
1 / 74 2023 : 1 1

All about unambiguous
polynomial closure

Received Aug 17, 2022
Revised Oct 30, 2022
Accepted Nov 6, 2023
Published Dec 23, 2023

Key words and phrases
Words, regular languages,
concatenation hierarchies,
first-order logic, quantifier
alternation, membership,
separation

Thomas Placea � �

Marc Zeitouna � �

a Univ. Bordeaux, CNRS,
Bordeaux INP, LaBRI, UMR 5800,
F-33400, Talence, France

ABSTRACT. We study a standard operator on classes of languages: unambiguous polynomial
closure. We prove that for every class C of regular languages satisfying mild properties, the
membership problem for its unambiguous polynomial closure UPol(C) reduces to the same
problem for C. We also show that unambiguous polynomial closure coincides with alternating
left and right deterministic closure. Moreover, we prove that if additionally C is finite, the
separation and covering problems are decidable forUPol(C). Finally, we present an overview of
the generic logical characterizations of the classes built using unambiguous polynomial closure.

1. Introduction

Regularity is arguably one of the most robust notions in computer science: indeed, regular lan-
guages can be equivalently defined using deterministic or nondeterministic automata, monoids,
regular expressions or monadic second-order logic. The motivation and context of this paper is
the investigation of subclasses of regular languages. Such classes arise naturally when weak-
ening or restricting these formalisms. This active research track started in the 1960s with an
emblematic example: a series of results by Schützenberger [34], McNaughton, Papert [14] and
Kamp [11] established several equivalent characterizations of the class of languages defined by
a first-order sentence (instead of a monadic second-order one). At that time, the main question
that emerged was the membership problem, which simply asks whether the class under study is
recursive: in order to solve it, one has to design an algorithm testing membership of an input
language in the class. For instance, the above results provide a membership algorithm for
first-order definable languages.

Work supported by the DeLTA project (ANR-16-CE40-0007), and, for the first author, by the Institut Universitaire de France.

Cite as Thomas Place, Marc Zeitoun. All about unambiguous polynomial closure.
TheoretiCS, Volume 2 (2023), Article 11, 1-74.

https://theoretics.episciences.org
DOI 10.46298/theoretics.23.11

mailto:tplace@labri.fr
https://orcid.org/0009-0000-2840-9586
mailto:mz@labri.fr
https://orcid.org/0000-0003-4101-8437

2 / 74 T. Place, M. Zeitoun

Of course, the design of a membership algorithm for a class C heavily depends on C.
This means that for each class, one has to design a different algorithm. However, most of the
interesting classes of regular languages are built using a restricted set of operators: given
a class C, one can consider its Boolean closure Bool(C), its polynomial closure Pol(C), and
deterministic variants thereof, which usually yield more elaborate classes than C. It is therefore
desirable to investigate the operators themselves rather than individual classes.

The polynomial closure Pol(C) of a class C is its closure under finite union and marked
concatenation (a marked concatenation of 𝐾 and 𝐿 is a language of the form 𝐾𝑎𝐿, where 𝑎 is some
letter). Together with the Boolean closure, it is used to define concatenation hierarchies, which
consist in a sequence of classes of languages indexed by integers and half integers. Starting
from a given class (level 0 in the hierarchy), level 𝑛 + 1

2 is the polynomial closure of level 𝑛, and
level 𝑛 + 1 is the Boolean closure of level 𝑛 + 1

2 . The importance of these hierarchies stems from
the fact that they are the combinatorial counterpart of quantifier alternation hierarchies in
logic, which count the number of ∀/∃ alternations needed to define a language [41, 26].

As explained above, the main question when investigating a class of languages is the
membership problem: can we decide whether an input regular language belongs to the class?
Despite decades of research on concatenation hierarchies, we know little about them. The state
of the art is that when level 0 is either finite or contains only group languages (and satisfies
mild properties), membership is decidable for levels 1/2, one, 3/2, and 5/2 [31, 22, 27, 30] (on the
other hand, the problem remains open for the second full level). These results encompass those
that were obtained previously [3, 4, 36, 20] and even go beyond by investigating the separation
problem, a generalization of membership. This problem for a class C takes two arbitrary regular
languages as input (unlike membership, which takes a single one). It asks whether there exists a
third language from C, containing the first language and disjoint from the second. Membership
is the special case of separation when the input consists of a language and its complement (as the
only possible separator is the first input language). Although more difficult than membership,
separation is also more rewarding. This is witnessed by a transfer theorem [26]: membership
for Pol(C) reduces to separation for C. The above results on membership come from this
theorem and the fact that separation is decidable for Pol(C), BPol(C) (i.e., Bool(Pol(C))) and
Pol(BPol(C)) when C is either finite or contains only group languages. See [18, 26] for detailed
surveys on concatenation hierarchies.

Unambiguous closure. A natural way to weaken the polynomial closure operator is to specify
semantic conditions restricting the situations in which using marked concatenation or union
is allowed. In the paper, we investigate a prominent operator that can be defined in this way:
unambiguous polynomial closure. A marked concatenation 𝐾𝑎𝐿 is unambiguous if every word 𝑤
belonging to 𝐾𝑎𝐿 has a unique factorization 𝑤 = 𝑢𝑎𝑣 with 𝑢 ∈ 𝐾 and 𝑣 ∈ 𝐿. The unambiguous
closure of a class C, denoted by UPol(C), is the least class containing C that is closed under

3 / 74 All about unambiguous polynomial closure

disjoint union and unambiguous marked concatenation. Observe that it is not immediate from
the definition that UPol(C) has robust properties (such as closure under Boolean operations)
even when C does. A prominent example of a class built using unambiguous concatenation
is that of unambiguous languages [35] (UL). It is the unambiguous polynomial closure of the
class BPol(ST) (i.e., UPol(BPol(ST))) where ST is the trivial class ST = {∅, 𝐴∗} 1. The robustness
of UL makes it one of the most investigated classes: it enjoys a number of equivalent definitions
(we refer the reader to [38, 8] for an overview). In particular, this class has several logical
characterizations. First, UL corresponds to the intermediary level Δ2(<) in the quantifier
alternation hierarchy of first-order logic equipped with the linear order predicate [20]. This
level consists of all languages that can be simultaneously defined by a sentence of Σ2(<) (i.e.,
whose prenex normal form has a quantifier prefix of the form ∃∗∀∗) and a sentence of Π2(<)
(i.e., whose prenex normal form has a quantifier prefix of the form ∀∗∃∗). It is also known that
UL corresponds to the two-variable fragment FO2(<) of first-order logic [39]. Finally, UL is also
characterized [9] by the variant F + P of unary temporal logic, where F stands for “sometimes in
the future” and P stands for “sometimes in the past”.

Historically, the operatorUPolwas first investigated by Pin [15] who describes it in algebraic
terms. Note however that [15] starts from an alternative definition that assumes closure under
Boolean operations already. It was later shown by Pin, Straubing and Thérien [19] that the
operator C ↦→ UPol(C) preserves closure under Boolean operations (provided that the input
class C satisfies mild hypotheses). Let us point out that both the formulation and the proof
of these results rely on elaborate mathematical tools (categories, bilateral kernel, relational
morphisms,. . .) as well as on results by Schützenberger [35] and Rhodes [33], used as black
boxes. Unambiguous polynomial closure also appears in concatenation hierarchies: assuming
suitable hypotheses on C, Pin and Weil [20] proved that UPol(C) is the intermediate level
Pol(C) ∩ co-Pol(C) where co-Pol(C) is the class consisting of all complements of languages
in Pol(C). Finally, a reduction from UPol(C)-membership to C-membership was obtained in [2].
This proof is indirect: it relies on the nontrivial equality UPol(C) = Pol(C) ∩ co-Pol(C), which
itself depends on the algebraic characterizations of UPol(C) and Pol(C) obtained in [19, 20, 6].

Contributions. Unambiguous polynomial closure was not yet investigated with respect to
separation, aside from the particular case of unambiguous languages [24]. This is the starting
point of this paper: we look for generic separation results applying to UPol(C), similar to the
ones obtained for Pol(C) in [22]. We prove that when C is a finite Boolean algebra closed under
quotients, separation is decidable for UPol(C). However, as is usual with separation, we also
obtain several extra results as a byproduct of our work, improving our understanding of the
UPol operator:

1 The notation ST comes from the fact that it is level 0 in the Straubing-Thérien concatenation hierarchy.

4 / 74 T. Place, M. Zeitoun

We had to rethink the way membership is classically handled for UPol in order to lift the
techniques to separation. This yields self-contained, direct and elementary proofs that
membership for UPol(C) reduces to membership for C provided that C is closed under
Boolean operations and quotients. The proof is new and independent from the one of [2].
We strengthen the result of [2] as we require fewer hypotheses on the class C. Our proof
also precisely pinpoints why this result holds for UPol(C) but not Pol(C): the languages
from C needed to construct a UPol(C) expression for a language 𝐿 are all recognized by
any recognizer of 𝐿.
We prove that when C is closed under Boolean operations and quotients, then so isUPol(C).
Again, this strengthens earlier results [19], which involved stronger hypotheses on the
input class C.
Using our results on Pol(C) [26], we obtain a new proof of the above mentioned theorem
of [20] and generalize it to more classes C. We prove that UPol(C) = Pol(C) ∩ co-Pol(C)
when C is closed under Boolean operations and quotients (whereas the result of [20] only
applies to classes that are additionally closed under inverse morphic images).
Finally, we obtain a previously unknown characterization of UPol(C) in terms of alternat-
ing left and right deterministic concatenations, which are restricted forms of unambigu-
ous concatenation. A marked concatenation 𝐾𝑎𝐿 is left (resp. right) deterministic when
𝐾𝑎𝐴∗ ∩ 𝐾 = ∅ (resp. 𝐴∗𝑎𝐿 ∩ 𝐿 = ∅). We prove that UPol(C) coincides with APol(C), the
closure of C under disjoint union and left and right deterministic concatenation2.

Moreover, we investigate the logical characterizations of unambiguous polynomial closure.
As mentioned above, it is well known that UPol(BPol(ST)) = Δ2(<) = FO2(<) = F + P. Such
correspondences also hold for variants of Δ2(<) and FO2(<) equipped with additional predicates
such as the successor [39] “+1” and the modular predicates [7, 13]. We use our results to
generalize these connections. For each class C, we define two objects:

A set of predicatesPC that can be used in the sentences of first-order logic. Each language 𝐿
in C gives rise to a predicate 𝑃𝐿(𝑥), which selects all positions 𝑥 in a word 𝑤 such that the
prefix of 𝑤 up to position 𝑥 (excluded) belongs to 𝐿.
Two variants of unary temporal logic, which we denote by TL(C) and TLX(C).

We consider classes of group languages. Group languages are those recognized by a finite
group, or equivalently by a permutation automaton [40] (i.e., a complete, deterministic and
co-deterministic automaton). Our results apply to classes of group languages G closed under
Boolean operations and quotients, and their well-suited extensions G+ (roughly, G+ is the

2 The letter “A” in APol(C) stands for “alternating” (left and right) deterministic polynomial closure.

5 / 74 All about unambiguous polynomial closure

smallest Boolean algebra containing G and the singleton {𝜀}). In such cases, we prove that,

UPol(BPol(G)) = Δ2(<,PG) = FO2(<,PG) = TL(G).
UPol(BPol(G+)) = Δ2(<, +1,PG) = FO2(<, +1,PG) = TLX(G).

This generalizes all aforementioned results (each of them corresponds to a particular class of
group languages G). Thus, we obtain a generic proof of these results.

Organization of the paper. Section 2 sets up the notation and the terminology. In Section 3,
we recall the definition of first-order logic over words and introduce the fragments that we
shall consider. Section 4 is devoted to presenting the operators that we investigate in the paper.
In Section 5, we introduce notions that we shall need to present the algebraic characterizations
of Pol and UPol. Section 6 presents the algebraic characterization of Pol(C) (which is taken
from [26]). We use it to obtain a characterization of the classes Pol(C) ∩ co-Pol(C). Then,
in Section 7, we turn to the classes UPol(C) and present their generic characterization. We
investigate separation and covering for the classes UPol(C) when C is finite in Section 8. Finally,
Sections 9 and 10 are devoted to the logical characterizations of UPol. In the former, we define
our generalized notion of “unary temporal logic” and prove the correspondence with two-
variable first-order logic. Finally, we establish the connection with unambiguous polynomial
closure in Section 10.

This paper is the journal version of [29]. The presentation and the proof arguments have
been reworked. Moreover, the logical part of the paper is new (the conference version only
considered the language theoretic point of view).

2. Preliminaries

We introduce the terminology used in the paper. In particular, we present the membership,
separation and covering problems, and key mathematical tools designed to handle them.

2.1 Classes of regular languages

For the whole paper, we fix a finite alphabet 𝐴. As usual, 𝐴∗ denotes the set of all finite words
over 𝐴, including the empty word 𝜀. Moreover, we let 𝐴+ = 𝐴∗ \ {𝜀}. Given a word 𝑤 ∈ 𝐴∗, we
write |𝑤| ∈ N for its length (the number of letters in 𝑤). For example, |𝜀| = 0 and |𝑎𝑏𝑐𝑏𝑎𝑎| = 6.
Moreover, for every 𝑎 ∈ 𝐴 and 𝑤 ∈ 𝐴∗, we write |𝑤|𝑎 ∈ N for the number of copies of the letter
“𝑎” in 𝑤. For example, |𝑎𝑏𝑐𝑏𝑎𝑎|𝑎 = 3, |𝑎𝑏𝑐𝑏𝑎𝑎|𝑏 = 2 and |𝑎𝑏𝑐𝑏𝑎𝑎|𝑐 = 1. Given 𝑢, 𝑣 ∈ 𝐴∗, we write
𝑢𝑣 for their concatenation.

A language is a subset of 𝐴∗. It is standard to extend concatenation to languages: given
𝐾, 𝐿 ⊆ 𝐴∗, we write 𝐾𝐿 = {𝑢𝑣 | 𝑢 ∈ 𝐾 and 𝑣 ∈ 𝐿}.

6 / 74 T. Place, M. Zeitoun

Classes. A class of languages C is a set of languages. Such a class C is a lattice when ∅ ∈ C,
𝐴∗ ∈ C and C is closed under both union and intersection: for every 𝐾, 𝐿 ∈ C, we have 𝐾∪𝐿 ∈ C
and 𝐾 ∩ 𝐿 ∈ C. Moreover, a Boolean algebra is a lattice C which is additionally closed under
complement: for every 𝐿 ∈ C, we have 𝐴∗ \ 𝐿 ∈ C. Finally, a class C is quotient-closed if for
every 𝐿 ∈ C and 𝑢 ∈ 𝐴∗, the following properties hold:

𝑢−1𝐿
def
= {𝑤 ∈ 𝐴∗ | 𝑢𝑤 ∈ 𝐿} and 𝐿𝑢−1 def

= {𝑤 ∈ 𝐴∗ | 𝑤𝑢 ∈ 𝐿} both belong to C.

We call a positive prevariety (resp. prevariety) a quotient-closed lattice (resp. Boolean algebra)
containing only regular languages. Regular languages are those which can be equivalently
defined by nondeterministic finite automata, finite monoids or monadic second-order logic. We
work with the definition by monoids, which we recall below.

In the paper, we write AT for the class of alphabet testable languages: the Boolean combi-
nations of languages 𝐴∗𝑎𝐴∗ for 𝑎 ∈ 𝐴. It is straightforward to verify that AT is a prevariety. It
will be important for providing examples.

Finite monoids and morphisms. A semigroup is a set 𝑆 endowed with an associative multipli-
cation (𝑠, 𝑡) ↦→ 𝑠 · 𝑡 (also denoted by 𝑠𝑡). A monoid is a semigroup 𝑀 whose multiplication has
an identity element 1𝑀 , i.e., such that 1𝑀 · 𝑠 = 𝑠 · 1𝑀 = 𝑠 for every 𝑠 ∈ 𝑀 .

An idempotent of a semigroup 𝑆 is an element 𝑒 ∈ 𝑆 such that 𝑒𝑒 = 𝑒. We write 𝐸(𝑆) ⊆ 𝑆

for the set of all idempotents in 𝑆. It is folklore that for every finite semigroup 𝑆, there exists
a natural number 𝜔(𝑆) (denoted by 𝜔 when 𝑆 is understood) such that for every 𝑠 ∈ 𝑆, the
element 𝑠𝜔 is an idempotent.

We also consider ordered semigroups. An ordered semigroup is a pair (𝑆, ≤) where 𝑆 is a
semigroup and ≤ is a partial order defined on 𝑆, which is compatible with multiplication: for
every 𝑠, 𝑠′, 𝑡, 𝑡′ ∈ 𝑆 such that 𝑠 ≤ 𝑡 and 𝑠′ ≤ 𝑡′, we have 𝑠𝑠′ ≤ 𝑡𝑡′. In particular, we say that a
subset 𝐹 ⊆ 𝑆 is an upper set (for ≤) to indicate that it is upward closed for the ordering ≤: for
every 𝑠, 𝑡 ∈ 𝑀 , if 𝑠 ∈ 𝐹 and 𝑠 ≤ 𝑡, then 𝑡 ∈ 𝐹. In particular, for every 𝑠 ∈ 𝑆, we write ↑ 𝑠 ⊆ 𝑆 for
the least upper set containing 𝑠. That is, ↑ 𝑠 = {𝑡 ∈ 𝑆 | 𝑠 ≤ 𝑡}. Finally, an ordered monoid is an
ordered semigroup (𝑀, ≤) such that 𝑀 is a monoid.

We shall use the following convention throughout the paper: we view every unordered
semigroup 𝑆 as the ordered semigroup (𝑆,=) whose ordering is equality. Observe that in this
case, every subset of 𝑆 is an upper set. Thanks to this convention, every definition involving
ordered semigroups that we present will also make sense for unordered ones.

Finally, our proofs make use of the Green relations [10], which are defined on monoids.
We briefly recall them. Given a monoid 𝑀 and 𝑠, 𝑡 ∈ 𝑀 ,

𝑠 ⩽J 𝑡 when there exist 𝑥, 𝑦 ∈ 𝑀 such that 𝑠 = 𝑥𝑡 𝑦,
𝑠 ⩽L 𝑡 when there exists 𝑥 ∈ 𝑀 such that 𝑠 = 𝑥𝑡,
𝑠 ⩽R 𝑡 when there exists 𝑦 ∈ 𝑀 such that 𝑠 = 𝑡 𝑦.

7 / 74 All about unambiguous polynomial closure

Clearly, ⩽J , ⩽L and ⩽R are preorders (i.e., they are reflexive and transitive). We write <J ,
<L and <R for their strict variants (for example, 𝑠 <J 𝑡 when 𝑠 ⩽J 𝑡 but 𝑡 ̸⩽J 𝑠). Finally,
we write J , L and R for the corresponding equivalence relations (for example, 𝑠 J 𝑡 when
𝑠 ⩽J 𝑡 and 𝑡 ⩽J 𝑠). There are many technical results about Green relations. We use the
following standard lemma (see e.g. [17] for a proof), which applies to finite monoids.

LEMMA 2.1. Consider a finite monoid 𝑀 and 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 J 𝑡. Then, 𝑠 ⩽R 𝑡 implies
𝑠 R 𝑡. Symmetrically, 𝑠 ⩽L 𝑡 implies 𝑠 L 𝑡.

Regular languages and syntactic morphisms. Clearly, 𝐴∗ is a monoid whose multiplication
is concatenation (the identity element is the empty word 𝜀). We shall consider monoid mor-
phisms 𝛼 : 𝐴∗ → (𝑀, ≤) where (𝑀, ≤) is an arbitrary ordered monoid. That is, 𝛼 : 𝐴∗ → 𝑀

is a map satisfying 𝛼(𝜀) = 1𝑀 and 𝛼(𝑢𝑣) = 𝛼(𝑢)𝛼(𝑣) for all 𝑢, 𝑣 ∈ 𝐴∗. Given such a morphism
and some language 𝐿 ⊆ 𝐴∗, we say that 𝐿 is recognized by 𝛼 when there exists an accepting
set 𝐹 ⊆ 𝑀 which is an upper set for ≤ and such that 𝐿 = 𝛼−1(𝐹). Let us emphasize that the
definition depends on the ordering ≤ since accepting sets must be upper sets.

REMARK 2 .2. Recall that by convention, we view an unordered monoid 𝑀 as the ordered
monoid (𝑀,=). Hence, the definition also makes sense when 𝛼 : 𝐴∗ → 𝑀 is a morphism into
an unordered monoid. Since every subset of 𝑀 is an upper set for =, a language 𝐿 ⊆ 𝐴∗ is
recognized by 𝛼 if and only if there exists an arbitrary set 𝐹 ⊆ 𝑀 such that 𝐿 = 𝛼−1(𝐹).

It is standard and well known that regular languages are those which can be recognized
by a morphism into a finite monoid. Moreover, every language 𝐿 is recognized by a canonical
morphism. Let us briefly recall its definition. One may associate to 𝐿 a preorder relation ⪯𝐿
over 𝐿: the syntactic precongruence of 𝐿. Given 𝑢, 𝑣 ∈ 𝐴∗, we let,

𝑢 ⪯𝐿 𝑣 if and only if 𝑥𝑢𝑦 ∈ 𝐿⇒ 𝑥𝑣𝑦 ∈ 𝐿 for every 𝑥, 𝑦 ∈ 𝐴∗.

As the name suggests, it is known and simple to verify that “⪯𝐿” is a precongruence on 𝐴∗:
it is reflexive and transitive, and for every 𝑢, 𝑢′, 𝑣, 𝑣′ ∈ 𝐴∗ such that 𝑢 ⪯𝐿 𝑣 and 𝑢′ ⪯𝐿 𝑣′, we
have 𝑢𝑢′ ⪯𝐿 𝑣𝑣′. Additionally, we write ≡𝐿 for the equivalence generated by this preorder.
For 𝑢, 𝑣 ∈ 𝐴∗, 𝑢 ≡𝐿 𝑣 if and only if 𝑢 ⪯𝐿 𝑣 and 𝑣 ⪯𝐿 𝑢 (i.e., 𝑥𝑢𝑦 ∈ 𝐿 ⇔ 𝑥𝑣𝑦 ∈ 𝐿 for every
𝑥, 𝑦 ∈ 𝐴∗). The equivalence ≡𝐿 is a congruence called the syntactic congruence of 𝐿. Thus, the
set of equivalence classes 𝑀𝐿 = 𝐴∗/≡𝐿 is a monoid and the preorder ⪯𝐿 defines an ordering ≤𝐿
on 𝑀𝐿 such that (𝑀𝐿, ≤𝐿) is an ordered monoid. It is called the syntactic ordered monoid of 𝐿.
Finally, the map 𝛼𝐿 : 𝐴∗ → (𝑀𝐿, ≤𝐿) sending every word to its equivalence class is a morphism
recognizing 𝐿, called the syntactic morphism of 𝐿. Another characterization of the regular
languages is that 𝐿 is regular if and only if 𝑀𝐿 is finite (i.e., ≡𝐿 has finite index): this is the Myhill-
Nerode theorem. In this case, one can compute the syntactic morphism 𝛼𝐿 : 𝐴∗ → (𝑀𝐿, ≤𝐿)
from any representation of 𝐿 (such as a finite automaton or an arbitrary monoid morphism).

8 / 74 T. Place, M. Zeitoun

2.2 Decision problems

We consider three decision problems. They all depend on an arbitrary class of languages C:
they serve as mathematical tools for analyzing C. Intuitively, obtaining an algorithm for one of
these three problems requires a solid understanding of C.

The C-membership problem is the simplest one. It takes as input a single regular language 𝐿
and asks whether 𝐿 ∈ C. The second problem, C-separation, is more general. Given three
languages 𝐾, 𝐿1, 𝐿2, we say that 𝐾 separates 𝐿1 from 𝐿2 if we have 𝐿1 ⊆ 𝐾 and 𝐿2 ∩ 𝐾 = ∅.
Given a class of languages C, we say that 𝐿1 is C-separable from 𝐿2 if some language in C
separates 𝐿1 from 𝐿2. Observe that when C is not closed under complement, the definition is
not symmetrical: it is possible for 𝐿1 to be C-separable from 𝐿2 while 𝐿2 is not C-separable
from 𝐿1. The separation problem associated to a given class C takes two regular languages 𝐿1

and 𝐿2 as input and asks whether 𝐿1 is C-separable from 𝐿2.

REMARK 2 .3. The C-separation problem generalizes the C-membership problem. Indeed, a
regular language belongs to C if and only if it is C-separable from its complement, which is also
regular.

In the paper, we do not consider separation directly. Instead, we work with a third, even
more general problem: C-covering. It was introduced in [32] and takes as input a single regular
language 𝐿1 and a finite set of regular languages L2. It asks whether there exists a “C-cover of 𝐿1

which is separating for L2”.
Given a language 𝐿, a cover of 𝐿 is a finite set of languages K such that 𝐿 ⊆ ⋃

𝐾∈K 𝐾 . A cover
K is a C-cover if all languages 𝐾 ∈ K belong to C. Moreover, given two finite sets of languages K
and L, we say that K is separating for L if for every 𝐾 ∈ K, there exists 𝐿 ∈ L such that 𝐾 ∩ 𝐿 = ∅.
Finally, given a language 𝐿1 and a finite set of languages L2, we say that the pair (𝐿1,L2) is
C-coverable if there exists a C-cover of 𝐿1 which is separating for L2.

The C-covering problem is now defined as follows. Given as input a regular language 𝐿1

and a finite set of regular languages L2, it asks whether the pair (𝐿1,L2) is C-coverable. It is
straightforward to prove that covering generalizes separation if the class C is a lattice, as stated
in the following lemma (see [32, Theorem 3.5] for the proof, which is easy).

LEMMA 2.4. Let C be a lattice and 𝐿1, 𝐿2 be two languages. Then 𝐿1 is C-separable from 𝐿2 if
and only if (𝐿1, {𝐿2}) is C-coverable.

2.3 Group languages

We now present an important special kind of class. As we explained in the introduction, all
classes investigated in the paper are built from basic ones using generic operators. Here, we
introduce the basic classes used in such constructions: the classes of group languages and their
well-suited extensions.

9 / 74 All about unambiguous polynomial closure

DEF IN IT ION 2 .5. A group is a monoid 𝐺 such that every element 𝑔 ∈ 𝐺 has an inverse
𝑔−1 ∈ 𝐺, i.e., 𝑔𝑔−1 = 𝑔−1𝑔 = 1𝐺. A language 𝐿 is a group language if it is recognized by a
morphism 𝛼 : 𝐴∗ → 𝐺 into a finite group 𝐺 (i.e., there exists 𝐹 ⊆ 𝐺 such that 𝐿 = 𝛼−1(𝐹)). We
write GR for the class of all group languages. One can verify that GR is a prevariety.

REMARK 2 .6. No language theoretic definition of GR is known. There is however a definition
based on automata: the group languages are those which can be recognized by a permutation
automaton (i.e., which is simultaneously deterministic, co-deterministic and complete).

A class of group languages is a class consisting of group languages only, i.e., a subclass of
GR. The results of this paper apply to arbitrary prevarieties of group languages.

REMARK 2 .7. Let us explain why we do not explicitly mention positive prevarieties of group
languages in the paper. This is because they are all closed under complement (hence, they are
actually prevarieties). This follows from the simple fact that the only ordering compatible with
multiplication in a finite group is the equality relation.

While our results apply in a generic way to all prevarieties of group languages, there
are four main classes of this kind that we shall use for providing examples. One of them
is GR itself. Let us present the other three. First, we write ST = {∅, 𝐴∗}, which is clearly a
prevariety of group languages (the name comes from the fact that this class is the base level
of the Straubing-Thérien hierarchy). While trivial, we shall see that this class has important
applications. Moreover, we look at the class MOD of modulo languages. For every 𝑞, 𝑟 ∈ N with
𝑟 < 𝑞, we write 𝐿𝑞,𝑟 = {𝑤 ∈ 𝐴∗ | |𝑤| ≡ 𝑟 mod 𝑞}. The class MOD contains all finite unions of
languages 𝐿𝑞,𝑟. One can verify that MOD is a prevariety of group languages. Finally, we shall
consider the class AMT of alphabet modulo testable languages. For all 𝑞, 𝑟 ∈ Nwith 𝑟 < 𝑞 and all
𝑎 ∈ 𝐴, let 𝐿𝑎𝑞,𝑟 = {𝑤 ∈ 𝐴∗ | |𝑤|𝑎 ≡ 𝑟 mod 𝑞}. We define AMT as the least class consisting of all
languages 𝐿𝑎𝑞,𝑟 and closed under union and intersection. It is again straightforward to verify
that AMT is a prevariety of group languages.

We do not investigate classes of group languages themselves in the paper: we only use
them as input classes for our operators. In particular, we shall use ST, MOD, AMT and GR in
order to illustrate our results. In this context, it will be important that separation is decidable
for these four classes. The techniques involved in proving this are independent of what we do
in the paper. Actually, this can be difficult. On one hand, the decidability of ST-separation is
immediate (two languages are ST-separable if and only if one of them is empty). On the other
hand, the decidability of GR-separation is equivalent to a difficult algebraic question, which
remained open for several years before it was solved by Ash [5]. Recent automata-based proofs
that separation is decidable for MOD, AMT and GR are available in [28].

Well-suited extensions. It can be verified from the definition that {𝜀} and 𝐴+ are not group
languages. This motivates the next definition: for a class C, the well-suited extension of C,

10 / 74 T. Place, M. Zeitoun

denoted by C+, consists of all languages of the form 𝐿 ∩ 𝐴+ and 𝐿 ∪ {𝜀} where 𝐿 ∈ C (in
particular, C ⊆ C+). The next lemma follows immediately from the definition.

LEMMA 2.8. Let C be a prevariety. Then, C+ is a prevariety containing {𝜀} and 𝐴+.

While the definition of well-suited extensions makes sense for arbitrary classes, it will only
be useful when applied to a prevariety of group languages. Indeed, the well-suited extensions G+,
where G is a prevariety of group languages, are also important input classes for our operators.
In this case, all group languages in G+ already belong to G.

LEMMA 2.9. Let G be a prevariety of group languages. For every group language 𝐿 ∈ G+, we
have 𝐿 ∈ G.

PROOF . By definition of G+, there exists a group language 𝐾 ∈ G such that either 𝐿 = {𝜀} ∪ 𝐾
or 𝐿 = 𝐴+ ∩ 𝐾 . In particular, this implies that for every 𝑤 ∈ 𝐴+, we have 𝑤 ∈ 𝐾 ⇔ 𝑤 ∈ 𝐿. We
prove that the fact that 𝐾 and 𝐿 are both group languages implies 𝐾 = 𝐿, which yields 𝐿 ∈ G, as
desired. Since we already know that 𝑤 ∈ 𝐾 ⇔ 𝑤 ∈ 𝐿 for every 𝑤 ∈ 𝐴+, it suffices to prove that
𝜀 ∈ 𝐾 ⇔ 𝜀 ∈ 𝐿. Since 𝐾 and 𝐿 are group languages, there exist two morphisms 𝛼𝐾 : 𝐴∗ → 𝐺𝐾

and𝛼𝐿 : 𝐴∗ → 𝐺𝐿 into finite groups recognizing 𝐾 and 𝐿 respectively. Let 𝑝 = 𝜔(𝐺𝐾)×𝜔(𝐺𝐿) and
consider an arbitrary letter 𝑎 ∈ 𝐴. By definition of 𝑝, we have 𝛼𝐾 (𝑎𝑝) = 1𝐺𝐾 and 𝛼𝐿(𝑎𝑝) = 1𝐺𝐿 .
Since 𝛼𝐾 and 𝛼𝐿 recognize both 𝐾 and 𝐿, we have 𝜀 ∈ 𝐾 ⇔ 𝑎𝑝 ∈ 𝐾 and 𝑎𝑝 ∈ 𝐿 ⇔ 𝜀 ∈ 𝐿.
Finally, since 𝑎𝑝 ∈ 𝐴+, we know that 𝑎𝑝 ∈ 𝐾 ⇔ 𝑎𝑝 ∈ 𝐿 by definition. Altogether, it follows that
𝜀 ∈ 𝐾 ⇔ 𝜀 ∈ 𝐿, as desired. ■

2.4 C-morphisms

We now present a central mathematical tool. Consider an arbitrary positive prevariety C. A
C-morphism is a surjective morphism 𝜂 : 𝐴∗ → (𝑁, ≤) into a finite ordered monoid (𝑁, ≤) such
that every language recognized by 𝜂 belongs to C. We complete the definition with a key remark
when C is a prevariety (i.e., C is additionally closed under complement): in this case, it suffices
to consider unordered monoids (recall that by convention, we view them as monoids ordered
by equality).

LEMMA 2.10. Let C be a prevariety and let 𝜂 : 𝐴∗ → (𝑁, ≤) be a morphism into a finite
ordered monoid. The two following conditions are equivalent:

1. 𝜂 : 𝐴∗ → (𝑁, ≤) is a C-morphism.
2. 𝜂 : 𝐴∗ → (𝑁,=) is a C-morphism.

PROOF . The implication 2) ⇒ 1) is trivial since all languages recognized by 𝜂 : 𝐴∗ → (𝑁, ≤)
are also recognized by 𝜂 : 𝐴∗ → (𝑁,=). We prove that 1) ⇒ 2). Assume that 𝜂 : 𝐴∗ → (𝑁, ≤)
is a C-morphism. We have to prove that 𝜂 : 𝐴∗ → (𝑁,=) is a C-morphism, that is, that for

11 / 74 All about unambiguous polynomial closure

all 𝐹 ⊆ 𝑁 , we have 𝜂−1(𝐹) ∈ C. Since 𝜂−1(𝐹) =
⋃
𝑠∈𝐹 𝜂

−1(𝑠) and C is closed under union, it
suffices to prove that 𝜂−1(𝑠) ∈ C for all 𝑠 ∈ 𝑁 . Therefore, we fix an arbitrary element 𝑠 ∈ 𝑁 .
Let 𝑇 ⊆ 𝑀 be the set of all elements 𝑡 ∈ 𝑀 such that 𝑠 ≤ 𝑡 and 𝑠 ≠ 𝑡. One can verify that we
have {𝑠} = (↑ 𝑠) \ (⋃𝑡∈𝑇 ↑ 𝑡). Consequently, we obtain 𝜂−1(𝑠) = 𝜂−1(↑ 𝑠) \

(⋃
𝑡∈𝑇 𝜂

−1(↑ 𝑡)
)
. By

hypothesis, this implies that 𝜂−1(𝑠) is a Boolean combination of languages in C. We conclude
that 𝜂−1(𝑠) ∈ C, since C is a Boolean algebra. ■

REMARK 2 .1 1. Another formulation of Lemma 2.10 is that when C is a prevariety, whether a
morphism 𝜂 : 𝐴∗ → (𝑁, ≤) is a C-morphism does not depend on the ordering ≤ on 𝑁 . This is
important, as most classes that we consider in the paper are indeed prevarieties.

While simple, the notion of C-morphism is a central tool in the paper. First, it is connected
to the membership problem via the following simple, yet crucial proposition.

PROPOS IT ION 2 .12. Let C be a positive prevariety. A regular language 𝐿 belongs to C if and
only if its syntactic morphism 𝛼𝐿 : 𝐴∗ → (𝑀𝐿, ≤𝐿) is a C-morphism.

PROOF . The “if” implication is immediate since 𝐿 is recognized by its syntactic morphism. We
prove the converse direction: assuming that 𝐿 ∈ C, we prove that every language recognized by
𝛼𝐿 : 𝐴∗ → (𝑀𝐿, ≤𝐿) belongs to C (recall that syntactic morphisms are surjective by definition).
Hence, we fix an upper set 𝐹 ⊆ 𝑀𝐿 and prove that 𝛼−1

𝐿 (𝐹) ∈ C. For every 𝑠 ∈ 𝑀𝐿, we fix a word
𝑢𝑠 ∈ 𝐴∗ such that 𝛼𝐿(𝑢𝑠) = 𝑠. Moreover, we let 𝑃𝑠 ⊆ 𝑀2

𝐿 be the set,

𝑃𝑠 =
{
(𝑞, 𝑟) ∈ 𝑀2

𝐿 | 𝑞𝑠𝑟 ∈ 𝛼𝐿(𝐿)
}
.

We now prove that,
𝛼−1
𝐿 (𝐹) =

⋃
𝑠∈𝐹

⋂
(𝑞,𝑟)∈𝑃𝑠

(
𝑢−1
𝑞 𝐿𝑢

−1
𝑟

)
.

Since 𝐿 ∈ C and C is a positive prevariety, this yields 𝛼−1
𝐿 (𝐹) ∈ C, as desired. We start with the

left to right inclusion. Consider 𝑤 ∈ 𝛼−1
𝐿 (𝐹) and let 𝑠 = 𝛼𝐿(𝑤) ∈ 𝐹. We prove that 𝑤 ∈ 𝑢−1

𝑞 𝐿𝑢
−1
𝑟

for every (𝑞, 𝑟) ∈ 𝑃𝑠. Clearly, 𝛼𝐿(𝑢𝑞𝑤𝑢𝑟) = 𝑞𝑠𝑟 and by definition of 𝑃𝑠, we have 𝑞𝑠𝑟 ∈ 𝛼𝐿(𝐿).
Since 𝐿 is recognized by 𝛼𝐿, we get 𝑢𝑞𝑤𝑢𝑟 ∈ 𝐿, which exactly says that 𝑤 ∈ 𝑢−1

𝑞 𝐿𝑢
−1
𝑟 , as desired.

We turn to the converse inclusion. Fix 𝑠 ∈ 𝐹 and consider 𝑤 ∈ ⋂
(𝑞,𝑟)∈𝑃𝑠

(
𝑢−1
𝑞 𝐿𝑢

−1
𝑟

)
. We

show that 𝑤 ∈ 𝛼−1
𝐿 (𝐹), i.e., 𝛼𝐿(𝑤) ∈ 𝐹. Since 𝑠 ∈ 𝐹 and 𝐹 is an upper set, it suffices to prove that

𝑠 ≤𝐿 𝛼𝐿(𝑤). Recall that 𝑢𝑠 ∈ 𝐴∗ is such that 𝛼𝐿(𝑢𝑠) = 𝑠. Therefore, by definition of the syntactic
morphism 𝛼𝐿, it suffices to show that 𝑢𝑠 ⪯𝐿 𝑤, where ⪯𝐿 is the syntactic precongruence of 𝐿.
Consider 𝑥, 𝑦 ∈ 𝐴∗ such that 𝑥𝑢𝑠 𝑦 ∈ 𝐿. We have to prove that 𝑥𝑤𝑦 ∈ 𝐿. Let 𝑞 = 𝛼𝐿(𝑥) and
𝑟 = 𝛼𝐿(𝑦). By hypothesis, we have 𝑞𝑠𝑟 = 𝛼𝐿(𝑥𝑢𝑠 𝑦) ∈ 𝛼𝐿(𝐿) which yields (𝑞, 𝑟) ∈ 𝑃𝑠. Hence, we
get 𝑤 ∈ 𝑢−1

𝑞 𝐿𝑢
−1
𝑟 by hypothesis, which yields 𝑢𝑞𝑤𝑢𝑟 ∈ 𝐿. Since 𝛼𝐿(𝑢𝑞𝑤𝑢𝑟) = 𝑞𝛼𝐿(𝑤)𝑟 = 𝛼𝐿(𝑥𝑤𝑦)

and 𝐿 is recognized by 𝛼𝐿, it then follows that 𝑥𝑤𝑦 ∈ 𝐿, as desired. This completes the proof. ■

12 / 74 T. Place, M. Zeitoun

In view of Proposition 2.12, getting an algorithm for C-membership boils down to finding
a procedure to decide whether an input morphism 𝛼 : 𝐴∗ → (𝑀, ≤) is a C-morphism. This is
how we approach the question in the paper.

Additionally, we shall use C-morphisms as mathematical tools in proof arguments. They
are convenient when manipulating arbitrary classes. We present a few properties that we shall
need in this context. First, we have the following simple corollary of Proposition 2.12.

PROPOS IT ION 2 .13. Let C be a positive prevariety and consider finitely many languages
𝐿1, . . . , 𝐿𝑘 ∈ C. There exists a C-morphism 𝜂 : 𝐴∗ → (𝑁, ≤) such that 𝐿1, . . . , 𝐿𝑘 are recognized
by 𝜂.

PROOF . For every 𝑖 ≤ 𝑘, we let 𝛼𝑖 : 𝐴∗ → (𝑀𝑖 , ≤𝑖) be the syntactic morphism of 𝐿𝑖 . We know
from Proposition 2.12 that 𝛼𝑖 is a C-morphism. Consider the monoid𝑀 = 𝑀1×· · ·×𝑀𝑘 equipped
with the componentwise multiplication. Moreover, consider the ordering ≤ on 𝑀 defined by
(𝑠1, . . . , 𝑠𝑘) ≤ (𝑡1, . . . , 𝑡𝑘) if and only if 𝑠𝑖 ≤𝑖 𝑡𝑖 for every 𝑖 ≤ 𝑘. Clearly, (𝑀, ≤) is an ordered
monoid. Moreover, let𝛼 : 𝐴∗ → (𝑀, ≤) be the morphism defined by𝛼(𝑤) = (𝛼1(𝑤1), . . . , 𝛼𝑘 (𝑤))
for every 𝑤 ∈ 𝐴∗. One can verify from the definition that all languages recognized by 𝛼 are
finite intersections of languages recognized by 𝛼1, . . . , 𝛼𝑘 (in particular, 𝛼 recognizes each 𝐿𝑖).
Hence, all languages recognized by 𝛼 belong to C. It now suffices to let 𝜂 : 𝐴∗ → (𝑁, ≤) be the
surjective morphism obtained by restricting the codomain of 𝛼 to its image. ■

We now consider the particular case of G-morphisms when G is a prevariety of group
languages. In this case, the codomain of any G-morphism is a group.

