
1 / 39 2024 : 1

Strongly Sublinear
Algorithms for Testing
Pattern Freeness

Received Oct 10, 2022
Revised Oct 26, 2023
Accepted Nov 20, 2023
Published Jan 12, 2024

Key words and phrases
Property testing, Pattern freeness,
Sublinear algorithms

Ilan Newmana �
Nithin Varmab �

a Department of Computer
Science, University of Haifa, Israel

b Max Planck Institute for
Informatics, SIC, Saarbrücken,
Germany

ABSTRACT. For a permutation 𝜋 : [𝑘] → [𝑘], a function 𝑓 : [𝑛] → R contains a 𝜋-appearance
if there exists 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 ≤ 𝑛 such that for all 𝑠, 𝑡 ∈ [𝑘], 𝑓 (𝑖𝑠) < 𝑓 (𝑖𝑡) if and only
if 𝜋(𝑠) < 𝜋(𝑡). The function is 𝜋-free if it has no 𝜋-appearances. In this paper, we investigate
the problem of testing whether an input function 𝑓 is 𝜋-free or whether 𝑓 differs on at least 𝜀𝑛
values from every 𝜋-free function. This is a generalization of the well-studied monotonicity
testing and was first studied by Newman, Rabinovich, Rajendraprasad and Sohler [28]. We
show that for all constants 𝑘 ∈ N, 𝜀 ∈ (0, 1), and permutation 𝜋 : [𝑘] → [𝑘], there is a one-sided
error 𝜀-testing algorithm for 𝜋-freeness of functions 𝑓 : [𝑛] → R that makes �̃�(𝑛𝑜(1)) queries.
We improve significantly upon the previous best upper bound 𝑂(𝑛1−1/(𝑘−1)) by Ben-Eliezer and
Canonne [7]. Our algorithm is adaptive, while the earlier best upper bound is known to be tight
for nonadaptive algorithms.

1. Introduction

Given a permutation 𝜋 : [𝑘] → [𝑘], a function 𝑓 : [𝑛] → R contains a 𝜋-appearance if there
exists 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 ≤ 𝑛 such that for all 𝑠, 𝑡 ∈ [𝑘] it holds that 𝑓 (𝑖𝑠) < 𝑓 (𝑖𝑡) if and only
if 𝜋(𝑠) < 𝜋(𝑡). In other words, the function values restricted to the indices {𝑖1, . . . , 𝑖𝑘} respect
the ordering in 𝜋. The function is 𝜋-free if it has no 𝜋-appearance. For instance, the set of all
real-valued monotone non-decreasing functions over [𝑛] is (2, 1)-free. The notion of 𝜋-freeness
is well-studied in combinatorics, where the famous Stanley-Wilf conjecture about the bound
on the number of 𝜋-free permutations 𝑓 : [𝑛] → [𝑛] has spawned a lot of work [13, 14, 5, 25,
3], ultimately culminating in a proof by Marcus and Tardos [26]. The problem of designing

Invited paper from ICALP 2022. The first author was supported by the Israel Science Foundation, grant number 379/21. Most
of this work was done while the second author was an Assistant Professor at the Chennai Mathematical Institute, India.

Cite as Ilan Newman, Nithin Varma. Strongly Sublinear Algorithms for Testing
Pattern Freeness. TheoretiCS, Volume 3 (2024), Article 1, 1-39.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.1

mailto:ilan@cs.haifa.ac.il
mailto:nithinvarma@cmi.ac.in

2 / 39 I. Newman and N. Varma

algorithms to determine whether a given permutation 𝑓 : [𝑛] → [𝑛] is 𝜋-free is an active area of
research [2, 1, 10], with linear time algorithms for constant 𝑘 [23, 20]. Apart from the theoretical
interest, practical motivations to study 𝜋-freeness include the study of motifs and patterns in
time series analysis [11, 31, 24].

In this paper, we study property testing of 𝜋-freeness, as proposed by Newman, Rabinovich,
Rajendraprasad and Sohler [28]. Specifically, given 𝜀 ∈ (0, 1), an 𝜀-testing algorithm for 𝜋-
freeness accepts an input function 𝑓 that is 𝜋-free, and rejects if 𝑓 differs from every 𝜋-free
function on at least 𝜀𝑛 values.1 The algorithm is given oracle access to the function 𝑓 and the goal
is to minimize the number of queries made by the algorithm. This problem is a generalization
of the well-studied monotonicity testing on the line ((2, 1)-freeness), which was one of the first
works in combinatorial property testing, and is still being studied actively [17, 18, 12, 15, 6, 16,
30].

Newman, Rabinovich, Rajendraprasad and Sohler [28] showed that for a general permuta-
tion 𝜋 of length 𝑘, the property of 𝜋-freeness can be 𝜀-tested using a nonadaptive2 algorithm of
query complexity 𝑂𝑘,𝜀(𝑛1−1/𝑘).3 Additionally, they showed that, for nonadaptive algorithms, one
cannot obtain a significant improvement on this upper bound for 𝑘 ≥ 4. In a subsequent work,
Ben-Eliezer and Canonne [7] improved this upper bound to 𝑂𝑘,𝜀(𝑛1−1/(𝑘−1)), which they showed
to be tight for nonadaptive algorithms. For monotone permutations 𝜋 of length 𝑘, namely,
either (1, 2, . . . , 𝑘) or (𝑘, 𝑘 − 1, . . . , 1), Newman et al. [28] presented an algorithm with query
complexity (𝜀−1 log 𝑛)𝑂(𝑘2) to 𝜀-test 𝜋-freeness. The complexity was improved, in a sequence of
works [8, 9], to 𝑂𝑘,𝜀(log 𝑛), which is optimal for constant 𝜀 even for the special case of testing
(2, 1)-freeness [19].

Despite the aforementioned advances in testing freeness of monotone permutations,
improving the complexity of testing freeness of arbitrary permutations has remained open
all this while. For arbitrary permutations of length at most 3, Newman et al. [28] gave an
adaptive algorithm for testing freeness with query complexity (𝜀−1 log 𝑛)𝑂(1) . However, the case
of general 𝑘 > 3 has remained elusive. In particular, the techniques of [28] for 𝑘 = 3 do not
seem to generalize even for 𝑘 = 4.

As remarked above, optimal nonadaptive algorithms are known for any 𝑘 [7], but, their
complexity tends to be linear in the input length as 𝑘 grows. For the special case of (2, 1)-freeness,
it is well-known that adaptivity does not help at all in improving the complexity of testing [18, 19].
Adaptivity is known to help somewhat for the case of testing freeness of monotone permutations
of length 𝑘, where, every nonadaptive algorithm has query complexity Ω((log 𝑛)log 𝑘) [8], and the

1 Algorithms in this area are typically randomized, and the decisions to accept or reject are with high constant probability.
See [32, 22] for definitions of property testing.

2 An algorithm whose queries do not depend on the answers to previous queries is a nonadaptive algorithm. It is
adaptive otherwise.

3 Throughout this work, we are interested in the parameter regime of constant 𝜀 ∈ (0, 1) and 𝑘. The notation 𝑂𝑘,𝜀 (·) hides
a factor that is an arbitrary function of these parameters.

3 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

𝑂𝑘,𝜀(log 𝑛)-query algorithm of Ben-Eliezer, Letzter, and Waingarten [9] is adaptive. Adaptivity
significantly helps in testing freeness of arbitrary permutations of length 3 as shown by [28]
and [7].

1.1 Our results

In this work, we give adaptive 𝜀-testing algorithms for 𝜋-freeness of permutations 𝜋 of arbitrary
constant length 𝑘 with complexity �̃�𝑘,𝜀(𝑛𝑜(1)). Hence, testing 𝜋-freeness has quite efficient
sublinear algorithms even for relatively large patterns. Our result shows a strong separation
between adaptive and nonadaptive algorithms for testing pattern freeness.

THEOREM 1.1. Let 𝜀 ∈ (0, 1), 𝑘 ∈ N and 𝜋 : [𝑘] → [𝑘] be a permutation. There exists an 𝜀-tester

for 𝜋-freeness of functions 𝑓 : [𝑛] → R with query complexity �̃�

((
𝑘
𝜀

)Θ(log log 𝑛)
𝑛𝑘/log log log 𝑛

)
.

1.2 Discussion of our techniques

Our algorithm has one-sided error and rejects only if it finds a 𝜋-appearance in the input
function 𝑓 : [𝑛] → R. In the following, we present some of the main ideas behind a �̃�(

√
𝑛)-

query algorithm for detecting a 𝜋-appearance in a function 𝑓 that is 𝜀-far from 𝜋-free, for a
permutation 𝜋 of length 4. The case of length-4 permutations is not very different from the
general case (where, we additionally recurse on problems of smaller length patterns). The
�̃�(

√
𝑛) queries algorithm is much simpler than the general one, but it outlines many of the

ideas involved in the latter. Additionally, it already beats the lower bound of Ω(𝑛2/3) on the
complexity of nonadaptive algorithms for 𝜋-freeness testing patterns of length 4 [7]. A more
detailed description appears in Section 3. The formal description of the general algorithm is
given in Section 5.

For a parameter 𝜀 ∈ (0, 1), a function 𝑓 is 𝜀-far from 𝜋-free if at least 𝜀𝑛 values of 𝑓 need
to be changed in order to make it 𝜋-free. In other words, the Hamming distance of 𝑓 to the
closest real-valued 𝜋-free function over [𝑛] is at least 𝜀𝑛. A folklore fact is that the Hamming
distance and the deletion distance of 𝑓 to 𝜋-freeness are equal, where the deletion distance of 𝑓

to 𝜋-freeness is the cardinality of the smallest set 𝑆 ⊆ [𝑛] such that 𝑓 restricted to [𝑛] \𝑆 is 𝜋-free.
By virtue of this equality, a function that is 𝜀-far from 𝜋-free has a matching of 𝜋-appearances
of cardinality at least 𝜀𝑛/4, where a matching of 𝜋-appearances is a collection of 𝜋-appearances
such that no two of them share an index. This observation facilitates our algorithm and all
previous algorithms on testing 𝜋-freeness, including monotonicity testers.

The basic ingredient in our algorithms is the use of a natural representation of 𝑓 : [𝑛] → R
by a Boolean function over a grid [𝑛] × 𝑅(𝑓), where 𝑅(𝑓) denotes the range of 𝑓 . Specifically,
we visualize the function as a grid of 𝑛 points in R2, such that for each 𝑖 ∈ [𝑛], the pair (𝑖, 𝑓 (𝑖))
is a point of the grid. We use 𝐺𝑛 to denote this grid of points. This view has been useful in the

4 / 39 I. Newman and N. Varma

design of approximation algorithms for the related and fundamental problem of estimating the
length of Longest Increasing Subsequence (LIS) in a real-valued array [34, 33, 27, 29]. Adopting
this view, for any permutation 𝜋 : [𝑘] → [𝑘], a 𝜋-appearance at (𝑖1, . . . , 𝑖𝑘) in 𝑓 corresponds
naturally to a 𝑘-tuple of points (𝑖 𝑗 , 𝑓 (𝑖 𝑗)), 𝑗 = 1 . . . 𝑘 in 𝐺𝑛, for which their relative order (in 𝐺𝑛)
forms a 𝜋-appearance. The converse is also true: every 𝜋-appearance in the Boolean grid 𝐺𝑛

corresponds to a 𝜋-appearance in 𝑓 .
We note that the grid 𝐺𝑛 is neither known to, nor directly accessible by, the algorithm. In

particular, 𝑅(𝑓) is not assumed to be known. A main first step in our algorithm is to approximate
the grid 𝐺𝑛 by a coarser 𝑚×𝑚 grid 𝐺𝑚,𝑚 of boxes, for a parameter 𝑚 = 𝑜(𝑛) that will determine
the query complexity. The grid 𝐺𝑚,𝑚 is defined as follows. Suppose that we have a partition
of 𝑅(𝑓) into 𝑚 disjoint contiguous intervals of increasing values, referred to here as ‘layers’,
𝐼1, . . . , 𝐼𝑚, and let 𝑆1, . . . , 𝑆𝑚 be a partition of [𝑛] into 𝑚 contiguous intervals of equal size,
referred to as ‘stripes’. These two partitions decompose 𝐺𝑛 and the 𝑓 -points in it into 𝑚2 boxes
and forms the grid 𝐺𝑚,𝑚. The (𝑖, 𝑗)-th cell of this grid is the Cartesian product 𝑆𝑖 × 𝐼 𝑗 , and is
denoted box(𝑆𝑖 , 𝐼 𝑗). We view the nonempty boxes in 𝐺𝑚,𝑚 as a coarse approximation of 𝐺𝑛 (and
of the input function, equivalently). The grid 𝐺𝑚,𝑚 has a natural order on its boxes (viewed as
points in [𝑚] × [𝑚]).

While 𝐺𝑚,𝑚 is also not directly accessible to the algorithm, it can be well-approximated
very efficiently. We can do this by sampling �̃�(𝑚) indices from [𝑛] independently and uniformly
at random and making queries to those indices to identify and mark the boxes in 𝐺𝑚,𝑚 that
contain a non-negligible density of points of 𝐺𝑛. This provides a good enough approximation of
the grid 𝐺𝑚,𝑚. For the rest of this high-level explanation, assume that we have fixed 𝑚 << 𝑛,
and we know 𝐺𝑚,𝑚; that is, we assume that we know the number of points of 𝐺𝑛 belonging to
each box in 𝐺𝑚,𝑚, but not necessarily the points themselves.

If we find 𝑘 nonempty boxes in 𝐺𝑚,𝑚 that form a 𝜋-appearance when viewed as points in
the [𝑚] × [𝑚] grid, then 𝐺𝑛 (and hence 𝑓) contains a 𝜋-appearance for any set of 𝑘 points that
is formed by selecting one point from each of the corresponding boxes. See Figure 1(A) for such
a situation, for 𝜋 = (3, 2, 1, 4). We first detect such 𝜋-appearances by our knowledge of 𝐺𝑚,𝑚.
However, the converse is not true: it could be that 𝐺𝑛 contains many 𝜋-appearances, where
the corresponding points, called ‘legs’, are in boxes that share layers or stripes, and hence do
not form 𝜋-appearances in 𝐺𝑚,𝑚. See e.g., Figure 1(B) for such an appearance for 𝜋 = (3, 2, 1, 4).
Thus, if the function is far from being 𝜋-free and no 𝜋-appearances are detected in 𝐺𝑚,𝑚, then
there must be many 𝜋-appearances in which some legs share a layer or a stripe in 𝐺𝑚,𝑚. In this
case, the seminal result of Marcus and Tardos [26], implies that only 𝑂(𝑚) of the boxes in 𝐺𝑚,𝑚

are nonempty. An averaging argument implies that if 𝑓 is 𝜀-far from being 𝜋-free, then after
deleting layers or stripes in 𝐺𝑚,𝑚 with 𝜔(1)-dense boxes, we are still left with a partial function
(on the undeleted points) that is 𝜀′-far from being 𝜋-free, for a large enough 𝜀′.

5 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

For the following high-level description we consider 𝜋 = (3, 2, 1, 4), although all the
following ideas work for any permutation of length 4. Any 𝜋-appearance has its four legs spread
over at most 4 marked boxes. This implies that there are only constantly many non-isomorphic
ways of arranging the marked boxes containing any particular 𝜋-appearance, in terms of the
order relation among the marked boxes, and the way the legs of the 𝜋-appearance are included
in them. These constantly many ways are called ‘configurations’ in the sequel. Thus any 𝜋-
appearance is consistent with a certain configuration. Additionally, in the case that multiple
points in a 𝜋-appearance share some marked boxes, this appearance induces the appearances
of permutations of length smaller than 4 in each box (which are sub-permutations 𝜈 of 𝜋). If
a constant fraction of the 𝜋-appearances are spread across multiple marked boxes, there will
be many such 𝜈-appearances in the marked boxes in the coarse grid. Hence, one phase of our
algorithm will run tests for 𝜈-appearances for smaller patterns 𝜈 (which can be done in polylog 𝑛
queries using known testers for patterns of length at most 3) on each marked box, and combine
these 𝜈-appearances to detect a 𝜋-appearance, if any. This phase, while seemingly simple will
require extra care, as combining sub-patterns appearances into a global 𝜋-appearance is not
always possible. This is a major issue in the general case for 𝑘 > 4.

The simpler case is when there is a constant fraction of 𝜋-appearances such that all 4
points of each such appearance belong to a single marked box. This can be solved by randomly
sampling a few marked boxes and querying all the points in them to see if there are any 𝜋-
appearances. The case that a constant fraction of the 𝜋-appearances have their legs belonging
to the same layer or the same stripe is an easy extension of the ‘one-box’ case.

To obtain the desired query complexity, consider first setting 𝑚 = �̃�(
√
𝑛). Getting a good

enough estimate of 𝐺𝑚,𝑚 as described above take �̃�(𝑚) = �̃�(
√
𝑛) queries. Then, testing each box

for 𝜈-freeness, for smaller permutations 𝜈 takes polylog 𝑛 per test, but since this is done for all
marked boxes, this step also takes �̃�(𝑚) = �̃�(

√
𝑛). Finally, in the last simpler case, we may just

query all indices in a sampled box that contains at most 𝑛/𝑚 = Θ(
√
𝑛) indices, by our setting

of 𝑚. This results in a �̃�(
√
𝑛)-query tester for 𝜋-freeness.

To obtain a better complexity, we reduce the value of 𝑚, and, in the last step, we randomly
sample a few marked boxes and run the algorithm recursively. This is so, since, in the last
step, we are in the case that for a constant fraction of the 𝜋-appearances, all four legs of each
𝜋-appearance belong to a single marked box (or a constant number of marked boxes sharing a
layer or stripe). The depth of recursion depends monotonically on 𝑛/𝑚 and the larger it is the
smaller is the query complexity. The bound we describe in this article is 𝑛𝑂(1/log log log 𝑛) which
is due to the exponential deterioration of the distance parameter 𝜀 in each recursive call. Our
algorithm for permutations of length 𝑘 > 4 uses, in addition to the self-recursion, a recursion
on 𝑘 too.

Finally, we call 𝜈-freeness or 𝜋-freeness algorithms on marked boxes (or a collection of
constantly many marked boxes sharing a layer or stripe) and not the entire grid. Since we do not

6 / 39 I. Newman and N. Varma

know which points belong to the marked boxes, but only know that their density is significant,
we can access points in them only via sampling and treating points that fall outside the desired
box as being erased. This necessitates the use of erasure-resilient testers [16]. Such testers are
known for all permutation patterns of length at most 3 [16, 29, 28]. In addition, the basic tester
we design is also erasure-resilient, which allows us to recursively call the tester on appropriate
subsets of marked boxes.

