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ABSTRACT. A continuous constraint satisfaction problem (CCSP) is a constraint satisfaction
problem (CSP) with the real numbers as domain. We engage in a systematic study to classify
CCSPs that are complete for the Existential Theory of the Reals, i.e., ∃R-complete. To define this
class, we first consider the problem ETR, which also stands for Existential Theory of the Reals. In
an instance of this problem we are given a sentence of the form ∃𝑥1, . . . , 𝑥𝑛 ∈ R : Φ(𝑥1, . . . , 𝑥𝑛),
where Φ is a well-formed quantifier-free formula consisting of the symbols {0, 1, 𝑥1, . . . , 𝑥𝑛, +, ·, ≥
, >,∧,∨,¬}. The goal is to check whether this sentence is true. Now the class ∃R is the family
of all problems that admit a polynomial-time many-one reduction to ETR. It is known that
NP ⊆ ∃R ⊆ PSPACE.

We restrict our attention on CCSPs with addition constraints (𝑥 + 𝑦 = 𝑧) and which satisfy
another mild technical condition. Previously, it was shown that multiplication constraints (𝑥 · 𝑦 =

𝑧), squaring constraints (𝑥2 = 𝑦), or inversion constraints (𝑥 · 𝑦 = 1) are sufficient to establish
∃R-completeness. We extend this in the strongest possible sense for equality constraints as
follows. We show that CCSPs (with addition constraints and that satisfy another mild technical
condition) that have any one well-behaved curved equality constraint ( 𝑓 (𝑥, 𝑦) = 0) are ∃R-
complete. We further extend our results to inequality constraints. We show that together any
well-behaved convexly curved and any well-behaved concavely curved inequality constraint
( 𝑓 (𝑥, 𝑦) ≥ 0 and 𝑔 (𝑥, 𝑦) ≥ 0) imply ∃R-completeness on the class of such CCSPs.

Here, we call a function 𝑓 : 𝑈 → Rwell-behaved if it is a 𝐶3-function, 𝑓 (0, 0) = 0, all its first
and second partial derivatives 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑥 , 𝑓𝑥 𝑦, 𝑓𝑦 𝑦 are rational in (0, 0), 𝑓𝑥 (0, 0) ≠ 0 or 𝑓𝑦 (0, 0) ≠ 0,
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and another mild technical constraint. Furthermore, we call 𝑓 curved if the curvature of the
curve given by 𝑓 (𝑥, 𝑦) = 0 is nonzero at the origin. In this case we call 𝑓 either convexly curved
if the curvature is negative, or concavely curved if it is positive.

f(x, y) = 0

Figure 1. The set defined by
𝑓 (𝑥, 𝑦) = 0 is well-behaved
and at some positions
convexly curved and at
others concavely curved,
indicated by the two circles.

1. Introduction

In geometric packing, we are given a set of two-dimensional pieces, a container and a set of
motions. The aim is to move the pieces into the container without overlap, and while respecting
the given motions. Recently, Abrahamsen, Miltzow and Seiferth showed that many geometric
packing variants are ∃R-complete (FOCS 2020) [5]. Despite the fact that the first arXiv version
is roughly 100 pages long, the high-level approach follows the same principle as many other
hardness reductions. First, they showed that a technical intermediate problem is hard and
then they reduced from this technical problem. In their work, ETR-INV, a specific continuous
constraint satisfaction problem, serves as this intermediate ∃R-complete problem. A complete
definition of continuous constraint satisfaction problems is provided in the subsequent section.
Specifically, ETR-INV contains essentially only addition constraints (𝑥 + 𝑦 = 𝑧) and inversion
constraints (𝑥 · 𝑦 = 1). In the second step, they showed how to encode addition and inversion
using geometric objects. This enabled them to show in a unified framework that various
geometric packing problems are ∃R-complete.

The inversion constraint is particularly handy as it was shown in various other works that
it is particularly easy to encode geometrically [38, 25, 26, 2]. Curiously, Abrahamsen, Miltzow
and Seiferth left arguably the most interesting case of packing convex polygonal objects into a
square container open. The missing puzzle piece seemed to be a gadget to encode the inversion
constraint for this case.

We take an alternative approach and engage in a systematic study of continuous constraint
satisfaction problems in their own respect. The aim is to fully classify all continuous constraint
satisfaction problems by their computational complexity. Polynomial time, NP-complete, and
∃R-complete are some apparent complexities, but as we will see, they may not be the only ones
that are relevant, see Section 1.4. Our first application shows that packing convex polygons into
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a square under rigid motions is ∃R-complete. It arises as a combination of a small adaption of
the framework by [5] and our structural results. As a result the paper by Abrahamsen, Miltzow
and Seiferth considerably shortens to about 70 pages.

REMARK 1.1. Although the ∃R-completeness of packing convex polygons into a square con-
tainer under rigid motions was first pointed out in the conference version of this paper, the
proof is more readable in the context of the paper by Abrahamsen, Miltzow and Seiferth [5].
The arxiv version of their paper incorporated the results presented in the conference version
of this paper. In turn, some of the technical results of their paper are incorporated in this paper
as Section 2 for the sake of readability and completeness.

We give a short introduction to constraint satisfaction problems and the complexity
class ∃R.

1.1 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) are a wide class of computational decision problems. In
order to give a formal definition, we first introduce several other terms.

DEF IN IT ION 1.2 (Signature). A signature is a set of symbols together with arities ℓ ∈ N. Each
symbol has exactly one arity attached to it.

Often the signature distinguishes between function symbols and relation symbols. We
will only use relation symbols. We will only use signatures of finite size, to avoid dealing with
issues of description complexity. For finite signatures, we can simply assume that each symbol
has constant description complexity.

DEF IN IT ION 1.3 (Structure). A structure consists of a set 𝑈 , called the domain, a signature 𝜏

and an interpretation of each symbol. If 𝛼 ∈ 𝜏 is a symbol of arity ℓ, then the interpretation is a
set 𝛼 ⊆ 𝑈ℓ.

In the literature, the term template is also used as a synonym for structure. To make this
more tangible, consider the following example. We define the domain 𝑈 = {0, 1}, the symbol +2

of arity 3 and the symbol 1 of arity 1. We interpret +2 as
{
(𝑥, 𝑦, 𝑧) ∈ 𝑈3

�� 𝑥 + 𝑦 ≡ 𝑧 (mod 2)
}

,
and 1 as {𝑥 ∈ 𝑈 | 𝑥 = 1}. This defines a structure 𝑆1 = ⟨𝑈, +2, 1⟩. Note that it is common to use
a symbol and its interpretation interchangeably. Specifically, many symbols are used in the
literature with their common interpretation, e.g., ≤ is interpreted as {(𝑥, 𝑦) ∈ 𝑈 | 𝑥 ≤ 𝑦} and +
is interpreted as

{
(𝑥, 𝑦, 𝑧) ∈ 𝑈3

�� 𝑥 + 𝑦 = 𝑧
}

. We refer to the symbols and interpretations of a
structure merely as constraints. We will usually denote these constraints by the equation that
they enforce. For example, we write 𝑥2 = 𝑦 for the constraint 𝑐 =

{
(𝑥, 𝑦) ∈ 𝑈2

�� 𝑥2 = 𝑦
}

.
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DEF IN IT ION 1.4 (Constraint satisfaction problem). Given a structure 𝑆 = (𝑈, 𝜏) we define
a constraint formula Φ := Φ(𝑥1, . . . , 𝑥𝑛) to be a conjunction 𝑐1 ∧ . . . ∧ 𝑐𝑚 for 𝑚 ≥ 0, where
each 𝑐𝑖 is of the form 𝑐( 𝑦1, . . . , 𝑦ℓ) for some 𝑐 ∈ 𝜏 and variables 𝑦1, . . . , 𝑦ℓ ∈ {𝑥1, . . . , 𝑥𝑛}. We
also define 𝑉 (Φ) ⊆ 𝑈𝑛 as 𝑉 (Φ) := {x ∈ 𝑈𝑛 | Φ(x)}. In the constraint satisfaction problem (CSP)
with structure 𝑆, we are given a constraint formula Φ, and are asked whether 𝑉 (Φ) ≠ ∅.

Consider the constraint formula Φ = (𝑥1+𝑥2 ≡ 𝑥4 (mod 2))∧(𝑥2+𝑥3 ≡ 𝑥4 (mod 2))∧(𝑥2 = 1).
This gives an instance of a CSP with structure 𝑆1 as above. Note that (0, 1, 0, 1) ∈ 𝑉 (Φ). It can be
interesting whether the CSP with structure 𝑆1 is polynomial time solvable.

In this paper, we restrict ourselves to the reals as domain, i.e.,𝑈 = R and denote them as
continuous constraint satisfaction problems (CCSPs).

We are mainly interested in CCSPs where the constraints are semi-algebraic over the
integers (see Section 1.2 for a formal definition). There are some constraints that are not semi-
algebraic, in other words, not computable on the real RAM [29]. For example, constraints
involving sin, cos, exp, log or testing if a number is an integer. We do not want to forbid those
types of constraints in the general definition, as it might be interesting to study some of them.
Some of our hardness results actually apply to non-computable functions. There are constraints
that limit us to finite domains. For example, 𝑥 (𝑥−1) = 0. Although they are not truly continuous,
they are indeed semi-algebraic and thus we have to deal with them as well in the general
definition. For our results, we use both discrete constraints, e.g. 𝑥 = 1, and truly continuous
constraints, e.g. 𝑓 (𝑥) = 𝑦 with 𝑓 three times differentiable.

Constraint satisfaction problems have a long history in algorithmic studies [54, 19, 18, 63,
40, 27]. There are two application-driven motivations to study them. On the one hand, it is
possible to easily encode many fundamental algorithmic problems directly as a CSP. Then, given
an efficient algorithm for those types of CSPs, we have immediately also solved those other
algorithmic problems. On the other hand, if we can encode CSPs into algorithmic problems,
then any hardness result for the CSP immediately carries over to the algorithmic problem. Next
to an application-driven motivation, it is fair to say that they deserve a study in their own right
as fundamental mathematical objects. CSPs form a very versatile language and often allow for a
complete classification by their computational complexity. Specifically, the dichotomy conjecture
states that every class of CSP with a finite domain is either NP-complete or polynomial-time
solvable. Schaefer showed the conjecture for domains of size two [54]. Recently, Bulatov and
Zhuk could confirm the conjecture independently [18, 63] for any finite domain. Note that one
can also try to find a classification from the parameterized complexity perspective [40] or the
approximative counting perspective [27].

In this paper, we focus on CSPs with R as domain and we are interested in the class of
CSPs that are ∃R-complete. We want to point out that there is also a large body of research that
deals with infinite domains [64, 60, 13, 15, 34]. Most relevant for us is the work by Bodirsky,
Jonsson and von Oertzen [14], who also studied CSPs over the reals and showed that a host of
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them are NP-hard to decide. Specifically, they defined a subset 𝑆 of R𝑛 as essentially convex if for
all 𝑎, 𝑏 ∈ 𝑆, the straight line segment intersects the complement 𝑆 of 𝑆 in finitely many points.
They show that CSPs that contain 𝑥 = 1, 𝑥 ≤ 𝑦, 𝑥 + 𝑦 = 𝑧, and at least one constraint that is
not essentially convex are NP-hard. However, their techniques do not imply ∃R-hardness. See
also [16] for an overview of results for the real domain.

1.2 Existential Theory of the Reals

The class of the existential theory of the reals ∃R (pronounced as ‘ER’) is a complexity class that
has gained a lot of interest, especially within the computational geometry community. To define
this class, we first consider the problem ETR, which also stands for Existential Theory of the
Reals. In an instance of this problem, we are given a sentence of the form

∃𝑥1, . . . , 𝑥𝑛 ∈ R : Φ(𝑥1, . . . , 𝑥𝑛),

where Φ is a well-formed quantifier-free formula consisting of the symbols {0, 1, 𝑥1, . . . , 𝑥𝑛, +, ·, ≥
, >,∧,∨,¬}, the goal is to check whether this sentence is true. We will refer to the formula Φ
which might appear in an ETR-instance as an ETR-formula. As an example of an ETR-instance,
we could take Φ = (𝑥 · 𝑦2 + 𝑥 ≥ 0) ∧ ¬( 𝑦 < 2𝑥). The goal of this instance would be to determine
whether there exist real numbers 𝑥 and 𝑦 satisfying this formula. Now the class ∃R is the family
of all problems that admit a polynomial-time many-one reduction to ETR. With the notation
above, it can be shown that the CSP of the structure R = ⟨R, ·, +, 1⟩ is ∃R-complete [41], see also
Lemma 2.7.

It is known that
NP ⊆ ∃R ⊆ PSPACE.

The first inclusion follows from the definition of ∃R as follows. Given any Boolean satisfiability
formula, we can replace each positive occurrence of a variable 𝑥 by 𝑥 = 1. For example
(𝑥 ∨ ¬𝑦) ∧ (¬𝑥 ∨ 𝑧) becomes (𝑥 = 1 ∨ ¬( 𝑦 = 1)) ∧ (¬(𝑥 = 1) ∨ 𝑧 = 1).

Showing the second inclusion was first done by Canny in his seminal paper [20]. The
reason that ∃R is an important complexity class is that a number of common problems in
computational geometry, game theory, machine learning, and other areas have been shown to
be complete for this class.

We use |Φ| to denote the length of Φ, that is, the number of bits necessary to write down Φ.
We want to point out that there are some subtleties in the definition of the formula length.

Naively, to encode a natural number 𝑛 requires Θ(𝑛) bits, i.e., 𝑛 = 1 + 1 + . . . + 1. However, it is
possible to encode it in 𝑂(log 𝑛) bits, using Horner’s rule applied to the binary expansion of 𝑛.
For example, 27 = 1 + 2(1 + 2(0 + 2(1 + 2))) = 1 + (1 + 1) (1 + (1 + 1) (0 + (1 + 1) (1 + (1 + 1)))).
Furthermore, we want to emphasize that the reductions used for defining ∃R are performed in
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the word RAM model (or equivalently on a Turing machine), and not on a real Random Access
Machine (real RAM) or in the Blum-Shub-Smale model.

The definition of a formula naturally leads to the definition of semi-algebraic sets. We
say a set 𝑆 ⊆ R𝑛 is semi-algebraic, if there exists a formula 𝜑 such that 𝑆 = {𝑥 ∈ R𝑛 | 𝜑(𝑥)}.
Consequently, the (bit)-complexity of a semi-algebraic set is the shortest length of any formula
defining the set. Note that our definition of a semi-algebraic set is more common in a computer
science context [41]. In the context of algebraic geometry, semi-algebraic sets would usually
allow polynomials with real coefficients. For example, consider the set 𝑆 = {𝑥 ∈ R | 𝑥 − 𝑒 = 0},
containing Euler number 𝑒. Note that 𝑆 is typically semi-algebraic for an algebraic geometer [7],
but typically not for a computer scientist [41]. Given a point 𝑥 ∈ R𝑛 and a semi-algebraic
set 𝑆 ⊂ R𝑛, we can decide on the real RAM if 𝑥 ∈ 𝑆. (We refer the reader to the work by Erickson,
Hoog, and Miltzow for a detailed definition of the real RAM and decidability [29].) This is easy
to see as we only need to evaluate the defining formula of 𝑆. Interestingly the reverse direction
also holds. If we can decide 𝑥 ∈ 𝑆 for any 𝑥 ∈ R𝑛 then 𝑆 needs to be semi-algebraic [29].

Scope. The main reason that the complexity class ∃R gained traction in recent years is the
increasing number of important algorithmic problems that are ∃R-complete. Marcus Schaefer
established the current name and pointed out first that several known NP-hardness reductions
actually imply ∃R-completeness [50]. Note that some important reductions that establish ∃R-
completeness were done before the class was named.

Problems that have a continuous solution space and non-linear relation between partial
solutions are natural candidates to be∃R-complete. Early examples are related to the recognition
of geometric structures: points in the plane [43, 57], geometric linkages [51], segment graphs [37,
41], unit disk graphs [42, 35], ray intersection graphs [21], and point visibility graphs [22]. In
general, the complexity class is more established in the graph drawing community [38, 25, 49,
28]. Yet, it is also relevant for studying polytopes [48, 26]. There is a series of papers related
to Nash-Equilibria [9, 52, 30, 12, 11]. Another line of research studies matrix factorization
problems [23, 55, 56, 53]. Other ∃R-complete problems are the Art Gallery Problem [2, 58],
Covering polygons with convex polygons [1], and training neural networks [3, 10, 62].

Practical Implications. At first glance, the significance of ∃R-completeness might not be
immediately apparent, particularly given that most of these problems are already known to
be NP-hard. The significance has different aspects. One reason is that we are intrinsically
interested in establishing the true complexity of important algorithmic problems. Furthermore,
∃R-completeness helps us to understand better the difficulties encountered when designing
algorithms for those types of problems. While we have a myriad of techniques for NP-complete
problems, most of these techniques are of limited use when we consider ∃R-complete problems.
The reason is that ∃R-complete problems have an infinite set of possible solutions that are
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intertwined in a sophisticated way. Many researchers have hoped to discretize the solution
space, but success was limited [32, 41]. The complexity class ∃R connects all of those different
problems and tells us that we can either discretize all of them or none of them. To illustrate our
lack of sufficient worst-case methods, note that we do not know the smallest square container
to pack eleven unit squares, see Figure 2.

Figure 2. Left: Five unit
squares into a minimum
square container. Right: This
is the best known packing of
eleven unit squares into a
square container [31].

Technique. In order to show ∃R-hardness, usually two steps are involved. The first step is
a reduction to a technical variant of ETR. The second step is a reduction from that variant to
the problem at hand. Those ETR variants are typically CCSPs with only very limited types of
constraints. It is common to have an addition constraint (𝑥 + 𝑦 = 𝑧), and a non-linear constraint,
like one of the following:

𝑧 = 𝑥 · 𝑦, 𝑧 = 𝑥2, 1 = 𝑥 · 𝑦.

To find the right non-linear constraint is crucial for the second step, as it is often very difficult
to encode non-linear constraints in geometric problems. Previous proof techniques relied
on expressing multiplication indirectly using other operations. To be precise, we say that a
constraint 𝑐 of arity ℓ has a primitive positive definition in structure 𝑆, if there is a constraint
formula Φ in 𝑆 such that 𝑐( 𝑦1, . . . , 𝑦ℓ) if and only if ∃𝑥1, . . . , 𝑥𝑘 : Φ( 𝑦1, . . . , 𝑦ℓ, 𝑥1, . . . , 𝑥𝑘). In that
case, Φ is called a primitive positive formula, or just pp-formula. For instance, we can express
multiplication using squaring and addition as follows:

𝑥 · 𝑦 =

(𝑥 + 𝑦

2

)2
−

(𝑥 − 𝑦

2

)2
.

This translates into a pp-formula as follows. ∃𝐴0, 𝐴1, 𝐴2, 𝐵0, 𝐵1, 𝐵2 :

𝐴0 = 𝑥 + 𝑦,

𝐴0 = 𝐴1 + 𝐴1,

𝐴2 = 𝐴2
1,

𝑥 = 𝑦 + 𝐵0,

𝐵0 = 𝐵1 + 𝐵1,

𝐵2 = 𝐵2
1,

𝐴2 = 𝐵2 + 𝑧.

Given a pp-formula, we can reduce a CSP with constraint 𝑐 to a CSP with a different signature.
Here, we replaced the ternary constraint 𝑥 · 𝑦 = 𝑧 by the binary constraint 𝑥2 = 𝑦.

Furthermore, there are often some range constraints of the form 𝑥 > 0, 𝑥 ∈ [1/2, 2] or
even 𝑥 ∈ [−𝛿, 𝛿], for some 𝛿 = 𝑂(𝑛−𝑐), where 𝑛 is the number of variables. These constraints
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can be imposed on either all, or a subset of the variables. This makes the above reduction
more involved, as we need to pay attention to the ranges in every step. Range constraints are
important as we may only be able to encode variables in a certain limited range. Finally, it may
be useful to know some structural properties of the variable constraint graph, like planarity [38].

Overall, those techniques have their limitations. As the reductions rely on an explicit way
to express one non-linear constraint by another non-linear constraint and addition, we have
to find those identities. To illustrate this, we encourage the reader to find a way to express
multiplication (in some range) using 𝑥2 + 𝑦2 = 1 and linear constraints. (We consider the
constraint 𝑥 = 1 to be linear. See Appendix A for the solution.) This gets more tricky when
dealing with inequality constraints. For instance, it is not clear how to express multiplication
with 𝑥 · 𝑦 ≥ 1 and 𝑥2 + 𝑦2 ≥ 1. We offer 10 euro to the first person, who is able to find a pp-
formula to do so. Note that our theorems imply that those two inequalities together with linear
constraints are enough to establish ∃R-completeness, but we do not describe a pp-formula. At
last, translating a pp-formula into a reduction that respects the range constraints for every
variable becomes very tedious and lengthy. Furthermore, it only establishes ∃R-completeness
for those specific constraints. See Abrahamsen and Miltzow [4] for some of those reductions.

