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ABSTRACT. PPSZ, for long time the fastest known algorithm for 𝑘-SAT, works by going through
the variables of the input formula in random order; each variable is then set randomly to 0 or 1,
unless the correct value can be inferred by an efficiently implementable rule (like small-width
resolution; or being implied by a small set of clauses).

We show that PPSZ performs exponentially better than previously known, for all 𝑘 ≥ 3.
We achieve this through an improved analysis and without any change to the algorithm itself.
The core idea is to pretend that PPSZ does not process the variables in uniformly random order,
but according to a carefully designed distribution. We write “pretend” since this can be done
while running the original algorithm, which does use a uniformly random order.

1. Introduction

Satisfiability is a central problem in theoretical computer science. One is given a Boolean
formula and asked to find a satisfying assignment, that is, setting the input variables to 0 and 1
to make the whole formula evaluate to 1. Or rather, determine whether such an assignment
exists. A particular case of interest is CNF-SAT, when the input formula is in conjunctive normal
form—that is, the formula is an AND of clauses; a clause is an OR of literals; a literal is either a
variable 𝑥 or its negation 𝑥. If every clause contains at most 𝑘 literals, the formula is called a
𝑘-CNF formula and the decision problem is called 𝑘-SAT.

Among worst-case algorithms for 𝑘-SAT, two paradigms dominate: local search algorithms
like Schöning’s algorithm [17] and random restriction algorithms like PPZ (Paturi, Pudlák, and
Zane [9]) and PPSZ (Paturi, Pudlák, Saks, and Zane [8]). Both have a string of subsequent
improvements: Hofmeister, Schöning, Schuler, and Watanabe [6], Baumer and Schuler [1], and
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Liu [7] improve Schöning’s algorithm. Hertli [5] and Hansen, Kaplan, Zamir, and Zwick [3]
improve upon PPSZ.

For large 𝑘, both paradigms achieve a running time of the form 2𝑛(1−𝑐/𝑘+𝑜(1/𝑘)) , where 𝑐
is specific to the algorithm (𝑐 = 1 for PPZ; 𝑐 = log2(𝑒) ≈ 1.44 for Schöning; 𝑐 = 𝜋2/6 ≈ 1.64 for
PPSZ). Interestingly, the running time of completely different approaches like the polynomial
method (Chan and Williams [2]) is also of this form. This gave rise to the Super-Strong Exponen-
tial Time Hypothesis (Vyas and Williams [18]), which conjectures that the 𝑐/𝑘 in the exponent is
optimal; for instance, that a running time of 2𝑛(1−log(𝑘)/𝑘) is impossible.

This paper presents an improvement of PPSZ. However, it is not an improvement of the
algorithm but of its analysis. We show that the same algorithm performs exponentially better
than previously known. Informally, PPSZ works by going through the variables in random
order 𝜋; inspecting each variable 𝑥, it tosses an unbiased coin to determine which value to
assign, unless there is a set of at most 𝑤 clauses that implies a certain value for 𝑥. Take 𝑤 = 1
and this is exactly PPZ; take 𝑤 = 𝜔(1) and this is PPSZ (the exact rate by which 𝑤 grows turns
out to be immaterial for all currently known ways to analyze the algorithm). Our idea is to
pretend that the ordering 𝜋 is not chosen uniformly but from a carefully designed distribution 𝐷.
This increases the success probability of PPSZ by some “bonus”, which depends on 𝐷. It seems
surprising that this can be done without actually changing the algorithm, but it turns out
to be just a straightforward manipulation, which we formally explain below in (3). There
is a price to pay in terms of how much 𝐷 differs from the uniform distribution: the success
probability incurs a penalty of 2−KL(𝐷| |𝑈) , where KL(𝐷| |𝑈) is the Kullback-Leibler divergence
from the uniform distribution𝑈 to 𝐷. We focus on Unique-𝑘-SAT, where the input formula has
exactly one satisfying assignment. A “lifting theorem” by Steinberger and myself [14] shows that
improving PPSZ for Unique-𝑘-SAT automatically yields a (smaller) improvement for general
𝑘-SAT problem (without changing the algorithm).

The idea of analyzing PPSZ assuming some non-uniform distribution 𝐷 on permutations
and paying a price in terms of KL(𝐷| |𝑈) is not new. It is explicit in [14] and implicit in [4] and [8].
However, all previous applications use this to deal with the case that sat(𝐹), the set of satisfying
assignments, contains multiple elements; furthermore, in [14, 4, 8], the distribution 𝐷 is defined
solely in terms of sat(𝐹) and ignores the syntactic structure of 𝐹 itself. In particular, in the
special case that 𝐹 has a unique solution, 𝐷 reverts to the uniform distribution. This paper is
the first work that exploits the structure of 𝐹 itself to define a distribution 𝐷 on permutations,
and uses this to prove a better success probability for the Unique-SAT case.

1.1 Analyzing PPSZ: permutations and forced variables

We will now formally describe the PPSZ algorithm. Let 𝐹 be a formula, 𝑥 a variable, and 𝑏 ∈ {0, 1}.
A formula 𝐹 implies (𝑥 = 𝑏) if every satisfying assignment of 𝐹 sets 𝑥 to 𝑏. For example,
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(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ �̄�) implies (𝑥 = 1) but neither ( 𝑦 = 0) nor ( 𝑦 = 1). For an integer 𝑤, we say 𝐹
𝑤-implies (𝑥 = 𝑏) if there is a set 𝐺 of at most 𝑤 clauses of 𝐹 such that 𝐺 implies (𝑥 = 𝑏).

The PPSZ algorithm with strength parameter 𝒘. Let 𝑤 = 𝑤(𝑛) be some fixed, slowly
growing function. Given a CNF formula 𝐹 and a permutation 𝜋 of its variable set 𝑉 , we define
ppsz(𝐹, 𝑤, 𝜋) as follows: go through the variables 𝑥1, . . . , 𝑥𝑛 in the order prescribed by 𝜋. In each
step, when handling a variable 𝑥, check whether (𝑥 = 𝑏) is 𝑤-implied by 𝐹 for some 𝑏 ∈ {0, 1}.
If so, set 𝑥 to 𝑏 (i.e., replace every occurrence of 𝑥 in 𝐹 by 𝑏). Otherwise, set 𝑥 randomly to
0 or 1, with probability 1/2 each. We define ppsz(𝐹, 𝑤) to first choose a uniformly random
permutation 𝜋 and then call ppsz(𝐹, 𝑤, 𝜋).

1: procedure ppsz(𝐹, 𝑤, 𝜋)
2: 𝑉 := the set of variables in 𝐹

3: 𝛽 := the empty assignment on 𝑉

4: for 𝑥 ∈ 𝑉 in the order of 𝜋 do
5: if there is 𝑏 ∈ {0, 1} such (𝑥 = 𝑏) is 𝑤-implied by 𝐹 then
6: 𝛽(𝑥) := 𝑏

7: else
8: 𝛽(𝑥) := a uniformly random bit in {0, 1}
9: 𝐹 := 𝐹 |𝑥=𝛽(𝑥)

10: if 𝐹 has been satisfied then
11: return 𝛽

12: else
13: return failure

Algorithm 1. PPSZ with fixed permutation 𝜋

It should be noted that Paturi, Pudlák, Saks, and Zane in [8] formulated a stronger version
of PPSZ, which tries to infer (𝑥 = 𝑏) using bounded-width resolution. A close look at their
proof shows that they never use properties of resolution beyond those already possessed by
𝑤-implication. We assume that 𝛼 = (1, . . . , 1) is the unique satisfying assignment of 𝐹. This is
purely for notational convenience.

DEF IN IT ION 1.1. Let 𝜋 be a permutation of 𝑉 and 𝑥 a variable. Let 𝐴 ⊆ 𝑉 be the set of
variables coming before 𝑥 in 𝜋, and let 𝐹′ := 𝐹 |𝐴 ↦→1 be the restricted formula obtained from 𝐹

by setting every variable 𝑦 ∈ 𝐴 to 1. If 𝐹′ 𝑤-implies (𝑥 = 1) then we say 𝑥 is forced under 𝜋 and
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14: procedure ppsz(𝐹, 𝑤)
15: 𝜋 := a random permutation of the variables 𝑉

16: return ppsz(𝐹, 𝑤, 𝜋)

Algorithm 2. PPSZ with random permutation 𝜋

write Forced(𝑥, 𝜋) = 1; otherwise we say 𝑥 is guessed under 𝜋 and write Forced(𝑥, 𝜋) = 0. Let
Forced(𝜋) :=

∑
𝑥∈𝑉 Forced(𝑥, 𝜋).

Of course, Forced(𝑥, 𝜋) depends on 𝐹 and 𝑤, as well, so to be formally correct, we should
write Forced(𝐹, 𝑤, 𝑥, 𝜋). Since 𝐹 and 𝑤 are fixed throughout, we prefer the less formal notation
𝐹 (𝑥, 𝜋).

OBSERVAT ION 1.2 ([8]). Suppose we run PPSZ with a fixed permutation 𝜋. Then ppsz(𝐹, 𝑤, 𝜋)
succeeds, i.e., finds 𝛼, with probability exactly 2−𝑛+Forced(𝜋) .

Taking 𝜋 to be a random permutation we get

Pr[ppsz(𝐹) succeeds] = E
𝜋

[
2−𝑛+Forced(𝜋)

]
(1)

≥ 2−𝑛+E𝜋 [Forced(𝜋)] ,

which follows from Jensen’s inequality applied to the convex function 𝑡 ↦→ 2𝑡. We are now in a
much more comfortable position: E[Forced(𝜋)] = ∑

𝑥 Pr[Forced(𝑥, 𝜋) = 1], and we can analyze
this probability for every variable individually. Indeed, this is what Paturi, Pudlák, Saks, and
Zane [8] did: they showed that Pr[Forced(𝑥, 𝜋) = 1] ≥ 𝑠𝑘 − 𝑜(1) if 𝐹 is a 𝑘-CNF formula with
exactly one satisfying assignment. Here 𝑠𝑘 is a number defined by the following experiment:
let 𝑇∞

𝑘−1 be the complete rooted (𝑘 − 1)-ary tree; pick 𝜋 : 𝑉 (𝑇∞
𝑘−1) → [0, 1] at random and delete

every node 𝑢 with 𝜋(𝑢) < 𝜋(root), together with all its descendants. Let T be the resulting tree.
Then

𝑠𝑘 := Pr[T is finite] . (2)

The 𝑜(1)-term converges to 0 as 𝑤 tends to infinity; thus, the growth rate of 𝑤 only influences
how fast this 𝑜(1) error term vanishes, but (as far as we know) does not materially influence
the success probability of PPSZ. We conclude:
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THEOREM 1.3 ([8]). If 𝐹 is a 𝑘-CNF formula with a unique satisfying assignment, then

Pr[ppsz(𝐹) succeeds] ≥ 2−𝑛+𝑠𝑘𝑛−𝑜(𝑛) .

Furthermore, 𝑠𝑘 = 𝜋2

6𝑘 + 𝑜(1/𝑘).

1.2 Previous improvements

Multiple satisfying assignments. The analysis of Paturi, Pudlák, Saks, and Zane runs into
trouble if 𝐹 contains multiple satisfying assignments. In their original paper [8] they presented
a workaround; unfortunately, this is quite technical and, for 𝑘 = 3, 4, exponentially worse than
the bound of Theorem 1.3. It was a breakthrough when Hertli [4] gave a very general analysis
of PPSZ showing that the “Unique-SAT bound” also holds in the presence of multiple satisfying
assignments. Curiously, his proof takes the result “Pr[Forced(𝑥, 𝜋)] = 𝑠𝑘 − 𝑜(1)” more or less
as a black box and does not ask how such a statement would have been obtained. Steinberger
and myself [14] later simplified Hertli’s proof and obtained a certain unique-to-general lifting
theorem that is also important for this work:

THEOREM 1.4 (Unique-to-General lifting theorem [8]). If the success probability of PPSZ is at
least 2−𝑛+𝑠𝑘𝑛+𝜖𝑛 on 𝑘-CNF formulas with a unique satisfying assignment, for some 𝜖 > 0, then it is
at least 2−𝑛+𝑠𝑘𝑛+𝜖′𝑛 on 𝑘-CNF formulas with multiple solutions, too, for some (smaller) 𝜖′ > 0.

Improved algorithms. Concerning the Unique-SAT case, Hertli [5] designed an algorithm that
is a variant of PPSZ and achieves a success probability of 2−𝑛+𝑠3𝑛+𝜖 𝑛 for 3-CNF formulas with a
unique satisfying assignment. Unfortunately, the concrete value of 𝜖 is so tiny that Hertli did not
even bother to determine it, and his approach is extremely specific to 3-SAT, with no clear path
how to generalize it to 𝑘-SAT. A result by Qin and Watanabe [11] strengthened Hertli’s result
somewhat. More recently, Hansen, Kaplan, Zamir, and Zwick [3] published an algorithm called
biased-PPSZ, a version of PPSZ in which some guessed variables are decided by a biased coin;
which variables and how biased, that depends on the structure of the underlying formula. In
contrast to Hertli’s, their improvement is “visible”: for 3-SAT, it improves the success probability
from 1.3070319−𝑛 in Theorem 1.3 to 1.306995−𝑛. Also, it works for all 𝑘 (although the authors
do not work out the exact magnitude of the improvement).

Lower bounds. Chen, Tang, Talebanfard, and myself [16] have shown that there are instances
on which PPSZ has exponentially small success probability. Just how exponentially small has
been tightened by Pudlák, Talebanfard, and myself [10]: we now know that PPSZ has success
probability at most 2−(1−2/𝑘−𝑜(1/𝑘))·𝑛 on certain instances, provided our parameter 𝑤 is not too
large; for strong PPSZ, i.e., PPSZ using small-width resolution instead of 𝑤-implication, then the
same bound holds, provided your width bound is really small, like 𝑐 ·

√︁
log log 𝑛 [15].
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1.3 Our contribution

We show that the success probability of PPSZ on 𝑘-CNF formulas is exponentially larger than
2−𝑛+𝑠𝑘𝑛. In particular,

THEOREM 1.5 (Improvement for all 𝑘). For every 𝑘 ≥ 3 there is 𝜖𝑘 > 0 such that the success
probability of PPSZ on satisfiable 𝑘-CNF formulas is at least 2−𝑛(1−𝑠𝑘−𝜖𝑘) .

Comparison to Hansen et al. As already mentioned, a paper by Hansen, Kaplan, Zamir, and
Zwick [3] introduces the algorithm biased-PPSZ, which also exhibits an exponentially improved
running time. Which approach is better, ours or theirs? Numerically, neither paper bothers to
analyze the asymptotic behavior of the improvement 𝜖𝑘 as 𝑘 grows. Conceptually, one might
argue that our result subsumes theirs, because they actually have to define a new algorithm,
while we simply give a better analysis of the old one. Methodologically, the two approaches are
somewhat orthogonal: Hansen et al. choose the Boolean values of the variables in a non-uniform
way but leave the permutation of the variables uniform; we change the permutation (more
appropriately, we “pretend” to change it, because we don’t change the algorithm) but choose the
Boolean values uniformly. The fact that we do not change the algorithm seems like a limitation
but actually gives us greater freedom: we can exploit information gleaned from the formula,
even if that information is by itself NP-hard to compute. I suspect that one can combine two
approaches and get improved numbers for small 𝑘, like 𝑘 = 3; however, I fear that doing so
would be extremely tedious and barely offer any additional insight.

