
1 / 41 2023 : 10

The Complexity of Iterated
Reversible Computation

Received Feb 10, 2022
Revised Sep 22, 2023
Accepted Nov 27, 2023
Published Dec 18, 2023

Key words and phrases
Reversible computing, Circuit
complexity, Cellular automata,
Reversible cellular automata,
Interval exchange transformations

David Eppsteina � a Department of Computer
Science, University of California,
Irvine

ABSTRACT. We study a class of functional problems reducible to computing 𝑓 (𝑛) (𝑥) for inputs
𝑛 and 𝑥, where 𝑓 is a polynomial-time bijection. As we prove, the definition is robust against
variations in the type of reduction used in its definition, and in whether we require 𝑓 to have a
polynomial-time inverse or to be computable by a reversible logic circuit. These problems are
characterized by the complexity class FPPSPACE, and include natural FPPSPACE-complete problems
in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described
by piecewise-linear transformations.

1. Introduction

Reversible logic circuits, made from Boolean gates with bijective input-output mappings, can
simulate any other combinational logic circuit [3]. Other natural models of computing based
on low-level reversible operations include reversible cellular automata [26, 27, 51, 40], re-
versible Turing machines [25, 8, 35], and even reversibility in LISP programs, where the pair
of fundamental operations (car,cdr) can be seen as inverse to cons [30, 14]. Early motivation
for reversible computing came from a lower bound on the energy needed for each transition
of a conventional logic gate, arising from fundamental physics [33], and the realization that
reversible devices can transcend this bound and compute with arbitrarily small amounts of
energy [4, 54]. More recently, reversible computing has gathered interest and attention from
the recognition that quantum circuits must be reversible [45, 9]. Deterministic reversible logic
gates do not have the full power of quantum logic, but are the only kind of deterministic gates
that can be incorporated into quantum circuits, so understanding their power is important for
understanding the power of quantum computing more generally [1].

This research was supported in part by NSF grant CCF-2212129.

Cite as David Eppstein. The Complexity of Iterated Reversible Computation.
TheoretiCS, Volume 2 (2023), Article 10, 1-41.

https://theoretics.episciences.org
DOI
https://doi.org/10.46298/theoretics.23.10

mailto:eppstein@ics.uci.edu

2 / 41 D. Eppstein

Combinational logic circuits are acyclic; the sequential logic circuits of classical computers
form cycles by feeding the output of a combinational logic circuit back to its input. One way
to model this kind of feedback is through functional iteration: If 𝑓 is a function with equally
many inputs and output bits, then 𝑓 (𝑛) (𝑥) denotes the result of repeatedly applying 𝑓 , 𝑛 times,
to an input value 𝑥. When a function 𝑓 is described as a combinational logic circuit, computing
this kind of iterated function, for large values of 𝑛, requires the full power of PSPACE. In one
direction, the space needed to directly simulate the iterated computation of 𝑓 , storing the circuit,
its values, and an iteration counter, is polynomial. And in the other direction, any PSPACE
computation can be simulated by the iteration of a circuit whose input and output bits describe
the state of a space-bounded Turing machine, and whose evaluation takes one state to the next.
However, PSPACE-completeness does not imply that repeated computation of 𝑓 is the only way
to compute 𝑓 (𝑛): for some computationally universal problems of this flavor, such as simulating
the behavior of Conway’s Game of Life, many instances can be simulated in time 𝑜(𝑛), at least
in practice if not in theory [18].

The combination of these two ideas, that reversible logic can simulate combinational
logic, and that iterated combinational logic characterizes PSPACE, would suggest that iterated
reversible logic might again be as powerful as PSPACE. However, this is not obvious and does
not follow from the known simulations of combinational logic by reversible logic. The problem
is that these simulations use additional bits of input and output, beyond those of the simulated
circuit. Padding bits of input (assumed to be zero) are transformed by the reversible circuits
of these simulations into garbage bits of output (not necessarily zero) [3]. In iterating these
reversible circuits, the garbage bits may build up to more than polynomial space. What then
is the computational power of iterated reversible computation? It is this question that we
investigate in this paper.

To do so, we need to carefully define reversibility. We are interested in the iteration of
bijections from 𝑛-bit inputs to 𝑛-bit outputs. However, the bijections that we iterate can be char-
acterized computationally in at least three natural ways: we can assume that they are described
by reversible circuits (as above), we can assume that they are given merely as polynomial-time
functions, or we can assume that they are invertible, polynomial-time bijections whose inverse
function is also a polynomial-time bijection (as it would be for a function described by a re-
versible circuit). The question of whether all polynomial-time bijections are invertible is a major
open problem in the complexity of reversible computing [25]. If they are all invertible, it would
imply the non-existence of one-way permutations, deterministic polynomial-time bijections
whose inverse is not computable in randomized polynomial time, even in the average case
rather than the worst case [57, 24]. In the other direction, a proof that one-way permutations
exist would have significant cryptographic applications, but would also imply that P ≠ NP,
currently out of reach. The distinction between these three types of bijection, in the context of

3 / 41 The Complexity of Iterated Reversible Computation

function iteration, can be seen as a space-complexity analogue of the same open problem, one
that we resolve in this work.

We are led by these considerations to the following class of computational problems:

Let 𝑓 be a polynomial-time function whose numbers of input and output bits are equal,
and assume in addition that one of the following is true:

𝑓 is a bijection from its inputs to its outputs,
𝑓 is a bijection whose inverse function is also computable in polynomial time, or
𝑓 can be computed by a uniform family of reversible logic circuits.

What is the complexity of computing 𝑓 (𝑛) (𝑥) from 𝑛 and 𝑥?

As we prove, the three variations in assumptions about 𝑓 lead to equivalent complexity
for this problem, even though they may describe different classes of functions. To show this, we
formulate a complexity class of functional problems encapsulating the iteration of polynomial-
time bijections. As we prove, the resulting complexity class turns out to equal FPPSPACE, the class
of functional problems that can be solved in polynomial time with access to a PSPACE oracle.1

We demonstrate the applicability of this theory by finding concrete FPPSPACE-complete problems
coming from circuit complexity, graph algorithms, cellular automata, and dynamical systems.

1.1 New results

We prove the following results.
We define a family of functional complexity classes based on the iteration of bijective
polynomial-time functions, with nine variations depending on whether we incorporate
reductions from other problems into the definition, which kind of reduction is allowed,
and which specific class of polynomial-time bijection is allowed (Definition 3.1). Despite
this high variation, we show that six of these classes, the ones allowing either Turing or
many-one reductions and allowing any of three types of polynomial-time bijection, are
equal to each other (Theorem 3.6).
We observe that these equivalent complexity classes have a complete problem in circuit
complexity, falling naturally out of one of our equivalent formulations: given a reversible
logic circuit, a number 𝑛, and an initial value for the circuit input wires, what is the result
of feeding the outputs of the circuit back through the inputs for 𝑛 iterations through the
circuit? Equivalently, what would be the output of the circuit formed by composing in
sequence 𝑛 copies of the given circuit? (observation 3.8.)
We consider a family of computational problems on implicit graphs (graphs defined
procedurally by polynomial-time algorithms for listing the neighbors of each vertex) in

1 Note that FPPSPACE ≠ FPSPACE, the class of functional problems solvable in polynomial space, because FPSPACE (as
defined e.g. by Ladner [32]) does not count its output against its space complexity, and includes problems with
exponentially long outputs. In contrast FPPSPACE is limited to outputs of polynomial size.

4 / 41 D. Eppstein

which the graph is undirected of maximum degree two, the input is a leaf (a vertex of
degree one), and the desired output is the other leaf in the same connected component.
Such “second-leaf problems” are known to be hard for FPPSPACE [2, 44, 34], and include
producing the same result as Thomason’s lollipop algorithm for a second Hamiltonian
cycle in a cubic graph [50]. We show that all second-leaf problems can be transformed into
an equivalent iterated bijection (Theorem 4.2), and as a consequence that the complexity
class of iterated bijections, under any of its six equivalent definitions, equals FPPSPACE

(Theorem 4.3).
We study finding the configuration of a reversible cellular automaton, after 𝑛 steps from a
given initial configuration. We show that this is complete for FPPSPACE for the billiard-ball
model, a two-dimensional reversible cellular automaton of Margolus [36] (Theorem 5.1).
Although certain one-dimensional reversible cellular automata were known to be Turing-
complete, their proofs of universality cannot be used for FPPSPACE-completeness, because
they use space proportional to time. Instead, we find a new family of one-dimensional
reversible cellular automata that can simulate any two-dimensional reversible cellular
automaton with the Margolus neighborhood and suitable boundary conditions (Theo-
rem 5.6). Finding the configuration after 𝑛 steps for these one-dimensional automata is
FPPSPACE-complete (Theorem 5.7).
We consider a family of polynomial-time bijections defined by piecewise linear transfor-
mations, and we show that finding their iterated values is FPPSPACE-complete (Theorem 6.6).
However, a natural special case of this problem has a non-obvious polynomial time algo-
rithm, obtained by a transformation into computational topology (Theorem 6.12).

In these problems, as is standard in computational complexity theory, all input values are
assumed to be represented as binary sequences, and all time bounds are based on the Turing
machine model or on polynomially-equivalent models such as random access machines with
logarithmically-bounded word sizes. In particular, our model of computation does not allow
unit-cost arithmetic operations on arbitrarily large numbers or exact real-number arithmetic.

1.2 Related work

Our research combines research from structural complexity theory, circuit complexity theory,
the theory of cellular automata, graph algorithms, and dynamical systems theory, which we
survey in more detail in the relevant sections and summarize here.

In structural complexity theory, many early complexity classes such as P, PSPACE, and
NP were defined by bounding resources such as space or time in computational models such
as deterministic or nondeterministic Turing machines. More recently, it has become common
instead to see complexity classes defined by reducibility to certain fundamental problems or
classes of problems: for instance, PPA and PPAD are based on searching for specific structures

5 / 41 The Complexity of Iterated Reversible Computation

in graphs [44], while ∃R is based on reducibility to problems in the existential theory of the real
numbers [47]. Similarly, one can redefine NP by reducibility to brute force search algorithms on
deterministic machines. Our work takes inspiration from this shift in perspective, and similarly
describes a class of problems that are reducible to iteration of bijections. One difference,
however, is that while PPA, PPAD, and ∃R are all in some sense “near” NP, the resulting class is
more similar to PSPACE.

In the theory of reversible circuits, a central result is the ability of these circuits to simulate
non-reversible combinational logic circuits [3]. Reversible logic gates or families of gates, such
as the Fredkin gate [17] or the Toffoli gate [52], are said to be universal when they can be used
for these simulations. This simulation is always possible when additional padding bits are
included in the inputs and outputs of the simulated circuits. Without padding, it is not possible
for these gates to compute all functions or even all bijective functions. Fredkin gate circuits
can only compute functions that preserve Hamming weight [17], and some easily-computed
bijections cannot be computed by any reversible logic circuit with gates of bounded complexity
(observation 2.1).

Reversible circuits and reversible cellular automata are connected through the simulation
of Fredkin-gate circuits by Margolus’s billiard-ball block-cellular automaton [36]. This provides
one route to Turing completeness of reversible cellular automata, for which many more con-
structions are known [51, 40, 12, 22, 28, 37]. Although Turing completeness is closely related to
the completeness properties studied here, these constructions generally involve infinite arrays
of cells and in some cases initial conditions with infinite support, in contrast to our focus on
space-bounded complexity. Another route to Turing completeness is the simulation of other
cellular automata by reversible cellular automata. The billiard-ball model can simulate any
other two-dimensional locally reversible cellular automata [11], and Toffoli simulates arbitrary
(non-reversible) 𝑑-dimensional cellular automata by (𝑑 + 1)-dimensional reversible cellular
automata [51]. Our construction of a one-dimensional FPPSPACE-complete (and Turing-complete)
reversible cellular automaton that simulates a two-dimensional one stands in sharp contrast
to a result of Hertling [21] that (under weak additional assumptions) simulations of cellular
automata by reversible ones must increase the dimension, as Toffoli’s construction does. Our
construction does not meet Hertling’s assumptions.

Another well-established connection relates algorithmic problems on implicitly-defined
graphs to problems in computational complexity, by considering graphs that describe the state
spaces of Turing machines or other computational models. It is standard, for instance, to
reinterpret Savitch’s theorem relating nondeterministic and deterministic space complexity as
providing a quadratic-space algorithm for reachability in implicit directed graphs. Similarly,
the Immerman–Szelepcsényi theorem on closure of nondeterministic space classes under
complement has an equivalent algorithmic form, a nondeterministic linear-space algorithm for
non-reachability in directed graphs [55]. The complexity classes PPA and PPAD were formulated

6 / 41 D. Eppstein

in the same way from algorithmic problems on implicit graphs [44]. A specific algorithm that
has been frequently studied in this light is Thomasen’s lollipop algorithm for finding a second
Hamiltonian cycle in an (explicit) cubic graph by following a path in a much larger implicit
graph defined from the given graph [50]. Although some inputs cause this algorithm to take
exponential time [6, 7, 58] the complexity of finding a second Hamiltonian cycle in a different
way is unknown, and was one of the motivating problems for the definition of PPA [44]. We
formulate the same question in a different way, asking how hard it is to find the same cycle that
Thomasen’s algorithm finds, but again the complexity of this problem remains unknown.

An important precursor of our work is the result of Bennett [2] and of Lange, McKenzie,
and Tapp [34] that reversible Turing machines with polynomial space can compute functions
complete for FPPSPACE. Citing Bennett, Papadimitriou [44] rephrased this result in terms of
implicit graphs: it is complete for FPPSPACE to find the other end of a path component in an implicit
graph, given a vertex at one end of the path. Our proof that the iterated functional problems we
study are complete for FPPSPACE is based on this result, and on a reduction converting this path
problem into an iterated bijection. For related time-space tradeoffs in the power of reversible
Turing machines, see also Williams [56].

Our final section concerns the iteration of invertible piecewise linear functions. This
topic is well studied in the theory of dynamical systems; previously studied functions of this
type include Arnold’s cat map [13] and the baker’s map [43], both acting on the unit square,
and the interval exchange transformations on a one-dimensional interval [29]. The focus of
past works on these transformations has been on their chaotic dynamics, rather than on
the computational complexity of computing their iterates. We also consider perfect shuffle
permutations, formulated as piecewise linear functions; their iterates have again been studied,
notably to determine their order in the symmetric group [10].

