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ABSTRACT. Recently (Elkin, Filtser, Neiman 2017) introduced the concept of a terminal
embedding from one metric space (𝑋, 𝑑𝑋) to another (𝑌, 𝑑𝑌 ) with a set of designated terminals
𝑇 ⊂ 𝑋 . Such an embedding 𝑓 is said to have distortion 𝜌 ⩾ 1 if 𝜌 is the smallest value such that
there exists a constant 𝐶 > 0 satisfying

∀𝑥 ∈ 𝑇 ∀𝑞 ∈ 𝑋, 𝐶𝑑𝑋 (𝑥, 𝑞) ⩽ 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑞)) ⩽ 𝐶𝜌𝑑𝑋 (𝑥, 𝑞).

When 𝑋,𝑌 are both Euclidean metrics with𝑌 being𝑚-dimensional, recently (Narayanan, Nelson
2019), following work of (Mahabadi, Makarychev, Makarychev, Razenshteyn 2018), showed
that distortion 1 + 𝜀 is achievable via such a terminal embedding with 𝑚 = 𝑂(𝜀−2 log 𝑛) for
𝑛 := |𝑇 |. This generalizes the Johnson-Lindenstrauss lemma, which only preserves distances
within 𝑇 and not to 𝑇 from the rest of space. The downside of prior work is that evaluating
their embedding on some 𝑞 ∈ R𝑑 required solving a semidefinite program with Θ(𝑛) constraints
in 𝑚 variables and thus required some superlinear poly(𝑛) runtime. Our main contribution in
this work is to give a new data structure for computing terminal embeddings. We show how
to pre-process 𝑇 to obtain an almost linear-space data structure that supports computing the
terminal embedding image of any 𝑞 ∈ R𝑑 in sublinear time 𝑂∗(𝑛1−Θ(𝜀2) + 𝑑). To accomplish this,
we leverage tools developed in the context of approximate nearest neighbor search.
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1. Introduction

A distortion-𝜌 terminal embedding 𝑓 : 𝑋 → 𝑌 for two metric spaces (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌 ) and given
terminal set 𝑇 ⊆ 𝑋 is such that

∀𝑥 ∈ 𝑇 ∀𝑞 ∈ 𝑋, 𝐶𝑑𝑋 (𝑥, 𝑞) ⩽ 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑞)) ⩽ 𝐶𝜌𝑑𝑋 (𝑥, 𝑞).

Recently Elkin, Filtser, and Neiman [5] showed the existence of such 𝑓 when 𝑋 = R𝑑 , 𝑌 = R𝑚

with distortion arbitrarily close to
√

10 for 𝑚 = 𝑂(log |𝑇 |). Following [9], the recent work of [10]
showed distortion 1+𝜀 is achievable with𝑚 = 𝑂(𝜀−2 log |𝑇 |), thus yielding a strict generalization
of the Johnson-Lindenstrauss (JL) lemma [8].

One family of motivating applications for dimensionality-reducing terminal embeddings
is to high-dimensional computational geometry static data structural problems. To make things
concrete, one example to keep in mind is (approximate) nearest neighbor search in Euclidean
space: we would like to pre-process a database 𝐷 = {𝑥1, . . . , 𝑥𝑛} ⊂ R𝑑 into a data structure to
later answer approximate nearest neighbor queries for some other 𝑞 ∈ R𝑑 . Given a terminal
embedding 𝑓 with terminal set 𝑇 = 𝐷, we can build the data structure on 𝑓 (𝐷) then later
answer queries by querying the data structure on 𝑓 (𝑞). In this way, we can save on memory
and potentially query costs by working over a lower-dimensional version of the problem.

Prior to the introduction of terminal embeddings, the typical approach to applying dimen-
sionality reduction in the above scenario was to observe that the JL lemma actually provides
a distribution over (linear embeddings) 𝑥 ↦→ Π𝑥 for Π randomly drawn from a distribution
independent of 𝐷 such that ∥Π𝑧∥2 = (1± 𝜀)∥𝑧∥2 with high probability for any fixed 𝑧 ∈ R𝑑 . Thus
if one wants to make a sequence of queries 𝑞1, . . . , 𝑞𝑁 , one could set the failure probability to
be≪ 1/(𝑛𝑁) to then have by a union bound that 𝑧𝑖, 𝑗 = 𝑥𝑖 − 𝑞 𝑗 has its norm preserved by Π for
all 𝑖, 𝑗 simultaneously with good probability. This approach though does not generally provide
correctness guarantees when the sequence of queries is chosen adaptively, i.e. the 𝑗th query
depends upon the responses to queries 𝑞1, . . . , 𝑞 𝑗−1. This is because since those query responses
depend on Π (and perhaps also the randomness of the data structure itself, if it is randomized),
future adaptive queries are not independent of Π and the internal randomness of the data
structure. Terminal embeddings circumvent this problem and can be used for adaptive queries,
since if 𝑓 is a terminal embedding it is guaranteed to preserve distances to any future query 𝑞,
even one chosen adaptively.

At this point we observe the gap in the above motivation of terminal embeddings and
the results of prior work: we want to speed up data structures for high-dimensional problems
by allowing querying for 𝑓 (𝑞) (a “simpler” query as it is lower-dimensional) instead of 𝑞, but
the optimal terminal embedding of [10] require solving a semidefinite program with Θ(𝑛)
constraints and 𝑚 variables to compute 𝑓 (𝑞). Thus the bottleneck becomes computing 𝑓 (𝑞)
itself, which may be even slower than exactly solving the original data structural problem in the
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higher-dimensional space (note nearest neighbor search can be solved exactly in linear 𝑂(𝑛𝑑)
time!). Even the

√
10-distortion terminal embedding construction of [5] (and all subsequent

work) requires computing the nearest neighbor of 𝑞 in 𝐷 in order to compute 𝑓 (𝑞), and thus
clearly cannot be used to speed up the particular application of approximate nearest neighbor
search.

Our Contribution. We give a new terminal embedding construction for Euclidean space
into dimension 𝑂(𝜀−2 log 𝑛), where 𝑛 is the number of terminals, together with a Monte Carlo
procedure for computing 𝑓 (𝑞) given any query 𝑞 ∈ R𝑑 . Specifically, we compute 𝑓 (𝑞) correctly
with high probability, even if 𝑞 is chosen adaptively, and our running time to compute 𝑓 (𝑞) is
sublinear in 𝑛. Specifically, we can compute 𝑓 (𝑞) in time 𝑂∗(𝑛1−Θ(𝜀2) + 𝑑). The space complexity
of our data structure to represent the terminal embedding is at most 𝑂∗(𝑛𝑑). Our techniques
also yield faster query times if more space is allowed (see Theorem 3.1).

REMARK 1.1. Our main theorem statement (Theorem 3.1) for computing terminal embed-
dings does not provide the guarantee that if 𝑞 is queried twice, the same image 𝑓 (𝑞) will be
computed each time. If this property is desired, it can be achieved by increasing the query time
to 𝑂∗(𝑛1−Θ(𝜀2)𝑑).

Notation: Through the paper, for 𝑥, 𝑦 ∈ R𝑑 , ∥𝑥∥ and ⟨𝑥, 𝑦⟩ will denote the standard Euclidean
norm and inner product. For 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R

𝑑 , we will frequently use calligraphic letters, say S,
to denote subsets of the powerset of 𝑋 . We useD and (sub/super)scripted versions to denote data
structures and use space(D) to denote the space complexity of D and time(D(𝑞)) to denote
the time taken byD to process query 𝑞. We use B(𝑥, 𝑟) to denote the set { 𝑦 : ∥ 𝑦 − 𝑥∥ ⩽ 𝑟} and
for 𝐴 ⊂ R𝑑 , Vol(𝐴) denotes its volume and Conv(𝐴) denotes its convex hull. For a probabilistic
event 𝐴, 1 {𝐴}will denote the indicator function of the event. For 𝑛 ∈ N, we use [𝑛] to denote the
set {1, . . . , 𝑛}. Finally, 𝑂∗(·) and 𝑜∗(·) hide factors of poly(1/𝜀) · (𝑛𝑑)𝑜(1) and poly(𝜀) respectively
while 𝑂(·) and Ω̃(·) hide poly-logarithmic factors in 𝑛 and 𝑑.

Organization: In Section 2, we provide an overview of our procedure to compute terminal
embeddings and the key ideas involved in the analysis. Then, in Section 3, we formally state
and prove the main theorem of our paper and in Section 4, we develop a data structure for
adaptive approximate nearest neighbor search which we use as a subroutine to prove our main
result. Section 5 provides a dimensionality reduction technique tailored to the adaptive setting
allowing further speedups in query time, Appendix A details a recursive point partitioning data
structure crucial to our construction and Appendix B contains supporting results used in earlier
sections.
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2. Our Techniques

The starting point of our work is the construction of [9], tightly analyzed in [10]. Before we
describe the construction and our generalization, we recall some definitions pertaining to the
construction of terminal embeddings. The first is the precise parametrization of a terminal
embedding used in our paper:

DEF IN IT ION 2 .1 (Terminal Embedding). Given 𝑋 ⊂ R𝑑 and 𝜀 ∈ (0, 1), we say 𝑓 : R𝑑 → R𝑘 is
an 𝜀-terminal embedding for 𝑋 if:

∀𝑥 ∈ 𝑋, 𝑦 ∈ R𝑑 : (1 − 𝜀)∥ 𝑦 − 𝑥∥ ⩽ ∥ 𝑓 ( 𝑦) − 𝑓 (𝑥)∥ ⩽ (1 + 𝜀)∥ 𝑦 − 𝑥∥.

Next, we recall the notion of an Outer Extension [5, 9]:

DEF IN IT ION 2 .2 (Outer Extension). Given 𝑋 ⊂ R𝑑 and 𝑓 : R𝑑 → R𝑘, we say that 𝑔 : R𝑑 → R𝑘′

for 𝑘′ > 𝑘 is an outer extension of 𝑓 on 𝑋 if:

∀𝑥 ∈ 𝑋 : 𝑔 (𝑥) = ( 𝑓 (𝑥), 0, . . . , 0).

All previous approaches [5, 9, 10] as well as ours all construct terminal embeddings by
extending a standard distance preserving embedding on 𝑋 by a single coordinate. Therefore,
in all our subsequent discussions, we restrict ourselves to the case where 𝑘′ = 𝑘 + 1. However,
[10] require the stronger property that the distance preserving embedding being extended
satisfies 𝜀-convex hull distortion, allowing them to obtain the optimal embedding dimension
of 𝑂(𝜀−2 log 𝑛):

DEF IN IT ION 2 .3. Given 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝜀 > 0, we say that a matrix Π ∈ R𝑘×𝑑 satisfies

𝜀-convex hull distortion for 𝑋 if ∀𝑧 ∈ Conv(𝑇 ) : |∥Π𝑧∥ − ∥𝑧∥| ⩽ 𝜀, where 𝑇 =

{
𝑥−𝑦
∥𝑥−𝑦∥ : 𝑥, 𝑦 ∈ 𝑋

}
.

Furthermore, [10] show that a matrix with i.i.d. sub-Gaussian entries satisfies this property
with high probability. We now formally describe the construction analyzed in [10]. Given query 𝑞
and Π ∈ R𝑘×𝑑 satisfying 𝜀-convex hull distortion for 𝑋 , they construct a terminal embedding
for 𝑞 by first finding 𝑣 ∈ R𝑘 satisfying the following constraints:

∥𝑣 − Π�̂�∥ ⩽ ∥𝑞 − �̂�∥
∀𝑥 ∈ 𝑋 : |⟨𝑣 − Π�̂�,Π (𝑥 − �̂�)⟩ − ⟨𝑞 − �̂�, 𝑥 − �̂�⟩| ⩽ 𝜀∥𝑞 − �̂�∥∥𝑥 − �̂�∥ (Prog)

where �̂� = arg min𝑥∈𝑋 ∥𝑥 − 𝑞∥; that is, the closest neighbor of 𝑞 in 𝑋 . It is shown in [10], building
upon [9], that such a point indeed exists and furthermore, the above set of constraints are
convex implying the existence of polynomial time algorithms to find 𝑣. Given 𝑣∗ satisfying the
above constraints, it is then shown that one can set 𝑓 (𝑞) := 𝑧𝑞 = (𝑣∗,

√︁
∥𝑞 − �̂�∥2 − ∥𝑣∗ − Π�̂�∥2).

While Prog is not the convex program we solve in our work, it is still instructive to analyze
it to construct an algorithm with fast query time albeit with large memory. We do this in two
steps:
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1. We assume access to a separating oracle for the set 𝐾 B {𝑣 ∈ R𝑘 : 𝑣 satisfies Prog} and
analyze the complexity of an optimization algorithm making queries to the oracle.

2. We then construct a separating oracle O for Prog.

First, observe that there exists a choice of 𝑘 = Θ(𝜀−2 log 𝑛), as was shown in [10]. Now let O
be a separating oracle for the convex set 𝐾 = {𝑣 ∈ R𝑘 : 𝑣 satisfies Prog}; that is, given 𝑣 ∈ R𝑘,
O either reports that 𝑣 ∈ 𝐾 or outputs 𝑢 ≠ 0 such that for all 𝑦 ∈ 𝐾 , we have ⟨𝑦 − 𝑣, 𝑢⟩ ⩾ 0.
Then standard results on the Ellipsoid Algorithm [11, 3] imply that one can find a feasible 𝑣 by
making 𝑂∗(1) calls to O with each call incurring additional time 𝑂∗(1). Hence, we may restrict
ourselves to the task of designing a fast separating oracle for 𝐾 .

To implement a fast separation oracle, first note that the first constraint in Prog can be
checked explicitly in time 𝑂(𝑑) and if the constraint is violated, the oracle may return Π�̂� − 𝑣. If
the first constraint is satisfied, consider the following re-arrangement of the second constraint:

∀𝑥 ∈ 𝑋 :
����〈 𝑣 − Π�̂�
∥𝑞 − �̂�∥ ,Π

(
𝑥 − �̂�
∥𝑥 − �̂�∥

)〉
−

〈
𝑞 − �̂�
∥𝑞 − �̂�∥ ,

𝑥 − �̂�
∥𝑥 − �̂�∥

〉���� ⩽ 𝜀.
By denoting �̃�𝑦 =

(𝑞−𝑦,−(𝑣−Π𝑦))
∥(𝑞−𝑦,−(𝑣−Π𝑦))∥ and �̃�𝑦,𝑧 =

( 𝑦−𝑧,Π( 𝑦−𝑧))
∥( 𝑦−𝑧,Π( 𝑦−𝑧))∥ , we see that the above constraint

essentially tries to enforce that ⟨�̃��̂� , �̃�𝑥,�̂�⟩ is close to 0. Note that from the constraints that we have
already checked previously, we have that ∥�̃�𝑥,�̂� ∥, ∥�̃��̂� ∥ = 1 and hence, the condition |⟨�̃��̂� , �̃�𝑥,�̂�⟩| ≈ 0
is equivalent to ∥�̃��̂� ± �̃�𝑥,�̂� ∥ ≈

√
2. Conversely, |⟨�̃��̂� , �̃�𝑥,�̂�⟩| ≫ 𝐶𝜀 implies ∥�̃��̂� ± �̃�𝑥,�̂� ∥ ⩽

√
2 − 𝐶𝜀 for

some signing. Since, �̃�𝑥, 𝑦 for 𝑥, 𝑦 ∈ 𝑋 are independent of 𝑞, we may build a fast separating oracle
by building 𝑛 nearest neighbor data structures, one for each 𝑥 ∈ 𝑋 , with the point set {±�̃�𝑦,𝑥} 𝑦∈𝑋
and at query time, constructing �̃��̂� and querying the data structure corresponding to �̂�. Despite
this approach yielding a fast separating oracle, it has three significant shortcomings:

1. Computing exact nearest neighbor in high dimensions is inefficient
2. Queries may be adaptive, violating guarantees of known randomized approximate nearest

neighbor data structures
3. The space complexity of the separating oracle is rather large.

The first two points are easily resolved: the correctness guarantees can be straightfor-
wardly extended to the setting where one works with an approximate nearest neighbor and
adopting the framework from [4] in tandem with known reductions from Approximate Nearest
Neighbor to Approximate Near Neighbor yield an adaptive approximate nearest neighbor
algorithm.

For the third point, note that in the approach just described, we construct 𝑛 data structures
with 𝑛 data points each. Hence, even if each data structure can be implemented in 𝑂(𝑛) space,
this still yields a data structure of at least quadratic space complexity. The rest of our discussion
is dedicated to addressing this difficulty.



6 / 52 Y. Cherapanamjeri and J. Nelson

We first generalize Prog, somewhat paradoxically, by adding more constraints:

∀𝑦 ∈ 𝑋 : ∥𝑣 − Π𝑦∥ ⩽ (1 + 𝜀)∥𝑞 − 𝑦∥
∀𝑥, 𝑦 ∈ 𝑋 : |⟨𝑣 − Π𝑦,Π (𝑥 − 𝑦)⟩ − ⟨𝑞 − 𝑦, 𝑥 − 𝑦⟩| ⩽ 𝜀∥𝑞 − 𝑦∥∥𝑥 − 𝑦∥. (Gen-Prog)

Despite these constraints (approximately) implying those in Prog, they are also implied by those
from Prog. Hence, in some sense the two programs are equivalent but it will be more convenient
to describe our approach as it relates to the generalized set of constraints. These constraints
may be interpreted as a multi-centered characterization of the set of constraints in Prog. While
Prog only has constraints corresponding to a centering of 𝑞 with respect to �̂� and its projection,
Gen-Prog instead requires 𝑣 to satisfy similar constraints irrespective of centering.

The first key observation behind the construction of our oracle is that it is not necessary
to find a point satisfying all the constraints Gen-Prog. It suffices to construct an oracle, O,
satisfying:

1. If O outputs FAIL, 𝑣 can be extended to a terminal embedding for 𝑞; that is 𝑣 may be
appended with one more element to form a valid distance-preserving embedding for 𝑞.