LEMMA 2.14. Let G be a prevariety of group languages and let 𝜂 : 𝐴∗ → 𝐺 be a G-morphism.
Then, 𝐺 is a group.

PROOF . Let 𝑝 = 𝜔(𝐺). We prove that for every 𝑔 ∈ 𝐺, the element 𝑔𝑝−1 is an inverse of 𝑔 , i.e.,
that 𝑔𝑝 = 1𝐺. Since 𝜂 is a G-morphism and G is a prevariety of group languages, 𝜂−1(1𝐺) ∈ G is
recognized by a finite group. Let 𝛽 : 𝐴∗ → 𝐻 be a morphism into a finite group 𝐻 recognizing
𝜂−1(1𝐺). Since 𝜀 ∈ 𝜂−1(1𝐺), it follows that 𝛽−1(1𝐻) ⊆ 𝜂−1(1𝐺). Let 𝑤 ∈ 𝜂−1(𝑔) (recall that
𝜂 is surjective, since it is a G-morphism), and let 𝑘 = 𝜔(𝐻). Since 𝐻 is a group, we have
(𝛽(𝑤))𝑘𝑝 = 1𝐻 (the unique idempotent in 𝐻). Therefore, 𝛽(𝑤𝑘𝑝) = 1𝐻 , which implies that
𝑤𝑘𝑝 ∈ 𝜂−1(1𝐺). Hence, 𝜂(𝑤𝑘𝑝) = 1𝐺 which exactly says that 𝑔𝑝 = 1𝐺 by definition of 𝑝. ■

We now look at G+-morphisms when G is a prevariety of group languages.

LEMMA 2.15. Let G be a prevariety of group languages and let 𝜂 : 𝐴∗ → 𝑁 be a G+-morphism.
Then, the set 𝐺 = 𝜂(𝐴+) is a group and the map 𝛽 : 𝐴∗ → 𝐺 defined by 𝛽(𝜀) = 1𝐺 and
𝛽(𝑤) = 𝜂(𝑤) for 𝑤 ∈ 𝐴+ is a G-morphism.

13 / 74 All about unambiguous polynomial closure

PROOF . We first prove that 𝐺 = 𝜂(𝐴+) is a group. Let 𝑝 = 𝜔(𝑁). It suffices to show that for
every 𝑔 ∈ 𝐺, we have 𝑔𝑝 = 1𝐺 i.e., that for every 𝑔, ℎ ∈ 𝐺, we have 𝑔𝑝ℎ = ℎ𝑔𝑝 = ℎ. By definition of
𝐺, there exist 𝑢, 𝑣 ∈ 𝐴+ such that 𝜂(𝑢) = 𝑔 and 𝜂(𝑣) = ℎ. By definition of G+, since 𝜂 : 𝐴∗ → 𝑁 is
a G+-morphism, we know that there exists a language 𝐿ℎ ∈ G such that either 𝜂−1(ℎ) = {𝜀} ∪ 𝐿ℎ
or 𝜂−1(ℎ) = 𝐴+ ∩ 𝐿ℎ. Since 𝑣 ∈ 𝐴+ and 𝜂(𝑣) = ℎ, we have 𝑣 ∈ 𝐿ℎ. Since 𝐿ℎ ∈ G is a group
language, there exists a number 𝑛 ≥ 1 such that 𝑢𝑛𝑝𝑣 ∈ 𝐿ℎ and 𝑣𝑢𝑛𝑝 ∈ 𝐿ℎ: it suffices to choose 𝑛
as the idempotent power of a finite group recognizing 𝐿ℎ. Since 𝑢𝑛𝑝𝑣, 𝑣𝑢𝑛𝑝 ∈ 𝐴+, it follows that
𝜂(𝑢𝑛𝑝𝑣) = 𝜂(𝑣𝑢𝑛𝑝) = ℎ. Since 𝑝 = 𝜔(𝑁), this exactly says that 𝑔𝑝ℎ = ℎ𝑔𝑝 = ℎ, concluding the
proof that 𝐺 is a group. Finally, consider the morphism 𝛽 : 𝐴∗ → 𝐺 defined by 𝛽(𝜀) = 1𝐺 and
𝛽(𝑤) = 𝜂(𝑤) for every 𝑤 ∈ 𝐴+. Let 𝐿 be a language recognized by 𝛽. By definition 𝐿 is a group
language and it is also recognized by 𝜂, which implies that 𝐿 ∈ G+ by hypothesis on 𝜂. Hence, it
follows from Lemma 2.9 that 𝐿 ∈ G, and we conclude that 𝛽 is a G-morphism. ■

Finally, we consider the special case where C is a finite prevariety (i.e., C contains finitely
many languages). First, recall from Lemma 2.10 that being a C-morphism does not depend on the
ordering of the finite monoid, which we can therefore assume to be unordered. Moreover, since
C is finite, Proposition 2.13 implies that there exists a C-morphism recognizing all languages in
C. The following lemma implies that it is unique (up to renaming).

LEMMA 2.16. Let C be a finite prevariety and let 𝛼 : 𝐴∗ → 𝑀 and 𝜂 : 𝐴∗ → 𝑁 be two
C-morphisms. If 𝛼 recognizes all languages in C, then there exists a morphism 𝛾 : 𝑀 → 𝑁 such
that 𝜂 = 𝛾 ◦ 𝛼.

PROOF . We assume that 𝛼 recognizes all languages in C and define 𝛾 : 𝑀 → 𝑁 . For every
𝑠 ∈ 𝑀 , we fix a word 𝑤𝑠 ∈ 𝛼−1(𝑠) (recall again that C-morphisms are surjective by definition)
and define 𝛾(𝑠) = 𝜂(𝑤𝑠). It remains to prove that 𝛾 is a morphism and that 𝜂 = 𝛾 ◦ 𝛼. It
suffices to prove the latter: since 𝛼 is surjective, the former is an immediate consequence. Let
𝑣 ∈ 𝐴∗. We show that 𝜂(𝑣) = 𝛾(𝛼(𝑣)). Let 𝑠 = 𝛼(𝑣). By definition, 𝛾(𝑠) = 𝜂(𝑤𝑠). Hence, we
need to prove that 𝜂(𝑣) = 𝜂(𝑤𝑠). Since 𝜂 is a C-morphism, we have 𝜂−1(𝜂(𝑤𝑠)) ∈ C. Hence, our
hypothesis implies that 𝜂−1(𝜂(𝑤𝑠)) is recognized by 𝛼. Since it is clear that 𝑤𝑠 ∈ 𝜂−1(𝜂(𝑤𝑠))
and 𝛼(𝑣) = 𝛼(𝑤𝑠) = 𝑠, it follows that 𝑣 ∈ 𝜂−1(𝜂(𝑤𝑠)) which exactly says that 𝜂(𝑣) = 𝜂(𝑤𝑠),
completing the proof. ■

By Lemma 2.16, if C is a finite prevariety and 𝛼 : 𝐴∗ → 𝑀 and 𝜂 : 𝐴∗ → 𝑁 are two
C-morphisms which both recognize all languages in C, there exist two morphisms 𝛾 : 𝑀 → 𝑁

and 𝛽 : 𝑁 → 𝑀 such that 𝜂 = 𝛾 ◦ 𝛼 and 𝛼 = 𝛽 ◦ 𝜂. Since 𝛼 and 𝜂 are surjective, it follows
that 𝛽 ◦ 𝛾 : 𝑀 → 𝑀 is the identity morphism. Hence, 𝛽 and 𝛾 are both isomorphisms which
means that 𝛼 and 𝜂 are the same object up to renaming. We call it the canonical C-morphism
and denote it by 𝜂C : 𝐴∗ → 𝑁C. Let us emphasize that this object is only defined when C is a
finite prevariety.

14 / 74 T. Place, M. Zeitoun

EXAMPLE 2 .17. An important example of finite prevariety is the class AT of alphabet testable
languages defined above: the Boolean combinations of languages 𝐴∗𝑎𝐴∗ for 𝑎 ∈ 𝐴. It can
be verified that 𝑁AT is the monoid 2𝐴 of subalphabets whose multiplication is union (up to
isomorphism). Moreover, 𝜂AT : 𝐴∗ → 2𝐴 is the morphism such that for every𝑤 ∈ 𝐴∗, 𝜂AT(𝑤) ∈ 2𝐴

is the set of letters occurring in 𝑤 (i.e., the least 𝐵 ⊆ 𝐴 such that 𝑤 ∈ 𝐵∗).

3. Fragments of first-order logic

We recall the definition of first-order logic overs words and its fragments. In the paper, we are
interested in two particular fragments which we define here: two-variable first-order logic FO2

and level Δ2 in the quantifier alternation hierarchy of first-order logic.

Positions. We view a word 𝑤 ∈ 𝐴∗ as a logical structure whose domain is a set of positions.
More precisely, a word𝑤 = 𝑎1 · · · 𝑎|𝑤| ∈ 𝐴∗ for the letters 𝑎1, . . . , 𝑎|𝑤| ∈ 𝐴, is viewed as an ordered
set of |𝑤| + 2 positions Pos(𝑤) = {0, 1, . . . , |𝑤|, |𝑤| + 1}. Each position 𝑖 such that 1 ≤ 𝑖 ≤ |𝑤|
carries the label 𝑎𝑖 ∈ 𝐴. On the other hand, positions 0 and |𝑤| + 1 are artificial leftmost and
rightmost positions which carry no label.

REMARK 3.1. With this convention, every word has at least two positions. In particular, the
empty word 𝜀 contains only the two unlabeled positions: we have Pos(𝜀) = {0, 1}.

Given a word 𝑤 = 𝑎1 · · · 𝑎|𝑤| ∈ 𝐴∗ and a position 𝑖 ∈ Pos(𝑤), we associate an element
𝑤[𝑖] ∈ 𝐴 ∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥}. If 𝑖 = 0, then 𝑤[𝑖] = 𝑚𝑖𝑛 and if 𝑖 = |𝑤| + 1, then 𝑤[𝑖] = 𝑚𝑎𝑥. Otherwise,
1 ≤ 𝑖 ≤ |𝑤| and we let 𝑤[𝑖] = 𝑎𝑖 . Additionally, if 𝑖, 𝑗 ∈ Pos(𝑤) are two positions such that 𝑖 < 𝑗,
we write 𝑤(𝑖, 𝑗) = 𝑎𝑖+1 · · · 𝑎 𝑗−1 ∈ 𝐴∗ (i.e., the infix obtained by keeping the letters carried by
positions that are strictly between 𝑖 and 𝑗). Note that 𝑤(0, |𝑤| + 1) = 𝑤.

First-order logic. We use first-order logic (FO) to express properties of words 𝑤 in 𝐴∗. A
particular formula can quantify over the positions in𝑤 and use a predetermined set of predicates
to test properties of these positions. We also allow two constants “𝑚𝑖𝑛” and “𝑚𝑎𝑥” interpreted
as the artificial unlabeled positions 0 and |𝑤| + 1. For a formula 𝜑(𝑥1, . . . , 𝑥𝑛) with free variables
𝑥1, . . . , 𝑥𝑛, a word𝑤 ∈ 𝐴∗ and positions 𝑖1, . . . , 𝑖𝑛 ∈ Pos(𝑤), we write𝑤 |= 𝜑(𝑖1, . . . , 𝑖𝑛) to indicate
that 𝑤 satisfies 𝜑 when 𝑥1, . . . , 𝑥𝑛 are interpreted as the positions 𝑖1, . . . , 𝑖𝑛. A sentence 𝜑 is a
formula without free variables. It defines the language 𝐿(𝜑) = {𝑤 ∈ 𝐴∗ | 𝑤 |= 𝜑}.

We use two kinds of predicates. The first kind is standard. For each 𝑎 ∈ 𝐴, we have a unary
predicate (also denoted by 𝑎) selecting all positions labeled by “𝑎”. We also use three binary
predicates: equality “=”, the (strict) linear order “<” and the successor “+1”.

EXAMPLE 3.2. The language 𝐴∗𝑎𝑏𝐴∗𝑐𝐴∗𝑑 is defined by the following FO sentence:

∃𝑥1∃𝑥2∃𝑥3∃𝑥4 (𝑥1 + 1 = 𝑥2) ∧ (𝑥2 < 𝑥3) ∧ (𝑥4 + 1 = 𝑚𝑎𝑥) ∧ 𝑎(𝑥1) ∧ 𝑏(𝑥2) ∧ 𝑐(𝑥3) ∧ 𝑑 (𝑥4).

15 / 74 All about unambiguous polynomial closure

A fragment of first-order logic consists in the specification of a (possibly finite) set 𝑉 of
variables and a set F of first-order formulas using only the variables of 𝑉 . This set F must
contain all quantifier-free formulas and must be closed under disjunction, conjunction and
quantifier-free substitution (if 𝜑 ∈ F , replacing a quantifier-free subformula in 𝜑 by another
quantifier-free formula produces a new formula in F). If S is a set of predicates and F is a
fragment of first-order logic, we write F (S) for the class containing all languages 𝐿(𝜑) where
𝜑 is a sentence of F using only predicates that belong to S ∪ 𝐴 ∪ {=} (the label predicates and
the equality predicate are always implicitly allowed). We provide examples at the end of the
section (“Particular fragments”).

We consider generic signatures, i.e., possibly infinite sets of predicates built from an
arbitrary input class C. There are of two kinds:

First, we consider the set IC containing a binary “infix” predicate 𝐼𝐿(𝑥, 𝑦) for every lan-
guage 𝐿 ∈ C. Given a word 𝑤 ∈ 𝐴∗ and two positions 𝑖, 𝑗 ∈ Pos(𝑤), we have 𝑤 |= 𝐼𝐿(𝑖, 𝑗) if
and only if 𝑖 < 𝑗 and 𝑤(𝑖, 𝑗) ∈ 𝐿.
Second, we consider the set PC containing a unary “prefix” predicate 𝑃𝐿(𝑥) for every
language 𝐿 ∈ C. Given a word 𝑤 ∈ 𝐴∗ and a position 𝑖 ∈ Pos(𝑤), we have 𝑤 |= 𝑃𝐿(𝑖) if
and only if 0 < 𝑖 and 𝑤(0, 𝑖) ∈ 𝐿.

Observe that the predicates available in PC are easily expressed from those in IC: clearly, the
formula 𝑃𝐿(𝑥) is equivalent to 𝐼𝐿(𝑚𝑖𝑛, 𝑥).

The sets of predicates PC and IC are defined for every class C. Yet, we shall mostly be
interested in the cases when C is either a prevariety of group languages G or its well-suited
extension G+. This is motivated by the following lemma.

LEMMA 3.3. Let G be a prevariety of group languages and let F be a fragment of first-order
logic. Then, F (IG) = F (<,PG) and F (IG+) = F (<, +1,PG).

PROOF . We first prove that F (<,PG) ⊆ F (IG) and F (<, +1,PG) ⊆ F (IG+). It suffices to
prove that we may express all atomic formulas of F (<,PG) and F (<, +1,PG) using atomic
formulas of F (IG) and F (IG+) respectively. The linear order 𝑥 < 𝑦 is expressed by 𝐼𝐴∗ (𝑥, 𝑦).
For every 𝐿 ∈ G, 𝑃𝐿(𝑥) is expressed by 𝐼𝐿(𝑚𝑖𝑛, 𝑥). Finally, the successor relation 𝑥 + 1 = 𝑦 is
expressed by 𝐼{𝜀} (𝑥, 𝑦) (by definition of G+, we know that 𝐼{𝜀} is a predicate of IG+).

We now prove that F (IG) ⊆ F (<,PG). By definition of fragments, it suffices to prove
that for every 𝐿 ∈ G, the atomic formula 𝐼𝐿(𝑥, 𝑦) is equivalent to a quantifier-free formula
of F (<,PG). Proposition 2.13 yields a G-morphism 𝛼 : 𝐴∗ → 𝐺 recognizing 𝐿. Since G is a
prevariety of group languages, 𝐺 is a group by Lemma 2.14. Since 𝛼 is a G-morphism, the
language 𝛼−1(𝑔) belongs to G for every 𝑔 ∈ 𝐺, whence 𝑃𝛼−1(𝑔) is a predicate available in PG.
Let 𝐹 ⊆ 𝐺 be the set such that 𝛼−1(𝐹) = 𝐿. Since 𝐺 is a group, we have 𝛼(𝑣) = (𝛼(𝑢𝑎))−1𝛼(𝑢𝑎𝑣)
for all 𝑢, 𝑣 ∈ 𝐴∗ and 𝑎 ∈ 𝐴. We define 𝑇 = {(𝑔, 𝑎, ℎ) ∈ 𝐺 × 𝐴 ×𝐺 | (𝑔𝛼(𝑎))−1ℎ ∈ 𝐹}. Consider the

16 / 74 T. Place, M. Zeitoun

following quantifier-free formula of F (<,PG):

𝜑(𝑥, 𝑦) = (𝑥 < 𝑦) ∧
(∨
(𝑔,𝑎,ℎ)∈𝑇

(
𝑃𝛼−1(𝑔) (𝑥) ∧ 𝑎(𝑥) ∧ 𝑃𝛼−1(ℎ) (𝑦)

))
.

One now may verify that the atomic formula 𝐼𝐿(𝑥, 𝑦) is equivalent to the following quantifier-
free formula of F (<,PG):

(𝑥 = 𝑚𝑖𝑛 ∧ 𝑃𝐿(𝑦)) ∨ 𝜑(𝑥, 𝑦).

This concludes the proof of the inclusion F (IG) ⊆ F (<,PG).
Finally, we prove that F (IG+) ⊆ F (<, +1,PG). By definition, it suffices to show that for

every language 𝐾 ∈ G+, the atomic formula 𝐼𝐾 (𝑥, 𝑦) is equivalent to a quantifier-free formula of
F (<, +1,PG). By definition of G+, there exists 𝐿 ∈ G such that either 𝐾 = {𝜀} ∪ 𝐿 or 𝐾 = 𝐴+ ∩ 𝐿.
Consequently, 𝐼𝐾 (𝑥, 𝑦) is equivalent to either 𝐼{𝜀} (𝑥, 𝑦) ∨ 𝐼𝐿(𝑥, 𝑦) or 𝐼𝐴+ (𝑥, 𝑦) ∧ 𝐼𝐿(𝑥, 𝑦). Since,
𝐿 ∈ G, we already proved above that 𝐼𝐿(𝑥, 𝑦) is equivalent to a quantifier-free formula of
F (<,PG) ⊆ F (<, +1,PG). Moreover, 𝐼{𝜀} (𝑥, 𝑦) is equivalent to 𝑥 + 1 = 𝑦 and 𝐼𝐴+ is equivalent
to 𝑥 < 𝑦 ∧ ¬(𝑥 + 1 = 𝑦). This concludes the proof. ■

Lemma 3.3 covers many natural sets of predicates. We present three important cases. If G
is the trivial prevariety ST = {∅, 𝐴∗}, all predicates in PST are trivial. Hence, we get the classes
F (<) and F (<, +1). For the class MOD of modulo languages (see Section 2.3 for its definition),
one can check that in this case, we obtain the classes F (<,MOD) and F (<, +1,MOD) where
“MOD” is the set of modular predicates, defined as follows. For all 𝑘, 𝑚 ∈ N such that 𝑘 < 𝑚, the
set MOD contains a unary predicate 𝑀𝑘,𝑚 selecting all positions 𝑖 such that 𝑖 ≡ 𝑘 mod 𝑚. Finally,
we may consider the class AMT of alphabet modulo testable languages (see Section 2.3 for its
definition). In this case, we get the classes F (<,AMOD) and F (<, +1,AMOD) where “AMOD”
is the set of alphabetic modular predicates: for all 𝑎 ∈ 𝐴 and 𝑘, 𝑚 ∈ N such that 𝑘 < 𝑚, the set
AMOD contains a unary predicate 𝑀𝑎

𝑘,𝑚
selecting all positions 𝑖 such |𝑤(0, 𝑖) |𝑎 ≡ 𝑘 mod 𝑚.

Particular fragments. In the paper, we consider two special fragments. The first one is two-
variable first-order logic (FO2). It consists of all first-order formulas that use at most two distinct
variables (which can be reused). In the formal definition, introducing the fragment FO2 boils
down to using a set 𝑉 of variables which has size two. For example, the sentence

∃𝑥∃ 𝑦 𝑥 < 𝑦 ∧𝑀1,2(𝑥) ∧ 𝑎(𝑥) ∧ 𝑏(𝑦) ∧ (∃𝑥 𝑦 < 𝑥 ∧ 𝑐(𝑥))

is an FO2 sentence using the label predicates, the linear order predicate and the modular
predicate “𝑀1,2”. It defines the language (𝐴𝐴)∗𝑎𝐴∗𝑏𝐴∗𝑐𝐴∗, which therefore belongs to the class
FO2(<,MOD).

We also consider individual levels in the quantifier alternation hierarchy of full first-order
logic. One may classify first-order sentences by counting the alternations between ∃ and ∀
quantifiers in their prenex normal form. For 𝑛 ≥ 1, an FO sentence is Σ𝑛 (resp. Π𝑛) when its

17 / 74 All about unambiguous polynomial closure

prenex normal form has (𝑛 − 1) quantifier alternations (that is, 𝑛 blocks of quantifiers) and
starts with an ∃ (resp. a ∀) quantifier. For example, a sentence whose prenex normal form is,

∃𝑥1∃𝑥2∀𝑥3∃𝑥4 𝜑(𝑥1, 𝑥2, 𝑥3, 𝑥4) (with 𝜑 quantifier-free)

is Σ3. Observe that the sets of Σ𝑛 and Π𝑛 sentences are not closed under negation: negating a Σ𝑛
sentence yields a Π𝑛 sentence and vice versa. Thus, one also considers BΣ𝑛 sentences: Boolean
combinations of Σ𝑛 sentences.

We are interested in intermediary levels that are not defined directly by a set of formulas.
If S is a set of predicates and 𝑛 ≥ 1, we may consider the classes Σ𝑛(S) and Π𝑛(S). It is also
standard to consider a third class, denoted by Δ𝑛(S): it consists exactly of the languages that
can be defined by both a Σ𝑛 formula and a Π𝑛 formula (using the predicates in S ∪ 𝐴 ∪ {=}). In
other words, Δ𝑛(S) = Σ𝑛(S) ∩ Π𝑛(S). In the paper, we look at the classes Δ2(IC).

4. Operators

In this section, we introduce the operators investigated in the paper. They are all variants of the
polynomial closure operator Pol, which we first define. Let us point out that the paper is not
about the operator Pol itself: all results about Pol that we use are taken from previous work.
Then, we introduce unambiguous polynomial closure (UPol), which is a semantic restriction of
Pol. This is the main operator of the paper. Finally, we present another variant of Pol: alternated
polynomial closure (APol). We use it as a tool for investigating UPol. In particular, we shall prove
that UPol(C) = APol(C) when C is a prevariety.

4.1 Polynomial closure

The definition is based on marked concatenation. Abusing terminology, given a word 𝑢 ∈ 𝐴∗, we
denote by 𝑢 the singleton language {𝑢}. Given two languages 𝐾, 𝐿 ⊆ 𝐴∗, a marked concatenation
of 𝐾 with 𝐿 is a language of the form 𝐾𝑎𝐿, for some letter 𝑎 ∈ 𝐴.

DEF IN IT ION 4.1. Consider a class C. The polynomial closure of C, denoted by Pol(C) is the
least class containing C closed under union and marked concatenation. That is, for every
𝐾, 𝐿 ∈ Pol(C) and 𝑎 ∈ 𝐴, we have 𝐾 ∪ 𝐿 ∈ Pol(C) and 𝐾𝑎𝐿 ∈ Pol(C).

EXAMPLE 4.2. Consider the class ST = {∅, 𝐴∗}. Then, using the fact that language concate-
nation distributes over union, it is easy to check that Pol(ST) consists of all finite unions of
languages 𝐴∗𝑎1𝐴

∗ · · · 𝑎𝑛𝐴∗ with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴.

It is not clear from the definition whether the class Pol(C) has robust properties, even
when C does. It was shown by Arfi [4, 3] that if C is a prevariety, then Pol(C) is a positive
prevariety (the key issue is closure under intersection, which is not required by the definition).

18 / 74 T. Place, M. Zeitoun

This result was later strengthened by Pin [16]: if C is a positive prevariety, then so is Pol(C)
(see also [26] for a more recent proof).

THEOREM 4.3 (Arfi [4, 3], Pin [16]). Let C be a positive prevariety. Then, Pol(C) is a positive
prevariety as well.

In general, the classes Pol(C) built with polynomial closure are not closed under com-
plement, even when the class C is (see Pol(ST) in Example 4.2). Consequently, it is natural to
combine polynomial closure with two other independent operators. The first one is Boolean
closure. Given an input class D, we write Bool(D) for the smallest Boolean algebra containing
D. Moreover, given an input class C, we write BPol(C) for Bool(Pol(C)).

EXAMPLE 4.4. In view of Example 4.2, BPol(ST) consists of all Boolean combinations of lan-
guages 𝐴∗𝑎1𝐴

∗ · · · 𝑎𝑛𝐴∗ with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. This is the class of piecewise testable languages [36],
which is prominent in the literature.

EXAMPLE 4.5. It can be verified that BPol(AT) consists exactly of all Boolean combinations of
marked products 𝐵∗0𝑎1𝐵

∗
1 · · · 𝑎𝑛𝐵∗𝑛 with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝐵0, . . . , 𝐵𝑛 ⊆ 𝐴. It is known [21], that

this is exactly the class BPol(BPol(ST)), as we shall see in Example 4.19 below.

Since one quotients commute with Boolean operations, the following statement is an
immediate corollary of Theorem 4.3.

COROLLARY 4.6. Let C be a positive prevariety. Then, BPol(C) is a prevariety.

The second operator is defined as follows. Given a class C, we write co-Pol(C) for the class
containing all complements of languages in Pol(C). That is,

co-Pol(C) =
{
𝐴∗ \ 𝐿 | 𝐿 ∈ Pol(C)

}
.

We shall consider the class Pol(C) ∩ co-Pol(C) consisting of all languages that belong to both
Pol(C) and co-Pol(C). Consequently,

Pol(C) ∩ co-Pol(C) =
{
𝐿 | 𝐿 ∈ Pol(C) and 𝐴∗ \ 𝐿 ∈ Pol(C)

}
.

In other words, since Pol(C) is closed under union and intersection, Pol(C) ∩ co-Pol(C) is the
greatest Boolean algebra contained in Pol(C). We have the following immediate corollary of
Theorem 4.3.

COROLLARY 4.7. Let C be a positive prevariety. Then, co-Pol(C) is a positive prevariety and
Pol(C) ∩ co-Pol(C) is a prevariety.

Finally, we have the following useful result about classes of the form Pol(BPol(C)) which
is taken from [26]. We recall the proof, which is straightforward.

19 / 74 All about unambiguous polynomial closure

LEMMA 4.8. Let C be a prevariety. Then, Pol(BPol(C)) = Pol(co-Pol(C)).

PROOF . It is clear that co-Pol(C) ⊆ BPol(C), whence Pol(co-Pol(C)) ⊆ Pol(BPol(C)). We show
that BPol(C) ⊆ Pol(co-Pol(C)). It will follow that,

Pol(BPol(C)) ⊆ Pol(Pol(co-Pol(C))) = Pol(co-Pol(C)).

Let 𝐿 ∈ BPol(C). By definition, 𝐿 is a Boolean combination of languages in Pol(C). Hence,
De Morgan’s laws show that 𝐿 is built by applying unions and intersections to languages that
are elements of either Pol(C) or co-Pol(C). Clearly, Pol(co-Pol(C)) contains both Pol(C) and
co-Pol(C). Moreover, it follows from Theorem 4.3 and Corollary 4.7 that Pol(co-Pol(C)) is a
positive prevariety. Altogether, we obtain 𝐿 ∈ Pol(co-Pol(C)) as desired. ■

Logical characterizations. It is well known that the quantifier alternation hierarchies of
first-order logic can be characterized using the operators Pol and Bool. Historically, this was
first proved by Thomas [41].

Given a single input class C, the concatenation hierarchy of basis C is built from by applying
Pol and Bool to C in alternation. More precisely, the hierarchy is made of two kinds of levels.
The full levels are denoted by natural numbers 0, 1, 2, 3, . . . The half levels are denoted by
1/2, 3/2, 5/2, . . . Level 0 is the basis C. Then, for every number 𝑛 ∈ N:

the half level 𝑛 + 1/2 is the polynomial closure (Pol) of level 𝑛.
the full level 𝑛 + 1 is the Boolean closure (Bool) of level 𝑛 + 1/2.

When C is a prevariety, this hierarchy exactly characterizes the quantifier alternation hierarchy
of first-order logic associated to the set of predicates IC (see [26]). More precisely, for all 𝑛 ≥ 1,
level 𝑛 − 1/2 is exactly the class Σ𝑛(IC) and level 𝑛 is exactly the class BΣ𝑛(IC).

We are mainly interested in the intermediary levels Δ𝑛(IC) = Σ𝑛(IC) ∩ Π𝑛(IC) and more
precisely in the special case where 𝑛 = 2. As explained above, Σ2(IC) = Pol(BPol(C)) and one
can check that this implies Π2(IC) = co-Pol(BPol(C)). We get the following theorem.

THEOREM 4.9. For every prevariety C, we have Δ2(IC) = Pol(BPol(C)) ∩ co-Pol(BPol(C)).

4.2 Unambiguous polynomial closure

We turn to the main operator of the paper. It is defined as a variant of polynomial closure
obtained by restricting marked concatenations to unambiguous ones and unions to disjoint ones.
We first define what it means for some marked concatenation to be unambiguous. In fact, we
introduce three particular kinds of marked concatenations.

Deterministic marked concatenations. We define three properties. Let 𝐾, 𝐿 ⊆ 𝐴∗ and 𝑎 ∈ 𝐴.
Consider the marked concatenation 𝐾𝑎𝐿. We say that,

𝐾𝑎𝐿 is left deterministic when 𝐾 ∩ 𝐾𝑎𝐴∗ = ∅.

20 / 74 T. Place, M. Zeitoun

𝐾𝑎𝐿 is right deterministic when 𝐿 ∩ 𝐴∗𝑎𝐿 = ∅.
𝐾𝑎𝐿 is unambiguous when for every 𝑤 ∈ 𝐾𝑎𝐿, there exists a unique decomposition of 𝑤
witnessing this membership. In other words, 𝐾𝑎𝐿 is unambiguous if for every 𝑢, 𝑢′ ∈ 𝐾
and 𝑣, 𝑣′ ∈ 𝐿 such that 𝑢𝑎𝑣 = 𝑢′𝑎𝑣′, we have 𝑢 = 𝑢′ and 𝑣 = 𝑣′.

EXAMPLE 4.10. Let 𝐴 = {𝑎, 𝑏, 𝑐}. Then 𝑏∗𝑎𝐴∗ is left deterministic and 𝐴∗𝑎𝑏∗ is right determin-
istic. Moreover, they are both unambiguous. On the other hand, (𝑎𝑏)+𝑎(𝑐𝑎)+ is unambiguous
but is neither left, nor right deterministic. Finally, 𝐴∗𝑎𝐴∗ is ambiguous: 𝑎𝑎 ∈ 𝐴∗𝑎𝐴∗ and there
are two decompositions of 𝑎𝑎 witnessing this membership.

REMARK 4.1 1. Marked concatenations of nonempty group languages are ambiguous. Indeed,
let 𝐾, 𝐿 ⊆ 𝐴∗ be two nonempty group languages and let 𝑎 ∈ 𝐴. Let 𝛼 : 𝐴∗ → 𝐺 be a morphism
into a finite group 𝐺 recognizing both 𝐾 and 𝐿, and let 𝑝 = 𝜔(𝐺) > 0. Moreover, let 𝑢 ∈ 𝐾

and 𝑣 ∈ 𝐿. Then 𝛼(𝑢𝑎𝑝) = 𝛼(𝑢), whence 𝑢𝑎𝑝 ∈ 𝐾 . Similarly, 𝑎𝑝𝑣 ∈ 𝐿. Therefore, the word
(𝑢𝑎𝑝)𝑎𝑣 = 𝑢𝑎(𝑎𝑝𝑣) has two decompositions witnessing its membership in 𝐾𝑎𝐿.

REMARK 4.12. Being deterministic or unambiguous is a semantic property: whether 𝐾𝑎𝐿
satisfies it may not be apparent on the definitions of 𝐾 and 𝐿. Moreover, this depends on 𝐾, 𝐿

and 𝑎, not just on the concatenated language 𝐾𝑎𝐿. There may exist two marked concatenations
representing the same language and such that one is unambiguous while the other is not. For
example, if 𝐴 = {𝑎, 𝑏}, it is clear that 𝑏∗𝑎𝐴∗ = 𝐴∗𝑎𝐴∗. However, 𝑏∗𝑎𝐴∗ is left deterministic and
unambiguous while 𝐴∗𝑎𝐴∗ is neither.

REMARK 4.13. It is immediate from the definitions that if the marked concatenation 𝐾𝑎𝐿 is
unambiguous (resp. left deterministic, right deterministic), then for every 𝐾′ ⊆ 𝐾 and 𝐿′ ⊆ 𝐿, the
marked concatenation 𝐾′𝑎𝐿′ is also unambiguous (resp. left deterministic, right deterministic).
We shall often use this simple fact implicitly.

An alternative way to introduce left/right deterministic marked concatenations is to present
them as special kinds of unambiguous marked concatenations. We detail this point in the
following lemma.

LEMMA 4.14. Let 𝐾, 𝐿 ⊆ 𝐴∗ and 𝑎 ∈ 𝐴. The two following properties hold:
𝐾𝑎𝐿 is left deterministic if and only if 𝐾𝑎𝐴∗ is unambiguous.
𝐾𝑎𝐿 is right deterministic if and only if 𝐴∗𝑎𝐿 is unambiguous

PROOF . By symmetry, we only prove the first assertion. We prove its contrapositive: 𝐾𝑎𝐿 is
not left deterministic if and only if 𝐾𝑎𝐴∗ is not unambiguous. Assume first that 𝐾𝑎𝐿 is not left
deterministic. This yields 𝑢 ∈ 𝐾 ∩ 𝐾𝑎𝐴∗. Hence, we get 𝑢′ ∈ 𝐾 and 𝑣 ∈ 𝐴∗ such that 𝑢 = 𝑢′𝑎𝑣.
Hence, 𝑢𝑎 = 𝑢′𝑎𝑣𝑎 ∈ 𝐾𝑎𝐴∗ and there are two decompositions witnessing this fact: (𝑢)𝑎(𝜀) and

21 / 74 All about unambiguous polynomial closure

(𝑢′)𝑎(𝑣𝑎). We conclude that 𝐾𝑎𝐴∗ is ambiguous. Conversely, assume that 𝐾𝑎𝐴∗ is ambiguous.
We get 𝑢, 𝑢′ ∈ 𝐾 and 𝑣, 𝑣′ ∈ 𝐴∗ such that 𝑢 ≠ 𝑢′ and 𝑢𝑎𝑣 = 𝑢′𝑎𝑣′. By hypothesis, either 𝑢𝑎 is a
prefix of 𝑢′ or 𝑢′𝑎 is a prefix of 𝑢. By symmetry, we consider the case where 𝑢𝑎 is a prefix of 𝑢′.
This yields 𝑥 ∈ 𝐴∗ such that 𝑢′ = 𝑢𝑎𝑥. Hence, 𝑢′ ∈ 𝐾 ∩ 𝐾𝑎𝐴∗ and we conclude that 𝐾𝑎𝐿 is not
left deterministic, as desired. ■

Note that Lemma 4.14 and Remark 4.13 imply that left (resp. right) deterministic marked
concatenations are unambiguous. The converse is not true, as shown by Example 4.10. We
complete the definition with a lemma connecting left (resp. right) deterministic marked con-
catenations to the Green relation R (resp. L) defined on monoids. We shall use it in order to
prove that marked concatenations are left or right deterministic.

LEMMA 4.15. Let 𝛼 : 𝐴∗ → 𝑁 be a morphism into a finite monoid. Let 𝑠 ∈ 𝑁 , 𝑎 ∈ 𝐴 and
𝐿 ⊆ 𝛼−1(𝑠). The two following properties hold:

if 𝑠𝛼(𝑎) <R 𝑠, then 𝐿𝑎𝐴∗ is left deterministic.
if 𝛼(𝑎)𝑠 <L 𝑠, then 𝐴∗𝑎𝐿 is right deterministic.

PROOF . By symmetry, we only prove the first assertion. We assume that 𝑠𝛼(𝑎) <R 𝑠 and show
that 𝐿𝑎𝐴∗ is left deterministic. By contradiction, assume that there exists a word 𝑤 ∈ 𝐿 ∩ 𝐿𝑎𝐴∗.
Since 𝑤 ∈ 𝐿𝑎𝐴∗, we get 𝑢 ∈ 𝐿 and 𝑣 ∈ 𝐴∗ such that 𝑤 = 𝑢𝑎𝑣. Since 𝑢, 𝑤 ∈ 𝐿 and 𝐿 ⊆ 𝛼−1(𝑠), we
have 𝛼(𝑢) = 𝛼(𝑤) = 𝑠. Therefore, 𝑠 = 𝑠𝛼(𝑎)𝛼(𝑣) which yields 𝑠 ⩽R 𝑠𝛼(𝑎), contradicting the
hypothesis that 𝑠𝛼(𝑎) <R 𝑠. ■

DEF IN IT ION 4.16 (Unambiguous polynomial closure). Consider a class C. Its unambiguous
polynomial closure, denoted by UPol(C) is the least class containing C and closed under both
disjoint union and unambiguous marked concatenation. That is given 𝐾, 𝐿 ∈ UPol(C) and 𝑎 ∈ 𝐴,
if 𝐾 ∩ 𝐿 = ∅, then 𝐾 ⊎ 𝐿 ∈ UPol(C) and if 𝐾𝑎𝐿 is unambiguous, then 𝐾𝑎𝐿 ∈ UPol(C). Note that
here, we choose to use the symbol “⊎” for union in order to emphasize disjointedness.

REMARK 4.17. It is clear from the definition that UPol(C) ⊆ Pol(C) for every class C. In
general, this inclusion is strict. This will be the case for all examples considered in the paper.
For example, consider the class ST = {∅, 𝐴∗}. We have UPol(ST) = ST (this is because marked
concatenations 𝐴∗𝑎𝐴∗ are ambiguous). Hence, UPol(ST) ⊊ Pol(ST).

EXAMPLE 4.18. As seen in Remark 4.17, we have UPol(ST) = ST. This is actually a generic
property of prevarieties of group languages: for every such class G, we have UPol(G) = G.
This is because the marked concatenation of two nonempty group languages can never be
unambiguous, see Remark 4.11. This illustrates a particularity of UPol: it is meant to be applied
to “complex enough” classes.

22 / 74 T. Place, M. Zeitoun

EXAMPLE 4.19. An important example is UPol(AT). It is simple to verify that this class con-
tains exactly the finite disjoint unions of unambiguous marked products 𝐵∗0𝑎1𝐵

∗
1 · · · 𝑎𝑛𝐵∗𝑛 where

𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝐵0, . . . , 𝐵𝑛 ⊆ 𝐴 (unambiguous marked products are defined in the natural way
by generalizing the definition to products of arbitrarily many languages). It is known as the class
of unambiguous languages [35]. We prove below that UPol(AT) = UPol(BPol(ST)). Note that it
follows from this equality that Pol(AT) = Pol(BPol(ST)) and that BPol(AT) = BPol(BPol(ST)),
as stated in Example 4.5.

REMARK 4.20. In the literature, a less restrictive definition, which allows arbitrary finite
unions, is sometimes used (see [16] for example). It turns out that this is equivalent when the
input class C is a prevariety. This is the only case that we consider in the paper. Yet, allowing
arbitrary finite unions is important when the input class C is not closed under complement.

We now present properties of unambiguous polynomial closure that we shall prove in the
paper. We start with an important theorem, which generalizes a result by Pin and Weil [20]. It
turns out that when the input class C is a prevariety3, the classesUPol(C) and Pol(C)∩co-Pol(C)
coincide.

THEOREM 4.21. For every prevariety C, we have UPol(C) = Pol(C) ∩ co-Pol(C).

We postpone the proof of Theorem 4.21 to Section 7. It is based on algebraic charac-
terizations: we prove independently that for every prevariety C, the classes UPol(C) and
Pol(C) ∩ co-Pol(C) have the same algebraic characterization. Hence, they are equal.