2. Invertability, reversibility, and reversible logic

We define a bijection of bitstrings to be a function on binary strings of arbitrary length that,
on 𝑛-bit inputs, produces 𝑛-bit outputs, and is one-to-one for each 𝑛. We define a polynomial-
time bijection to be a bijection of bitstrings computable in polynomial time, and we define a
polynomial-time invertible bijection to be a polynomial-time bijection whose inverse function is
also a polynomial-time bijection. We define a reversible logic gate to be a Boolean logic gate
with equally many input and output bits that computes a bijection from inputs to outputs; the
number of inputs and outputs is its arity. Finally, we define a polynomial-time reversible function
to be a bijection of bitstrings that, for each 𝑛, can be computed by a circuit of reversible logic
gates of fixed arity that can be constructed from the argument 𝑛 in time polynomial in 𝑛. Any
polynomial-time reversible function or its inverse can be computed in polynomial time by

7 / 41 The Complexity of Iterated Reversible Computation

constructing and simulating its circuit, so the polynomial-time reversible functions are a subset
of the polynomial-time invertible bijections.

As in classical logic, certain reversible gates have been identified as universal. These
include the three-input Fredkin gate in which one control input is passed through unchanged
but determines whether to swap the other two inputs [17], and the Toffoli gate in which the
conjunction of two control inputs determines whether to negate a third input [52]. Universality,
in this context, has sometimes been incorrectly stated as meaning that all bijections can be
implemented with these gates. This is impossible for any finite set of gates:

OBSERVAT ION 2 .1. Let 𝑛 > 1 and let − be the polynomial-time invertible bijection that takes
an 𝑛-bit binary number 𝑥 in 2’s-complement notation to its negation −𝑥, with zero and the all-ones
binary value taken to themselves. Then − is not a polynomial-time reversible function. More
strongly, no 𝑛-input 𝑛-output reversible logic circuit with gates of arity less than 𝑛 can compute −.

PROOF . Given any reversible circuit, match up inputs and outputs at each gate to form 𝑛 longer
wires running through the entire circuit, and describe the function of the circuit as a permutation
on the 2𝑛 truth assignments to these 𝑛 wires, obtained by composing in topological order
permutations at each gate. Each gate’s permutation is even, because each cycle in its permutation
is paired with another cycle, obtained by negating a value unused by the gate. Therefore, the
function of the whole circuit is also an even permutation. However, binary negation swaps
(2𝑛 − 2)/2 pairs of values, an odd number for 𝑛 > 1, giving an odd permutation. ■

We do not expect permutation parity to be the only obstacle to the existence of reversible
circuits. For instance, modifying a function by adding an extra input that is passed unchanged
to the output and otherwise does not affect the result (unlike a padding bit, which must be zero
for correct output) can change the permutation parity from odd to even, but appears unlikely
to affect the existence of a circuit, although we do not prove this. Nevertheless, every logic
circuit (even an irreversible one) can be simulated by a reversible circuit of approximately the
same size with more inputs and outputs (equally many total inputs and outputs). The added
“dummy” inputs must all be set to zero in the simulation, and the added “garbage” outputs
produce irrelevant values, discarded in the simulated output. Each gate of the simulated circuit
can be transformed into 𝑂(1) reversible gates that use up 𝑂(1) dummy inputs and produce
𝑂(1) garbage outputs [3]. A stronger version of this simulation, for polynomial-time invertible
bijections, uses the same zero-input padding but produces zeros for the output bits instead
of garbage, allowing the resulting functions to be iterated. This is, essentially, a result of
Jacopini, Mentrasti, and Sontacchi [25], but we include the proof because it is central to our later
results, because we use similar techniques in other proofs, and because Jacopini, Mentrasti,
and Sontacchi phrased it in terms of reversible Turing machines rather than reversible logic
circuits. Define pad(𝑘, 𝑥) to be the result of padding a binary string 𝑥 by prepending 𝑘 zero-bits.

8 / 41 D. Eppstein

LEMMA 2.2 (Jacopini, Mentrasti, and Sontacchi [25]). Let 𝑓 be a polynomial-time invertible
bijection. Then there exists a polynomial-time reversible function 𝑔 , and a polynomial 𝑝, such that
for every binary string 𝑥 of length 𝑛,

𝑔
(
pad

(
𝑝(𝑛), 𝑥

))
= pad

(
𝑝(𝑛), 𝑓 (𝑥)

)
.

That is, on strings consisting of 𝑝(𝑛) zeros followed by an 𝑛-bit string 𝑥, 𝑔 behaves like the
evaluation of 𝑓 on the final 𝑛 bits, leaving the zeros unchanged.

PROOF . Construct a circuit on padded inputs that performs the following computations:
1. Replace 𝑛 padding bits with their bitwise exclusive or with input 𝑥, transforming a padded

input of the form 0̄, 0̄, 𝑥 (where the first 0̄ denotes the remaining unused padding bits, the
second 0̄ denotes the padding bits replaced in this computation, and the comma denotes
concatenation) into 0̄, 𝑥, 𝑥, the remaining unused padding bits together with two copies
of 𝑥.

2. Expand the polynomial-time computation of 𝑓 , on 𝑛-bit inputs, into a classical logic circuit,
and use the simulation of classical logic by reversible logic to compute 𝑓 on one of the
copies of 𝑥, replacing more padding bits by garbage bits. After this step, the input has been
transformed into the form 𝑦, 𝑓 (𝑥), 𝑥, where 𝑦 is the garbage produced by the simulation.

3. Use additional bitwise exclusive ors to transform the input to the form 𝑦, 𝑓 (𝑥), 𝑓 (𝑥) ⊕ 𝑥.
4. Reverse the circuit of Step 2 to transform the input to the form 0̄, 𝑥, 𝑓 (𝑥) ⊕ 𝑥.
5. Use additional bitwise exclusive ors to transform the input to the form 0̄, 𝑓 (𝑥), 𝑓 (𝑥) ⊕ 𝑥.
6. Use the simulation of classical by reversible logic to compute 𝑓 −1 on input 𝑓 (𝑥), trans-

forming the input to the form 𝑧, 𝑥, 𝑓 (𝑥) ⊕ 𝑥 where 𝑧 is the garbage produced by the
simulation.

7. Use additional bitwise exclusive ors to transform the input to the form 𝑧, 𝑥, 𝑓 (𝑥).
8. Reverse the circuit of Step 6 to transform the input to the form 0̄, 𝑓 (𝑥), 𝑓 (𝑥).
9. Use additional bitwise exclusive ors to transform the input to the form 0̄, 0̄, 𝑓 (𝑥). ■

This proof produces circuits that combine Fredkin or Toffoli gates with additional two-
input two-output exclusive or gates (also called controlled not gates). If a circuit using only one
type of gate is desired, then these controlled not gates can be simulated by Fredkin gates or
Toffoli gates by using additional (reusable) dummy bits that, like the padding bits, can be passed
unchanged from the input to the output of the resulting circuit. We omit the details.

3. Complexity classes and their equivalences

We will consider two different types of reduction in our definitions of completeness:
A polynomial-time functional Turing reduction (Turing reduction, for short) from one
functional problem 𝑓 to another functional problem 𝑔 can be described as a polynomial-

9 / 41 The Complexity of Iterated Reversible Computation

time oracle Turing machine for problem 𝑋 , using an oracle for problem 𝑌 . That is, it is
an algorithm for computing the function 𝑓 that is allowed to make subroutine calls to an
algorithm for function 𝑔 , and that takes polynomial time outside of those calls.
A polynomial-time functional many-one reduction (many-one reduction, for short) consists of
two polynomial-time algorithms 𝑟1 and 𝑟2, such that 𝑓 = 𝑟1◦𝑔◦𝑟2. That is, we can compute 𝑓

by translating its input in polynomial time into an input for function 𝑔 , computing a single
value of 𝑔 , and then translating the computed value of 𝑔 in polynomial time into the value
of 𝑓 . Equivalently, this can be thought of as a Turing reduction that is limited to a single
oracle call.

Additionally, as we have already seen, we have three choices of which type of bijection to use
in the iteration. This naturally gives rise to the nine variant complexity classes defined below.
However, we will later see that six of these are actually the same as each other (and all the same
as the known complexity class FPPSPACE): as long as the definition of complexity class includes
one of these two types of reduction, the choice of reduction type and bijection type does not
matter.

DEF IN IT ION 3.1. Define the nine complexity classes IB𝑥, 𝑦, for 𝑥 ∈ {T,M,−} and 𝑦 ∈ {b, i, r}
(short for “iterated bijection”), as follows.

The complexity classes IB−,b, IB−,i, and IB−,r denote the classes of problems for which
the input is a pair (𝑛, 𝑠) and the output is 𝑓 (𝑛) (𝑠), where the 𝑛-times iterated function 𝑓

is respectively a polynomial-time bijection, a polynomial-time invertible bijection, or a
polynomial-time reversible function.
The complexity classes IBT, 𝑦 denote the classes of problems having a polynomial-time
functional Turing reduction to a problem in IB−, 𝑦, for each 𝑦 in {b, i, r}.
The complexity classes IBM, 𝑦 denote the classes of problems having a polynomial-time
functional many-one reduction to a problem in IB−, 𝑦, for each 𝑦 in {b, i, r}.

Padding an input by zeros and unpadding the output in the same way is a many-one
reduction, and every many-one reduction is also a Turing reduction. For both kinds of reduction,
the composition of two reductions is another reduction. Therefore, the following is an immediate
consequence of Lemma 2.2, according to which every polynomial-time invertible bijection can
be padded to an equivalent polynomial-time reversible function.

OBSERVAT ION 3.2. IBT,i = IBT,r and IBM,i = IBM,r.

Next, we show that any Turing reduction to iterating a bijective or invertible function can
be strengthened to a many-one reduction of a different function in the same class. That is:

LEMMA 3.3. IBT,b = IBM,b and IBT,i = IBM,i.

10 / 41 D. Eppstein

PROOF . Let 𝑓 be a functional problem in IBT,b or IBT,i. This means that 𝑓 can be solved by
an algorithm 𝐴 𝑓 , that takes polynomial time outside of a polynomial number of calls to a
subroutine for computing 𝑔 (𝑛) (𝑠) for a fixed polynomial-time bijection 𝑔 . To show that 𝑓 ∈ IBM,b

(or, respectively, 𝑓 ∈ IBM,i), we construct a different polynomial-time bijection ℎ whose iteration
will simulate the behavior of algorithm 𝐴 𝑓 . In preparation for doing so, we expand 𝐴 𝑓 into a
(conventional logic) circuit of polynomial size, consisting of the standard Boolean logic gates
together with a special many-input many-output gate that takes as input 𝑛 and 𝑠 and produces
as output 𝑔 (𝑛) (𝑠), implementing the oracle calls of algorithm 𝐴 𝑓 . We will simulate this circuit
gate-by-gate, in a topological ordering of its gates, by a function ℎ that operates on triples
(𝑐1, 𝑐2, 𝑏), where:

The value 𝑐1 (the “big hand of the clock”) will indicate the progression of the simulation
through the gates of the expanded circuit for algorithm 𝐴 𝑓 .
The value 𝑐2 (the “little hand of the clock”) will indicate the progression of the simulation
through an iteration of function 𝑔 , within a single oracle gate of the circuit.
The value 𝑏 will indicate the Boolean values on all wires of the circuit, with zeros for wires
whose value has not yet been determined by the simulation.

Initially, these values will all be zero, except for the values in 𝑏 that describe input wires of the
simulated circuit; the part of the many-one reduction that determines the initial value of the
iterated function can easily calculate what these input wire values should be.

The function ℎ that performs a step of the simulation will always increase 𝑐2 by one modulo
a suitable value 𝑁 , and if the result is zero it will increase 𝑐1 by one modulo a suitable value 𝑀 .
These moduli are chosen so that 𝑁 is larger than the largest possible argument 𝑛 in an oracle
call to 𝑔 (𝑛) (𝑠), and so that 𝑀 is larger than the number of gates in the simulated circuit. Because
these increments are performed in modular arithmetic, they are bijective and invertible. We
will iterate ℎ for 𝑀𝑁 iterations, so that the big hand will increase for at least as many steps as
the number of gates to be simulated. Each iteration of ℎ will also perform additional invertible
functions, depending on 𝑐1 and 𝑐2:

If 𝑐1 is the position of standard logic gate 𝐺 in the topological ordering of the circuit for
algorithm 𝐴 𝑓 , and 𝑐2 = 0, then let 𝑜 be the correct output of 𝐺, let 𝑏𝑖 be the wire where that
output should go, and let ℎ replace 𝑏𝑖 by its exclusive or with 𝑜. This operation is bijective
and invertible (it is its own reverse).
If 𝑐1 is the position of a standard logic gate 𝐺, and 𝑐2 ≠ 0, then ℎ does nothing beyond
incrementing its counters.
If 𝑐1 is the position in the topological ordering of an oracle gate with input 𝑛, 𝑠 and output 𝑡,
computing 𝑡 = 𝑔 (𝑛) (𝑠), and 𝑐2 = 0, then ℎ uses bitwise exclusive ors (as in the proof of
Lemma 2.2) to copy 𝑠 onto 𝑡.

11 / 41 The Complexity of Iterated Reversible Computation

If 𝑐1 is the position in the topological ordering of an oracle gate with input 𝑛, 𝑠 and output 𝑡,
and 0 < 𝑐2 ≤ 𝑛, then ℎ replaces 𝑡 by 𝑔 (𝑠). If 𝑔 is bijective, this operation is bijective, and
if 𝑔 is invertible, this step is invertible.
If 𝑐1 is the position in the topological ordering of an oracle gate with input 𝑛, 𝑠 and output 𝑡,
and 𝑐2 > 𝑛, then ℎ does nothing beyond incrementing its counters.

Finally, the part of the many-one reduction that maps the output of ℎ(𝑀𝑁) to the value of 𝑓 does
so simply by copying the output bits of the simulated circuit. ■

The next observation reduces the computation of a polynomial time bijection (for which
we do not necessarily have a polynomial-time inverse) to the iteration of a different polynomial-
time invertible bijection (for which we do have the inverse). We include it here to introduce a
counting trick in its proof, which we will use in a more complicated way in what follows.

OBSERVAT ION 3.4. Let 𝑓 be a polynomial time bijection. Then 𝑓 ∈ IBM,i.

PROOF . We reduce the computation of 𝑓 (𝑥) to the iteration of an invertible function through
the trivial summation

𝑓 (𝑥) =
∑︁
𝑦


𝑓 (𝑦) if 𝑦 = 𝑥

0 otherwise.

