when such transformations arise as the product G ⋉A
of a game G by an non-deterministic automaton A, or when they are witnessed by an HD
mapping 𝜑 : G → G′. The problem comes from the fact that the semantics of non-determinism
in automata (or history-determinism of morphisms) are inherently asymmetric, and this asym-
metry needs to be made compatible with the semantics of games. The choices we have made to
overcome this technical difficulty are:

Restrict transformations of games to games in a standard form, which we have called
games suitable for transformations.
Add a restriction to HD mappings in the case of games, introducing the notion of HD-for-
games mapping.

The main motivation for the standard form of games that we propose comes from viewing
games as originating from logical formulas. Indeed, an equivalent model for games can be
given as follows: vertices in the game graph are not partitioned into Eve’s and Adam’s nodes,
instead, we assign a boolean formula to each transition that determines an interaction between
the two players. The outcome of this interaction is (1) the next vertex, and (2) the output colour
of the acceptance condition. We can obtain a game of the kind we have defined in this paper by
unfolding the boolean formulas of the transitions. There is a natural way to standardize such
games: putting the boolean formulas in disjunctive normal form (DNF). Then, the unfolding of a
game with formulas in DNF yields a game in which the partition into Eve-Adam nodes induces
a bipartite graph with a particular structure: first, Adam chooses an uncoloured transition
leading to a vertex controlled by Eve (with only one ingoing transition), and then Eve picks a
transition producing some output colour.

We recall that a game is suitable for transformations if it verifies that for every edge
𝑒 = 𝑣 −→ 𝑣′, if 𝑣 is controlled by Adam, then 𝑒 is uncoloured (𝛾(𝑒) = 𝜀), 𝑣′ ∈ 𝑉Eve, and 𝑒 is the only
incoming edge to 𝑣′ (In(𝑣′) = {𝑒}).

Games in this form have an asymmetric structure that makes them suitable for any type of
transformation. As any pair of consecutive transitions are of the form 𝑣

𝜀−→ �̃�
𝑐−→ 𝑣′, with �̃� ∈ 𝑉Eve,

we can force it so that if a decision needs to be made in a product, Eve is the one who makes it.

103 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

LEMMA B.1. For every game G with vertices𝑉 and edges 𝐸, there exists a game G̃ that is suitable
for transformations, of size |G̃ | = O(|𝐸 |), and equivalent to G in the following sense: there is an
injective function 𝑓 : 𝑉 → 𝑉 such that Eve wins G from 𝑣 if and only if she wins G̃ from 𝑓 (𝑣).

PROOF . We define G̃ as follows. We let its set of vertices be 𝑉 = 𝑉 ∪ 𝐸. Vertices of the form
𝑣 ∈ 𝑉 will correspond to vertices coming from G, and vertices 𝑒 ∈ 𝐸 will be intermediate
vertices added to force the suitability for transformations property. We let 𝑉Adam = 𝑉Adam and
𝑉Eve = 𝑉Eve ∪ 𝐸. If 𝑒 = 𝑣

𝑐−→ 𝑣′ is an edge in G, we add the edges 𝑣
𝜀−→ 𝑒 and 𝑒

𝑐−→ 𝑣′ to G′. It is
clear that G̃ is suitable for transformations and that Eve wins G from 𝑣 if and only if she wins
G̃ from 𝑣. ■

ACD-HD-Rabin-transform-for-games. As discussed in Section 5.3, the ACD-HD-Rabin-
transform of a game G does not always induce an HD-for-games mapping 𝜑 : ACDRabin(G) → G,
and G and ACDRabin(G) do not necessarily have the same winner. This is to be expected, as the
ACD-HD-Rabin-transform does not take into account the partition into Eve and Adam nodes.
In this paragraph we propose a small modification on the transformation to obtain a correct
transformation for games.

Let G be a game. If there is an edge 𝑣 −→ 𝑣′ with 𝑣 ∈ 𝑉Adam, we say that 𝑣′ is an A-successor.
We remark that if G is suitable for transformations, an A-successor is controlled by Eve and has
a unique predecessor. We let 𝑉A-succ be the set of A-successor of G and 𝑉normal = 𝑉 \𝑉A-succ. If G
is suitable for transformations, for each 𝑣 ∈ 𝑉A-succ we let pred(𝑣) be its unique predecessor.