To overcome this limitation, we develop a new technique that establishes ∃R-completeness
for virtually any one non-linear equality constraint. We extend our results and show that any
one convex and any one concave inequality constraint are also sufficient to establish ∃R-
completeness. See Section 1.3 for a formal description of our results and Section 1.6 for an
overview of our techniques.

1.3 Results

We focus on the special case with essentially only one addition constraint and any one non-linear
constraint, see Definition 1.7. While this may seem like a strong limitation, note that addition
constraints are commonly easy to encode. In most applications, the non-linear constraint is the
crucial one. Before we introduce the main definition, we first specify more precisely how we
define the non-linear constraints.

DEF IN IT ION 1.5 (Function constraints). Let 𝑈 ⊆ R2 and let 𝑓 : 𝑈 → R be any function. Now
we define two constraints corresponding to 𝑓 as

EqualZero( 𝑓 ) = {(𝑥, 𝑦) ∈ 𝑈 | 𝑓 (𝑥, 𝑦) = 0} ∪ (R2 \𝑈),

and
LargerZero( 𝑓 ) = {(𝑥, 𝑦) ∈ 𝑈 | 𝑓 (𝑥, 𝑦) ≥ 0} ∪ (R2 \𝑈).

For convenience, we often use the shorthand notation 𝑓 (𝑥, 𝑦) = 0 and 𝑓 (𝑥, 𝑦) ≥ 0. Note
that this definition means that the constraints EqualZero( 𝑓 ) and LargerZero( 𝑓 ) are satisfied
whenever (𝑥, 𝑦) is outside of the domain 𝑈 of the function 𝑓 . We defined the constraints in
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this way as it turns out that it makes the soundness part of the proof for future reductions
considerably easier. One simply does not need to worry about solutions leaving the domain. We
will show that our difficult instances are actually domain adherent, as we will define below.

DEF IN IT ION 1.6 (domain adherent). Let Φ be a CCSP formula that contains some function
constraints, i.e. LargerZero( 𝑓 ) or EqualZero( 𝑓 ). Here 𝑓 is a function on the domain 𝑈 ⊂ R2.
We say a solution 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 is domain adherent if for every function constraint on
variables 𝑥𝑖 , 𝑥 𝑗 , we have that (𝑥𝑖 , 𝑥 𝑗) ∈ 𝑈 . We say Φ is domain adherent if this is true for all
solutions.

DEF IN IT ION 1.7 (Curved equality problem (CE)). Let𝑈 ⊆ R2 and let 𝑓 be a function 𝑓 : 𝑈 → R.
Then we define the signature 𝐶( 𝑓 , 𝛿) as

𝐶( 𝑓 , 𝛿) = {𝑥 + 𝑦 = 𝑧, EqualZero( 𝑓 ), 𝑥 ≥ 0, 𝑥 = 𝛿}.

In the CE problem, the input consists of a 𝛿 ∈ R and a constraint formula Φ on 𝑛 variables. The
formula Φ corresponds to the structure ⟨R, 𝐶( 𝑓 , 𝛿)⟩, where we are promised that𝑉 (Φ) ⊆ [−𝛿, 𝛿]𝑛

and that 𝑉 (Φ) is domain adherent. We are asked whether 𝑉 (Φ) ≠ ∅.

Note that the two promises 𝑉 (Φ) ⊆ [−𝛿, 𝛿]𝑛 and domain adherent, while formally inde-
pendent, are proven essentially in the same way, by scaling variables sufficiently close to the
origin.

We would like to emphasize that we are not having a constraint of the form 𝑥 ∈ [−𝛿, 𝛿] in
the signature. The property 𝑉 (Φ) ⊆ [−𝛿, 𝛿]𝑛 will be imposed only by using constraints of the
structure ⟨R, 𝐶( 𝑓 , 𝛿)⟩. Thus, we are dealing with so-called promise problems from computational
complexity. Note that this promise is difficult to check. We will discuss promise problems again
in Section 1.4.

This promise is also the reason why we defined the constraint EqualZero( 𝑓 ) to be true
everywhere outside of the domain of 𝑓 . We anticipate that most applications of our result
will likely focus on the case where [−𝛿, 𝛿]2 is a subset of 𝑈 . We will discuss the EqualZero( 𝑓 )
constraint in more detail in Section 1.4.

Note that although the problem is called curved equality problem, we make no assumptions
on 𝑓 as part of the definition. We do this explicitly, as there are various technical ways to
formulate those assumptions. Abrahamsen, Adamaszek, and Miltzow [2, 4] essentially showed
that CE is ∃R-complete for 𝑓 = (𝑥 − 1) ( 𝑦 − 1) − 1. Here, we generalize this to a wider set of
functions 𝑓 defined below. Recall that a set 𝑇 is a neighborhood of a point 𝑝 if there is an open
set 𝑆 with 𝑝 ∈ 𝑆 ⊆ 𝑇 .

DEF IN IT ION 1.8 (Well-behaved, triple algebraic). A function 𝑓 : 𝑈 → R is well-behaved if
the following conditions are met.

𝑓 is a 𝐶3-function, with 𝑈 ⊆ R2 being a neighborhood of (0, 0),
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𝑓 (0, 0) = 0, and all partial derivatives 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑥 , 𝑓𝑥 𝑦 and 𝑓𝑦 𝑦 are rational in (0, 0).
𝑓𝑥 (0, 0) ≠ 0 or 𝑓𝑦 (0, 0) ≠ 0.

A function 𝑓 : 𝑈 → R is triple algebraic if each of the three sets𝑈 , {(𝑥, 𝑦) ∈ 𝑈 | 𝑓 (𝑥, 𝑦) = 0}
and {𝑥, 𝑦 ∈ 𝑈 | 𝑓 (𝑥, 𝑦) ≥ 0} is semi-algebraic.

Note that if 𝑝(𝑥, 𝑦) is a polynomial of the form
∑

𝑖, 𝑗 𝑎𝑖, 𝑗𝑥
𝑖 𝑦 𝑗 , then 𝑝 is well-behaved if and

only if 𝑎0,0 = 0, 𝑎1,0, 𝑎0,1, 𝑎2,0, 𝑎1,1, 𝑎0,2 are rational, and at least one of 𝑎1,0 and 𝑎0,1 is nonzero.
We want to point out that some readers might find it easier to think of 𝑈 as a disk with a small
radius. To see that this is equally strong note that a disk around the origin is also a neighborhood
of the origin and also a semi-algebraic set. (We need to ask for the radius to be an algebraic
number.) Thus the ∃R-completeness also works for the case that 𝑈 is such a disk. But also
the ∃R-completeness for disks implies the ∃R-completeness for neighborhoods. Although a
formal proof is a bit tedious the intuition is that we can restrict the range of the variables to
lie within the disk given by the neighborhood condition. We decided to use the language of
neighborhoods, instead of disks, as we find it more convenient to work with neighborhoods, at
the cost of being a bit more abstract than absolutely necessary.

DEF IN IT ION 1.9 (Curved). Let 𝑓 : 𝑈 → R be a function that is well-behaved. We write the
curvature of 𝑓 at zero by

𝜅 = 𝜅( 𝑓 ) =
(
𝑓 2
𝑦 𝑓𝑥𝑥 − 2 𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑦 + 𝑓 2

𝑥 𝑓𝑦 𝑦

( 𝑓 2
𝑥 + 𝑓 2

𝑦 )
3
2

)
(0, 0),

see Figure 1 for an illustration. We say 𝑓 is
curved if 𝜅( 𝑓 ) ≠ 0,
convexly curved if 𝜅( 𝑓 ) < 0, and
concavely curved if 𝜅( 𝑓 ) > 0.

Note that the magnitude of 𝜅 equals the inverse of the radius of the osculating circle of the
curve {(𝑥, 𝑦) ∈ R2 : 𝑓 (𝑥, 𝑦) = 0} at the origin, see Figure 3. This is the circle which approximates
the curve as close as possible. The sign of 𝜅 indicates on which side the osculating circle touches
the curve. It is positive if this is on the side where 𝑓 is negative, negative if the circle touches on
the side where 𝑓 is positive, and zero if the origin is an inflection point and the osculating circle
is a line.

Note that we can define the simpler expression 𝜅′ = 𝜅′( 𝑓 )

𝜅′( 𝑓 ) =
(
𝑓 2
𝑦 𝑓𝑥𝑥 − 2 𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑦 + 𝑓 2

𝑥 𝑓𝑦 𝑦

)
(0, 0),

and it holds that sign(𝜅) = sign(𝜅′). For this reason, we will work with 𝜅′ instead of 𝜅.
Consider a polynomial 𝑝 of the form 𝑝(𝑥, 𝑦) = ∑

𝑖, 𝑗 𝑎𝑖 𝑗𝑥
𝑖 𝑦 𝑗 . Then 𝜅′(𝑝) equals

𝜅′(𝑝) = 𝑎2
012𝑎20 − 2𝑎10𝑎01𝑎11 + 𝑎2

102𝑎02.
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f(x, y) = 0

(0, 0)

1
κ

Figure 3. The formula for 𝜅
describes the inverse of the
radius of the osculating
circle touching (0, 0) on the
curve defined by 𝑓 .

In order to define the possible domain of 𝛿, we still need one more definition.

DEF IN IT ION 1.10. We say a function 𝑇 : N → Q>0 is bounded if there is a constant 𝐶 such
that 𝑇 (𝑛) ≤ 𝐶, for all 𝑛. The function 𝑇 is referred to as nicely computable if 𝑇 (𝑛) can be
expressed as a fraction of integers represented in binary, and this representation is computable
in time polynomial to the size of the integer representation of 𝑛.

We will create instances with 𝛿 = 𝑇 (𝑛) as input. Some functions that satisfy these conditions
are 𝑇 (𝑛) = 1, 𝑇 (𝑛) = 𝑛−𝑐, for some fixed constant 𝑐, or the function 𝑇 (𝑛) = 2−𝑛.

Now, we are ready to state our main theorem for equality constraints.

THEOREM 1.1 1. Let 𝑓 : 𝑈 → R be a function that is well-behaved, curved, and triple algebraic.
Let 𝑇 be a function that is both bounded and nicely computable. In this setting, CE is ∃R-complete,
even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

Note that ∃R-membership follows from the fact that 𝑈 and
{
𝑥, 𝑦 ∈ R2

�� 𝑓 (𝑥, 𝑦) = 0
}

are
semi-algebraic. Therefore, there must be ETR formulas 𝜑𝑈 and 𝜑 𝑓 such that the following two
statements hold.

𝜑𝑈 (𝑥, 𝑦) is true if and only if (𝑥, 𝑦) ∈ 𝑈 .
𝜑 𝑓 (𝑥, 𝑦) is true if and only if (𝑥, 𝑦) ∈ {𝑥, 𝑦 ∈ 𝑈 | 𝑓 (𝑥, 𝑦) = 0}.

Let Φ be a CE-formula. We replace each occurrence of EqualZero( 𝑓 ) (𝑥, 𝑦) in Φ by 𝜑 𝑓 (𝑥, 𝑦) ∨
¬𝜑𝑈 (𝑥, 𝑦). This gives us a new equivalent ETR formula Φ′. And thus CE is in ∃R. Note that the
fact that 𝑓 is triple algebraic is not needed for the ∃R-hardness part of Theorem 1.11.

The motivation for this article was to give a convenient tool to show ∃R-hardness of
geometric packing. Unfortunately, we are only capable of encoding inequality constraints in
geometric packing. Thus, in order to apply our techniques to geometric packing, we adapt
Theorem 1.11 to inequality constraints. In the following we define the convex concave inequality
problem (CCI), which is completely analogous to CE with one subtle difference. The constraint
𝑓 (𝑥, 𝑦) = 0 is replaced by 𝑓 (𝑥, 𝑦) ≥ 0 and 𝑔 (𝑥, 𝑦) ≥ 0. The curved constraint 𝑓 (𝑥, 𝑦) = 0 is
replaced by convexly curved and concavely curved conditions 𝑓 (𝑥, 𝑦) ≥ 0 and 𝑔 (𝑥, 𝑦) ≥ 0.
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DEF IN IT ION 1.12 (Convex concave inequality problem (CCI)). Let 𝑈 ⊆ R2 and let 𝑓 , 𝑔 be
functions such that 𝑓 , 𝑔 : 𝑈 → R. Then we define the signature 𝐶( 𝑓 , 𝑔, 𝛿) as

𝐶( 𝑓 , 𝑔, 𝛿) = {𝑥 + 𝑦 = 𝑧, LargerZero( 𝑓 ), LargerZero(𝑔), 𝑥 ≥ 0, 𝑥 = 𝛿}.

In the CCI problem, the input consists of a 𝛿 ∈ R and a constraint formula Φ on 𝑛 variables.
The formula Φ corresponds to the structure ⟨R, 𝐶( 𝑓 , 𝑔, 𝛿)⟩, where we are promised that 𝑉 (Φ) ⊆
[−𝛿, 𝛿]𝑛 and domain adherent. We are asked whether 𝑉 (Φ) ≠ ∅.

THEOREM 1.13. Let 𝑓 , 𝑔 : 𝑈 → R be well-behaved and triple algebraic. Furthermore, let 𝑓 , 𝑔 be
respectively convexly curved and concavely curved. Let 𝑇 be bounded and nicely computable. In
this setting, CCI is ∃R-complete, even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛

being the number of variables.

To show that CCI is in ∃R goes along the same lines as the proof that CE is in ∃R. Again,
the fact that 𝑓 is triple algebraic is not needed for the ∃R-hardness part of Theorem 1.13.

1.4 Discussion

Theorem 1.11 and Theorem 1.13 are strong generalizations of the ∃R-completeness of ETR-INV.
The problem ETR-INV was instrumental in establishing ∃R-completeness for both the Art Gallery
problem [2] and the conference version of the proof for geometric packing [5].

One of the major obstacles of the ∃R-completeness proofs of the Art Gallery problem was to
find a way to encode inversion. If the authors had known Theorem 1.11 back then, it would have
been sufficient to encode essentially any well-behaved and curved constraint on two variables,
which is much easier. In this section, we discuss strengths, limitations and different perspectives
with respect to our main results.

Comparison of Main Theorems. In order to compare Theorem 1.11 and Theorem 1.13,
consider the following two signatures and their interpretation for some given well-behaved
and curved 𝑓 :

𝐶1 = {𝑥 + 𝑦 = 𝑧, 𝑥 ≥ 0, 𝑥 = 𝛿, EqualZero( 𝑓 )},

and
𝐶2 = {𝑥 + 𝑦 = 𝑧, 𝑥 ≥ 0, 𝑥 = 𝛿, LargerZero( 𝑓 ), LargerZero(− 𝑓 )}.

Clearly, 𝐶2 is more expressive than 𝐶1. Therefore, ∃R-hardness of CE implies ∃R-hardness of
CCI in the special case 𝑔 = − 𝑓 . For unrelated 𝑓 and 𝑔 there is no further relation between the
two theorems. However, in the special case of 𝑓 = 𝑦 − 𝑓 (𝑥) and 𝑔 = 𝑓 (𝑥) − 𝑦, ∃R-hardness of
CCI implies ∃R-hardness of CE as follows: we can encode each constraint of the form 𝑓 (𝑥, 𝑦) =
𝑦− 𝑓 (𝑥) ≥ 0 using the new constraints 𝑓 (𝑥, 𝑧1) = 𝑧1− 𝑓 (𝑥) = 0, 𝑧2 = 𝑦−𝑧1, and 𝑧2 ≥ 0. Similarly,
constraints of the form 𝑔 (𝑥, 𝑦) = 𝑓 (𝑥) − 𝑦 ≥ 0 can be encoded in 𝐶1.
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Promise Problems. A promise problem is defined as an algorithmic problem where the in-
stances are restricted to those which satisfy a certain condition. In other words, we guarantee
that the condition holds.

In Theorem 1.11, we gave a promise on the problem instance. Namely, we guarantee that
the solution set will be contained in a box of a certain size. It is not very common that promises
are formulated in this way. However, promise problems are very common and in particular, they
can also be treated as decision problems. A prime example is the independent set problem on
planar graphs (MISPLANAR). MISPLANAR is known to be NP-complete and it is also a promise
problem. The main difference is that we can check whether a graph is planar in polynomial
time. However, even if planarity was undecidable the NP-completeness of MISPLANAR would
still be valid.

In our scenario, generally, it is not straightforward to verify the promise that the value of
each variable lies within the range [−𝛿, 𝛿]. This makes our result a bit unusual. However, it is
relatively straightforward to enforce that all solutions are in the desired range. This follows
in two steps. In the first step, we employ a known lemma from the real algebraic geometry
literature, which ensures that some solutions must be inside a large ball. Thereafter, we replace
each variable by a scaled copy of itself. This will require some small adaption of the constraints.
We can then enforce −𝛿 ≤ 𝑥 ≤ 𝛿, by the constraints (𝑠 = 𝑥 + 𝛿 and 𝑠 ≥ 0) as well as (𝑡 + 𝑥 = 𝛿

and 𝑡 ≥ 0) without changing the truth value of the instance.

First-order Theory of the Reals. With the full first-order theory of the reals it is easier
than with CCSPs to define all semi-algebraic sets. Specifically, we can define non-convex
sets using only convex constraints, as follows. If we allow a single convex constraint 𝐷 ={
(𝑥, 𝑦) ∈ R2

�� 𝑥2 + 𝑦2 ≤ 1
}

, then the following formula 𝜑 describes the upper half of the bound-
ary of the disk, given by

{
(𝑥, 𝑦) ∈ R2

�� 𝑥2 + 𝑦2 = 1 ∧ 𝑦 ≥ 0
}

:

𝜑(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ∧ ∀𝑧∈R(𝐷(𝑥, 𝑧) ⇒ 𝑧 ≤ 𝑦).

Another way to construct a non-convex constraint using convex constraints is as follows.

𝜑(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) ∧ ¬𝐷(𝑥 − 1, 𝑦)

Note that the second example only uses negations and no quantifiers.
Using just the language of CCSPs, it is however impossible to encode such a set using only

linear constraints and the constraint 𝐷(𝑥, 𝑦), as any CCSP instance of this form describes a con-
vex set. Note in particular that we may not apply quantifier elimination to the given formula 𝜑,
since this is impossible without introducing non-linear constraints different from 𝐷(𝑥, 𝑦). For a
more extensive analysis of the semi-algebraic sets which can be described using the first order
theory of the reals when the set of atomic formulas is restricted, we refer to [39, 46, 47].
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Convex Constraints. We want to point out that addition and convexly curved constraints
alone seem not to be sufficient to establish ∃R-completeness, as convex programs have efficient
approximation algorithms [17]. As convex programming is so efficiently fast solvable in practice
it would be a big surprise if it would be ∃R-complete. However, there are reasons to believe
that convex programming is not polynomial-time solvable, see the discussion by O’Donnell [44].
See [45, 6, 59] for an in-depth discussion why convex programming is potentially not polynomial-
time solvable.

Concave Constraints. When we remove the convex constraint but keep the concave con-
straint in Theorem 1.13 then we do not know if the problem is ∃R-complete. It is easy though to
establish NP-hardness in this case [14]. We consider the option that there is another complexity
class Concave that characterizes such CCSPs. As with geometric packing with convex pieces,
polygonal containers and translations grant the possibility to encode only linear and concave
constraints. This problem is a natural candidate to be Concave-complete. We are curious if this
intuition could be supported in some mathematically rigorous way.

Unary Constraints. Note that the constraint 𝑥 = 𝛿 is necessary to ensure that the origin is
not always a valid solution. Although 𝑥 ≥ 0 may not be necessary to imply ∃R-completeness,
our proof heavily relies on it. As an example where this constraint is not needed, consider the
case where we have the constraint 𝑦 = 𝑥2. In this case we could replace any constraint of the
form 𝑥 ≥ 0 by 𝑥 = 𝑧2, for some new variable 𝑧. In applications, it is usually very easy to encode
unary constraints.

Binary Constraints. If we remove the addition constraint, we are left only with constraints
in at most two variables. This seems too weak to establish ∃R-completeness, as setting 𝑥

determines 𝑦, up to finitely many options once we impose the constraint 𝑓 (𝑥, 𝑦) = 0. On the
other hand, very large and irrational solutions can be enforced, which makes it unlikely for
those CCSPs to be contained in general in NP. We wonder about the algorithmic complexity of
CCSPs with only binary constraints.

Ternary Constraints. Given the discussion above, it seems plausible that at least one ternary
constraint is required to establish ∃R-completeness. Therefore, we find it interesting to focus on
ternary constraints. Let’s consider first the natural ternary multiplication constraint 𝑥 · 𝑦 = 𝑧.
First, we notice that setting all variables to zero satisfies this constraint. If this is the only
constraint then we have a polynomial time algorithm. Second, the ternary multiplication
constraint 𝑥 · 𝑦 = 𝑧 can be transformed to the linear constraint log 𝑥 + log 𝑦 = log 𝑧 [16], in
case all variables are positive. This trick can help in case the all-zero solution is not allowed
or other unary constraints are introduced. Therefore, the multiplication constraint does not
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lead to ∃R-hardness by itself. Furthermore, due to the logarithm trick, multiplication seems
somewhat easier than other ternary constraints.

It is plausible that this trick or similar tricks can only be applied to exceptional ternary
constraints. We leave it as an exciting open problem to determine which ternary constraints
lead to ∃R-complete CCSPs.