To do so, define 𝑓 (𝑦) to be 𝑓 (𝑦), if 𝑦 = 𝑥, and 0, otherwise, so that the sum is over the values of 𝑓 .
Create an invertible function 𝑔 that operates on pairs 𝑎, 𝑏, and maps (𝑎, 𝑏) ↦→

(
𝑎 + 1 mod 𝑁, 𝑏 +

𝑓 (𝑎)
)
, invertible via the map (𝑎, 𝑏) ↦→

(
𝑎 − 1 mod 𝑁, 𝑏 − 𝑓 (𝑎 − 1)

)
, where 𝑁 is the number

of possible inputs to function 𝑓 . Then we can simply evaluate 𝑓 (𝑥) as the 𝑏-component of
𝑔 (𝑁) (0, 0). ■

To simulate the iteration of a polynomial-time bijection using invertible steps, we combine
the trivial-summation idea of observation 3.4, the alternating forward and backward steps of
Lemma 2.2, and the big-hand little-hand timing idea of Lemma 3.3, as follows.

LEMMA 3.5. IB−,b ⊂ IBM,i.

PROOF . Let 𝑓 be a polynomial-time bijection for which we wish to compute 𝑓 (𝑛) (𝑥), the form
taken by all problems in IB−,b. We must show that 𝑓 (𝑛) (𝑥) can be computed in IBM,i, by iterating
a polynomial-time invertible bijection. To do so, we define an invertible bijection 𝑔 on 5-tuples
(𝑐1, 𝑐2, 𝑎, 𝑏, 𝑐) where 𝑐1 and 𝑐2 are the big hand and little hand of the big-hand little-hand timing
technique, 𝑝 is an adequate supply of polynomially many padding bits (zero before and after
each iteration), 𝑎 is the current iterated value (initially the starting value 𝑥), and 𝑏 and 𝑐 are
equally-long values used within the iteration. If the inputs and outputs to 𝑓 have 𝑘 bits, we
will choose the lengths of the values in these 5-tuples to all be monotonic and easily-computed
functions of 𝑘, so that the computation of 𝑔 can determine 𝑘 and decode the 5-tuple to its

12 / 41 D. Eppstein

components in polynomial-time; we omit the details of this decoding process. For inputs to 𝑔

whose length is not of the correct form to be decoded into a 5-tuple in this way, we define 𝑔 to
be the identity function.

Otherwise, as in Lemma 3.3, we define 𝑔 so that in each iteration it increments 𝑐2 modulo
some sufficiently large number 𝑀 and, if the resulting value of 𝑐2 is zero, it also increments 𝑐1

modulo some sufficiently large number 𝑁 > 𝑛. Each increase of 𝑐1 will correspond to one more
iteration of the function 𝑓 , so that 𝑓 (𝑛) (𝑥) may be obtained by iterating 𝑔 exactly 𝑛𝑀 times,
starting from (0, 0, 𝑥, 0, 0), and examining the 𝑎 component of the resulting tuple. If 𝑎 has 𝑘 bits,
𝑀 is chosen to be greater than 2𝑘 + 2. The effect of 𝑔 on the 𝑎, 𝑏, and 𝑐 components of the 5-tuple
are determined by the value of 𝑐2:

If 𝑐2 = 0, function 𝑔 sets 𝑏 = 𝑏 ⊕ 𝑓 (𝑎). Our overall simulation will only perform this step
with 𝑏 and 𝑐 initially zero, transforming 𝑎, 0, 0 to 𝑎, 𝑓 (𝑎), 0, corresponding to Step 2 of
Lemma 2.2.
If 𝑐2 = 1, function 𝑔 sets 𝑎 = 𝑎 ⊕ 𝑏. When applied to 𝑎, 𝑓 (𝑎), 0, this transforms it into
𝑎 ⊕ 𝑓 (𝑎), 𝑓 (𝑎), 0, corresponding to Step 3 of Lemma 2.2.
If 1 < 𝑐2 < 2𝑘 + 2, function 𝑔 checks whether 𝑓 (𝑐) = 𝑏, and if so replaces 𝑎 with 𝑎 ⊕ 𝑐.
Then regardless of the outcome of the check, it increments 𝑐 modulo 2𝑘. When applied to
𝑎 ⊕ 𝑓 (𝑎), 𝑓 (𝑎), 0, these steps use the trivial summation method to find 𝑎 and exclusive-or
it into the first component, producing 𝑓 (𝑎), 𝑓 (𝑎), 0 as in Step 8 of Lemma 2.2.
If 𝑐2 = 2𝑘 + 2, function 𝑔 replaces 𝑏 by 𝑎 ⊕ 𝑏. When applied to 𝑓 (𝑎), 𝑓 (𝑎), 0, this produces
𝑓 (𝑎), 0, 0, ready for another iteration.
For all other values of 𝑐2, 𝑔 does nothing to 𝑎, 𝑏, and 𝑐.

The changes to 𝑐1 and 𝑐2 in each computation of 𝑔 are easily inverted, and other than those
changes the only effect of 𝑔 is to perform an exclusive-or into one of the three components
𝑎, 𝑏, and 𝑐, with a value computed only from the other two components, an operation that is
its own inverse. Therefore, 𝑔 is a polynomial-time invertible bijection, and we have shown
how to compute the iterated values of a polynomial-time bijection 𝑓 by iterating a different
polynomial-time invertible bijection 𝑔 . ■

THEOREM 3.6. For 𝑥 ∈ {M, T} and 𝑦 ∈ {b, i, r} the complexity classes IB𝑥, 𝑦 are all equal.

PROOF . From their definitions, these classes are naturally partially ordered by inclusion, with
IBM, 𝑦 ⊆ IBT, 𝑦 and IB𝑥,r ⊆ IB𝑥,i ⊆ IB𝑥,b, so we need only show that every problem from the largest
class in this partial order, IBT,b, is contained within the smallest class in this partial order, IBM,r.
Therefore, let 𝐹 be a functional problem in IBT,b, meaning that it can be reduced by a Turing
reduction to the iteration of a polynomial-time bijection 𝑓 . By Lemma 3.5 and the composition
of this Turing reduction with the many-one reduction of Lemma 3.5 to produce another Turing
reduction, 𝐹 ∈ IBT,i. By Lemma 3.3, 𝐹 ∈ IBM,i. And by observation 3.2, 𝐹 ∈ IBM,r. ■

13 / 41 The Complexity of Iterated Reversible Computation

Because of this equivalence, it is justified to drop the subscripts and use IB to refer to any
of the six equivalent complexity classes of Theorem 3.6. We will later see (Theorem 4.3) that
IB = FPPSPACE. For now, we prove the easy direction of this equivalence.

OBSERVAT ION 3.7. IB ⊆ FPPSPACE.

PROOF . Any function in IB can be computed by performing a polynomial-time reduction
and then repeatedly computing a polynomial-time function, using a counter to keep track of
the number of iterations performed. The reduction, the computation of the function, and the
counter all use only polynomial space. Therefore, the 𝑖th bit of output of a function in IB belongs
to PSPACE, and all polynomially-many bits of output can be obtained by using a polynomial
number of calls to a PSPACE oracle to obtain the bits for each different value of 𝑖. ■

OBSERVAT ION 3.8. Define 𝑅 be a functional problem whose input is a specification of a re-
versible logic circuit composed of universal reversible logic gates, a number 𝑛, and a Boolean
assignment to each input wire of the circuit, and whose output is the result of applying the circuit 𝑛
times, passing its outputs back to its inputs. Then 𝑅 is complete for IB under both many-one and
Turing reductions.

PROOF . This is the definitional problem for IB−,r, and its hardness for IB follows from the
composition of reductions with problems in that class. We must also show that this problem
itself belongs to IB, but this is easy: it is the problem of computing the 𝑛th iterate of an invertible
polynomial-time function 𝑓 that takes as input a specification of a reversible circuit and an
assignment to its input wires, and that produces as output the unchanged specification of the
circuit and the assignment to its output wires obtained by simulating the circuit. The inverse of
this function can be obtained by applying it to the reversal of the specified circuit. ■

4. Implicit linear forests

An implicit graph is a graph whose vertices are represented as binary strings of a given length,
and whose edges are determined by a computational process (an oracle or subroutine for
computing neighbors of each vertex) rather than being listed explicitly in an adjacency list or
other data structure. These typically represent state spaces of computations or of combinatorial
structures, and the use of implicit graphs is common in complexity theory. Savitch’s theorem,
for instance, can be interpreted as defining an algorithm for finding a path between two selected
vertices in an implicit directed graph, in low deterministic space complexity [55].

The problems we have already considered can easily be reformulated in the language of
implicit graphs: a bijection can be thought of as a directed graph with the values on which it
operates as vertices, and with in-degree and out-degree both exactly one at each vertex. The
iteration problem we have been considering, rephrased in this language, asks for the vertex

14 / 41 D. Eppstein

Figure 1. State space and transitions for Thomason’s lollipop algorithm. From any Hamiltonian path
(center) with a fixed starting vertex and edge (green), extending the other end of the path by one more
edge (blue) can either produce a Hamiltonian cycle (left) or a “lollipop”, a shorter cycle with a dangling
path (right). Removing one edge from the cycle in a lollipop (red X) produces another Hamiltonian path
with the same fixed starting vertex and edge.

that one would reach by following a path of length 𝑛 in this graph. However, this is somewhat
artificial as a graph problem. Instead, we consider undirected implicit graphs in which every
connected component is a path, known as linear forests, or more generally implicit graphs with
maximum degree two. Given a leaf vertex (a vertex of degree one) in such a graph, how easy is
it to find the other leaf of the same path? As we show in this section, this provides an alternative
equivalent formulation of the class IB that is based on graph search rather than on bijective
functional iteration.

4.1 Thomason’s lollipop algorithm

Before proving the equivalence of this formulation, we briefly discuss a prototypical example
of a problem of this type, Thomason’s lollipop algorithm for a second Hamiltonian cycle. In
a 3-regular undirected graph, the number of Hamiltonian cycles through any fixed edge is
even [53]. A proof of this fact by Thomason [50] constructs a state space, or implicit graph, as
follows (Figure 1):

The states of the state space are Hamiltonian paths starting at a fixed endpoint of a fixed
edge. The initial Hamiltonian cycle can be transformed into one of these states by choosing
arbitrarily one of its vertices and edges as the fixed vertex and edge of the state space, and
removing the other Hamiltonian cycle edge that is incident to the chosen vertex.
Each state can transition to at most two other states, by adding one more edge to the far end
of the Hamiltonian path from the fixed edge. The number of choices for this added edge
is exactly two, because the given graph has degree three and one of the edges at the end

15 / 41 The Complexity of Iterated Reversible Computation

vertex is already used as part of the path. If this edge is incident to the fixed vertex, adding
it produces a Hamiltonian cycle; otherwise, adding it produces a “lollipop” or spanning
subgraph in the form of a cycle with a dangling path. When it produces a lollipop, we can
break the cycle at the other edge incident to the dangling path, and produce a new state.
Therefore, the states that can form Hamiltonian cycles by the addition of an edge have
exactly one neighbor, while the other states have exactly two neighbors.

The evenness of the number of Hamiltonian cycles through a fixed edge follows immediately
from this construction: After fixing an orientation for the fixed edge, each Hamiltonian cy-
cle corresponds to a degree-one state in this state space, which can only belong to a path of
states. Every path has exactly two degree-one states, so the paths in the state space group the
Hamiltonian cycles into pairs [50].

The same argument also provides an algorithm for finding a second Hamiltonian cycle,
given as input a single Hamiltonian cycle in an (explicitly represented) graph. One simply
chooses arbitrarily an edge of this cycle to be a fixed edge and the orientation of this chosen
edge, constructs the state space as above, and walks along the path in the state space from
the initial state to another degree-one state, which must come from a different Hamiltonian
cycle [50].

Fnding a second Hamiltonian cycle is one of the prototypical examples of a problem in the
complexity class PPA, defined more generally in terms of finding a second odd-degree vertex in
an implicit graph, although it is not known to be complete for PPA [44]. However, a solution of
the PPA version of the problem is not required to be in the same component of the state space
as the given Hamiltonian cycle, so PPA does not characterize the complexity of finding the same
Hamiltonian cycle as the cycle found by Thomason’s algorithm. Instead, we are interested in the
complexity of a more specific problem, solved by Thomason’s algorithm: given a Hamiltonian
cycle, a fixed edge, and a fixed orientation for that edge, find the other Hamiltonian cycle from
the same component of Thomason’s state space. This is an instance of the second leaf problem,
in an implicit graph of maximum degree two (not necessarily a linear forest). It is known that
some instances may cause Thomason’s lollipop algorithm to take an exponential number of
steps [31, 7, 58, 6], but while this settles the complexity of this specific algorithm, it leaves open
the complexity of the functional problem solved by the algorithm.

4.2 Equivalence to iterated bijection

We will formalize a class of computational problems like the one solved by Thomason’s algorithm,
rather than a single problem, in order to make the neighbor-finding subroutines by which we
define an implicit graph be part of the problem definition rather than part of the input. However,
we also need input data, used by those subroutines to specify the implicit graph. For instance,
in the problem formalizing the input–output behavior of Thomason’s lollipop algorithm, the

16 / 41 D. Eppstein

definition of the problem includes the fact that its state space consists of Hamiltonian paths with
fixed starts in a cubic graph, rather than being some other kind of implicit graph. However, the
specific cubic graph containing these paths is input data rather than being part of the problem
specification. Thus, we make the following definitions.

DEF IN IT ION 4.1. A parameterized family of implicit graphs is defined by a polynomial time
function 𝑁 (𝐺, 𝑣) that takes as input two bitstrings 𝐺 and 𝑣, where 𝐺 identifies a specific implicit
graph and 𝑣 names a vertex within that graph, and that produces as output a finite sequence of
distinct bitstrings of equal length to 𝑣 naming the neighbors of 𝑣 in 𝐺. If 𝑣 is invalid (meaning
that it does not name a vertex in the graph specified by 𝐺), 𝑁 should output a failure condition,
again in polynomial time. A parameterized family is undirected if, whenever 𝑤 belongs to the
output of 𝑁 (𝐺, 𝑣), 𝑣 symmetrically belongs to the output of 𝑁 (𝐺, 𝑤). It is bivalent if every call
to 𝑁 produces at most two neighbors. A connected leaf problem is defined by an undirected
bivalent family of implicit graphs, defined by a polynomial time function 𝑁 . An input to a
problem defined in this way consists of input values 𝐺 and 𝑣 such that the output of 𝑁 (𝐺, 𝑣) has
length exactly one. The output to a connected leaf problem, defined in this way, is a bitstring 𝑤

describing a vertex of degree one in the same connected component as 𝑣 of the implicit graph
defined by 𝑁 and 𝐺. When the input does not have the correct form (𝑁 (𝐺, 𝑣) produces a failure
condition or the wrong number of neighbors) the output is undefined.