REMARK 4.22. Theorem 4.21 fails if C is only a positive prevariety (i.e., when C is not closed
under complement). For example, let C = Pol(ST). Clearly, we have UPol(C) = C. On the other
hand, one can verify that Pol(C) ∩ co-Pol(C) = Pol(ST) ∩ co-Pol(ST) = ST. Hence, we have the
strict inclusion Pol(C) ∩ co-Pol(C) ⊊ UPol(C) in this case.

REMARK 4.23. In view of Theorem 4.9, a consequence of Theorem 4.21 is that for every
prevariety C, we have UPol(BPol(C)) = Δ2(IC). Hence, we get a first logical characterization of
UPol. We come back to this point in Section 10 where we present a second characterization of
UPol in terms of two-variable first-order logic (note however that in this case, we need stronger
hypotheses on the input class C).

With Theorem 4.21 in hand, it is simple to describe the closure properties of UPol(C). By
Corollary 4.7, we know that when C is a prevariety, then so is Pol(C) ∩ co-Pol(C). In view of
Theorem 4.21, we obtain the same result for UPol(C). This is surprising since closure under

3 The original result of Pin and Weil only applies to input classes satisfying stronger properties involving closure under
inverse images of morphisms.

23 / 74 All about unambiguous polynomial closure

Boolean operations is not apparent on the definition of UPol(C). This generalizes a result4 by
Pin, Straubing and Thérien [19].

THEOREM 4.24. For every prevariety C, the class UPol(C) is a prevariety as well.

We may use Theorem 4.24 to prove a property for a particular input class C that will
be important for the applications of our results. As mentioned in Example 4.19, we have the
equality UPol(BPol(ST)) = UPol(AT).

LEMMA 4.25. We have UPol(BPol(ST)) = UPol(AT).

PROOF . It is immediate from the definitions that AT ⊆ BPol(ST). Consequently, we have
UPol(AT) ⊆ UPol(BPol(ST)). For the converse inclusion, we show that Pol(ST) ⊆ UPol(AT).
Since UPol(AT) is a Boolean algebra by Theorem 4.24, this yields BPol(ST) ⊆ UPol(AT) and
therefore UPol(BPol(ST)) ⊆ UPol(UPol(AT)) = UPol(AT). We now concentrate on proving that
Pol(ST) ⊆ UPol(AT). One may verify from the definition that Pol(ST) contains exactly the finite
unions of languages 𝐴∗𝑎1 · · · 𝐴∗𝑎𝑛𝐴∗ with 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. Hence, since UPol(AT) is a prevariety
by Theorem 4.24, it suffices to prove that 𝐴∗𝑎1 · · · 𝐴∗𝑎𝑛𝐴∗ ∈ UPol(AT) for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴.
For 0 ≤ 𝑖 < 𝑛, we let 𝐵𝑖 = 𝐴 \ {𝑎𝑖+1}. Clearly, 𝐵∗

𝑖
∈ AT for every 𝑖 < 𝑛. Moreover, one can check

that,
𝐴∗𝑎1 · · · 𝐴∗𝑎𝑛𝐴

∗ = 𝐵∗0𝑎1 · · · 𝐵∗𝑛−1𝑎𝑛𝐴
∗.

It can then be verified that the marked concatenations 𝐵∗
𝑖
𝑎𝑖+1(𝐵∗𝑖+1𝑎𝑖+2 · · · 𝐵∗𝑛−1𝑎𝑛𝐴

∗) are all
unambiguous for 0 ≤ 𝑖 < 𝑛 (they are actually left deterministic). Hence, an immediate induction
yields 𝐵∗0𝑎1 · · · 𝐵∗𝑛−1𝑎𝑛𝐴

∗ ∈ UPol(AT) and we get 𝐴∗𝑎1 · · · 𝐴∗𝑎𝑛𝐴∗ ∈ UPol(AT), completing the
proof. ■

We conclude the presentation with a characteristic property of the classesUPol(C) when C
is an arbitrary prevariety. We use it in Section 7 to prove the algebraic characterization of
unambiguous polynomial closure.

PROPOS IT ION 4.26. Let C be a prevariety and 𝐿 ∈ UPol(C). There exists a C-morphism
𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N satisfying the following property:

for all 𝑢, 𝑣, 𝑣′, 𝑥, 𝑦 ∈ 𝐴∗, if 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′), then 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 ∈ 𝐿⇔ 𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 ∈ 𝐿. (1)

PROOF . By definition, there exists a finite set of languages H ⊆ C such that 𝐿 is built from the
languages in H using only unambiguous marked concatenations and disjoint unions. Propo-
sition 2.13 yields a C-morphism 𝜂 : 𝐴∗ → 𝑁 recognizing every 𝐻 ∈ H. We now use induction
on the construction of 𝐿 from the languages in H to prove that there exists 𝑘 ∈ N such that (1)

4 As for Theorem 4.21, the original result of Pin, Straubing and Thérien only applies to input classes satisfying stronger
properties involving closure under inverse images by morphisms.

24 / 74 T. Place, M. Zeitoun

holds. Assume first that 𝐿 ∈ H (which means that 𝐿 is recognized by 𝜂). We show that (1)
holds for 𝑘 = 0. Indeed, let 𝑢, 𝑣, 𝑣′, 𝑥, 𝑦 ∈ 𝐴∗ such that 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′). It follows that
𝜂(𝑥𝑢0𝑣𝑢0 𝑦) = 𝜂(𝑥𝑢0𝑣′𝑢0 𝑦). Since 𝐿 is recognized by 𝜂, this yields 𝑥𝑢0𝑣𝑢0 𝑦 ∈ 𝐿⇔ 𝑥𝑢0𝑣′𝑢0 𝑦 ∈ 𝐿
as desired.

We now assume that 𝐿 ∉ H. In this case, there exist 𝐿1, 𝐿2, built from the languages in H
using unambiguous marked concatenations and disjoint unions such that either 𝐿 = 𝐿1 ⊎ 𝐿2,
or 𝐿 = 𝐿1𝑎𝐿2 for some 𝑎 ∈ 𝐴 and 𝐿1𝑎𝐿2 is unambiguous. Using induction, for 𝑖 = 1, 2, we get
𝑘𝑖 ∈ N such that 𝐿𝑖 satisfies (1) for 𝑘 = 𝑘𝑖 . If 𝐿 = 𝐿1 ⊎ 𝐿2, it is immediate that 𝐿 satisfies (1) for
𝑘 = 𝑚𝑎𝑥 (𝑘1, 𝑘2). We focus on the case 𝐿 = 𝐿1𝑎𝐿2. Since 𝐿1 and 𝐿2 are regular (as they belong to
UPol(C)), there exists a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid 𝑀 recognizing them both.
Let 𝑝 = 𝜔(𝑀) ≥ 1 be the idempotent power of this monoid. Moreover, let ℎ = 𝑚𝑎𝑥 (𝑘1, 𝑘2) and
𝑘 = 𝑝 + ℎ. We prove that 𝐿 = 𝐿1𝑎𝐿2 satisfies (1) for this number 𝑘. Let 𝑢, 𝑣, 𝑣′, 𝑥, 𝑦 ∈ 𝐴∗ such
that 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′). Assume that 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 ∈ 𝐿, we prove that 𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 ∈ 𝐿 (the converse
implication is symmetrical).

Since 𝐿 = 𝐿1𝑎𝐿2, we have 𝑤1 ∈ 𝐿1 and 𝑤2 ∈ 𝐿2 such that 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 = 𝑤1𝑎𝑤2. Using the
hypothesis that 𝐿1𝑎𝐿2 is unambiguous, we prove the following fact.

LEMMA 4.27. Either 𝑥𝑢𝑘𝑣𝑢ℎ is a prefix of 𝑤1 or 𝑢ℎ𝑣𝑢𝑘 𝑦 is a suffix of 𝑤2.

PROOF . By contradiction, we assume that 𝑥𝑢𝑘𝑣𝑢ℎ is not a prefix of 𝑤1 and 𝑢ℎ𝑣𝑢𝑘 𝑦 is not
suffix of 𝑤2. Since 𝑘 = 𝑝 + ℎ, we have 𝑤1𝑎𝑤2 = 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 = 𝑥𝑢𝑝𝑢ℎ𝑣𝑢ℎ𝑢𝑝 𝑦. Therefore, our
hypothesis yields that 𝑢𝑝 𝑦 is a suffix of 𝑤2 and 𝑥𝑢𝑝 is a prefix of 𝑤1. We get 𝑧1, 𝑧2 ∈ 𝐴∗ such that
𝑤1 = 𝑥𝑢𝑝𝑧1 and 𝑤2 = 𝑧2𝑢

𝑝 𝑦. Since 𝑤1𝑎𝑤2 = 𝑥𝑢𝑝𝑢ℎ𝑣𝑢ℎ𝑢𝑝 𝑦, this also implies 𝑢ℎ𝑣𝑢ℎ = 𝑧1𝑎𝑧2. Let
ℓ = (𝑝 − 1) (2ℎ + 1). We prove that 𝑤1𝑎𝑧2𝑢

ℓ𝑧1 ∈ 𝐿1 and 𝑧2𝑢
ℓ𝑧1𝑎𝑤2 ∈ 𝐿2. Since we have 𝑤1 ∈ 𝐿1

and 𝑤2 ∈ 𝐿2, this yields that 𝑤1𝑎𝑧2𝑢
ℓ𝑧1𝑎𝑤2 ∈ 𝐿1𝑎𝐿2 and that this membership is witnessed

by two decompositions: 𝑤1𝑎𝑧2𝑢
ℓ𝑧1 · 𝑎 · 𝑤2 and 𝑤1 · 𝑎 · 𝑧2𝑢

ℓ𝑧1𝑎𝑤2. Hence, this contradicts the
hypothesis that 𝐿1𝑎𝐿2 is unambiguous, finishing the proof.

We only prove that 𝑤1𝑎𝑧2𝑢
ℓ𝑧1 ∈ 𝐿1 (that 𝑧2𝑢

ℓ𝑧1𝑎𝑤2 ∈ 𝐿2 is symmetrical and left to the
reader). Since 𝑤1 = 𝑥𝑢𝑝𝑧1 and 𝑢ℎ𝑣𝑢ℎ = 𝑧1𝑎𝑧2, we have,

𝑤1𝑎𝑧2𝑢
ℓ𝑧1 = 𝑥𝑢𝑝𝑢ℎ𝑣𝑢ℎ𝑢ℓ𝑧1.

Thus, it remains to show that 𝑥𝑢𝑝𝑢ℎ𝑣𝑢ℎ𝑢ℓ𝑧1 ∈ 𝐿1. By definition, 𝑥𝑢𝑝𝑧1 = 𝑤1 ∈ 𝐿1. Since 𝑝 is the
idempotent power of a finite monoid recognizing 𝐿1, this yields 𝑥𝑢𝑝𝑢𝑝(2ℎ+1)𝑧1 ∈ 𝐿1. This can be
reformulated as 𝑥𝑢𝑝𝑢ℎ𝑢𝑢ℎ𝑢ℓ𝑧1 ∈ 𝐿1. By definition, 𝜂(𝑣) = 𝜂(𝑢) and 𝐿1 satisfies (1) for 𝑘1 ≤ ℎ.
Hence, we obtain 𝑥𝑢𝑝𝑢ℎ𝑣𝑢ℎ𝑢ℓ𝑧1 ∈ 𝐿1, concluding the proof of the lemma. ■

We may now prove that 𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 ∈ 𝐿. In view of Lemma 4.27, there are two cases.
First, assume that 𝑥𝑢𝑘𝑣𝑢ℎ is a prefix of 𝑤1. This yields 𝑧 ∈ 𝐴∗ such that 𝑤1 = 𝑥𝑢𝑘𝑣𝑢ℎ𝑧 and
𝑢𝑘−ℎ 𝑦 = 𝑧𝑎𝑤2. Since 𝑤1 ∈ 𝐿1, 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′) and 𝐿1 satisfies(1) for 𝑘1 ≤ ℎ, it follows that,

25 / 74 All about unambiguous polynomial closure

𝑥𝑢𝑘𝑣′𝑢ℎ𝑧 ∈ 𝐿1. Thus, 𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 = 𝑥𝑢𝑘𝑣′𝑢ℎ𝑧𝑎𝑤2 ∈ 𝐿1𝑎𝐿2 as desired. In the second case, 𝑢ℎ𝑣𝑢𝑘 𝑦
is a suffix of 𝑤2. This yields 𝑧 ∈ 𝐴∗ such that 𝑤2 = 𝑧𝑢ℎ𝑣𝑢𝑘 𝑦 and 𝑥𝑢𝑘−ℎ = 𝑤1𝑎𝑧. Since 𝑤2 ∈ 𝐿2,
𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′) and 𝐿2 satisfies (1) for 𝑘2 ≤ ℎ, it follows that, 𝑧𝑢ℎ𝑣′𝑢𝑘 𝑦 ∈ 𝐿2. We obtain
𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 = 𝑤1𝑎𝑧𝑢

ℎ𝑣′𝑢𝑘 𝑦 ∈ 𝐿1𝑎𝐿2, as desired. ■

4.3 Alternated polynomial closure

We present a third and final operator. For every input class C, we define APol(C) as the least
class containing C closed under disjoint union, left deterministic marked concatenation and right
deterministic marked concatenation.

We now consider a technical restriction ofAPol, defined by further restricting the situations
in which using marked concatenation is allowed. While less natural, it will be useful in proof
arguments. Let C be a class of languages. Given two languages 𝐾, 𝐿 ⊆ 𝐴∗ and a letter 𝑎 ∈ 𝐴,
we say that the marked concatenation 𝐾𝑎𝐿 is left (resp. right) C-deterministic when there exist
𝐾′, 𝐿′ ∈ C such that 𝐾 ⊆ 𝐾′, 𝐿 ⊆ 𝐿′ and 𝐾′𝑎𝐿′ is left (resp. right) deterministic.

REMARK 4.28. Clearly, 𝐾𝑎𝐿 being left (resp. right) C-deterministic implies that it is also left
(resp. right) deterministic. The converse need not be true. For example, when C = ST = {∅, 𝐴∗},
no nonempty marked concatenation can be left or right ST-deterministic.

The weak alternated polynomial closure of a class C, which we denote by WAPol(C), is the
least class containing C and closed under disjoint union and left and right C-deterministic marked
concatenation. Clearly, we haveWAPol(C) ⊆ APol(C). Moreover, we shall prove in Section 7 that
when C is a prevariety, the converse inclusion holds as well, so that WAPol(C) = APol(C). This
is useful to prove that APol(C) is included in another class: it suffices to prove that WAPol(C)
is included in this class, which is often simpler.

While APol and WAPol are less prominent than UPol, they serve as key tools in the paper.
This is because of the following theorem that we shall prove in Section 7.

THEOREM 4.29. Let C be a prevariety. Then, UPol(C) = APol(C) = WAPol(C).

Recall that by Lemma 4.14, a left/right deterministic marked concatenation is necessarily
unambiguous. Hence, the inclusions WAPol(C) ⊆ APol(C) ⊆ UPol(C) in Theorem 4.29 are
immediate from the definitions. On the other hand, the proof argument for the inclusion
UPol(C) ⊆ WAPol(C) is intertwined with that of the generic algebraic characterization of
UPol(C). More precisely, we prove that every language satisfying the characterization belongs
to WAPol(C) (which also implies membership in UPol(C)). This is why APol(C) and WAPol(C)
are important. In practice, left/right deterministic marked concatenations are simpler to handle
than unambiguous ones. By Theorem 4.29, they suffice to build all languages in UPol(C).

26 / 74 T. Place, M. Zeitoun

5. Canonical relations associated tomorphisms

Given a class C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid, we associate three distinct
objects: a submonoid of 𝑀 and two relations. They are central ingredients for formulating
the algebraic characterizations of Pol(C) and UPol(C) that we present in Sections 6, 7 and 10.
Our characterization algorithms rely on these notions for C: the C-kernel, the C-pair and the
C-preorder relations.

5.1 G-kernels

Consider a class G and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid 𝑀 . We associate to 𝛼 a
subset 𝑁 ⊆ 𝑀 that we call the G-kernel of 𝛼. It consists of all elements 𝑠 ∈ 𝑀 such that {𝜀} is
not G-separable from 𝛼−1(𝑠). Additionally, we shall consider a slightly more restrictive notion:
the strict G-kernel of 𝛼 is the set 𝑆 = 𝑁 ∩ 𝛼(𝐴+).

REMARK 5.1. While the definition makes sense for an arbitrary class G, it is meant to be used
in the special case where G is a prevariety of group languages (hence the notation G).

REMARK 5.2. When G is the class MOD of modulo languages, it can be shown that the MOD-
kernel of a morphism corresponds to a standard notion: the stable monoid, defined in [37].
Given a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid, it can be verified that there exists a number
𝑑 ≥ 1 such that 𝛼(𝐴2𝑑) = 𝛼(𝐴𝑑). The least such number 𝑑 ≥ 1 is called the stability index of 𝛼.
The stable semigroup of 𝛼 is 𝑆 = 𝛼(𝐴𝑑) and the stable monoid of 𝛼 is 𝑁 = {1𝑀} ∪ 𝑆. One may
verify that 𝑆 and 𝑁 are respectively the strict MOD-kernel and the MOD-kernel of 𝛼 (this follows
from a simple analysis of MOD-separation).

Clearly, having a G-separation algorithm in hand suffices to compute the G-kernel of an
input morphism 𝛼. This yields the following lemma.

LEMMA 5.3. Let G be a class with decidable separation. Given a morphism 𝛼 : 𝐴∗ → 𝑀 into a
finite monoid as input, one can compute both the G-kernel and the strict G-kernel of 𝛼.

We now characterize G-kernels in terms of G-morphisms when G is a prevariety.

LEMMA 5.4. Let G be a prevariety, let 𝛼 : 𝐴∗ → 𝑀 be a morphism into a finite monoid and
let 𝑁 be the G-kernel of 𝛼. The following properties hold:

Let 𝜂 : 𝐴∗ → 𝐺 be a G-morphism. For every 𝑠 ∈ 𝑁 , there exists 𝑤 ∈ 𝐴∗ such that 𝛼(𝑤) = 𝑠
and 𝜂(𝑤) = 1𝐺.
There exists a G-morphism 𝜂 : 𝐴∗ → 𝐺 such that for every 𝑤 ∈ 𝐴∗, if 𝜂(𝑤) = 1𝐺, then
𝛼(𝑤) ∈ 𝑁 .

27 / 74 All about unambiguous polynomial closure

PROOF . For the first assertion, let 𝜂 : 𝐴∗ → 𝐺 be a G-morphism and consider 𝑠 ∈ 𝑁 . By
hypothesis, 𝜂−1(1𝐺) ∈ G and {𝜀} ⊆ 𝜂−1(1𝐺). Since 𝑠 ∈ 𝑁 and 𝑁 is the G-kernel of 𝛼, the language
𝜂−1(1𝐺) ∈ G cannot separate𝛼−1(𝑠) from {𝜀}. Since it includes {𝜀}, we have𝛼−1(𝑠)∩𝜂−1(1𝐺) ≠ ∅.
This yields 𝑤 ∈ 𝐴∗ such that 𝛼(𝑤) = 𝑠 and 𝜂(𝑤) = 1𝐺.

We turn to the second assertion. By definition of the G-kernel 𝑁 of 𝛼, we know that for
every 𝑡 ∈ 𝑀 \𝑁 , there exists 𝐾𝑡 ∈ G such that 𝜀 ∈ 𝐾𝑡 and 𝛼−1(𝑡) ∩ 𝐾𝑡 = ∅. Proposition 2.13 yields
a G-morphism 𝜂 : 𝐴∗ → 𝐺 recognizing all languages 𝐾𝑡 for 𝑡 ∈ 𝑀 \ 𝑁 . It remains to prove that
given 𝑤 ∈ 𝐴∗ such that 𝜂(𝑤) = 1𝐺, we have 𝛼(𝑤) ∈ 𝑁 . Assume that 𝜂(𝑤) = 1𝐺 = 𝜂(𝜀). Since 𝜂
recognizes 𝐾𝑡 for every 𝑡 ∈ 𝑀 \ 𝑁 and 𝜀 ∈ 𝐾𝑡 by definition, we get 𝑤 ∈ 𝐾𝑡 for every 𝑡 ∈ 𝑀 \ 𝑁 .
Since 𝛼−1(𝑡) ∩ 𝐾𝑡 = ∅, we deduce that 𝛼(𝑤) ≠ 𝑡 for every 𝑡 ∈ 𝑀 \ 𝑁 . This means that 𝛼(𝑤) ∈ 𝑁 ,
completing the proof. ■

An important property is that the G-kernel 𝑁 of a morphism 𝛼 : 𝐴∗ → 𝑀 is a submonoid
of 𝑀 . Observe that since the strict G-kernel of 𝛼 is 𝑆 = 𝑁 ∩ 𝛼(𝐴+) by definition, this also implies
that 𝑆 is a subsemigroup of 𝑀 . We state these properties in the following fact, which we shall
use implicitly from now on.

FACT 5.5. Let G be a prevariety and 𝛼 : 𝐴∗ → 𝑀 a morphism into a finite monoid. The
G-kernel of 𝛼 is a submonoid of 𝑀 . Its strict G-kernel is a subsemigroup of 𝑀 .

PROOF . We write 𝑁 for the G-kernel of 𝛼. Lemma 5.4 yields a G-morphism 𝜂 : 𝐴∗ → 𝐺

such that for every 𝑤 ∈ 𝐴∗, if 𝜂(𝑤) = 1𝐺, then 𝛼(𝑤) ∈ 𝑁 . Since 𝜂(𝜀) = 1𝐺, it follows that
1𝑀 = 𝛼(𝜀) ∈ 𝑁 . Moreover, if 𝑠, 𝑡 ∈ 𝑁 , then the first assertion in Lemma 5.4 yields 𝑢, 𝑣 ∈ 𝐴∗ such
that 𝜂(𝑢) = 𝜂(𝑣) = 1𝐺, 𝛼(𝑢) = 𝑠 and 𝛼(𝑣) = 𝑡. Hence, 𝜂(𝑢𝑣) = 1𝐺 and we get 𝑠𝑡 = 𝛼(𝑢𝑣) ∈ 𝑁 by
definition of 𝜂. ■

We conclude the presentation with a lemma, specific to the case where G is a prevariety
of group languages (which is the only case that we shall consider in practice).

FACT 5.6. Let G be a prevariety of group languages and let 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism into a finite monoid. Then, all idempotents in 𝐸(𝑀) belongs to the G-kernel of 𝛼.

PROOF . Let 𝑁 be the G-kernel of 𝛼 and let 𝑒 ∈ 𝐸(𝑀). We prove that 𝑒 ∈ 𝑁 . By Lemma 5.4,
there exists a G-morphism 𝜂 : 𝐴∗ → 𝐺 such that for every 𝑤 ∈ 𝐴∗, if 𝜂(𝑤) = 1𝐺, then 𝛼(𝑤) ∈ 𝑁 .
By Lemma 2.14, we know that 𝐺 is a group. Since 𝛼 is surjective, there exists 𝑤 ∈ 𝐴∗ such that
𝛼(𝑤) = 𝑒. Let 𝑘 = 𝜔(𝐺). Since 𝐺 is a group, we get 𝜂(𝑤𝑘) = 1𝐺 by definition of 𝑘. Moreover,
since 𝑒 is idempotent, we have 𝛼(𝑤𝑘) = 𝑒. Hence, 𝑒 ∈ 𝑁 by definition of 𝜂. ■

28 / 74 T. Place, M. Zeitoun

5.2 C-pairs

Consider a class C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid. We define a relation on
𝑀 : the C-pairs (for 𝛼). Let (𝑠, 𝑡) ∈ 𝑀2. We say that,

(𝑠, 𝑡) is a C-pair (for 𝛼) if and only if 𝛼−1(𝑠) is not C-separable from 𝛼−1(𝑡). (2)

REMARK 5.7. While we often make this implicit, being a C-pair depends on 𝛼.

By definition, the set of C-pairs for 𝛼 is finite: it is a subset of 𝑀2. Moreover, having a
C-separation algorithm in hand is clearly enough to compute all C-pairs associated to an input
morphism 𝛼. We state this simple, yet crucial property in the following lemma.

LEMMA 5.8. Let C be a class of languages with decidable separation. Then, given a morphism
𝛼 : 𝐴∗ → 𝑀 into a finite monoid as input, one can compute all C-pairs for 𝛼.

We complete the definition with some properties of C-pairs. A simple and useful one is
that the C-pair relation is reflexive provided that the morphism 𝛼 is surjective (which is always
the case in practice). Moreover, it is symmetric when C is closed under complement. On the
other hand, the C-pair relation is not transitive in general (see Example 5.10 below).

LEMMA 5.9. Consider a class C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid. The
following properties hold:

If 𝛼 is surjective, the C-pair relation is reflexive: for every 𝑠 ∈ 𝑀 , (𝑠, 𝑠) is a C-pair.
If C is closed under complement, the C-pair relation is symmetric: for every C-pair
(𝑠, 𝑡) ∈ 𝑀2, (𝑡, 𝑠) is a C-pair as well.

PROOF . For first assertion, assume that 𝛼 is surjective. Given 𝑠 ∈ 𝑀 , we have 𝛼−1(𝑠) ≠ ∅ since
𝛼 is surjective. Hence, 𝛼−1(𝑠) ∩ 𝛼−1(𝑠) ≠ ∅, which implies that 𝛼−1(𝑠) is not C-separable from
𝛼−1(𝑠). This exactly says that (𝑠, 𝑠) is a C-pair. For the second assertion, assume that C is closed
under complement and consider a C-pair (𝑠, 𝑡) ∈ 𝑀2. It follows that 𝛼−1(𝑠) is not C-separable
from 𝛼−1(𝑡). Since C is closed under complement, this implies that 𝛼−1(𝑡) is not C-separable
from 𝛼−1(𝑠). Therefore, (𝑡, 𝑠) is a C-pair. ■

EXAMPLE 5.10. The C-pair relation is not transitive in general. Indeed, let C = AT and let 𝑀
be the monoid {1, 𝑎, 𝑏, 0} where 1 acts as an identity element, 0 as an absorbing element, and
the rest of the multiplication is given by 𝑎𝑎 = 𝑎𝑏 = 𝑏𝑎 = 𝑏𝑏 = 0. Let 𝐴 = {𝑎, 𝑏} and 𝛼 : 𝐴∗ → 𝑀

be the morphism defined by 𝛼(𝑎) = 𝑎 and 𝛼(𝑏) = 𝑏. We have 𝛼−1(𝑎) = {𝑎}. Therefore, any
language of AT containing 𝛼−1(𝑎) also contains 𝑎+, and intersects 𝛼−1(0) (which is the set of
words of length at least 2). Hence, (𝑎, 0) is an AT-pair. Likewise, (0, 𝑏) is an AT-pair. However,
(𝑎, 𝑏) is not an AT-pair, since the language 𝑎+ ∈ AT separates 𝛼−1(𝑎) = {𝑎} from 𝛼−1(𝑏) = {𝑏}.

29 / 74 All about unambiguous polynomial closure

We now provide a useful characterization of C-pairs via C-morphisms in the special case
where C is a positive prevariety, which is the only case that we consider in practice. It is similar
to Lemma 5.4.

LEMMA 5.11. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a morphism into a finite
monoid. The two following properties hold:

For every C-morphism 𝜂 : 𝐴∗ → (𝑁, ≤) and every C-pair (𝑠, 𝑡) ∈ 𝑀2 for 𝛼, there exist
𝑢, 𝑣 ∈ 𝐴∗ such that 𝜂(𝑢) ≤ 𝜂(𝑣), 𝛼(𝑢) = 𝑠 and 𝛼(𝑣) = 𝑡.
There exists a C-morphism 𝜂 : 𝐴∗ → (𝑁, ≤) such that for all 𝑢, 𝑣 ∈ 𝐴∗, if 𝜂(𝑢) ≤ 𝜂(𝑣), then
(𝛼(𝑢), 𝛼(𝑣)) is a C-pair for 𝛼.

PROOF . Let us start with the first assertion. Let 𝜂 : 𝐴∗ → (𝑁, ≤) be a C-morphism and let
(𝑠, 𝑡) ∈ 𝑀2 be a C-pair for 𝛼. Let 𝐹 ⊆ 𝑁 be the set of all elements 𝑟 ∈ 𝑁 such that 𝜂(𝑢) ≤ 𝑟

for some 𝑢 ∈ 𝛼−1(𝑠). By definition, 𝐹 is an upper set for the ordering ≤ on 𝑁 . Hence, we
have 𝜂−1(𝐹) ∈ C since 𝜂 is a C-morphism. Moreover, it is immediate from the definition of 𝐹
that 𝛼−1(𝑠) ⊆ 𝜂−1(𝐹). Therefore, since (𝑠, 𝑡) is a C-pair (which means that 𝛼−1(𝑠) cannot be
separated from 𝛼−1(𝑡) using a language in C), it follows that 𝜂−1(𝐹) ∩ 𝛼−1(𝑡) ≠ ∅. This yields
𝑣 ∈ 𝐴∗ such that 𝜂(𝑣) ∈ 𝐹 and 𝛼(𝑣) = 𝑡. Finally, since 𝑣 ∈ 𝐹, the definition of 𝐹 yields 𝑢 ∈ 𝐴∗

such that 𝜂(𝑢) ≤ 𝜂(𝑣) and 𝛼(𝑢) = 𝑠, concluding the proof of the first assertion.
We turn to the second assertion. Let 𝑃 ⊆ 𝑀2 be the set of all pairs (𝑠, 𝑡) ∈ 𝑀2 which are not

C-pairs. For every (𝑠, 𝑡) ∈ 𝑃, there exists 𝐾𝑠,𝑡 ∈ C separating𝛼−1(𝑠) from𝛼−1(𝑡). Proposition 2.13
yields a C-morphism 𝜂 : 𝐴∗ → (𝑁, ≤) such that every language 𝐾𝑠,𝑡 for (𝑠, 𝑡) ∈ 𝑃 is recognized
by 𝜂. It remains to prove that for every 𝑢, 𝑣 ∈ 𝐴∗, if 𝜂(𝑢) ≤ 𝜂(𝑣), then (𝛼(𝑢), 𝛼(𝑣)) is a C-pair. We
prove the contrapositive. Assuming that (𝛼(𝑢), 𝛼(𝑣)) is not a C-pair, we show that 𝜂(𝑢) ≰ 𝜂(𝑣).
By hypothesis, (𝛼(𝑢), 𝛼(𝑣)) ∈ 𝑃, which means that 𝐾𝛼(𝑢),𝛼(𝑣) ∈ C is defined and separates
𝛼−1(𝛼(𝑢)) from 𝛼−1(𝛼(𝑣)). Thus, 𝑢 ∈ 𝐾𝛼(𝑢),𝛼(𝑣) and 𝑣 ∉ 𝐾𝛼(𝑢),𝛼(𝑣) . Since 𝐾𝛼(𝑢),𝛼(𝑣) is recognized
by 𝜂, this implies 𝜂(𝑢) ≰ 𝜂(𝑣). ■

We now prove that when C is a positive prevariety of regular languages (which is the only
case that we shall consider), the C-pair relation is compatible with multiplication. This result is
similar to Fact 5.5 for G-kernels.

LEMMA 5.12. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a morphism into a finite
monoid. If (𝑠1, 𝑡1), (𝑠2, 𝑡2) ∈ 𝑀2 are C-pairs, then (𝑠1𝑠2, 𝑡1𝑡2) is a C-pair as well.

PROOF . Lemma 5.11 yields a C-morphism 𝜂 : 𝐴∗ → (𝑁, ≤) such that for all 𝑢, 𝑣 ∈ 𝐴∗, if
𝜂(𝑢) ≤ 𝜂(𝑣), then (𝛼(𝑢), 𝛼(𝑣)) is a C-pair. Let (𝑠1, 𝑡1), (𝑠2, 𝑡2) ∈ 𝑀2 be C-pairs. Since 𝜂 is a
C-morphism, it follows from Lemma 5.11 that there exist 𝑢𝑖 , 𝑣𝑖 ∈ 𝐴∗ for 𝑖 = 1, 2 such that
𝜂(𝑢𝑖) ≤ 𝜂(𝑣𝑖), 𝛼(𝑢𝑖) = 𝑠𝑖 and 𝛼(𝑣𝑖) = 𝑡𝑖 . Clearly, it follows that 𝜂(𝑢1𝑢2) ≤ 𝜂(𝑣1𝑣2), 𝛼(𝑢1𝑢2) = 𝑠1𝑠2

and 𝛼(𝑣1𝑣2) = 𝑡1𝑡2. Hence, (𝑠1𝑠2, 𝑡1𝑡2) is a C-pair by definition of 𝜂. ■

30 / 74 T. Place, M. Zeitoun

We conclude the presentation with a result connecting G-pairs with the G-kernel, when G
is a prevariety of group languages.

LEMMA 5.13. Let G be a prevariety of group languages and let 𝛼 : 𝐴∗ → 𝑀 be a surjective
morphism into a finite monoid. Let 𝑒 ∈ 𝐸(𝑀) and 𝑠, 𝑡 ∈ 𝑀 such that (𝑒, 𝑠) is a G-pair. Then, 𝑒𝑠
and 𝑡(𝑒𝑠𝑡)2𝜔−1 both belong to the G-kernel of 𝛼.

PROOF . Let 𝑁 be the G-kernel of 𝛼. Lemma 5.4 yields a G-morphism 𝜂 : 𝐴∗ → 𝐺 such that for
every 𝑤 ∈ 𝐴∗, if 𝜂(𝑤) = 1𝐺, then 𝛼(𝑤) ∈ 𝑁 . By Lemma 2.14, 𝐺 is a group. We first show that
𝑒𝑠 ∈ 𝑁 . Since (𝑒, 𝑠) is a G-pair, Lemma 5.11 yields 𝑢, 𝑣 ∈ 𝐴∗ such that 𝜂(𝑢) = 𝜂(𝑣), 𝛼(𝑢) = 𝑒 and
𝛼(𝑣) = 𝑠. Let 𝑝 = 𝜔(𝐺) × 𝜔(𝑀). Since 𝜂(𝑢) = 𝜂(𝑣), we have 𝜂(𝑢𝑝−1𝑣) = 𝜂(𝑢𝑝) = 1𝐺 (recall that
𝐺 is a group). Hence, by definition of 𝜂, we have 𝛼(𝑢𝑝−1𝑣) ∈ 𝑁 . Since 𝑒 is an idempotent, this
yields 𝑒𝑠 ∈ 𝑁 , as desired.

We now prove that 𝑡(𝑒𝑠𝑡)2𝜔−1 ∈ 𝑁 . Let 𝑤 = 𝑢𝑝−1𝑣. We know that 𝜂(𝑤) = 1𝐺 and 𝛼(𝑤) = 𝑒𝑠.
Since 𝛼 is surjective, we get 𝑥 ∈ 𝐴∗ such that 𝛼(𝑥) = 𝑡. Since 𝜂(𝑤) = 1𝐺 and 𝑝 is a multiple of
𝜔(𝐺), we have 𝜂(𝑥 (𝑤𝑥)2𝑝−1) = 𝜂(𝑥2𝑝) = 1𝐺. Moreover, since 𝑝 is a multiple of 𝜔(𝑀), we have
𝛼(𝑥 (𝑤𝑥)2𝑝−1) = 𝑡(𝑒𝑠𝑡)2𝜔−1. By definition of 𝜂, we get 𝑡(𝑒𝑠𝑡)2𝜔−1 ∈ 𝑁 . ■

5.3 Canonical C-preorder and C-equivalence

Consider a lattice C. Moreover, let 𝛼 : 𝐴∗ → 𝑀 be a morphism into a finite monoid. We define
two relations on 𝑀 : a preorder “⪯C,𝛼” which we call the canonical C-preorder of 𝛼 and an
equivalence “∼C,𝛼” which we call the canonical C-equivalence of 𝛼. Consider a pair (𝑠, 𝑡) ∈ 𝑀2.
We define,

𝑠 ⪯C,𝛼 𝑡 if and only if 𝑠 ∈ 𝐹 ⇒ 𝑡 ∈ 𝐹 for all 𝐹 ⊆ 𝑀 such that 𝛼−1(𝐹) ∈ C. (3)

𝑠 ∼C,𝛼 𝑡 if and only if 𝑠 ∈ 𝐹 ⇔ 𝑡 ∈ 𝐹 for all 𝐹 ⊆ 𝑀 such that 𝛼−1(𝐹) ∈ C. (4)

It is immediate by definition that ⪯C,𝛼 is indeed a preorder on 𝑀 . Moreover, ∼C,𝛼 is exactly the
equivalence induced by ⪯C,𝛼: for every 𝑠, 𝑡 ∈ 𝑀 , we have 𝑠 ∼C,𝛼 𝑡 if and only if 𝑠 ⪯C,𝛼 𝑡 and
𝑡 ⪯C,𝛼 𝑠. From now on, for the sake of avoiding clutter, we shall abuse terminology when the
morphism 𝛼 is understood and we write ⪯C for ⪯C,𝛼 and ∼C for ∼C,𝛼. Additionally, for every
element 𝑠 ∈ 𝑀 , we write [𝑠]C ∈ 𝑀/∼C for the ∼C-class of 𝑠. Finally, note that since ∼C is the
equivalence induced by ⪯C, the preorder ⪯C also induces an order on the quotient set 𝑀/∼C ,
which we write ≤C: for every 𝑠, 𝑡 ∈ 𝑀 we have [𝑠]C ≤C [𝑡]C if and only if 𝑠 ⪯C 𝑡.

Observe that an immediate key property of these relations is that having an algorithm for
C-membership suffices to compute both ⪯C and ∼C . Indeed, with such a procedure in hand, it
is possible to compute all subsets 𝐹 ⊆ 𝑀 such that 𝛼−1(𝐹) ∈ C. One may then decide whether
𝑠 ⪯C 𝑡 for some 𝑠, 𝑡 ∈ 𝑀 by checking whether the implication 𝑠 ∈ 𝐹 ⇒ 𝑡 ∈ 𝐹 holds for every
such subset 𝐹. We state this in the following lemma.

31 / 74 All about unambiguous polynomial closure

LEMMA 5.14. Let C be a class of languages with decidable membership. Given a morphism
𝛼 : 𝐴∗ → 𝑀 into a finite monoid as input, one can compute the relations ⪯C and ∼C on 𝑀 .

Properties. First, we show that given a morphism 𝛼 : 𝐴∗ → 𝑀 , we are able to characterize the
languages simultaneously recognized by 𝛼 and belonging to C as those which are the inverse
image of an upper set for the preorder ⪯C . Recall that by definition, 𝐹 ⊆ 𝑀 is an upper set for
⪯C if and only if for every 𝑠 ∈ 𝐹 and 𝑡 ∈ 𝑀 such that 𝑠 ⪯C 𝑡, we have 𝑡 ∈ 𝐹.

LEMMA 5.15. Consider a lattice C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid. For every
𝐹 ⊆ 𝑀 , we have 𝛼−1(𝐹) ∈ C if and only if 𝐹 is an upper set for ⪯C .

PROOF . We fix 𝐹 ⊆ 𝑀 for the proof. Assume first that 𝛼−1(𝐹) ∈ C we prove that 𝐹 is an upper
set for ⪯C. Let 𝑠 ∈ 𝐹 and 𝑡 ∈ 𝑀 such that 𝑠 ⪯C 𝑡. By definition of ⪯C and since 𝛼−1(𝐹) ∈ C,
this implies that 𝑡 ∈ 𝐹 as desired. Conversely assume that 𝐹 is an upper set for ⪯C. We prove
that 𝛼−1(𝐹) ∈ C. Consider 𝑠 ∈ 𝐹. By definition, we know that for every element 𝑟 ∉ 𝐹, we have
𝑠 ̸⪯C 𝑟. Hence by definition of ⪯C, there exists a set 𝐹𝑠,𝑟 ⊆ 𝑀 such that 𝛼−1(𝐹𝑠,𝑟) ∈ C, 𝑠 ∈ 𝐹𝑠,𝑟
and 𝑟 ∉ 𝐹𝑠,𝑟. It is now immediate that,

𝐹 =
⋃
𝑠∈𝐹

(⋂
𝑟∉𝐹

𝐹𝑠,𝑟

)
.

Since inverse image commutes with Boolean operations, we obtain,

𝛼−1(𝐹) =
⋃
𝑠∈𝐹

(⋂
𝑟∉𝐹

𝛼−1(𝐹𝑠,𝑟)
)
.

We conclude that 𝛼−1(𝐹) ∈ C, since C is a lattice. ■

We turn to a key property of the preorder ⪯C . We connect it to the C-pair relation associated
to every morphism 𝛼 : 𝐴∗ → 𝑀 . Specifically, we show that ⪯C is the reflexive transitive closure
of the C-pair relation.

LEMMA 5.16. Consider a lattice C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid. Then,
the relation ⪯C on 𝑀 is reflexive transitive closure of the C-pair relation.