Arbitrary Constraints. We want to point out that our results only concern constraints coming
from well-behaved functions, instead of allowing arbitrary constraints. Such a restriction is
necessary, since otherwise we could, for example, consider CSPs with a constraint that forces
a variable to be an integer. This would allow us to encode arbitrary Diophantine equations,
making the problem undecidable. Even more Bodirsky and Grohe [13] showed that any algo-
rithmic decision problem has an equally difficult CSP problem. As a consequence, any type of
classification of continuous constraints must limit the set of allowed constraints in some way.

Variable-Constraint Graph. We have completely neglected the variable-constraint incidence
graph in this paper. Previous work showed that this graph can be restricted, by self-reduction
and a clever application of the addition constraint [25, 38]. We are curious if it is possible to
classify hereditary graph classes for which CCI is ∃R-complete.

Universality Results. Previous reductions of ∃R-completeness usually also imply so-called
universality results. Giving a proper introduction to universality results is outside the scope of
this paper. Universality results translate topological and algebraic phenomena from one type of
CSP to another type. See the lecture notes by Matoušek for some introduction to universality
theorems in this context [41]. Our methods do not seem to imply these types of universality
results. Specifically, if 𝑓 is a complicated function that is not even a polynomial, it seems
implausible that 𝑓 can be used to construct, say,

√
2.

Algebraic Derivatives. Given the applications that we are aware of, the most complicated
part was to check that 𝑓 , 𝑔 and their derivatives are rational at the origin.

We wonder whether it might be sufficient if the values of 𝑓 , 𝑔 and its derivatives are
algebraic at the origin. This weaker condition might follow from some general argument that
avoids computing 𝑓 , 𝑔 and its derivatives.

Constraints true outside of Domain. We have defined the constraints EqualZero( 𝑓 ) and
LargerZero( 𝑓 ) to be true outside of the domain of 𝑓 . We use this formulation to make our
results slightly easier to apply. The use case is as follows. Assume that we have some CE instance
Φ and we are building an instance 𝐼 of some other type of, say geometric, problem from it.
Assume that we are able to construct a gadget representing a suitable curved and well-behaved
function 𝑓 . We have to show that Φ is a yes instance if and only if 𝐼 is a yes instance. One
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direction is commonly easy. In case that Φ is a yes instance then there must be some 𝑥 that
satisfies all the constraints. Typically, the construction of 𝐼 together with 𝑥, directly shows that
𝐼 is also a yes instance. Sometimes, the reverse direction is more difficult. We have to show that
if 𝐼 is a yes-instance then Φ is one as well. The tricky part is that it is sometimes conceivable that
𝐼 has a solution, but that this solution could potentially leave the intended range. We still have to
show that all constraints of Φ are satisfied. This is now trivial for the constraints EqualZero( 𝑓 )
and LargerZero( 𝑓 ), as they are defined to be always true outside of the domain of 𝑓 . In other
words, the way we defined the constraints derived from 𝑓 ensures that we do not need to worry
about variables leaving their range when applying our results.

1.5 Alternative Descriptions

In this subsection, we want to make some comments that might make it easier to apply our
results to CCSPs where the constraints are given in explicit form or by a parametrization. Before
we delve into technical details consider the following example.

y =
√
1− x2

x2 + y2 = 1

(cos t, sin t)

Figure 4. Three
descriptions of the points on
the semi-circle.

EXAMPLE 1.14. Let 𝑆 =
{
(𝑥, 𝑦) ∈ R2

�� 𝑥2 + 𝑦2 = 1
}

be the circle. We can define the function
𝑓 (𝑥, 𝑦) = 𝑥2+ 𝑦2−1, which describes the set 𝑆 by

{
(𝑥, 𝑦) ∈ R2

�� 𝑓 (𝑥, 𝑦) = 0
}

. We can easily check
that 𝑓 is well-behaved and curved and apply Theorem 1.11. (Note that 𝑓 (0, 0) ≠ 0, but this can
be easily fixed by shifting 𝑓 . We do not do this here to keep the notation simple.)

In a different setting, we may know that 𝑆 is the graph of a function ℎ : [−1, 1] → R given
by ℎ(𝑥) =

√
1 − 𝑥2. This would mean

𝑆 = {(𝑥, ℎ(𝑥)) ∈ R × R | 𝑥 ∈ [−1, 1]} ∪ {(𝑥,−ℎ(𝑥)) ∈ R × R | 𝑥 ∈ [−1, 1]} .

If we are given such a description, it is possible to rewrite the condition 𝑦 = ℎ(𝑥) as 𝑓 (𝑥, 𝑦) = 0
for 𝑓 (𝑥, 𝑦) = 𝑦 − ℎ(𝑥), and we can check whether 𝑓 satisfies the necessary conditions. Instead,
it turns out we can more easily check the relevant conditions directly on ℎ.

Another description of the set 𝑆 could be by a parametrization 𝛾(𝑡) = (cos 𝑡, sin 𝑡). With
this it holds that 𝑆 =

{
𝛾(𝑡) ∈ R2

�� 𝑡 ∈ [−𝜋, 𝜋]
}

. While we know 𝑓 in this specific case, in general,
it is not so easy anymore to give an explicit description of 𝑓 . We will give some conditions on 𝛾

which can be checked to ensure that our theorems can be applied when the constraint has such
a parametrized form. ■
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In this section, we derive sufficient conditions to check that 𝑓 exists and is well-behaved
and curved, even when we do not know how to describe 𝑓 explicitly. These conditions are used
in at least two applications [5, 36]. In this section, we ignore issues about ∃R-membership as
they are not so easy to handle and we believe that most readers care about the ∃R-hardness
part anyways.

Explicit Description. We consider the case that the constraint 𝑓 (𝑥, 𝑦) = 0 is described by
𝑦 = ℎ(𝑥).

DEF IN IT ION 1.15 (well-behaved, curved). We say ℎ : 𝐼 → R is well-behaved if it satisfies the
following conditions.

ℎ is a 𝐶3 function, with 𝐼 ⊂ R being an interval with 0 in its interior.
ℎ(0) = 0, and ℎ′(0) and ℎ′′(0) are rational.

We say ℎ is
curved if ℎ′′(0) ≠ 0,
convexly curved if ℎ′′(0) > 0, and
concavely curved if ℎ′′(0) < 0.

Note that our definition of ℎ being convexly curved corresponds to ℎ being a convex
function. Note that we have now defined the terms well-behaved, curved etc both for 𝑓 as well
as for ℎ. The next lemma justifies this overload, as it shows that they also exactly correspond to
one another.

LEMMA 1.16. Let ℎ : 𝐼 → R be a well-behaved function and 𝑓 : 𝐼 ×R→ R be defined as 𝑓 (𝑥, 𝑦) =
𝑦 − ℎ(𝑥). Then 𝑓 is well-behaved as well. Furthermore, any property (curved, convexly curved,
concavely curved) that is satisfied by ℎ is also satisfied by 𝑓 .

PROOF . We check all conditions of well-behavedness one-by-one. We note that 𝑈 = 𝐼 × R is
indeed a neighborhood of the origin. As ℎ is 𝐶3, so is 𝑓 . It holds that 𝑓 (0, 0) = 0 − ℎ(0) = 0. The
derivatives have the following form:

𝑓𝑥 = −ℎ′, 𝑓𝑦 = 1, 𝑓𝑥𝑥 = −ℎ′′, 𝑓𝑥 𝑦 = 0, 𝑓𝑦 𝑦 = 0.

Recall that by Young’s theorem 𝑓𝑥 𝑦 = 𝑓𝑦𝑥 . As ℎ(0), ℎ′(0), and ℎ′′(0) are rational, so are the values
of 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑥 , 𝑓𝑥 𝑦, 𝑓𝑦 𝑦 when evaluated in the origin. We now compute

𝜅′( 𝑓 ) =
(
𝑓 2
𝑦 𝑓𝑥𝑥 − 2 𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑦 + 𝑓 2

𝑥 𝑓𝑦 𝑦

)
(0, 0) = −ℎ′′(0) + 2ℎ′(0) · 0 + (−ℎ′(0))2 · 0 = −ℎ′′(0).

Thus the properties are also in correspondence to one another. ■

We are now ready to go to the parametrized description.
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(a) (b) (c) (d) (e)

Figure 5. The curves displayed in (a) to (d) do not satisfy our conditions. In (a) and (b) the situation
could be fixed by reversing the role of 𝑥 and 𝑦. In (c) the situation could be fixed by restricting the range
of 𝑡. Although 𝛾 is smooth in (d), the corresponding function ℎ = 𝑏 ◦ 𝑎−1 is not. In (e) it is the case that
𝑎′(𝑡) < 0. We can define a new parametrization 𝛾(−𝑡), which satisfies now all conditions.

Parameterized Description. We next consider the case that the set 𝑆 that describes the
constraint is given by a parametrization 𝛾 = (𝑎, 𝑏) : 𝐼 → R2.

DEF IN IT ION 1.17. We say a parametrization 𝛾 = (𝑎, 𝑏) : 𝐼 → R2 is well-behaved if it satisfies
the following conditions.

𝛾 is a 𝐶3 parametrization, with 𝐼 ⊂ R being an interval with 0 in its interior.
𝛾(𝑡) = (0, 0) if and only if 𝑡 = 0.
The functions 𝑎′, 𝑏′, 𝑎′′, 𝑏′′ are all rational in 0 and 𝑎′(𝑡) > 0, ∀𝑡 ∈ 𝐼 .

We define 𝜅′(𝛾) = 𝑎′′ · 𝑏′ − 𝑏′′ · 𝑎′(0). We say 𝛾 is
curved if 𝜅′(𝛾) ≠ 0,
convexly curved if 𝜅′(𝛾) < 0, and
concavely curved if 𝜅′(𝛾) > 0.

Here, we made the assumptions that 𝑎′(𝑡) > 0,∀𝑡 ∈ 𝐼 , so that we can apply the inverse
function theorem globally. This makes the notation easier and removes some pathological cases
when 𝛾 approaches the origin for larger 𝑡. Intuitively, the condition states that 𝛾 goes from left
to right. Note that if 𝑎′(𝑡) < 0,∀𝑡 ∈ 𝐼 , we can just replace the parametrization 𝛾(𝑡) by 𝛾(−𝑡). It is
also not such a strong assumption as 𝑎′(0) ≠ 0 also implies 𝑎′(𝑡) ≠ 0 ∀𝑡 ∈ 𝐽 for some sufficiently
small open interval 𝐽 containing zero.

As we will show later, if 𝛾 is well-behaved then 𝛾 describes the graph of a function ℎ(𝑥) = 𝑦.
See Figure 5 for a geometric illustration for the different cases that can occur if one of the
conditions is dropped. Specifically, we can describe ℎ(𝑥) by 𝑏(𝑎−1(𝑥)).

LEMMA 1.18. Let the parametrization 𝛾 be well-behaved. Then there is an interval around the
origin 𝐽 ⊆ R and some well-behaved 𝑓 such that{

𝛾(𝑡) ∈ R2 �� 𝑡 ∈ 𝐼
}
= {(𝑥, 𝑦) ∈ 𝐽 × R | 𝑓 (𝑥, 𝑦) = 0} ,

and such that {(𝑥, 𝑦) ∈ 𝐽 × R | 𝑓 (𝑥, 𝑦) ≥ 0} is exactly the set of points above the curve given by 𝛾.
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Furthermore, it is possible to choose 𝑓 such that any property (curved, convexly curved,
concavely curved) that is satisfied by 𝛾 is also satisfied by 𝑓 .

The proof will make use of a specific version of the inverse function theorem that we state
here for the benefit of the reader.

THEOREM 1.19 (Inverse Function Theorem). Let 𝐼 ⊆ R be some interval containing 0 in its
interior, and let 𝑎 : 𝐼 → R be a 𝐶3-function, with 𝑎(0) = 0 and 𝑎′(𝑡) ≠ 0 for all 𝑡 ∈ 𝐼 . In this
situation, 𝑎 : 𝐼 → 𝑎(𝐼) is invertible, and its inverse 𝑎−1 : 𝑎(𝐼) → 𝐼 is a 𝐶3-function.

We want to point out that the function 𝑎−1 often cannot be expressed in closed form.
For instance, if 𝑎(𝑡) = 𝑡5 − 𝑡 − 1 for 𝑡 ∈ [1, 2], then 𝑎′(𝑡) is positive for all 𝑡, but 𝑎−1(0) does
not admit a closed form expression [61]. And thus it is also not so difficult to find examples
of parametrizations for which we cannot find a closed form expression by some function 𝑓 .
Therefore, it is really useful to have conditions on 𝛾 that we can check instead of having to
find 𝑓 .

PROOF OF LEMMA 1.18 . First we argue that 𝛾 describes the graph of a function ℎ. Recall
that 𝛾 consists of the two components 𝑎 and 𝑏, i.e., 𝛾(𝑡) = (𝑎(𝑡), 𝑏(𝑡)). We note that all conditions
of the inverse function theorem as stated above are satisfied for 𝑎, thus if we let 𝐽 = 𝑎(𝐼), then
there is inverse function 𝑎−1 : 𝐽 → 𝐼 that is a 𝐶3 function. We now define

ℎ(𝑥) = 𝑏(𝑎−1(𝑥)),

for all 𝑥 ∈ 𝐽 . Using the fact that 𝑎−1 is an inverse of 𝑎, it follows that{
𝛾(𝑡) ∈ R2 �� 𝑡 ∈ 𝐼

}
=

{
(𝑥, ℎ(𝑥)) ∈ R2 �� 𝑥 ∈ 𝐽

}
= {(𝑥, 𝑦) ∈ 𝐽 × R | 𝑦 = ℎ(𝑥)} .

If we define 𝑓 (𝑥, 𝑦) = 𝑦 − ℎ(𝑥) for (𝑥, 𝑦) ∈ 𝐽 × R, it follows that{
𝛾(𝑡) ∈ R2 �� 𝑡 ∈ 𝐼

}
= {(𝑥, 𝑦) ∈ 𝐽 × R | 𝑓 (𝑥, 𝑦) = 0} .

Note that a point (𝑥, 𝑦) in 𝐽 × R lies above the curve given by 𝛾 if and only if 𝑦 ≥ ℎ(𝑥), which is
equivalent to 𝑓 (𝑥, 𝑦) ≥ 0. This proves the first part of the lemma.

For proving the second part, by Lemma 1.16, it is sufficient to evaluate ℎ(𝑥) = 𝑏(𝑎−1(𝑥))
and its derivatives at 𝑥 = 0. We start with

ℎ′(0) = 𝑏′(𝑎−1(0))
𝑎′(𝑎−1(0)) =

𝑏′(0)
𝑎′(0) .

We continue with

ℎ′′(0) = 𝑏′′(𝑎−1(0))𝑎′(𝑎−1(0)) − 𝑎′′(𝑎−1(0))𝑏′(𝑎−1(0))
[𝑎′(𝑎−1(0))]3 =

𝑏′′(0)𝑎′(0) − 𝑎′′(0)𝑏′(0)
[𝑎′(0)]3 = − 𝜅′(𝛾)

[𝑎′(0)]3 .

Note that, since 𝑎′(0) > 0, this implies that ℎ′′(0) and 𝜅′(𝛾) have opposite signs. This finishes
the proof. ■
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1.6 Proof Overview for CE and CCI

The proofs of Theorem 1.11 and Theorem 1.13 follow several steps which we explain in this
section. We start by explaining how ∃R-hardness of CE (Theorem 1.11) can be proven, and then
we say how this can be modified to prove the hardness of CCI (Theorem 1.13). The structure of
the proof is visualized in Figure 6.

Notation. In our proofs, newly introduced variables will often be denoted by using double
square brackets, like this: J 𝑓 (𝑥)K, J𝑥 + 𝑦K,

q
𝑥2y, etc. In this notation, formally the whole expres-

sion including the brackets and the symbols within it should be understood as the name of the
variable, without any special meaning. The symbols within the brackets will usually denote the
value which is intuitively represented by the variable.

almost solution → solution

explicit |f(x)− x2| ≤ |x3|/10

ETR-SQUARE

y − x2 = 12 + 2x2 + y2 − (1 + y)2

triangle-inequality

linear transformation

Taylor expansion

implicit function theorem

CCI ∃R-complete for

CCI ∃R-complete for scaling to tiny range

ball theorem

f, g ≈ x2
explicit |g(x)− x2| ≤ |x3|/10

Section 3.1

Section 3.2 & 3.3

explicit f ∈ C2 and f ′′(0) > 0

Lem 37,38, Cor 34

explicit g ∈ C2 and g′′(0) > 0

CE ∃R-complete for

explicit f ∈ C2 and f ′′(0) > 0

Lemma 41

CCI ∃R-complete for

Section 3.4

f implicit and convexly curved

g implicit and concavely curved

CE ∃R-complete for

f implicit and curved

reduction CCI to CE

Section 3.4

Theorem ATheorem B

Figure 6. A formal overview of the different steps of the proof to Theorem 1.11 and Theorem 1.13.

Ball Theorem. One of the most important tools that we employ is a lemma from real algebraic
geometry [8]. It states that for every ETR-formula Φ there is a ball 𝐵 whose radius only depends
on the length 𝐿 of Φ, such that the following property is satisfied: if Φ has at least one solution 𝑥

then there must be also a solution 𝑦 inside the ball 𝐵. This theorem tells us that solutions
cannot get too large. To get an intuition, consider the system of equations 𝑥0 = 2, 𝑥𝑖+1 = 𝑥2

𝑖
,
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for 𝑖 = 0, 1, . . . , 𝑛 − 1. Clearly, 𝑥𝑛 = 22𝑛 , which is doubly exponentially large. The ball theorem
essentially states that we cannot get much larger numbers.

Range. To introduce range constraints is common practice and we inherit them from previous
work [4, 5]. We repeat here the argument, for the benefit of the reader. In order to restrict the
range of every variable, we first note that the ball theorem already tells us that the range of each
variable may be limited by some number 𝑟. We construct 𝜀 = 𝛿/𝑟 and replace every variable 𝑥

by J𝜀𝑥K = 𝜀 · 𝑥 and consequently we need to adapt all constraints. For instance 𝑥 · 𝑦 = 𝑧 becomes
J𝜀𝑥K · J𝜀 𝑦K = J𝜀𝑧K 𝜀. In this way, we can easily ensure that if there is a solution at all then there
is at least one solution with all variables in the range [−𝛿, 𝛿].

We will make use of this re-scaling trick to place all variables in an even smaller range
close to zero, as the behavior of 𝑓 and 𝑔 is better understood close to the origin. Specifically, the
error | 𝑓 (𝑥) − 𝑥2 | ≤ 𝜀3 is small enough to pretend that 𝑓 behaves like a squaring function.

Approximate Solution. Using the ball theorem, we will establish that equality constraints of
the form 𝑝(𝑥) = 0 can be slightly weakened to |𝑝(𝑥) | ≤ 𝜀 for some sufficiently small 𝜀. To get an
intuition consider the following highly simplified cases.

Assume we are given a polynomial equation 𝑝(𝑥) = 0, with 𝑝 ∈ Z[𝑋1, . . . , 𝑋𝑛] and we are
looking for a solution 𝑥 ∈ Z𝑛. Then in particular, we know that for all 𝑥 ∈ Z𝑛 that 𝑝(𝑥) ∈ Z. This
readily implies that we can equivalently ask for some 𝑥 ∈ Z𝑛 that satisfies |𝑝(𝑥) | ≤ 1

2 . Now, this
is trivial for integers as integers have distance at least one to each other. But we can generalize
the same principle also to rational and algebraic numbers.

Let 𝑆 = { 𝑎1
𝑏1
, . . . , 𝑎1

𝑏1
} be 𝑛 rational numbers with |𝑎𝑖 |, |𝑏𝑖 | ≤ 𝐿. Thus it is easy to see that

𝑞, 𝑟 ∈ 𝑆 have minimum distance 1
𝐿2 . This implies that if |𝑞 − 𝑟 | ≤ 1

𝐿2 , for some 𝑞, 𝑟 ∈ 𝑆, we can
infer that 𝑞 = 𝑟. Again, this may seem almost trivial, but relies on the simple fact that rational
numbers with bounded numerator and denominator have a minimum distance to one another.

Lemma 3.2 generalizes the idea to algebraic numbers. Using the ball theorem, we will
establish that algebraic numbers also have some minimum distance to one another, if we restrict
their bit-complexity.

ETR-SQUARE. We use a theorem by Abrahamsen and Miltzow that shows that ETR-SQUARE
is ∃R-complete [4]. In this variant, we essentially have only addition (𝑥 + 𝑦 = 𝑧) and squaring
constraints (𝑥2 = 𝑦). Furthermore, the range of each variable is restricted to a small range
around zero. For the sake of completeness and readability, we present a self-contained proof in
Section 2.
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Explicit. Given those tools, we can show that we can replace a squaring constraint with explicit
constraints ( 𝑓 (𝑥) = 𝑦). We start by only considering 𝑓 which satisfy

| 𝑓 (𝑥) − 𝑥2 | ≤ 1
10

𝑥3. (1)

The idea of the reduction from ETR-SQUARE is simple but tedious. We can rewrite the constraint
𝑥2 = 𝑦 as a linear combination of squares as follows

12 + 2𝑥2 + 𝑦2 − (1 + 𝑦)2 = 0.