Thus, the problem of duplicating the output of Thomason’s lollipop algorithm is a connected
leaf problem in which 𝐺 describes the underlying cubic graph in which a second Hamiltonian
cycle is to be found, 𝑣 encodes a description of a Hamiltonian path in this underlying graph,
and 𝑁 performs a single step of the lollipop algorithm described above, for each of the two ways
of extending the path described by 𝑣, and outputs the Hamiltonian path or paths that result
from this step.

THEOREM 4.2. Every connected leaf problem belongs to IB.

PROOF . Given a connected leaf problem defined by a polynomial time function 𝑁 (𝐺, 𝑣), we
find a Turing reduction from instances (𝐺, 𝑣) to equivalent problems of iterated bijection, as
follows. Let 𝑘 be the number of bits in the bitstring 𝑣; by the way we have defined parameterized
families of implicit graphs, all vertices in the connected component of 𝑣 in the implicit graph
specified by 𝐺 have the same number 𝑘 of bits in their descriptions. We construct a polynomial-
time bijection 𝑓 whose inputs and outputs are triples (𝑛, 𝑣, 𝑤) of 𝑘-bit values. In these triples 𝑛
can be interpreted as a number modulo 2𝑘, at least as large as the number of vertices in the
component of 𝑣. The two remaining values 𝑣 and 𝑤 in these triples should be interpreted as
describing adjacent vertices in the graph specified by𝐺. However, to formulate this as a problem
in IB, the bijection 𝑓 that we construct cannot depend on this interpretation: it must be capable
of handling values 𝑣 and 𝑤 that do not specify vertices, or that specify vertices that are not
adjacent. We compute the value of 𝑓 according to the following case analysis:

17 / 41 The Complexity of Iterated Reversible Computation

First, use 𝑁 to compute the neighbors 𝑁 (𝐺, 𝑣) and 𝑁 (𝐺, 𝑤) of 𝑣 and 𝑤. If either call returns
a failure condition, or if the two vertices are not neighbors, return the input (𝑛, 𝑣, 𝑤)
unchanged as the output.
If 𝑛 > 0, check whether 𝑣 has one neighbor. If so, return (𝑛 + 1 mod 2𝑘+1, 𝑣, 𝑤). However,
if 𝑣 has two neighbors, return (𝑛, 𝑣, 𝑤) unchanged.
In the remaining case, 𝑛 = 0. If 𝑤 has one neighbor, return (1, 𝑤, 𝑣). Otherwise, 𝑤 has two
neighbors, 𝑣 and another vertex 𝑢. In this case, return (0, 𝑤, 𝑢).

If 𝑣 is a leaf vertex in the implicit graph described by 𝐺, and 𝑤 is its one neighbor, then iterating
this function has the effect of walking in one direction along a path, waiting 2𝑘 steps, and then
walking in the same way in the opposite direction along the path, acting bijectively on all of the
triples of values seen in this walk. If 𝑣 and 𝑤 are neighbors in a cycle of the implicit graph, then
iterating this function starting from (0, 𝑣, 𝑤) has the effect of walking from arc to arc around
the cycle, with no waiting steps. For all of the remaining triples of values, this function acts
as the identity. Therefore, in all cases it is bijective. Each step involves only two calls to the
polynomial time function 𝑁 , and simple case analysis, so it takes polynomial time to compute 𝑓 .

We can solve a connected leaf problem with neighbor function 𝑁 and data 𝐺, 𝑣 by first
using 𝑁 to find the neighbor 𝑤 of 𝑣 and then iterating the function 𝑓 constructed above for 2𝑘

iterations starting from (0, 𝑣, 𝑤) to produce another triple (𝑎, 𝑏, 𝑐), and finally returning 𝑏. By
the construction of 𝑓 , iterating it will necessary reach the leaf at the other end of the component
of 𝑣 in fewer than 2𝑘 steps and then wait for 2𝑘 steps while incrementing the first component of
the triple modulo 2𝑘 until it reaches zero again. If we iterate 𝑓 for exactly 2𝑘 steps, the resulting
triple (𝑎, 𝑏, 𝑐) will necessarily be part of this waiting stage of the dynamics of 𝑓 , and the returned
value 𝑏 will necessarily be the other leaf connected to 𝑣, as desired. ■

THEOREM 4.3. IB = FPPSPACE.

PROOF . This follows immediately from the fact that IB ⊆ FPPSPACE (observation 3.7), from
Theorem 4.2, and from the known FPPSPACE-completeness of the connected leaf problem [2, 44,
34]. ■

Because of this equivalence, from now on we will generally refer to this class by its
conventional name, FPPSPACE, instead of the nonce name IB.

Although producing the same output as Thomason’s lollipop algorithm belongs to FPPSPACE,
by Theorem 4.2, we do not know whether it is FPPSPACE-complete, just as we do not know whether
finding an arbitrary second Hamiltonian cycle in a cubic graph is PPA-complete.

18 / 41 D. Eppstein

5. Reversible cellular automata

A cellular automaton has a finite set of states, and a periodic system of cells. For us, these cells
will form one-dimensional or two-dimensional arrays; although it is common to treat these
arrays as infinite, we will form finite computational problems by using arrays of varying size
with periodic boundary conditions. A configuration of the automaton assigns a state to each cell.
The automaton is updated by simultaneously computing for each cell a new state, determined in
a translation-invariant way as a function of the states of a constant number of neighboring cells.
The resulting cellular automaton is reversible if the transformation from one configuration to
the next is a bijection. When a cellular automaton is reversible, its inverse transformation can
also be described by a reversible cellular automaton [20, 46]. A periodic array of reversible logic
gates would define a reversible automaton whose reverse dynamics uses the same neighborhood
structure, but other reversible cellular automata can have reverse neighborhoods that are
much larger than the forward ones [26]. Every one-dimensional or two-dimensional reversible
cellular automaton can be defined by a rule with locally reversible steps, as would be obtained
by an array of reversible gates, but for higher dimensions this remains unknown [27]. Just as
irreversible circuits can be simulated by reversible ones, irreversible cellular automata can be
simulated by reversible ones at the cost of an increase in dimension [51] or of the simulation
becoming asynchronous [40].

For a fixed reversible cellular automaton rule, a simulation should take as input an initial
configuration 𝑥 and a number of steps 𝑛, and produce as output the configuration of the au-
tomaton after 𝑛 steps. We do not require this simulation to be performed by directly calculating
the transformations from each configuration to the next; for instance, for the (non-reversible)
Conway’s Game of Life automaton, hashing techniques have been successful at running simu-
lations using computation time substantially sublinear in the number of simulated steps [18].
What is the complexity of simulating reversible cellular automata?

5.1 Billiard-ball model

We will consider in more depth the billiard-ball model or BBM block-cellular automaton, devised
by Margolus to simulate reversible logic, universal Turing machines, and other reversible
cellular automata [36]. This cellular automaton uses the Margolus neighborhood, in which the
cells of a square grid are grouped into square blocks of four cells, in two alternating ways, with
the corners of the square blocks in even generations of the automaton forming the centers of
the square blocks in odd generations (Figure 2, left). Cells have two states, dead or alive. The
transition function of the automaton acts independently within each square block. In a block
with a single live cell, the updated state has again a single live cell in the diagonally opposite
position. In a block with two diagonally placed live cells, all four cells change from live to dead
or vice versa. All other blocks remain unchanged (Figure 2, right).

19 / 41 The Complexity of Iterated Reversible Computation

Figure 2. The billiard-ball model. Left: the Margolus neighborhood breaks up the square grid of cells
into 2 × 2 square blocks in two alternating ways, as shown by the blue and red blocks. Right: Blocks with
one live cell, or with two diagonal live cells, change in the ways shown; all other blocks remain
unchanged.

Patterns within this automaton can simulate any Fredkin-gate circuit. Wires of the circuit
are simulated by diagonal paths along which travel signals consisting of pairs of live cells. Each
Fredkin gate is simulated by fixed blocks of live cells that interact with these signals, causing
them to change their paths in ways that match the behavior of the gate. Other fixed blocks
of live cells can be used to bend or delay wires so that signals meet up in synchrony or cross
without interacting. These issues of reversible circuit layout and synchronization in the BBM
cellular automaton have been discussed in detail in multiple previous works, to which we refer
the reader for details [36, 19, 11, 39]. As well as reversible logic circuits, this automaton can
simulate arbitrary Turing machines and other reversible cellular automata [11]. However, this
work leaves open the question: what is the power of this system when the grid is not infinite,
but of bounded size, with periodic boundary conditions?

THEOREM 5.1. Simulating a given number of iterations of a BBM pattern of bounded size, given
as an array of initial cell states with periodic boundary conditions, is complete for FPPSPACE.

PROOF . The problem can clearly be expressed as an iterated bijection, as each step of the
simulation is a polynomial-time invertible function. Therefore it is in FPPSPACE.

By observation 3.8, simulating the behavior of a reversible logic circuit, with its outputs fed
back into its inputs, for a given number of steps, is complete for FPPSPACE. We outline a many-one
reduction from this problem to the simulation of BBM patterns, using previously-described
ways of simulating circuit components in BBM. The reduction lays out the given circuit as a
BBM pattern, including wire-bending and delay circuits that feed the output signals from the
circuit back into the inputs, delayed so that the outputs all return to the inputs in synchrony.
We use known methods for laying out circuits or other bounded-degree planar graphs onto grid

20 / 41 D. Eppstein

graphs of polynomial area [49], with the layout oriented diagonally with respect to the BBM
cell grid, in accordance with the diagonal movement of the circuit signals. The circuit requires
only a bounding box of size polynomial in the circuit size, requires only a polynomial amount
of delay for re-synchronization (and a corresponding amount of area for the delay circuits),
and performs all its simulations of the given reversible logic gates within a polynomial number
of steps.

Hundreds of published NP-completeness proofs already follow this same approach of
using orthogonal layouts of circuits (often, of circuits for 3-satisfiability problems) in their
reductions; for a typical example, see [38]. The use of delay gadgets to correctly synchronize or
desynchronize signals within the billiard-ball model is also standard [11]. Therefore, we omit
the details of these constructions.

The output of the given circuit after a given number of iterations can be obtained by
simulating the translated BBM pattern, with input signals set to match the inputs to the given
circuit, for a number of steps equal to the product of the number of iterations for the circuit
and the time for an input signal to return to the same point in the BBM pattern. ■

5.2 Other known universal reversible cellular automata

The completeness of simulating other universal reversible cellular automaton rules would need
to be considered case-by-case, depending on how the universality of those other rules has been
proved. For instance, Toffoli [51] transforms arbitrary non-reversible cellular automata of dimen-
sion 𝑑 into reversible automata of dimension 𝑑+1 by making the higher-dimensional automaton
construct the entire time-space diagram of the lower-dimensional automaton. However, this
also has the effect of increasing the space (number of cells) required for the higher-dimensional
automaton to accurately perform this simulation, to be proportional to the product of space
and number of simulated steps of the lower-dimensional automaton. Because the space bound
for Toffoli’s method is not polynomial in the space of the simulated automaton, this method
cannot be formulated as a polynomial-time many-one or Turing reduction from one problem
to another, and cannot be used for proving FPPSPACE-completeness. Similarly, Morita [41] has
shown how to simulate cyclic tag systems by a finite pattern in a universal one-dimensional
reversible cellular automaton, but the correct behavior of this automaton requires a number
of cells proportional to the number of steps of the automaton, so that garbage states from the
automaton do not wrap around into the part of the automaton used for describing the rules
of the tag system. Again, this need for a number of cells that depends in some way on the
time complexity of the simulated computation prevents this method from being used to prove
FPPSPACE-completeness.

21 / 41 The Complexity of Iterated Reversible Computation

A A

A

A A A AB BB B BC C C

A A A A AB BB B BC C C

C
0 0 0 0 0 0

0

1 11 11 1 1 1 1

0 0 0 0 011 11 1 1 1 1
...

...

... ...

...

...

Figure 3. A two-track automaton in which the update rule for the top track copies the left neighbor and
the update rule for the bottom track copies the right neighbor.

5.3 Dimension reduction

The FPPSPACE-completeness of the two-dimensional BBM automaton, and our failure to translate
the existing universality proofs of one-dimensional reversible cellular automata into FPPSPACE-
completeness, raise a natural question: can simulating a one-dimensional reversible cellular
automaton be FPPSPACE-complete? We answer this question affirmatively, by providing a one-
dimensional simulation of any two-dimensional Margolus-neighborhood reversible cellular
automaton, using the following ingredients:

Tracks. It will be convenient to think of each cell of a one-dimensional cellular automaton as
being composed of multiple tracks, each containing a finite state, with possibly different sets of
states for different tracks. It is possible for each track to have an update rule that is independent
of the states in other tracks, with the value of a single track in a cell computed as a combination
of the values in the same track of neighboring cells. Figure 3 shows an example with two tracks,
in which the update rule for the top track copies the left neighbor while the update rule for
the bottom track copies the right neighbor, causing the states of the tracks to move relative to
each other while remaining otherwise unchanged. (This example is from a family of reversible
automata described by Boykett [5] as having an update rule that acts on the values of whole
cells by combining the left and right neighbors using an algebraic structure called a rectangular
band.) Alternatively, the state of one track can control the update rule of another track. As long
as these controlled update rules remain individually reversible, the whole automaton will again
be reversible, with a reverse dynamics that computes the predecessor value of the controlling
track and then uses it to control the update rule of the other track.

The number of states of the whole cell is then the product of the numbers of states within
each track. These numbers grow quickly, so the automata resulting from multi-track construc-
tions will in general have many states. However, if we have a fixed number of tracks with a
fixed number of states in each track, the total number of states remains finite, as is required for
a cellular automaton.

22 / 41 D. Eppstein

Partitioning automata. A general construction for one-dimensional reversible automata of
Imai and Morita [23] can be thought of as having three tracks per cell: a left track, center track,
and right track. The left and right tracks must have equal sets of available states; the states of
the center track can differ. The update rule for the automaton performs two operations (as a
single automaton step):

Swap the value in the right track of each cell with the value in the left track of its right
neighbor.
Apply a bijective transformation to the state of each cell (the combination of the states of
all three of its tracks), independently of the states of its neighbors.

All one-dimensional cellular automata defined in this way are automatically reversible. The
reverse dynamics can be described similarly, as applying the inverse bijective transformation
and then swapping values in the same way. Although this is also a cellular automaton, it is not
a partitioning automaton of the same type, because the bijection and the swap are performed
in a different order.

Firing squad synchronization. We use a reversible solution to the firing squad synchroniza-
tion problem found by Imai and Morita [23].