The idea to define the ACD-HD-Rabin-transform-for-games ACDgame
parity(G) is the following:

starting from the regular ACD-HD-Rabin-transform ACDRabin(G), we make some local changes to
vertices that are A-successors. First, if 𝑣 ∈ 𝑉Adam, we replace edges of the form (𝑣, 𝑥) 𝑛−→ (𝑣′, 𝑥′) in
ACDRabin(G) by (𝑣, 𝑥) 𝜀−→ (𝑣′, 𝑥) (we forbid Adam to choose how to update the ACD-component).
If such an edge is followed by (𝑣′, 𝑥′) 𝑛′−→ (𝑣′′, 𝑥′′) in ACDRabin(G), then we add (𝑣′, 𝑥) 𝑛−→ (𝑣′′, 𝑥′′)
to ACDgame

parity(G) (we note that 𝑣′ ∈ 𝑉Eve). That is, Eve chooses retroactively how to update the
ACD-components performing two consecutive updates. We note that the node 𝑛′ is not output
in the new game; this is not a problem, since 𝑛 must be an ancestor of 𝑛′ (we could say that 𝑛
contains more information regarding the acceptance condition).

REMARK B .2. Let G be a game suitable for transformations, let 𝑣 ∈ 𝑉Adam and 𝑣
𝑒1−→ 𝑣′

𝑒2−→ 𝑣′′

be a path of size 2 in G from 𝑣. It holds:
If some cycle ℓ contains 𝑒2, it also contains 𝑒1.
T𝑣′ is a subtree of T𝑣.
Let 𝑛1 ∈ Leaves(T𝑣) and 𝑛2 = JumpT𝑣′ (𝑛1, Supp(𝑛1, 𝑒1)). Then, Supp(𝑛2, 𝑒2)) is a descendant
of Supp(𝑛1, 𝑒1)) in T𝑣′ .

DEF IN IT ION B .3 (ACD-HD-Rabin-transform-for-games). Let G be a Muller game suitable for
transformations. For each vertex 𝑣 ∈ 𝑉 we let 𝜂𝑣 : Leaves(T𝑣) → {1, . . . , rbw(T𝑣)} be a mapping

104 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

satisfying Property (★) from Lemma 4.42. We define the ACD-HD-Rabin-transform-for-games
of G to be the Rabin transition system ACDgame

parity(G) defined as follows.

Vertices. The set of vertices is

𝑉 =
⋃

𝑣∈𝑉normal

{𝑣} × [1, rbw(T𝑣)] ∪
⋃

𝑣∈𝑉A-succ

{𝑣} × [1, rbw(Tpred(𝑣))] .

Players partition. A vertex (𝑣, 𝑥) belongs to Eve if and only if 𝑣 belongs to Eve in G.

Initial vertices. �̃� = {(𝑣0, 𝑥) | 𝑣0 ∈ 𝐼 and 𝑥 ∈ {1, . . . , rbw(T𝑣0)}}.

Edges and output colours. Let 𝑒 = 𝑣 −→ 𝑣′ in G.
If 𝑣 ∈ 𝑉Eve ∩𝑉normal, we add (𝑣, 𝑥) 𝑛−→ (𝑣′, 𝑥′) to ACDgame

parity(G) exactly in the same cases as in
the regular ACD-HD-Rabin-transform.
If 𝑣 ∈ 𝑉Adam, we let (𝑣, 𝑥) 𝜀−→ (𝑣′, 𝑥) in 𝐸 for each 𝑥 ∈ {1, . . . , rbw(T𝑣)}.
If 𝑣 ∈ 𝑉A-succ, we add (𝑣, 𝑥) 𝑛−→ (𝑣′, 𝑥′) to ACDgame

parity(G) if in the regular ACD-HD-Rabin-
transform there is a path of size 2 of the form

(pred(𝑣), 𝑥) 𝑛−→ (𝑣, 𝑥) �̃�−→ (𝑣′, 𝑥′).

Formally,
𝐸 =

⋃
𝑒=𝑣−→𝑣′∈𝐸
𝑣∈𝑉normal

{𝑒} × Leaves(T𝑣) ∪
⋃

𝑒=𝑣−→𝑣′∈𝐸
𝑣∈𝑉A-succ

{𝑒} × Leaves(Tpred(𝑣)).

Rabin condition. 𝑅 = {(𝐺𝑛, 𝑅𝑛)}𝑛∈Nodes⃝ (ACDTS) , where 𝐺𝑛 and 𝑅𝑛 are defined as follows: Let 𝑛
be a round node, and let 𝑛′ be any node in Nodes(ACDTS),

𝑛′ ∈ 𝐺𝑛 if 𝑛′ = 𝑛,

𝑛′ ∈ 𝑅𝑛 if 𝑛′ ≠ 𝑛 and 𝑛 is not an ancestor of 𝑛′.

Correctness of the ACD-HD-Rabin-transform-for-games

PROPOS IT ION 5.32 (Correctness of the ACD-HD-Rabin-transform-for-games). Let G be a
Muller game suitable for transformations, and let ACDgame

parity(G) be its ACD-HD-Rabin-transform-
for-games. Then, there is an HD-for-games mapping 𝜑 : ACDgame

parity(G) → TS.