2. Otherwise, O outputs a separating hyperplane for Gen-Prog.

This is weaker than the one just constructed for Prog in two significant ways: the oracle may
output FAIL even if 𝑣 does not satisfy Prog, and the expanded set of constraints allow a greater
range of candidate separating hyperplanes, hence, making the work of the oracle “easier”. A
technical benefit of introducing the program Gen-Prog is that it provides the definition of a
“nice” convex body for which this oracle outputs a separating hyperplane when it does not
output FAIL, hence, allowing use to inherit the convergence bounds from the use of the Ellipsoid
method for convex optimization.

The second key observation underlying the design of our oracle is one that allows restricting
the set of relevant constraints for each input substantially. Concretely, to ensure that 𝑣 can be
extended to a point preserving its distance to any 𝑥 ∈ 𝑋 , it is sufficient to satisfy the following
two constraints for all 𝑥 ∈ 𝑋 :

∥𝑣 − Π𝑦∥ ⩽ (1 + 𝜀)∥𝑞 − 𝑦∥
|⟨𝑣 − Π𝑦,Π(𝑥 − 𝑦)⟩ − ⟨𝑞 − 𝑦, 𝑥 − 𝑦⟩| ⩽ 𝜀∥𝑞 − 𝑦∥∥𝑥 − 𝑦∥

for any 𝑦 ∈ 𝑋 satisfying ∥𝑞 − 𝑦∥ = 𝑂(∥𝑞 − 𝑥∥). In particular, the point 𝑦 may be much farther
from 𝑞 than �̂� but still constitutes a good “centering point” for 𝑥. Therefore, we simply need to
ensure that our oracle checks at least one constraint involving a valid centering point for 𝑥 for
all 𝑥 ∈ 𝑋 . However, at this point, several difficulties remain:

1. Which constraints should we satisfy for any input query 𝑞?
2. How do we build a succinct data structure quickly checking these constraints?
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These difficulties are further exacerbated by the fact that the precise set of constraints
may depend on the query 𝑞 which may be chosen adaptively. In the next two subsections, we
address these issues with the following strategy where we still make use of nearest neighbor
data structures over {�̃�𝑥, 𝑦}𝑥, 𝑦∈𝑋 :

1. Each nearest neighbor data structure consists of points {�̃�𝑦,𝑥} 𝑦∈𝑆 for some small 𝑆 ⊂ 𝑋
2. Use a smaller number of data structures
3. Only a small number of relevant data structures are queried when presented with query 𝑞

For each of these three choices, we will exploit recent developments in approximate near
neighbor search [2]. In Subsection 2.1, we describe our approach to construct an oracle for
a fixed scale setting where the distance to the nearest neighbor is known up to a polynomial
factor and finally, describe the reduction to the fixed scale setting in Subsection 2.2.

2.1 Fixed Scale Oracle

In this subsection, we outline the construction of a suitable separation oracle for all 𝑞 satisfying
�̃� ⩽ ∥𝑞 − �̂�∥ ⩽ poly(𝑛)�̃� for some known �̃�. For the sake of illustration, in this subsection we
only consider the case where our oracle has space complexity 𝑂∗(𝑛𝑑) though our results yield
faster oracles if more space is allowed (see Theorem 3.1). In order to decide which points to
use to construct our nearest neighbor data structures, we will make strong use of the following
randomized partitioning procedures. Given 𝑋 ⊂ R𝑑 , these data structures construct a set of
subsets S = {𝑆𝑖 ⊆ 𝑋}𝑚𝑖=1 and a hash function ℎ : R𝑑 → 2[𝑚] such that for a typical input point, 𝑥,
sets in ℎ(𝑥) contain points that are close to 𝑥 and exclude points far from 𝑥. The data structure
is formally defined below recalling that space(D) and time(D) denote the space and time
complexities of a data structureD:

DEF IN IT ION 2 .4. We say a randomized data structure is an (𝜌𝑢, 𝜌𝑐)-Approximate Partitioning
(AP) if instantiated with a set 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R

𝑑 and 𝑟 > 0, produces,D = (ℎ,S = {𝑆𝑖}𝑚𝑖=1), with
𝑆𝑖 ⊆ 𝑋 , |𝑆𝑖 | > 0 and ℎ : R𝑑 → 2[𝑚] satisfying:

P

{
space(D) ⩽ 𝑂∗(𝑛1+𝜌𝑢𝑑) and

𝑚∑︁
𝑖=1
|𝑆𝑖 | ⩽ 𝑂∗(𝑛1+𝜌𝑢)

}
= 1

∀𝑥 ∈ R𝑑 : P
{
|ℎ(𝑥) | ⩽ 𝑂∗(𝑛𝜌𝑐) and time(ℎ(𝑥)) ⩽ 𝑂∗(𝑛𝜌𝑐𝑑)

}
= 1

∀𝑥 ∈ 𝑋 : E

{
𝑚∑︁
𝑖=1

1 {𝑥 ∈ 𝑆𝑖}
}
⩽ 𝑂∗(𝑛𝜌𝑢)

∀𝑥 ∈ R𝑑 : E


∑︁
𝑦∈𝑋

∥𝑥−𝑦∥⩾2𝑟

∑︁
𝑖∈ℎ(𝑥)

1 { 𝑦 ∈ 𝑆𝑖}

 ⩽ 𝑂
∗(𝑛𝜌𝑐)



8 / 52 Y. Cherapanamjeri and J. Nelson

∀𝑥 ∈ R𝑑 , 𝑦 ∈ 𝑋 such that ∥𝑥 − 𝑦∥ ⩽ 𝑟 : P


∑︁
𝑖∈ℎ(𝑥)

1 { 𝑦 ∈ 𝑆𝑖} ⩾ 1
 ⩾ 0.99

where the probability is taken over the random decisions used to constructD.

The first condition in the above definition restricts the space complexity of the data
structure and the sum of the number of points stored in all of the sets in S while the third
condition states that each point is replicated very few times across all the sets inS in expectation.
The second condition states that for any input 𝑥, ℎ is computable quickly and maps 𝑥 to not
too many sets in S. Finally, the last two conditions ensure that points far from 𝑥 are rarely in
the sets 𝑥 maps to and that points close to 𝑥 are likely to be found in these sets. Essentially,
these data structures will allow us to partition our space such that most points in each partition
are close to each other and hence, the constraints corresponding set from Gen-Prog can be
checked with a small number of centering points while the few far away points may be checked
explicitly.

Data structures satisfying the above definition have been a cornerstone of LSH-based
approaches for approximate nearest neighbor search which yield state-of-the-art results and
nearly optimal time-space tradeoffs [7, 1, 2]. The conditions with probability 1 can be ensured
by truncating the construction of the data structure if its space complexity grows too large or by
truncating the execution of ℎ on 𝑥 if its runtime exceeds a certain threshold. Finally, the events
with probability 0.99 can be boosted from arbitrary constant probability by repetition. In this
subsection’s setting of almost linear memory, any (0, 𝑐)-AP data structure suffices for any 𝑐 < 1,
and [2] show that an (0, 7/16)-AP data structure exists.

For the sake of exposition, assume that the second, third and fourth conditions in the
above definition hold deterministically; that is, assume that each data point is only replicated
in 𝑂∗(𝑛𝜌𝑢) many of the 𝑆𝑖 , for each 𝑥 only 𝑂∗(𝑛𝜌𝑐) many points farther away from 𝑥 than 2𝑟
are present in the sets mapped to by ℎ and each point in the dataset within 𝑟 of 𝑥 is present in
one of the sets that 𝑥 maps to. In our formal proof, we show that any issues caused due to the
randomness are easily addressed. We now instantiate 𝑂 (log(𝑛)/𝛾) independent (0, 7/16)-AP
data structures, D𝑖 = (ℎ𝑖 ,S𝑖 = {𝑆 𝑗}𝑚𝑖

𝑗=1) for the point set 𝑋 with 𝑟𝑖 = (1 + 𝛾)𝑖 �̃� and 𝛾 ≈ 1/log3 𝑛.
Note that this only results in 𝑂∗(1) data structures in total. Now, for each 𝑖 and 𝑆 ∈ S𝑖 , we pick
𝑙 ≈ log 𝑛 random points from 𝑆,Z𝑖,𝑆 =

{
𝑧 𝑗

}𝑙
𝑗=1, and instantiate nearest neighbor data structures

for the points
{
±�̃�𝑥,𝑧 𝑗

}
𝑥∈𝑆 and assign any point 𝑦 ∈ 𝑆 within 4𝑟𝑖 of 𝑧 𝑗 to 𝑧 𝑗 for 𝑆. Note that these

assignments are only for the set 𝑆; for a distinct set 𝑆′ such that 𝑦 ∈ 𝑆′, 𝑦 need not be assigned to
any point. Intuitively, this assignment will be used to determine which of the nearest-neighbor
data structures are queried on an input query 𝑞 for which a terminal embedding is required
to be computed as we only instantiate these data structures for some points in 𝑆𝑖 – in fact, we
will choose the points inZ𝑖,𝑆 to which the nearest neighbor of 𝑞 in 𝑋 has been assigned. Each
of these data structures only stores 𝑂∗(𝑛) points in total and the existence of near neighbor
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data structures with space complexity 𝑂∗(𝑑𝑛) (and query time 𝑂∗(𝑑𝑛1−�̃�𝜀2)) [2] complete the
bound on the space complexity of a data structure at a single scale. Since we only instantiate
𝑂∗(1) many such data structures, this completes the bound on the space complexity of the
data structure. By choosing the points randomly in this way, one can show that for any 𝑥, the
sum total of the number of unassigned points over all the sets in ℎ𝑖 (𝑥) (including potentially
duplicated points) is at most 𝑂∗(𝑛𝜌𝑐) by partitioning 𝑋 into a set with points close to 𝑥 and those
far away and analyzing their respective probabilities of being assigned in each set. Furthermore,
note the total number of points stored in all the ℎ𝑖 (𝑥) is trivially at most 𝑂∗(𝑛).

At query time, suppose we are given query 𝑞, its nearest neighbor in 𝑋 , �̂�, and a candidate 𝑣
and we wish to check whether 𝑣 can be extended to a valid terminal embedding for 𝑞. While
having access to the exact nearest neighbor is an optimistic assumption, extending the argument
to use an approximate nearest neighbor is straightforward. We query the data structure as
follows, we query each data structure D𝑖 with �̂� and for each 𝑆 ∈ ℎ𝑖 (�̂�), we check whether
each unassigned point, 𝑥, satisfies |⟨�̃�𝑥,�̂� , �̃��̂�⟩| ≈ 0. Then, for each point in 𝑧 𝑗 ∈ Z𝑖,𝑆, we query its
nearest neighbor data structure with �̃�𝑧 𝑗 . If any of the data structures report a point significantly
violating the inner product condition, we return that data point as a violator to our set of
constraints.

We now prove the correctness and bound the runtime of the oracle. We start by bounding
the runtime of this procedure. For a single scale, 𝑟𝑖 , we query at most 𝑂∗(𝑛𝜌𝑐) unassigned points
and their contribution to the runtime is correspondingly bounded. Intuitively, this is true
because ℎ(𝑥) contains at most 𝑂∗(𝑛𝜌𝑐) points far from 𝑥 and if there are more than 𝑂∗(𝑛𝜌𝑐)
points close to 𝑥, they tend to be assigned. For assigned points, there are at most 𝑂∗(𝑛) many
of them (repetitions included) spread between 𝑂∗(𝑛𝜌𝑐) many nearest neighbor data structures
(as |ℎ𝑖 (�̂�) | ⩽ 𝑂∗(𝑛𝜌𝑐)) and each of these data structures has query time 𝑂∗(𝑙1−�̃�𝜀2) where 𝑙 is
the number of points assigned to the data structure. A simple convexity argument shows that
the time taken to query all of these is at most 𝑂∗(𝑛1−�̃�𝜀2). This bounds the query time of the
procedure.

To establish its correctness, observe that when the algorithm outputs a hyperplane, the
correctness is trivial. Suppose now that the oracle outputs FAIL. Note that any point, 𝑥 ∈ 𝑋 , very
far away from �̂� may be safely ignored (say, those poly(𝑛)�̃� away from �̂�) as an embedding that
preserves distance to �̂� also preserves distance to 𝑥 by the triangle inequality. We now show
that for any other 𝑥, it satisfies |⟨�̃�𝑥, 𝑦, �̃�𝑦⟩| ≈ 0 for some 𝑦 with ∥𝑞 − 𝑦∥ ⩽ 𝐶∥𝑞 − 𝑥∥. Any such 𝑥
must satisfy ∥𝑥 − �̂�∥ ⩽ 2∥𝑞 − 𝑥∥ by the triangle inequality and the fact that �̂� is the nearest
neighbor. As a consequence, there exists 𝑖 such that ∥𝑥 − �̂�∥ ⩽ 𝑟𝑖 and ∥𝑥 − 𝑞∥ ⩾ 0.5𝑟𝑖−1. For this 𝑖,
there exists 𝑆 ∈ ℎ𝑖 (�̂�) containing 𝑥. In the case that 𝑥 is not assigned, we check |⟨�̃�𝑥,�̂� , �̃��̂�⟩| ≈ 0
and correctness is trivial. In case 𝑥 is assigned, it is assigned to 𝑦 with ∥ 𝑦 − 𝑥∥ ⩽ 4𝑟𝑖 and we
have:

∥ 𝑦 − 𝑞∥ ⩽ ∥𝑥 − 𝑞∥ + ∥ 𝑦 − 𝑥∥ ⩽ ∥𝑥 − 𝑞∥ + 4𝑟𝑖 ⩽ 10∥𝑥 − 𝑞∥



10 / 52 Y. Cherapanamjeri and J. Nelson

where the final inequality follows from the fact that ∥𝑥 −𝑞∥ ⩾ 0.5𝑟𝑖−1. This proves that the inner
product condition for 𝑥 is satisfied with respect to 𝑦 with ∥𝑞 − 𝑦∥ ⩽ 10∥𝑥 − 𝑞∥. This concludes
the proof in the second case where the oracle outputs FAIL.

The argument outlined in the last two paragraphs concludes the construction of our weaker
oracle when an estimate of ∥𝑞 − �̂�∥ is known in advance. The crucial property provided by
the existence of the (𝜌𝑢, 𝜌𝑐)-AP procedure is that there are at most 𝑂∗(𝑛) many points used
to construct the near neighbor data structures for the points

{
�̃�𝑥, 𝑦

}
(as opposed to 𝑛2 for the

previous construction). This crucially constrains us to having either a large number of near
neighbor data structures with few points or a small number with a large number of points but
not both. However, the precise choice of how the algorithm trades off these two competing
factors is dependent on the set of data points and the scale being considered. The savings in
query time follow from the fact that at most 𝑂∗(𝑛𝑐) of these data structures are consulted for
any query for some 𝑐 < 1.

2.2 Reduction to Fixed Scale Oracle

We reduce the general case to the fixed scale setting from the previous subsection.1 To define our
reduction, we will need a data structure we will refer to as a Partition Tree that has previously
played a crucial part in reductions from the Approximate Nearest Neighbor to Approximate
Near Neighbor [7]. We show that the same data structure also allows us to reduce the oracle
problem from the general case to the fixed scale setting. Describing the data structure and our
reduction, requires some definitions from [7]:

DEF IN IT ION 2 .5. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝑟 > 0. We will use GG(𝑋, 𝑟) to denote the graph

with nodes indexed by 𝑥𝑖 and an edge between 𝑥𝑖 and 𝑥 𝑗 if ∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ 𝑟. The connected
components of this graph will be denoted by CC(𝑋, 𝑟); that is, CC(𝑋, 𝑟) = {𝐶 𝑗}𝑚𝑗=1 is a partitioning
of 𝑋 with 𝑥 ∈ 𝐶 𝑗 if and only if ∥𝑥 − 𝑦∥ ⩽ 𝑟 for some 𝑦 ∈ 𝐶 𝑗 \ {𝑥}.

Note from the above definition that CC(𝑋, 𝑟) results in increasingly fine partitions of 𝑋
as 𝑟 decreases. This notion is made precise in the following straightforward definition:

DEF IN IT ION 2 .6. For a data set 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , we say that a partition C refines a partition C′

if for all 𝐶 ∈ C, 𝐶 ⊆ 𝐶′ for some 𝐶′ in C′. This will be denoted by C′ ⊑ C.

Next, define 𝑟med(𝑋) as:

𝑟med(𝑋) = min{𝑟 > 0 : ∃𝐶 ∈ CC(𝑋, 𝑟) with |𝐶 | ⩾ 𝑛/2}.

We are now ready to define a Partition Tree:

1 Note that Subsection 2.1 already allows the construction of a separating oracle if one is willing to incur runtimes
depending logarithmically in the aspect ratio of the dataset. However, the results in the paper allow for a construction
with no such dependence.
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DEF IN IT ION 2 .7. Given 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , a Partition Tree of 𝑋 is a tree, T , whose nodes

are labeled by
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
where 𝑍, 𝐶rep ⊂ 𝑋 , {T𝐶}𝐶∈Clow ∪ {Trep}

represent its children, Clow, Chigh are partitions of 𝑍 and 𝑟apx > 0 satisfying the following
conditions:

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
∀𝐶 ∈ Chigh : ∃! 𝑧 ∈ 𝐶rep with 𝑧 ∈ 𝐶.

For the sake of notational simplicity, we will use T ′ ∈ T both to refer to a node in the tree as
well as the subtree rooted at that node and Size(T ′) to refer to the sum of the number of points
stored in the subtree T ′. The above condition implies Size(T ) ⩽ 𝑂(𝑛 log 𝑛) [7].

While deterministic data structures with the same near linear runtime are also known
[6], we include, for the sake of completeness, a simple probabilistic algorithm to compute a
partition tree with probability 1 − 𝛿 in time 𝑂(𝑛𝑑 log2 𝑛/𝛿). Having defined the data structure,
we now describe how it may be used to define our reduction.

At a high level, the reduction traverses the data structure starting at the root and at each
step either terminating at the node currently being explored or proceeds to one of its children.
By the definition of the data structure, the number of points in the node currently being explored
drops by at least a factor of 2 in each step. Therefore, the procedure explores at most ⌈log 𝑛⌉
nodes. For any node T ′ ∈ T , with associated point set 𝑍, currently being traversed, we will aim
to enforce the following two conditions:

1. An approximate nearest neighbor of 𝑞 in 𝑍 is also an approximate nearest neighbor in 𝑋
2. A terminal embedding of 𝑞 for 𝑍 is also valid for 𝑋 .