LEMMA 5.2 (Imai and Morita [23]). There is a one-dimensional reversible cellular automaton
with the following behavior. First, its states can be partitioned into three sets: quiescent, active,
and firing. Second, a cell that is quiescent remains quiescent throughout the evolution of the
automaton; therefore, the behavior of any pattern can be described purely by considering its
contiguous subsequences of non-quiescent cells. Third, for every 𝑘 there exists a pattern 𝑃𝑘,
consisting of 𝑘 cells in active states, bounded on both sides by quiescent cells, with the following
property: for all 0 ≤ 𝑖 < 3𝑘, the pattern resulting from 𝑃𝑘 after 𝑖 steps consists only of active
states, but the pattern resulting from 𝑃𝑘 after exactly 3𝑘 steps consists only of firing states.

Some additional detail on how this firing squad computation works will be important. It is
a partitioning automaton, where the center track holds the state of each cell: quiescent, active,
and firing, with additional information about several more specific types of active cells. On
quiescent cells, the bijective transformation of the partitioning automaton is the identity. The
left and right tracks hold “signals” that move leftwards or rightwards through the automaton,
interacting with other cells as they do. The leftmost cell of the initial pattern 𝑃𝑘 is an active cell
in a “general” state, with the remaining active states being “soldiers”. The general sends out
two signals to its left, and transitions to a “waiting” state, waiting for a signal to return from the
left. The faster of the two signals sent out in the same direction by the general bounces off the
boundary of the pattern, and meets the slower signal in the middle of the pattern. When the
signals meet, their interaction produces two new generals in central cells, one sending signals
to the left and the other to the right, which again transition to a waiting state, waiting for a

23 / 41 The Complexity of Iterated Reversible Computation

signal to return from the direction it was sent. In this way, the pattern is split recursively into
two subpatterns which behave in the same way, recursively splitting into smaller subpatterns,
until at the base level of the recursion all of the constant-length patterns fire simultaneously.

An important consideration, for our purposes, is the behavior of the “waiting” states. In a
cell waiting for a signal from the left, the bijective transformation acts as the identity on the
right track, and this track otherwise does not affect the behavior of the cell. The cells waiting
for signals from the right are symmetric. Effectively, these states partition the pattern into
parts that do not interact with each other, without the need for quiescent states. If the initial
pattern of Imai and Morita is run for 3𝑘/2 + 𝑂(1) steps, it reaches a configuration in which the
leftmost active cell is waiting on a signal from its right, and a central active cell is waiting on
a signal from its left. The pattern of length 𝑘/2 between these two waiting cells will then fire
in 3𝑘/2 − 𝑂(1) more steps, regardless of any modification to the states in any other part of the
pattern, because these two waiting cells block all interaction from other parts of the pattern. We
can eliminate the division by two in these formulas by doubling the size of the initial pattern,
and formalize this as the following observation:

OBSERVAT ION 5.3. For the Imai–Morita firing squad automaton, for all 𝑘, there exist patterns
of 𝑘 consecutive active cells that will remain active for 3𝑘 − 𝑂(1) steps and then simultaneously
fire, regardless of how the cells outside this pattern are initialized. Additionally, these patterns
can be constructed in time polynomial in 𝑘.

Strobed synchronization. We will need to use update rules that, every 𝑘th step for a variable
numerical parameter 𝑘, perform a different step than the usual computation in the other
steps. This can be thought of by analogy to a strobe light, which provides brief flashes of one
condition (bright light) interspersed with longer periods of a different condition (darkness).
This is not something that can be directly defined into the behavior of a cellular automaton,
because directly storing the number of the current step modulo 𝑘 would use a number of bits
of information that is logarithmic in 𝑘, rather than being encodable into a finite state. Instead,
we will simulate this behavior by using tracks that perform the firing squad synchronization
computation of Imai and Morita, repeating spatially. We say that a state of one-dimensional
cellular automaton is spatially repeating with pattern 𝑃 and period 𝑘 if 𝑃 is a sequence of
automaton states of length 𝑘 and the state is formed by concatenating an infinite sequence of
copies of 𝑃. (Such a state will also be repeating for any period that is a multiple of 𝑘.) The states
of such an automaton continue repeating with the same period for all subsequent time steps.
They have the same behavior as an automaton run with the same rules on a finite cycle of cells
of length 𝑘 containing a single copy of 𝑃. (Connecting the start and end of 𝑃 in this way to form
a cycle of cells is commonly referred to as using periodic boundary conditions.)

24 / 41 D. Eppstein

LEMMA 5.4. There is a one-dimensional reversible cellular automaton with the following be-
havior. Its states can be partitioned into two sets: active, and firing. For every 𝑘 and 𝑡 with
1 < 𝑡 ≤ 3𝑘 − 𝑂(1) there exists a pattern 𝑃𝑘,𝑡, consisting of 𝑘 cells in active states, with the
following property: for all 𝑖, the spatially repeating state with pattern 𝑃𝑘,𝑡 and period 𝑘 consists
only of firing states at time steps 𝑖 where 𝑖 is a multiple of 𝑡, and consists only of active states at
other time steps.

PROOF . We use an automaton with six tracks (top left, top center, top right, bottom left, bottom
center, and bottom right). We use a variation of partitioning automaton dynamics in which, in
each step, we perform the following three steps:

1. Each cell exchanges the value in its top right track with the value in the top left track of
its right neighbor, as in the forward partitioning automaton dynamics.

2. We apply a bijective transformation to the combination of the six values in the six tracks,
independently for each cell.

3. Each cell exchanges the value in its bottom right track with the value in the bottom left
track of its right neighbor, as in the reverse partitioning automaton dynamics.

As in a standard partitioning automaton, the resulting automaton will automatically be re-
versible. We define the available states for these tracks to be the same as for the left, right, and
center tracks of the firing-squad automaton of Lemma 5.2, except that we do not use quiescent
states. Let 𝐹 be the bijective transformation used to define this firing-squad rule. We use the
following rules to define the transformations of our six-track automaton.

We call a state that has a firing top center cell and an active bottom center cell “top-lit”, and
we call a state that has a firing bottom center cell and an active top center cell “bottom-lit”.
We define the bijective transformation on a top-lit cell to swap the values in its top and
bottom tracks, producing a bottom-lit cell.
For a cell that is not top-lit, and for which the result of the transformation would not be
bottom-lit, we define the bijective transformation to apply 𝐹 to the three top tracks and
𝐹−1 to the three bottom tracks.
The definitions above leave undefined the successors of cells for which the (𝐹, 𝐹−1) trans-
formation would be bottom-lit. They also leave undefined an equal number of predecessors
of cells, the ones that would be reached by an (𝐹, 𝐹−1) transformation on a top-lit cell. Pair
these missing successors and predecessors arbitrarily to form a bijective transformation.
(These transitions will not be used by the patterns we construct, so the behavior of the
automaton for cells of these types is unimportant in achieving the desired behavior, but it
still needs to be a bijection in order to define a reversible automaton.)

Given these rules, initialize the top tracks of the automaton with the pattern of observation 5.3,
for parameter 𝑘, in the all-cells-firing configuration obtained after 3𝑘 − 𝑂(1) steps of the firing-

25 / 41 The Complexity of Iterated Reversible Computation

squad automaton. Initialize the bottom tracks of the automaton with the configuration 𝑡 − 1
steps earlier.

For this pattern, all cells begin top-lit, and the automaton will immediately swap the top and
bottom tracks of all cells. Then, for the next 𝑡−1 steps, it will follow the forward evolution of the
Imai–Morita firing squad automaton on the top tracks, and the reverse evolution on the bottom
tracks, reaching the same configuration that it started with and repeating the same behavior.
These steps cannot reach one of the arbitrary transitions in the final bullet of our transition
rule definition, because that could only happen when the result of an (𝐹, 𝐹−1) transformation
would be bottom-lit, and by construction the 𝑡 − 1 predecessors of the all-firing bottom-track
state are not themselves firing. ■

LEMMA 5.5. Let 𝑅1 and 𝑅2 be two different update rules for reversible cellular automata, both
operating on the same finite set 𝑆 of states. Then there is a one-dimensional reversible cellular
automaton with 𝑂(|𝑆 |) states that can simulate the following behavior, for every positive integer 𝑡:
given an array of cells with states in 𝑆, update the cells in the array using rule 𝑅1 on every 𝑡th step,
and using rule 𝑅2 on all other steps. Further, the automaton that simulates this behavior can be
made to be spatially repeating (necessarily causing the simulated behavior to also be spatially
repeating) for all periods larger than 𝑡/3 + 𝑂(1) and all patterns with the given period.

PROOF . We simulate this behavior using a multi-track cellular automaton, where one track 𝑇1

contains the states from 𝑆 in the simulated array of cells, and the remaining tracks perform
the operations of Lemma 5.4 regardless of the values in track 𝑇1. We will apply rule 𝑅1 to a cell
of track 𝑇1 whenever the state of the remaining tracks is top-firing, and rule 𝑅2 otherwise. In
the reverse dynamics, rule 𝑅−1

1 should be applied whenever the state of the remaining tracks is
bottom-firing, and otherwise 𝑅−1

2 should be applied.
We initialize the tracks for the automaton of Lemma 5.4 according to that lemma, with the

same parameter 𝑡, spatially repeating with a suitable period 𝑘. If 𝑆 is spatially repeating then
𝑘 should be chosen to be the same period; otherwise, 𝑘 can be chosen arbitrarily to meet the
conditions of Lemma 5.4. ■

Helical boundary conditions. The hard-to-simulate patterns in the BBM automaton remain
confined to within their bounding box, rather than expanding beyond it. This confinement
means that, for a grid of cells with a sufficient constant-sized margin beyond the bounding box,
the boundary conditions of the grid are irrelevant: any reasonable choice of boundary conditions
will lead to the same evolution. Therefore, we are free to choose boundary conditions that
are easy to transform into a one-dimensional automaton, rather than having some particular
choice forced on us.

In a single update of the Margolus neighborhood used by the BBM automaton, the cells
are partitioned into four-cell squares, and only interact with each other within these squares.

26 / 41 D. Eppstein

Figure 4. Helical boundary conditions for the two-dimensional Margolus neighborhood (shown here
with circumference 32 in an exploded view with spacing between rows of squares) transform its
behavior for a single time step into that of a two-track one-dimensional cellular automaton.

Consider an arrangement of these four-cell squares into an infinite horizontal strip. We define
helical boundary conditions for this strip, with circumference 𝑐, by adding vertical connections
from each of these four-cell squares upwards to the square offset from it by 𝑐 units leftward
along the strip, and downward to the square offset from it by 𝑐 units rightward, as depicted
in 𝐹𝑖𝑔𝑢𝑟𝑒 4. In order to get the squares to line up, we require that 𝑐 be even. This creates a
pattern of cell connectivity that locally (within regions of width less than 𝑐) is indistinguishable
from the infinite square grid, although globally it has the topology of a cylinder, not the same as
a grid. If we map a system of cells, connected in this way, onto a two-track one-dimensional
automaton, in which each cell of the one-dimensional automaton holds two cells of the Margolus
neighborhood, it will be easy for the one-dimensional automaton to simulate the updates in
the Margolus neighborhood that use four-cell squares in odd-numbered steps, aligned with the
given strip. However, the updates in even-numbered steps combine information from cells 𝑐
units apart from each other in the strip, and it is not obvious how to perform those updates using
a one-dimensional automaton whose neighborhood size does not depend on 𝑐. Our eventual
solution to this problem will use strobing synchronization to permute the cell states into a
position where interacting cells are again adjacent within the one-dimensional strip.

We define toroidal boundary conditions of circumference 𝑐 and period 𝑝 (requiring 𝑝 to
be even and greater than 𝑐) by using both periodic boundary conditions of period 𝑝 for the
one-dimensional strip of four-cell squares, and helical boundary conditions to define vertical
neighbors of each square. The resulting system of cells is again locally (within regions of width
less than 𝑐 and height less than 𝑝/𝑐) indistinguishable from the infinite square grid, although
globally it has the topology of a torus.

27 / 41 The Complexity of Iterated Reversible Computation

With the pieces we need all defined, we are now ready to describe our one-dimensional
simulation of two-dimensional Margolus-neighborhood reversible automata.

THEOREM 5.6. Every reversible cellular automaton with the two-dimensional Margolus neigh-
borhood and with 𝑠 states per cell, running on a system of cells with helical boundary conditions
with any even circumference 𝑐, can be simulated by a one-dimensional cellular automaton with
𝑂(𝑠2) states per cell, with a system of states and an update rule that does not depend on 𝑐, and with
𝑐/2 + 1 steps of the one-dimensional automaton for every simulated step of the two-dimensional
automaton. The simulated automaton can be made to have toroidal boundary conditions for any
period larger than the circumference, giving the one-dimensional automaton periodic boundary
conditions with the same period.

PROOF . Let 𝑡 = 𝑐/2 + 1. We simulate the two-dimensional automaton using a multi-track
one-dimensional automaton two of whose tracks represent the upper and lower rows of cells
in the helical boundary conditions, and we use strobing synchronization with strobe period
𝑡, using more tracks. We use one more track to store a single bit of information for each one-
dimensional cell, indicating whether its first two tracks should be combined with the cell to the
left or with the cell to the right to form the four-cell squares of the Margolus neighborhood; we
set the initial state of these bits in strict alternation between consecutive cells.

As in Lemma 5.5, all states of the strobing track will be top-lit in one step, followed by
𝑡 − 1 steps in which they are not top-lit, in a temporally-repeating pattern. When a cell is top-lit,
we perform the update in the Margolus neighborhood given by the reversible dynamics of
the given two-dimensional automaton, with the following small modification: we swap the
resulting cell values between the top and bottom tracks. As a result of this step, the cell values
of the two-dimensional automaton are all computed correctly, but are placed in cells that are
not adjacent to their neighbors in the next update. The cell values that are now in the top track
of the one-dimensional simulation need to be paired with values that are now in the bottom
track but are 𝑐 units farther to the right. To fix this incorrect placement, in each of the 𝑡 − 1
subsequent steps of the one-dimensional automaton, we slide the top track rightward one step
and the bottom track leftward one step, according to the rectangular band dynamics depicted in
Figure 3. After these sliding movements of all the cell states, they will once again be placed in a
position where the one-dimensional automaton can perform a Margolus-neighborhood update.