Now, we can replace each square using the function 𝑓 to 𝑓 (1)+2 𝑓 (𝑥)+ 𝑓 ( 𝑦)− 𝑓 (1+ 𝑦) = 0. As 𝑓 is
approximately squaring, this implies that we are approximately enforcing the constraint 𝑥2 = 𝑦.
In other words, we enforce |𝑥2 − 𝑦 | ≤ 𝜀. Note that this is the technically most tedious step to
make rigorous as we will later see. As we have discussed above it is sufficient to enforce each
constraint approximately. The technical difficulty is many-fold. We need to work with scaled
variables, instead of the original variables. Furthermore, we have to take into consideration
that when we construct 𝜀 that this also makes the formula longer. In particular, this means that
the definition of 𝜀 cannot depend on the newly constructed instance, but has to depend on the
original instance.

Using linear transformations and Taylor expansion on 𝑓 , we can replace Condition (1)
relatively easily by Condition (2):

𝑓 is three times differentiable and 𝑓 ′′(0) > 0. (2)

f(x, y) = 0

y = fexpl(x)

Figure 7. The implicit
function theorem tells us
that there is an function 𝑓expl

such that the curve
𝑦 = 𝑓expl(𝑥) is locally identical
to the curve 𝑓 (𝑥, 𝑦) = 0.

Implicit. We are now ready to handle the more general case of constraints in implicit form
( 𝑓 (𝑥, 𝑦) = 0). The implicit function theorem tells us that there is a function 𝑓expl such that the
curve 𝑦 = 𝑓expl(𝑥) is locally identical to the curve 𝑓 (𝑥, 𝑦) = 0, see Figure 7. The properties
of the partial derivatives of 𝑓 translate to properties of the partial derivatives of 𝑓expl. In this
way, we can infer hardness of the CSP with constraint 𝑓 (𝑥, 𝑦) = 0 from the problem with
constraint 𝑦 = 𝑓expl(𝑥).
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Inequalities. Until this point, we discussed the hardness proof of CE. In CCI, we instead have
inequality constraints. The case of inequalities goes analogously to the equality case. We need
one convexly curved and one concavely curved inequality. Whenever we want to upper bound
an expression, we use one inequality and whenever we need to lower bound something, we
use the other one. While on the surface this is not so difficult, it makes the reduction from
ETR-SQUARE to CCI considerably more tedious. Specifically, it makes it harder to have an
intuition on several technical steps and the meaning of several intermediate variables.

2. ETR-Square

This section is dedicated to showing that ETR can be reduced to ETR-SQUARE. We execute all
steps of the reduction in great detail for the sake of completeness. This section is largely copied
from the paper by Abrahamsen and Miltzow [4]. We mainly simplified the proofs, as we only
show ∃R-completeness and we leave out the parts that were needed to preserve topological or
algebraic properties. Note that large parts in this section can be considered folklore. Similar
reductions have been described by Schaefer and Štefankovič [52]. We say two ETR formulas
are equisatisfiable if they have the same truth value. We say that a formula Φ is true if 𝑉 (Φ) is
non-empty.

2.1 Reduction to Conjunctive Form

DEF IN IT ION 2 .1. An ETR-CONJ formula Φ = Φ(𝑥1, . . . , 𝑥𝑛) is a conjunction 𝐶1∧ . . .∧𝐶𝑚, where
𝑚 ≥ 0 and each 𝐶𝑖 is of one of the two forms

𝑥 ≥ 0, 𝑝( 𝑦1, . . . , 𝑦𝑙) = 0

for 𝑥, 𝑦1, . . . , 𝑦𝑙 ∈ {𝑥1, . . . , 𝑥𝑛} and 𝑝 a polynomial.
In the problem ETR-CONJ, we are given an ETR-CONJ formula Φ. The goal is to decide

if 𝑉 (Φ) is non-empty.

We want to point out that ETR-CONJ is a CSP, but it has an infinite set of possible constraints,
one for each polynomial. Thus, we find it inconvenient to use the language of CSPs here.
Furthermore, we allow polynomials represented by any well-defined term built from the
symbols {0, 1, 𝑥1, . . . , 𝑥𝑛, +,−, ·} and brackets, (e.g. 𝑝 = (𝑥 + 1) (𝑥 − 1) + 𝑥), and not just those
in standard form (e.g. 𝑝 = 𝑥2 + 𝑥 − 1). Note that since there are no strict inequalities in a
formula Φ in ETR-CONJ, the set 𝑉 (Φ) is closed. We show how to reduce a general ETR formula
to an ETR-CONJ formula.

LEMMA 2.2. Given an ETR formula Φ, we can compute in linear time an equisatisfiable ETR-CONJ
formula Ψ.
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PROOF . We start with an ETR formula Φ and modify it repeatedly to attain an ETR-CONJ
formula Ψ. Each modification leads to an equisatisfiable formula. Our modifications can be
summarized in four steps. (1) Delete “¬”. (2) Delete “>”. (3) Delete “≥”. (4) Delete “∨”. In the
rest of this proof, 𝑝 and 𝑞 denote polynomials.

Step (1): Here, we merely “pull” every negation ¬ in front of every atomic predicate. For
instance ¬(𝐴∨ 𝐵∨𝐶) becomes (¬𝐴∧¬𝐵∧¬𝐶). To see that this can be done in linear time, note
that the length of Φ is at least the number of atomic predicates. At the end of this process, every
atomic predicate is preceded by either a negation or not. It may be that ∧ and ∨ symbols are
swapped, but each is counted as one symbol.

Thereafter each atomic predicate preceded by ¬ is replaced as follows:

¬(𝑞 > 0) ↦→ −𝑞 ≥ 0

¬(𝑞 = 0) ↦→ (𝑞 > 0) ∨ (−𝑞 > 0)
¬(𝑞 ≥ 0) ↦→ −𝑞 > 0

Those replacements are done repeatedly until there are no occurrences of “¬” left in the formula.
Step (2): We replace each strict inequality as follows:

𝑞 > 0 ↦→ (𝑞 · 𝑦 · 𝑦 − 1 = 0),

where 𝑦 is a new variable. Those replacements are done repeatedly till there are no occurrences
of “>” left in the formula.

Step (3): We replace all atomic predicates of the form 𝑞 ≥ 0 by the predicate 𝑞 − 𝑧2 = 0,
where 𝑧 denotes a new variable.

Step (4): We delete disjunctions as follows. It will also be necessary to replace some
conjunctions. Let Φ be the formula after Step (1)–(3). Let Ψ be an, initially empty, ETR-CONJ
formula. In this step, we will describe an algorithm to repeatedly modify Φ and Ψ in such a way
that Φ ∧ Ψ stays equisatisfiable to the initial value of Φ. We will continue these modifications
until Φ consists of just a single equation of the form 𝑝 = 0.

While Φ is not of this form, it either contains a disjunction of the form 𝑝 = 0 ∨ 𝑞 = 0, or a
conjunction of the form 𝑝 = 0 ∧ 𝑞 = 0. The disjunction 𝑝 = 0 ∨ 𝑞 = 0 we can replace by a single
equation 𝑝 · 𝑞 = 0. For a conjunction 𝑝 = 0 ∧ 𝑞 = 0, we add new variables 𝑥, 𝑦 and replace it
in Φ by 𝑥 · 𝑥 + 𝑦 · 𝑦 = 0, while we also replace Ψ by Ψ ∧ (𝑝 − 𝑥 = 0) ∧ (𝑞 − 𝑦 = 0). Note that in
each step, the number of atomic formulas in Φ is reduced by 1, so we know that the reduction
terminates in a linear number of steps.

When Φ consists of just a single polynomial equation, we can replace Ψ by Ψ ∧ Φ, and we
conclude that Ψ is an ETR-CONJ formula which is equisatisfiable to the original Φ.

At first, it might seem easier to replace 𝑝 = 0 ∧ 𝑞 = 0 by 𝑝 · 𝑝 + 𝑞 · 𝑞 = 0. However, we want
our reduction to be linear and the simplified step could, if done repeatedly, lead to very long
formulas. With the replacement rules we have suggested, the length of the formula increases
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by at most a constant factor. This reduction takes linear time and the final formula Ψ is an
ETR-CONJ formula. ■

2.2 Reduction to Compact Semi-Algebraic Sets

In this section, we show the hardness of ETR-COMPACT. In that variant, we are promised that
the solution space is compact. To do so, we employ a theorem that states that every solution
space is either empty or intersects a large ball.

DEF IN IT ION 2 .3. In the problem ETR-COMPACT, we are given an ETR-CONJ formula Φ with
the promise that 𝑉 (Φ) is compact. The goal is to decide if 𝑉 (Φ) is non-empty.

We need a tool from real algebraic geometry. The following corollary has been pointed out
by Schaefer and Štefankovič [52] in a simplified form. We always use logarithms with base two.

COROLLARY 2 .4 (Basu, Roy [8] Theorem 2). Let Φ be an instance of ETR of length 𝐿 ≥ 4
such that 𝑉 (Φ) is a non-empty subset of R𝑛. Let 𝐵 be the set of points in R𝑛 at distance at
most 2𝐿8𝑛

= 228𝑛 log 𝐿 from the origin. Then 𝐵 ∩𝑉 (Φ) ≠ ∅.

LEMMA 2.5. There is a reduction from ETR-CONJ to ETR-COMPACT in 𝑂(𝐿 log 𝐿) time, where 𝐿

is the length of the formula.

PROOF . Let an instance Φ of ETR-CONJ be given and define 𝑘 = ⌈8𝑛 log 𝐿⌉. To make an
equisatisfiable formula Ψ such that𝑉 (Ψ) is compact, we start by including all the variables and
constraints of Φ in Ψ. We then construct the variables

r
220

z
, . . . ,

r
22𝑘

z
, which will always take

the values 220
, . . . , 22𝑘 respectively. We use repeated squaring as follows.

r
220

z
− 1 − 1 = 0

r
221

z
−

r
220

z
·
r

220
z
= 0

...
r

22𝑘
z
−

r
22𝑘−1

z
·
r

22𝑘−1
z
= 0

For each variable 𝑥 of Φ, we now introduce the variables
r
𝑥 + 22𝑘

z
and

r
22𝑘 − 𝑥

z
and the

constraints
r
𝑥 + 22𝑘

z
− 𝑥 −

r
22𝑘

z
= 0

r
𝑥 + 22𝑘

z
≥ 0

r
22𝑘 − 𝑥

z
−

r
22𝑘

z
+ 𝑥 = 0

r
22𝑘 − 𝑥

z
≥ 0.



26 / 54 T. Miltzow and R.F. Schmiermann

Note that this corresponds to introducing the constraint −22𝑘 ≤ 𝑥 ≤ 22𝑘 in Ψ.
Observe that the ball 𝐵 centered around the origin with radius 22𝑘 is contained in the

cube
[
−22𝑘 , 22𝑘

]𝑛
, so 𝐵 ∩𝑉 (Φ) ⊆ 𝑉 (Ψ). It now follows by Corollary 2.4 that

𝑉 (Φ) ≠ ∅ ⇔ 𝑉 (Ψ) ≠ ∅.

Note that 𝑉 (Ψ) is compact since Ψ contains no strict inequalities and each variable is bounded.
This finishes the proof. ■

2.3 Reduction to ETR-AMI

In this section we will show ∃R-hardness of the problem ETR-AMI. The term ETR-AMI is an
abbreviation for Existential Theory of the Reals with Addition, Multiplication, and Inequalities.

DEF IN IT ION 2 .6 (ETR-AMI). We define the set of constraints 𝐶AMI as

𝐶AMI = {𝑥 + 𝑦 = 𝑧, 𝑥 · 𝑦 = 𝑧, 𝑥 ≥ 0, 𝑥 = 1}

Now we define the ETR-AMI problem as the CCSP given by 𝐶AMI.

LEMMA 2.7 (ETR-AMI Reduction). Given an instance of ETR-COMPACT defined by a formula Φ,
we can in 𝑂( |Φ|) time construct an equisatisfiable ETR-AMI formula Ψ such that𝑉 (Ψ) is compact.

PROOF . Recall that Φ is a conjunction of atomic formulas of the form 𝑝 = 0 for a polynomial 𝑝
and 𝑥 ≥ 0 for a variable 𝑥. Each polynomial 𝑝 may contain minuses, zeros, and ones. The
reduction has four steps. In each step, we make changes to Φ. In the end, Φ has become a
formula Ψ with the desired properties. In step (1)–(3), we remove unwanted ones, zeros, and
minuses by replacing them with constants. In step (4), we eliminate complicated polynomials.

Step (1): We introduce the constant variable J1K and the constraint J1K = 1 to Φ. We then
replace all appearances of 1 with J1K in the atomic formulas of the form 𝑝 = 0.

Step (2): We introduce the constant variable J0K and the constraint J1K + J0K = J1K to Φ. We
then replace all appearances of 0 with J0K except in the constraints of the form 𝑥 ≥ 0.

Step (3): We introduce the constant variable J−1K and the constraint J1K + J−1K = J0K to Φ.
We then replace all appearances of minus with a multiplication by J−1K in Φ.

Step (4): We replace bottom-up every occurrence of multiplication and addition by a new
variable and an extra addition or multiplication constraint. Here are two examples of such
replacements:

(𝑥1 + 𝑥2 · 𝑥4 + 𝑥5) · 𝑥6 = J0K ↦→ (𝑥1 + 𝑧1 + 𝑥5) · 𝑥6 = J0K ∧ 𝑧1 = 𝑥2 · 𝑥4

(𝑥1 + 𝑧1 + 𝑥5) · 𝑥6 = J0K ↦→ (𝑧2 + 𝑥5) · 𝑥6 = J0K ∧ 𝑧2 = 𝑥1 + 𝑧1.
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In this way, every atomic predicate is eventually transformed to atomic predicates of
ETR-AMI or is of the form 𝑥 = J0K. In the latter case, we replace 𝑥 = J0K by 𝑥 + J0K = J0K.

To see that the reduction is linear, note that every replacement adds a constant to the
length of the formula. Furthermore, at most linearly many replacements will be done. All the
above steps preserve the truth value of the formula and the compactness of the solution set. ■

2.4 Reduction to ETR-SMALL

In this section, we show the hardness of ETR-SMALL, as defined below. The reduction works in
two steps. In the first step, we create a very small number using repeated squaring and in the
second step, we scale every variable to be in the correct range.

DEF IN IT ION 2 .8 (ETR-SMALL). We define the set of constraints 𝐶SMALL as

𝐶SMALL =
{
𝑥 + 𝑦 = 𝑧, 𝑥 · 𝑦 = 𝑧, 𝑥 ≥ 0, 𝑥 = 1

2
}

Now we define the ETR-SMALL problem as the CCSP given by 𝐶SMALL. Furthermore, for every
instance Φ we are promised that 𝑉 (Φ) ⊆

[
−1

2 ,
1
2
]𝑛.

We are going to present a reduction from the problem ETR-AMI to ETR-SMALL. As a
preparation, we present another tool from real algebraic geometry. Schaefer [51] made the
following simplification of a result from [8], which we will use. More refined statements can be
found in [8].

COROLLARY 2 .9 ([8]). If a bounded semi-algebraic set in R𝑛 has bit-complexity at most 𝐿 ≥ 5𝑛,
then all its points have distance at most 22𝐿+5 from the origin.

LEMMA 2.10 (ETR-SMALLReduction). Given an ETR-AMI formula Φ such that𝑉 (Φ) is compact,
we can in 𝑂( |Φ|) time construct an equisatisfiable instance of ETR-SMALL.

PROOF . Let Φ be an instance of ETR-AMI with 𝑛 variables 𝑥1, . . . , 𝑥𝑛. We construct an instance Ψ
of ETR-SMALL.

We set 𝜀 = 2−2𝐿+6 , where 𝐿 = |Φ|. In Ψ, we first define a constant variable J𝜀K. This is
obtained by exponentiation by squaring, using 𝑂(𝐿) new constant variables and constraints.
We first define J0K, and

r
2−20

z
, i.e. 1/2, by the equations

r
2−20

z
= 1

2

J0K +
r

2−20
z
=

r
2−20

z
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We then use the following equations for all 𝑖 ∈ {0, . . . , 𝐿 + 5},
r

2−2𝑖
z
·
r

2−2𝑖
z
=

r
2−2𝑖+1

z

Finally, we define J𝜀K by the constraint J𝜀K + J0K =
r

2−2𝐿+6
z

.
In Ψ, we use the variables J𝜀𝑥1K , . . . , J𝜀𝑥𝑛K instead of 𝑥1, . . . , 𝑥𝑛. An equation of Φ of the

form 𝑥 = 1 is transformed to the equation J𝜀𝑥K + J0K = J𝜀K in Ψ. An equation of Φ of the form
𝑥 + 𝑦 = 𝑧 is transformed to the equation J𝜀𝑥K + J𝜀 𝑦K = J𝜀𝑧K of Ψ. For an equation of Φ of the
form 𝑥 · 𝑦 = 𝑧, we also introduce a variable

q
𝜀2𝑧

y
of Ψ and the equations

J𝜀𝑥K · J𝜀 𝑦K =
q
𝜀2𝑧

y

J𝜀K · J𝜀𝑧K =
q
𝜀2𝑧

y
.

At last, constraints of the form 𝑥 ≥ 0 become J𝜀𝑥K ≥ 0.
We now describe a function 𝑓 : 𝑉 (Φ) → 𝑉 (Ψ) in order to show that Φ and Ψ are

equisatisfiable. Let x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑉 (Φ). In order to define 𝑓 , it suffices to specify the values
of the variables of Ψ depending on x. For all the constant variables

r
2−20

z
,
r

2−21
z
,
r

2−22
z
, . . .,

we define them in the natural way as
r

2−2𝑖
z
= 2−2𝑖 and J𝜀K = 2−2𝐿+6 . For all 𝑖 ∈ {1, . . . , 𝑛}, we

now define J𝜀𝑥𝑖K = 𝜀𝑥𝑖 and (when
q
𝜀2𝑥𝑖

y
appears in Ψ)

q
𝜀2𝑥𝑖

y
= 𝜀2𝑥𝑖 . Since x is a solution to Φ,

it follows from the constraints of Ψ that these assignments are a solution to Ψ.
We need to verify that Ψ defines an ETR-SMALL problem, i.e., that Ψ satisfies the promise

that 𝑉 (Ψ) ⊂ [−1
2 ,

1
2]

𝑚, where 𝑚 is the number of variables of Ψ. To this end, consider an
assignment of the variables of Ψ that satisfies all the constraints. Note first that the constant
variables are non-negative and at most 1

2 . For the other variables, we consider the inverse 𝑓 −1,
which is given by the assignment 𝑥𝑖 = J𝜀𝑥𝑖K /𝜀 for all 𝑖 ∈ {1, . . . , 𝑛}. It follows that this yields
a solution to Φ. Since 𝑉 (Φ) is compact, it follows from Corollary 2.9 that | J𝜀𝑥𝑖K /𝜀| ≤ 22𝐿+5 .
Hence | J𝜀𝑥𝑖K | ≤ 𝜀 · 22𝐿+5

= 2−2𝐿+6 · 22𝐿+5 ≤ 1
2 . Similarly, when

q
𝜀2𝑥𝑖

y
is a variable of Ψ, we

get |
q
𝜀2𝑥𝑖

y
| ≤ 𝜀 < 1

2 .
By the existence of 𝑓 and 𝑓 −1, we have now established that𝑉 (Φ) ≠ ∅ if and only if𝑉 (Φ) ≠ ∅.

In other words, Φ and Ψ are equisatisfiable. The length of Ψ is 𝑂(𝐿) longer than the length of Φ,
and Ψ can thus be computed in 𝑂( |Φ|) time. ■

2.5 Reduction to ETR-SQUARE

From here, we can prove the hardness of the following problem:

DEF IN IT ION 2 .1 1 (ETR-SQUARE). We define the set of constraints 𝐶SQUARE as

𝐶SQUARE =
{
𝑥 + 𝑦 = 𝑧, 𝑦 = 𝑥2, 𝑥 ≥ 0, 𝑥 = 1

}
.
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Now we define the ETR-SQUARE problem as the CCSP given by 𝐶SQUARE. Furthermore, for every
instance Φ we are promised that 𝑉 (Φ) ⊆ [−1, 1]𝑛.

LEMMA 2.12 (ETR-SQUARE Reduction). Given an instance Φ of ETR-SMALL, we can in 𝑂( |Φ|)
time construct an equisatisfiable instance of ETR-SQUARE.

PROOF . We start with an ETR-SMALL instance Φ. To this instance we add a variable J1K and a
constraint J1K = 1. Next we replace every constraint of the form 𝑥 = 1

2 by a constraint 𝑥 +𝑥 = J1K.
Finally, for every constraint of the form 𝑥 · 𝑦 = 𝑧, we introduce the following new variables:

q
𝑥2y ,

q
𝑦2y , J𝑥 + 𝑦K ,

q
(𝑥 + 𝑦)2y ,

q
𝑥2 + 2𝑥 𝑦

y
, J2𝑥 𝑦K , J𝑥 𝑦K

and we add the following constraints:
q
𝑥2y = 𝑥2

q
𝑦2y = 𝑦2

J𝑥 + 𝑦K = 𝑥 + 𝑦
q
(𝑥 + 𝑦)2y = J𝑥 + 𝑦K2

q
(𝑥 + 𝑦)2y =

q
𝑥2 + 2𝑥 𝑦

y
+

q
𝑦2y

q
𝑥2 + 2𝑥 𝑦

y
=

q
𝑥2y + J2𝑥 𝑦K

J2𝑥 𝑦K = J𝑥 𝑦K + J𝑥 𝑦K

J𝑥 𝑦K = 𝑧.