Some additional challenges we had to overcome: In the recursive algorithm for 𝑘-length
permutation freeness, 𝑘 ≥ 4, we need to find 𝜈-appearances that are restricted to appear in
specific configurations, for smaller length permutations 𝜈. To exemplify this notion, consider
testing 𝜈 = (1, 3, 2)-freeness. In the unrestricted setting, 𝑓 : [𝑛] ↦→ R has a 𝜈-appearance if
the values at any three indices have a 𝜈-consistent order. In a restricted setting, we may ask
ourselves whether 𝑓 is free of 𝜈-appearances where the indices corresponding to the 1, 3-legs
of a 𝜈-appearance are of value at most 𝑛/2 (that is in the first half of [𝑛]), while the index
corresponding to the 2-leg is larger than 𝑛/2. This latter property seems at least as hard to
test as the unrestricted one. In particular, for the 𝜈-appearance as described above, it could
be that while 𝑓 is far from being 𝜈-free in the usual sense, it is still free of having restricted
𝜈-appearances. In our algorithm, we need to test (at lower recursion levels) freeness from
such restricted appearances. This extra restriction is discussed at a high level in Section 3. For
a formal definition of the restricted testing problem and how it fits into our final algorithm,
see Section 5.

1.3 Open directions

Testing restricted 𝝅-freeness: Testing for restricted 𝜋-appearance, as described above, is
at least as hard as testing 𝜋-freeness. For monotone patterns (and hence 2-patterns) testing
freeness and testing restricted appearances are relatively easy (can be done in polylog 𝑛 queries).
For patterns of size 3 and more, the complexity of testing freeness of restricted appearances is
currently open.

Weak 𝝅-freeness: In the definition of 𝜋-freeness, we required strict inequalities on function
values to have an occurrence of the pattern. A natural variant is to allow weak inequalities,
that is – for a set indices 1 ≤ 𝑖1 < 𝑖2 · · · < 𝑖𝑘 ≤ 𝑛 a weak-𝜋-appearance is when for all 𝑠, 𝑡 ∈ [𝑘] it
holds that 𝑓 (𝑖𝑠) ≤ 𝑓 (𝑖𝑡) if and only if 𝜋(𝑠) < 𝜋(𝑡). Such a relaxed requirement would mean that
having a collection of 𝑘 or more equal values is already a 𝜋-appearance for any pattern 𝜋. For
monotone patterns of length 𝑘, the deletion distance equals the Hamming distance, for any 𝑘,
for this relaxed definition as well. We do not know if this is true for larger 𝑘 for non-monotone
patterns in general, although we suspect that the Hamming distance is never larger than the
deletion distance by more than a constant factor. Proving this will be enough to make our results

7 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

true for testing freeness of any constant size forbidden permutation, even with the relaxed
definition. We show that the Hamming distance is equal to the deletion distance for patterns of
length at most 4. Hence, Theorem 1.1 also holds for weak-𝜋-freeness for 𝑘 ≤ 4.

Another similarly related variant is when the forbidden order pattern is not necessarily
a permutation (that is, an arbitrary function from [𝑘] to [𝑘] which is not one-to-one). For
example, for the 4-pattern 𝛼 = (1, 2, 3, 1), an 𝛼-appearance in 𝑓 at indices 𝑖1 < 𝑖2 < 𝑖3 < 𝑖4 is
when 𝑓 (𝑖1) < 𝑓 (𝑖2) < 𝑓 (𝑖3) and 𝑓 (𝑖4) = 𝑓 (𝑖1), as dictated by the order in 𝛼. For testing freeness
of such patterns, an Ω(

√
𝑛) adaptive lower bounds exist (by a simple probabilistic argument)

even for the very simple case of (1, 1)-freeness, which corresponds to the property of being a
one-to-one function.

An interesting point to mention, in this context, is that for testing freeness of forbidden
permutations, a major tool that we use is the Marcus-Tardos bound [26]. Namely, that the
number of 1’s in an 𝑚×𝑚 Boolean matrix that does not contain a specific permutation matrix of
order 𝑘 is 𝑂(𝑚). For non-permutation patterns, similar bounds are not true in general anymore,
but do hold in many cases (or hold in a weak sense, e.g., only slightly more than linear). In
such cases, the Marcus-Tardos bound could have allowed relatively efficient testing. However,
the lower bounds hinted above for the (1, 1)-pattern makes the testing problem completely
different from that of testing forbidden permutation patterns.

Restricted functions: In this paper we always consider the set of functions 𝑓 : [𝑛] ↦→ R with
no restrictions. Interesting questions occur when the set of functions is more restricted. One
natural such restriction is for functions of bounded or restricted range (for the special case of
(2, 1)-freeness, such a study was initiated by Pallavoor, Raskhodnikova and Varma [30] and
followed upon by others [6, 29]). We do know that in the very extreme case, that is, for functions
from the line [𝑛] to a constant-sized range, pattern freeness is testable in constant time even
for much more general class of forbidden patterns [4]. Apart from this extreme restriction,
or the results for 2-patterns stated above, we are not aware of results concerning functions of
bounded range (e.g., range that is 𝑛2 or

√
𝑛).

Lastly, if we restrict our attention to functions 𝑓 : [𝑛] → [𝑛] that are themselves permu-
tations, Fox and Wei [21] argued that for some special types of distance measures such as the
rectangular-distance and Kendall’s tau distance, testing 𝜋-freeness can be done in constant
query complexity. Testing 𝜋-freeness w.r.t. the Hamming or deletion distances is very different,
and still remains open for this setting.

Other open questions: The major open question left in this paper is to determine the exact
(asymptotic) complexity of testing 𝜋-freeness of arbitrary permutations 𝜋 : [𝑘] → [𝑘], 𝑘 ≥ 3.
While the gaps for 𝑘 = 3 are relatively small (within polylog 𝑛 range), the gaps are yet much
larger for 𝑘 ≥ 4. We do not have any reason to think that the upper bound obtained in this draft

8 / 39 I. Newman and N. Varma

is tight. We did not try to optimize the exponent of 𝑛 in the �̃�(𝑛𝑜(1)) expression, but the current
methods do not seem to bring down the query complexity to polylog 𝑛. We conjecture, however,
that the query complexity is polylog 𝑛 for all constant 𝑘. Another open question is whether the
complexity of two-sided error testing might be lower than that of one-sided error testing.

Finally, Newman and Varma [29] used lower bounds on testing pattern freeness of mono-
tone patterns of length 𝑘 ≥ 3 (for nonadaptive algorithms), to obtain lower bounds on the query
complexity of nonadaptive algorithms for LIS estimation. Proving any lower bound better than
Ω(log 𝑛) for adaptively testing freeness, for arbitrary permutations of length 𝑘 for 𝑘 ≥ 3, may
translate in a similar way to lower bounds on adaptive algorithms for LIS estimation.

Organization: Section 2 contains the notation, important definitions, and a discussion of
some key concepts related to testing 𝜋-freeness. Section 3 contains a high-level overview of an
�̃�(

√
𝑛)-query algorithm for patterns of length 4. The formal description of our 𝜋-freeness tester

for permutations 𝜋 of length 𝑘 ≥ 4 and the proof of correctness appear in Section 5.

2. Preliminaries and discussion

For a function 𝑓 : [𝑛] → R, we denote by 𝑅(𝑓) the image of 𝑓 . We often refer to the elements
of the domain [𝑛] as indices, and the elements of 𝑅(𝑓) as values. For 𝑆 ⊆ [𝑛], 𝑓 |𝑆 denotes the
restriction of 𝑓 to 𝑆. Throughout, 𝑛 will denote the domain size of the function 𝑓 .

We often refer to events in a probability space. For ease of representation, we will say
that an event 𝐸 occurs with high probability, denoted ‘w.h.p.’, if Pr(𝐸) > 1 − 𝑛− log 𝑛, to avoid
specifying accurate constants.

Let S𝑘 denote the set of all permutations of length 𝑘. We view 𝜋 = (𝑎1, . . . , 𝑎𝑘) ∈ S𝑘 as a
function (and not as a cyclus), that is, where 𝜋(𝑖) = 𝑎𝑖 , 𝑖 ∈ [𝑘]. We refer to 𝑎𝑖 as the 𝑖th value
in 𝜋, and as the 𝑎𝑖-leg of 𝜋. Thus, e.g., for 𝜋 = (4, 1, 2, 3), the first value is 4, and the third is 2,
while the 4-leg of 𝜋 is at the first place and its 1-leg is at the second place. We often refer to
𝜋 ∈ S𝑘 as a 𝑘-pattern.

2.1 Deletion distance vs. Hamming distance

The distance of a function from the property of being 𝜋-free can be measured in several ways.
In this paper, we use Hamming and deletion distances as are defined next.

DEF IN IT ION 2 .1 (Deletion and Hamming distance). Let 𝑓 : [𝑛] → R. The deletion distance
of 𝑓 from being 𝜋-free is Ddist𝜋 (𝑓) = min{|𝑆 | : 𝑆 ⊆ [𝑛], 𝑓 | [𝑛]\𝑆 is 𝜋-free}. Namely, it is the
cardinality of the smallest set 𝑆 ⊆ [𝑛] that intersects each 𝜋-appearance in 𝑓 . The Hamming
distance of 𝑓 from being 𝜋-free, Hdist𝜋 (𝑓) is the minimum of dist(𝑓 , 𝑓 ′) = |{𝑖 : 𝑖 ∈ [𝑛], 𝑓 (𝑖) ≠
𝑓 (𝑖′)}| over all functions 𝑓 ′ : [𝑛] → R that are 𝜋-free.

9 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

For 0 ≤ 𝜀 < 1 we say that 𝑓 is 𝜀-far from 𝜋-freeness in deletion distance, or Hamming
distance, if 𝑑𝑖𝑠𝑡𝜋 (𝑓) ≥ 𝜀𝑛, and otherwise we say that 𝑓 is 𝜀-close to 𝜋-freeness, where 𝑑𝑖𝑠𝑡𝜋 (𝑓)
is the corresponding distance.

CLAIM 2 .2. Ddist𝜋 (𝑓) = Hdist𝜋 (𝑓)

PROOF . It is obvious from the definition that Ddist𝜋 (𝑓) ≤ Hdist𝜋 (𝑓). For the other direction,
assume that Ddist𝜋 (𝑓) = 𝑑. Let 𝑆 = {𝑖1, 𝑖2, . . . , 𝑖𝑑} ⊆ [𝑛] for 𝑖1 < 𝑖2 . . . < 𝑖𝑑 be such that 𝑓 | [𝑛]\𝑆
is 𝜋-free. If 𝑖1 > 1, consider the function 𝑓 ′ : [𝑛] → R such that for 𝑖 ∉ 𝑆, 𝑓 ′(𝑖) = 𝑓 (𝑖) and for
𝑗 ∈ [𝑑], 𝑓 ′(𝑖 𝑗) = 𝑓 (𝑚 𝑗), where 𝑚 𝑗 is the largest element in [𝑖 𝑗] \ 𝑆. It can be seen that 𝑓 ′ is 𝜋-free.
Moreover, Hdist(𝑓 , 𝑓 ′) ≤ 𝑑, which proves the claim for 𝑆 such that 𝑖1 > 1. If 𝑖1 = 1, let 𝑠 ∈ [𝑛] be
the smallest index not in 𝑆. We consider the function 𝑓 ′′ : [𝑛] → R, where 𝑓 ′′(𝑖) = 𝑓 (𝑠) for all
𝑖 ∈ [𝑠 − 1], where [𝑠 − 1] ⊆ 𝑆, by definition of 𝑠. Now, the deletion distance of 𝑓 ′′ is less than 𝑑

and we are back to the case that the smallest index being deleted is greater than 1. ■

Claim 2.2 is extremely important for testing 𝜋-freeness, and is what gives rise to all testers
of monotonicity, as well as 𝜋-freeness that are known. This is due to the fact that the tests
are really designed for the deletion distance, rather than the Hamming distance. The folklore
observation made in Claim 2.3 facilitates such tests, and Claim 2.2 makes the tests work also for
the Hamming distance. Due to Claim 2.2, we say that a function 𝑓 is 𝜀-far from 𝜋-free without
specifying the distance measure.

Let 𝜋 ∈ S𝑘 and 𝑓 : [𝑛] → R. A matching of 𝜋-appearances in 𝑓 is a collection of 𝜋-
appearances that are pairwise disjoint as sets of indices in [𝑛]. The following claim is folklore
and immediate from the fact that the size of a minimum vertex cover of a 𝑘-uniform hypergraph
is at most 𝑘 times the cardinality of a maximal matching.

CLAIM 2 .3. Let 𝜋 ∈ S𝑘. If 𝑓 : [𝑛] → R is 𝜀-far from being 𝜋-free, then there exists a matching of
𝜋-appearances of size at least 𝜀𝑛/𝑘.

All our algorithms have one-sided error, i.e., they always accept functions that are 𝜋-free.
For functions that are far from being 𝜋-free, using Claim 2.3, our algorithms aim to detect some
𝜋-appearance, providing a witness for the function to not be 𝜋-free. Hence, in the description
below, and throughout the analysis of the algorithms, the input function is assumed to be 𝜀-far
from 𝜋-free.

2.2 Viewing a function as a grid of points

Let 𝑓 : [𝑛] → R. We view 𝑓 as points in an 𝑛 × |𝑅(𝑓) | grid 𝐺𝑛. The horizontal axis of 𝐺𝑛 is
labeled with the indices in [𝑛]. The vertical axis of 𝐺𝑛 represents the image 𝑅(𝑓) and is labeled
with the distinct values in 𝑅(𝑓) in increasing order, 𝑟1 < 𝑟2 < . . . < 𝑟𝑛′ , where |𝑅(𝑓) | = 𝑛′ ≤ 𝑛.
We refer to an index-value pair (𝑖, 𝑓 (𝑖)), 𝑖 ∈ [𝑛] in the grid as a point. The grid has 𝑛 points, to

10 / 39 I. Newman and N. Varma

which our algorithms do not have direct access. In particular, we do not assume that 𝑅(𝑓) is
known. The function is one-to-one if |𝑅(𝑓) | = 𝑛. Note that if 𝑀 is a matching of 𝜋-appearances
in 𝑓 , then 𝑀 defines a corresponding matching of 𝜋-appearances in 𝐺𝑛. We will always consider
this alternative view, where the matching 𝑀 is a set of disjoint 𝜋-appearances in the grid 𝐺𝑛.

2.2.1 Coarse grid of boxes

For a pair of subsets (𝑆, 𝐼), where 𝑆 ⊆ [𝑛] and 𝐼 ⊆ 𝑅(𝑓), we denote by box(𝑆, 𝐼), the subgrid 𝑆× 𝐼

of 𝐺𝑛 alongwith with the set {(𝑖, 𝑓 (𝑖)) : 𝑖 ∈ 𝑆, 𝑓 (𝑖) ∈ 𝐼} of points in 𝐺𝑛. In most cases, 𝑆 and 𝐼

will be intervals in [𝑛] and 𝑅(𝑓), respectively, and hence the name box. The size of box(𝑆, 𝐼) is
defined to be |𝑆 |. A box is nonempty if it contains at least one point and is empty otherwise.

Consider an arbitrary collection of pairwise disjoint contiguous value intervals L =

{𝐼1, . . . 𝐼𝑚}, such that 𝐼 ⊆ ⋃
𝑗∈[𝑚] 𝐼 𝑗 . The set L naturally defines a partition of the points in

box(𝑆, 𝐼) into 𝑚 horizontal layers, box(𝑆, 𝐼 𝑗) for 𝑗 ∈ [𝑚]. Assume that, in addition to a set of
layers L, we have a partition of 𝑆 into disjoint intervals 𝑆 =

⋃𝑚
𝑖=1 𝑆𝑖 where 𝑆𝑖 = [𝑎𝑖 , 𝑏𝑖], and

𝑏𝑖 < 𝑎𝑖+1, 𝑖 = 1, . . . 𝑚 − 1. The family S = {𝑆1, . . . 𝑆𝑚} induces a partition of box(𝑆, 𝐼) and the
points in it, into 𝑚 vertical stripes, box(𝑆𝑖 , 𝐼) for 𝑖 ∈ [𝑚]. The layering defined by L together with
the stripes defined by S partition box(𝑆, 𝐼) into a coarse grid 𝐺𝑚,𝑚 of boxes {box(𝑆𝑖 , 𝐼 𝑗)}𝑖, 𝑗∈[𝑚]

that is isomorphic to the grid [𝑚] × [𝑚]. Note that box(𝑆, 𝐼) could even be the entire grid 𝐺𝑛.
Given such a gridding of box(𝑆, 𝐼), the layer of box(𝑆𝑖 , 𝐼 𝑗), denoted 𝐿(box(𝑆𝑖 , 𝐼 𝑗)), is box(𝑆, 𝐼 𝑗)
and its stripe, denoted St(box(𝑆𝑖 , 𝐼 𝑗)), is box(𝑆𝑖 , 𝐼).

We say that layer 𝐿 is below layer 𝐿′, and write 𝐿 < 𝐿′, if the largest value of a point in 𝐿 is
less than the smallest value of a point in 𝐿′. For stripes St(𝑆), St(𝑆′), we write St(𝑆) < St(𝑆′) if
the largest index in 𝑆 is smaller than the smallest index in 𝑆′. For the grid 𝐺𝑚,𝑚 and two boxes
𝐵1, 𝐵2 in it, 𝐵1 < 𝐵2 if 𝐿(𝐵1) < 𝐿(𝐵2) and St(𝐵1) < St(𝐵2).

2.2.2 Patterns among and within nonempty boxes

Consider a coarse grid of boxes, 𝐺𝑚,𝑚, defined as above on the grid of points 𝐺𝑛. There is a
natural homomorphism from the points in 𝐺𝑛 to the nonempty boxes in 𝐺𝑚,𝑚 where those
points fall. For 𝑓 and a grid of boxes 𝐺𝑚,𝑚 as above, we refer to this homomorphism implicitly.
This homomorphism defines when 𝐺𝑚,𝑚 contains a 𝜋-appearance in a natural way. For example,
consider the permutation 𝜋 = (3, 2, 1, 4) ∈ S4. We say that 𝐺𝑚,𝑚 contains 𝜋 if there are nonempty
boxes 𝐵1, 𝐵2, 𝐵3, 𝐵4 such that St(𝐵1) < St(𝐵2) < St(𝐵3) < St(𝐵4) and 𝐿(𝐵3) < 𝐿(𝐵2) < 𝐿(𝐵1) <
𝐿(𝐵4) (see Figure 1(A)).

OBSERVAT ION 2 .4. Let L,S be a partition of 𝐺𝑛 into layers and stripes as above, with |L| =
𝑚, |S| = 𝑚. If 𝐺𝑚,𝑚 contains 𝜋 then 𝐺𝑛 (and equivalently 𝑓) has a 𝜋-appearance.

The converse of Observation 2.4 is not true; 𝐺𝑛 may contain a 𝜋-appearance while 𝐺𝑚,𝑚

does not. This happens when some of the boxes that contain the 𝜋-appearance share a layer or

11 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

3

2

1

4

3
2

1

4

3
2

1

4

4

2

1

3

1

4

3
2

3
2

1

4

3

2

1

4

1

4

3
2

3

2

1

4

(A) (B) (C) (D)

(E) (F) (G) (H)

(I)

1

4

3
2

3

2

1

4

(J) (K)

Figure 1. Each rectangle represents a different grid 𝐺𝑛, where the green shaded boxes correspond to
some nonempty boxes in those grids. Each figure represents a different configuration type with respect
to the appearance of some 4-length pattern. The dots and the numbers indicate possible splittings of
the 4 legs of 𝜋. Figure (E) represents the pattern (4, 2, 1, 3) and all others represent the pattern (3, 2, 1, 4).
The sizes of green boxes in the figures are not representative and are not drawn to scale.

a stripe. Two boxes are directly-connected if they share a layer or a stripe. The transitive closure
of the relation directly-connected is called connected. An arrangement of boxes where every
two boxes are connected is called a connected component, or simply, a component. The size of a
connected component is the number of boxes in it.

