1/ 10

arXiv:2305.04323v3 [cs.FL] 19 Apr 2024

2024:12 TheoretiCS

From Muller to Parity and Rabin Received My 19,2023

Accepted Jan 21, 2024
Published Apr 23, 2024

AUtomata: Optlmal Key words and phrases
. . Emerson-Lei automata,
Transformations Preserving Good-for-games automata,

Omega-regular languages.

(History) Determinism

Antonio Casaresa =< ® a LaBRI, Université de Bordeaux,

France

b,c
Thomas Colcombet”“ i @ b CNRS, France

coy pmee a,b,d
Nathanaeél Fijalkow = @ c IRIF, Université Paris Cité,

France

Karoliina Lehtinen?€ = @

d MIMUW, University of Warsaw,
Poland

e Aix-Marseille Université, LIS,
France

ABSTRACT. We study transformations of automata and games using Muller conditions into
equivalent ones using parity or Rabin conditions. We present two transformations, one that
turns a deterministic Muller automaton into an equivalent deterministic parity automaton, and
another that provides an equivalent history-deterministic Rabin automaton. We show a strong
optimality result: the obtained automata are minimal amongst those that can be derived from
the original automaton by duplication of states. We introduce the notions of locally bijective
morphisms and history-deterministic mappings to formalise the correctness and optimality of
these transformations.

The proposed transformations are based on a novel structure, called the alternating cycle
decomposition, inspired by and extending Zielonka trees. In addition to providing optimal
transformations of automata, the alternating cycle decomposition offers fundamental informa-
tion on their structure. We use this information to give crisp characterisations on the possibility

We want to thank Klara J. Meyer and Salomon Sickert for their comments and for spotting a mistake in a previous version. We
also thank Alexandre Duret-Lutz and Florian Renkin for stimulating discussions around the alternating cycle decomposition,
and Corto Mascle for his precious suggestions about the presentation of this paper. We thank the anonymous reviewers for
their valuable feedback.

Thomas Colcombet: Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No.670624) — DualLL — and the DeLTA ANR project (ANR-16-CE40-0007).
This article is based on a paper that appeared at ICALP 2021 [23], and incorporates material from another paper that
appeared at ICALP 2022 [24].

Cite as Antonio Casares, Thomas Colcombet, Nathanaél Fijalkow, Karoliina https://theoretics.episciences.org
Lehtinen. From Muller to Parity and Rabin Automata: Optimal Transformations DOI 10.46298/theoretics.24.12
Preserving (History) Determinism. TheoretiCS, Volume 3 (2024), Article 12, 1-110.

mailto:antoniocasaressantos@gmail.com
https://orcid.org/0000-0002-6539-2020
mailto:thomas.colcombet@irif.fr
https://orcid.org/0000-0001-6529-6963
mailto:nathanael.fijalkow@labri.fr
https://orcid.org/0000-0002-6576-4680
mailto:lehtinen@lis-lab.fr
https://orcid.org/0000-0003-1171-8790

2 /10

TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

of relabelling automata with different acceptance conditions and to perform a systematic study

of a normal form for parity automata.

This document contains hyperlinks. Each occurrence of a notion is linked to its definition. On
an electronic device, the reader can click on words or symbols (or just hover over them on some
PDF readers) to see their definition.

1. Introduction

Context

Games and automata for LTL synthesis. Games and automata over infinite words form
the theoretical basis for the verification and synthesis of reactive systems; we refer to chapters
2,4, and 27 of the recent Handbook of Model Checking [79, 58, 5] for a broad exposition of this
research area. A milestone objective is the synthesis of reactive systems with specifications given
in Linear Temporal Logic (LTL). The original approach of Pnueli and Rosner [80] using automata
and games devised more than four decades ago is still at the heart of the state-of-the-art synthesis
tools [39, 65, 70, 73]. The limiting factor in this method is the transformation of the LTL formula to
a deterministic parity automaton. This automaton is then used to build a game, and a controller
for the reactive system can be obtained from a winning strategy for this game. Most solutions to
this problem (including the top-ranked tools in the SyntComp competitions [48], Strix [65, 69] and
1tlsynt [70]) first construct a Muller (or Emerson-Lei) automaton, and then transform it into
an equivalent parity automaton (we remark that, nevertheless, synthesis procedures avoiding
the construction of deterministic automata have been proposed, for example, via the use of
universal coBuichi automata [61]). The use of an intermediate Muller automaton is also present
(although sometimes implicitly) in the most recent improvements in the determinisation of Biichi
automata towards deterministic parity automata [64, 78, 88]. For this reason, understanding
transformations of Muller automata and finding efficient procedures for them is of great

importance.

Which are the simplest acceptance conditions? There exist multiple kinds of acceptance
conditions that are commonly employed by w-automata (Buichi, Rabin, Muller...). The use of
parity conditions for LTL synthesis is justified by both practical and theoretical reasons. Firstly,
there exist several high-performing algorithms solving parity games [33, 41, 48, 62, 92], so the
last step in the LTL synthesis method described above can be carried out smoothly once the
parity game is obtained. From a theoretical point of view, parity conditions can be considered
as the simplest family of conditions that can be used to recognise all w-regular languages with

deterministic automata; it could even be argued that there is a canonical aspect to them:

3 /10 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

— The optimal number of colours needed by a parity automaton to recognise a language L
reveals a fundamental piece of information about it, called its parity index. The parity
index (sometimes called Mostowski index) yields a strict hierarchy both for deterministic
automata over words and for non-deterministic automata over trees [74, 16] (and these
hierarchies are closely related [60, 76]). In both cases, this index is a measure of the
structural complexity of automata recognising L [93, 76] and of its topological complexity [3,
90]. Whether we can decide the parity index of a language of infinite trees represented as a
non-deterministic parity tree-automaton is a long-standing open problem [75, 30], which is
tightly related with the alternation depth of fixpoint operators in u-calculus formulas [74]

— Parity languages are exactly Muller languages corresponding to families ¥ C 2! of subsets
of colours such that both ¥ and its complement are closed under union (Proposition 6.4).

— Parity languages are bipositional [37] (in a parity game, both players can play optimally
using positional strategies, that is, strategies that use no memory). Moreover, over infinite
game graphs, these are the only bipositional languages [31], and over finite game graphs,
these are the unique bipositional Muller languages [94].

— Solving parity games is both in NP and co-NP [38] (more precisely, the problem is in
UP N co-UP [49]). They can be solved in quasi-polynomial time [18], and whether they can
be solved in polynomial time is a major open question. This contrasts with the complexity
of solving Rabin and Muller games, which is, respectively, NP-complete [36] and PSPACE-
complete [47].

However, these are not the only kind of conditions that deserve our attention. In this
work, we further investigate transformations producing automata using a Rabin acceptance
condition. Although in practice solvers for Rabin games are not as developed, Rabin languages
are a natural choice and interesting from a theoretical point of view: they are exactly the
half-positional Muller languages [94], there eXists a correspondence between Rabin automata
and memory structures for Muller games [21, 24], and the determinisation of Biichi automata
naturally produces Rabin automata [40, 83, 88].

Transformations of games and automata. There are various existing techniques to trans-
form Muller automata or games into parity ones. The majority of these methods involve
composing the input automaton A with a deterministic parity automaton recognising the ac-
ceptance condition used by A. The first such parity automaton was introduced by Gurevich
and Harrington in the 1980s [43] and is known as the Latest Appearance Record (LAR). Loding
proved that the LAR is optimal in the worst case [63]: there exists a family of Muller languages L;
for which the LAR is minimal amongst deterministic parity automata recognising L;. However,
the LAR is far from being minimal in every case, as it only uses the information about the
size of the alphabet. Since its introduction, many refinements of the LAR have been proposed
for subclasses of Muller languages [53, 63]. The approach using composition of automata has

4 /110

TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

one significant drawback: it disregards the structure of the original automaton, and only its
acceptance condition is taken into account. Some works have explored heuristics to improve
this aspect [54, 68, 81]. These refined transformations do still have the following property:
each original state ¢ is turned into multiple states of the form (g, x) — although this is done in a
non-uniform way, with each state possibly being copied a different number of times. In this
work, we introduce morphisms of transition systems to formalise the idea of transformations
of automata and games; if a parity automaton 8 has been obtained as a transformation of a
Muller automaton (A, there will be a morphism ¢: 8 — A that sends states of the form (q, x)
to q. A theory of morphisms of transition systems is developed in Section 3.

History-deterministic automata. For the purposes of LTL synthesis and game transforma-
tions, it is imperative to eliminate non-determinism from automata, since non-deterministic
automata do not yield correct games. Unfortunately, deterministic automata can be exponen-
tially larger than non-deterministic ones. Recently, an intermediate model of automata, named
history-deterministic (also called good-for-games), has received considerable attention. The
reason is that history-determinism exactly captures the features of deterministic automata
that make them suitable for synthesis purposes, while being a less restrictive model. A natural
question that arises is whether history-deterministic automata can be more succinct than de-
terministic ones, and, in that case, which languages and automata types can benefit from this
succinctness. It was not until several years after the introduction of history-determinism [44,
28] that an example of an w-regular language for which history-deterministic automata are
smaller than deterministic ones was exhibited [57] (and it was even conjectured that such an
automaton could not exist [27]). History-deterministic automata are the focus of several lines of
research (we refer to the survey [14] for a detailed exposition). Despite this, a complete under-
standing of history-deterministic automata remains elusive, and their scope of applicability is
still uncertain. One key aspect that has not yet been addressed is how to design techniques as
general as possible for building history-deterministic automata. To the best of our knowledge,
the only existing result in this direction is a polynomial-time algorithm to minimise coBuichi

history-deterministic automata [1].

The Zielonka tree and the alternating cycle decomposition. The starting point of our work
is the notion of Zielonka tree, introduced by Zielonka [94] as an informative representation
of Muller languages — languages that can be described by a boolean combination of atomic
propositions of the form “the letter ‘a’ appears infinitely often”. The Zielonka tree captures
many important properties of Muller languages, such as being Rabin or parity [94], and, most
importantly, it characterises their exact memory requirements, both in two-player games [34]
and stochastic games [46].

The contribution at the core of this work is a generalisation of Zielonka trees to general
Muller automata recognising any w-regular language, which we call the alternating cycle

5/ 10

TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

decomposition (ACD). The ACD, greatly inspired from Wagner’s work on w-automata [93], is a

data structure that provides an abridged representation of the accepting and rejecting cycles of

the automaton, encapsulating the interplay between the structure of the underlying graph and

the acceptance condition of a Muller automaton.

Contributions

In this work, we carry out an extensive study of transformations of Muller automata and games.

We outline next our main contributions.

1. Minimal automata for Muller languages. The basis on which we build up our work is a

study of minimal automata recognising Muller languages. Using the Zielonka tree, we
propose a construction of a deterministic parity automaton recognising a Muller language
(Section 4.2). This construction implicitly appears in the long version of [34]. We show a
strong optimality result: for all Muller language L, the parity automaton obtained from
the Zielonka tree is minimal both amongst deterministic and history-deterministic parity
automata recognising L (Theorem 4.15)." Moreover, it uses the optimal number of output
colours to recognise L (Theorem 4.14). The optimality result we obtain is much stronger
than the worst case optimality result of the LAR transformation [63], since it applies to every
Muller language. In particular, our characterisation yields an algorithm to minimise deter-
ministic parity automata recognising Muller languages in polynomial time (Theorem 6.32).
In light of our result, we conclude that the use of history-determinism does not yield any
gain in the state complexity of parity automata recognising Muller languages.

We further propose a construction of a history-deterministic Rabin automaton recognis-
ing a Muller language (Section 4.3), and prove that this automaton is minimal amongst
history-deterministic Rabin automata (Theorem 4.51). This construction is also based on
the Zielonka tree.

In essence, our results reinforce the idea that the Zielonka tree precisely captures the
fundamental properties of Muller languages.

2. Introducing morphisms as witnesses of transformations. In order to formalise transfor-

mations of games and automata, we develop a theory of morphisms of transition systems
(Section 3). Intuitively, a morphism ¢: 8 — A witnesses the fact that 8 has been obtained
from A by blowing up each state g € A to the states in ¢~!(q). However, this property on its
own does not suffice to guarantee the semantic equivalence of A and B. It is for this reason
that we introduce different variants of morphisms, offering a range of definitions with
varying degrees of restrictiveness. Two kinds of morphisms will be of central importance:

(1) locally bijective morphisms, which generalise composition with deterministic automata

1

The optimality of the Zielonka-tree-parity-automaton amongst deterministic automata has also been obtained in the
independent unpublished work [68].

6 /110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

and preserve determinism, and (2) history-deterministic mappings (HD mappings), which
generalise composition by history-deterministic automata and are defined using a minimal
set of hypothesis guaranteeing the semantic equivalence of ‘A and 8.

3. The alternating cycle decomposition and optimal transformations of Muller transition
systems. In order to generalise the fruitful applications of the Zielonka tree to Muller
automata and games, we introduce the alternating cycle decomposition (ACD), a data
structure that captures the interplay of the underlying graph of these transition systems
and their acceptance condition (Section 5). Using the ACD, we describe a construction that
transforms a Muller automaton (A into an equivalent parity automaton 8 while preserving
the determinism of A (formally, there is a locally bijective morphism ¢: 8 — A). This
transformation comes with a strong optimality guarantee: for any other parity automaton $’
admitting a locally bijective morphism (or even HD mapping) ¢’: 8" — A, the automaton 8
is smaller than $’ and it uses less output colours (Theorems 5.34 and 5.35). An interesting
corollary of our result is the following: if 8 is an HD parity automaton that is strictly smaller
than any deterministic parity automaton recognising £ (%8), then B cannot be derived from
a deterministic Muller automaton (Corollary 5.39). This result sheds light on the difficulty
to obtain succinct HD automata and their potential applicability.

We also provide a transformation that translates a Muller automaton A into a history-
deterministic Rabin automaton 8 in an optimal way: for any other Rabin automaton 8’
admitting an HD mapping ¢’: 8’ — A, the automaton 8 is smaller than 8B’.

4. Structural results for Muller transition systems. The ACD does not only provide optimal

transformations of games and automata, it also features some of their fundamental struc-
tural properties. As an application, we give a set of crisp characterisations for relabelling
automata with different classes of acceptance conditions (Section 6.1). For instance, we
show that given a Muller automaton (A, we can define a Rabin condition over the underlying
graph of A obtaining an equivalent automaton if and only if the union of rejecting cycles
of A is again a rejecting cycle. Our results unify and extend those from [7, 11, 55, 94].
In Section 6.2, we conduct a comprehensive examination of a normal form for parity
automata. This normal form implicitly appears in [19], and has since proven instrumen-
tal in proofs about history-deterministic automata [1, 35, 57], positionality of w-regular
languages [15] and learning of w-automata [6]. Similar normalisation procedures are com-
monly applied to parity games to speed up algorithms solving them [41]. We use the ACD to
provide straightforward proofs of the fundamental properties which make automata in
normal form practical in both theoretical proofs and applications.

Our model: transition systems and acceptance over edges. We want to point out a few
technical details about the model used in this paper. First, we work with general transition

systems for two reasons: (1) to seamlessly encompass both automata and games models, and

7 / 110

TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

(2) to emphasise that the ACD and the transformations we propose do only depend on the
underlying graph and the acceptance condition; we can view the input letters of an automaton,
or the partition of the vertices in a game, as add-ons that do not affect the core of our approach.

Also, we define acceptance conditions over the edges of transitions systems — instead of
over the vertices. This choice has been shown to yield more canonical results in theory, for
instance, in the study of strategy complexity for games [15, 21, 31, 94], the determinisation of
Buchi automata [32, 89], or the minimisation of history-deterministic automata [1, 35]. It has
also proven to be more applicable in practical scenarios [2, 42]. We believe that the present
work provides further evidence to this claim, as the minimal automaton obtained from the
Zielonka tree, as well as the transformations based on the ACD, substantially rely on the use of
edge-based acceptance.

Finally, we remark that in this work we are concerned with state complexity, that is, the
efficiency of a construction is measured based on the number of states of the resulting transition
system. We do not focus on the representation of the acceptance conditions; for instance, we will
not differentiate between Muller or Emerson-Lei conditions, as they have the same expressive
power (see also Remark 2.11).

Follow-up work. Despite its recent introduction [23], the alternating cycle decomposition
has already found applications in both practical and theoretical scenarios. The ACD-parity-
transform has been implemented in two open-source tools: Spot 2.10 [2] and Owl 21.0 [52], and
it is used in the LTL-synthesis tools 1tlsynt [2] and Strix [69]. These implementations were
presented in the conference paper [25], where transformations based on the ACD are compared
to the state-of-the-art existing paritizing methods.

The typeness results stemming from the ACD (Section 6.1) have also been proven instru-
mental in theoretical applications. They have been used to show a correspondence between
Rabin automata and memory structures for games [21], and to provide lower bounds in the size

of deterministic Rabin automata [24].

2. Preliminaries
In this section, we introduce definitions that will be used throughout the paper.

Basic definitions. For aset A, welet |A| denote its cardinality, 24 its power set and 24 = 24\ {0}.
For natural numbersi < j, [i, j] stands for {i,i+1,...,j -1, j}.

For a set X, a word over X is a sequence of elements from X. An w-word (or simply an
infinite word) is a word of length w. The sets of finite and infinite words over £ will be written
X" and X%, respectively, and we let > = £* U £“. Subsets of £* and X will be called languages.
For aword w € X and i > 0 we write w; to represent the i-th letter of w. We let € denote the

8/ 110

TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

empty word, and let £* = £* \ {€}. The concatenation of two words u € £* and v € L™ is written
u-v,or simplyuv. lfu=v-w,forv e L* and u,w € £, we say that v is a prefix of u, and we
write v C u. For a word w € X%, we let Inf(w) = {a € £ | w; = a for infinitely many i € N}.

We say that a language L C ¥ is prefix-independent if for all w € £“ and u € £* we have
thatuw € Lifand only if w € L.

Given amap o : A — B, we will extend a to words component-wise, i.e., a : A~ — B> will
be defined as a(wowywy ...) = a(wp)ax(wi)a(wy) We will use this convention throughout
the paper without explicitly mentioning it. If A” C A, we denote «|,, the restriction of a to A’.
We let Id 4 be the identity function on A. We write a : A— B if «ais a partial mapping (it is defined
only over some subset of A).

In this work, we will use the term graph to denote what is sometimes called a directed
multigraph: A graph is a tuple G = (V, E, Source, Target), where V is a set of vertices, E a set of
edges and Source: E — V and Target: E — V are maps indicating the source and target for each
edge. A path is a (finite or infinite) sequence p = epe;... € E® such that Source(e;) = Target(e;_1),
for all i > 0. For notational convenience, we write vy £, vy SN v, to denote a finite
path from vy = Source(eg) to v, = Target(en—1), and we let Source(p) = vy and Target(p) = vy,.
For A C V, we let fPatﬁffl”(G) and Path,(G) denote, respectively, the set of finite and infinite
paths on G starting from some v € A (we omit brackets if A = {v} is a singleton). We let
Pathy (G) = Tatﬁgn(G) U Path s (G). For a subset of vertices A C V we write:

— In(A) ={e € E | Target(e) € A},
— Out(A) = {e € E | Source(e) € A}.

All graphs considered in this paper will be finite.

A graph is strongly connected if there is a path connecting each pair of vertices. A subgraph
of (V, E, Source, Target) is a graph (V’, E’, Source’, Target’) such that V' C V, E’ C E and Source’
and Target’ are the restrictions of Source and Target to E’, respectively. A strongly connected
component (SCC) is a maximal strongly connected subgraph. We say that a SCC is final if there is
no edge leaving it. We say that a vertex v is recurrent if it belongs to some SCC, and that it is
transient on the contrary.

2.1 Transition systems, automata and games

Transition systems. A pointed graph G = (V, E, Source, Target, I) is a graph together with a
non-empty subset of initial vertices I C V. An acceptance condition over G is a tuple Acc =
(v, T, W) where T is a finite set of colours, y : E — I' U {€} is an edge-colouring of G and W C I'“
is a language of infinite words called the acceptance set. We allow uncoloured edges (e-edges),
but we impose the condition that no infinite path of G is eventually composed exclusively of
e-edges (that is, every cycle contains some edge e with y(e) # €).

9 /10

TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

A transition system (abbreviated TS) is a tuple 7S = (Gy¢s, Accgs), consisting in a pointed
graph Gss = (V,E,Source, Target, I), called the underlying graph of 78, and an acceptance
condition Accys = (y,T, W) over Ggs. We will also refer to vertices and edges as states and
transitions, respectively. We write v 5 V' if there is e € E such that Source(e) = v, Target(e) =V’
and y(e) = c. We will assume for technical convenience that transition systems contain no sink,
that is, every vertex has at least one outgoing edge. For any non-empty subset of vertices I C V,
we let 7S; be the transition system obtained from 7S by setting I to be its set of initial vertices.
The size of a transition system 7.8 is the cardinality of its set of vertices, written |7S|.

A run on a transition system 78 (or on a pointed graph) is a (finite or infinite) path
p = egeq --- € E™ starting from an initial vertex, that is, Source(eg) € I. We let Run""(78)
and Run(7S) be the set of finite and infinite runs on 7§, respectively, and we let Run®(7S) =

Run™(T8) U Run(TS). (We note that Run(TS) = Pathi;(Gys).)

The output of a run p € Run™(7S) is the sequence of colours in I'” obtained by removing
the occurrences of € from y(p); which we will also denote y(p) by a small abuse of notation. A
run p is accepting if y(p) € W, and rejecting otherwise (in particular, finite runs will be rejecting).
We write p=v -V to denote a run with Source(p) = v, Target(p) = v and y(p) = w.

We say that a vertex v € V is accessible (or reachable) from a vertex vy if there exists a
finite path from v, to v. We say that v is accessible if it is accessible from some initial vertex.
A set of states B C V is accessible if every state v € B is accessible. The accessible part of a
transition system is the set of accessible states. We define analogously the accessible part from a
vertex vy.

A labelled graph (G, (ly, Ly), (Ig, Lg)) is a graph together with labelling functions ly : V —
Ly, lp : E — Lg, where Ly and Lg are sets of labels for vertices and edges, respectively. If
only the first (resp. the second) of these labelling functions appears, we will use the terms
vertex-labelled (resp. edge-labelled) graphs. A labelled transition system is a transition system
with labelled underlying graph.

REMARK 2.1. We remark that, whenever necessary, we can assume without loss of generality
that in the acceptance condition Acc = (y, I, W) of a transition system, I' = E is the whole set of
edges and y is the identity function. Indeed, an equivalent acceptance condition can always be
defined by using the acceptance set W = {w € E | y(w) € W} C E“.

Automata. A (non-deterministic) automaton over X is an edge-labelled transition system A =
(Ga,Accq, (Iy, L)), where X is a finite set of input letters. Let A be an automaton with G4 =
(Q, A, Source, Target, I') as underlying graph and Acc# = (y, I, W) as acceptance condition. We
write e = g RN q’ to denote that e € A satisfies Iy(e) = a and y(e) = ¢. We can assume that
ACQXEXTXQ.We define:

S§(q,a) ={(q',c) e QxT| thereise:qﬂq’eA}.

10 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We note that we can now recover the classical representation of an automaton as a tuple
A=(Q,%ITI,5W),(or (Q,%,1,T,A, W)) which we might use when working exclusively with
automata.

We say that an automaton A is deterministic if I is a singleton and for every q € Q and
ac€l|6(qa) <1. We say that A is complete if for everyq € Qand a € L, |6(q,a)| > 1. We
remark that we can assume that automata are complete without loss of generality by adding a
sink state.

Given an automaton A and a word w € L*, arunover win Aisarun p = epe;--- €

Run® (A) such that ly(e;) = w; for alli > 0. Aword w € £ is accepted by A if there is a

run over w that is accepting (that is, a run p such that y(p) € W). The language accepted (or
recognised) by an automaton A is the set

L(A) :={w e ¥ | wis accepted by A}.

Two automata recognising the same language are said to be equivalent.

We remark that if A is deterministic (resp. complete), there is at most one (resp. at least
one) run over w for each w € £*.

Given a subgraph G’ of the underlying graph of an automaton A and a subset of states
I’ in G’, the subautomaton induced by G’ with initial states I’ is the automaton having G’ as
underlying graph, I’ as set of initial states, and whose acceptance condition and labelling with
input letters are the restrictions of those of ‘A.

History-deterministic automata. Let A be a (non-deterministic) automaton over £ with A
as set of transitions and I as set of initial states. A resolver for A is a pair (rp,), consisting
of a choice of an initial state,? ry € I, and a function r: A* x £ — A such that for all words
w =wows - - - € £, the sequence egpe; - - - € A®, called the run induced by r over w and defined
by e; =r(eg...ei_1,w;) is actually a run over w in A starting from ry,. We say that the resolver
is sound if it satisfies that for every w € £ (A), the run induced by r over w is an accepting run.
In other words, r should be able to construct an accepting run in ‘A letter-by-letter with only
the knowledge of the word so far, for all words in £(:A). An automaton A is called history-
deterministic (shortened HD, also called good-for-games in the literature) if there is a sound
resolver for it.

REMARK 2.2. Deterministic automata are history-deterministic, and they admit a unique

resolver.

2 Sometimes in the literature [9, 14, 44] the initial state ry is not required to be specified. This would permit to choose it
after the first letter wy is given. We consider that a resolver constructing a run without guessing the future should
pick the initial state before the first letter is revealed, hence the introduction of ry in the definition of a resolver. The
suitability of this choice will be further supported by the generalisation of HD automata to HD mappings (Section 3.3).

11 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

EXAMPLE 2.3. InFigure 1, we show an automaton A over & = {a, b, c} thatis not deterministic
(as it has two b-transitions from ¢;) but is history-deterministic. Its set of output colours is
I' = {1,2} and its acceptance setis W = {u € {1,2}“ | u contains finitely many 1s} (this is a
coBuchi condition, as introduced in the next section). It is easy to check that ‘A recognises the
language:

L(A)={w e |Inf(w) C {a,b} or Inf(w) C {b, c}}.

A resolver for A only has to take a decision when the automaton is in the state g; and
letter b is provided. In this case, a sound resolver is obtained by using the following strategy:
if the last letter seen was a, we take the transition leading to state qo; if it was ¢, we take the
transition leading to ¢,. This strategy ensures that, if eventually only letters in {a, b} (resp.
{b, c}) are seen, the run will end up in state gy (resp. q2) and remain there indefinitely, without
producing any colour 1.

Figure 1. An example of a history-deterministic automaton that is not deterministic. The acceptance
setis W = {u € {1,2}¥ | u contains finitely many 1s}. An arrow of the form q LN q’ represents two
different transitions with input letters a and b, respectively. The initial state gq is marked with one
incoming arrow.

*

We say that a state q is reachable using the resolver (r, r) if there is a finite run p = rg ~> q
such that p is the run induced by r over some word w € X*.
The next remark indicates that we can assume without loss of generality that all states in

an HD automaton are reachable using some sound resolver.

REMARK 2.4. Let A be an HD automaton, let (rp, r) be a sound resolver for it and let A be
the subautomaton induced by the set of states reachable using (ro, r), with initial state ry. Then,

L(A) = L(A).

The next lemma provides a simplification for automata recognising prefix-independent
languages. Its proof can be found in Appendix C. Together with Remark 2.4, it indicates that
when dealing with HD automata for this kind of languages, we can assume that any state of the
automaton is the initial one. In particular there will be no need to specify the initial states of
subautomata induced by subgraphs of HD automata recognising prefix-independent languages.

12 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 2.5. Let A be a history-deterministic automaton recognising a prefix-independent
language and using as acceptance set a prefix-independent language. For any state q of A that
is reachable using some sound resolver, it holds that ‘A recognises the same language if we fix q
as initial state, that is, L(A) = L(Ay). Moreover, A is also history-deterministic. In particular,
if A is deterministic, this is the case for any reachable state q.

Games. A game is a vertex-labelled transition system G = (Gg, Accg, (Ilpiayers, {EVe, Adam})),
with Gg = (V, E, Source, Target, I) a pointed graph, and Ipjayers: V — {Eve, Adam} a vertex-
labelling function inducing a partition of V into vertices controlled by two players that we refer
to as Eve and Adam. We let Viye = Pl ayers PI ayers (Adam).

During a play, players move a token from one vertex to another for an infinite amount of

(Eve) and Vpgam =

time. The player who owns the vertex v where the token is placed chooses an edge in Out(v)
and the token travels through this edge to its target. In this way, they produce an infinite run p
on G (that we also call a play). The objective of Eve is to produce an accepting run (a sequence
of colours in W), and Adam tries to prevent it.

A strategy from v € V for Eve is a (partial) function strat,, : fPatﬁ];in (G)—E, defined for finite
paths from v ending in a vertex in Vgye, that tells Eve which move to choose after any possible
finite play. We say that a play p € Path;, (G) is consistent with the strategy strat, if after each
finite prefix p’ C p ending in a vertex controlled by Eve, the next edge in p is strat,(p’). We
say that strat, is a winning strategy for Eve if all infinite plays from v consistent with strat, are
accepting. We say that Eve wins the game G from v if there is a winning strategy from v for her.
Strategies for Adam are defined dually.

Given a game G, the winning region of G for Eve, written Weye(G), is the set of initial
vertices v € I such that she wins the game G from v. The full winning region of G for Eve is her
winning region in the game Gy where all vertices are initial, that is, the set of verticesv € V
such that Eve wins the game G from v.

In some proofs, we will need to take a close look into the strategies used in games, for
which we need to introduce finite memory strategies. For a set X (usually the set of edges
of a game), we define a memory skeleton over X as an edge-labelled pointed graph M =
(M, Ep, Source, Target, mg) with a single initial state my and labels lj;: Eyy — X inducing a
deterministic structure, that is, satisfying that for each m € M and x € X there is at most
one transition e € Out(m) labelled x. We denote y: M x X—M the update function given by
u(m,x) =m’ifm % m’is the (only) transition from m labelled x. We extend pyto u: M xX*—M
by induction (u(m,e) = mand u(m, xy ...xn) = u(u(m, xy ...xn-1), Xn)). A memory structure (for
Eve) for a game G is a memory skeleton over the set E of edges of G together with a next-move
function a: Vgye X M — E. We say that (M, o) implements a strategy strat, : Tatﬁﬂ”(g)—\E if
for any finite play p € LPatﬁfj”(g) ending in Vgye, strat,(p) = a(Target(p), u(mo, p)). We remark

13 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that a memory structure for G implements at most one strategy from a given vertex. We say

that strat, is a finite memory strategy if it can be implemented by a finite memory structure.

Composition of a transition system and an automaton. We now present the construction
of the composition (or product) of a transition system with an automaton, which constitutes
the standard method for transforming a transition system that uses an acceptance set W to
another one using a different acceptance set W,. To guarantee the correctness of the resulting
transition system (that is, that it has the same semantic properties as the original one), the
automaton must be deterministic or history-deterministic (see Propositions 2.6, 2.7, and 2.8).
Let 7S = (Ggs, Accgs) be a transition system, with Ggs = (V, E, Sourcegs, Targetys, I7s)
and Accys = (Y73, L, Wys), and let A = (G 4, Accq, (Ig, X)) be a complete automaton over the
alphabet X, where G 4 = (Q, A, Source g, Target4, I#) and Accg = (V4, T, W4). The composition
of 78 and A (also called their product) is the transition system 78 = A defined as follows:
— The set of vertices is the cartesian product V x Q.
— The set of initial vertices is Iy X I #.
— The set of edges E™ contains a transition (v, q) 5 (v, q) if there is a € £ and transitions
e1=v 4V eEand e; =q AN q’ € A. It also contains e-edges (v, q) 5 Vv, q) ifvs v eE.
Formally,

E" ={(e1,e2) € EXA|ygs(er) =ls(e2)} U {e1 € E|yss(er) =€} C (EXA)UE.

— The acceptance condition is inherited from that of \A: the colouring function y’: E* — TI'is
defined as y’(ey, e2) = y#(e2), and the acceptance setis W4 C I'“.

We remark that if 7S does not contain an uncoloured cycle, neither does 78 = ‘A. Also,
TS =< A does not contain sinks by completeness of ‘A.

If 7S is a labelled transition system, labelled by the functions ly and lg, we consider 78 <A
as a labelled transition system with the functions [j;(v, q) = ly(v) and l3(eq, e;) = lg(eq) (resp.
l5(e1) = lg(eq) if e1 is an uncoloured edge).

Intuitively, a computation in 78 = A happens as follows: we start from a vertex vy € Iys
in 7§ and from qy € I #. When we are in a position (v, q) € V X Q, a transition e between v and
V' takes place in 78, producing a letter a € X as output. Then, the automaton ‘A proceeds using
a transition corresponding to a, producing an output in I'. In this way, a word in I' is generated,
and we can use the acceptance set W4 C I'” of the automaton as the acceptance set for 78 = A.

In particular, we can perform this operation if 78 is an automaton. We obtain in this way
a new automaton that uses the acceptance condition of A.

We could, of course, apply this construction to a game G, obtaining a new game G =< A
in which the player who makes a move in G also chooses a transition in A corresponding to
the letter produced by the selected move. However, in most applications, we intend to obtain
an asymmetric form of product game in which one player has full control of the transitions of

14 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

the automaton (we take the point of view of Eve and want her to choose these transitions). For
this reason, we restrain the class of games to which we can apply the product construction by a
non-deterministic automaton.

We say that a game is suitable for transformations if it satisfies that for every edgee = v— v’
such that v € Vagam, the edge e is uncoloured (y(e) = €), V' € Vgye, and e is the only incoming
edge to v (In(v’) = {e}). We remark that any game G can be made suitable for transformations
with at most a linear blow up on the size by inserting an intermediate Eve-vertex in each edge
outgoing from an Adam-vertex. A formal construction, as well as further motivation for this
definition, can be found in Appendix B.

The following results are well known and constitute the main application of automata
composition. They can be seen as corollaries of our results from Section 3.4, which generalise
them.

PROPOSITION 2.6 (Folklore). Let B be an automaton with acceptance set Wg and let ‘A be
an automaton recognising L(A) = Wg. Then, L(B =< A) = L(B). Moreover, if A and B are
deterministic (resp. history-deterministic), so is B =< A.

PROPOSITION 2.7 ([44]). Let G be a game that is suitable for transformations with acceptance
set Wg, and let A be a history-deterministic automaton recognising L(A) = Wg. Then, the
winning region of Eve in G is the projection of her winning region in G = ‘A, that is, Eve wins G
from an initial vertex v if and only if she wins G < A from (v, qo), for qo some initial vertex of ‘A.

Proposition 2.7 fails if the automaton is not HD. In fact, this property characterises history-
determinism, which is the reason why HD automata are also called good-for-games in the litera-
ture. However, it should be noted that history-determinism and good-for-gameness have been
generalised to other contexts in which they do not necessarily yield equivalent notions [13, 28].

PROPOSITION 2.8 ([44]). Let A be an automaton recognising Wg C X satisfying that for
every game G suitable for transformations with acceptance set Wg, Eve wins the game G from an
initial vertex v if and only if she wins G < A from (v, qo), for qo some initial vertex of ‘A. Then, A
IS history-deterministic.

2.2 Muller languages, cycles and the parity hierarchy

Languages commonly used as acceptance sets. We now define the main classes of
languages used by w-regular automata as acceptance sets. We let I' stand for a finite set of
colours.

Biichi. Given a subset B C T, we define the Biichi language associated to B as:

Blchir(B) = {w € T | Inf(w) N B # 0}.

15 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We say that a language L C I'“ is a Biichi language if there is a set B C T such that L =
coBiichi. Given a subset B C T', we define the coBlichi language associated to B as:

coBUchir(B) = {w € T | Inf(w) N B = 0}.