Every constraint of the form 𝑥 + 𝑦 = 𝑧 or 𝑥 ≥ 0 is not changed. After performing all these
changes, which only needs linear time, we have an ETR-SQUARE formula Ψ. Furthermore, it
can be checked that every solution of this ETR-SQUARE formula corresponds uniquely to a
solution of the original ETR-SMALL formula. Also the fact that𝑉 (Φ) ⊆ [−1/2, 1/2]𝑛 can be seen
to imply that 𝑉 (Ψ) ⊆ [1, 1]𝑚, where 𝑚 is the number of variables in Ψ. This proves that Ψ is an
ETR-SQUARE instance which is equisatisfiable to the original ETR-SMALL instance. Therefore
the reduction is valid. ■

3. Proof of CCSP-Theorems

In this section, we will prove Theorem 1.11 and Theorem 1.13.

3.1 Approximate Solutions

We start by proving a lemma which plays an important role in the proofs of Theorem 1.11
and Theorem 1.13. The following lemma intuitively states the following: if an ETR-SQUARE
formula Φ has something which is “almost a solution”, with an error of at most 2−2𝑂( |Φ | ) , then Φ
also admits an actual solution. Similar results were established in [24].
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DEF IN IT ION 3.1. Let Φ = Φ(𝑥1, . . . , 𝑥𝑛) be an ETR-SQUARE formula such that 𝑉 (Φ) ⊆ [−1, 1]𝑛.
For 𝜀 ≥ 0, define Φ𝜀 as the formula where every constraint of the form 𝑦 = 𝑥2 is replaced by
a constraint of the form | 𝑦 − 𝑥2 | ≤ 𝜀, and where constraints −1 ≤ 𝑥 ≤ 1 are added for every
𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}.

LEMMA 3.2. Let Φ = Φ(𝑥1, . . . , 𝑥𝑛) be an ETR-SQUARE formula such that𝑉 (Φ) ⊆ [−1, 1]𝑛. Now
there exists an 𝑀 ∈ Z with 𝑀 = 𝑂( |Φ|) and 𝜀 = 2−2𝑀 , such that Φ and Φ𝜀 are equisatisfiable.

We use the following result from Schaefer and Štefankovič [52], see also [33]:

COROLLARY 3.3 (Corollary 3.4 from [52]). If two semi-algebraic sets in R𝑛 each of bit-
complexity at most 𝐿 ≥ 5𝑛 have positive distance (for example, if they are disjoint and compact),
then that distance is at least 2−2𝐿+5 .

Here, the distance between two subsets 𝑋,𝑌 ⊆ R𝑛 is defined as inf𝑥∈𝑋, 𝑦∈𝑌 𝑑 (𝑥, 𝑦). Note
that in the case where 𝑋 and 𝑌 are compact, the infimum in this definition may be replaced by
a minimum.

PROOF OF LEMMA 3.2 . First note that for any 𝜀 ≥ 0, we have 𝑉 (Φ) ⊆ 𝑉 (Φ𝜀). In particular,
if 𝑉 (Φ) is nonempty, then also any 𝑉 (Φ𝜀) is nonempty. For the rest of the proof, we will assume
that 𝑉 (Φ) is empty, and construct 𝑀 and 𝜀 = 2−2𝑀 such that 𝑉 (Φ𝜀) is also guaranteed to be
empty.

Suppose that Φ has 𝑛 variables, and contains 𝑟 constraints of the form 𝑦 = 𝑥2. For every
𝜀 ≥ 0, we define Φ′

𝜀 as the formula on variables 𝑥1, . . . , 𝑥𝑛, 𝜂1, . . . , 𝜂𝑟 obtained from Φ by replacing
every constraint of the form 𝑦 = 𝑥2 by constraints 𝑦 = 𝑥2 + 𝜂𝑖 and −𝜀 ≤ 𝜂𝑖 ≤ 𝜀, and where
constraints −1 ≤ 𝑥 ≤ 1 are added for every 𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}. Note that there is a natural bijection
between 𝑉 (Φ𝜀) and 𝑉 (Φ′

𝜀) for every 𝜀 ≥ 0. Since we assumed 𝑉 (Φ) = ∅, it also follows that
𝑉 (Φ′

0) = ∅. We furthermore define Φ′
∞ in the same way, except that we drop the constraints of

the form −𝜀 ≤ 𝜂𝑖 ≤ 𝜀. Observe that𝑉 (Φ′
∞) is bounded: the fact that every variable 𝑥𝑖 is bounded

by 1 in absolute value, implies that every variable 𝜂𝑖 is bounded by 2 in absolute value. In
particular 𝑉 (Φ′

∞) is compact.
Next define Ψ to be the formula on the same variables 𝑥1, . . . 𝑥𝑛, 𝜂1, . . . , 𝜂𝑟 which enforces

𝜂𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑟 and −1 ≤ 𝑥𝑖 ≤ 1 for all 1 ≤ 𝑖 ≤ 𝑛. Note that 𝑉 (Φ′
∞) ∩𝑉 (Ψ) = 𝑉 (Φ′

0) = ∅,
and furthermore that both 𝑉 (Φ′

∞) and 𝑉 (Ψ) are compact and nonempty. This means that we
can apply Corollary 3.3. Let 𝐿 be the maximum of 5𝑛 and the bit complexities of Φ′

∞ and Ψ. Note
that 𝐿 is linear in the length of Φ. We conclude that the distance between 𝑉 (Φ′

∞) and 𝑉 (Ψ) is at
least 2−2𝐿+5 , by Corollary 3.3.

Recall that 𝑟 is the number of constraints of the form 𝑦 = 𝑥2 in Φ. Setting 𝑀 = 𝐿+6, it can be
shown that 𝑟 ·2−2𝑀 < 2−2𝐿+5 . Specifically, 𝑀 is linear in the length of Φ. We take 𝜀 = 2−2𝑀 . Suppose,
for the purpose of contradiction, that 𝑉 (Φ𝜀) ≠ ∅, and therefore also 𝑉 (Φ′

𝜀) ≠ ∅. Let 𝑃 ∈ 𝑉 (Φ′
𝜀),
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and let 𝑃′ be the point we obtain by setting all the 𝜂𝑖-coordinates of 𝑃 to 0. Now 𝑃′ is contained
in 𝑉 (Ψ). Since every 𝜂𝑖-coordinate of 𝑃 was bounded by 𝜀, the distance between 𝑃 and 𝑃′ is at
most 𝑟𝜀, therefore 𝑃 can be seen to have distance at most 𝑟𝜀 < 2−2𝐿+5 to𝑉 (Ψ). Furthermore, 𝑃 is
also contained in 𝑉 (Φ′

∞). This implies that 𝑉 (Φ′
∞) has distance smaller than 2−2𝐿+5 to 𝑉 (Ψ). This

contradicts the result from applying Corollary 3.3.
We conclude that indeed 𝑉 (Φ) = ∅ implies 𝑉 (Φ𝜀) = ∅. This completes the proof of the

lemma. ■

3.2 Almost Square Explicit Equality Constraints

Using Lemma 3.2, we are able to prove that an explicit version CE is also ∃R-complete, with
some additional assumptions. Note that this subsection is technically not needed for the proof
of Theorem 1.11 and Theorem 1.13. We will prove a similar lemma also for the inequality case.
And the inequality case can be used to also prove the equality case. Yet, we believe that seeing
the proof first for the equality case makes it much easier to read Section 3.4.

DEF IN IT ION 3.4 (CE-EXPL). Let 𝑈 ⊆ R and let 𝑓 : 𝑈 → R be a function. We define the CE-
EXPL problem to be the CE problem corresponding to the function 𝑓 ∗ : 𝑈 × R → R defined
by 𝑓 ∗(𝑥, 𝑦) = 𝑦 − 𝑓 (𝑥).

Note that for this definition of 𝑓 ∗, we have

EqualZero( 𝑓 ∗) = {(𝑥, 𝑦) ∈ R × R | 𝑥 ∉ 𝑈 ∨ 𝑦 = 𝑓 (𝑥)} .

In particular, this means that if we know that a variable 𝑥 is forced to lie in 𝑈 , then (𝑥, 𝑦) ∈
EqualZero( 𝑓 ∗) will exactly imply that 𝑦 = 𝑓 (𝑥). In what follows, we will ensure we are in the
case where all variables are contained in 𝑈 , so this enables us to enforce constraints of the
form 𝑦 = 𝑓 (𝑥) on these variables, while also implying that the constructed instance is domain
adherent.

The goal of this section is to prove the following result:

LEMMA 3.5. Let𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 : 𝑈 → R be a function such that | 𝑓 (𝑥) −
𝑥2 | ≤ 1

10 |𝑥 |
3 for all 𝑥 ∈ 𝑈 ⊆ R. Let 𝑇 be strictly bounded from above by 1

4 and nicely computable.
Furthermore, assume that the interval [−𝑇 (𝑛), 𝑇 (𝑛)] is contained in 𝑈 for all 𝑛. In this setting,
CE-EXPL is ∃R-hard, even when only considering instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the
number of variables.

The reason that we impose these specific constraints on 𝑓 , which enforce 𝑓 to be very
similar to squaring, is that the proof will use ∃R-hardness of a problem involving a squaring
constraint. Furthermore, this specific case can be generalized to more general functions 𝑓 .

PROOF . Before giving the details of the construction, we will first give an overview of the
used approach. The idea of this proof is to start with an instance of ETR-SQUARE, and convert
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this into a CE-EXPL instance by using 𝑓 to approximate squaring. In order to ensure that 𝑓

approximates squaring close enough, the whole instance is scaled by some small factor 𝜀, so
every variable 𝑥 is replaced by a variable representing 𝜀𝑥 instead.

The linear constraints and inequalities are easy to rewrite in terms of 𝜀𝑥, for example a
constraint of the form 𝑥 + 𝑦 = 𝑧 can be rewritten to 𝜀𝑥 + 𝜀 𝑦 = 𝜀𝑧.

Handling a squaring constraint 𝑦 = 𝑥2 is a bit more complicated. The first step is to rewrite
this to a constraint involving 𝜀𝑥 and 𝜀 𝑦, we get 𝜀 · 𝜀 𝑦 = (𝜀𝑥)2. However, in the CE-EXPL problem
there is no easy way to simulate the multiplication on the left-hand side of this equation. To
solve this, we rewrite this equation to only use sums and differences of squares:

𝜀2 + 2(𝜀𝑥)2 + (𝜀 𝑦)2 − (𝜀 + 𝜀 𝑦)2 = 0.

To simplify notation a bit, we will denote 𝑡1 = 𝜀, 𝑡2 = 𝜀𝑥, 𝑡3 = 𝜀 𝑦 and 𝑡4 = 𝜀 + 𝜀 𝑦. Using this
notation the equation becomes 𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 = 0. This is still not something we can directly

enforce in a CE formula. However, by applying the function 𝑓 , squaring can be approximated.
Furthermore, Lemma 3.2 on a high level implies that such an approximation is enough to
guarantee the existence of a solution to the original equations. This is why in the CE formulation
we enforce

𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑓 (𝑡4) = 𝑂(𝜀3). (3)

Enforcing the = 𝑂(𝜀3) presents another problem: we cannot easily compute 𝜀3. To counter this,
we instead bound the left-hand side of the equation in absolute value by 2( 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀)),
which is approximately equal to 4𝜀3 (note that in the case that 𝑓 (𝑥) = 𝑥2 for all 𝑥, this expression
would actually be equal to 4𝜀3 + 2𝜀4). The details of this reduction and a proof of its correctness
will be worked out in the remainder of this proof.

Reduction. Let Φ be an ETR-SQUARE formula. We will now construct a CE formula Ψ such that
𝑉 (Φ) ≠ ∅ if and only if 𝑉 (Ψ) ≠ ∅. The value of 𝛿 will be defined at the end of the construction
as 𝑇 (𝑛), with 𝑛 the final number of variables. Since the construction itself does not depend on
the exact value of 𝛿, this does not cause any issues. The only important property is that 𝛿 < 1

4 .
Let 𝑀 be the constant obtained by applying Lemma 3.2 to Φ, and let 𝐿 be the smallest

positive integer such that 2−2𝐿 ≤ 1
100 · 2−2𝑀 and 𝐿 ≥ 3. We start by introducing variables J𝛿𝑖K for

0 ≤ 𝑖 ≤ 𝐿. The variable J𝛿0K satisfies the constraint J𝛿0K = 𝛿, and for each 1 ≤ 𝑖 ≤ 𝐿 we add a
constraint

J𝛿𝑖K = 𝑓 (J𝛿𝑖−1K).

Denote J𝜀K = J𝛿𝐿K. The idea behind these definitions is to simulate repeated squaring, as we
will see later they force the value of J𝜀K to be in the interval

(
0, 2−2𝐿

]
.
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Next, we introduce a new variable
q
≈ 2𝜀3y together with a (constant) number of constraints

and auxiliary variables that enforce
q
≈ 2𝜀3y = 𝑓 (J𝜀K + 𝑓 (J𝜀K)) − 𝑓 (J𝜀K).

This can be done explicitly by introducing auxiliary variables J 𝑓 (𝜀)K, J𝜀 + 𝑓 (𝜀)K and J 𝑓 (𝜀 + 𝑓 (𝜀))K
and adding the following constraints:

J 𝑓 (𝜀)K = 𝑓 (J𝜀K)
J𝜀 + 𝑓 (𝜀)K = J𝜀K + J 𝑓 (𝜀)K

J 𝑓 (𝜀 + 𝑓 (𝜀))K = 𝑓 (J𝜀 + 𝑓 (𝜀)K)
J 𝑓 (𝜀 + 𝑓 (𝜀))K =

q
≈ 2𝜀3y + J 𝑓 (𝜀)K .

In the rest of this proof, and in future proofs of this paper, we will not give such explicit
constraints anymore. The variable

q
≈ 2𝜀3y will be used to bound the error on the constraints

replacing squaring constraints, as mentioned in the overview of this proof. Stated differently, it
replaces the “= 𝑂(𝜀3)” part of Equation (3).

Now, for each variable 𝑥 of Φ, we add a variable J𝜀𝑥K to Ψ, together with some constraints
which enforce that − J𝜀K ≤ J𝜀𝑥K ≤ J𝜀K. Furthermore each constraint 𝑥 + 𝑦 = 𝑧 is replaced by
J𝜀𝑥K + J𝜀 𝑦K = J𝜀𝑧K, each constraint 𝑥 ≥ 0 is replaced by J𝜀𝑥K ≥ 0 and each constraint 𝑥 = 1 is
replaced by J𝜀𝑥K = J𝜀K.

For each constraint 𝑦 = 𝑥2, we build Equation (3) as in the overview. To do this, we first
introduce variables J𝑡1K, J𝑡2K, J𝑡3K and J𝑡4K satisfying

J𝑡1K = J𝜀K

J𝑡2K = J𝜀𝑥K

J𝑡3K = J𝜀 𝑦K

J𝑡4K = J𝜀K + J𝜀 𝑦K .

(Note that, even though 𝑥 and 𝑦 are suppressed in the notation here, the variables J𝑡1K, J𝑡2K, J𝑡3K
and J𝑡4K should actually be distinct variables for each constraint 𝑦 = 𝑥2.) Next we introduce a
new variable

q
𝜂𝑥, 𝑦

y
representing the left-hand side of Equation (3):

q
𝜂𝑥, 𝑦

y
= 𝑓 (J𝑡1K) + 2 𝑓 (J𝑡2K) + 𝑓 (J𝑡3K) − 𝑓 (J𝑡4K).

The next step is to bound this variable, for this we add constraints which enforce
q
𝜂𝑥, 𝑦

y
≥ −2

q
≈ 2𝜀3y and

q
𝜂𝑥, 𝑦

y
≤ 2

q
≈ 2𝜀3y .

This completes the construction of Ψ. Now we can take 𝛿 to equal 𝑇 (𝑛), where 𝑛 is the number
of variables in Ψ. Note that in this construction, every constraint of Φ is replaced by a constant
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number of constraints in Ψ, and therefore we have |Ψ| = 𝑂( |Φ|). In particular this reduction
can be executed in linear time.

Calculations. To show the validity of the reduction, we first perform some side calculations.
We define 𝛿0 = 𝛿, for 1 ≤ 𝑖 ≤ 𝐿 we take 𝛿𝑖 = 𝑓 (𝛿𝑖−1), and we take 𝜀 = 𝛿𝐿. We deduce the
following facts:

| 𝑓 (𝑥) − 𝑥2 | ≤ 1
10

|𝑥 |3 for 𝑥 ∈ [−𝛿, 𝛿] \ {0} (4)

0 < 𝑓 (𝑥) ≤ 2𝑥2 for 𝑥 ∈ [−𝛿, 𝛿] \ {0} (5)

𝜀 ≤ 1
100

min
(
2−2𝑀 , 𝛿

)
(6)

𝑓 (𝜀) < 𝜀 (7)

𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀) ∈ [𝜀3, 3𝜀3] (8)

Inequality 4 is one of the assumptions and is repeated here just for clarity. Combining this
with 𝛿 ≤ 1

4 , Inequality 5 follows.
Using induction with the fact that 0 < 𝑓 (𝑥) ≤ 2𝑥2 for 𝑥 ∈ [−𝛿, 𝛿] \ {0}, it follows that

0 < 𝛿𝑖 ≤ 2−2𝑖−1 for all 𝑖, so 0 < 𝜀 ≤ 1
22−2𝐿 .

Using the definition of 𝐿, we get that 𝜀 ≤ 1
1002−2𝑀 . Using that 𝐿 ≥ 3 and 𝛿 ≤ 1/4, we get that

𝜀 ≤ 𝛿23
= 𝛿16 ≤ 1

100𝛿. Together this implies Inequality 6.
The fact 𝑓 (𝜀) < 𝜀 now follows from Inequality 5 with the observion that 𝜀 < min( 1

2 , 𝛿),
which follows from Inequality 6.

For deriving Inequality 8, we first rewrite by adding and subtracting some terms, and
applying the triangle inequality:

| 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀) − 2𝜀3 | = | 𝑓 (𝜀 + 𝑓 (𝜀)) − (𝜀 + 𝑓 (𝜀))2 + 𝜀2 − 𝑓 (𝜀)
+ ( 𝑓 (𝜀) + 𝜀2) ( 𝑓 (𝜀) − 𝜀2) + 𝜀4 + 2𝜀( 𝑓 (𝜀) − 𝜀2) |

≤ | 𝑓 (𝜀 + 𝑓 (𝜀)) − (𝜀 + 𝑓 (𝜀))2 | + |𝜀2 − 𝑓 (𝜀) |
+ ( 𝑓 (𝜀) + 𝜀2) | 𝑓 (𝜀) − 𝜀2 | + 𝜀4 + 2𝜀| 𝑓 (𝜀) − 𝜀2 |.

To this we apply Inequalities 4, 6 and 7 to obtain the desired bound, where in particular we use
that Inequality 6 implies 𝜀 < 1

100 :

| 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀) − 2𝜀3 | ≤ | 𝑓 (𝜀 + 𝑓 (𝜀)) − (𝜀 + 𝑓 (𝜀))2 | + |𝜀2 − 𝑓 (𝜀) |
+ ( 𝑓 (𝜀) + 𝜀2) | 𝑓 (𝜀) − 𝜀2 | + 𝜀4 + 2𝜀| 𝑓 (𝜀) − 𝜀2 |

≤ 1
10

(𝜀 + 𝑓 (𝜀))3 + 1
10

𝜀3 + 1
10

( 𝑓 (𝜀) + 𝜀2)𝜀3 + 𝜀4 + 1
5
𝜀4

≤ 8
10

𝜀3 + 1
10

𝜀3 + 1
10

𝜀3

≤ 𝜀3,
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so 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀) ∈ [𝜀3, 3𝜀3].