For simplicity, we assume the existence of near neighbor data structures; that is, data structures
which when instantiated with (𝑋, 𝑟) and given a query 𝑞, output a candidate 𝑦 ∈ 𝑋 such
that ∥ 𝑦 − 𝑞∥ ⩽ 𝑟 if min𝑥∈𝑋 ∥𝑥 − 𝑞∥ ⩽ 𝑟 (we refrain from assuming access to nearest neighbor
data structures here as this reduction will also be used to construct our nearest neighbor data
structures). For each node T ′ =

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
, we first decide two

thresholds 𝑟low = 𝑟apx/poly(𝑛) and 𝑟high = poly(𝑛)𝑟apx and interpolate the range with roughly
𝑚 ≈ (log 𝑟high/𝑟low)/𝛾 many near neighbor data structures, {D𝑖}𝑚𝑖=0, with 𝑟𝑖 = (1 + 𝛾)𝑖𝑟low for
the point set 𝑍. Note, we set 𝛾 ≈ 1/log3 𝑛 which implies that we instantiate at most 𝑂∗(1) many
near neighbor data structures.

At query time, suppose we are at node T ′ =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
with

associated near neighbor data structures,D𝑖 . We query each of the data structuresD𝑖 with 𝑞
and we have three possible cases:

1. The nearest neighbor to 𝑞 is within a distance of 𝑟low

2. The nearest neighbor to 𝑞 is beyond 𝑟high of it
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3. The nearest neighbor to 𝑞 is between 𝑟low and 𝑟high of 𝑞

The first case occurs when D0 returns a candidate nearest neighbor, the second when none
of the near neighbor data structures return a candidate and the third when,D𝑖 succeeds but
D𝑖−1 fails for some 𝑖. If the third case occurs, the reduction is complete. If the second case
occurs, let 𝑥 ∈ 𝐶 ∈ Chigh and �̃� ∈ 𝐶rep ∩ 𝐶. We have by the triangle inequality and Definitions 2.5
and 2.7 ∥𝑥 − �̃�∥ ⩽ poly(𝑛)𝑟med ≪ 𝑟high and hence ∥𝑞 − �̃�∥ ≈ ∥𝑞 − 𝑥∥ and hence we recurse in
𝐶rep still satisfying the two conditions stated above. For the first case, let �̃� ∈ 𝐶 ∈ Clow such that
∥𝑞 − �̃�∥ ⩽ 𝑟low. From Definitions 2.5 and 2.7, any 𝑥 ∉ 𝐶 satisfies ∥𝑥 − �̃�∥ ⩾ 𝑟med/poly(𝑛) ≫ 𝑟low

and hence, both conditions are again maintained as the nearest neighbor of 𝑞 in 𝑍 is in 𝐶 and a
terminal embedding for 𝑞 in 𝐶 is a terminal embedding in 𝑍 by the triangle inequality.

2.3 Runtime Improvements and Adaptivity

We conclude with other technical considerations glossed over in the previous discussion. As
remarked before, we assumed access to exact nearest and near neighbor data structures which
perform correctly even when faced with adaptive queries. While the arguments outlined in the
previous two subsections extend straightforwardly to the setting where approximate nearest
neighbors are used, the guarantees provided by previous approaches to the approximate near
neighbors are not robust in the face of adaptivity.

DEF IN IT ION 2 .8. For 𝜌𝑢, 𝜌𝑐 ⩾ 0 and 𝑐 > 1, we say a randomized data structure is an (𝜌𝑢, 𝜌𝑐, 𝑐)-
Approximate Near Neighbor (ANN) data structure for Approximate Near Neighbor if instantiated
with a set of data points 𝑋 = {𝑥𝑖}𝑛𝑖=1 and 𝑟 > 0 constructs,D, satisfying:

P
{
space(D) ⩽ 𝑂∗(𝑑𝑛1+𝜌𝑢)

}
= 1

∀𝑞 ∈ R𝑑 : P
{
time(D(𝑞)) ⩽ 𝑂∗(𝑑𝑛𝜌𝑐)

}
= 1

∀𝑞 ∈ R𝑑 : P {D(𝑞) returns 𝑥 ∈ 𝑋 with ∥𝑞 − 𝑥∥ ⩽ 𝑐𝑟 if ∃ 𝑦 ∈ 𝑋 with ∥𝑞 − 𝑦∥ ⩽ 𝑟} ⩾ 0.99

where the probability is taken over both the random decisions used to constructD and
those used byD to answer the query 𝑞. Additionally, 𝑞 is assumed to be independent ofD.

A simple repetition argument can then be used to devise adaptive near neighbor data
structure with similar guarantees [4]. Used in tandem with the reduction outlined in the
previous subsection yields the adaptive nearest neighbor data structures used in Subsection 2.1.

Finally, the argument outlined previously enabled computing terminal embeddings in
time 𝑂∗(𝑑𝑛𝜌) for some 𝜌 < 1 which while being sublinear in 𝑛 is suboptimal in its interaction
with the dimension. This is in contrast to state-of-the-art approaches to nearest neighbor search
which yield runtimes scaling as 𝑂∗(𝑑𝑛 + 𝑛𝜌). However, all these approaches deduce this result
by first projecting onto a lower dimensional space using a Johnson-Lindenstrauss (JL) projection
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and building the data structure in the lower dimensional space. This is not feasible in our
setting as JL projections are not robust to adaptivity and we require an alternate strategy.

To improve our runtime, suppose Π′ ∈ R𝑑 → R𝑘 with 𝑘 = 𝑂∗(1) satisfies:

∀𝑥, 𝑦, 𝑧 ∈ 𝑋 ∪ {𝑞} : |⟨Π′(𝑥 − 𝑧),Π′( 𝑦 − 𝑧)⟩ − ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩| ⩽ 𝑜∗(1) · ∥𝑥 − 𝑧∥∥ 𝑦 − 𝑧∥. (1)

Then, to construct a terminal embedding, we may construct the vectors �̃�𝑥, 𝑦 and �̃�𝑥 by using
the vectors (Π′𝑥,Π′ 𝑦,Π′𝑞) instead of the vectors in the high dimensional space. Assuming the
projections for 𝑥 ∈ 𝑋 are pre-computed, we may do this projection in 𝑂∗(𝑑) time and the rest of
the procedure to compute terminal embeddings takes time 𝑂∗(𝑛𝜌). When 𝑞 is independent of
the data structure, a standard JL-sketch satisfies Equation (1) with high probability but this is
not true when 𝑞 depends onD. Thankfully, we show that if one draws 𝑂∗(𝑑) many 𝐽𝐿-sketches,
at least 95% satisfy Equation (1) for any query 𝑞 with high probability. Note that the order of
the quantifiers in the statement make the proof more challenging than previous work using
such ideas [4] and requires a careful gridding argument which we carry out in Section 5.

3. Terminal Embeddings

In this section, prove the main theorem of the paper. Note that in the following theorem the
query 𝑞 can be chosen with full knowledge of the data structure. That is, conditioned on the
successful creation of the data structure, the randomized construction of 𝑧𝑞 is only over the
random decisions taken at query-time and not during the creation of the data structure. The
main theorem of the paper is stated below:

THEOREM 3.1. Let 𝜀 ∈ (0, 1), 𝜌1, 𝜌2, 𝜌3, 𝜌4, 𝜌rep > 0. Then, there is a randomized procedure
which when instantiated with a dataset 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R

𝑑 , a (𝜌3, 𝜌4)-Approximate Partitioning
data structure, a (𝜌1, 𝜌2, (1 + 𝜀†))-Approximate Near Neighbor data structure for 𝜀† = 𝑐𝜀 for some
small enough 𝑐 > 0 and parameter 𝜌rep constructs a data structure, (D,Π ∈ R𝑘×𝑑), satisfying the
following guarantees:

1. Π has 𝜀-convex hull distortion for 𝑋
2. Given 𝑞 ∈ R𝑑 ,D produces with probability at least 1 − 1/poly(𝑛) over the randomness ofD

at query time, a vector 𝑧𝑞 ∈ R𝑘+1 such that:

∀𝑥 ∈ 𝑋 : (1 − 𝑂(𝜀))∥𝑞 − 𝑥∥ ⩽ ∥𝑧𝑞 − (Π𝑥, 0)∥ ⩽ (1 + 𝑂(𝜀))∥𝑞 − 𝑥∥

3. On any 𝑞 ∈ R𝑑 , the runtime ofD is 𝑂∗(𝑑 + 𝑛𝜌2 + 𝑛𝜌4 + 𝑛𝜌4+(1+𝜌3−𝜌4−𝜌rep)𝜌2)
4. The space complexity ofD is 𝑂∗(𝑑𝑛𝜌rep+(1+𝜌1) + 𝑑𝑛𝜌3+(1+𝜌1))

with probability at least 1 − 1/poly(𝑛) over the randomness during the instantiation ofD.

Before we proceed, we will instantiate the above theorem in three specific cases. We note
that the state-of-the-art algorithms for approximate nearest neighbor search are implemented
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in terms of approximate partitioning schemes as defined here [2] who show for any (𝜌𝑢, 𝜌𝑐)
satisfying:

𝑐2√𝜌𝑐 + (𝑐2 − 1)√𝜌𝑢 =
√

2𝑐2 − 1,

there exist both a (𝜌𝑢, 𝜌𝑐, 𝑐)-Approximate Near Neighbor data structure and specifically, a
(𝜌𝑢, 𝜌𝑐)-Approximate Partitioning scheme when 𝑐 = 2. By instantiating an Approximate Parti-
tioning data structure (by setting 𝑐 = 2) and applying the results of Theorem 3.1, we get a data
structure to compute 𝜀-terminal embeddings for (possibly different) universal �̃�, 𝐶 > 0:

Query time 𝑂∗(𝑑 + 𝑛1−�̃�𝜀2) and space complexity 𝑂∗(𝑛𝑑) with 𝜌rep = 𝜌1 = 𝜌3 = 0
Query time 𝑂∗(𝑑 + 𝑛1−�̃�𝜀) and space complexity 𝑂∗(𝑛2𝑑) with 𝜌rep = 𝜌3 = 0, 𝜌1 = 1
Query time 𝑂∗(𝑑) and space complexity 𝑑𝑛𝐶/𝜀2 with 𝜌4 = 𝜌2 = 0.

The previous three results capture a range of potential time space tradeoffs for data structures
computing terminal embeddings. We now move on to the proof of Theorem 3.1. As discussed
in Section 2, our algorithm operates by constructing a weak separating oracle for a convex
program. In Subsection 3.1, we define the convex program for which we define our oracle,
Subsection 3.2 defines our weak oracle for a fixed scale and in Subsection 3.3 we describe the
data structure which enables the reduction of the general case to the fixed scale scenario and
establish that it provides an appropriate separation oracle for the convex program introduced
in Subsection 3.1.

A key data structure that will be extensively utilized and will, henceforth, be referred to
as a (𝜌𝑢, 𝜌𝑐, 𝑐)-Adaptive Approximate Nearest Neighbor (AANN) data structure is described in
the following theorem. It supplies a data structure supporting several important functions. It
enables approximate nearest neighbor queries on the dataset even for queries which are adap-
tively chosen based on the instantiation of the data structure (but not on the fresh randomness
drawn at query time) and furthermore, constructs a partition tree, T , with the property that
for any query 𝑞, it suffices to construct a valid terminal embedding for the data points in node
in the partition tree that the data structure returns, Tres. The guarantees for all other points in
the dataset are guaranteed as a consequence of the first claim of the theorem. The key use of
this data structure is that it now effectively suffices to construct a valid terminal embedding
for the node in the partition tree that is returned in response to the query. Furthermore, the
distance bounds on the distance of 𝑞 to its approximate nearest neighbor �̂�, allows us to use a
small number of fixed-scale data structures for each node thus directly reducing the multi-scale
setting to the fixed-scale setting. The proof of the theorem itself will be deferred to Section 4.

THEOREM 3.2. Let 𝑐 > 1 and 𝜌𝑢, 𝜌𝑐 > 0. Then, there is a randomized procedure which when
instantiated with a dataset 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R

𝑑 and a (𝜌𝑢, 𝜌𝑐, 𝑐)-Approximate Near Neighbor data
structure (Definition 2.8) produces a data structure, (D,T), satisfying:

1. Given any 𝑞 ∈ R𝑑 ,D produces (�̂� ∈ 𝑋,Tres ∈ T ) satisfying:
a. ∥𝑞 − �̂�∥ ⩽ min𝑥∈𝑋 (1 + 𝑜∗(1))𝑐∥𝑞 − 𝑥∥
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b. �̂� ∈ Tres

c. Furthermore, letY = { 𝑦𝑖}𝑛𝑖=1 ⊂ R
𝑘 satisfying for some 𝜀† ∈

(
1√
𝑑
, 1

)
:

∀𝑖, 𝑗 ∈ [𝑛] : (1 − 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ ∥ 𝑦𝑖 − 𝑦 𝑗 ∥ ⩽ (1 + 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥

and for Tres =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
, let 𝑦 ∈ R𝑘 satisfy for 𝜀‡ ∈

[𝜀†, 1):
∀𝑥𝑖 ∈ 𝑍 : (1 − 𝜀‡)∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽ (1 + 𝜀‡)∥𝑞 − 𝑥𝑖 ∥.

Then:

∀𝑥𝑖 ∈ 𝑋 :
(
1 − (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽

(
1 + (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥.

and if |𝑍 | > 1:

Ω
(

1
(𝑛𝑑)10𝑟apx

)
⩽ ∥𝑞 − �̂�∥ ⩽ 𝑂((𝑛𝑑)10𝑟apx)

with probability at least 1 − 1/poly(𝑛)
2. T is a valid Partition Tree of 𝑋 (Definition 2.7)
3. The space complexity ofD is 𝑂∗(𝑑𝑛1+𝜌𝑢 log 1/𝛿)
4. The runtime ofD on any 𝑞 ∈ R𝑑 is at most 𝑂∗(𝑑 + 𝑛𝜌𝑐)

with probability 1 − 𝛿.

3.1 Generalized Characterization of Terminal Embeddings

To start, we recall a key lemma from [10]:

LEMMA 3.3. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , 𝜀 ∈

(
1√
𝑛
, 1

)
and 𝑇 =

{
𝑥−𝑦
∥𝑥−𝑦∥ : 𝑥 ≠ 𝑦 ∈ 𝑋

} ⋃{0}. Then for

Π ∈ R𝑘×𝑑 with 𝑘 = Ω
(

log 𝑛+log 1/𝛿
𝜀2

)
with Π𝑖, 𝑗 ∼ N(0, 1/𝑘),

Pr(Π satisfies 𝜀-convex hull distortion for 𝑇 ) ⩾ 1 − 𝛿.

Finally, the convex program for which we will construct our oracle is defined in the
following generalization of [10, 9]. As remarked in Section 2, we generalize the convex program
to an expanded set of constraints but crucially do not attempt to satisfy all of them in our
algorithm. For the convergence guarantees for our weak oracle to hold (Lemma 3.8), we first
need to show the feasibility of the convex program. Before, we proceed we require the following
simple lemma which is proved in Appendix B.2.

LEMMA 3.4. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1, 0 < 𝜀 < 1 and 𝑇 =

{
𝑥−𝑦
∥𝑥−𝑦∥ : 𝑥 ≠ 𝑦 ∈ 𝑋

} ⋃{0}. Furthermore,
suppose Π ∈ R𝑘×𝑑 has 𝜀-convex hull distortion for 𝑋 . Then, we have:

∀𝑥, 𝑦 ∈ Conv(𝑇 ) : |⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| ⩽ 6𝜀.

We now establish feasibility in the following lemma.
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LEMMA 3.5. Suppose 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and Π ∈ R𝑘×𝑑 satisfies 𝜀-convex hull distortion for 𝑋 .

Then, for any 𝑞 ∈ R𝑑 , there exists 𝑧 ∈ R𝑘 such that:

∀𝑥, 𝑦 ∈ 𝑋 : |⟨𝑧 − Π𝑥,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥, 𝑦 − 𝑥⟩| ⩽ 15𝜀∥𝑞 − 𝑥∥∥ 𝑦 − 𝑥∥
∀𝑥 ∈ 𝑋 : ∥𝑧 − Π𝑥∥ ⩽ (1 + 8𝜀)∥𝑞 − 𝑥∥.

PROOF . Let 𝑥∗ = arg min𝑥∈𝑋 ∥𝑞 − 𝑥∥. As in [10, 9], we consider a bilinear game where 𝜆 is
essentially selects which constraint is worst-violated and 𝑤 is a candidate terminal embedding:

max
∥𝜆∥1⩽1

min
∥𝑤∥⩽∥𝑞−𝑥∗∥

∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦

(
⟨𝑤,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑦 − 𝑥⟩

∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥

)
= min
∥𝑤∥⩽∥𝑞−𝑥∗∥

max
∥𝜆∥1⩽1

∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦

(
⟨𝑤,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑦 − 𝑥⟩

∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥

)
where the exchange of the min and max follows from von Neumann’s minimax theorem.
Considering the first formulation, let ∥𝜆∥1 ⩽ 1. We have for such a 𝜆:

min
∥𝑤∥⩽∥𝑞−𝑥∗∥

∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦

(
⟨𝑤,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑦 − 𝑥⟩

∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥

)
= min
∥𝑤∥⩽∥𝑞−𝑥∗∥

(〈
𝑤

∥𝑞 − 𝑥∗∥ ,Π
( ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦 ·
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

)〉
−

〈
𝑞 − 𝑥∗
∥𝑞 − 𝑥∗∥ ,

( ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦 ·
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

)〉)
⩽ min
∥𝑤∥⩽1

〈
𝑤,Π

( ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦 ·
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

)〉
+






 ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥







= −






Π

( ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦 ·
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

)




 +





 ∑︁
𝑥, 𝑦∈𝑋

𝜆𝑥, 𝑦 ·
𝑦 − 𝑥
∥ 𝑦 − 𝑥∥






 ⩽ 𝜀
where the first inequality follows from Cauchy-Schwarz and the final inequality follows from
the fact that Π has 𝜀-convex hull distortion. From the previous result, we may conclude that
there exists 𝑤 ∈ R𝑘 satisfying:

∥𝑤∥ ⩽ ∥𝑞 − 𝑥∗∥
∀𝑥, 𝑦 ∈ 𝑋 : |⟨𝑤,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑦 − 𝑥⟩| ⩽ 𝜀∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥.