PROOF . We first prove that ⪯C contains the reflexive transitive closure of the C-pair relation.
Since ⪯C is a preorder, it suffices to show that for every C-pair (𝑞, 𝑟) ∈ 𝑀2, we have 𝑞 ⪯C 𝑟.
Hence, we fix 𝐹 ⊆ 𝑀 such that 𝛼−1(𝐹) ∈ C and 𝑞 ∈ 𝐹. We have to show that 𝑟 ∈ 𝐹. Clearly,
𝑞 ∈ 𝐹 implies that 𝛼−1(𝑞) ⊆ 𝛼−1(𝐹). Since (𝑞, 𝑟) is a C-pair and 𝛼−1(𝐹) ∈ C, we know that
𝛼−1(𝑟) ∩ 𝛼−1(𝐹) ≠ ∅, whence 𝑟 ∈ 𝐹, as desired.

We turn to the converse implication. Let 𝑠, 𝑡 ∈ 𝑀 be such that 𝑠 ⪯C 𝑡. Moreover, let
𝐹 ⊆ 𝑀 be the least subset of 𝑀 containing 𝑠 and such that for every C-pair (𝑞, 𝑟) ∈ 𝑀2, if
𝑞 ∈ 𝐹, then 𝑟 ∈ 𝐹 as well. We have to show that 𝑡 ∈ 𝐹. Since 𝑠 ⪯C 𝑡, it suffices to show that
𝛼−1(𝐹) ∈ C by definition of ⪯C. For every 𝑞 ∈ 𝐹, we may build a language 𝐻𝑞 ∈ C such that

32 / 74 T. Place, M. Zeitoun

𝛼−1(𝑞) ⊆ 𝐻𝑞 ⊆ 𝛼−1(𝐹). Indeed, for any 𝑟 ∉ 𝐹, we know that (𝑞, 𝑟) is not a C-pair by definition of
𝐹. Therefore, there exists 𝐻𝑞,𝑟 ∈ C separating 𝛼−1(𝑞) from 𝛼−1(𝑟). We let,

𝐻𝑞 =
⋂
𝑟∉𝐹

𝐻𝑞,𝑟 .

Clearly 𝐻𝑞 ∈ C since C is a lattice. It now suffices to observe that,

𝛼−1(𝐹) =
⋃
𝑞∈𝐹

𝛼−1(𝑞) ⊆
⋃
𝑞∈𝐹

𝐻𝑞 ⊆ 𝛼−1(𝐹).

Therefore, 𝛼−1(𝐹) = ⋃
𝑞∈𝐹 𝐻𝑞 belongs to C since C is lattice. This concludes the proof. ■

We now consider the case where C is a Boolean algebra. We show that in this case the
preorder ⪯C coincides with the equivalence ∼C for every morphism 𝛼 : 𝐴∗ → 𝑀 .

LEMMA 5.17. Consider a Boolean algebra C and a morphism 𝛼 : 𝐴∗ → 𝑀 into a finite monoid.
For every 𝑠, 𝑡 ∈ 𝑀 , we have 𝑠 ⪯C 𝑡 if and only if 𝑠 ∼C 𝑡.

PROOF . We fix 𝑠, 𝑡 ∈ 𝑀 for the proof. It is immediate by definition that if 𝑠 ∼C 𝑡, then we
have 𝑠 ⪯C 𝑡. We prove the converse implication. Assume that 𝑠 ⪯C 𝑡. For 𝐹 ⊆ 𝑀 such that
𝛼−1(𝐹) ∈ C, we need to show that 𝑠 ∈ 𝐹 ⇔ 𝑡 ∈ 𝐹. The implication 𝑠 ∈ 𝐹 ⇒ 𝑡 ∈ 𝐹 is immediate
from 𝑠 ⪯C 𝑡. For the converse direction, since 𝛼−1(𝐹) ∈ C and C is a Boolean algebra, we have
𝛼−1(𝑀 \ 𝐹) = 𝐴∗ \ 𝛼−1(𝐹) ∈ C. Hence, 𝑠 ⪯C 𝑡 yields 𝑠 ∈ 𝑀 \ 𝐹 ⇒ 𝑡 ∈ 𝑀 \ 𝐹. The contrapositive
exactly says that 𝑡 ∈ 𝐹 ⇒ 𝑠 ∈ 𝐹, which concludes the proof. ■

Finally, we consider the particular case where C is additionally closed under quotients
(i.e., when C is a positive prevariety). We show that in this case ⪯C and ∼C are compatible with
the multiplication of 𝑀 , provided that the morphism 𝛼 : 𝐴∗ → 𝑀 is surjective.

LEMMA 5.18. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism
into a finite monoid. The two following properties hold for every 𝑠1, 𝑡1, 𝑠2, 𝑡2 ∈ 𝑀 :

if 𝑠1 ⪯C 𝑡1 and 𝑠2 ⪯C 𝑡2, then 𝑠1𝑠2 ⪯C 𝑡1𝑡2.
if 𝑠1 ∼C 𝑡1 and 𝑠2 ∼C 𝑡2, then 𝑠1𝑠2 ∼C 𝑡1𝑡2.

PROOF . Recall that by definition, 𝑠 ∼C 𝑡 if and only if 𝑠 ⪯C 𝑡 and 𝑡 ⪯C 𝑠 for every 𝑠, 𝑡 ∈ 𝑀 .
Hence, it suffices to prove the first assertion as the second is an immediate consequence. We
fix 𝑠1, 𝑡1, 𝑠2, 𝑡2 ∈ 𝑀 such that 𝑠1 ⪯C 𝑡1 and 𝑠2 ⪯C 𝑡2. We prove that 𝑠1𝑠2 ⪯C 𝑡1𝑡2. Let 𝐹 ⊆ 𝑀 such
that 𝛼−1(𝐹) ∈ C and 𝑠1𝑠2 ∈ 𝐹. We show that 𝑡1𝑡2 ∈ 𝐹. Let 𝑢, 𝑣 ∈ 𝐴∗ be two words such that
𝛼(𝑢) = 𝑠1 and 𝛼(𝑣) = 𝑡2 (this is where we use the hypothesis that 𝛼 is surjective). Since 𝑠1𝑠2 ∈ 𝐹,
we have 𝑠2 ∈ 𝑠−1

1 𝐹. Moreover, 𝛼−1(𝑠−1
1 𝐹) = 𝑢−1𝛼−1(𝐹) belongs to C by closure under quotients.

Since 𝑠2 ⪯C 𝑡2, we get 𝑡2 ∈ 𝑠−1
1 𝐹 . It follows that 𝑠1𝑡2 ∈ 𝐹, which means that 𝑠1 ∈ 𝐹𝑡−1

2 . Moreover,
𝛼−1(𝐹𝑡−1

2) = 𝛼−1(𝐹)𝑣−1 belongs to C by closure under quotients. Since 𝑠1 ⪯C 𝑡1, we get 𝑡1 ∈ 𝐹𝑡−1
2 .

Altogether, we obtain 𝑡1𝑡2 ∈ 𝐹, which concludes the proof. ■

33 / 74 All about unambiguous polynomial closure

Connection with C-morphisms. When C is a positive prevariety, it follows from Lemma 5.18
that the canonical C-preorder ⪯C of a surjective morphism𝛼 : 𝐴∗ → 𝑀 is a precongruence on the
monoid 𝑀 and the induced equivalence ∼C is a congruence. Consequently, the pair (𝑀/∼C , ≤C)
is an ordered monoid (recall that ≤C denotes the order induced by ⪯C on the quotient set 𝑀/∼C).
Moreover, the map [·]C : 𝑀 → 𝑀/∼C (which associates its ∼C-class to every element in 𝑀) is a
morphism. In the following lemma, we prove that the morphism [·]C ◦ 𝛼 : 𝐴∗ → (𝑀/∼C , ≤C) is
a C-morphism.

LEMMA 5.19. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism
into a finite monoid. The languages recognized by [·]C ◦ 𝛼 are exactly those in C which are
recognized by 𝛼. In particular, [·]C ◦ 𝛼 : 𝐴∗ → (𝑀/∼C , ≤C) is a C-morphism.

PROOF . It is immediate from the definitions that the languages recognized by [·]C ◦ 𝛼 are
exactly those of the form 𝛼−1(𝐹) where 𝐹 ⊆ 𝑀 is an upper set for ⪯C. Hence, Lemma 5.15
implies that these are exactly the languages in C which are recognized by 𝛼, concluding the
proof. ■

6. Algebraic characterizations for polynomial closure

We present an algebraic characterization for the classes built with polynomial closure. The
statements are based on Proposition 2.12: given a class D, rather than directly characterizing
the languages in D, we characterize the D-morphisms. Presenting the results in this form is
more convenient for reusing them later. We first consider the classes Pol(C) when C is a positive
prevariety. We recall their algebraic characterization proved in [26]. Then, we use it to prove
generic characterizations of the classes Pol(C) ∩ co-Pol(C) and Pol(BPol(C)) ∩ co-Pol(BPol(C))
when C is a positive prevariety.

6.1 Polynomial closure

We first present the generic characterization of the Pol(C)-morphisms proved in [26]. The
statement is based on the C-pair relation defined in Section 5. Since classes of the form Pol(C)
are not closed under complement in general, it is important to consider morphisms into finite
ordered monoids here.

THEOREM 6.1 ([26]). Let C be a positive prevariety and let 𝛼 : 𝐴∗ → (𝑀, ≤) be a surjective
morphism into a finite ordered monoid. The following properties are equivalent:

1. 𝛼 is a Pol(C)-morphism.
2. 𝛼 satisfies the following property:

𝑠𝜔+1 ≤ 𝑠𝜔𝑡𝑠𝜔 for every C-pair (𝑠, 𝑡) ∈ 𝑀2. (5)

34 / 74 T. Place, M. Zeitoun

Given a positive prevariety C, it follows from Lemma 5.8 that the C-pairs associated to
a morphism can be computed provided that C-separation is decidable. Hence, Theorem 6.1
implies that in this case, one can decide whether an input morphism 𝛼 : 𝐴∗ → (𝑀, ≤) is a
Pol(C)-morphism. In view of Proposition 2.12, this implies that Pol(C)-membership is decidable.
Indeed, given as input a regular language 𝐿, one can compute its syntactic morphism and since
Pol(C) is a positive prevariety by Theorem 4.3, the proposition yields that 𝐿 ∈ Pol(C) if and only
if this syntactic morphism is a Pol(C)-morphism. Altogether, we obtain the following corollary.

COROLLARY 6.2. Let C be a positive prevariety with decidable separation. Then Pol(C)-
membership is decidable.

REMARK 6.3. It is also known that Pol(C)-covering and Pol(C)-separation are decidable when
C is a finite prevariety [22]. We do not detail this result as we shall not need it.

6.2 Intersected polynomial closure

With the generic characterization of Pol(C) in hand, it is straightforward to deduce another
generic characterization for Pol(C) ∩ co-Pol(C). In particular, it shows that membership for
Pol(C) ∩ co-Pol(C) boils down to separation for C (when C is a positive prevariety). However, it
turns out that this result can be strengthened: for any positive prevariety C, membership for
Pol(C) ∩ co-Pol(C) reduces to membership for C. This is a simple consequence of Theorem 6.1.
It was first observed by Almeida, Bartonová, Klíma and Kunc [2]. Indeed, we have the following
theorem. It is based on the canonical preorder ⪯C associated to a morphism 𝛼 (note that since
classes of the form Pol(C) ∩ co-Pol(C) are prevarieties, it suffices to consider morphisms into
unordered monoids here, see Remark 2.11).

THEOREM 6.4. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism
into a finite monoid. The following properties are equivalent:

1. 𝛼 is a (Pol(C) ∩ co-Pol(C))-morphism.
2. 𝛼 satisfies the following property:

𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for every C-pair (𝑠, 𝑡) ∈ 𝑀2. (6)

3. 𝛼 satisfies the following property:

𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for every 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ⪯C 𝑡. (7)

PROOF . We first prove (1) ⇔ (2). Recall that we view 𝛼 as the morphism 𝛼 : 𝐴∗ → (𝑀,=) into
the ordered monoid (𝑀,=). Therefore, we get from Theorem 6.1 that 𝛼 is a Pol(C)-morphism if

35 / 74 All about unambiguous polynomial closure

and only if (6) is satisfied. It remains to prove that 𝛼 is a (Pol(C) ∩ co-Pol(C))-morphism if and
only if it is a Pol(C)-morphism. The left to right implication is immediate. For the converse one,
assume that 𝛼 is a Pol(C)-morphism and let 𝐹 ⊆ 𝑀 . We show that 𝛼−1(𝐹) ∈ Pol(C) ∩ co-Pol(C).
By hypothesis, we know that 𝛼−1(𝐹) ∈ Pol(C) and 𝐴∗ \ 𝛼−1(𝐹) = 𝛼−1(𝑀 \ 𝐹) ∈ Pol(C). Hence,
𝛼−1(𝐹) ∈ Pol(C) ∩ co-Pol(C), as desired.

The implication (3) ⇒ (2) is immediate from Lemma 5.16, which entails that for every
C-pair (𝑠, 𝑡) ∈ 𝑀2, we have 𝑠 ⪯C 𝑡. It remains to show the implication (2) ⇒ (3). Assuming
that 𝛼 satisfies (6), we show it satisfies (7) as well. Let 𝑠, 𝑡 ∈ 𝑀2 such that 𝑠 ⪯C 𝑡. We show that
𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔. Lemma 5.16 yields 𝑘 ∈ N and 𝑟0, . . . , 𝑟𝑘 ∈ 𝑀 such that 𝑟0 = 𝑠, 𝑟𝑘 = 𝑡 and (𝑟𝑖 , 𝑟𝑖+1) is
a C-pair for all 𝑖 < 𝑘. Using induction, we show that for all 𝑖 ≥ 1, 𝑠𝜔+1 = 𝑠𝜔𝑟𝑖𝑠

𝜔. The case 𝑖 = 𝑘
then yields the desired result, as 𝑡 = 𝑟𝑘. When 𝑖 = 0, it is immediate that 𝑠𝜔+1 = 𝑠𝜔𝑟0𝑠

𝜔 since
𝑟0 = 𝑠. We now assume that 𝑖 ≥ 1. Using induction, we get that 𝑠𝜔+1 = 𝑠𝜔𝑟𝑖−1𝑠

𝜔. Therefore, we
obtain 𝑠𝜔 = (𝑠𝜔+1)𝜔 = (𝑠𝜔𝑟𝑖−1𝑠

𝜔)𝜔. Since (𝑟𝑖−1, 𝑟𝑖) is a C-pair, it follows from Lemma 5.12 that
(𝑠𝜔𝑟𝑖−1𝑠

𝜔, 𝑠𝜔𝑟𝑖𝑠
𝜔) is a C-pair as well. Thus, it follows from (6) that,

(𝑠𝜔𝑟𝑖−1𝑠
𝜔)𝜔+1 = (𝑠𝜔𝑟𝑖−1𝑠

𝜔)𝜔𝑠𝜔𝑟𝑖𝑠𝜔 (𝑠𝜔𝑟𝑖−1𝑠
𝜔)𝜔 .

Since 𝑠𝜔+1 = 𝑠𝜔𝑟𝑖−1𝑠
𝜔 and 𝑠𝜔 = (𝑠𝜔𝑟𝑖−1𝑠

𝜔)𝜔, this yields,

𝑠𝜔+1 = (𝑠𝜔+1)𝜔+1 = 𝑠𝜔𝑠𝜔𝑟𝑖𝑠
𝜔𝑠𝜔 = 𝑠𝜔𝑟𝑖𝑠

𝜔 .

This concludes the proof. ■

Theorem 6.4 has the announced consequence: if C is a positive prevariety with decidable
membership, then (Pol(C) ∩ co-Pol(C))-membership is decidable as well. Indeed, given as input
a regular language 𝐿, we can compute its syntactic morphism 𝛼 : 𝐴∗ → 𝑀 together with the
relation ⪯C on 𝑀 (this is possible by Lemma 5.14 since C-membership is decidable). Moreover,
we get from Proposition 2.12 that 𝐿 ∈ Pol(C) ∩co-Pol(C) if and only if 𝛼 is a (Pol(C) ∩co-Pol(C))-
morphism since Pol(C)∩co-Pol(C) is a prevariety by Corollary 4.7. This property can be decided
using (7) in Theorem 6.4 since we have ⪯C in hand.

COROLLARY 6.5. Let C be a positive prevariety with decidable membership. Then, member-
ship is decidable for Pol(C) ∩ co-Pol(C) as well.

This is surprising: C-membership suffices to handle (Pol(C) ∩ co-Pol(C))-membership
while we are only able to handlePol(C)-membership when C-separation is decidable. Intuitively,
this means that when a regular language 𝐿 belongs to Pol(C) ∩ co-Pol(C), the basic languages
in C which are required to construct 𝐿 are all recognized by its syntactic morphism. On the
other hand, this is not the case for Pol(C).

We turn to the classes Pol(BPol(C)) ∩ co-Pol(BPol(C)). As seen in Theorem 4.9, they are
interesting because they correspond to the levels Δ2(IC) in quantifier alternation hierarchies.

36 / 74 T. Place, M. Zeitoun

We present a specialized characterization of them, which we prove as a corollary of Theorem 6.1
and Theorem 6.4. We start with a preliminary result. A key point is that we do not consider BPol
in the proof: we bypass it using Lemma 4.8, which implies that Pol(BPol(C)) ∩ co-Pol(BPol(C))
and Pol(co-Pol(C)) ∩ co-Pol(co-Pol(C)) are the same class. Consequently, in order to apply
Theorem 6.4, we need a description of the canonical preorder ⪯co-Pol(C) associated to a morphism.
We use Theorem 6.1 to obtain one.

LEMMA 6.6. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism into
a finite monoid. The relation ⪯co-Pol(C) on 𝑀 is the least preorder such that for every 𝑥, 𝑦, 𝑠 ∈ 𝑀
and 𝑒 ∈ 𝐸(𝑀), if (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, then 𝑥𝑒𝑠𝑒 𝑦 ⪯co-Pol(C) 𝑥𝑒 𝑦.

PROOF . One can check from the definition that ⪯co-Pol(C) is the reverse of the canonical preorder
⪯Pol(C) associated to 𝛼. Therefore, it suffices prove that ⪯Pol(C) is the least preorder such that
for every 𝑥, 𝑦, 𝑠 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀), if (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, then 𝑥𝑒 𝑦 ⪯Pol(C) 𝑥𝑒𝑠𝑒 𝑦.

By hypothesis on C, Theorem 4.3 implies that Pol(C) is a positive prevariety of regular
languages. We first prove that for all 𝑥, 𝑦, 𝑠 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀), if (𝑒, 𝑠) ∈ 𝑀2 is a C-pair,
then 𝑥𝑒 𝑦 ⪯Pol(C) 𝑥𝑒𝑠𝑒 𝑦. Let 𝑓 = [𝑒]Pol(C) and 𝑡 = [𝑠]Pol(C) . Since 𝛼 is surjective, Lemma 5.19
yields that the map [·]Pol(C) ◦ 𝛼 : 𝐴∗ → (𝑀/∼Pol(C) , ≤Pol(C)) is a Pol(C)-morphism. Moreover,
since 𝑒 is an idempotent of 𝑀 , it is immediate that 𝑓 is an idempotent of 𝑀/∼Pol(C) . Finally,
since (𝑒, 𝑠) is a C-pair for 𝛼, one can verify that (𝑓 , 𝑡) = ([𝑒]Pol(C) , [𝑠]Pol(C)) is a C-pair for
[·]Pol(C) ◦ 𝛼. Consequently, Theorem 6.1 yields 𝑓 𝜔+1 ≤Pol(C) 𝑓 𝜔𝑡 𝑓 𝜔, i.e., 𝑓 ≤Pol(C) 𝑓 𝑡 𝑓 since
𝑓 is idempotent. This exactly says that [𝑒]Pol(C) ≤Pol(C) [𝑒𝑠𝑒]Pol(C) . Therefore, we also have
[𝑥𝑒 𝑦]Pol(C) ≤Pol(C) [𝑥𝑒𝑠𝑒 𝑦]Pol(C) and we conclude that 𝑥𝑒 𝑦 ⪯Pol(C) 𝑥𝑒𝑠𝑒 𝑦, as desired.

Conversely, let ≼ be the least preorder on 𝑀 such that for every 𝑥, 𝑦, 𝑠 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀),
if (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, then 𝑥𝑒 𝑦 ≼ 𝑥𝑒𝑠𝑒 𝑦. We show that ⪯Pol(C) ⊆ ≼. Let � be equivalence
on 𝑀 induced by ≼ and let ⩽ be the ordering induced by ≼ on the quotient set 𝑀/�. It is
straightforward that ≼ is compatible with multiplication (this is where the elements 𝑥, 𝑦 ∈ 𝑀
in the definition are important). Hence, the pair (𝑀/�, ⩽) is an ordered monoid and the map
𝑠 ↦→ [𝑠]�, sending every element 𝑠 ∈ 𝑀 to its �-class, is a morphism.

We use Theorem 6.1 to prove that [·]� ◦𝛼 : 𝐴∗ → (𝑀/�, ⩽) is a Pol(C)-morphism. We have
to show that given 𝑟, 𝑡 ∈ 𝑀/� such that (𝑟, 𝑡) is a C-pair for [·]� ◦ 𝛼, we have 𝑟𝜔+1 ⩽ 𝑟𝜔𝑡𝑟𝜔. Let
(𝑟, 𝑡) be a C-pair for [·]� ◦𝛼. One can verify that there exists a C-pair (𝑞, 𝑠) ∈ 𝑀2 for 𝛼 such that
[𝑞]� = 𝑟 and [𝑠]� = 𝑡. Let 𝑘 = 𝜔(𝑀). We know from Lemma 5.12 that (𝑞𝑘, 𝑠(𝑞)𝑘−1) is also a C-pair
for 𝛼. Since 𝑞𝑘 ∈ 𝐸(𝑀) by definition of 𝑘, we have 𝑞𝑘 ≼ 𝑞𝑘𝑠𝑞𝑘−1𝑞𝑘 by definition of ≼which yields
𝑞𝜔+1 ≼ 𝑞𝜔𝑠𝑞𝜔 since 𝑘 = 𝜔(𝑀). It follows that [𝑞𝜔+1]� ⩽ [𝑞𝜔𝑠𝑞𝜔]�. Therefore, since [𝑞]� = 𝑟 and
[𝑠]� = 𝑡, we obtain 𝑟𝜔+1 ⩽ 𝑟𝜔𝑡𝑟𝜔, as desired, and we conclude that [·]� ◦ 𝛼 : 𝐴∗ → (𝑀/�, ⩽) is
a Pol(C)-morphism.

We are ready to prove that ⪯Pol(C) ⊆ ≼. Let (𝑞, 𝑟) ∈ 𝑀 such that 𝑞 ⪯Pol(C) 𝑟. We show that
𝑞 ≼ 𝑟. Let 𝐹 = {𝑝 ∈ 𝑀 | 𝑞 ≼ 𝑝}. By definition, 𝛼−1(𝐹) is recognized by the Pol(C)-morphism

37 / 74 All about unambiguous polynomial closure

[·]� ◦ 𝛼 : 𝐴∗ → (𝑀/�, ⩽). Hence, we have 𝛼−1(𝐹) ∈ Pol(C) and since we have 𝑞 ∈ 𝛼−1(𝐹) and
𝑞 ⪯Pol(C) 𝑟, we obtain 𝑟 ∈ 𝐹 by definition of ⪯Pol(C) . This exactly says that 𝑞 ≼ 𝑟 by definition of
𝐹, which concludes the proof. ■

We are ready to present and prove the generic algebraic characterization of the classes
Pol(BPol(C)) ∩ co-Pol(BPol(C)).

THEOREM 6.7. Let C be a positive prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism into
a finite monoid. The two following properties are equivalent:

1. 𝛼 is a (Pol(BPol(C)) ∩ co-Pol(BPol(C)))-morphism.
2. 𝛼 satisfies the following property:

(𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔

for every 𝑠, 𝑡 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀) such that (𝑒, 𝑠) ∈ 𝑀2 is a C-pair.
(8)

PROOF . First, recall that by Lemma 4.8, we have the equality Pol(BPol(C)) = Pol(co-Pol(C)).
Thus, the first assertion in the theorem states that 𝛼 is a (Pol(co-Pol(C)) ∩ co-Pol(co-Pol(C)))-
morphism. As co-Pol(C) is a positive prevariety by Corollary 4.7, it follows from Theorem 6.4
that this property holds if and only if 𝛼 satisfies the following condition:

𝑞𝜔+1 = 𝑞𝜔𝑟𝑞𝜔 for every 𝑞, 𝑟 ∈ 𝑀 such that 𝑞 ⪯co-Pol(C) 𝑟. (9)

Consequently, it suffices to prove that 𝛼 satisfies (9) if and only if it satisfies (8).
We first assume that 𝛼 satisfies (9). We prove that it satisfies (8) as well. Given 𝑠, 𝑡 ∈ 𝑀 and

𝑒 ∈ 𝐸(𝑀) such that (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, we have to prove that (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔.
It is immediate from Lemma 6.6 that 𝑒𝑠𝑒 ⪯co-Pol(C) 𝑒, which yields 𝑒𝑠𝑒𝑡 ⪯co-Pol(C) 𝑒𝑡. Hence, (9)
implies that (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔, as desired.

Conversely, we assume that 𝛼 satisfies (8) and prove that it satisfies (9) as well. Given
𝑞, 𝑟 ∈ 𝑀 such that 𝑞 ⪯co-Pol(C) 𝑟, we have to prove that 𝑞𝜔+1 = 𝑞𝜔𝑟𝑞𝜔. By Lemma 6.6, there exists
𝑞0, . . . , 𝑞𝑛 ∈ 𝑀 such that 𝑞 = 𝑞0, 𝑟 = 𝑞𝑛 and, for every 𝑖 ≤ 𝑛, there exist 𝑥, 𝑦, 𝑠 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀)
such that (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, 𝑞𝑖−1 = 𝑥𝑒𝑠𝑒 𝑦 and 𝑞𝑖 = 𝑥𝑒 𝑦. We use induction on 𝑖 to prove
that 𝑞𝜔+1 = 𝑞𝜔𝑞𝑖𝑞

𝜔 for every 𝑖 ≤ 𝑛. Since 𝑞𝑛 = 𝑟, the case 𝑖 = 𝑛 yields the desired result. When
𝑖 = 0, it is immediate that 𝑞𝜔+1 = 𝑞𝜔𝑞0𝑞

𝜔 since 𝑞0 = 𝑞. Assume now that 𝑖 ≥ 1. By induction
hypothesis, we have 𝑞𝜔+1 = 𝑞𝜔𝑞𝑖−1𝑞

𝜔, which implies that 𝑞𝜔+2 = (𝑞𝜔𝑞𝑖−1𝑞
𝜔)𝜔+2. Moreover, by

definition, we have 𝑥, 𝑦, 𝑠 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀) such that (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, 𝑞𝑖−1 = 𝑥𝑒𝑠𝑒 𝑦 and
𝑞𝑖 = 𝑥𝑒 𝑦. It follows that,

𝑞𝜔+2 = (𝑞𝜔𝑥𝑒𝑠𝑒 𝑦𝑞𝜔)𝜔+2

= 𝑞𝜔𝑥 (𝑒𝑠𝑒 𝑦𝑞𝜔𝑞𝜔𝑥)𝜔+1𝑒𝑠𝑒 𝑦𝑞𝜔 .

38 / 74 T. Place, M. Zeitoun

Since (𝑒, 𝑠) ∈ 𝑀2 is a C-pair, it now follows from (8) applied with 𝑡 = 𝑦𝑞𝜔𝑞𝜔𝑥 that,

𝑞𝜔+2 = 𝑞𝜔𝑥 (𝑒𝑠𝑒 𝑦𝑞𝜔𝑞𝜔𝑥)𝜔𝑒 𝑦𝑞𝜔𝑞𝜔𝑥 (𝑒𝑠𝑒 𝑦𝑞𝜔𝑞𝜔𝑥)𝜔𝑒𝑠𝑒 𝑦𝑞𝜔

= (𝑞𝜔𝑥𝑒𝑠𝑒 𝑦𝑞𝜔)𝜔𝑞𝜔𝑥𝑒 𝑦𝑞𝜔 (𝑞𝜔𝑥𝑒𝑠𝑒 𝑦𝑞𝜔)𝜔+1

= (𝑞𝜔𝑞𝑖−1𝑞
𝜔)𝜔𝑞𝜔𝑞𝑖𝑞𝜔 (𝑞𝜔𝑞𝑖−1𝑞

𝜔)𝜔+1

= 𝑞𝜔𝑞𝑖𝑞
𝜔+1.

Multiplying by 𝑞𝜔−1 on the right yields 𝑞𝜔+1 = 𝑞𝜔𝑞𝑖𝑞
𝜔, which concludes the proof. ■

Theorem 6.7 implies that membership is decidable for Pol(BPol(C)) ∩ co-Pol(BPol(C))
when C is a positive prevariety with decidable separation. The argument is based on Proposi-
tion 2.12. Note that we already had this result. Indeed, since Pol(BPol(C)) ∩ co-Pol(BPol(C)) is
exactly Pol(co-Pol(C)) ∩ co-Pol(co-Pol(C)) by Lemma 4.8, it also follows from Corollary 6.2 and
Corollary 6.5 (clearly, membership for co-Pol(C) reduces to the same problem for Pol(C)). Yet,
we shall need Theorem 6.7 when proving the logical characterizations of UPol in Section 10.

COROLLARY 6.8. Let C be a positive prevariety with decidable separation. Then, membership
is decidable for Pol(BPol(C)) ∩ co-Pol(BPol(C)).

7. Algebraiccharacterizations forunambiguouspolynomialclosure

We present the generic algebraic characterization of unambiguous polynomial closure. It
holds for every input prevariety C and implies that UPol(C)-membership reduces to the same
problem for C. We also use this characterization to complete the proofs of Theorem 4.21 and
Theorem 4.29: when C is a prevariety, we have UPol(C) = APol(C) = Pol(C) ∩ co-Pol(C).

REMARK 7.1. There exists an independent characterization by Pin [15]. Yet, it involves algebraic
notions that we have not presented and does not yield the reduction to C-membership.

Again, the characterization is based on the canonical equivalence ∼C associated to mor-
phisms into finite monoids (see Section 5 for the definition).

THEOREM 7.2. Let C be a prevariety and let 𝛼 : 𝐴∗ → 𝑀 be a surjective morphism into a finite
monoid. The following properties are equivalent:

1. 𝛼 is a UPol(C)-morphism.
2. 𝛼 is a APol(C)-morphism.
3. 𝛼 is a WAPol(C)-morphism.
4. 𝛼 satisfies the following property:

𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for every C-pair (𝑠, 𝑡) ∈ 𝑀2. (6)

5. 𝛼 satisfies the following property:

𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔 for every 𝑠, 𝑡 ∈ 𝑀 such that 𝑠 ∼C 𝑡. (10)

39 / 74 All about unambiguous polynomial closure

Note that by Theorem 6.4, Equation (6) characterizes (Pol(C) ∩ co-Pol(C))-morphisms.
Before proving Theorem 7.2, let us discuss its consequences. Importantly, we cannot directly
apply it to reduce UPol(C)-membership to C-membership. Indeed, given an arbitrary class
D, the connection between D-membership and D-morphisms is based on Proposition 2.12,
which requires D to be a (positive) prevariety. Hence, we need Theorem 4.24: UPol(C) is a
prevariety when C is one. Yet, we cannot use Theorem 4.24 at this point, since we obtained
it as the corollary of a result that we have not proved yet: Theorem 4.21 (which states that
UPol(C) = Pol(C) ∩ co-Pol(C) when C is a prevariety). Therefore, we first use Theorem 7.2 to
provide a proof of Theorem 4.21. In fact, we present a more general statement involving also
WAPol(C) and APol(C). It combines Theorem 4.21 and Theorem 4.29.

COROLLARY 7.3. For any prevariety C, we have the following equalities:

WAPol(C) = APol(C) = UPol(C) = Pol(C) ∩ co-Pol(C).

PROOF . The inclusions WAPol(C) ⊆ APol(C) ⊆ UPol(C) are immediate from Lemma 4.14:
left/right deterministic marked concatenations are unambiguous. Hence, we need to prove
that UPol(C) ⊆ WAPol(C), UPol(C) ⊆ Pol(C) ∩ co-Pol(C) and Pol(C) ∩ co-Pol(C) ⊆ UPol(C).
We start with the latter. Consider a language 𝐿 ∈ Pol(C) ∩ co-Pol(C) and let 𝛼 : 𝐴∗ → 𝑀

be the syntactic morphism of 𝐿. Since Pol(C) ∩ co-Pol(C) is a prevariety by Corollary 4.7, it
follows from Proposition 2.12 that 𝛼 is a (Pol(C) ∩ co-Pol(C))-morphism. It then follows from
Theorem 6.4 that 𝛼 satisfies (6). Consequently, Theorem 7.2 yields that 𝛼 is a UPol(C)-morphism,
and 𝐿 ∈ UPol(C) since it is recognized by its syntactic morphism.

We turn to the inclusions UPol(C) ⊆ WAPol(C) and UPol(C) ⊆ Pol(C) ∩ co-Pol(C), which
we treat simultaneously. Let 𝐿 ∈ UPol(C) and 𝛼 : 𝐴∗ → 𝑀 be the syntactic morphism of 𝐿. We
prove that 𝛼 satisfies (6). It will follow from Theorem 6.4 that 𝛼 is a Pol(C)∩co-Pol(C)-morphism
and from Theorem 7.2 that it is a WAPol(C)-morphism. Therefore, since 𝐿 is recognized by its
syntactic morphism, we get 𝐿 ∈ Pol(C) ∩ co-Pol(C) and 𝐿 ∈ WAPol(C).

In order to prove (6), let (𝑠, 𝑡) ∈ 𝑀2 be a C-pair for 𝛼. We have to show that 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔.
Since 𝐿 ∈ UPol(C), Proposition 4.26 yields a C-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that for all
words 𝑢, 𝑣, 𝑣′, 𝑥, 𝑦 ∈ 𝐴∗ satisfying 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′), we have 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 ∈ 𝐿 ⇔ 𝑥𝑢𝑘𝑣′𝑢𝑘 𝑦 ∈ 𝐿.
Since (𝑠, 𝑡) is a C-pair and 𝜂 is a C-morphism, it follows from Lemma 5.11 that there exist
𝑢, 𝑣 ∈ 𝐴∗ such that 𝜂(𝑢) = 𝜂(𝑣), 𝛼(𝑢) = 𝑠 and 𝛼(𝑣) = 𝑡. By definition of 𝜂, it follows that for
every 𝑥, 𝑦 ∈ 𝐴∗, we have 𝑥𝑢𝑘𝑣𝑢𝑘 𝑦 ∈ 𝐿⇔ 𝑥𝑢𝑘𝑢𝑢𝑘 𝑦 ∈ 𝐿. This exactly says that 𝑢𝑘𝑣𝑢𝑘 and 𝑢𝑘𝑢𝑢𝑘

are equivalent for the syntactic congruence of 𝐿. Hence, they have the same image under 𝛼 by
definition of the syntactic morphism, and we get 𝑠𝑘𝑡𝑠𝑘 = 𝑠𝑘𝑠𝑠𝑘. It now suffices to multiply by
the appropriate number of copies of 𝑠 on the left and on the right to get 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔, which
completes the proof. ■

40 / 74 T. Place, M. Zeitoun

REMARK 7.4. There is a subtle difference between Theorem 7.2 above and Theorem 6.4 (which
applies to Pol(C) ∩ co-Pol(C)), although the algebraic characterizations are the same: the latter
holds for every positive prevariety C, while the former requires C to be a prevariety. This is
important, as Corollary 7.3 fails when C is only a positive prevariety (see Remark 4.22).

With Corollary 7.3 in hand, we may now use Theorem 4.24: if C is a prevariety, then so is
UPol(C). Consequently, in this case, it follows from Proposition 2.12 that deciding whether an
input regular language 𝐿 belongs to UPol(C) amounts to testing whether its syntactic morphism
is a UPol(C)-morphism. The syntactic morphism of a regular language can be computed.
Moreover, Theorem 7.2 states that an arbitrary surjective morphism is a UPol(C)-morphism if
and only if it satisfies (10). This can be checked by testing every possible combination provided
that we have the equivalence ∼C in hand. Finally, by Lemma 5.14, ∼C can be computed as soon
as C-membership is decidable. Altogether, we obtain that UPol preserves the decidability of
membership when it is applied to a prevariety.

COROLLARY 7.5. Let C be a prevariety. Assume that C has decidable membership. Then,
UPol(C)-membership is decidable as well.

It remains to establish Theorem 7.2. We devote the rest of this section to this proof.

PROOF OF THEOREM 7.2 . We fix a prevariety C and a surjective morphism 𝛼 : 𝐴∗ → 𝑀 .
We prove (3) ⇒ (2) ⇒ (1) ⇒ (4) ⇒ (5) ⇒ (3). The implications (3) ⇒ (2) and (2) ⇒ (1)
are clear: we have the inclusions WAPol(C) ⊆ APol(C) ⊆ UPol(C) since left/right deterministic
marked concatenations are necessarily unambiguous by Lemma 4.14.

We show (1) ⇒ (4): let 𝛼 be a UPol(C)-morphism, we prove that it satisfies (6). Given a C-
pair (𝑠, 𝑡) ∈ 𝑀2, we show that 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔. Let 𝑞 = 𝑠𝜔. By hypothesis, we have𝛼−1(𝑞) ∈ UPol(C).
Hence, Proposition 4.26 yields a C-morphism 𝜂 : 𝐴∗ → 𝑁 and 𝑘 ∈ N such that for every
𝑢, 𝑣, 𝑣′ ∈ 𝐴∗, if 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑣′), then 𝑢𝑘𝑣𝑢𝑘 ∈ 𝛼−1(𝑞) ⇔ 𝑢𝑘𝑣′𝑢𝑘 ∈ 𝛼−1(𝑞). Let 𝑝 = 𝜔(𝑀).
Since (𝑠, 𝑡) ∈ 𝑀2 is a C-pair, it follows from Lemma 5.12 that (𝑠𝑝, 𝑡𝑠𝑝−1) is also a C-pair. Hence,
since 𝜂 is a C-morphism, Lemma 5.11 yields 𝑢, 𝑣 ∈ 𝐴∗ such that 𝜂(𝑢) = 𝜂(𝑣), 𝛼(𝑢) = 𝑠𝑝 and
𝛼(𝑣) = 𝑡𝑠𝑝−1. Clearly, 𝛼(𝑢𝑘𝑢𝑢𝑘) = 𝑞𝑘𝑝𝑞𝑝𝑞𝑘𝑝 = 𝑞 = 𝑠𝜔 since 𝑝 = 𝜔(𝑀). Hence 𝑢𝑘𝑢𝑢𝑘 ∈ 𝛼−1(𝑞)
and since 𝜂(𝑢) = 𝜂(𝑣), the definition of 𝜂 yields 𝑢𝑘𝑣𝑢𝑘 ∈ 𝛼−1(𝑞). We get 𝛼(𝑢𝑘𝑣𝑢𝑘) = 𝑞 = 𝑠𝜔. By
definition of 𝑢 and 𝑣, this exactly says that 𝑠𝜔𝑡𝑠2𝜔−1 = 𝑠𝜔. It now suffices to multiply by 𝑠 on the
right to get 𝑠𝜔+1 = 𝑠𝜔𝑡𝑠𝜔, as desired.

We now prove (4) ⇒ (5). Assume that 𝛼 is surjective and satisfies (6), we need to prove
that it satisfies (10) as well. Since C is a prevariety, we know that ∼C = ⪯C by Lemma 5.17.
Hence, the property is immediate from the implication (2) ⇒ (3) in Theorem 6.4.

We proved that (3) ⇒ (2) ⇒ (1) ⇒ (4) ⇒ (5). Therefore, it remains to prove (5) ⇒ (3).
Assuming that 𝛼 satisfies (10), we show that it is a WAPol(C)-morphism, i.e., that every language

41 / 74 All about unambiguous polynomial closure

recognized by 𝛼 belongs to WAPol(C). Let 𝑁 = 𝑀/∼C. Recall that 𝑁 is a monoid since ∼C

is a congruence by Lemma 5.18. We define 𝜂 as the map 𝜂 = [·]C ◦ 𝛼 : 𝐴∗ → 𝑁 . We know
from Lemma 5.19 that 𝜂 is a C-morphism. Given a finite set of languages K and 𝑠, 𝑡 ∈ 𝑀 , we
say that K is (𝑠, 𝑡)-safe if for all 𝐾 ∈ K and 𝑤,𝑤′ ∈ 𝐾 , we have 𝑠𝛼(𝑤)𝑡 = 𝑠𝛼(𝑤′)𝑡. Finally, a
WAPol(C)-partition of a language 𝐻 is a finite partition of 𝐻 into languages of WAPol(C). The
implication (5) ⇒ (3) follows from the following lemma.

LEMMA 7.6. For any 𝑥 ∈ 𝑁 and 𝑠, 𝑡 ∈ 𝑀 , there exists an (𝑠, 𝑡)-safe WAPol(C)-partition
of 𝜂−1(𝑥).