Between one top-lit step and the next, the values that were in two vertically-adjacent
squares (according to the adjacency pattern of the helical boundary conditions, although far
from each other in the one-dimensional simulation) are shifted halfway around the helix in
opposite directions, landing on different tracks of a single one-dimensional cell. In this same
span of steps, we need to update the bit of information on the final track indicating whether
each cell should look left or right to form a Margolus neighborhood in the next step. This update
should be done in a way that matches the correct alignment of these squares, halfway around

28 / 41 D. Eppstein

the helix, in alternating steps of the two-dimensional automaton. The required update to the
final track depends on the parity of the number of Margolus-neighborhood squares in a single
cycle around the helix, 𝑐/2 = 𝑡−1. When there are evenly many squares in this cycle (true when
𝑡 is odd), the final-track states should all be flipped from one light step to the next; otherwise,
when 𝑡 is even, they should all be left unchanged. This can most easily be accomplished by
flipping these states at every step, regardless of the state of the strobing track. ■

It seems likely that the divisibility condition on the circumference of the helical boundary
conditions in Theorem 5.6 can be relaxed using a more general strobing synchronization
mechanism, but we do not need this added generality for the following result:

THEOREM 5.7. There is a one-dimensional reversible cellular automaton for which simulating
any given number of iterations, with periodic boundary conditions, is complete for FPPSPACE.

PROOF . Apply Theorem 5.6 to produce a one-dimensional simulation of the BBM two-dimen-
sional automaton, for a hard instance of BBM generated by Theorem 5.1, and for toroidal
boundary conditions with circumference and period both large enough to make no difference
to the dynamics of BBM within the bounding box of live cells of the instance. ■

The number of states in the automaton resulting from this construction is 23 · 902 = 64800,
a finite but large number. (The two strobing tracks have 90 states rather than the 99 states
of Imai and Morita because they do not use quiescent states.) It would be of interest to find
a FPPSPACE-complete one-dimensional reversible cellular automaton with significantly fewer
states.

6. Piecewise linear bijections

The study of iterated behavior of piecewise linear maps and of bijective maps are both central
to the theory of dynamical systems. Well-known mappings in this area that combine both
characteristics include Arnold’s cat map

(𝑥, 𝑦) ↦→ (2𝑥 + 𝑦, 𝑥 + 𝑦) mod 1

and the baker’s map

(𝑥, 𝑦) ↦→
(
2𝑥 mod 1,

𝑦 + ⌊2𝑥⌋
2

)
,

both on the unit square [43, 13].
A prominent family of one-dimensional systems are the interval exchange transforma-

tions [29]. These are piecewise linear bijections that partition a half-open interval into subin-
tervals, permute the subintervals, and translate each subinterval into its permuted position
(Figure 5). The computational complexity of iterated interval exchange transformations, and

29 / 41 The Complexity of Iterated Reversible Computation

0 1θ

Figure 5. Left: The interval exchange transformation 𝑥 ↦→ (𝑥 + 𝜃) mod 1. Right: More complicated
interval exchange transformations can be used to model reflections in mirrored polygons.

Figure 6. A perfect riffle shuffle of 𝑛 cards can be represented as a piecewise linear transformation
with two pieces acting on the first ⌈𝑛/2⌉ cards (blue arrows) and the remaining ⌊𝑛/2⌋ cards (magenta
arrows). Card images from public domain file “English pattern playing cards deck.svg” by Dmitry Fomin
on Wikimedia commons.

their application in modeling light reflections within mirrored polygons, was an initial moti-
vation for this paper. Even the most simple nontrivial interval exchange, the transformation
𝑥 ↦→ (𝑥 + 𝜃) mod 1, has interesting iterated behavior, including Steinhaus’s three-gap theorem
according to which there are at most three distinct intervals between consecutive values in the
sorted sequence of the first 𝑛 iterates [48].

For the purposes of computational complexity it is more convenient to consider mappings
that act on discrete sets rather than on continuous spaces like the entire unit square. In this
light, it is common, for instance to study the effect of Arnold’s cat map on grid points, such as
the positions of a discrete set of pixels [13]; indeed, its name comes from an example given by
Arnold of a picture of a cat being transformed in this way. It is important to note, however, that
restricting the domain of a function in this way can change whether it is bijective. Arnold’s cat
map is bijective on square grids, for instance, but the baker’s map is not: each step halves the
vertical separation of the grid.

30 / 41 D. Eppstein

As an example in the other direction, of a piecewise linear transformation that is bijective
on integers but not on continuous intervals, consider the familiar perfect riffle shuffle of a deck
of 𝑛 cards [10], which (if the cards are represented by integers in the range from 0 to 𝑛 − 1) can
be expressed as the piecewise linear transformation

𝑖 ↦→


2𝑖 if 𝑖 < 𝑛/2

2𝑖 − 𝑛 if 𝑖 > 𝑛/2 and 𝑛 is odd

2𝑖 − 𝑛 + 1 if 𝑖 > 𝑛/2 and 𝑛 is even.

See Figure 6 for an example with 𝑛 = 13. We will use these shuffle transformations as compo-
nents in a hardness proof for a problem of computing iterated piecewise linear bijections.

6.1 The piecewise linear bijection problem

DEF IN IT ION 6.1. We formulate the iterated piecewise linear bijection problem as follows: the
input is a triple (𝑥, 𝑛, 𝑇), where 𝑥 and 𝑛 are integers, and 𝑇 is a piecewise linear bijection on a
range of integers that includes 𝑥, described by specifying integer endpoints of each piece of the
bijection, together with two integer coefficients for the linear transformation of that piece. The
output is 𝑇 (𝑛) (𝑥).

OBSERVAT ION 6.2. Given an input that is in the syntactical form of an input to the iterated
piecewise linear bijection problem, we can test in polynomial time whether it correctly describes a
piecewise linear bijection. If it does, we can implement a single iteration of the bijection, or of the
inverse of the bijection, in polynomial time.

PROOF . To test whether an input of this form describes a piecewise linear bijection, sort the
endpoints of the specified pieces to check that they form disjoint intervals whose union is a
single interval, check that each of the specified transformations maps each piece into this union,
and check that no two specified transformations have intersecting images.

The images of any two linear pieces of the given input lie in two arithmetic progressions,
and testing whether they intersect can be done using greatest common divisors to form the
intersection of these progressions [42]. In more detail, suppose that the image of one piece lies
within an interval of the progression of values that are 𝑎 mod 𝑛, and that the image of a second
piece lies within an interval of a progression of values that are 𝑏 mod 𝑛. Let 𝑔 = gcd(𝑚, 𝑛);
then the intersection of the two progressions is either empty (if 𝑎 ≠ 𝑏 mod 𝑔) or has period
𝑚𝑛/𝑔 (otherwise). When it is non-empty, the extended Euclidean algorithm can be used to find
numbers 𝑚′ and 𝑛′ with 𝑚𝑚′ + 𝑛𝑛′ = 𝑔 , and the intersection of the progressions consists of the
values congruent to (𝑎𝑛𝑛′ + 𝑏𝑚𝑚′)/𝑔 mod 𝑚𝑛/𝑔 . To test whether the two images intersect, we
need only compute the coefficients of this progression and test whether it has any values in the
interval between the upper and lower ends of both images.

31 / 41 The Complexity of Iterated Reversible Computation

To implement a single iteration of the bijection, on input 𝑥, find the piece containing 𝑥 and
apply its transformation. To implement the inverse of the bijection, find the piece whose image
contains 𝑥 and apply the inverse of its linear transformation. ■

Although the inverse of a piecewise linear bijection is linear on each image of a piece,
this may not describe the inverse as a piecewise linear bijection, because the images might
not be intervals. Describing the inverse of a piecewise linear bijection as another piecewise
linear bijection could produce significantly more pieces. To allow for more general descriptions
of transformations, it will be convenient for us to consider compositions of piecewise linear
bijections, repeated in a fixed sequence. As the following lemma shows, this can be done by
combining the sequence into a single piecewise linear bijection on a larger range, without a
significant increase in complexity.

LEMMA 6.3. Let 𝑇 be the composition of a sequence of 𝑘 piecewise linear bijections 𝑇1, 𝑇2, . . . 𝑇𝑘

on the integers in the range [0, 𝑛). Then there exists a single piecewise linear bijection 𝑇 on the
range [0, 𝑘𝑛), such that for all 𝑥 in [0, 𝑛), 𝑇 (𝑥) = 𝑇 (𝑘) (𝑥). The number of pieces needed to define 𝑇
as a piecewise linear transformation is the sum of the numbers of pieces in each 𝑇𝑖 .

PROOF . For each linear transformation in each of the piecewise linear bijections 𝑇𝑖 , mapping
a subinterval [𝑎, 𝑏) to another subinterval [𝑐, 𝑑), make a corresponding transformation in 𝑇

that maps [𝑎 + (𝑖 − 1)𝑛, 𝑏 + (𝑖 − 1)𝑛) to [𝑐 + 𝑖𝑛, 𝑑 + 𝑖𝑛). For the final iteration 𝑇𝑘, the image
of this transformation should be taken modulo 𝑘𝑛, so that it wraps around to [0, 𝑛). The
transformation 𝑇 defined by combining these pieces of transformations has the property that,
when it is iterated 𝑘 times on a starting value 𝑥 in the range [0, 𝑛), the 𝑖th iteration maps 𝑥

into the range [𝑖𝑛, (𝑖 + 1)𝑛), and that the behavior of this iteration modulo 𝑛 is the same as 𝑇𝑖 .
The last of the 𝑘 iterations maps 𝑥 back into [0, 𝑛) in the same way. Therefore, for 𝑥 ∈ [0, 𝑛),
𝑇 (𝑥) = 𝑇 (𝑘) (𝑥). ■

6.2 Permuting the bits of a binary number

Binary rotation or circular shift operates on numbers in the range [0, 2𝑘) as follows. Represent
any number as a binary string, with the most significant bit on the left and least significant bit
on the right. A left circular shift by 𝑖 units, for 1 ≤ 𝑖 < 𝑘, moves each bit value into the position 𝑖

steps to the left, with the most significant 𝑖 bits wrapping around into the least significant 𝑖
positions. A right circular shift by 𝑖 units performs the opposite transformation, moving each
bit value 𝑖 steps to the right, with the least significant 𝑖 bits wrapping around into the most
significant 𝑘 positions. A right circular shift by 𝑖 units is the same as a left circular shift by 𝑘 − 𝑖

units.

OBSERVAT ION 6.4. A left circular shift by one unit on the range [0, 2𝑘) can be expressed as a
piecewise linear bijection with two pieces.

32 / 41 D. Eppstein

PROOF . It is the transformation

𝑥 ↦→


2𝑥 if 𝑥 < 2𝑘−1

2𝑥 − 2𝑘 + 1 otherwise.

■

This is just the riffle shuffle example described earlier, in the case where the number of
values being shuffled is a power of two. By applying Lemma 6.3 we can compose multiple
one-unit shifts to obtain circular shifts of larger numbers of units. We can also compose these
shifts in more complex ways to obtain other bit permutations:

LEMMA 6.5. Let 𝐶 be a subset of [0, 𝑘), interpreted as bit positions in the 𝑘-bit binary values,
with 0 as the least significant (rightmost) position, and 𝑘 − 1 as the most significant (leftmost)
position. Then there exists a function 𝑓 on 𝑘-bit binary values that permutes the bits so that the
positions in 𝐶 are moved to the |𝐶 | most significant bits, such that both 𝑓 and 𝑓 −1 can be expressed
as compositions of 𝑂(|𝐶 |𝑘) piecewise linear bijections with 𝑂(1) pieces each.

PROOF . We express 𝑓 as a composition of piecewise linear bijections using induction on |𝐶 |.
As base cases, if |𝐶 | = 0, we may let 𝑓 = 𝑓 −1 be the identity function, expressed as a piecewise
linear bijection with one piece. If |𝐶 | = 1, we let 𝑓 be the composition of a sufficient number of
two-piece left-rotations (observation 6.4) to place the single element of 𝐶 into the most significant
position; in this case, 𝑓 −1 is just the composition of a complementary number of left-rotations,
modulo 𝑘. Otherwise, We construct the function 𝑓 as a composition of piecewise linear bijections
as follows:

Remove a single element from 𝐶, producing the smaller set 𝐶′. By induction, perform
a composition 𝑓 ′ of piecewise linear bijections that places 𝐶′ into the most significant
positions of the resulting permuted bit sequence. Let 𝑖 be the position in which these
bijections leave the remaining element that was removed from 𝐶 to produce 𝐶′.
Perform 𝑘−1− 𝑖 left circular shifts using two-piece piecewise linear bijections, as described
in observation 6.4. As a result, in the value resulting from these shifts, the bit that started
out in position 𝑖 will be in the most significant position. The subinterval [0, 2𝑘−1) will
contain the inputs for which this most significant bit is zero, and the subinterval [2𝑘−1, 2𝑘)
will contain the inputs for which it is one. The remaining bits of 𝐶 will form a contiguous
block elsewhere in the bit sequence; let 𝑗 be the number of positions separating the most
significant bit from this contiguous block.
Perform 𝑗 left circular shifts of the low-order 𝑘 − 1 bits. Each of these circular shifts can be
performed as a four-piece piecewise linear bijection, obtained by applying observation 6.4
separately to the two subintervals [0, 2𝑘−1) and [2𝑘−1, 2𝑘).

To construct the inverse 𝑓 −1 of the function 𝑓 that we constructed above, we simply reverse
these steps:

33 / 41 The Complexity of Iterated Reversible Computation

Perform 𝑘 − 1 − 𝑗 left circular shifts of the low-order 𝑘 − 1 bits of the given value.
Perform another 𝑖 + 1 left circular shifts to invert the effect of the 𝑘 − 1 − 𝑖 left circular
shifts included in 𝑓 .
Construct and perform the inverse of 𝑓 ′, by induction.

The |𝐶 | levels of induction each add 𝑂(𝑘) circular shifts with two or four pieces each, from
which the bounds on numbers of composed functions and the numbers of pieces follow. ■

6.3 Completeness

We are now ready to prove that the piecewise linear bijection problem is FPPSPACE-complete.
The main idea of the proof is to use Lemma 6.5 to simulate individual gates of a reversible logic
circuit, and Lemma 6.3 to combine the resulting sequences of piecewise linear bijections into a
single piecewise linear bijection for which it is hard to find iterated values.

THEOREM 6.6. The piecewise linear bijection problem is FPPSPACE-complete.

PROOF . Because it is a problem of finding iterated values of a bijection that can be computed
in polynomial time (observation 6.2), it is clearly in FPPSPACE. We prove that it is complete by
finding a many-one reduction from the problem of finding iterated values of reversible logic
circuits, already proven FPPSPACE-complete (observation 3.8). To do so, we suppose that we
are given a reversible logic circuit operating on 𝑘-bit inputs and outputs, and we represent
the values on sets of 𝑘 wires of the circuit (progressing from the 𝑘 input wires, through the
various gates of the circuit, to the 𝑘 output wires, as numbers in the range [0, 2𝑘), interpreted
as 𝑘-bit binary numbers. We will find sequences of piecewise linear bijections that, under
this interpretation, perform the operation of each gate of the given circuit, and compose these
sequences into a single bijection using Lemma 6.3.