For 𝜋 ∈ S𝑘, a 𝜋-appearance in 𝐺𝑛 implies that the 𝑘 points corresponding to such a 𝜋-
appearance are in 𝑖 ≤ 𝑘 distinct components in𝐺𝑚,𝑚, where the 𝑗th component𝐶 𝑗 may contain 𝑏 𝑗

boxes each containing at least one point of the corresponding 𝜋-appearance. We refer to the
𝜋-values in the corresponding boxes of the components as legs. For example, for 𝜋 = (3, 2, 1, 4),
the 𝜋-appearance shown in Figure 1(B) is contained in two boxes that share the same layer, and
hence form one component. The left box contains the 3, 2 legs of the 𝜋-appearance and other
contains the 1, 4 legs. A different 1-component 2-boxed appearance in the same two boxes has 3
appearing in 𝐵1 and all the other legs in 𝐵2 as in Figure 1(C). It need not be the case that every

12 / 39 I. Newman and N. Varma

pair of boxes in a single connected component are directly-connected as illustrated in Figure 1(J)
and Figure 1(K).

Examples for 𝜋 = (3, 2, 1, 4)-appearances with two components 𝐶1, 𝐶2 are illustrated in
Figure 1(F) and Figure 1(H). In the first, 𝐶1, 𝐶2 contain 2 boxes each, where 𝐶1 contains the
(3, 4) legs of the appearance, each in one box, and 𝐶2 contains the (1, 2) legs. In the second,
each component is 1-boxed, where the first contains the (3, 2, 1)-legs and the other contains the
4-leg of the appearance. Figure 1(A) contains a (3, 2, 1, 4)-appearance in 4 components. Some
other possible appearances with 1 component and 3 components are illustrated in Figure 1(B),
Figure 1(C), Figure 1(D) and Figure 1(G).

To sum up, each 𝜋-appearance in 𝐺𝑛 defines an arrangement of nonempty boxes in 𝐺𝑚,𝑚

that contain the legs of that appearance. This arrangement is defined by the relative order of
the layers and stripes among the boxes, and has at most 𝑘 components. Such a box-arrangement
that can contain the legs of a 𝜋-appearance is called a configuration. Note that there may be
many different 𝜋-appearances in distinct boxes, all having the same configuration C. Namely,
in which, the arrangements of the boxes in terms of the relative order of layers and stripes are
identical. So, every set of ℓ ≤ 𝑘 points in the 𝑘 × 𝑘 grid defines a configuration and two such sets
represent the same configuration if they are order-isomorphic with respect to the grid order.
For instance, the sets of points {(1, 1), (2, 1), (3, 3)} and {(1, 1), (2, 1), (3, 4)} represent the same
configuration. An actual set of boxes in 𝐺𝑚,𝑚 forming a specific type of configuration is referred
to as a copy of that configuration.

For 𝜋 ∈ S𝑘, let 𝑐(𝑘) be the number of all possible configurations that are consistent with
a 𝜋-appearance. For any fixed 𝜋, the number 𝑐(𝑘) of distinct types of configurations is upper
bounded in the following observation.

OBSERVAT ION 2 .5. 𝑐(𝑘) = 2𝑂(𝑘 log 𝑘)

PROOF . The total number of possible configurations is upper bounded by the number of ways
to select at most 𝑘 points from a 𝑘 × 𝑘 grid. This latter quantity is equal to

∑
𝑖∈[𝑘]

(𝑘2

𝑖

)
, which is at

most 2𝑂(𝑘 log 𝑘) . ■

A configuration C does not fully specify the way in which a 𝜋-appearance can be present.
It is necessary to also specify the way the 𝑘 legs of the 𝜋-appearance are partitioned among the
boxes in a copy of C. Let B denote a set of boxes forming the configuration C. Let 𝜙 : [𝑘] → B
denote the mapping of the legs of the 𝜋-appearance to boxes in B, where 𝜙(𝑗), 𝑗 ∈ [𝑘] denotes
the box in B containing the 𝑗-th leg of the 𝜋-appearance. We say that the copy of C formed by
the boxes in B contains a 𝜙-legged 𝜋-appearance.

A configuration C in which the boxes form 𝑝 ≥ 2 components, and that is consistent
with a 𝜋-appearance, defines 𝜈1, . . . , 𝜈𝑝-appearances, respectively, in the 𝑝 components of C,
where 𝜈 𝑗 for 𝑗 ∈ [𝑝] is the subpermutation of 𝜋 that is defined by the restriction of 𝜋 to the

13 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

𝑗-th component. In addition, C defines the corresponding mappings 𝜙 𝑗 , 𝑗 = 1, . . . 𝑝, of the
corresponding legs of each 𝜈 𝑗 to the corresponding boxes in the 𝑗th component. For example,
consider 𝜋 = (3, 2, 1, 4) and the box arrangement shown in Figure 1(F). That arrangement has
two connected components: one that contains 𝐵1, 𝐵4 and the other that contains 𝐵2, 𝐵3, where
we number the boxes from left to right (by increasing stripe order). Further, the (only) consistent
partition of the legs of 𝜋 into these boxes is 𝜋(𝑖) ∈ 𝐵𝑖 , 𝑖 ∈ [4]. In particular, it means that the
component formed by 𝐵1, 𝐵4 contains the 3, 4 legs of 𝜋 and the component formed by 𝐵2, 𝐵3

contains the 2, 1 legs of 𝜋. Thus, in terms of the discussion above, the component formed by
𝐵1, 𝐵4 has a 𝜈1 = (1, 2)-appearance (corresponding to the 3, 4 legs of 𝜋), with leg mapping 𝜙1

mapping the 1-leg into 𝐵1 and the 2-leg into 𝐵4. Similarly, the component formed by 𝐵2, 𝐵3 has a
𝜈2 = (2, 1)-appearance (corresponding to the 2, 1 legs of 𝜋) with corresponding leg mapping 𝜙2

that maps the 2-leg into 𝐵2 and the 1-leg into 𝐵3. Note that the converse is also true: every
𝜈1-appearance in the component 𝐵1 ∪ 𝐵4, with a leg-mapping 𝜙1 (that is, in which the 1, 2 legs
are in 𝐵1, 𝐵4 respectively), in addition to a 𝜈2-appearance in 𝐵2 ∪ 𝐵3 with the leg-mapping 𝜙2,
results in a 𝜋-appearance in 𝐺𝑚,𝑚.

This leads to the crucial observation that if 𝜋 defines the corresponding 𝜈1, . . . , 𝜈𝑝 appear-
ances in the 𝑝 components of the configuration C, then, any 𝜈1, . . . , 𝜈𝑝-appearances in the 𝑝

components of any copy of C with consistent leg-mappings is a 𝜋-appearance in C. This is
formally stated below.

DEF IN IT ION 2 .6. Let 𝜈 ∈ S𝑟. Let 𝐵1, . . . , 𝐵𝑝 be a set of boxes forming one component 𝐶 and
𝜙 : [𝑟] ↦→ {𝐵1, . . . , 𝐵𝑝} be an arbitrary mapping of the legs of a 𝜈-appearance to boxes. We
say that 𝐶 has a 𝜙-legged 𝜈-appearance if there is a 𝜈-appearance in

⋃𝑝
𝑗=1 𝐵 𝑗 in which for each

𝑖 ∈ [𝑟], the 𝑖-th leg of 𝜈 appears in the box 𝐵𝜙(𝑖) .

OBSERVAT ION 2 .7. Let 𝜋 ∈ S𝑘 and assume that there exists a 𝜋-appearance in 𝐺𝑛 that, in
the grid of boxes 𝐺𝑚,𝑚, forms a configuration C that contains 𝑡 components C1, . . . , C𝑡. Let the
restriction of this 𝜋-appearance to C1, . . . , C𝑡 define the permutation patterns 𝜈1, . . . 𝜈𝑡 with leg
mappings 𝜙1, . . . 𝜙𝑡, respectively. Then any collection {𝐶′

𝑗
: 𝑗 ∈ [𝑡]} such that 𝐶′

𝑗
is a configuration

copy of C𝑗 and
⋃𝑡

𝑗=1 𝐶
′
𝑗

is a copy of C, along with 𝜙 𝑗-legged 𝜈 𝑗-appearances in 𝐶′
𝑗

for each 𝑗 ∈ [𝑡]
defines a 𝜋-appearance in

⋃𝑡
𝑗=1 𝐶

′
𝑗
.

PROOF . Since
⋃

𝑗∈[𝑡] 𝐶
′
𝑗

form a copy of the configuration C, for any two boxes 𝐵1 and 𝐵2

belonging to
⋃

𝑗∈[𝑡] 𝐶
′
𝑗
, their relative position in the grid 𝐺𝑚,𝑚 is identical to the relative position

of the corresponding boxes in C. For 𝑎, 𝑏 ∈ [𝑘] such that 𝑎 < 𝑏, consider the 𝑎-th and 𝑏-th leg in
the order from left to right along the grid, in the union of 𝜙 𝑗-legged 𝜈 𝑗-appearances in 𝐶′

𝑗
for

𝑗 ∈ [𝑡]. By the above statement and by virtue of the leg mappings 𝜙 𝑗 , 𝑗 ∈ [𝑡], the relative values
of the 𝑎-th and 𝑏-th legs in the aforementioned union of appearances is identical to the relative
values of the 𝑎-th and 𝑏-th legs in the 𝜋-appearance occurring according to the configuration C.
Therefore, the union of 𝜙 𝑗-legged 𝜈 𝑗-appearances in 𝐶′

𝑗
for 𝑗 ∈ [𝑡] defines a 𝜋-appearance. ■

14 / 39 I. Newman and N. Varma

2.3 Erasure-resilient testing

Erasure-resilient (ER) testing, introduced by Dixit, Raskhodnikova, Thakurta and Varma [16], is
a generalization of property testing. In this model, algorithms get oracle access to functions for
which the values of at most 𝛼 fraction of the points in the domain are erased by an adversary,
for 𝛼 ∈ [0, 1).

For 𝑓 : [𝑛] → R let NE(𝑓) be the nonerased values of 𝑓 . The parameter 𝛼 is given as
an input to the algorithms, but, they do not know NE(𝑓). On querying a point, the algorithm
receives the function value if the point is nonerased, and a special symbol otherwise.

DEF IN IT ION 2 .8 (One-sided error erasure-resilient tester for P𝜋). For 𝜀 ∈ (0, 1), 𝛼 ∈ [0, 1),
an 𝛼-erasure-resilient (𝛼-ER) 𝜀-tester for P𝜋 is a randomized algorithm that on oracle access
to a function 𝑓 : [𝑛] → R, accepts, with probability 1, if 𝑓 |NE(𝑓) is 𝜋-free, and rejects, with
probability at least 2/3, if there is a matching of size 𝜀𝑛/𝑘 of 𝜋-appearances in NE(𝑓).

We point out that the definition in [16] is for any property and for two-sided error testing
as well.

Dixit et al. [16] give a one-sided error 𝛼-ER 𝜀-tester for monotonicity of functions 𝑓 : [𝑛] →
Rwith query complexity 𝑂(log 𝑛

𝜀) that works for any constants 𝛼, 𝜀 ∈ [0, 1). It can be observed
that the polylog 𝑛-query one-sided error tester for 𝜈-freeness of [28], for any 𝜈 ∈ S3, is also ER.

As part of our algorithm for testing 𝜋-freeness for 𝜋 ∈ S𝑘 for 𝑘 ≥ 4, we call testers for
smaller subpatterns on subregions of the grid 𝐺𝑛 which may be defined by, say, box(𝑆, 𝐼) for
some 𝑆 ⊆ [𝑛], 𝐼 ⊆ 𝑅(𝑓). In this case, the only access to points in box(𝑆, 𝐼) is by sampling indices
from 𝑆 and checking whether their values fall in 𝐼 . If the values do not fall in 𝐼 , we can treat
them as erasures. Given the promise that the number of points falling in box(𝑆, 𝐼) is a constant
fraction of |𝑆 |, we can simply run ER testers on 𝑓 |𝑆 to test for these smaller subpatterns.

3. High-level description of the basic algorithm for 𝝅 ∈ S4

In this section, we give a high-level description of most of the ideas used in the design of our
𝜋-freeness tester of query complexity �̃�(𝑛𝑜(1)). We first describe the ideas behind a �̃�(

√
𝑛)-query

𝜀-tester for 𝜋-freeness of functions 𝑓 : [𝑛] → R, where 𝜋 ∈ S4 and 𝜀 ∈ (0, 1). At the end of this
section, we briefly touch upon how to generalize these ideas to obtain the query complexity
of �̃�(𝑛𝑜(1)) for constant-length permutations of length at least 4. For simplicity, we assume in
what follows that the input function 𝑓 : [𝑛] → R is one-to-one. The algorithm for functions that
are not one-to-one differs in a few places and these are explained in Section 5.1.

For the purposes of this high-level description, we fix the forbidden permutation 𝜋 =

(3, 2, 1, 4). The same algorithm works for any 𝜋 ∈ S4. We view 𝑓 as an (implicitly given)
𝑛 × |𝑅(𝑓) | grid 𝐺𝑛 consisting of points (𝑖, 𝑓 (𝑖)) for 𝑖 ∈ [𝑛], where, in particular, 𝑅(𝑓) is neither

15 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

known nor bounded. Our first goal is to approximate 𝐺𝑛 by a coarse grid of boxes 𝐺𝑚′,𝑚′ , where
𝑚 =

√
𝑛 and 𝑚′ = Θ(𝑚). This is done by first querying 𝑓 on Θ̃(𝑚) independently sampled and

uniformly random indices, upon which we obtain a partition L of 𝑅(𝑓) into 𝑚′ horizontal
layers, corresponding to value intervals {𝐼 𝑗} 𝑗∈[𝑚′] . Then, we partition the index set [𝑛] into
𝑚′ contiguous intervals {𝑆𝑖}𝑖∈[𝑚′] of equal sizes. This results in a grid 𝐺𝑚′,𝑚′ , where a box
box(𝑆𝑖 , 𝐼 𝑗), 𝑖, 𝑗 ∈ [𝑚′] is tagged as nonempty if it has at least one sampled point. A box is tagged
as dense if it contains Ω𝜀(1)-fraction of the sampled points in its stripe. All of the above takes
�̃�𝜀(𝑚) = �̃�𝜀(

√
𝑛) queries. The following properties are satisfied with high probability:

Each layer, that is box([𝑛], 𝐼 𝑗), 𝑗 ∈ [𝑚′], has approximately the same number of points
from 𝐺𝑛.
It is either the case that the dense boxes contain all but an insignificant fraction of the
points in 𝐺𝑛, or the total number of nonempty boxes is larger than 𝑚′ log 𝑛.

Next, we use the following lemma of Marcus and Tardos.

LEMMA 3.1 ([26]). For any 𝜋 ∈ S𝑘, 𝑘 ∈ N, there is a constant 𝜅(𝑘) ∈ N such that for any 𝑟 ∈ N,
if a grid 𝐺𝑟,𝑟 contains at least 𝜅(𝑘) · 𝑟 marked points, then it contains a 𝜋-appearance among the
marked points.

Let 𝜅 = 𝜅(4). Using Lemma 3.1, we may assume that there are at most 𝜅 · 𝑚′ nonempty
boxes in 𝐺𝑚′,𝑚′ , as otherwise, we already would have found a 𝜋-appearance in 𝐺𝑚′,𝑚′ , which
by Observation 2.4, implies a 𝜋-appearance in 𝐺𝑛 and in 𝑓 as well. Hence, as a result of the grid-
ding, if we do not see a 𝜋-appearance among the sampled points, the second item above implies
that there are Θ(𝑚′) dense boxes in 𝐺𝑚′,𝑚′ and that these boxes cover all but an insignificant
fraction of the points of 𝐺𝑛.

An averaging argument implies that, for an appropriate value 𝑑 = 𝑑 (𝜀), only a small
fraction (depending on 𝜀) of layers (or stripes) contain more than 𝑑 nonempty boxes. Therefore,
since the grid 𝐺𝑛 is 𝜀-far from being 𝜋-free, the restriction of 𝐺𝑛 to the layers and stripes that
contain at most 𝑑 boxes each, is also 𝜀′-far from 𝜋-free for a large enough 𝜀′ < 𝜀. This implies
that 𝐺𝑛 restricted to the points in dense boxes that belong to layers and stripes containing at
most 𝑑 dense boxes each, has a matching 𝑀 of 𝜋-appearances of size at least 𝜀′𝑛/4. We assume
in what follows that this is indeed the situation.

An important note at this point is that every dense box 𝐵 is contained in 𝑂(𝑑3) many copies
of 1-component configurations with at most 4 dense boxes. This implies that there are 𝑂(𝑑3𝑚)
such copies of 1-component configurations in 𝐺𝑚′,𝑚′ .

Recall that every 𝜋-appearance in 𝑀 defines a configuration of at most 4 components in
𝐺𝑚′,𝑚′ . Hence, the matching 𝑀 of size |𝑀 | = Ω𝜀(𝑛) can be partitioned into 4 sub-matchings
𝑀 = 𝑀1 ∪𝑀2 ∪𝑀3 ∪𝑀4, where 𝑀𝑖 , 𝑖 = 1, . . . , 4 consists of the 𝜋-appearances participating in
configurations having exactly 𝑖 components. Since |𝑀 | = Ω𝜀(𝑛) it follows that at least one of
𝑀𝑖 , 𝑖 = 1, 2, 3, 4 is of linear size. Now, any 𝜋-appearance in 𝑀4 is an appearance in 4 distinct

16 / 39 I. Newman and N. Varma

dense boxes in 𝐺𝑚′,𝑚′ , where no two share a layer or a stripe. In that case, such an appearance
can be directly detected from the tagged 𝐺𝑚′,𝑚′ with no further queries.

The description of the rest of the algorithm can be viewed as a treatment of several inde-
pendent cases regarding which one among the constantly many configuration types contributes
the larger mass out of the Ω𝜀(𝑛) 𝜋-appearances in 𝑀1 ∪𝑀2 ∪𝑀3. There are only two significant
cases, but to enhance understanding, we split these two cases into the more natural larger
number of cases, and observe at the end that most cases can be treated conceptually in the
same way.