We say that a language L C I'“ is a coBiichi language if there is a set B C T such that
L = coBuchir(B).

Rabin. A Rabin language is represented by a family R = {(G1, R1), ..., (G, R;) } of Rabin pairs,
where G, R; C I. The Rabin language associated to R is defined as:

Rabinp(R) = {w € I | [Inf(w) N G; # 0 and Inf(w) N R; = 0] for some index j}.

If [Inf(w) NG; # 0 and Inf(w) N R; = 0], we say that w is accepted by the Rabin pair (Gj, Rj).
We say that a language L C I'“ is a Rabin language if there is a family of Rabin pairs R such
that L = Rabinr(R).

Streett. The Streett language associated to a family S = {(G1,R1), ..., (G, R;)} of Rabin pairs is
defined as:

Streettr(S) = {w € I | [Inf(w) N G; # 0 implies Inf(w) N R; # 0] for all indices j}.

We say that a language L C I'? is a Streett language if there is a family of Rabin pairs S such
that L = Streettr(S).
Parity. We define the parity language over the alphabet [dpin, dmax] € N as:

Parity[d, i.dma] = {W € [dmin, dmax]” | minInf(w) is even}.

We say that a language L C TI'“ is a [dmin, dmax]-parity language if there is a mapping
1- We
say that L is a parity language if there are dpin, dmax € N such that L is a [dmin, dmax]-parity

®: T — [dmin, dmax] such thatforallw € I', w € L if and only if ¢(w) € paritya, .. do.
language.
Muller. We define the Muller language associated to a family ¥ C 2! of non-empty subsets of T
as:
Mullerp(F) = {w € T | Inf(w) € F}.

We say that a language L C T'“ is a Muller language if there is a family ¥ C 2! such that
L = Mullerp(¥).

We drop the subscript I (resp. [dmin, dmax]) Whenever the set of colours is clear from
the context. We remark that all languages of the classes above are prefix-independent (for all
weTl“andu e I'", uw € Lif and only if w € L).

16 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We say that an acceptance condition (resp. transition system, automaton) is an X condition
(resp. X transition system, X automaton), for X one of the classes of languages above, if its
acceptance set is an X language. In the case of parity transition systems, we will always assume
that the set of colours is a subset of N and ¢ is the identity function.

We let DPA stand for deterministic parity automaton and DMA for deterministic Muller
automaton.

We discuss further classes of languages in Appendix A (generalised Buichi and coBtuichi
languages, as well as generalised weak acceptance). We refer to the survey [8] for a more
detailed account on different types of acceptance conditions.

REMARK 2.9 (Inclusions between classes). We observe that there are many inclusions be-
tween the classes of languages that we have introduced. For example, Biichi languages are
exactly [0, 1]-parity languages, and parity languages are Rabin languages [71]. In particular,
all classes above are special cases of Muller languages. The relations between these classes of
languages are outlined in Figure 2.

Buchi = [0, 1]-parity Streett
. / \
- s Parity— Muller
coBiichi = [1, 2]-parity Rabin
Figure 2. Relations between subclasses of Muller languages. An arrow from a class X towards a class Y
means that if a language L C I is an X language, then it is also a Y language. Arrows obtained by
transitivity have been omitted. Inclusions are strict: if an arrow from X to Y cannot be obtained by

transitivity, then there are X languages that are not Y languages [94].

REMARK 2.10. Alanguage L C I'” is a Muller language if and only if it satisfies:
For all w,w’ € T?, if Inf(w) = Inf(w’), thenw € L < w’ € L.

REMARK 2.11 (Representation of acceptance conditions). In practice, there exists a variety
of ways to represent Muller languages and acceptance conditions of automata: using boolean
formulas (Emerson-Lei conditions), as a list of accepting subsets of edges, etc. The complexity
and practicality of algorithms manipulating automata and games may greatly differ depending
on the representation of their acceptance conditions [45, 47]. However, in this work, we are
mostly interested in the expressive power of acceptance conditions, and the results we present
will not depend on how they are represented.

EXAMPLE 2.12. In Figure 3 we show three different types of automata over the alphabet
Y = {a, b} recognising the language

L={wez®|w=ub”or (w=ua®and u has an even number of ‘b’s)}.

17 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

*

ND Bichi automaton Det. Muller automaton Det. coBichi automaton

F={{a}, {8}}

Figure 3. Different types of automata recognising the language
L={wez¥|w=ub¥or (w=ua¥ and u has an even number of ‘b’s)}.

w-regular languages. The class of w-regular languages plays a central role in the theory of
formal languages and verification. The significance of w-regular languages is (partly) due to
the robustness of its definition, as they admit multiple equivalent characterisations relating

different areas of study.

PROPOSITION 2.13 ([71, 72]). Let L C X% be a language of infinite words. The following
properties are equivalent:

— L can be recognised by a non-deterministic Blichi automaton.

— L can be recognised by a deterministic parity automaton.

— L can be recognised by a non-deterministic Muller automaton.

A language satisfying the previous conditions is called w-regular. Many other equivalent
definitions exist. Notably, w-regular languages are exactly the languages that can be defined
using monadic second-order logic [17], those that can be described by using w-regular expres-
sions [67], and those that can be recognised by an w-semigroup [77, Chapter 2].

Cycles. Let 78 be a transition system with V and E as set of vertices and edges, respectively. A
cycle of 78 is a subset £ C E such that there is a finite path vy 2, 2 2, Vg — ...V o, Vo with
£ ={ep,€1,...,6-}. We remark that we do not require this path to be simple, that is, edges and
vertices may appear multiple times. The set of states of the cycle ¢ is States(¥€) = {vg, v1,...Vr}.
The set of cycles of a transition system 78 is written Cycles(7S). We will consider the set of
cycles ordered by inclusion. For a state v € V, we denote Cycles, (7S) the subset of cycles of 78
containing v. We remark that a vertex v is recurrent if and only if Cycles (7S) # 0. We note that

18 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Cycles (738) is closed under union; moreover, the union of two cycles £, &2 € Cycles(738) is again
a cycle if and only if there is some state v such that both ¢; and ¢, contain v.

Let 78 be a Muller transition system with acceptance condition (y, T, Mullerr(¥)). Given
a cycle € € Cycles(7S), we say that £ is accepting (resp. rejecting) if y(€) € ¥ (resp. y(€) ¢ F).
We remark that the maximal cycles of a transition system are exactly the sets of edges of
its strongly connected components. In particular, we can apply the adjectives accepting and
rejecting similarly to the SCCs of a Muller transition system.

We note that, by definition, the acceptance of a run in a Muller transition system only
depends on the set of transitions taken infinitely often. For any infinite run p € Run(7S8), the set
of transitions taken infinitely often forms a cycle, Inf(p) = £, € Cycles(7S), and p is an accepting
run if and only if £, is an accepting cycle.

The deterministic and history-deterministic parity hierarchy. As we have mentioned,
every w-regular language can be recognised by a deterministic parity automaton, but the
number of colours required to do so might be arbitrarily large. We can assign to each w-regular
language the optimal number of colours needed to recognise it using a deterministic automaton.
We obtain in this way the deterministic parity hierarchy, having its origins in the works of
Wagner [93], Kaminski [50], and Mostowski [71]. We represented this hierarchy in Figure 4. This
hierarchy is strict, that is, for each level of the hierarchy there are languages that do not appear
in lower levels [93]. It is known that we can decide in polynomial time the parity index of an
w-regular language represented by a deterministic parity automaton [19], but this problem is
NP-complete if the language is given by a deterministic Rabin or Streett automaton [56].

Wea kg

[0,2] T [1,3]
\Weakz -
[0,1] T 1,2]
\Weakl -
[0,0] T ,1]

Figure 4. The (history-)deterministic parity hierarchy.

DEFINITION 2.14 (Parity index of a language). Let L C £“ be an w-regular language. We
say that L has parity index at least [0,d — 1] (resp. [1, d]) if any DPA recognising L with a parity
acceptance condition over the set of colours [dmin, dmax] satisfies that dpmax — dmin = d — 1, and
in case of equality dniy is even (resp. odd). We say that the parity index of L is [0, d — 1] (resp.

19 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

[1, d]) if, moreover, there is a DPA recognising L with a parity acceptance condition over the set
of colours [0,d — 1] (resp. [1,d]).

We say that L has parity index at least Weak, if any DPA recognising L with a parity
acceptance condition over the set of colours [dmin, dmax| satisfies that dpax — dmin = d. We say
that the parity index of L is Weak if, moreover, there are DPAs A; and (A, recognising L with
parity acceptance conditions over the sets of colours [0,d] and [1, d + 1], respectively.

If follows from the definition that for each w-regular language L, there is a unique d
such that either L has parity index [0,d — 1], [1, d] or Weaky, and these options are mutually
exclusive. See also Appendix A for more details about languages of parity index Weak,.

One of our contributions is to show that the parity index also applies to Muller automata:
any deterministic or HD Muller automaton recognising an w-regular language of parity index
[0,d — 1] uses at least d different colours (Proposition 6.14).

The following proposition states that the notion of parity index of a language does not
change by using HD automata instead of deterministic ones in the definition. However, for
non-deterministic automata, the hierarchy collapses at level [0, 1] (Blichi automata) [67].

PROPOSITION 2.15 ([12, Theorem 19]). Let A be an HD parity automaton recognising a lan-
guage L, and assume that the parity index of L is [0,d — 1] (resp. [1,d]). Then, the acceptance
condition of ‘A uses at least d output colours, and if it uses exactly d colours, the least of them is
even (resp. odd). If the parity index of L is Weak, then ‘A uses at least d + 1 output colours.

We show next that the parity index of an w-regular language can be read directly from a
deterministic Muller automaton.

Let 78 be a transition system using the Muller acceptance condition (y, T, Mullerp(F)).
A d-flower over a state v of 7S is a set of d cycles £y, €, ..., &g € Cycles ,(7S) such that £; 2 £;;4
and y(¢) € ¥ < y(%i;1) ¢ ¥. We say that it is a positive flower if y(£;) € ¥ and that it is
negative otherwise.

LEMMA 2.16 (Flower Lemma, [76, 93]). Let A be a DMA. If A admits an accessible positive
(resp. negative) d-flower, then L(A) has parity index at least [0,d — 1] (resp. [1,d]). If A admits
both accessible positive and negative d-flowers, then L (A) has parity index at least Weak .

Conversely, if an w-regular language L has parity index at least [0,d — 1] (resp. [1, d]), then
any DMA recognising L admits a positive (resp. negative) d-flower.

2.3 Trees

We introduce some technical notations that will be used to define automata based on the
Zielonka tree (Sections 4.2 and 4.3) and the transformations based on the ACD (Sections 5.2
and 5.3).

20 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

AtreeT = (N, <) is a non-empty finite set of nodes N equipped with an order relation <
called the ancestor relation (we say that x is an ancestor of y, or that y is below x if x < y), such
that (1) there is a minimal node for <, called the root, and (2) the ancestors of an element are
totally ordered by <. The converse relation > is the descendant relation. Maximal nodes are
called leaves, and the set of leaves of T is denoted by Leaves(T). The minimal strict descendants
of a node are called its children. The set of children of n in T is written Childreny(n). The depth
of a node n is the number of strict ancestors of it. We note it Depth(n). The height of a tree T
is the maximal length of a chain for the ancestor relation. A subtree of T = (N, <) is a tree
T’ = (N’, <’) such that N’ C N, <’ is the restriction of < to N’ and Childrenz-(n’) € Childrenz(n’)
for all n’ € N’. Given a node n of a tree T, the subtree of T rooted at n is the subtree of T whose
nodes are the nodes of T that have n as ancestor. A branch is a maximal chain of the order <.

An ordered tree is a tree T = (N, <) together with a total order <, over Childrenr(n), for
each node n € N that is not a leaf. We remark that a subtree of an ordered tree can be seen as
an ordered tree with the restrictions of these total orders to the existing children. These orders
induce a total order <7 on T (the depth-first order): let n,n’ € N.If n < n’,weletn <y n’.Ifn
and n’ are incomparable for the ancestor relation, let n,, be the deepest common ancestor, and
let ny, ny € Childrenr(n,,) such that n; < nand ny < n’. Welet n <r n’ ifand only if n; <, , ny.
In the latter case, we say that n is on the left of n’.

We will make use of these orders through some auxiliary functions. The function Next(n)
gives the next sibling of n in the tree, in a cyclic order. Two examples are shown on the left
of Figure 5. The function Jump(n, n,,) (for n,, an ancestor of n) outputs the node given by the
following procedure: we go up the tree from n to np,; then, we change to the next branch below
nm (in a cyclic way) and go down again taking the leftmost leaf below it. Examples are given on
the right of Figure 5.

Next(5) = 4 and Next(2) = 3. Jump(5,1) =4 and Jump(6,0) = 7.

Figure 5. lllustration of the functions Next and Jump.

We give the formal definition now. We also need to define these notions taking into account
some subtree T’ of T: the input can be any node in T, but the final output is restricted to be a
node in T’. Examples 4.5 and 5.5 further illustrate these notations.

21/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Let T’ be a subtree of T and n’ a node of T’ that is not a leaf in T’. For n € Childrenr(n’),
we let
minc ,{n” € Childreng.(n’) | n <, n”} if this set is not empty,

Nextr:(n) =
minc ,{n” € Childrenz-(n’)} otherwise.

That is, the function Nexty» maps each child of n’ to a sibling that is its successor in T’ for the
<p-order, in a cyclic way.

Let T/ = (N’,<’) be a subtree of T = (N,<). Letn’ € N'and n € N such thatn’is a
(non-strict) ancestor of n (n” < n). If n’ is a leaf of T’, we define Jumpy/(n,n’) = n’. For n’ = n,
we define Jumpy/(n,n’) to be the leftmost leaf of T’ below n’. In any other case, we define
Jumpr (n, n’) = lgest € Leaves(T’) to be the only node satisfying that there are two children of n’
in T, nq, ny € Childreny(n’) such that:

— n; <n,
— ny = Nexty/(ny) (in particular, ny € N'),

— lgest = Ny is the leftmost® leaf in T’ (minimal for <7/) below n,.

We remark that n; = ny if n, is the only child of n” in T”.
An A-labelled (ordered) tree is an (ordered) tree T together with a labelling functionv: N —
A. A set of trees is called a forest.

3. Morphisms as withesses of transformations

As mentioned in the introduction, all existing methods transforming a Muller into a parity
automaton follow a common approach: they turn each state g into multiple states of the form
(g, x), where x stores some information about the acceptance condition. It is reasonable to
put forward this characteristic as the defining trait establishing that an automaton has been
obtained as a transformation of another. In this section, we introduce morphisms of transition
systems, which formalise this idea: a morphism ¢: 8 — A witnesses that each state g € A has
been augmented to ¢1(q). To ensure that B is semantically equivalent to A, the morphism
has to grant a further guarantee, namely, we need to be able to simulate runs of A in 8. We
will examine two properties of morphisms that allow to do this: local bijectivity and history-
determinism for mappings.

We note that almost identical notions of morphisms were considered by Sakarovitch [84,
Section 2] and Sakarovitch and de Souza [85, Section 2.5] in the context of transducers over
finite words.# Similar ideas to the ones presented here were used by Colcombet to characterise

3 The choice of the leftmost leaf is arbitrary. In all our uses of the function Jump, it could be replaced by any leaf
below n,.

4 We thank Géraud Sénizergues for pointing us to the works of Sakarovitch and De Souza.

22 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

history-deterministic automata: an automaton is history-deterministic if it is the homomorphic

image of a (possibly infinite) deterministic automaton for the same language [27, Definition 13].

In all of this section, 78 = (G, Acc) and 78’ = (G, Acc’) will stand for transition systems
with underlying graphs G = (V, E, Source, Target,I) and G’ = (V’/, E/, Source’, Target’,I’), and
acceptance conditions Acc = (y,I, W) and Acc’ = (', I", W’).

3.1 Morphisms of transition systems

DEFINITION 3.1. A morphism of graphs from G to G’ is a pair of mappings ¢ = (¢y : V —
V', or : E — E’) preserving edges, that is:

— Source’(¢e(e)) = py(Source(e)) for every e € E,

— Target’(pg(e)) = py(Target(e)) for every e € E.

We say that ¢ is a morphism of pointed graphs if, moreover, it preserves initial vertices:
— ov(vg) € I for every vg € I.

If (G, (ly, Lv), (Ig, Lg)) and (G, (I}, Ly,), (I}, L)) are labelled graphs, we say that ¢ is a morphism
of labelled graphs if, in addition, Ly C L;,, Lg € L. and ¢ preserves labels:

— I, (pv(v)) = ly(v) for everyv € V,

— Uz(pe(e)) =Ig(e) for everye € V.

We will write ¢: G — G’ to denote a morphism ¢@. We will drop the subscript in ¢y and
¢r whenever it can be deduced from its use. We say that ¢ is surjective (resp. injective) if @y is.

Note that the mapping ¢y does not completely determine a morphism ¢, as multiple edges
might exist between two given vertices. However, if G has no isolated vertices, the mapping ¢r
does determine it. It will be convenient nonetheless to also keep the notation for ¢y.

We remark that the image of a run in G by a morphism of pointed graphs is a run in G’.
Therefore, a morphism of pointed graphs ¢: G — G’ induces a mapping

Oguns© Run”(G) — Run™(G').

DEFINITION 3.2. Let 78 and 78’ be two (labelled) transition systems. A weak morphism of
(labelled) transition systems ¢: 7S — 78’ is a morphism of (labelled) pointed graphs between
their underlying graphs, ¢ : G — G’. We say that it is a morphism of (labelled) transition systems
if it preserves the acceptance of runs, that is:

— for every infinite run p € Run(7S8), y(p) € W — VY (@guns(p)) € W'.

A morphism of labelled TS between automata (resp. between games) will be called a
morphism of automata (resp. morphism of games).

23 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We say that a morphism of TS ¢: 78 — 78’ is an isomorphism if ¢y and @r are bijective
and ¢! = (¢;', p;') is a morphism from 78’ to 7S. In that case, we say that 7S and 78’ are
isomorphic.

3.2 Local properties of morphisms

DEFINITION 3.3. A morphism of pointed graphs ¢ : G — G’ is called:
— Locally surjective if it verifies:
1. For every v, € I’ there exists vy € I such that ¢(vo) = vy,
2. For everyv € V and every e’ € Out(¢(v)) there exists e € Out(v) such that ¢(e) = ¢’.
— Locally injective if it verifies:
1. For every v; € I, there is at most one vy € I such that ¢(vo) = vy,
2. For every v € V and every couple ey, e; € Out(v), p(e;) = ¢(ez) implies e; = e;.

— Locally bijective if it is both locally surjective and locally injective.

Equivalently, a morphism of pointed graphs ¢ is locally surjective (resp. locally injective) if
for every v € V the restriction of ¢ to Out(v) is a surjection onto Out(¢(v)) (resp. an injection
into Out(¢(v))), and the restriction of ¢y to I is a surjection on/to I’ (resp. an injection into I').

Let ¢ : 78 — 78’ be a (weak) morphism, and let p’ = v A V] El—> ...bearunin78". If ¢
is locally surjective, we can pick an initial vertex vy in go‘l(%) and build step-by-step a run p in
7S from v, that is sent to p” under ¢. If ¢ is moreover locally bijective, the choices of the initial
vertex and the edges at each step are unique, so runs in 78’ can be simulated in 78 via ¢ in a
unique way. Said differently, if ¢ : 7S — 78’ is a locally bijective morphism, we can see 78 as
an automaton that processes runs of 78’ in a deterministic fashion (this idea is formalised in
Section 5.4.3). This property will allow us to show that a locally bijective morphism witnesses
the semantic equivalence of 7S and 7S’ (see Section 3.4).

We note that the notion of locally bijective morphisms of transition systems almost coincide
with the usual concept of bisimulation. The main difference is that locally bijective morphisms
treat the acceptance of a run as a whole; we do not impose the output colour of an edge y(e) to
coincide with the colour y’(¢(e)). This allows us to compare transition systems using different

types of acceptance conditions.

REMARK 3.4. Let ¢ be a morphism of pointed graphs.
1. If ¢ is locally surjective, then @g,,; is surjective.
2. If ¢ is locally injective, then @4, is injective.
3. If ¢ is locally bijective, then @4, is bijective.

In the following, the weak morphisms under consideration will be locally surjective. The
next lemma ensures that we can assume that they are surjective without loss of generality.

24 /| 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 3.5. If 9: 7S — 78’ is a locally surjective weak morphism, it is onto the accessible
part of 7S'. That is, for every accessible state V' € 7S, there exists some state v € 7S such that
ov(v) = V. In particular, if every state of TS’ is accessible, ¢ is surjective.

PROOF. Let V' be an accessible state of 78’. By definition, there exists a finite run p’ from an
initial vertex of 78’ to V. By surjectivity of @, there is a finite run p € Rux™(78) such that
Pzuns(P) = p’. As @ is a morphism of graphs, we have that ¢(Target(p)) =V".]

EXAMPLE 3.6. In Figure 6 we provide an example of a locally bijective morphism between the
two rightmost transition systems from Figure 3 (we have removed input letters for simplicity).
We recall that the acceptance set of the rightmost transition system is the Muller language
associated to ¥ = {{a}, {B}}. The morphismis given by ¢y (v1) = @y (v2) = v and ¢y (vz) = v,. In
this case, the mapping ¢y determines a unique morphism; the (uniquely determined) mapping
o is represented by the colours of the edges in the figure. It is easy to check that this mapping
preserves the acceptance of runs and that it is locally bijective.

Figure 6. A locally bijective morphism from a parity TS to a Muller TS with acceptance set given by
¥ = {{a},{B}}. We use dashed arrows to represent the images of vertices, and colours to represent the
image of edges (that can be inferred from ¢y).

3.3 History-deterministic mappings

Locally bijective morphisms are a natural generalisation of the composition of a transition
system with a deterministic automaton. They guarantee the semantic equivalence of the two
involved transition systems, but at the cost of the use of some strong hypothesis, as the outgoing
edges of a vertex v must exactly correspond to the outgoing edges of its image ¢(v). We
can imagine correct transformations that do not satisfy this requirement. Notably, history-
deterministic automata have been introduced as a method to bypass this restriction, with the
hope of outperforming transformations that are witnessed by locally bijective morphisms. In

25 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

general, if A is an HD automaton recognising the acceptance set ot 7S, the composition 78 < A
does not admit a locally bijective morphism to 78, although it shares most semantic properties
with it (Proposition 2.7).

We introduce next HD mappings, which are weak morphisms with the minimal set of
hypothesis ensuring that, if ¢: 78 — 78’ is an HD mapping, we can simulate runs of 78’ in
78 via ¢ while preserving their acceptance. This will allow us to show that ¢ witnesses the
semantic equivalence of 78 and 78’ (Section 3.4).

Weak Morphisms
" P __—-HD Mappings)
Morph|sms’./.,,r..’ "‘v‘\\\
. Loc. Injective

] Loc. Surjective : |
Morphisms .~ P

Morphisms

Loc. Bijective
Morphisms

..

Figure 7. Different types of morphisms and the relations between them. The fact that locally surjective
morphisms are HD mappings is given by Lemma 3.12. Note that HD mappings are also locally surjective
weak morphisms (Remark 3.7).

History-deterministic mappings. Let 7S and 7S’ be transition systems and ¢ : 7S — 78’ a
weak morphism between them. A resolver simulating ¢ consists in a pair of functions rypjc: I’ — I
andr: E* X E/ — E such that:

1. o(rmic(vy)) = vy for all vy € I',

2. o(r(p,e’))=¢,forallp e E*and e’ € F,

3. if e; € Out(I’), Source(r(e, e)) = rmit(Source(ey)), and

4. if pis a finite run in 78 ending in v and e’ € Out(@(v)), thenr(p,e’) € Out(v).

! 5/

0e; -+ € Run™(7S’) starting in some v;, € I, the run induced by r is the
SequUence I'gy,(p’) = eperez - - - € Run™(7S) defined by e; = r(eo ... e;-1, €;), which is indeed a

Givenarun p’ = e

run in 78. We say that the resolver is sound if for every accepting run p’ € Run(7S’), the run
I'guns(P) 18 accepting in 7S. Note that we do not impose rg,.s(p’) to be rejecting if p’ is.

REMARK 3.7. Provided that all states of 7S’ are accessible, a resolver simulating ¢ can only
exist if ¢ is a locally surjective weak morphism.

Said differently, a sound resolver simulating ¢ is a winning strategy for the player Dupli-
cator in the following game:

26 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

— In round 0, Spoiler picks an initial vertex vy in 7S’. Duplicator responds by picking an
initial vertex vp in 7S such that ¢(vo) = vy,

— Inround n > 0, Spoiler picks an edge e}, in 78’, and Duplicator responds by picking an
edge e, in 78 such that p(e,) = ey,

— Duplicator wins if either eje, ... is an accepting run in 7S from vg or efe; ... is not an
accepting run in 78’ from vj (it is either not a run from v, or not accepting). Spoiler wins

otherwise.

DEFINITION 3.8. Let 7S and 7S’ be (labelled) transition systems. A history-deterministic
mapping (HD mapping) of transition systems from 78 to 7S’ is a pair of mappings ¢ = (¢y :
V — V', 0 : E — E’) such that:

— @ is a weak morphism,

— @ preserves accepting runs: p € Run(7S) and y(p) e W = Y (@gus(p)) € W', and

— there exists a sound resolver simulating ¢.

Even if a history-deterministic mapping is not necessarily locally bijective (and not even a
morphism of transition systems), the existence of a sound resolver allows us to define a right

inverse to @g,,s preserving the acceptance of runs.

LEMMA 3.9. Let ¢: 7S — 78’ be an HD mapping and let (11,) be a sound resolver simulating
it. The following holds:
— @guns © T guns = I gy (75")-
— T guns PrEserves the acceptance of runs in 78, that is, for every run p’ € Run(7S’), p’ is
accepting if and only if 1 ,.s(p) is accepting in 7S.

PROOF. The first item follows from the fact that ¢(r(p, e’)) = ¢’ for every p € E* and ¢’ € E'.
For the second item, the definition of a sound resolver imposes that if p’ is accepting, so

1S ' uns (p"). For the other direction, if rg,,(p’) is accepting, then @z, (rz..s(p’)) = p’ has to be

accepting, as an HD mapping preserves accepting runs. u

EXAMPLE 3.10. In Figure 8 we give an example of a weak morphism ¢: 7S — 78’ that
is a history-deterministic mapping, but which is neither a morphism, nor locally bijective.
Transition system 78, on the left of the figure, is a parity TS (more precisely, a coBuichi TS).
Transition system 7S’, depicted on the right of the figure, is a Muller TS using as acceptance
set the Muller language associated to ¥ = {{a}, {a, B}, {a, A}}; that is, a run in 78’ is accepting
if and only if it eventually avoids either transition e’ or transition f’. The weak morphism
we propose is given by: ¢o(vo) = @(v1) = @(v2) =V, and ¢(u;) = ¢(uy) = u’. The image of
most edges is uniquely determined, and we use colours to represent them. We have named
the only edges whose image is not uniquely determined, and we define ¢(e;) = p(e;) = ¢’ and

o(f1) = o(f2) = f".

27 /| 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Figure 8. A history-deterministic mapping from a parity TS to a Muller TS with acceptance set given by
F ={{a},{a,B},{a,A}}. We use dashed arrows to represent the images of vertices, and colours to
represent the image of edges.

We remark that ¢ does not preserve rejecting runs. Indeed, a run in 78 alternating
between vy and uy, taking transition f; infinitely often, is rejecting, but its image is accepting in
7S8’. However, ¢ preserves accepting runs: a run is accepting in 78 if and only if it eventually
stays in {vy, us} or in {vy, uy}. In the first case, the image under ¢ avoids transition f” in 7§’,
and in the second case, its image avoids transition e’.

Finally, we describe a sound resolver simulating ¢. When simulating a run from 78’ in 7S,
we have a choice to make only when we are in state vy. If the previous transition in 7S’ was ¢’,
we will go up, that is, v/ 5 W is simulated by vo 4 ui and v’ 5 V' is simulated by vo 5 vp. If the
previous transition in 78’ was f’, we will go down symmetrically. In this way, if transition f” is
eventually not visited by the run in 78’, we ensure to stay in {vy, u; } in 78 (and symmetrically,
we ensure to stay in {v,, u,} if ¢’ is avoided in 7S’). L 3

History-deterministic-for-games mappings. In the case of games, we need to slightly
strengthen the definition of HD mappings to guarantee that, if there is a suitable mapping
¢: G — G, then G and G’ have the same winner. In order to show that if Eve wins G’ then
she wins G, we need a method to transfer strategies in G’ to G. A regular resolver simulating ¢
does not suffice to do this, as it does not take into account the partition into Eve and Adam
vertices. We need to be able to simulate a play of G’ in G in a two-players-game fashion, Adam’s
moves will be simulated by Adam, and Eve’s moves by Eve. This idea leads to the notion of
HD-for-games mapping.

Let G and G’ be two games, and ¢ : G — G’ be a weak morphism between them admitting
a resolver (1, r) simulating ¢. Given runs p’ = epe; - € Run(G’) and p = egey - - - € Run(G),
we say that p is consistent with (1, r) over p’ if:

1. Source(eg) = rmit(Source(ey),

28 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

2. ¢(e;) = e}, and
3. for every finite prefix epe; ... e,-1 C p ending in a vertex controlled by Eve, the next edge

inpise,=r(eg...en_1,€y).

We remark that there exists at least one run consistent with (rinit,) over p’, namely rg,;(p”).
We say that (¢, r) is sound for G if it verifies that for any accepting run p’ € Run(G’), all runs
consistent with (rit, 7) over p’ are accepting in G.

Said differently, a resolver sound for G is a winning strategy for Duplicator in the following
game:

— In round 0, Spoiler picks an initial vertex vj in G’. Duplicator responds by picking an
initial vertex vy in G such that ¢(vo) = v,

— In round n > 0, Spoiler picks an edge e;, in G'. If v,_; is controlled by Adam, Spoiler
chooses an edge e, = v,_1 — v, € Out(vy_1) such that ¢(e,) = e),. If v, is controlled by Eve,
it is Duplicator who chooses one such ej,.

— Duplicator wins if either eje; ... is an accepting run in G from v, or efe; ... is not an

accepting run in G’ from v;. Spoiler wins otherwise.

DEFINITION 3.11. An HD mapping of games ¢ : G — G’ is called history-deterministic-for-

games if it admits a resolver sound for G.

Whenever we apply the term HD-for-games to amap ¢ : 7S — 78’, it will implicitly imply
that 78 and 78’ are games (that is, they have a fixed vertex-labelling Ipiayers: V. — {Eve, Adam}),
and that ¢ preserves those vertex-labellings).

In the nextlemma, we prove that HD and HD-for-games mappings are a strict generalisation
of locally surjective morphisms (and therefore, also of locally bijective ones). On the other hand,
we remark that HD mappings must be locally surjective, but they are not necessarily morphisms
(they might not preserve rejecting runs).

LEMMA 3.12. If ¢ : 78 — 78 is a locally surjective morphism, it is also an HD mapping. If 7S
and 78’ are games, ¢ is moreover HD-for-games.

PROOF. We need to define a sound resolver simulating ¢. Let ri,i.: I’ — I be any function
choosing initial vertices satisfying that ¢ o rhit = Idp (which exists by local surjectivity of
@). For each v € V and edge e’ € Out(¢(v)) we choose one edge f(v,e’) € Out(v) such that
o(f(v,€’)) = e (which exists by local surjectivity), and we let r be the resolver induced by these
choices. Formally, we define r: E* X E’ — E recursively. For the base case, if e; € Out(V’), with
V' € I', we define r(g, ey) = f(rinit(V'), €y). Assume that r has been defined for runs of length
< n,andlet p € E*be oflengthn+ 1 and e’ € E’. If p is not a run or e’ ¢ Out(Target((p))),
we let r(p, ¢’) be any edge in ¢~1(¢’). If not, let v = Target(p) and define r(p, ') to be the edge

f(v,e).

29 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

It is straightforward to check that (1, r) is indeed a resolver (for every run p’ € Run(7S’),
the sequence rg,,.s(p’) isarunin 78 and p’ is its image under ¢). Finally, since ¢ is a morphism,
for every p’ € Run(7S8’) and every p € Run(7S) consistent with (r1.t,) over p’, p is accepting in
78 if and only if p’ = @x,.s(p) is accepting in 78’. We conclude that (i, ') is a sound resolver
(resp. sound for 78) and therefore ¢ is an HD mapping (resp. HD-for-games mapping). u

Restrictions and extensions of initial sets. The following simple lemma states that reducing
the number of initial vertices preserves the history-determinism of mappings.

LEMMA 3.13. Let 7S and 7S’ be two TS such that there is an HD (resp. HD-for-games) mapping
@: 78 — 78'. For any non-empty subset I C I', ¢ is also an HD (resp. HD-for-games) mapping
between the transition systems 7S,) and 7 S}; that is, the transitions systems obtained by
setting rinic(I) and I as initial vertices, respectively.

For arbitrary acceptance conditions, enlarging the set of initial vertices does not preserve
history-determinism. However, for transition systems using the acceptance conditions consid-
ered in this work, we can enlarge the set of initial vertices without loss of generality. The proof
can be found in Appendix C.

LEMMA 3.14. Let 7S and 78’ be two TS such that all their states are accessible, and let ¢: 7S —
7S’ be an HD (resp. HD-for-games) mapping between them. If W and W’ are prefix-independent,
the mapping ¢ is also HD (resp. HD-for-games) when considered between the transition systems
TSy and 787, consisting of the transition systems 7S and 78’ where all the states are set to be

initial.
3.4 Preservation of semantic properties of automata and games

We start this section by showing that locally bijective morphisms and HD mappings are a
strict generalisation of compositions by deterministic and history-deterministic automata,
respectively (Proposition 3.15). Then, we prove that these mappings witness the semantic
equivalence of the transition systems under consideration. That is, (1) if ¢p: A — A’ is an HD
mapping of automata, then L(A) = L(A’), and if ¢ is locally bijective, A is deterministic (or
unambiguous) if and only if A’ is (Proposition 3.16);° and (2) if ¢: G — G’ is an HD-for-games
mapping, G and G’ have the same winner (Proposition 3.18 and Corollary 3.19).

Morphisms generalise composition by an automaton.

5 The results in this section do not directly imply that if A is an automaton recognising the acceptance set of another
automaton 8, then 8 < A recognises the same language as B8, if A is not history-deterministic (Proposition 2.6). In
that case, the equality L(8 < A) = L(B) follows from the idea that runs in 8 can be simulated in 8 < A “guided by the
non-deterministic choices of A”, which we do not formalise in this work.

30 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROPOSITION 3.15. Let A be a complete automaton accepting the language L(A) =W C X,
and let 78 be a (labelled) TS with acceptance set W. Then, there exists a locally surjective weak
morphism of (labelled) TS ¢: 78 < A — T8 that preserves accepting runs. Moreover:
1. If A is deterministic, ¢ can be chosen to be a locally bijective morphism.
2. If A 'is HD, then ¢ can be chosen to be an HD mapping.
3. If Ais HD and 78 is a game suitable for transformations, then ¢ can be chosen to be an
HD-for-games mapping.

PROOF. We recall that the set of states of 7S < A is V X Q and its set of transitions E” is a
subset of (E X A) U E, where V and Q (resp. E and A) are the states (resp. transitions) of 78
and A, respectively. We let W4 C I'“ be the acceptance set of A. We define ¢y (v,q) = v and
pr(eq,ey) = e for (eq,e2) € EXAand @g(eq) = e; for e; € E. It is immediate to check that ¢ is a
weak morphism.