We first apply Lemma 7.6 to complete the main argument. For every 𝑥 ∈ 𝑁 , Lemma 7.6
yields a WAPol(C)-partition K𝑥 of 𝜂−1(𝑥) which is (1𝑀 , 1𝑀)-safe. Hence, K =

⋃
𝑥∈𝑁 K𝑥 is a

WAPol(C)-partition of 𝐴∗ which is (1𝑀 , 1𝑀)-safe. The latter property implies that for every
𝐾 ∈ K, we have 𝑠 ∈ 𝑀 such that 𝐾 ⊆ 𝛼−1(𝑠). Since K is a partition of 𝐴∗, it follows that every
language recognized by 𝛼 is a disjoint finite union of languages in K and therefore belongs to
WAPol(C), by closure under disjoint union. This concludes the main argument.

It remains to prove Lemma 7.6. Let 𝑠, 𝑡 ∈ 𝑀 and 𝑥 ∈ 𝑁 . We build an (𝑠, 𝑡)-safe WAPol(C)-
partition K of 𝜂−1(𝑥). The proof proceeds by induction on the following three parameters, which
depend on Green relations on 𝑀 and 𝑁 , listed by order of importance:

1. The rank of (𝑠, 𝑥, 𝑡): the number of elements 𝑦 ∈ 𝑁 such that [𝑠]C𝑥 [𝑡]C ⩽J 𝑦.
2. The R-index of 𝑠: the number of elements 𝑟 ∈ 𝑀 such that 𝑟 ⩽R 𝑠

3. The L -index of 𝑡: the number of elements 𝑟 ∈ 𝑀 such that 𝑟 ⩽L 𝑡.

There are three cases, depending on whether [𝑠]C𝑥 [𝑡]C J 𝑥 and on two properties of 𝑠, 𝑡 and 𝑥:
We say that 𝑠 is right 𝑥-stable if there exists 𝑞 ∈ 𝑀 such that [𝑞]C R 𝑥 and 𝑠𝑞 R 𝑠.
We say that 𝑡 is left 𝑥-stable if there exists 𝑟 ∈ 𝑀 such that [𝑟]C L 𝑥 and 𝑟𝑡 L 𝑡.

In the base case, we assume that all three properties hold. Otherwise, we distinguish two
inductive cases depending on whether [𝑠]C𝑥 [𝑡]C J 𝑥 holds or not.

Base case: [𝑠]C𝑥[𝑡]C J 𝑥, 𝑠 is right 𝑥-stable and 𝑡 is left 𝑥-stable. In this case, let
K = {𝜂−1(𝑥)}, which is clearly aWAPol(C)-partition of 𝜂−1(𝑥): this is even a C-partition of 𝜂−1(𝑥)
since 𝜂 is a C-morphism. It remains to show that K is (𝑠, 𝑡)-safe. Given 𝑤,𝑤′ ∈ 𝜂−1(𝑥), show that
𝑠𝛼(𝑤)𝑡 = 𝑠𝛼(𝑤′)𝑡. We let 𝑝 = 𝛼(𝑤) and 𝑝′ = 𝛼(𝑤′). By hypothesis, we have [𝑝]C = [𝑝′]C = 𝑥

and we have to show that 𝑠𝑝𝑡 = 𝑠𝑝′𝑡. We have [𝑠]C𝑥 [𝑡]C J 𝑥, which implies that [𝑠]C𝑥 J 𝑥

and 𝑥 [𝑡]C J 𝑥. Hence, since [𝑠]C𝑥 ⩽L 𝑥 and 𝑥 [𝑡]C ⩽R 𝑥, Lemma 2.1 yields [𝑠]C𝑥 L 𝑥 and
𝑥 [𝑡]C R 𝑥. We use this property to prove the following fact.

LEMMA 7.7. We have 𝑠𝑝𝑡 R 𝑠 and 𝑠𝑝𝑡 L 𝑡.

PROOF . We prove that 𝑠𝑝𝑡 R 𝑠 using the hypotheses that 𝑥 [𝑡]C R 𝑥 and that 𝑠 is right 𝑥-stable
(that 𝑠𝑝𝑡 L 𝑡 is proved symmetrically using the hypotheses that [𝑠]C𝑥 L 𝑥 and that 𝑡 is left

42 / 74 T. Place, M. Zeitoun

𝑥-stable). Since 𝑠 is right 𝑥-stable, there exists 𝑞 ∈ 𝑀 such that [𝑞]C R 𝑥 and 𝑠𝑞 R 𝑠. Since
𝑥 = [𝑝]C and 𝑥 [𝑡]C R 𝑥, we get [𝑝𝑡]C R [𝑞]C . We get 𝑟 ∈ 𝑀 such that [𝑞]C = [𝑝𝑡𝑟]C . Moreover,
since 𝑠𝑞 R 𝑠, we have 𝑞′ ∈ 𝑀 such that 𝑠 = 𝑠𝑞𝑞′. Consequently, we get 𝑠 = 𝑠(𝑞𝑞′)𝜔 = 𝑠(𝑞𝑞′)𝜔+1.
We have [𝑞𝑞′]C = [𝑝𝑡𝑟𝑞′]C which implies that 𝑞𝑞′ ∼C 𝑝𝑡𝑟𝑞′. Therefore, Equation (10) yields
(𝑞𝑞′)𝜔+1 = (𝑞𝑞′)𝜔𝑝𝑡𝑟𝑞′(𝑞𝑞′)𝜔. Finally, we may multiply by 𝑠 on the left to obtain,

𝑠 = 𝑠(𝑞𝑞′)𝜔+1 = 𝑠(𝑞𝑞′)𝜔𝑝𝑡𝑟𝑞′(𝑞𝑞′)𝜔 = 𝑠𝑝𝑡𝑟𝑞′(𝑞𝑞′)𝜔 .

This implies that 𝑠 ⩽R 𝑠𝑝𝑡. Since it is clear that 𝑠𝑝𝑡 ⩽R 𝑠, we get 𝑠𝑝𝑡 R 𝑠, as desired. ■

Lemma 7.7 yields 𝑞1, 𝑞2 ∈ 𝑀 such that 𝑡 = 𝑞1𝑠𝑝𝑡 and 𝑠 = 𝑠𝑝𝑡𝑞2. Let 𝑟 = 𝑞1𝑠𝑝𝑡𝑞2. We may
combine the above equalities to obtain 𝑠 = 𝑠𝑝𝑟 (indeed, 𝑟 = 𝑡𝑞2, whence 𝑠𝑝𝑟 = 𝑠𝑝𝑡𝑞2 = 𝑠).
Therefore, 𝑠 = 𝑠(𝑝𝑟)𝜔. Similarly, 𝑡 = 𝑟𝑝𝑡 = (𝑟𝑝)𝜔+1𝑡. By hypothesis, [𝑝]C = [𝑝′]C = 𝑥. Hence, we
obtain [𝑝𝑟]C = [𝑝′𝑟]C , so that 𝑝𝑟 ∼C 𝑝′𝑟. Therefore, Equation (10) applies and yields,

(𝑝𝑟)2𝜔+1 = (𝑝𝑟)𝜔+1 = (𝑝𝑟)𝜔𝑝′𝑟(𝑝𝑟)𝜔 .

We may now multiply by 𝑠 on the left and by 𝑝𝑡 on the right to obtain,

𝑠(𝑝𝑟)𝜔𝑝(𝑟𝑝)𝜔+1𝑡 = 𝑠(𝑝𝑟)𝜔𝑝′(𝑟𝑝)𝜔+1𝑡.

Since we already established that 𝑠 = 𝑠(𝑝𝑟)𝜔 and 𝑡 = (𝑟𝑝)𝜔+1𝑡, we get as desired that 𝑠𝑝𝑟 = 𝑠𝑝′𝑡,
which concludes the proof for this base case.

First inductive case: [𝑠]C𝑥[𝑡]C <J 𝑥. In this case, it is immediate that the rank of (1𝑀 , 𝑥, 1𝑀)
is strictly smaller than the one of (𝑠, 𝑥, 𝑡). Hence, induction on our first and main parameter
in Lemma 7.6 yields a WAPol(C)-partition K of 𝜂−1(𝑥) which is (1𝑀 , 1𝑀)-safe (and therefore
(𝑠, 𝑡)-safe as well). This concludes the first inductive case.

Second inductive case: [𝑠]C𝑥[𝑡]C J 𝑥 and either 𝑠 is not right 𝑥-stable or 𝑡 is not
left 𝑥-stable. This involves two symmetrical arguments depending on which property holds.
We treat the case where 𝑡 is not left 𝑥-stable using induction on the first and third parameter
(the second one is used in the symmetrical case). Let 𝑇 ⊆ 𝑁 × 𝐴 × 𝑁 be the set of all triples
(𝑦, 𝑎, 𝑧) ∈ 𝑁 × 𝐴 × 𝑁 such that 𝑥 L 𝜂(𝑎)𝑧 <L 𝑧 and 𝑦𝜂(𝑎)𝑧 = 𝑥. For each triple (𝑦, 𝑎, 𝑧) ∈ 𝑇 ,
we use induction to build auxiliary WAPol(C)-partitions of 𝜂−1(𝑦) and 𝜂−1(𝑧), which we then
combine to construct the desired (𝑠, 𝑡)-safe WAPol(C)-partition K of 𝜂−1(𝑥). We fix (𝑦, 𝑎, 𝑧) ∈ 𝑇
for the definition of these auxiliary WAPol(C)-partitions.

By definition of 𝑇 , we have 𝑥 <L 𝑧. By Lemma 2.1, this implies 𝑥 <J 𝑧, so that we also
have [𝑠]C𝑥 [𝑡]C <J 𝑧. Hence, the rank of (1𝑀 , 𝑧, 1𝑀) is strictly smaller than the one of (𝑠, 𝑥, 𝑡).
Since this is our most important induction parameter, we obtain a WAPol(C)-partition V𝑧 of
𝜂−1(𝑧) which is (1𝑀 , 1𝑀)-safe.

43 / 74 All about unambiguous polynomial closure

We now use V𝑧 to build several WAPol(C)-partitions of 𝜂−1(𝑦), one for each language
𝑉 ∈ V𝑧. We fix a language𝑉 ∈ V𝑧 for the definition. Since V is (1𝑀 , 1𝑀)-safe, there exists 𝑟𝑉 ∈ 𝑀
such that 𝛼(𝑣) = 𝑟𝑉 for every 𝑣 ∈ 𝑉 . Moreover, [𝑟𝑉]C = 𝜂(𝑣) = 𝑧 since 𝑣 ∈ 𝜂−1(𝑧). We show
that (𝑠, 𝑦, 𝛼(𝑎)𝑟𝑉 𝑡) has a strictly smaller induction parameter than (𝑠, 𝑥, 𝑡). Since (𝑦, 𝑎, 𝑧) ∈ 𝑇 ,
we have 𝑥 L 𝜂(𝑎)𝑧, which means that 𝑥 L [𝛼(𝑎)𝑟𝑉]C. Since 𝑡 is not left 𝑥-stable, it follows
that 𝛼(𝑎)𝑟𝑉 𝑡 <L 𝑡: the L -index of 𝛼(𝑎)𝑟𝑉 𝑡 is strictly smaller than the one of 𝑡, meaning that
our third induction parameter has decreased. Moreover, since 𝑦𝜂(𝑎)𝑧 = 𝑥, we also have
[𝑠]C 𝑦[𝛼(𝑎)𝑟𝑉 𝑡]C = [𝑠]C𝑥 [𝑡]C which means that (𝑠, 𝑥, 𝑡) and (𝑠, 𝑦, 𝛼(𝑎)𝑟𝑉 𝑡) have the same rank:
our first induction parameter is unchanged. Finally, the second induction parameter remains
unchanged as well, since it only depends on 𝑠. Hence, induction on our third parameter yields
a WAPol(C)-partition U(𝑦,𝑎,𝑧),𝑉 of 𝜂−1(𝑦) which is (𝑠, 𝛼(𝑎)𝑟𝑉 𝑡)-safe.

We are ready to build the desired (𝑠, 𝑡)-safe WAPol(C)-partition K of 𝜂−1(𝑥). We define,

K =
⋃

(𝑦,𝑎,𝑧)∈𝑇
{𝑈𝑎𝑉 | 𝑉 ∈ V𝑧 and𝑈 ∈ U(𝑦,𝑎,𝑧),𝑉 }.

It remains to prove that K satisfies the desired properties. First, we show that K is indeed a
WAPol(C)-partition of 𝜂−1(𝑥). We start by proving that for every 𝑤 ∈ 𝜂−1(𝑥), there exists a
unique 𝐾 ∈ K such that 𝑤 ∈ 𝐾 . Let 𝑣′ be the least suffix of 𝑤 such that 𝜂(𝑣′) L 𝑥 (𝑢′ exists
since 𝑤 is such a suffix). Observe that 𝑣′ ≠ 𝜀. Indeed, otherwise [1𝑀]C L 𝑥 and 1𝑀𝑡 = 𝑡 L 𝑡,
contradicting our hypothesis that 𝑡 is not left 𝑥-stable. Thus, 𝑣′ = 𝑎𝑣 for some 𝑣 ∈ 𝐴∗ and 𝑎 ∈ 𝐴.
Finally, we let 𝑢 ∈ 𝐴∗ be such that 𝑤 = 𝑢𝑎𝑣. Let then 𝑦 = 𝜂(𝑢) and 𝑧 = 𝜂(𝑣). By definition
of 𝑣′ = 𝑎𝑣, we know that 𝑥 L 𝜂(𝑎)𝑧 <L 𝑧 and 𝑦𝜂(𝑎)𝑧 = 𝑥. Hence, (𝑦, 𝑎, 𝑧) ∈ 𝑇 . Moreover,
there exists 𝑉 ∈ V𝑧 such that 𝑣 ∈ 𝑉 and 𝑈 ∈ U(𝑦,𝑎,𝑧),𝑉 such that 𝑢 ∈ 𝑈 . Thus 𝑤 = 𝑢𝑎𝑣 ∈ 𝑈𝑎𝑉
and𝑈𝑎𝑉 ∈ K. Moreover, one can verify from the definition that this is the only language in K
containing 𝑤.

We now prove that for every 𝐾 ∈ K, we have 𝐾 ⊆ 𝜂−1(𝑥) and 𝐾 ∈ WAPol(C). By definition,
𝐾 = 𝑈𝑎𝑉 with 𝑉 ∈ V𝑦 and 𝑈 ∈ U(𝑦,𝑎,𝑧),𝑉 for some triple (𝑦, 𝑎, 𝑧) ∈ 𝑇 . Moreover, by definition
of V𝑦 and U(𝑦,𝑎,𝑧),𝑉 , we have 𝑈 ⊆ 𝜂−1(𝑦) and 𝑉 ⊆ 𝜂−1(𝑧). Thus, since we have 𝑦𝜂(𝑎)𝑧 = 𝑥 by
definition of 𝑇 , we get 𝐾 = 𝑈𝑎𝑉 ⊆ 𝜂−1(𝑥). Moreover, 𝑈,𝑉 ∈ WAPol(C). Therefore, it suffices
to show that 𝑈𝑎𝑉 is right C-deterministic to prove that 𝑈𝑎𝑉 ∈ WAPol(C) (note that left C-
deterministic marked concatenations are used in the symmetrical case). By definition, we have
𝑉 ⊆ 𝜂−1(𝑦) and𝑈 ⊆ 𝜂−1(𝑧). Hence, since 𝜂−1(𝑦), 𝜂−1(𝑧) ∈ C since 𝜂 is a C-morphism, it suffices
to prove that 𝜂−1(𝑦)𝑎𝜂−1(𝑧) is right deterministic. This is immediate from Lemma 4.15: since
(𝑦, 𝑎, 𝑧) ∈ 𝑇 we have 𝜂(𝑎)𝑧 <L 𝑧. Altogether, we conclude thatK is indeed aWAPol(C)-partition
of 𝜂−1(𝑥).

Finally, we show that K is (𝑠, 𝑡)-safe. Let 𝐾 ∈ K and 𝑤,𝑤′ ∈ 𝐾 . We have to prove that
𝑠𝛼(𝑤)𝑡 = 𝑠𝛼(𝑤′)𝑡. By definition 𝐾 = 𝑈𝑎𝑉 with 𝑉 ∈ V𝑧 and 𝑈 ∈ U(𝑦,𝑎,𝑧),𝑉 for some triple
(𝑦, 𝑎, 𝑧) ∈ 𝑇 . Thus, we get 𝑢, 𝑢′ ∈ 𝑈 and 𝑣, 𝑣′ ∈ 𝑉 such that 𝑤 = 𝑢𝑎𝑣 and 𝑤′ = 𝑢′𝑎𝑣′. By

44 / 74 T. Place, M. Zeitoun

definition 𝑣, 𝑣′ ∈ V imply that 𝛼(𝑣) = 𝛼(𝑣′) = 𝑟𝑉 . Therefore, we obtain 𝑠𝛼(𝑤)𝑡 = 𝑠𝛼(𝑢)𝛼(𝑎)𝑟𝑉 𝑡
and 𝑠𝛼(𝑤′)𝑡 = 𝑠𝛼(𝑢′)𝛼(𝑎)𝑟𝑉 𝑡. Finally, recall that U𝑉 is (𝑠, 𝛼(𝑎)𝑟𝑉 𝑡)-safe. Consequently, we get
𝑠𝛼(𝑤)𝑡 = 𝑠𝛼(𝑢)𝛼(𝑎)𝑟𝑉 𝑡 = 𝑠𝛼(𝑢′)𝛼(𝑎)𝑟𝑉 𝑡 = 𝑠𝛼(𝑤′)𝑡, which concludes the proof. ■

8. Covering and Separation for unambiguous polynomial closure

In this section, we look at separation and covering for classes of the form UPol(C). We prove
that both problems are decidable for UPol(C) when the input class C is a finite prevariety.
The algorithm is based on a generic framework introduced in [32] to handle separation and
covering. We first recall this framework and then use it to present the algorithm.

8.1 Semirings

A semiring is a tuple (𝑅, +, ·) where 𝑅 is a set and “+” and “·” are two binary operations called
addition and multiplication, which satisfy the following axioms:

(𝑅, +) is a commutative monoid, whose identity element is denoted by 0𝑅.
(𝑅, ·) is a monoid, whose identity element is denoted by 1𝑅.
Multiplication distributes over addition: for 𝑟, 𝑠, 𝑡 ∈ 𝑅, 𝑟 · (𝑠 + 𝑡) = (𝑟 · 𝑠) + (𝑟 · 𝑡) and
(𝑟 + 𝑠) · 𝑡 = (𝑟 · 𝑡) + (𝑠 · 𝑡).
0𝑅 is a zero for (𝑅, ·): 0𝑅 · 𝑟 = 𝑟 · 0𝑅 = 0𝑅 for every 𝑟 ∈ 𝑅.

A semiring 𝑅 is idempotent when 𝑟 + 𝑟 = 𝑟 for every 𝑟 ∈ 𝑅, i.e., when the additive monoid (𝑅, +)
is idempotent (there is no additional constraint on the multiplicative monoid (𝑅, ·)). Given an
idempotent semiring (𝑅, +, ·), one can define a canonical ordering ≤ over 𝑅:

For all 𝑟, 𝑠 ∈ 𝑅, 𝑟 ≤ 𝑠 when 𝑟 + 𝑠 = 𝑠.

It is easy to check that ≤ is a partial order which is compatible with both addition and multipli-
cation. Moreover, every morphism between two such commutative and idempotent monoids is
increasing for this ordering.

EXAMPLE 8.1. A key example of idempotent semiring is the set of all languages 2𝐴∗ . Union is
the addition and language concatenation is the multiplication (with {𝜀} as the identity element).
Observe that in this case, the canonical ordering is inclusion. More generally, if 𝑀 is a monoid,
then 2𝑀 is an idempotent semiring whose addition is union, and whose multiplication is obtained
by pointwise lifting that of 𝑀 to subsets.

When dealing with subsets of an idempotent semiring 𝑅, we shall often apply a downset
operation. Given 𝑆 ⊆ 𝑅, we write:

↓𝑅𝑆 = {𝑟 ∈ 𝑅 | 𝑟 ≤ 𝑠 for some 𝑠 ∈ 𝑆}.

45 / 74 All about unambiguous polynomial closure

We extend this notation to Cartesian products of arbitrary sets with 𝑅. Given some set 𝑋 and
𝑆 ⊆ 𝑋 × 𝑅, we write,

↓𝑅𝑆 = {(𝑥, 𝑟) ∈ 𝑋 × 𝑅 | ∃𝑠 ∈ 𝑅 such that 𝑟 ≤ 𝑠 and (𝑥, 𝑠) ∈ 𝑆}.

Multiplicative rating maps We define a multiplicative rating map as a semiring morphism
𝜌 : (2𝐴∗

,∪, ·) → (𝑅, +, ·) where (𝑅, +, ·) is a finite idempotent semiring, called the rating set of 𝜌.
That is, 𝜌 is a map from 2𝐴∗ to 𝑅 satisfying the following properties:

1. 𝜌(∅) = 0𝑅.
2. For every 𝐾1, 𝐾2 ⊆ 𝐴∗, we have 𝜌(𝐾1 ∪ 𝐾2) = 𝜌(𝐾1) + 𝜌(𝐾2).
3. 𝜌({𝜀}) = 1𝑅.
4. For every 𝐾1, 𝐾2 ⊆ 𝐴∗, we have 𝜌(𝐾1𝐾2) = 𝜌(𝐾1) · 𝜌(𝐾2).

For the sake of improved readability, when applying a multiplicative rating map 𝜌 to a
singleton set {𝑤}, we shall write 𝜌(𝑤) for 𝜌({𝑤}). Additionally, we write 𝜌∗ : 𝐴∗ → 𝑅 for the
restriction of 𝜌 to 𝐴∗: for every 𝑤 ∈ 𝐴∗, we have 𝜌∗(𝑤) = 𝜌(𝑤) (this notation is useful when
referring to the language 𝜌−1

∗ (𝑟) ⊆ 𝐴∗, which consists of all words 𝑤 ∈ 𝐴∗ such that 𝜌(𝑤) = 𝑟).
Note that 𝜌∗ is a morphism into the finite monoid (𝑅, ·).

REMARK 8.2. As the adjective “multiplicative” suggests, there exists a more general notion of
“rating map” introduced in [32]. These are morphisms of idempotent and commutative monoids
(i.e., it is not required that 𝑅 be equipped with a multiplication). However, we shall not use this
notion in the paper.

Most of the theory makes sense for arbitrary multiplicative rating maps. Yet, in the paper,
we work with special multiplicative rating maps satisfying an additional property.

Finitary and full rating maps. We say that a multiplicative rating map 𝜌 : 2𝐴∗ → 𝑅 is finitary
when, for every language 𝐾 ⊆ 𝐴∗, there exist finitely many words 𝑤1, . . . , 𝑤𝑛 ∈ 𝐾 such that
𝜌(𝐾) = 𝜌(𝑤1) + · · · + 𝜌(𝑤𝑘).

If a rating map is simultaneously finitary and multiplicative, we say that it is full. Full
rating maps are specially important. This is because any full rating map 𝜌 : 2𝐴∗ → 𝑅 is (fully)
characterized by the canonical monoid morphism 𝜌∗ : 𝐴∗ → 𝑅. Indeed, for 𝐾 ⊆ 𝐴∗, we may
consider the sum of all elements 𝜌(𝑤) for 𝑤 ∈ 𝐾: while it may be infinite, this sum boils down
to a finite one since 𝑅 is commutative and idempotent for addition. The hypothesis that 𝜌 is
finitary implies that 𝜌(𝐾) is equal to this sum. The key point here is that full rating maps are
finitely representable: clearly, a full rating map 𝜌 is characterized by the morphism 𝜌∗ : 𝐴∗ → 𝑅,
which is finitely representable since it is a morphism into a finite monoid. Hence, we may speak
about algorithms taking full rating maps as input.

46 / 74 T. Place, M. Zeitoun

Canonical multiplicative rating map associated to a monoid morphism. Finally, one can
associate a particular full rating map 𝜌𝛼 to every monoid morphism 𝛼 : 𝐴∗ → 𝑀 into a finite
monoid. Its rating set is the idempotent semiring (2𝑀 ,∪, ·), whose multiplication is obtained by
lifting the one of 𝑀 to subsets of 𝑀 . Moreover, for every language 𝐾 ⊆ 𝐴∗, we let 𝜌𝛼(𝐾) be the
direct image 𝛼(𝐾) ⊆ 𝑀 . In other words, we define:

𝜌𝛼 : 2𝐴∗ → 2𝑀

𝐾 ↦→ {𝛼(𝑤) | 𝑤 ∈ 𝐾}.

Clearly, 𝜌𝛼 is a full rating map.

Optimal imprints. Now that we have multiplicative rating maps, we turn to imprints. Consider
a multiplicative rating map 𝜌 : 2𝐴∗ → 𝑅. Given any finite set of languages K, we define the
𝜌-imprint of K. Intuitively, when K is a cover of some language 𝐿, this object measures the
“quality” of K. The 𝜌-imprint of K is the subset of 𝑅 defined by:

I[𝜌] (K) = ↓𝑅
{
𝜌(𝐾) | 𝐾 ∈ K

}
.

We now define optimality. Consider an arbitrary multiplicative rating map 𝜌 : 2𝐴∗ → 𝑅 and
a lattice D. Given a language 𝐿, an optimal D-cover of 𝐿 for 𝜌 is a D-cover K of 𝐿 having the
smallest possible imprint among all D-covers, i.e., which satisfies the following property:

I[𝜌] (K) ⊆ I[𝜌] (K′) for every D-cover K′ of 𝐿.

In general, there can be infinitely many optimal D-covers for a given multiplicative rating map
𝜌. The key point is that there always exists at least one, provided that D is a lattice. We state
this property in the following lemma (proved in [32]).

LEMMA 8.3. Let D be a lattice. For every language 𝐿 and every multiplicative rating map 𝜌,
there exists an optimal D-cover of 𝐿 for 𝜌.

Clearly, given a lattice D, a language 𝐿 and a multiplicative rating map 𝜌, all optimal
D-covers of 𝐿 for 𝜌 have the same 𝜌-imprint. Hence, this unique 𝜌-imprint is a canonical object
for D, 𝐿 and 𝜌. We call it the D-optimal 𝜌-imprint on 𝐿 and we write it ID [𝐿, 𝜌]:

ID [𝐿, 𝜌] = I[𝜌] (K) for any optimal D-cover K of 𝐿 for 𝜌.

An important special case is when 𝐿 = 𝐴∗. In this case, we write ID [𝜌] for ID [𝐴∗, 𝜌]. Let us
present a few properties of optimal imprints (all proved in [32]). First, we have the following
useful fact, which is immediate from the definitions.

FACT 8.4. Let 𝜌 be a multiplicative rating map and consider two languages 𝐻, 𝐿 such that
𝐻 ⊆ 𝐿. Then, ID [𝐻, 𝜌] ⊆ ID [𝐿, 𝜌].

Additionally, the following lemma describes optimal imprints of a union of languages.

47 / 74 All about unambiguous polynomial closure

LEMMA 8.5. Let D be a lattice and let 𝜌 : 2𝐴∗ → 𝑅 be a multiplicative rating map. Given two
languages 𝐻, 𝐿, we have ID [𝐻 ∪ 𝐿, 𝜌] = ID [𝐻, 𝜌] ∪ ID [𝐿, 𝜌]

We complete Lemma 8.5 with a similar statement for language concatenation instead of
union. Note that it requires more hypotheses on the class D: we need closure under quotient.

LEMMA 8.6. Let D be a positive prevariety and let 𝜌 : 2𝐴∗ → 𝑅 be a multiplicative rating map.
Given two languages 𝐻, 𝐿 ⊆ 𝐴∗, we have ID [𝐻, 𝜌] · ID [𝐿, 𝜌] ⊆ ID [𝐻𝐿, 𝜌].

Connection with covering. We may now connect these definitions to the covering problem.
The key idea is that solving D-covering for a fixed class D boils down to finding an algorithm
that computes D-optimal imprints from full rating maps given as inputs. In [32], two statements
are presented. The first is simpler but it only applies to Boolean algebras, while the second is
more involved and applies to all lattices. Since all classes investigated in the paper are Boolean
algebras, we only present the first statement.

PROPOS IT ION 8.7. Let D be a Boolean algebra. There exists an effective reduction from
D-covering to the following problem:

Input: A full rating map 𝜌 : 2𝐴∗ → 𝑅 and 𝐹 ⊆ 𝑅.
Question: Is it true that ID [𝜌] ∩ 𝐹 = ∅?

PROOF SKETCH. We briefly describe the reduction (we refer the reader to [32] for details).
Consider an input pair (𝐿0, {𝐿1, . . . , 𝐿𝑛}) for D-covering. Since the languages 𝐿𝑖 are regular, for
every 𝑖 ≤ 𝑛, one can compute a morphism 𝛼𝑖 : 𝐴∗ → 𝑀𝑖 into a finite monoid recognizing 𝐿𝑖
together with the set 𝐹𝑖 ⊆ 𝑀𝑖 such that 𝐿𝑖 = 𝛼−1

𝑖
(𝐹𝑖). Consider the associated full rating maps

𝜌𝛼𝑖 : 2𝐴∗ → 2𝑀𝑖 . Moreover, let 𝑅 be the idempotent semiring 2𝑀0 × · · · × 2𝑀𝑛 equipped with
the componentwise addition and multiplication. We define a full rating map 𝜌 : 2𝐴∗ → 𝑅 by
letting 𝜌(𝐾) = (𝜌𝛼0 (𝐾), . . . , 𝜌𝛼𝑛 (𝐾)) for every 𝐾 ⊆ 𝐴∗. Finally, let 𝐹 ⊆ 𝑅 be the set of all tuples
(𝑋0, . . . , 𝑋𝑛) ∈ 𝑅 such that 𝑋𝑖 ∩ 𝐹𝑖 ≠ ∅ for every 𝑖 ≤ 𝑛. One can now verify that (𝐿0, {𝐿1, . . . , 𝐿𝑛})
is D-coverable if and only if ID [𝜌] ∩ 𝐹 = ∅. Let us point out that this equivalence is only true
when D is a Boolean algebra. When D is only a lattice, one has to handle the language 𝐿0

separately. ■

Pointed optimal imprints. In view of Proposition 8.7, given a Boolean algebra D, an algorithm
computing ID [𝜌] from a full rating map 𝜌 yields a procedure for D-covering. We consider the
case where D = UPol(C) for some finite prevariety C. We present a least fixpoint procedure
for computing IUPol(C) [𝜌]. Yet, implementing it requires considering an object which carries
more information than IUPol(C) [𝜌], which we now define.

LetD be a Boolean algebra, 𝜂 : 𝐴∗ → 𝑁 be a morphism into a finite monoid and 𝜌 : 2𝐴∗ → 𝑅

be a multiplicative rating map. The 𝜂-pointed D-optimal 𝜌-imprint is defined as the following

48 / 74 T. Place, M. Zeitoun

set PD [𝜂, 𝜌] ⊆ 𝑁 × 𝑅:

PD [𝜂, 𝜌] =
{
(𝑡, 𝑟) ∈ 𝑁 × 𝑅 | 𝑟 ∈ ID [𝜂−1(𝑡), 𝜌]

}
.

In view of this definition, we shall manipulate Cartesian products 𝑁 × 𝑅 where 𝑁 is a finite
monoid and 𝑅 is a finite idempotent semiring. In this context, it will be convenient to use the
following functional notation. Given a subset 𝑆 ⊆ 𝑁 × 𝑅 and 𝑡 ∈ 𝑁 , we write 𝑆(𝑡) ⊆ 𝑅 for the set
𝑆(𝑡) = {𝑟 ∈ 𝑅 | (𝑡, 𝑟) ∈ 𝑆}.

The set PD [𝜂, 𝜌] encodes the D-optimal 𝜌-imprint on 𝐴∗, that is, the subset ID [𝜌] of 𝑅.
Indeed, since ID [𝜌] = ID [𝐴∗, 𝜌], we have the following immediate corollary of Lemma 8.5.

COROLLARY 8.8. Let D be a Boolean algebra, 𝜂 : 𝐴∗ → 𝑁 be a morphism into a finite monoid
and 𝜌 : 2𝐴∗ → 𝑅 be a multiplicative rating map. Then,

ID [𝜌] =
⋃
𝑡∈𝑁

ID [𝜂−1(𝑡), 𝜌] =
⋃
𝑡∈𝑁

PD [𝜂, 𝜌] (𝑡).

In the sequel, we consider the case where D = UPol(C), for some finite prevariety C.
We present an algorithm for computing PUPol(C) [𝜂C , 𝜌] ⊆ 𝑁C × 𝑅 from a full rating map 𝜌.
Recall that 𝜂C : 𝐴∗ → 𝑁C is the canonical C-morphism, which is well-defined since C is a finite
prevariety. This is actually the reason why the algorithm depends on the finiteness of C.

8.2 Characterization of UPol(C)-optimal imprints

Let us first describe the property characterizingUPol(C)-optimal imprints for a finite prevariety
C. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 into a finite monoid (as explained above, in the statement,
𝜂 will be the canonical C-morphism 𝜂C) and a multiplicative rating map 𝜌 : 2𝐴∗ → 𝑅. We say
that a subset 𝑆 ⊆ 𝑁 × 𝑅 is UPol-saturated for 𝜂 and 𝜌 if satisfies the four following properties:

1. Trivial elements: for every 𝑤 ∈ 𝐴∗, we have (𝜂(𝑤), 𝜌(𝑤)) ∈ 𝑆.
2. Closure under downset: we have ↓𝑅𝑆 = 𝑆.
3. Closure under multiplication: for every (𝑠1, 𝑟1), (𝑠2, 𝑟2) ∈ 𝑆, we have (𝑠1𝑠2, 𝑟1𝑟2) ∈ 𝑆.
4. UPol-closure: if (𝑒1, 𝑓1), (𝑒2, 𝑓2) ∈ 𝑆 are pairs of multiplicative idempotents and we have

some 𝑠 ∈ 𝑁 such that 𝑒1 ⩽R 𝑠𝑒2 and 𝑒2 ⩽L 𝑒1𝑠, then (𝑒1𝑠𝑒2, 𝑓1𝜌(𝜂−1(𝑠)) 𝑓2) ∈ 𝑆.

We are ready to state the main theorem of the section. Recall that when C is a finite
prevariety, we write 𝜂C : 𝐴∗ → 𝑁C for the canonical C-morphism (see Section 2). We prove
that for every multiplicative rating map 𝜌 : 2𝐴∗ → 𝑅, the 𝜂C-pointed UPol(C)-optimal 𝜌-imprint
PUPol(C) [𝜂C , 𝜌] is the least UPol-saturated subset of 𝑁C × 𝑅 (for inclusion) for 𝜂C and 𝜌.

THEOREM 8.9. Let C be a finite prevariety and 𝜌 : 2𝐴∗ → 𝑅 be a multiplicative rating map.
Then, PUPol(C) [𝜂C , 𝜌] is the least UPol-saturated subset of 𝑁C × 𝑅 for 𝜂C and 𝜌.

49 / 74 All about unambiguous polynomial closure

REMARK 8.10. When C is finite, Theorem 8.9 characterizes the least UPol-saturated subset
for the canonical C-morphism and a multiplicative rating map. However, note that in order
to obtain the decidability of UPol(C)-covering, we need the input to be finitely representable,
i.e., we need the rating map to be full. In this case, it is clear that one can use a least fixpoint
procedure to compute the least UPol-saturated subset of 𝑁C × 𝑅 from an input full rating
map 𝜌 : 2𝐴∗ → 𝑅. Therefore, Theorem 8.9 yields a procedure for computing PUPol(C) [𝜂C , 𝜌]
from an input full rating map 𝜌 : 2𝐴∗ → 𝑅. By Corollary 8.8, it follows that we may compute
IUPol(C) [𝜌] ⊆ 𝑅 as well. Hence, Proposition 8.7 yields that UPol(C)-covering is decidable. This
extends to UPol(C)-separation by Lemma 2.4.

From the above remark, we obtain the following corollary of Theorem 8.9.

COROLLARY 8.1 1. For every finite prevariety C, UPol(C)-covering and UPol(C)-separation
are decidable.

A key application of Corollary 8.11 is when C is the finite prevariety AT of alphabet testable
languages: we get the decidability of covering and separation for UPol(AT) = UPol(BPol(ST))
(we proved this equality in Lemma 4.25). Let us point out that this result was already known: it
is proved in [32] using a specialized argument based on the logical characterization of UPol(AT)
in terms of two-variable first-order logic (we present this logical characterization in Section 10).
Actually, specializing the above generic algorithm yields exactly the procedure of [32].

We turn to the proof of Theorem 8.9. We present two independent statements, which
correspond to soundness and completeness of the least fixpoint procedure that computes
PUPol(C) [𝜂C , 𝜌]. We start with the former.

PROPOS IT ION 8.12 (Soundness). Let C be a finite prevariety and 𝜌 : 2𝐴∗ → 𝑅 be a multi-
plicative rating map. Then, PUPol(C) [𝜂C , 𝜌] ⊆ 𝑁C × 𝑅 is UPol-saturated for 𝜂C and 𝜌.

PROOF . Recall thatUPol(C) is a prevariety by Theorem 4.24. There are four properties to verify.
We start with the first three which are standard. For the trivial elements, consider 𝑤 ∈ 𝐴∗ and
let K be an optimal UPol(C)-cover of 𝜂−1

C (𝜂C (𝑤)). Since𝑤 ∈ 𝜂−1
C (𝜂C (𝑤)), there exists 𝐾 ∈ K such

that 𝑤 ∈ 𝐾 . Thus, 𝜌(𝑤) ≤ 𝜌(𝐾) which yields 𝜌(𝑤) ∈ I[𝜌] (K) = IUPol(C) [𝜂−1
C (𝜂C (𝑤)), 𝜌]. This

implies that (𝜂C (𝑤), 𝜌(𝑤)) ∈ PUPol(C) [𝜂C , 𝜌]. Closure under downset is immediate by definition
of imprints. Finally, for closure under multiplication, consider (𝑠1, 𝑟1), (𝑠2, 𝑟2) ∈ PUPol(C) [𝜂C , 𝜌].
We have 𝑟𝑖 ∈ IUPol(C) [𝜂−1

C (𝑠𝑖), 𝜌] for 𝑖 = 1, 2. Since UPol(C) is a prevariety, Lemma 8.6 yields
𝑟1𝑟2 ∈ IUPol(C) [𝜂−1

C (𝑠1)𝜂−1
C (𝑠2), 𝜌]. Clearly, 𝜂−1

C (𝑠1)𝜂−1
C (𝑠2) ⊆ 𝜂−1

C (𝑠1𝑠2). Thus, Fact 8.4 yields
𝑟1𝑟2 ∈ IUPol(C) [𝜂−1

C (𝑠1𝑠2), 𝜌]. By definition, this exactly says that (𝑠1𝑠2, 𝑟1𝑟2) ∈ PUPol(C) [𝜂C , 𝜌].
It remains to prove that PUPol(C) [𝜂C , 𝜌] satisfies UPol-closure. Consider two pairs of mul-

tiplicative idempotents (𝑒1, 𝑓1), (𝑒2, 𝑓2) ∈ PUPol(C) [𝜂C , 𝜌] and 𝑠 ∈ 𝑁C such that 𝑒1 ⩽R 𝑠𝑒2 and

50 / 74 T. Place, M. Zeitoun

𝑒2 ⩽L 𝑒1𝑠. We prove that (𝑒1𝑠𝑒2, 𝑓1𝜌(𝜂−1
C (𝑠)) 𝑓2) ∈ PUPol(C) [𝜂C , 𝜌]. By definition, we have to

show that,
𝑓1𝜌(𝜂−1

C (𝑠)) 𝑓2 ∈ IUPol(C) [𝜂−1
C (𝑒1𝑠𝑒2), 𝜌] .

By definition, this boils down to proving that given an arbitrary UPol(C)-cover K of 𝜂−1
C (𝑒1𝑠𝑒2),

we have 𝑓1𝜌(𝜂−1
C (𝑠)) 𝑓2 ∈ I[𝜌] (K). We fix K for the proof. Proposition 2.13 yields a UPol(C)-

morphism 𝛼 : 𝐴∗ → 𝑀 recognizing every language 𝐾 ∈ K. Let 𝑘 = 𝜔(𝑀).
Let 𝑖 ∈ {1, 2}. By hypothesis, we know that (𝑒𝑖 , 𝑓𝑖) ∈ PUPol(C) [𝜂C , 𝜌]. By definition, this

means that 𝑓𝑖 ∈ IUPol(C) [𝜂−1
C (𝑒𝑖), 𝜌]. Clearly, the set {𝛼−1(𝑡) | 𝑡 ∈ 𝑀 and 𝛼−1(𝑡) ∩ 𝜂−1

C (𝑒𝑖) ≠ ∅}
is a UPol(C)-cover of 𝜂−1

C (𝑒𝑖). Therefore, since 𝑓𝑖 ∈ IUPol(C) [𝜂−1
C (𝑒𝑖), 𝜌], we get 𝑡𝑖 ∈ 𝑀 such that

𝜂−1
C (𝑒𝑖) ∩ 𝛼−1(𝑡𝑖) ≠ ∅ and 𝑓𝑖 ≤ 𝜌(𝛼−1(𝑡𝑖)). We fix 𝑤𝑖 ∈ 𝜂−1

C (𝑒𝑖) ∩ 𝛼−1(𝑡𝑖) for the proof. Moreover,
we let 𝑢 ∈ 𝜂−1

C (𝑠). We define,
𝑤 = 𝑤𝑘

1𝑢𝑤
𝑘
2 .