In more detail, for each gate of the circuit, in a topological ordering of the circuit ordered
from its inputs to its outputs, we apply the following sequence of piecewise linear bijections:

Let 𝐶 be the set of bit positions representing the inputs and outputs of the gate. Apply
Lemma 6.5 to find a sequence of piecewise linear bijections whose composition 𝑓𝐶 permutes
all of the bits so that the positions of 𝐶 are permuted into the |𝐶 | most significant positions.
The resulting values can be partitioned into 2|𝐶 | subintervals of the form [𝑖2𝑘−|𝐶 |, (𝑖 +
1)2𝑘−|𝐶 |) (for 𝑖 = 0, 1, . . . 2|𝐶 | − 1, within which the bits in the |𝐶 | most significant bit
positions have constant values. Apply a single piecewise linear bijection that permutes
these 2|𝐶 | subintervals into an order representing the output values of the given gate for
these input values.
Apply the sequence of piecewise linear bijections whose composition represents the inverse
function 𝑓 −1

𝐶 to the function 𝑓𝐶 , as described by Lemma 6.5.

34 / 41 D. Eppstein

If the circuit has 𝑔 gates, each operating on 𝑂(1) bits, then the composition of the sequences
described above for each gate gives us an overall sequence of 𝑠 = 𝑂(𝑔𝑘) piecewise linear
transformations, with 𝑂(𝑔𝑘) pieces, that implements the same function as the given circuit.

By Lemma 6.3 we can find an equivalent single piecewise linear transformation 𝑇 , with
the same number of pieces, operating on 𝑂(𝑔𝑘2)-bit values, such that 𝑇 (𝑠) (𝑥), for 𝑥 ∈ [0, 2𝑘),
performs a single iteration of the given circuit. Therefore, for any 𝑛, we can apply the circuit 𝑛
times to input value 𝑥, by solving the piecewise linear bijection problem of computing 𝑇 (𝑛𝑠) (𝑥).
The construction of 𝑇 and 𝑛𝑠 from the circuit are polynomial-time transformations, so this gives
a many-one reduction from finding iterated values of reversible logic circuits to the piecewise
linear bijection problem. ■

6.4 Integer interval exchange transformations

We conclude this section with a special case of the piecewise linear bijection problem that has
a non-obvious polynomial time algorithm. We define the iterated integer interval exchange
transformation problem to be the special case of the piecewise linear bijection problem in which
each of the linear bijections of the given bijection has multiplier 1. In these piecewise linear
bijections, each piece is just a translation, and the whole bijection is an interval exchange
transformation. After an earlier version of this paper listed the complexity of the iterated
integer interval exchange transformation problem as an open problem, Mark Bell provided in
a personal communication the observation that it has a polynomial time solution, obtained by
reinterpreting it as a problem on normal curves in triangulated surfaces and plugging in known
results from computational topology. In this section we provide a more detailed expansion of
Bell’s observation. To describe this solution, we need the following topological definitions, for
which refer to Figure 7 and [16].

DEF IN IT ION 6.7. A triangulated oriented 2-manifold (“triangulated manifold”, for short) is
a topological space obtained from a system of triangles, each having a specified clockwise
orientation of its edges, and a matching of pairs of edges of those triangles to be glued together
consistently with those orientations. (The vertices of the manifold are equivalence classes of
vertices of triangles after this gluing, but are unimportant for what follows.) A normal curve is
a one-dimensional subspace of a triangulated manifold, topologically equivalent within each
triangle to a collection of disjoint line segments that extend from edge to edge within the triangle,
avoiding its vertices. At the point where one of these segments meets an edge of a triangle, it is
required to continue from the same point into another segment in the other triangle glued to the
same edge. In particular, because a line segment cannot cross the same edge of a triangle twice
in succession, a normal curve is also forbidden from having segments that do this, although
it can return to an edge after crossings with other edges. A normal curve can have multiple
connected components; a single component is called an arc.

35 / 41 The Complexity of Iterated Reversible Computation

a

a

b

b

c

c

d

d

e

f

g

h

e

f

g

h

Figure 7. A normal curve (light blue) on a triangulated double torus (black triangles and red vertices,
glued from top to bottom and from left side to right side with the pairing indicated by the letters).
Traversing the normal curve upwards from its central horizontal line, through the glued edges from top
to bottom, and continuing upwards back to the same central line, permutes the branches of the curve
according to the integer interval exchange transformation that maps [0, 3] ↦→ [11, 14], [4, 5] ↦→ [0, 1],
6 ↦→ 10, and [7, 14] ↦→ [2, 9].

DEF IN IT ION 6.8. The normal coordinates of a normal curve on a triangulated surface are a
labeling of each edge 𝑒 of the triangulation by a non-negative integer 𝑁𝑒, the number of points
of intersection between the curve and edge 𝑒 (Figure 8).

The following is standard:

OBSERVAT ION 6.9. The normal coordinates of any normal curve of any triangulated surface
obey the triangle inequality in each triangle of the surface, and sum to an even number in each
triangle of the surface. Any system of non-negative integer edge labels obeying these constraints
defines a normal curve, which is unique up to homeomorphisms of the surface that map each
vertex and edge of the triangulation to itself.

PROOF . Consider any normal curve 𝐶 of any triangulated surface, and a triangle Δ of the
triangulation with edges 𝑥, 𝑦, and 𝑧. Within Δ, 𝐶 must consist of some number 𝑎 ≥ 0 of segments
crossing from 𝑥 to 𝑦, some number 𝑏 ≥ 0 of segments crossing from 𝑦 to 𝑧, and some number 𝑐
of segments crossing from 𝑥 to 𝑧. Then its normal coordinates on these three edges are 𝑁𝑥 = 𝑎+𝑐,
𝑁𝑦 = 𝑎 + 𝑏, and 𝑁𝑧 = 𝑏 + 𝑐. Their sum is 2𝑎 + 2𝑏 + 2𝑐, an even number. They obey the triangle
inequality because 𝑁𝑥 + 𝑁𝑦 = 2𝑎 + 𝑏 + 𝑐 ≥ 𝑏 + 𝑐 = 𝑁𝑧.

Conversely, suppose we are given any system of normal coordinates that obey the triangle
inequality and sum to an even number in each triangle. Then because the sum 𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 is
even, by assumption, 𝑁𝑥 + 𝑁𝑦 − 𝑁𝑧 is even, as it differs from 𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 by the even number
2𝑁𝑧. Additionally, 𝑁𝑥 + 𝑁𝑦 − 𝑁𝑧 is non-negative, by the triangle inequality. It follows that if we

36 / 41 D. Eppstein

6 5

3

Figure 8. A triangle in a triangulated surface (black), part of a normal curve (blue), and the normal
coordinates of the three triangle edges (green)

set 𝑎 = (𝑁𝑥 + 𝑁𝑦 − 𝑁𝑧)/2, and symmetrically 𝑏 = (𝑁𝑥 − 𝑁𝑦 + 𝑁𝑧)/2 and 𝑐 = (−𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧)/2,
then 𝑎, 𝑏, and 𝑐 are non-negative integers. We can construct a normal curve having this system
of normal coordinates by placing 𝑁𝑒 crossing points on each edge 𝑒. Then, within each triangle
𝑥 𝑦𝑧 with 𝑎, 𝑏, and 𝑐 calculated as above, we draw 𝑎 line segments connecting the crossing points
on edges 𝑥 and 𝑦 that are the 𝑎 nearest crossings to the shared vertex of 𝑥 and 𝑦. Symmetrically,
we draw 𝑏 line segments connecting the crossing points on edges 𝑦 and 𝑧 that are the 𝑏 nearest
crossings to the shared vertex of 𝑦 and 𝑧, and we draw 𝑐 line segments connecting the crossing
points on edges 𝑥 and 𝑧 that are the 𝑐 nearest crossings to the shared vertex of 𝑥 and 𝑧. The
resulting system of line segments within each triangle link up to form a normal curve, whose
normal coordinates as calculated above are exactly the numbers we are given.

Any two normal curves with the same coordinates necessarily have the same number
of crossing points on each edge of the triangulation (given by the normal coordinates) and
the same pattern of segments of the curve within each triangle (as described above). They
can be mapped to each other by a homeomorphism of the surface that fixes the vertices of
the triangulation, maps each edge to itself in a way that that takes the crossing points of one
normal curve to the crossing points of the other normal curve, and then maps the interior of
each triangle to itself in a way that deforms one system of segments from one normal curve
into the corresponding system of segments from the other normal curve. ■

In order to analyze the computational complexity of algorithms on normal curves we also
need the following.

OBSERVAT ION 6.10. The number of bits needed to specify a triangulated surface with 𝜏 trian-
gles, and a normal curve on that surface with 𝜎 segments, is 𝑂(𝜏 log(𝜏 + 𝜎)).

PROOF . The surface can be specified by numbering and orienting the triangles and, for each
triangle, specifying its three neighboring triangles. This specification uses 3⌈log2 𝜏⌉ bits per

37 / 41 The Complexity of Iterated Reversible Computation

triangle. Additionally, each normal coordinate is at most 𝜎 and specifying it takes at most
1 + log2 𝜎 bits for each of the 3𝜏/2 edges. ■

We need to specify, not only a curve on a surface, but a crossing point of the curve with an
edge of the triangulated surface. To do so, it is helpful to introduce index numbers for these
crossing points. We use two different forms of indexing, edge coordinates and arc coordinates.

DEF IN IT ION 6.1 1. Choose an arbitrary orientation for each edge of a triangulated surface
with a specified normal curve. Then, for this orientation, the edge coordinate of a point where a
normal curve crosses an edge is just its position among the crossings on that edge, after choosing
an arbitrary orientation for that edge.

Similarly, choose an arbitrary orientation for each arc of the specified normal curve, and
designate one of the crossings points of each arc (chosen arbitrarily) as its starting point. Then,
for this data, the arc coordinate of a point where a normal arc crosses an edge is its position
among all of the crossings along the normal arc, in the order they are reached by following that
arc from its starting point in the direction of the specified orientation.

Erickson and Nayyeri [16] provide several useful algorithms for manipulating normal
curves, normal coordinates, and the edge coordinates and arc coordinates of their crossings. In
particular, they show that the following computations can all be done in time polynomial in the
bit complexity of the normal curve, as given by observation 6.10:

Given a normal curve and the edge coordinate of a crossing point 𝑝 in this curve, find the
normal coordinates that describe the arc of the normal curve containing 𝑝 [16, Theorem
6.2]. The algorithm constructs a street complex describing this arc, from which it is possible
to convert edge coordinates in the given curve into edge coordinates in the arc and vice
versa.
Given a normal curve consisting of a single arc, the edge coordinate of a crossing point 𝑝,
and a choice of a starting point on that arc, find the arc coordinate of 𝑝 [16, Theorem 6.3].
Given a normal curve consisting of a single arc, the arc coordinate of a crossing point 𝑝,
and a choice of a starting point on that arc, find the edge coordinate of 𝑝 [16, Theorem 6.4].

More precisely, the time for each of these operations is quadratic in the number of triangles in
the triangulation and logarithmic in the total number of crossings of the normal curve.

THEOREM 6.12 (Bell). The iterated integer interval exchange transformation problem, for 𝑛
iterations of a transformation on 𝑘 intervals over the integers in the range [0, 𝑁 −1], can be solved
in time polynomial in 𝑘, log 𝑁 , and log 𝑛.

PROOF . Given an integer interval exchange transformation 𝑓 , a number of iterations 𝑛, and a
starting value 𝑖, perform the following steps to compute 𝑓 (𝑛) (𝑖):

38 / 41 D. Eppstein

Construct a surface in the form depicted in Figure 7: a triangulated rectangle, divided
into some number of horizontal stripes, with the input intervals to the transformation
subdividing the top of the rectangle and the outputs subdividing the bottom. It is convenient
to assign Cartesian coordinates to this rectangle in such a way that the vertical blue lines
have integer 𝑥-coordinates in the range [0, 𝑁 − 1]. To do so, place the left edge of the
rectangle on the line 𝑥 = −1/2 of the Cartesian plane and its right edge on the line
𝑥 = 𝑁 − 1/2. Triangulate it as shown in the figure, so that each vertical line through the
rectangle crosses exactly one diagonal edge per slice, and so that the central horizontal
line across the rectangle forms an unsubdivided edge. Each step up or down from this
central edge allows the number of horizontal subdivisions to double, so it suffices to take
𝑠 = ⌈log2 𝑘⌉ steps above and below the central edge, producing a triangulation with 𝑂(𝑘)
triangles. Glue the left and right sides of the rectangle together, and glue top and bottom
according to the labeling from the transformation.
Compute the normal coordinates of the normal curve formed by the vertical integer lines
in the rectangle. The normal coordinate of any edge is how far apart horizontally its
endpoints are within the rectangle.
Given the integer 𝑖 whose iterates we want to compute, let 𝑝𝑖 be the crossing point on
the central horizontal edge with 𝑥-coordinate equal to 𝑖. Each iteration of the exchange
transformation can be obtained by advancing 2𝑠 units upward along the curve, starting
from 𝑝𝑖 , and wrapping around halfway through from the top of the rectangle to the bottom.
Find the normal arc containing 𝑝𝑖 and its normal coordinates (the number of times this
arc crosses each edge of the triangulation), using the algorithm of [16, Theorem 6.2]. The
length ℓ of this arc (measured as a number of crossings) is just the sum of these normal
coordinates. The whole normal curve has 𝑂(𝑁 log 𝑘) crossings so this bound applies a
fortiori to this arc.
Convert the known edge coordinate 𝑖 of 𝑝𝑖 to an arc coordinate using the algorithm of
[16, Theorem 6.3]. Add 2𝑛𝑠 (modulo ℓ) to this arc coordinate, and convert the resulting
arc coordinate back into an edge coordinate in its arc using the algorithm of [16, Theorem
6.4]. Reversing the reduction from the normal curve to a normal arc, convert this edge
coordinate in the arc back into an edge coordinate in the whole curve. This edge coordinate
is the number 𝑓 (𝑛) (𝑖) that we want to compute.

The topological subroutines used by this algorithm all take time quadratic in the size of
the triangulation and logarithmic in the number of crossings of the normal curve, so for the
triangulation and normal curve constructed above this time bound is 𝑂(𝑘2 log 𝑁). ■

39 / 41 The Complexity of Iterated Reversible Computation

7. Conclusions

We have studied the complexity of computing the iterated values of polynomial-time bijections,
shown the equivalence of several different complexity classes defined in this way to each other
and to FPPSPACE, and found FPPSPACE-complete problems involving circuits, cellular automata,
graphs, and piecewise linear transformations. Our cellular automaton completeness result,
in particular, involves a novel dimension-reducing simulation from two-dimensional to one-
dimensional reversible cellular automata. Our results may be of interest in expanding the types
of problems that are complete for this class.