Given a run p = (vg, qo) 2, (vi, Q1) . InTS A, we can consider its projection over
TS, Qguns(p) = Vo R V1 &, ... We note that there must exist a unique run in A of the form

ap:Co a1
AN AN

Pa(p) = qo > 1

(Formally, some letters a; might equal ¢, and in this case g; N qi+1 does not appear in the run
oa(p))-

We show that ¢ preserves accepting runs. Let p be an accepting run in 78 < A. In that
case, coC1Cy - - - € W4, and therefore ¢ #(p) is an accepting run in A over apa;as ..., SO we
conclude that apayay - - - € W and ¢g,,;(p) is an accepting run in 7S.

We prove next the local surjectivity of ¢. Clearly, ¢ induces a surjection between the initial
vertices of 78 < A (which are Iys X I4#) and those of 7S. Let (v,q) e VxQand e; = v SV eEIf
a = ¢, the edge e, belongs to E~ and ¢(ey) = e1. If a # &, since A is complete there is a transition
e =4q 5 q' € A and ¢(eq, e3) = eq, so @ is locally surjective.

1. Since A has a single initial state qo, ¢ induces a bijection between the initial vertices
of 78 = A (which are Iys X {qo}) and those of 7S. Let E | C E X A and E; C E such
that E* = E7 | U E7. We remark that ¢| gx 1s the identity function (so injective) and that
@(E7,) N @(E7) = 0 because ¢(E7) are exactly coloured transitions of 7S. Finally, let
(e1,ez) and (ey, €5) in Out(v, q) N E7 . Their ¢(ey, e2) = (e}, €;) if and only if e; = e]. Let
a € X be the colour of e;. Since A is deterministic, there is at most one transition from g
labelled by a, that must be e, = e;. We conclude that (e, e2) = (e}, €}) and that ¢ is locally
injective.

Let p be a rejecting run in 78 =< A (we use the notations introduced above). In that
case, coC1Cy - - - € W 4, and therefore ¢ #(p) is a rejecting run over apa;a; Since A is
deterministic, this is the only run over apa;a; ..., so we conclude that it does not belong

to W. We conclude that ¢4,,(p) is a rejecting run in 7S.

31/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

2. Let (ro,r#) be a resolver for A. We define a resolver (ri, p) simulating ¢. First, we
let riic(vo) = (vo, o) for all vo € Igs. We define ry: E** X E — E™ by induction on the
length of the runs. Let ey = vg N v1 € Out(vg) be an edge in 78. If e; is uncoloured
(a =¢), weletry(g, ep) = ey = (vo,T0) 5 (v1,10). If not, we let ry (&, eg) = (€o, €q), Where
eq = (g, a). Assume that r, has been defined for sequences of edges of 7S = A of length
< nandlet p = epe;...e,-1 € E*" be a sequence length n + 1 and ess = v, R Vnat
be an edge in 78. If p is not a run or if it does not end in ¢~ (vy,), we let ry(p, ess) be
any edge in ¢~!(es5). Assume that p is a run ending in ¢~(v,). If a, = &, we define

ro(p, e7s) = eqs. As noted before, p induces a run (p) = o — 1 ——> ... — gy in

A. Weleteg =ra(pa(p), an) be the transition chosen by the resolver of A after this run,
and we define r,(p, ess) = (e7s, €7).

It directly follows from this definition that (rini, y) is indeed a resolver. The proof that if
p € Run(7S8) is an accepting run then rg z..s(p) is accepting follows the same lines as the
previous item.

3. We prove that, if 78 is a game suitable for transformations, the resolver (rii, p) defined
in the previous item is sound for 7S. We claim that if p is a run in 78, the only run
consistent with (rmit, 'p) OVer p is ry g..:(p). This follows from the fact that if (v, q) is a
vertex in 7S < A controlled by Adam and e € Out(v), then there is a unique e’ € Out(v, q)
such that ¢(e’) = e. This is indeed the case: as 78 is suitable for transformations, if v
is an Adam’s vertex, every e € Out(v) is uncoloured, so by definition of ¢ we have that
p(e’) =e = ¢’ = e. (This can be seen as that ¢ is locally bijective in Adam’s vertices).
We conclude that if p is an accepting run in 7S and p™ is a run consistent with (i,)
over p, then p™ = ry ..s(p), which is accepting by soundness of the resolver (rini;, 7p). ™

Morphisms withess equivalence of automata.

PROPOSITION 3.16. Let A, A’ be two automata over the same input alphabet such that there
is an HD mapping of automata ¢: A — A’. Then, L(A) = L(A’), and A is HD if and only if A’
is HD. If ¢ is moreover locally bijective and surjective, A is deterministic (resp. complete) if and
only if A’ is.

PROOF. Since ¢ preserves accepting runs, it is clear that L(A) € L(A’). Since ¢ admits a
sound resolver (1,), if p is an accepting run over w € £¢ in A’, then rg,,;(p) is an accepting
run over win A, so L(A’) € L(A).

Let (rmit, ') be a sound resolver simulating ¢. Assume that A is HD, admitting a resolver
(ro,7). Aresolver (ry, r’) for A’ can be obtained just by composing r, and ¢, that is:) = ¢(ro)
and for p’ € Run™(A’)and a € X, ' (p’,a) = Q(r(ro,zums(p’), a))). Thatis, given a run p’ in A’,
we simulate it in A using r, then, we look at what is the continuation proposed by the resolver r
when we give the letter a, and we transfer back this choice to ‘A’ using ¢. Assume now that A’

32 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

is HD and that (r{, r’) is a resolver for it. We define a resolver (ro, r) for A. We let ro = rinie(1y),
and for p € Run"(A) and a € L, r(p,a) = o ((QRuns(P), T (P guns(P), @)). That is, given a run p
in A, we simulate it in A’ using @, then, we look at what is the continuation proposed by the
resolver r’ when we give the letter a, and we transfer back this choice to A using r,. Itis a
direct check that the resolvers defined this way witness that ‘A" and ‘A, respectively, are HD.
The proof that A is deterministic (resp. complete) if and only if ‘A’ is deterministic (resp.
complete), assuming surjectivity and local bijectivity of ¢, follows the same lines. u

A subclass of automata with a restrictive amount of non-determinism that is widely study
is that of unambiguous automata (we refer to [29, 20] for a detailed exposition). An automaton
is unambiguous if for every input word w € £% there is at most one accepting run over w, and
it is strongly unambiguous if there is at most one run over w. By Remark 3.4, locally bijective
morphisms also preserve (strongly) unambiguity: if ¢ : A — A’ is a locally bijective morphism
then A is (strongly) unambiguous if and only if A’ is.

Morphisms preserve winning regions of games.

LEMMA 3.17. Let G, G’ be two games, such that there is a weak morphism of games ¢: G — G’
that is locally surjective and preserves accepting runs. If Eve wins the game G from an initial
vertex v, then she wins G’ from @(v).

PROOF. Let V' = ¢(v), and let strat,: mﬁﬂ”(g) — E be a strategy from v for Eve in G. Intu-
itively, we will define a strategy in G’ as follows: for each finite run p’ from v’ in G’, we pick a
preimage p € ¢~1(p’) in G, look at the decision made by strat, at the end of p and transfer it
back to G’ via ¢. In order to define a correct strategy, the choices of the preimages have to be
made in a coherent manner. We formalise this idea next.
We will make use of a function choiceg: Tatﬁﬁ,”(g’) — zpatﬁf,‘”(g) satisfying that for any
e, € Path'™(G'):

— The run choiceg(p’) has length n + 1.

— @auns(choiceg(p)) = p'.

— Monotonicity: if p’ C p’ then choiceg(p’) C choiceg (p’).

/ ! 5/ /
p =epe...e

— If there exists e, € ¢~1(e/) such that choices (eye; ... e _,)en is consistent with strat,, then
choiceg (p’) is consistent with strat,,.

Assume for now that such a function exists, and define a strategy in G’ as
strat/, (p’) = @(strat,(choiceg(p’))), for p’ € Path"(G").

We prove that strat;, is winning. Let p’ = eje; - - - € Run(G’) be an infinite play consistent with
strat],. For each finite prefix g’ C p’, choices () is a finite play in G, and by the monotonicity

33 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

assumption, we can define the limit of these runs as:

/

p = epeiey - -+ € Run(G), where ege; ... en = choiceg(ege] ... e)),

which is indeed a run in G. We show that p is consistent with strat, by induction. Let p, =
epe1 . .. en_1 be the prefix of size n of p, and suppose that it ends in a vertex v, controlled by Eve.
We want to show that e, = strat,(p,). By definition of strat],, e}, = ¢(strat,(pn)) = ¢(e,), and
as vy is controlled by Eve, strat,(p,) is the only continuation of p, consistent with strat,, so by
the last property of choicey, e, has to coincide with strat,(p,), as we wanted. As p is consistent
with the winning strategy strat,, it is an accepting run in G, and since ¢ preserves accepting
runs, p’ = Qx,.(P) is also an accepting run.

Finally, we show how to build a function choiceg;: Path'’(G') — Path!"(G) by induction
on the length of the runs. Assume that choiceg; has been defined for runs of length < n, and let
eye; ...e, bearunoflength n+1, with choices(eje; ... e,) = epe1...e, 1. If epey ... ep_q isnot
consistent with strat,, it ends in a vertex v, controlled by Adam, or strat,(eges . ..en_1) € @~ 1(en),
we let e, € 97 1(e,) N Out(v,) be any edge (one such edge exists by local surjectivity). On the
contrary, we let e, = strat,(epe; ...en_1). We define choiceg(eye]...e_je;) = eper...ex 1en.
By construction, the obtained function fulfils the 4 requirements.]

PROPOSITION 3.18. Let G, G’ be two games such that there is an HD-for-games mapping
©: G — G'. Eve’s winning region in G’ is the projection of her winning region in G: Weye(G') =
P(Wrve(G)).

PROOF. If Eve wins G from an initial vertex v, Lemma 3.17 guarantees that she wins G’ from
(V).

Assume now that Eve wins G’ from an initial vertex v’ with a strategy strat/, : Tatﬁfj? Gg) —
E’. We need to show that she wins G from some initial vertex in ¢~ (V). Let (riit,) be a resolver
simulating ¢ sound for G and let v = ry,i. (V). We define

straty(p) = r(p, stratl, (Paus(p)), for p € Pathl"(G).

That is, strat, is a strategy in G from v that, given a finite run p, simulates p in G’, looks at the
move done by the strategy strat), in there, and transfers this choice back to G’ by using the
resolver r. We prove that strat, is winning for Eve in G. Let p = ege; - - - € Path,(G) be a play
consistent with strat,. We claim that ¢(p) is consistent with strat;, and that p is consistent with
(rnit,) over @(p). This implies the desired result; consistency with strat/, implies that ¢(p) is
accepting, and since (i,) is sound for G, p would be accepting in G.

We prove that ¢(p) is consistent with strat],. Let eye] ...e;_, be a subplay of ¢(p) end-
ing in a vertex v, controlled by Eve. By definition of the strategy strat,, we have that e, =
r(eg...en 1,strat),(e;...e;_,)), and by definition of a resolver (item 2), we obtain that e;, =
@(en) = strat,, (e} ... e, _,)), as we wanted.

34 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

The fact that p is consistent with (7,) over ¢@(p) follows directly from the definition
of strat,,. [

The next corollary follows from the previous proposition and Lemma 3.14.

COROLLARY 3.19. Let G, G be two games whose states are accessible and such that their
acceptance sets Wg and W g are prefix-independent. If there is an HD-for-games mapping ¢: G —
G’, then Eve’s full winning region in G’ is the projection of her full winning region in G: Weve(Gy,,) =
(P((WEve (QV))

4. The Zielonka tree: An optimal approach to Muller languages

In this section, we take a close look into the Zielonka tree, a structure introduced (under the
name of split trees) to study Muller languages [94]. We show how to use the Zielonka tree
to construct minimal deterministic parity automata and minimal history-deterministic Rabin
automata recognising Muller languages. In Section 4.2, we describe the construction of a minimal
deterministic parity automaton ﬂpza;ty for a given Muller language Muller(¥). Theorem 4.15,
the main contribution of this section, states the minimality of ﬂ?:ty both amongst deterministic
and HD parity automata. Theorem 4.14 states the optimality on the number of colours of the
acceptance condition of f(?;ty, and implies that we can determine the parity index of a Muller
language from its Zielonka tree. We will use the optimality of automaton ﬂ%a:ty to provide a
polynomial-time algorithm minimising DPAs recognising Muller languages in Section 6.3.

In Section 4.3, we describe the construction of a minimal history-deterministic Rabin
automaton ﬂ%a:_’i” for a Muller language Muller(¥). Its minimality amongst HD automata is
shown in Theorem 4.51, by using the characterisation of the memory requirements of a Muller
language in terms of its Zielonka tree [34].

On the other hand, it has been shown that finding a minimal deterministic Rabin automaton
recognising a given Muller language is NP-complete, if the language is represented by a parity
or Rabin automaton, or even by its Zielonka tree [21]. Therefore, unless P = NP, there are Muller
languages for which minimal deterministic Rabin automata are strictly larger than minimal
HD Rabin automata. Some explicit such languages were shown in [24, Section 4]. A summary of
the minimal automata recognising Muller languages appears in Table 1.

41 The Zielonka tree

DEFINITION 4.1 ([94]). Let £ C 2% be a family of non-empty subsets over a finite set Z. A
Zielonka tree for ¥ (over X),® denoted Z# = (N, <,v: N — ZE) isa Zf-labelled tree with nodes
partitioned into round nodes and square nodes, N = N, LI N, such that:

— The root is labelled X.

35/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

e of i
Typ Deterministic History-
automata deterministic
] parity parity
Parity A7, Az,
_ No characteri- Rabi
Rabin . ﬂf "
sation 4

Table 1. Minimal automata recognising a Muller language Muller(¥), according to the type of
acceptance condition (parity or Rabin) and the form of determinism.

— Ifanode islabelled X C £, with X € ¥, then it is a round node, and it has a child for each
maximal non-empty subset Y C X such thatY ¢ #, which is labelled Y.

— Ifanodeislabelled X C X, with X ¢ 7, then it is a square node, and it has a child for each
maximal non-empty subset Y C X such thatY € ¥, which is labelled Y.

REMARK 4.2. We note that for each family of subsets # C 2%, there is only one Zielonka tree
up to renaming of its nodes, so we will talk of the Zielonka tree of .

For a family of subsets ¥ C 2% and ¥’ C %, we write ¥y, = F N 2%,

REMARK 4.3. We remark that if n is a node of Z#, then the subtree of Z# rooted at n is the
Zielonka tree for the family # Iv(n) over the alphabet v(n), that is, for the restriction of ¥ to the
subsets included in the label of n.

REMARK 4.4. Let n be a node of Z# and let n; be a child of it. If v(n;) € X C v(n), then
vim) e — X¢F < v(n)¢ F.In particular, if ny, n; are two different children of n,
thenv(n)) e ¥ & v(ny) € ¥ < v(ny)Uv(ng) ¢ 7.

We equip Zielonka trees with an order to navigate in them. That is, we equip each set
Childrenz,(n) with a total order, making Z# an ordered tree. The precise order considered
will be irrelevant for our purposes. From now on, we will assume that all Zielonka trees are
ordered, without explicitly mentioning it.

For a leaf | € Leaves(Z#) and a letter a € £ we define Supp(l,a) = n to be the deepest
ancestor of [(maximal for <) such that a € v(n).

EXAMPLE 4.5. We will use the Muller language associated to the following family of subsets
as a running example throughout the paper. Let £ = {a, b, c} and let ¥ be:

¥ ={{a,b},{a, c},{b}}.

6 The definition of Z#, as well as most subsequent definitions, do not only depend on # but also on the alphabet %.
Although this dependence is important, we do not explicitly include it in the notations in order to lighten them, as
most of the time the alphabet will be clear from the context.

36 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

In Figure 9 we show the Zielonka tree of #. We use Greek letters (in pink) to name the nodes of
the tree. Integers appearing on the right of the tree will be used in the next section.

We have that Supp(é, ¢) = A and Supp(é, b) = a. Also, Jump(&, A) = (is the leaf reached by
going from & to A, then changing to the next branch (in a cyclic way) and re-descend by taking
the leftmost path. Similarly, Jump(¢, a) = 6.

The subtree rooted at A contains the nodes {4, &, {}. We note that this is the Zielonka tree
of F(qc = {{a, c}} (over the alphabet {a, c}). *

a,b,c |« 1

Figure 9. Zielonka tree Z# for ¥ = {{a,b},{a,c}, {b}}.

4.2 A minimal deterministic parity automaton

We present next the Zielonka-tree-parity-automaton, a minimal deterministic parity automa-
ton for a Muller language Muller(%) built from the Zielonka tree Z#. Our construction will
furthermore let us determine the parity index of the language Muller(¥) from its Zielonka tree.

4.21 The Zielonka-tree-parity-automaton

We associate a non-negative integer to each level of a Zielonka tree Z# = (N, <,v). We let
pz : N — N be the function defined as:

— ifX € ¥, pz(n) = Depth(n),

— ifE ¢ F, pz(n) = Depth(n) + 1.

We let ming (resp. max#) be the minimum (resp. maximum) value taken by the function p.

REMARK 4.6. A node n in the Zielonka tree Z# verifies that pz(n) is even if and only if
v(n) € F.If L € ¥, ming = 0 and max¢ equals the height of the Zielonka tree minus one. If
X ¢ ¥, ming = 1 and maxs equals the height of the Zielonka tree.

EXAMPLE 4.7. The Muller language from Example 4.5 satisfies £ ¢ ¥. The values taken by
the function p are represented at the right of the Zielonka tree in Figure 9. We have pz () =1,

pz(B) = pz(A) =2 and pz(8) = pz () = pz(¢) = 3, s0 ming = 1 and maxys = 3. .

37 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

DEFINITION 4.8 (Zielonka-tree-parity-automaton). Given a family of non-empty subsets
F c 2%, we define the ZT-parity-automaton &Z(?:ty = (Q, %, qo, [ming, max#], §, parity) as the
deterministic parity automaton given by:
— Q = Leaves(Z¢),
— (o is the leftmost leaf of Z#,”
— The transition reading a € X from q € Q goes to Jump(q, Supp(q,a)) and produces
pz(Supp(q, a)) as output, that is,

6(q, a) = (Jump(q, Supp(q, a)), pz(Supp(q, a))) .

Intuitively, the transitions of the automaton are determined as follows: if we are in a leaf [
and we read a colour a, then we move up in the branch of [until we reach a node n that contains
the letter a in its label. Then we pick the child of n just on the right of the branch that we took
before (in a cyclic way), and we move to the leftmost leaf below it. The colour produced as
output is pz(n), determined by the depth of n.

EXAMPLE 4.9. In Figure 10 we show the ZT-parity-automaton ﬂ?;ty of the family of subsets
from Example 4.5. L 4

Figure 10. ZT-parity-automaton recognising the Muller language associated to = {{a, b}, {a, c}, {b}}.

Correctness of the Zielonka-tree-parity-automaton.
PROPOSITION 4.10 (Correctness). Let ¥ C 2 be a family of non-empty subsets. Then,
parityy
L(ﬂzgr) = Mullers(F).
That is, a word w € £ is accepted by &—’(?:ty if and only if Inf(w) € F.

The following useful lemma follows directly from the definition of Supp and Jump.

7 Any state can be chosen as initial state (see Lemma 2.5).

38 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

LEMMA 4.11. Let q be a leaf of Z# and let n be a node above q. Then, Supp(q, a) is a descendant
of nifand only if a € v(n), and in this case, Jump(q, Supp(q, a)) is a descendant of n too.

PROOF OF PROPOSITION 4.10. Let w = wowiws - - - € L% be an infinite word. For i > 0,
let g; be the leaf of Z# reached after the (only) run over wow; ... w;_; in f(?;ty. Fori > 0 let
n; = Supp(q;, w;) be the “intermediate node” used to determine the next state and the output
colour of each transition, and let ¢; = pz(n;) = y(qi, w;) € [ming, max#| be that output colour
(the output of the run over w being therefore cycicy - -- € N¥). Let g be a node appearing
infinitely often in the sequence qpq149- - - ., and let n,, be the deepest ancestor of ¢q., such that

Inf(w) C v(ny).

CLAIM 4.12. Thereis K € N such that for alli > K, q; > n,, and Supp(q;, w;) > ny,. In particular,
ci > pz(ny) fori > K.

Proof. Let K € N be a position such that w; € Inf(w) for alli > K and qx = . The claim
follows from Lemma 4.11 and induction. L 4

CLAIM 4.13. Let ny,..., Ny be an enumeration of Childrenz_(ny,) from left to right. It holds
that:

1. Supp(qi, w;i) = n,, infinitely often. In particular, ¢; = pz(ny) for infinitely many i’s.

2. There is no nyx € Children(ny,) such that Inf(w) C v(nyx).

Proof. We first remark that for all n,, x there are arbitrarily large positions i such that g; is not
below ny, x. Suppose by contradiction that this is not the case. Then, for all i sufficiently large we
have that Supp(q;, wi) > ny, and by Lemma 4.11, Inf(w) C v(ny, k). In particular, ¢ is below
ny k, contradicting the fact that n,, is the deepest ancestor of q., containing Inf(w).

Let K be like in the Claim 4.12. We show that ifi > K and g; > ny,x, then there is j > i such
that w; ¢ v(nyx), Supp(q;, wj) = ny and g1 > Ny k41 (by an abuse of notation we let s + 1 = 1).
It suffices to consider the least j > i such that Supp(q;, w;) # nu,x (Which exists by the previous
remark). Since Inf(w) € v(ny,) we have that Supp(q;, w;) = nw, so w; ¢ v(ny,;) (by Lemma 4.11)
and by definition of the transitions of ﬂ?:ty, qj+1 will be a leaf below ny k1.

The fact that q;,1 > ny k1 implies that for any child ny, x, infinitely many states q; will be
below ny, x» (we go around the children in a round-robin fashion). Therefore, for any k, there
are arbitrarily large j such that w; ¢ v(ny, ;) and Supp(q;, w;) = ny, implying both items in the
claim. ¢

Combining both claims, we obtain that the minimum of the colours that are produced as output
infinitely often is pz(n,,). By Remark 4.6, p~(n,) is even if and only if n,, is a round node (if
v(ny) € ¥). It remains to show that Inf(w) € ¥ if and only if v(n,) € #, which holds by the
second item in Claim 4.13 and Remark 4.4.]

39 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

4.2.2 Optimality of the Zielonka-tree-parity-automaton

We now state and prove the main results of this section: the optimality of the ZT-parity-
automaton in both number of states (Theorem 4.15) and number of colours of the acceptance
condition (Theorem 4.14). The minimality of the ZT-parity-automaton comes in two versions. A
weaker one states its minimality only amongst deterministic automata (Theorem 4.18), and a
stronger one states its minimality amongst all history-deterministic automata (Theorem 4.15).
Although the weaker version is implied by the stronger one, we find it instructive to provide
a proof for this easier case. The proof of the stronger statement is one of the most technical
parts of the paper, but the argument used in its proof is just a careful refinement of the ideas

appearing in the weaker version.

Statement of the results.

THEOREM 4.14 (Optimality of the parity condition). The parity index of a Muller language
Mullerg(F) is [ming, max¢]. That is, the ZT-parity-automaton of Mullers,(F) uses the optimal
number of colours to recognise this language.

THEOREM 4.15 (Minimality of the ZT-parity-automaton). Let A be a history-deterministic
parity automaton recognising a Muller language Mullerg (). Then, Iﬂ%a;tyl < |A|.

COROLLARY 4.16. For every Muller language L, a minimal deterministic parity automaton
recognising L has the same size as a minimal HD parity automaton recognising L.

We remark that, nonetheless, there are non-trivial HD parity automata recognising Muller
languages. The automaton provided in Example 2.3 is an HD coBtuichi automaton recognising a
Muller language that cannot be made deterministic just by removing transitions. We note that
the (deterministic) ZT-parity-automaton for this Muller language has only 2 states.

We say that an automaton A is determinisable by pruning if there is a subset A’ C A of its
transitions and an initial state gy such that the subautomaton induced by A’ with initial state qg
is deterministic and recognises £ (A).

PROPOSITION 4.17. There exists an HD parity automaton recognising a Muller language that
is not determinisable by pruning.

Optimality of the parity condition.

PROOF OF THEOREM 4.14. Let L = Mullery(¥). The ZT-parity-automaton of L is a parity
automaton recognising L using colours in [ming, maxy |, therefore, the parity index of L is at
most [ming, max#].

To prove that the parity index is not less than [ming, max# |, we use the Flower Lemma 2.16.
The language L is trivially recognised by a deterministic Muller automaton Ay, with just one

40 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

state g, transitions g N q for each a € £, and acceptance condition given by L itself. Let ny <
ny < ... =< nqbe abranch of maximal length of Z+ (that must verify d = max# — ming, and that
the root ny is a round node if and only if ming# is even). If we let ¢; be the cycle in A}, containing
exactly the transitions corresponding to letters in v(n;), we obtainthat #; 2 €, 2 --- 2 fgisa
d-flower over ¢, which is positive if and only if n; is a round node. Lemma 2.16 allows us to
conclude. u

Minimality of the ZT-parity-automaton with respect to deterministic automata. Before
presenting the proof of Theorem 4.15, we prove a weaker result, namely, that the ZT-parity-

automaton is minimal amongst deterministic parity automata recognising a Muller language.

THEOREM 4.18 (Minimality of the Zielonka Tree automaton with respect to deterministic
automata). Let A be a DPA recognising a Muller language Mullers(¥). Then, |f(?;ity| < |A|.

We recall that, by Remark 2.4 and Lemma 2.5, we can assume that all the states of automata
recognising Muller languages are accessible, and that any of them can be chosen to be initial.
When considering subautomata of these automata, we will sometimes not mention their initial
state.

Let A= (Q,%,I,T,A, W) be an automaton, and let X C X be a subset of the input alphabet.
We say that a subgraph S of the underlying graph of A is X-closed if for every state g in S
and every letter a € X there is some transition q RN q' in S. An X-final strongly connected
component (X-FSCC) of (A is an X-closed final SCC in the graph obtained by taking the restriction
of the underlying graph of A to the edges labelled by letters in X. We remark that a subset
S C Qs the set of states of an X-FSCC if and only if:

— for any two states ¢, q’ € S there is a finite word w € X* labelling a finite path from q to ¢/,
and
— if ¢ € S and there is a finite path from g to ¢’ labelled with a word w € X*, then g’ € S.

LEMMA 4.19. Let A be a complete automaton. For every subset X C X, ‘A contains an accessible
X-FSCC.

PROOF. As any graph without sinks contains some final SCC, the accessible part of the restric-
tion of A to edges labelled by letters in X contains one. By completeness of A, one such final
SCC has to be an X-closed subgraph, so it is an X-FSCC. [

LEMMA 4.20. Let A be a DMA recognising a Muller language Mullers(¥), let X C £ and let Sx
be an accessible X-FSCC of A. Then, the automaton induced by Sx is a deterministic automaton
recognising Mullerx (¥ |x) = {w € X% | Inf(w) € F}.

PROOF. Let A = (Q, %, qo, [, 5, W) (Where W is a Muller language). Let gs be the state in Sy
chosen to be initial, and let ug € £* be a finite word such that the run over uy from g ends in gs.

41 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

By prefix-independence of Muller languages, a word w € X“ belongs to Mullery () if and only
if uyw € Mullerg(F), and therefore, ‘A accepts w if and only if it accepts ugw. Since the run
in A over upw and the run in Sx over w have a suffix in common, and by prefix-independence
of W, we have that w € £(Syx) if and only if uow € L(A) if and only if Inf(w) € 7. |

The next lemma states that, in a parity automaton, the union of two accepting cycles must
be accepting, and similarly for rejecting cycles. In Section 6.1, we will see that this property is
actually a characterisation of parity transition systems (Proposition 6.11).

LEMMA 4.21. Let A be a parity automaton. Let €1, €, € Cycles(A) be two cycles with some state
in common. If 1 and €, are both accepting (resp. rejecting), then £1 U ¥, is also accepting (resp.
rejecting).

PROOF. Let y: A — N be the colouring function of A. The cycles ¢; and ¢, are accepting if
and only if d; = min y(¥;) is even, for i = 1, 2. In this case, min y(#; U ¥;) = min{dy, d;} is even.
The proof is symmetric if ¢; and ¢, are rejecting.]

By a small abuse of notation, we will say that two SCC 8; and S; are disjoint, and write
S1 NS, = 0, if their sets of states are disjoint.

LEMMA 4.22. Let ¥ C 2% be a family of subsets with Zielonka tree Z# = (N, <,v), and
let A be a DPA recognising Mullerg(¥). Let n € N be a node of the Zielonka tree of ¥, and let
ny, ny € Childrenz_(n) be two different children of n. If S and S, are two accessible v(n,)-FSCC
and v(ny)-FSCC in A, respectively, then S1 N S, = 0.

PROOF. Without loss of generality, we can assume that all states in (A are accessible, and since
the language that A recognises is prefix-independent, we can also suppose that A is complete.
Let Iy: A — X be the labelling of the transitions of ‘A with input letters. Let S; be a v(n;)-FSCC
in A, fori = 1,2, and let ¢ be its set of edges, which form a cycle satisfying Iy (€;) = v(n).
Suppose by contradiction that S; N S, # 0. Then ¢; and ¢; have some state in common, and
their union is also a cycle satisfying Iy (€, U €5) = v(ny) U v(ny). By Lemma 4.21, we must have

{1 accepting <= ¢¥; U ¥y accepting,
contradicting the fact that v(ny) € ¥ if and only if v(ny) Uv(ny) ¢ ¥ (Remark 4.4). u

PROOF OF THEOREM 4.18. We proceed by induction in the height of Z#. For height 1, the
result is trivial, since |ﬂ?:ty| = 1. Let A be a DPA recognising Mullers(¥). Let ng be the root
of Z# and ny, ny, ..., nx be an enumeration of the children of ny in Z#. By Lemma 4.19, for
eachi € {1,...,k}, A contains some accessible v(n;)-FSCC S;, and by Lemma 4.22 these must be
pairwise disjoint. By Lemma 4.20, each S; induces a deterministic subautomaton recognising
Mullery) (F lyn,))- Let Z; by the subtree of Z rooted at n;, which we recall that is the Zielonka

42 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

tree for ¥, ,,). By induction hypothesis, it must be the case that |Leaves(Z;)| < |S;|, so we can
conclude:

k k
AT = |Leaves(Zr)| =) |Leaves(Zy)| <) ISi| < |AL. g

Minimality of the ZT-parity-automaton with respect to HD automata. We intend to

parity
Z5

HD parity automata recognising Muller(¥). We will follow the same proof scheme than in

prove Theorem 4.15, that is, that for any ¥ C ZE, the automaton A is minimal amongst
the deterministic case, performing an induction over the height of the Zielonka tree. Assume
that A is an HD parity automaton for Muller(¥) and that ny is the root of Z# having n, ..., nx
as children. For each child n; we want to find an HD subautomaton (A; recognising the language
associated to ¥, ,, in such a way that the automata A; are pairwise disjoint, which would
allow us to carry out the induction and obtain that | A| > |Leaves(Z#)| = |&7l?;ty|. Our objective
will be therefore to prove:

PROPOSITION 4.23. Let ny be the root of the Zielonka tree of ¥, and let ny, ny, ..., nkx be an
enumeration of the children of ng. If A is an HD automaton recognising Mullery(F), then, A
contains k pairwise disjoint subautomata Ay, . . ., Ak that are history-deterministic and such that
L(A;) = Mullerym) (Flyn)-

The non-determinism of ‘A will make this task considerably more laborious than in the
previous paragraph, and we will have to thoroughly examine the strategies used by the resolvers
for A. By the inherently asymmetric semantics of non-deterministic automata, there are two
well-differentiated cases to consider, depending on whether the root of the Zielonka tree is
round (X € ¥) or square (X ¢ 7).

In order to simplify the proof, we will assume that all states are reachable using a sound
resolver and that all automata have a single initial state, which can be done without loss of

generality since a resolver for an HD automaton fixes such initial state in advance.

Case 1: The root of the Zielonka tree is a square node: £ ¢ . Let A = (Q, L, qo, [, A, W)
be a non-deterministic automaton. A memory structure for A is a memory skeleton M over A
together with a function g: Q X M X £ — A, where M is the set of states of M. We say that
(M, o) implements a resolver (qo,r) if for all a € Z, r(g,a) = a(qe, mg, @) and for all p € A*,
r(p,a) = o(Target(p), u(mo, p), a), where my is the initial state of M and u: M X A* — M is its
update function.

LEMMA 4.24 ([9]). Every HD parity automaton admits a sound resolver implemented by a finite

memory Sstructure.

As M is a pointed graph labelled with the transitions of A, we could consider the product
automaton A = M. We want to furthermore restrict the transitions of this automaton to those

43 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that are indicated by the next-move function o. Given an automaton A and a memory structure
(M, g), we define their composition, which we write A<z M = (@XM, L, (qo, mp), T, A’, W) as the
automaton having transitions (g, m) N (qg,m)ifo(qg,ma) =e=q N q and u(m,e) = m’
(formally, A" is a subset of A X E 5, where E (are the edges of the memory skeleton). We note
that A < M is deterministic, and it is complete if A is.

The following lemma follows directly from the definition of soundness of a resolver and

the definition of composition of an automaton and a memory structure.

LEMMA 4.25. Let A be an automaton and (M, o) a memory structure for ‘A. The resolver
implemented by (M, o) is sound if and only if A and A <5 M recognise the same language.

For the rest of the paragraph, we let A = (Q, %, qo, N, A, parity) be a complete history-
deterministic automaton recognising the Muller language Muller#(X) admitting a sound re-
solver (qo,r) implemented by a memory structure (M,). We let m4: A < M — A be the
morphism of automata given by the projection into the first component: 74 y(q, m) = q and

(e, e) = ey.

REMARK 4.26. If p is a path in A <, M that is labelled by input letters apa; - -- € £* and
producing output cgcq - - - € N, then the 7 #-projection of p is a path in ‘A labelled by apa; - - - €
L% and producing cocq - - - € N® as output.

LEMMA 4.27. Let X C X and let Sx be an accessible X-FSCC of ‘A <s M. Then, m#(Sx) induces
an HD subautomaton of A recognising Mullerx (¥ |x) = {w € X® | Inf(w) € F}.

PROOF. Let gs be a state in m4(Sx) chosen to be initial. Let mg be a state in M such that
(gs, ms) € Sx. By Lemma 4.20, Sy induces a deterministic subautomaton with initial state
(gs, ms) recognising Mullery (¥ |x). On the one hand, since 74 (Sx) is an accessible subautoma-
ton of A having only transitions labelled by X and by prefix-independence of £(A), we have
that

L(ma(Sx)) € L(A) N X* = Mullerg(F,).

On the other hand, the projection of any accepting run in Sy provides an accepting run in
114(Sx) (by Remark 4.26), so

L(Sx) = MU”erX(?’X) C L(ma(Sx)).

Moreover, a sound resolver for 74(Sx) is implemented by (M, o) (the memory structure

with initial state set to mg). [|

LEMMA 4.28. Let n € N be a square node of the Zielonka tree of ¥ (v(n) ¢ F), and let
ni, ny € Childrenz_(n) be two different children of n. If S; and S, are two accessible v(n)-FSCC
and v(ny)-FSCC in A <s M, respectively, then 14 (S1) N 1#4(S2) = 0.