Personally, I think it would be more fruitful to focus on both approaches individually
and explore how far each can be pushed because they, in the words of [3], “only scratch the
surface”. Unfortunately, both currently suffer from the same shortcoming: they do not improve
the asymptotic 𝜋2

6 -factor in the behavior of the savings 𝑠𝑘 for large 𝑘. To be more precise, the
improvement 𝜖𝑘 shrinks like 𝑜

( 1
𝑘

)
for both Hansen et al. and this paper and thus becomes

negligible compared to 𝑠𝑘 = 𝜋2

6 · 1
𝑘 + 𝑜

( 1
𝑘

)
.

1.4 The case 𝒌 = 3

The case 𝑘 = 3 is the most visible and exhibits the fiercest competition. The full version of
Hansen et al. and the ECCC version of this result [13] invest considerable energy to hammer out
a concrete numerical result how much they can improve over 𝑠3. And although the 𝑘 = 3 part of
[13] follows roughly the same approach as the general-𝑘 case in this paper, it introduces several
new concepts and methods that are not needed for Theorem 1.5. Furthermore, it is highly
technical, and the set of people interested in it is most likely a clear subset of those interested
in the general-𝑘 case. Finally, the analysis for 𝑘 = 3 in [13] does not hit any natural wall, and
therefore a simple tightening of inequalities and a better choice of constants and functions
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would already yield a better bound. We therefore decided not to include the 𝑘 = 3 part in this
paper.

1.5 Organization of the paper

We outline our general idea, analyzing PPSZ under some non-uniform distribution on permuta-
tions, in Section 2. Section 3 introduces the notions of critical clause trees and “cuts” in those
trees. This is mainly a review of critical clause trees as defined in [8]; however, since we will
manipulate these trees extensively, we introduce a more abstract and robust version, called
“labeled trees” and cuts therein. Section 4 contains the proof of Theorem 1.5, our main result.
We strive for succinctness above all else and took no effort to optimize the magnitude of our
improvement.

2. Brief overview of ourmethod

2.1 Working with a make-belief distribution on permutations

Our starting point is to take a closer look at the application of Jensen’s inequality:

E
𝜋

[
2−𝑛+Forced(𝜋)

]
≥ 2−𝑛+E𝜋 [Forced(𝜋)] .

This would be tight if 𝑋 := Forced(𝜋) was the same for every permutation 𝜋. But maybe
certain permutations are “better” than others. The idea is to define a new distribution 𝐷 on
permutations, different from the uniform distribution, under which “good” permutations have
larger probability, thus E𝜋∼𝐷 [𝑋] > E𝜋∼𝑈 [𝑋]. Sadly, we have no control over the distribution of
permutations: firstly, we promised not to change the algorithm; secondly, and more importantly,
defining 𝐷 will require some information that is itself NP-hard to come by. There is a little trick
dealing with this. Generally speaking, if we want to bound the expression E𝑄

[
2𝑋

]
from below

but the obvious bound from Jensen’s inequality, 2E𝑄 [𝑋] , is not good enough for our purposes, we
can replace 𝑄 by our favorite 𝑃 but have to pay a price. Formally:

E
𝑄

[
2𝑋

]
=
∑︁
𝜔∈Ω

𝑄(𝜔)2𝑋 (𝜔) =
∑︁
𝜔∈Ω

𝑃(𝜔) · 𝑄(𝜔)
𝑃(𝜔) 2𝑋 (𝜔)

= E
𝜔∼𝑃

[
2𝑋 (𝜔)−log2

𝑃 (𝜔)
𝑄(𝜔)

]
≥ 2E𝑃 [𝑋]−E𝜔∼𝑃

[
log2

𝑃 (𝜔)
𝑄(𝜔)

]
= 2E𝑃 [𝑋]−KL(𝑃 | |𝑄) . (3)

The term KL(𝑃 | |𝑄) :=
∑
𝜔 𝑃(𝜔) log2

(
𝑃(𝜔)
𝑄(𝜔)

)
is known as the Kullback-Leibler divergence from 𝑄

to 𝑃. If 𝑄 and 𝑃 are continuous distributions (over Ω = [0, 1]𝑛, for example) with density
functions 𝑓𝑄 and 𝑓𝑃, then (3) still holds, for KL(𝑃 | |𝑄) :=

∫
Ω 𝑓𝑃 (𝜔) log2

(
𝑓𝑃 (𝜔)
𝑓𝑄 (𝜔)

)
. This trick is not
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new: it plays a crucial rule in [14], and, if you look close enough, also in Hertli [4]; it appears,
in simpler form, already in [8]. However, in [14, 4, 8], the distribution 𝑃 is defined only to
make “liquid variables” (variables 𝑥 for which 𝐹 |𝑥=0 and 𝐹 |𝑥=1 are both satisfiable) come earlier
in 𝜋 and do not take the syntactic structure of 𝐹 into account: they define 𝑃 purely in terms
of sat(𝐹), the space of solutions, whereas our 𝑃 will depend heavily on the structure on 𝐹 as a
𝑘-CNF formula. Our work is the first to apply this method to improving PPSZ on formulas with
a unique satisfying assignment.

2.2 Good make-belief distributions for PPSZ—a rough sketch

How can we apply this idea to the analysis of PPSZ? The challenge is to find a distribution 𝐷

under which E𝜋∼𝐷 [Forced(𝜋)] is larger than under the uniform distribution. Since we assume
that 𝐹 has the unique satisfying assignment 𝛼 = (1, . . . , 1), we can find, for every variable 𝑥,
a critical clause of the form (𝑥 ∨ �̄� ∨ 𝑧).1 Critical clauses play a crucial role in [8] and [3]
as well. Imagine we change the distribution on permutations such that 𝑦 tends to come a
bit earlier than under the uniform distribution. It is easy to see that this can only decrease
E[Forced( 𝑦, 𝜋)] (which is bad) and only increase E[Forced(𝑎, 𝜋)] for all other variables. In
particular, it usually increasesE[Forced(𝑥, 𝜋)] (which is good). Now assume the literal �̄� appears
in a disproportionally large number of critical clauses. Then the beneficial effect of pulling 𝑦

to the front of 𝜋 outweighs its adverse effect. Thus, if there is a set 𝑉 ′ ⊆ 𝑉 of variables with
|𝑉 ′| = Ω(𝑛), and each 𝑦 ∈ 𝑉 ′ appears in a large number of critical clauses, we can define a new
distribution 𝑃 on permutations 𝜋 under which variables 𝑉 ′ tend to come earlier than under
the uniform distribution. Using 𝑃 as our make-belief distribution in (3), we obtain a success
probability that is exponentially larger than the baseline. This is what we call the “highly
irregular case” below.

The other extreme would the “almost regular case”, namely that almost every variable 𝑥
has exactly one critical clause and that almost every negative literal �̄� appears in exactly two
critical clauses. In this case, we find a matching 𝑀 , i.e., a set of disjoint pairs of variables such
that { 𝑦, 𝑧} ∈ 𝑀 implies that (𝑥 ∨ �̄� ∨ 𝑧) is a critical clause of 𝐹, for some variable 𝑥. We then
adapt the distribution on permutations such that the location of 𝑦 and 𝑧 is positively correlated—
either they both tend to come late or they both tend to come early. This will have both (easily
quantifiable) beneficial effects and (more difficult to quantify) adverse effects. However, we
will see that the adverse effects can only be large if E𝜋∼𝑈 [Forced(𝜋)] is already larger than 𝑠𝑘𝑛
under the uniform distribution.

1 Our informal outline assumes 𝑘 = 3 to keep notation simple.
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3. Critical clause trees, labeled trees, and cuts

This section introduces the key notions of critical clause trees and cuts, which were already
defined in [8]. We introduce a more general notion that we call labeled trees and of cuts therein.
We will perform extensive “tree surgery”, and this new terminology will allow us to state our
results in a concise, rigorous, and readable fashion.

3.1 The Critical Clause Tree

All notions and results in this subsection already appear in [8], although we might phrase certain
things a little different. We assume that 𝛼 = (1, . . . , 1) is the unique satisfying assignment of our
input 𝑘-CNF formula 𝐹. That means that for every variable 𝑥, we can find a clause of the form
(𝑥 ∨ �̄�2 ∨ · · · ∨ �̄�𝑘). This is called a critical clause of 𝑥. For an integer ℎ ∈ N, a critical clause tree
of 𝑥 of height ℎ is a rooted tree 𝑇𝑥 of height at most ℎ with a bunch of additional information:
every node 𝑢 of 𝑇𝑥 has a variable label varlabel(𝑢); if the depth of 𝑢 is less than ℎ, it has a clause
label clauselabel(𝑢). The tree is constructed as follows:

Initialize 𝑇𝑥 as consisting of a single root node, and set varlabel(root) = 𝑥.
While some node 𝑢 of 𝑇𝑥 of depth less than ℎ does not have a clause label yet:

1. Let 𝛼𝑢 be the assignment arising from 𝛼 by setting to 0 all the variables 𝑦 that appear
as variable labels on the path from the root to 𝑢 (including both the label of the root,
which is 𝑥, and the label of 𝑢). Let 𝑎 := varlabel(𝑢). In particular, 𝛼𝑢(𝑎) = 0.

2. Pick a clause 𝐶 that is violated by 𝛼𝑢 (this exists since 𝛼 is the unique satisfying
assignment), and set clauselabel(𝑢) := 𝐶.

3. For each negative literal 𝑧 ∈ 𝐶, create a new child of 𝑢 and give it variable label 𝑧.
Note that 𝑢 has at most 𝑘 − 1 children.

The construction depends on the choice of ℎ, so we should write 𝑇 (ℎ)
𝑥 instead of 𝑇𝑥; however, the

number ℎ will be fixed throughout, so we simply write 𝑇𝑥 for brevity.2 This tree is central to
the analysis in [8] and also [3] (but curiously is completely absent in [4] and [14]). The depth
of a node 𝑢 in a tree 𝑇 is the length of the path from the root to 𝑢; we abbreviate it as 𝑑𝑇 (𝑢) or
simply 𝑑 (𝑢) if 𝑇 is understood. 𝑇𝑥 is a (𝑘 − 1)-ary tree: every node has at most 𝑘 − 1 children, as
Step 3 creates a child for every negative literal in 𝐶; since 𝛼 = (1, . . . , 1) satisfies 𝐶, there are at
most 𝑘 − 1 negative literals in 𝐶.

OBSERVAT ION 3.1 ([8]). Suppose 𝐶 = ( 𝑦1 ∨ · · · ∨ 𝑦𝑖 ∨ 𝑧1 ∨ · · · ∨ 𝑧 𝑗) is the clause label of a
node 𝑢. Then

2 Indeed, strictly speaking, 𝑇𝑥 also depends on the formula 𝐹 and the satisfying assignment 𝛼, so one should write
𝑇
(𝐹,𝛼,ℎ)
𝑥 . However, since 𝐹, 𝛼, and ℎ always refer to the same formula, assignment, and integer parameter, there is no
gain in explicitly listing this dependency.
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1. each variable among 𝑦1, . . . , 𝑦𝑖 appears as the clause label of some (not necessarily proper)
ancestor of 𝑢;

2. 𝑢 has 𝑗 children (note that 𝑗 = 0 might happen) whose variable labels are 𝑧1, . . . , 𝑧 𝑗 .
3. If 𝑣 is a proper descendant of 𝑢 in 𝑇𝑥 then varlabel(𝑢) ≠ varlabel(𝑣).

PROOF . Point 1 and 2 follow immediately from the construction process. To show Point 3, let
𝑎 := varlabel(𝑢) and 𝑏 := varlabel(𝑣). We have to show that 𝑎 ≠ 𝑏. Let 𝑤 be the parent of 𝑣,
so 𝑤 is a (not necessarily proper) descendant of 𝑢, and let 𝐶 = clauselabel(𝑤). By construction,
in particular Point 3 above, 𝐶 contains the negative literal 𝑏. Since 𝛼𝑤 violates 𝐶, by choice of 𝐶
in Point 2, we conclude that 𝛼𝑤(𝑏) = 1. By definition of 𝛼𝑤 in Point 1, we observe that 𝛼𝑤(𝑎) = 0
and therefore 𝑎 ≠ 𝑏. ■

A down-path in a rooted tree is a sequence 𝑢0, . . . , 𝑢𝑡 where each 𝑢𝑖 is the parent of 𝑢𝑖+1.
A root-path is a path starting at the root. Note that a root path always is a down-path. By
Observation 3.1, no variable can appear twice or more on a down-path in 𝑇𝑥 . Critical clause
trees are important because of the following lemma:

LEMMA 3.2 ([8]). Suppose 𝑤 ≥ (𝑘 − 1)ℎ+1, where 𝑤 is the strength parameter of PPSZ as in
Algorithm 13. Let 𝑥 ∈ 𝑉 , 𝜋 a permutation of𝑉 , and denote by 𝐴 the set of variables coming before 𝑥
in 𝜋. If every path from the root of 𝑇𝑥 to a leaf at depth ℎ contains a node 𝑢 with varlabel(𝑢) ∈ 𝐴
then Forced(𝑥, 𝜋) = 1.

PROOF . Call a node 𝑢 of 𝑇𝑥 dead if varlabel(𝑢) comes strictly before 𝑥 in 𝜋; call a node 𝑣
reachable if the path from the root to 𝑣 contains no dead nodes. Note that the root itself is
reachable. By the assumption in the lemma, no leaf at depth ℎ is reachable, and therefore every
reachable node 𝑣 has a clause label. Let 𝐺 be the set of clause labels of all reachable nodes. Note
that |𝐺 | ≤ 1 + (𝑘 − 1) + (𝑘 − 1)2 + · · · + (𝑘 − 1)ℎ ≤ (𝑘−1)ℎ+1−1

𝑘−2 ≤ 𝑤.
When the loop of ppsz(𝐹, 𝜋, 𝑤) arrives 𝑥, the formula 𝐹 has already been reduced to

𝐹′ := 𝐹 |𝐴=1, i.e., all variables in 𝐴 have been set to 1. We have to show that 𝐹′ implies 𝑥 = 1.
Indeed, we show something stronger, namely that 𝐺′ := 𝐺 |𝐴=1 implies 𝑥 = 1.

To show that 𝐺′ implies (𝑥 = 1), let 𝛾′ be a total assignment to the remaining variables
𝑉 \ 𝐴 with 𝛾′(𝑥) = 0. We have to show that 𝛾′ violates 𝐺′. Equivalently, we have to show that
every total assignment 𝛾 on 𝑉 that sets 𝛾(𝑥) = 0 and 𝛾(𝑎) = 1 for all 𝑎 ∈ 𝐴 violates 𝐺. For such
a 𝛾, find a maximal root path 𝑢0, 𝑢1, . . . , 𝑢𝑡 of nodes in 𝑇𝑥 such that 𝛾(varlabel(𝑢𝑖)) = 0 for all 𝑢𝑖
on that path. Such a path is non-empty because 𝛾(varlabel(𝑢0)) = 𝛾(varlabel(root)) = 𝛾(𝑥) = 0
by assumption. Can the last node 𝑢𝑡 be a leaf of height ℎ? Obviously not: by assumption, such a
path from root to leaf would contain node, let us say 𝑢𝑖 , with 𝑎 := varlabel(𝑢𝑖) coming before 𝑥,
and thus 𝑎 ∈ 𝐴 and 𝛾(𝑎) = 1. We conclude that 𝑢𝑡 is not a leaf of height ℎ and therefore has
a clause label 𝐶. We write 𝐶 = ( 𝑦1 ∨ . . . 𝑦𝑖 ∨ 𝑧1 ∨ · · · ∨ 𝑧 𝑗) with 𝑖 + 𝑗 = 𝑘. Note that 𝑖 ≥ 1
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since 𝛼 = (1, . . . , 1) satisfies 𝐶, but 𝑗 = 0 is possible. By Point 1 of Observation 3.1, each of the
variables 𝑦1, . . . , 𝑦𝑖 is the variable label of one of the 𝑢0, . . . , 𝑢𝑡, and thus 𝛾( 𝑦1) = · · · = 𝛾( 𝑦𝑖) = 0;
by Point 2 of Observation 3.1, each of the 𝑧1, . . . , 𝑧 𝑗 is the variable label of a child 𝑣 of 𝑢𝑡. By
maximality of the path 𝑢0, . . . , 𝑢𝑡, we have 𝛾(varlabel(𝑣)) = 1, and thus 𝛾(𝑧1) = · · · = 𝛾(𝑧 𝑗) = 1.
In other words, 𝛾 violates 𝐶 and thus 𝐺. ■

From now on, we take ℎ = ℎ(𝑛) to be the largest integer such that 𝑤 ≥ (𝑘 − 1)ℎ+1. Note that
lim𝑛→∞ ℎ(𝑛) = ∞ because lim𝑛→∞𝑤(𝑛) = ∞.