𝑽(Φ) nonempty implies 𝑽(Ψ) nonempty. Now we can start to prove the validity of the
reduction. First suppose that 𝑉 (Φ) ≠ ∅, so there is some 𝑃 ∈ 𝑉 (Φ). It needs to be shown that
also 𝑉 (Ψ) ≠ ∅, to do this we construct a point 𝑄 ∈ 𝑉 (Ψ). For a variable 𝑥 of Φ, we will use the
notation 𝑥 (𝑃) for the value of this variable for the point 𝑃. A similar notation is used for 𝑄. To
define 𝑄, we take J𝜀𝑥K (𝑄) = 𝜀𝑥 (𝑃) for all variables 𝑥 of Φ, and we enforce that 𝑄 satisfies all
equality constraints of Ψ. This uniquely defines the value of 𝑄 in all other variables of Ψ. In
particular, we get that

J𝜀K (𝑄) = 𝜀
q
≈ 2𝜀3y (𝑄) = 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀)
q
𝜂𝑥, 𝑦

y
(𝑄) = 𝑓 (𝜀) + 2 𝑓 (𝜀𝑥 (𝑃)) + 𝑓 (𝜀 𝑦(𝑃)) − 𝑓 (𝜀 + 𝜀 𝑦(𝑃)),

where the last equality holds for all constraints 𝑦 = 𝑥2 in Φ.
It is left to show that 𝑄 also satisfies all inequalities of Ψ. There are three types of these

inequalities. Firstly, we have inequalities which enforce | J𝜀𝑥K (𝑄) | ≤ J𝜀K (𝑄). That these are
satisfied for 𝑄 follows from the fact that |𝑥 (𝑃) | ≤ 1 since Φ is an ETR-SMALL formula. Secondly,
for every inequality 𝑥 ≥ 0 in Φ, we get a corresponding inequality J𝜀𝑥K ≥ 0, that this is satisfied
follows by combining J𝜀𝑥K (𝑄) = 𝜀𝑥 (𝑃) and 𝑥 (𝑃) ≥ 0.

Finally, for every constraint 𝑦 = 𝑥2 in Φ we get constraints enforcing |
q
𝜂𝑥, 𝑦

y
| ≤ 2

q
≈ 2𝜀3y.

To see that these are satisfied, first we shorten the notation a bit by writing 𝑡1 = J𝑡1K (𝑄) = 𝜀,
𝑡2 = J𝑡2K (𝑄) = 𝜀𝑥 (𝑃), 𝑡3 = J𝑡3K (𝑄) = 𝜀 𝑦(𝑃) and 𝑡4 = J𝑡4K (𝑄) = 𝜀 + 𝜀 𝑦(𝑃). Now

q
𝜂𝑥, 𝑦

y
(𝑄) can be

bounded, for this we first use the triangle inequality:

|
q
𝜂𝑥, 𝑦

y
(𝑄) | = | 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑓 (𝑡4) |

= | 𝑓 (𝑡1) − 𝑡2
1 + 2( 𝑓 (𝑡2) − 𝑡2

2) + 𝑓 (𝑡3) − 𝑡2
3 − ( 𝑓 (𝑡4) − 𝑡2

4)
+ 𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 |

≤ | 𝑓 (𝑡1) − 𝑡2
1 | + 2| 𝑓 (𝑡2) − 𝑡2

2 | + | 𝑓 (𝑡3) − 𝑡2
3 | + | 𝑓 (𝑡4) − 𝑡2

4 |
+ |𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 |

Note that 𝑡1, 𝑡2, 𝑡3 and 𝑡4 were chosen in such a way to ensure that, given 𝑦(𝑃) = 𝑥 (𝑃)2, we have
𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 = 0. Using this together with Inequality 4 and the facts that 𝑡1, 𝑡2 and 𝑡3 are
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bounded in absolute value by 𝜀, and 𝑡4 is bounded in absolute value by 2𝜀, we find

|
q
𝜂𝑥, 𝑦

y
(𝑄) | ≤ | 𝑓 (𝑡1) − 𝑡2

1 | + 2| 𝑓 (𝑡2) − 𝑡2
2 | + | 𝑓 (𝑡3) − 𝑡2

3 | + | 𝑓 (𝑡4) − 𝑡2
4 |

+ |𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 |

≤ 1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3 + 0

≤
(

1
10

+ 1
5
+ 1

10

)
𝜀3 + 1

10
(2𝜀)3

≤ 6
5
𝜀3.

Finally using Inequality 8 we derive

|
q
𝜂𝑥, 𝑦

y
(𝑄) | ≤ 6

5
𝜀3

≤ 2( 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀)).

This completes the proof that 𝑄 ∈ 𝑉 (Ψ), so 𝑉 (Ψ) ≠ ∅.

𝑽(Ψ) nonempty implies 𝑽(Φ) nonempty. Next, suppose that there is some 𝑄 ∈ 𝑉 (Ψ). Now
we want to show that |𝑥 (𝑄) | ≤ 𝛿 for all variables 𝑥 in Ψ, and we want to prove that 𝑉 (Φ) ≠ ∅.
We start by bounding the coordinates. Note that the values J𝛿𝑖K (𝑄) can inductively be shown
to be smaller than 𝛿. Here we use that J𝛿𝑖K (𝑄) being smaller than 𝛿 implies that J𝛿𝑖K (𝑄) ∈ 𝑈 ,
so the constraint J𝛿𝑖+1K = 𝑓 (J𝛿𝑖K) actually enforces J𝛿𝑖+1K (𝑄) = 𝑓 (J𝛿𝑖K (𝑄)). From this it follows
that J𝜀K (𝑄) = 𝜀. Consequently, for every variable 𝑥 in Φ, it can be inferred that | J𝜀𝑥K (𝑄) | ≤
| J𝜀K (𝑄) | ≤ 𝜀. Using this, it can be shown that also all values of the auxiliary variables except
for the J𝛿𝑖K are bounded by 100𝜀 ≤ 𝛿. So this shows that 𝑄 is contained in [−𝛿, 𝛿]𝑛, where 𝑛 is
the number of variables of Ψ. This also implies that 𝑄 is domain adherent, since [−𝛿, 𝛿] ⊆ 𝑈 .

Now we need to show that 𝑉 (Φ) ≠ ∅. We apply Lemma 3.2 to show this. We will construct
a point 𝑃 within 𝑉 (Φ100𝜀). This construction implies that 𝑉 (Φ) is non-empty, given that 100𝜀 ≤
2−2𝑀 . We define the point 𝑃 by taking 𝑥 (𝑃) =

J𝜀𝑥K(𝑄)
𝜀 for all variables 𝑥 of Φ. It immediately

follows that 𝑃 satisfies all linear constraints and inequality constraints of Φ, and it is only left to
check that it satisfies the constraints | 𝑦 − 𝑥2 | ≤ 100𝜀 of Φ100𝜀. To do this, first, we observe that,
using Inequality 8,

|
q
𝜂𝑥, 𝑦

y
(𝑄) | ≤ 2

q
≈ 2𝜀3y (𝑄)

= 2( 𝑓 (𝜀 + 𝑓 (𝜀)) − 𝑓 (𝜀))
≤ 6𝜀3.

Now we will try to bound | 𝑦(𝑃) − 𝑥 (𝑃)2 |. First we again write 𝑡1 = J𝑡1K (𝑄) = 𝜀, 𝑡2 = J𝑡2K (𝑄) =
𝜀𝑥 (𝑃), 𝑡3 = J𝑡3K (𝑄) = 𝜀 𝑦(𝑃) and 𝑡4 = J𝑡4K (𝑄) = 𝜀 + 𝜀 𝑦(𝑃). These choices were made such that

𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 = 2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)),
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so we see
2𝜀2 | 𝑦(𝑃) − 𝑥 (𝑃)2 | =

��𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4
�� .

Next we apply the triangle inequality to get an expression to which we can apply Inequality 4
and the bound on |

q
𝜂𝑥, 𝑦

y
(𝑄) |:

2𝜀2 | 𝑦(𝑃) − 𝑥 (𝑃)2 | =
��𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4
��

= |𝑡2
1 − 𝑓 (𝑡1) + 2(𝑡2

2 − 𝑓 (𝑡2)) + 𝑡2
3 − 𝑓 (𝑡3) − (𝑡2

4 − 𝑓 (𝑡4))
+ 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑓 (𝑡4) |

≤ |𝑡2
1 − 𝑓 (𝑡1) | + 2|𝑡2

2 − 𝑓 (𝑡2) | + |𝑡2
3 − 𝑓 (𝑡3) | + |𝑡2

4 − 𝑓 (𝑡4) |
+ | 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑓 (𝑡4) |

= |𝑡2
1 − 𝑓 (𝑡1) | + 2|𝑡2

2 − 𝑓 (𝑡2) | + |𝑡2
3 − 𝑓 (𝑡3) | + |𝑡2

4 − 𝑓 (𝑡4) |
+ |

q
𝜂𝑥, 𝑦

y
(𝑄) |

Applying Inequality 4 and the bound on |
q
𝜂𝑥, 𝑦

y
(𝑄) | yields

2𝜀2 | 𝑦(𝑃) − 𝑥 (𝑃)2 | ≤ |𝑡2
1 − 𝑓 (𝑡1) | + 2|𝑡2

2 − 𝑓 (𝑡2) | + |𝑡2
3 − 𝑓 (𝑡3) | + |𝑡2

4 − 𝑓 (𝑡4) |
+ |

q
𝜂𝑥, 𝑦

y
(𝑄) |

≤ 1
10

𝑡3
1 +

1
5
𝑡3
2 +

1
10

𝑡3
3 +

1
10

𝑡3
4 + 6𝜀3

Finally we use that 𝑡1, 𝑡2 and 𝑡3 are bounded in absolute value by 𝜀, and that 𝑡4 is bounded by 2𝜀:

2𝜀2 | 𝑦(𝑃) − 𝑥 (𝑃)2 | ≤ 1
10

𝑡3
1 +

1
5
𝑡3
2 +

1
10

𝑡3
3 +

1
10

𝑡3
4 + 6𝜀3

≤ 1
10

𝜀3 + 1
5
𝜀3 + 1

10
𝜀3 + 8

10
𝜀3 + 6𝜀3

< 200𝜀3.

So | 𝑦(𝑃) − 𝑥 (𝑃)2 | ≤ 100𝜀. This proves that 𝑃 ∈ 𝑉 (Φ100𝜀), and therefore 𝑉 (Φ) ≠ ∅.
This finishes the proof of the validity of the reduction of ETR-SQUARE to CE-EXPL. We

conclude that for the given 𝑓 , the problem CE-EXPL is ∃R-hard. ■

3.3 Almost Square Explicit Inequality Constraints

In this section, we will prove a number of hardness results about the explicit version of CCI.
Before we can describe these results, we first need the following definition:

DEF IN IT ION 3.6 (CCI-EXPL). Let𝑈 ⊆ R and let 𝑓 , 𝑔 : 𝑈 → R be two functions. Now we define
the CCI-EXPL problem to be the CCI problem corresponding to the functions 𝑓 ∗, 𝑔∗ : 𝑈 × R→ R
defined by 𝑓 ∗(𝑥, 𝑦) = 𝑦 − 𝑓 (𝑥) and 𝑔∗(𝑥, 𝑦) = 𝑔 (𝑥) − 𝑦.

Note that, just as in Definition 3.4, the constraints LargerZero( 𝑓 ∗) and LargerZero(𝑔∗) in
this definition can be used to enforce 𝑦 ≥ 𝑓 (𝑥) and 𝑦 ≤ 𝑔 (𝑥) if we already know that 𝑦 ∈ 𝑈 .
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We will prove that CCI-EXPL is ∃R-hard in a large number of cases. In particular, we prove the
following:

COROLLARY 3.7. Let𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions which
are three times differentiable such that 𝑓 (0) = 𝑔 (0) = 0 and 𝑓 ′(0), 𝑓 ′′(0), 𝑔′(0), 𝑔′′(0) ∈ Q with
𝑓 ′′(0), 𝑔′′(0) > 0. Let 𝑇 be bounded and nicely computable. In this setting, CCI-EXPL is ∃R-hard,
even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

This corollary will be an important step towards proving Theorem 1.11. Before we can
prove this corollary, we first prove another result which is similar to Lemma 3.5.

LEMMA 3.8. Let 𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions such that
| 𝑓 (𝑥) − 𝑥2 | ≤ 1

10 |𝑥 |
3 and |𝑔 (𝑥) − 𝑥2 | ≤ 1

10 |𝑥 |
3 for all 𝑥 ∈ 𝑈 . Let 𝑇 be strictly bounded from above

by 1
4 and nicely computable. Furthermore, assume that the interval [−𝑇 (𝑛), 𝑇 (𝑛)] is contained

in𝑈 for all 𝑛. In this setting, CCI-EXPL is ∃R-hard, even when only considering instances where
𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

PROOF . The idea is to use almost the same construction as in Lemma 3.5, so we recommend
the reader to first read the proof of this lemma. The first main difference is that some extra
care needs to be taken when making the constraints for the J𝛿𝑖K variables. Also, the squaring
constraints need to be handled in a slightly different way. In order to do this, we replace
the variables

q
𝜂𝑥, 𝑦

y
by two new variables

q
𝜂low
𝑥, 𝑦

y
and

r
𝜂

high
𝑥, 𝑦

z
, which impose a lower bound,

respectively upper bound, on the value of 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4. Here 𝑡1 = 𝜀, 𝑡2 = 𝜀𝑥, 𝑡3 = 𝜀 𝑦 and
𝑡4 = 𝜀 + 𝜀 𝑦, as before.

Reduction. Let Φ be an ETR-SQUARE formula. We will construct a CCI-EXPL formula Ψ such
that 𝑉 (Φ) ≠ ∅ if and only if 𝑉 (Ψ) ≠ ∅. Again we will take 𝛿 = 𝑇 (𝑛) < 1

4 at the end of the
construction, where 𝑛 is the final number of variables. Let 𝑀 be the constant obtained by
applying Lemma 3.2 to Φ, and let 𝐿 be a constant such that 2−2𝐿 ≤ 1

100 · 2−2𝑀 and 𝐿 ≥ 3, just like
in the proof of Lemma 3.5.

We again introduce J𝛿𝑖K for 0 ≤ 𝑖 ≤ 𝐿, where the variable J𝛿0K should satisfy the constraint
J𝛿0K = 𝛿. For each 1 ≤ 𝑖 ≤ 𝐿 we now add constraints enforcing

1
2
𝑓 (J𝛿𝑖−1K) ≤ J𝛿𝑖K ≤ 𝑔 (J𝛿𝑖−1K).

Denote J𝜀K = J𝛿𝐿K. The constraints J𝛿𝑖K ≤ 𝑔 (J𝛿𝑖−1K) are there to enforce that J𝜀K ≤ 2−2𝐿 , and the
constraints 1

2 𝑓 (J𝛿𝑖−1K) ≤ J𝛿𝑖K are there to enforce that J𝜀K > 0.
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We continue by defining variables J≤ 𝑔 (𝜀)K and
q
≲ 2𝜀3y using constraints

J≤ 𝑔 (𝜀)K ≤ 𝑔 (J𝜀K),
J≤ 𝑔 (𝜀)K ≥ 0,
q
≲ 2𝜀3y ≤ 𝑔 (J𝜀K + J≤ 𝑔 (𝜀)K) − 𝑓 (J𝜀K),

q
≲ 2𝜀3y ≥ 0.

This new variable
q
≲ 2𝜀3y is a replacement for the variable

q
≈ 2𝜀3y which occurred in

the proof of Lemma 3.5. Later, we will show that
q
≲ 2𝜀3y is upper bounded by 3𝜀3.

Next for each variable 𝑥 of Φ, we add a variable J𝜀𝑥K to Ψ, with constraints enforcing
− J𝜀K ≤ J𝜀𝑥K ≤ J𝜀K. Constraints of type 𝑥 + 𝑦 = 𝑧, type 𝑥 ≥ 0 or type 𝑥 = 1 are handled by
replacing them by constraints J𝜀𝑥K + J𝜀 𝑦K = J𝜀𝑧K, J𝜀𝑥K ≥ 0 and J𝜀𝑥K = J𝜀K, respectively.

For each constraint 𝑦 = 𝑥2, we introduce variables J𝑡1K, J𝑡2K, J𝑡3K and J𝑡4K with constraints

J𝑡1K = J𝜀K ,

J𝑡2K = J𝜀𝑥K ,

J𝑡3K = J𝜀 𝑦K ,

J𝑡4K = J𝜀K + J𝜀 𝑦K .

Next we introduce two new variables:
q
𝜂low
𝑥, 𝑦

y
and

r
𝜂

high
𝑥, 𝑦

z
, together with constraints enforcing

q
𝜂low
𝑥, 𝑦

y
≤ 𝑔 (J𝑡1K) + 2𝑔 (J𝑡2K) + 𝑔 (J𝑡3K) − 𝑓 (J𝑡4K),r

𝜂
high
𝑥, 𝑦

z
≥ 𝑓 (J𝑡1K) + 2 𝑓 (J𝑡2K) + 𝑓 (J𝑡3K) − 𝑔 (J𝑡4K),

q
𝜂low
𝑥, 𝑦

y
≥ −2

q
≲ 2𝜀3y ,

r
𝜂

high
𝑥, 𝑦

z
≤ 2

q
≲ 2𝜀3y .

Note that the variables
q
𝜂low
𝑥, 𝑦

y
and

r
𝜂

high
𝑥, 𝑦

z
are not completely necessary, and that it is also

possible to use direct constraints

−2
q
≲ 2𝜀3y ≤ 𝑔 (J𝑡1K) + 2𝑔 (J𝑡2K) + 𝑔 (J𝑡3K) − 𝑓 (J𝑡4K),

2
q
≲ 2𝜀3y ≥ 𝑓 (J𝑡1K) + 2 𝑓 (J𝑡2K) + 𝑓 (J𝑡3K) − 𝑔 (J𝑡4K)

instead. The two variables
q
𝜂low
𝑥, 𝑦

y
and

r
𝜂

high
𝑥, 𝑦

z
are included since these slightly simplify the

notation when proving correctness of this construction later on. This completes the construction
of Ψ, which can be performed in linear time. We finish by choosing 𝛿 = 𝑇 (𝑛) with 𝑛 being the
number of variables in Ψ. This completes the CCI-EXPL instance.

Calculations. Let 𝜀 be any real number such that there exist reals 𝛿𝑖 for 0 ≤ 𝑖 ≤ 𝐿 satisfying
𝛿0 = 𝛿, 𝛿𝐿 = 𝜀 and 1

2 𝑓 (𝛿𝑖−1) ≤ 𝛿𝑖 ≤ 𝑔 (𝛿𝑖−1) for all 1 ≤ 𝑖 ≤ 𝐿. Now we have the following facts
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(these facts hold in particular if 𝜀 = J𝜀K (𝑄) for some 𝑄 ∈ 𝑉 (Ψ)):

| 𝑓 (𝑥) − 𝑥2 | ≤ 1
10

|𝑥 |3 for 𝑥 ∈ [−𝛿, 𝛿], (9)

|𝑔 (𝑥) − 𝑥2 | ≤ 1
10

|𝑥 |3 for 𝑥 ∈ [−𝛿, 𝛿], (10)

1
2
𝑓 (𝑥) ≤ 𝑔 (𝑥) for 𝑥 ∈ [−𝛿, 𝛿], (11)

𝜀 ≤ 1
100

min
(
2−2𝑀 , 𝛿

)
, (12)

𝑓 (𝜀) < 𝜀, 𝑔 (𝜀) < 𝜀, (13)
q
≲ 2𝜀3y (𝑄) ≤ 3 J𝜀K (𝑄)3 for 𝑄 ∈ 𝑉 (Ψ), (14)

𝑔 (𝜀 + 𝑔 (𝜀)) − 𝑓 (𝜀) ≥ 𝜀3. (15)

Inequalities 9 and 10 are assumptions from the statement of the lemma. Inequality 11 follows
from this, together with the fact that |𝑥 | is bounded by 1

4 :

1
2
𝑓 (𝑥) ≤ 1

2
𝑥2 + 1

20
|𝑥 |3 ≤ 𝑥2 − 1

10
|𝑥 |3 ≤ 𝑔 (𝑥).

Inequality 12 can be derived in the same way as Inequality 6 from Lemma 3.5, and now
Inequality 13 follows from this with Inequalities 9 and 10.

In order to derive Inequality 14, we use the definition of the variable
q
≲ 2𝜀3y and apply

Inequalities 9 and 10 to this (here we take 𝜀 = J𝜀K (𝑄) to simplify the notation a bit):
q
≲ 2𝜀3y (𝑄) ≤ 𝑔 (𝜀 + J≤ 𝑔 (𝜀)K (𝑄)) − 𝑓 (𝜀)

≤ (𝜀 + J≤ 𝑔 (𝜀)K (𝑄))2 + 1
10

(𝜀 + J≤ 𝑔 (𝜀)K (𝑄))3 − 𝜀2 + 1
10

𝜀3.

Combining this with the constraint J≤ 𝑔 (𝜀)K ≤ 𝑔 (J𝜀K) and Inequalities 10 and 13, we get
q
≲ 2𝜀3y (𝑄) ≤ (𝜀 + J≤ 𝑔 (𝜀)K (𝑄))2 + 1

10
(𝜀 + J≤ 𝑔 (𝜀)K (𝑄))3 − 𝜀2 + 1

10
𝜀3

≤ (𝜀 + 𝑔 (𝜀))2 + 1
10

(𝜀 + 𝑔 (𝜀))3 − 𝜀2 + 1
10

𝜀3

≤
(
𝜀 + 𝜀2 + 1

10
𝜀3

)2

+ 1
10

(𝜀 + 𝜀)3 − 𝜀2 + 1
10

𝜀3

=
29
10

𝜀3 + 6
5
𝜀4 + 1

5
𝜀5 + 1

100
𝜀6.