44 |/ 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF. Suppose by contradiction that there is some state q in 7.4(S1) N 74(S;), and let
mi, my € M be such that (q, my) and (g, m,) are states in S; and Sy, respectively. Fori = 1, 2,
let ¢ € Cyc[es(q,mi)(ﬂ <s M) be the cycle over (g, m;) containing all edges in S;. We note that
Iz (¢;) = v(n;) and therefore min y(#;) has to be even (as A <, M is deterministic), where Iy
and y are the labellings of ‘A <; M with input letters and output colours, respectively. By
Remark 4.26, the r4-projections of #; and ¢, are cycles over g in ‘A labelled with v(n;) and
v(ny) and in which the minimal colour appearing is even. By alternating these two cycles, we
can build an accepting run in A over a word w € X% with Inf(w) = v(n;) U v(ny), contradicting
the fact that v(ny) Uv(ny) ¢ ¥ (Remark 4.4). n

Lemmas 4.19, 4.27 and 4.28 imply Proposition 4.23 in the case in which the root of the
Zielonka tree is a square node.

Case 2: The root of the Zielonka tree is a round node: ¥ € ¥. Before presenting the
formal proof, let us discuss why considering these two cases separately is necessary. A first
idea to obtain the desired result would be to follow the same steps as in Case 1. However, this
approach encounters a major difficulty: the argument used in the proof of Lemma 4.28 is not
valid if Z € ¥. Indeed, even if we can find two rejecting cycles ¢, ¢; such that l5(¢;) = v(n;),
their 77 #-projections could a priori have a state in common; this would imply the existence of a
rejecting run over the set of letters v(ny) U v(ny) € ¥, which is not enough to conclude, as the
non-determinism of A leaves room for the existence of other accepting runs over this set of
letters. To circumvent this difficulty, we need to take a closer look at the strategies used by the
resolver. Rather than considering any finite memory strategy resolving the non-determinism of
A, we will show that we can choose a specific resolver for which we will be able to obtain a
result analogous to Lemma 4.28. To do this, we first construct the letter game of ‘A, as introduced
in [44], which is a Muller game satisfying that a strategy for it yields a resolver for A. The
strategy that we will use in this game is the one obtained by applying McNaughton’s algorithm
to solve Muller games [66] guided by the Zielonka tree, as presented in [34].
Let A = (Q, %, qo, [dmin, dmax], A, Parity) be a parity automaton recognising Muller(¥),
and assume that Z N [dmin, dmax] = 0. The letter game for A is the game G4 defined as follows:
— The set of verticesis V = QU (Q X £). Adam controls vertices in Q, and Eve controls vertices
inQ X X.
— For each letter a € ¥ and each q € Q, there is an edge g 5 (q,a).
— For each position (q,a) € Q x £, and for each transition g RN q’ in A, there is an edge
(q.a) > q.
— The set of colours isT' = £ U [dmin, dmax], and the acceptance set is the Muller language
associated to

F o parity={CCT|[CNEeF]|] = [min(C N [dmin, dmax]) is even]}.

45 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

That is, in the letter game, Adam provides input letters one by one, and Eve chooses transitions
corresponding to those letters in the automaton A. Eve wins this game if she manages to
build an accepting run every time that Adam gives as input an infinite word in the language
recognised by A.

Figure 11. Letter game for the HD automaton from Figure 1, recognising the Muller language associated
to F = {{a},{b},{c},{a,b},{b,c}}. Squares represent Adam’s vertices (the states of the automaton) and
circles Eve’s ones. Blue edges correspond to input-letters, and orange edges to the choices of
transitions in the automaton after each input letter. The only vertex where Eve has a non-trivial choice
to make in order to resolve the non-determinism of the automaton is (g4, b). In this example, Eve has a
winning strategy corresponding to the resolver described in Example 2.3.

We remark that a subgraph of G# induces a subautomaton of (A via the (partial) mapping

autg: Ga— A that sends states of the form q € Q to q and edges of the form (q, a) 5 q to

ac
q9—4q.

REMARK 4.29. A strategy for Eve in G# induces a resolver in (A, which is sound if and only if
the strategy is winning.

REMARK 4.30. If two subsets of vertices of the letter game S§;,S, C V are disjoint, then
aut#(S1) Nautx(Sy) = 0.

REMARK 4.31. If p is a play in G4, labelled agcpaici--- € (Z - [dmin, dmax])™, the autg-
projection of p is a run in A over apa; - - - € L= producing coC1 - - - € [dmin, dmax]™ as output.

LEMMA 4.32 ([44]). A parity automaton A is HD if and only if Eve wins the letter game from
some initial state of ‘A.

For a subset X of vertices or edges of a game G, we define Eve’s attractor to X as:
Attrg(X) = {v € V| there is a strategy for Eve ensuring to eventually visit X from v}.

For a colour ¢ € I' we note Attrg(c) = Attrg(E.), where E. is the set of edges coloured c.

46 /| 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

For the rest of the paragraph, let A = (Q, %, qo, [0, d], A, parity) be a complete history-
deterministic parity automaton recognising Muller(¥). We can assume without loss of gener-
ality that the minimal colour that it uses is 0. We let V and E denote the sets of vertices and
edges, respectively, of the letter game and I' = £ U [0, d] its set of colours. Whenever we use
expressions like “the minimal colour appearing in a play”, it will refer to the restriction of I to
[0, d]. From the prefix-independence of Muller(¥) we can moreover assume that Eve wins the
letter game from any vertex (see Lemma 2.5). We let ny be the root of the Zielonka tree of ¥
(assumed to be round, that is v(ng) € ¥), let ny,..., nx be its children, and let £; = v(n;) C &
(note that X; ¢ F fori > 1).

Let us examine the condition ¥ — parity used in the letter game a bit closer. The first
levels of the Zielonka tree of this condition are depicted in Figure 12. It is clear that a strategy
in G4 ensuring to produce colour 0 infinitely often is winning. It might be the case that Adam
can prevent Eve from doing this, however, since Eve wins G4, in that case she could ensure to
produce infinitely often a set of colours included in some of the round nodes below the root,
that is, to either avoid colour 1, or to produce letters included in some X;. We use this idea to

define next attractor decompositions for G #.

S U0, d]

Y U[1,d]

Figure 12. First levels of the Zielonka tree of the Muller condition ¥ — parity, which is the winning
condition of the letter game G 4.

Given a subset of vertices V' C V we write G#(V’) to denote the subgame of G # containing
the vertices of V' and the edges between them.
Let x be an even integer. For a subgame G’ = G#(V’) of G# with no colour strictly smaller

than x, we define an x-attractor decomposition of G’ as a partition of V’ into
V' =Attrg (X)) UV LA U --- LU VIU A,

satisfying:
— Attrg/(x) is Eve’s attractor to x in G’.
— For each Vj, either (1) there is some i € {1,..., k} such that no colour of £ \ X; appears in
Ga(Vj), or (2) Eve has a winning strategy for G#(V;) (from any vertex) avoiding colour

47 |/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

x +1; and in both cases, if Adam can leave V; taking an edge v SVwev,ve V;), then
V'€ Attrg/(x) UVi WAL U...Vj_1 U Aj_1. In case (1) we say that V; is a Z;-region of the
attractor decomposition and in case (2) that V; is an x + 1-avoiding region.

— Eve wins G#(V;) from every vertex for all j.

— Aj = Attrg,(Vj), where G; is the subgame induced by the subset of vertices given by
V\ (Attrg/(x) UV U...UVj_1 UAj_q) (we note that this game does not contain edges
coloured with x).

If V; is an x + 1-avoiding region, we let Q]’ be the subgame obtained from G#(V;) by
removing the transitions labelled x + 1.

An x-recursive attractor decomposition of G’ is:
Dg/ = <Attrgr(X), (Vl, A1, @g{), (Vz, Ay, Z)gé), ceey (VI,AI, Z)gl/)>,

where Attrg: (x) UVy LA U --- UV, U Aj is an x-attractor decomposition of G, and, if V; is an
X + 1-avoiding region, then Dg]{ is an x + 2-recursive attractor decomposition of QJ’ (If Vjis an
r;-region, Z)g]g can be disregarded).

A representation of an attractor decomposition appears in Figure 13.

Vo
Vi <Ay Vo LAzl V3 V3
i idi i s s
Region Lavoidingiregion Region Region
Attrg(0) Attrg(0)

Figure 13. On the left, a 0-attractor decomposition of a game G. On the right, the coloured part
represents a 2-attractor decomposition of the subgame &’ induced by the 1-avoiding region V. Since
no 3-avoiding region appears on it, this is a full attractor decomposition of the game G, inducing a
partition into three different kinds of regions. The order over the ;-regions is given by

Vi <p Va1 <p V22 <p V3. Adam can only force to decrease with respect to this order, that is, at each
sublevel of the decomposition, Adam cannot force to go to the right.

We say that a subgame S of G’ is a Z;-region of Dy if it is a X;-region of some of the
recursively defined attractor decompositions. Similarly, for y > x an odd integer, we say that S
is a y-avoiding region of D¢ if it is a y-avoiding region of some of the recursively defined

48 /| 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

attractor decompositions. We say that the full game G’ is an x — 1-avoiding region (note that x
might take the value 0). We remark that for any subset S of vertices of G’ there is one and only
one minimal y-avoiding region of Dg- containing S (note that y might equal —1).

REMARK 4.33. A O-recursive attractor decomposition D¢, of G# induces a partition of the
vertices into
V=§Uu---uS u AjU...A U B U---UBq,

such that:
— §jis a Xj-region of Dg,,, for somei € {1,...,k},
— Aj = Attrg,(S;) for some subgame G; appearing at some level of the decomposition,
— B; = Attrg]/_ (x) for some even integer x and some x — 1-avoiding region g]' appearing at
some level of the decomposition.

Moreover, such a decomposition induces a total order over the Z;-regions: for two sets S¢, Sy,
we write S; <p Sy if there are two regions V;, V;» belonging to the same attractor decomposition
in Dg, such that j < j', S C Vjand Sy C V.

We call such a partition a full attractor decomposition of G#. We remark that, by definition
of an attractor decomposition, Eve wins G#(S;) from every vertex for every S;. See Figure 13

for an illustration.

The proof that G# admits a full attractor decomposition uses the ideas appearing in [34,

Section 3].

LEMMA 4.34. Let x be an even integer. If G’ is a subgame of G # with no colour smaller than
x and such that Eve can win from every vertex, then it admits an x-attractor decomposition. In

particular, G# admits a full attractor decomposition.

PROOF. We assume without loss of generality that x = 0. Suppose that V1, A4,...Vj_1,Aj_1
have already been defined and that they verify the desired properties. Suppose that the game
G; with vertices V' \ (Attrg/(0) UV U... Vi1 LA j—1) is non-empty. First, note that Eve wins G;
from any position. Indeed, Eve wins G’ from any vertex v in G; (as we suppose that she can
win G’ starting anywhere); moreover, since v ¢ A; for any j* < j, Adam has a strategy from v
forcing to remain in G;, and Eve has to be able to win against any such strategy.

We prove that either (1) there is some i € {1,...,k} and v vertex in G; such that Eve has a
winning strategy from v forcing to produce no colour in X \ £;, or (2) there is some vertex v in
G; such that Eve has a winning strategy from v avoiding colour 1. Suppose by contradiction
that this was not the case. Then, Adam can use the following strategy: first, he forces producing
colour 1, then, a colour not in X1, followed by a colour not in X,, and continues this pattern until
a colour not in %; is produced (and this without producing colour 0, since no 0-edge appears in
Gj). Afterward, he continues repeating these steps in a round-robin fashion. This allows him to

49 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

produce a play winning for him (the word produced is in Muller(#) while the minimal number
produced is 1), contradicting the fact that Eve wins G; from v.

We assume that we are in the case (1) (case (2) is identical), so from some vertices Eve can
win producing no colour in £ \ %;. We let V; be the set of such vertices, and for each of them
we fix a strategy strat, that is winning in G; and avoids colours in X \ %;. By definition of V, if
p = v~V is a finite play consistent with strat, in G;, then V' € V; (Eve can still win without
producing colours in X \ %;), so Adam cannot force leaving V;. This proves that:

1. strat, is winning in G#(V;) from v,
2. if v € Vj is controlled by Adam and v— V' is an edge in G #, then v’ € Attrg/(0) LI V; LI A LI
Vi UAj UV

Also, if a vertex v controlled by Adam is in V}, no edge v o V' appears in G;, so no colour of
X\ L; appears in G#(V;).

To finish the proof, we define A; to be the attractor of V; in G;.

The existence of a full attractor decomposition for G4 follows from the fact that any
x + 1-avoiding region of an x-attractor decomposition verifies the hypothesis of the lemma. m

LEMMA 4.35 ([66]). Let G be a game using a Muller acceptance condition such that Eve wins G
from every vertex. Then, there is a finite memory structure (M, o) over G implementing a winning
strategy uniformly, that is, for every vertex v of G there is a memory state m,, in M such that the
memory structure (My,, o) implements a winning strategy from v.

For the rest of the paragraph, we fix a O-recursive attractor decomposition Dg,, for G«
and let S; <p Sy... <p Sy be the Zj-regions of the induced full attractor decomposition. For
each region S; we fix a memory structure (M}, g;) uniformly implementing a winning strategy
for Eve in G#(S;) (as given by Lemma 4.35). As in the previous paragraph, we can consider the
composition G#(S;j) <; M; consisting of the product game in which the choices for Eve are
restricted to those of the form (v, m) 5 (v,m')ifoj(v,ym)=e=v 5 v and uj(m,e) = m’. By
definition, Eve does not have any choice in G#(S;) <g; M}, and since (M}, ;) implements a
winning strategy, any infinite path in G#(S;) <5; M; produces a set of colours in ¥ — parity.
We let 76 Ga(Sj) <o; Mj — Ga(S;) be the projection into G#(S;).

A subgraph G;j of G#(S;j) <g; M; is X-Adam-closed, for a subset X C I, if for every vertex
(g, m) controlled by Adam and every a € X, the transition (g, m) 5 ((q, @), m’) remains in G;.
We say that G; is an X-FSCC if it is a final SCC of the restriction of G#(S;) <g, M to the graph
where Adam’s choices are restricted to letters in X that is moreover X-Adam-closed. We say
that a subgraph G of G4 is an X-closed subgame (with respect to the attractor decomposition
Dg ., and a family of finite memory strategies) if G = 75(G;) for G; some X-Adam-closed SCC of
some product G#(S;) <q; M;.

50 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Intuitively, an X-closed subgame G of the letter game is a subgame included in a region S;
of the full attractor decomposition such that, if Adam only provides letters in X and Eve plays
according to the strategy defined by the memory structures M}, the play will never leave G.

LEMMA 4.36. Eve wins any X-closed subgame of G# (from any vertex).

PROOF. In an X-closed subgame included in a region G#(S;), Adam’s moves have been re-
stricted; however, all Eve’s moves coming from the strategy implemented by (M;, g;) are avail-
able. Therefore, this strategy is also winning in such a subgame, since it is winning in the full

Ga(Sj). m

Putting this lemma together with Remark 4.29 we obtain:

LEMMA 4.37. Let X C %, and let Gx C G# be an X-closed subgame of G#. The subautomaton
of A induced by aut#(Gx) is HD and recognises Mullerx (¥ |x).

LEMMA 4.38. Ifaproduct G#(Sj) <5; M; does not contain any X-Adam-closed subgraph, for
X C %, then from any vertex (q, m) Adam can force leaving S; while playing only letters in X. That
is, there is a path (q, m) ~ (q',m’) in Ga(S;) <g; M; producing exclusively letters in X such that,
for some a € X, the edge q’ 5 (q’, a) does not belong to G#(S;).

PROOF. If this was not the case, the subgraph of G#(S;) <o, M; consisting of the vertices that
can be reachable from (g, m) by reading letters in X would form an X-Adam-closed subgraph. =

LEMMA 4.39. For each label L; of the children of the root of Z#, Ga admits some L;-closed
subgame contained in a L;-region of Dg.,.

PROOF. Assume that the full attractor decomposition of G# induced by Dg, is the following:
V281U"'Usr |_| All_l...Ar |_| B1|_|"'|_|Bs,

We fix the following strategy strat for Eve in the letter game:

— whenever the play lands to Bj, where B; = Attrg]/_ (x) for some even colour x, she forces
producing colour x,

— whenever the play arrives to some Aj, she forces going to Sj,

— inregions S; she uses the strategy (M, o). More precisely, let m, be the state of M; such
that (M, oj) implements a winning strategy for G#(V;) from (v, my). Each time that the
play arrives to a vertex v in V; from a different region, Eve uses (M, g;).

CLAIM 4.40. Let p be a play consistent with strat (from any vertex), and let y > —1 be the
maximal odd number such that Inf(p) is contained in a y-avoiding region S of Dg .. Then, either p
eventually stays in a L;-region S; contained in S, or the minimal colour produced infinitely often

by pisy+1.

51/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Proof. Let Attrs(y+ 1) LUVi LA U...... , ViU A; be the attractor decomposition of S appearing
in Dg . By definition of an attractor decomposition, each time that the play leaves a V; region,
the next vertexisin v’ € Attrg(y +1) UV LA U...Vj_1 UAj_4. First,if V; is a y + 2-avoiding
region, p cannot stay in it (by maximality of y). Thus, if p does not eventually stay in a Z;-region,
it leaves regions V; infinitely often, so it must produce y + 1 infinitely often too. Since S is a
y-avoiding region, no colour smaller than y + 1 is produced. L 2

We obtain as a consequence that strat is winning for Eve from any initial position: any play
staying in a y-avoiding region and producing infinitely many y + 1’s is winning, and if a play
eventually stays in a X;-region S;, it has to be winning since the strategy implemented by (M;, o})
is winning in there.
We remark that we can extract a £;-FSCC from any X;-Adam-closed subgraph of G#(S;) <,
M, that will be contained in the X;-region §;, so it suffices to prove the existence of such %;-
Adam-closed subgraphs. We also recall that in G#(Sj) <5; M; all choices are left to Adam, so he
can choose to produce any path in this product whenever the play arrives to a vertex v in S;.
Suppose by contradiction that no accessible £;-Adam-closed subgraph exists in any of the
products. We consider a play in which Adam does the following:
(a) the letters that he gives form a word w € X% such that Inf(w) = £,
(b) each time that the play arrives to a region S;, he exists this region in a finite number of
steps.

Indeed, he can ensure to exit regions S; while only producing letters in X; by Lemma 4.38. By
Claim 4.40, the minimal colour produced infinitely often by such a play is even. By Remark 4.31,
we can project such a play in the automaton A, obtaining an accepting run over w. This is
a contradiction, since w ¢ Muller(¥) = L(A) (because L; ¢ F). We conclude that some
Ga(Sj) <g; M admits a Z;-FSCC, and therefore G# admits some X;-closed subgame. n

We can now infer Proposition 4.23 in the case in which the root of Z# is round: from
Lemma 4.39, we obtain X;-closed subgames in G4 for each i € {1,...,k} that are moreover
contained in Z;-regions. Therefore, their aut #-projections are disjoint (Remark 4.30), and each
of these projections induces an HD-subautomaton recognising ¥ |, (Lemma 4.37).

4.3 A minimal history-deterministic Rabin automaton

In this section, we present the construction of a history-deterministic Rabin automaton ﬂ%”‘;‘”
for a Muller language Muller(¥) using the Zielonka tree Z#, and prove its minimality (Theo-
rem 4.51). The automaton ﬂ%”‘;‘” can be seen as a quotient of the ZT-parity-automaton; that
is, ﬂ%”‘;i” is obtained by merging some states of &*’(?;ty. Thus, we replace the complexity in
the number of states by complexity in the acceptance condition. The size of the automaton
ﬂg‘?‘” is a well-studied parameter of Zielonka trees: its round-branching width, row(Z¢). This

52 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

parameter was introduced by Dziembowski, Jurdzinski and Walukiewicz [34] (under the name
of memory of Z#) and shown to coincide with the memory required by Eve to win in games
using Muller(¥) as an acceptance condition (see Proposition 4.52 below). In this paper, we are
not concerned with the memory of winning conditions, but we will use the result from [34] to
obtain the minimality of ﬂRZa;i”.

We note that this construction is asymmetric, in the sense that we show it for Rabin
automata, but not for Streett automata (their dual notion). The reason why we cannot dualize
the construction is due to the semantics of non-deterministic automata. However, we could use
the same idea to obtain a minimal universal history-deterministic Streett automaton (we refer
to [12] for the definition of universal HD automata).

4.31 The Zielonka-tree-HD-Rabin-automaton

DEFINITION 4.41 ([34]). Let T be a tree with nodes partitioned into round and square nodes,
andletTy,..., Tk be the subtrees of T rooted at the children of the root of T. We define inductively
the round-branching width of T, denoted rbw(T) as:

1 if T has exactly one node,

rbw(T) = 1 max{rbw(Ty),...,rbw(Tyx)} if the rootis square,

K
> rbw(T;) if the root is round.
i=1

The next lemma directly follows from the definition of rbw(T).

LEMMA 4.42. LetT = (N = No U Npg, <) be a tree with nodes partitioned into round and square
nodes. There exists a mapping n: Leaves(T) — {1,2,...,rbw(T)} satisfying:

If n € N is a round node with children ny # ny, for any pair

of leaves l; and l; below ny and ny, respectively, n(ly) # n(ly). (%)

EXAMPLE 4.43. Let ¥ = {{a,b},{a, c}, {b}} be the family of subsets considered in Exam-
ple 4.5. The round-branching width of Z# is rbow(Z#) = 2. Alabelling n: Leaves(Z#) — {1, 2}
satisfying Property * is given by n(6) = n(§) = 1 and n({) = 2. This labelling is represented in
the Zielonka tree Z# on the left of Figure 14. ¢

DEFINITION 4.44 (Zielonka-tree-HD-Rabin-automaton). Let ¥ C ZE, let Z& = (N =N U
Ng, <) be its Zielonka tree and n: Leaves(Z¢) — {1,2,...,rbw(Z#)} be a mapping satisfying
Property (x). We define the ZT-HD-Rabin-automaton ﬂ%”‘:‘” = (Q,%,1,T,A Rabinr(R)) as a
(non-deterministic) automaton using a Rabin acceptance condition, where:

— Q={1,2,...,rbow(Z#)},

— I=0,8

53 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

— I = N (the colours of the acceptance condition are the nodes of the Zielonka tree),

— 8(q, a) = {(Jump(l, Supp(l, a)), Supp(l, a)) | | € Leaves(Z#) such that n(l) = q},

— R = {(Gn, Rp) }nen,,, Where G, and R, are defined as follows: Let n be a round node and n’
be any node of Z+,

neG, ifn’ =n,

n’ e R, ifn’ # nandnisnotan ancestor ofn’.

REMARK 4.45. Although we will usually say that ﬂ%"";i” is the ZT-HD-Rabin-automaton of ¥,
the structure of this automaton is not unique, it depends on two choices: the order over the
nodes of the Zielonka tree and the mapping n.

The intuition behind this definition is the following. The automaton ﬂg";i” has rbw(Z#)
states, and each of them can be associated to a subset of leaves of Z# by n71(g). The mapping
is such that the lowest common ancestor of two leaves in n71(q) is a square node. As for the
ZT-parity-automaton, for each leaf of | € Leaves(Z#) and letter a € L, we identify the deepest
ancestor n = Supp(l, a) containing a in its label, and, using the Jump function, pick a leaf I’ below
the next child of n. We add a transition ¢ — ¢’ if there are leaves 1 € n~1(¢q) and I’ € n~1(q)
giving such a path (we note that the output colour is given by n = Supp(l, a), although this node
does not appear as a state of the automaton). This way, we can identify a run in the automaton
ﬂ%"f‘” with a promenade through the nodes of the Zielonka tree in which jumps between leaves
with the same n-image are allowed. If during this promenade a unique minimal node (for <) is
visited infinitely often, it is not difficult to see that the sequence of input colours belongs to ¥ if
and only if the label of this minimal node belongs to # (it is a round node). The Rabin condition
over the set of nodes of the Zielonka tree is devised so that it accepts exactly these sequences of
nodes (see Lemma 4.49 below).

Another way of presenting the automaton ﬂ;"";i” is as a quotient of the deterministic parity
automaton ﬂ?;ty. Indeed, the graph structure and the labelling by input letters of ﬂ?fb"‘ is
obtained by merging the states of ﬂ?:ty (which are the leaves of Z#) with the same n-image,
and keeping all the transitions between them. However, a parity acceptance condition over this
smaller structure is no longer sufficient to accept Muller(¥).

EXAMPLE 4.46. The ZT-HD-Rabin-automaton &’(%"";‘” of the family ¥ = {{a, b}, {a, c}, {b}}
from Example 4.5 is shown on the right of Figure 14. The Zielonka tree Z+ appears on the left
of the figure, and the labelling n: Leaves(Z#) — {1, 2} is represented by the numbers below
its branches.

8 Any non-empty subset of Q can be chosen as the set of initial states.

54 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

The Rabin condition of this automaton is given by two Rabin pairs (corresponding to the
round nodes of the Zielonka tree):

Gﬁ = {B}a RB = {ay A’ E: (}9
G, = {/\}, R) = {O(, ,B, 9}.
We note that the automaton ﬂ?;‘” is obtained by merging the states 8 and ¢ from the

parity
Zy
suitable nodes from the Zielonka tree. Y 3

ZT-parity-automaton ‘A appearing in Figure 10, and replacing the output colours by

Figure 14. On the left, the Zielonka tree of F = {{a, b}, {a,c}, {b}}. On the right, the ZT-HD-Rabin-
automaton ﬂ%”‘:‘”. Blue transitions correspond to those coming from leaf 8, and green ones to those
originating from leaf €.

REMARK 4.47. We observe that the automaton from Figure 14 presents duplicated edges, in
the sense that there are two transitions g = q and q 2, q’ between the same pair of states
and reading the same input letter. We can always avoid this and remove duplicated edges from
any automaton. We provide a proof in Appendix D (Proposition D.1). For the language from the
previous example, an equivalent automaton is proposed in Figure 19

Correctness of the Zielonka-tree-HD-Rabin-automaton.

PROPOSITION 4.48 (Correctness). Let ¥ C 2> be a family of non-empty subsets. Then,
L(AZ™) = Mullers(F).

Moreover, the automaton ﬂ%"f” IS history-deterministic.

LEMMA 4.49. Letu = ngnyny - -- € N® be an infinite sequence of nodes of the Zielonka tree. The
word u belongs to Rabiny (R), for R = {(Gn, Rn) }nen,, the Rabin condition of ﬂg’i”, if and only if
there is a unique minimal node for the ancestor relation in Inf(u) and this minimal node is round

(recall that the root is the minimal element for <).

55 /110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF. Assume that there is a unique minimal node in Inf(u), called n, and that n is round.
We claim that u is accepted by the Rabin pair (G, Ry). It is clear that Inf(u) N G, # 0, because
n € Gyp. It suffices to show that Inf(u) N R, = @: By minimality, any other node n’ € Inf(u) is a
descendant of n (equivalently, n is an ancestor of n’), so n’ ¢ R,.

Conversely, assume that u € Rabiny(R). Then, there is some round node n € N, such
that Inf(u) N G, # 0 and Inf(u) N R, = 0. Since G, = {n}, we deduce that n € Inf(u). Moreover,
as Inf(u) N R, = 0, all nodes in Inf(u) are descendants of n. We conclude that n is the unique

minimal node in Inf(u), and it is round.]
LEMMA 4.50. There exists a morphism of automata ¢: ﬂ%a;ty — ﬂ%"";i”.

PROOF. We define the morphism ¢ as follows:
— oy() =n(l),forl e Leaves(ﬂ%a;ty),
— for a transition e = [— I’ in ?{pza:ty, we let pr(e) = (n(1), a, Supp(l, a), l').
It is clear that ¢ is a weak morphism. We prove that it preserve the acceptance of runs. Let
Wo w1 %)
p=lo l1

s ly —> -+ € ﬂ{un(ﬂ?;ty) be an infinite run in ﬂ?:ty (the only run over
wowiwy - - - € %), and let n; = Supp(l;, w;). By definition of the morphism, the output of the run

P’ = Qgyns(p) IN ﬂ?;‘” isy’(p’) = npniny - - - € N®. In the proof of Proposition 4.10, we proved
(Claims 4.12 and 4.13) that there exists a unique node n,, appearing infinitely often in y’(p’).
Moreover, we proved that p is accepting in &leza;ity if and only if n,, is round. Lemma 4.49 allows

us to conclude that @g,,;(p) is accepting in ﬂg,a;i” if and only if p is accepting in f(?;ty, n

PROOF OF PROPOSITION 4.48. L(ﬂ%’f‘”) Cc Mullerg(¥): Letw € L(ﬂ%‘f‘”) and let
u € N® be the sequence of nodes produced as output of an accepting run over w in ﬂ%”‘;i”.
By Lemma 4.49, there is a unique minimal node n for < appearing infinitely often in u and
moreover n is round. Let ny, ..., nx be an enumeration of the children of n (from left to right),
with labels v(n;) C X (weremark thatv(n;) ¢ 7, for1 < i < k). We will prove that Inf(w) C v(n)
and Inf(w) € v(n;) for 1 < i < k. By definition of the Zielonka tree, as n is round, this implies
that Inf(w) € 7.

Since eventually all nodes produced as output are descendants of n (by minimality), Inf(w)
must be contained in v(n) (by definition of the transitions of f(?ﬁi”).

We suppose, towards a contradiction, that Inf(w) C v(n;) for some 1 < j < k. Let
Qi = {n(l) : lisaleafbelow n;} be the set of states corresponding to leaves under n;, for
1 < i < k. We can assume that the leaves corresponding to transitions of an accepting run over
w are all below n, and therefore, transitions of such a run only visit states in Ule Q;. Indeed,
eventually this is going to be the case, because if some leaves [, I’ corresponding to a transition
(q,a,n’,q") are not below n, then n” would not be a descendant of n (since n’ is the least common
ancestor of [and I’). Also, by Property (%), we have Q; N Q; = 0, for all i # j. By definition of

the transitions of ﬂ?;‘”, if a € X is a letter in v(n) but not in v(n;), all transitions from some

56 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

state in Q; reading the colour a go to Q;;1,for1 <i < k—1 (and to Q; if i = k). Also, if a € v(n;),
transitions from states in Q; reading a stay in Q;. We deduce that a run over w will eventually
only visit states in Q;, for some j such that Inf(w) C v(n;). However, the only transitions from
Q; that would produce n as output are those corresponding to a colour a ¢ v(n;), so the node n
is not produced infinitely often, a contradiction.

Mullers () C L(ﬂ%a;’i”) and history-determinism: We claim that the existence of a
morphism ¢: ﬂ?;ty —> ﬂ%a;_’i” (Lemma 4.50) and the correctness of f(?;ty (Proposition 4.10)
imply that £(&Z{§";i”) = L(&Z{pza;ty) = Muller(¥). Indeed, if p is an accepting run over w € £¢ in
ﬂ?;ity, then @4, (p) is an accepting run over w in ﬂg'?‘”. We can moreover use ﬂ?:ty and ¢
to define a sound resolver (ry, r) for &Z[??b‘”: we let rop = ¢(qo) be the image of the initial state of
&’(?;ty. If pr € f{unﬁ”(ﬂg’i”) is the image under ¢, of some finite run pp € Q{unﬁ”(ﬂ?;ty),
we let r(pg, a) = ¢(e), where e is the only a-labelled transition from Target(pp). We define r

arbitrarily in other case. This way, for every w € £, the run induced by r over w is the image

parity

Z, which must be accepting if w € Muller(¥). u

of a run over win A

4.3.2 Optimality of the Zielonka-tree-HD-Rabin-automaton

We devote this section to the proof of the optimality of ﬂ%"";"”.

THEOREM 4.51 (Optimality of the ZT-HD-Rabin-automaton). Let A be a history-deterministic
Rabin automaton accepting a Muller language Mullers(¥). Then, |ﬂ§";’i”| < |A|.

PROPOSITION 4.52 ([34]). Let L = Mullers(F) be a Muller language.
1. If Eve wins a game with L as acceptance set from a position v, there is a winning strategy
from v for her implemented by a memory structure of size row(Z#).
2. There exists a game G using L as acceptance condition in which Eve can win from a position
Vv, but there is no winning strategy from v for her implemented by a memory structure of

size strictly smaller than rbw(Z#).

LEMMA 4.53 ([51, 94]). Rabin languages are positionally determined, that is, if Eve wins a game
using a Rabin acceptance condition from a position v, there is a winning strategy from v for her

implemented by a memory structure of size 1.

COROLLARY 4.54. Let A be a history-deterministic Rabin automaton. Then, if Eve wins a
game with' W = L(A) as acceptance set from a position v, there is a winning strategy from v for
her implemented by a memory structure of size | A|.

PROOF. Let G be a game with W = L(A) as acceptance set. In order to be able to take
the product by A and obtain an equivalent game, we transform G into a game suitable for
transformations. Let G be the game obtained from G in the following way: for every edge

57 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

e=v-—1in G, we add a position (v, e) controlled by Eve and replace edge e by v 5 (v, e) 5.
It is clear that Eve wins G from a vertex v if and only if she wins G from that same vertex. By
Proposition 2.7, if Eve wins G from a vertex v, she wins G =< A from a vertex (v, qo), where q
is an initial vertex of A. Moreover, the game G < A uses the acceptance set from A, which
is a Rabin language, so, by Lemma 4.53, she can win using a strategy given by a function
o: Vive — E, where Q is the set of states of A and Viye the vertices controlled by Eve in G (a
subset of (Veye LI (V X E)) X Q). We build a memory structure (M, o) of size |Q| that projects
the strategy implemented by o onto G:

— its set of statesis M = Q,

— the initial state is qq,

— the update function u: M X E — M sends u(q,e) = q ifa((v,e),q) = ((v,e),q) = (V',q)

is the move chosen by o from vertex ((v, e), q),
— for v € Viye, q € M, we let op(v, q) = e if e is the move chosen by o from (v, q), that is, if

a(v,q) = (v,q) = ((v,q),e).

Since o implements a winning strategy in G = A from (v, qo), its projection onto G via the
memory structure (M, g y,) is a strategy that verifies that any play consistent with it produces
as output a word in L (A), so it is winning. |

Theorem 4.51 is obtained by combining the fact that |ﬂ§a§f‘”| = rbw(Z#) with Proposi-
tion 4.52 (second item) and Corollary 4.54.

5. The alternating cycle decomposition: An optimal approach to
Muller transition systems

In Section 4, we have provided minimal parity and Rabin automata for Muller languages,
using the Zielonka tree. We can use these automata to transform Muller transition systems,
by applying the product construction. However, this approach overlooks the structure of the
transition system, meaning it does not take into account the relevant interplay between the
underlying graph and the acceptance condition.

In this section, we present our main contributions: optimal transformations of Muller tran-
sition systems into parity and Rabin ones. The key novelty is that they precisely capture the way
the transition system interacts with the acceptance condition. This is achieved by generalising
Zielonka trees from Muller languages to Muller transition systems; we define the alternating
cycle decomposition (ACD), consisting in a collection of Zielonka-tree-like structures subsuming
all the structural information of the transition system necessary to determine whether a run is
accepting or not. More precisely, the ACD is a succinct representation of the alternating chains
of loops of a Muller automaton, in the sense of Wagner [93]. The alternating chains of loops
of a DMA are known to determine the parity index of the language it recognises [93], and, as

58 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

we will show, they also capture the essential information to define optimal transformations of
automata.