3.2 The canonical critical clause tree

In Point 2 of the construction process for critical clause trees, we might have several violated
clauses to choose from. For example, if 𝑥 has more than one critical clause, then there are
several different critical clause trees 𝑇𝑥 . In this section, we make things unique by introducing
the concept of canonical clauses and canonical clause trees.

DEF IN IT ION 3.3 (Canonical critical clause). Among all critical clauses of 𝑥, we choose one
and call it the canonical critical clause of 𝑥.

This choice is arbitrary but considered fixed from now on. Every variable has exactly one
canonical critical clause.

DEF IN IT ION 3.4 (Canonical critical clause tree, CCCT). The the canonical critical clause
tree of a variable 𝑥 of height ℎ is the critical clause tree 𝑇𝑥 that is constructed as above, but
additionally adhering to the following tie-breaking rule in Point 2: if the canonical critical clause
of varlabel(𝑢) is violated by 𝛼𝑢, pick it as clauselabel(𝑢); otherwise, pick the lexicographically
first violated clause.

In particular, if 𝑇𝑥 is the CCCT of 𝑥, then the clause label of its root is the canonical critical
clause of 𝑥. We distinguish between canonical and non-canonical nodes:

DEF IN IT ION 3.5 (Canonical nodes). In the canonical critical clause tree 𝑇𝑥 , we call a node 𝑣
canonical if, for every node 𝑢 on the path from the root to 𝑣 (including root and 𝑣), varlabel(𝑢)
has exactly one critical clause, and this clause is clauselabel(𝑢).

Suppose 𝑢 is a maximal non-canonical node in𝑇𝑥 (i.e., either 𝑢 is the root itself or the parent
of 𝑢 is canonical), and write 𝑎 = varlabel(𝑢). There are two reasons why 𝑢 can be non-canonical:
(1) the variable 𝑎 has two or more critical clauses; (2) the clause label 𝐶 := clauselabel(𝑢) is not
a critical clause (it has at least two positive literals, like (𝑥 ∨ 𝑎 ∨ 𝑏), for example). In the latter
case, 𝑢 has at most 𝑘 − 2 children in 𝑇𝑥 .
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Remark. For the improvement for general 𝑘 as presented in this paper, the notions of canonical
clause trees and canonical nodes therein are not strictly necessary, and we could prove some
improvement without introducing it. However, since I feel that this is the correct way of thinking
about critical clause trees and since the 𝑘 = 3 case makes heavy use of these notions, I decided
to include it in this paper, for future reference.

3.3 Labeled trees and cuts

We will perform certain manipulations on critical clause trees. The resulting trees will not be
critical clause trees in any meaningful sense any more (for example, they sometimes become
infinite). Therefore, we introduce the more general notion of a labeled tree. We note that certain
labeled trees appear implicitly in [8]; however, our work is the first that explicitly defines and
uses them.

DEF IN IT ION 3.6 (Labeled trees). We assume some countably infinite set 𝐿 of labels with
𝑉 ⊆ 𝐿. A labeled tree is a rooted tree 𝑇 , possibly infinite, in which

1. each node 𝑢 has a label varlabel(𝑢) ∈ 𝐿;
2. no label appears twice on a down-path; that is, if 𝑢 is a proper ancestor of 𝑣 in 𝑇 , then

varlabel(𝑢) ≠ varlabel(𝑣);
3. each node is marked either as canonical or non-canonical; if 𝑢 is non-canonical then so

are all of its children (and by induction all of its descendants);
4. each leaf of 𝑇 is marked as either a safe leaf or an unsafe leaf.

A safe path in 𝑇 is a path starting at the root that either ends at a safe leaf or is infinite. We write
Can(𝑇𝑥) to denote the set of canonical nodes in 𝑇𝑥 . Furthermore, all labeled trees appearing in
this paper are (𝑘 − 1)-ary: each node has at most 𝑘 − 1 children.

A critical clause tree of height ℎ becomes a labeled tree by simply marking leaves at depth ℎ
as safe leaves and all other leaves (of smaller depth) as unsafe leaves and removing all clause
labels.

From now on, instead of viewing 𝜋 as a permutation of the variables 𝑉 , we view it as a
placement 𝜋 : 𝐿→ [0, 1] on the countably infinite set of labels. If 𝜋 is sampled from some contin-
uous distribution (for example the uniform distribution), then 𝜋 is injective with probability 1;
its restriction to 𝑉 defines a permutation, by sorting the variables from low-𝜋 to high-𝜋.

DEF IN IT ION 3.7 (Cut and Cut𝑟 and wCut𝑟). Let 𝑇 be a labeled tree, 𝑥 the label of its root, and
𝑟 ∈ [0, 1]. The event Cut𝑟 (𝑇 ) is an event in the probability space of all placements, defined as
follows: mark a non-root vertex 𝑢 as dead if 𝜋(varlabel(𝑢)) < 𝑟 and alive otherwise; mark root
as alive. Then Cut𝑟 (𝑇 ) is the event that every safe path in 𝑇 contains at least one dead node.
Cut(𝑇 ) is the event Cut𝜋(𝑥) (𝑇 ), i.e., all nodes 𝑢 with 𝜋(varlabel(𝑢)) < 𝜋(𝑥) are marked dead.
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Cut0.6(T ) happens: b and z are
dead and block all downpaths
to a safe leaf.

Cut0.3(T ) does not happen:
there is an alive downpath to a
safe leaf

wCut0.3(T ) does happen:
the root is already dead
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A labeled tree. The leaves with shaded circles are the safe leaves. Note that u is the
label of a safe leaf and an unsafe leaf. Also, there are safe leaves at different depths.
The latter situation will not arise in critical clause trees, but they are allowed under
our definition of labeled trees.

Below, we choose a placement π : L → [0, 1]:

Figure 1. A labeled tree, a placement, and a cut, a non-cut and a weak cut.

We define wCut𝑟 (𝑇 ) (“weak cut”) exactly as Cut𝑟 (𝑇 ), only that we additionally mark the
root as dead if 𝜋(𝑥) < 𝑟.

Note that there is no corresponding event wCut(𝑇 ). Weak cuts only make sense with
respect to a particular 𝑟 ∈ [0, 1]. The following observation is simply Lemma 3.2, framed in the
new terminology:

OBSERVAT ION 3.8. Suppose 𝑤 ≥ (𝑘 − 1)ℎ+1. If Cut(𝑇𝑥) happens then Forced(𝑥, 𝜋) = 1.

To better understand the statement of the observation, recall that the definition of the
critical clause tree 𝑇𝑥 depends on ℎ, and the definition of Forced depends on 𝑤. The two
definitions Cut𝑟 and wCut𝑟 are intimately related:

OBSERVAT ION 3.9. First, it holds that

wCut𝑟 (𝑇 ) = [𝜋(root) < 𝑟 ∨ Cut𝑟 (𝑇 )]

Furthermore, if 𝑇1, . . . , 𝑇𝑙 are the subtrees of 𝑇 rooted at the children of the root, then

Cut𝑟 (𝑇 ) = [wCut𝑟 (𝑇1) ∧ · · · ∧ wCut𝑟 (𝑇𝑙)]
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A particularly important example of a labeled tree is 𝑇∞
𝑘−1. This is simply an infinite

complete (𝑘− 1)-ary tree: every node has 𝑘− 1 children, and there are no leaves. All nodes have
distinct labels. If 𝑘 is understood, we simply write 𝑇∞. If 𝜋 is a uniformly random placement
then

𝑄
(𝑘)
𝑟 := Pr[Cut𝑟 (𝑇∞

𝑘−1)] =
(
Pr[wCut𝑟 (𝑇∞

𝑘−1)]
)𝑘−1

𝑃
(𝑘)
𝑟 := Pr[wCut𝑟 (𝑇∞

𝑘−1)] = 𝑟 ∨ Pr[Cut𝑟 (𝑇∞
𝑘−1)] ,

where we define 𝑎 ∨ 𝑏 := 𝑎 + 𝑏 − 𝑎𝑏 for 𝑎, 𝑏 ∈ [0, 1]. It follows from the two equations above
that 𝑄(𝑘)

𝑟 and 𝑃 (𝑘)
𝑟 satisfy the system of equations

𝑄 = 𝑃𝑘−1

𝑃 = 𝑟 ∨ 𝑄 .

By substitution, it follows that 𝑄(𝑘)
𝑟 and 𝑃 (𝑘)

𝑟 individually satisfy the following equalities, respec-
tively:

𝑄 = (𝑟 + (1 − 𝑟)𝑄)𝑘−1

𝑃 = 𝑟 ∨ 𝑃𝑘−1 .

Note that 𝑃 = 1 and 𝑄 = 1 are always solutions of these equations, but sometimes it is not the
“correct” solution. Indeed, it is a well-known result from the theory of Galton-Watson branching
processes that 𝑄(𝑘)

𝑟 and 𝑃 (𝑘)
𝑟 are the smallest solutions of these equations.

PROPOS IT ION 3.10. For 𝑟 ≥ 𝑘−2
𝑘−1 it holds that 𝑄(𝑘)

𝑟 = 𝑃
(𝑘)
𝑟 = 1. On the interval

[
0, 𝑘−2

𝑘−1
]
, 𝑃 (𝑘)

𝑟 is

convex and 𝑟 ≤ 𝑃
(𝑘)
𝑟 ≤ 𝑘−1

𝑘−2 · 𝑟. Also on that interval, 𝑄(𝑘)
𝑟 ≤

(
𝑘−1
𝑘−2 · 𝑟

)𝑘−1
≤ 𝑒 𝑟𝑘−1.

For 𝑘 = 3 we have explicit expression:

𝑄
(3)
𝑟 =


(
𝑟

1−𝑟
)2 if 𝑟 < 1/2

1 if 𝑟 ≥ 1/2
(4)

and

𝑃
(3)
𝑟 =


𝑟

1−𝑟 if 𝑟 < 1/2

1 if 𝑟 ≥ 1/2
(5)

Again, if 𝑘 is understood, we will simply write 𝑄𝑟 and 𝑃𝑟. Recall the number 𝑠𝑘 as defined in (2)
and observe that

𝑠𝑘 = Pr[Cut(𝑇 (𝑘−1)
∞ )] . (6)

Paturi, Pudlák, Saks, and Zane proved the following fact:
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LEMMA 3.11 ([8]). Let 𝑇𝑥 be a critical clause tree of height ℎ. Then Pr[Cut𝑟 (𝑇𝑥)] ≥ 𝑄
(𝑘)
𝑟 −

Error(𝑟, ℎ) and Pr[Cut(𝑇𝑥) ≥ 𝑠𝑘 − Error(ℎ). Here, Error(𝑟, ℎ) and Error(ℎ) are functions that
converge to 0 as ℎ→ ∞.

We will give a full and overly formal proof of this lemma. It will be instructive to go through
the proof in full detail because it is a simplest application of our labeled-tree-machinery, on
which we will rely more heavily later on. Also, our proof is slightly different from the original
proof in [8].

PROOF OF LEMMA 3.11 . Let 𝑇𝑥 be the critical clause tree of height ℎ for variable 𝑥. We
subject it to a sequence of transformation steps, each of which only reduces the probability
Pr[Cut𝑟] and makes the tree look more and more like 𝑇 (𝑘−1)

∞ .

Step 1. Completing the tree. Add nodes to 𝑇𝑥 to make it a complete (𝑘 − 1)-ary tree of
height ℎ (i.e., while some 𝑣 of depth less than ℎ has fewer than 𝑘 − 1 children, create a new
child). Give a fresh label from 𝐿 to each newly created node (by fresh label we mean a label in
our infinite label space 𝐿 that has never been used before) and mark all leaf as safe leaves (note
that all leaves have height ℎ now). Call the resulting tree 𝑇0. Every safe path in 𝑇𝑥 is still a safe
path in 𝑇0, and therefore Pr[Cut𝑟 (𝑇0)] ≤ Pr[Cut𝑟 (𝑇𝑥)]. Note that 𝑇0 might not a critical clause
tree anymore (some non-leaves nodes do not have clause labels, some variable labels are not
variables at all but fresh labels).

Step 2. Making labels distinct. In a sequence of steps, we want to make sure that no label
appears twice in the tree. To achieve this, we create a sequence 𝑇0, 𝑇1, 𝑇2, . . . as follows:

PROPOS IT ION 3.12. Let 𝑇 be a labeled tree and 𝑣 a node therein. Let 𝑎′ be a fresh label, i.e., one
that does not appear in 𝑇 . Define 𝑇𝑣→𝑎′ to be the same as 𝑇 but with varlabel(𝑣) := 𝑎′ for some
fresh label 𝑎′ ∉ 𝐿(𝑇 ). Then

Pr[Cut𝑟 (𝑇𝑣→𝑎′)] ≤ Pr[Cut𝑟 (𝑇𝑖)]

holds.

This is how we construct the sequence 𝑇0, 𝑇1, 𝑇2, . . . : while some label (say 𝑎) appears more
than once in 𝑇𝑖 , say at nodes 𝑢 and 𝑣, take a fresh label 𝑎′ and set 𝑇𝑖+1 := 𝑇𝑣→𝑎′ .

Proof of Proposition 3.12. This is the heart of the proof. Fix a partial assignment 𝜏 : 𝐿 \
{𝑎, 𝑎′} → [0, 1]. We will show that Pr[Cut𝑟 (𝑇𝑖+1) | 𝜏] ≤ Pr[Cut𝑟 (𝑇𝑖) | 𝜏]. Here, the conditioning
on 𝜏 is a shorthand for conditioning on the event [𝜋(𝑙) = 𝜏(𝑙) ∀𝑙 ∈ 𝐿 \ {𝑎, 𝑎′}].

Note that both Cut𝑟 (𝑇𝑖) and Cut𝑟 (𝑇𝑖+1) are monotone Boolean functions in the atomic events
𝑧𝑙 := [𝜋(𝑙) < 𝑟] for 𝑙 ∈ 𝐿. On the probability space conditioned on 𝜏, the event Cut𝑟 (𝑇𝑖+1) becomes
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a Boolean function 𝑓 (𝑧𝑎, 𝑧𝑎′) in the Boolean variables 𝑧𝑎 := [𝜋(𝑎) < 𝑟] and 𝑧𝑎′ := [𝜋(𝑎′) < 𝑟].
Since 𝑇𝑖 can be obtained from 𝑇𝑖+1 by replacing 𝑎′ by 𝑎, we observe that conditioned on 𝜏, the
event Cut𝑟 (𝑇𝑖) becomes the Boolean function 𝑓 (𝑧𝑎, 𝑧𝑎). The proof of the claim now works by
going through all possibilities what the monotone Boolean function 𝑓 could be.