Case 1: Let |𝑀1 | ≥ 𝜀′𝑛/3, and let a constant fraction of the 𝜋-appearances in 𝑀1 be in a single-
box component. Then, on average, a dense box, out of the Θ(𝑚′) dense boxes, is expected to
contain at least Θ𝜀(𝑛/𝑚′) = Θ𝜀(𝑚′) = Θ𝜀(

√
𝑛) many 𝜋-appearances. Thus a random dense box 𝐵

is likely to have Θ𝜀(
√
𝑛) many 𝜋-appearances, and hence, making queries to all points of such

a box will enable us to find one such 𝜋-appearance. This takes an additional 𝑛/𝑚′ = Θ(
√
𝑛)

queries, which is within the query budget.
Next, consider the case that a constant fraction of the 𝜋-appearances in 𝑀1 belong to a

configuration C that has more than one dense box (but only one connected component). An
example of such a situation would be Figure 1(J). By a similar argument, a random dense box
is expected to participate in at least Θ𝜀(𝑛/𝑚) many 𝜋-appearances of copies of configuration-
type C. Since each dense box is part of at most 𝑂(𝑑3) (constantly many) connected components
of at most 4 dense boxes, sampling a random dense box 𝐵 and querying all the indices in each of
the components that contain at most 4 dense boxes and involve 𝐵, is likely to find a 𝜋-appearance
with high probability. Each connected component is over at most 4𝑛/𝑚′ indices, resulting in
𝑂(𝑛/𝑚) queries.

Case 2: |𝑀3 | ≥ 𝜀′𝑛/3, and assume first that a constant fraction of the members in 𝑀3 belong to
copies of a configuration C of 3 components 𝐵1, 𝐵2, 𝐵3, where each one is a single box. Since the
boxes 𝐵1, 𝐵2, 𝐵3 belong to different components, no two of them share a layer or a stripe. For
our current working example, 𝜋 = (3, 2, 1, 4), assume further that 𝐵1 contains the 3, 2 legs of a
𝜋-appearance and 𝐵2, 𝐵3 contain its 1 and 4 legs, respectively (see Figure 1(G) for an example).
In this case 𝐵1 is not (2, 1)-free (as 𝐵1 contains the (3, 2)-subpattern of 𝜋).

By an averaging argument, it follows that there is a dense box 𝐵 for which: (a) 𝐵 is far
from (2, 1)-free, and (b) there are corresponding dense boxes 𝐵2, 𝐵3 that, together with 𝐵, form
a copy of the configuration C. Now, a test follows easily. We test every dense box for (2, 1)-
freeness, which can be done in 𝑂(log 𝑛) queries per box, and hence in �̃�(𝑚) in total. Then,
by the guarantee above we will find the corresponding 𝐵, 𝐵2 and 𝐵3 and a 𝜋-appearance in it
(by Observation 2.7 with the trivial mapping).

17 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

A similar argument holds for a 3-component configuration C′ in which one component
contains more than one box. Let C′ consist of two single-box components and a two-boxed
component, as in Figure 1(D). In this case, a similar averaging argument shows the existence of
a dense box 𝐵 for which (a) there is a dense box 𝐵′ forming a component 𝐷 with 𝐵, and dense
boxes 𝐵2, 𝐵3 such that 𝐷, 𝐵2, 𝐵3 jointly form a copy of C′, and (b) there are Ω𝜀(𝑛/𝑚) = Ω𝜀(

√
𝑛)

𝜙-legged (2, 1)-appearances in 𝐷, where 𝜙 is such that the 2-leg maps to the upper box in 𝐷 and
the 1-leg maps to the lower box in 𝐷. Hence, the test is similar to the simpler case above. We test
for every dense box 𝐵 and every way to extend it into a component of two boxes by adding a
box 𝐵′ (a constant number of ways) such that 𝐷 = (𝐵, 𝐵′) contains a 𝜙-legged (2, 1)-appearance.
This again can be done using 𝑂(log 𝑛) queries per component copy 𝐷. Once this is done, finding
𝐷, 𝐵2, 𝐵3 that form a copy of C′ results in a 𝜋-appearance by Observation 2.7.

Case 3: Assume now that |𝑀2 | ≥ 𝜀′𝑛/3, and that the corresponding configurations of the
𝜋-appearances in 𝑀2 contain two single-box components 𝐵1, 𝐵2, where 𝐵1 holds the first 3 legs
of 𝜋 and 𝐵2 holds the 4-th leg. E.g., For 𝜋 = (3, 2, 1, 4), the configuration C contains two boxes
𝐵1, 𝐵2 where 𝐵1 contains the subpattern (3, 2, 1) and 𝐵2 is any nonempty box such that 𝐵1 < 𝐵2,
(see Figure 1(H) for an illustration). An averaging argument, as made in Case 2, shows that
there is a dense box 𝐵1 for which (a) 𝐵1 is far from (3, 2, 1)-free, and (b) there is a corresponding
dense box 𝐵2 that, together with 𝐵1, forms a copy of the configuration C. This suggests a test
that is conceptually similar to the test in Cases 1 and 2. We test each box for being (3, 2, 1)-free.
This can be done in 𝑂(polylog 𝑛) queries (e.g., [8]). Then once finding a (3, 2, 1) in 𝐵1 for which
(a) and (b) hold, 𝐵1 ∪ 𝐵2 contains a 𝜋-appearance.

We note here that for the example above, we ended by testing for (3, 2, 1)-freeness which
is relatively easy. For a different configuration or 𝜋, we might need to test 𝐵1 for a different
𝜈 ∈ S3, but this can be done for any 𝜈 ∈ S3 using 𝑂(polylog 𝑛) queries [28]. Hence the same
argument and complexity guarantee hold for any 2-component configuration C as above.

Case 4: A more complicated situation arises when |𝑀2 | ≥ 𝜀′𝑛/3, and the corresponding
configurations of the 𝜋-appearances in 𝑀2 are formed of two components 𝐷, 𝐵, with 𝐷 holding
3 legs of 𝜋 in 2 or 3 boxes (rather than in one box as in Case 3). E.g., 𝜋 = (4, 2, 1, 3), and the
configuration C as illustrated in Figure 1(E).

By a similar averaging argument to that made in Case 2, it follows that there is a dense
box 𝐵1 for which (a) there are dense boxes 𝐵2, 𝐵3 forming a copy 𝐷′ of 𝐷 with 𝐵1, and a dense
box 𝐵 such that the configuration formed by 𝐷′, 𝐵 is a copy of C, and (b) there are Ω𝜀(𝑛/𝑚) =
Ω𝜀(

√
𝑛) 𝜙-legged (3, 2, 1)-appearances in 𝐷′, where 𝜙 is consistent with the leg mapping that is

induced by the configuration C. This implies a conceptually similar test to that of the simpler
Case 3 above - we test each of the 𝑂(𝑚) components 𝐷 for (3, 2, 1)-freeness, and then with the
existence of the corresponding box 𝐵 we find a 𝜋-appearance. However, this is not perfectly

18 / 39 I. Newman and N. Varma

accurate: the algorithm for finding 𝜈 = (3, 2, 1) in 𝐷′, although efficient, might find a (3, 2, 1)-
appearance where the 3 legs appear in 𝐵1 or in 𝐵1 ∪ 𝐵2. But this does not extend with 𝐵 to
form a 𝜋-appearance, as the leg mapping is not consistent with the one that is induced by C.
Namely, unlike before, we do not only need to find a 𝜈-appearance in 𝐷 but rather a 𝜙-legged
𝜈-appearance with respect to a fixed mapping 𝜙 (that in this case maps each leg to a different
box in the component 𝐷′).

There are several ways to cope with this extra restriction. For the current description of a
basic �̃�(

√
𝑛) algorithm, it is enough to sample a constant number of copies of the component 𝐷

and do the test for 𝜙-legged 𝜈-appearance in each. But, since each copy 𝐷′ is of size 𝑂(
√
𝑛) we

can afford to query all indices in the domain of 𝐷′.
To resolve the problem in the general setting, we need to efficiently detect 𝜙-legged 𝜈-

appearances in multi-boxed components. This, however, we currently do not know how to
do. Instead, we design a test that either finds a 𝜙-legged 𝜈-appearance, or finds the original
𝜋-appearance. This is done using the algorithm AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) that will be described
in Section 5.

Case 5: The last case that we did not consider yet is when most of the 𝜋-appearances are in a
configuration containing more than one component, with at least two components containing
two (or more) legs each. For 𝜋 ∈ S4 the only such case is when the configuration C contains
exactly two components, each containing exactly two legs of 𝜋. Returning to our working
example with 𝜋 = (3, 2, 1, 4), such an example is depicted in Figure 1(F). For the explanation
below, we will discuss the case that the configuration C is as in Figure 1(F). Namely, it contains
components 𝐷1 that is above 𝐷2, with two boxes each 𝐷1 = {𝐵1, 𝐵4} and 𝐷2 = {𝐵2, 𝐵3}, and so
that every box contains exactly one leg of 𝜋 (boxes are numbered by order from left to right in
𝐺𝑚′,𝑚′). Our goal is to find two copies 𝐷′

1, 𝐷
′
2 of the components 𝐷1, 𝐷2 respectively, that form

a copy of C, and to find a 𝜙1-legged appearance of (1, 2) in 𝐷′
1, and a 𝜙2-legged appearance of

(2, 1) in 𝐷′
2, so that these two appearances will together form a 𝜋-appearance.

Indeed, an averaging argument shows that there are 𝐷′
1, 𝐷

′
2 as above, with 𝐷′

𝑖
containing

Ω𝜀(𝑛/𝑚) 𝜙𝑖-legged appearances of 𝜈𝑖 for 𝑖 = 1, 2. However, we do not know whether sampling
a pair 𝐷′

1, 𝐷
′
2 in some way, will result in such a good pair. Rather, we are only assured of the

existence of only one such pair! Hence, in this case we need to test every component copy 𝐷′ of
the appropriate type, for every 𝜈 ∈ S2, and for every leg mapping 𝜙, for a 𝜙-legged 𝜈-appearance
in 𝐷′ in order to find such an asserted pair of components. Such restricted 𝜈-appearances can
be tested in 𝑂(log 𝑛) queries per component. Since the number of two-boxed component copies
where both boxes belong to the same layer is 𝑂(𝑚), this step takes �̃�(𝑚) queries in total.

The same argument holds for any 𝜋 ∈ S4, and for every configuration that is consistent
with Case 5.

19 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

Concluding remarks
At some places in the algorithm above, we had to test for 𝜈-appearances (or restricted
𝜈-appearances) in ‘dense’ subgrids of 𝐺𝑛. For this, we need all our algorithms to be ER,
which will be implicitly clear from the description. We also need to take care of reducing
the total error when we run a non-constant number of tests, or want to guarantee a large
success probability for a large number of events - this is done by a trivial amplification
that results in a multiplicative polylog 𝑛 factor.
In Case 1, we reduced the problem of finding a 𝜋-appearance in 𝐺𝑛 that is assumed to be
𝜀-far from 𝜋-free, to the same problem on a subrange of the indices (formed by a small
component) of size Θ(𝑛/𝑚) (with a smaller but constant distance parameter 𝜀′ < 𝜀). For
the setting of 𝑚 =

√
𝑛, solving the problem on the reduced domain was trivially done by

querying all indices in the subrange. In the general algorithm, where our goal is a query
complexity of 𝑛𝑜(1) , we set 𝑚 = 𝑛𝛿 for an appropriately small 𝛿 and apply self-recursion in
Case 1.
In Case 5, we had to test for 𝜈-freeness (or for restricted 𝜋-appearances) for 𝜈 ∈ S2 for
every small component of size Θ(𝑛/𝑚) in 𝐺𝑚′,𝑚′ . This entails a collection of 𝑂(𝑚) tests,
where we want to assign a large success probability to each one of them. We also need
to guarantee a large success probability to correctly tagging each of the Θ(𝑚2) boxes as
part of the layering procedure. A similar need will also arise in the general algorithm. We
amplify the success probability by multiplying our number of queries by log2 𝑛 which will
imply less than 1/𝑛Ω(log 𝑛) failure probability for each individual event in such collection.
We will not comment more on this point, and assume implicitly that in all such places, all
needed events occur w.h.p.
In Cases 2, 3, 4 we end up testing 𝜈-freeness for 𝜈 ∈ S2 ∪ S3 in dense boxes, or 𝜙-legged
𝜈-freeness of such 𝜈 in components of multiple dense boxes. An averaging argument shows
that this can simply be done by sampling one box or component, and making queries to
all indices therein.
Case 5 is different: here, sampling a small number of components does not guarantee an
expected large number of the corresponding appearances. This is the reason that we need
to test all components with at most 2 dense boxes, for 𝜙-legged 𝜈-freeness, and for every
𝜈 ∈ S2 and leg mapping 𝜙. Algorithm AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) can do this for any 𝜈 ∈ S2 ∪S3

in 𝑛𝛿 queries for an arbitrarily small constant 𝛿. Since we have to do it in Case 5, we may
do the same in cases 2, 3, 4 as well! As a result, the algorithm above will contain only two
cases: Case 1 where we reduce the problem to the same problem but on a smaller domain,
and the new Case 2 where we test every small component for 𝜙-legged 𝜈-appearance for
every 𝜈 ∈ S2∪S3 and every leg mapping 𝜙 – namely a case in which we reduce the problem
to testing (restricted appearances) for smaller patterns.

20 / 39 I. Newman and N. Varma

In view of the comment above, the idea behind improving the complexity to 𝑛𝛿 for constant
0 < 𝛿 < 1 is obvious: Choosing 𝑚 = 𝑛𝛿/2 will result in an 𝑚 ×𝑚 grid, where Layering can
be done in �̃�(𝑛𝛿/2) queries. Then, Case 2 will be done in an additional 𝑛𝛿 queries by setting
a query complexity for AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) to be 𝑛𝛿/2 per component. The self-recursion
in Case 1 will result in the same problem over a range of 𝑛/𝑚. For the fixed 𝑚 = 𝑛𝛿/2, this
will result in a recursion depth of 2/𝛿, after which the domain size will drop down to 𝑚

and allow making queries to all corresponding indices. This results in a total of �̃�(𝑛𝛿)
queries, including the amplification needed to account for the accumulation of errors and
deterioration of the distance parameter at lower recursion levels.
Generalized testing and testing beyond 𝑘 = 4. Applying the same ideas to 𝜋 ∈ S𝑘, 𝑘 ≥ 5
works essentially the same way, provided we can test for 𝜙-legged 𝜈-freeness of 𝜈 ∈ S𝑟

for 𝑟 < 𝑘. This we know how to do for 𝜈 ∈ S2 but not beyond. For 𝑟 = 2, testing 𝜙-legged
𝜈-freeness of 𝜈 ∈ S2 is simpler than testing monotonicity for nontrivial 𝜙, and is equivalent
to testing monotonicity when testing is done in a one-boxed component. Hence, this can
be done in 𝑂(log 𝑛) queries. For 𝑟 ≥ 3 the exact complexity is currently not know.
In particular, one difficulty is that after gridding, a superlinear number of nonempty boxes
does not guarantee such appearance, as Lemma 3.1 does not apply. For example, for even 𝑟,
consider the grid [𝑟] × [𝑟] all of whose points in the top left quarter {1, . . . , 𝑟/2} × {𝑟/2 + 1,
. . . , 𝑟} and right bottom quarter {𝑟/2 + 1, . . . , 𝑟} × {1, . . . , 𝑟/2} are marked. There are no
restricted (1, 2)-appearances among the marked points where the 1 leg is from the right
half and the 2-leg is from the left half, despite there being Ω(𝑟2) points. However, for our
goal of testing 𝜋-freeness for 𝜋 ∈ S𝑘, we can relax the task of finding 𝜙-legged 𝜈-freeness
of 𝜈 ∈ S𝑟, 𝑟 ≤ 𝑘 to the following problem which we call “generalized-testing 𝜈 w.r.t. 𝜋”,
denotedGeneralizedTesting𝜋 (𝜈, 𝐷, 𝜙): The inputs are a permutation 𝜈 ∈ S𝑟, a component 𝐷,
and a leg mapping 𝜙. Our goal is to find either a 𝜙-legged 𝜈-appearance OR a 𝜋-appearance
in 𝐷. The way we solve this generalized problem is very similar, conceptually, to the way
we solve the unrestricted problem; we decompose 𝐷 into an 𝑚 ×𝑚 grid of subboxes,𝐷𝑚,𝑚,
by performing gridding of 𝐷. Then, we either find 𝜋 in 𝐷𝑚,𝑚, or, using Lemma 3.1, conclude
that there are only linearly many dense subboxes in 𝐷𝑚,𝑚. At that point, we find a 𝜙-legged
𝜈-appearance by reducing it to the same problem of a 𝜙′-legged 𝜈′-freeness of smaller
𝜈′ ∈ S𝑟′ , 𝑟

′ < 𝑟, or, self-reducing the problem for finding 𝜙-legged 𝜈-appearance but in a
sub-component 𝐷′ whose size is a factor 𝑚 smaller than that of the size of 𝐷. This is done
in a similar way to what is described above in Case 1.
In summary, the algorithm for GeneralizedTesting𝜋 (𝜈) is very similar to the algorithm for
testing 𝜋-freeness, with the same two cases, where Case 2 becomes recursion to finding
appearances of a smaller permutation, and where the base case is for permutations of
length 2. As we show in Section 5, formally, GeneralizedTesting𝜋 (𝜈) strictly generalizes

21 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

testing 𝜋-freeness, and hence, the formal algorithm for testing 𝜋-freeness will be a special
case of GeneralizedTesting𝜋 (𝜈).

4. Gridding

In this section, we describe an algorithm that we call Gridding (Algorithm 2), which is a common
subroutine to all our algorithms. The output of Gridding, given oracle access to the function
𝑓 : [𝑛] → R and a parameter 𝑚 ≤ 𝑛, is an 𝑚 ×𝑚 grid of boxes that partitions either the grid 𝐺𝑛

defined by 𝑓 or a region inside of it into boxes, with the property that the density of each box,
which we define below, is well controlled.

DEF IN IT ION 4.1 (Density of a box). Consider index and value subsets 𝑆 ⊆ [𝑛] and 𝐼 ⊆ 𝑅(𝑓),
respectively. The density of box(𝑆, 𝐼), denoted by den(𝑆, 𝐼), is the number of points in box(𝑆, 𝐼)
normalized by its size |𝑆 |.

DEF IN IT ION 4.2 (Nice partition of a box). For index and value sets 𝑆 ⊆ [𝑛] and 𝐼 ⊆ 𝑅(𝑓) and
parameter 𝑚 ≤ 𝑛, we say that I = {𝐼1, 𝐼2, . . . , 𝐼𝑚′} forms a nice 𝑚-partition of box(𝑆, 𝐼) if:

𝑚′ ≤ 2𝑚,
𝐼1, . . . , 𝐼𝑚′ are pairwise disjoint, and

⋃
𝑗∈[𝑚′] 𝐼 𝑗 = 𝐼 . In particular, the largest value in 𝐼 𝑗 is

less than the smallest value in 𝐼 𝑗′ for 𝑗 < 𝑗′.
for 𝑗 ∈ [𝑚′], either den(𝑆, 𝐼 𝑗) < 4

𝑚 OR 𝐼 𝑗 contains exactly one value and is such that
den(𝑆, 𝐼 𝑗) ≥ 1

2𝑚 . In the first case, we say that box(𝑆, 𝐼 𝑗) is a single-valued layer of box(𝑆, 𝐼),
and in the second case, we say that box(𝑆, 𝐼 𝑗) is a multi-valued layer of box(𝑆, 𝐼).