PROOF . The proof is analogous to that of the correctness of the usual ACD-HD-Rabin-transform
(Proposition 5.28). We define the mapping 𝜑 : ACDgame

parity(G) → G as 𝜑𝑉 (𝑣, 𝑥) = 𝑣 and 𝜑𝐸 (𝑒, 𝑙) = 𝑒.
It is clear that it is a weak morphism, and it preserve accepting runs by Lemma 5.29 and
Remark B.2.

We define a resolver (𝑟0, 𝑟) simulating 𝜑 similarly to the proof of Proposition 5.28: We
use ACDparity(G) to guide the resolver. Let 𝜌 = 𝑣0 −→ 𝑣1𝑟𝑒 . . . be a run in G, and let (𝑣0, 𝑙0) −→
(𝑣1, 𝑙1) −→ . . . be the preimage of this run in ACDparity(G). We simulate 𝜌 in ACDgame

parity(G) as

105 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

follows: We ensure that at every moment 𝑖, if 𝑣𝑖 ∉ 𝑉A-succ, the current vertex (𝑣𝑖 , 𝑥𝑖) is such that
𝑥𝑖 = 𝜂𝑣𝑖 (𝑙𝑖). There distinguish two cases to simulate the edge 𝑒𝑖 = 𝑣𝑖 −→ 𝑣𝑖+1:

If 𝑣𝑖 ∈ 𝑉Adam, there is a single outgoing edge from (𝑣𝑖 , 𝑥𝑖) mapped to the edge 𝑣𝑖 −→ 𝑣𝑖+1 in
𝜌: (𝑣𝑖 , 𝑥𝑖)

𝜀−→ (𝑣𝑖+1, 𝑥𝑖). This must be the edge picked by the resolver
If 𝑣𝑖 ∈ 𝑉Eve, we pick the edge (𝑣𝑖 , 𝑥𝑖)

𝑛𝑖−→ (𝑣𝑖+1, 𝑥𝑥+1) such that 𝑥𝑖+1 = 𝜂𝑙𝑖+1 and 𝑛𝑖 = Supp(𝑙𝑖 , 𝑒𝑖).

If 𝑣𝑖 ∈ 𝑉A-succ, the vertex (𝑣𝑖 , 𝑥𝑖) will verify 𝑥𝑖 = 𝑥𝑖−1 = 𝜂𝑣𝑖 (𝑙𝑖). In this case, we pick the edge
(𝑣𝑖 , 𝑥𝑖)

𝑛𝑖−→ (𝑣𝑖+1, 𝑥𝑥+1) such that 𝑥𝑖+1 = 𝜂𝑙𝑖+1 and 𝑛𝑖 = Supp(𝑙𝑖 , 𝑒𝑖). This is indeed an edge ap-

pearing in ACDgame
parity(G), as the path (𝑣𝑖−1, 𝑥𝑖−1)

𝑛′
𝑖−1−−−→ (𝑣𝑖 , 𝑥′𝑖)

𝑛𝑖−→ (𝑣𝑖+1, 𝑥𝑥+1) exists in the regular
ACDRabin(G), with 𝑥′

𝑖
= 𝜂𝑣𝑖 (𝑙𝑖).

The resolver obtained in this way is sound for ACDgame
parity(G), as there is a unique way to

simulate edges issued from Adam vertices, and the rest of the edges are simulated in the same
way as the resolver defined for the regular ACD-HD-Rabin-transform, which we proved to be
sound. ■

Optimality of the ACD-HD-Rabin-transform-for-games

COROLLARY 5.37. Let G be a Muller game suitable for transformations whose states are
accessible and let G̃ be a Rabin game. If G̃ admits an HD-for-games mapping 𝜑 : G̃ → G, then,
|ACDgame

parity(G)| ≤ 2|G̃ |.

PROOF . The vertices of ACDgame
parity(G) corresponding to vertices in 𝑉normal are exactly the same

that those in ACDRabin(G):

{(𝑣, 𝑥) ∈ ACDgame
parity(G) | 𝑣 ∈ 𝑉normal} = {(𝑣, 𝑥) ∈ ACDRabin(G) | 𝑣 ∈ 𝑉normal}.