Now consider the vector 𝑧 = 𝑤 + Π𝑥∗. For this 𝑧, we have for any 𝑥, 𝑦 ∈ 𝑋 :

|⟨𝑧 − Π𝑥,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥, 𝑦 − 𝑥⟩|
⩽ |⟨𝑧 − Π𝑥∗,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑦 − 𝑥⟩| + |⟨Π(𝑥∗ − 𝑥),Π( 𝑦 − 𝑥)⟩ − ⟨𝑥 − 𝑥∗, 𝑦 − 𝑥⟩|

⩽ 𝜀∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥ + ∥𝑥∗ − 𝑥∥∥ 𝑦 − 𝑥∥
����〈Π

𝑥∗ − 𝑥
∥𝑥∗ − 𝑥∥ ,Π

𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

〉
−

〈
𝑥 − 𝑥∗
∥𝑥 − 𝑥∗∥ ,

𝑦 − 𝑥
∥ 𝑦 − 𝑥∥

〉����
⩽ 𝜀∥𝑞 − 𝑥∗∥∥ 𝑦 − 𝑥∥ + 6𝜀∥𝑥∗ − 𝑥∥∥ 𝑦 − 𝑥∥
= 𝜀∥ 𝑦 − 𝑥∥ (∥𝑞 − 𝑥∗∥ + 6∥𝑥∗ − 𝑥∥)
⩽ 𝜀∥ 𝑦 − 𝑥∥ (∥𝑞 − 𝑥∗∥ + 6(∥𝑥∗ − 𝑞∥ + ∥𝑞 − 𝑥∥))
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⩽ 𝜀∥ 𝑦 − 𝑥∥ (∥𝑞 − 𝑥∗∥ + 12∥𝑞 − 𝑥∥))
⩽ 15𝜀∥ 𝑦 − 𝑥∥∥𝑞 − 𝑥∥

where the second inequality is due to the condition on 𝑧, the third inequality is a consequence
of Lemma 3.4 and the second to last inequality follows from the fact that ∥𝑞 − 𝑥∗∥ ⩽ ∥𝑞 − 𝑥∥.
This establishes the first claim of the lemma. For the second claim, we have for any 𝑥 ∈ 𝑋 :

∥𝑧 − Π𝑥∥2 − ∥𝑞 − 𝑥∥2 =

(
∥𝑧 − Π𝑥∗ + Π(𝑥∗ − 𝑥)∥2 − ∥𝑞 − 𝑥∗ + (𝑥∗ − 𝑥)∥2

)
= ∥𝑧 − Π𝑥∗∥2 + 2⟨𝑧 − Π𝑥∗,Π(𝑥∗ − 𝑥)⟩ + ∥Π(𝑥∗ − 𝑥)∥2

− ∥𝑞 − 𝑥∗∥2 − 2⟨𝑞 − 𝑥∗, 𝑥∗ − 𝑥⟩ − ∥𝑥∗ − 𝑥∥2

⩽ 2(⟨𝑧 − Π𝑥∗,Π(𝑥∗ − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑥∗ − 𝑥⟩) + ∥Π(𝑥∗ − 𝑥)∥2 − ∥𝑥∗ − 𝑥∥2

⩽ 2(⟨𝑧 − Π𝑥∗,Π(𝑥∗ − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑥∗ − 𝑥⟩) + ((1 + 𝜀)2 − 1)∥𝑥∗ − 𝑥∥2

⩽ 2(⟨𝑧 − Π𝑥∗,Π(𝑥∗ − 𝑥)⟩ − ⟨𝑞 − 𝑥∗, 𝑥∗ − 𝑥⟩) + 3𝜀∥𝑥∗ − 𝑥∥2

⩽ 2𝜀∥𝑞 − 𝑥∗∥∥𝑥 − 𝑥∗∥ + 3𝜀∥𝑥∗ − 𝑥∥2 ⩽ 4𝜀∥𝑞 − 𝑥∗∥∥𝑞 − 𝑥∥ + 12𝜀∥𝑞 − 𝑥∥2

⩽ 16𝜀∥𝑞 − 𝑥∥2

where the first inequality follows from the fact that ∥𝑧 −Π𝑥∗∥ ⩽ ∥𝑞 − 𝑥∗∥, the second inequality
follows from the fact that Π has 𝜀-convex hull distortion for 𝑋 , the fourth from our condition
on 𝑧 and the fifth follows from the triangle inequality and the fact that ∥𝑞 − 𝑥∗∥ ⩽ ∥𝑞 − 𝑥∥. By
re-arranging the above inequality and taking square roots, we get:

∥𝑧 − Π𝑥∥2 ⩽ (1 + 8𝜀)∥𝑞 − 𝑥∥

concluding the proof of the lemma. ■

3.2 Fixed Scale Violator Detection

Note that as a consequence of Theorem 3.2, we may assume that the function can instantiate
(𝜌1, 𝜌2, (1 + 𝜀†))-Adaptive Approximate Nearest Neighbor (AANN) data structures and (𝜌3, 𝜌4)-
Approximate Partitioning (AP) data structures. Our data structure for constructing an oracle at
a fixed scale is constructed in Algorithm 1 and the query procedure is outlined in Algorithm 2.
Algorithm 1 takes as input a set of data points 𝑋 , a projection matrix Π, a memory parameter
𝜌rep and a failure probability 𝛿. When we instantiate this data structure, the point sets used to
construct it will be the subsets of points corresponding to the nodes of the Partition Tree provided
by Theorem 3.2. Algorithm 2 takes as input the data structure constructed by Algorithm 1, the
query point 𝑞, a candidate solution to the convex program 𝑣, an approximate nearest neighbor
of 𝑞 in 𝑋 and another tolerance parameter whose role will become clear when incorporating
this data structure into the reduction.

To state the correctness guarantees for Algorithm 1, we start by introducing some notation.
For 𝑥 ∈ 𝑋 and 𝑟 > 0, define the local neighborhood of 𝑥 as follows: Nloc(𝑥, 𝑟) = { 𝑦 ∈ 𝑋 :
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∥ 𝑦 − 𝑥∥ ⩽ 2𝑟}. For 𝑥 ∈ 𝑋 such that |Nloc(𝑥, 𝑟) | ⩾ 𝑛1−𝜌rep , our success event is simply that there
exists 𝑧 ∈ Z such that ∥𝑧 − 𝑥∥ ⩽ 2𝑟 and thatD𝑧 is instantiated successfully. For 𝑥 ∈ 𝑋 such that
|Nloc(𝑥, 𝑟) | ⩽ 𝑛1−𝜌rep , the success event is more complicated. Informally, we will require that
most of AP data structures produce appropriate partitions for 𝑥 and furthermore, that each
𝑦 ∈ 𝑋 with ∥ 𝑦 − 𝑥∥ ⩽ 𝑟 is well represented in these data structures. This is formally described
in the following lemma:

LEMMA 3.6. Given 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , 𝑟 > 0, 𝜌rep ∈ [0, 1] and 𝛿 ∈ (0, 1), Algorithm 1 produces a

data structureD with the following guarantees:
1. For 𝑥 ∈ 𝑋 such that |Nloc(𝑥, 𝑟) | ⩾ 𝑛1−𝜌rep , we have that there exists 𝑧 ∈ Z such that
∥𝑥 − 𝑧∥ ⩽ 2𝑟. That is, 𝑥 is assigned in the first stage of the algorithm.

2. For 𝑥 ∈ 𝑋 such that |Nloc(𝑥, 𝑟) | < 𝑛1−𝜌rep , we have:

𝑙∑︁
𝑖=1

1



∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩾2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑛𝜌4) and

∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩽2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑛(1−𝜌rep)+𝜌3)


⩾ 0.98𝑙

𝑙∑︁
𝑖=1

1


∑︁
𝑆∈ℎ𝑖 (𝑥)

|𝑆 \ 𝐴𝑖,𝑆 | ⩽ 𝑂∗(𝑛𝜌4)
 ⩾ 0.98𝑙

∀𝑦 ∈ 𝑋 such that ∥ 𝑦 − 𝑥∥ ⩽ 𝑟 :
𝑙∑︁
𝑖=1

1 {∃𝑆 ∈ ℎ𝑖 (𝑥) such that 𝑦 ∈ 𝑆} ⩾ 0.98𝑙

3. All the AANN data structures instantiated in the algorithm are instantiated successfully;
that is, {D𝑧}𝑧∈Z and {D𝑖,𝑆,𝑤}𝑖∈[𝑙],𝑆∈D𝑖 ,𝑤∈W𝑖,𝑆

are instantiated successfully.
4. Finally, the space complexity of the data structure is 𝑂∗(𝑑𝑛1+𝜌1 (𝑛𝜌rep + 𝑛𝜌3) log2 1/𝛿)

with probability at least 1 − 𝛿.

PROOF . For the third claim, note that the total number of D𝑧 instantiated is at most 𝑛rep.
Therefore, the probability that all theD𝑧 are instantiated correctly is at least 1 − 𝛿/16. As for
theD𝑖,𝑆,𝑤, note that at most 𝑂∗(𝑙𝑝𝑛1+𝜌3) many of these are instantiated as there are 𝑙 AP data
structures, each of which has at most 𝑂∗(𝑛1+𝜌3) subsets and each subset has at most 𝑝 AANN
data structures. Therefore, again by the union bound the probability that each of these are
instantiated correctly is at least 1 − 𝛿/16. Hence, the probability that all AANN data structures
are instantiated correctly is at least 1 − 𝛿/8.

For the last claim, note that the space occupied by each of theD𝑧 data structures is at most
𝑂∗(𝑛1+𝜌1) and there are 𝑛rep of these. The space required to store each of the 𝑙 AP data structures
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is at most 𝑂∗(𝑛1+𝜌3). Finally, the space occupied by theD𝑖,𝑆,𝑤 data structures is given by:

𝑙∑︁
𝑖=1

∑︁
𝑆∈S𝑖

𝑝 · 𝑂∗( |𝑆 |1+𝜌1 log 1/𝛿) ⩽ 𝑂∗(𝑛𝜌3+(1+𝜌1) log2 1/𝛿)

by the fact that |𝑆 | ⩽ 𝑛 for each 𝑆,
∑
𝑆∈S𝑖 |𝑆 | ⩽ 𝑂∗(𝑛1+𝜌3) for each 𝑙 and the convexity of the

function 𝑓 (𝑥) = 𝑥1+𝜌3 . From the previously established bounds, the space complexity follows.
For the first claim, let 𝑥 ∈ 𝑋 such that |Nloc(𝑥, 𝑟) | ⩾ 𝑛1−𝜌rep and 𝐾𝑖 = 1 {𝑧𝑖 ∈ Nloc(𝑥, 𝑟)}.

We have P(𝐾𝑖 = 1) ⩾ 𝑛−𝜌rep . Therefore, we have that E
[
𝐾 B

∑𝑛rep
𝑖=1 𝐾𝑖

]
⩾ 𝐶 log(𝑛/𝛿) for some

large constant 𝐶. By noting that Var(𝐾) ⩽ E[𝐾], we have by Bernstein’s inequality that with
probability at least 𝛿/(16𝑛) that there exists 𝐾𝑖 = 1 for some 𝑖 ∈ [𝑛rep]. Therefore, there exists
𝑧 ∈ Z such that ∥𝑧 − 𝑥∥ ⩽ 2𝑟. By a union bound, this establishes the first claim with probability
at least 1 − 𝛿/16.

We now prove each of the three conclusions of the second claim of the lemma separately.
First note that from Definition 2.4, the linearity of expectation and the fact that |Nloc(𝑥, 𝑟) | ⩽
𝑛1−𝜌rep , we have for any 𝑖 ∈ [𝑙]:

P


∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩾2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑛𝜌4)

 ⩾ 0.99 and

E


∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩽2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆}

 ⩽ 𝑂
∗(𝑛1−𝜌rep+𝜌3).

By an application of Markov’s Inequality on the second inequality, we have by the union bound:

P


∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩾2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑛𝜌4) and
∑︁
𝑦∈𝑋

∥ 𝑦−𝑥∥⩽2𝑟

∑︁
𝑆∈ℎ𝑖 (𝑥)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑛(1−𝜌rep)+𝜌3)

 ⩾ 0.985.

Letting 𝐿𝑖 be the indicator random variable for the above event for 𝑥 in the data structureD𝑖 ,
we have by the Chernoff bound that P

{∑𝑙
𝑖=1 𝐿𝑖 ⩾ 0.98𝑙

}
⩾ 1 − 𝛿/(16𝑛). Therefore, the first

conclusion of the second claim holds for 𝑥 with probability at least 1 − 𝛿/(16𝑛). A union bound
now establishes the lemma for all 𝑥 ∈ 𝑋 with probability at least 1 − 𝛿/16.

For the second conclusion of the second claim, let 𝑖 be such that 𝐿𝑖 = 1 from the preceding
discussion. Let 𝑆 ∈ ℎ𝑖 (𝑥) be such that |Nloc(𝑥, 𝑟) ∩ 𝑆 | > | (𝑋 \ Nloc(𝑥, 𝑟)) ∩ 𝑆 |; that is, 𝑆 is a set in
ℎ𝑖 (𝑥) with more points from the local neighborhood of 𝑥 than far away points. For any such 𝑆,
the probability that 𝑤 𝑗 ∈ Nloc(𝑥, 𝑟) is at least 1/2. Therefore, we have by the definition of 𝑝 that
with probability at least 1 − 𝛿‡ that there exists 𝑤 ∈ W𝑖,𝑆 such that 𝑤 ∈ Nloc(𝑥, 𝑟). Note that all
the points inNloc(𝑥, 𝑟) ∩ 𝑆 are assigned to 𝑤 in this case. By the union bound, the probability
that this happens for all such 𝑆 ∈ ℎ𝑖 (𝑥) is at least 1 − 𝛿/(𝑙𝑛2+(𝜌3+𝜌4)). Conversely, for 𝑆 such that
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|Nloc(𝑥, 𝑟)∩𝑆 | ⩽ | (𝑋 \Nloc(𝑥, 𝑟))∩𝑆 |, the total number of unassigned points is upper bounded by
2| (𝑋 \Nloc(𝑥, 𝑟)) ∩ 𝑆 | and by summing over all such 𝑆 the conclusion follows from the definition
of 𝐿𝑖 . Therefore, by a union bound, we get that the second conclusion of the second claim holds
for 𝑥 ∈ 𝑋 for all 𝑖 such that 𝐿𝑖 = 1 with probability at least 1 − 𝛿/(𝑛2+(𝜌3+𝜌4)). The conclusion for
all 𝑥 ∈ 𝑋 follows from another union bound with probability at least 1 − 𝛿/16.

Finally, for the last conclusion of the second claim, let 𝑥, 𝑦 ∈ 𝑋 such that ∥𝑥 − 𝑦∥ ⩽ 𝑟 and
𝑀𝑖 = 1{∃𝑆 ∈ ℎ𝑖 (𝑥) : 𝑦 ∈ 𝑆}. From Definition 2.4, we have that P {𝑀𝑖 = 1} ⩾ 0.99. Therefore, we
have by the Chernoff bound that with probability at least 1− 𝛿/(16𝑛3) that the conclusion holds
for specific 𝑥, 𝑦 ∈ 𝑋 satisfying ∥𝑥 − 𝑦∥ ⩽ 𝑟. Through a union bound, the conclusion holds for all
𝑥, 𝑦 ∈ 𝑋 with ∥𝑥 − 𝑦∥ ⩽ 𝑟 with probability at least 1 − 𝛿/(16𝑛).

A final union bound over all the events described in the proof gives us the required
guarantees on the running of Algorithm 1 with probability at least 1 − 𝛿/2. ■

Input: Dataset 𝑋 = {𝑥𝑖}𝑛𝑖=1, Projection Π, Scale 𝑟 > 0, Repetition 𝜌rep,
Failure Probability 𝛿

1: 𝑛rep ← Θ(𝑛𝜌rep log(𝑛/𝛿)), 𝛿† ← Θ
(
𝛿/𝑛rep

)
2: Pick 𝑛rep main points, Z = {𝑧𝑖}

𝑛rep
𝑖=1 , uniformly at random from 𝑋

3: For each 𝑧 ∈ Z, instantiate independent (𝜌1, 𝜌2, (1 + 𝜀†))-AANN data
structures, D𝑧, with point set

{
𝑦𝑖 = �̃�𝑥𝑖 ,𝑧

}
and failure probability 𝛿†

and for 𝑥 ∈ 𝑋, assign 𝑥 to 𝑧 if ∥𝑥 − 𝑧∥ ⩽ 2𝑟 and add 𝑥 to 𝐴𝑧

4: 𝑙 ← Θ (log(𝑛/𝛿)) , 𝛿‡ ← Θ
(
𝛿/𝑙𝑛4+2(𝜌3+𝜌4) )

5: Instantiate 𝑙 independent (𝜌3, 𝜌4)-AP data structures, {D𝑖 = (ℎ𝑖,S𝑖)}𝑙𝑖=1
with pointset 𝑋

6: for 𝑖 ∈ 𝑙 and 𝑆 ∈ S𝑖 do
7: 𝑝← Θ

(
log 1/𝛿‡

)
8: Pick 𝑝 points, W𝑖,𝑆 = {𝑤𝑗}𝑝𝑗=1, uniformly at random from 𝑆

9: For each 𝑤 ∈ W𝑖,𝑆, instantiate (𝜌1, 𝜌2, (1 + 𝜀†))-AANN data structure,
D𝑖,𝑆,𝑤, with point set

{
�̃�𝑥,𝑤

}
𝑥∈𝑆 and failure probability 𝛿‡/𝑝.