1. If 𝑓 (𝑧𝑎, 𝑧𝑎′) is the constant 1 function, then Pr[Cut𝑟 (𝑇𝑖+1) |𝜏] = 1 = Pr[Cut𝑟 (𝑇𝑖) |𝜏]; similarly,
if 𝑓 ≡ 0 then both probabilities are 0.

2. If 𝑓 ( 𝑦, 𝑧) ≡ 𝑦 then [Cut𝑟 (𝑇𝑖+1) |𝜏] = [𝜋(𝑎) < 𝑟] = [Cut𝑟 (𝑇𝑖) |𝜏], so both events are the same.
3. If 𝑓 ( 𝑦, 𝑧) = 𝑧 then [Cut𝑟 (𝑇𝑖+1) |𝜏] = [𝜋(𝑎′) < 𝑟] and [Cut𝑟 (𝑇𝑖) |𝜏] = [𝜋(𝑎) < 𝑟]; the events

are not the same, but both have probability 𝑟.
4. If 𝑓 ( 𝑦, 𝑧) = 𝑦 ∧ 𝑧 then

Pr[Cut𝑟 (𝑇𝑖+1) |𝜏] = Pr[𝜋(𝑎) < 𝑟 ∧ 𝜋(𝑎′) < 𝑟] = 𝑟2 ≤ 𝑟 = Pr[𝜋(𝑎) < 𝑟] = Pr[Cut𝑟 (𝑇𝑖) |𝜏]

and the claimed inequality holds.
5. If 𝑓 ( 𝑦, 𝑧) = 𝑦 ∨ 𝑧 then

Pr[Cut𝑟 (𝑇𝑖+1) |𝜏] = Pr[𝜋(𝑎) < 𝑟 ∨ 𝜋(𝑎′) < 𝑟] = 2𝑟 − 𝑟2 > 𝑟 = Pr[𝜋(𝑎) < 𝑟] = Pr[Cut𝑟 (𝑇𝑖) |𝜏]

and the claimed inequality does not hold. But here is the thing: this cannot happen!
Indeed, for [Cut𝑟 (𝑇𝑖+1) |𝜏] to become [𝜋(𝑎) < 𝑟 ∨ 𝜋(𝑎′) < 𝑟], the two nodes 𝑢 and 𝑣 would
have to be ancestors of each other, which by Observation 3.1 is impossible. To be more
precise, suppose [Cut𝑟 (𝑇𝑖+1) |𝜏] is indeed [𝜋(𝑎) < 𝑟 ∨ 𝜋(𝑎′) < 𝑟]. Now set 𝜋(𝑎) = 𝜋(𝑎′) = 1
(and keep 𝜋(𝑙) = 𝜏(𝑙) for all other labels 𝑙) so the event does not happen. By definition
of Cut𝑟, this means that there is a safe path 𝑝 in 𝑇𝑖+1 𝜋(varlabel(𝑤)) ≥ 𝑟 for all nodes
𝑤 ∈ 𝑝. If we change 𝜋 to 𝜋′ by setting 𝜋′(𝑎) = 0 then [𝜋′(𝑎) < 𝑟] holds3 and thus Cut𝑟
does happen; this means that the variable label 𝑎 appears on the path 𝑝. By an analogous
argument, the label 𝑎′ appears on the path 𝑝, too. In 𝑇𝑖 , however, both those nodes have
label 𝑎, which contradicts Point 3 of Observation 3.1.4

Note that the claimed inequality holds in all possible cases. This completes the proof of Proposi-
tion 3.12. ■

The sequence 𝑇0, 𝑇1, 𝑇2, . . . terminates because each application of Proposition 3.12 intro-
duces a new label to the tree, and the number of labels will never exceed the number of nodes,
which is 1 + (𝑘 − 1) + (𝑘 − 1)2 + · · · + (𝑘 − 1)ℎ. Once it terminates, we obtain a tree 𝑇𝑠 in which all
labels are distinct and Pr[Cut𝑟 (𝑇𝑥)] ≥ Pr[Cut𝑟 (𝑇𝑠)]. The event Cut𝑟 (𝑇𝑠) can easily be phrased

3 Here we silently assume 0 < 𝑟. However, for the case 𝑟 = 0 it is clear that none of the atomic events [𝜋(𝑙) < 𝑟] happen
and thus Cut0 (𝑇𝑖+1) and Cut0 (𝑇𝑖) are either both the empty event or both the whole probability space and thus happen
with equal probability.

4 Or rather it contradicts the definition of a labeled tree; the condition that no ancestors-descendant pair have the
same labels is baked into Definition 3.6, and the reader should convince themselves that our transformations within
this proof keep this property.
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in terms of 𝑇∞: for an integer 𝑡, let C𝑡 be the event (in the probability space of placements
𝐿 → [0, 1]) that all paths 𝑝 in 𝑇∞ starting at the root and having length 𝑡 contain a non-root
node 𝑢 with 𝜋(varlabel(𝑢)) < 𝑟. Note that 𝑇𝑠 is, in a sense, isomorphic to the first ℎ + 1 levels
of 𝑇∞, and therefore Pr[Cut𝑟 (𝑇𝑠)] = Pr[Cℎ].

For given 𝜋, let T be the subtree of 𝑇∞ obtained by deleting every non-root node 𝑢 with
𝜋(varlabel(𝑢)) < 𝑟, together will all ancestors. Note that T is a random variable over our
probability space of placements 𝜋. Thus, C𝑡 is the event that T has no root-path of length 𝑡, and
Cut𝑟 (𝑇∞) is the event that T has no infinite root-path. Note that in the latter case, T is indeed
finite and thus has a finite longest root-path, which in turn means

Cut(𝑇∞) =
⋃
𝑡∈N

C𝑡 .

The C𝑡 form an increasing sequence of events and thus, by the Monotone Convergence Theorem,
it holds that

Pr[Cut𝑟 (𝑇∞)] = Pr

[⋃
𝑡∈N

C𝑡

]
= lim
𝑡→∞

Pr[C𝑡] . (7)

Define Error(𝑟, 𝑡) := Pr[Cut𝑟 (𝑇∞)] − Pr[C𝑡]. Then (7) states that lim𝑡→∞ Error(𝑟, 𝑡) = 0. We
conclude that

Pr[Cut(𝑇𝑥)] ≥ Pr[Cut(𝑇0)] (by the transformation in Step 1)

≥ Pr[Cut(𝑇𝑠)] (by the transformations in Step 2)

= Pr[Cℎ]
= Pr[Cut𝑟 (𝑇∞)] − Error(𝑟, ℎ) .

This concludes the proof of the lemma. ■

The important part of the proof, in particular with regard to what comes below, is Proposi-
tion 3.12. In words, the fact that multiple labels can only make things better. Paturi, Pudlák,
Saks, and Zane [8] use the FKG inequality to prove this. Our proof above does not use the FKG
inequality. Indeed, from our proof technique one could extract a stand-alone proof of the FKG
inequality (at least for the special case of monotone Boolean function and all variables being
independent) that does not use top-down induction but works by replacing variables by fresh
copies, step by step, and showing that each step satisfies the desired inequality.

4. An Exponential Improvement

4.1 The highly irregular case

In our outline in Section 2.2 we mentioned that we will address two cases separately: the “highly
irregular case” and the “almost regular case”. The highly irregular case means that there is
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a set of Ω(𝑛) variables each of which appears as a negative literal in extraordinarily many
critical clauses. This is the case that we treat in this section. Recall that every variable 𝑥 has one
canonical critical clause that looks like (𝑥 ∨ �̄�1 ∨ . . . �̄�𝑘−1).

DEF IN IT ION 4.1 (Critical Clause Graph). The critical clause graph (CCG) is a directed graph
on vertex set 𝑉 (the 𝑛 variables) with (𝑘 − 1)𝑛 arcs defined as follows: for each 𝑥 ∈ 𝑉 , let
(𝑥 ∨ �̄�1 ∨ · · · ∨ �̄�𝑘−1) be its canonical critical clause and add the arcs (𝑥, 𝑦1), . . . , (𝑥, 𝑦𝑘−1) to the
graph.

In the following figure, we show the beginning of a CNF formula with the canonical critical
clauses underlined and part of its critical clause graph.

(x ∨ ȳ ∨ z̄) ∧ (x ∨ ū ∨ v̄) ∧ (y ∨ ū ∨ z̄) ∧ (z ∨ ū ∨ v̄) ∧ . . .

x

y z

u v

Let us give a second example. If we take the simplest 3-CNF with a unique satisfying
assignment, namely

𝑥 𝑦𝑧 ∧ 𝑥 𝑦𝑧 ∧ 𝑥 �̄�𝑧 ∧ 𝑥 𝑦𝑧 ∧ 𝑥 �̄�𝑧 ∧ 𝑥 𝑦𝑧 ∧ 𝑥 �̄�𝑧

(where we replace ∨ by juxtaposition for compactness), we get the following critical clause
graph:

x

y z

We see that the CCG might have anti-parallel edges (𝑥, 𝑦), ( 𝑦, 𝑥) but no self-loops. The latter
follows since (𝑥 ∨ 𝑥 ∨ . . . ) always evaluates to 1, and we assume no clause of 𝐹 has this form. In
the CCG, every vertex has out-degree 𝑘 − 1, thus it has a total of (𝑘 − 1)𝑛 arcs, and the average
in-degree is 𝑘 − 1, too.
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DEF IN IT ION 4.2. For 𝑥 ∈ 𝑉 let indeg(𝑥) denote the in-degree of 𝑥 in the CCG. For a set 𝑋 ⊆ 𝑉
we define

indeg(𝑋) :=
∑︁
𝑥∈𝑋

indeg(𝑥) .

An arc (𝑥, 𝑦) with 𝑥, 𝑦 both in 𝑋 counts towards indeg(𝑋) as well.

For 𝑙 ∈ N, we call a variable 𝑥 𝑙-heavy if indeg(𝑥) ≥ 𝑙. Let Heavy(𝑙) be the set of all 𝑙-heavy
variables. If 𝑙 is understood from the context, we might simply write Heavy.

THEOREM 4.3. For every 𝑘 ∈ N, there is some 𝑙 = 𝑙(𝑘) ∈ N and real number HB(𝑘) > 0 (with
HB standing for heavy-bonus) such that

Pr[PPSZ succeeds] ≥ 2−𝑛+𝑠𝑘𝑛+HB(𝑘)·indeg(Heavy(𝑙))−𝑜(𝑛) .

PROOF . We define a new distribution 𝐷 on placements 𝜋 : 𝑉 → [0, 1], in which 𝜋(𝑥) for 𝑥 ∈
Heavy is slightly biased towards smaller values. For this, we fix some continuous differentiable
𝛾 : [0, 1] → R+

0 such that 𝛾(0) = 𝛾(1) = 0 and let 𝜙 := 𝛾′ be its derivative. For sufficiently
small 𝜖 > 0, it holds that 1 + 𝜖𝜙(𝑟) ≥ 0 for all 𝑟 ∈ [0, 1]. This implies that

∫ 𝑟

0 (1 + 𝜖𝜙(𝑥))𝑑𝑥 =

𝑟+𝜖𝛾(𝑟) =: Φ(𝑟) is monotonically increasing, Φ(0) = 0 and Φ(1) = 1. Thus, Φ it is the cumulative
distribution function of a distribution on [0, 1].

DEF IN IT ION 4.4. Let 𝐷𝛾𝜖 be the distribution on [0, 1] with the cumulative probability distri-
bution function 𝑟 + 𝜖𝛾(𝑟) and density function 1 + 𝜖𝜙(𝑟).

In this proof, we will state all intermediate results in terms of a general function 𝛾 satisfying
the above requirements. If we want to show some improvement for 𝑘-SAT, rather than concrete
numerical results, the precise shape of 𝛾 does not matter. We might just as well define 𝛾(𝑟) =
𝑟(1− 𝑟) and run with it. In the following, we ask the reader to interpret 𝛾 as the general function
described above; however, since we will be juggling several constants, which depend on 𝑘 and
our choice of 𝛾, it will be advantageous sometimes to think of 𝛾 as a very concrete function, not
depending on anything, for example like 𝛾(𝑟) = 𝑟(1 − 𝑟). For this choice, we have 𝜙(𝑟) = 1 − 2𝑟,
and 𝐷𝛾𝜖 is a distribution on [0, 1] for all 0 ≤ 𝜖 ≤ 1.

Let 𝐷 be the distribution on placements 𝜋 : 𝑉 → [0, 1] that samples 𝜋(𝑥) ∈ [0, 1] uniformly
for all 𝑥 ∉ Heavy and 𝜋(𝑥) ∼ 𝐷

𝛾
𝜖 for all 𝑥 ∈ Heavy. For heavy 𝑥 it holds that Pr[𝜋(𝑥) < 𝑟] =

𝑟 + 𝜖𝛾(𝑟) ≥ 𝑟. By using the indicator notation [Statement] that gives 1 if Statement holds and 0
otherwise, we can concisely write

Pr
𝜋∼𝐷

[𝜋(𝑥) < 𝑟] = 𝑟 + [𝑥 ∈ Heavy]𝜖𝛾(𝑟) .

Loosely speaking, heavy variables 𝑥 tend to come earlier in 𝜋 ∼ 𝐷 than non-heavy ones.
Consequently, for heavy 𝑥, we expect Pr[Forced(𝑥, 𝜋)] to be smaller under 𝐷 than under the
uniform distribution𝑈[0,1] . The following lemma bounds the magnitude of this “penalty”:
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LEMMA 4.5. If 𝑥 ∈ Heavy then Pr𝜋∼𝐷 [Forced(𝑥, 𝜋)] is at least∫ 1

0
𝑄
(𝑘)
𝑟 (1 + 𝜖𝜙(𝑟)) 𝑑𝑟 − 𝑜(1) = 𝑠𝑘 − 𝜖 · HP(𝑘) − 𝑜(1)

for HP(𝑘) := −
∫ 1

0 𝑄
(𝑘)
𝑟 𝜙(𝑟)𝑑𝑟, which depends only 𝑘 and on 𝛾, but not on 𝑘′ nor on 𝜖. The acronym

HP stands for heavy-penalty.

Remark: the minus sign in the definition of HP might look surprising, but the integral∫ 1
0 𝑄

(𝑘)
𝑟 𝜙(𝑟)𝑑𝑟 is indeed at most 0, which can be proved by basic calculus or simply seen from

the context (but this proof is not necessary for the correctness of the lemma).

Proof. Under 𝜋 ∼ 𝐷, the values 𝜋( 𝑦) are independent for all variables 𝑦. Let 𝑈 denote the
uniform distribution on placements. Observe that we can define a coupling (𝜋𝐷, 𝜋𝑈) such that
𝜋𝐷 ∼ 𝐷 and 𝜋𝑈 ∼ 𝑈 and 𝜋𝐷( 𝑦) ≤ 𝜋𝑈 ( 𝑦) hold always and for all variables 𝑦. We could, for
example, achieve this by sampling 𝑢 ∈ [0, 1] uniformly at random, let 𝑡 be the unique number
in [0, 1] for which 𝑡 + 𝜖𝛾(𝑡) = 𝑢, and set 𝜋𝑈 ( 𝑦) = 𝑢 and 𝜋𝐷( 𝑦) = 𝑡. Then 𝜋𝑈 ( 𝑦) is uniform over
[0, 1] and 𝜋𝐷( 𝑦) is distributed according to 𝐷𝛾𝜖 . Furthermore, 𝑡 ≤ 𝑢 holds.