We start with the definition of the alternating cycle decomposition in Section 5.1. In
Section 5.2, we describe the ACD-parity-transform, turning a DMA ‘A into an equivalent DPA
ACDparity (A). Formally, the validity of this transformation is witnessed by a locally bijective
morphism ¢@: ACDpgrity(A) — A (Proposition 5.19). In Section 5.3, we describe the ACD-
HD-Rabin-transform that turns a DMA A into an equivalent history-deterministic Rabin au-
tomaton ACDgapin(A). The validity of the transformation is witnessed by an HD mapping
@ : ACDRapin(A) — A (Proposition 5.28). These constructions grant strong optimality guaran-
tees. The automaton ACDpgrity ((A) (resp. ACDRrabin ((A)) has a minimal number of states amongst
parity (resp. Rabin) automata admitting an HD mapping to ‘A (Theorems 5.35 and 5.36). We
note that this implies minimality amongst automata admitting a locally bijective morphism
to A. Moreover, the acceptance condition of ACDparity(A) uses an optimal number of colours
(Theorem 5.34). The optimality of these constructions is shown in Section 5.4. We are able to
prove the optimality of both constructions at the same time, by reducing the problem to an
application of the minimality of the ZT-parity-automaton and the ZT-HD-Rabin-automaton.

In all this section, we let 7S = (Ggs, Accys) be a Muller transition system with under-
lying graph Ggs = (V, E, Source, Target, I) and using a Muller acceptance condition Accgs =

(y, I, Mullerp(F)).

5.1 The alternating cycle decomposition

DEFINITION 5.1. Let £y € Cycles(7S) be a cycle. We define the tree of alternating subcycles
of £, denoted AltTree(£y) = (N, <,v: N — Cycles(7S8)) as a Cycles(7S)-labelled tree with nodes
partitioned into round nodes and square nodes, N = N, LI N, such that:
— The root is labelled ¥.
— If a node is labelled ¢ € Cycles(78), and ¢ is an accepting cycle (y(€) € ¥), then itis a
round node, and its children are labelled exactly with the maximal subcycles ¢ C £ such
that ¢ is rejecting (y(¢') ¢ F).
— Ifanode is labelled ¢ € Cycles(7S), and ¢ is a rejecting cycle (y(€) ¢), then it is a square
node, and its children are labelled exactly with the maximal subcycles ¢ C £ such that ¢’
is accepting (y(€') € 7).

For a Cycles(7S)-labelled tree T = (N, <,v: N — Cycles(7S)) and n € N, we let Vsiates(n) =
States(v(n)) be the set of states of the cycle labelling n.

REMARK 5.2. Let n be a node of AltTree(#y) and let n; be a child of it. If ¢ is a cycle such that
v(ny) ¢ ¢ C v(n), then v(ny) is accepting <= ¢ isrejecting <= v(n) is rejecting.

59 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

DEFINITION 5.3 (Alternating cycle decomposition). Let 7S be a transition system, and let
41, ¥, ..., &k be an enumeration of its maximal cycles (that is, the edge set of its SCCs). We define
the alternating cycle decomposition of 7S as the forest ACDgs = {AltTree(#y),...,AltTree(¥)}.

Welet N, be the set of nodes of AltTree(¢;), and ny, its root. We will assume that Ny, NNy, = 0
ifi # j.

We define the set of nodes of ACDgs to be Nodes(ACDgs) = U;‘:l Ny, and we let
Nodes (ACDqgs) (resp. Nodesy(ACDqs)) be the subset of round (resp. square) nodes. As for
Zielonka trees, from now on we equip the trees of AC D45 with an arbitrary order making
them ordered trees, without explicitly mentioning it.

We remark that for a recurrent vertex v of 78, there is one and only one tree AltTree(#;)
in ACDqs such that v € vsiaes(ng;). On the other hand, transient vertices do not appear in the
trees of AC D 5.

If vis a recurrent vertex of 7S, we define the local subtree at v, noted 7, as the subtree
of AltTree(¥;) containing the nodes Ny, = {n € Ny, | V € Vstates(n) }. If v is a transient vertex, we
define 7, to be a tree with a single node.

For v recurrent, as N, is a subset of the nodes of AltTree(¥¢;), the tree 7, inherits the order
from AltTree(¥;), as well as its partition into round and square nodes, N, = N, o U Ny . Also, it
inherits the labelling given by the mapping v, whose restriction to 7, has an image in Cycles (7S).

REMARK 5.4. Let v € Vsuwes(ng). If n € N, and n’ is an ancestor of n in AltTree(¥;), then

n’ € N,. In particular, 7, is indeed a subtree of AltTree(¥¢;). Also, we note that the root of 7, is n,,.

For a node n € N, and an edge e € ¢; we define Supp(n, e) = n’ to be the deepest ancestor
of n such that e € v(n’). We remark that if e = v— V/, then Supp(n, e) is a node in both 7, and
Ty

EXAMPLE 5.5. We will use the transition system 78 from Figure 15 as a running example.
We have named the edges of 7S with letters from a to [, that are also used as the output colours

of the acceptance condition. The acceptance set of 78 is the Muller language associated to:

F ={{c,d, e}, {e}, {g, hi}, {1}, {h1,],k},{j, k}}.

The initial vertex of 78, vy, is its only transient vertex, all the others vertices are recurrent.
78 has 2 strongly connected components, corresponding to cycles £; and #;.

The alternating cycle decomposition of 78 is shown in Figure 16. It consists of two trees,
AltTree(#;) and AltTree(#;). We use Greek letters (in pink) to name the nodes of the tree. Inside
each node we indicate both its label v(n) and the set of states of it. For example, v(k) = {g, h, i}
and Vsiates(K) = {vs, v4}. We have that Supp(7, &) = k and Supp(z, j) = A. We highlight in bold
orange the local subtree at vy, 7,. The tree 7, consisting in a single node, does not appear in
the figure. The numbering on the right of the trees will be used in the next section. L 2

60 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Figure 15. Transition system 78 using a Muller acceptance condition given by = {{c,d, e}, {e},{g,h, i},
{},1{h,i,j,k},{j,k}}. The two maximal cycles, ¢; and ¢,, are encircled by blue and red dashed lines,
respectively.

g7h7i7j7k71
1
A | U3, 04, U5
Q 2
2
| c,d 5
B, v2 g h.i h.i
E U3 V3, V4 r 0 V3, V4 3
AltTree(47) AltTree({s)

Figure 16. Alternating cycle decomposition of 7S. In bold orange, the local subtree at v4, 7;,.

REMARK 5.6. Let 78 be a Muller TS using as acceptance set W = Mullerp(¥), and let 7S
be the TS obtained by replacing W with W = I'? \ W (which is a Muller language). Then, the
ACD of 7S coincides with that of 7S, with the only difference that the partition into round
and square nodes is inverted: Nodesq (AC D7) = Nodesy(ACDgs) and Nodesy (ACD=) =

Nodes(ACDqgs).
We note that if A is a DMA recognising L C £¢, the automaton A is a DMA recognising £¢\ L.

REMARK 5.7. The Zielonka tree can be seen as a special case of the alternating cycle decom-
position. Indeed, a Muller language Mullery(#) can be trivially recognised by a DMA A with
a single state q and self-loops q N q. The ACD of this automaton is exactly the Zielonka tree
of 7.

REMARK 5.8 (Size and computation of the ACD). Let 78 be a Muller TS and let Z# be the
Zielonka tree of its acceptance set. It can be shown that for each vertex v of 7S we have that

61/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

|Ty| < |Z#|, and therefore the size of AC Dygs is polynomial in Z#. This, and the question of
the complexity of computing the ACD is the subject of an independent work [26].

Local Muller languages. For a recurrent state v of 78S, we define the local Muller language of
78 at v as the Muller language defined over the alphabet I, = Cycles, (7S) associated to:

LocalMullergs(v) = {C C Cycles (T7S) | U £ is an accepting cycle}.
teC

We note that LocalMullergs(v) is determined by singletons (C € LocalMullergs(v) if and
only if {{UJ,ec €} € LocalMullergs(v)). For simplicity, and by a slight abuse of notation, we
will work as if LocalMullergs(v) C Cycles (7S). Also, to lighten notations, we will just write
LocalMullerys(v) to denote Muller(LocalMullerss(v)) whenever no confusion arises.

The following lemma directly follows from the definition of 7, and that of the Zielonka
tree. It provides insight in the structure of the trees 7, and it will be a key ingredient in the
proof of the optimality of the transformations based on the alternating cycle decomposition.

LEMMA 5.9. The tree 7T, is the Zielonka tree of the family LocalMullerss(v),? for any recurrent
vertex v.

5.2 An optimal transformation to parity transition systems

We now define the ACD-parity-transform, an optimal transformation turning a Muller TS into a
parity TS while preserving determinism. In order to obtain the optimality in the number of
output colours, we need to pay attention to the parity of the minimal colour used in different
SCCs. To incorporate this parameter in the transformation, we define positive and negative ACDs.

Let 7S be a Muller transition system and let ACDgs = {AltTree(¥1),...,AltTree(€x)} be
its alternating cycle decomposition.

We say that a tree AltTree(¢;) € ACDgs is positive if ¢; is an accepting cycle, and that it is
negative otherwise. We say that the alternating cycle decomposition of 7S is positive if all the
trees of maximal height of AC Dss are positive, that it is negative if all trees of maximal height
are negative, and that it is equidistant if there are positive and negative trees of maximal height.

As for the Zielonka tree, we associate a non-negative integer to each level of the trees of
ACDgs via a function pgep(n): Nodes(ACPDqss) — N. Let £; be a maximal cycle of 78 and
n € Ny,.

— If AC D5 is positive or equidistant:
— pacp(n) = Depth(n), if ¢; is accepting,

Cycles,, (9S)

9 Formally, the labelling v of 7, goes to Cycles (78), and not to 2, , as required by the definition of the Zielonka tree.
To obtain a proper Zielonka tree with a labelling of nodes v': N, — 2™ we would have to define v'(n) = {£’ €

Cycles (TS) | £ € v(n)}.

62 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

— pacop(n) = Depth(n) + 1, if ¢; is rejecting.
— If AC D5 is negative:

— pacop(n) = Depth(n) + 2, if ¢; is accepting,

— pacop(n) = Depth(n) + 1, if ¢; is rejecting.

We let mings (resp. maxys) be the minimum (resp. maximum) value taken by the function p4¢p.

REMARK 5.10. A node nin AltTree(#;) verifies that pgcp(n) is even if and only if v(n) is an
accepting cycle (that is, if n is a round node).

REMARK 5.11. It is satisfied:
— mingg = 0 if AC Dz is positive or equidistant,
— mings = 1if ACDgs is negative.

EXAMPLE 5.12. In the previous Example 5.5, AltTree(#;) is a positive tree and AltTree(¥;) is
negative. As AltTree(#,) is the tree of maximal height, AC Dqs is negative. The function p 4¢cp
is represented in Figure 16 by the integers on the right of each tree. It takes values 2 and 3
over AltTree(#;) (paco(a) = 2 and pacp(B) = 3), because AC Dys is negative. In this example,
mings = 1 and maxgs = 3. We note that if we had associated integers 0 and 1 to the levels of
AltTree(#;), we would have used 4 integers in total, instead of just 3 of them. 2

DEFINITION 5.13 (ACD-parity-transform). Let 7S be a Muller TS with ACDgs = {AltTree(#;)
,...,AltTree(&x)}. We define the ACD-parity-transform of 7S be the parity TS ACDparity(7S) =
(G’, Acc’), with G’ = (V’, E’, Source’, Target’, I’), and Acc’ = (y’, [mings, maxgs], parity) defined
as follows.

Vertices. The set of vertices is

V= U ({v} x Leaves(T)).

vev

Initial vertices. I’ = {(vo,n) | vo € I and n is the leftmost leaf in 7 }.

Edges and output colours. For each (v,n) € V' and each edgee = v— V' € Out(v) in 7S we

define an edge e, = (v, n) M (v/,n’). Formally,

E' = U ({e} X Leaves({ISource(e))) .

ecE
If v and V' are not in the same SCC, we let n” be the leftmost leaf in 7, and y’(e,) = mings."? If v
and Vv’ belong to the same SCC, we let:

— 1’ =Jumpg, (1, Supp(n, e)),

— V'(en) = paco(Supp(n, e)).

10 The colours associated to transitions changing of SCC are almost arbitrary (we could even leave them uncoloured).
We define them to be the minimal colour used so that the obtained transition system is normalised in the sense of
Section 6.2.

63 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Labellings. If 78 is a labelled transition system, with labels ly: V — Ly and lg: E — Lg, we
label ACDparity (7S) by Ii, (v, n) = ly(v) and I%, (en) = lg(e).

Intuitively, a run in the transition system ACDpayity (7S) follows a run in 7S with some
extra information, updated in the same manner as it was the case with the ZT-parity-automaton.
To define transitions in ACDparity (7S), we move simultaneously in 7S and in AC Dgs. When we
take a transition e in 7S that goes from v to v/, while being in a node n in the ACD, we climb the
branch of n searching the lowest node i with e and V' in its label (7i = Supp(n, e)). We produce
as output the colour corresponding to the level reached. If no such node exists in the current
tree (this occurs if we change of SCC), we jump to the root of the tree containing v’. After having
reached the node 7i, we move to its next child in the tree 7, (in a cyclic way), and we pick the
leftmost leaf under it.

EXAMPLE 5.14. We show in Figure 17 the ACD-parity-transform ACD ity (7S) of the transition
system 78 from Figure 15 (Example 5.5). For each vertex v in 7S5, we make as many copies as
leaves of the tree 7,. We note that, as v is transient, the tree 7, consists of a single node (by
definition), that we name (. Transitions are of the form (e, l), for e a transition from 7S and [a
leaf of some local subtree; these are denoted e; in the figure for the sake of space convenience.
These labels simply indicate the names of the edges, they should not be interpreted as input
letters (ACDparity (7S) is not an automaton).

We observe that the mappings ¢y (v,l) = v and @g(e;) = e define a locally bijective
morphism of transition systems from ACDparity (7S) to 7.

Figure 17. ACD-parity-transform ACD,arity (78S) of the transition system 7S from Figure 15.

Another example can be found in Figure 18. L 2

64 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

REMARK 5.15. The size of the ACD-parity-transformation of 78 is:

[ACDparity (7S)| =) |Leaves(T,)| =) |Leaves(T,)| + [Virans|

vevV VEVrec

where Viec and Vipapns are the sets of recurrent and transient vertices of 78, respectively.

REMARK 5.16. Weremark thatif 7S = (Ggs, Accys) is already a parity TS, then the underlying
graphs of ACDpa(ity(7S) and 78 are isomorphic. In fact, by Proposition 5.19, ACD ity (7S) and
738 will also be isomorphic as transition systems. In this case, the construction of ACDparity(7S)
boils down to the application of the procedure described by Carton and Maceiras [19].

REMARK 5.17. The ACD-parity-transform is oblivious to the labelling y of the acceptance
condition of 7S; the only information taken into account to define the graph of ACDpgyity (7S)
and its output colours is the structure of the trees of ACPDqs. That is, the definition of this
transformation is independent of the actual representation of the acceptance condition of 7S
(whether it is Emerson-Lei, Muller, Rabin...), and we only use that any such representation
induces a mapping f: Cycles(7S) — {Accept, Reject}.

REMARK 5.18. The ZT-parity-automaton can be seen as a special case of the ACD-parity-
transform, as &’(?Ety coincides with the DPA ACDpity (A), where A is the DMA with a single
state recognising Muller(¥) (see Remark 5.7).

Correctness of the ACD-parity-transform.

PROPOSITION 5.19 (Correctness of the ACD-parity-transform). Let 78 be a (labelled) Muller
TS and let ACDparity(7S) be its ACD-parity-transform. There is a locally bijective morphism of
(labelled) transition systems @ : ACDparity(7S) — TS.

The following lemma, analogous to Lemma 4.11 from Section 4.2, follows from the defini-
tion of the ACD-parity-transform.

LEMMA 5.20. Let n be a node of AltTree(¥;), let it be an ancestor of n and let e = v — V' be
an edge in ¢;. Then, Supp(n,e) is a descendant of 11 if and only if e € v(fi), and in this case, if
en = (v,n) — (V,n’) is an edge of ACDpqity(7S), then n’ is a descendant of i too.

PROOF OF PROPOSITION 5.19. We consider the mapping ¢ = (¢y, @) naturally defined
by oy (v,n) = vand ¢g(e,) = e. It is immediate to check that ¢ is a weak morphism of transition
systems (it preserves initial states and transitions). Also, it is easy to see that it is locally bijective:
for each initial state vy € I, there is exactly one node in I’ of the form (vg, n): the node where n
is the leftmost leaf of 7;,; and for each vertex (v, n) and edge e € Out(v) of 78, we have defined
exactly one edge outgoing from (v, n) corresponding to e.

65 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We prove that ¢ preserves the acceptance of runs, following the proof scheme from
Proposition 4.10. We can assume w.l.0.g. (see Remarks 2.1 and 5.17) that the set of output colours
used by 78 is its set of edges E. Let p € Run(ACDparity(7S)) be an infinite run in ACDparity (7S).
Eventually, p will remain in one SCC, and Inf(p) will form a cycle that is accepting if and only if
p is an accepting run. We will assume that all the edges in p appear infinitely often and belong
to this cycle (we can do it by using a similar argument as the one presented in the proof of
Proposition 4.10), and we let:

X X X
p = (Vo, o) — (v, n1) — (v, n3) —> ...

The projection of p under ¢ is:
O guns(P) = Vo 2>\;1 i>vz AN

We note that the edges {eg, e,...} form a cycle in 7S, that we will call £,. In particular,
¢ is contained in some maximal cycle £nax, and all the nodes n; belong to the same tree
AltTree(£max) of the ACD. Our objective is to show that £, is an accepting cycle in 78 if and only
if min{xg, x1, X2, ... } is even. We let i; = Supp(n;, e;) be the node of AC D45 determining the
i™ transition of p, so we have that x; = paco (f;). Finally, let n, be the deepest ancestor of ng
such that £, € v(n,).

CLAIM 5.21. Foralli > 0, n; = n, and fi; > n, (that is, all nodes appearing in p are below np).

In particular, X; > pacop(np).
Proof. The claim follows from Lemma 5.20 and induction. Y 3

CLAIM 5.22. Letn,y,..., N, be an enumeration of Childrenajrree(£,,,) (Np)- It holds that:
1. Supp(n;, e;) = n, infinitely often. In particular;, x; = pacp(n,) for infinitely many i’s.
2. Thereis no n, € Children(n,) such that £, C v(n,).

Proof. The proof is identical to that of Claim 4.13, from Proposition 4.10. >

We conclude that min{xo, x1,X2,...} = pacp(n,), which is even if and only if £, is an
accepting cycle, by Remarks 5.2 and 5.10. u

REMARK 5.23. We can give an alternative interpretation of the previous proof. Given a run p
in 78 and a vertex v appearing infinitely often in p, we can decompose the run into:

Po P1 P2 P3 Pa
hesacdlil VN coacdlil VANE e " caa il VAo oo SNEVRNEN

where the finite runs p; are cycles over v, for i > 0. Therefore, the sequence of these cycles
can be processed by the ZT-parity-automaton corresponding to the local Muller condition
LocalMullerss(v). By Lemma 5.9 and the correctness of the ZT-parity-automaton, the minimal

66 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

parity
ZLocaIMuIIer7S (v)

minimal output colour produced by the run 9";@11”5(p) in the ACD-parity-transform ACDparity (7S)

colour produced by a run over this sequence of cycles in A coincides with the
(disregarding the initial path pg). This colour is exactly the one corresponding to the deepest
node in 7, above the leftmost leaf containing Inf(p).

The locally bijective morphism given by Proposition 5.19 witnesses that ACDparity(7S)
shares the same semantic properties as 7S. The next corollaries follow from Proposition 3.16
and Corollary 3.19 (and the fact that the choice of initial vertices in ACDparity(7S) is arbitrary).

COROLLARY 5.24. Let A be a Muller automaton and let ACDpg(ity(A) be its ACD-parity-
transform. Then, L(A) = L(ACDparity(A)), and A is deterministic (resp. history-deterministic) if
and only if ACDparity (A) is deterministic (resp. history-deterministic).

COROLLARY 5.25. Let G be a Muller game and let ACDya/ity(G) be its ACD-parity-transform.
Eve wins ACDparity(G) from a vertex of the form (v, n) if and only if she wins G from v.

5.3 An optimal history-deterministic transformation to Rabin transition systems

In this section we describe the ACD-HD-Rabin-transform, an optimal transformation of Muller TS

to Rabin TS preserving history-determinism. This construction generalises that from Section 4.3.

DEFINITION 5.26 (ACD-HD-Rabin-transform). Let 7S be a Muller TS. For each vertexv e V
weletn,: Leaves(Z,) — {1,...,rbw(7Z,)} be amapping satisfying Property (x) from Lemma 4.42.

We define the ACD-HD-Rabin-transform of 78 to be the Rabin TS ACDgapin(7S) = (G’, Acc’),
with G' = (V’, E’,Source’, Target’,I’), and Acc’ = (), Nodes(ACDqs), Rabin(R)) defined as
follows.

Vertices. The set of vertices is

v = (v x {1 iow(E)}),

vevV

where rbw(Z,) is the round-branching width of 7,,.
Initial vertices. I’ = {(vo,Xx) | vo e Tand x € {1,...,rbw(7Z,)}}.

Edges and output colours. We let

E' = U ({e} X LeaveS(TSource(e))) .

ecE
For eachedgee=v— Vv € Ein7S and x € {1,...,rbw(7,)}, we will place one edge from (v, x)
for each leaf [of 7;, such that n,,(l) = x. More precisely, we let (v, x) 5 (v, x") € E’ if either
— vand Vv’ are not in the same SCC (in this case the output colour n is irrelevant), or
— vand V are in the same SCC and there are leaves [and I’ of 7, and 7, respectively, such
that:

67 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

- ’)v(l) =X, nV’(l,) = X,’

— U =Jumpq, (I, Supp(l, e)),

— n = Supp(l,e).
Rabin condition. R = {(Gn, Rn) }neNodes (ACD 15)» Where G, and Ry, are defined as follows: Let n
be a round node, and let n’ be any node in Nodes(:ACDys),

neG, ifn’ =n,
n" € R, ifn’ # nand nisnotan ancestor of n’.

Labellings. If 78 is a labelled transition system, with labels ly: V — Ly and lg: E — Lg, we
label ACDRapin (7S) by I, (v, x) = ly(v) and l%, (€’) = lg(e), if e’ € E'(e).

This construction generalises the ZT-HD-Rabin-automaton in the same way as the ACD-
parity-transform generalises the ZT-parity-automaton. Intuitively, a run in ACDg4pin (78) can
be identified with a promenade through the nodes of the ACD, which are used as the output
colours to define the Rabin acceptance condition.

REMARK 5.27. The size of the ACD-HD-Rabin-transform of 78 is:
|ACDRabin (7S)] = Y rbw(T,) = " rbw(T,) + [Virans|
veV VEVrec

where Vi and Virang are the sets of recurrent and transient vertices of 78, respectively.

Correctness of the ACD-HD-Rabin-transform. To obtain the correctness of the ACD-HD-
Rabin-transform, we follow the same steps as in the proof of the correctness of the ZT-HD-Rabin-
automaton (Proposition 4.48).

PROPOSITION 5.28 (Correctness of the ACD-HD-Rabin-transform). Let 7S be a (labelled)
Muller TS and let ACDRrapin(7S) be its ACD-HD-Rabin-transform. There is an HD mapping of
(labelled) transition systems @: ACDgrapin(7S) — 78.

The proof of the next two lemmas are completely analogous to those of Lemmas 4.49
and 4.50.

LEMMA 5.29. Letu = ngniny - - - € Nodes(ACDqss)® be an infinite sequence of nodes of the ACD
of 7S. The word u belongs to Rabin(R), for R = {(Gn, Rn) }neNodeso(ACD) the Rabin condition of
ACDRabin (78), if and only if there is a unique minimal node for the ancestor relation in Inf(u) and
this minimal node is round.

LEMMA 5.30. There exists amorphism of transition systems ¢ : ACDparity(7S) — ACDRapin (7S).

Using these lemmas we can prove Proposition 5.28.

68 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF OF PROPOSITION 5.28. We define the mapping ¢: ACDgrapin(7S) — 78 in the

natural way: @y (v,x) = vand @g(e,l) = e. It is immediate to check that ¢ is a weak morphism.

The fact that ¢ preserves accepting runs can be proven analogously to the fact that L(ﬂ%‘_’i”) C
Mullery () in Proposition 4.48 (by using Lemma 5.29).

Definition of a sound resolver for ¢: In order to show how to simulate runs of 7S in
ACDRapbin (7S), we use the fact that we can see ACDgapin(7S) as a quotient of ACDparity(7S)
(Lemma 5.30). Let ¢: ACDparity(7S) — 7S be the locally bijective morphism given by Propo-
sition 5.19, and let ¢ : ACDparity(7S) — ACDRabin(7S) be the morphism given by Lemma 5.30.
Since ¢ is locally bijective, @g,,s is a bijection between the runs of the transitions systems
ACDparity (7S) and 78, admitting an inverse gb;(}m. Composing this mapping with ¢, we obtain a
way to simulate the runs from 78 in ACDRgapin (7S):

Puns © Pgons: Run™(TS) — Run® (ACDRapin(7S)).

This composition of mappings provides a sound resolver simulating ¢. Formally, let
(rmit,) be the resolver defined as follows. The choice of initial vertices rint: I — I’ is given by
I'nit(Vo, X) = vo. The function r: E”* X E — E’ associates to a finite run p € E”* and e € E the last
edge of the run ¢(@ 1 (¢(p)e)) (subscripts have been omitted for legibility). It is easy to check
that (i, r) indeed defines a resolver simulating ¢. Its soundness follows from the fact that @
and ¢ preserve the acceptance of runs. n

From Proposition 3.16 we obtain:

COROLLARY 5.31. Let A be a Muller automaton and let ACDrapin(A) be its ACD-HD-Rabin-
transform. Then, L (ACDgapin(A)) = L(A). Moreover, ACDgapin(A) is history-deterministic if
and only if A is history-deterministic.

ACD-HD-Rabin-transform-for-games. In Section 2.1, we discussed some technical difficul-
ties appearing when we wanted to define the composition of a game G and an HD automaton:
as the output of such operation, we would like to obtain a game in which Eve always chooses
the transitions taken in the automaton, even if it is Adam who makes a move in the game, which
is not the case if G is an arbitrary game. Also, in Section 3.3 we had to introduce HD-for-games
mappings in order to formalise correct transformations of games. A similar difficulty appears
in the context of the ACD-HD-Rabin-transform; we can see the ACD-HD-Rabin-transform of a
game G as a game in which, at each moment, first, a move takes place in G, and then a choice is
made to update the current node in ACD 4. With the current definition of ACDgapin (&), it is the
player who makes the move in the game component who chooses how to update the node in
ACDg. This is potentially a problem, as in order to obtain an equivalent game we would like
that Eve had full control to decide how to update the nodes in ACDg, even when it was Adam

who moved in the game component (we note that in Proposition 5.28 we did not claim that

69 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

there is an HD-for-games mapping ¢ : ACDgrapin(7S) — 78). In order to obtain a transformation
working for games, we need to slightly modify the definition of the ACD-HD-Rabin-transform.

For a Muller game G suitable for transformations, we define its ACD-HD-Rabin-transform-
game
parity
ACDg-component of vertices. The update of this information is delayed of one transition, so it

for-games, written ACD (G). The idea is simply to take from Adam the power to update the
is Eve who makes the choice of how to move in the ACD. To do this, we need to introduce some
additional vertices controlled by Eve. The formal details of this construction and the proof of
correctness can be found in Appendix B.

PROPOSITION 5.32 (Correctness of the ACD-HD-Rabin-transform-for-games). Let G be a
Muller game suitable for transformations, and let AC Dg:x/(G) be its ACD-HD-Rabin-transform-

for-games. Then, there is an HD-for-games mapping ¢: ACD?)z:S(g) — 7J8.

COROLLARY 5.33. Let G be a Muller game suitable for transformations, and let ACD?)??&?(Q)

be its ACD-HD-Rabin-transform-for-games. Then, Eve’s full winning region in G is the projection
.. . . game

of her full winning region in AC Dparity(g).

5.4 Optimality of the ACD-transforms

We now state and prove the optimality of both the ACD-parity-transform (Theorems 5.34
and 5.35) and the ACD-HD-Rabin-transform (Theorem 5.36). The proofs of these results will use
the optimality of the automata based on the Zielonka tree (c.f. Section 4) as a black-box, which
will allow us to prove the optimality of both transformations at the same time. The key idea is
thatif : 78 — 78’ is an HD mapping, we can see 78 as an HD automaton recognising the
accepting runs of 78’. We can then use local Muller conditions at vertices of 78’ to reduce the

problem to automata recognising Muller languages.

5.41 Statement of the optimality results

We state the optimality of the transformations based on the ACD. All the results below apply to
labelled transition systems too. For technical reasons, we need to suppose that all the states
of transition systems under consideration are accessible, an hypothesis that can always be
made without loss of generality. We recall that HD mappings are in particular locally bijective
morphisms and HD-for-games mappings (c.f. Figure 7).

THEOREM 5.34. Let 7S be a Muller TS whose states are accessible and let 7S be a parity TS. If
78 admits an HD mapping @ 78 — T8, then, its acceptance condition uses at least as many
colours as that of ACDparity (7S).

THEOREM 5.35. Let 7S be a Muller TS whose states are accessible and let 7S be a parity TS. If
78 admits an HD mapping @ 78 — TS, then, |ACDparity (7S)] < |7i:§|.

70 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

THEOREM 5.36. Let 7S be a Muller TS whose states are accessible and let TS be a Rabin TS. If
78 admits an HD mapping @: 78 — TS, then, |ACDRapin (7S)| < I%L

We obtain an analogous optimality result for the ACD-HD-Rabin-transform-for-games. In
this case, the bound is not tight due to the additional vertices that are added to AC Dg::g(g) (see
Appendix B for details).

COROLLARY 5.37. Let G be a Muller game suitable for transformations whose states are
accessible and let G be a Rabin game. If G admits an HD-for-games mapping ¢ G — G, then,
IACD. 5 (G)] < 216,

5.4.2 Discussion: Limits on the applicability of HD automata and preservation of
minimality

Before presenting the proofs of the optimality theorems, we discuss some consequences and

limitations of our results.

Difficulty of finding succinct history-deterministic automata. As mentioned in the intro-
duction, several years had to pass after the introduction of history-deterministic automata [44]
before finding HD automata that were actually smaller than equivalent deterministic ones [57].
As of today, we only know a handful of examples of w-regular languages admitting succinct HD
automata [1, 57, 24], and their applicability in practice has yet to be fully determined. We assert
that we can derive from our results some enlightening explanations on the difficulty of finding
succinct HD parity automata, and set some limits in their usefulness in practical scenarios such
as LTL synthesis.

First, Corollary 4.16 already sets the impossibility of the existence of small HD parity
automata recognising Muller languages. Corollary 5.39 states that if an HD parity automaton A
has been obtained as a transformation of a DMA 8, then ‘A is not strictly smaller than a minimal
deterministic parity automaton for £ (A).

COROLLARY 5.38. Let 78 be a Muller TS. A minimal parity TS admitting an HD mapping to
TS has the same size than a minimal parity TS admitting a locally bijective morphism to 7S.

COROLLARY 5.39. Let A be a history-deterministic parity automaton. Assume that there
exists a DMA B such that A admits an HD mapping to 8. Then, there exists a DPA A’ recognising
L(A) such that |A’| < |A|.

Both corollaries follow from an immediate application of Theorem 5.35.

The ACD-transform does not preserve minimality. A natural question is whether the
ACD-parity-transform preserves minimality of automata, that is, given a DMA A with a min-

71/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

imal number of states for the language it recognises, is ACDpgity(A) minimal amongst DPAs

recognising £ (A)?" The answer to this question is negative, as we show now.

PROPOSITION 5.40. There exists a DMA A that is minimal amongst DMAs recognising L (A),
but such that its ACD-parity-transform ACDparity (A) is not a minimal DPA.

We consider the alphabet £ = {a, b, ¢} and the language
L ={w e x| c € Inf(w) and w contains infinitely often the factor ab}.

A minimal DMA for L is depicted in Figure 18a. Its minimality follows simply from the
fact that, as L is not a Muller language ((abc)“ € L but (bac)® ¢ L, c.f. Remark 2.10), a DMA
with just one state cannot recognise L. In Figure 18 we show its alternating cycle decomposition
and its ACD-parity-transform that has 4 states. However, we can find a DPA with just 3 states
recognising L, as shown in Figure 18d.

0
a, A B, A]
q0,4q1 qo, 41
b: A § T
(a) A Muller automaton with acceptance set (b) Alternating cycle decomposition of A. To
given by ¥ = {{a, B,A}}. indicate the labels of the nodes of this ACD, we
include just the colours of the corresponding

edges.

(c) ACD-parity-transform of A, ACDparity (A), (d) A parity automaton recognising L with only 3
with 4 states. states .

Figure 18. A minimal DMA whose ACD-parity-transform is not a minimal DPA.

11 This question was left open as a conjecture in the conference version of this paper [23].

72 /| 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

5.4.3 Optimality of the parity condition of ACDpyity(7S)

We show next the proof of Theorem 5.34. To prove this result, we would like to use the Flower
Lemma 2.16, however, the statement of Theorem 5.34 does not involve w-regular languages. In
order to set up a context in which apply the Flower Lemma, we show that, whenever we have a
morphism ¢: 78 — 78’, 78 can be seen as an automaton reading the runs of 78’.

Let 78 = (G,Acc) and 78’ = (G’, Acc’) be transition systems with underlying graphs
G = (V,E,Source,Target,I) and G’ = (V’, E’,Source’, Target’,I’), and acceptance conditions
Acc = (y,I, W) and Acc’ = (y/,T’, W’). A weak morphism of transition systems ¢: 78 — 78’
provides a labelling of the edges of 7S by ¢r: E — E’. Therefore, we can see 7S as an automaton
with input alphabet E’, inheriting the underlying graph and acceptance condition from 7S. We
say that this is the automaton of morphism ¢ and denote it by A,.

We define the language of accepting runs of a transition system 78 as:

Lguns(TS) = {p € E“ | pis an accepting run in 7S}.

LEMMA 5.41. Let 7S and 78’ be transition systems with a single initial state, let ¢: 7S — 78’
be a weak morphism of transition systems, and let A, be its automaton. Then, ¢ is an HD mapping
if and only if the automaton A, is history-deterministic, and, in this case,

"E (ﬂ(l)) = L‘]{un& (TS,) .

PROOF. We first note that a resolver for A, (in the sense of HD automata) is a mapping of the
formr: E* X E’ — E, as E’ is the input alphabet of this automaton. A resolver simulating ¢ (in
the sense of HD mappings) is a mapping of the same form. It is straightforward to check that
(qo, r) is a sound resolver for A, if and only if (r1nit,) is a sound resolver simulating ¢ (where
rnit(qy) = qo is the only possible choice of initial vertex).

We prove that L(Ay) = {p’ € Run(TS’) | p’ is an accepting run}. First, we remark that if
pisarunin A, over p’ € Run(7S’), then p’ = @ ,.s(p), since the labelling of A, by input letters
is given exactly by ¢ itself. Therefore, if p” € L(A,), there exists an accepting run p over p’,
and since ¢ preserves accepting runs, p’ = @x,,(p) is accepting in 78’, proving the inclusion
from left to right. For the other inclusion, we let (7,) be a sound resolver simulating ¢. If p’

is an accepting run in 78’, then rg,,(p’) is an accepting run over p’ in A,. |

We recall that [mings, maxss] are the colours used by the ACD-parity-transform of 7S,
which coincides with the maximal height of a tree in AC Dys. We also recall that mings = 0 if
ACDqgs is positive or equidistant, and that mings = 1 if ACPDgs is negative.