4.1 Layering

The main part of Gridding is an algorithm Layering which is described in Algorithm 1. A
similar algorithm was used by Newman and Varma [29] for estimating the length of the longest
increasing subsequence in an array. Layering(𝑆, 𝐼, 𝑚), given 𝑆 ⊆ [𝑛], 𝐼 ⊆ 𝑅(𝑓), 𝑚 ≤ 𝑛 as inputs,
and outputs, with probability at least 1− 1/𝑛Ω(log 𝑛) , a set I of intervals that is a nice 𝑚-partition
of box(𝑆, 𝐼). It works by sampling �̃�(𝑚) points from box(𝑆, 𝐼) and outputs the set I based on
these samples. Note that both the sets 𝑆 and 𝐼 are either contiguous index/value intervals
themselves or a disjoint union of at most 𝑘 such contiguous intervals. Additionally, we always
apply the algorithm Layering to boxes of density Ω(1/log 𝑛).

CLAIM 4.3. If den(𝑆, 𝐼) > 1/log 𝑛, then with probability 1−1/𝑛Ω(log 𝑛) , Layering(𝑆, 𝐼, 𝑚) returns
a collection of intervals I = {𝐼 𝑗}𝑚

′

𝑗=1 such that I is a nice 𝑚-partition of box(𝑆, 𝐼). Furthermore, it
makes a total of 𝑚 log4 𝑛 queries.

22 / 39 I. Newman and N. Varma

1: Sample a set of 𝑚 log4 𝑛 indices from 𝑆 uniformly and independently at
random.

2: Let 𝑈 denote the multiset of points in the sample that belong to box(𝑆, 𝐼)
and let 𝑢 denote the cardinality of 𝑈 including multiplicities. If
𝑢 < 𝑚 log2 𝑛, then FAIL.

3: We sort the multiset of values 𝑉 = { 𝑓 (𝑝) : 𝑝 ∈ 𝑈} to form a strictly
increasing sequence seq = (𝑣′1 < . . . < 𝑣′𝑞), where, with each 𝑖 ∈ [𝑞], we
associate a weight 𝑤𝑖 that equals the multiplicity of 𝑣′𝑖 in the multiset 𝑉

of values. ⊲ Note that
∑

𝑖∈[𝑞] 𝑤𝑖 = 𝑢.
4: We now partition the sequence 𝑊 = (𝑤1, . . . , 𝑤𝑞) into maximal disjoint

contiguous subsequences 𝑊1, . . .𝑊𝑚′′ such that for each 𝑗 ∈ [𝑚′′], either∑
𝑤∈𝑊𝑗

𝑤 < 2𝑢/𝑚, or 𝑊𝑗 contains only one member 𝑤 for which 𝑤 > 𝑢/𝑚.
⊲ This can be done greedily as follows. If 𝑤1 > 𝑢/𝑚 then 𝑊1 will

contain only 𝑤1, otherwise 𝑊1 will contain the maximal subsequence
(𝑤1, . . . , 𝑤𝑖) whose sum is at most 2𝑢/𝑚. We then delete the members of 𝑊1

from 𝑊 and repeat the process. For 𝑖 ∈ [𝑚′′], let 𝑤(𝑊𝑖) denote the total
weight in 𝑊𝑖.

Correspondingly, we obtain a partition of the sequence seq of sampled
values into at most 𝑚′′ subsequences {seq 𝑗} 𝑗∈[𝑚′′]. Some subsequences contain
only one value of weight at least 𝑢/𝑚 and are called single-valued. The
remaining subsequences are called multi-valued.

For a subsequence seq 𝑗, let 𝛼 𝑗 = min(seq 𝑗) and 𝛽 𝑗 = max(seq 𝑗). Let
𝛽0 = inf(𝐼). Note that 𝛼 𝑗 ≤ 𝛽 𝑗 and 𝛽 𝑗−1 < 𝛼 𝑗 for all 𝑗 ∈ [𝑚′′].

5: For 𝑗 ∈ [𝑚′′], we associate with the subsequence seq 𝑗, an interval 𝐼 𝑗 ⊆ R,
where 𝐼 𝑗 = (𝛽 𝑗−1, 𝛽 𝑗] ∩ 𝐼, and an approximate density d̃en(𝑆, 𝐼 𝑗) = 𝑤(𝑊𝑗)/𝑢. The
interval is multi-valued or single-valued depending on whether its
corresponding sequence is multi-valued or single-valued, respectively.

6: For 𝑗 ∈ [𝑚′′], if the interval 𝐼 𝑗 is the disjoint union of two contiguous
intervals 𝐼

(1)
𝑗 and 𝐼

(2)
𝑗 , then drop such an interval 𝐼 𝑗 from consideration.

⊲ This situation can arise since 𝐼 is the disjoint union of several
contiguous intervals and hence 𝐼 𝑗 can contain points from two such
consecutive and contiguous subintervals of 𝐼. In this case, by definition,
𝐼 𝑗 is a multi-valued interval.

7: Return the set I =
⋃

ℓ∈[𝑚′] 𝐼ℓ of the remaining 𝑚′ ≤ 𝑚′′ intervals.

Algorithm 1. Layering(𝑆, 𝐼, 𝑚)

23 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

PROOF . Since den(𝑆, 𝐼) > 1/log 𝑛, a Chernoff bound implies that, with probability at least
1− exp(−(𝑚 log3 𝑛)/8), at least 𝑚 log2 𝑛 of the sampled points fall in box(𝑆, 𝐼) and the algorithm
does not fail in Step 2. In the rest of the analysis, we condition on this event happening.

To prove that 𝑚′ ≤ 2𝑚, it is enough to bound 𝑚′′, which is the total number of intervals
formed before some multi-valued intervals are dropped at the last step. The total number of
intervals of weight at least 𝑢/𝑚 is at most 𝑚 since the total weight is 𝑢. Other intervals have
weight less than 𝑢/𝑚 and for each such interval 𝐼 𝑗 , it must be the case that 𝐼 𝑗−1 and 𝐼 𝑗+1 are of
weight at least 𝑢/𝑚. It follows that 𝑚′ ≤ 𝑚′′ ≤ 2𝑚.

We now prove that the family I output by Layering is a nice 𝑚-partition of box(𝑆, 𝐼). It is
clear from the description of Algorithm 1 that the intervals output by the algorithm are disjoint.
Let B = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ 𝐼 and ∃𝑣, 𝑤 ∈ 𝑆 such that 𝑓 (𝑣) = 𝑎, 𝑓 (𝑤) = 𝑏} denote the set of all true
intervals of points from box(𝑆, 𝐼). Consider an interval [𝑎, 𝑏] ∈ B such that den(𝑆, [𝑎, 𝑏]) ≥ 4

𝑚 .
The probability that less than 2𝑢/𝑚 points from the sample have values in the range [𝑎, 𝑏] is at
most 1/𝑛Ω(log 𝑛) by a Chernoff bound. Conditioning on this event implies that for every 𝐼 𝑗 , 𝑗 ∈ [𝑚′]
output as a multi-valued interval by the algorithm, we have den(𝑆, 𝐼 𝑗) < 4

𝑚 . Finally, for a single-
valued interval [𝑎, 𝑎] ∈ B such that den(𝑆, [𝑎, 𝑎]) < 1

2𝑚 , with probability at least 1 − 1/𝑛Ω(log 𝑛) ,
we have d̃en(𝑆, [𝑎, 𝑎]) ≤ 3

2den(𝑆, [𝑎, 𝑎]) <
3

4𝑚 , where d̃en(𝑆, 𝐼′) denote the estimated density
(as estimated in Algorithm 1) for a layer box(𝑆, 𝐼′) when 𝐼′ ⊆ 𝐼 . Conditioning on this event
implies that for every 𝐼 𝑗 , 𝑗 ∈ [𝑚′] output as a single-valued interval by the algorithm, we have
den(𝑆, 𝐼 𝑗) ≥ 1

2𝑚 .
Finally, the number of layers that get dropped is at most 𝑘, each of them is multi-valued

and hence, conditioning on the above events, the density of points lost in this process is at most
𝑘

2𝑚 = 𝑜(1). Putting all of this together, we can see that the layers form a nice 𝑚-partition of
box(𝑆, 𝐼).

The claim about the query complexity is clear from the description of the algorithm. ■

4.2 Gridding

Next, we describe the algorithm Gridding (see Algorithm 2).
We note that initially, at the topmost recursion level of the algorithm for 𝜋-freeness, we

call Gridding with 𝑆 = [𝑛], 𝐼 = (−∞, +∞) and our preferred 𝑚 which is typically 𝑚 = 𝑛𝛿, for
some small 𝛿 < 1.

We prove in Claim 4.4 that running Gridding(𝑆, 𝐼, 𝑚) results in a partition of box(𝑆, 𝐼)
into a grid of boxes 𝐺𝑚′,𝑚′ in which either the marked boxes contain a 𝜋-appearance, or the
union of points in the marked boxes contain all but an 𝜂 fraction of the points in 𝐺𝑛, for 𝜂 << 𝜀.
Additionally, with high probability, all boxes that are tagged dense have density at least 1

8-th of
the threshold 𝛽 for marking a box as dense.

24 / 39 I. Newman and N. Varma

Input: 𝑆 ⊆ [𝑛] is a union of disjoint stripes, 𝐼 ⊆ 𝑅(𝑓) is a disjoint union of
intervals of values in 𝑅(𝑓), 𝐷 = box(𝑆, 𝐼) is the domain on which we do
gridding, 𝑚 is a parameter defining the ‘coarse’ grid size, 𝛽 < 1 is a
density threshold.

Output: A grid of boxes 𝐺𝑚′,𝑚′ , 𝑚′ ≤ 2𝑚 in which there will be �̃�(𝑚′) marked
boxes.

1: Call Layering (Algorithm 1) on inputs 𝑆, 𝐼, 𝑚. This returns, with high
probability, a set I of 𝑚′ ≤ 2𝑚 value intervals 𝐼 =

⋃
𝑗∈[𝑚′] 𝐼 𝑗 that forms a

nice 𝑚-partition of box(𝑆, 𝐼).
2: Partition 𝑆 into 𝑚′ contiguous intervals 𝑆1, . . . 𝑆𝑚′ each of size |𝑆|/𝑚′. This

defines the grid of boxes 𝐷𝑚′,𝑚′ = {box(𝑆𝑖, 𝐼 𝑗) : (𝑖, 𝑗) ∈ [𝑚′]2} inside the larger
box box(𝑆, 𝐼).

3: Sample and query, independently at random, log4 𝑛
𝛽2

points from each stripe
𝑆𝑖, 𝑖 ∈ [𝑚′] . For each (𝑖, 𝑗) ∈ [𝑚′]2, if box(𝑆𝑖, 𝐼 𝑗) contains a sampled point, then
tag that box as marked. If box(𝑆𝑖, 𝐼 𝑗) contains at least 3𝛽/4 fraction of
the sampled points in the stripe 𝑆𝑖, tag that box as dense.

4: Return the grid 𝐷𝑚′,𝑚′ along with the tags on the various boxes.

Algorithm 2. Gridding(𝑆, 𝐼, 𝑚, 𝛽)

CLAIM 4.4. Gridding(𝑆, 𝐼, 𝑚, 𝛽) returns a grid of boxes 𝐷𝑚′,𝑚′ that decomposes box(𝑆, 𝐼). It
makes �̃�(𝑚/𝛽2) queries, and with high probability,

The set of intervals corresponding to the layers of 𝐷𝑚′,𝑚′ form a nice 𝑚-partition of 𝐼 .
For every 𝑖 ∈ [𝑚′], either the stripe box(𝑆𝑖 , 𝐼) contains at least log2 𝑛

100𝛽2 marked boxes, or the
number of points in the marked boxes in box(𝑆𝑖 , 𝐼) is at least (1 − 1

log2 𝑛
) · |𝑆𝑖 |.

Every box that is tagged dense has density at least 𝛽/8, and every box of density at least 𝛽 is
tagged as dense.

PROOF . The bound on query complexity as well as the first item follows directly from Claim 4.3.
The third item follows by a simple application of the Chernoff bound followed by a union bound
over all stripes.

For the second item, fix a stripe 𝑆𝑖 of 𝐷𝑚′,𝑚′ . Let 𝑇 ⊆ [𝑚′] be the set of all 𝑗 ∈ [𝑚′] such that
box(𝑆𝑖 , 𝐼 𝑗) gets marked during Step 3 in Gridding. If

∑
𝑗∈𝑇 den(𝑆𝑖 , 𝐼 𝑗) ≥ 1−1/(log2 𝑛) then we are

done. Otherwise, each query independently hits a box that is not marked by any of the previous
queries with probability greater than 1/(log2 𝑛). Thus, the expected number of boxes marked

25 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

is at least log2 𝑛/𝛽2. Chernoff bound implies that, with probability at least 1 − 𝑛−Ω(log 𝑛) , at least
log2 𝑛
100𝛽2 boxes are marked. The union bound over all the stripes implies the second item. ■

5. Generalized testing of forbidden patterns

In this section, we formally define the problem of testing (or deciding) freeness from 𝜈-appear-
ances with a certain leg-mapping. We then provide an algorithm for a relaxation of this testing
problem. Our algorithm for testing 𝜋-freeness is based on this. A description of the algorithm,
and a proof sketch for the case of patterns of length 3 for specific leg-mappings is provided
in Section 5.1.1. It illustrates some of the ideas for the general case, and it might be easier to
follow. This is followed by an algorithm and a correctness proof for the most general case.

Recall that 𝐺𝑛 denotes the 𝑛 × |𝑅(𝑓) | grid that represents the input function 𝑓 : [𝑛] → R.
Let 𝐺ℓ,ℓ be a partition of 𝐺𝑛 into a grid of boxes for an arbitrary ℓ ≥ 1, and 𝐷 be a connected
component in 𝐺ℓ,ℓ containing 𝑡 boxes 𝐵1, . . . , 𝐵𝑡. Let 𝜈 ∈ S𝑟, and let 𝜙 : [𝑟] ↦→ {𝐵1, . . . , 𝐵𝑡} be an
arbitrary mapping of the legs of 𝜈 into the boxes of 𝐷, where 𝑡 ≤ 𝑟. We say that 1 ≤ 𝑖1 < . . . <

𝑖𝑟 ≤ 𝑛 is a 𝜙-legged 𝜈-appearance if (𝑖1, . . . , 𝑖𝑟) forms a 𝜈-appearance in 𝐺𝑛 such that the point
(𝑖 𝑗 , 𝑓 (𝑖 𝑗)) is contained in the box 𝜙(𝑗) for each 𝑗 ∈ [𝑟]. That is, the legs of the 𝜈-appearance are
mapped into the boxes given by 𝜙. For example, consider Figure 1(B), 𝜈 = (3, 2, 1, 4), and 𝐷

the component formed by the two boxes in the same layer. The function 𝜙 maps the 3-leg and
2-leg of the 𝜈-appearance to the left box and the 1-leg and 4-leg to the right box. The connected
component 𝐷 is 𝜙-legged 𝜈-free if it contains no 𝜙-legged 𝜈-appearances. It is 𝜀-far from being
𝜙-legged 𝜈-free if the values of at least 𝜀 · |⋃ 𝑗∈[𝑡] St(𝐵 𝑗) | points belonging to 𝐷 must be modified
in order to make 𝐷 free of 𝜙-legged 𝜈-appearances, where St(𝐵) for a box 𝐵 denotes the stripe
corresponding to 𝐵. Note that a function could be 𝜙-legged 𝜈-free but very far from being
𝜈-free. For example, for the 𝜙 referred to above in Figure 1(B), it could be that there are many
appearances of (3, 2, 1, 4) which are all in the left box or all in the right box or both, but there
are no appearances with the leg mapping 𝜙.

The property of being free of 𝜙-legged 𝜈-appearances is a generalization of the property
of 𝜋-freeness. Taking ℓ = 1, 𝐺ℓ,ℓ is just 𝐺𝑛 itself viewed as one single box 𝐷. When 𝜈 = 𝜋 and 𝜙

is the constant function that maps each leg to the unique box 𝐷, any 𝜋-appearance in 𝐺𝑛 is a
𝜙-legged 𝜈-appearance.

The problem of testing 𝜙-legged 𝜈-freeness was not previously explicitly studied and we
believe that it is an interesting research direction in its own right. Even though its complexity
is not known, we encounter it only as a subproblem in the testing of standard 𝜋-freeness. This
motivates the following definition.

DEF IN IT ION 5.1. Let 𝜋 ∈ S𝑘, 𝜈 ∈ S𝑟, where 𝑟 ≤ 𝑘. Let 𝐺𝑛 denote the 𝑛 × |𝑅(𝑓) | grid that
represents the input function 𝑓 : [𝑛] → R. For ℓ ≥ 1, let 𝐺ℓ,ℓ be a decomposition of 𝐺𝑛 into

26 / 39 I. Newman and N. Varma

boxes. For 𝑡 ≤ 𝑟, let 𝐷 be a 𝑡-boxed single component composed of the boxes 𝐵1, . . . , 𝐵𝑡 in 𝐺ℓ,ℓ

and let 𝜙 : [𝑟] ↦→ {𝐵1, . . . , 𝐵𝑡}. The problem GeneralizedTesting𝜋 (𝜈, 𝜙, 𝐷) is the following. For a
parameter 𝜀 ∈ (0, 1), if 𝐷 is 𝜀-far from being 𝜙-legged 𝜈-free, find a 𝜙-legged 𝜈-appearance in 𝐷

OR find any (unrestricted) 𝜋-appearance .

Our algorithm for GeneralizedTesting𝜋 (𝜈, 𝜙, 𝐷) is called AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) and is pre-
sented in Algorithm 3. The algorithm has a permutation 𝜋 ∈ S𝑘 hardwired into it. It gets
oracle access to a function 𝑓 : [𝑛] → R and its inputs are (1) 𝜈 ∈ S𝑟, 𝑟 ≤ 𝑘, (2) a compo-
nent 𝐷 composed of the boxes 𝐵1, . . . , 𝐵𝑡, 𝑡 ≤ 𝑟, in a grid 𝐺ℓ,ℓ of 𝐺𝑛, where ℓ ≥ 1, (3) a mapping
𝜙 : [𝑟] → {𝐵1, . . . 𝐵𝑡}, (4) a distance parameter 𝜀 ∈ (0, 1), and (5) a free parameter 𝑚 ≥ 2. The
parameter 𝑚 is used to control the query complexity. We are not specifying ℓ explicitly here,
but it is implicit in the way boxes of 𝐷 are defined. If 𝐷 is 𝜀-far from being free of 𝜙-legged
𝜈-appearances, with high probability, the algorithm either finds a 𝜋-appearance or a 𝜙-legged
𝜈-appearance in 𝐷.

The algorithm is recursive. A recursion is done by reducing 𝜈 to smaller length patterns,
and/or self-reduction to the same 𝜈 but on a smaller size box 𝐷′. The important base cases (see
Algorithm 3) are when the size of 𝐷 is small enough to allow queries to all indices in 𝐷, or when
𝜈 ∈ S2, in which case the algorithm is reduced to testing monotonicity.