Since Cut𝑟 (𝑇𝑥) depends monotonically on the atomic events [𝜋( 𝑦) < 𝑟] and since [𝜋𝑈 < 𝑟]
implies [𝜋𝐷 < 𝑟], we conclude that 𝜋𝑈 ∈ Cut𝑟 (𝑇𝑥) also implies 𝜋𝐷 ∈ Cut𝑟 (𝑇𝑥); in other words,

Pr
𝐷
[Cut𝑟 (𝑇𝑥)] ≥ Pr

𝑈
[Cut𝑟 (𝑇𝑥)] . (8)

From the previous section, in particular Lemma 3.11, we know that

Pr
𝑈
[Cut𝑟 (𝑇𝑥)] ≥ 𝑄

(𝑘)
𝑟 − Error(𝑟, ℎ) . (9)

The lemma now follows from setting 𝑟 = 𝜋(𝑥) and taking expectation over 𝜋(𝑥), and using the
fact that 𝜋(𝑥) ∼ 𝐷. That is, we compute

Pr
𝐷
[Cut(𝑇𝑥)] = E

𝑟∼𝐷

[
Pr
𝐷
[Cut(𝑇𝑥)]

]
=

∫ 1

0
Pr
𝐷
[Cut𝑟 (𝑇𝑥)] (1 + 𝜖𝜙(𝑟))𝑑𝑟 (multiply by density and integrate)

≥
∫ 1

0
Pr
𝑈
[Cut𝑟 (𝑇𝑥)] (1 + 𝜖𝜙(𝑟))𝑑𝑟 (by (8))

≥
∫ 1

0

(
𝑄
(𝑘)
𝑟 − Error(𝑟, ℎ)

)
(1 + 𝜖𝜙(𝑟))𝑑𝑟 (by (9))

=

∫ 1

0
𝑄
(𝑘)
𝑟 (1 + 𝜖𝜙(𝑟))𝑑𝑟 −

∫ 1

0
Error(𝑟, ℎ) (1 + 𝜖𝜙(𝑟))𝑑𝑟 .

Now since 𝜙(𝑟) is bounded and Error(𝑟, ℎ) converges to 0 as ℎ grows, for each fixed 𝑟, the
second integral in the above expression also converges to 0 as ℎ grows, which explains the 𝑜(1)
term in the statement of the lemma. ■
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If 𝑥 ∉ Heavy but has a heavy out-neighbor, i.e., if there is an arc (𝑥, 𝑦) for some 𝑦 ∈ Heavy,
we expect Pr[Forced(𝑥, 𝜋)] to be larger under 𝐷. Also, if there are several heavy out-neighbors,
we expect this “bonus” to be even larger. To formalize this intuition, we introduce some notation.

DEF IN IT ION 4.6. For 𝑥 ∈ 𝑉 and 𝑌 ⊆ 𝑉 , we define 𝑒(𝑥,𝑌 ) to be the number of arcs (𝑥, 𝑦) with
𝑦 ∈ 𝑌 . For sets 𝑋,𝑌 ⊆ 𝑉 (not necessarily disjoint), we define 𝑒(𝑋,𝑌 ) to be

∑
𝑥∈𝑋 𝑒(𝑥,𝑌 ).

The next lemma formally states that the “bonus” for 𝑥 ∉ Heavy is proportional to its
number of heavy out-neighbors:

LEMMA 4.7. If 𝑥 ∉ Heavy then Pr𝜋∼𝐷 [Forced(𝑥, 𝜋)] is at least

𝑠𝑘 + 𝜖HCB(𝑘) 𝑒(𝑥,Heavy) − 𝑜(1) (10)

where 𝑒(𝑥,Heavy) is the number of arcs (𝑥, 𝑦) with 𝑦 ∈ Heavy and

HCB(𝑘) :=
∫ 1

0
𝛾(𝑟)

(
𝑃
(𝑘)
𝑟

)𝑘−2 (
1 − 𝑄(𝑘)

𝑟

)
𝑑𝑟 .

The acronym HCB stands for heavy-child bonus. Note that HCB(𝑘) only depends on 𝛾 and 𝑘.
Furthermore, HCB(𝑘) > 0 as long as 𝛾 is positive somewhere in

[
0, 𝑘−2

𝑘−1
]
, which our concrete

choice 𝑟(1 − 𝑟) certainly is.

Proof. We first show the last part of the lemma, namely that HCB(𝑘) > 0. It is well-known
from the theory of Galton-Watson branching processes that 𝑄(𝑘)

𝑟 < 1 for all 𝑟 < 𝑘−2
𝑘−1 and thus(

𝑃
(𝑘)
𝑟

)𝑘−2 (
1 − 𝑄(𝑘)

𝑟

)
> 0 on the interval

[
0, 𝑘−2

𝑘−1
]
. This means that HCB(𝑘) > 0 for our choice

𝛾(𝑟) = 𝑟(1 − 𝑟) (and basically for any other legal choice for 𝛾, provided that it is positive some-
where on the interval

[
0, 𝑘−2

𝑘−1
]
).

We now prove (10). Let 𝑦1, . . . , 𝑦𝑘−1 be the labels of the children of the root of 𝑇𝑥 and 𝑇𝑖
be the subtree of 𝑇𝑥 rooted at 𝑦𝑖 . Similar to Step 2 in the proof of Lemma 3.11, we can assume
that all nodes of 𝑇𝑥 have distinct variable labels. Formally, we need a more general version of
Proposition 3.12, one that deals with non-uniform distributions:

PROPOS IT ION 4.8. Let 𝑇 be a labeled tree and 𝑣 a node therein. Let 𝑎′ be a fresh label, i.e., one
that does not appear in 𝑇 . Define 𝑇𝑣→𝑎′ to be the same as 𝑇 but with varlabel(𝑣) := 𝑎′ for some
fresh label 𝑎′. Furthermore, let 𝐷 be a probability distribution on placements 𝜋 : 𝐿(𝑇 ) → [0, 1]
under which the variables {𝜋(𝑙)}𝑙∈𝐿 are independent. Define a new distribution 𝐷′ by sampling
𝜋(𝑙) ∼ 𝐷 for all labels 𝑙 ∈ 𝐿(𝑇 ) and additionally sampling 𝜋(𝑎′) from the same distribution as 𝜋(𝑎).
Then

Pr
𝐷′
[Cut𝑟 (𝑇𝑣→𝑎′)] ≤ Pr

𝐷
[Cut𝑟 (𝑇𝑖)]

holds.
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The proof of this proposition is almost the same as of Proposition 3.12. For every variable
𝑧 ∉ {𝑥, 𝑦1, . . . , 𝑦𝑘−1}, it holds that Pr𝐷 [𝜋(𝑧) < 𝑟] ≥ 𝑟. This means we can assume pessimisti-
cally5 that 𝜋(𝑧) is uniform over [0, 1]. Since all labels are distinct, we have Pr𝐷 [Cut𝑟 (𝑇𝑥)] =∏𝑘−1

𝑖=1 Pr𝐷 [wCut𝑟 (𝑇𝑖)] and

Pr
𝐷
[wCut𝑟 (𝑇𝑦𝑖)] = Pr

𝐷
[𝜋( 𝑦𝑖) < 𝑟] ∨ Pr

𝐷
[Cut𝑟 (𝑇𝑖)]

= (𝑟 + [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟)) ∨ Pr
𝐷
[Cut𝑟 (𝑇𝑖)]

≥ (𝑟 + [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟)) ∨ (𝑄𝑟 − 𝑜(1))
= 𝑟 + [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟) + (1 − 𝑟 − [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟)) (𝑄𝑟 − 𝑜(1))
= 𝑟 + (1 − 𝑟)𝑄𝑟 + [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟) (1 − 𝑄𝑟) − 𝑜(1)
= 𝑃𝑟 + [ 𝑦𝑖 ∈ Heavy]𝜖𝛾(𝑟) (1 − 𝑄𝑟) − 𝑜(1) .

Therefore,

Pr
𝐷
[Cut𝑟 (𝑇𝑥)] ≥

∏
𝑦:𝑥→𝑦

(𝑃𝑟 + [ 𝑦 ∈ Heavy]𝜖𝛾(𝑟) (1 − 𝑄𝑟)) − 𝑜(1)

≥ (𝑃𝑟)𝑘−1 +
∑︁
𝑦:𝑥→𝑦

[ 𝑦 ∈ Heavy]𝜖𝛾(𝑟) (𝑃𝑟)𝑘−2(1 − 𝑄𝑟) − 𝑜(1)

= 𝑄𝑟 + 𝑒(𝑥,Heavy)𝜖𝛾(𝑟) (𝑃𝑟)𝑘−2(1 − 𝑄𝑟) − 𝑜(1) .

Since 𝜋(𝑥) is uniform over [0, 1], we get Pr𝜋∼𝐷 [Cut(𝑇𝑥)] by integrating the above expression
over [0, 1]. This yields (10) and concludes the proof of Lemma 4.7. ■

We can prove Theorem 4.3 by summing over all variables:∑
𝑥∈𝑉 Pr𝐷 [Forced(𝑥, 𝜋)] − 𝑠𝑘 𝑛

𝜖
(11)

≥ −HP(𝑘) |Heavy| + HCB(𝑘)
∑︁

𝑥∉Heavy
𝑒(𝑥,Heavy) − 𝑜(𝑛)

≥ −HP(𝑘) |Heavy| + HCB(𝑘)𝑒(𝑉 \ Heavy,Heavy) − 𝑜(𝑛) . (12)

Next, we show that 𝑒(𝑉 \ Heavy,Heavy) is large:

𝑒(𝑉 \ Heavy,Heavy) = 𝑒(𝑉,Heavy) − 𝑒(Heavy,Heavy)
= indeg(Heavy) − 𝑒(Heavy,Heavy)
≥ indeg(Heavy) − 𝑒(Heavy, 𝑉 )
= indeg(Heavy) − 𝑘 |Heavy| ,

5 We will not go through a formal coupling argument from now on.
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where the last equality follows because every variable, in particular every 𝑥 ∈ Heavy, has
𝑒(𝑥,𝑉 ) = outdeg(𝑥) = 𝑘 − 1. Combining the two, we get

(12) = −HP(𝑘) |Heavy| + HCB(𝑘)𝑒(𝑉 \ Heavy,Heavy) − 𝑜(𝑛)
≥ −HP(𝑘) |Heavy| + HCB(𝑘) (indeg(Heavy) − 𝑘 |Heavy|) − 𝑜(𝑛)
= HCB(𝑘) indeg(Heavy) − (HP(𝑘) + 𝑘HCB(𝑘)) |Heavy| − 𝑜(𝑛)

≥
(
HCB(𝑘) − HP(𝑘) + 𝑘HCB(𝑘)

𝑙

)
indeg(Heavy(𝑙)) − 𝑜(𝑛) ,

where the last inequality follows from the fact that indeg(Heavy) ≥ 𝑙 |Heavy|. We also
write Heavy(𝑙) in the last line to emphasize that its definition involves the number 𝑙. We choose
𝑙 = 𝑙(𝑘) sufficiently large to make sure the expression in the parenthesis is some 𝑐 = 𝑐(𝑘) > 0.
This shows that E𝐷 [Forced(𝜋)] ≥ 𝑠𝑘𝑛 − 𝑜(𝑛) + 𝜖 𝑐(𝑘) indeg(Heavy(𝑙(𝑘)). Using (3), we see that
our “gain” in the exponent of the success probability is at least6

log2 Pr[PPSZ succeeds] + 𝑛 − 𝑠𝑘𝑛 ≥ 𝜖 𝑐(𝑘) indeg(Heavy) − KL(𝐷| |𝑈) . (13)

Since all values 𝜋(𝑥) are independent under both 𝐷 and𝑈 , the Kullback-Leibler divergence be-
comes additive, and KL(𝐷| |𝑈) = KL(𝐷𝛾𝜖 | |𝑈[0,1]) · |Heavy|, where𝑈[0,1] is the uniform distribution
on [0, 1].

PROPOS IT ION 4.9. Define Ψ :=
∫ 1

0 𝜙2(𝑟) 𝑑𝑟. Then KL(𝐷𝛾𝜖 | |𝑈[0,1]) ≤ log2(𝑒) 𝜖2Ψ holds and
furthermore KL(𝐷| |𝑈) ≤ log2(𝑒) 𝜖2Ψ|Heavy|.

Proof. We abbreviate 𝑡 := 𝜖𝜙(𝑟). By definition of KL for continuous distributions, we have

ln(2) KL(𝐷𝛾𝜖 | |𝑈[0,1]) =
∫ 1

0
(1 + 𝑡) ln(1 + 𝑡) 𝑑𝑟

≤
∫ 1

0
(1 + 𝑡)𝑡 𝑑𝑟 (since ln(1 + 𝑡) ≤ 𝑡)

=

∫ 1

0
𝑡 𝑑𝑟 +

∫ 1

0
𝑡2 𝑑𝑟

=

∫ 1

0
𝜖𝜙(𝑟)𝑑𝑟 +

∫ 1

0
(𝜖𝜙(𝑟))2 𝑑𝑟 . (putting back 𝑡 = 𝜖𝜙(𝑟))

The first integral is 0 because
∫ 1

0 𝜙(𝑟)𝑑𝑟 = 𝛾(1) = 0; the second is 𝜖2Ψ by definition of Ψ. ■

Combining Proposition 4.9 and (13) gives

log2 Pr[PPSZ succeeds] + 𝑛 − 𝑠𝑘𝑛 ≥ 𝜖 𝑐(𝑘) indeg(Heavy(𝑙(𝑘)) − log2(𝑒)𝜖2Ψ|Heavy(𝑙(𝑘)) |

≥
(
𝜖 𝑐(𝑘) − log2(𝑒)𝜖2Ψ

𝑙(𝑘)

)
indeg(Heavy(𝑙(𝑘))

6 ignoring the 𝑜(𝑛) term for readability
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Since none of 𝑐(𝑘), 𝑙(𝑘), 𝑘, and Ψ depends on 𝜖, we can choose 𝜖 sufficiently small to
ensure that the term in parentheses above some HB(𝑘) > 0 and thus log2 Pr[PPSZ succeeds] ≥
−𝑛 + 𝑠𝑘𝑛 − 𝑜(𝑛) + HB(𝑘) · indeg(Heavy(𝑙(𝑘)), which proves Theorem 4.3. ■

Note that in theory we could hammer out how HB(𝑘) depends on 𝑘. This would surely be
tedious because we encountered several integrals involving 𝑄(𝑘)

𝑟 and 𝑃 (𝑘)
𝑟 , for which we don’t

have a closed form. In its current form, the theorem gives us no explicit bounds on HB(𝑘), other
than that it is positive.

4.2 Privileged variables—when Pr[Forced(𝒙, 𝝅)] is already larger

There are some abnormal cases that will interfere with our analysis below. Luckily, all those
cases will imply that the variables involved already have a substantially higher probability of
being forced.

DEF IN IT ION 4.10. A variable 𝑥 is called privileged if (1) 𝑥 has at least two critical clauses or it
has a critical clause tree 𝑇𝑥 such that (2) there is a variable 𝑦 that appears simultaneously at
depth 1 and 2 or (3) 𝑇𝑥 has fewer than (𝑘 − 1)2 nodes at depth 2. Let Privileged be the set of all
privileged variables.