Assign 𝑥 ∈ 𝑆 to 𝑤 if ∥𝑥 − 𝑤∥ ⩽ 4𝑟 and add 𝑥 to 𝐴𝑖,𝑆

10: return

D =

(
𝑋,Z, {D𝑧, 𝐴𝑧}𝑧∈Z , {D𝑖}𝑙𝑖=1 , {W𝑖,𝑆}𝑖∈[𝑙],𝑆∈D𝑖

,
{{
D𝑖,𝑆,𝑤

}
𝑤∈W𝑖,𝑆

, 𝐴𝑖,𝑆

}
𝑖∈[𝑙],𝑆∈D𝑖

)
Algorithm 1. FixedScaleInstantiation(𝑋,Π, 𝑟, 𝜌rep, 𝛿)

We delay the analysis of the query procedure to the next subsection where we incorporate
the fixed scale data structure into a multi-scale separating oracle and conclude the proof of
Theorem 3.1.
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Input: Data Structure D, Query 𝑞, Candidate 𝑣, Approximate Nearest
Nbr �̂�, Tolerance 𝜀†

1: if ∥𝑣 − Π�̂�∥ ⩾ (1 + 10𝜀†)∥𝑞 − �̂�∥ then
2: return �̂�

3: else if �̂� is assigned to any 𝑧 ∈ Z then
4: if ∥𝑣 − Π𝑧∥ ⩾ (1 + 10𝜀†)∥𝑞 − 𝑧∥ then
5: return 𝑧

6: if | ⟨̃𝑣𝑧,�̂�, �̃��̂�⟩| ⩾ 20𝜀† then
7: return (𝑧, �̂�)
8: Query D𝑧 with �̃�𝑧 and −�̃�𝑧 to obtain solutions 𝑦𝑖 = �̃�𝑥𝑖 ,𝑧, 𝑦𝑗 = �̃�𝑥 𝑗 ,𝑧

9: 𝑢 = (𝑥𝑖, 𝑧) if | ⟨̃𝑣𝑧, 𝑦𝑖⟩| ⩾ 20𝜀†, (𝑥 𝑗, 𝑧) if | ⟨̃𝑣𝑧, 𝑦𝑗⟩| ⩾ 20𝜀†, FAIL otherwise
10: return 𝑢

11: else
12: for 𝑖 ∈ [𝑙] :

∑
𝑆∈ℎ𝑖 (�̂�) |𝑆 \ 𝐴𝑖,𝑆 | ⩽ 𝑂∗(𝑛𝜌4), ∑

𝑆∈ℎ𝑥 (�̂�) |𝐴𝑖,𝑆 | ⩽ 𝑂∗(𝑛(1−𝜌rep)+𝜌3) and
𝑆 ∈ ℎ𝑖 (�̂�) do

13: for 𝑥 ∉ 𝐴𝑖,𝑆 do
14: if | ⟨̃𝑣�̂�, �̃�𝑥,�̂�⟩| ⩾ 20𝜀† then
15: return (𝑥, �̂�)
16: for 𝑤 ∈ W𝑖,𝑆 do
17: if ∥𝑣 − Π𝑤∥ ⩾ (1 + 10𝜀†)∥𝑞 − 𝑤∥ then
18: return 𝑤

19: if | ⟨̃𝑣𝑤,�̂�, �̃��̂�⟩| ⩾ 20𝜀† then
20: return (𝑤, �̂�)
21: Query D𝑖,𝑆,𝑤 with �̃�𝑤 and −�̃�𝑤 to obtain solutions

𝑦𝑖 = �̃�𝑥𝑖 ,𝑤, 𝑦𝑗 = �̃�𝑥 𝑗 ,𝑤

22: 𝑢 = (𝑥𝑖, 𝑤) if | ⟨̃𝑣𝑥𝑖 ,𝑤, �̃�𝑤⟩| ⩾ 20𝜀†, (𝑥 𝑗, 𝑤) if | ⟨̃𝑣𝑥 𝑗 ,𝑤, �̃�𝑤⟩| ⩾ 20𝜀†,
FAIL otherwise

23: return 𝑢

24: return FAIL

Algorithm 2. FixedScaleQuery(D, 𝑞, 𝑣, �̂�, 𝜀†)
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3.3 Multi-Scale Reduction and Proof of Theorem 3.1

In this subsection, we wrap up the proof of Theorem 3.1 by incorporating the fixed scale violator
detection method from Subsection 3.2 into a multi-scale procedure. We first define the auxiliary
data structures that we will assume access to for the rest of the proof:

1. From Lemma 3.3, we may assume Π ∈ R𝑘×𝑑 satisfies 𝜀†-convex hull distortion for 𝑋 with
𝜀† = �̃�𝜀 for some suitably small constant �̃� > 0 with 𝑘 = 𝑂(𝜀−2 log 𝑛)

2. From Theorem 3.2, we may assume access to a partition tree T satisfying Definition 2.7
3. We may assume access to a (𝜌3, 𝜌4, (1 + 𝜀))-Adaptive Approximate Nearest Neighbor data

structure for 𝑋 built on T from Theorem 3.2.

Recall the definitions of a partition tree from Subsection 2.2. The first is the partitioning of
a data points into connected components of a graph constructed by thresholding the distances
between points in the dataset.

DEF IN IT ION 2 .5. (Restated) Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝑟 > 0. We will use GG(𝑋, 𝑟) to denote

the graph with nodes indexed by 𝑥𝑖 and an edge between 𝑥𝑖 and 𝑥 𝑗 if ∥𝑥𝑖−𝑥 𝑗 ∥ ⩽ 𝑟. The connected
components of this graph will be denoted by CC(𝑋, 𝑟); that is, CC(𝑋, 𝑟) = {𝐶 𝑗}𝑚𝑗=1 is a partitioning
of 𝑋 with 𝑥 ∈ 𝐶 𝑗 if and only if ∥𝑥 − 𝑦∥ ⩽ 𝑟 for some 𝑦 ∈ 𝐶 𝑗 \ {𝑥}.

The second is the notion of refinement between partitions.

DEF IN IT ION 2 .6. (Restated) For a data set 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , we say that a partition C refines

a partition C′ if for all 𝐶 ∈ C, 𝐶 ⊆ 𝐶′ for some 𝐶′ in C′. This will be denoted by C′ ⊑ C.

Next, define 𝑟med(𝑋) as:

𝑟med(𝑋) = min{𝑟 > 0 : ∃𝐶 ∈ CC(𝑋, 𝑟) with |𝐶 | ⩾ 𝑛/2}.

The last is the definition of the partition tree itself.

DEF IN IT ION 2 .7. (Restated) Given 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , a Partition Tree of 𝑋 is a tree, T , whose

nodes are labeled by
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
where 𝑍, 𝐶rep ⊂ 𝑋 , {T𝐶}𝐶∈Clow ∪

{Trep} represent its children, Clow, Chigh are partitions of 𝑍 and 𝑟apx > 0 satisfying the following
conditions:

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
∀𝐶 ∈ Chigh : ∃! 𝑧 ∈ 𝐶rep with 𝑧 ∈ 𝐶.

For the sake of notational simplicity, we will use T ′ ∈ T both to refer to a node in the tree as
well as the subtree rooted at that node and Size(T ′) to refer to the sum of the number of points
stored in the subtree T ′. The above condition implies Size(T ) ⩽ 𝑂(𝑛 log 𝑛) [7].
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We first describe the data structure which reduces the multi-scale violator detection
problem to the fixed scale setting using the partition tree that is returned by Theorem 3.2. The
data structure implementing the multi-scale violator detector is constructed in Algorithm 3 and
the corresponding query procedure is described in Algorithm 4. Algorithm 3 takes as input the
projection matrix Π, the Partition Tree T , a failure probability 𝛿 and a repetition factor 𝜌rep.
The following straightforward lemma is the only guarantee we will require of Algorithm 3:

LEMMA 3.7. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , T be a valid Partition Tree of 𝑋 , 𝛿 ∈ (0, 1) and 𝜌rep ∈ [0, 1].

Then, the data structures output by Algorithm 3 on input 𝑋,T , 𝛿 all satisfy the conclusions of
Lemma 3.6 with probability at least 1 − 𝛿.

PROOF . The proof follows from a union bound over the nodes of the tree, the 𝑙 data structures
instantiated for each node, the setting of 𝛿† in Algorithm 3 and Lemma 3.6. ■

Input: Projection Π, Partition Tree T, Failure Probability 𝛿,
Repetition 𝜌rep

1: 𝛿† ← Θ(𝛿/(𝑛𝑑)10)
2: for T ′ = {𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx} ∈ T do
3: 𝑟term

low ← Θ(𝑟apx/(𝑛𝑑)20), 𝑟term
high ← Θ((𝑛𝑑)20𝑟apx), 𝛾 ← Θ(1/log3 𝑛)

4: for 𝑖 = 0, . . . ,
⌈

log 𝑟term
high /𝑟

term
low

𝛾

⌉
= 𝑝 do

5: Instantiate, DT ′,𝑖 ← FixedScaleInstantiation(𝑍,Π, (1 + 𝛾) 𝑖𝑟term
low , 𝜌rep, 𝛿

†)
6: return {DT ′,𝑖}T ′∈T , 𝑖∈{0}∪[𝑝]

Algorithm 3. MultiScaleInstantiation(Π,T , 𝛿, 𝜌rep)

We are now ready to conclude the proof of Theorem 3.1. Suppose 𝑞 ∈ R𝑑 and we are
required to construct a valid terminal embedding for 𝑞 with respect to the point set 𝑋 . We may
assume access to (�̂�,T ′) for �̂� being an approximate nearest neighbor of 𝑞 in 𝑋 and T ′ ∈ T
satisfying the conclusion of Theorem 3.2. Also, it suffices to construct a valid terminal embedding
for the set of points in T ′. We may assume T ′ has more than one element as in the one element
case, any point on a sphere of radius ∥𝑞 − �̂�∥ around (Π�̂�, 0) suffices from Theorem 3.2. Our
algorithm is based on the following set of convex constraints where 𝑍 is the set of points in T ′:

∀𝑥, 𝑦 ∈ 𝑍 : |⟨𝑧 − Π𝑥,Π( 𝑦 − 𝑥)⟩ − ⟨𝑞 − 𝑥, 𝑦 − 𝑥⟩| ⩽ 20𝜀†∥𝑞 − 𝑥∥∥ 𝑦 − 𝑥∥
∀𝑥 ∈ 𝑍 : ∥𝑧 − Π𝑥∥ ⩽ (1 + 10𝜀†)∥𝑞 − 𝑥∥. (Req)

Let 𝐾 denote the convex subset of R𝑘 satisfying the above set of constraints. Let 𝑟 = ∥𝑞 − �̂�∥.
By Lemma 3.5 and Cauchy-Schwarz, 𝐾 is non-empty and there exists �̃� ∈ 𝐾 with B( �̃�, 𝜀†𝑟) ⊂ 𝐾
(there exists �̃� satisfying the above constraints with the right-hand sides replaced by 15𝜀† and
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8𝜀† respectively). Also, note that 𝐾 ⊆ B(Π�̂�, 2𝑟) from the above set of constraints. While one can
show a feasible point in 𝐾 can be used to construct a valid terminal embedding, we construct a
slightly weaker oracle. We construct an oracle O satisfying:

1. If O(𝑣) outputs FAIL, 𝑣 can be extended to a terminal embedding
2. Otherwise O(𝑣) outputs a valid separating hyperplane for 𝐾 .

To utilize the above oracle for constructing our terminal embeddings, we require the following
guarantees on the ellipsoid algorithm which essentially states that for a convex set containing a
ball of substantially large radius with an oracle that is guaranteed to output a correct separating
hyperplane or FAIL, a point for which the oracle outputs FAIL may be found quickly. In the
context of the proof, O will be our oracle and the convex body will be the feasible points of Req.
The proof the statement is deferred to Appendix B.1.

LEMMA 3.8. Suppose 𝜀 > 0 and 𝐾 ⊂ R𝑑 be a closed convex set such that there exists 𝑥∗ ∈ 𝐾
such that for all 𝑦 ∈ B(𝑥∗, 𝜀), 𝑦 ∈ 𝐾 . Furthermore, let 𝑥 ∈ R𝑑 and 𝑅 > 0 be such that 𝐾 ⊂ B(𝑥, 𝑅).
Suppose further that O satisfies for any input 𝑧, O:

1. Outputs 𝑣 ≠ 0 such that for all 𝑦 ∈ 𝐾 , we have ⟨𝑣, 𝑦 − 𝑥⟩ ⩾ 0 or
2. Outputs FAIL.

Then, Algorithm 9 when instantiated with 𝑥, 𝑅 and O, outputs �̂� satisfying O(�̂�) = FAIL. Further-
more, the number of iterations of the algorithm is bounded by 𝑂

(
𝑑2 log 𝑅

𝜀

)
and hence the total

computational complexity is bounded by 𝑂
(
𝑑4 log 𝑅

𝜀

)
.

From Lemma 3.8 and the fact that 𝐾 contains a ball of radius 𝜀†𝑟 and is contained in a ball
of radius 2𝑟, we see that there is a procedure which with𝑂∗(1)many queries toO and𝑂∗(1) total
additional computation, outputs a point 𝑣∗ for which O outputs FAIL. Our oracle implementing
this property is defined simply by Algorithm 4. Through the rest of this subsection, we focus
our attention on proving the correctness of the oracle.

Let T ′ = {𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx} and 𝑚 = |𝑍 |. First, we focus on the easy
case when Algorithm 4 does not output FAIL.

LEMMA 3.9. If Algorithm 4 does not output FAIL on 𝑣, it outputs a separating hyperplane for 𝑣
from 𝐾 .

PROOF . Note that this only happens when some 𝑥 or pair (𝑥, 𝑦) is returned by Algorithm 2.
Now, Algorithm 2 may return an 𝑥 in one of two ways:

Case 1: ∥𝑣 − Π𝑥∥ ⩾ (1 + 10𝜀†)∥𝑞 − 𝑥∥ for 𝑥 returned by the algorithm. In this case, the
correctness of the procedure trivially follows from Req.
Case 2: For 𝑥, 𝑦 ∈ 𝑍, the vectors 𝑣1 = �̃�𝑥 and 𝑣2 = �̃�𝑦,𝑥 satisfy |⟨𝑣1, 𝑣2⟩| ⩾ 20𝜀†. We have:

|⟨𝑞 − 𝑥, 𝑦 − 𝑥⟩ − ⟨𝑣 − Π𝑥,Π( 𝑦 − 𝑥)⟩| ⩾ 20𝜀†∥(𝑞 − 𝑥,−(𝑣 − Π𝑥))∥∥( 𝑦 − 𝑥,Π( 𝑦 − 𝑥))∥
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⩾ 20𝜀†∥𝑞 − 𝑥∥∥ 𝑦 − 𝑥∥

which is again a violator of Req which proves correctness in this case as well.

This concludes the proof of the lemma. ■

Next, we consider the alternate case where Algorithm 4 outputs FAIL, where we show
that the input 𝑣 can be used to construct a valid terminal embedding for 𝑞 with respect to 𝑍
and consequently for 𝑋 from the guarantees of Theorem 3.2. We recall the following crucial
parameters from Algorithm 3 where 𝑟apx is defined in Definition 2.7

𝑟term
low = Θ(𝑟apx/(𝑛𝑑)20) 𝑟term

high = Θ((𝑛𝑑)20𝑟apx). (RSET)

LEMMA 3.10. If Algorithm 4 outputs FAIL on 𝑣, 𝑧𝑞 = (𝑣,
√︁

max(0, ∥𝑞 − �̂�∥2 − ∥𝑣 − Π�̂�∥2)) satis-
fies:

∀𝑧 ∈ 𝑍 : (1 − 2000𝜀)∥𝑞 − 𝑧∥ ⩽ ∥𝑧𝑞 − (Π𝑧, 0)∥ ⩽ (1 + 2000𝜀)∥𝑞 − 𝑧∥.

PROOF . Note that since Algorithm 2 returned FAIL for all fixed scale data structures, we must
have ∥𝑣−Π�̂�∥ ⩽ (1+10𝜀†)∥𝑞−�̂�∥. As a consequence, we get that ∥𝑧𝑞−(Π�̂�, 0)∥ ⩽ (1+10𝜀†)∥𝑞−�̂�∥.
Now, we need to show that 𝑧𝑞 is a valid terminal embedding of 𝑞 for an arbitrary 𝑥 ∈ 𝑍. We first
consider the case where ∥𝑥 − �̂�∥ ⩾ 0.5𝑟term

high as defined in Algorithm 3 for the node T ′. For this
point, we have:

∥𝑞 − 𝑥∥ ⩾ ∥�̂� − 𝑥∥ − ∥𝑞 − �̂�∥ ⩾
(
1 − 1
(10𝑛𝑑)9

)
∥�̂� − 𝑥∥

where the last inequality comes from the condition on ∥𝑞 − �̂�∥ from Theorem 3.2 and the
definition of 𝑟term

high . Now, we get:

|∥𝑥 − 𝑞∥ − ∥𝑧𝑞 − (Π𝑥, 0)∥ | ⩽ |∥�̂� − 𝑥∥ − ∥Π(�̂� − 𝑥)∥ | + ∥�̂� − 𝑞∥ + ∥𝑧𝑞 − (Π�̂�, 0)∥
⩽ 𝜀†∥�̂� − 𝑥∥ + (2 + 𝜀)∥�̂� − 𝑞∥
⩽ 2𝜀†∥𝑞 − 𝑥∥ + (2 + 𝜀)∥�̂� − 𝑞∥

⩽ ∥𝑞 − 𝑥∥
(
2𝜀† + 3

∥�̂� − 𝑞∥
∥𝑞 − 𝑥∥

)
⩽ 𝜀∥𝑥 − 𝑞∥

where the second inequality follows from the fact that Π as 𝜀†-convex full distortion for 𝑋 , the
third from the previous display and last inequality from the fact that ∥�̂� − 𝑞∥ ⩽ 𝑂((𝑛𝑑)10𝑟apx)
(Theorem 3.2) and ∥𝑞 − 𝑥∥ ⩾ ∥�̂� − 𝑥∥/2 ⩾ 𝑟term

high /4 and the values of 𝑟apx and 𝑟term
high (RSET).