We recall that the permutation 𝜋 ∈ S𝑘 is fixed and hardwired into the algorithm. The
grid 𝐺𝑛 is fixed and not part of the recursion. The algorithm makes its queries to the 𝑡-boxed
component 𝐷 in a grid of boxes 𝐺ℓ,ℓ defined with respect to 𝐺𝑛 (that is, a subfunction of the
original function 𝑓). The first main step of the algorithm is to grid the region box(𝑆, 𝐼) with
parameter 𝑚 into a grid 𝐷𝑚′,𝑚′ of subboxes, where 𝑚′ = 𝑂(𝑚) and 𝑆 ⊆ [𝑛] and 𝐼 ⊆ 𝑅(𝑓)
are the unions of the sets of all indices and values, respectively, in the 𝑡 boxes of 𝐷. In this
process of refining the existing boxes of 𝐷 into subboxes, the legs of a 𝜙-legged 𝜈-appearance
in 𝐷 are mapped into subboxes formed by 𝐷𝑚′,𝑚′ . The set of subboxes that contain the legs
of a particular 𝜙-legged 𝜈-appearance can form a different configuration (with one or more
connected components in it) than the configuration corresponding to the component 𝐷. This
prompts us to make the following definitions which are used in the algorithm description.

DEF IN IT ION 5.2. Consider a configuration C consisting of components 𝐶1, . . . 𝐶𝑝 for 𝑝 ∈ [𝑟].
Additionally, for 𝑖 ∈ [𝑝] let 𝜙𝑖 be a mapping from the set of legs of a permutation 𝜈𝑖 to the set
of boxes in 𝐶𝑖 . The configuration C along with {𝜈𝑖}𝑖∈[𝑝] and {𝜙𝑖}𝑖∈[𝑝] is (𝜙, 𝜈, 𝐷)-consistent if
(1) the subboxes of the grid 𝐷𝑚′,𝑚′ contain a copy of C and (2) a union of the legs of 𝜙𝑖-legged
𝜈𝑖-appearances in the copies of 𝐶𝑖 form a 𝜙-legged 𝜈-appearance in the corresponding copy of C.

If 𝑝 = 1, then 𝜈1 = 𝜈 and we say that the mapping 𝜙1 is simply (𝜙, 𝐷)-consistent.

In order to exemplify these definitions, let 𝜈 = (1, 3, 2) and let 𝐷 consist of two boxes in the
same layer and let 𝜙 map the 1, 3 legs to the box on the left and the 2 leg to the box on the right.

27 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

Input: pattern 𝜈 ∈ S𝑟; 𝐷 is a component containing boxes 𝐵1, . . . , 𝐵𝑡 in 𝐺ℓ,ℓ for
𝑡 ∈ [𝑟]; the function 𝜙 : [𝑟] ↦→ {𝐵1, . . . , 𝐵𝑡} is a leg-mapping of 𝜈 into the
boxes of 𝐷; parameter 𝑚 ≤ 𝑛; parameter 𝜀 ∈ (0, 1).

Goal: Find a 𝜙-legged 𝜈-appearance or an unrestricted 𝜋-appearance in 𝐷.
1: Let 𝑆 =

⋃
𝑖∈[𝑡] St(𝐵𝑖) and 𝐼 =

⋃
𝑖∈[𝑡] 𝐿(𝐵𝑖) define box(𝑆, 𝐼) in 𝐺ℓ,ℓ that contains 𝐷.

2: Base cases: Call BaseCaseAlgTest𝜋(𝜈, 𝜙, 𝐷, 𝑆, 𝑚, 𝜀) and output what it outputs.

3: Gridding 𝐷: We set 𝛽 = 𝜀
200𝑘𝜅(𝑘). Call Gridding(𝑆, 𝐼, 𝑚, 𝛽) which returns a

decomposition of box(𝑆, 𝐼) into an 𝑚′ ×𝑚′ grid 𝐷𝑚′,𝑚′ of subboxes, where
𝑚 ≤ 𝑚′ ≤ 2𝑚. A subset of these boxes in 𝐷𝑚′,𝑚′ are marked and a subset of
the marked boxes are dense.

4: Simple case: If 𝐷𝑚′,𝑚′ contains more than 𝜅(𝑘) ·𝑚′ marked subboxes then
output “𝜋-appearance is found”.

5: Sparsification: Delete each stripe and layer in 𝐷𝑚′,𝑚′ that contains more
than 𝑑 = 100𝑘𝜅(𝑘)/𝜀 marked subboxes. Delete all non-dense subboxes.

6: Multi-component configurations: Let 𝑐 = 𝑟3𝑟 denote an upper bound on the
number of distinct configurations with at most 𝑟 components. For each
(𝜙, 𝜈, 𝐷)-consistent configuration C (see Definition 5.2) with 𝑝 > 1 many
components C1, . . . C𝑝, sub-permutations 𝜈1, . . . , 𝜈𝑝 of 𝜈 and mappings 𝜙1, . . . , 𝜙𝑝:

1. Recursively call AlgTest𝜋(𝜈𝑖, 𝜙𝑖, 𝐷𝑖, 𝑚, 𝜀′) with distance parameter
𝜀′ = 9𝜀

10𝑘𝑐𝑟2·𝑟!·(2𝑑)𝑟 for every component 𝐷𝑖, where 𝐷𝑖 is a copy of C𝑖 in
𝐷𝑚′,𝑚′, and is contained in 𝐷. Note that 𝜈𝑖’s are smaller patterns.

2. Output “𝜙-legged 𝜈-appearance is found” if for a copy (𝐷1, . . . , 𝐷𝑝) of
(C1, . . . , C𝑝), for each 𝑖 ∈ [𝑝], 𝐷𝑖 contains a 𝜙𝑖-legged 𝜈𝑖-appearance. If
a 𝜋-appearance is found among the sampled points, output
“𝜋-appearance is found” .

7: Single component configurations: Let A be the set of all possible copies
in 𝐷 of (𝜙, 𝜈, 𝐷)-consistent single-component configurations C in 𝐷𝑚′,𝑚′.

1. loop log3 𝑛
𝜀𝑟 times:

2. Sample a member 𝐷′ from A uniformly at random, and for each
𝜙-consistent mapping 𝜙′ (Definition 5.2), call AlgTest𝜋(𝜈, 𝜙′, 𝐷′, 𝑚, 𝜀′′)
with 𝜀′′ = 9𝜀

20𝑘·(2𝑑)𝑟 ·(𝑟−1)!·𝑟𝑟.

8: If no output is declared in any of the previous steps, output “not found”.

Algorithm 3. AlgTest𝜋(𝜈, 𝜙, 𝐷,𝑚, 𝜀)

28 / 39 I. Newman and N. Varma

Input: pattern 𝜈 ∈ S𝑟; 𝐷 is a component containing boxes 𝐵1, . . . , 𝐵𝑡 in 𝐺ℓ,ℓ for
𝑡 ∈ [𝑟]; 𝑆 is a set of indices encompassing the points in 𝐷; the function
𝜙 : [𝑟] ↦→ {𝐵1, . . . , 𝐵𝑡} is a leg-mapping of 𝜈 into the boxes of 𝐷; parameter 𝑚;
parameter 𝜀 ∈ (0, 1).

Goal: Find a 𝜙-legged 𝜈-appearance or an unrestricted 𝜋-appearance in 𝐷.
1: If |𝑆| ≤ 𝑚 query all indices in 𝑆. Output “𝜋-appearance is found” or

“𝜙-legged 𝜈-appearance is found” if one of these is found.
2: If 𝑘 = 1, output “𝜋-appearance is found” if 𝐷 contains a point.
3: If 𝑟 = 2, use the test for restricted appearance of 2-patterns as described

in the proof of Lemma 5.5. If 𝑟 = 1, output “𝜙-legged 𝜈-appearance is
found” if the box 𝜙(1) contains a point.

4: If the sampled points in 𝐷 already contain a 𝜙-legged 𝜈-appearance, or
contain a 𝜋-appearance then output “𝜙-legged 𝜈-appearance is found” or
“𝜋-appearance is found” respectively.

Algorithm 4. BaseCaseAlgTest𝜋(𝜈, 𝜙, 𝐷, 𝑆, 𝑚, 𝜀)

The (1, 3, 2)-appearances in the green boxes in Figure 2 illustrate this. These appearances can
belong to various possible configurations upon further gridding of the two boxes as illustrated
by the various cases shown in the same figure. Specifically, the smaller orange boxes are
representative of subboxes obtained upon gridding of the two green boxes. Figure 2(A) shows
a (𝜙, 𝜈, 𝐷)-consistent configuration composed of three components and Figure 2(B)-(D) show
(𝜙, 𝜈, 𝐷)-consistent configurations composed of two components. Figure 2(E)-(H) show (𝜙, 𝜈, 𝐷)-
consistent configurations with just a single component and in these cases, the leg mappings are
(𝜙, 𝐷)-consistent.

We further note that our algorithm does not use any structure of 𝜋. The only role of 𝜋
in the algorithm is to ensure that after gridding, the resulting grid 𝐷𝑚′,𝑚′ contains only 𝑂(𝑚)
marked boxes as otherwise, by Lemma 3.1, a 𝜋-appearance is guaranteed.

The following theorem asserts the correctness of AlgTest𝜋 (𝜋, 𝜙, 𝐺𝑛, 𝑚, 𝜀) and the corre-
sponding query complexity.

THEOREM 5.3. Let 𝜋 ∈ S𝑘 and 𝜈 ∈ S𝑟, 𝑟 ≤ 𝑘. Let 𝑓 : [𝑛] → R and let 𝐺𝑛 denote the 𝑛 × |𝑅(𝑓) |
grid of function points. Let ℓ ≥ 1 and 𝐺ℓ,ℓ be an ℓ × ℓ grid decomposing 𝐺𝑛. Let 𝐷 be a con-
nected component in 𝐺ℓ,ℓ, composed of boxes 𝐵1, . . . , 𝐵𝑡, 𝑡 ≤ 𝑟 and 𝜙 : [𝑟] → {𝐵1, . . . 𝐵𝑡}. Let
𝑆 =

⋃
𝑖∈[𝑡] St(𝐵𝑖) and 𝐼 =

⋃
𝑖∈[𝑡] 𝐿(𝐵𝑖). Let 𝜀 ∈ (0, 1). Let 𝑚 = 𝑘 |𝑆 |𝜂 for 𝜂 ∈

(
Ω
(

1
log log log 𝑛

)
, 1
)
.

Let 𝑎 be the smallest integer such that 𝑚𝑎 ≥ 𝑘𝑎−1 |𝑆 |. If 𝐷 is 𝜀-far from 𝜙-legged 𝜈-freeness, then

29 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

1

3

2
1

3 2

1

3

2 1

3
2

(A) (B)

(C) (D)

1 3 2 2
1

3

1

3

1

32

2

(E) (F)

(G) (H)

Figure 2. (1, 3, 2)-appearances with legs spread across two green boxes sharing a layer resulting in
new configurations upon further gridding of the boxes into smaller orange boxes.

AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) finds either a 𝜙-legged 𝜈-appearance or a 𝜋-appearance, with probability at

least 1 − 𝑜(1). Its query complexity is �̃�
(
𝑚𝑟

(
𝑘
𝜀

)Θ(𝑘𝑎)
)
, where the �̃�(·) notation hides polylogarith-

mic factors in 𝑛.

We note that since AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) either finds a 𝜋-appearance or a 𝜙-legged 𝜈-
appearance in 𝐷, then if 𝐷 is free of 𝜙-legged 𝜈-appearances, the algorithm will never return
such an appearance.

Our 𝜋-freeness tester is simply AlgTest𝜋 (𝜋, 𝜙, 𝐺𝑛, 𝑚, 𝜀), where 𝜙 is the constant function
mapping each leg to the entire grid 𝐺𝑛 and 𝑚 = 𝑘𝑛1/𝑎 for an integer parameter 𝑎 ≤ log log log 𝑛
that we can control.

COROLLARY 5.4. There is a 1-sided error test for𝜋-freeness of functions of the form 𝑓 : [𝑛] → R,

for every 𝜋 ∈ S𝑘, with query-complexity �̃�(
(
𝑘
𝜀

)Θ(𝑘𝑎)
· 𝑛𝑘/𝑎), for integer 𝑎 ≤ log log log 𝑛.

5.1 Proof of Correctness

In Section 5.1.1, we start with a description of the algorithm and the proof sketch for the first
non-base case of testing 𝜙-legged 𝜈-freeness for 𝜈 ∈ S𝑟, 𝑟 = 3, with respect to an arbitrary 𝜋 ∈ S𝑘

and fixed 𝑘 ≥ 4. In Section 5.1.2, we present the proof of Theorem 5.3.

5.1.1 An example for 𝜈 ∈ S3

For this exposition, we fix 𝜈 = (1, 3, 2), and 𝐷 being composed of 2 boxes 𝐵1, 𝐵2 in the same layer,
where 𝐵1 is to the left of 𝐵2, and 𝜙 maps the 1, 3 legs of 𝜈 to 𝐵1, and the 2-leg to 𝐵2. See Figure 2(D)
for an illustration of one such case. In the figure, the green boxes represent 𝐵1 and 𝐵2. The
orange boxes indicate the subboxes in the finer grid formed when gridding is called on the
green boxes.

30 / 39 I. Newman and N. Varma

We note that Figure 2(D) illustrates the hardest case for 𝜈 ∈ S3. There are additional
one-component configurations in which the boxes are in the same stripe or layer, but these turn
out to be much easier. We will set 𝑚 = 𝑚(𝑛) to be defined later and express the complexity as a
function of 𝑚. We do not specify 𝜋 since, as explained above, 𝜋 is only needed at Step 4 of the
algorithm when the number of marked boxes is superlinear in 𝑚 in some recursive call. The
argument here holds for any 𝜋 ∈ S𝑘, 𝑘 ≥ 4.

Algorithm to test𝝓-legged 𝝂-freeness. Let 𝜈 = (1, 3, 2) and 𝜙 be such that 𝜙(1) = 𝜙(3) = 𝐵1

and 𝜙(2) = 𝐵2.
1. We assume that 𝐵1, 𝐵2 are over 𝑠 ≤ 𝑛 indices each, and that the distance of 𝐵1 ∪ 𝐵2 from 𝜙-

legged 𝜈-freeness is at least 𝜀 = Ω(1). In particular 𝐵1, 𝐵2 are dense. In Step 3 of Algorithm 3,
we grid the appropriate box containing 𝐵1 ∪ 𝐵2 (as defined in Step 1 of Algorithm 3) into a
𝑚′×𝑚′ grid, 𝐷𝑚′,𝑚′ , of subboxes (each over 2𝑠/𝑚′ indices), where 𝑚 ≤ 𝑚′ ≤ 2𝑚. We either
find a 𝜋-appearance among the sampled points or we may assume, after Steps 4 and 5 that
there are𝑂(𝑚′) dense subboxes in 𝐷𝑚′,𝑚′ and that each layer and each stripe contains𝑂(1)
dense boxes. The latter claim is obtained by an averaging argument and is described in
the formal proof in Section 5.1.2. The argument is that if 𝐵1 ∪ 𝐵2 contains a large matching
of 𝜙-legged 𝜈-appearances, then so does the restricted domain after deleting points from
non-dense boxes as well as and deleting layers and stripes that contain too many dense
boxes from 𝐷𝑚′,𝑚′ . These steps take �̃�(𝑚) queries overall, which is the complexity of the
algorithm Gridding.

2. A 𝜙-legged 𝜈-appearance in 𝐵1 ∪ 𝐵2 can be in 8 possible configurations in the grid 𝐷𝑚′,𝑚′ ,
as depicted in Figure 2. Consider first C1, . . . , C4 as in Figure 2(A)-(D), that form 2 or 3
components each. For these, a 𝜙-legged 𝜈-appearance in 𝐵1 ∪ 𝐵2 decomposes into two or
three subpatterns, and for which any restricted appearances in the corresponding compo-
nents results in a 𝜙-legged 𝜈-appearance. For example, in Figure 2(B) the configuration C2

contains one component 𝐷1 = (𝐵1,3, 𝐵2,2), where 𝐵1,3 ∈ 𝐵1, 𝐵2,2 ∈ 𝐵2, and another single
boxed component 𝐵1,1 ∈ 𝐵1, where 𝐵𝑖, 𝑗 is the orange subbox contained within the green
box 𝐵𝑖 and such that the 𝑗-th leg belongs to 𝐵𝑖, 𝑗 for 𝑖 ∈ [2], 𝑗 ∈ [3].
In Step 6 of Algorithm 3, we test each of the 𝑂(𝑚) many copies of 𝐷1 for a 𝜙′-legged (2, 1)-
appearance for which 𝜙′(2) = 𝐵1,3 and 𝜙′(1) = 𝐵2,2. Then for any such 𝐷1-copy in which
such a 𝜙′-legged (2, 1)-appearance is found, any nonempty dense box 𝐵1,1 forming with
𝐷1 a copy of C2 results in a 𝜙-legged 𝜈-appearance.
Since this is a reduction to generalized 2-pattern appearance, the recursion stops here
with 𝑂(log 𝑛)-complexity per copy of 𝐷1. Hence, altogether this will contribute a total of
�̃�(𝑚) queries. Procedures along the same lines work for any of C𝑖 , 𝑖 = 1, 2, 3, 4.
If a desired 𝜙-legged 𝜈-appearance (or a 𝜋-appearance) is found in the above process, then
clearly a correct output is produced.

31 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

On the other hand, if indeed (𝐵1, 𝐵2) contains Ω(𝑠) (that is, linear in the size of 𝐵1 ∪ 𝐵2)
many 𝜙-legged 𝜈-appearances that are consistent with one of the configurations C𝑖 , 𝑖 ∈ [4],
then, by an averaging argument, there will be such a 𝐷1 and corresponding 𝐵1,1 that
together contribute Ω(𝑠/𝑚) (that is, linear in the domain size of 𝐷1) such subpattern
appearances.
We note that for the more general case of 𝑟 > 3, the reduction will be done in higher
complexity per component (that is dependent on 𝑚 rather than just 𝑂(log 𝑛)).

3. Consider now a consistent configuration C𝑖 for 𝑖 = 5, 6, 7, 8 that forms a single component
(with 2 or 3 orange subboxes) as illustrated in Figure 2(E)-(H). In these cases, if such
appearances contribute 𝜀′ to the total distance, then a simple averaging argument shows
that for a uniformly sampled component, its distance from 𝜙-legged 𝜈-freeness will be
linear. Hence in Step 7, sampling such a component will enable us to recursively find a
𝜙-legged 𝜈-appearance with high probability. Since the size of a component on which the
recursive call is made is Θ(𝑠/𝑚), the complexity of this step is �̃�(𝑞(𝑠/𝑚, 𝜀′)), where 𝑞(𝑠, 𝛿)
is the complexity of the algorithm, for the case of 𝜈 ∈ S3, in terms of the size 𝑠 of 𝐷, and a
distance parameter 𝛿.