LEMMA 4.11. There is some value Priv > 0, depending only on 𝑘, such that Pr[Forced(𝑥, 𝜋)] ≥
𝑠𝑘 + Priv − 𝑜(1) for all privileged variables 𝑥, where 𝑜(1) converges to 0 as 𝑤 grows.

We prove the lemma in Appendix A. The proof is somewhat technical, partially overlaps
with proofs also found in Hansen et al. [3], but is conceptually rather straightforward.

4.3 The almost regular case

Theorem 4.3 already gives us an exponential improvement over the old analysis of PPSZ provided
that indeg(Heavy) is large (linear in 𝑛). In this section, we will come up with a corresponding
bound that works well if indeg(Heavy) is small. The final bound will then follow from a meet-
in-the-middle argument.

LEMMA 4.12. There is a collection 𝐺 of canonical critical clauses such that no two clauses in 𝐺
share a variable and |𝐺 | ≥ 𝑛−indeg(Heavy(𝑙))

𝑘𝑙 .

PROOF . Set C to be the set of all canonical critical clauses. We have |C| = 𝑛 because there is
exactly one critical clause for each variable. Greedily pick a clause 𝐶 ∈ C, add it to 𝐺, and delete
from C all clauses 𝐶′ that share a variable with 𝐶 (this obviously includes 𝐶 itself). Repeat this
step for as long as possible.

How many clauses does each step remove from C? Let 𝑥1, . . . , 𝑥𝑘 denote the variables
of 𝐶. For sure we remove the canonical critical clauses of 𝑥1, . . . , 𝑥𝑘. Additionally, we remove,
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for each 1 ≤ 𝑖 ≤ 𝑘, all canonical critical clauses containing 𝑥𝑖 . This removes at most a total of
𝑘 +∑

𝑥∈var(𝐶) indeg(𝑥) clauses. Thus, the total number of canonical critical clauses removed in
this process is at most∑︁

𝐶∈𝐺

©«𝑘 +
∑︁

𝑥∈var(𝐶)
indeg(𝑥)ª®¬

≤|𝐺 |𝑘 +
∑︁
𝐶∈𝐺

∑︁
𝑥∈var(𝐶)
𝑥∉Heavy(𝑙)

(𝑙 − 1) +
∑︁
𝐶∈𝐺

∑︁
𝑥∈var(𝐶)
𝑥∈Heavy(𝑙)

indeg(𝑥)

≤|𝐺 |𝑘 + |𝐺 |𝑘(𝑙 − 1) + indeg(Heavy(𝑙)) = |𝐺 |𝑘𝑙 + indeg(Heavy(𝑙)) .

The process ends C becomes empty. Since |C| = 𝑛 in the beginning, it removes exactly 𝑛 clauses,
and therefore |𝐺 |𝑘𝑙 + indeg(Heavy(𝑙)) ≥ 𝑛. Solving for |𝐺 | proves the lemma. ■

We take a set 𝐺 of canonical critical clauses as guaranteed by the lemma. We form a
collection 𝑀′ of disjoint pairs of variables by selecting, for each 𝐶 ∈ 𝐺, two negative literals
�̄�, 𝑧 ∈ 𝐶 and adding { 𝑦, 𝑧} to 𝑀′.7 Call 𝑥 a parent of { 𝑦, 𝑧} if the canonical critical clause of 𝑥
contains the literals �̄� and 𝑧. Note that this name makes sense since in the canonical critical
clause tree 𝑇𝑥 of 𝑥, the root has two children with labels 𝑦 and 𝑧, respectively. Every { 𝑦, 𝑧} ∈ 𝑀′

has at least one parent. We form a final collection 𝑀 ⊆ 𝑀′ of pairs by removing each pair { 𝑦, 𝑧}
with parent 𝑥 from 𝑀′ if at least one of 𝑥, 𝑦, 𝑧 is in Privileged. Each privileged variable 𝑥 is
“responsible” for the removal of at most two elements from 𝑀′: one if the canonical clause of 𝑥
happens to be in 𝐺; one if there is some 𝑥′ with {𝑥, 𝑥′} ∈ 𝑀′. Therefore,

|𝑀 | ≥ 𝑛 − indeg(Heavy)
𝑘𝑘′

− 2 |Privileged| . (14)

We denote the set of all parents 𝑥 of some { 𝑦, 𝑧} ∈ 𝑀 by ParentM.

THEOREM 4.13. For every 𝑐 > 0 and 𝑘 ≥ 3 there is some 𝑐′ > 0 such that if |𝑀 | ≥ 𝑐𝑛 then
Pr[PPSZ succeeds] ≥ 2−𝑛+𝑠𝑘𝑛+𝑐′𝑛−𝑜(1) .

From here, the proof of Theorem 1.5 is simple. Let 𝑐1 be a small constant, depending
on 𝑘. If |indeg(Heavy) | ≥ 𝑐1𝑛 then we can apply Theorem 4.3. If |Privileged| ≥ 𝑐1𝑛 we can
apply Lemma 4.11. Otherwise, (14) implies that |𝑀 | ≥ 𝑐2𝑛 for some 𝑐2 depending on 𝑐1 and 𝑘,
and 𝑐2 > 0 if 𝑐1 is small enough. We can now apply Theorem 4.13 and are done. This proves
Theorem 1.5. It remains to prove Theorem 4.13.

The remainder of this section contains the proof of Theorem 4.13. At first reading of what
follows, it might even be helpful to think of Privileged as being empty.

7 For 𝑘 = 3, the clause 𝐶 contains exactly two negative literals; for larger 𝑘, we select two literals arbitrarily.
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4.4 Using disjoint pairs to define a distribution

We choose some 𝜌 ≤ 𝑘−2
𝑘−1 , to be determined later. Define 𝛾 : [0, 1] → R+0 by

𝛾(𝑟) :=

𝑟(𝜌 − 𝑟) if 𝑟 ≤ 𝜌

0 if 𝑟 ≥ 𝜌.
(15)

Let 𝜙 := 𝛾′ and extend this via 𝜙(𝜌) := −𝜌. Observe that 𝜙min := min𝑟∈[0,1] 𝜙(𝑟) = −𝜌. We fix
some 𝜖 > 0. Let 𝐷𝛾,□𝜖 be the distribution on [0, 1] × [0, 1] whose density at (𝑟, 𝑠) is 1 + 𝜖𝜙(𝑟)𝜙(𝑠).
This really is a density, provided that 1 + 𝜖𝜙(𝑟)𝜙(𝑠) ≥ 0 for all 𝑟 and 𝑠. Let 𝐷 be the distribution
on placements that samples (𝜋( 𝑦), 𝜋(𝑧)) ∼ 𝐷

𝛾,□
𝜖 for each { 𝑦, 𝑧} ∈ 𝑀 and samples 𝜋(𝑥) ∈ [0, 1]

uniformly for each remaining variable. All samplings are done independently. We define

𝛿 = 𝛿(𝑟) := 𝜖|𝜙min |𝛾(𝑟) = 𝜖𝜌𝛾(𝑟) (16)

LEMMA 4.14. Let 𝑟 ∈ [0, 1]. Then

Pr
𝐷
[Cut(𝑇𝑥) | 𝜋(𝑥) = 𝑟] ≥ 𝑄𝑟 − Damage(𝑟) + Benefit(𝑟) · 1𝑥∈ParentM − 𝑜(1) ,

where

Damage(𝑟) := (𝑘 − 1) (1 − 𝑟)𝑃𝑘−2
𝑟 𝛿𝑄′

𝑟 (17)

Benefit(𝑟) := 𝜖𝛾2(𝑟) (1 − 𝑄𝑟)2𝑃𝑘−3
𝑟−𝛿 . (18)

and the 𝑜(1) converges to 0 as ℎ grows.

PROOF . The proof works by constructing an easy-to-analyze tree and distribution that serve as
a pessimistic estimate for Cut𝑟 (𝑇𝑥). First, we make a simple but important observation about 𝑀
and the labels in 𝑇𝑥:

OBSERVAT ION 4.15. Let 𝑢 be a node of depth 1 in 𝑇𝑥 and 𝑦 = varlabel(𝑢). Then {𝑥, 𝑦} ∉ 𝑀 .

PROOF . Suppose {𝑥, 𝑦} ∈ 𝑀 , for the sake of contradiction, and let 𝑎 be one of their parents.
So 𝑇𝑎 contains two nodes 𝑋,𝑌 at depth 1 with labels 𝑥 and 𝑦, respectively. What is the clause
label 𝐶𝑋 of node 𝑋 in 𝑇𝑎? First, if it is 𝐶𝑥 , the canonical critical clause of 𝑥, then 𝑋 has a child
with label 𝑦, since �̄� ∈ 𝐶𝑥 . This means that 𝑦 appears in 𝑇𝑎 at level 1 and 2, so 𝑎 is privileged.
Second, if it is not 𝐶𝑥 but is some critical clause, it must be a critical clause for 𝑥 or 𝑎, meaning
that 𝑥 or 𝑎 has at least two critical clauses, so at least one of them is privileged. Third, if 𝐶𝑋 is
not a critical clause, then 𝐶𝑋 has at most 𝑘 − 2 negative literals and 𝑋 has at most 𝑘 − 2 children,
meaning 𝑇𝑎 has fewer than (𝑘 − 1)2 nodes at level 2. In either case, at least one of 𝑎 and 𝑥 is
privileged, meaning we would have eliminated {𝑥, 𝑦} from 𝑀 . This is a contradiction. ■

This observation has two important consequences:
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OBSERVAT ION 4.16. Suppose 𝑥 ∉ ParentM and let 𝑦1, . . . , 𝑦𝑘−1 be the labels of the depth-1-
nodes in 𝑇𝑥 . Then 𝜋(𝑥), 𝜋( 𝑦1), . . . , 𝜋( 𝑦𝑘−1) are independent and uniform under 𝐷.

OBSERVAT ION 4.17. Suppose 𝑥 ∈ ParentM is a parent of { 𝑦, 𝑧} ∈ 𝑀 . Let 𝑦, 𝑧, 𝑣1, . . . , 𝑣𝑘−3 be
the labels of the depth-1-nodes in 𝑇𝑥 . Then 𝜋(𝑥), (𝜋( 𝑦), 𝜋(𝑧)), 𝜋(𝑣1), . . . , 𝜋(𝑣𝑘−3) are independent
under 𝐷, the pair (𝜋( 𝑦), 𝜋(𝑧)) has distribution 𝐷𝛾,□𝜖 , and the other 𝑘 − 2 variables are uniform
over [0, 1].

The upshot is that we completely understand the distribution of 𝜋(𝑙) for the labels on the
level 0 and 1 of 𝑇𝑥 . Starting from level 2 downwards, the distribution can become complicated,
so we resort to a pessimistic estimate:

OBSERVAT ION 4.18. Let 𝑣 be a variable and let 𝜏 : 𝑉 \ {𝑣} → [0, 1] be a particular placement
of all other variables. Let 𝑟 ∈ [0, 1]. Then Pr𝐷 [𝜋(𝑣) < 𝑟 | 𝜏] ≥ 𝑟 − 𝛿, for 𝛿 as defined in (16).

PROOF . If 𝑣 is not contained in any pair of 𝑀 , then Pr𝐷 [𝜋(𝑣) < 𝑟 |𝜏] = 𝑟. If {𝑣, 𝑤} ∈ 𝑀 then
Pr𝐷 [𝜋(𝑣) < 𝑟 |𝜏] = Pr𝐷𝛾,□𝜖 [𝜋(𝑣) < 𝑟 | 𝜋(𝑤) = 𝜏(𝑤)] = 𝑟 + 𝜖𝛾(𝑟)𝜙(𝜏(𝑤)) ≥ 𝑟 − 𝜖|𝜙min |𝛾(𝑟). ■

The two pessimistic distributions 𝑫𝑴 and 𝑫�̄�. Fix 𝑟 ∈ [0, 1] and let 𝑇∞ be the complete
infinite (𝑘 − 1)-ary tree in which all labels are distinct. Since all the labels are distinct, we
take the liberty of writing 𝜋(𝑣) instead of 𝜋(varlabel(𝑣)) for a node 𝑣 in 𝑇∞. We specify two
distributions 𝐷𝑀 and 𝐷�̄� on placements 𝐿 → [0, 1]. First, we set Pr[𝜋(𝑣) < 𝑟] := 𝑟 − 𝛿 under
both 𝐷�̄� and 𝐷𝑀 for all nodes 𝑣 of depth at least 2 in𝑇∞. Second, we let 𝑦1, . . . , 𝑦𝑘−1 be the nodes
of depth 1 in 𝑇∞ and sample all 𝜋( 𝑦𝑖) ∈ [0, 1] uniformly and independently under 𝐷�̄� . Under
𝐷𝑀 , we sample 𝜋( 𝑦3, . . . , 𝑦𝑘−1) uniformly and independently but sample (𝜋( 𝑦1), 𝜋( 𝑦2)) ∼ 𝐷

𝛾,□
𝜖 .

This does not fully specify a distribution on placements 𝐿→ [0, 1] but it does specify the joint
distribution of the events [𝜋(𝑣) < 𝑟]. Since we are only interested in Pr[Cut𝑟 (𝑇𝑥)], this is enough.
Note that we also do not need to specify a distribution for 𝜋(root).

LEMMA 4.19. If 𝑥 ∉ ParentM then Pr[Cut(𝑇𝑥) | 𝜋(𝑥) = 𝑟] ≥ Pr𝐷�̄� [Cut𝑟 (𝑇∞)] − 𝑜(1). If 𝑥 ∈
ParentM then Pr[Cut(𝑇𝑥) | 𝜋(𝑥) = 𝑟] ≥ Pr𝐷𝑀 [Cut𝑟 (𝑇∞)] − 𝑜(1).

The 𝑜(1)-term comes from the fact that 𝑇𝑥 is a critical clause tree of height ℎ, whereas 𝑇∞

is an infinite tree.

PROOF . We mimic the proof of Lemma 3.11 by assigning each node at depth 2 or greater a
fresh label. We need a third version of Proposition 3.12:

PROPOS IT ION 4.20. Let 𝑇 be a labeled tree and 𝑣 a node therein. Let 𝑎′ be a fresh label, i.e.,
one that does not appear in 𝑇 . Define 𝑇𝑣→𝑎′ to be the same as 𝑇 but with varlabel(𝑣) := 𝑎′ for
some fresh label 𝑎′.
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Let 𝐷 be a probability distribution on placements 𝜋 : 𝐿(𝑇 ) → [0, 1] satisfying the following
property: for every label 𝑙 ∈ 𝐿(𝑇 ) and placement 𝜏 : 𝐿(𝑇 ) \ {𝑙} → [0, 1], it holds that Pr𝐷 [𝜋(𝑙) <
𝑟 | 𝜏] ≥ 𝑟 − 𝛿. Define a new distribution 𝐷′ by sampling a placement 𝜋 : 𝐿(𝑇 ) → [0, 1] from 𝐷 and
then, additionally, sampling 𝜋(𝑎′) such that Pr𝐷′ [𝜋(𝑎′) < 𝑟] = 𝑟 − 𝛿. Then

Pr
𝐷′
[Cut𝑟 (𝑇𝑣→𝑎′)] ≤ Pr

𝐷
[Cut𝑟 (𝑇𝑖)]

holds.