LEMMA 5.42. Let 7S be a Muller TS, and let AltTree(€) € ACDgs be a positive (resp. negative)
tree of the ACD of TS of height d. Then, 7S admits a positive (resp. negative) d-flower.

73 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF. We use the same argument as the one used in the proof of Theorem 4.14. Let n; <
ny < ... < ng be abranch of length d of AltTree(£) (where n; is the root and ny is a leaf of the
tree). Let v € vsates(ng) be a vertex appearing in the leaf. Then, the whole branch is contained
in 7, (by Remark 5.4), that is, v(n;) € Cycles,(v). Moreover, v(ny) 2 v(nz) 2 ...v(ng) is a chain
that alternates accepting and rejecting cycles, so it is a d-flower that is positive if and only if
v(n1) = £ is an accepting cycle, that is, if AltTree(#) is positive. |

LEMMA 5.43. Let 78 be a Muller TS with a single initial vertex and whose vertices are all
accessible. Then, the parity index of L ,,.(TS) is:

— [mings, maxys] if ACDqs is positive or negative,

— Weakmnax if ACDygs is equidistant.

PROOF. We consider the identity morphism Idss: 7S — 78 and its automaton Ajq,;, which is
a deterministic automaton trivially recognising Lg,,;(7S) (that is, we see 78 as an automaton
reading its own edges as input letters). The result follows from the Flower Lemma 2.16 and
the fact that a tree AltTree(€) € ACDyqs of height d provides a d-flower that is positive if ¢ is
accepting and negative if ¢ is rejecting (Lemma 5.42). These flowers are accessible as we have
supposed that all the vertices of 7S are accessible. |

The previous lemmas allow us to obtain Theorem 5.34 for transition systems with a single
initial vertex. We introduce some further notations to deal with the general case.

For a Muller TS 78 and a vertex v, we let AC D (ss,y) be the alternating cycle decomposition
of the accessible part of 7§ from v. We note that the trees of ACD ss,) are a subset of the
trees of ACDys: a tree AltTree(¥;) € ACDqs appears in ACD 75, if and only if the cycle ¢;
is accessible from v. Accordingly, for each vertex v of 78 we let min sg,,) (resp. maxss,)) be
the minimum (resp. maximum) value taken by the function p #cp when restricted to the trees
of ACD (73,v).

REMARK 5.44. For every transition system 78, one of the two following statements holds:
— There is some vertex v such that [mings, maxss] = [mingg), maxgs,y)].
— There are two vertices vy and v; such that mingsy,) = 0, max(ss,,) = maxys — 1 and
minss,y,) = 1, max(ss,y,) = Maxys.

Moreover, if all the states of 7S are accessible, we can choose v (resp. vo and v4) to be an initial

vertex.

We can finally deduce Theorem 5.34 from the preceding lemmas.

PROOF OF THEOREM 5.34. We assume that we are in the first case of Remark 5.44 (a
proof for the second case follows easily). First, we show that we can suppose that 7S and
78 have a single initial vertex. Let v be an initial vertex of 78 such that [mings, maxgs] =

74 /| 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

[min s), Max7s,y)]. Let ¢: 78 — 7S be an HD mapping, and let (i,) be a sound resolver
simulating it. We let ¥ = rp,it(v) be the initial vertex in 78 chosen by the resolver. It suffices
then to prove the result for the accessible part of 78 from ¥, the transition system 78,, and the
restriction of ¢ to these transition systems.

From now on, we assume that both 78 and 7S have a single initial vertex. By Lemma 5.43
and Proposition 2.15, a parity history-deterministic automaton recognising Lg,,;(7S) uses
at least |[mings, maxyss]| colours. By Lemma 5.41, the automaton A, of the morphism ¢ is
a parity history-deterministic automaton recognising L«,.;(7S), and therefore uses at least
|[mings, maxgs]| colours. Since the acceptance condition of 7S is exactly the same as that of
Ay, we can conclude.]

5.4.4 Optimality of the sizes of ACDy,iyy (7S) and ACDgabin (7S)
We prove now Theorems 5.35 and 5.36.

SKETCH OF THE PROOF. Let ¢: 78 — 78 be an HD mapping, and let v be a vertex in 78.
We can see the set ¢~1(v) as the states of an HD automaton reading finite runs in 7S looping
around v. This allows to define an HD automaton having ¢~!(v) as set of states and recognising
LocalMullergs(v). As the Zielonka tree of LocalMullerss(v) is the tree 7, by optimality of the ZT-
parity-automaton (resp. the ZT-HD-Rabin-automaton), we deduce that |¢~1(v)| > |Leaves(Z)|
(resp. |01 (v)| > rbw(T)). m

DEFINITION 5.45. Let 7S and 78’ be two transition systems, and let (y,T, Mullerpr(¥))
be the acceptance condition of 7S. Let ¢: 78 — 78’ be a weak morphism of transition
systems that is locally surjective, and let v’ be an accessible recurrent state of 7S’. For each
' € Cycles ,(7S") we let pp be a finite path starting and ending in v’ visiting exactly the edges
of £'. We define the cycle-preimage-automaton at v’ to be the Muller automaton A,-1,) =
(Qv, Cyeles ,(TS'), Qu, 24, 8, Muller,r (F)) over the input alphabet Cycles, (V') defined as:

— the set of states is Q,y = ¢~ 1(V'),

— all the states are initial,

— the output colours are non-empty subsets of the colours used by 7S,

— (q2,C) € 6(qq, ¥’) if there is a finite path p € ?atﬁg?(TS) from g, to g, such that ¢(p) = py
producing as output the colours in C C T, that is y(p) = C. If C is empty, this corresponds
to an uncoloured edge ¢ £, q2. We remark that, since ¢ is assumed locally surjective,
there is at least one such path p.

— {C4,...,Cx} € Fif and only if UleC,- eF.

/.

We remark that a transition e = ¢ — ¢z in A,-1,/ induces a finite path Unfold(e) =

q1 5 g, in 78 called the unfolding of e, producing as output the set of colours C and such

75 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

that ¢(Unfold(e)) = #. In particular, a run p in A,-1,, is accepting if and only if Unfold(p) is
accepting.

LEMMA 5.46. If L = Mullerp(F) is a parity (resp. Rabin) language, then, so is the language
L = Muller,r (F) used by the acceptance condition of Ay-1,)-

PROOF. Assume that L is a parity language, that is, there are dpnin < dmax and ¢: I' —
[dmin, dmax] such that for any non-empty subset C C T, C € ¥ if and only if min ¢(C) is even.
We define @: 20 — [dmin, dmax] as: @(C) = min ¢(C). It is immediate to see that {C, ..., Cx} € F
if and only if min ¢({C, ..., Cx}) is even.

Assume now that L is a Rabin language represented by the Rabin pairs {(G1, Ry),...,
(Gr, Ry)}. We define a family of Rabin pairs R = {(G1,R1), ..., (G, R;)} for L as: {C4,...,Cx} € Gi

(resp. € R;) if Ué‘lei € G; (resp. € R;). It is immediate to see that L = Rabin,r (R). m

LEMMA 5.47. Let 7S and 78’ be two Muller TS, ¢: 78 — 78’ a weak morphism of TS, and v’
an accessible recurrent state of 7S'. If ¢ is an HD mapping, then the automaton A1) 1S
history-deterministic and recognises the local Muller condition of 7S’ at v'.

PROOF. L(A,1,,) C LocalMuller, (7S): Let £, ¢, - - - € Cycles (7S)® be a sequence of cycles
accepted by A,-1,,. By prefix-independence of Muller languages we can assume that all
the cycles £/ appear infinitely often. Let p = qo ﬂ qQ1 i q2 — ... be an accepting run
in A,-1, over £1¢, ..., and let Unfold(p) be its unfolding. As p is an accepting run, so is
Unfold(p), and since ¢ preserves accepting runs, @(Unfold(p)) is an accepting run in 7S’. The
edges visited by ¢(Unfold(p)) form the cycle U;>1 ¢/, which is therefore an accepting cycle, so
21, - - - € LocalMuller,/ (78) by definition of local Muller condition.

LocalMullergs (V') € L(A(y-1,,)) and history-determinism: Letr, : E* X E’ — E be a
sound resolver simulating ¢. We will transfer the strategy given by r, to define a resolver
ra « A" X Cycles , (7 S’) — Afor A(p-1,), Where A is the set of transitions of the automaton. Let
Py € Run™(78’) be a finite run reaching v/, and let py = r'o,zuns(Pg) the preimage given by the
resolver, ending in some qo € Q, that is going to by used as initial state for A,-1,,. For a
sequence eje;...ex € A" and ¢ € Cycles , (7 S’), we let

raeies...ex &) =r,(p4p) - Pl prr), 2

where p} = ¢@(Unfold(e;)) and v’ L% v is the finite run corresponding to ¢’ fixed in the
definition of A(,-1,/). By definition, the obtained resolver satisfies the following property:

If eey - - € A” is the run induced by r4 over £, ¢, - - - € Cycles ,(7S")?,

then poUnfold(eiez...) =g guns(PoP1IPG - - -)-

12 Here we use a slight abuse of notation, since, formally, r, takes as input elements in E* x E’, but p, € E’*. We can
naturally extend r, to E’* by induction. Equivalently, we can say that ra(ese; ... ex, ') is a suffix of ry zu.(pyp7 - - . prPe)-

76 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

This gives us:

U Inf(€y, 5, ...) is accepting cycle in 78’ <= pyp}p; ... is accepting run in 78" =

= poUnfold(ese,...) accepting runin 7S <= eje;... accepting runin Agy-1,).

Which allows us to conclude that the A,-1,, recognises LocalMuller,,(7S) and that r is a
sound resolver. u

COROLLARY 5.48. Let 7S and 7S be a Muller and a parity transition system, respectively,
and let ¢: 78 — 7S be an HD mapping. Let v be an accessible recurrent state of 7S. Then,

|(D_1(V)| 2 |Leaves(ZLocalMullemg(\/))| = |Leaves(%)|-

PROOF. By Lemma 5.47, the automaton A ,-1) is a history-deterministic automaton recog-
nising LocalMuller,(7S) of size |¢~1(v)|, and by Lemma 5.46, it is a parity automaton. The
optimality of the ZT-parity-automaton (Theorem 4.15) gives us the first inequality. The second
equality follows from the fact that 7, is the Zielonka tree of LocalMullerys(v) (Lemma 5.9). =

The next corollary admits an identical proof, using the optimality of the ZT-HD-Rabin-
automaton (Theorem 4.51).

COROLLARY 5.49. Let 7S and 7S be a Muller and a Rabin transition system, respectively,
and let ¢: 78 — 7S be an HD mapping. Let v be an accessible recurrent state of 7S. Then,

|¢_1(V)| 2 |er(ZLocaIMuIIer73(v))| = |rbw(%)|-

Theorems 5.35 and 5.36 follow from these two corollaries, the formulas for the size of
the ACD-transforms (Remarks 5.15 and 5.27) and the fact that a locally surjective morphism
Q: 78 - TS is surjective if all vertices of 78 are accessible (Lemma 3.5).

6. Corollaries

In this section, we discuss some further applications of the Zielonka tree and the alternating
cycle decomposition. In Section 6.1, we use the insights gained from the ACD to conduct a
comprehensive study of typeness results for deterministic Muller automata (that is, when can
we relabel a DMA with an equivalent and simpler acceptance condition). In Section 6.2 we
present a normal form for parity transition systems and prove the main properties exhibited
by TS in this form. In Section 6.3, we provide a polynomial-time algorithm minimising DPA

recognising Muller languages.

77 | 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

6.1 Typeness results

As we have seen, there are many different types of acceptance conditions for w-regular automata.
An important question is the following:

Question: Given a Muller automaton (A, can we define a simpler acceptance condition over the
underlying graph of ‘A obtaining an equivalent automaton A’?

This question was first studied (in the context of automata using state-based acceptance)
by Krishnan, Puri and Brayton [55, 56], who showed how to determine if a DMA can be re-
labelled with an equivalent Biichi condition. Their work was generalised to parity automata
by Boker, Kupferman and Steinitz [11], and related questions about typeness were studied for
non-deterministic automata by Kupferman, Morgenstern and Murano [59], and for history-
deterministic automata by Boker, Kupferman and Skrzypczak [10].

In this section, we provide new general characterisations of typeness for Muller transition
systems. The main contributions of this section appear in Propositions 6.9, 6.10 and 6.11, which
characterise when a Muller TS can be relabelled with equivalent parity, Rabin, or Streett
conditions in terms of properties of the cycles of the TS. For instance, Proposition 6.9 states that
a Muller TS can be relabelled with an equivalent Rabin condition if and only if its rejecting
cycles are closed under union. The “only if” part of these results was already known [63],
but the fact that this is indeed a characterisation is a novel result, for which the use of the
ACD is essential. These characterisations directly imply the results from [11, 55, 56]. We also
show how to use the ACD to determine the parity index of the language recognised by a DMA
(Proposition 6.13), which can be seen as a simplification of the results from [56, Section 3.2].
Further results concerning generalised Buichi languages and weak automata can be found in
Appendix A.

6.11 Typeness for Muller languages

We first present some results proven by Zielonka [94, Section 5] that show how we can use the
Zielonka tree to deduce if a Muller language is a Rabin, a Streett or a parity language. These
results are generalised to transition systems in the next subsection. A study of further types of
Muller languages can be found in Appendix A.

We do not include the proofs of the results of this section in the main body of the paper; as
they are known results [94, Section 5] and they are special cases of the proofs in Section 6.1.2.
Nevertheless, we include them in Appendix E.

We first introduce some definitions. The terminology will be justified by the upcoming
results.

DEFINITION 6.1. Let T be a tree with nodes partitioned into round nodes and square nodes.
We say that T has:

78 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

— Rabin shape if every round node has at most one child.
— Streett shape if every square node has at most one child.
— Parity shape if every node has at most one child.

PROPOSITION 6.2. Let ¥ C 2 be a family of non-empty subsets. The following conditions are
equivalent:

1. Mullerr(F) is a Rabin language.

2. 2L\ F is closed under union: IfC; ¢ ¥ and C, ¢ ¥, thenC, U C; ¢ F.

3. Zg has Rabin shape.

PROPOSITION 6.3. Let ¥ C 2! be a family of non-empty subsets. The following conditions are
equivalent:

1. Mullerr(¥F) is a Streett language.

2. The family ¥ is closed under union.

3. Z# has Streett shape.

PROPOSITION 6.4. Let ¥ C 2. be a family of non-empty subsets. The following conditions are
equivalent:
1. Mullerr(F) is a parity language.
2. Both F and 2L \ F are closed under union: If C, € ¥ & C; € ¥, then,C{UCy € F
CieTF.
3. Z# has parity shape.

Moreover; if some of these conditions is satisfied, Mullerr(¥) is a [ming, max¢|-parity language.

COROLLARY 6.5. A Muller language L C T“ is a parity language if and only if it is both a Rabin
and a Streett language.

6.1.2 Typeness for Muller transition systems and deterministic automata

We start this subsection by introducing the necessary definitions about equivalence of accep-
tance conditions and typeness. Then, we state and prove our main contributions concerning

typeness of transition systems.

Equivalence of acceptance conditions and typeness. Let 7S; = (G, Accy) and 7S, =
(G, Accy) be two transitions systems over the same underlying graph G, with acceptance condi-
tions Acc; = (y;, I';, W;), for i € {1, 2}. We say that Acc; and Acc, are equivalent over G, written
Accy ~g Accy, if for all runs p € Run(G), p is accepting for 78, if and only if it is accepting for
T8,; thatis, y1(p) €e W1 & y2(p) € W,.

79 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We write 781 ~ 78, if 781 and 78, are isomorphic. We recall that two transition systems
are isomorphic if there is a morphism of transition systems ¢: 781 — 782 whose inverse is
also a morphism, that is, ¢ and ¢! preserve the acceptance of runs.

REMARK 6.6. If ¢p: 781 — 78, is an isomorphism, then (y, o ¢,I';, W) is an acceptance
condition over the underlying graph of 78, that is equivalent to (y1, I'1, W1) over this graph.
Conversely, if two acceptance conditions Accy and Acc; are equivalent over a same graph G,

then the identity function is an isomorphism between 78, = (G, Accy) and 7S, = (G, Accy).

For X one of types of languages defined in Section 2.2 (Buchi, parity, Muller, etc...), we say
that a transition system 78 is X type if there exists an isomorphic transition system 78’ ~ 7S
using an X acceptance condition. We note that, by the previous remark, in that case an X
acceptance condition can be defined directly over the underlying graph of 7S.

We remark that, given a pointed graph G (whose states are accessible), the equivalence
classes of Muller acceptance conditions for the relation ~; are given exactly by the mappings
f: Cycles(G) — {Accept, Reject}.

The ACD determines the type of transition systems.

DEFINITION 6.7. Let 78 be a Muller transition system with a set of states V. We say that its
alternating cycle decomposition AC D3 is a:
— Rabin ACD if for every state v € V, the tree 7, has Rabin shape.
— Streett ACD if for every state v € V, the tree ‘7, has Streett shape.
— Parity ACD if for every state v € V, the tree 7, has parity shape.
— [0,d — 1]-parity ACD (resp. [1, d|-parity ACD) if it is a parity ACD, trees of AC D45 have
height at most d and trees of height d are positive (resp. negative).

REMARK 6.8. AC9Dgs is a parity ACD if and only if it is both a Rabin and a Streett ACD.

PROPOSITION 6.9. Let 7S = (Gys,Accgs) be a Muller transition system whose states are
accessible. The following conditions are equivalent:
1. 78 is Rabin type.
2. For every pair of rejecting cycles €1, €y € Cycles(7S) with some state in common, €, U €3 is a
rejecting cycle.
3. ACDqs is a Rabin ACD.

PROOF. (1 = 2) Let Accg = (y,T, Rabin(R) be the Rabin acceptance condition equivalent to
Accys, and let R = (G4, Ry),..., (G, Ry) be its Rabin pairs. Let #; and £, be two cycles with a
state in common, and suppose that ¢; U ¢ is accepting; we show that either ¢; or ¢, is accepting.
The cycle ¢; U ¢, is accepted by some Rabin pair (Gj, Rj), so for all edges e € £, U €5, y(e) ¢ R,

80 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

and there is some ey € €1 U €5 such that y(eg) € G;. If ey belongs to ¢4, then #; is accepted by the
Rabin pair (G, Rj), and if ey € ¢, then ¢, is accepted by it.

(2 = 3) Let v be avertex of 78 and 7, the local subtree at v. Suppose that there is a round node
n € 7, with two different children n; and ny. The cycles v(n;) and v(n;) are rejecting cycles
over v, but their union is an accepting cycle (by Remark 5.2).

(3 = 1) We observe that AC Dy is a Rabin ACD if and only if row(‘%;,) = 1 for all vertices v of 7S.
In particular, the ACD-HD-Rabin-transform of 78S does not add any state to 78. It is immediate to
check that the morphism ¢: ACDgapin(7S) — 78 given by ¢y (v, x) = v, ¢e(e, 1) = e defined in
the proof of Proposition 5.28 is an isomorphism, and 7S uses a Rabin acceptance condition. =

PROPOSITION 6.10. Let 7S = (Ggs,Accgs) be a Muller transition system. The following
conditions are equivalent:
1. 78 is Streett type.
2. For every pair of accepting cycles €1, €2 € Cycles(7S) with some state in common, €1 U €y is
an accepting cycle.’
3. ACDgqs is a Streett ACD.

PROOF. Implications (1 = 2) and (2 = 3) are analogous to those from Proposition 6.9.

(3 = 1) We consider the transition system 7S obtained by complementing the acceptance set
of Accgs. By Remark 5.6, the ACD of 7S is obtained from AC Dy by turning round nodes into
square nodes and vice-versa. Thus, the ACD of 7S is a Rabin ACD, and by applying the previous
proposition we can define a Rabin condition Accg = (y, T, Rabinr(R)) such that the transition
system (Ggs, Accg) is isomorphic to 7S. Since Streettp(R) is the complement language of
Rabinr(R), we obtain that Accs = (y, T, Streettr(R)) is a Streett acceptance condition equivalent
to Accgs over Gys. |

PROPOSITION 6.11. Let 7S = (Ggs,Accys) be a Muller transition system. The following
conditions are equivalent:
1. 78 is parity type.
2. For every pair of accepting (resp. rejecting) cycles €1, €, € Cycles(7S) with some state in
common, €1 U ¥, is an accepting (resp. rejecting) cycle.
3. ACDygs is a parity ACD.

Moreover; if some condition is satisfied, 7S is [0,d — 1] (resp. [1, d])-parity type if and only if
ACDgs isa [0,d — 1](resp. |1, d])-parity ACD.

PROOF. (1 = 2) Proven in Lemma 4.21.

13 This property was introduced by Le Saéc under the name cyclically closed automata [82]. We point out that the “if”
direction of the result stated in [82, Theorem 5.2] does not hold. That statement can be rephrased as: If a DMA A is
cyclically closed, then the parity index of A is [0, 1]. We refer to Proposition 6.13 for a correct characterisation.

81/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

(2 = 3) Admits an analogous proof to the corresponding implication in Proposition 6.9.

(3 = 1) By definition, AC Dz is a parity ACD if and only if Leaves(7,) is a singleton for each
vertex v of 7S§. In particular, the ACD-parity-transform of 78 does not add any state to 7S.
It is immediate to check that the morphism ¢: ACDparity(7S) — 7S defined in the proof of
Proposition 5.19 is an isomorphism. Therefore, 7S and ACDparity(7S) are isomorphic transition
systems, and the latter uses a parity acceptance condition thatis a [0,d — 1] (resp. [1, d])-parity
condition if ACDqs isa [0,d — 1] (resp. [1, d])-parity ACD. If ACDgs isnota [0,d — 1](resp.
[1, d])-parity ACD, then the number of colours cannot be reduced by the optimality of the
number of colours of the ACD-parity-transform (Theorem 5.34). n

COROLLARY 6.12. A Muller transition system is parity type if and only if it is both Rabin and
Streett type.

The ACD and the parity index of w-regular languages.

PROPOSITION 6.13. Let A be a deterministic Muller automaton whose states are accessible.
Then, the parity index of L(A) is:
— [0,d — 1] (resp. [1, d]) if and only if:
— trees of ACD # have height at most d,
— there is at least one tree of height d, and
— trees of height d are positive (resp. negative).
— Weak, if and only if:
— trees of ACD # have height at most d,
— there is at least one positive tree of height d, and
— there is at least one negative tree of height d.

PROOF. We prove the right-to-left implication for the case Weak . Assume that AC D 4 verifies
the previous list of conditions (in particular, it is equidistant). Then, the ACD-parity-transform
ACDparity (A) is a DPA recognising L (A) using colours in [0, d]. In order to obtain a DPA for
L (A) with coloursin [1, d + 1] we need to introduce a small modification to the function p4cp.
For ¢; a maximal cycle of A and n € N, we define:

— Pacp(n) = Depth(n) + 2, if ¢; is accepting,

— Pacp(n) = Depth(n) + 1, if &; is rejecting.

It is a routine check to see that the version of the ACD-parity-transform using p’, ., is indeed a
correct parity automaton using colours in [1,d + 1].

To prove that no DPA recognising L uses less than d colours, it suffices to use the Flower
Lemma 2.16 and the fact that a branch of length d in a tree of the ACD induces a d-flower in A,
which is positive if and only if the corresponding tree is positive (Lemma 5.42).

82 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

This is indeed a complete characterisation, since for any ACD there is a minimal d such that
ACD 4 lies in one and only one of the classes specified in the statement of the proposition. =

PROPOSITION 6.14. Let L C X% be an w-regular language of parity index at least [0,d — 1]
(resp. [1,d]). Any history-deterministic Muller automaton recognising L uses an acceptance
condition with at least d different output colours.

PROOF. We first prove the result for deterministic automata. Let A be a DMA recognising L
using the acceptance condition (y, T, Mullerr(¥)). By Proposition 6.13, there is a tree AltTree(#;)
in the ACD of A of height at least d. We define y zcp: Nodes((ACDqss) — T to be the function
that assigns to each node of the ACD the colours appearing in it, that is: y4cp(n) = y(v(n)). We
remark that if n’ is a descendant of n then y4¢cp(n’) C yacop(n), and that a node n is round
if and only if y scp(n) € F. Therefore, by the alternation of round and square nodes, if n’ is
a strict descendent of n, yacp(n’) € yacop(n). We conclude that the root of AltTree(#;) must
contain at least d different colours.

In order to obtain the result for history-deterministic automata we use finite-memory
resolvers as defined in Section 4.2. If A is a history-deterministic Muller automaton, it admits
a sound resolver implemented by a finite memory structure (M, o) (Lemma 4.24). Then, the
composition A <5z M is a DMA using the same number of colours, that has to be atleastd. =

The following result (which was already known, as it is a consequence of the construction
by Carton and Maceiras [19]), is refined and proven in Appendix A (Corollary A.16).

PROPOSITION 6.15. Let A be a deterministic parity automaton such that all its states are
accessible and the parity index of L(A) is [0,d — 1] (resp. [1,d]). Then, A is [0,d — 1] (resp.
[1, d])-parity type.

The previous result does not hold for history-deterministic automata, as we could artifi-
cially add transitions augmenting the complexity of the structure of the automaton (enlarging
the flowers of the automaton) without modifying the language it recognises. Nevertheless, some
analogous results applying to HD automata can be obtained. Boker, Kupferman and Skrzypczak
proved that any HD parity automaton recognising a language of parity index [0, 1] (resp. [1, 2])
admits an equivalent HD subautomaton using a Buichi (resp. coBuichi) condition [10, Theorems 10
and 13]. We do not know whether the result holds for languages of arbitrary parity index.

Typeness for deterministic automata. Two automata A, and A, such that A; ~ A, recog-
nise the same language: £(A,) = L(A;). However, the converse only holds for deterministic

automata.

LEMMA 6.16. Let A, and A, be two deterministic automata over the same underlying graph
and with the same labelling by input letters. Then, L(A1) = L(Ay) if and only if Ay ~ Ao.

83 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

PROOF. The implication from right to left is trivial. For the other implication, suppose that
L(A)) = L(Ay),and let p € Run(A1) = Run(Ay) be an infinite run over the underlying graph
of A,. Let w € £“ be the word over the input alphabet £ labelling the run p. Since A; and A,

are deterministic, p is the only run over w, and therefore:
p is accepting for A; & we L(Ay) = L(Ay) & pisaccepting for A,. |

COROLLARY 6.17 (First proven in [11, Theorem 7]). Let G# be the underlying graph of a
deterministic automaton. Then, there are Rabin and Streett conditions Accg and Accg such that
L(Ga,Accg) = L(Ga, Accs) ifand only ifthere is a parity condition Accy, such that L(G ., Accp) =
L(Ga,Accr) = L(Ga, Accs).

We remark that the hypothesis of determinism in the previous corollary is necessary, as it
has been shown that an analogous result does not hold for non-deterministic automata [11].

PROPOSITION 6.18 (First proven in [55, Theorem 15]). Let ‘A be a deterministic Rabin (resp.
Streett) automaton, and assume that L(A) can be recognised by a deterministic Biichi (resp.
coBiichi) automaton; that is, the parity index of L(A) is at most [0, 1] (resp. at most [1, 2]).
Then, A is Biichi type (resp. coBlichi type).

PROOF. We do the proof for the case Rabin-Biichi. We can assume that all the states of ‘A are
accessible, as we can define a trivial acceptance condition in the part of A that is not accessible.
Since L(A) has parity index at most [0, 1], the trees of the ACD of ‘A have height at most 2, and
trees of height 2 are positive (the root is a round node), by Proposition 6.13. As ‘A is a Rabin
automaton, its ACD has Rabin shape (Proposition 6.9), so round nodes have at most one child.
We conclude that the trees of the ACD of ‘A have a single branch, so itis a [0, 1]-parity ACD, and
by Proposition 6.11, A is Buchi type. u

6.2 A normal form for parity transition systems

In this section, we propose a definition of a normal form of parity automata. This is exactly the
form of automata resulting by applying the procedure defined by Carton and Maceiras [19],
o1, equivalently, of automata resulting from the ACD-parity-transform (Corollary 6.24). These
automata satisfy that they are parity-index-tight, that is, their acceptance condition uses the
minimal possible number of colours. But they offer some further convenient properties, stated
in Propositions 6.25 and 6.27, which make them particularly well-suited for reasoning about
deterministic parity automata.

This normal form, or partial versions of it, have already been used in the literature to
prove results about parity automata in different contexts, such as history-deterministic coBuichi
automata [1, 35, 57], positionality of languages defined by deterministic Buichi automata [15]
or learning of DPAs [6]. The normalisation of transition systems also facilitates solving parity

84 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

games in practice [41]. However, the application of this normal form in the literature is limited
to specific cases, and no prior works have provided a formal and systematic study of it.
From our results we obtain three equivalent ways of defining the normal form of a parity
transition system 78. Informally, they can be stated as:
1. 78 use the smallest possible colour in each of its transitions (Definition 6.20).
2. TS = ACDparity(7S) (Corollary 6.24).
3. Paths in 78 producing colour d > 0 can be closed into a cycle producing d’ as minimal
colour, for all d” < d (Theorem 6.28).

REMARK 6.19. If Acc = (y, [dmin, dmax], Parity) is a parity acceptance condition over a pointed
graph G, we can always assume that dpy is 0 or 1. Indeed, define y = dpin if dnin is even, and
X = dpin — 1 if dpin is odd. The parity acceptance condition (Y, [dmin — X, dmax — X], Parity)
defined as y’(e) = y(e) — x is equivalent to Acc over G.

Definition of the normal form. Just as in the definition of the ACD-parity-transform we had
to define positive and negative ACDs to obtain an accurate optimality result in the number of
colours, we need now to take care of a small technical detail so that TS in normal form are
parity-index-tight.

We say that a transition system 78 is negative if AC D5 is negative, that is, if for some d
78 contains a negative d-flower but contains no positive d-flower. Intuitively, a parity TS is
negative if and only if the minimal colour used by a parity acceptance condition using an

optimal number of colours is 1.

DEFINITION 6.20 (Normal form). Let 7S = (Gys, Accgs) be a parity transition system using
a colouring function y. If 78 is not negative, we say that 78 is in normal form if any other parity
acceptance condition equivalent to Accys over Ggs using a colouring function y’ satisfies that
for every edge e:

y(e) <y'(e).

If 78 is negative, we say that it is in normal form if any other equivalent colouring y’ not
using colour 0 satisfies that for any edge e:

1<y(e) <y'(e).

If 78 is in normal form, we will also say that its acceptance condition or the colouring function

it uses are in normal form.

EXAMPLE 6.21. Parity transition systems from Figures 3, 10, 17 and 18 are all in normal form.
Parity automata appearing in Figures 10 and 17 are negative (the minimal colour used by an

optimal acceptance condition is odd), whereas parity automata in Figure 18 are not.

85 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

On the other hand, the automaton from Figure 1 is not in normal form (even if it uses an
optimal number of colours). We can put it in normal form by assigning colour 1 to transitions

a,b b,c
q1 — (qo and q; — . The automaton obtained in this way recognises the same language. &

PROPOSITION 6.22. Let 7S = (Ggs, Accqs) be a parity transition system with a colouring
function y. There is a unique parity acceptance condition equivalent to Accys over Ggs in normal
form. Moreover; this acceptance condition is exactly the parity condition of the ACD-parity-
transform of 78.

Before showing the proof of Proposition 6.22, we prove a useful technical lemma.

LEMMA 6.23. Let 78 be a parity transition system with colouring function y. If 61 2 €, 2 -+ - 2
fx is a positive (resp. negative) k-flower of 7S, then min y(€x) > k — 1 (resp. min y(€x) > k).

PROOF. We show the result for negative flowers. Let d; = min y(¥¢;). We show that d; > i by
induction. Since ¢; is an accepting cycle if and only if i is even, we have that d; is even if and
only if i is even. Clearly, d; > 1, as 1 is the least odd number. Also, d;+1 > d;, since ¢;;1 C ¢;, and
the inequality is strict by the alternation of the parity, concluding the proof. u

PROOF OF PROPOSITION 6.22. We first remark that the uniqueness is directly implied by
the definition of normal form.

We prove that the acceptance condition of the ACD-parity-transform is in normal form. We
note its colouring function by y#¢cp. The transitions not belonging to any SCC are coloured 0 if
78 is not negative and 1 if 78 is negative, as desired. It suffices to prove the result for edges in
SCCs.

We assume that 78 is not negative and we let S be an accepting SCC of 7S (the proof
is similar for 78 negative and a rejecting SCC). Let e = v — V' be an edge in S, and let 7,
be the local subtree at v, which is composed of a single branch (see Proposition 6.11). We let
ng < ny < ... =< n,bethat branch, where ng is the root and n, the leaf. Let nx be the deepest node
of 7, such that e € v(ny). By definition of the ACD-parity-transform, y4cp(e) = pacp(e) = k.
Also, v(ng) < v(n1) < ... < v(ng) is a positive k + 1-flower (by Lemma 5.42). Lemma 6.23
implies then that any equivalent parity condition using a colouring function)’ verifies y’(e) >

Yaco(e) = k. |

COROLLARY 6.24. The ACD-parity-transform ACDpaity(7S) of any Muller transition system

7S is in normal form.

Fundamental properties of the normal form. We now state what we consider to be the two
fundamental properties of parity transition systems in normal form. Theorem 6.28 states that
these properties characterise the normal form.

86 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROPOSITION 6.25. Let 7S be a parity transition system in normal form. If there is a path
v ~> V' producing d as minimal colour, then, either:

— vandV are in different SCCs (and in this case d € {0,1}), or

— there is a path V' ~> v producing no colour strictly smaller than d.

PROOF. By Proposition 6.22, we know that the colouring of 7§ is the one given by its ACD-
transform, that we note y4cp. If vand v are in different SCCs the result is trivial. Let v and
V' be in the same SCC, that we suppose to be an accepting SCC without loss of generality. Let
p=V A . % Vbea path from v to V' producing min y4¢c9(p) = d as minimal colour. We
remark that, as ACPDyqs is a parity ACD, each edge e appears in one and only one branch of
ACDgs, and that y4cp(e) equals the depth of the deepest node containing e. In particular, if
e € v(n) for some node e, y4cp(e) > Depth(n). Our objective is to show that a similar result

holds for the path p as a set of edges:

CLAIM 6.26. Let N, be the set of nodes of AC Dqs containing the edges of the path p in their
label, that is, N, = {n € Nodes(ACDyqs) | {e1,...,ex} € v(n)}. Then, min(yacop(p)) equals the
depth of a node of maximal depth of N,,."

This claim allows us to conclude. Indeed, let n be a node of maximal depth of N,, verifying
Depth(n) = d. Then, v(n) is a cycle containing the vertices v and v, and for all the edges e € v(n),
Yaco(e) > Depth(n) = d. This provides the desired path from v’ to v.

Proof of Claim 6.26. First, we remark that if £;, #5, ..., €x are cycles such that #; and ¢;,, have
some state in common, then Uleﬂi is a cycle. Let n be a node of maximal depth in N,. By the
previous remarks, yacp(e) > Depth(n). Suppose by contradiction that yz¢cp(p) > Depth(n).
Then, each edge e; of p would appear in some strict descendant n; of n (we can assume that n;
is a child of n). Then, v(ny),...,v(nkx) would be cycles such that v(n;) and v(n;;1) have some
state in common (namely, Target(e;) = Source(e;+1)), so their union is a cycle. However, this is
not possible in a parity transition system, as v(n) is accepting if and only if each of the v(n;) is
rejecting (see Lemma 4.21). L 4

This completes the proof of Proposition 6.25.]