Correctness. The correctness of the algorithm follows from the fact that if 𝐷 is indeed far
from being 𝜙-legged 𝜈-free, then it must be that there are linearly many 𝜙-legged 𝜈-appearances
in at least one of the 8 configurations discussed above, and for each case, either a 𝜋-appearance
or a 𝜙-legged 𝜈-appearance is found, by induction. Note however, that there is a drop in the
distance parameter from 𝜀 to 𝜀′, due to the deletion of points in Step 5 of the algorithm, and the
averaging arguments resulting in the call with smaller distance parameters at Step 6 and Step 7.
This does not matter as long as 𝜀′ is kept constant (or even 1/log 𝑛), forcing the recursion depth
to be bounded from above by a constant.

Query complexity. We now analyze the query complexity of the algorithm for the special case
described above. The parameter 𝑚 is to be interpreted as the query budget of the algorithm. We
abuse notation and use 𝑠 to indicate the total number of indices that the component 𝐷 contains.
Let 𝑎 be the smallest integer such that 𝑚𝑎 ≥ 𝑠. This parameter 𝑎 denotes the recursion depth
of our algorithm and we express our recurrence relation in terms of 𝑎. Let 𝑡(𝑚, 𝑎) denote the
query complexity of the above algorithm with parameter 𝑚 for functions over a domain of size
𝑠 ≤ 𝑚𝑎. We omit the dependence of the query complexity on 𝜀 and assume that 𝜀 = Θ(1) for the
purposes of this high level description.

For the base case, we have 𝑎 = 1. Then, 𝑞(𝑚, 1) = 𝑚 = Θ(𝑠) since the algorithm can query
all the indices and still be within the query budget.

If 𝑎 > 1, ignoring polylog factors, we have 𝑡(𝑚, 𝑎) = 𝑚+𝑚+ 𝑡(𝑚, 𝑎−1). The first summand
here is the number of queries made by the Gridding. The second summand is the number of

32 / 39 I. Newman and N. Varma

queries made by Step 2 above (corresponding to Step 6 in Algorithm 3). The last summand
denotes the query complexity of the recursive call on a subbox of size Θ(𝑠/𝑚) with the same 𝑚,
for which the recursion depth is 𝑎 − 1.

The recurrence implies that 𝑡(𝑎, 𝑚) = �̃�(𝑎𝑚), which implies a query complexity 𝑠𝛿 by
choosing 𝑚 = 𝑠𝛿. We note that for 𝛿 = Ω(1) the recursion depth is 𝑎 = 1/𝛿 = 𝑂(1) as indeed
needed to keep the distance parameter constant. Moreover, for 𝛿 = 1/log log log 𝑛, the distance
parameter 𝜀′ = Ω(1/log 𝑛) at all recursion levels and the complexity becomes 𝑠𝑜(1) .

5.1.2 Formal Proof of Theorem 5.3 for general 𝜈 ∈ S𝑟

We now provide the formal proof of Theorem 5.3. In what follows, we refer to the steps in the
description of AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) (see Algorithm 3). Let 𝑆, 𝐼 be as defined in the algorithm
(based on the component that 𝐷 contains). The proof is by induction on the parameters 𝑎

and 𝑟 as defined in the statement of Theorem 5.3. To recall, 𝑎 is the smallest integer for which
𝑚𝑎 ≥ 𝑘𝑎−1 |𝑆 | and indicates the recursion depth of the algorithm.

Base Cases. For completeness we start with the base cases (see Algorithm 4). One of them is
when 𝑎 = 1, which is equivalent to 𝑚 ≥ |𝑆 |, in which case the algorithm queries all indices in 𝑆

and solves the problem correctly with probability 1. The other base case is when 𝑟 = 2, which is
the same as testing for restricted 𝜈-appearance for a 2-pattern 𝜈. That is, the input is 𝜈 ∈ S2, a
component 𝐷 with at most two boxes, a leg mapping function 𝜙 and the distance parameter 𝜀.
There is no need of 𝜋 as we will show how to test 𝜙-legged 𝜈-freeness unconditionally. Lastly,
the only 2-pattern up to isomorphism is 𝜈 = (2, 1) which is assumed to be the input.

LEMMA 5.5. Let 𝐷 be a connected component in 𝐺𝑛 and 𝜙 a leg mapping for 𝜈 = (2, 1) into the
boxes of 𝐷. Let 𝑆 ⊆ [𝑛] denote the set of indices belonging to the boxes in 𝐷. For any 𝜀 > 0 there is
a 1-sided error 𝜀-tester for 𝜙-legged 𝜈-freeness in 𝐷 with query complexity 𝑂((log |𝑆 |)/𝜀).

PROOF . The component 𝐷 has at most 2 boxes since 𝜈 is a pattern of length 2. If 𝐷 is a single
box box(𝑆, 𝐼), then the problem is identical to erasure-resilient monotonicity testing, where
the points belonging to 𝐷 are the nonerased points and the points (𝑥, 𝑦) with 𝑥 ∈ 𝑆 and 𝑦 ∉ 𝐼

are erased. In this case, we can use an existing 𝑂((log |𝑆 |)/𝜀)-query erasure-resilient tester [16],
since 𝐷 is dense and contains a constant fraction of points in the stripe defined by 𝑆.

In the rest, we assume that 𝐷 is composed of exactly two boxes 𝐷 = 𝐵1 ∪ 𝐵2, and 𝜙(𝑖) =
𝐵𝑖 , 𝑖 = 1, 2. Consider first the case where the boxes are on the same layer and 𝐵1 is on the left
of 𝐵2. A 𝜙-legged 𝜈-appearance in this case is constituted by (𝑖, 𝑗) ∈ St(𝐵1) × St(𝐵2) such that
𝑓 (𝑖) > 𝑓 (𝑗). The 𝜀-tester is as follows.

1. Sample 𝑂(1/𝜀) indices independently and uniformly at random from each one of the
stripes St(𝐵1) and St(𝐵2).

33 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

2. Reject if there exists indices 𝑖, 𝑗 in the sample such that (𝑖, 𝑓 (𝑖)) ∈ 𝐵1, (𝑗, 𝑓 (𝑗)) ∈ 𝐵2 and
𝑓 (𝑖) > 𝑓 (𝑗); accept otherwise.

The tester has 1-sided error and has query complexity 𝑂(1/𝜀). We now show that if 𝐷
is 𝜀-far from 𝜙-legged 𝜈-freeness, then the tester above rejects with constant probability. Let
𝑠 = | St(𝐵1) |. It must be the case that 𝐷 has a matching 𝑀 of𝜙-legged 𝜈-appearances of cardinality
at least 𝜀𝑠. Let 𝛼 be the median value of the 2-legs in this matching. Namely, there are at least
𝜀𝑠/2 pairs in 𝑀 with the value of the left leg > 𝛼. Thus, the probability of a sampled index
𝑥 ∈ St(𝐵1) to be a 2-leg in 𝑀 and with 𝑓 (𝑥) > 𝛼 is at least 𝜀/2. By the same argument, for half
the pairs in 𝑀 their 2-leg value is below 𝛼 and, for each such pair, its corresponding 1-leg in 𝐵2

has a lower value than 𝛼. Hence with probability at least 𝜀/2, a random query 𝑦 ∈ 𝐵2 will be
such that 𝑓 (𝑦) < 𝛼. We conclude that if these two events occur we find the required pair. These
two events happen with probability at least 1 − 2(1 − 𝜀/2)ℓ > 2/3 for an appropriate number of
queries ℓ = 𝑂(1/𝜀). This ends the proof for this case.

The other case is when 𝐵1 and 𝐵2 are on the same stripe. A similar tester with a similar
correctness argument is applicable for this case as well. ■

General Case. Let 𝜋 ∈ S𝑘 be fixed and let 𝜈 ∈ S𝑟, where 𝑟 ≤ 𝑘. Assume that we call the
algorithm AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀), where 𝐷 is a single component (in some grid of boxes 𝐺ℓ,ℓ)
containing the boxes 𝐵1, 𝐵2, . . . , 𝐵𝑡, 𝑡 ≤ 𝑟. Let 𝑆 =

⋃
𝑗∈[𝑡] St(𝐵 𝑗) and 𝐼 =

⋃
𝑗∈[𝑡] 𝐿(𝐵 𝑗).

In what follows, we show that if 𝐷 is 𝜀-far from being 𝜙-legged 𝜈-free, the call to the
algorithm AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀) finds a 𝜙-legged 𝜈-appearance or a 𝜋-appearance w.h.p. This
will complete the proof of correctness. We assume, for simplicity, that 𝑓 is one-to-one (see note
at the end of this section for handling the case when 𝑓 is not one-to-one).

The first step of Algorithm 3 is Step 3, which is a call to Gridding(𝑆, 𝐼, 𝑚, 𝛽), where 𝛽 =

𝜀/(200𝑘𝜅). By Claim 4.4, we know that w.h.p. this call returns a decomposition of box(𝑆, 𝐼) into
an 𝑚′ ×𝑚′ grid of subboxes 𝐷𝑚′,𝑚′ , 𝑚 ≤ 𝑚′ ≤ 2𝑚, where a subset of boxes are marked and a
subset of these marked boxes are dense w.r.t. the threshold 𝛽. Additionally, the set of intervals
I = {𝐼 𝑗} 𝑗∈[𝑚′] corresponding to the layers of 𝐷𝑚′,𝑚′ form a nice 𝑚-partition (see Definition 4.2)
of box(𝑆, 𝐼). Since 𝑓 is one-to-one, there are no single-valued layers and hence, for each 𝑗 ∈ [𝑚′],
it holds that den(𝑆, 𝐼 𝑗) ≤ 4/𝑚.

In the next stage (Step 4 of AlgTest), the algorithm checks whether the marked boxes of
𝐷𝑚′,𝑚′ directly contain a𝜋-appearance. Such an appearance corresponds to an actual appearance
in 𝑓 by Observation 2.4. Hence, we either find a 𝜋-appearance and we are done, or we conclude
by Lemma 3.1 that 𝐷𝑚′,𝑚′ has at most 𝜅𝑚′ marked boxes. Then, in Step 5 of AlgTest we delete all
points in each layer and each stripe that contains more than 𝑑 marked boxes. We additionally
delete all points in all the non-dense boxes.

34 / 39 I. Newman and N. Varma

CLAIM 5.6. If 𝐷 is 𝜀-far from 𝜙-legged 𝜈-free, then the union of dense boxes that remain after
Step 5 in Algorithm 3 contains a matching 𝑀′ of 𝜙-legged 𝜈-appearances of cardinality at least 9𝜀|𝑆 |

10𝑘 .

PROOF . Since 𝐷𝑚′,𝑚′ contains at most 𝜅𝑚′ marked boxes, it follows that at most 𝜅
𝑑 = 𝜀

100𝑘

fraction of the layers have more than 𝑑 marked boxes. Hence, using the bound on the density of
each layer (due to the nice 𝑚-partition of box(𝑆, 𝐼)) from Claim 4.4, deleting the points in these
marked boxes deletes at most 𝜀

100𝑘𝑚
′ · 4

𝑚 · |𝑆 | ≤ 8𝜀|𝑆 |
100𝑘 points from 𝐷. By a similar argument, the

number of points that get deleted by removing stripes with more than 𝑑 marked boxes is at
most 𝜀|𝑆 |

100𝑘 . Moreover, by the third item of Claim 4.4, we know that the total number of points that
belong to marked boxes that are not tagged dense by AlgTest is at most 𝛽 |𝑆 |

𝑚′ · 𝜅𝑚′ ≤ 𝜀|𝑆 |
200𝑘 , where

the inequality follows by our setting of 𝛽. Finally, combining the second item in Claim 4.4 with
the fact that we delete each stripe containing more than 𝑑 = 100𝑘𝜅

𝜀 marked boxes, for each stripe
that is left, the marked boxes contain at least 1−1/(log2 𝑛) fraction of the points in it. Hence, the
total number of points deleted in Step 5 of Algorithm 3 is at most 8𝜀|𝑆 |

100𝑘 +
𝜀|𝑆 |

100𝑘 +
𝜀|𝑆 |

200𝑘 +
|𝑆 |

log2 𝑛
≤ 𝜀|𝑆 |

10𝑘 .
Recall that we assume that 𝐷 is 𝜀-far from being 𝜙-legged 𝜈-free. This implies that it

contains a matching of 𝜙-legged 𝜈-appearances of size at least 𝜀|𝑆 |/𝑘. For the rest of this proof,
we fix such a matching 𝑀 . Since each deleted point deletes at most 1 member from 𝑀 , there
is a matching 𝑀′ of cardinality at least 𝜀|𝑆 |

𝑘 − 𝜀|𝑆 |
10𝑘 ≥ 9𝜀|𝑆 |

10𝑘 with all legs in the set of dense boxes
remaining after Step 5. ■

We can partition 𝑀′ into a collection of disjoint matchings 𝑀′ =
⋃

𝑖∈[𝑟] 𝑀𝑖 , where 𝑀𝑖

contains the 𝜙-legged 𝜈-appearances in 𝑀′ belonging to configuration copies in 𝐷𝑚′,𝑚′ that
have 𝑖 components. Recall that all the legs of every 𝜙-legged 𝜈-appearance in 𝑀′ belong to
the single component 𝐷 made of the boxes 𝐵1, . . . , 𝐵𝑡. However, with respect to the grid 𝐷𝑚′,𝑚′ ,
each such 𝜈-appearance has a corresponding leg mapping that maps the legs of the appearance
to boxes in 𝐷𝑚′,𝑚′ , which are actually subboxes of 𝐵1, . . . , 𝐵𝑡. Some of the leg mappings of
𝜈-appearances to subboxes might result in configurations with multiple components in the finer
grid 𝐷𝑚′,𝑚′ .

It follows that either 𝑀1 or
⋃

𝑖∈[𝑟−1] 𝑀𝑖+1 has cardinality at least 9𝜀|𝑆 |
20𝑘 . Let 𝜀1 = 9𝜀/(20𝑘).

CLAIM 5.7. If |𝑀1 | ≥ 𝜀1 |𝑆 |, then with high probability, Algorithm 3 finds a 𝜙-legged 𝜈-appearance
or a 𝜋-appearance in Step 7.

PROOF . The number of 1-component configuration copies in the grid 𝐷𝑚′,𝑚′ that share a dense
box and contain at most 𝑟 boxes is at most (𝑟 − 1)! · (2𝑑)𝑟−1. Combined with the fact that the
total number of dense boxes is at most 𝑑𝑚′, we can see that the number of distinct copies of
1-component configurations with at most 𝑟 boxes is at most 𝑑𝑚′ · (𝑟 − 1)! · (2𝑑)𝑟−1.

Therefore, in expectation, a uniformly random copy of a 1-component configuration with at
most 𝑟 boxes contains at least 𝜀1 |𝑆 |

𝑑𝑚′·(𝑟−1)!(2𝑑)𝑟−1 many 𝜈-appearances from 𝑀1. These 𝜈-appearances
each could have different leg mappings that are each (𝜙, 𝐷)-consistent (see Definition 5.2). There

35 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

are at most 𝑟𝑟 ways to map the 𝑟 legs of 𝜈 into at most 𝑟 boxes. Thus, in expectation, a uniformly
random 1-component copy 𝐶 and a uniformly random (𝜙, 𝐷)-consistent mapping of 𝑟 legs into
the boxes of 𝐶 correspond to at least 𝜀1 |𝑆 |

𝑑𝑚′·(𝑟−1)!(2𝑑)𝑟−1·𝑟𝑟 many 𝜈-appearances from 𝑀1.
By the reverse Markov’s inequality4, with probability at least 𝜀1

(2𝑑)𝑟 ·(𝑟−1)!𝑟𝑟 , the number
of 𝜙′-legged 𝜈-appearances in a uniformly random one-component configuration copy for a
uniformly random (𝜙, 𝐷)-consistent leg mapping 𝜙′ is at least 𝜀1 |𝑆 |

𝑚′ (2𝑑)𝑟 ·(𝑟−1)!𝑟𝑟 . Therefore, w.h.p., at

least one of the log3 𝑛
𝜀𝑟+1 sampled one-component configuration𝐶 and an associated (𝜙, 𝐷)-consistent

leg-mapping 𝜙′ contains at least 𝜀1 |𝑆 |
𝑚′ (2𝑑)𝑟 ·(𝑟−1)!𝑟𝑟 many 𝜙′-legged 𝜈-appearances. Conditioned on

this event, the sub-grid restricted to this component is at least 𝜀1
(2𝑑)𝑟 ·(𝑟−1)!𝑟𝑟 -far from being free

of 𝜙′-legged 𝜈 appearances. By the induction hypothesis, the recursive call in Algorithm 3
in Step 7 with parameter 𝜀′′ = 𝜀1

(2𝑑)𝑟 ·(𝑟−1)!𝑟𝑟 will detect, with high probability, one such 𝜙′-legged
𝜈-appearance, which is also a 𝜙-legged 𝜈-appearance in 𝐷. ■

Next, we consider the case that |⋃𝑖∈[𝑟−1] 𝑀𝑖+1 | ≥ 𝜀1 · |𝑆 |. We start by presenting the
following definitions and claims. Let ℓ be a positive integer. Let 𝐻 ⊆ [ℓ]𝑡 be a collection of
weighted ordered 𝑡-tuples. Each 𝑡-tuple a ∈ 𝐻 is associated with a positive weight 𝑤(a). We
use 𝑤𝐻 to denote

∑
a∈𝐻 𝑤(a), i.e., the sum of weights of all elements in 𝐻 . Let a𝑖 denote the 𝑖-th

coordinate in a. For 𝑥 ∈ [ℓ] and 𝑖 ∈ [𝑡], let 𝑤𝑖 (𝑥) =
∑

a∈𝐻 :a𝑖=𝑥
𝑤(a). Namely, 𝑤𝑖 (𝑥) is the sum of

weights of elements in 𝐻 that have the value 𝑥 in their 𝑖-th coordinate.

DEF IN IT ION 5.8. For 𝐻 with 𝑤𝐻 = ℓ𝑝, we say that 𝑥 ∈ [ℓ] is (𝑖, 𝛼)-heavy if 𝑤𝑖 (𝑥) ≥ 𝛼𝑝.

CLAIM 5.9. Let 𝐻 ⊆ [ℓ]𝑡 be such that 𝑤𝐻 = 𝑝ℓ. Then for every 𝛼 ≤ 1
𝑡 , there exists a ∈ 𝐻 such

that for every 𝑖 ∈ [𝑡], a𝑖 is (𝑖, 𝛼)-heavy.

PROOF . For any fixed 𝑖 ∈ [𝑡], ∑𝑥∈[ℓ] 𝑤𝑖 (𝑥) = 𝑤𝐻 = 𝑝ℓ. On the other hand, the sum of weight
of values 𝑥 ∈ [ℓ], each that is not (𝑖, 𝛼)-heavy is less than ℓ · 𝛼𝑝 by definition. Therefore, the
set of all a ∈ 𝐻 in which for some 𝑖 ∈ [𝑡], a𝑖 is not (𝑖, 𝛼)-heavy has a total weight less than
𝑡ℓ · 𝛼𝑝 ≤ 𝑝ℓ, since 𝛼 ≤ 1

𝑡 . Hence, removing all such tuples from 𝐻 leaves at least one tuple
a′ ∈ 𝐻 . By definition, for every 𝑖 ∈ [𝑡], a′ is (𝑖, 𝛼)-heavy. ■

CLAIM 5.10. If |⋃𝑖∈[𝑟−1] 𝑀𝑖+1 | ≥ 𝜀1 · |𝑆 |, then with high probability, Algorithm 3 finds a 𝜙-legged
𝜈-appearance or a 𝜋-appearance in Step 6.