Moreover, for 𝑣 ∈ 𝑉A-succ, there is one vertex of the form (𝑣, 𝑥) for each vertex (pred(𝑣), 𝑥), and
each 𝑣 ∈ 𝑉A-succ has exactly one predecessor in 𝑉normal, so we conclude that:

|ACDgame
parity(G)| ≤ 2 · |{(𝑣, 𝑥) ∈ ACDgame

parity(G) | 𝑣 ∈ 𝑉normal}| ≤ 2 · |ACDRabin(G)| ≤ 2 · G′,

where the last inequality follows from Theorem 5.36. ■

C. Simplifications for prefix-independent conditions

We prove in this appendix results applying to automata recognising prefix-independent lan-
guages and games using prefix-independent winning conditions. We recall that a language
𝐿 ⊆ Σ𝜔 is prefix-independent if for all 𝑤 ∈ Σ𝜔 and 𝑢 ∈ Σ∗, 𝑢𝑤 ∈ 𝐿 if and only if 𝑤 ∈ 𝐿.

LEMMA 2.5. Let A be a history-deterministic automaton recognising a prefix-independent
language and using as acceptance set a prefix-independent language. For any state 𝑞 ofA that

106 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

is reachable using some sound resolver, it holds thatA recognises the same language if we fix 𝑞
as initial state, that is, L(A) = L(A𝑞). Moreover,A𝑞 is also history-deterministic. In particular,
ifA is deterministic, this is the case for any reachable state 𝑞.

PROOF . Let (𝑟0, 𝑟) be a sound resolver forA such that 𝑞 is reachable using (𝑟0, 𝑟) (there is a
word 𝑤0 ∈ Σ∗ and a run 𝜌0 = 𝑟0

𝑤0
𝑞 induced by 𝑟 over 𝑤). We first show that L(A𝑞) ⊆ L(A).

Let 𝑤 ∈ Σ𝜔 be a word accepted from 𝑞. Then, 𝑤0𝑤 admits an accepting run from the original
initial state (by prefix-independence of the acceptance set), so 𝑤0𝑤 ∈ L(A), and by the prefix-
independence of L(A), 𝑤 ∈ L(A) too.

For the converse direction, we define a sound resolver (𝑟′0, 𝑟′) forA𝑞. We let 𝑟′0 = 𝑞, and
𝑟′(𝜌, 𝑎) = 𝑟(𝜌0𝜌, 𝑎) be the strategy that acts as the resolver 𝑟 assuming that 𝜌0 has happened
in the past. It is clear that for every word 𝑤 ∈ Σ𝜔, the run induced by (𝑟′0, 𝑟′) over 𝑤 has a
common suffix with the run induced by (𝑟0, 𝑟) over𝑤0𝑤. Therefore, by the prefix-independence
assumptions:

𝑤 ∈ L(A) ⇐⇒ 𝑤0𝑤 is accepted using (𝑟0, 𝑟) ⇐⇒ 𝑤0𝑤 is accepted using (𝑟′0, 𝑟′). ■

LEMMA 3.14. LetTS andTS′ be two TS such that all their states are accessible, and let 𝜑 : TS →
TS′ be an HD (resp. HD-for-games) mapping between them. IfW andW′ are prefix-independent,
the mapping 𝜑 is also HD (resp. HD-for-games) when considered between the transition systems
TS𝑉 and TS′𝑉 ′ , consisting of the transition systems TS and TS′ where all the states are set to be
initial.

PROOF . First, 𝜑 : TS𝑉 → TS′𝑉 ′ is trivially a weak morphism. We claim that it preserves
accepting runs. Let 𝑣 ∈ 𝑉 be a state in TS and let 𝜌 = 𝑣

𝑤 be an accepting run from 𝑣. Since
all the states are reachable, there is some 𝑣0 ∈ 𝐼 and finite run 𝜌𝑣 = 𝑣0

𝑢
⇝ 𝑣. Since 𝜑 is a weak

morphism we have that 𝜑Runs (𝜌𝑣𝜌) = 𝜑(𝑣0)
𝑢′
⇝ 𝜑(𝑣) 𝑤′ . It holds that:

𝑤 ∈ W
W

pref-indep.
=⇒ 𝑢𝑤 ∈ W =⇒ 𝑢′𝑤′ ∈ W′

W′
pref-indep.

=⇒ 𝑤′ ∈ W′,

where the central implication follows from the fact that 𝜑 preserves accepting runs between
TS and TS′. Therefore 𝜑Runs (𝜌) is also an accepting run.