Combining this with 𝜀 ≤ 1
100 (which follows from Inequality 12) yields that

q
≲ 2𝜀3y (𝑄) ≤ 3𝜀3,

as we wanted.
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Finally Inequality 15 follows from Inequalities 9, 10 and 13 in the following manner:

𝑔 (𝜀 + 𝑔 (𝜀)) − 𝑓 (𝜀) ≥ (𝜀 + 𝑔 (𝜀))2 − 1
10

(𝜀 + 𝑔 (𝜀))3 − 𝜀2 − 1
10

𝜀3

≥
(
𝜀 + 𝜀2 − 1

10
𝜀3

)2

− 1
10

(𝜀 + 𝜀)3 − 𝜀2 − 1
10

𝜀3

=
11
10

𝜀3 + 4
5
𝜀4 − 1

5
𝜀5 + 1

100
𝜀6

≥ 𝜀3.

𝑽(Φ) nonempty implies 𝑽(Ψ) nonempty. Suppose that𝑉 (Φ) ≠ ∅, and therefore, there exists
some 𝑃 ∈ 𝑉 (Φ). Our goal is to demonstrate that𝑉 (Ψ) ≠ ∅. To achieve this, we construct a point𝑄
that lies within 𝑉 (Ψ). We start by taking J𝛿0K (𝑄) = 𝛿 and J𝛿𝑖K (𝑄) = 𝑔 (J𝛿𝑖−1K) for all 1 ≤ 𝑖 ≤ 𝐿.
By Inequality 11, this definition satisfies all constraints on the J𝛿𝑖K. Denote 𝜀 = J𝜀K (𝑄) = J𝛿𝐿K (𝑄).
Next we take J≤ 𝑔 (𝜀)K (𝑄) = 𝑔 (𝜀) and

q
≲ 2𝜀3y (𝑄) = 𝑔 (𝜀 + 𝑔 (𝜀)) − 𝑓 (𝜀), so by Inequality 15 we

know that
q
≲ 2𝜀3y (𝑄) ≥ 𝜀3.

For all variables 𝑥 of Φ, we take J𝜀𝑥K (𝑄) = 𝜀𝑥 (𝑃). Since 𝑉 (𝑃) ⊆ [−1, 1]𝑛, it follows that all
inequalities of the form − J𝜀K (𝑄) ≤ J𝜀𝑥K (𝑄) ≤ J𝜀K (𝑄) are satisfied in this way. Also for every
constraint from Φ of one of the forms 𝑥 + 𝑦 = 𝑧, 𝑥 ≥ 0 or 𝑥 = 1, the corresponding constraint
in Ψ is clearly satisfied.

Next we consider a squaring constraint 𝑦 = 𝑥2 from Φ, for each such constraint we take

J𝑡1K (𝑄) = 𝜀,

J𝑡2K (𝑄) = J𝜀𝑥K (𝑄),
J𝑡3K (𝑄) = J𝜀 𝑦K (𝑄),
J𝑡4K (𝑄) = 𝜀 + J𝜀 𝑦K (𝑄),

q
𝜂low
𝑥, 𝑦

y
(𝑄) = 𝑔 (J𝑡1K (𝑄)) + 2𝑔 (J𝑡2K (𝑄)) + 𝑔 (J𝑡3K (𝑄)) − 𝑓 (J𝑡4K (𝑄)),r

𝜂
high
𝑥, 𝑦

z
(𝑄) = 𝑓 (J𝑡1K (𝑄)) + 2 𝑓 (J𝑡2K (𝑄)) + 𝑓 (J𝑡3K (𝑄)) − 𝑔 (J𝑡4K (𝑄)).

Using these definitions, the only constraints for which we still need to check whether 𝑄 satisfies
them, are the constraints of the form

q
𝜂low
𝑥, 𝑦

y
≥ −2

q
≲ 2𝜀3y and

r
𝜂

high
𝑥, 𝑦

z
≤ 2

q
≲ 2𝜀3y.

We start by checking the first of these constraints. Denote 𝑡1 = J𝑡1K (𝑄), 𝑡2 = J𝑡2K (𝑄),
𝑡3 = J𝑡3K (𝑄) and 𝑡4 = J𝑡4K (𝑄). Now we can apply Inequalities 9 and 10 to the definition of
q
𝜂low
𝑥, 𝑦

y
:

q
𝜂low
𝑥, 𝑦

y
(𝑄) = 𝑔 (𝑡1) + 2𝑔 (𝑡2) + 𝑔 (𝑡3) − 𝑓 (𝑡4)

≥ 𝑡2
1 −

1
10

|𝑡1 |3 + 2𝑡2
2 −

1
5
|𝑡2 |3 + 𝑡2

3 −
1

10
|𝑡3 |3 − 𝑡2

4 −
1

10
|𝑡4 |3

= 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 −
(

1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3

)
.
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Since 𝑡1, . . . 𝑡4 were chosen such that 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 = 𝜀2𝑥 (𝑃)2 − 𝜀2 𝑦(𝑃), and by the fact that
𝑦(𝑃) = 𝑥 (𝑃)2, it follows that 𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 = 0. Furthermore, 𝑡1, 𝑡2 and 𝑡3 are all bounded by 𝜀

in absolute value, while |𝑡4 | is bounded by 2𝜀. This yields

q
𝜂low
𝑥, 𝑦

y
(𝑄) ≥ 𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 −

(
1

10
|𝑡1 |3 +

1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3

)
≥ 0 −

(
1

10
𝜀3 + 1

5
𝜀3 + 1

10
𝜀3 + 8

10
𝜀3

)
≥ −2𝜀3.

Combining this with
q
≲ 2𝜀3y (𝑄) ≥ 𝜀3, we find

q
𝜂low
𝑥, 𝑦

y
(𝑄) ≥ −2

q
≲ 2𝜀3y (𝑄).

Next we consider the constraint
r
𝜂

high
𝑥, 𝑦

z
≤ 2

q
≲ 2𝜀3y. We apply Inequalities 9 and 10 to

the definition of
r
𝜂

high
𝑥, 𝑦

z
:

r
𝜂

high
𝑥, 𝑦

z
(𝑄) = 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑔 (𝑡4)

≤ 𝑡2
1 +

1
10

|𝑡1 |3 + 2𝑡2
2 +

1
5
|𝑡2 |3 + 𝑡2

3 +
1

10
|𝑡3 |3 − 𝑡2

4 +
1

10
|𝑡4 |3

= 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 +
1

10
|𝑡1 |3 +

1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3.

Here we can apply that 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 = 0, and that |𝑡1 |, |𝑡2 | and |𝑡3 | are bounded by 𝜀 and |𝑡4 |
is bounded by 2𝜀 to get

r
𝜂

high
𝑥, 𝑦

z
(𝑄) ≤ 𝑡2

1 + 2𝑡2
2 + 𝑡2

3 − 𝑡2
4 +

1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3

≤ 0 + 1
10

𝜀3 + 1
5
𝜀3 + 1

10
𝜀3 + 8

10
𝜀3

≤ 2𝜀3.

So we get that
r
𝜂

high
𝑥, 𝑦

z
(𝑄) ≤ 2

q
≲ 2𝜀3y (𝑄).

We conclude that 𝑄 satisfies all constraints from Ψ, and therefore 𝑄 ∈ 𝑉 (Ψ). This proves
that 𝑉 (Ψ) ≠ ∅.

𝑽(Ψ) nonempty implies 𝑽(Φ) nonempty. Next, let 𝑄 ∈ 𝑉 (Ψ). Just as in the proof of
Lemma 3.5, we want to show that |𝑥 (𝑄) | ≤ 𝛿 for all variables 𝑥 of Ψ, and we want to prove
that𝑉 (Φ) ≠ ∅. Bounding the coordinates and showing that 𝑄 is domain adherent goes in exactly
the same way as in Lemma 3.5.

In order to demonstrate that 𝑉 (Φ) ≠ ∅, we once more apply Lemma 3.2. We construct
a point 𝑃 in 𝑉 (Φ100𝜀), where we again denote 𝜀 = J𝜀K (𝑄). This would imply 𝑉 (Φ) ≠ ∅ since
100𝜀 ≤ 2−2𝑀 . We take 𝑥 (𝑃) = J𝜀𝑥K(𝑄)

𝜀 for all variables 𝑥 of Φ. Now 𝑃 satisfies all linear constraints
and inequality constraints of Φ, and it only remains to be checked that it satisfies the constraints
| 𝑦 − 𝑥2 | ≤ 100𝜀 of Φ100𝜀.
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We start by proving that 𝑥 (𝑃)2− 𝑦(𝑃) ≤ 100𝜀. Denote 𝑡1 = J𝑡1K (𝑄) = 𝜀, 𝑡2 = J𝑡2K (𝑄) = 𝜀𝑥 (𝑃),
𝑡3 = J𝑡3K (𝑄) = 𝜀 𝑦(𝑃) and 𝑡4 = J𝑡4K (𝑄) = 𝜀 + 𝜀 𝑦(𝑃). We have that

𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4 = 2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)).

Note that from Inequalities 9 and 10 it also follows that 𝑥2 ≤ 𝑓 (𝑥) + 1
10 |𝑥 |

3 and 𝑥2 ≥ 𝑔 (𝑥) − 1
10 |𝑥 |

3

for all 𝑥 ∈ [−𝛿, 𝛿]. Using this, we find

2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)) = 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4

≤ 𝑓 (𝑡1) +
1

10
|𝑡1 |3 + 2 𝑓 (𝑡2) +

1
5
|𝑡2 |3

+ 𝑓 (𝑡3) +
1

10
|𝑡3 |3 − 𝑔 (𝑡4) +

1
10

|𝑡4 |3

= 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑔 (𝑡4)

+ 1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3.

To bound this, we use the variable
r
𝜂

high
𝑥, 𝑦

z
, and the observation that 𝑡1, 𝑡2 and 𝑡3 are bounded in

absolute value by 𝜀, and |𝑡4 | is bounded by 2𝜀:

2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)) ≤ 𝑓 (𝑡1) + 2 𝑓 (𝑡2) + 𝑓 (𝑡3) − 𝑔 (𝑡4)

+ 1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3

≤
r
𝜂

high
𝑥, 𝑦

z
(𝑄) + 1

10
𝜀3 + 1

5
𝜀3 + 1

10
𝜀3 + 8

10
𝜀3

≤ 2
q
≲ 2𝜀3y (𝑄) + 2𝜀3.

Here we can apply Inequality 14 to find

2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)) ≤ 8𝜀3 < 200𝜀3.

This implies 𝑥 (𝑃)2 − 𝑦(𝑃) ≤ 100𝜀, as we wanted.
The proof that 𝑥 (𝑃)2 − 𝑦(𝑃) ≥ −100𝜀 works in a similar manner. Leaving out some

intermediate steps, it looks as follows:

2𝜀2(𝑥 (𝑃)2 − 𝑦(𝑃)) = 𝑡2
1 + 2𝑡2

2 + 𝑡2
3 − 𝑡2

4

≥ 𝑔 (𝑡1) + 2𝑔 (𝑡2) + 𝑔 (𝑡3) − 𝑓 (𝑡4)

−
(

1
10

|𝑡1 |3 +
1
5
|𝑡2 |3 +

1
10

|𝑡3 |3 +
1

10
|𝑡4 |3

)
≥

q
𝜂low
𝑥, 𝑦

y
(𝑄) − 2𝜀3

≥ −8𝜀3 > −200𝜀3,

and therefore 𝑥 (𝑃)2 − 𝑦(𝑃) ≥ −100𝜀. This implies that 𝑃 ∈ 𝑉 (Φ100𝜀), and therefore 𝑉 (Φ) ≠ ∅.
This completes the proof of the validity of the reduction of ETR-SQUARE to CCI-EXPL. So

for 𝑓 and 𝑔 satisfying the conditions from the lemma, the problem CCI-EXPL is ∃R-hard. ■
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Now that hardness of this restricted version of CCI-EXPL is proven, this result can be
generalized in small steps until finally Theorem 1.13 is proven.

Before we do this, we first note that in any CCI-EXPL formula, constraints of the form
𝑥 = 𝑞 · 𝑦, where 𝑥, 𝑦 are variables and 𝑞 is a rational constant, can be enforced using a constant
number of addition constraints and new variables. To illustrate this, we will discuss the case
where 𝑞 ∈ [0, 1] here. Other cases can be handled in a similar manner. Assume that 𝑞 = 𝑎/𝑏
for a positive integer 𝑏 and an integer 0 ≤ 𝑎 ≤ 𝑏. Now we can introduce variables

q
𝑖
𝑏 𝑦

y
for

all 0 ≤ 𝑖 ≤ 𝑏, which satisfy constraints
s

0
𝑏
𝑦

{
=

s
0
𝑏
𝑦

{
+

s
0
𝑏
𝑦

{
,

s
𝑖 + 1
𝑏

𝑦

{
=

s
𝑖

𝑏
𝑦

{
+

s
1
𝑏
𝑦

{
for 0 ≤ 𝑖 < 𝑏,

s
𝑏

𝑏
𝑦

{
=

s
0
𝑏
𝑦

{
+ 𝑦,

r𝑎
𝑏
𝑦
z
=

s
0
𝑏
𝑦

{
+ 𝑥.

This exactly enforces that 𝑥 = 𝑎
𝑏 · 𝑦.

The first step in working from Lemma 3.8 to Theorem 1.13 is to get rid of the constraint
that 𝑇 (𝑛) has to be bounded by 1

4 .

LEMMA 3.9. Let 𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions such that
| 𝑓 (𝑥) −𝑥2 | ≤ 1

10 |𝑥 |
3 and |𝑔 (𝑥) −𝑥2 | ≤ 1

10 |𝑥 |
3 for all 𝑥 ∈ 𝑈 . Let𝑇 be bounded and nicely computable.

In this setting, CCI-EXPL is ∃R-hard, even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛

being the number of variables.

PROOF . Let 𝑐1 be some rational constant such that 0 < 𝑐1 < 1
4 and [−𝑐1, 𝑐1] ⊆ 𝑈 . We will give

a self-reduction from instances with 𝛿 = 𝑇∗(𝑛) to instances with 𝛿 = 𝑇 (𝑛), where 𝑇∗ is some
nicely computable function bounded by 𝑐1 which is yet to be determined.

Let 𝑐2 be a rational constant that strictly bounds 𝑇 from above, and denote 𝑐 = 𝑐2
𝑐1

. Without
loss of generality we may assume that 𝑐2 ≥ 1

4 , so in particular 𝑐 ≥ 1. Let (𝛿,Φ) be some instance
of CCI-EXPL with 𝑛 variables, and 𝛿 = 𝑇∗(𝑛). We will build an equisatisfiable instance (𝛿′,Ψ)
with 𝑚 variables and fix 𝑇∗, such that 𝛿′ = 𝑐𝛿 = 𝑇 (𝑚). For this, we add to Φ extra variables J𝛿K
and J𝛿′K, together with constraints and auxiliary variables enforcing J𝛿′K = 𝛿′ and J𝛿′K = 𝑐 J𝛿K.
Next we replace every constraint of the form 𝑥 = 𝛿 by a constraint of the form 𝑥 = J𝛿K. This
gives us the formula Ψ. Note that the solutions to Φ directly correspond to solutions of Ψ. The
fact that 𝛿′ ≥ 𝛿 and the promises on Ψ imply that all solutions of Ψ are contained in [−𝛿′, 𝛿′].
Furthermore, the fact that Φ is domain adherent implies that also Ψ is domain adherent.

Note that the number of variables in Ψ is exactly 𝑛 plus some constant 𝑑 which only
depends on the function 𝑇 . Therefore we can take 𝑇∗(𝑛) = 1

𝑐𝑇 (𝑛 + 𝑑) and 𝛿′ = 𝑇 (𝑛 + 𝑑), this
ensures that in the preceding construction we have 𝛿′ = 𝑐 · 𝛿, and therefore Φ and Ψ are indeed
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equisatisfiable. Furthermore, since 𝑇 is bounded from above by 𝑐2, it follows that 𝑇∗ is bounded
from above by 𝑐1. In particular, it follows that [−𝑇∗(𝑛), 𝑇∗(𝑛)] ⊆ 𝑈 for all values of 𝑛. ■

Now the next step when working towards Theorem 1.13, is to slightly relax the constraints
on 𝑓 and 𝑔 , by allowing the difference with squaring to be any 𝑂(𝑥3) function, instead of just
functions bounded by 1

10 |𝑥 |
3 in absolute value.

LEMMA 3.10. Let 𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions such that
𝑓 (𝑥) = 𝑥2 + 𝑂(𝑥3) and 𝑔 (𝑥) = 𝑥2 + 𝑂(𝑥3) as 𝑥 → 0. Let 𝑇 be bounded and nicely computable. In
this setting, CCI-EXPL is ∃R-hard, even when only considering instances where 𝛿 = 𝑇 (𝑛), with 𝑛

being the number of variables.

PROOF . Let 𝑐 be a constant such that | 𝑓 (𝑥) − 𝑥2 | ≤ 𝑐|𝑥 |3 and |𝑔 (𝑥) − 𝑥2 | ≤ 𝑐|𝑥 |3 for all 𝑥 ∈ 𝑈∗

where 𝑈∗ ⊆ 𝑈 is a neighborhood of 0. Now let 𝑁 be a positive integer larger than 10𝑐. This
implies that for all 𝑥 ∈ 𝑈∗

|𝑁2 𝑓 (𝑥/𝑁) − 𝑥2 | ≤ 1
10

|𝑥 |3 and

|𝑁2𝑔 (𝑥/𝑁) − 𝑥2 | ≤ 1
10

|𝑥 |3.

If we define 𝑓 ∗ and 𝑔∗ on the domain 𝑈∗ by 𝑓 ∗(𝑥) = 𝑁2 𝑓 (𝑥/𝑁) and 𝑔∗(𝑥) = 𝑁2𝑔 (𝑥/𝑁), then
using Lemma 3.9, we get that the problem CCI-EXPL is ∃R-hard for 𝑓 ∗ and 𝑔∗. For the rest of the
proof of this lemma, we will denote this specific CCI-EXPL version using 𝑓 ∗ and 𝑔∗ by CCI-EXPL∗.

We give a reduction from CCI-EXPL∗ to the CCI-EXPL version with 𝑓 and 𝑔 . Let (𝛿,Φ) be a
CCI-EXPL∗ instance. Now for every variable 𝑥 in this instance, we add extra variables J𝑥/𝑁K,
q
𝑥/𝑁2y and we add constraints enforcing

r 𝑥

𝑁

z
=

J𝑥K
𝑁

,

r 𝑥

𝑁2

z
=

J𝑥K
𝑁2 .

Next we replace every constraint of the form 𝑦 ≥ 𝑓 ∗(𝑥) (i.e. LargerZero( 𝑦 − 𝑓 ∗(𝑥))) by a
constraint

q
𝑦/𝑁2y ≥ 𝑓 (J𝑥/𝑁K) (i.e. LargerZero(

q
𝑦/𝑁2y − 𝑓 (J𝑥/𝑁K))). Similarly, we replace

every constraint of the form 𝑦 ≤ 𝑔∗(𝑥) (i.e. LargerZero(𝑔∗(𝑥) − 𝑦)) by a constraint
q
𝑦/𝑁2y ≤

𝑔 (J𝑥/𝑁K) (i.e. LargerZero(𝑔 (J𝑥/𝑁K) −
q
𝑦/𝑁2y)).

This results in a CCI-EXPL formula Ψ. Note that any solution of Φ is domain adherent and
contained in [−𝛿, 𝛿]𝑛, and that the domain 𝑈∗ of 𝑓 ∗ and 𝑔∗ is a subset of 𝑈 . From this, it follows
that any solution of Φ corresponds to a domain adherent solution of Ψ where all variables
are in [−𝛿, 𝛿]. For the other direction, note that because of the way in which the LargerZero

constraint was defined, any solution of Ψ also corresponds to a solution of Φ. So this proves
that Φ and Ψ are equisatisfiable and that all solutions of Ψ satisfy the necessary conditions.
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Note that the number of variables 𝑚 in the new CCI-EXPL instance depends in a linear
manner on the number of variables 𝑛 in Φ. If we also want to ensure that 𝛿 = 𝑇 (𝑚), then we
can define 𝑇∗(𝑛) to be a bounded nicely computable function such that 𝑇 (𝑚) = 𝑇∗(𝑛) for every
possible value of 𝑛. Then we can decide to only consider CCI-EXPL∗ instances with 𝛿 = 𝑇∗(𝑛) in
the described construction. ■

In the next lemma, we allow even more possible 𝑓 and 𝑔 .

LEMMA 3.11. Let 𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions such that
𝑓 (𝑥) = 𝑎𝑥 + 𝑏𝑥2 + 𝑂(𝑥3) and 𝑔 (𝑥) = 𝑐𝑥 + 𝑑𝑥2 + 𝑂(𝑥3) as 𝑥 → 0, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q and 𝑏, 𝑑 > 0.
Let 𝑇 be bounded and nicely computable. In this setting, CCI-EXPL is ∃R-hard, even when only
considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

PROOF . We define 𝑓 ∗ and 𝑔∗ as 𝑓 ∗(𝑥) = ( 𝑓 (𝑥) − 𝑎𝑥)/𝑏 and 𝑔∗(𝑥) = (𝑔 (𝑥) − 𝑐𝑥)/𝑑. From the
constraints on 𝑓 and 𝑔 it follows that 𝑓 ∗(𝑥) = 𝑥2+𝑂(𝑥3) and 𝑔∗(𝑥) = 𝑥2+𝑂(𝑥3). Therefore we can
apply the previous lemma to these functions to find that the CCI-EXPL problem with 𝑓 ∗ and 𝑔∗

is ∃R-hard. We will denote this problem by CCI-EXPL∗, and give a reduction from CCI-EXPL∗ to
the CCI-EXPL problem with 𝑓 and 𝑔 as defined in the lemma statement.