PROOF . Consider 2 ≤ ℎ ≤ 𝑟 such that |𝑀ℎ | ≥ 𝜀1 |𝑆 |/𝑟. There are at most 𝑐 = 𝑟3𝑟 configurations
with ≤ 𝑟 boxes along with their associated mappings of 𝑟 legs into those boxes. Consider a
(𝜙, 𝜈, 𝐷)-consistent (see Definition 5.2) ℎ-component configuration C along with corresponding
leg mappings {𝜙𝑖}𝑖∈[ℎ] and sub-patterns {𝜈𝑖}𝑖∈[ℎ] such that there are at least |𝑀ℎ |/𝑐 appearances
in 𝑀ℎ that form the configuration C. Let 𝑉 be the set of all 1-component configuration copies

4 Let 𝑋 be a random variable such that Pr[𝑋 ≤ 𝑎] = 1 for some constant 𝑎. Then, for 𝑑 < 𝐸[𝑋], we have Pr[𝑋 > 𝑑] ≥ E[𝑋]−𝑑𝑎−𝑑 .

36 / 39 I. Newman and N. Varma

made up of at most 𝑟 dense boxes in 𝐷𝑚′,𝑚′ . Let 𝐻 ⊆ 𝑉ℎ be the (hyper)graph over the vertex
set 𝑉 , where (𝐶1, 𝐶2 . . . 𝐶ℎ) ∈ 𝐻 if it is a copy of C. Its weight, denoted 𝑤(𝐶1, 𝐶2 . . . 𝐶ℎ), is the
number of 𝜙-legged 𝜈-appearances in 𝑀ℎ such that each one of them decomposes, for 𝑖 ∈ [ℎ],
into 𝜙𝑖-legged 𝜈𝑖-appearances in 𝐶𝑖 . It must be the case that 𝑤𝐻 ≥ 𝜀1 |𝑆 |/(𝑐𝑟), as each member
in 𝑀ℎ forming the configuration C contributes to 𝑤𝐻 .

This corresponds to the setting of Claim 5.9 with 𝑡 = ℎ and ℓ = |𝑉 |. In addition, since
ℓ = |𝑉 | ≤ 𝑑𝑚′ · (2𝑑)𝑟−1 · (𝑟 − 1)!, it follows that 𝑤𝐻 = ℓ · 𝑤𝐻

ℓ ≥ ℓ · 𝜀1
𝑐2𝑟−1𝑑𝑟𝑟! ·

|𝑆 |
𝑚 which corresponds

to 𝑝 =
𝜀1

𝑐2𝑟−1𝑑𝑟𝑟! ·
|𝑆 |
𝑚 . Finally, for 𝐶 ∈ 𝑉 and 𝑖 ∈ [ℎ], the quantity 𝑤𝑖 (𝐶) is the number of 𝜙-legged

𝜈-appearances in 𝑀ℎ forming the configuration C, where the legs of the 𝜈𝑖 subpattern are
𝜙𝑖-mapped to 𝐶.

Let 𝛼 = 1
𝑟 ≤ 1

ℎ = 1
𝑡 for the application of Claim 5.9. As a result, Claim 5.9 guarantees

that there is an ℎ-tuple (𝐶1, 𝐶2, . . . 𝐶ℎ) ∈ 𝑉ℎ consistent with a copy of C, contains a 𝜙-legged 𝜈-
appearance consistent with C, and for which, each of𝐶1, 𝐶2 . . . 𝐶ℎ are𝛼-heavy (see Definition 5.8).
In turn, this means that for each 𝑖 ∈ [ℎ], the component 𝐶𝑖 is 𝜀′-far from being 𝜙𝑖-legged 𝜈𝑖-free,
where 𝜀′ = 𝑝𝛼

𝑟 |𝑆 |/𝑚 =
𝜀1

𝑐𝑟2·𝑟!·2𝑟−1·𝑑𝑟 . This additionally implies that the overall density of the marked
boxes involved in each 𝐶𝑖 , 𝑖 ∈ [ℎ] is also at least 𝜀′. This, in turn, implies that each test for
𝜙𝑖-legged 𝜈𝑖-freeness in 𝐶𝑖 for 𝑖 ∈ [ℎ] (with the corresponding distance parameter 𝜀′), that is
done in Step 6, is going to succeed with very high probability by the induction hypothesis. ■

This concludes the proof of correctness for all cases, assuming inductively correctness for
𝑟 − 1 and 𝑎 − 1. Since at each recursive call we decrease 𝑎 by 1, the recursion depth is at most 𝑎.
In particular, as the distance parameter 𝜀 decreases by a constant factor (assuming 𝑘 and 𝑎 are
constants), namely, that is independent of 𝑛 or |𝑆 |, we conclude that it remains constant at all
recursion levels.

Query Complexity. We now analyze the query complexity of a call to AlgTest𝜋 (𝜈, 𝜙, 𝐷, 𝑚, 𝜀).
We fix 𝑚 = 𝑚(|𝑆 |) and write the complexity in terms of 𝑚, where 𝑆 is the set of indices of 𝐷
as defined in the algorithm. For this fixed 𝑚 (that is not going to be changed during recursive
calls), let 𝑎 be the smallest integer for which 𝑚𝑎 ≥ 𝑘𝑎−1 |𝑆 |.

LEMMA 5.11. Algorithm 3 makes �̃�
(
𝑎! · 𝑚𝑟 ·

(
𝑘
𝜀

)Θ(𝑘𝑎)
)

queries.

PROOF . We express the query complexity as 𝑞(𝑚, 𝑎, 𝑟, 𝜀), where the integer 𝑎 here denotes
the recursion depth. Recall that 𝑆, 𝐼 are as defined in the algorithm (based on the component 𝐷
contains). One of the boundary cases is when 𝜈 has length 2 and we have 𝑞(𝑚, 𝑎′, 2, 𝜀) =

𝑂
(

log |𝑆 |
𝜀

)
= �̃�(1/𝜀) from Lemma 5.5 for 𝑎′ ≤ 𝑎, 𝜀 ∈ (0, 1). The other boundary case is for

𝑞(𝑚, 1, 𝑟′, 𝜀) for 𝜀 ∈ (0, 1), 𝑟′ ≤ 𝑟, i.e., the query complexity after 𝑎 − 1 recursive calls. Since the
size of the domain on which the algorithm is called decreases by a factor of at most 𝑘/𝑚 with

each recursive call, the final domain size is at most
(
𝑘
𝑚

)𝑎−1
· |𝑆 | ≤ 𝑚 and the algorithm can query

every index in the domain at that level. Therefore 𝑞(𝑚, 1, 𝑟′, 𝜀) = 𝑚 for all 𝜀 ∈ (0, 1), 𝑟′ ≤ 𝑟.

37 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

We now write the recurrence for the general case by ignoring polylog factors. We have

𝑞(𝑚, 𝑎, 𝑟, 𝜀) = 𝑚 · 𝑘
2

𝜀2 +𝑚 ·
(
𝑘

𝜀

)Θ(𝑘)
𝑞(𝑚, 𝑎 − 1, 𝑟 − 1, 𝜀(1)) +

(
1
𝜀

)Θ(𝑘)
𝑞(𝑚, 𝑎 − 1, 𝑟, 𝜀(1)),

where 𝜀(1) =
(
𝜀
𝑘

)Θ(𝑘) . The first term on the right comes from the gridding of 𝐷. The second term
comes from recursively calling the algorithm for each one of the possible 𝑚 components in 𝐷

for the constantly many smaller patterns and constantly many consistent leg-mappings (Step 6),
and the third item from the self recursion in Step 7.

We can solve the recurrence above to get the solution 𝑞(𝑚, 𝑎, 𝑟, 𝜀) = 𝑎! ·𝑚𝑟 ·
(
𝑘
𝜀

)Θ(𝑘𝑎)
. As long

as 𝑎 ≤ log log log 𝑛, the distance parameter at the lowest recursion levels is Ω(1/log 𝑛), which is
allows us to call the 2-pattern testers (one of the base cases) in �̃�(1) query complexity. ■

A note on single-valued layers: In case the function is not one-to-one, the subroutine
Layering may discover single-valued layers if there are such values of large enough density. The
first place where this might have an impact is at Step 5 of AlgTest, where we delete all layers
that contain more than a constant number of marked boxes. The modification is that we apply
this step only on multi-valued layers. Hence, single-valued layers will possibly remain with
more than 𝑑 marked boxes. However, Claim 4.4 remains unchanged.

We used the fact that every layer has at most 𝑑 marked boxes to conclude that every marked
box that may be involved in a 𝜈-appearance is contained in at most (𝑟 − 1)!(2𝑑)𝑟 components
of at most 𝑟 boxes. This claim is still true since a 𝜈-appearance cannot have two or more legs
in a single valued layer. Hence, each connected component that contains a 𝜈-appearance, can
contain at most one box from each single-valued layer. It follows that all our arguments go
through even in this setting. The only difference is that we also consider components containing
at most one marked box per single-valued layer.

Acknowledgements. We thank anonymous reviewers for their extensive comments that
significantly improved the presentation of the manuscript.

38 / 39 I. Newman and N. Varma

References
[1] Shlomo Ahal and Yuri Rabinovich. On complexity of
the subpattern problem. SIAM Journal on Discrete
Mathematics, 22(2):629–649, 2008. DOI (2)

[2] Michael H. Albert, Robert E. L. Aldred,
Mike D. Atkinson, and Derek A. Holton. Algorithms
for pattern involvement in permutations.
Algorithms and Computation, 12th International
Symposium, ISAAC 2001, Proceedings,
volume 2223 of Lecture Notes in Computer Science,
pages 355–366. Springer, 2001. DOI (2)

[3] Noga Alon and Ehud Friedgut. On the number of
permutations avoiding a given pattern. Journal of
Combinatorial Theory, Series A, 89(1):133–140,
2000. DOI (1)

[4] Noga Alon, Michael Krivelevich, Ilan Newman, and
Mario Szegedy. Regular languages are testable
with a constant number of queries. SIAM Journal on
Computing, 30(6):1842–1862, 2000. DOI (7)

[5] Richard Arratia. On the Stanley-Wilf conjecture for
the number of permutations avoiding a given
pattern. The Electronic Journal of Combinatorics,
6:1–4, 1999. DOI (1)

[6] Aleksandrs Belovs. Adaptive lower bound for
testing monotonicity on the line. Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM
2018, 31:1–31:10, 2018. DOI (2, 7)

[7] Omri Ben-Eliezer and Clément L. Canonne.
Improved bounds for testing forbidden order
patterns. Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 2093–2112. SIAM, 2018. DOI
(1–3)

[8] Omri Ben-Eliezer, Clément L. Canonne,
Shoham Letzter, and Erik Waingarten. Finding
monotone patterns in sublinear time. 60th IEEE
Annual Symposium on Foundations of Computer
Science, FOCS 2019, pages 1469–1494. IEEE
Computer Society, 2019. DOI (2, 17)

[9] Omri Ben-Eliezer, Shoham Letzter, and
Erik Waingarten. Finding monotone patterns in
sublinear time, adaptively. 49th International
Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris,
France, volume 229 of LIPIcs, 17:1–17:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
DOI (2, 3)

[10] Benjamin Aram Berendsohn, László Kozma, and
Dániel Marx. Finding and counting permutations
via CSPs. Algorithmica, 83(8):2552–2577, 2021.
DOI (2)

[11] Donald J. Berndt and James Clifford. Using
dynamic time warping to find patterns in time
series. Knowledge Discovery in Databases: Papers
from the 1994 AAAI Workshop, 1994. Technical
Report WS-94-03, pages 359–370. AAAI Press,
1994. URL (2)

[12] Arnab Bhattacharyya, Elena Grigorescu,
Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-closure spanners.
SIAM Journal on Computing, 41(6):1380–1425, 2012.

DOI (2)

[13] Miklós Bóna. Exact and asymptotic enumeration of
permutations with subsequence conditions.
PhD thesis, Massachusetts Institute of Technology,
1997. URL (1)

[14] Miklós Bóna. The solution of a conjecture of
Stanley and Wilf for all layered patterns. Journal of
Combinatorial Theory, Series A, 85(1):96–104, 1999.

DOI (1)

[15] Deeparnab Chakrabarty and C. Seshadhri. Optimal
bounds for monotonicity and Lipschitz testing over
hypercubes and hypergrids. Proceedings of the
ACM Symposium on Theory of Computing (STOC)
2013, pages 419–428, 2013. DOI (2)

[16] Kashyap Dixit, Sofya Raskhodnikova,
Abhradeep Thakurta, and Nithin Varma.
Erasure-resilient property testing. SIAM Journal on
Computing, 47(2):295–329, 2018. DOI (2, 6, 14,
32)

[17] Yevgeniy Dodis, Oded Goldreich, Eric Lehman,
Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms
for monotonicity. RANDOM-APPROX, 1999,
Proceedings, pages 97–108, 1999. DOI (2)

[18] Funda Ergün, Sampath Kannan, Ravi Kumar,
Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. Journal of Computer and System
Sciences, 60(3):717–751, 2000. DOI (2)

[19] Eldar Fischer. On the strength of comparisons in
property testing. Information and Computation,
189(1):107–116, 2004. DOI (2)

[20] Jacob Fox. Stanley-Wilf limits are typically
exponential. CoRR, abs/1310.8378, 2013. URL (2)

[21] Jacob Fox and Fan Wei. Fast property testing and
metrics for permutations. Combinatorics,
Probability and Computing, 27(4):539–579, 2018.
DOI (7)

[22] Oded Goldreich, Shafi Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. Journal of ACM, 45(4):653–750,
1998. DOI (2)

[23] Sylvain Guillemot and Dániel Marx. Finding small
patterns in permutations in linear time.
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014,
pages 82–101. SIAM, 2014. DOI (2)

[24] Eamonn J. Keogh, Stefano Lonardi, and
Bill Yuan-chi Chiu. Finding surprising patterns in a
time series database in linear time and space.
Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD 2002, pages 550–556. ACM,
2002. DOI (2)

https://doi.org/10.1137/S0895480104444776
https://doi.org/10.1007/3-540-45678-3_31
https://doi.org/10.1006/jcta.1999.3002
https://doi.org/10.1137/S0097539700366528
https://doi.org/10.37236/1477
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2018.31
https://doi.org/10.1137/1.9781611975031.137
https://doi.org/10.1109/FOCS.2019.000-1
https://doi.org/10.4230/LIPICS.ICALP.2022.17
https://doi.org/10.4230/LIPICS.ICALP.2022.17
https://doi.org/10.1007/S00453-021-00812-Z
https://doi.org/10.1007/S00453-021-00812-Z
https://dl.acm.org/doi/10.5555/3000850.3000887
https://doi.org/10.1137/110826655
https://dspace.mit.edu/handle/1721.1/42691
https://doi.org/10.1006/JCTA.1998.2908
https://doi.org/10.1145/2488608.2488661
https://doi.org/10.1137/16M1075661
https://doi.org/10.1007/978-3-540-48413-4_10
https://doi.org/10.1006/jcss.1999.1692
https://doi.org/10.1016/j.ic.2003.09.003
http://arxiv.org/abs/1310.8378
https://doi.org/10.1017/S096354831800024X
https://doi.org/10.1017/S096354831800024X
https://doi.org/10.1145/285055.285060
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1145/775047.775128

39 / 39 Strongly Sublinear Algorithms for Testing Pattern Freeness

[25] Martin Klazar. The Füredi-Hajnal conjecture implies
the Stanley-Wilf conjecture. In: Krob, D., Mikhalev,
A.A., Mikhalev, A.V. (eds) Formal Power Series and
Algebraic Combinatorics, pages 250–255. Springer,
2000. DOI (1)

[26] AdamMarcus and Gábor Tardos. Excluded
permutation matrices and the Stanley-Wilf
conjecture. Journal of Combinatorial Theory, Series
A, 107(1):153–160, 2004. DOI (1, 4, 7, 15)

[27] Michael Mitzenmacher and Saeed Seddighin.
Improved sublinear time algorithm for longest
increasing subsequence. Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 1934–1947. SIAM, 2021. DOI
(4)

[28] Ilan Newman, Yuri Rabinovich,
Deepak Rajendraprasad, and Christian Sohler.
Testing for forbidden order patterns in an array.
Random Structures and Algorithms, 55(2):402–426,
2019. DOI (1–3, 6, 14, 17)

[29] Ilan Newman and Nithin Varma. New sublinear
algorithms and lower bounds for LIS estimation.
48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021,
volume 198 of LIPIcs, 100:1–100:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
DOI (4, 6–8, 21)

[30] Ramesh Krishnan S. Pallavoor,
Sofya Raskhodnikova, and Nithin Varma.
Parameterized property testing of functions. ACM
Transactions on Computation Theory,
9(4):17:1–17:19, 2018. DOI (2, 7)

[31] Pranav Patel, Eamonn J. Keogh, Jessica Lin, and
Stefano Lonardi. Mining motifs in massive time
series databases. Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM
2002), pages 370–377. IEEE Computer Society,
2002. DOI (2)

[32] Ronitt Rubinfeld and Madhu Sudan. Robust
characterizations of polynomials with applications
to program testing. SIAM Journal on Computing,
25(2):252–271, 1996. DOI (2)

[33] Aviad Rubinstein, Saeed Seddighin, Zhao Song,
and Xiaorui Sun. Approximation algorithms for LCS
and LIS with truly improved running times. 60th
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, pages 1121–1145,
2019. DOI (4)

[34] Michael E. Saks and C. Seshadhri. Estimating the
longest increasing sequence in polylogarithmic
time. SIAM Journal on Computing, 46(2):774–823,
2017. DOI (4)

2024 : 1
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Ilan Newman, Nithin Varma.

https://doi.org/https://doi.org/10.1007/978-3-662-04166-6_22
https://doi.org/10.1016/J.JCTA.2004.04.002
https://doi.org/10.1137/1.9781611976465.115
https://doi.org/10.1002/RSA.20840
https://doi.org/10.4230/LIPICS.ICALP.2021.100
https://doi.org/10.4230/LIPICS.ICALP.2021.100
https://doi.org/10.1145/3155296
https://doi.org/10.1109/ICDM.2002.1183925
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1109/FOCS.2019.00071
https://doi.org/10.1137/130942152

	Introduction
	Our results
	Discussion of our techniques
	Open directions

	Preliminaries and discussion
	Deletion distance vs. Hamming distance
	Viewing a function as a grid of points
	Coarse grid of boxes
	Patterns among and within nonempty boxes

	Erasure-resilient testing

	High-level description of the basic algorithm for testing freeness of a pattern of size 4
	Gridding
	Layering
	Gridding

	Generalized testing of forbidden patterns
	Proof of Correctness
	An example for nu in S3
	Formal Proof of Theorem 5.3 for general nu in Sr

	References