In the rest of the proof we assume that 𝜑 is an HD-for-games mapping, (which covers the
HD case). Let (𝑟Init, 𝑟) be a resolver sound for TS simulating 𝜑 : TS → TS′. We define a resolver
(𝑟Init, 𝑟) for the new mapping. For every state 𝑣 of TS, we fix a finite run 𝜌𝑣 ∈ Pathfin

𝐼 (TS) ending
in 𝑣 that is consistent with (𝑟Init, 𝑟) over some 𝜌′, if such a run exists. We let 𝑉Reach ⊆ 𝑉 be
the set of vertices for which 𝜌𝑣 is well-defined. We note that for each 𝑣′ ∈ 𝑉 ′ there exists at
least one 𝑣 ∈ 𝜑−1(𝑣′) such that 𝑣 ∈ 𝑉Reach; indeed, if 𝜌′𝑣′ is a finite run reaching 𝑣′ in TS′, one
such 𝑣 is Target(𝑟Runs (𝜌′𝑣′)) (that is, the vertex to which we arrive in TS when simulating 𝜌′𝑣′
via the original resolver). We let 𝑟Init(𝑣′) be this vertex. If 𝑒′ ∈ Out(𝑣′) is an edge in TS′, we let

107 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

𝑟(𝜀, 𝑒′) = 𝑟(𝜌𝑣, 𝑒′), for 𝑣 = 𝑟Init(𝑣′). For 𝜌 a non-empty finite run starting in 𝑣 ∈ 𝑉Reach and 𝑒′ ∈ 𝐸′,
we define 𝑟(𝜌, 𝑒′) = 𝑟(𝜌𝑣𝜌, 𝑒′). If 𝜌 starts in 𝑣 ∉ 𝑉Reach we let 𝑟(𝜌, 𝑒′) be any edge in 𝜑−1(𝑒′) (if
𝑒′ ∈ Out(𝜑(Target(𝜌))) we pick it in Out(Target(𝜌))). We check that (𝑟Init, 𝑟) satisfies the four
requirements to be a resolver:

1. 𝑟Init(𝑣′) has been chosen in 𝜑−1(𝑣′).
2. 𝑟(𝑒′) is chosen in 𝜑−1(𝑒′).
3. Let 𝑒′ ∈ Out(𝑣′). We have defined 𝑟(𝜀, 𝑒′) = 𝑟(𝜌𝑣, 𝑒′), where 𝜌𝑣 is a finite run consistent

with 𝑟 ending in 𝑣 = 𝑟Init(𝑣′). By Property 4 of a resolver, 𝑟(𝜌𝑣, 𝑒′) ∈ Out(𝑣).
4. Let 𝜌 = 𝑣0 𝑣 ∈ Runfin(TS𝑉) and 𝑒′ ∈ Out(𝜑(𝑣)). If 𝑣0 ∉ 𝑉Reach, then we have picked

𝑟(𝜌, 𝑒′) in Out(𝑣). If 𝑣0 ∈ 𝑉Reach, then 𝑟(𝜌, 𝑒′) = 𝑟(𝜌𝑣0𝜌, 𝑒
′); as 𝜌𝑣0𝜌 is a run ending in 𝑣 and

𝑟 verifies Property 4 of a resolver 𝑟(𝜌𝑣0𝜌, 𝑒
′) ∈ Out(𝑣).

Finally, we show that (𝑟Init, 𝑟) is sound for TS. Let 𝜌′ = 𝑣′ 𝑤′ ∈ Run (TS′𝑉 ′) be an accepting

run, and let 𝜌 = 𝑣
𝑤′ be a run consistent with (𝑟Init, 𝑟) over 𝜌′. In particular, 𝑣 = 𝑟Init(𝑣′). Let

𝜌𝑣 = 𝑣0
𝑢
𝑣 be the chosen run reaching 𝑣 and let 𝜌′𝑣 = 𝑣′0

𝑢′
𝑣′ be a finite run in Runfin(TS′)

such that 𝜌𝑣 is consistent with (𝑟Init, 𝑟) over 𝜌′𝑣. It is immediate to check that 𝜌𝑣𝜌 is consistent
with (𝑟Init, 𝑟) over 𝜌′𝑣𝜌′. Since 𝜌′ is accepting, we have that 𝑤′ ∈ W′, and by prefix-independence
of the acceptance sets and the fact that 𝜌𝑣𝜌 is accepting if 𝜌′𝑣𝜌′ is, we have:

𝑤′ ∈ W′ =⇒ 𝑢′𝑤′ ∈ W′ =⇒ 𝑢𝑤 ∈ W =⇒ 𝑤 ∈ W,

so we conclude that 𝜌 is accepting in TS, as we wanted to show. ■

D. Simplifying automata with duplicated edges

Given an automaton A = (𝑄, Σ, 𝐼 , Γ, 𝛿,W) we say that it has duplicated edges if there is some
pair of states 𝑞, 𝑞′ ∈ 𝑄 and two different transitions between them labelled with the same input
letter: 𝑞

𝑎:𝛼−−→ 𝑞′, 𝑞
𝑎:𝛽
−−→ 𝑞′.