PROPOSITION 6.27 (Normal flowers do not lack petals). Let v be a state of a parity transition
system in normal form belonging to an accepting (resp. rejecting) SCC. Let £ € Cycles (7S) be a
cycle over v and let dy be the minimal colour appearing in it.
— If 7S is not negative, for each x € [0,d,] (resp. x € [1,d,]) there is a cycle £y € Cycles (TS)
producing x as minimal colour.

14 In fact, the nodes of N, are totally ordered by the ancestor relation, so there is a unique node of maximal depth in N,.
This fact is not used in our proof.

87 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

— If 7S is negative, for each x € [2,d,] (resp. x € [1,d,]) there is a cycle &x € Cycles (TS)
producing x as minimal colour.

PROOF. We do the proof for the case in which 78 is not negative and v belongs to an accepting
SCC. By Proposition 6.22, the colouring of 78 is the one given by its ACD-transform, noted
Yaco- Consider the local subtree at v, 7, consisting in a single branch, as it has parity shape
(Proposition 6.11). Let ny < ... < ny be that branch, and let n; be the deepest node such that
£ C v(n;). We remark that, by definition of yz¢cp, d; = Depth(n;) = i. The desired cycles are
obtained by taking ¢ = v(ny), for x € [0, dy]. |

The next theorem states a simple characterisation of transition systems in normal form.
It provides a useful tool to show normality of parity TS in many proofs. In essence, it shows
that the two previous propositions characterise the normal form. We state it for non-negative
transition systems for simplicity; a similar characterisation for negative transition systems is
immediate.

We say that an SCC of a parity TS is positive if the minimal colour appearing on it is even,
and that it is negative if this minimal colour is odd.

THEOREM 6.28. A non-negative parity transition system is in normal form if and only if:
— transitions changing of SCCs are coloured 0, and
— if v and V' belong to a same positive (resp. negative) SCC and there is a transition v 4 v
producing colour d > 0 (resp. d > 1), then there are two paths v’ ~ v producing as minimal
colour d and d — 1, respectively.

PROOF. The fact that a TS in normal form satisfies these properties follows from the previous
propositions.

Let 78 be a TS satisfying these properties and using y as colouring function. Let e =
1% 4 V' be an edge with y(e) = d. We will show that for any other equivalent colouring y’,
we have y’(e) > d. This is trivial if d = 0. If d > 0, v and V' must be in the same SCC, that
we assume positive without loss of generality. By hypothesis, we can close cycles €3 and €434
over v producing d and d — 1 as minimal colour, respectively. Cycle £;_, can be decomposed
inv—o v v a1, vi ~ v. Applying the hypothesis over the edge v, a1 V] gives a path
vy ~~ v1 producing d — 2 as minimal colour, which can be merged with £;_; to produce a
cycle €4, over v producing d — 2 as minimal colour. Iterating this process, we can find cycles
fy 2 ¢1 2...,2 ¢3overvsuch that ¢ producesi as minimal colour. Taking L’lf = U;.Z:l.lfi, we obtain
a positive (d + 1)-flower €, 2 €] 2 --- 2 £/, so by Lemma 6.23 we conclude that y’(e) > d. =

Parity index from automata in normal form. The next definition constitutes a syntactic
version of the parity index, defined at the level of parity transition systems. The following

88 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

results establish the tight relation between the semantic notion of parity index and its syntactic
counterpart, and state that the parity index of a language can be directly read from a DPA in
normal form.

DEFINITION 6.29. We say that a parity transition system 78 = (Ggs, Accys) is parity-index-
tight if any other parity condition Acc” over Ggs such that Acc’ ~¢_, Accys uses at least as many
colours as Accys.

We have shown in Corollary 6.24 that the ACD-parity-transform is always in normal form.
Therefore, the optimality properties of the colouring of ACDparity(7S) (Theorem 5.34) transfer

to parity transition systems in normal form.
COROLLARY 6.30. A parity transition system in normal form is parity-index-tight.

Moreover, the parity index of an w-regular language can be read from any DPA in normal

form recognising it.

COROLLARY 6.31. Let A be a deterministic parity automaton in normal form such that all its
states are accessible. If A uses colours in [0,d — 1] (resp. 1, d]), then the parity index of L(A) is
Weak;_, or [0,d — 1] (resp. Weaky_1 or [1,d]).

We prove this result in Appendix A (Corollary A.15), and we provide there a refined
characterisation by using generalised weak automata.

6.3 Minimisation of deterministic parity automata recognising Muller languages

The minimisation of w-automata is a fundamental problem of an intriguing complexity. In
2010, Schewe showed that the minimisation of deterministic Biichi and parity automata is
NP-complete, if the acceptance condition is defined over the states [86]. However, the reduction
of NP-hardness does not generalise to automata with edge-based acceptance. A surprising posi-
tive result was obtained in 2019 by Abu Radi and Kupferman: we can minimise in polynomial
time HD coBuchi automata using transition-based acceptance [1]. Schewe showed that the
minimisation was again NP-hard for HD automata with state-based acceptance [87]. To the
best of our knowledge, the only existing hardness result applying to transition-based automata
is Casares’ result about the NP-completeness of the minimisation of deterministic Rabin au-
tomata [21]. In fact, in [21] a stronger result is proven: it is NP-hard to minimise deterministic
Rabin automata recognising Muller languages.

In this section, we provide a polynomial-time algorithm for the minimisation of DPA
recognising Muller languages (with acceptance condition over transitions). By Proposition 4.10
and Theorem 4.15, we know that a minimal (history-)deterministic parity automaton recognising

a Muller language L = Mullery(#) can be constructed in linear time from the Zielonka tree Z«.

89 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

We will therefore provide a polynomial-time algorithm computing this Zielonka tree from a
DPA recognising L.

THEOREM 6.32. Let A be a DPA recognising a Muller language L = Mullers(F). We can find a
minimal deterministic (resp. history-deterministic) parity automaton recognising L in polynomial

time in the size of the representation of A.™

Description of the algorithm. Let A = (Q,Z%, qo, T, A, parity) be a DPA recognising L =

Mullery (7). We outline a recursive algorithm building Z# = (N, <,v) in a top-down fashion;
it starts from the root of the tree (which is always labelled X), and each time that some node
is added to N, we compute its children. If we have built Z# up to a node n, we compute the
children of n by using the procedure AlternatingSets described in Algorithm 1, which we
disclose next.

We assume without loss of generality that n is round, that is, v(n) € ¥. First, we take the
restriction of A to transitions labelled with letters in v(n) and pick a final SCC on it. Such final
SCC induces a subautomaton A’ of A recognising Muller,) (¥1,,)) (see also Lemma 4.20).
Our objective is to find the maximal subautomata of A’ using as input letters sets X C v(n)
such that X ¢ 7. We will keep all such subsets X in a list altSets. The labels of the children of
n will then correspond to the maximal sets appearing in this list, which are returned by the
algorithm AlternatingSets (Line 11). In order to find them, we remove the transitions using
the minimal colour in (A’ (that is even, since v(n) € ¥) and compute a decomposition in strongly
connected components of the obtained graph. Let S be a component of this decomposition and
let £s C v(n) be the input letters appearing in it. Then, Xs ¢ ¥ if and only if the minimal output
colour in § is odd (see Lemma 6.33 below). In this case, we add Zs to altSets. On the contrary,
we remove the minimal (even) colour from S, and we start again finding a decomposition in
SCCs of the obtained graph.

We include the pseudocode for the procedure AlternatingSets in Algorithm 1. We use
the following notations:

— Letters(S) is the set of input letters appearing in S,
— MinColour(S) is the minimal output colour appearing in S (which determines whether

Letters(S) € F, if S is strongly connected),

— SCC-Decomposition(A) outputs a list of the strongly connected components of A. If A is
empty, it outputs an empty list.
— MaxInclusion(lst) returns the list of the maximal subsets in Ist.

15 We can assume that the representation of A has size polynomial in |Q| + |Z|, where Q and £ are the set of states and
the input alphabet of A. Indeed, as A is deterministic the number of transitions is at most |Q| - |Z|, and we can assume
that A has no more output colours than transitions.

90 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Input: A strongly connected automaton A over X; L(A) = Muller(¥)
Output: Maximal subsets X4,...,24 C X such that ;€ F & ¢ F

1: d < MinColour(A)

2: Asq < restriction of A to transitions A.y={q = q €A|x>d}

3; (81,...,8;) « SCC-Decomposition(Asg)

4: altSets «— {}

5: for i=1,...,r do

6: if MinColour(S;) is odd if and only if d is even then
7: altSets « altSets U {Letters(S;)}

8: else

9: altSets « altSets U AlternatingSets(S))

10: maxAltSets «— MaxInclusion(altSets)

11: return maxAltSets

Algorithm 1. AlternatingSets(A): Computing the children of a node.

Correctness of the algorithm. Let nbe anode of the Zielonka tree of # labelled with v(n), and
let A, be an accessible subautomaton of A over v(n) recognising Muller,) (¥1,,)). We prove
that AlternatingSets(Ajy) returns a list of sets corresponding to the labels of the children of n
in Z#. We assume without loss of generality that v(n) € ¥ and therefore the minimal colour d
in Ay is even.

First, we observe that if X C X is added to altSets during the execution of the procedure
AlternatingSets, then X is the set of input letters appearing in a cycle whose minimal colour
is odd. Next lemma implies that in this case, X ¢ #. In particular, no subset is added if nis a
leaf of Z#.

LEMMA 6.33. Let A be aDPA such that L(A) = Mullery (). Let £ € Cycles(A) be an accessible
cycle of A. Let Ly C X be the input letters appearing in ¢, and let dy; be the minimal colour on £.
Then, Ly, € ¥ if and only if d, is even.

PROOF. Since ¢ is an accessible cycle, there is a word w € X“ such that Inf(w) = X, and
verifying that the edges visited infinitely infinitely often by the (only) run over w in A are the
edges of ¢. Therefore w € L(A) if and only if d, is even, and since £ (A) is a Muller language,
w € L(A) if and only if Inf(w) = Z; € F. |

91/ 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

As the final output of the algorithm consists solely on the maximal subsets in altSets, and
no accepting set is added to this list, it suffices to show that each maximal rejecting subset
Ymax € v(n) is added to altSets at some point.

Let Znax € v(n) be one of the maximal rejecting subsets of v(n). Let S be a final SCC
of the restriction of A, to transitions labelled with letters in X, (by the previous lemma,
MinColour(S) is odd). We show that Z5x will eventually be considered by the recursive
procedure AlternatingSets, and therefore £,5x will be added to altSets We use of the following

remark:

CLAIM 6.34. If S’ is a strongly connected subautomaton of Ay such that S ¢ &’ C Ay, then
the minimal colour in 8’ is even.

Proof. Let I’ be the input letters appearing in S’. As S ¢ S8’ and no transition labelled with a
letter in X% leaves S, we must have X.x € X'. The claim follows from Lemma 6.33. <

-

Therefore, either S is one of the SCCs of A~ 4 (in this case, X.x is added to altSets in Line 7),
or it is contained in one SCC of A-4 whose minimal colour is even, and we can conclude by

induction.

Complexity analysis. We will show that the proposed algorithm works in time O(|Q|3|Z|?|T),
where Q, X and T are the states, set of input letters and set of output colours of the automaton,
respectively. We remark that, since A is deterministic, |A| < |Q]|Z].

First, we study the complexity of the procedure AlternatingSets(A). At each recursive
call, atleast one edge is removed from A, and a decomposition in strongly connected components
of the automaton is performed, which can be done in O(|Q||Z|) [91]. Therefore, the children of
a node of the Zielonka tree can be computed in O(|Q|?|Z|?).

We perform this operation for each node of the Zielonka tree. By the optimality of the
ZT-parity-automaton (Theorems 4.14 and 4.15), we know that |Q| > |Leaves(Z#)| and that the
height of Z# is at most |T'|. Therefore, | Z#| < |Q||T|, and the procedure AlternatingSets is
called at most |Q||T| times. We conclude that the proposed algorithm works in time O (|Q|3|Z|?|T|).

REMARK 6.35 (State-based automata). The acceptance condition of the parity automaton
obtained from the Zielonka tree appears naturally over the transitions of the automaton. In
order to make it a state-based automaton, we would need to add one state per colour it uses.
It turns out that, in this specific case, this is optimal, and the state-based parity automaton
we obtain is minimal. Therefore, we can also minimise in polynomial time state-based parity
automata recognising Muller languages. However, it is no longer possible to obtain optimal
transformations towards state-based parity automata based on the ACD (see [25, Section 5.3]
and [22, Section 1.8] for further details).

92 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

7. Conclusion

In this work, we have carried out an extensive study of transformations of automata and
games that use Muller acceptance conditions. We have proposed different types of morphisms
to formalise the idea of valid transformations of transition systems, which distil the central
features of existing transformations. Our main contribution resides in the introduction of a
new structure, the alternating cycle decomposition, which is a succinct representation of the
alternating chains of loops of a Muller automaton - in the sense of Wagner [93] — and provides
the necessary information to understand the interplay between its acceptance condition and its
underlying graph.

Optimal and practical transformations of automata. We have presented a transformation
that, given a deterministic Muller automaton, provides an equivalent deterministic parity
automaton, and another that provides an equivalent history-deterministic Rabin automaton.
These transformations are optimal in a strong sense; the obtained automata have a minimal
number of states amongst those which accept a history-deterministic mapping to the original
Muller automaton. The first of these transformations has been implemented in the open-source
tools Spot 2.10 [2] and Owl 21.0 [52], and it has been shown to perform extremely well in
practice [25], as the natural definition of the ACD provides a fairly efficient way to compute the
transformation, while its optimality guarantees to produce automata as small as possible.

Understanding the limitations of history-deterministic automata. As a corollary of our
results, we have obtained that minimal deterministic and history-deterministic parity automata
recognising Muller languages have the same size (Corollary 4.16). Moreover, we have shown that
HD parity automata that are strictly smaller than equivalent deterministic ones cannot come
from a deterministic Muller automaton (Corollary 5.39). This provides a partial explanation
on the difficulty to find succinct HD parity automata, as we could argue that a simple way
to conceptualise w-regular languages is through deterministic Muller automata. Maybe most
importantly, this sets a limitation in the usefulness of history-determinism in practice, as
procedures that use a DMA as an intermediate step — as the ones from the tools Strix [65] and
1tlsynt [70], or automata determinisation [78, 88, 64] — cannot benefit from the succinctness
of HD automata.

On the other hand, we have shown that, if our objective is to obtain Rabin automata as
output, the ACD-HD-Rabin-transform allows us to benefit from succinct HD automata. In this
case, it has been shown that these automata can be exponentially smaller than equivalent

deterministic ones [24, Theorem 21].

Disclosing the structure of w-automata. As an application of the insights gained from the
alternating cycle decomposition, we have derived results concerning typeness of automata. In

93 / 110 TheoretiCS

From Muller to Parity: Optimal Transformations Preserving (History) Determinism

particular, we have characterised when we can define a parity, Rabin or Streett condition on

top of a Muller automaton, obtaining an equivalent automaton (Propositions 6.9, 6.10 and 6.11).

These characterisations have already been proven instrumental in works about the memory

for games [21], and to obtain lower bounds on the size of deterministic Rabin automata [24].

We have also employed the ACD to present a normal form for parity transition systems

and systematically proved the most important properties that make this form a valuable tool

for manipulating parity automata. We believe that this normal form will be useful to extend

existing results about Biichi and coBtuichi automata (as the ones in [1, 10, 15]) to parity automata.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

Bader Abu Radi and Orna Kupferman. Minimization
and canonization of GFG transition-based
automata. Logical Methods in Computer Science,
18(3), 2022. &I} (4, 6, 7,70, 83, 88, 93)

Alexandre Duret-Lutz, Etienne Renault,
Maximilien Colange, Florian Renkin,

Alexandre Gbaguidi Aisse,

Philipp Schlehuber-Caissier, Thomas Medioni,
Antoine Martin, Jérome Dubois, Clément Gillard,
and Henrich Lauko. From Spot 2.0 to Spot 2.10:
what's new? International Conference on
Computer-Aided Verification, CAV, volume 13372 of
Lecture Notes in Computer Science, pages 174-187,
2022.BE (7,92)

André Arnold, Jacques Duparc, Filip Murlak, and
Damian Niwinski. On the topological complexity of
tree languages. Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 9-28,
2008. (3)

Tomas Babiak, FrantiSek Blahoudek,

Alexandre Duret-Lutz, Joachim Klein,

Jan Kretinsky, David Miiller, David Parker, and
Jan Strejéek. The Hanoi omega-automata format.
International Conference on Computer-Aided
Verification, CAV, pages 479-486, 2015. [Blel}
(107)

Roderick Bloem, Krishnendu Chatterjee, and
Barbara Jobstmann. Graph games and reactive
synthesis. Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 921-962. Springer International
Publishing, 2018. Bl (2)

Leon Bohn and Christof Loding. Constructing
deterministic parity automata from positive and
negative examples. CoRR, abs/2302.11043, 2023.

EBEl (6, 83)

Bernard Boigelot, Sébastien Jodogne, and
Pierre Wolper. On the use of weak automata for
deciding linear arithmetic with integer and real
variables. International Joint Conference on

Automated Reasoning, IJCAR, pages 611-625, 2001.

(6,101)

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Udi Boker. Why these automata types? Logic for
Programming, Artificial Intelligence and Reasoning,
LPAR, volume 57 of EPIC Series in Computing,
pages 143-163, 2018. B} (16)

Udi Boker, Denis Kuperberg, Orna Kupferman, and
Michat Skrzypczak. Nondeterminism in the
presence of a diverse or unknown future.
International Colloquium on Automata, Languages
and Programming, ICALP, pages 89-100, 2013. [XEl}
(10, 42)

Udi Boker, Orna Kupferman, and

Michal Skrzypczak. How deterministic are
good-for-games automata? Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, volume 93,
18:1-18:14, 2017. B}l (77, 82, 93)

Udi Boker, Orna Kupferman, and Avital Steinitz.
Parityizing Rabin and Streett. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, volume 8
of LIPIcs, pages 412-423, 2010. B8] (6, 77, 83)

Udi Boker and Karoliina Lehtinen. Good for Games
Automata: From Nondeterminism to Alternation.
International Conference on Concurrency Theory,
CONCUR, volume 140, 19:1-19:16, 2019. m (19,
52)

Udi Boker and Karoliina Lehtinen. History
determinism vs. good for gameness in quantitative
automata. Conference on Foundations of Software
Technology and Theoretical Computer Science,
FSTTCS, volume 213, 38:1-38:20, 2021. BB} (14)

Udi Boker and Karoliina Lehtinen. When a little
nondeterminism goes a long way: an introduction
to history-determinism. ACM SIGLOG News,
10(1):24-51, 2023. [BE} (4, 10)

Patricia Bouyer, Antonio Casares,

Mickael Randour, and Pierre Vandenhove.
Half-positional objectives recognized by
deterministic Biichi automata. International
Conference on Concurrency Theory, CONCUR,
volume 243, 20:1-20:18, 2022. [BEI] (6, 7, 83, 93)

https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.48550/arXiv.2302.11043
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.29007/c3bj
https://doi.org/10.1007/978-3-642-39212-2_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.412
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20

94 / 110 TheoretiCS

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Julian C. Bradfield. Simplifying the modal
mu-calculus alternation hierarchy. Symposium on
Theoretical Aspects of Computer Science, STACS,
pages 39-49,1998. &I (3)

J. Richard Biichi. On a decision method in
restricted second order arithmetic. Proceedings of
the International Congress on Logic, Methodology
and Philosophy of Science:1-11, 1960. (17)

Cristian S. Calude, Sanjay Jain,

Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
Deciding parity games in quasipolynomial time.
Symposium on Theory of Computing, STOC,

pages 252-263. ACM, 2017. Bl (3)

Olivier Carton and Ramén Maceiras. Computing
the Rabin index of a parity automaton. Theoretical

Informatics and Applications, RAIRO:495-506, 1999.

E&1 (6,18, 64, 82, 83)

Olivier Carton and Max Michel. Unambiguous
Bichi automata. Theoretical Computer Science,
297(1):37-81, 2003. BB (32)

Antonio Casares. On the minimisation of
transition-based Rabin automata and the chromatic
memory requirements of Muller conditions.
Computer Science Logic, CSL, volume 216,
12:1-12:17, 2022. m (3,7, 34, 88,93)

Antonio Casares. Structural properties of automata
over infinite words and memory for games
(Propriétés structurelles des automates sur les
mots infinis et mémoire pour les jeux). PhD Thesis,
Université de Bordeaux, France, 2023. (91

Antonio Casares, Thomas Colcombet, and
Nathanaél Fijalkow. Optimal transformations of
games and automata using Muller conditions.
International Colloquium on Automata, Languages
and Programming, ICALP, volume 198, 123:1-123:14,

2021. &l (1,7, 71)

Antonio Casares, Thomas Colcombet, and
Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in
Muller games. International Colloquium on
Automata, Languages and Programming, ICALP,
volume 229, 117:1-117:20, 2022. BB} (1, 3,7, 34,
70, 92, 93)

Antonio Casares, Alexandre Duret-Lutz,

Klara J. Meyer, Florian Renkin, and

Salomon Sickert. Practical applications of the
Alternating Cycle Decomposition. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
volume 13244 of Lecture Notes in Computer
Science, pages 99-117, 2022. B} (7, 91, 92)

Antonio Casares and Corto Mascle. The
complexity of simplifying w-automata through the
alternating cycle decomposition. CoRR,
abs/2401.03811, 2024. &I} (61)

Thomas Colcombet. Forms of Determinism for
Automata (Invited Talk). Symposium on Theoretical
Aspects of Computer Science, STACS, volume 14,
pages 1-23, 2012. BB} (4, 22)

Thomas Colcombet. The theory of stabilisation
monoids and regular cost functions. International
Colloquium on Automata, Languages and
Programming, ICALP, pages 139-150, 2009. [}
(4,14)

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

Thomas Colcombet. Unambiguity in automata
theory. International Conference on Descriptional
Complexity of Formal Systems, DFCS, volume 9118
of Lecture Notes in Computer Science, pages 3-18,

2015. & (32)

Thomas Colcombet and Christof Loding. The
non-deterministic Mostowski hierarchy and
distance-parity automata. International Colloquium
on Automata, Languages and Programming, ICALP,
volume 5126, pages 398-409, 2008. Bl (3)

Thomas Colcombet and Damian Niwinski. On the
positional determinacy of edge-labeled games.
Theoretical Computer Science, 352(1-3):190-196,

2006. F& (3,7)

Thomas Colcombet and Konrad Zdanowski. A tight
lower bound for determinization of transition
labeled Biichi automata. International Colloquium
on Automata, Languages and Programming, ICALP,
pages 151-162, 2009. Bl (7)

Antonio Di Stasio, Aniello Murano,

Vincenzo Prignano, and Loredana Sorrentino.
Improving parity games in practice. Annals of
Mathematics and Atrtificial Intelligence, 2021. [3el}
(2)

Stefan Dziembowski, Marcin Jurdzinski, and

Igor Walukiewicz. How much memory is needed to
win infinite games? Symposium on Logic in
Computer Science, LICS, pages 99-110, 1997. i}
(4,5, 34,44, 48,52, 56)

Rudiger Ehlers and Sven Schewe. Natural colors of
infinite words. Conference on Foundations of
Software Technology and Theoretical Computer
Science, FSTTCS, volume 250, 36:1-36:17, 2022.

EEl 6,7, 83)

E. Allen Emerson and Charanijit S. Jutla. The
complexity of tree automata and logics of
programs. SIAM Journal of Computing,
29(1):132-158, 1999. &l (3)

E. Allen Emerson and Charanijit S. Jutla. Tree
automata, mu-calculus and determinacy (extended
abstract). Symposium on Foundations of Computer
Science, FOCS, pages 368-377, 1991. Bl (3)

E. Allen Emerson, Charanijit S. Jutla, and

A. Prasad Sistla. On model-checking for fragments
of u-calculus. International Conference on
Computer-Aided Verification, CAV, volume 697 of
Lecture Notes in Computer Science,

pages 385-396, 1993. Bl (3)

Javier Esparza, Jan Kretinsky,

Jean-Francois Raskin, and Salomon Sickert. From
LTL and limit-deterministic Blichi automata to
deterministic parity automata. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
pages 426-442, 2017. el (2)

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi,
and Thomas Wilke. Profile trees for Blichi word
automata, with application to determinization.
Information and Computation, 245:136-151, 2015.

EEl 3

https://doi.org/10.1007/BFB0028547
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1051/ita:1999129
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://theses.hal.science/tel-04314678
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.48550/ARXIV.2401.03811
https://doi.org/10.4230/LIPIcs.STACS.2012.1
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1007/978-3-540-70583-3_33
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1007/978-3-642-02930-1_13
https://doi.org/10.1007/s10472-020-09721-3
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://doi.org/10.1137/S0097539793304741
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1016/j.ic.2014.12.021

95 / 110 TheoretiCS

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Oliver Friedmann and Martin Lange. Solving parity
games in practice. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, pages 182-196, 2009. BBl (2, 6, 84)

Dimitra Giannakopoulou and Flavio Lerda. From
states to transitions: improving translation of LTL
formulae to Blichi automata. International
Conference on Formal Techniques for Distributed
Objects, Components, and Systems, FORTE,
pages 308-326, 2002. Bl (7)

Yuri Gurevich and Leo Harrington. Trees, automata,
and games. Symposium on Theory of Computing,
STOC, pages 60-65, 1982. BEI] (3)

Thomas A. Henzinger and Nir Piterman. Solving
games without determinization. Computer Science
Logic, CSL, pages 395-410, 2006. Bl (4, 10, 14,
44,45, 70)

Florian Horn. Explicit Muller games are PTIME.
Conference on Foundations of Software
Technology and Theoretical Computer Science,
FSTTCS, pages 235-243, 2008. B} (16)

Florian Horn. Random fruits on the Zielonka tree.
Symposium on Theoretical Aspects of Computer
Science, STACS, volume 3, pages 541-552, 2009.

Bl 4

Paul Hunter and Anuj Dawar. Complexity bounds
for regular games. International Symposium on
Mathematical Foundations of Computer Science,
MFCS, pages 495-506, 2005. BB} (3, 16)

Swen Jacobs, Guillermo A. Perez, Remco Abraham,
Veronique Bruyere, Michael Cadilhac,

Maximilien Colange, Charly Delfosse, Tom van Dijk,
Alexandre Duret-Lutz, Peter Faymonville,

Bernd Finkbeiner, Ayrat Khalimov, Felix Klein,
Michael Luttenberger, Klara Meyer,

Thibaud Michaud, Adrien Pommellet,

Florian Renkin, Philipp Schiehuber-Caissier,
Mouhammad Sakr, Salomon Sickert,

Gaetan Staquet, Clement Tamines,

Leander Tentrup, and Adam Walker. The reactive
synthesis competition (SYNTCOMP): 2018-2021,

2022. &1 (2)

Marcin Jurdziniski. Deciding the winner in parity
games is in UP n co-UP. Information Processing
Letters, 68(3):119-124, 1998. i} (3)

Michael Kaminski. A classification of w-regular
languages. Theoretical Computer Science,
36:217-229,1985. [BEl (18)

Nils Klarlund. Progress measures, immediate
determinacy, and a subset construction for tree
automata. Annals of Pure and Applied Logic,
69(2):243-268, 1994. bl (56)

Jan Kretinsky, Tobias Meggendorfer, and
Salomon Sickert. Owl: A library for w-words,
automata, and LTL. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, volume 11138 of Lecture Notes in Computer
Science, pages 543-550, 2018. Bl (7, 92)

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Jan Kretinsky, Tobias Meggendorfer,

Clara Waldmann, and Maximilian Weininger. Index
appearance record for transforming Rabin
automata into parity automata. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS,
pages 443-460, 2017. Bl (3)

Jan Kretinsky, Tobias Meggendorfer,

Clara Waldmann, and Maximilian Weininger. Index
appearance record with preorders. Acta
Informatica, 59:585-618, 2021. BB} (4)

Sriram C. Krishnan, Anuj Puri, and

Robert K. Brayton. Deterministic w-automata
vis-a-vis deterministic Blichi automata.
International Symposium on Algorithms and
Computation, ISAAC, volume 834 of Lecture Notes
in Computer Science, pages 378-386, 1994. [igll
(6,77,83)

Sriram C. Krishnan, Anuj Puri, and

Robert K. Brayton. Structural complexity of
omega-automata. Symposium on Theoretical
Aspects of Computer Science, STACS,

pages 143-156, 1995. Bl (18, 77)

Denis Kuperberg and Michat Skrzypczak. On
determinisation of good-for-games automata.
International Colloquium on Automata, Languages
and Programming, ICALP, pages 299-310, 2015.
&l (4,6, 70,83)

Orna Kupferman. Automata theory and model
checking. Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 107-151. Springer International
Publishing, 2018. B} (2)

Orna Kupferman, Gila Morgenstern, and

Aniello Murano. Typeness for omega-regular
automata. International Journal on Foundations of
Computer Science, 17(4):869-884, 2006. BB (77)

Orna Kupferman, Shmuel Safra, and

Moshe Y. Vardi. Relating word and tree automata.
Symposium on Logic in Computer Science, LICS,
pages 322-332,1996. [Ell (3)

Orna Kupferman and Moshe Y. Vardi. Safraless
decision procedures. Symposium on Foundations
of Computer Science, FOCS, pages 531-542, 2005.

Bl (2

Oebele Lijzenga and Tom van Dijk. Symbolic parity
game solvers that yield winning strategies.
International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF,

volume 326, pages 18-32, 2020. Bl (2)

Christof Loding. Optimal bounds for
transformations of w-automata. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS,

pages 97-109, 1999. Bl (3, 5,77)

Christof Loding and Anton Pirogov.
Determinization of Biichi automata: unifying the
approaches of Safra and Muller-Schupp.
International Colloquium on Automata, Languages
and Programming, ICALP, 120:1-120:13, 2019. [}
(2,92)

https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/11874683_26
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1756
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1007/11549345_43
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/https://doi.org/10.1016/0304-3975(85)90043-X
https://doi.org/https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/s00236-021-00412-y
https://doi.org/10.1007/3-540-58325-4_202
https://doi.org/10.1007/3-540-59042-0_69
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1142/S0129054106004157
https://doi.org/10.1109/LICS.1996.561360
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.4204/EPTCS.326.2
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.120

96 / 110 TheoretiCS

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Michael Luttenberger, Philipp J. Meyer, and
Salomon Sickert. Practical synthesis of reactive
systems from LTL specifications via parity games.
Acta Informatica:3-36, 2020. [BEl} (2, 92)

Robert McNaughton. Infinite games played on
finite graphs. Annals of Pure and Applied Logic,
65(2):149-184, 1993. Bl (44, 49)

Robert McNaughton. Testing and generating
infinite sequences by a finite automaton.
Information and Control, 9(5):521-530, 1966. |3l
(17, 19)

Philipp Meyer and Salomon Sickert. On the optimal
and practical conversion of Emerson-Lei automata
into parity automata, 2021. Personal
Communication (4, 5)

Philipp J. Meyer and Salomon Sickert. Modernising
strix, 2021. (2,7)

Thibaud Michaud and Maximilien Colange.
Reactive synthesis from LTL specification with
Spot. Workshop on Synthesis, SYNT, Electronic

Proceedings in Theoretical Computer Science, 2018.

(2,92)

Andrzej W. Mostowski. Regular expressions for
infinite trees and a standard form of automata.
Symposium on Computation Theory, SCT,
pages 157-168, 1984. Bl (16-18)

David E. Muller. Infinite sequences and finite
machines. Symposium on Switching Circuit Theory
and Logical Design, SWCT, pages 3-16, 1963. [Blel}
(17)

David Miiller and Salomon Sickert. LTL to
deterministic Emerson-Lei automata. International
Symposium on Games, Automata, Logics, and

Formal Verification, GandALF, pages 180-194, 2017.

Bl (2

Damian Niwinski. On fixed-point clones (extended
abstract). International Colloquium on Automata,
Languages and Programming, ICALP, volume 226,
pages 464-473,1986. Bl (3)

Damian Niwinski and Igor Walukiewicz. Deciding
nondeterministic hierarchy of deterministic tree
automata. Workshop on Logic, Language,
Information and Computation, WoLLIC, volume 123
of Electronic Notes in Theoretical Computer
Science, pages 195-208, 2004. el (3)

Damian Niwinski and Igor Walukiewicz. Relating
hierarchies of word and tree automata. Symposium
on Theoretical Aspects of Computer Science,
STACS, pages 320-331,1998. BBl (3, 19)

Dominique Perrin and Jean-Eric Pin. Infinite words
- automata, semigroups, logic and games,

volume 141 of Pure and applied mathematics series.

Elsevier Morgan Kaufmann, 2004. (17)

Nir Piterman. From nondeterministic Blichi and
Streett automata to deterministic parity automata.
Symposium on Logic in Computer Science, LICS,
pages 255-264, 2006. Bl (2, 92)

Nir Piterman and Amir Pnueli. Temporal logic and
fair discrete systems. Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model
Checking, pages 27-73. Springer International
Publishing, 2018. Bl (2)

A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Amir Pnueli and Roni Rosner. On the synthesis of a
reactive module. POPL, pages 179-190, 1989. [l
(2)

Florian Renkin, Alexandre Duret-Lutz, and

Adrien Pommellet. Practical “paritizing” of
Emerson-Lei automata. International Symposium on
Automated Technology for Verification and Analysis,
ATVA, volume 12302 of Lecture Notes in Computer
Science, pages 127-143, 2020. BB (4)

Bertrand Le Saéc. Saturating right congruences.
Theoretical Informatics and Applications, RAIRO,
24:545-559, 1990. Bl (80)

Schmuel Safra. On the complexity of w-automata.
Symposium on Foundations of Computer Science,
FOCS, pages 319-327,1988. BBl (3)

Jacques Sakarovitch. A construction on finite
automata that has remained hidden. Theoretical
Computer Science, 204(1-2):205-231, 1998. [BEI}
(21)

Jacques Sakarovitch and Rodrigo de Souza.
Lexicographic decomposition of k-valued
transducers. Theoretical Computer Science,
47(3):758-785, 2010. B} (21)

Sven Schewe. Beyond
hyper-minimisation—minimising DBAs and DPAs is
NP-complete. Conference on Foundations of
Software Technology and Theoretical Computer
Science, FSTTCS, volume 8, pages 400-411, 2010.

EEl (88)

Sven Schewe. Minimising Good-For-Games
automata is NP-complete. Conference on
Foundations of Software Technology and
Theoretical Computer Science, FSTTCS,
volume 182, 56:1-56:13, 2020. B} (88)

Sven Schewe. Tighter bounds for the
determinisation of Blichi automata. International
Conference on Foundations of Software Science
and Computation Structures, FoSSaCsS,

pages 167-181, 2009. m (2, 3,92)

Sven Schewe and Thomas Varghese.
Determinising parity automata. International
Symposium on Mathematical Foundations of
Computer Science, MFCS, pages 486-498, 2014.