We have also described a class of problems of this type, the iterated integer interval
exchange transformation problems, that have a non-obvious polynomial-time algorithm. In
subsequent work, we have applied this algorithm as a subroutine to solve certain problems of
ray-tracing in two-dimensional systems of mirrors [15].

References
[1] Gerard ’t Hooft. Equivalence relations between

deterministic and quantum mechanical systems. J.
Statistical Physics, 53(1-2):323–344, 1988 DOI (1).

[2] Charles H. Bennett. [TIME, SPACE] (𝑇, 𝑆) ⊆
REVERSIBLE [TIME, SPACE] (𝑇1.585, 𝑆 log𝑇).
Technical report, IBM Yorktown Heights, 1984. As
cited by [44] (4, 6, 17).

[3] Charles H. Bennett. Logical reversibility of
computation. IBM Journal of Research and
Development, 17:525–532, 1973 DOI (1, 2, 5, 7).

[4] Charles H. Bennett. The thermodynamics of
computation – a review. International J. Theoretical
Physics, 21(12):905–940, 1982 DOI (1).

[5] Tim Boykett. Efficient exhaustive listings of
reversible one dimensional cellular automata.
Theoretical Computer Science, 325(2):215–247,
2004 DOI (21).

[6] Marcin Briański and Adam Szady. A short note on
graphs with long Thomason chains. Discrete
Mathematics, 345(1):112624, 2022 DOI (6, 15).

[7] Kathie Cameron. Thomason’s algorithm for finding
a second Hamiltonian circuit through a given edge
in a cubic graph is exponential on Krawczyk’s
graphs. Discrete Mathematics, 235(1-3):69–77,
2001 DOI (6, 15).

[8] Vladimir S. Cherniavsky. On the reversibility of
algorithms. Trudy Moskovskogo Matematičeskogo
Obščestva, 9:425–453, 1960 (1).

[9] David Elieser Deutsch. Quantum computational
networks. Proceedings of the Royal Society A,
425(1868):73–90, 1989 DOI (1).

[10] Persi Diaconis, Ronald L. Graham, and
William M. Kantor. The mathematics of perfect
shuffles. Advances in Applied Mathematics,
4(2):175–196, 1983 DOI (6, 30).

[11] Jérôme Durand-Lose. Computing inside the billiard
ball model. Andrew Adamatzky, editor,
Collision-Based Computing, 135–160. Springer,
2002 DOI (5, 19, 20).

[12] Jérôme Durand-Lose. Intrinsic universality of a
1-dimensional reversible cellular automaton. Proc.
14th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 1997), volume 1200 of
Lecture Notes in Computer Science, 439–450.
Springer, 1997 DOI (5).

[13] Freeman J. Dyson and Harold Falk. Period of a
discrete cat mapping. American Mathematical
Monthly, 99(7):603–614, 1992 DOI (6, 28, 29).

[14] David Eppstein. A heuristic approach to program
inversion. Proc. 9th Int. Joint Conf. Artificial
Intelligence (IJCAI 1985), volume 1, 219–221, 1985
(1).

[15] David Eppstein. Reflections in an octagonal mirror
maze. Proc. 34th Canadian Conference on
Computational Geometry (CCCG 2022), 129–134.
Toronto Metropolitan University, 2022 (39).

[16] Jeff Erickson and Amir Nayyeri. Tracing
compressed curves in triangulated surfaces.
Discrete & Computational Geometry,
49(4):823–863, 2013 DOI (34, 37, 38).

[17] Edward Fredkin and Tommaso Toffoli.
Conservative logic. International J. Theoretical
Physics, 21(3-4):219–253, 1982 DOI (5, 7).

[18] R. William Gosper Jr. Exploiting regularities in large
cellular spaces. Physica D, 10(1-2):75–80, 1984
DOI (2, 18).

[19] Brian Hayes. Computer recreations: The cellular
automaton offers a model of the world and a world
unto itself. Scientific American, 250(3):12–25, 1984
DOI (19).

https://doi.org/10.1007/BF01011560
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1007/bf02084158
https://doi.org/10.1016/j.tcs.2004.06.007
https://doi.org/10.1016/j.disc.2021.112624
https://doi.org/10.1016/S0012-365X(00)00260-0
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1016/0196-8858(83)90009-X
https://doi.org/10.1007/978-1-4471-0129-1_6
https://doi.org/10.1007/BFb0023479
https://doi.org/10.2307/2324989
https://doi.org/10.1007/s00454-013-9515-z
https://doi.org/10.1007/BF01857727
https://doi.org/10.1016/0167-2789(84)90251-3
https://doi.org/10.1016/0167-2789(84)90251-3
https://doi.org/10.1038/scientificamerican0384-12
https://doi.org/10.1038/scientificamerican0384-12

40 / 41 D. Eppstein

[20] Gustav A. Hedlund. Endomorphisms and
automorphisms of the shift dynamical system.
Mathematical Systems Theory, 3:320–375, 1969
DOI (18).

[21] Peter Hertling. Embedding cellular automata into
reversible ones, Unconventional models of
computation (UMC 1998), Auckland, Springer Series
in Discrete Mathematics and Theoretical Computer
Science, 243–256. Springer-Verlag, 1998 (5).

[22] Katsunobu Imai and Kenichi Morita. A
computation-universal two-dimensional 8-state
triangular reversible cellular automaton. Theoretical
Computer Science, 231(2):181–191, 2000 DOI (5).

[23] Katsunobu Imai and Kenichi Morita. Firing squad
synchronization problem in reversible cellular
automata. Theoretical Computer Science,
165(2):475–482, 1996 DOI (22).

[24] Russell Impagliazzo and Steven Rudich. Limits on
the provable consequences of one-way
permutations. Proc. 21st Annual ACM Symposium
on Theory of Computing (STOC 1989), 44–61. ACM,
1989 DOI (2).

[25] Giuseppe Jacopini, Patrizia Mentrasti, and
Giovanna Sontacchi. Reversible Turing machines
and polynomial time reversibly computable
functions. SIAM Journal on Discrete Mathematics,
3(2):241–254, 1990 DOI (1, 2, 7, 8).

[26] Jarkko Kari. On the inverse neighborhoods of
reversible cellular automata. Grzegorz Rozenberg
and Arto Salomaa, editors, Lindenmayer Systems:
Impacts on Theoretical Computer Science,
Computer Graphics, and Developmental Biology,
477–495. Springer, 1992 DOI (1, 18).

[27] Jarkko Kari. Structure of reversible cellular
automata. Unconventional Computation (UC 2009),
8th International Conference, Ponta Delgada,
Azores, Portugal, September 7-11, 2009.
Proceedings, volume 5715 of Lecture Notes in
Computer Science, page 6. Springer, 2009 DOI (1,
18).

[28] Jarkko Kari, Ville Salo, and Ilkka Törmä. Trace
complexity of chaotic reversible cellular automata,
Reversible Computation. Volume 8507, Lecture
Notes in Computer Science, 54–66. Springer, 2014
DOI (5).

[29] Michael Keane. Interval exchange transformations.
Mathematische Zeitschrift, 141:25–31, 1975 DOI (6,
28).

[30] Richard E. Korf. Inversion of applicative programs.
Proc. 7th Int. Joint Conf. Artificial Intelligence,
1007–1009, 1981 (1).

[31] Adam Krawczyk. The complexity of finding a
second Hamiltonian cycle in cubic graphs. J.
Computer and System Sciences, 58(3):641–647,
1999 DOI (15).

[32] Richard E. Ladner. Polynomial space counting
problems. SIAM Journal on Computing,
18(6):1087–1097, 1989 DOI (3).

[33] Rolf Landauer. Irreversibility and heat generation in
the computing process. IBM Journal of Research
and Development, 5:183–191, 1961 DOI (1).

[34] Klaus-Jörn Lange, Pierre McKenzie, and
Alain Tapp. Reversible space equals deterministic
space. J. Computer and System Sciences, 60(2,
part 2):354–367, 2000 DOI (4, 6, 17).

[35] Yves Lecerf. Machines de Turing réversibles.
Récursive insolubilité en 𝑛 ∈ 𝑁 de l’équation 𝑢 = 𝜃𝑛𝑢,
où 𝜃 est un “isomorphisme de codes”. Comptes
Rendus Acad. Sci. Paris, 257:2597–2600, 1963 (1).

[36] Norman Margolus. Physics-like models of
computation. Physica D, 10(1–2):81–95, 1984 DOI
(4, 5, 18, 19).

[37] Daniel B. Miller and Edward Fredkin. Two-state,
reversible, universal cellular automata in three
dimensions. Proceedings of the 2nd Conference on
Computing Frontiers (CF 2005), 45–51. ACM, 2005
DOI (5).

[38] Cristopher Moore and John M. Robson. Hard tiling
problems with simple tiles. Discrete &
Computational Geometry, 26(4):573–590, 2001
DOI (20).

[39] Kenichi Morita. Reversible computing and cellular
automata – a survey. Theoretical Computer
Science, 395(1):101–131, 2008 DOI (19).

[40] Kenichi Morita. Reversible simulation of
one-dimensional irreversible cellular automata.
Theoretical Computer Science, 148(1):157–163,
1995 DOI (1, 5, 18).

[41] Kenichi Morita. Simple universal one-dimensional
reversible cellular automata. Journal of Cellular
Automata, 2(2):159–165, 2007 (20).

[42] Øystein Ore. The general Chinese remainder
theorem. American Mathematical Monthly,
59:365–370, 1952 DOI (30).

[43] Donald S. Ornstein. Measure-preserving
transformations and random processes. American
Mathematical Monthly, 78:833–840, 1971 DOI (6,
28).

[44] Christos H. Papadimitriou. On the complexity of
the parity argument and other inefficient proofs of
existence. J. Computer and System Sciences,
48(3):498–532, 1994 DOI (4–6, 15, 17, 39).

[45] Asher Peres. Reversible logic and quantum
computers. Physical Review A, 32(6):3266–3276,
1985 DOI (1).

[46] Daniel Richardson. Tessellations with local
transformations. J. Computer and System Sciences,
6:373–388, 1972 DOI (18).

[47] Marcus Schaefer. Complexity of some geometric
and topological problems. Proc. 17th International
Symposium on Graph Drawing (GD 2009),
volume 5849 of Lecture Notes in Computer
Science, 334–344. Springer, 2009 DOI (5).

[48] Peter Shiu. A footnote to the three gaps theorem.
American Mathematical Monthly, 125(3):264–266,
2018 DOI (29).

[49] Roberto Tamassia. On embedding a graph in the
grid with the minimum number of bends. SIAM
Journal on Computing, 16(3):421–444, 1987 DOI
(20).

https://doi.org/10.1007/BF01691062
https://doi.org/10.1007/BF01691062
https://doi.org/10.1016/S0304-3975(99)00099-7
https://doi.org/10.1016/0304-3975(96)00016-3
https://doi.org/10.1145/73007.73012
https://doi.org/10.1137/0403020
https://doi.org/10.1007/978-3-642-58117-5_29
https://doi.org/10.1007/978-3-642-03745-0_5
https://doi.org/10.1007/978-3-319-08494-7_5
https://doi.org/10.1007/978-3-319-08494-7_5
https://doi.org/10.1007/BF01236981
https://doi.org/10.1006/jcss.1998.1611
https://doi.org/10.1137/0218073
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1006/jcss.1999.1672
https://doi.org/10.1016/0167-2789(84)90252-5
https://doi.org/10.1145/1062261.1062271
https://doi.org/10.1145/1062261.1062271
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.1016/j.tcs.2008.01.041
https://doi.org/10.1016/0304-3975(95)00038-X
https://doi.org/10.2307/2306804
https://doi.org/10.2307/2316473
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1103/PhysRevA.32.3266
https://doi.org/10.1016/S0022-0000(72)80009-6
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1080/00029890.2018.1412210
https://doi.org/10.1137/0216030

41 / 41 The Complexity of Iterated Reversible Computation

[50] Andrew G. Thomason. Hamiltonian cycles and
uniquely edge colourable graphs. Annals of
Discrete Mathematics, 3:259–268, 1978 DOI (4, 6,
14, 15).

[51] Tommaso Toffoli. Computation and construction
universality of reversible cellular automata. J.
Computer and System Sciences, 15(2):213–231,
1977 DOI (1, 5, 18, 20).

[52] Tommaso Toffoli. Reversible computing. Proc. 7th
Colloq. Automata, Languages and Programming
(ICALP 1980), volume 85 of Lecture Notes in
Computer Science, 632–644. Springer, 1980 DOI
(5, 7).

[53] William T. Tutte. On Hamiltonian circuits. J. London
Mathematical Society, 21:98–101, 1946 DOI (14).

[54] Paul M. B. Vitányi. Time, space, and energy in
reversible computing. Proc. 2nd Conf. on
Computing Frontiers (CF 2005), 435–444. ACM,
2005 DOI (1).

[55] Avi Wigderson. The complexity of graph
connectivity. Proc. 17th International Symposium
on Mathematical Foundations of Computer Science
(MFCS 1992), volume 629 of Lecture Notes in
Computer Science, 112–132. Springer, 1992 DOI
(5, 13).

[56] Ryan Williams. Space-efficient reversible
simulations. Technical report, September 2000 (6).

[57] Andrew Chi-Chih Yao. Theory and applications of
trapdoor functions. Proc. 23rd Annual Symposium
on Foundations of Computer Science (FOCS 1982),
80–91. IEEE Computer Society, 1982 DOI (2).

[58] Liang Zhong. The complexity of Thomason’s
algorithm for finding a second Hamiltonian cycle.
Bulletin of the Australian Mathematical Society,
98(1):18–26, 2018 DOI (6, 15).

2023 : 10
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© David Eppstein.

https://doi.org/10.1016/S0167-5060(08)70511-9
https://doi.org/10.1016/S0022-0000(77)80007-X
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1112/jlms/s1-21.2.98
https://doi.org/10.1145/1062261.1062335
https://doi.org/10.1007/3-540-55808-X_10
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1017/S0004972718000242

	Introduction
	New results
	Related work

	Invertability, reversibility, and reversible logic
	Complexity classes and their equivalences
	Implicit linear forests
	Thomason's lollipop algorithm
	Equivalence to iterated bijection

	Reversible cellular automata
	Billiard-ball model
	Other known universal reversible cellular automata
	Dimension reduction

	Piecewise linear bijections
	The piecewise linear bijection problem
	Permuting the bits of a binary number
	Completeness
	Integer interval exchange transformations

	Conclusions