As commented in Remark 4.47, the construction of the ZT-HD-Rabin-automaton we have
presented potentially introduces duplicated edges, which can be seen as an undesirable property
(even if some automata models such as the HOA format [4] allow them). We show next that we
can always derive an equivalent automaton without duplicated edges. Intuitively, in the Rabin
case, if we want to merge two transitions having as output letters 𝛼 and 𝛽, we add a fresh letter
(𝛼𝛽) to label the new transition. For each Rabin pair, this new letter will simulate the best of
either 𝛼 or 𝛽 depending upon the situation.

PROPOS IT ION D.1 (Simplification of automata). LetA be a Muller (resp. Rabin) automaton
presenting duplicated edges. There exists a Muller (resp. Rabin) automaton A′ on the same
set of states without duplicated edges such that L(A) = L(A′). Moreover, if A is history-

108 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

deterministic, A′ can be chosen history-deterministic. In the Rabin case, the number of Rabin
pairs is also preserved.

PROOF . For the Rabin case, letA′ be an automaton that is otherwise asA except that instead
of the transitions Δ of A it only has one 𝑎-transition 𝑞

𝑎:𝑥−−→ 𝑞′ ∈ Δ′ (with a fresh colour 𝑥
per transition) per state-pair 𝑞, 𝑞′ and letter 𝑎 ∈ Σ. That is, Δ′ = {(𝑞, 𝑎, 𝑥 𝑗 , 𝑞′) : (𝑞, 𝑎, 𝑦, 𝑞′) ∈
Δ for some 𝑦}. The new Rabin condition {(𝐺′1, 𝑅′1), . . . , (𝐺′𝑟, 𝑅′𝑟)} is defined as follows. For each
transition 𝑞

𝑎:𝑥−−→ 𝑞′:
𝑥 ∈ 𝐺′

𝑖
if 𝑞

𝑎:𝑦
−−→ 𝑞′ ∈ Δ for some 𝑦 ∈ 𝐺𝑖 ,

𝑥 ∈ 𝑅′
𝑖

if for all 𝑞
𝑎:𝑦
−−→ 𝑞′ ∈ Δ, 𝑦 ∈ 𝑅𝑖 .

We claim that L(A′) = L(A). Indeed, if 𝑢 ∈ L(A), as witnessed by some run 𝜌 and a
Rabin pair (𝐺𝑖 , 𝑅𝑖), then the corresponding run 𝜌′ in A′ over 𝑢 is also accepted by the Rabin
pair (𝐺′

𝑖
, 𝑅′

𝑖
): the transitions of Inf(𝜌) ∩ 𝐺𝑖 induce transitions of Inf(𝜌′) ∩ 𝐺′

𝑖
and the fact that

Inf(𝜌) ∩ 𝑅𝑖 = ∅ guarantees that Inf(𝜌′) ∩ 𝑅′
𝑖
= ∅.

Conversely, if 𝑢 ∈ L(A′) as witnessed by a run 𝜌′ and Rabin pair (𝐺′
𝑖
, 𝑅′

𝑖
), then there is

an accepting run 𝜌 over 𝑢 in A: such a run can be obtained by choosing for each transition
𝑞

𝑎:𝑥−−→ 𝑞′ of 𝜌′ where 𝑥 ∈ 𝐺′
𝑖

a transition 𝑞
𝑎:𝑦
−−→ 𝑞′ ∈ Δ such that 𝑦 ∈ 𝐺𝑖 , which exists by definition

ofA′, for each transition 𝑞
𝑎:𝑥−−→ 𝑞′ where 𝑥 ∉ 𝐺𝑖 ∪ 𝑅𝑖 a transition 𝑞

𝑞, 𝑦
−−→ 𝑞′ ∈ Δ such that 𝑦 ∉ 𝑅𝑖 ,

which also exists by definition ofA′, and for other transitions 𝑞
𝑎:𝑥−−→ 𝑞′ (that is, those for which

𝑥 ∈ 𝑅′
𝑖
) an arbitrary transition 𝑞

𝑎:𝑦
−−→ 𝑞′ ∈ Δ. Since 𝜌′ is accepting, we have Inf(𝜌′) ∩ 𝐺𝑖 ≠ ∅ and

Inf(𝜌) ∩ 𝑅𝑖 = ∅, that is, 𝜌 is also accepting.
For the Muller case, the argument is even simpler. As above, we consider A′ that is

otherwise like A except that instead of the transitions Δ of A, it only has one 𝑎-transition
𝑞

𝑎:𝑥−−→ 𝑞′ ∈ Δ′ (with a fresh colour per transition) per state-pair 𝑞, 𝑞′ and the accepting condition
is defined as follows. A set of transitions 𝑇 is accepting if and only if for each 𝑡 = 𝑞

𝑎:𝑥−−→ 𝑞′ ∈ 𝑇
there is a non-empty set 𝑆𝑡 ⊆ {𝑞

𝑎:𝑦
−−→ 𝑞′ ∈ Δ} such that

⋃
𝑡∈𝑇 𝑆𝑡 is accepting inA. In other words,

a set of transitions inA′ is accepting if for each transition we can choose a non-empty subset of
the original transitions inA that form an accepting run inA.