We now consider the alternative case where ∥𝑥 − �̂�∥ ⩽ 0.5𝑟term
high . In this case, from the

definition of 𝑝 in Algorithm 3, let 𝑖∗ be the smallest 𝑖 ∈ [𝑝] such that ∥𝑥 − �̂�∥ ⩽ (1 + 𝛾)𝑖∗𝑟term
low .

Note that 𝑖∗ is finite from our condition on ∥𝑥 − �̂�∥. For this 𝑖∗, consider the fixed scale data

structure, DT ′,𝑖∗ =

(
𝑍,Z, {D𝑧, 𝐴𝑧}𝑧∈Z , {D𝑖}𝑙𝑖=1 , {W𝑖,𝑆}𝑖∈[𝑙],𝑆∈D𝑖

,
{{
D𝑖,𝑆,𝑤

}
𝑤∈W𝑖,𝑆

, 𝐴𝑖,𝑆

}
𝑖∈[𝑙],𝑆∈D𝑖

)
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constructed in Algorithm 3. Letting �̃� = (1 + 𝛾)𝑖∗𝑟term
low , we prove the lemma in two cases corre-

sponding to the structure ofDT ′,𝑖∗ as described in Lemma 3.6:
Case 1: �̂� ∈ 𝐴𝑧 for some 𝑧 ∈ Z. Note that this necessarily happens if |Nloc(�̂�, �̃�) | ⩾ 𝑚1−𝜌rep .
Case 2: �̂� ∉ 𝐴𝑧 for all 𝑧 ∈ Z. Recall, this implies |Nloc(�̂�, �̃�) | < 𝑚1−𝜌rep .

In either case, the following two simple claims will be crucial in bounding the error terms:

CLAIM 3.1 1. For all 𝑥 ∈ 𝑍, we have:

∥𝑥 − 𝑞∥ ⩾ 1
(2 + 𝜀 + 𝑜∗(1)) ∥�̂� − 𝑥∥.

Proof.We have
∥�̂� − 𝑥∥ ⩽ ∥�̂� − 𝑞∥ + ∥𝑥 − 𝑞∥ ⩽ (2 + 𝜀 + 𝑜∗(1))∥𝑥 − 𝑞∥.

By re-arranging the above inequality, we obtain our result. ■

CLAIM 3.12. We have:
∥𝑞 − 𝑥∥ ⩾ 5

12
�̃�.

Proof. If 𝑖∗ = 0, we have:

∥𝑞 − 𝑥∥ ⩾ (1 + 𝜀 + 𝑜∗(1))−1∥𝑞 − �̂�∥ ⩾ (10𝑛𝑑)5𝑟term
low

from our assumption on ∥𝑞 − �̂�∥ (Theorem 3.2). When 𝑖∗ > 0, we have (1 + 𝛾)−1�̃� ⩽ ∥�̂� − 𝑥∥ ⩽ �̃�
and the conclusion follows from Claim 3.11. ■

In the first case, we get that �̂� is assigned to some 𝑧 ∈ Z with ∥�̂� − 𝑧∥ ⩽ 2�̃� which implies by the
triangle inequality ∥𝑥 − 𝑧∥ ⩽ 3�̃�.

We now prove another claim we will use through the rest of this proof:

CLAIM 3.13. For all 𝑤 ∈ 𝑍, let 𝑤 = �̃�𝑤,�̂� and �̃� = �̃��̂� . If |⟨𝑤, �̃�⟩| ⩽ 20𝜀†:

∥𝑧𝑞 − (Π𝑤, 0)∥ − ∥𝑤 − 𝑞∥ ⩽ 400𝜀†∥𝑤 − 𝑞∥.

Proof.We have:

|∥𝑤 − 𝑞∥2 − ∥(Π𝑤, 0) − 𝑧𝑞∥2 | ⩽ |∥𝑤 − �̂�∥2 − ∥Π(𝑤 − �̂�)∥2 | + |∥𝑞 − �̂�∥2 − ∥𝑧𝑞 − (Π�̂�, 0)∥2 |
+ 2|⟨𝑤 − �̂�, 𝑞 − �̂�⟩ − ⟨Π(𝑤 − �̂�), 𝑣 − Π�̂�⟩|
⩽ 3𝜀†∥𝑤 − �̂�∥2 + 25𝜀†∥𝑞 − �̂�∥2 + 100𝜀†∥𝑤 − �̂�∥∥𝑞 − �̂�∥
⩽ 750𝜀†∥𝑤 − 𝑞∥2

where the second inequality follows from the fact that Π satisfies 𝜀†-convex hull distortion
for 𝑋 , our claim on ∥𝑧𝑞 − (Π�̂�, 0)∥ and our condition on ⟨𝑤, �̃�⟩ while the final inequality follows
from Claim 3.11 and the fact that �̂� is a (1 + 𝜀 + 𝑜∗(1))-Approximate Nearest Neighbor of 𝑞. By
factorizing the LHS and dividing by ∥𝑤 − 𝑞∥, we get the desired result. ■
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Returning to our proof, recall ∥𝑥 − 𝑧∥ ⩽ 3�̃� and from Claim 3.12, ∥𝑞 − 𝑥∥ ⩾ 5
12 �̃�. We claim since

DT ′,𝑖∗ returns FAIL that |⟨�̃�𝑥,𝑧, �̃�𝑧⟩| ⩽ 4𝜀. To see this, suppose ⟨�̃�𝑥,𝑧, �̃�𝑧⟩ ⩾ 4𝜀. In this case, we
have:

∥�̃�𝑥,𝑧 − �̃�𝑧∥2 ⩽ 2 − 8𝜀 =⇒ ∥�̃�𝑥,𝑧 − �̃�𝑧∥ ⩽ (1 − 2𝜀)
√

2.

Therefore,D𝑧 on input �̃�𝑧 returns 𝑦 such that ∥ 𝑦 − �̃�𝑧∥ ⩽ (1 + 𝜀 + 𝑜∗(1)) (1− 2𝜀)
√

2 follows from
the fact that D𝑧 is successfully instantiated. From this, we get that ∥ 𝑦 − �̃�𝑧∥ ⩽

√
2(1 − 0.8𝜀).

From this expression, we obtain:

∥ 𝑦 − �̃�𝑧∥2 = 2 − 2⟨𝑦, �̃�𝑧⟩ =⇒ ⟨𝑦, �̃�𝑧⟩ ⩾ 0.8𝜀

which contradicts the assumption that DT ′,𝑖∗ returns FAIL. The proof for ⟨�̃�𝑧, �̃�𝑥,𝑧⟩ ⩽ −4𝜀 is
similar by replacing �̃�𝑧 by −�̃�𝑧 in the above proof and using the fact that we queryD𝑧 with −�̃�𝑧
as well. Hence, we have |⟨�̃�𝑧, �̃�𝑥,𝑧⟩| ⩽ 4𝜀. Finally, bound the deviation of ∥𝑧𝑞 − (Π𝑥, 0)∥ from
∥𝑞 − 𝑥∥:

|∥𝑥 − 𝑞∥2 − ∥(Π𝑥, 0) − 𝑧𝑞∥2 | ⩽ |∥𝑥 − 𝑧∥2 − ∥Π(𝑥 − 𝑧)∥2 | + |∥𝑞 − 𝑧∥2 − ∥𝑧𝑞 − (Π𝑧, 0)∥2 |
+ 2|⟨𝑥 − 𝑧, 𝑞 − 𝑧⟩ − ⟨Π(𝑥 − 𝑧), 𝑣 − Π𝑧⟩|
⩽ 3𝜀†∥𝑥 − 𝑧∥2 + 750𝜀†∥𝑞 − 𝑧∥2 + 2 · 4𝜀 ·

√
5 · ∥𝑥 − 𝑧∥∥𝑞 − 𝑧∥

⩽ 3𝜀†∥𝑥 − 𝑧∥2 + 750𝜀†∥𝑞 − 𝑧∥2 + 20𝜀∥𝑥 − 𝑧∥∥𝑞 − 𝑧∥
⩽ 27𝜀†�̃�2 + 750𝜀†(∥𝑞 − 𝑥∥ + ∥𝑥 − 𝑧∥)2

+ 20𝜀∥𝑥 − 𝑧∥(∥𝑞 − 𝑥∥ + ∥𝑥 − 𝑧∥)
⩽ 27𝜀†�̃�2 + 1500𝜀†(∥𝑞 − 𝑥∥2 + ∥𝑥 − 𝑧∥2) + 60𝜀�̃�(∥𝑞 − 𝑥∥ + 3�̃�)
⩽ 1500𝜀∥𝑞 − 𝑥∥2

where the second inequality follows from the fact that Π has 𝜀†-convex hull distortion for 𝑋 ,
Claim 3.13 and the fact that |⟨�̃�𝑧, �̃�𝑥,𝑧⟩| ⩽ 4𝜀, the fourth inequality follows from the fact that
∥𝑥 − 𝑧∥ ⩽ 3�̃� and the last and second-to-last inequalities follow from the fact that (𝑎 + 𝑏)2 ⩽
2(𝑎2 + 𝑏2) and Claim 3.12. Factorizing the LHS now establishes the lemma in this case.

We now consider the alternate case where |Nloc(�̂�, �̃�) | < 𝑚1−𝜌rep . For the fixed scale data
structure,DT ′,𝑖∗ , recall that we have from Lemma 3.6 that:

𝑙∑︁
𝑖=1

1



∑︁
𝑦∈𝑍

∥ 𝑦−�̂�∥⩾2�̃�

∑︁
𝑆∈ℎ𝑖 (�̂�)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑚𝜌4) and

∑︁
𝑦∈𝑍

∥ 𝑦−�̂�∥⩽2�̃�

∑︁
𝑆∈ℎ𝑖 (�̂�)

1 { 𝑦 ∈ 𝑆} ⩽ 𝑂∗(𝑚(1−𝜌rep)+𝜌3)


⩾ 0.98𝑙

𝑙∑︁
𝑖=1

1


∑︁
𝑆∈ℎ𝑖 (�̂�)

|𝑆 \ 𝐴𝑖,𝑆 | ⩽ 𝑂∗(𝑚𝜌4)
 ⩾ 0.98𝑙
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𝑙∑︁
𝑖=1

1 {∃𝑆 ∈ ℎ𝑖 (�̂�) such that 𝑥 ∈ 𝑆} ⩾ 0.98𝑙.

In particular, we have by the union bound, there exists a set J ⊂ [𝑙] with |J | ⩾ 0.9𝑙 satisfying
the indicators in all three of the above equations. For any 𝑗 ∈ J , from Algorithm 2, all the
subsets in ℎ 𝑗 (�̂�) are fully explored. For some 𝑗 ∈ J , consider 𝑆 ∈ ℎ 𝑗 (�̂�) such that 𝑥 ∈ 𝑆. Now, if
𝑥 ∉ 𝐴 𝑗,𝑆 or 𝑥 ∈ W𝑗,𝑆, conclusion of the lemma follows from Claim 3.13. Hence, the only case left
to consider is the case where 𝑥 ∈ 𝐴 𝑗,𝑆. Let 𝑥 be assigned to 𝑤 ∈ W𝑗,𝑆 such that ∥𝑥 − 𝑤∥ ⩽ 4�̃�. In
this case, we proceed identically to the previous case where �̂� is assigned to some 𝑧 ∈ Z. Since
DT ′,𝑖∗ returns FAIL, |⟨�̃�𝑤, �̃�𝑥,𝑤⟩| ⩽ 4𝜀. To see this, assume ⟨�̃�𝑤, �̃�𝑥,𝑤⟩ ⩾ 4𝜀 and we have:

∥�̃�𝑤 − �̃�𝑥,𝑤∥2 ⩽ 2 − 8𝜀 =⇒ ∥�̃�𝑤 − �̃�𝑥,𝑤∥ ⩽ (1 − 2𝜀)
√

2.

Therefore,D 𝑗,𝑆,𝑤 on input �̃�𝑤 returns 𝑦 such that ∥ 𝑦 − �̃�𝑤∥ ⩽ (1 + 𝜀 + 𝑜∗(1)) (1 − 2𝜀)
√

2 follows
from the fact thatD 𝑗,𝑆,𝑤 is successfully instantiated. From this, we get ∥ 𝑦 − �̃�𝑤∥ ⩽

√
2(1 − 0.8𝜀).

We obtain:
∥ 𝑦 − �̃�𝑤∥2 = 2 − 2⟨𝑦, �̃�𝑤⟩ =⇒ ⟨𝑦, �̃�𝑤⟩ ⩾ 0.8𝜀

which contradicts the assumption thatDT ′,𝑖∗ returns FAIL. The proof when ⟨�̃�𝑤, �̃�𝑥,𝑤⟩ ⩽ −4𝜀 is
similar by replacing �̃�𝑤 by −�̃�𝑤 and using the fact that we queryD 𝑗,𝑆,𝑤 with −�̃�𝑤 as well. Hence,
we have that |⟨�̃�𝑤, �̃�𝑥,𝑤⟩| ⩽ 4𝜀. As before, we bound the deviation of ∥𝑧𝑞 − (Π𝑥, 0)∥ from ∥𝑞 − 𝑥∥:

|∥𝑥 − 𝑞∥2 − ∥(Π𝑥, 0) − 𝑧𝑞∥2 | ⩽ |∥𝑥 − 𝑤∥2 − ∥Π(𝑥 − 𝑤)∥2 | + |∥𝑞 − 𝑤∥2 − ∥𝑧𝑞 − (Π𝑤, 0)∥2 |
+ 2|⟨𝑥 − 𝑤, 𝑞 − 𝑤⟩ − ⟨Π(𝑥 − 𝑤), 𝑣 − Π𝑤⟩|
⩽ 3𝜀†∥𝑥 − 𝑤∥2 + 750𝜀†∥𝑞 − 𝑤∥2 + 2 · 4𝜀 ·

√
5 · ∥𝑥 − 𝑤∥∥𝑞 − 𝑤∥

⩽ 3𝜀†∥𝑥 − 𝑤∥2 + 750𝜀†∥𝑞 − 𝑤∥2 + 20𝜀∥𝑥 − 𝑤∥∥𝑞 − 𝑤∥
⩽ 48𝜀†�̃�2 + 750𝜀†(∥𝑞 − 𝑥∥ + ∥𝑥 − 𝑤∥)2

+ 20𝜀∥𝑥 − 𝑤∥(∥𝑞 − 𝑥∥ + ∥𝑥 − 𝑤∥)
⩽ 48𝜀†�̃�2 + 1500𝜀†(∥𝑞 − 𝑥∥2 + ∥𝑥 − 𝑤∥2) + 80𝜀�̃�(∥𝑞 − 𝑥∥ + 4�̃�)
⩽ 2000𝜀∥𝑞 − 𝑥∥2

where the second inequality follows from the fact that Π has 𝜀†-convex hull distortion for 𝑋 ,
Claim 3.13 and the fact that |⟨�̃�𝑤, �̃�𝑥,𝑤⟩| ⩽ 4𝜀, the fourth inequality follows from the fact that
∥𝑥 − 𝑤∥ ⩽ 4�̃� and the last and second-to-last inequalities follow from the fact that (𝑎 + 𝑏)2 ⩽
2(𝑎2+𝑏2) and Claim 3.12. Factorizing the LHS now establishes the lemma in this case concluding
the proof of the lemma. ■

Having proved the correctness of Algorithm 4, we finally bound its runtime. Before doing
so, we require a data structure allowing a weak form of dimensionality reduction that allows a
speed-up of our algorithm. Note that standard techniques for dimensionality reduction may
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not be used in our setting as the queries may be chosen based on the data structure itself.
For example, for the Johnson-Lindenstrauss lemma, the queries may be chosen orthogonal
to the rows of the projection matrix violating its correctness guarantees. We first define an
approximate inner product condition below for a matrix Π and 𝑥, 𝑦, 𝑧 ∈ R𝑑 and 𝜀 > 0

|⟨Π(𝑥 − 𝑧),Π( 𝑦 − 𝑧)⟩ − ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩| ⩽ 𝜀∥𝑥 − 𝑧∥∥ 𝑦 − 𝑧∥. (AP-IP)

For 𝑥, 𝑦, 𝑧 ∈ R𝑑 and 𝜀 > 0, we say a matrix Π satisfies 𝐴𝑃-𝐼𝑃(𝜀, 𝑥, 𝑦, 𝑧) if it satisfies AP-IP. For a
dataset, 𝑋 ⊂ R𝑑 , Π satisfies 𝐴𝑃-𝐼𝑃(𝜀, 𝑋) if it satisfies 𝐴𝑃-𝐼𝑃(𝜀, 𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

We utilize the following theorem which states that if one initializes𝑂(𝑑)many independent
JL-sketches, for any input query, most of them satisfy the AP-IP condition for the dataset 𝑋
augmented with the input query. This essentially allows us to reduce the dimensionality of the
search problem by instead verifying the inner product condition in Gen-Prog on a randomly
drawn sketch from this set as opposed to the 𝑑-dimensional space containing the dataset.

THEOREM 3.14. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , 𝜀 ∈

(
1√
𝑛𝑑
, 1

)
and 𝛿 ∈ (0, 1). Furthermore, let {Π𝑖}𝑚

𝑖=1 ⊂

R𝑘×𝑑 for 𝑚 ⩾ Ω((𝑑 + log 1/𝛿) log 𝑛𝑑) and 𝑘 ⩾ Ω
(

log 𝑛
𝜀2

)
with Π𝑖

𝑗,𝑙

𝑖𝑖𝑑
∼ N(0, 1/𝑘). Then, we have:

∀𝑞 ∈ R𝑑 :
𝑚∑︁
𝑖=1

1
{
Π𝑖 satisfies 𝐴𝑃-𝐼𝑃(𝜀, 𝑋 ∪ {𝑞})

}
⩾ 0.95𝑚 (JL-Rep)

with probability at least 1 − 𝛿.

We now use Theorem 3.14 to bound the runtime of Algorithm 4.

LEMMA 3.15. Algorithm 4 is implementable in time 𝑂∗(𝑑 + 𝑛𝜌2 + 𝑛𝜌4 + 𝑛𝜌4+(1+𝜌3−𝜌4−𝜌rep)𝜌2) with
probability at least 1 − 𝑛−10.