The proof of this proposition is almost the same as of Proposition 3.12. We apply it re-
peatedly, to each node of depth 2 or greater, noting that the distribution 𝐷 always satisfies the
requirement Pr𝐷 [𝜋(𝑙) < 𝑟 | 𝜏] ≥ 𝑟 − 𝛿, by Observation 4.19. After this process, only the nodes
at level 0 and 1 retain their old labels (and thus their original joint distribution under 𝜋). We
apply Observations 4.16 and 4.17 to conclude that we have indeed arrived at distributions 𝐷𝑀
and 𝐷�̄� , respectively. ■

PROPOS IT ION 4.21. With Benefit(𝑟) = 𝜖𝛾2(𝑟) (1 − 𝑄𝑟)2𝑃𝑘−3
𝑟−𝛿 as defined in (18), it holds that

Pr𝐷𝑀 [Cut𝑟 (𝑇∞)] ≥ Pr𝐷�̄� [Cut𝑟 (𝑇∞)] + Benefit(𝑟). ‘

PROOF . Let 𝑇1, . . . , 𝑇𝑘−1 be the subtrees of 𝑇∞ rooted at the nodes of depth 1. Let 𝜏 : 𝐿 \
{ 𝑦1, 𝑦2} → [0, 1] be a partial placement. Observe that the marginal distribution 𝐷′ of 𝜏 is
the same under 𝐷𝑀 and 𝐷�̄� . We call 𝜏 critical if Cut𝑟 (𝑇1) and Cut𝑟 (𝑇2) do not happen but
wCut𝑟 (𝑇3), . . . ,wCut𝑟 (𝑇𝑘−1) do happen. This can be determined by looking at 𝜏 alone.

CLAIM 4.22. If 𝜏 is not critical then Pr𝐷𝑀 [Cut𝑟 (𝑇∞) | 𝜏] = Pr𝐷�̄� [Cut𝑟 (𝑇∞) | 𝜏].

PROOF . There are several reasons why 𝜏 is not critical. First, if some of wCut𝑟 (𝑇3), . . . ,
wCut𝑟 (𝑇𝑘−1) does not happen then Cut𝑟 (𝑇∞) will not happen, whatever the values of 𝜋( 𝑦1)
and 𝜋( 𝑦2). Second, suppose both of Cut𝑟 (𝑇1) and Cut𝑟 (𝑇2) happen. Then wCut𝑟 (𝑇𝑖) happens for
all 1 ≤ 𝑖 ≤ 𝑘 − 1 and Cut𝑟 (𝑇∞) happens for sure. Third, suppose exactly one of Cut𝑟 (𝑇1) and
Cut𝑟 (𝑇2) happens, say Cut𝑟 (𝑇2). This means that Cut𝑟 (𝑇∞) happens if and only if 𝜋( 𝑦1) < 𝑟. This
event has probability 𝑟 under both 𝐷�̄� and 𝐷𝑀 . For 𝐷�̄� this is immediate from the definition;
for 𝐷𝑀 this follows from 𝐷

𝛾,□
𝜖 having uniform marginals. ■

If 𝜏 is critical then

Pr
𝐷�̄�

[Cut𝑟 (𝑇∞) | 𝜏] = Pr
𝐷�̄�

[𝜋( 𝑦1) < 𝑟 ∧ 𝜋( 𝑦2) < 𝑟] = 𝑟2 ,

Pr
𝐷𝑀

[Cut𝑟 (𝑇∞) | 𝜏] = Pr
𝐷𝑀

[𝜋( 𝑦1) < 𝑟 ∧ 𝜋( 𝑦2) < 𝑟] = 𝑟2 + 𝜖𝛾2(𝑟) .

To bound the probability that 𝜏 is critical, note that Pr𝐷′ [Cut𝑟 (𝑇𝑖)] = 𝑄𝑟−𝛿 since each of the atomic
events [𝜋(𝑙) < 𝑟] that are relevant for Cut𝑟 (𝑇𝑖) happen with probability 𝑟 − 𝛿. Furthermore,
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𝑄𝑟−𝛿 ≤ 𝑄𝑟. Next, Pr𝐷′ [wCut𝑟 (𝑇𝑖)] ≥ 𝑃𝑟−𝛿 since each of the relevant atomic events happen with
probability at least 𝑟−𝛿 (the event at the root of𝑇𝑖 , namely [𝜋( 𝑦𝑖) < 𝑟], happens with probability
exactly 𝑟, which is at least 𝑟 − 𝛿). Therefore,

Pr[¬Cut𝑟 (𝑇1)] · Pr[¬Cut𝑟 (𝑇2)] ·
𝑘−1∏
𝑖=3

Pr[wCut𝑟 (𝑇𝑖)] ≥ (1 − 𝑄𝑟)2𝑃𝑘−3
𝑟−𝛿 ,

and therefore

Pr
𝐷𝑀

[Cut𝑟 (𝑇∞)] = Pr
𝐷�̄�

[Cut𝑟 (𝑇∞)] + 𝜖𝛾2(𝑟) Pr[𝜏 is critical]

≥ Pr
𝐷�̄�

[Cut𝑟 (𝑇∞)] + 𝜖𝛾2(𝑟) (1 − 𝑄𝑟)2𝑃𝑘−3
𝑟−𝛿 .

This completes the proof of Proposition 4.21 ■

PROPOS IT ION 4.23. Let Damage(𝑟) := (𝑘 − 1) (1 − 𝑟)𝑃𝑘−2
𝑟 𝛿𝑄′

𝑟 as defined in (17). Then it holds
that Pr𝐷�̄� [Cut𝑟 (𝑇∞)] ≥ 𝑄𝑟 − Damage(𝑟).

PROOF . If 𝑟 ≥ 𝑘−2
𝑘−1 then 𝛿 = 0, Damage = 0, and Pr[𝜋(𝑣) < 𝑟] = 𝑟 for every node 𝑣 in 𝑇∞. Both

sides of the inequality evaluate to 1.

Otherwise, let 𝑇1, . . . , 𝑇𝑘−1 be the subtrees of 𝑇∞ rooted at the depth-1-nodes of 𝑇∞. Since
Pr𝐷�̄� [𝜋(𝑣) < 𝑟] = 𝑟 − 𝛿 for all nodes 𝑣 of 𝑇∞ of depth 2 or greater, it holds that Pr𝐷�̄� [Cut𝑟 (𝑇𝑖)] =
𝑄𝑟−𝛿 for 1 ≤ 𝑖 ≤ 𝑘 − 1. Since 𝑄𝑟 is convex on

[
0, 𝑘−2

𝑘−1
]
, this is at least 𝑄𝑟 − 𝛿𝑄′

𝑟. Next,

Pr
𝐷�̄�

[wCut𝑟 (𝑇𝑖)] = 𝑟 ∨ Pr
𝐷�̄�

[Cut𝑟 (𝑇𝑖)] ≥ 𝑟 ∨ (𝑄𝑟 − 𝛿𝑄′
𝑟)

= 𝑟 + (1 − 𝑟) (𝑄𝑟 − 𝛿𝑄′
𝑟) = 𝑃𝑟 − (1 − 𝑟)𝛿𝑄′

𝑟

= 𝑃𝑟

(
1 − (1 − 𝑟)𝛿𝑄′

𝑟

𝑃𝑟

)
,

and

Pr
𝐷�̄�

[Cut𝑟 (𝑇∞)] =
𝑘−1∏
𝑖=1

Pr
𝐷�̄�

[wCut𝑟 (𝑇𝑖)]

≥ 𝑃𝑘−1
𝑟

(
1 − (1 − 𝑟)𝛿𝑄′

𝑟

𝑃𝑟

)𝑘−1

≥ 𝑃𝑘−1
𝑟

(
1 − (𝑘 − 1) (1 − 𝑟)𝛿𝑄′

𝑟

𝑃𝑟

)
= 𝑄𝑟 − (𝑘 − 1) (1 − 𝑟)𝑃𝑘−2

𝑟 𝛿𝑄′
𝑟 .

This completes the proof. ■
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From here on, we estimate for 𝑥 ∉ ParentM:

Pr
𝐷
[Cut(𝑇𝑥) | 𝜋(𝑥) = 𝑟] ≥ Pr

𝐷�̄�
[Cut𝑟 (𝑇∞)] − 𝑜(1) (by Observation 4.19)

≥ 𝑄𝑟 − Damage(𝑟) − 𝑜(1) (by Proposition 4.23)

and for 𝑥 ∈ ParentM:

Pr
𝐷
[Cut(𝑇𝑥) | 𝜋(𝑥) = 𝑟] ≥ Pr

𝐷𝑀
[Cut𝑟 (𝑇∞)] − 𝑜(1) (by Observation 4.19)

≥ + Pr
𝐷�̄�

[Cut𝑟 (𝑇∞)] + Benefit(𝑟) − 𝑜(1) (by Proposition 4.21)

≥ 𝑄𝑟 − Damage(𝑟) + Benefit(𝑟) − 𝑜(1) . ( by Proposition 4.23)

This concludes the proof of Lemma 4.14. ■

We obtain a lower bound on Pr𝐷 [Cut(𝑇𝑥)] by integrating the bound in Lemma 4.14 over 𝑟:

Pr[Cut(𝑇𝑥)] ≥ 𝑠𝑘 − Damage + Benefit · 1𝑥∈ParentM − 𝑜(1) , (19)

where Damage =
∫ 1

0 Damage(𝑟) 𝑑𝑟 and Benefit =
∫ 1

0 Benefit(𝑟) 𝑑𝑟. To simplify the integration,
we will first give an upper bound on Damage(𝑟) and a lower bound on Benefit(𝑟). Recall our
definition of 𝛾 : [0, 1] → R+0 in (15) as used in 𝐷𝛾,□𝜖 :

𝛾(𝑟) :=

𝑟(𝜌 − 𝑟) if 𝑟 ≤ 𝜌

0 if 𝑟 ≥ 𝜌.

PROPOS IT ION 4.24. The following bounds hold:

Damage ≤ 𝑂(𝜖𝜌2𝑘) (20)

Benefit ≥ Ω(𝜖𝜌𝑘+2) , (21)

where the 𝑂 hides factors depending solely on 𝑘 and terms of order 𝜌𝑎 for 𝑎 ≥ 2 𝑘 + 1, and the Ω
hides factors depending solely on 𝑘 and terms of order 𝜌𝑏 for 𝑏 ≥ 𝑘 + 2.

PROOF . We remind the reader of the definitions of Damage and Benefit in (17) and (18):

Damage(𝑟) = (𝑘 − 1) (1 − 𝑟)𝑃𝑘−2
𝑟 𝛿𝑄′

𝑟

Benefit(𝑟) = 𝜖𝛾2(𝑟) (1 − 𝑄𝑟)2𝑃𝑘−3
𝑟−𝛿

Both Benefit(𝑟) and Damage(𝑟) vanish for 𝑟 ≥ 𝜌. Thus, we can replace
∫ 1

0 by
∫ 𝜌

0 . We will
first bound Benefit(𝑟). On the interval [0, 𝜌], 𝛾(𝑟) = 𝑟(𝜌 − 𝑟), and 1 − 𝑄𝑟 ≥ 1 − 𝑄𝜌, and
𝑃𝑟−𝛿 ≥ 𝑟 − 𝛿 = 𝑟(1 − 𝜖𝜌(𝜌 − 𝑟)). Therefore,

Benefit(𝑟) ≥ 𝜖𝑟2(𝜌 − 𝑟)2(1 − 𝑄𝜌)2𝑟𝑘−3 (1 − 𝜖𝜌(𝜌 − 𝑟))𝑘−3

≥ 1
2
𝜖𝑟𝑘−1(𝜌 − 𝑟)2 ,
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for sufficiently small 𝜖 and 𝜌 (smaller than a value depending solely on 𝑘). Integrating this over
𝑟 ∈ [0, 𝜌] shows (21).

Next, we bound Damage(𝑟) from above. It holds that 𝑟 ≤ 𝑃𝑟 ≤ 𝑘−1
𝑘−2𝑟, where the first

inequality follows immediately from 𝑃𝑟 = 𝑟 ∨ 𝑄𝑟, and the second follows from the fact that 𝑃𝑟
is convex on

[
0, 𝑘−2

𝑘−1
]
, 𝑃0 = 0, and 𝑃 𝑘−2

𝑘−1
= 1. Third, we compute 𝑄′

𝑟 = (𝑃𝑘−1
𝑟 )′ = (𝑘 − 1)𝑃𝑘−2

𝑟 𝑃′𝑟 ≤

(𝑘−1)
(
𝑘−1
𝑘−2

)𝑘−2
𝑟𝑘−2𝑃′𝑟. To bound 𝑃′𝑟, observe again that 𝑃′𝑟 ≤ 𝑃′𝑘−2

𝑘−1
, where 𝑃′𝑘−2

𝑘−1
is the left derivative

since 𝑃𝑟 is not differentiable at 𝑟 = 𝑘−2
𝑘−1 . To determine the left derivative, recall that 𝑃 = 𝑃𝑟

satisfies the equation

𝑃 = 𝑃𝑘−1 + (1 − 𝑃𝑘−1)𝑟

and therefore

𝑟 = 𝑟(𝑃) = 𝑃 − 𝑃𝑘−1

1 − 𝑃𝑘−1 .

For 𝑃 → 1, the derivative of 𝑃 ↦→ 𝑟(𝑃) converges to 𝑘−2
2(𝑘−1) (compute the derivative of 𝑟(𝑃)

and apply l’Hôpital’s rule twice; then substitute 𝑃 = 1). Thus, for 𝑟 → 𝑘−2
𝑘−1 , the derivative 𝑃′𝑟

converges to the inverse thereof, to 2(𝑘−1)
𝑘−2 . Thus, 𝑄′

𝑟 ≤ (𝑘 − 1)
(
𝑘−1
𝑘−2

)𝑘−2
𝑟𝑘−2 2(𝑘−1)

𝑘−2 . Putting things
together and plugging in the definition of 𝛿 in (16), we get

Damage(𝑟) = (𝑘 − 1) (1 − 𝑟)𝑃𝑘−2
𝑟 𝛿𝑄′

𝑟

≤ (𝑘 − 1) (1 − 𝑟)
(
𝑘 − 1
𝑘 − 2

)𝑘−2

𝑟𝑘−2𝜖𝜌𝑟(𝜌 − 𝑟) (𝑘 − 1)
(
𝑘 − 1
𝑘 − 2

)𝑘−2

𝑟𝑘−2 2(𝑘 − 1)
𝑘 − 2

= 𝐶𝑘𝜖(1 − 𝑟)𝑟2𝑘−3𝜌(𝜌 − 𝑟)

for some constant 𝐶𝑘 depending only on 𝑘. Integrating over 𝑟 ∈ [0, 𝜌] yields (20). ■

Combining (19) with the bounds (20) and (21) and summing over all 𝑥 ∈ 𝑉 , we obtain

∑︁
𝑥∈𝑉

Pr
𝐷
[Cut(𝑇𝑥)] ≥ 𝑠𝑘𝑛 − 𝑂(𝜖𝜌2𝑘)𝑛 + Ω(𝜖𝜌𝑘+2) |𝑀 | − 𝑜(𝑛) . (22)

Finally, to bound the success probability of PPSZ using the distribution 𝐷, we need to bound
KL(𝐷| |𝑈) from above. By additivity of KL, we see that KL(𝐷| |𝑈) = |𝑀 | · KL(𝐷𝛾,□𝜖 | |𝑈□), where𝑈□

denotes the uniform distribution on [0, 1] × [0, 1]. The density of 𝐷𝛾,□𝜖 at 𝑟, 𝑠 is 1 + 𝜖𝜙(𝑟)𝜙(𝑠),
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and therefore

𝐾𝐿(𝐷𝛾,□𝜖 | |𝑈2) = 1
ln(2)

∫
[0,1]2

(1 + 𝜖𝜙(𝑟)𝜙(𝑠)) ln(1 + 𝜖𝜙(𝑟)𝜙(𝑠)) 𝑑𝑠 𝑑𝑟

≤ 1
ln(2)

∫
[0,1]2

(1 + 𝜖𝜙(𝑟)𝜙(𝑠))𝜖𝜙(𝑟)𝜙(𝑠)) 𝑑𝑠 𝑑𝑟

=
1

ln(2)

∫
[0,1]2

𝜖2𝜙2(𝑟)𝜙2(𝑠) 𝑑𝑠 𝑑𝑟

=
𝜖2

ln(2)

(∫ 1

0
𝜙2(𝑟) 𝑑𝑟

)2

=
𝜖2𝜌3

3 ln(2) .