We claim that L(A′) = L(A). Indeed if 𝑢 ∈ L(A), as witnessed by some run 𝜌, the run 𝜌′

that visits the same sequence of states inA′ is accepting as witnessed by the transitions that
occur infinitely often in 𝜌.

Conversely, assume 𝑢 ∈ L(A′), as witnessed by a run 𝜌′ and a non-empty subset 𝑆𝑡 for
each transition 𝑡 that occurs infinitely often in 𝜌′ such that

⋃
𝑡∈Inf(𝜌) 𝑆𝑡 is accepting inA. Then

there is an accepting run 𝜌 over 𝑢 inA that visits the same sequence of states as 𝜌′ and chooses
instead of a transition 𝑡 ∈ Inf(𝜌) each transition in 𝑆𝑡 infinitely often, and otherwise takes an
arbitrary transition. The set of transitions 𝜌 visits infinitely often is exactly

⋃
𝑡∈Inf(𝜌) 𝑆𝑡, and is

therefore accepting.

109 / 110 From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Finally, observe that in both cases, ifA is HD, then the automatonA′ without duplicate
edges is also HD since A′ is obtained from A by merging transitions. Indeed, the resolver 𝑟
ofA induces a resolver 𝑟′ forA′ by outputting the unique transition with the same letter and
state-pair as 𝑟. By the same argument as above, the run induced by 𝑟′ is accepting if and only if
the run induced by 𝑟 is. ■

EXAMPLE D.2. The ZT-HD-Rabin-automaton from Figure 14 has duplicated transitions. In
Figure 19 we present an equivalent HD Rabin automaton without duplicates. For this, we have
merged the self-loops in state 1 labelled with 𝑎 and 𝑏 respectively. We have added the output
colours (𝛼𝛽) and (𝜃𝜉). The new Rabin pairs are given by:

𝐺′
𝛽
= {𝛽, (𝛼𝛽)}, 𝑅′

𝛽
= {𝛼, 𝜆, 𝜉, 𝜁 },

𝐺′
𝜆
= {𝜆}, 𝑅′

𝜆
= {𝛼, 𝛽, (𝛼𝛽), 𝜃}.

1 2

𝑎 : (𝜃𝜉)

𝑏 : (𝛼𝛽)

𝑐 : 𝛼

𝑐 : 𝜆

𝑎 : 𝜆
𝑏 : 𝛼

𝑐 : 𝜁

Figure 19. The simplified ZT-HD-Rabin-automaton.

■

E. Proofs for Section 6.1.1

PROOF OF PROPOS IT IONS 6.2 AND 6.3 . We prove it for the Rabin case, Streett conditions
being the dual notion.

If all round nodes ofZF = (𝑁 = 𝑁⃝⊔𝑁□, ⪯, 𝜈 : 𝑁 → 2Γ
+) have at most one child, we define

a family of Rabin pairs 𝑅 = {(𝐺𝑛, 𝑅𝑛) | 𝑛 ∈ 𝑁⃝} such that Rabin(𝑅) = Muller(F) as follows:
for each round node 𝑛 ∈ 𝑁⃝, we add a Rabin pair (𝐺𝑛, 𝑅𝑛). We let 𝐺𝑛 = Γ \ 𝜈(𝑛). In order to
define 𝑅𝑛, we observe that 𝑛 has at most one child 𝑛′, and we define 𝑅𝑛 = 𝜈(𝑛) \ 𝜈(𝑛′), for 𝑛′

the only child of 𝑛, if it exists, or 𝑅𝑛 = 𝜈(𝑛) if 𝑛 has no children at all. This is, the pair (𝐺𝑛, 𝑅𝑛)
accepts the sets of colours 𝐴 ⊆ Γ that contain some of the colours that disappear in the step
𝑛→ 𝑛′ and none of the colours appearing up in the tree. We show that Rabin(𝑅) = Muller(F).
Let 𝐴 be a set of colours. If 𝐴 ∈ F , let 𝑛 be a maximal node (for ⪯) containing 𝐴. It is a round
node and there is some colour 𝑐 ∈ 𝐴 not appearing in the only child of 𝑛. Therefore, 𝑐 ∈ 𝐺𝑛 and
𝐴 ∩ 𝑅𝑛 = ∅. Conversely, if 𝐴 ∉ F , then for every round node 𝑛 with a child 𝑛′, either 𝐴 ⊆ 𝜈(𝑛′)
(and therefore 𝐴 ∩ 𝐺𝑛 = ∅) or 𝐴 ⊈ 𝜈(𝑛) (and in that case 𝐴 ∩ 𝑅𝑛 ≠ ∅).