Let (𝛿,Φ) be any instance of CCI-EXPL∗. We denote

𝛿′ = (1 + |𝑎| + |𝑏| + |𝑐| + |𝑑 |)𝛿.

Now we build an instance (𝛿′,Ψ) of CCI-EXPL in the following manner: We start by adding a
variable J𝛿K which is meant as a replacement for the 𝛿 in conditions of the form 𝑥 = 𝛿 in Φ.
To introduce this variable, we introduce an auxiliary variable J𝛿′K and enforce the following
constraints:

J𝛿′K = 𝛿′,

J𝛿′K = (1 + |𝑎| + |𝑏| + |𝑐| + |𝑑 |) J𝛿K .

We also add every variable of Φ and all constraints of the form 𝑥 + 𝑦 = 𝑧 or 𝑥 ≥ 0 from Φ to Ψ,
and for every constraint 𝑥 = 𝛿 in Φ we add a constraint 𝑥 = J𝛿K to Ψ.

For every constraint 𝑦 ≥ 𝑓 ∗(𝑥) of Φ we introduce a new variable J𝑎𝑥 + 𝑏𝑦K to Ψ which
we force to equal 𝑎𝑥 + 𝑏𝑦 using some linear constraints. Furthermore we add a constraint
J𝑎𝑥 + 𝑏𝑦K ≥ 𝑓 (𝑥). For constraints of the form 𝑦 ≤ 𝑔∗(𝑥) we do something similar.

In this way, (𝛿′,Ψ) is a valid CCI-EXPL instance since all values of the variables in any
solution can be seen to be bounded by 𝛿′ using the triangle inequality. Furthermore, the new
instance Ψ differs from Φ only by new auxiliary variables and otherwise has exactly the same
constraints on the original variables. Thus 𝑉 (Ψ) is non-empty if and only if 𝑉 (Φ) is non-empty,
and Ψ is domain adherent since Φ is.

Finally, we will show that we might impose 𝛿′ = 𝑇 (𝑛) on the instances. Note that the
number of variables created by the reduction is linear in the number of old variables and the
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number of constraints of the form 𝑦 ≥ 𝑓 ∗(𝑥) or 𝑦 ≤ 𝑔∗(𝑥) in Φ. If Φ has 𝑛 variables, then there
can be at most 𝑂(𝑛2) different constraints of one of these two forms, so we can find some integer
constant 𝑘 such that Ψ has at most 𝑘 · 𝑛2 variables. Now we can adjust the previous reduction
to add sufficiently many extra variables (not occurring in any constraint) to make sure there
are exactly 𝑘 · 𝑛2 variables. We can also define 𝑇∗ as 𝑇∗(𝑛) = 𝑇 (𝑘𝑛2)

1+|𝑎|+|𝑏|+|𝑐|+|𝑑 | , now restricting the
inputs of CCI-EXPL∗ to cases with 𝛿 = 𝑇∗(𝑛) gives the desired result. ■

The next step is to notice that any function which is three times differentiable with a
nonzero second derivative satisfies the constraints from the previous lemma. This leads to the
following result:

COROLLARY 3.7. Let𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 , 𝑔 : 𝑈 → R be functions which
are three times differentiable such that 𝑓 (0) = 𝑔 (0) = 0 and 𝑓 ′(0), 𝑓 ′′(0), 𝑔′(0), 𝑔′′(0) ∈ Q with
𝑓 ′′(0), 𝑔′′(0) > 0. Let 𝑇 be bounded and nicely computable. In this setting, CCI-EXPL is ∃R-hard,
even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

PROOF . Using Taylor’s theorem, we find that

𝑓 (𝑥) = 𝑓 ′(0)𝑥 + 𝑓 ′′(0)
2

𝑥2 + 𝑂(𝑥3) and

𝑔 (𝑥) = 𝑔′(0)𝑥 + 𝑔′′(0)
2

𝑥2 + 𝑂(𝑥3).

To this, we can apply the previous lemma to find that CCI-EXPL is ∃R-hard, even when we only
consider instances with 𝛿 = 𝑇 (𝑛). ■

3.4 Implicit Constraints

Using, Corollary 3.7 we will show Theorem 1.13 and Theorem 1.11 in this order. Lemma 3.13 is
almost equivalent to Theorem 1.13. The only difference is that the conditions 𝑓𝑦 (0, 0) > 0 and
𝑔 𝑦 (0, 0) < 0 are added. As a preparation, we need the Implicit function theorem. We state the
exact version that we use here for the convenience of the reader.

THEOREM 3.12 (Implicit Function Theorem). Let 𝑈 ⊆ R2 be a neighborhood of (0, 0). Let
𝑓 : 𝑈 → R be a 𝐶3-function with 𝑓𝑦 (0, 0) ≠ 0 defining the set 𝑆 = {(𝑥, 𝑦) ∈ 𝑈 | 𝑓 (𝑥, 𝑦) = 0}. Now
there is a neighborhood 𝑈′ ⊆ R of 0 with (𝑈′)2 ⊆ 𝑈 and some 𝐶3-function 𝑓expl : 𝑈′ → R such
that

{
(𝑥, 𝑦) ∈ (𝑈′)2

�� 𝑦 = 𝑓expl(𝑥)
}
= 𝑆 ∩ (𝑈′)2. Furthermore, we have 𝑓 ′expl(𝑥) = − 𝑓𝑥 (𝑥, 𝑓expl(𝑥))

𝑓𝑦 (𝑥, 𝑓expl(𝑥)) for
all 𝑥 ∈ 𝑈′.

LEMMA 3.13. Let 𝑈 ⊆ R2 be a neighborhood of the origin. Let 𝑓 , 𝑔 : 𝑈 → R be two functions,
with 𝑓 well-behaved and convexly curved, and 𝑔 well-behaved and concavely curved. Furthermore
assume that their partial derivatives satisfy 𝑓𝑦 (0, 0) > 0 and 𝑔 𝑦 (0, 0) < 0. Let 𝑇 be bounded and
nicely computable. Then the problem CCI is ∃R-hard, even when considering only instances where
𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.
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PROOF . Using the implicit function theorem, we find that in a neighborhood (𝑈′)2 ⊆ 𝑈 of
(0, 0), the curve 𝑓 (𝑥, 𝑦) = 0 can also be given in an explicit form 𝑦 = 𝑓expl(𝑥), where 𝑓expl is
some 𝐶3-function 𝑈′ → R. So for (𝑥, 𝑦) ∈ (𝑈′)2 we have 𝑓 (𝑥, 𝑦) = 0 if and only if 𝑦 = 𝑓expl(𝑥).
Since 𝑓𝑦 (0, 0) > 0, it also follows that 𝑓 (𝑥, 𝑦) ≥ 0 if and only if 𝑦 ≥ 𝑓expl(𝑥). Furthermore, the
implicit function theorem also states that the derivative of 𝑓expl is given by

𝑓 ′expl(𝑥) = −
𝑓𝑥 (𝑥, 𝑓expl(𝑥))
𝑓𝑦 (𝑥, 𝑓expl(𝑥))

.

From this, it can be computed that the second derivative in 0 is

𝑓 ′′expl(0) = −
(
𝑓 2
𝑦 𝑓𝑥𝑥 − 2 𝑓𝑥 𝑓𝑦 𝑓𝑥 𝑦 + 𝑓 2

𝑥 𝑓𝑦 𝑦

𝑓 3
𝑦

)
(0, 0).

Note that the fact that 𝑓 is convexly curved exactly implies that the numerator of this expression
is a positive number. Using the assumptions from the lemma statement, we conclude that 𝑓 ′′expl(0)
is a positive rational number.

In an analogous way, we can write the condition 𝑔 (𝑥, 𝑦) ≥ 0 in the form 𝑦 ≤ 𝑔expl(𝑥)
in some neighborhood of (0, 0), where 𝑔expl is a 𝐶3-function with rational first and second
derivative in 0, and with positive second derivative. Without loss of generality we assume
that 𝑓expl and 𝑔expl have the same domain 𝑈′.

We would now like to conclude that the problem CCI is equivalent to the problem CCI-EXPL
for 𝑓expl and 𝑔expl, but we need to be slightly careful because of the exact way in which the
constraints involving 𝑓 and 𝑔 are defined. Recall that with the constraint 𝑓 (𝑥, 𝑦) ≥ 0 in an
CCI instance we actually mean LargerZero( 𝑓 ), which was defined to be satisfied whenever
(𝑥, 𝑦) falls outside of𝑈 . Similarly the constraint 𝑦 ≥ 𝑓expl(𝑥) in an CCI-EXPL instance is satisfied
whenever 𝑥 ∉ 𝑈′.

We will give a reduction from CCI-EXPL to CCI. Let 𝛿0 be some constant such that [−𝛿0, 𝛿0] ⊆
𝑈′. Let 0 < 𝑐 ≤ 1

2 be a rational constant such that 𝑐𝑇 (𝑛) ≤ 𝛿0 for all 𝑛. This exists, since 𝑇 is
bounded. Now let (Φ, 𝛿′) be a CCI-EXPL instance with 𝛿′ = 𝑇∗(𝑛). Here 𝑇∗ will be determined
later in such a way that 𝑇∗(𝑛) = 𝑐𝑇 (𝑚), where 𝑚 is the number of variables in the CCI instance
(Ψ, 𝛿) which we will construct now. We start constructing Ψ by adding variables J𝛿′K and J𝛿K,
with linear constraints enforcing J𝛿K = 𝛿 and J𝛿′K = 𝑐 J𝛿K. Next we add all linear constraints
from Φ to Ψ, except that we replace constraints of the form 𝑥 = 𝛿′ by 𝑥 = J𝛿′K. For every
constraint 𝑦 ≥ 𝑓expl(𝑥) in Φ, we add constraints to Ψ enforcing 𝑓 (𝑥, 𝑦) ≥ 0, 𝑦 ≥ −𝛿′ and 𝑦 ≤ 𝛿′.
Similarly, we replace 𝑦 ≤ 𝑔expl(𝑥) by constraints enforcing 𝑔 (𝑥, 𝑦) ≥ 0, 𝑦 ≥ −𝛿′ and 𝑦 ≤ 𝛿′.

Since 𝛿′ ≤ 𝛿0, it follows that the constraints LargerZero( 𝑦 − 𝑓expl(𝑥)) and LargerZero( 𝑓 )
exactly coincide when restricted to [−𝛿′, 𝛿′]2. Since all solutions to Φ are promised to have all
coordinates in [−𝛿′, 𝛿′], it follows that every solution to Φ gives rise to a solution of Ψ. From the
definition of the LargerZero constraint it also follows that LargerZero( 𝑓 ) is satisfied whenever
both LargerZero( 𝑦 − 𝑓expl(𝑥)) and 𝑦 ∈ 𝑈 . From this it follows that also every solution to Ψ
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corresponds to a solution of Φ. Since all solutions of Ψ correspond to solutions of Φ, it also
follows that all solutions of Ψ are contained in [−𝛿, 𝛿]𝑚 and are domain adherent.

To make the correct choice of 𝑇∗, we proceed as in the end of the proof of Lemma 3.11.
That is, we add some extra variables to Ψ to ensure that the total number of variables is always
exactly 𝑚 = 𝑘𝑛2 for some constant 𝑘, and choose 𝑇∗(𝑛) = 𝑐𝑇 (𝑘𝑛2) for all 𝑛. ■

From here it is a small step to prove the main result:

THEOREM 1.13. (Restated) Let 𝑓 , 𝑔 : 𝑈 → R be well-behaved and triple algebraic. Further-
more, let 𝑓 , 𝑔 be respectively convexly curved and concavely curved. Let 𝑇 be bounded and
nicely computable. In this setting, CCI is ∃R-complete, even when considering only instances
where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

PROOF . Without loss of generality, we may assume that 𝑓𝑦 (0, 0) ≠ 0 and 𝑔 𝑦 (0, 0) ≠ 0. In any
other case, we can just interchange the variables in one of the functions.

In the case where 𝑓𝑦 (0, 0) > 0 and 𝑔 𝑦 (0, 0) < 0, we can apply the previous lemma and we
are done. For the case 𝑓𝑦 (0, 0) < 0 and 𝑔 𝑦 (0, 0) < 0, we can provide a reduction from CCI with
functions 𝑓 ∗(𝑥, 𝑦) = 𝑓 (−𝑥,−𝑦) and 𝑔∗(𝑥, 𝑦) = 𝑔 (𝑥, 𝑦). For the case 𝑓𝑦 (0, 0) > 0 and 𝑔 𝑦 (0, 0) > 0
we can make a reduction from CCI with functions 𝑓 ∗(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) and 𝑔∗(𝑥, 𝑦) = 𝑔 (−𝑥,−𝑦).
and for the case 𝑓𝑦 (0, 0) < 0 and 𝑔 𝑦 (0, 0) > 0, we can provide a reduction from CCI with
functions 𝑓 ∗(𝑥, 𝑦) = 𝑓 (−𝑥,−𝑦) and 𝑔∗(𝑥, 𝑦) = 𝑔 (−𝑥,−𝑦). Note that flipping the signs of the
inputs of 𝑓 or 𝑔 does not influence any second partial derivative, while it does negate the first
partial derivatives; therefore the mentioned starting points for the reductions can all be seen to
satisfy the conditions from Lemma 3.13.

As an example we discuss the case 𝑓𝑦 (0, 0) > 0 and 𝑔 𝑦 (0, 0) > 0. We want to give reduction
from the problem CCI with functions 𝑓 ∗(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) and 𝑔∗(𝑥, 𝑦) = 𝑔 (−𝑥,−𝑦); we denote
this CCI variation by CCI∗. So suppose that (𝛿,Φ) is a CCI∗ instance. Now we will construct a CCI
instance (𝛿,Ψ) (with the 𝑓 and 𝑔 from the theorem statement). We add every variable of Φ to Ψ,
and for every such variable 𝑥 we also add an extra variable J−𝑥K, together with a constraint
enforcing 𝑥+J−𝑥K = 0. Furthermore, we copy every constraint from Φ to Ψ, except for constraints
of the form 𝑔∗(𝑥, 𝑦) ≥ 0. These constraints are replaced instead by 𝑔 (J−𝑥K , J−𝑦K) ≥ 0. This
finishes the construction.

If we also want to enforce that 𝛿 = 𝑇 (𝑚) with 𝑚 the number of variables in the new CCI
instance, then we can define𝑇∗ as𝑇∗(𝑛) = 𝑇 (2𝑛) and only consider CCI∗ instances with 𝛿 = 𝑇∗(𝑛).
Note that the reduction always doubles the number of variables, and therefore this implies that
also 𝛿 = 𝑇 (𝑚) with 𝑚 the number of variables in Ψ. ■

As a final result in this section, we prove Theorem 1.11 as well. To do this, we start from
Corollary 3.7 and convert this to a result about CE-EXPL.
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LEMMA 3.14. Let 𝑈 ⊆ R be a neighborhood of 0, and let 𝑓 : 𝑈 → R be a function which is three
times differentiable such that 𝑓 (0) = 0 and 𝑓 ′(0), 𝑓 ′′(0) ∈ Q with 𝑓 ′′(0) ≠ 0. Let 𝑇 be bounded
and nicely computable. In this setting, CE-EXPL is ∃R-hard, even when considering only instances
where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number of variables.

PROOF . We apply Corollary 3.7 to the case where 𝑔 = 𝑓 to find that in this case CCI-EXPL is
∃R-hard. We can reduce this problem to CE-EXPL. Let (𝛿,Φ) be a CCI-EXPL instance. Now we
construct an CE-EXPL formula Ψ. We copy all constraints of the form 𝑥 + 𝑦 = 𝑧, 𝑥 ≥ 0 and 𝑥 = 𝛿

from Φ. For every constraint 𝑦 ≥ 𝑓 (𝑥) we introduce two new variables J 𝑓 (𝑥)K and J𝑦 − 𝑓 (𝑥)K,
which we restrict by constraints

J 𝑓 (𝑥)K = 𝑓 (𝑥),
𝑦 = J𝑦 − 𝑓 (𝑥)K + J 𝑓 (𝑥)K , and

J𝑦 − 𝑓 (𝑥)K ≥ 0.

In a similar manner we replace every constraint 𝑦 ≤ 𝑓 (𝑥) by introducing new variables J 𝑓 (𝑥)K
and J 𝑓 (𝑥) − 𝑦K and imposing the constraints

J 𝑓 (𝑥)K = 𝑓 (𝑥),
J 𝑓 (𝑥)K = J 𝑓 (𝑥) − 𝑦K + 𝑦, and

J 𝑓 (𝑥) − 𝑦K ≥ 0.

This completes the construction. It can easily be checked that every solution of Φ corresponds
to a solution of Ψ, and vice versa.

In order to enforce that 𝛿 = 𝑇 (𝑚) with 𝑚 the number of variables Ψ, we use a technique
similar to that used in Lemma 3.11. Again we add extra variables to ensure that the number
of variables in Ψ is exactly 𝑘𝑛2 for some constant 𝑘, where 𝑛 is the number of variables in Φ.
Then we take 𝑇∗(𝑛) = 𝑇 (𝑘𝑛2) and only consider instances (𝛿,Φ) of CCI-EXPL which satisfy
𝛿 = 𝑇∗(𝑛). ■

THEOREM 1.1 1. (Restated) Let 𝑓 : 𝑈 → R be a function that is well-behaved, curved, and
triple algebraic. Let 𝑇 be a function that is both bounded and nicely computable. In this setting,
CE is ∃R-complete, even when considering only instances where 𝛿 = 𝑇 (𝑛), with 𝑛 being the number
of variables.

PROOF . This proof is very similar to that of Lemma 3.13. Without loss of generality, we may
assume that 𝑓𝑦 (0, 0) ≠ 0, otherwise we can swap the variables. Using the implicit function
theorem, we can write the condition 𝑓 (𝑥, 𝑦) = 0 in some neighborhood (𝑈′)2 ⊆ 𝑈 of (0, 0) as
𝑦 = 𝑓expl(𝑥), where 𝑓expl is some 𝐶3-function 𝑈′ → R. Using the fact that the curvature of 𝑓 is
nonzero, the implicit function theorem also tells us that 𝑓 ′′expl(0) ≠ 0.
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Now we give a reduction from CE-EXPL to CE. Choose 𝛿0 such that [−𝛿0, 𝛿0] ⊆ 𝑈′, and let
𝑐 ≤ 1

2 be a positive rational number such that 𝑐𝑇 (𝑛) ≤ 𝛿0 for all 𝑛. Let (Φ, 𝛿′) be a CE-EXPL
instance with 𝛿′ = 𝑇∗(𝑛) to be determined later. We will build an instance (Ψ, 𝛿), where 𝛿 = 𝑇 (𝑚)
with 𝑚 the final number of variables in Ψ. First we add variables J𝛿K , J𝛿′K to Ψ with constraints
enforcing J𝛿′K = 𝑐 J𝛿K. We replace all constraints 𝑥 = 𝛿′ in Φ by 𝑥 = J𝛿′K, and we transfer all
other linear equalities and inequalities from Φ to Ψ as well. Finally, we replace every constraint
in Φ of the form 𝑦 = 𝑓expl(𝑥) by constraints enforcing 𝑦 = 𝑓 (𝑥), 𝑦 ≥ −𝛿′ and 𝑦 ≤ 𝛿′.

For the same reasons as in the proof of Lemma 3.13, the solutions of Φ are in correspon-
dence with those of Ψ. Furthermore, the solutions of Ψ will again all be domain adherent
and contained in [−𝛿, 𝛿]𝑚 with 𝑚 the number of variables in Ψ. Finally, we may add some
extra variables to Ψ to ensure it has exactly 𝑘𝑛2 variables for some constant 𝑘, and then
choose 𝑇∗(𝑛) = 𝑐𝑇 (𝑘𝑛2) for all 𝑛. ■
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A. Circle-Constraint

Here, we discuss the question of expressing multiplication via linear equations and the circle
constraint 𝑥2 + 𝑦2 = 1. We note that for real numbers 𝑥 and 𝑦 the following equivalence holds:

There exists a real 𝑧 such that 𝑧2 + (𝑥 + 𝑦)2 = 1 and (𝑧 + 𝑥 − 𝑦)2 + (𝑧 − 𝑥 + 𝑦)2 = 1 if and
only if 8𝑥 𝑦 = 1 and |𝑥 + 𝑦 | ≤ 1. This can be used in turn to express the inversion constraint
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(𝑥 · 𝑦 = 1) after some scaling and imposing range constraints. Note that 𝑥 · 𝑦 = 1 can be used to
express squaring as follows

1
1
𝑥 −

1
𝑥+1

− 𝑥 = 𝑥2.

And we saw already in the Section 1.2 how squaring can be used to express multiplication.
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