PROOF . Note that we may restrict ourselves to bounding the runtime of Algorithm 2 as we
query at most 𝑂∗(1) many of them. For a single fixed scale data structure,DT ′,𝑖 being queried,
computing the sets ℎ𝑖 (�̂�) takes time 𝑂∗(𝑑𝑛𝜌4). If �̂� is assigned to a point 𝑧, the nearest neighbor
procedure takes time𝑂∗(𝑑𝑛𝜌2). Otherwise, processing the unassigned points takes time𝑂∗(𝑑𝑛𝜌4)
and for the assigned points, there are at most 𝑂∗(𝑛1−𝜌rep+𝜌3) in at most 𝑂∗(𝑛𝜌4) many sets. From
the concavity of the function 𝑓 (𝑥) = 𝑥𝜌2 , we get that the maximum time taken to query all of
these nearest neighbor data structures is at most 𝑂∗(𝑑𝑛𝜌4+(1+𝜌3−𝜌4−𝜌rep)𝜌2). We now discuss how
to decouple the dimensionality term from the term dependent on 𝑛.

As explained in Subsection 2.3, it suffices for our argument to use Π′(𝑥 − 𝑦) instead of 𝑥 − 𝑦
as the first component in the construction of the vectors used to instantiate the data structures
D𝑧 andD𝑖,𝑆,𝑤 in Algorithm 1 for any Π′ satisfying:

∀𝑥, 𝑦, 𝑧 ∈ 𝑋 ∪ {𝑞} : |⟨Π′(𝑥 − 𝑧),Π′( 𝑦 − 𝑧)⟩ − ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩| ⩽ 𝑜∗(1) · ∥𝑥 − 𝑧∥∥ 𝑦 − 𝑧∥.
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From Theorem 3.14, we get that an instantiation of 𝑚 = Θ̃(𝑑) JL sketches, {Π𝑖}𝑖∈[𝑚] , with
Θ(log 𝑛 log log 𝑛) rows each satisfies the above condition for at least 95% of them with probability
at least 1 − 𝑛−10. To construct our final violator detection subroutine, we instantiate 𝑚 copies of
our violator detection algorithm for the projections of the data points with respect to each of
the sketches Π𝑖 . At query time, we simply sample Θ(log 𝑛) many of these sketches for a possible
violator. We then check the validity of each of the returned candidates which can be done in
time 𝑂(𝑑). Since, 95% of the sketches satisfy the above condition, at least one of the sampled
sketches will with probability at least 1 − 𝑛−10 and hence, satisfies the guarantees required of
our oracle. ■

Proof of Theorem 3.1: Hence, Lemmas 3.9, 3.10 and 3.15 along with Theorems 3.2 and 3.14
and the preceding discussion conclude the proof of Theorem 3.1 via a union bound over the
𝑂∗(1) rounds of the Ellipsoid algorithm. ■

Input: Data Structure
{
DT ′,𝑖

}
T ′∈T ,𝑖∈{0}∪[𝑝], Tree T, Query 𝑞, Candidate

𝑣, AANN Output (�̂�,T ′), Tolerance 𝜀†

1: for 𝑖 = 0 . . . , 𝑝 do
2: if 𝑥 = FixedScaleQuery(DT ′,𝑖, 𝑞, 𝑣, �̂�, 𝜀†) ≠ FAIL then
3: return 𝑥

4: return FAIL

Algorithm 4. MultiScaleQuery(
{
DT ′,𝑖

}
T ′∈T ,𝑖∈{0}∪[𝑝] ,T , 𝑞, 𝑣, (�̂�,T

′), 𝜀†)

4. Adaptive Approximate Nearest Neighbor

In this section, we prove the following theorem regarding the existence of adaptive algorithms
for approximate nearest neighbor search based on adapting ideas from [4] to the nearest
neighbor to near neighbor reduction. These data structures will play a crucial role in designing
algorithms to compute terminal embeddings. Note again that the probability of success only
depends on the random choices made by data structure at query-time which may be made
arbitrarily high by repetition assuming successful instantiation of the data structure. Also, the
second property of the tuple returned by the data structure is irrelevant for computing an
approximate nearest neighbor but plays a crucial part in our algorithm for computing terminal
embeddings.



31 / 52 Terminal Embeddings in Sublinear Time

THEOREM 3.2. (Restated) Let 𝑐 > 1 and 𝜌𝑢, 𝜌𝑐 > 0. Then, there is a randomized procedure
which when instantiated with a dataset 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R

𝑑 and a (𝜌𝑢, 𝜌𝑐, 𝑐)-Approximate Near
Neighbor data structure (Definition 2.8) produces a data structure, (D,T), satisfying:

1. Given any 𝑞 ∈ R𝑑 ,D produces (�̂� ∈ 𝑋,Tres ∈ T ) satisfying:
a. ∥𝑞 − �̂�∥ ⩽ min𝑥∈𝑋 (1 + 𝑜∗(1))𝑐∥𝑞 − 𝑥∥
b. �̂� ∈ Tres

c. Furthermore, letY = { 𝑦𝑖}𝑛𝑖=1 ⊂ R
𝑘 satisfying for some 𝜀† ∈

(
1√
𝑑
, 1

)
:

∀𝑖, 𝑗 ∈ [𝑛] : (1 − 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ ∥ 𝑦𝑖 − 𝑦 𝑗 ∥ ⩽ (1 + 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥

and for Tres =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
, let 𝑦 ∈ R𝑘 satisfy for 𝜀‡ ∈

[𝜀†, 1):
∀𝑥𝑖 ∈ 𝑍 : (1 − 𝜀‡)∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽ (1 + 𝜀‡)∥𝑞 − 𝑥𝑖 ∥.

Then:

∀𝑥𝑖 ∈ 𝑋 :
(
1 − (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽

(
1 + (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥.

and if |𝑍 | > 1:

Ω
(

1
(𝑛𝑑)10𝑟apx

)
⩽ ∥𝑞 − �̂�∥ ⩽ 𝑂((𝑛𝑑)10𝑟apx)

with probability at least 1 − 1/poly(𝑛)
2. T is a valid Partition Tree of 𝑋 (Definition 2.7)
3. The space complexity ofD is 𝑂∗(𝑑𝑛1+𝜌𝑢 log 1/𝛿)
4. The runtime ofD on any 𝑞 ∈ R𝑑 is at most 𝑂∗(𝑑 + 𝑛𝜌𝑐)

with probability 1 − 𝛿.

For to establish Theorem 3.2, we require a construction of a partition tree. Recall again
the definitions relevant to a partition tree from Subsection 2.2. The first is the partitioning of a
data points into connected components of a graph constructed by thresholding the distances
between points in the dataset.

DEF IN IT ION 2 .5. (Restated) Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝑟 > 0. We will use GG(𝑋, 𝑟) to denote

the graph with nodes indexed by 𝑥𝑖 and an edge between 𝑥𝑖 and 𝑥 𝑗 if ∥𝑥𝑖−𝑥 𝑗 ∥ ⩽ 𝑟. The connected
components of this graph will be denoted by CC(𝑋, 𝑟); that is, CC(𝑋, 𝑟) = {𝐶 𝑗}𝑚𝑗=1 is a partitioning
of 𝑋 with 𝑥 ∈ 𝐶 𝑗 if and only if ∥𝑥 − 𝑦∥ ⩽ 𝑟 for some 𝑦 ∈ 𝐶 𝑗 \ {𝑥}.

The second is the notion of refinement between partitions.

DEF IN IT ION 2 .6. (Restated) For a data set 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , we say that a partition C refines

a partition C′ if for all 𝐶 ∈ C, 𝐶 ⊆ 𝐶′ for some 𝐶′ in C′. This will be denoted by C′ ⊑ C.
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Next, define 𝑟med(𝑋) as:

𝑟med(𝑋) = min{𝑟 > 0 : ∃𝐶 ∈ CC(𝑋, 𝑟) with |𝐶 | ⩾ 𝑛/2}.

The last is the definition of the partition tree itself.

DEF IN IT ION 2 .7. (Restated) Given 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , a Partition Tree of 𝑋 is a tree, T , whose

nodes are labeled by
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
where 𝑍, 𝐶rep ⊂ 𝑋 , {T𝐶}𝐶∈Clow ∪

{Trep} represent its children, Clow, Chigh are partitions of 𝑍 and 𝑟apx > 0 satisfying the following
conditions:

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
∀𝐶 ∈ Chigh : ∃! 𝑧 ∈ 𝐶rep with 𝑧 ∈ 𝐶.

For the sake of notational simplicity, we will use T ′ ∈ T both to refer to a node in the tree as
well as the subtree rooted at that node and Size(T ′) to refer to the sum of the number of points
stored in the subtree T ′. The above condition implies Size(T ) ⩽ 𝑂(𝑛 log 𝑛) [7].

We refer to the size of a subtree T ′ =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T by the

following recursive formula:

Size(T ) = |𝑍 | +
∑︁
𝐶∈Clow

Size(T𝐶) + Size(Trep).

We state a result proved in Appendix A which allows the construction of a partition tree
in time near-linear in the dataset size.

LEMMA 4.1. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝛿 ∈ (0, 1). Then, Algorithm 8 when given 𝑋 , 𝛿 and 𝑛, runs

in time 𝑂(𝑛𝑑 log(1/𝛿)) and constructs, T , satisfying:

∀T ′ =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T :

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
with probability at least 1 − 𝛿. Furthermore, as a consequence we have for all 𝑛 ⩾ 3:

Size(T ) ⩽ 𝐶𝑛 log 𝑛, ∀𝐶 ∈ Clow ∪ {𝐶rep} : |𝐶 | ⩽ |𝑍 |
2

and 𝑟med ⩽ 𝑟apx ⩽ 𝑛𝑟med.

Through the rest of the section, we prove Theorem 3.2. In Subsection 4.1, we overview the
construction of our data structure given a partition tree constructed by say, Lemma 4.1 and in
Subsection 4.2, we show how to query the data structure where we show that it is sufficient to
construct terminal embeddings for the set of points in the node we terminate our traversal of
the Partition Tree.

Intuitively, through a union bound and a repetition argument, one would expect to show
that for Ω̃(𝑑) independently instantiated approximate near neighbor data structures, most of
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them (say 90%) will correctly answer a near neighbor query for any (even perhaps, adaptively
chosen based on the instantiations of the data structures) query 𝑞 ∈ R𝑑 . However, care must be
taken to choose the grid in the covering number argument to avoid dependence on the aspect
ratio of the dataset. Additionally, we discretize the input to one of the points in the chosen grid
as we assume no continuity properties on the near neighbor data structures. Furthermore,
we require stronger additional properties that enable these results to be used to construct the
terminal embeddings in Section 3. These technical considerations complicate the proof as it
requires interleaving the choice of the grid with the design of the partition tree and its use in
the nearest neighbor to near neighbor reduction. The remainder of this section illustrates and
circumvents these difficulties.

4.1 Constructing the Data Structure

In this subsection, we describe how the data structure for our adaptive nearest neighbor
algorithm is constructed. The procedure is outlined in Algorithm 5. The procedure takes as
input a partition tree produced by 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 8 satisfying the conclusion of Lemma 4.1, a failure
probability 𝛿 ∈ (0, 1) and the total number of points 𝑛.

Input: Partition Tree T, Failure Probability 𝛿, Total Number of
points 𝑛

1: 𝛿† ← 𝑐prob𝛿

(𝑛𝑑)10 , 𝛾 ←
𝑐step·𝜀3

log3 𝑛

2: for T ′ =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T do

3: 𝑟low ←
𝑟apx

𝐶range·(𝑛𝑑)10 , 𝑟high ← 𝐶range · (𝑛𝑑)10𝑟apx

4: 𝑙 ←
⌈

log 𝑟high/𝑟low
𝛾

⌉
, 𝑠← 𝐶rep(𝑑 + log 𝑙/𝛿†) log(𝑛𝑑)

5: For 𝑖 ∈ {0} ∪ [𝑙], 𝑗 ∈ [𝑠], let D𝑖, 𝑗 be i.i.d ANN data structures with
(𝑍, (1 + 𝛾) 𝑖𝑟low)

6: Let DT ′ = {D𝑖, 𝑗}𝑖∈{0}∪[𝑙], 𝑗∈[𝑠]
7: return {DT ′}T ′∈T

Algorithm 5. ConstructAANN(T , 𝛿, 𝑛)

To state the correctness guarantees on the data structure, we will require most of the ANN
data structures to be accurate for an appropriately chosen discretization of R𝑑 . The reason for
this will become clear when defining the operation of the query procedure on the data structure
produced by the algorithm. To construct the discrete set of points, consider a particular node
T ′ ∈ T . Let T ′ =

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T and G(𝜈) be the discrete subset

of R𝑑 whose coordinates are integral multiples of 𝜈 = 𝛾
1000(𝑛𝑑)20 · 𝑟low where 𝑟low =

𝑟apx
𝐶range·(𝑛𝑑)10 and

𝛾 =
𝑐step·𝜀3

log3 𝑛
as in Algorithm 5. Again, letting 𝑟high = 𝐶range · (𝑛𝑑)10𝑟apx as in Algorithm 5, we define
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the grid of points corresponding to T ′ as follows:

H (T ′) =
⋃
𝑥∈𝑍
B(𝑥, 106 · (𝑛𝑑)20 · 𝑟high) ∩ G(𝜈).

That isH corresponds to the set of points in G within 106 · (𝑛𝑑)20𝑟high of some point in 𝑍. Finally,
the set of points where we would like to ensure the correctness of our procedure is given by:

J =
⋃
T ′∈T
H(T ′). (AANN-Grid)

We now state the main result concerning the correctness of Algorithm 5:

LEMMA 4.2. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R𝑑 , 𝛿 ∈ (0, 1) and T be a Partition Tree of 𝑋 satisfying the
conclusion of Lemma 4.1. Then, Algorithm 5 when run with input 𝑋 , 𝛿 and 𝑛, returns D =

{DT ′}T ′∈T satisfying:

∀DT ′ = {D𝑖, 𝑗}𝑖∈{0}∪[𝑙], 𝑗∈[𝑠] ∈ D, 𝑖 ∈ {0} ∪ [𝑙], 𝑧 ∈ J :
𝑠∑︁
𝑗=1

1
{
D𝑖, 𝑗 answers 𝑧 correctly

}
⩾ 0.95𝑠

with probability at least 1 − 𝛿. Furthermore, the space complexity ofD is 𝑂∗(𝑛1+𝜌𝑢 (𝑑 + log 1/𝛿)).

PROOF . We start by bounding the amount of space occupied by the data structure. For the near-
est neighbor data structures instantiated, note that the space utilization of a single data structure
with 𝑛 points scales as𝑂∗(𝑛1+𝜌𝑢+ 𝑓 (𝑛)) where 𝑓 (𝑛) = 𝑜(1). Let𝑇 be such that 𝑓 (𝑛) ⩽ 1 for all 𝑛 ⩾ 𝑇
and let 𝑀 = max𝑖∈[𝑇 ] 𝑓 (𝑖). To account for the space occupied by the data structure, first consider
nodes in the tree with less than log 𝑛 points. LetD =

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
be

such a node. For this node, the space occupied by the nearest neighbor data structures is at most
𝑂∗( |𝑍 |1+𝜌𝑢+𝑀 (𝑑 + log 1/𝛿)) as we instantiate 𝑂∗(𝑑 + log 1/𝛿) nearest neighbor data structures in
each node. Since, |𝑍 | ⩽ log 𝑛 and there are at most 𝑂∗(𝑛 log 𝑛) many of these nodes (Lemma 4.1),
the total amount of space occupied by these nodes is at most 𝑂∗(𝑛(𝑑 + log 1/𝛿)). Now, consider
the alternate case where |𝑍 | ⩾ log 𝑛. Through similar reasoning, the total amount of space occu-
pied by such a node is𝑂∗( |𝑍 |1+𝜌𝑢+ 𝑓 ( |𝑍 |) (𝑑 + log 1/𝛿)). Now, summing over all the nodes in the tree
and by using the convexity of the function 𝑓 (𝑥) = 𝑥1+𝜌 for 𝜌 > 0, we get that the total amount
of space occupied by nodes with more than log 𝑛 points is at most 𝑂∗(𝑛1+𝜌𝑢 (𝑑 + log 1/𝛿)). This
completes the bound on the space complexity of the data structure produced by Algorithm 5.

We will now establish the correctness guarantees required ofD. To bound the size of J ,
first consider a singleH(T ′) in the definition of J . For a single term in the definition ofH(T ′),
V = B

(
𝑥, 106 · (𝑛𝑑)20 · 𝑟high

)
∩ G(𝜈), note thatV is a 𝜈 packing of B

(
𝑥, (106 + 1) · (𝑛𝑑)20 · 𝑟high

)
.

Therefore, from standard bounds on packing and covering numbers and the definitions of
𝜈 and 𝑟high in terms of 𝑟apx, we get that |V| ⩽ (𝑛𝑑)𝑂(𝑑) [12, Section 4.2]. By taking a union
bound over the 𝑂∗(𝑛 log 𝑛) nodes in the tree and the at most 𝑛 points in each node, we get that
|J | ⩽ (𝑛𝑑)𝑂(𝑑) . Now, for a particular 𝑧 ∈ J and a particular node T ′ ∈ T with data structure
DT ′ = {D𝑖, 𝑗}𝑖∈{0}∪[𝑙], 𝑗∈[𝑠] , the probability thatD𝑖, 𝑗 incorrectly answers the Approximate Near
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Neighbor query is at most 0.01. Therefore, we have by Hoeffding’s inequality that the probability
that more than 0.05𝑠 of theD𝑖, 𝑗 answer 𝑧 incorrectly is at most 𝛿/(10 · |T | · |J |) from our setting
of 𝑠 and our bounds on |J | and |T |. A union bound over J and the nodes of the tree establishes
the lemma. ■

4.2 Querying the Data Structure and Proof of Theorem 3.2

The procedure to query the data structure returned by Algorithm 5 is described in Algorithm 6.
The procedure takes as inputs the partition tree, T , and the data structure output by Algorithm 5
which has a separate data structure for each T ′ ∈ T . The procedure recursively explores the
nodes of T starting at the root and moving down the tree and stops when the approximate
nearest neighbor found is within 𝑝𝑜𝑙 𝑦(𝑛)𝑟apx of the nodes in the tree. In addition, in anticipation
of its application towards computing terminal embeddings, we show that it is sufficient to
construct a terminal embedding for the set of points in the node the algorithm terminates in. We
now state the main lemma of this subsection which shows both that the data point 𝑥 returned
by Algorithm 6 is an approximate nearest neighbor of 𝑞 as well as establishing that it suffices to
construct a terminal embedding for data points in the node of the Partition tree the algorithm
terminates in.