Thus, using (3), we conclude that the success probability of PPSZ is 2−𝑛+𝑠𝑘𝑛+gain where

gain ≥ Ω(𝜖𝜌𝑘+2) |𝑀 | − 𝑂(𝜖2𝜌3) |𝑀 | − 𝑂(𝜖𝜌2𝑘)𝑛 .

Choosing 𝜖 = 𝜌𝑘−3, this is Ω(𝜌2𝑘−1) |𝑀 | − 𝑂(𝜌3𝑘−3)𝑛. Note that 2𝑘 − 1 ≤ 3𝑘 − 3 for 𝑘 ≥ 3. Thus, if
|𝑀 | ≥ 𝑐𝑛, we can choose a sufficiently small 𝜌, depending on 𝑘 and 𝑐, ensuring that gain ≥ 𝑐′𝑛,
for some constant 𝑐′ depending on 𝑐 and 𝑘. This concludes the proof of Theorem 4.13.
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we will also discuss this case. We will introduce some operations on labeled trees 𝑇 that never
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Figure 2. Attaching additional descendants to 𝑢 will not increase Pr[Cut𝑟 (𝑇)].

increase Pr[Cut𝑟 (𝑇 )]. As a most simple example, suppose 𝑢 is a node in 𝑇 and not a safe leaf;
form 𝑇 ′ by adding a new child 𝑣 to 𝑢. Then Pr[Cut𝑟 (𝑇 )] ≥ Pr[Cut𝑟 (𝑇 ′)], regardless of the label
of 𝑣. This follows immediately from the definition of Cut𝑟.

This operation allows us to reduce case (3) to case (2). Indeed, suppose 𝑇𝑥 has fewer than
(𝑘 − 1)2 nodes at depth 2. Let 𝑌1, . . . , 𝑌𝑘−1 be the children of the root of 𝑇𝑥 and let 𝑦1, . . . , 𝑦𝑘−1

be their respective labels. By assumption, some child 𝑌𝑖 has at most 𝑘 − 2 children. Create a
new node 𝑍, attach it as an additional child to 𝑌𝑖 , and give it label 𝑦1. The resulting tree 𝑇 ′ is a
labeled tree, every node has at most 𝑘 − 1 children, and label 𝑦1 occurs at depths 1 (at 𝑌1) and at
depth 2 (at 𝑍), so 𝑇 ′ is of type (2).

Next, we (almost) reduce case (1) to case (2). Suppose 𝑥 has two critical clauses, 𝐶 =

(𝑥∨ �̄�1, . . . , �̄�𝑘−1) and 𝐷 = (𝑥∨𝑧1, . . . , 𝑧𝑘−1). Note that 𝑘 ≤ |{ 𝑦1, . . . , 𝑦𝑘−1, 𝑧1, . . . , 𝑧𝑘−1}| ≤ 2(𝑘−1).
Suppose for the moment that it is less than 2(𝑘 − 1), i.e, some variable 𝑦𝑖 also appears in 𝐷.
Without loss of generality, 𝑦1 = 𝑧1. Also, the two clauses are distinct, so let us assume that 𝑦𝑘−1

does not appear in 𝐷. We will construct a (non-canonical) critical clause tree 𝑇 ′
𝑥 for 𝑥 that is

of type (2). Use 𝐶 as clause label for the root. Note that this creates 𝑘 − 1 nodes 𝑌1, . . . , 𝑌𝑘−1 at
depth 1 with labels 𝑦1, . . . , 𝑦𝑘−1. The assignment label of 𝑌𝑘−1 is 𝛼[ 𝑦𝑘−1 ↦→ 0], which violates 𝐷;
here we use the fact that 𝐷 does not contain 𝑦𝑘−1. Thus, we can use 𝐷 as clause label of node
𝑌𝑘−1, which in turn creates 𝑘 − 1 nodes at depth 2, one of which has label 𝑧1. Now recall that
𝑦1 = 𝑧1 by assumption, so this label occurs once at depth 1 and somewhere at depth 2, and 𝑇𝑥 is
of type (2).

Summarizing, we are left with privileged variables of type (2) and those with two critical
clauses 𝐶, 𝐷 that share no variable besides 𝑥. Let us deal with type (2) first. We start with a
proposition stating that assigning “fresh labels” to a node of 𝑇 cannot increase Pr[Cut𝑟 (𝑇 )].
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This can be seen as an alternative proof of Lemma 7 in [8] that bypasses the FKG inequality for
monotone Boolean functions (in fact, implicitly reproves it).

PROPOS IT ION A.1. Let 𝑇 be a labeled tree and suppose the values {𝜋(𝑙)}𝑙∈𝐿 are independent.
Let 𝑢 be a node in 𝑇 with label 𝑧. Form a new tree 𝑇 ′ by assigning 𝑢 a fresh label 𝑧′ and making
𝜋(𝑧′) follow the same distribution as 𝜋(𝑧), but independent of everything else. Then Pr[Cut(𝑇 )] ≥
Pr[Cut(𝑇 ′)]

PROOF . We show that Pr[Cut𝑟 (𝑇 )] ≥ Pr[Cut𝑟 (𝑇 ′)] for all 𝑟 ∈ [0, 1]. Let 𝜏 : 𝐿\{𝑧, 𝑧′} → [0, 1] be
a placement of all labels except 𝑧 and 𝑧′. In fact, we claim that Pr[Cut𝑟 (𝑇 ) | 𝜏] ≥ Pr[Cut𝑟 (𝑇 ′) | 𝜏]
holds for all 𝜏. Under the partial placement 𝜏, the event Cut𝑟 (𝑇 ′) becomes some monotone
Boolean function 𝑓 (𝑏, 𝑏′) in the Boolean variables 𝑏 := [𝜋(𝑧) < 𝑟] and 𝑏′ := [𝜋(𝑧) < 𝑟′], and
Cut𝑟 (𝑇 ) becomes 𝑓 (𝑏, 𝑏). This holds since 𝑇 can be obtained from 𝑇 ′ by merging the labels 𝑧
and 𝑧′. Now under our distribution on placements, 𝜋(𝑧) and 𝜋(𝑧′) follow the same distribution
and therefore Pr[𝑏 = 1] = Pr[𝑏′ = 1]. This means that Pr[ 𝑓 (𝑏, 𝑏′) = 1] = Pr[ 𝑓 (𝑏, 𝑏) = 1] unless 𝑓
depends on both variables; the only monotone functions depending on both 𝑏 and 𝑏′ are 𝑏 ∧ 𝑏′

and 𝑏 ∨ 𝑏′. If 𝑓 (𝑏, 𝑏′) = 𝑏 ∧ 𝑏′ then Pr[Cut𝑟 (𝑇 ′) | 𝜏] = Pr[𝑏 ∧ 𝑏′] ≤ Pr[𝑏] = Pr[Cut𝑟 (𝑇 )] and our
claim holds. Finally, 𝑓 (𝑏, 𝑏′) = 𝑏 ∨ 𝑏′ cannot hold: the set of nodes in 𝑇 ′ with label 𝑧 or 𝑧′ form
an antichain, by Point 2 of Definition 3.6. ■

Now let 𝑇 be a labeled tree to which (2) applies, i.e., some variable 𝑦 appears at depth 1
and 2 in 𝑇𝑥 . Let 𝑌1, 𝑌2 be those two nodes with label 𝑦. We apply the proposition to all nodes
except 𝑌1 and 𝑌2. Second, we add new children to nodes of depth less than ℎ until all such nodes
have exactly 𝑘 − 1 children, and all the (𝑘 − 1)ℎ nodes at depth ℎ are safe leaves. Call this tree 𝑇 .
From the proposition and the discussion above, it follows that Pr[Cut𝑟 (𝑇𝑥)] ≥ Pr[Cut𝑟 (𝑇 )]. In a
last step, give a fresh label 𝑦1 to 𝑌1 and 𝑦2 to 𝑌2, and call the resulting tree 𝑇 ′. In 𝑇 ′, all nodes
have distinct labels, and we know what Pr[Cut𝑟 (𝑇 ′)] is: it is 𝑄(𝑘−1)

𝑟 − 𝑜(1).8 We also know that
Pr[Cut𝑟 (𝑇 )] ≥ Pr[Cut𝑟 (𝑇 ′)] by the above proposition. Now, however, we have to take a closer
look at the proof of the proposition since we want to show that Pr[Cut𝑟 (𝑇 )] is significantly
larger than Pr[Cut𝑟 (𝑇 ′)].

x

y1

y2

wk−1

z2 zk−1

w2 . . .

. . .

8 We will write 𝑄𝑟 instead of 𝑄(𝑘−1)
𝑟 from now on since 𝑘 is understood.
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The tree 𝑇 ′: all labels are distinct.

In 𝑇 ′, we denote the node with label 𝑤2 by 𝑊2; that with label 𝑧2 by 𝑍2, and so on. Since 𝑇 ′

and 𝑇 has the same node set, we use this notation for the nodes in 𝑇 , too. Furthermore, for a
node 𝑢, we denote the subtree of 𝑇 (or 𝑇 ′) rooted at node 𝑢 by 𝑇𝑢 (or 𝑇 ′

𝑢). As in the proof of the
proposition, we fix some partial placement 𝜏 : 𝐿 \ { 𝑦1, 𝑦2, 𝑦} → [0, 1]. As we have seen in the
proof, Pr[Cut𝑟 (𝑇 ) | 𝜏] ≥ Pr[Cut𝑟 (𝑇 ′) |𝜏] holds for every such 𝜏. Call 𝜏 good if the following holds:
(1) 𝜋(𝑤2) ≥ 𝑟; (2) 𝜋(𝑧2), . . . , 𝜋(𝑧𝑘−1), 𝜋(𝑤3), . . . , 𝜋(𝑤𝑘−1) < 𝑟; (3) ¬Cut𝑟 (𝑇𝑌1) and ¬Cut𝑟 (𝑇𝑌2). The
events described in (1–3) are independent; those in (1) and (2) happen with probability exactly
(1 − 𝑟)𝑟2𝑘−5. Those in (3) happen with probability at least (1 − 𝑄𝑟)2.

Under a good 𝜏, the Cut𝑟 (𝑇 ′) becomes [𝜋( 𝑦1) < 𝑟 ∧ 𝜋( 𝑦2) < 𝑟] and has probability 𝑟2, and
Cut𝑟 (𝑇 ) becomes [𝜋( 𝑦) < 𝑟], which has probability 𝑟. Therefore,

Pr[Cut𝑟 (𝑇 )] − Pr[Cut𝑟 (𝑇 ′)] ≥ Pr[𝜏 is good] · (𝑟 − 𝑟2)
≥ (1 − 𝑟)𝑟2𝑘−5(1 − 𝑄𝑟)2(𝑟 − 𝑟2) = (1 − 𝑟)2𝑟2𝑘−4(1 − 𝑄𝑟)2 .

Putting everything together and integrating over 𝑟, we conclude that

Pr[Cut(𝑇𝑥)] ≥ 𝑠𝑘 − 𝑜(1) +
∫ 1

0
(1 − 𝑟)2𝑟2𝑘−4(1 − 𝑄𝑟)2 𝑑𝑟 .

It is clear that the integral is some positive constant depending solely on 𝑘.

We are left with the case that 𝑥 has two critical clauses 𝐶 = (𝑥 ∨ �̄�1, . . . , �̄�𝑘−1) and 𝐷 =

(𝑥 ∨ 𝑧1, . . . , 𝑧𝑘−1), and 𝑦𝑖 ≠ 𝑧 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1. It is clear that 𝑥 is forced if all 𝑦𝑖 come
before 𝑥 or all 𝑧𝑖 come before 𝑥. Therefore,

Pr[Forced(𝑥, 𝜋) | 𝜋(𝑥) = 𝑟] ≥ 𝑟𝑘−1 + 𝑟𝑘−1 − Pr[all 𝑦𝑖 and all 𝑧𝑖 come before 𝑥]
≥ 2 𝑟𝑘−1 − 𝑟2𝑘−2 .

On the other hand, by focusing solely on the canonical critical clause tree of 𝑥, we can apply
Lemma 3.11 and conclude that

Pr[Forced(𝑥, 𝜋) | 𝜋(𝑥) = 𝑟] ≥ 𝑄𝑟 − 𝑜(1) ,

(we write 𝑄𝑟 instead of 𝑄(𝑘)
𝑟 since 𝑘 is understood), and therefore

Pr[Forced(𝑥, 𝜋) = 1] ≥
∫ 1

0
max(2 𝑟𝑘−1 − 𝑟2𝑘−2, 𝑄𝑟) 𝑑𝑟 − 𝑜(1)

= 𝑠𝑘 − 𝑜(1) +
∫ 1

0
max

(
0, 2 𝑟𝑘−1 − 𝑟2𝑘−2 − 𝑄𝑟

)
𝑑𝑟 .

It remains to show that the latter term is positive for a substantial range of 𝑟 ∈ [0, 1]. We
claim that if 𝑟 is sufficiently small, 𝑄𝑟 is only a tiny factor larger than 𝑟𝑘−1. Indeed, From
Proposition 3.10, we know that𝑄𝑟 ≤ 𝑒 𝑟𝑘−1, thus 𝑃𝑟 = 𝑟∨𝑄𝑟 = 𝑟+(1−𝑟)𝑒 𝑟𝑘−1 = 𝑟(1+𝑒(1−𝑟)𝑟𝑘−2)
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and in turn 𝑄𝑟 = 𝑃𝑘−1
𝑟 ≤

(
𝑟 + 𝑒 𝑟𝑘−1)𝑘−1

= 𝑟𝑘−1 (1 + 𝑒 𝑟𝑘−2)𝑘−1
< 𝑟𝑘−1𝑒𝑒(𝑘−1)𝑟𝑘−2 . We check that

𝑒𝑒(𝑘−1)𝑟𝑘−2 ≤ 1.5 for all 𝑘 ≥ 3 and 𝑟 ≤ 1/16. Therefore,∫ 1

0
max

(
0, 2 𝑟𝑘−1 − 𝑟2𝑘−2 − 𝑄𝑟

)
𝑑𝑟 ≤

∫ 1/16

0

(
2 𝑟𝑘−1 − 𝑟2𝑘−2 − 1.5 𝑟𝑘−1

)
𝑑𝑟

=

∫ 1/16

0

(
1
2
𝑟𝑘−1 − 𝑟2𝑘−2

)
𝑑𝑟

and the latter is some positive constant 𝑐1 depending only on 𝑘. This concludes the proof of
Lemma 4.11. ■
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