Bl @

Michat Skrzypczak. Topological extension of parity
automata. Information and Computation,
228-229:16-27, 2013. m (3)

Robert Tarjan. Depth first search and linear graph
algorithms. SIAM Journal on Computing,
1(2):114-121,1972. &I} (91)

Tom van Dijk. Oink: an implementation and
evaluation of modern parity game solvers.
International Conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS, volume 10805 of Lecture Notes in

Computer Science, pages 291-308, 2018. Bl (2)

Klaus Wagner. On w-regular sets. Information and
Control, 43(2):123-177,1979. Bl (3, 5,18, 19, 57,
92)

https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/S0019-9958(66)80013-X
https://www7.in.tum.de/~sickert/publications/MeyerS21.pdf
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1109/SWCT.1963.8
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1016/j.entcs.2004.05.015
https://doi.org/10.1007/BFb0028571
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1051/ita/1990240605451
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1016/S0304-3975(98)00040-1
https://doi.org/10.1007/s00224-009-9206-6
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.400
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.56
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-662-44522-8_41
https://doi.org/https://doi.org/10.1016/j.ic.2013.06.004
https://doi.org/https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1016/S0019-9958(79)90653-3

97 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

[94] Wiestaw Zielonka. Infinite games on finitely
coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science,
200(1-2):135-183,1998. Bl (3, 4, 6, 7, 16, 34, 56,
77)

https://doi.org/10.1016/S0304-3975(98)00009-7

98 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

A. Generalised classes of acceptance conditions

Further acceptance conditions.

Generalised Biuichi. Given k non-empty subsets By, ..., Bx C I, we define the generalised Blichi
language associated to B = {B1, ..., Bk} as

genBuchip(B) = {w e T | Inf(w) N B; # @ for alli € {1,...,k}}.

We say that a language L C I'Y is a generalised Blichi language if there is a family of sets
B = {Bj,...,Bx} such that L = genBuchi(B).

Generalised coBiichi. Given k non-empty subsets B,...,Bx C I', we define the generalised
coBlichi language associated to B = {B1, ..., Bk} as

genCoBuchip(B) = {w € I | Inf(w) N B; = 0 for some i € {1,...,k}}.

We say that a language L C I'“ is a generalised coBiichi language if there is a family of sets
B = {Bj,...,Bx} such that L = genCoBuchi(B).

REMARK A.1. Deterministic generalised Buichi (resp. generalised coBuichi) automata have
the same expressive power than deterministic Buchi (resp. coBuchi) automata: they recognise
languages of parity index at most [0, 1] (resp. [1, 2]).

We will also define conditions that depend on the structure of the transition system and not
only on the set of colours.

Generalised weak transition systems. Let 7S = (Ggs, Accys) be a transition system using a
parity condition Accgs = (¥, [dmin, dmax], Parity). We say that 78 is Weaky if in each
strongly connected component S C Ggs there are at most d different colours that appear,
thatis, |y(Es)| < d, where Eg is the set of edges of S.

As for the rest of conditions, we say that a transition system 78 is Weak, type if there
exists an isomorphic parity transition system 7S’ ~ 7S that is Weak,.

The adjective Weak has typically been used to refer to the condition corresponding to a
partition of 78§ into accepting and rejecting SCC. A run will be accepting if the component it
finally stays in is accepting. It corresponds to Weak, with our notation.

As we will show (Corollary A.11), the notation is justified by the fact that an w-regular
language of parity index Weak, can be recognised by a deterministic Weak,; automaton.

The Zielonka tree of generalised acceptance conditions.

DEFINITION A.2. Let T be a tree T with nodes partitioned into round nodes and square nodes.
We say that T has:

99 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

— Biichi shape if it has a single branch, height at most 2, and if it has height 2 its root is round.

— CoBIlichi shape if it has a single branch, height at most 2, and if it has height 2 its root is
square.

— Generalised Biichi shape if it has height at most 2, and if it has height 2 its root is round.

— Generalised coBlichi shape if it has height at most 2, and if it has height 2 its root is square.

PROPOSITION A.3. Let ¥ C 2! be a family of non-empty subsets. Then Mullerr(¥) is a Biichi
(resp. coBlichi) language if and only if Z# has Biichi (resp. coBlichi) shape.

PROOF. This is just a special case of Proposition 6.4. u

PROPOSITION A.4. Let ¥ C 2% be a family of non-empty subsets. Then Mullerr(F) is a gener-
alised Biichi (resp. coBlichi) language if and only if Z# has generalised Biichi (resp. generalised
coBiichi) shape.

PROOF. We do the proof for the case generalised Biichi (symmetric for generalised coBtuichi).
Assume that Mullerp(¥) = genBuchiy(B) for some family B = {By,...,Bx}. Then, T € ¥, as
I'N B; # 0, so the root of Z# isround. If C C T is rejecting, C N B; = (for all i, then it is the same
for any subset C’ C C, so square nodes of Z# are leaves and Z# has height at most 2.
Conversely, assume that Z# has height 2 and thatitsrootisround (I' €). Let A4, ..., Ax be
the labels of the k leaves of Z# and define B; = A;. We claim that Mullerp (%) = genBuchi(B),
for B = {Bj,...,Bx}. Indeed, if C € ¥ if and only if C ¢ A; for any i if and only if C N B; # 0 for
all i. u

COROLLARY A.5. Let A be a deterministic generalised Biichi (resp. generalised coBiichi)
automaton recognising a Muller language L = Mullerg(F). There is a deterministicgeneralised
Biichi (resp. generalised coBiichi) automaton recognising L with just one state, that can be
computed in polynomial time in the size of the representation of A.

PROOF. We do the proof for the case generalised Buichi. By Remark A.1, the parity index of L
is at most [0, 1], so by Proposition 6.13, the Zielonka tree of ¥ has generalised Biichi shape.
Therefore, by Proposition A.4, L is a generalised Buichi that can be trivially recognised by a
generalised Buichi automaton with just one state.

The acceptance condition of such automaton can be deduced in linear time from the
Zielonka tree Z#, as indicated in the proof of Proposition A.4. The Zielonka tree Z# can
be computed from the original automaton A using a similar argument than in the proof of
Theorem 6.32. Suppose that the generalised Buichi condition used by A is given by the sets
Bi,...,Bx CT. Then, for eachi € {1,...,k} we compute the restriction of A to the transitions
using colours in I' \ B;, and perform a decomposition in SCCs of the obtained graph. If £s C X is
the set of input letters appearing in one of those SCC, then £s ¢ #. We put all the subsets of
letters obtained in that way in a list altSets. The leaves of Z# correspond then to the maximal
subsets of altSets.]

100 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

ACD and typeness for generalised acceptance conditions.

DEFINITION A.6. Let 78 be a Muller transition system with a set of states V. We say that its
alternating cycle decomposition AC Dz is a:
— Biichi ACD if it is a [0, 1]-parity ACD.
— coBlichi ACD ifitis a [1, 2]-parity ACD.
— Generalised Biichi ACD if for every state v € V, the tree 7, has generalised Biichi shape.
— Generalised coBlichi ACD if for every state v € V, the tree 7, has generalised coBuichi shape.
— Weak, ACD if it is a parity ACD and trees of ACDss have height at most d.

REMARK A.7. ACDgs is a Weak, ACD if and only if itis a [0, d]-parity ACD and a [1,d + 1]-
parity ACD.

PROPOSITION A.8. A transition system 78 is Blichi (resp. coBlichi) type if and only if ACDqgs
is a Biichi ACD (resp. coBlichi ACD).

PROOF. This is a special case of Proposition 6.11. u

PROPOSITION A.9. A transition system 78 is generalised Blichi (resp. generalised coBlichi)
type if and only if ACDyqs is a generalised Blichi ACD (resp. generalised coBlichi ACD).

PROOF. The result follows by applying the same argument and construction than in Proposi-
tion A.4, using as set of output colours the set of edges of 7S. u

PROPOSITION A.10. A transition system 78 is Weak type if and only if ACDss is a Weaky
ACD.

PROOF. Proposition 6.11 already provides that 7S is parity type if and only if ACDqs is
a parity ACD. As in the proof of the aforementioned proposition, we observe that 7S and
ACDparity(7S) are isomorphic. If AC Dqs is a Weaky ACD, then ACD ity (7S) is Weaky. Con-
versely, if ACDss is not a Weaky ACD, then 78 contains a (d + 1)-flower, so the number of
colours cannot be reduced (using the same argument as in the proof of Theorem 5.34). u

COROLLARY A.11. IfL C X¥ is an w-regular language of parity index Weakg, then L can be
recognised by a deterministic Weak,; automaton.

PROOF. Let L be of parity index Weak,. By definition, L is recognised by parity automaton A
using colours in [0, d] (it is also recognised by an automaton using colours in [1,d + 1]; we
make an arbitrary choice). We will prove that (A is in fact Weak,;. We will show that its ACD
ACD 4 is Weak, type, which allows to conclude by Proposition A.10. Suppose that this was
not the case, that is, that some tree of AC?D # has height at least d + 1. In this case, A would
contain a (d + 1)-flower (Lemma 5.42), so by the Flower Lemma 2.16, L has parity index at least
[0,d] or [1,d + 1], a contradiction. u

101 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

The following result generalises [7, Theorem 2].

COROLLARY A.12. A Muller transition system is Weak type if and only if it is both [0, d] and
[1,d + 1]-parity type.

Deterministic automata using generalised acceptance conditions.

COROLLARY A.13. Let G4 be the underlying graph of a deterministic automaton. There are
[0,d — 1] and [1, d]-parity conditions Accp and Accp 1 such that L(Ga, Accpo) = L(Ga, AcCp1)
if and only if there is a Weak,, condition Accy such that L(Gx#,Accw) = L(Ga,Accpg) =
L(Ga,Accp).

PROPOSITION A.14. Let A be a deterministic Muller automaton, and assume that L (A) can
be recognised by a deterministic Blichi (resp. coBiichi) automaton; that is, the parity index of
L(A) is at most [0, 1] (resp. at most [1,2]). Then, A is generalised Biichi type (resp. generalised
coBiichi type).

PROOF. We prove the result for the case generalised Biichi (analogous for coBtichi). We can
assume that all the states of A are accessible, as we can define a trivial acceptance condition in
the part of A that is not accessible. Since £ (:A) has parity index at most [0, 1], the trees of the
ACD of A have height at most 2, and trees of height 2 are positive (the root is a round node),
by Proposition 6.13, so it is a generalised Biichi ACD, and by Proposition A.9, A is generalised
Bichi type. u

Parity index from automata in normal form.

COROLLARY A.15. Let A be a deterministic parity automaton in normal form using colours
in [0,d — 1] (resp. [1,d]) such that all its states are accessible. If A is Weak,_1, then the parity
index of L(A) is Weak,_4. If not, the parity index of L(:A) is [0,d — 1] (resp. [1,d]).

PROOF. We assume that A uses colours in [0,d — 1] (in particular, it is not negative). If A
is not Weak,_4, there is an SCC containing all the colours [0,d — 1]. By Proposition 6.27, such
SCC contains a positive d-flower, so by the Flower Lemma 2.16, the parity index of L(A) is
[0,d —1].

Suppose now that A is Weak,;_1. Let £ be a cycle of A in which the colour d — 1 occurs.
By Proposition 6.27, £ contains a negative (d — 1)-flower. As A is not negative, it also contains a
positive (d — 1)-flower. By the Flower Lemma 2.16, the parity index of £(A) is Weak;_;. =

COROLLARY A.16. Let A be a deterministic parity automaton such that all its states are
accessible and the parity index of L(A) is [0,d — 1] (resp. [1,d] / Weakg). Then, A is [0,d — 1]
(resp. [1,d] / Weakg)-parity type.

102 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

PROOF. We assume that £ (A) has parity index [0, d — 1] (the other cases are similar). By the
Flower Lemma 2.16, A does not contain any negative d-flower. By Proposition 6.13, the trees
of the ACD of A have height at most d, and trees of height d are positive. That is, ACD 4 is a
[0,d — 1]-parity ACD, and we conclude by applying Proposition 6.11.]

B. Transformations for games

Games suitable for transformations. As we have indicated throughout the paper, defining
transformations not preserving determinism in the case of games poses certain formal chal-
lenges. This difficulties appear both when such transformations arise as the product G =< A
of a game G by an non-deterministic automaton A, or when they are witnessed by an HD
mapping ¢: G — G’. The problem comes from the fact that the semantics of non-determinism
in automata (or history-determinism of morphisms) are inherently asymmetric, and this asym-
metry needs to be made compatible with the semantics of games. The choices we have made to
overcome this technical difficulty are:
— Restrict transformations of games to games in a standard form, which we have called
games suitable for transformations.
— Add a restriction to HD mappings in the case of games, introducing the notion of HD-for-
games mapping.

The main motivation for the standard form of games that we propose comes from viewing
games as originating from logical formulas. Indeed, an equivalent model for games can be
given as follows: vertices in the game graph are not partitioned into Eve’s and Adam’s nodes,
instead, we assign a boolean formula to each transition that determines an interaction between
the two players. The outcome of this interaction is (1) the next vertex, and (2) the output colour
of the acceptance condition. We can obtain a game of the kind we have defined in this paper by
unfolding the boolean formulas of the transitions. There is a natural way to standardize such
games: putting the boolean formulas in disjunctive normal form (DNF). Then, the unfolding of a
game with formulas in DNF yields a game in which the partition into Eve-Adam nodes induces
a bipartite graph with a particular structure: first, Adam chooses an uncoloured transition
leading to a vertex controlled by Eve (with only one ingoing transition), and then Eve picks a
transition producing some output colour.

We recall that a game is suitable for transformations if it verifies that for every edge
e =v— Vv, if vis controlled by Adam, then e is uncoloured (y(e) = €), V' € Vgye, and e is the only
incoming edge to v’ (In(V') = {e}).

Games in this form have an asymmetric structure that makes them suitable for any type of
transformation. As any pair of consecutive transitions are of the form v 535 vV, with ¥ € Vgye,

we can force it so that if a decision needs to be made in a product, Eve is the one who makes it.

103 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

LEMMA B.1. For every game G with vertices V and edges E, there exists a game G that is suitable
for transformations, of size |g~ | = O(|E|), and equivalent to G in the following sense: there is an
injective function f: V — V such that Eve wins G from v if and only if she wins G from f(v).

PROOF. We define é as follows. We let its set of vertices be V = V U E. Vertices of the form
v € V will correspond to vertices coming from G, and vertices e € E will be intermediate
vertices added to force the suitability for transformations property. We let Vadam = Vadam and
nge =Vgve UE. Ife = v 5 visan edge in G, we add the edges v S eande S V' to G'. Itis
clear that é is suitable for transformations and that Eve wins G from v if and only if she wins
é from v. u

ACD-HD-Rabin-transform-for-games. As discussed in Section 5.3, the ACD-HD-Rabin-
transform of a game G does not always induce an HD-for-games mapping ¢ : ACDrapin(G) — G,
and G and ACDg,pin (&) do not necessarily have the same winner. This is to be expected, as the
ACD-HD-Rabin-transform does not take into account the partition into Eve and Adam nodes.
In this paragraph we propose a small modification on the transformation to obtain a correct
transformation for games.

Let G be a game. If there is an edge v — V' with v € Vjqam, We say that v’ is an A-successor.
We remark that if G is suitable for transformations, an A-successor is controlled by Eve and has
a unique predecessor. We let V5 gycc be the set of A-successor of G and Vigrmal =V \ Vasuce: If G
is suitable for transformations, for each v € Va_gycc We let pred(v) be its unique predecessor.

The idea to define the ACD-HD-Rabin-transform-for-games ACDEZE(Q) is the following:
starting from the regular ACD-HD-Rabin-transform ACDgrapin (&), we make some local changes to
vertices that are A-successors. First, if v € Vjqam, we replace edges of the form (v, x) 5 (V,x")in
ACDRrapbin(G) by (v, x) 5 (v, x) (we forbid Adam to choose how to update the ACD-component).
If such an edge is followed by (V/, x’) LN (v”,x"”) in ACDRrabin(G), then we add (v, x) N W, x")
to ACD?;;E(Q) (we note that V' € Vgye). That is, Eve chooses retroactively how to update the
ACD-components performing two consecutive updates. We note that the node n’ is not output
in the new game; this is not a problem, since n must be an ancestor of n’ (we could say that n

contains more information regarding the acceptance condition).

REMARK B.2. Let G be a game suitable for transformations, let v € Vpgam and v vy
be a path of size 2 in G from v. It holds:
— If some cycle € contains ey, it also contains e;.
— 7, is a subtree of 7.
— Letn; € Leaves(7,) and ny = Jumps, (nq, Supp(ny, e1)). Then, Supp(ny, e;)) is a descendant
of Supp(ny, ey)) in Zy,.

DEFINITION B.3 (ACD-HD-Rabin-transform-for-games). Let G be a Muller game suitable for
transformations. For each vertex v € V we let n,,: Leaves(Z,) — {1,...,rbw(7Z,)} be a mapping

104 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

satisfying Property (x) from Lemma 4.42. We define the ACD-HD-Rabin-transform-for-games

of G to be the Rabin transition system ACngm‘;(g) defined as follows.

Vertices. The set of vertices is

V= WxILowm)] U ())X 1L bw(Tpedm)]-

VEVhormal VEVA succ

Players partition. A vertex (v, x) belongs to Eve if and only if v belongs to Eve in G.
Initial vertices. I = {(vo,x) | vo € I and x € {1, .. . Tbw(Zy) }}.

Edges and output colours. Lete=v— V' in G.
— va € VEve N Vnormal, we add (V, X) i) (V,, X,) tO ACD
the regular ACD-HD-Rabin-transform.

game

parity(g) exactly in the same cases as in

— If v € Vagam, We let (v, x) 5 (v, x) in E for each x € {1,...,rbw(Z,)}.
— Ifv € Vasueo We add (v,x) — (V,X) to ACD?}Z?E(Q) if in the regular ACD-HD-Rabin-

transform there is a path of size 2 of the form

(pred(v),x) 55 (v, %) B (V, x').

Formally,
E= U {e} x Leaves(T,) U U {e} x Leaves(Tpred(v))-
e=v—V'eE e=v—V'eE
VE€Vnormal VEVAsucc

Rabin condition. R = {(Gn, Rn) }neNodes (ACD 15)» Where G, and Ry, are defined as follows: Let n

be a round node, and let n’ be any node in Nodes(AACDys),

neGg, ifn =n,

n" € R, ifn’ # nandnisnotan ancestor of n’.

Correctness of the ACD-HD-Rabin-transform-for-games

PROPOSITION 5.32 (Correctness of the ACD-HD-Rabin-transform-for-games). Let G be a
Muller game suitable for transformations, and let AC Dg::li(G) be its ACD-HD-Rabin-transform-

for-games. Then, there is an HD-for-games mapping ¢: ACDgz:Ti]t‘;(g) — 7JS.

PROOF. The proofis analogous to that of the correctness of the usual ACD-HD-Rabin-transform
(Proposition 5.28). We define the mapping ¢: ACDgiﬁﬁi(@ — G as oy(v,x) =vand ¢g(e,) =e.
It is clear that it is a weak morphism, and it preserve accepting runs by Lemma 5.29 and
Remark B.2.

We define a resolver (g, r) simulating ¢ similarly to the proof of Proposition 5.28: We
use ACDparity(G) to guide the resolver. Let p = vo — vyre... be arunin G, and let (vo, lp) —

(vi,l1) — ... be the preimage of this run in ACDparity(G). We simulate p in ACDEZ?&?(Q) as

105 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

follows: We ensure that at every moment i, if v; ¢ Va_gucc, the current vertex (v, x;) is such that
Xi = Ny, (l;). There distinguish two cases to simulate the edge e; = v; = Vvj;1:
— Ifv; € Vagam, there is a single outgoing edge from (v;, x;) mapped to the edge v; — v;;1 in
p: (vi, Xi) 5 (Vi+1, X;). This must be the edge picked by the resolver
— Ifv; € Vgye, we pick the edge (v, X;) AN (Vi+1, Xx+1) such that x;41 = ny,,, and n; = Supp(l;, €;).

If vi € Vasuce, the vertex (v, x;) will verify x; = x;_1 = n,,(1;). In this case, we pick the edge
(vi, Xi) R (Vi+1, Xx+1) such that x;;1 = n;,,, and n; = Supp(l;, ;). This is indeed an edge ap-

. . n;_ n; . .
pearing in ACDSZ:E/(Q), as the path (vi_1, Xi_1) — (v, X!) = (Vis1, Xx+1) €Xists in the regular

ACDRabin (&), with X{ = nvi(li)-

The resolver obtained in this way is sound for ACD T

simulate edges issued from Adam vertices, and the rest of the edges are simulated in the same

(G), as there is a unique way to

way as the resolver defined for the regular ACD-HD-Rabin-transform, which we proved to be
sound. |

Optimality of the ACD-HD-Rabin-transform-for-games

COROLLARY 5.37. Let G be a Muller game suitable for transformations whose states are
accessible and let G be a Rabin game. If G admits an HD-for-games mapping ¢: G — G, then,

IACD (9] < 216,

game

PROOF. The vertices of ACDParity

that those in ACDgapin(G):

(G) corresponding to vertices in Vy,ormal are exactly the same

{(V: X) € ACDEZ:TE(Q) | Ve Vnormal} = {(V: X) € ACDRabin(g) | Ve Vnormal}-

Moreover, for v € V. qcc, there is one vertex of the form (v, x) for each vertex (pred(v), x), and
each v € Vj_ gy has exactly one predecessor in Vjormal, SO we conclude that:

ACD iy (@)1 < 2+ [{(v,X) € ACD T5(G) | V € Vnormat}| < 2+ |ACDRabin(G)] < 2 G,

where the last inequality follows from Theorem 5.36. |

C. Simplifications for prefix-independent conditions

We prove in this appendix results applying to automata recognising prefix-independent lan-
guages and games using prefix-independent winning conditions. We recall that a language
L C XY is prefix-independent if for all w € £ and u € *, uw € L if and only if w € L.

LEMMA 2.5. Let A be a history-deterministic automaton recognising a prefix-independent
language and using as acceptance set a prefix-independent language. For any state q of ‘A that

106 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

is reachable using some sound resolver, it holds that ‘A recognises the same language if we fix q
as initial state, that is, L(A) = L(Ay). Moreover, Ay is also history-deterministic. In particular,
if A is deterministic, this is the case for any reachable state q.

PROOF. Let (g, r) be a sound resolver for ‘A such that q is reachable using (ry,) (there is a
word wy € Z* and a run pg = ry Rt q induced by r over w). We first show that L(Ay) € L(A).
Let w € X% be a word accepted from q. Then, wow admits an accepting run from the original
initial state (by prefix-independence of the acceptance set), so wow € L(A), and by the prefix-
independence of L(A), w € L(A) too.

For the converse direction, we define a sound resolver (r),r’) for A, We let rj = q, and
r'(p,a) = r(pop, a) be the strategy that acts as the resolver r assuming that po has happened
in the past. It is clear that for every word w € X%, the run induced by (r;,r’) over w has a
common suffix with the run induced by (ro, r) over wow. Therefore, by the prefix-independence

assumptions:

we L(A) <= wow is accepted using (rp,r) <= wow is accepted using (ry, 1’). |

LEMMA 3.14. Let 7S and 78’ be two TS such that all their states are accessible, and let ¢ : 7S —
7S’ be an HD (resp. HD-for-games) mapping between them. If W and W’ are prefix-independent,
the mapping ¢ is also HD (resp. HD-for-games) when considered between the transition systems
TSy and 78, consisting of the transition systems 7S and 7S’ where all the states are set to be

initial.

PROOF. First, ¢: 7Sy — 787, is trivially a weak morphism. We claim that it preserves
accepting runs. Let v € V be a state in 78 and let p = v ~*> be an accepting run from v. Since
all the states are reachable, there is some vy € I and finite run p, = vy ~ V. Since @ is a weak

morphism we have that @g,,:(pvp) = ¢(vo) 3» (V) Y. Tt holds that:
W ’
wew preglep' uw eW — uw e W’ pregelj' w e W,

where the central implication follows from the fact that ¢ preserves accepting runs between
78 and 7S’'. Therefore @g,,s(p) is also an accepting run.

In the rest of the proof we assume that ¢ is an HD-for-games mapping, (which covers the
HD case). Let (11nit,) be a resolver sound for 78 simulating ¢ : 7S — 78’. We define a resolver
(Pinit, 7) for the new mapping. For every state v of 78, we fix a finite run p,, € fPatﬁ?n (7S) ending
in v that is consistent with (rt, r) over some p’, if such a run exists. We let Vgeach € V be
the set of vertices for which p, is well-defined. We note that for each v’ € V’ there exists at
least one v € @1 (V') such that v € Vgeach; indeed, if P, is a finite run reaching v’ in 7¢ S’, one
such v is Target(rg,.:(p},)) (that is, the vertex to which we arrive in 7S when simulating p;,
via the original resolver). We let 7,;:(V') be this vertex. If ¢’ € Out(V’) is an edge in 7S’, we let

107 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

F(g,e) =r(py,e), for v =i (V). For p a non-empty finite run starting in v € Vgeach and e’ € E,
we define #(p, e’) = r(pvp,). If p starts in v ¢ Vreach We let #(p, €’) be any edge in ¢~1(¢’) (if
e’ € Out(p(Target(p))) we pick it in Out(Target(p))). We check that (7,) satisfies the four
requirements to be a resolver:
1. Finic(V') has been chosen in =1 (V).
2. F(e’) is chosen in ¢~ 1(¢).
3. Let e’ € Out(v'). We have defined 7(¢, €’) = r(py, €’), where p, is a finite run consistent
with r ending in v = (V). By Property 4 of a resolver, r(p,, €’) € Out(v).
4. Let p = vy ~~ v € Run"(7Sy) and e’ € Out(e(v)). If vy ¢ Vreach, then we have picked
F(p,e’) in Out(v). If vg € Vpeach, then 7(p, e’) =r(py,p, €'); as py,p is a run ending in v and
r verifies Property 4 of a resolver r(p,,p, €’) € Out(v).

Finally, we show that (7, 7) is sound for 7S. Let p’ =V’ Y, e Run(TSy,) be an accepting
run, and let p = v Y, be a run consistent with (i, ¥) over p’. In particular, v = 7, (V’). Let
pv = Vo - v be the chosen run reaching v and let Py = vy X, be a finite run in Run"(TS')
such that p, is consistent with (i,) over pf,. It is immediate to check that p,p is consistent
with (rinit, 7) over plp’. Since p’ is accepting, we have that w’ € W’, and by prefix-independence
of the acceptance sets and the fact that p,p is accepting if p;p’ is, we have:

Wew —m uweW = uweW — wew,

so we conclude that p is accepting in 78, as we wanted to show. [

D. Simplifying automata with duplicated edges

Given an automaton A = (Q, L, I, T, §, W) we say that it has duplicated edges if there is some
pair of states ¢, q" € Q and two different transitions between them labelled with the same input
letter: q RN q,q i q.

As commented in Remark 4.47, the construction of the ZT-HD-Rabin-automaton we have
presented potentially introduces duplicated edges, which can be seen as an undesirable property
(even if some automata models such as the HOA format [4] allow them). We show next that we
can always derive an equivalent automaton without duplicated edges. Intuitively, in the Rabin
case, if we want to merge two transitions having as output letters o and S, we add a fresh letter
(aB) to label the new transition. For each Rabin pair, this new letter will simulate the best of
either o or B depending upon the situation.

PROPOSITION D.1 (Simplification of automata). Let ‘A be a Muller (resp. Rabin) automaton
presenting duplicated edges. There exists a Muller (resp. Rabin) automaton A’ on the same
set of states without duplicated edges such that L(A) = L(A’). Moreover, if A is history-

108 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

deterministic, A’ can be chosen history-deterministic. In the Rabin case, the number of Rabin
pairs is also preserved.

PROOF. For the Rabin case, let A’ be an automaton that is otherwise as A except that instead
of the transitions A of A it only has one a-transition q R q € A’ (with a fresh colour x
per transition) per state-pair ¢, q" and letter a € X. Thatis, A" = {(q,a,x;,q") : (q,a,y,q) €
A for some y}. The new Rabin condition {(G3, R)), ..., (G}, R})} is defined as follows. For each
transition q R q:

— X € Glfifqﬂ q' € Afor some y € G;,

— xeR;ifforallng’eA,yeRi.

We claim that L(A") = L(A). Indeed, ifu € L(A), as witnessed by some run p and a
Rabin pair (G;, R;), then the corresponding run p’ in (A’ over u is also accepted by the Rabin
pair (G}, R)): the transitions of Inf(p) N G; induce transitions of Inf(p’) N G; and the fact that
Inf(p) N R; = 0 guarantees that Inf(p") N R} = 0.

Conversely, if u € £(A’) as witnessed by a run p’ and Rabin pair (G, R}), then there is
an accepting run p over u in A: such a run can be obtained by choosing for each transition
q R q’ of p” where x € G; a transition q = q’ € A such that y € G;, which exists by definition
of A’, for each transition g = q’ where x ¢ G; U R; a transition q N q' € Asuch that y ¢ R;,
which also exists by definition of (A’, and for other transitions g = q’ (that is, those for which
X € R)) an arbitrary transition q =, q’ € A. Since p’ is accepting, we have Inf(p’) N G; # 0 and
Inf(p) N R; = 0, that is, p is also accepting.

For the Muller case, the argument is even simpler. As above, we consider A’ that is
otherwise like A except that instead of the transitions A of (A, it only has one a-transition
q Rl q’ € A’ (with a fresh colour per transition) per state-pair g, ¢’ and the accepting condition
is defined as follows. A set of transitions T is accepting if and only if for each t = g = qeT
there is a non-empty set S; C {q 2, q € A} such that | ;1 St is accepting in A. In other words,
a set of transitions in ‘A’ is accepting if for each transition we can choose a non-empty subset of
the original transitions in (A that form an accepting run in A.

We claim that L(A’) = L(A). Indeed if u € L(A), as witnessed by some run p, the run p’
that visits the same sequence of states in (A’ is accepting as witnessed by the transitions that
occur infinitely often in p.

Conversely, assume u € £L(A’), as witnessed by a run p’ and a non-empty subset S; for
each transition ¢ that occurs infinitely often in p” such that {J;cinf(p) St is accepting in A. Then
there is an accepting run p over u in (A that visits the same sequence of states as p’ and chooses
instead of a transition t € Inf(p) each transition in S; infinitely often, and otherwise takes an
arbitrary transition. The set of transitions p visits infinitely often is exactly Ueint(p) St, and is
therefore accepting.

109 / 110 TheoretiCS From Muller to Parity: Optimal Transformations Preserving (History) Determinism

Finally, observe that in both cases, if A is HD, then the automaton A’ without duplicate
edges is also HD since (A’ is obtained from A by merging transitions. Indeed, the resolver r
of A induces a resolver r’ for A’ by outputting the unique transition with the same letter and
state-pair as r. By the same argument as above, the run induced by r’ is accepting if and only if
the run induced by r is. u

EXAMPLE D.2. The ZT-HD-Rabin-automaton from Figure 14 has duplicated transitions. In
Figure 19 we present an equivalent HD Rabin automaton without duplicates. For this, we have
merged the self-loops in state 1 labelled with a and b respectively. We have added the output
colours (af) and (6¢). The new Rabin pairs are given by:

Gy = 1B, (aB)}, Ry={oAEL},

G, ={4}, R) ={a, B, (ap),6}.

Figure 19. The simplified ZT-HD-Rabin-automaton.

E. Proofs for Section 6.1.1

PROOF OF PROPOSITIONS 6.2 AND 6.3. We prove it for the Rabin case, Streett conditions
being the dual notion.

If all round nodes of Z# = (N = No U Np, <,v: N — 21) have at most one child, we define
a family of Rabin pairs R = {(Gn, Ry) | n € N} such that Rabin(R) = Muller(¥) as follows:
for each round node n € N, we add a Rabin pair (Gn, R,). We let G, = T'\ v(n). In order to
define R,, we observe that n has at most one child n’, and we define R, = v(n) \ v(n’), for n’
the only child of n, if it exists, or R, = v(n) if n has no children at all. This is, the pair (Gp, Ry)
accepts the sets of colours A C T that contain some of the colours that disappear in the step
n — n’ and none of the colours appearing up in the tree. We show that Rabin(R) = Muller(¥).
Let A be a set of colours. If A € ¥, let n be a maximal node (for <) containing A. It is a round
node and there is some colour ¢ € A not appearing in the only child of n. Therefore, ¢ € G, and
AN R, = 0. Conversely, if A ¢ ¥, then for every round node n with a child n’, either A C v(n’)
(and therefore AN G, =0) or A £ v(n) (and in that case A N R, # 0).

110 / 110 TheoretiCS A. Casares, T. Colcombet, N. Fijalkow and K. Lehtinen

We remark that this construction uses more Rabin pairs than necessary, since we could
reuse Rabin pairs for nodes that are in the same level and that are not siblings.

Conversely, suppose that Muller(#) = Rabin(R) for the Rabin language associated to
R ={(Gy,R1),...,(Gr,Ry)}.If n € Z# is around node (A = v(n) € F), then its label A contains
some colours that belongs to Gy, ..., G;, and none belonging to R;,, ..., R; for some iy, ..., i,
k > 1. A child of n must not have these colours, so the only maximal subset of A that is not in
iISA\ (GyU---UGy). |

PROOF OF PROPOSITION 6.4. We assume I' € ¥ (ming = 0), the other case is symmetric.

Assume that Z# has a single branch of length max# + 1. We define a mapping ¢: T' —
[0, max#] as follows: for each colour ¢ € ' we let n; be the deepest node in Z# containing c,
and we define ¢(c) = v(n.). It is easy to check that for all w € T, w € Muller(¥) if and only if
o(w) € parity.

Conversely, assume that we can assign colours to the elements of by ¢ : ' — [0, d], whose
corresponding parity language is Muller(#). We show that any node of the Zielonka tree Z#
has at most one child. Indeed, let n € N and let ¢ € v(n) such that ¢(c) = min{¢(c) | c € v(n)}.
We suppose that ¢(c) is odd (the proof is symmetric for ¢(c) even). Let p = min{¢(c’) | ¢’ €

v(n) and ¢(c’) even}. In every child of n the elements with a smaller colour than p must
disappear, so the set of elements v(n) N {c € T' | ¢(c) > p} is the only maximal subset of v(n)
belonging to . Moreover, in the label of the child of n there is at least one colour less, so the
height of Z# will be at most d + 1.]

2024:12 TheoretiCS

This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Antonio Casares, Thomas Colcombet, Nathanaél Fijalkow, Karoliina Lehtinen.

	Introduction
	Preliminaries
	Transition systems, automata and games
	Muller languages, cycles and the parity hierarchy
	Trees

	Morphisms as witnesses of transformations
	Morphisms of transition systems
	Local properties of morphisms
	History-deterministic mappings
	Preservation of semantic properties of automata and games

	The Zielonka tree: An optimal approach to Muller languages
	The Zielonka tree
	A minimal deterministic parity automaton
	The Zielonka-tree-parity-automaton
	Optimality of the Zielonka-tree-parity-automaton

	A minimal history-deterministic Rabin automaton
	The Zielonka-tree-HD-Rabin-automaton
	Optimality of the Zielonka-tree-HD-Rabin-automaton

	The alternating cycle decomposition: An optimal approach to Muller transition systems
	The alternating cycle decomposition
	An optimal transformation to parity transition systems
	An optimal history-deterministic transformation to Rabin transition systems
	Optimality of the ACD-transforms
	Statement of the optimality results
	Discussion: Limits on the applicability of HD automata and preservation of minimality
	Optimality of the parity condition of ACD-Parity(TS)
	Optimality of the sizes

	Corollaries
	Typeness results
	Typeness for Muller languages
	Typeness for Muller transition systems and deterministic automata

	A normal form for parity transition systems
	Minimisation of deterministic parity automata recognising Muller languages

	Conclusion
	References
	Generalised classes of acceptance conditions
	Transformations for games
	Simplifications for prefix-independent conditions
	Simplifying automata with duplicated edges
	Proofs for Section 6.1.1