Since 𝑒1, 𝑒2 ∈ 𝑁C are idempotents, we have 𝜂C (𝑤) = 𝑒1𝑠𝑒2. Since K is a cover of 𝜂−1
C (𝑒1𝑠𝑒2), we

get 𝐾 ∈ K such that 𝑤 ∈ 𝐾 . We prove that,

(𝛼−1(𝑡1))𝑘𝜂−1
C (𝑠) (𝛼−1(𝑡2))𝑘 ⊆ 𝐾. (11)

Let us first explain how to use (11) to conclude the proof. Since 𝑓𝑖 ≤ 𝜌(𝛼−1(𝑡𝑖)) for 𝑖 = 1, 2,
the inclusion given by (11) implies that 𝑓 𝑘1 𝜌(𝜂−1

C (𝑠)) 𝑓 𝑘2 ≤ 𝜌(𝐾). Moreover, since 𝑓1, 𝑓2 ∈ 𝑅 are
multiplicative idempotents, this yields 𝑓1𝜌(𝜂−1

C (𝑠)) 𝑓2 ≤ 𝜌(𝐾). Finally, since 𝐾 ∈ K, we get
𝑓1𝜌(𝜂−1

C (𝑠)) 𝑓2 ∈ I[𝜌] (K), as desired.
It remains to prove that (11) holds. We fix𝑤′ ∈ (𝛼−1(𝑡1))𝑘𝜂−1

C (𝑠) (𝛼−1(𝑡2))𝑘 for the proof and
show that 𝑤′ ∈ 𝐾 . Since 𝐾 is recognized by 𝛼 and 𝑤 ∈ 𝐾 , it suffices to prove that 𝛼(𝑤′) = 𝛼(𝑤).
For 𝑖 = 1, 2, we write 𝑔𝑖 = 𝑡𝜔𝑖 . By definition of 𝑤 and of 𝑘 = 𝜔(𝑀), we have 𝛼(𝑤) = 𝑔1𝛼(𝑢)𝑔2. By
hypothesis on𝑤′, there exists 𝑢′ ∈ 𝜂−1

C (𝑠) such that 𝛼(𝑤′) = 𝑔1𝛼(𝑢′)𝑔2. Hence, it remains to show
that 𝑔1𝛼(𝑢)𝑔2 = 𝑔1𝛼(𝑢′)𝑔2. First, we use our hypothesis on 𝑒1, 𝑒2, 𝑠 ∈ 𝑁C: since 𝑒1 ⩽R 𝑠𝑒2 and
𝑒2 ⩽L 𝑒1𝑠, there exist 𝑞1, 𝑞2 ∈ 𝑁C such that 𝑒1 = 𝑠𝑒2𝑞1 and 𝑒2 = 𝑞2𝑒1𝑠. Let 𝑝 = 𝑞2𝑒1𝑠𝑒2𝑞1 ∈ 𝑁C.
Since 𝑒1 and 𝑒2 are idempotents, we have,

𝑒1 = 𝑠𝑒2𝑞1 = 𝑠𝑒2𝑒2𝑒2𝑞1 = 𝑠𝑒2𝑞2𝑒1𝑠𝑒2𝑞1 = 𝑠𝑒2𝑝,

𝑒2 = 𝑞2𝑒1𝑠 = 𝑞2𝑒1𝑒1𝑒1𝑠 = 𝑞2𝑒1𝑠𝑒2𝑞1𝑒1𝑠 = 𝑝𝑒1𝑠.

Let 𝑣 ∈ 𝜂−1
C (𝑝). Since 𝜂C (𝑤𝑘

𝑖
) = 𝑒𝑖 for 𝑖 = 1, 2 and 𝜂C (𝑢) = 𝜂C (𝑢′) = 𝑠, the above yields

the equalities 𝜂C (𝑤𝑘
1) = 𝜂C (𝑢′𝑤𝑘

2𝑣) and 𝜂C (𝑤𝑘
2) = 𝜂C (𝑣𝑤𝑘

1𝑢). Since 𝜂C is the canonical C-
morphism and 𝛼(𝑤𝑘

𝑖
) = 𝑔𝑖 for 𝑖 = 1, 2, one obtain, using Lemma 2.16 and Lemma 5.19, that

𝑔1 ∼C 𝛼(𝑢′)𝑔2𝛼(𝑣) and 𝑔2 ∼C 𝛼(𝑣)𝑔1𝛼(𝑢). Finally, since 𝛼 is a UPol(C)-morphism, Theorem 7.2
implies that it satisfies (10). Since 𝑔1 and 𝑔2 are idempotents, this yields: 𝑔1 = 𝑔1𝛼(𝑢′)𝑔2𝛼(𝑣)𝑔1

51 / 74 All about unambiguous polynomial closure

and 𝑔2 = 𝑔2𝛼(𝑣)𝑔1𝛼(𝑢)𝑔2. It follows that,

𝑔1𝛼(𝑢)𝑔2 = 𝑔1𝛼(𝑢′)𝑔2𝛼(𝑣)𝑔1𝛼(𝑢)𝑔2 = 𝑔1𝛼(𝑢′)𝑔2.

This concludes the proof. ■

We turn to the completeness direction in Theorem 8.9.

PROPOS IT ION 8.13 (Completeness). Let C be a prevariety, 𝜂 : 𝐴∗ → 𝑁 be a C-morphism,
𝜌 : 2𝐴∗ → 𝑅 be a multiplicative rating map and 𝑆 ⊆ 𝑁 × 𝑅 be UPol-saturated for 𝜂 and 𝜌. For
every 𝑡 ∈ 𝑁 , there exists a UPol(C)-cover K𝑡 of 𝜂−1(𝑡) such that I[𝜌] (K𝑡) ⊆ 𝑆(𝑡).

PROOF . We fix C, 𝜂, 𝜌 and 𝑆 as in the statement. Since 𝑆 is UPol-saturated, it is closed under
multiplication, which implies that 𝑆 is a monoid for the componentwise multiplication (the
identity element is the trivial element (1𝑁 , 1𝑅) = (𝜂(𝜀), 𝜌(𝜀))). The proposition is a corollary of
the following lemma, which we prove by induction.

LEMMA 8.14. Let (𝑥, 𝑝), (𝑦, 𝑞) ∈ 𝑆 and 𝑡 ∈ 𝑁 . There exists a UPol(C)-partition K of 𝜂−1(𝑡)
such that (𝑥𝑡 𝑦, 𝑝𝜌(𝐾)𝑞) ∈ 𝑆 for every 𝐾 ∈ K.

We first apply the lemma to complete the proof of Proposition 8.13. We apply it for
(𝑥, 𝑝) = (𝑦, 𝑞) = (1𝑁 , 1𝑅) ∈ 𝑆. For every 𝑡 ∈ 𝑁 , this yields a UPol(C)-partition K𝑡 of 𝜂−1(𝑡) such
that (𝑡, 𝜌(𝐾)) ∈ 𝑆 for every 𝐾 ∈ K𝑡. Since 𝑆 is closed under downset, the fact that (𝑡, 𝜌(𝐾)) ∈ 𝑆
for every 𝐾 ∈ K𝑡 implies that I[𝜌] (K𝑡) ⊆ 𝑆(𝑡), as desired.

It remains to prove Lemma 8.14. The proof is reminiscent of that of Lemma 7.6. Let
(𝑥, 𝑝), (𝑦, 𝑞) ∈ 𝑆 and 𝑡 ∈ 𝑁 . We build aUPol(C)-partitionK of 𝜂−1(𝑡) such that (𝑥𝑡 𝑦, 𝑝𝜌(𝐾)𝑞) ∈ 𝑆
for every 𝐾 ∈ K by induction on the following three parameters listed by order of importance
(they depend on the Green relations of the finite monoids 𝑁 and 𝑆).

1. The rank of 𝑥𝑡 𝑦 ∈ 𝑁 : the number of elements 𝑡′ ∈ 𝑁 such that 𝑥𝑡 𝑦 ⩽J 𝑡′.
2. The R-index of (𝑥, 𝑝): the number of pairs (𝑥′, 𝑝′) ∈ 𝑆 such that (𝑥′, 𝑝′) ⩽R (𝑥, 𝑝).
3. The L -index of (𝑦, 𝑞): the number of pairs (𝑦′, 𝑞′) ∈ 𝑆 such that (𝑦′, 𝑞′) ⩽L (𝑦, 𝑞).

We distinguish three cases depending on whether 𝑥𝑡 𝑦 J 𝑡 and on which of the two following
properties of 𝑡, (𝑥, 𝑝) and (𝑦, 𝑞) are fulfilled:

(𝑥, 𝑝) is right 𝑡-stable when there is (𝑧, 𝑟) ∈ 𝑆 such that (𝑥𝑧, 𝑝𝑟) R (𝑥, 𝑝) and 𝑧 R 𝑡.
(𝑦, 𝑞) is left 𝑡-stable when there is (𝑧, 𝑟) ∈ 𝑆 such that (𝑧 𝑦, 𝑟𝑞) L (𝑦, 𝑞) and 𝑧 L 𝑡.

In the base case, we assume that all three properties holds and conclude directly. Otherwise,
we consider two distinct inductive cases. In the first one, we assume that 𝑥𝑡 𝑦 <J 𝑡 and in the
second one, that either (𝑥, 𝑝) is not right 𝑡-stable or (𝑦, 𝑞) is not left 𝑡-stable.

Base case: 𝑥𝑡 𝑦 J 𝑡, (𝑥, 𝑝) is right 𝑡-stable and (𝑦, 𝑞) is left 𝑡-stable. We let K = {𝜂−1(𝑡)}.
Clearly, this is a UPol(C)-partition of 𝜂−1(𝑡) since 𝜂 is a C-morphism. Hence, it remains to prove
that (𝑥𝑡 𝑦, 𝑝𝜌(𝜂−1(𝑡))𝑞) ∈ 𝑆. We first use our hypothesis to prove the following fact.

52 / 74 T. Place, M. Zeitoun

FACT 8.15. There exist two pairs of multiplicative idempotents (𝑒1, 𝑓1), (𝑒2, 𝑓2) ∈ 𝑆 satisfying
the following conditions: (𝑥𝑒1, 𝑝 𝑓1) = (𝑥, 𝑝), (𝑒2 𝑦, 𝑓2𝑞) = (𝑦, 𝑞), 𝑒1 ⩽R 𝑡𝑒2 and 𝑒2 ⩽L 𝑒1𝑡.

PROOF . We exhibit (𝑒1, 𝑓1) using the right 𝑡-stability of (𝑥, 𝑝). Since (𝑥, 𝑝) is right 𝑡-stable, there
exists (𝑧, 𝑟) ∈ 𝑆 such that (𝑥𝑧, 𝑝𝑟) R (𝑥, 𝑝) and 𝑧 R 𝑡. Hence, we obtain (𝑧′, 𝑟′) ∈ 𝑆 such that
(𝑥, 𝑝) = (𝑥𝑧𝑧′, 𝑝𝑟𝑟′). Let 𝑘 = 𝜔(𝑆) ≥ 1. Then, (𝑒1, 𝑓1) = ((𝑧𝑧′)𝑘, (𝑟𝑟′)𝑘) is a pair of multiplicative
idempotents. It is now immediate that (𝑥𝑒1, 𝑝 𝑓1) = (𝑥, 𝑝). The existence of (𝑒2, 𝑓2) is proved
symmetrically using the left 𝑡-stability of (𝑦, 𝑞). We now show that 𝑒1 ⩽R 𝑡𝑒2 (the proof that
𝑒2 ⩽L 𝑒1𝑡 is symmetrical and left to the reader). Since 𝑧 R 𝑡, it is clear that 𝑒1 = (𝑧𝑧′)𝑘 ⩽R 𝑡.
Moreover, since 𝑥𝑡 𝑦 = 𝑥𝑒1𝑡𝑒2 𝑦 J 𝑡 by hypothesis, we have 𝑡𝑒2 J 𝑡. Since it is clear that
𝑡𝑒2 ⩽R 𝑡, Lemma 2.1 yields 𝑡𝑒2 R 𝑡. Altogether, we get 𝑒1 ⩽R 𝑡𝑒2. ■

We let (𝑒1, 𝑓1), (𝑒2, 𝑓2) ∈ 𝑆 be given by Fact 8.15. Since (𝑒1, 𝑓1), (𝑒2, 𝑓2) ∈ 𝑆 are multi-
plicative idempotents such that 𝑒1 ⩽R 𝑡𝑒2 and 𝑒2 ⩽L 𝑒1𝑡, and 𝑆 is UPol-saturated, we get
from UPol-closure that (𝑒1𝑡𝑒2, 𝑓1𝜌(𝜂−1(𝑡)) 𝑓2) ∈ 𝑆. Finally, since we have (𝑥, 𝑝), (𝑦, 𝑞) ∈ 𝑆,
(𝑥𝑒1, 𝑝 𝑓1) = (𝑥, 𝑝) and (𝑒2 𝑦, 𝑓2𝑞) = (𝑦, 𝑞), we obtain from closure under multiplication, that
(𝑥, 𝑝) (𝑒1𝑡𝑒2, 𝑓1𝜌(𝜂−1(𝑡)) 𝑓2) (𝑦, 𝑞) = (𝑥𝑡 𝑦, 𝑝𝜌(𝜂−1(𝑡))𝑞) ∈ 𝑆, which concludes this case.

First inductive case: 𝑥𝑡 𝑦 <J 𝑡. In this case, the rank of 𝑡 = 1𝑁 𝑡1𝑁 is strictly smaller than
the one of 𝑥𝑡 𝑦. Consequently, induction on our first parameter in Lemma 8.14 (applied for
(𝑥, 𝑞) = (𝑦, 𝑟) = (1𝑁 , 1𝑅) ∈ 𝑆) yields a UPol(C)-partition K of 𝜂−1(𝑡) such that (𝑡, 𝜌(𝐾)) ∈ 𝑆 for
every 𝐾 ∈ K. Since (𝑥, 𝑞), (𝑦, 𝑟) ∈ 𝑆 and 𝑆 is closed under multiplication, it then follows that
(𝑥𝑡 𝑦, 𝑞𝜌(𝐾)𝑟) ∈ 𝑆 for every 𝐾 ∈ K, concluding this case.

Second inductive case: either (𝑥, 𝑝) is not right 𝑡-stable or (𝑦, 𝑞) is not left 𝑡-stable.
There are two symmetrical cases depending on which property holds. We handle the case
where (𝑦, 𝑞) is not left 𝑡-stable and leave the other, which follows by symmetry, to the reader.
Let 𝑇 be the set of all triples (𝑡1, 𝑎, 𝑡2) ∈ 𝑁 × 𝐴 × 𝑁 such that 𝑡1𝜂(𝑎)𝑡2 = 𝑡 and 𝑡 L 𝜂(𝑎)𝑡2 <L 𝑡2.
In the next fact, we use induction to build UPol(C)-partitions of 𝜂−1(𝑡2) and 𝜂−1(𝑡1) for every
triple (𝑡1, 𝑎, 𝑡2) ∈ 𝑇 . We shall then combine them to construct the desired UPol(C)-partition K
of 𝜂−1(𝑡).

FACT 8.16. Consider a triple (𝑡1, 𝑎, 𝑡2) ∈ 𝑇 . There exists a UPol(C)-partition V𝑡2 of 𝜂−1(𝑡2) such
that (𝑡2, 𝜌(𝑉)) ∈ 𝑆 for every𝑉 ∈ V𝑡2 . Moreover, for every𝑉 ∈ V𝑡2 , there exists aUPol(C)-partition
U(𝑡1,𝑎,𝑡2),𝑉 of 𝜂−1(𝑡1) such that (𝑥𝑡 𝑦, 𝑝𝜌(𝑈𝑎𝑉)𝑞) ∈ 𝑆 for every𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉 .

PROOF . By definition of 𝑇 , we know that 𝑡 <L 𝑡2. This implies 𝑡 <J 𝑡2 by Lemma 2.1 and
since 𝑥𝑡 𝑦 ⩽J 𝑡, we get 𝑥𝑡 𝑦 <J 𝑡2. Hence, the rank of 𝑡2 = 1𝑁 𝑡21𝑁 is strictly smaller than the
one of 𝑥𝑡 𝑦. Therefore, by induction on our first and main parameter in Lemma 8.14 (applied for
(𝑥, 𝑝) = (𝑦, 𝑞) = (1𝑁 , 1𝑅)) we obtain a UPol(C)-partition V𝑡2 of 𝜂−1(𝑡2) such that (𝑡2, 𝜌(𝑉)) ∈ 𝑆
for every 𝑉 ∈ V𝑡2 .

53 / 74 All about unambiguous polynomial closure

We now fix 𝑉 ∈ V𝑡2 and build U(𝑡1,𝑎,𝑡2),𝑉 . Since (𝑡2, 𝜌(𝑉)) ∈ 𝑆 by definition of V𝑡2 and
(𝜂(𝑎), 𝜌(𝑎)) ∈ 𝑆 (this is a trivial element), we have (𝜂(𝑎)𝑡2, 𝜌(𝑎𝑉)) ∈ 𝑆. Hence, since 𝑡 L 𝜂(𝑎)𝑡2
by definition of𝑇 , the hypothesis that (𝑦, 𝑞) is not left 𝑡-stable yields (𝜂(𝑎)𝑡2 𝑦, 𝜌(𝑎𝑉)𝑞) <L (𝑦, 𝑞).
Consequently, the L -index of (𝜂(𝑎)𝑡2 𝑦, 𝜌(𝑎𝑉)𝑞) is strictly smaller than the one of (𝑦, 𝑞). We
may apply induction to (𝑥, 𝑝), (𝜂(𝑎)𝑡2 𝑦, 𝜌(𝑎𝑉)𝑞) and 𝑡1. Indeed, while the third parameter has
decreased, the first has not increased since 𝑥𝑡1𝜂(𝑎)𝑡2 𝑦 = 𝑥𝑡 𝑦 by definition of 𝑇 . The second one
has not increased as well since we did not change the first pair (𝑥, 𝑝). Hence, induction on our
third parameter in Lemma 8.14 applied when (𝑦, 𝑞) has been replaced by (𝜂(𝑎)𝑡2 𝑦, 𝜌(𝑎𝑉)𝑞) and
𝑡 by 𝑡1 yields a UPol(C)-partition U(𝑡1,𝑎,𝑡2),𝑉 of 𝜂−1(𝑡1) such that (𝑥𝑡1𝜂(𝑎)𝑡2 𝑦, 𝑝𝜌(𝑈)𝜌(𝑎𝑉)𝑞) ∈ 𝑆
for every𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉 . Finally, since 𝑥𝑡1𝜂(𝑎)𝑡2 𝑦 = 𝑥𝑡 𝑦, we have (𝑥𝑡 𝑦, 𝑝𝜌(𝑈𝑎𝑉)𝑞) ∈ 𝑆 for every
𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉 . ■

We are ready to construct our UPol(C)-partition K of 𝜂−1(𝑡). We define,

K =
⋃

(𝑡1,𝑎,𝑡2)∈𝑇

{
𝑈𝑎𝑉 | 𝑉 ∈ V𝑡2 and𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉

}
.

It is immediate from the definition and Fact 8.16 that (𝑥𝑡 𝑦, 𝑝𝜌(𝐾)𝑞) ∈ 𝑆 for every 𝐾 ∈ K. It
remains to verify that K is a UPol(C)-partition of 𝜂−1(𝑡). We first prove that it is a partition
of 𝜂−1(𝑡): let 𝑤 ∈ 𝜂−1(𝑡), we show that there is a unique 𝐾 ∈ K such that 𝑤 ∈ 𝐾 . Let 𝑣′ ∈ 𝐴∗

be the least suffix of 𝑤 such that 𝑡 = 𝜂(𝑤) L 𝜂(𝑣′) and let 𝑢 ∈ 𝐴∗ such that 𝑤 = 𝑢𝑣′. Observe
that 𝑣′ ≠ 𝜀 (otherwise, we would have 𝑡 L 1𝑁 , contradicting the hypothesis that (𝑦, 𝑞) is
not left 𝑡-stable, since (1𝑁 𝑦, 1𝑅𝑞) L (𝑦, 𝑞)). Hence, there exists 𝑣 ∈ 𝐴∗ and 𝑎 ∈ 𝐴 such that
𝑣′ = 𝑎𝑣. Let 𝑡1 = 𝜂(𝑢) and 𝑡2 = 𝜂(𝑣). By definition 𝑡1𝜂(𝑎)𝑡2 = 𝜂(𝑢𝑎𝑣) = 𝜂(𝑤) = 𝑡. Moreover,
𝑡 L 𝜂(𝑣′) = 𝜂(𝑎)𝑡2 <L 𝜂(𝑣) by definition of 𝑣′ as the least prefix of𝑤 such that 𝑡 = 𝜂(𝑤) L 𝜂(𝑣′).
Hence, (𝑡1, 𝑎, 𝑡2) ∈ 𝑇 and we may consider the partition V𝑡2 of 𝜂−1(𝑡2). In particular, there exists
𝑉 ∈ V𝑡2 such that 𝑣 ∈ 𝑉 since 𝑡2 = 𝜂(𝑣). Moreover, since U(𝑡1,𝑎,𝑡2),𝑉 is a partition of 𝜂−1(𝑡1) and
𝑡1 = 𝜂(𝑢), there exists𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉 such that 𝑢 ∈ 𝑈 . Hence, 𝑤 = 𝑢𝑎𝑣 ∈ 𝑈𝑎𝑉 and𝑈𝑎𝑉 ∈ K is the
unique language of K containing 𝑤 by definition.

Finally, let us verify that for every 𝐾 ∈ K, we have 𝐾 ⊆ 𝜂−1(𝑡) and 𝐾 ∈ UPol(C) which
completes the proof that K is a UPol(C)-partition of 𝜂−1(𝑡). Let 𝐾 ∈ K. By definition, 𝐾 = 𝑈𝑎𝑉

where 𝑉 ∈ V𝑡2 and 𝑈 ∈ U(𝑡1,𝑎,𝑡2),𝑉 for some (𝑡1, 𝑎, 𝑡2) ∈ 𝑇 . Since V𝑡2 and U(𝑡1,𝑎,𝑡2),𝑉 are UPol(C)-
partitions of 𝜂−1(𝑡2) and 𝜂−1(𝑡1) respectively, we know that 𝑈,𝑉 ∈ UPol(C), 𝑈 ⊆ 𝜂−1(𝑡1) and
𝑉 ⊆ 𝜂−1(𝑡2). It follows that 𝐾 ⊆ 𝜂−1(𝑡1)𝑎𝜂−1(𝑡2). Hence, since 𝑡1𝜂(𝑎)𝑡2 = 𝑡 by definition of 𝑇 , we
get 𝐾 ⊆ 𝜂−1(𝑡). Moreover,𝑈,𝑉 ∈ UPol(C) and𝑈𝑎𝑉 is right deterministic by Lemma 4.15 since
𝑉 ⊆ 𝜂−1(𝑡2) and 𝑡2𝜂(𝑎) <L 𝑡2 (as (𝑡1, 𝑎, 𝑡2) ∈ 𝑇). This concludes the proof. ■

We are now ready to prove Theorem 8.9.

PROOF OF THEOREM 8.9 . Let C be a finite prevariety and 𝜌 : 2𝐴∗ → 𝑅 be a multiplicative
rating map. By Proposition 8.12, IUPol(C) [𝜌] ⊆ 𝑁C × 𝑅 is UPol-saturated for 𝜂C and 𝜌. It remains

54 / 74 T. Place, M. Zeitoun

to show that it is the least such set. Thus, let 𝑆 ⊆ 𝑁C × 𝑅 be UPol-saturated for 𝜂C and 𝜌. We
show that PUPol(C) [𝜂C , 𝜌] ⊆ 𝑆. Clearly, it suffices to show that PUPol(C) [𝜂C , 𝜌] (𝑡) ⊆ 𝑆(𝑡) for every
𝑡 ∈ 𝑁C . We fix 𝑡 for the proof.

Since 𝜂C is a C-morphism, Proposition 8.13 yields a UPol(C)-cover K of 𝜂−1
C (𝑡) such that

I[𝜌] (K𝑡) ⊆ 𝑆(𝑡). Moreover, recall that PUPol(C) [𝜂C , 𝜌] (𝑡) = IUPol(C) [𝜂−1
C (𝑡), 𝜌]. Therefore, since

K is a UPol(C)-cover of 𝜂−1
C (𝑡), we get PUPol(C) [𝜂C , 𝜌] (𝑡) ⊆ I[𝜌] (K). Altogether, we obtain

PUPol(C) [𝜂C , 𝜌] (𝑡) ⊆ 𝑆(𝑡), as desired. ■

9. Unary temporal logic

We introduce unary temporal logic. We use a definition that generalizes the standard one: for
each class C, we define a particular variant of unary temporal logic that we denote by TL[C]
and associate a class TL(C) to it. The standard definitions of unary temporal logic found in the
literature correspond either to TL(ST) or to TL(ST+).

We prove two key results in the section. First, we establish a connection with two-variable
first-order logic. For every Boolean algebra C, we prove that TL(C) = FO2(IC). This result
generalizes a well-known theorem by Etessami, Vardi and Wilke [9]. We also compare these
logical classes to those built with unambiguous polynomial closure. More precisely, we prove
the given an arbitrary prevariety C, we have the inclusion UPol(BPol(C)) ⊆ TL(C). While it
is strict in general, we shall prove in the next section that when C is a prevariety of group
languages or a well-suited extension thereof, the converse inclusion holds as well.

9.1 Definition and properties

We actually define two distinct sets of temporal formulas, which we denote by TLX and TL.
Then, we explain how these sets can be restricted depending on some class of languages C. This
yields two new classes built from C, which we write TLX(C) and TL(C). Let us first define the
TLX formulas, which are more general.

A TLX formula is built from atomic formulas using Boolean connectives and temporal
operators. The atomic formulas are ⊤, ⊥, 𝑚𝑖𝑛, 𝑚𝑎𝑥 and “𝑎” for every letter 𝑎 ∈ 𝐴. All Boolean
connectives are allowed: if 𝜓1 and 𝜓2 are TLX formulas, then so are (𝜓1 ∨ 𝜓2), (𝜓1 ∧ 𝜓2) and
(¬𝜓1). There are two kinds of temporal operators, which are both unary. First, one may use X
and Y: if 𝜓 is a TLX formula, then so are (X 𝜓) and (Y 𝜓). Moreover, we associate two temporal
operators to every language 𝐿 ⊆ 𝐴∗, which we write F𝐿 and P𝐿: if 𝜓 is a TLX formula, then so
are (F𝐿 𝜓) and (P𝐿 𝜓). For the sake of improved readability, we omit parentheses when there is
no ambiguity. Finally, we define TL as a syntactical restriction: a TL formula is a TLX formula
that does not contain X, nor Y.

We now turn to the semantics. Since TL formulas are particular TLX formulas, it suffices
to define the semantics of the latter. Evaluating a TLX formula 𝜑 requires a word 𝑤 ∈ 𝐴∗ and

55 / 74 All about unambiguous polynomial closure

a position 𝑖 ∈ Pos(𝑤). We use structural induction on 𝜑 to define what it means for (𝑤, 𝑖) to
satisfy 𝜑. We denote this property by 𝑤, 𝑖 |= 𝜑:

Atomic formulas: 𝑤, 𝑖 |= ⊤ always holds and 𝑤, 𝑖 |= ⊥ never holds. Additionally, for every
ℓ ∈ 𝐴 ∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥}, 𝑤, 𝑖 |= ℓ holds when ℓ = 𝑤[𝑖].
Disjunction: 𝑤, 𝑖 |= 𝜓1 ∨ 𝜓2 when 𝑤, 𝑖 |= 𝜓1 or 𝑤, 𝑖 |= 𝜓2.
Conjunction: 𝑤, 𝑖 |= 𝜓1 ∧ 𝜓2 when 𝑤, 𝑖 |= 𝜓1 and 𝑤, 𝑖 |= 𝜓2.
Negation: 𝑤, 𝑖 |= ¬𝜓 when 𝑤, 𝑖 |= 𝜓 does not hold.
Next: 𝑤, 𝑖 |= X 𝜑 when 𝑖 + 1 is a position of 𝑤 and 𝑤, 𝑖 + 1 |= 𝜑.
Preceding: 𝑤, 𝑖 |= Y 𝜑 when 𝑖 − 1 is a position of 𝑤 and 𝑤, 𝑖 − 1 |= 𝜑.
Finally: for 𝐿 ⊆ 𝐴∗, we let 𝑤, 𝑖 |= F𝐿 𝜓 when there exists a position 𝑗 > 𝑖 of 𝑤 such that
𝑤, 𝑗 |= 𝜓 and 𝑤(𝑖, 𝑗) ∈ 𝐿.
Previously: for 𝐿 ⊆ 𝐴∗, we let 𝑤, 𝑖 |= P𝐿 𝜓 when there exists a position 𝑗 < 𝑖 of 𝑤 such that
𝑤, 𝑗 |= 𝜓 and 𝑤(𝑗, 𝑖) ∈ 𝐿.

When no distinguished position is specified, we evaluate formulas at the leftmost unlabeled
position. More precisely, given a TLX formula 𝜑 and a word𝑤 ∈ 𝐴∗, we write𝑤 |= 𝜑 and say that
𝑤 satisfies 𝜑 if and only if𝑤, 0 |= 𝜑. Finally, the language defined by 𝜑 is 𝐿(𝜑) = {𝑤 ∈ 𝐴∗ | 𝑤 |= 𝜑}.
Of course, considering all formulas is not really interesting, as every language 𝐿 is defined by
“F𝐿 max”.

Consider a class C. We first explain how C can be used to restrict the sets of TL and
TLX formulas. A TL[C] (resp. TLX[C]) formula is a TL (resp. TLX) formula 𝜑 such that every
temporal operator F𝐿 or P𝐿 occurring in 𝜑 satisfies 𝐿 ∈ C. With this definition in hand, we
associate two classes to C, which we denote by TL(C) and TLX(C). They consist of all languages
that can be defined by a TL[C] and a TLX[C] formula, respectively. Observe that by definition,
Boolean connectives can be used freely in TL and TLX formulas, Hence, it is immediate that the
two associated classes are Boolean algebras. They both contain C: a language 𝐿 ∈ C is defined
by the TL[C] formula “F𝐿 max”. One may also prove that if C is a prevariety, then so are TL(C)
and TLX(C). Yet, we shall not use this property.

REMARK 9.1. It is immediate that for an arbitrary TLX formula 𝜑, 𝑤 ∈ 𝐴∗ and 𝑖 ∈ Pos(𝑤), we
have 𝑤, 𝑖 |= F𝐴∗ 𝜑 (resp. 𝑤, 𝑖 |= P𝐴∗ 𝜑) if and only if there exists 𝑗 ∈ Pos(𝑤) such that 𝑖 < 𝑗 (resp.
𝑗 < 𝑖) and 𝑤, 𝑗 |= 𝜑. Hence, F𝐴∗ and P𝐴∗ correspond to standard operators in unary temporal
logic, usually denoted by F and F−1. In particular for the input class ST = {∅, 𝐴∗}, the classes
TL(ST) and TLX(ST) correspond to the standard variants of unary temporal logic, which are
often denoted by F+ F−1 and F+X+ F−1 +X−1. For the sake of consistency, we write P (for “past”)
instead of F−1 and Y (for “yesterday”) instead of X−1.

We now prove that when C is a prevariety, the operator C ↦→ TL(C) is “more fundamental”
than C ↦→ TLX(C). More precisely, we show that if C is a prevariety, then TLX(C) = TL(C+).

56 / 74 T. Place, M. Zeitoun

The takeaway is that while considering TL(C) and TLX(C) independently is natural when
presenting statements, it suffices to consider TL(C) in proof arguments.

LEMMA 9.2. Let C be a prevariety. Then, TLX(C) = TL(C+).

PROOF . We start with TLX(C) ⊆ TL(C+). By definition, it suffices to show that X and Y can be
expressed with the operators available in TL[C+] formulas. This is immediate since {𝜀} ∈ C+

and the operators F{𝜀} and P{𝜀} have the same semantics as X and Y−1.
We turn to the inclusion TL(C+) ⊆ TLX(C). Given an arbitrary TL[C+] formula 𝜑, we

explain how to inductively construct an equivalent TLX[C] formula ⟨𝜑⟩ (i.e., for every word
𝑤 ∈ 𝐴∗ and every position 𝑖 ∈ Pos(𝑤), we have 𝑤, 𝑖 |= 𝜑 ⇔ 𝑤, 𝑖 |= ⟨𝜑⟩). By definition, this
yields TL(C+) ⊆ TLX(C), as desired. If 𝜑 is atomic, it is already a TLX[C] formula and we
may define ⟨𝜑⟩ := 𝜑. Boolean combinations are handled in the natural way. By definition of
TL[C+] formulas, it remains to handle the case where 𝜑 is of the form F𝐿 𝜓 or P𝐿 𝜓 for some
𝐿 ∈ C+. By symmetry, we only consider the case where 𝜑 := F𝐿 𝜓. By definition of C+, there
exists 𝐾 ∈ C such that either 𝐿 = {𝜀} ∪ 𝐾 or 𝐿 = 𝐴+ ∩ 𝐾 . In the former case, it suffices to
define ⟨𝜑⟩ := (X ⟨𝜓⟩) ∨ (F𝐾 ⟨𝜓⟩), which is a TLX[C] formula by definition. Otherwise, we have
𝐿 = 𝐴+ ∩ 𝐾 . Since C is a prevariety, we know that 𝑎−1𝐾 ∈ C for every 𝑎 ∈ 𝐴. Hence, we may
define ⟨𝜑⟩ as the following TLX[C] formula:

⟨𝜑⟩ := X
(∨
𝑎∈𝐴

(𝑎 ∧ F𝑎−1𝐾 ⟨𝜓⟩)
)
.

This concludes the proof. ■

We complete the definition with a property of the classes TL(C) (when C is a prevariety)
which we shall need in Section 10 to establish the correspondence with unambiguous polynomial
closure. This involves quite a bit of work as we require some machinery to present it. First, we
define equivalence relations that we shall use to formulate the property.

Canonical equivalences. We start with some terminology needed for the definition. Given a
morphism 𝜂 : 𝐴∗ → 𝑁 into a finite monoid 𝑁 , a TL[𝜂] formula is a TL formula 𝜑 such that for
every operator F𝐿 or P𝐿 occurring in 𝜑, the language 𝐿 ⊆ 𝐴∗ is recognized by 𝜂. The following
simple fact connects this notion to the classes TL(C).

FACT 9.3. Let C be a prevariety. For every TL[C] formula 𝜑, there exists a C-morphism
𝜂 : 𝐴∗ → 𝑁 such that 𝜑 is a TL[𝜂] formula.

PROOF . Let L be the finite set consisting of all languages 𝐿 ⊆ 𝐴∗ such that either F𝐿 or P𝐿
occurs in 𝜑. Since 𝜑 is a TL[C] formula, we know that every 𝐿 ∈ L belongs to C. By hypothesis
on C, it follows from Proposition 2.13 that there exists a C-morphism 𝜂 : 𝐴∗ → 𝑁 recognizing
every 𝐿 ∈ L. By definition, 𝜑 is a TL[𝜂] formula. ■

57 / 74 All about unambiguous polynomial closure

We now associate a number called rank to every TL formula 𝜑 (this is a standard notion in
unary temporal logic). As expected, the rank of 𝜑 is defined as the length of the longest sequence
of nested temporal operators within its parse tree. More precisely,

Any atomic formula has rank 0.
The rank of ¬𝜑 is the same as the rank of 𝜑.
The rank of 𝜑 ∨ 𝜓 and 𝜑 ∧ 𝜓 is the maximum between the ranks of 𝜑 and 𝜓.
For every language 𝐿 ⊆ 𝐴∗, the rank of F𝐿 𝜑 and P𝐿 𝜑 is the rank of 𝜑 plus 1.

Two TL formulas 𝜑 and 𝜓 are equivalent if they have the same semantics. That is, for every
𝑤 ∈ 𝐴∗ and every position 𝑖 ∈ Pos(𝑤), we have 𝑤, 𝑖 |= 𝜑 ⇔ 𝑤, 𝑖 |= 𝜓. The following key lemma
is immediate from a simple induction on the rank of TL formulas.

LEMMA 9.4. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism into a finite monoid and let 𝑘 ∈ N. There are only
finitely many non-equivalent TL[𝜂] formulas with rank at most 𝑘.

We may now define the equivalences associated to TL. They relate pairs (𝑤, 𝑖), where
𝑤 ∈ 𝐴∗ and 𝑖 ∈ Pos(𝑤). Let 𝜂 : 𝐴∗ → 𝑁 be a morphism into a finite monoid and let 𝑘 ∈ N.
Given 𝑤,𝑤′ ∈ 𝐴∗, 𝑖 ∈ Pos(𝑤) and 𝑖′ ∈ Pos(𝑤′), we write, 𝑤, 𝑖 �𝜂,𝑘 𝑤′, 𝑖′ when:

For every TL[𝜂] formula 𝜑 with rank at most 𝑘, 𝑤, 𝑖 |= 𝜑 ⇐⇒ 𝑤′, 𝑖′ |= 𝜑.

Clearly, the relations �𝜂,𝑘 are equivalences. Moreover, it is immediate from the definition and
Lemma 9.4, that they have finite index. Finally, we also introduce equivalences which compare
single words in 𝐴∗. Abusing terminology, we also write them �𝜂,𝑘. Given 𝑤,𝑤′ ∈ 𝐴∗, we write
𝑤 �𝜂,𝑘 𝑤

′ if 𝑤, 0 �𝜂,𝑘 𝑤′, 0. Clearly, the relation �𝜂,𝑘 is an equivalence on 𝐴∗.
We complete this definition with a useful lemma. It presents an alternative definition of

the equivalences �𝜂,𝑘, which is convenient in proof arguments, using induction on 𝑘.

LEMMA 9.5. Let 𝜂 : 𝐴∗ → 𝑁 be a morphism into a finite monoid, 𝑘 ∈ N,𝑤,𝑤′ ∈ 𝐴∗, 𝑖 ∈ Pos(𝑤)
and 𝑖′ ∈ Pos(𝑤′). Then, 𝑤, 𝑖 �𝜂,𝑘 𝑤′, 𝑖′ if and only the five following conditions hold:

We have 𝑤[𝑖] = 𝑤′[𝑖′].
If 𝑘 ≥ 1, then for every 𝑗 ∈ Pos(𝑤) such that 𝑖 < 𝑗, there exists 𝑗′ ∈ Pos(𝑤′) such that
𝑖′ < 𝑗′, 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤′(𝑖′, 𝑗′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′.
If 𝑘 ≥ 1, then for every 𝑗′ ∈ Pos(𝑤′) such that 𝑖′ < 𝑗′, there exists 𝑗 ∈ Pos(𝑤) such that
𝑖 < 𝑗, 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤′(𝑖′, 𝑗′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′.
If 𝑘 ≥ 1, then for every 𝑗 ∈ Pos(𝑤) such that 𝑗 < 𝑖, there exists 𝑗′ ∈ Pos(𝑤′) such that
𝑗′ < 𝑖′, 𝜂(𝑤(𝑗, 𝑖)) = 𝜂(𝑤′(𝑗′, 𝑖′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′.
If 𝑘 ≥ 1, then for every 𝑗′ ∈ Pos(𝑤′) such that 𝑗′ < 𝑖′, there exists 𝑗 ∈ Pos(𝑤) such that
𝑗 < 𝑖, 𝜂(𝑤(𝑗, 𝑖)) = 𝜂(𝑤′(𝑗′, 𝑖′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′.

PROOF . We start with the “only if” implication. Assume that 𝑤, 𝑖 �𝜂,𝑘 𝑤′, 𝑖′. We show that the
five conditions in the lemma hold. For the first one, we know that for every ℓ ∈ 𝐴∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥},

58 / 74 T. Place, M. Zeitoun

“ℓ” is an atomic TL[𝜂] formula, hence of rank 0. Therefore, our hypothesis implies that 𝑤, 𝑖 |=
ℓ ⇔ 𝑤, 𝑖′ |= ℓ for every ℓ ∈ 𝐴 ∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥}. This exactly says that 𝑤[𝑖] = 𝑤′[𝑖′] and the
first condition is proved. We turn to the four remaining conditions. By symmetry, we only
detail one of them: we consider the second condition in the lemma. Hence we assume that
𝑘 ≥ 1 and consider 𝑗 ∈ Pos(𝑤) such that 𝑖 < 𝑗. We have to exhibit 𝑗′ ∈ Pos(𝑤′) such
that 𝑖′ < 𝑗′, 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤′(𝑖′, 𝑗′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′. We use 𝑤 and 𝑗 to build a TL[𝜂]
formula. Lemma 9.4 yields a finite set 𝑆 of TL[𝜂] formulas of rank at most 𝑘 − 1 such that every
TL[𝜂] formula 𝜓 of rank at most 𝑘 − 1 is equivalent to some formula in 𝑆. Consider the set
𝑇 = {𝜓 ∈ 𝑆 | 𝑤, 𝑗 |= 𝜓}. We define,

𝜑 =
∧
𝜓∈𝑇

𝜓.