110 / 110 A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We remark that this construction uses more Rabin pairs than necessary, since we could
reuse Rabin pairs for nodes that are in the same level and that are not siblings.

Conversely, suppose that Muller(F) = Rabin(𝑅) for the Rabin language associated to
𝑅 = {(𝐺1, 𝑅1), . . . , (𝐺𝑟, 𝑅𝑟)}. If 𝑛 ∈ ZF is a round node (𝐴 = 𝜈(𝑛) ∈ F), then its label 𝐴 contains
some colours that belongs to 𝐺𝑖1 , . . . , 𝐺𝑖𝑘 and none belonging to 𝑅𝑖1 , . . . , 𝑅𝑖𝑘 for some 𝑖1, . . . , 𝑖𝑘,
𝑘 ≥ 1. A child of 𝑛 must not have these colours, so the only maximal subset of 𝐴 that is not in F
is 𝐴 \ (𝐺𝑖1 ∪ · · · ∪ 𝐺𝑖𝑘). ■

PROOF OF PROPOS IT ION 6.4 . We assume Γ ∈ F (minF = 0), the other case is symmetric.
Assume thatZF has a single branch of length maxF + 1. We define a mapping 𝜙 : Γ →

[0,maxF] as follows: for each colour 𝑐 ∈ Γ we let 𝑛𝑐 be the deepest node inZF containing 𝑐,
and we define 𝜙(𝑐) = 𝜈(𝑛𝑐). It is easy to check that for all 𝑤 ∈ Γ𝜔, 𝑤 ∈ Muller(F) if and only if
𝜙(𝑤) ∈ parity.

Conversely, assume that we can assign colours to the elements of Γ by 𝜙 : Γ→ [0, 𝑑], whose
corresponding parity language is Muller(F). We show that any node of the Zielonka treeZF
has at most one child. Indeed, let 𝑛 ∈ 𝑁 and let 𝑐 ∈ 𝜈(𝑛) such that 𝜙(𝑐) = min{𝜙(𝑐) | 𝑐 ∈ 𝜈(𝑛)}.
We suppose that 𝜙(𝑐) is odd (the proof is symmetric for 𝜙(𝑐) even). Let 𝑝 = min{𝜙(𝑐′) | 𝑐′ ∈
𝜈(𝑛) and 𝜙(𝑐′) even}. In every child of 𝑛 the elements with a smaller colour than 𝑝 must

disappear, so the set of elements 𝜈(𝑛) ∩ {𝑐 ∈ Γ | 𝜙(𝑐) ≥ 𝑝} is the only maximal subset of 𝜈(𝑛)
belonging to F . Moreover, in the label of the child of 𝑛 there is at least one colour less, so the
height ofZF will be at most 𝑑 + 1. ■

2024 : 12
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, Karoliina Lehtinen.

	Introduction
	Preliminaries
	Transition systems, automata and games
	Muller languages, cycles and the parity hierarchy
	Trees

	Morphisms as witnesses of transformations
	Morphisms of transition systems
	Local properties of morphisms
	History-deterministic mappings
	Preservation of semantic properties of automata and games

	The Zielonka tree: An optimal approach to Muller languages
	The Zielonka tree
	A minimal deterministic parity automaton
	The Zielonka-tree-parity-automaton
	Optimality of the Zielonka-tree-parity-automaton

	A minimal history-deterministic Rabin automaton
	The Zielonka-tree-HD-Rabin-automaton
	Optimality of the Zielonka-tree-HD-Rabin-automaton

	The alternating cycle decomposition: An optimal approach to Muller transition systems
	The alternating cycle decomposition
	An optimal transformation to parity transition systems
	An optimal history-deterministic transformation to Rabin transition systems
	Optimality of the ACD-transforms
	Statement of the optimality results
	Discussion: Limits on the applicability of HD automata and preservation of minimality
	Optimality of the parity condition of ACD-Parity(TS)
	Optimality of the sizes

	Corollaries
	Typeness results
	Typeness for Muller languages
	Typeness for Muller transition systems and deterministic automata

	A normal form for parity transition systems
	Minimisation of deterministic parity automata recognising Muller languages

	Conclusion
	References
	Generalised classes of acceptance conditions
	Transformations for games
	Simplifications for prefix-independent conditions
	Simplifying automata with duplicated edges
	Proofs for Section 6.1.1