Moreover, let 𝑠 = 𝜂(𝑤(𝑖, 𝑗)) ∈ 𝑁 (recall that 𝑖 < 𝑗) and let 𝐿 = 𝜂−1(𝑠). Clearly, 𝑤, 𝑗 |= 𝜑 and it
follows that𝑤, 𝑖 |= F𝐿 𝜑. Moreover, 𝜑 has rank at most 𝑘−1 by definition, which means that F𝐿 𝜑
has rank at most 𝑘. Since 𝑤, 𝑖 �𝜂,𝑘 𝑤′, 𝑖′, it follows that 𝑤′, 𝑖′ |= F𝐿 𝜑. This yields 𝑗′ ∈ Pos(𝑤′)
such that 𝑖′ < 𝑗′, 𝑤′(𝑖′, 𝑗′) ∈ 𝐿, i.e., 𝜂(𝑤′(𝑖′, 𝑗′)) = 𝜂(𝑤(𝑖, 𝑗)) and 𝑤′, 𝑗′ |= 𝜑. It remains to show
that 𝑤, 𝑗 �𝜂,𝑘−1 𝑤′, 𝑗′. Let 𝜓 be an 𝜂-formula of rank at most 𝑘 − 1. We have to show that
𝑤, 𝑗 |= 𝜓⇔ 𝑤′, 𝑗′ |= 𝜓. For the left to right implication, if𝑤, 𝑗 |= 𝜓, then we know that 𝑇 contains
a formula equivalent to 𝜓. Recall that 𝑤′, 𝑗′ |= 𝜑. By definition of 𝜑, this yields 𝑤′, 𝑗′ |= 𝜓. For
the converse implication, we prove the contrapositive. Assume that 𝑤, 𝑗 ̸ |= 𝜓, i.e., 𝑤, 𝑗 |= ¬𝜓.
Since ¬𝜓 has rank at most 𝑘 − 1, we know that 𝑇 contains a formula equivalent to ¬𝜓. Again by
choice of 𝜑, since 𝑤′, 𝑗′ |= 𝜑, we also have 𝑤′, 𝑗′ |= ¬𝜓, which implies that 𝑤′, 𝑗′ ̸ |= 𝜓, completing
the proof.

Conversely, assume that the five conditions in the lemma are satisfied. We prove that
𝑤, 𝑖 �𝜂,𝑘 𝑤

′, 𝑖′. Given an arbitrary TL[𝜂] formula 𝜑 of rank at most 𝑘, we have to prove that
𝑤, 𝑖 |= 𝜑 ⇔ 𝑤′, 𝑖′ |= 𝜑. We proceed by structural induction on 𝜑. First, if 𝜑 is an atomic formula
then either 𝜑 = ⊤, 𝜑 = ⊥ or 𝜑 = ℓ for some ℓ ∈ 𝐴 ∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥}. In the first two cases, the result
is trivial. In the last one, the first condition in the lemma states that 𝑤[𝑖] = 𝑤′[𝑖′]. Hence, we
have 𝑤, 𝑖 |= ℓ ⇔ 𝑤′, 𝑖′ |= ℓ for every 𝑎 ∈ 𝐴∪ {𝑚𝑖𝑛, 𝑚𝑎𝑥}. We now consider Boolean connectives.
If 𝜑 = 𝜓1 ∨ 𝜓2, it follows from structural induction on 𝜑 that 𝑤, 𝑖 |= 𝜓1 ⇔ 𝑤′, 𝑖′ |= 𝜓1 and
𝑤, 𝑖 |= 𝜓2 ⇔ 𝑤′, 𝑖′ |= 𝜓2. It is then immediate that 𝑤, 𝑖 |= 𝜑 ⇔ 𝑤′, 𝑖′ |= 𝜑. Similarly, if 𝜑 = ¬𝜓, it
follows from structural induction on 𝜑 that we have𝑤, 𝑖 |= 𝜓⇔ 𝑤′, 𝑖′ |= 𝜓, whence immediately,
that 𝑤, 𝑖 |= 𝜑 ⇔ 𝑤′, 𝑖′ |= 𝜑. It remains to treat the temporal operators, i.e., the cases where
𝜑 = F𝐿 𝜓 or 𝜑 = P𝐿 𝜓 where 𝐿 ⊆ 𝐴∗ is recognized by 𝜂 (recall that 𝜑 is a TL[𝜂] formula). Note
that since 𝜑 has rank at most 𝑘, these cases may only happen when 𝑘 ≥ 1 and 𝜓 has rank at
most 𝑘 − 1. By symmetry, we only detail the case where 𝜑 = F𝐿 𝜓. Moreover, we only prove
the implication 𝑤, 𝑖 |= 𝜑 ⇒ 𝑤′, 𝑖′ |= 𝜑, as the other one is proved symmetrically. Hence, we
assume that 𝑤, 𝑖 |= 𝜑. Since 𝜑 = F𝐿 𝜓, it follows that there exists a position 𝑗 in 𝑤 such that 𝑖 < 𝑗,
𝑤(𝑖, 𝑗) ∈ 𝐿 and 𝑤, 𝑗 |= 𝜓. The second condition in the lemma yields a position 𝑗′ of 𝑤′ such that

59 / 74 All about unambiguous polynomial closure

𝑖′ < 𝑗′, 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤′(𝑖′, 𝑗′)) and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤
′, 𝑗′. Since 𝐿 is recognized by 𝜂 and 𝑤(𝑖, 𝑗) ∈ 𝐿,

the equality 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤(𝑖, 𝑗)) implies that 𝑤′(𝑖′, 𝑗′) ∈ 𝐿. Moreover, since 𝜓 has rank at
most 𝑘 − 1 and both 𝑤, 𝑗 |= 𝜓 and 𝑤, 𝑗 �𝜂,𝑘−1 𝑤

′, 𝑗′ hold, we obtain 𝑤′, 𝑗′ |= 𝜓. Altogether, since
𝑖′ < 𝑗′, it follows that 𝑤′, 𝑖′ |= F𝐿 𝜓, i.e., that 𝑤′, 𝑖′ |= 𝜑, as desired. This concludes the proof. ■

It can be verified from Lemma 9.5 and a straightforward induction that the equiva-
lences �𝜂,𝑘 on 𝐴∗ are congruences. The detailed proof is left to the reader.

LEMMA 9.6. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 into a finite monoid and 𝑘 ∈ N. For every
𝑢, 𝑣, 𝑢′, 𝑣′ ∈ 𝐴∗ such that 𝑢 �𝜂,𝑘 𝑢′ and 𝑣 �𝜂,𝑘 𝑣′, we have 𝑢𝑣 �𝜂,𝑘 𝑢′𝑣′.

We are ready to present the property of the equivalences �𝜂,𝑘 that we shall need in
Section 10 to establish the correspondence with unambiguous polynomial closure.

PROPOS IT ION 9.7. Consider a morphism 𝜂 : 𝐴∗ → 𝑁 into a finite monoid, let 𝑒 ∈ 𝐸(𝑁) be
an idempotent and let 𝑢, 𝑣, 𝑧 ∈ 𝜂−1(𝑒). For every 𝑘 ∈ N, the following property holds:

(𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 �𝜂,𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘𝑧𝑘𝑣𝑧𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 .

PROOF . We first show that we may restrict ourselves to the special case where 𝑢, 𝑣 and 𝑧 are
single letters. To this aim, we consider a second independent alphabet 𝐵 = {𝑎, 𝑏, 𝑐} and we
define 𝛼 : 𝐵∗ → 𝐴∗ as the morphism given by 𝛼(𝑎) = 𝑢, 𝛼(𝑏) = 𝑣 and 𝛼(𝑐) = 𝑧. Finally, we let
𝛿 = 𝜂 ◦ 𝛼 : 𝐵∗ → 𝑁 . We have the following fact.

FACT 9.8. For all 𝑤,𝑤′ ∈ 𝐵∗ and all 𝑘 ∈ N, if 𝑤 �𝛿,𝑘 𝑤′, then 𝛼(𝑤) �𝜂,𝑘 𝛼(𝑤′).

PROOF . Let 𝑛 = 𝑚𝑎𝑥 ({|𝑢|, |𝑣|, |𝑧 |}). For every 𝑥 ∈ 𝐵∗ and every ℎ ≤ 𝑛, we define a partial map
𝑓𝑥,ℎ : Pos(𝑥) → Pos(𝛼(𝑥)). We fix 𝑖 ∈ Pos(𝑥) for the definition. If 𝑖 = 0, then 𝑓𝑥,ℎ(0) = 0 and if
𝑖 = |𝑥 | + 1, then 𝑓𝑥,ℎ(|𝑥 | + 1) = |𝛼(𝑥) | + 1. Assume now that 1 ≤ 𝑖 ≤ |𝑥 | and let 𝑑 = 𝑥 [𝑖] ∈ 𝐵. If
ℎ > |𝛼(𝑑) |, then 𝑓𝑥,ℎ(𝑖) is undefined. Otherwise ℎ ≤ |𝛼(𝑑) | and position 𝑖 of 𝑥 corresponds to a
factor 𝛼(𝑑) in 𝛼(𝑥) which is made of more than ℎ positions. We let 𝑓𝑥,ℎ(𝑖) be ℎ-th position of
this factor. Formally, this boils down to defining 𝑓𝑥,ℎ(𝑖) = |𝛼(𝑥 (0, 𝑖)) | + ℎ.

One may verify using Lemma 9.5 and induction on 𝑘 ∈ N that for every 𝑤,𝑤′ ∈ 𝐵∗, every
𝑖 ∈ Pos(𝑤) and every 𝑖′ ∈ Pos(𝑤′), if 𝑤, 𝑖 �𝛿,𝑘 𝑤′, 𝑖′, then for all ℎ ≤ 𝑛, 𝑓𝑤,ℎ(𝑖) is defined if
and only if 𝑓𝑤′,ℎ(𝑖′) is defined and, in this case, 𝛼(𝑤), 𝑓𝑤,ℎ(𝑖) �𝜂,𝑘 𝛼(𝑤′), 𝑓𝑤′,ℎ(𝑖′). In particular, it
follows that if 𝑤 �𝜂,𝑘 𝑤′ (i.e., 𝑤, 0 �𝜂,𝑘 𝑤′, 0), then 𝛼(𝑤) �𝜂,𝑘 𝛼(𝑤′) as desired. ■

Note that by hypothesis on 𝑢, 𝑣 and 𝑧, we have 𝛿(𝑎) = 𝛿(𝑏) = 𝛿(𝑐) = 𝑒 ∈ 𝐸(𝑁), which
means that for every nonempty word 𝑤 ∈ 𝐵+, we have 𝛿(𝑤) = 𝑒 (on the other hand, 𝛿(𝜀) = 1𝑁 ,
which might be distinct from 𝑒). We prove that for every 𝑘 ∈ N, we have,

(𝑐𝑘𝑎𝑐2𝑘𝑏𝑐𝑘)𝑘 (𝑐𝑘𝑎𝑐2𝑘𝑏𝑐𝑘)𝑘 �𝛿,𝑘 (𝑐𝑘𝑎𝑐2𝑘𝑏𝑐𝑘)𝑘𝑐𝑘𝑏𝑐𝑘 (𝑐𝑘𝑎𝑐2𝑘𝑏𝑐𝑘)𝑘 . (12)

60 / 74 T. Place, M. Zeitoun

By Fact 9.8 and by definition of 𝛼, this will yield the desired property of Proposition 9.7.
To prove (12), we establish by induction a more general property. We fix 𝑘 for the proof,

and we write 𝑥 = 𝑐𝑘𝑎𝑐𝑘 and 𝑦 = 𝑐𝑘𝑏𝑐𝑘. Let 𝑛 ∈ N and consider a quadruple (𝑤, 𝑖, 𝑤′, 𝑖′) where
𝑤,𝑤′ ∈ 𝐵∗, 𝑖 ∈ Pos(𝑤) and 𝑖′ ∈ Pos(𝑤′). We say that (𝑤, 𝑖, 𝑤′, 𝑖′) is an 𝑛-candidate if there exist
ℎ, ℓ ≥ 𝑛 and 𝑤1, 𝑤

′
1 ∈ (𝑥 + 𝑦)∗ such that 𝑤 = (𝑥 𝑦)ℎ𝑤1(𝑥 𝑦)ℓ, 𝑤′ = (𝑥 𝑦)ℎ𝑤′

1(𝑥 𝑦)ℓ and one of the
three following properties is satisfied:

1. We have 𝑖 ≤ |(𝑥 𝑦)ℎ |, 𝑖′ ≤ |(𝑥 𝑦)ℎ | and 𝑖 = 𝑖′.
2. We have | (𝑥 𝑦)ℎ𝑤1 | < 𝑖, | (𝑥 𝑦)ℎ𝑤′

1 | < 𝑖′ and 𝑖 − |(𝑥 𝑦)ℎ𝑤1 | = 𝑖′ − |(𝑥 𝑦)ℎ𝑤′
1 |.

3. We have | (𝑥 𝑦)ℎ | < 𝑖 ≤ |(𝑥 𝑦)ℎ𝑤1 |, | (𝑥 𝑦)ℎ | < 𝑖′ ≤ |(𝑥 𝑦)ℎ𝑤′
1 |, and the following infixes are

equal: 𝑤(𝑖 − 𝑛 − 1, 𝑖 + 𝑛 + 1) = 𝑤′(𝑖′ − 𝑛 − 1, 𝑖′ + 𝑛 + 1).

We use Lemma 9.5 and induction on 𝑛 to prove that for every 𝑛 ≤ 𝑘 and every 𝑛-candidate
(𝑤, 𝑖, 𝑤′, 𝑖′), we have 𝑤, 𝑖 �𝛿,𝑛 𝑤′, 𝑖′. Since it is clear that ((𝑥 𝑦)𝑘 (𝑥 𝑦)𝑘, 0, (𝑥 𝑦)𝑘 𝑦(𝑥 𝑦)𝑘, 0) is
a 𝑘-candidate (as Condition 1 in the definition holds), it will follow that the equivalence
(𝑥 𝑦)𝑘 (𝑥 𝑦)𝑘 �𝛿,𝑘 (𝑥 𝑦)𝑘 𝑦(𝑥 𝑦)𝑘 also holds. By definition of 𝑥 and 𝑦, this is exactly (12).

Fix 𝑛 ≤ 𝑘 and an 𝑛-candidate (𝑤, 𝑖, 𝑤′, 𝑖′) for the proof. We have to show that𝑤, 𝑖 �𝛿,𝑛 𝑤′, 𝑖′.
It is clear from the definition of an 𝑛-candidate that 𝑖 and 𝑖′ are either both unlabeled or share
the same label in 𝐵. By Lemma 9.5, this concludes the proof when 𝑛 = 0: we get 𝑤, 𝑖 �𝛿,0 𝑤′, 𝑖′.
We now assume that 𝑛 ≥ 1. In view of Lemma 9.5, there are four additional conditions to
prove in this case. By symmetry, we only prove the first one and leave the others to the reader.
Consider a position 𝑗 of 𝑤 such that 𝑖 < 𝑗. We have to exhibit a position 𝑗′ of 𝑤′ such that
𝑖′ < 𝑗′, 𝜂(𝑤(𝑖, 𝑗)) = 𝜂(𝑤′(𝑖′, 𝑗′)) and 𝑤, 𝑗 �𝛿,𝑛−1 𝑤′, 𝑗′. Observe that for the latter property
(i.e., 𝑤, 𝑗 �𝛿,𝑛−1 𝑤

′, 𝑗′), it suffices to choose 𝑗′ such that (𝑤, 𝑗, 𝑤′, 𝑗′) is an (𝑛 − 1)-candidate: by
induction on 𝑛, this implies that𝑤, 𝑗 �𝜂,𝑛−1 𝑤

′, 𝑗′. Since (𝑤, 𝑖, 𝑤′, 𝑖′) is an 𝑛-candidate, there exist
ℎ, ℓ ≥ 𝑛 and 𝑤1, 𝑤

′
1 ∈ (𝑥 + 𝑦)∗ such that 𝑤 = (𝑥 𝑦)ℎ𝑤1(𝑥 𝑦)ℓ, 𝑤′ = (𝑥 𝑦)ℎ𝑤′

1(𝑥 𝑦)ℓ and one of the
three conditions in the definition holds. We consider several cases depending on the position 𝑗

inside 𝑤.
Assume first that 𝑗 ≤ |(𝑥 𝑦)ℎ |. Hence, we have 𝑖 < 𝑗 ≤ |(𝑥 𝑦)ℎ |. It follows that Condition 1

in the definition of the 𝑛-candidate (𝑤, 𝑖, 𝑤′, 𝑖′) holds. Therefore, we have 𝑖′ = 𝑖 < | (𝑥 𝑦)ℎ |. It
now suffices to define 𝑗′ = 𝑗. Clearly, 𝑖′ < 𝑗′ and𝑤′(𝑖′, 𝑗′) = 𝑤(𝑖, 𝑗). Moreover, one can check that
(𝑤, 𝑗, 𝑤′, 𝑗′) is an (𝑛 − 1)-candidate (in fact, it is even an 𝑛-candidate in this case) as Condition 1
in the definition holds.

We now assume that | (𝑥 𝑦)ℎ | < 𝑗 ≤ |(𝑥 𝑦)ℎ𝑤1𝑥 𝑦 |. We consider two subcases depending
on whether 𝑖 + 1 = 𝑗 or 𝑖 + 1 < 𝑗. Assume first that 𝑖 + 1 = 𝑗. In this case, we define 𝑗′ = 𝑖′ + 1.
Clearly, we have 𝑖′ < 𝑗′ and 𝑤′(𝑖′, 𝑗′) = 𝑤(𝑖, 𝑗) = 𝜀. Hence, we have to verify that (𝑤, 𝑗, 𝑤′, 𝑗′) is
an (𝑛 − 1)-candidate. We show that Condition 3 holds. By definition, ℎ ≥ 𝑛 − 1, ℓ − 1 ≥ 𝑛 − 1,
𝑤 = (𝑥 𝑦)ℎ𝑤1𝑥 𝑦(𝑥 𝑦)ℓ−1 and 𝑤′ = (𝑥 𝑦)ℎ𝑤′

1𝑥 𝑦(𝑥 𝑦)ℓ−1. Moreover, | (𝑥 𝑦)ℎ | < 𝑗 ≤ |(𝑥 𝑦)ℎ𝑤1𝑥 𝑦 | and
it can be verified from the definition of 𝑗′ that | (𝑥 𝑦)ℎ | < 𝑗′ ≤ |(𝑥 𝑦)ℎ𝑤′

1𝑥 𝑦 |. Finally, one can also
check that𝑤(𝑗−𝑛, 𝑗 +𝑛) = 𝑤′(𝑗−𝑛, 𝑗′+𝑛) from the hypothesis that (𝑤, 𝑖, 𝑤′, 𝑖′) is an 𝑛-candidate,

61 / 74 All about unambiguous polynomial closure

since 𝑗 = 𝑖 + 1 and 𝑗′ = 𝑖′ + 1. We conclude that (𝑤, 𝑗, 𝑤′, 𝑗′) is an (𝑛− 1)-candidate as Condition 3
holds. We turn to the second subcase: assume that 𝑖+1 < 𝑗. By hypothesis, 𝑖′ ≤ |(𝑥 𝑦)ℎ𝑤′

1 |. Hence,
by definition of 𝑥, 𝑦 and since 𝑛 ≤ 𝑘, one can verify that there exists a position 𝑗′ ∈ Pos(𝑤′)
such that | (𝑥 𝑦)ℎ | < 𝑗′ ≤ |(𝑥 𝑦)ℎ𝑤′

1𝑥 𝑦 |, 𝑖′ + 1 < 𝑗′ and 𝑤(𝑗 − 𝑛, 𝑗 + 𝑛) = 𝑤′(𝑗 − 𝑛, 𝑗′ + 𝑛). We
have 𝑖′ < 𝑗′ by definition. Moreover, since 𝑖 + 1 < 𝑗 and 𝑖′ + 1 < 𝑗′, we know that 𝑤′(𝑖′, 𝑗′) and
𝑤(𝑖, 𝑗) are nonempty, which yields 𝛿(𝑤′(𝑖′, 𝑗′)) = 𝛿(𝑤(𝑖, 𝑗)) = 𝑒 by definition of 𝛿. Finally, it is
immediate that (𝑤, 𝑗, 𝑤′, 𝑗′) is an (𝑛 − 1)-candidate since Condition 3 again holds.

Finally, assume that | (𝑥 𝑦)ℎ𝑤1𝑥 𝑦 | < 𝑗. In this case, let 𝑗′ be the unique position of 𝑤′ such
that | (𝑥 𝑦)ℎ𝑤′

1𝑥 𝑦 | < 𝑗′ and 𝑗 − |(𝑥 𝑦)ℎ𝑤1𝑥 𝑦 | = 𝑗′ − |(𝑥 𝑦)ℎ𝑤′
1𝑥 𝑦 |. Since 𝑖 < 𝑗 and (𝑤, 𝑖, 𝑤′, 𝑖′) is an

𝑛-candidate, one can check that 𝑖′ < 𝑗′ and that either 𝑖 + 1 = 𝑗 and 𝑖′ + 1 = 𝑗′ or 𝑖 + 1 < 𝑗 and
𝑖′+1 < 𝑗′, which implies that 𝛿(𝑤′(𝑖′, 𝑗′)) = 𝛿(𝑤(𝑖, 𝑗)). Finally, it is straightforward to verify that
(𝑤, 𝑗, 𝑤′, 𝑗′) is a (𝑛 − 1)-candidate (in fact, it is even an 𝑛-candidate in this case) as Condition 2
in the definition holds, completing the proof. ■

9.2 Connection with two-variable first-order logic

We now prove the generic correspondence existing between two-variable first-order logic and
unary temporal logic: we prove that FO2(IC) = TL(C) for every Boolean algebra C. As we
announced, this generalizes a theorem by Etessami, Vardi and Wilke [9], which states that
FO2(<) = F + P (which is the particular case C = ST) and FO2(<, +1) = F + X + P + Y (which is
the particular case C = ST+).

THEOREM 9.9. For every Boolean algebra C, we have FO2(IC) = TL(C).

PROOF . We first prove the inclusion TL(C) ⊆ FO2(IC). We have to prove that for every TL[C]
formula, there exists a sentence of FO2(IC) defining the same language. Consider a TL[C]
formula 𝜑. We use structural induction to construct a formula ⟨𝜑⟩(𝑥) of FO2(IC) with at most
one free variable “𝑥”, which satisfies the following property:

Given 𝑤 ∈ 𝐴∗ and a position 𝑖 ∈ Pos(𝑤), 𝑤 |= ⟨𝜑⟩(𝑖) ⇐⇒ 𝑤, 𝑖 |= 𝜑. (13)

Clearly, the language defined by 𝜑 is also defined by the sentence “⟨𝜑⟩(𝑚𝑖𝑛)” of FO2(IC). Hence,
this proves TL(C) ⊆ FO2(IC), as announced.

It remains to construct ⟨𝜑⟩(𝑥) from 𝜑, which we do using structural induction on the TL[C]
formula 𝜑. Note that we only present the construction. That it satisfies (13) is straightforward to
verify and left to the reader. First, if 𝜑 := ⊤ or 𝜑 := ⊥, then we define ⟨𝜑⟩(𝑥) := ⊤ and ⟨𝜑⟩(𝑥) := ⊥
respectively. Moreover, if 𝜑 := 𝑚𝑖𝑛 or 𝜑 := 𝑚𝑎𝑥, then we define ⟨𝜑⟩(𝑥) := (𝑥 = 𝑚𝑖𝑛) and
⟨𝜑⟩(𝑥) := (𝑥 = 𝑚𝑎𝑥) respectively. If 𝜑 := 𝑎 for some letter 𝑎 ∈ 𝐴, then we define ⟨𝜑⟩(𝑥) := 𝑎(𝑥).
Assume now that 𝜑 := F𝐿 𝜓 for some 𝐿 ∈ C and a smaller TL[C] formula 𝜓. In this case, we
define ⟨𝜑⟩(𝑥) := ∃ 𝑦 𝐼𝐿(𝑥, 𝑦) ∧ ⟨𝜓⟩(𝑦). Finally, when 𝜑 := P𝐿 𝜓 for some 𝐿 ∈ C and a smaller

62 / 74 T. Place, M. Zeitoun

TL[C] formula 𝜓, we define ⟨𝜑⟩(𝑥) := ∃ 𝑦 𝐼𝐿(𝑦, 𝑥) ∧ ⟨𝜓⟩(𝑦). This concludes the proof of the
right to left inclusion in Theorem 9.9.

We turn to the inclusion FO2(IC) ⊆ TL(C). Let 𝜑(𝑥) be an FO2(IC) formula with at most
one free variable 𝑥. We prove that there exists a TL[C] formula [𝜑] satisfying the following
property:

Given 𝑤 ∈ 𝐴∗ and a position 𝑖 ∈ Pos(𝑤), 𝑤, 𝑖 |= [𝜑] ⇐⇒ 𝑤 |= 𝜑(𝑖). (14)

Before we present the construction, let us explain why this implies FO2(IC) ⊆ TL(C). Let
𝐿 ∈ FO2(IC). By definition, 𝐿 is defined by a sentence 𝜑 of FO2(IC). Since 𝜑 has no free
variables, the TL[C] formula [𝜑] given by (14) satisfies 𝑤, 𝑖 |= [𝜑] ⇔ 𝑤 |= 𝜑 for every 𝑤 ∈ 𝐴∗

and every 𝑖 ∈ Pos(𝑤). In particular, [𝜑] defines 𝐿 and we get 𝐿 ∈ TL(C).

It remains to prove that for every formula 𝜑(𝑥) of FO2(IC) with at most one free variable 𝑥,
there exists a TL[C] formula [𝜑] satisfying (14). We proceed by induction on the size of 𝜑(𝑥). We
start with the base case: 𝜑(𝑥) is an atomic formula. There are several cases. First, if 𝜑(𝑥) := ⊤ or
𝜑(𝑥) := ⊥, then we define [𝜑] := ⊤ and [𝜑] := ⊥ respectively. If 𝜑 := 𝑎(𝑥) for some letter 𝑎 ∈ 𝐴,
then we define [𝜑] := 𝑎. If 𝜑 := 𝑎(𝑚𝑖𝑛) or 𝜑 := 𝑎(𝑚𝑎𝑥) for some letter 𝑎 ∈ 𝐴, then we define
[𝜑] := ⊥. We now consider the atomic formulas involving equality. Since there is only one free
variable 𝑥 and equality is commutative, this boils down to four cases. If 𝜑 := (𝑥 = 𝑥), we define
[𝜑] := ⊤. If 𝜑 := (𝑥 = 𝑚𝑖𝑛), we define [𝜑] := 𝑚𝑖𝑛. If 𝜑 := (𝑥 = 𝑚𝑎𝑥), we define [𝜑] := 𝑚𝑎𝑥.
Finally, if 𝜑 := (𝑚𝑖𝑛 = 𝑚𝑎𝑥), we define [𝜑] := ⊥. It now remains to consider the atomic formulas
involving a binary predicate 𝐼𝐿 for some 𝐿 ∈ C. Since 𝑥 is the only variable which is (possibly)
free in 𝜑(𝑥), we have to consider the following cases. If 𝜑 is either 𝐼𝐿(𝑥, 𝑥), 𝐼𝐿(𝑚𝑎𝑥, 𝑥), 𝐼𝐿(𝑥, 𝑚𝑖𝑛)
or 𝐼𝐿(𝑚𝑎𝑥, 𝑚𝑖𝑛), we simply define [𝜑] := ⊥. If we have 𝜑 := 𝐼𝐿(𝑚𝑖𝑛, 𝑥), we define [𝜑] := P𝐿 𝑚𝑖𝑛.
If we have 𝜑 := 𝐼𝐿(𝑥, 𝑚𝑎𝑥), we define [𝜑] := F𝐿 𝑚𝑎𝑥. Finally, when 𝜑 := 𝐼𝐿(𝑚𝑖𝑛, 𝑚𝑎𝑥), we
define [𝜑] := (𝑚𝑖𝑛 ∧ F𝐿 𝑚𝑎𝑥) ∨ P𝐴∗ (𝑚𝑖𝑛 ∧ F𝐿 𝑚𝑎𝑥) (note that 𝐴∗ ∈ C since C is a Boolean
algebra). This concludes the case of atomic formulas. The Boolean connectives are handled in
the obvious way: we let [𝜓1 ∨ 𝜓2] = [𝜓1] ∨ [𝜓2], [𝜓1 ∧ 𝜓2] = [𝜓1] ∧ [𝜓2] and [¬𝜓] = ¬[𝜓].

It remains to treat quantification over a second variable 𝑦, i.e., 𝜑(𝑥) := ∃ 𝑦 𝛾(𝑥, 𝑦) (since ∀
has the same semantics as ¬∃¬, we may assume without loss of generality that all quantifiers
in 𝜑 are existential). We cannot apply induction to 𝛾 since it has two free variables. To solve
this problem, we first need to put 𝛾 into normal form. First, we define L as the finite set of all
languages 𝐿 ∈ C such that 𝛾 contains an atomic formula 𝐼𝐿(𝑥, 𝑦) or 𝐼𝐿(𝑦, 𝑥) inside which the
occurrences of 𝑥 and 𝑦 are free. Using L, we define an equivalence ∼ over 𝐴∗: for 𝑢, 𝑣 ∈ 𝐴∗, we
write 𝑢 ∼ 𝑣 when 𝑢 ∈ 𝐿⇔ 𝑣 ∈ 𝐿 for every 𝐿 ∈ L. Since L is finite, ∼ has finite index. Moreover,
since every 𝐿 ∈ L belongs to C, which is a Boolean algebra by hypothesis, the ∼-classes belong to
C as well. We say that a formula is an L-profile when it is of the form 𝐼𝐻 (𝑥, 𝑦), 𝐼𝐻 (𝑦, 𝑥) or 𝑥 = 𝑦

where 𝐻 ∈ C is a ∼-class. Note that since ∼ has finite index, there are finitely many L-profiles.

63 / 74 All about unambiguous polynomial closure

Finally, we say that an FO2(IC) formula with at most two free-variables 𝑥 and 𝑦 is L-
normalized if it has the following form:∧

1≤𝑖≤𝑛
(𝜁𝑖 (𝑥) ⇔ 𝑡𝑖) ∧ 𝜋(𝑥, 𝑦) ∧ 𝜓(𝑦),

where 𝑛 ∈ N, 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥) are FO2(IC) formulas smaller than 𝛾 whose only free variable is 𝑥,
𝑡1, . . . , 𝑡𝑛 ∈ {⊤,⊥}, 𝜋(𝑥, 𝑦) is an L-profile, and 𝜓(𝑦) is an FO2(IC) formula smaller than 𝛾 whose
only free variable is 𝑦. The argument is based on the following fact.

FACT 9.10. The formula 𝛾(𝑥, 𝑦) is equivalent to a finite disjunction of L-normalized formulas.

Before we prove Fact 9.10, let us use it to complete the construction of [𝜑]. Recall that
𝜑(𝑥) := ∃ 𝑦 𝛾(𝑥, 𝑦). Since disjunctions and existential quantifications commute, it follows from
Fact 9.10 that 𝜑(𝑥) is equivalent to a finite disjunction of the form∨

1≤ 𝑗≤𝑚
𝜑 𝑗 (𝑥).

where each formula 𝜑 𝑗 (𝑥) is of form ∃ 𝑦 𝜉 𝑗 (𝑥, 𝑦) with 𝜉 𝑗 (𝑥, 𝑦) an L-normalized formula. There-
fore, we concentrate on the formulas 𝜑 𝑗: if we construct TL[C] formulas [𝜑1], . . . , [𝜑𝑚] satisfy-
ing (14) for 𝜑1, . . . , 𝜑𝑚, it will then suffice to define:

[𝜑] =
∨

1≤ 𝑗≤𝑚
[𝜑 𝑗] .

Consider one of the formulas 𝜑 𝑗 . We use induction to build [𝜑 𝑗]. By definition of normalized
formulas, 𝜑 𝑗 (𝑥) has the following form:

𝜑 𝑗 (𝑥) = ∃ 𝑦
∧

1≤𝑖≤𝑛
(𝜁𝑖 (𝑥) ⇔ 𝑡𝑖) ∧ 𝜋(𝑥, 𝑦) ∧ 𝜓(𝑦).

with 𝑛 ∈ N, 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥) are FO2(IC) formulas smaller than 𝛾 whose only free variable is 𝑥,
𝑡1, . . . , 𝑡𝑛 ∈ {⊤,⊥}, 𝜋(𝑥, 𝑦) an L-profile and 𝜓(𝑦) is an FO2(IC) formula smaller than 𝛾 whose
only free variable is 𝑦. We may therefore apply induction to the subformulas 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥)
and 𝜓(𝑦), which yields FO2(IC) formulas [𝜁1], . . . , [𝜁𝑛] and [𝜓] satisfying (14). We consider
three cases depending on the L-profile 𝜋(𝑥, 𝑦). First, if 𝜋(𝑥, 𝑦) := “𝐼𝐻 (𝑥, 𝑦)” for some ∼-class
𝐻 ∈ C, we define,

[𝜑 𝑗] =
∧

1≤𝑖≤𝑛
([𝜁𝑖] ⇔ 𝑡𝑖) ∧ F𝐻 [𝜓] .

Second, if 𝜋(𝑥, 𝑦) := “𝐼𝐻 (𝑦, 𝑥)” for some ∼-class 𝐻 ∈ C, we define,

[𝜑 𝑗] =
∧

1≤𝑖≤𝑛
([𝜁𝑖] ⇔ 𝑡𝑖) ∧ P𝐻 [𝜓] .

64 / 74 T. Place, M. Zeitoun

Finally, if 𝜋(𝑥, 𝑦) := “𝑥 = 𝑦” for some ∼-class 𝐻 ∈ C, we define,

[𝜑 𝑗] =
∧

1≤𝑖≤𝑛
([𝜁𝑖] ⇔ 𝑡𝑖) ∧ [𝜓] .

One may verify that this definition satisfies (14), which concludes the proof for the construction
of [𝜑].

It remains to prove Fact 9.10. By definition, 𝛾(𝑥, 𝑦) is a Boolean combination of atomic
formulas and existential quantifications, i.e., formulas of the form ∃𝑧 𝜓(𝑥, 𝑦, 𝑧). Note that since
𝛾(𝑥, 𝑦) is FO2 and already contains the two variables 𝑥 and 𝑦, we know that in the latter case,
the quantified variable 𝑧 is either 𝑥 or 𝑦, which means that there remains in the formula a
single free variable (namely, 𝑥 if 𝑧 = 𝑦 and 𝑦 if 𝑧 = 𝑥). The important point resulting from this
discussion is that the only subformulas in the Boolean combination involving both 𝑥 and 𝑦 as
free variables are atomic. In summary, we conclude that 𝛾(𝑥, 𝑦) is a Boolean combination of
three kinds of subformulas:

1. Atomic formulas involving both 𝑥 and 𝑦: by definition, they are of the form 𝐼𝐿(𝑥, 𝑦) or
𝐼𝐿(𝑦, 𝑥) for 𝐿 ∈ L.

2. Formulas 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥) whose only free variable is 𝑥.
3. Formulas 𝜒1(𝑦), . . . , 𝜒𝑚(𝑦) whose only free variable is 𝑦.

Intuitively, the main idea is now to get rid of the first two kinds of subformulas from 𝛾(𝑥, 𝑦) by
making a disjunction over all possible assignments of truth values for 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥) and all
possible formulas 𝐼𝐿(𝑥, 𝑦) or 𝐼𝐿(𝑦, 𝑥) for 𝐿 ∈ L.

Let 𝑇 = {⊥,⊤}𝑛. Intuitively, we view each tuple 𝜏 = (𝑡1, . . . , 𝑡𝑛) ∈ 𝑇 as an assignment of
truth values for the subformulas 𝜁1(𝑥), . . . , 𝜁𝑛(𝑥). Moreover, let 𝑃 be the set of all L-profiles. By
definition, an L-profile 𝜋(𝑥, 𝑦) determines the truth value of every atomic formula 𝐼𝐿(𝑥, 𝑦) or
𝐼𝐿(𝑦, 𝑥) for 𝐿 ∈ L. Indeed, when 𝜋(𝑥, 𝑦) := “𝑥 = 𝑦” is satisfied, then all atomic formulas 𝐼𝐿(𝑥, 𝑦)
or 𝐼𝐿(𝑦, 𝑥) are false. When 𝜋(𝑥, 𝑦) := “𝐼𝐻 (𝑥, 𝑦)” is satisfied for some ∼-class 𝐻 , then all formulas
𝐼𝐿(𝑦, 𝑥) are false and given 𝐿 ∈ L, 𝐼𝐿(𝑥, 𝑦) is true if and only if 𝐻 ⊆ 𝐿 (by definition of the
equivalence ∼ from L). Symmetrically, when 𝜋(𝑥, 𝑦) := “𝐼𝐻 (𝑦, 𝑥)” is satisfied for some ∼-class
𝐻 , then all formulas 𝐼𝐿(𝑥, 𝑦) are false and given 𝐿 ∈ L, 𝐼𝐿(𝑦, 𝑥) is true if and only if 𝐻 ⊆ 𝐿.
For every 𝜏 = (𝑡1, . . . , 𝑡𝑛) ∈ 𝑇 and 𝜋 ∈ 𝑃, we denote by 𝜋(𝜏(𝛾(𝑥, 𝑦))) the formula obtained
from 𝛾(𝑥, 𝑦) by replacing each subformula 𝜁𝑖 (𝑥) in the Boolean combination by the truth value
𝑡𝑖 ∈ {⊥,⊤} and each atomic formula 𝐼𝐿(𝑥, 𝑦) or 𝐼𝐿(𝑦, 𝑥) for 𝐿 ∈ L by its truth value as given by
𝜋. Observe that the only free variable in 𝜋(𝜏(𝛾(𝑥, 𝑦))) is 𝑦 since we replaced all subformulas
involving 𝑥 in the Boolean combination by truth values. One may now verify that 𝛾(𝑥, 𝑦) is
equivalent to the following formula:∨

𝜏=(𝑡1,...,𝑡𝑛)∈𝑇

∨
𝜋∈𝑃

(∧
𝑖≤𝑛

(𝜁𝑖 (𝑥) ⇔ 𝑡𝑖) ∧ 𝜋(𝑥, 𝑦) ∧ 𝜋(𝜏(𝛾(𝑥, 𝑦)))
)
.

65 / 74 All about unambiguous polynomial closure

By definition, this is a disjunction of normalized formulas. Note also that each formula 𝜁𝑖 (𝑥) is
smaller than 𝛾(𝑥, 𝑦), as well as 𝜓(𝑦) = 𝜋(𝜏(𝛾(𝑥, 𝑦))). This concludes the proof of Fact 9.10. ■

9.3 Connection with unambiguous polynomial closure

We now prove that if C is a prevariety, the inclusion UPol(BPol(C)) ⊆ TL(C) holds. Let us point
out that this inclusion is strict in general. Yet, we shall prove in the next section that when C is
either a prevariety of group languages G or its well-suited extension G+, the inclusion is in fact
an equality: in that case, we have UPol(BPol(C)) = TL(C).

REMARK 9.1 1. The cases when C is either G or G+ for a prevariety of group languages G
cover most of the situations when TL(C) corresponds to a natural logical class. Indeed, as
TL(C) = FO2(IC) by Theorem 9.9, it follows from the results of Section 3 that when C is either
G or G+, we obtain the variant FO2(<,PG) and FO2(<, +1,PG) of FO2. Yet, there is a special
variant of FO2 that is not covered by theses cases. It was considered by Krebs, Lodaya, Pandya
and Straubing [12]. It is called “two-variable first-order logic with between predicates” and
it is simple to verify that it corresponds to FO2(IAT). It is proved in [12] that this variant has
decidable membership but this is based on a specialized proof which is independent of the
techniques that we use here.

We may now prove the generic inclusion UPol(BPol(C)) ⊆ TL(C). The proof argument is
based on Theorem 4.29 which yields UPol(BPol(C)) = WAPol(BPol(C)). With this equality in
hand, it suffices to prove that WAPol(BPol(C)) ⊆ TL(C).

PROPOS IT ION 9.12. Let C be a prevariety. Then, UPol(BPol(C)) ⊆ TL(C).

PROOF . By Corollary 4.6, BPol(C) is a prevariety. Hence, UPol(BPol(C)) = WAPol(BPol(C))
by Theorem 4.29 and it suffices to prove that WAPol(BPol(C)) ⊆ TL(C). By definition of WAPol,
this boils down to proving that TL(C) contains BPol(C) and is closed under disjoint union and
left/right BPol(C)-deterministic marked concatenation. Closure under union is immediate by
definition. For the other properties, we use the following fact.

FACT 9.13. Let 𝐾 ∈ BPol(C). There exist two TL[C] formulas 𝜉ℓ𝐾 and 𝜉𝑟𝐾 such that for every
word 𝑤 ∈ 𝐴∗ and every position 𝑖 ∈ Pos(𝑤), we have,

𝑤, 𝑖 |= 𝜉ℓ𝐾 ⇐⇒ 𝑖 ≥ 1 and 𝑤(0, 𝑖) ∈ 𝐾.
𝑤, 𝑖 |= 𝜉𝑟𝐾 ⇐⇒ 𝑖 ≤ |𝑤| and 𝑤(𝑖, |𝑤| + 1) ∈ 𝐾.

PROOF . We prove the existence of 𝜉𝑟𝐾 (the argument for 𝜉ℓ𝐾 is symmetrical and left to the
reader). By definition, 𝐾 ∈ BPol(C) is a Boolean combination of languages 𝐾0𝑎1𝐾1 · · · 𝑎𝑛𝐾𝑛
where 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝐾0, . . . , 𝐾𝑛 ∈ C. Therefore, since we may use Boolean connectives

66 / 74 T. Place, M. Zeitoun

freely in TL[C] formulas, we may assume without loss of generality that 𝐾 itself is of the form
𝐾0𝑎1𝐾1 · · · 𝑎𝑛𝐾𝑛. In that case, it suffices to define,

𝜉𝑟𝐾 = F𝐾0

(
𝑎1 ∧ F𝐾1

(
𝑎2 ∧ F𝐾2

(
· · · 𝑎𝑛 ∧ F𝐾𝑛 𝑚𝑎𝑥

)))
.

By definition, 𝜉𝑟𝐾 is a TL[C] formula. Moreover, one can verify that it satisfies the desired
property, concluding the proof. ■

Clearly, Fact 9.13 implies that TL(C) contains BPol(C): every language 𝐾 ∈ BPol(C) is
defined by the TL[C] formula 𝜉𝑟𝐾 . It remains to prove that TL(C) is closed under left/right
BPol(C)-deterministic marked concatenation. By symmetry, we concentrate on left BPol(C)-
deterministic marked concatenation. Let 𝐻, 𝐿 ∈ TL(C) and 𝑎 ∈ 𝐴 such that 𝐻𝑎𝐿 is left BPol(C)-
deterministic. We prove that 𝐻𝑎𝐿 ∈ TL(C). By definition, we have 𝐾 ∈ BPol(C) such that
𝐻 ⊆ 𝐾 and 𝐾𝑎𝐿 is left deterministic. We write 𝜓 for the TL[C] formula 𝑎 ∧ 𝜉ℓ𝐾 (where 𝜉ℓ𝐾 is
given by Fact 9.13). Since 𝐾𝑎𝐿 is left deterministic, it follows from Lemma 4.14 that 𝐾𝑎𝐴∗ is
unambiguous. Hence, by definition of 𝜓, for every word𝑤 ∈ 𝐴∗, there exists at most one position
𝑖 ∈ Pos(𝑤) such that 𝑤, 𝑖 |= 𝜓. Since 𝐻 ⊆ 𝐾 , it follows that for every 𝑤 ∈ 𝐴∗, we have 𝑤 ∈ 𝐻𝑎𝐿
if and only if 𝑤 satisfies the three properties:

1. there exists 𝑖 ∈ Pos(𝑤) such that 𝑤, 𝑖 |= 𝜓 (the position 𝑖 is unique as explained above).
2. The prefix 𝑤(0, 𝑖) belongs to 𝐻 .
3. The suffix 𝑤(𝑖, |𝑤| + 1) belongs to 𝐿.

Therefore, it suffices to prove that these three properties may be expressed using a TL[C]
formula. This is simple for the first property: it is expressed by the formula F 𝜓. It remains
to prove that the other two properties can be defined as well. Let us start with the second
one. Since 𝐻 ∈ TL(C), it is defined by a TL[C] formula 𝜑𝐻 . We modify it to construct another
formula 𝜑′𝐻 expressing the second property. Given 𝑤 ∈ 𝐴∗, we restrict the evaluation of 𝜑𝐻 to
the positions 𝑖 ∈ Pos(𝑤) such that 𝑖 is either strictly smaller than the unique one satisfying 𝜓
or 𝑖 = |𝑤| + 1. More precisely, we build 𝜑′𝐻 by applying the two following modifications to 𝜑𝐻 :

1. We recursively replace each subformula of the form P𝑉 𝜁 with 𝑉 ∈ C by,

(𝑚𝑎𝑥 ∧ P (𝜓 ∧ P𝑉 𝜁)) ∨ (F 𝜓 ∧ P𝑉 𝜁) .

2. We recursively replace each subformula of the form F𝑉 𝜁 with 𝑉 ∈ C by,

(F𝑉 (𝜁 ∧ F 𝜓)) ∨ (F𝑉 (𝜓 ∧ F (𝑚𝑎𝑥 ∧ 𝜁))) .

It remains to handle the third property. Since 𝐿 ∈ TL(C), there exists a TL[C] formula 𝜑𝐿
defining 𝐿. We construct a formula 𝜑′𝐿 expressing the third property above.

67 / 74 All about unambiguous polynomial closure

Given 𝑤 ∈ 𝐴∗, we restrict the evaluation of 𝜑𝐿 to the positions 𝑖 ∈ Pos(𝑤) such that 𝑖 is
either strictly larger than the unique one satisfying 𝜓 or 𝑖 = 0. More precisely, we build 𝜑′𝐿 by
applying the two following modifications to 𝜑𝐿:

1. We recursively replace each subformula of the form P𝑉 𝜁 with 𝑉 ∈ C by,

(P𝑉 (𝜁 ∧ P 𝜓)) ∨ (P𝑉 (𝜓 ∧ P (𝑚𝑖𝑛 ∧ 𝜁))) .

2. We recursively replace each subformula of the form F𝑉 𝜁 with 𝑉 ∈ C by,

(𝑚𝑖𝑛 ∧ F (𝜓 ∧ F𝑉 𝜁)) ∨ (P 𝜓 ∧ F𝑉 𝜁) .

The language 𝐻𝑎𝐿 is now defined by the TL[C] formula (F 𝜓) ∧ 𝜑′𝐻 ∧ 𝜑′𝐿. This concludes the
proof of Proposition 9.12. ■

10. Logical characterizations of unambiguous polynomial closure

This final section details the logical characterizations of unambiguous polynomial closure.
Let us first summarize what we already know. By Theorem 4.9, when C is a prevariety, we
have Δ2(IC) = Pol(BPol(C)) ∩ co-Pol(BPol(C)). Moreover, since BPol(C) is a prevariety by
Corollary 4.6, we get from Theorem 4.21 that,

Δ2(IC) = Pol(BPol(C)) ∩ co-Pol(BPol(C)) = UPol(BPol(C)).

Independently, we proved in Theorem 9.9 that the variant FO2(IC) of two-variable first-order
logic corresponds to the unary temporal logic TL(C) (this holds as soon as C is a Boolean
algebra). Finally, we proved the inclusion UPol(BPol(C)) ⊆ TL(C) in Proposition 9.12 for every
prevariety C. Altogether, it follows that when C is a prevariety, we have

Δ2(IC) = Pol(BPol(C)) ∩ co-Pol(BPol(C)) = UPol(BPol(C)) ⊆ TL(C) = FO2(IC).

In general, the inclusion is strict. Yet, we prove in this section that when C is either a prevariety
of group languages G or its well-suited extension G+, the converse inclusion holds. Since the
presentation of logical classes can be simplified in these cases (see Lemma 3.3 and Lemma 9.2),
we get the following generic results for every prevariety of group languages G:

UPol(BPol(G)) = Δ2(<,PG) = FO2(<,PG) = TL(G).
UPol(BPol(G+)) = Δ2(<, +1,PG) = FO2(<, +1,PG) = TLX(G).

The proofs of the missing inclusions are based on Theorem 6.7, the algebraic characterization
of Pol(BPol(C)) ∩ co-Pol(BPol(C)) = Δ2(IC). We use Proposition 9.7 to prove that it is satisfied
by the class TL(C) when C is a prevariety of group languages G or its well-suited extension
G+. Actually, we simplify the generic characterization presented in Theorem 6.7 and present

68 / 74 T. Place, M. Zeitoun

specialized characterizations for these two special cases. In particular, this yields generic
characterizations of FO2(<,PG) and FO2(<, +1,PG). They generalize well-known results for
particular instances of these logical classes. Let us point out that here, we directly characterize
the languages of these classes (using a property of their syntactic morphism) rather than
characterizing the morphisms associated to the class. This is because in this case, we do need to
use the characterizations as subresults.

10.1 Group languages

We first consider the classes UPol(BPol(G)) where G is a prevariety of group languages. The
algebraic characterization is based on the class of finite monoids DA, whose connection with
unambiguous polynomial closure [35] and two-variable first-order logic [39] is well known. We
use a definition based on an equation (see [38] for details). A finite monoid 𝑁 belongs to DA
when it satisfies the following equation:

(𝑠𝑡)𝜔 = (𝑠𝑡)𝜔𝑡(𝑠𝑡)𝜔 for every 𝑠, 𝑡 ∈ 𝑁. (15)

We are now ready to present the generic characterization for classes of the form UPol(BPol(G)).

THEOREM 10.1. Let G be a prevariety of group languages and let 𝐿 be a regular language. The
following properties are equivalent:

1. 𝐿 ∈ UPol(BPol(G)).
2. 𝐿 ∈ Pol(BPol(G)) ∩ co-Pol(BPol(G)).
3. 𝐿 ∈ Δ2(<,PG).
4. 𝐿 ∈ FO2(<,PG).
5. 𝐿 ∈ TL(G).
6. The G-kernel of the syntactic morphism of 𝐿 belongs to DA.

PROOF . By Lemma 3.3, we have Δ2(<,PG) = Δ2(IG). Therefore, (2) ⇔ (3) follows from
Theorem 4.9. Moreover, (1) ⇔ (2) is given by Theorem 4.21. Since FO2(<,PG) = FO2(IG) by
Lemma 3.3, the equivalence (4) ⇔ (5) is immediate from Theorem 9.9. Finally, the implication
(1) ⇒ (5) follows from Proposition 9.12. We now prove independently that (6) ⇒ (2) and
(5) ⇒ (6), which completes the argument. Let 𝛼 : 𝐴∗ → 𝑀 be the syntactic morphism of 𝐿 and
let 𝑁 ⊆ 𝑀 be its G-kernel.

Let us start with the implication (6) ⇒ (2). We assume that 𝑁 belongs to DA and show
that 𝐿 ∈ Pol(BPol(G)) ∩ co-Pol(BPol(G)). Since 𝐿 is recognized by its syntactic morphism 𝛼, it
suffices to show that 𝛼 is a (Pol(BPol(G)) ∩ co-Pol(BPol(G)))-morphism. By Theorem 6.7,this
boils down to proving that for every 𝑠, 𝑡 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀) such that (𝑒, 𝑠) ∈ 𝑀2 is a G-pair,
we have (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔. By Lemma 5.13, we have 𝑒𝑠 ∈ 𝑁 and 𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1 ∈ 𝑁 .

69 / 74 All about unambiguous polynomial closure

Since 𝑁 belongs to DA, it follows from (15) that,

(𝑒𝑠𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1)𝜔 = (𝑒𝑠𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1(𝑒𝑠𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1)𝜔 .

This exactly says that (𝑒𝑠𝑒𝑡)𝜔 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)3𝜔−1. It now suffices to multiply by 𝑒𝑠𝑒𝑡 on the
right to get (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔, as desired.

Finally, we prove that (5) ⇒ (6). We assume that 𝐿 ∈ TL(G) and show that 𝑁 ∈ DA, i.e.,
that 𝑁 satisfies (15). Let 𝑠, 𝑡 ∈ 𝑁 . We prove that (𝑠𝑡)𝜔 = (𝑠𝑡)𝜔𝑡(𝑠𝑡)𝜔. By hypothesis, 𝐿 is defined
by a formula 𝜑𝐿 of TL[G]. Let 𝑘 ∈ N be the rank of 𝜑𝐿. Fact 9.3 yields a G-morphism 𝜂 : 𝐴∗ → 𝐺

such that 𝜑𝐿 is a TL[𝜂] formula. Moreover, since 𝑠, 𝑡 belong to the G-kernel 𝑁 of 𝛼 and 𝜂 is a
G-morphism, Lemma 5.4 yields 𝑢, 𝑣 ∈ 𝐴∗ such that 𝜂(𝑢) = 𝜂(𝑣) = 1𝐺, 𝛼(𝑢) = 𝑠 and 𝛼(𝑣) = 𝑡.
Hence, since 𝜑𝐿 is an 𝜂-formula of rank 𝑘, it follows from Lemma 9.6 and Proposition 9.7 (applied
for 𝑧 = 𝜀 which also maps to 1𝐺) that 𝑥 (𝑢𝑣)𝑘 (𝑢𝑣)𝑘 𝑦 ∈ 𝐿⇔ 𝑥 (𝑢𝑣)𝑘𝑣(𝑢𝑣)𝑘 𝑦 ∈ 𝐿 for all 𝑥, 𝑦 ∈ 𝐴∗.
In other words, (𝑢𝑣)𝑘 (𝑢𝑣)𝑘 and (𝑢𝑣)𝑘𝑣(𝑢𝑣)𝑘 are equivalent for the syntactic congruence of 𝐿.
Since 𝛼 is the syntactic morphism of 𝐿, we get 𝛼((𝑢𝑣)𝑘 (𝑢𝑣)𝑘) = 𝛼((𝑢𝑣)𝑘𝑣(𝑢𝑣)𝑘). By definition of
𝑢 and 𝑣, it follows that (𝑠𝑡)𝑘 (𝑠𝑡)𝑘 = (𝑠𝑡)𝑘𝑡(𝑠𝑡)𝑘. It now suffices to multiply by enough copies of
𝑠𝑡 on the left and on the right to obtain (𝑠𝑡)𝜔 = (𝑠𝑡)𝜔𝑡(𝑠𝑡)𝜔, as desired. ■

Given as input a regular language 𝐿, one can compute its syntactic morphism. Moreover, by
Lemma 5.3, the G-kernel of this morphism can be computed when G-separation is decidable. It is
then simple to decide whether it belongs toDA: this boils down to checking whether (15) holds by
testing all possible combinations for 𝑠 and 𝑡. By Theorem 10.1, this decides if 𝐿 ∈ UPol(BPol(G)).
Altogether, we obtain the following corollary.

COROLLARY 10.2. Let G be a prevariety of group languages with decidable separation. Then,
membership is decidable for the class FO2(<,PG) = TL(G) = Δ2(<,PG) = UPol(BPol(G)).

Recall that separation is decidable for the four standard prevarieties of group languages
ST, MOD, AMT and GR that we presented in Section 2.3. Therefore, Corollary 10.2 applies in
these cases. In particular, we get the decidability of membership for the logical classes FO2(<),
FO2(<,MOD), FO2(<,AMOD) and FO2(<,PGR).

Again, Theorem 10.1 generalizes classic results. The most prominent one is for G = ST.
Since ST = {∅, 𝐴∗}, it is easy to check that the ST-kernel of a surjective morphism 𝛼 : 𝐴∗ → 𝑀

is the whole monoid 𝑀 . Also by Lemma 4.25, we have UPol(BPol(ST)) = UPol(AT). Therefore,
in this case, Theorem 10.1 yields that UPol(AT) = Δ2(<) = FO2(<) = F + P and that a regular
language belongs to this class if and only if its syntactic monoid belongs to DA. Historically,
this was proved by combining several independent results. First, the correspondence between
UPol(AT) and DA is due to Schützenberger [35]. Then, it was shown by Pin and Weil [20] that
UPol(AT) = Δ2(<). As we explained in the previous section, that FO2(<) = F + P was proved by
Etessami, Vardi and Wilke [9]. Finally, the correspondence between FO2(<) and DA is due to
Thérien and Wilke [39].

70 / 74 T. Place, M. Zeitoun

Another well-known application of Theorem 10.1 is the case where G = MOD. In particular,
the theorem implies that Δ2(<, 𝑀𝑂𝐷) = FO2(<,MOD) and that a regular language belongs to this
class if and only if the MOD-kernel of its syntactic morphism belongs to DA. The correspondence
between FO2(<,MOD) and the membership of the MOD-kernel of the syntactic morphism to
DA is due to Dartois and Paperman [7], while the equality Δ2(<, 𝑀𝑂𝐷) = FO2(<,MOD) is due
to Kufleitner and Walter [13].

REMARK 10.3. While membership for UPol(BPol(G)) boils down to G-separation, not much
is known about separation and covering for UPol(BPol(G)). The only class of this kind for which
separation and covering are known to be decidable is UPol(BPol(ST)) = FO2(<). This is the
class UPol(AT) by Lemma 4.25. Since AT is a finite class, UPol(AT)-covering is decidable by
Corollary 8.11.

10.2 Well-suited extensions

We now consider classes of the form UPol(BPol(G+)), where G+ is the well-suited extension of
an arbitrary prevariety of group languages G. In this case, the characterization is based on the
class of finite semigroups LDA. Again, we use a definition which is based on an equation. A
finite semigroup 𝑆 belongs to LDA when it satisfies the following equation:

(𝑒𝑠𝑒𝑡𝑒)𝜔 = (𝑒𝑠𝑒𝑡𝑒)𝜔𝑒𝑡𝑒(𝑒𝑠𝑒𝑡𝑒)𝜔 for every 𝑠, 𝑡 ∈ 𝑆 and 𝑒 ∈ 𝐸(𝑆). (16)

We now present the generic statement characterization of UPol(BPol(G+)).

THEOREM 10.4. Let G be a prevariety of group languages and let 𝐿 be a regular language. The
following properties are equivalent:

1. 𝐿 ∈ UPol(BPol(G+)).
2. 𝐿 ∈ Pol(BPol(G+)) ∩ co-Pol(BPol(G+)).
3. 𝐿 ∈ Δ2(<, +1,PG).
4. 𝐿 ∈ FO2(<, +1,PG).
5. 𝐿 ∈ TLX(G).
6. The strict G-kernel of the syntactic morphism of 𝐿 belongs to LDA.

PROOF . In this case as well, we already proved most of the implications. By Lemma 3.3,
we have Δ2(<, +1,PG) = Δ2(IG+). Hence, (2) ⇔ (3) follows from Theorem 4.9. Moreover,
(1) ⇔ (2) is given by Theorem 4.21. Finally, since FO2(<, +1,PG) = FO2(IG+) by Lemma 3.3 and
TLX(G) = TL(G+) by Lemma 9.2, the equivalence (4) ⇔ (5) is immediate from Theorem 9.9.
Finally, the implication (1) ⇒ (5) follows from Proposition 9.12. We now prove independently
that (6) ⇒ (2) and (5) ⇒ (6) to complete the proof. We let 𝛼 : 𝐴∗ → 𝑀 be the syntactic
morphism of 𝐿. Let also 𝑁 be the G-kernel of 𝛼, and 𝑆 be its strict G-kernel. Recall from
Section 5 that we have 𝑆 = 𝑁 ∩ 𝛼(𝐴+) by definition.

71 / 74 All about unambiguous polynomial closure

We start with the implication (6) ⇒ (2). Assume that 𝑆 belongs to LDA. We have to show
that 𝐿 ∈ Pol(BPol(G+)) ∩ co-Pol(BPol(G+)). Since 𝐿 is recognized by its syntactic morphism 𝛼, it
suffices to show that 𝛼 is a (Pol(BPol(G+)) ∩ co-Pol(BPol(G+)))-morphism. By Theorem 6.7, this
boils down to proving that for every 𝑠, 𝑡 ∈ 𝑀 and 𝑒 ∈ 𝐸(𝑀) such that (𝑒, 𝑠) ∈ 𝑀2 is a G+-pair, we
have (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔. By Fact 5.6, we have 𝑒 ∈ 𝑁 . We consider two cases depending
on whether 𝑒 ∈ 𝑆 or 𝑒 ∈ 𝑁 \ 𝑆. Assume first that 𝑒 ∈ 𝑁 \ 𝑆. Since 𝑆 = 𝑁 ∩𝛼(𝐴+), this implies that
𝑒 = 1𝑀 and that 𝛼−1(1𝑀) = {𝜀}. Since (1𝑀 , 𝑠) is a G+-pair and {𝜀} ∈ G+, it follows that 𝑠 = 1𝑀
as well. Hence, (𝑒𝑠𝑒𝑡)𝜔+1 = 𝑡𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔 follows directly. We now consider the case
where 𝑒 ∈ 𝑆. By Lemma 5.13, we have 𝑒𝑠 and 𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1 ∈ 𝑁 . Since 𝑒 ∈ 𝑆, this implies that
𝑒𝑠 ∈ 𝑆 and 𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1 ∈ 𝑆. Since 𝑆 belongs to LDA, we get from Equation (16) that,

(𝑒𝑒𝑠𝑒𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1𝑒)𝜔 = (𝑒𝑒𝑠𝑒𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1𝑒)𝜔𝑒𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1𝑒(𝑒𝑒𝑠𝑒𝑒𝑡(𝑒𝑠𝑒𝑡)2𝜔−1𝑒)𝜔 .

Since 𝑒 is idempotent, this simplifies into (𝑒𝑠𝑒𝑡)𝜔𝑒 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)3𝜔−1𝑒. It now suffices to
multiply by 𝑠𝑒𝑡 on the right to get the desired equality (𝑒𝑠𝑒𝑡)𝜔+1 = (𝑒𝑠𝑒𝑡)𝜔𝑒𝑡(𝑒𝑠𝑒𝑡)𝜔.

We finally turn to the implication (5) ⇒ (6). Assume that 𝐿 ∈ TLX(G) = TL(G+). We
show that 𝑆 belongs to LDA, i.e., that 𝑆 satisfies (16). Let 𝑠, 𝑡 ∈ 𝑆 and 𝑒 ∈ 𝐸(𝑆). We prove that
(𝑒𝑠𝑒𝑡𝑒)𝜔 = (𝑒𝑠𝑒𝑡𝑒)𝜔𝑒𝑡𝑒(𝑒𝑠𝑒𝑡𝑒)𝜔. By hypothesis, 𝐿 is defined by a formula 𝜑𝐿 of TL[G+]. Let
𝑘 ∈ N be the rank of 𝜑. Fact 9.3 yields a G+-morphism 𝜂 : 𝐴∗ → 𝑄 such that 𝜑𝐿 is a TL[𝜂]
formula. It follows from Lemma 2.15 that 𝐺 = 𝜂(𝐴+) is a group in 𝑁 and that the morphism
𝛽 : 𝐴∗ → 𝐺 defined by 𝛽(𝑤) = 𝜂(𝑤) for every 𝑤 ∈ 𝐴+ is a G-morphism. Using the hypothesis
that 𝑠, 𝑡, 𝑒 ∈ 𝑆, we prove that there exist 𝑢, 𝑣, 𝑧 ∈ 𝐴∗ such that 𝛼(𝑢) = 𝑠, 𝛼(𝑣) = 𝑡, 𝛼(𝑧) = 𝑒 and
𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑧) = 1𝐺. By symmetry, we only prove the existence of 𝑢 ∈ 𝐴∗. There are two
cases, depending on whether 𝑠 = 1𝑀 or not. If 𝑠 = 1𝑀 , then we have 1𝑀 ∈ 𝑆 ⊆ 𝛼(𝐴+). Thus,
there exists 𝑢′ ∈ 𝐴+ such that 𝛼(𝑢′) = 1𝑀 . We let 𝑢 = (𝑢′)𝑝 for 𝑝 = 𝜔(𝐺). Clearly, 𝛼(𝑢) = 1𝑀 = 𝑠

and 𝜂(𝑢) = (𝜂(𝑢′))𝑝 = 1𝐺 since 𝐺 is a group. Assume now that 𝑠 ≠ 1𝑀 . We have 𝑠 ∈ 𝑆 ⊆ 𝑁 .
Since 𝛽 : 𝐴∗ → 𝐺 is a G-morphism, it follows from Lemma 5.4 that there exists 𝑢 ∈ 𝐴∗ such that
𝛼(𝑢) = 𝑠 and 𝛽(𝑢) = 1𝐺. Since 𝑠 ≠ 1𝑀 , we have 𝑢 ∈ 𝐴+, which also implies that 𝜂(𝑢) = 𝛽(𝑢) = 1𝐺,
as desired.

We now use 𝑢, 𝑣, 𝑧 (satisfying 𝛼(𝑢) = 𝑠, 𝛼(𝑣) = 𝑡, 𝛼(𝑧) = 𝑒 and 𝜂(𝑢) = 𝜂(𝑣) = 𝜂(𝑧) = 1𝐺) to
conclude the proof. Since 𝜑𝐿 is an 𝜂-formula of rank 𝑘 and 1𝐺 ∈ 𝐸(𝑁), it follows from Lemma 9.6
and Proposition 9.7 that for all 𝑥, 𝑦 ∈ 𝐴∗, we have,

𝑥 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 𝑦 ∈ 𝐿⇔ 𝑥 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘𝑧𝑘𝑣𝑧𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 𝑦 ∈ 𝐿.

Hence, (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 and (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘𝑧𝑘𝑣𝑧𝑘 (𝑧𝑘𝑢𝑧2𝑘𝑣𝑧𝑘)𝑘 are equivalent for the
syntactic congruence of 𝐿. Since 𝛼 is the syntactic morphism of 𝐿, these words have the same
image under 𝛼. This yields (𝑒𝑠𝑒𝑡𝑒)𝑘 (𝑒𝑠𝑒𝑡𝑒)𝑘 = (𝑒𝑠𝑒𝑡𝑒)𝑘𝑒𝑡𝑒(𝑒𝑠𝑒𝑡𝑒)𝑘 by definition of 𝑢, 𝑣 and 𝑧.
It now suffices to multiply by enough copies of 𝑒𝑠𝑒𝑡𝑒 on the left and on the right to obtain
(𝑒𝑠𝑒𝑡𝑒)𝜔 = (𝑒𝑠𝑒𝑡𝑒)𝜔𝑒𝑡𝑒(𝑒𝑠𝑒𝑡𝑒)𝜔, as desired. ■

72 / 74 T. Place, M. Zeitoun

Given as input a regular language 𝐿, one can compute its syntactic morphism. Moreover,
by Lemma 5.3, the strict G-kernel of this morphism can be computed as soon as G-separation is
decidable. It is then simple to decide whether it belongs to LDA: this boils down to checking
if (16) holds by testing all possible combinations for 𝑠, 𝑡 and 𝑒. By Theorem 10.4, this decides
whether 𝐿 ∈ UPol(BPol(G+)). We state this in the following corollary.

COROLLARY 10.5. Let G be a prevariety of group languages with decidable separation. Then,
membership is decidable for FO2(<, +1,PG) = TLX(G) = Δ2(<, +1,PG) =UPol(BPol(G+)).

Recall again that separation is decidable for the prevarieties of group languages ST, MOD,
AMT and GR, so that Corollary 10.5 applies in these cases: membership is decidable for the
logical classes FO2(<, +1), FO2(<, +1,MOD), FO2(<, +1,AMOD) and FO2(<, +1,PGR).

Here again, Theorem 10.4 generalizes known results in the particular case G = ST. Since
ST = {∅, 𝐴∗}, it is straightforward to verify that the strict ST-kernel of a morphism 𝛼 : 𝐴∗ → 𝑀 is
the semigroup 𝛼(𝐴+). When 𝛼 is the syntactic morphism of a language 𝐿, this object is called the
syntactic semigroup of 𝐿. Thus, Theorem 10.4 yields that Δ2(<, +1) = FO2(<, +1) = F + X + P + Y
and that a regular language belongs to this class if and only if its syntactic semigroup belongs to
LDA. As seen in the previous section, the equality FO2(<, +1) = F + X + P + Y is due to Etessami,
Vardi and Wilke [9]. The remaining correspondences are due to Thérien and Wilke [39]. In
particular, the connection with LDA is established by relying on results of Almeida [1], based on
a complex algebraic framework by Tilson [42], which involves categories and wreath products
of finite semigroups. We bypass this intricate machinery here.

REMARK 10.6. In this case as well, there exists no generic result concerning separation
and covering for classes of the form UPol(BPol(G+)). However, both problems are known to
be decidable in two particular cases: G = ST and G = MOD. In view of Theorem 10.4, this
corresponds to the logical classes FO2(<, +1) and FO2(<, +1,MOD). The decidability of covering
for these two classes can be obtained by applying generic transfer results of [25] and [23] to the
simpler class FO2(<) (as we mentioned above, decidability of covering for this class was first
proved in [32]). The techniques involved in these results are orthogonal and independent from
the ones of the present paper.

11. Conclusion

We presented a generic algebraic characterization of unambiguous polynomial closure and
used it to prove that when C is a prevariety, membership for UPol(C) reduces to membership
for C. An interesting byproduct of the proof is that UPol(C) = APol(C) = Pol(C) ∩ co-Pol(C) in
that case. Moreover, we showed that when C is a finite prevariety, covering and separation
are decidable for UPol(C). This completes similar results of [31] for Pol(C) and Bool(Pol(C))

73 / 74 All about unambiguous polynomial closure

and of [22] for Pol(Bool(Pol(C))). Finally, we presented logical characterizations of the classes
built with unambiguous polynomial closure. In particular, we proved that if the input class G is
a prevariety of group languages, then UPol(BPol(G)) = Δ2(<,PG) = FO2(<,PG) = TL(G) and
UPol(BPol(G+)) = Δ2(<, +1,PG) = FO2(<, +1,PG) = TLX(G). This generalizes earlier results
corresponding to particular examples of prevarieties of group languages G.

A natural follow-up question is whether our result for separation and covering can be
pushed further to encompass more inputs than the finite classes. In particular, in view of the
above logical characterizations, it would be interesting to look at both problems for classes
of the form UPol(BPol(G)) and UPol(BPol(G+)) when G is a prevariety of group languages.
While this is difficult, there are known results of this kind; in particular, it is known [30] that
separation and covering are decidable for Pol(BPol(G)) as soon as separation is decidable for G.

References
[1] Jorge Almeida. A syntactical proof of locality of DA.

International Journal of Algebra and Computation,
6(2):165–177, 1996 DOI (72).

[2] Jorge Almeida, Jana Bartonová, Ondrej Klíma, and
Michal Kunc. On decidability of intermediate levels
of concatenation hierarchies. Proceedings of the
19th International Conference on Developments in
Language Theory, DLT’15, volume 9168 of Lect.
Notes Comp. Sci. Pages 58–70. Springer, 2015 DOI
(3, 4, 34).

[3] Mustapha Arfi. Opérations polynomiales et
hiérarchies de concaténation. Theoretical
Computer Science, 91(1):71–84, 1991 DOI (2, 17,
18).

[4] Mustapha Arfi. Polynomial operations on rational
languages. Proceedings of the 4th Annual
Symposium on Theoretical Aspects of Computer
Science, STACS’87, volume 247 of Lect. Notes
Comp. Sci. Pages 198–206. Springer, 1987 DOI
(2, 17, 18).

[5] Christopher J. Ash. Inevitable graphs: a proof of
the type II conjecture and some related decision
procedures. International Journal of Algebra and
Computation, 1(1):127–146, 1991 DOI (9).

[6] Mário Branco and Jean-Éric Pin. Equations
defining the polynomial closure of a lattice of
regular languages. 36th International Colloquium
on Automata, Languages, and Programming,
ICALP’09, volume 5556 of Lect. Notes Comp. Sci.
Pages 115–126. Springer, 2009 DOI (3).

[7] Luc Dartois and Charles Paperman. Two-variable
first order logic with modular predicates over
words. Proceedings of the 30th International
Symposium on Theoretical Aspects of Computer
Science, STACS’13, volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 329–340. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2013 DOI (4, 70).

[8] Volker Diekert, Paul Gastin, and
Manfred Kufleitner. A survey on small fragments of
first-order logic over finite words. International
Journal of Foundations of Computer Science,
19(3):513–548, 2008 DOI (3).

[9] Kousha Etessami, Moshe Y. Vardi, and
Thomas Wilke. First-order logic with two variables
and unary temporal logic. Information and
Computation, 179(2):279–295, 2002 DOI (3, 54,
61, 69, 72).

[10] James Alexander Green. On the structure of
semigroups. Annals of Mathematics, 54(1):163–172,
1951 DOI (6).

[11] Hans W. Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, Computer Science
Department, University of California at Los Angeles,
USA, 1968 (1).

[12] Andreas Krebs, Kamal Lodaya, Paritosh K. Pandya,
and Howard Straubing. Two-variable logics with
some betweenness relations: expressiveness,
satisfiability and membership. Logical Methods in
Computer Science, 16(3), 2020 DOI (65).

[13] Manfred Kufleitner and Tobias Walter. One
quantifier alternation in first-order logic with
modular predicates. RAIRO Theorerical Informatics
and Applications, 49(1):1–22, 2015 DOI (4, 70).

[14] Robert McNaughton and Seymour A. Papert.
Counter-Free Automata. MIT Press, 1971 (1).

[15] Jean-Éric Pin. Propriétés syntactiques du produit
non ambigu. Proceedings of the 7th International
Colloquium on Automata, Languages and
Programming, ICALP’80, volume 85 of Lect. Notes
Comp. Sci. Pages 483–499. Springer, 1980 DOI
(3, 38).

https://doi.org/10.1142/S021819679600009X
https://doi.org/10.1007/978-3-319-21500-6_4
https://doi.org/10.1016/0304-3975(91)90268-7
https://doi.org/10.1007/BFB0039607
https://doi.org/10.1142/S0218196791000079
https://doi.org/10.1007/978-3-642-02930-1_10
https://doi.org/10.4230/LIPIcs.STACS.2013.329
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.2307/1969317
https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.1051/ITA/2014024
https://doi.org/10.1007/3-540-10003-2_93

74 / 74 T. Place, M. Zeitoun

[16] Jean-Eric Pin. An explicit formula for the
intersection of two polynomials of regular
languages. Proceedings of the 17th International
Conference on Developments in Language Theory,
DLT’13, volume 7907 of Lect. Notes Comp. Sci.
Pages 31–45. Springer, 2013 DOI (18, 22).

[17] Jean-Eric Pin. Mathematical foundations of
automata theory. In preparation, 2023 URL (7).

[18] Jean-Eric Pin. The dot-depth hierarchy, 45 years
later. The Role of Theory in Computer Science.
Essays Dedicated to Janusz Brzozowski, chapter 8,
pages 177–202. World Scientific, 2017 DOI (2).

[19] Jean-Eric Pin, Howard Straubing, and
Denis Thérien. Locally trivial categories and
unambiguous concatenation. Journal of Pure and
Applied Algebra, 52(3):297–311, 1988 DOI (3, 4,
23).

[20] Jean-Eric Pin and Pascal Weil. Polynomial closure
and unambiguous product. Theory of Computing
Systems, 30(4):383–422, 1997 DOI (2–4, 22, 69).

[21] Jean-Éric Pin and Howard Straubing. Monoids of
upper triangular boolean matrices, Semigroups.
Structure and Universal Algebraic Problems.
Volume 39, Colloquia Mathematica Societatis Janos
Bolyal, pages 259–272. North-Holland, 1985 URL
(18).

[22] Thomas Place. Separating regular languages with
two quantifier alternations. Logical Methods in
Computer Science, 14(4), 2018 DOI (2, 3, 34, 73).

[23] Thomas Place, Varun Ramanathan, and
Pascal Weil. Covering and separation for logical
fragments with modular predicates. Logical
Methods in Computer Science, 15(2), 2019 DOI
(72).

[24] Thomas Place, Lorijn van Rooijen, and
Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages.
Proceedings of the 38th International Symposium
on Mathematical Foundations of Computer Science,
MFCS’13, volume 8087 of Lect. Notes Comp. Sci.
Pages 729–740. Springer, 2013 DOI (3).

[25] Thomas Place and Marc Zeitoun. Adding
successor: A transfer theorem for separation and
covering. ACM Transactions on Computational
Logic, 21(2):9:1–9:45, 2020 DOI (72).

[26] Thomas Place and Marc Zeitoun. Generic results
for concatenation hierarchies. Theory of
Computing Systems (ToCS), 63:849–901, 2019
DOI (2, 4, 5, 18, 19, 33).

[27] Thomas Place and Marc Zeitoun. Going higher in
first-order quantifier alternation hierarchies on
words. Journal of the ACM, 66(2):12:1–12:65, 2019
DOI (2).

[28] Thomas Place and Marc Zeitoun. Group separation
strikes back. 38th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS’23, pages 1–13.
IEEE Computer Society, 2023 DOI (9).

[29] Thomas Place and Marc Zeitoun. Separating
without any ambiguity. 45th International
Colloquium on Automata, Languages, and
Programming, ICALP’18, Leibniz International
Proceedings in Informatics (LIPIcs), 137:1–137:14.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2018 DOI (5).

[30] Thomas Place and Marc Zeitoun. Separation and
covering for group based concatenation
hierarchies. Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer
Science, LICS’19, pages 1–13. IEEE Computer
Society, 2019 DOI (2, 73).

[31] Thomas Place and Marc Zeitoun. Separation for
dot-depth two. Logical Methods in Computer
Science, Volume 17, Issue 3, 2021 DOI (2, 72).

[32] Thomas Place and Marc Zeitoun. The covering
problem. Logical Methods in Computer Science,
14(3), 2018 DOI (8, 44–47, 49, 72).

[33] John L. Rhodes. A homomorphism theorem for
finite semigroups. Mathematical systems theory,
1:289–304, 1967 DOI (3).

[34] Marcel Paul Schützenberger. On finite monoids
having only trivial subgroups. Information and
Control, 8(2):190–194, 1965 DOI (1).

[35] Marcel Paul Schützenberger. Sur le produit de
concaténation non ambigu. Semigroup Forum,
13:47–75, 1976 DOI (3, 22, 68, 69).

[36] Imre Simon. Piecewise testable events.
Proceedings of the 2nd GI Conference on Automata
Theory and Formal Languages, pages 214–222.
Springer, 1975 DOI (2, 18).

[37] Howard Straubing. On logical descriptions of
regular languages. LATIN 2002: Theoretical
Informatics, 5th Latin American Symposium,
volume 2286 of Lect. Notes Comp. Sci.
Pages 528–538. Springer, 2002 DOI (26).

[38] Pascal Tesson and Denis Thérien. Diamonds are
forever: the variety DA. Semigroups, Algorithms,
Automata and Languages, pages 475–500. World
Scientific, 2002 DOI (3, 68).

[39] Denis Thérien and Thomas Wilke. Over words, two
variables are as powerful as one quantifier
alternation. Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, STOC’98,
pages 234–240, New York, NY, USA. ACM, 1998
DOI (3, 4, 68, 69, 72).

[40] Gabriel Thierrin. Permutation automata. Theory of
Computing Systems, 2(1):83–90, 1968 DOI (4).

[41] Wolfgang Thomas. Classifying regular events in
symbolic logic. Journal of Computer and System
Sciences, 25(3):360–376, 1982 DOI (2, 19).

[42] Bret Tilson. Categories as algebra: essential
ingredient in the theory of monoids. Journal of Pure
and Applied Algebra, 48(1):83–198, 1987 DOI
(72).

2023 : 1 1
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Thomas Place, Marc Zeitoun.

https://doi.org/10.1007/978-3-642-38771-5_5
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.1016/0022-4049(88)90097-7
https://doi.org/10.1007/BF02679467
https://hal.science/hal-00870684
https://doi.org/10.23638/LMCS-14(4:16)2018
https://doi.org/10.23638/LMCS-15(2:11)2019
https://doi.org/10.1007/978-3-642-40313-2_64
https://doi.org/10.1145/3356339
https://doi.org/10.1007/s00224-018-9867-0
https://doi.org/10.1007/s00224-018-9867-0
https://doi.org/10.1145/3303991
https://doi.org/10.1145/3303991
https://doi.org/10.1109/LICS56636.2023.10175683
https://doi.org/10.4230/LIPIcs.ICALP.2018.137
https://doi.org/10.1109/LICS.2019.8785655
https://doi.org/10.46298/lmcs-17(3:24)2021
https://doi.org/10.23638/LMCS-14(3:1)2018
https://doi.org/10.1007/BF01695164
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/BF02194921
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-45995-2_46
https://doi.org/10.1142/9789812776884_0021
https://doi.org/10.1145/276698.276749
https://doi.org/10.1145/276698.276749
https://doi.org/10.1007/BF01691347
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1016/0022-4049(87)90108-3

	Introduction
	Preliminaries
	Classes of regular languages
	Decision problems
	Group languages
	C-morphisms

	Fragments of first-order logic
	Operators
	Polynomial closure
	Unambiguous polynomial closure
	Alternated polynomial closure

	Canonical relations associated to morphisms
	G-kernels
	C-pairs
	Canonical C-preorder and C-equivalence

	Algebraic characterizations for polynomial closure
	Polynomial closure
	Intersected polynomial closure

	Algebraic characterizations for unambiguous polynomial closure
	Covering and Separation for unambiguous polynomial closure
	Semirings
	Characterization of UPol(C)-optimal imprints

	Unary temporal logic
	Definition and properties
	Connection with two-variable first-order logic
	Connection with unambiguous polynomial closure

	Logical characterizations of unambiguous polynomial closure
	Group languages
	Well-suited extensions

	Conclusion