LEMMA 4.3. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , T be a valid Partition Tree of 𝑋 and D =

{
T , {DT ′}T ′∈T

}
be a data structure satisfying the conclusion of Lemma 4.2. Then, Algorithm 6, when run with
inputsD and any 𝑞 ∈ R𝑑 returns a tuple (�̂�,Tres) satisfying:

∥𝑞 − �̂�∥ ⩽ (1 + 𝑜∗(1))𝑐min
𝑥∈𝑋
∥𝑞 − 𝑥∥ and �̂� ∈ Tres.

Furthermore, letY = { 𝑦𝑖}𝑛𝑖=1 ⊂ R
𝑘 satisfying for some 𝜀† ∈

(
1√
𝑑
, 1

)
:

∀𝑖, 𝑗 ∈ [𝑛] : (1 − 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ ∥ 𝑦𝑖 − 𝑦 𝑗 ∥ ⩽ (1 + 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥

and for Tres =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
, let 𝑦 ∈ R𝑘 satisfy for some 𝜀‡ ∈ [𝜀†, 1):

∀𝑥𝑖 ∈ 𝑍 : (1 − 𝜀‡)∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽ (1 + 𝜀‡)∥𝑞 − 𝑥𝑖 ∥.

Then, we have that:

∀𝑥𝑖 ∈ 𝑋 :
(
1 − (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦𝑖 ∥ ⩽

(
1 + (1 + 𝑜∗(1)) 𝜀‡

)
∥𝑞 − 𝑥𝑖 ∥

and if |𝑍 | > 1:

Ω
(

1
(𝑛𝑑)10𝑟apx

)
⩽ ∥𝑞 − �̂�∥ ⩽ 𝑂((𝑛𝑑)10𝑟apx).

Additionally, Algorithm 6 runs in time 𝑂∗(𝑛𝜌𝑐 (𝑑 + log 1/𝛿)).

PROOF . We first set up some notation. Note that Algorithm 6 traverses the partition tree, T ,
using the data structureD defined in Algorithm 5. Let T (0) , . . . ,T (𝐾) denote the sequence of
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nodes traversed by the algorithm with T (𝑖) =
(
𝑍 (𝑖) , {T𝐶}(𝑖)

𝐶∈C (𝑖 )low

,T (𝑖)rep , C
(𝑖)
low, C

(𝑖)
high, 𝐶

(𝑖)
rep, 𝑟

(𝑖)
apx

)
. Note

that 𝐾 ⩽ ⌈log 𝑛⌉ + 1 as the number of data points drops by at least a factor of 2 each time the
algorithm explores a new node. To prove the first claim regarding the correctness of �̂�, let
𝑟∗ = min𝑥∈𝑋 ∥𝑞 − 𝑥∥. We now have the following claim:

CLAIM 4.4. For all 𝑖 ∈ {0, . . . , 𝐾}, we have:

∃𝑧 ∈ 𝑍 (𝑖) : ∥𝑞 − 𝑧∥ ⩽
(
1 + 1
(10𝑛𝑑)5

) 𝑖
𝑟∗.

Proof.We will prove the claim via induction on 𝑖. The base case where 𝑖 = 0 is trivially true.
Now, suppose that the claim holds true for all nodes up to T (𝑘) and we wish to establish the
claim from T (𝑘+1) . For the algorithm to reach node T (𝑘+1) from node T (𝑘) , one of the following
two cases must have occurred:

1. Either T (𝑘+1) = T (𝑘)rep or
2. T (𝑘+1) = T𝐶 for some 𝐶 ∈ C (𝑘)low

Now, let �̃�(𝑘) be the discretization of 𝑞 when T (𝑘) is being processed. We first handle the case
where �̃�(𝑘) ∉ J , we have by the triangle inequality:

𝑟∗ ⩾ min
𝑥∈𝑋
∥�̃�(𝑘) − 𝑥∥ − ∥𝑞 − �̃�(𝑘) ∥ ⩾ 5 · 105 · (𝑛𝑑)20 · 𝑟high

and the first case occurs. Now assume that �̃�(𝑘) ∈ J . If the first case occurs, we again have by
the triangle inequality:

min
𝑧∈𝑍 (𝑘)

∥𝑞 − 𝑧∥ ⩾ min
𝑧∈𝑍 (𝑘)

∥�̃�(𝑘) − 𝑧∥ − ∥𝑞 − �̃�(𝑘) ∥ ⩾ 0.9𝑟high

by the fact that Algorithm 6 recurses on𝐶 (𝑘)rep and the conclusion of Lemma 4.2 which ensures that
�̃�(𝑘) does not have a neighbor in 𝑍 (𝑘) within a distance of 𝑟(𝑘)high. Now, let 𝑧∗ be the closest neighbor
to 𝑞 in 𝑍 (𝑘); that is, 𝑧∗ = arg min𝑧∈𝑍 (𝑘) ∥𝑞−𝑧∥. We know that there exists 𝐶 ∈ Chigh such that 𝑧∗ ∈ 𝐶.
Furthermore, we have by the triangle inequality and the fact that CC(𝑍 (𝑘) , 1000𝑛2𝑟

(𝑘)
apx) ⊑ C

(𝑘)
high

(Lemma 4.1) that ∥𝑧 − 𝑧∗∥ ⩽ 1000𝑛3𝑟
(𝑘)
apx for all 𝑧 ∈ 𝐶. Note that 𝐶 has representative �̂� in the

construction of 𝐶 (𝑘)rep. For �̂�, we have

∥𝑞 − �̂�∥
∥𝑞 − 𝑧∗∥ ⩽ 1 + ∥ �̂� − 𝑧

∗∥
∥𝑞 − 𝑧∗∥ ⩽ 1 +

1000𝑛3𝑟apx

0.9𝑟high
⩽

(
1 + 1
(10𝑛𝑑)5

)
.

Along with the induction hypothesis, the above fact concludes the proof of the claim in this case.
Finally, for the second case, again let 𝑧∗ = arg min𝑧∈𝑍 (𝑘) ∥𝑞 − 𝑧∥ and 𝐶 ∈ C (𝑘)low such that 𝑧∗ ∈ 𝐶.
From the definition of C (𝑘)low and Lemma 4.1, we also know for all 𝑧 ∈ 𝑍 (𝑘) \ 𝐶, ∥𝑧∗ − 𝑧∥ ⩾ 𝑟apx

(1000𝑛3)

as Clow ⊑ CC
(
𝑍 (𝑘) ,

𝑟apx
1000𝑛3

)
. We have by the triangle inequality for all 𝑧 ∈ 𝑍 (𝑘) \ 𝐶:

∥�̃�(𝑘) − 𝑧∥ ⩾ ∥𝑧 − 𝑧∗∥ − ∥𝑞 − 𝑧∗∥ − ∥𝑞 − �̃�(𝑘) ∥ = ∥𝑧 − 𝑧∗∥ − min
𝑧∈𝑍 (𝑘)

∥𝑞 − 𝑧∥ − ∥𝑞 − �̃�(𝑘) ∥
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⩾ ∥𝑧 − 𝑧∗∥ − min
𝑧∈𝑍 (𝑘)

(∥�̃�(𝑘) − 𝑧∥ + ∥�̃�(𝑘) − 𝑞∥) − ∥𝑞 − �̃�(𝑘) ∥

⩾
𝑟
(𝑘)
apx

1000𝑛3 − 𝑐𝑟
(𝑘)
low − 2

√
𝑑𝜈(𝑘) ⩾ 𝑐(10𝑛𝑑)7𝑟(𝑘)low.

Therefore, all 𝑥 ∈ 𝑍 (𝑘) such that ∥�̃� − 𝑥∥ ⩽ 𝑐𝑟(𝑘)low must belong to 𝐶. Consequently, we recurse on
T𝐶 with 𝑧∗ ∈ 𝐶 ∈ Clow which establishes the inductive hypothesis in this case as well. ■

To finish the proof of the first claim, let T (𝐾) =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
with associated data structure DT (𝐾 ) = {D𝑖, 𝑗}𝑖∈{0}∪[𝑙], 𝑗∈[𝑠] . If |𝑍 | = 1, a direct application of
Claim 4.4 establishes the lemma. Alternatively, we must have 0 < 𝑖∗ ⩽ 𝑙 when T (𝐾) is being
processed by Algorithm 6. From the guarantees onD𝑖, 𝑗 (Lemma 4.2), we get min𝑧∈𝑍∥𝑧 − �̃�∥ >
(1 + 𝛾)𝑖∗−1𝑟low. Letting 𝑥 ∈ 𝑍 such that ∥𝑥 − �̃�∥ ⩽ 𝑐(1 + 𝛾)𝑖∗𝑟low returned by Algorithm 6, we get
by another application of the triangle inequality:

∥𝑞 − 𝑥∥
min𝑧∈𝑍∥𝑞 − 𝑧∥

⩽
∥�̃� − 𝑥∥ + ∥�̃� − 𝑞∥

min𝑧∈𝑍∥�̃� − 𝑧∥ − ∥�̃� − 𝑞∥
⩽
𝑐(1 + 𝛾)𝑖∗𝑟low +

√
𝑑𝜈

(1 + 𝛾)𝑖∗−1𝑟low −
√
𝑑𝜈

⩽ 𝑐(1 + 𝛾) + 2𝑐
√
𝑑𝜈

(1 + 𝛾)𝑖∗−1𝑟low −
√
𝑑𝜈
⩽ 𝑐(1 + 𝛾)2

where the first inequality is valid as min𝑧∈𝑍∥�̃� − 𝑧∥ − ∥�̃� − 𝑞∥ > 0 from our setting of 𝜈 and
the condition on min𝑧∈𝑍∥𝑞 − 𝑧∥ and the final inequality similarly follows from our setting of 𝜈.
Another application of Claim 4.4 with the fact that 𝐾 ⩽ ⌈log 𝑛⌉ + 1, establishes the first claim of
the lemma.

To prove the second claim of the lemma, we prove an analogous claim to Claim 4.4 for
terminal embeddings:

CLAIM 4.5. We have for all 𝑖 ∈ {0, . . . , 𝐾}:

∀𝑧 𝑗 ∈ 𝑍𝑖 :

(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−𝑖
𝜀‡

)
∥𝑞 − 𝑥 𝑗 ∥ ⩽ ∥ 𝑦 − 𝑦 𝑗 ∥ ⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−𝑖
𝜀‡

)
∥𝑞 − 𝑥 𝑗 ∥.

Proof.We will prove the claim by reverse induction on 𝑖. For 𝑖 = 𝐾 , the claim is implied by the
assumptions on 𝑦. Now, suppose the claim holds for 𝑖 = 𝑘 + 1 and we wish to establish the claim
for 𝑖 = 𝑘. As in the proof of Claim 4.4, we have two cases when T (𝑘) is being processed:

1. Either T (𝑘+1) = T (𝑘)rep or
2. T (𝑘+1) = T (𝑘)𝐶 for some 𝐶 ∈ C (𝑘)low.

As in Claim 4.4, when the first case occurs, we have min𝑧∈𝑍 (𝑘) ∥𝑞 − 𝑧∥ ⩾ 0.9𝑟(𝑘)high. Now, for any
𝑧𝑖 ∈ 𝑍 (𝑘) , let 𝑧 𝑗 ∈ 𝐶 (𝑘)rep such that 𝑧𝑖 , 𝑧 𝑗 ∈ 𝐶 ∈ C (𝑘)high. Note that we must have by the triangle
inequality and the fact that CC(𝑍 (𝑘) , 1000𝑛2𝑟

(𝑘)
apx) ⊑ Chigh that ∥𝑧𝑖 − 𝑧 𝑗 ∥ ⩽ 1000𝑛3𝑟

(𝑘)
apx. From the

fact that 𝐶 (𝑘)rep = 𝑍 (𝑘+1) , the inductive hypothesis and the assumption on 𝑦𝑖 , 𝑦 𝑗 from the lemma,
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we get:

∥ 𝑦 − 𝑦𝑖 ∥ ⩾ ∥ 𝑦 − 𝑦 𝑗 ∥ − ∥ 𝑦 𝑗 − 𝑦𝑖 ∥ ⩾
(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧 𝑗 ∥ − 2000𝑛3𝑟

(𝑘)
apx

⩾

(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
(∥𝑞 − 𝑧𝑖 ∥ − ∥𝑧𝑖 − 𝑧 𝑗 ∥) − 2000𝑛3𝑟

(𝑘)
apx

⩾

(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥ − 4000𝑛3𝑟

(𝑘)
apx

⩾

(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥ −

1
(10𝑛𝑑)5𝜀

‡∥𝑞 − 𝑧𝑖 ∥

⩾

(
1 −

(
1 + 1
(10𝑛𝑑)5

)𝐾−𝑘
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥

where the last inequality follows from the fact that (1 + 𝑎)𝑏 ⩾ (1 + 𝑎)𝑏−1 + 𝑎 for 𝑎 ⩾ 0, 𝑏 ⩾ 1. For
the other direction, we have by a similar calculation:

∥ 𝑦 − 𝑦𝑖 ∥ ⩽ ∥ 𝑦 − 𝑦 𝑗 ∥ + ∥ 𝑦 𝑗 − 𝑦𝑖 ∥ ⩽
(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧 𝑗 ∥ + 2000𝑛3𝑟

(𝑘)
apx

⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
(∥𝑞 − 𝑧𝑖 ∥ + ∥𝑧𝑖 − 𝑧 𝑗 ∥) + 2000𝑛3𝑟

(𝑘)
apx

⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥ + 4000𝑛3𝑟

(𝑘)
apx

⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥ +

1
(10𝑛𝑑)5𝜀

‡∥𝑞 − 𝑧𝑖 ∥

⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−𝑘
𝜀‡

)
∥𝑞 − 𝑧𝑖 ∥.

This establishes the claim in the first case. For the second case, let 𝑧∗ = arg min𝑧∈𝑍 (𝑘) ∥𝑞 − 𝑧∥. As
in the proof of Claim 4.5, we have 𝑧∗ ∈ 𝑍 (𝑘+1) = 𝐶 ∈ C (𝑘)low and for all 𝑧 ∈ 𝑍 (𝑘) \ 𝐶:

∥𝑞 − 𝑧∥ ⩾ ∥𝑧∗ − 𝑧∥ − ∥𝑞 − 𝑧∗∥ = ∥𝑧∗ − 𝑧∥ − min
𝑧∈𝑍 (𝑘)

∥𝑞 − 𝑧∥

⩾ ∥𝑧∗ − 𝑧∥ − min
𝑧∈𝑍 (𝑘)

∥�̃�(𝑘) − 𝑧∥ − ∥�̃�(𝑘) − 𝑞∥

⩾
𝑟
(𝑘)
apx

1000𝑛3 − 𝑐𝑟
(𝑘)
low −

√
𝑑𝜈(𝑘) ⩾ 𝑐(10𝑛𝑑)7𝑟(𝑘)low

and furthermore, we have:

∥𝑞 − 𝑧∗∥ = min
𝑧∈𝑍 (𝑘)

∥𝑞 − 𝑧∗∥ ⩽ min
𝑧∈𝑍 (𝑘)

∥�̃�(𝑘) − 𝑧∗∥ + ∥�̃�(𝑘) − 𝑞∥ ⩽ 𝑐𝑟(𝑘)low + 𝑟
(𝑘)
low ⩽ 2𝑐𝑟(𝑘)low.
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Now, the claim is already established for all 𝑥𝑖 ∈ 𝑍 (𝑘+1) . For 𝑧𝑖 ∈ 𝑍 (𝑘) \ 𝑍 (𝑘+1) , letting 𝑦∗ = 𝑦 𝑗 for
𝑥 𝑗 = 𝑧

∗:

∥ 𝑦𝑖 − 𝑦∥ ⩽ ∥ 𝑦𝑖 − 𝑦 𝑗 ∥ + ∥ 𝑦 − 𝑦 𝑗 ∥ ⩽ (1 + 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ +
(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧∗∥

⩽ (1 + 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ + 3𝑐𝑟(𝑘)low ⩽ (1 + 𝜀
†)∥𝑥𝑖 − 𝑞∥ + (1 + 𝜀†)∥𝑞 − 𝑥 𝑗 ∥ + 3𝑐𝑟(𝑘)low

⩽

(
1 +

(
1 +

6𝑐𝑟(𝑘)low

𝜀† · ∥𝑥𝑖 − 𝑞∥

)
𝜀†

)
∥𝑥𝑖 − 𝑞∥ ⩽

(
1 +

(
1 + 1
(10𝑛𝑑)5

)
𝜀†

)
∥𝑥𝑖 − 𝑞∥

where the third inequality is due to the fact that 𝐾 ⩽ ⌈log 𝑛⌉ + 1 and the fact that (1 + 𝑎)𝑏 ⩽ 𝑒𝑎𝑏

for 𝑎, 𝑏 ⩾ 0 and the final two inequalities follow from the upper bound on ∥𝑞 − 𝑧∗∥ and the
lower bound on ∥𝑥𝑖 − 𝑞∥ established previously. For the lower bound, we have by a similar
computation:

∥ 𝑦𝑖 − 𝑦∥ ⩾ ∥ 𝑦𝑖 − 𝑦 𝑗 ∥ − ∥ 𝑦 − 𝑦 𝑗 ∥ ⩾ (1 − 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ −
(
1 +

(
1 + 1
(10𝑛𝑑)5

)𝐾−(𝑘+1)
𝜀‡

)
∥𝑞 − 𝑧∗∥

⩾ (1 − 𝜀†)∥𝑥𝑖 − 𝑥 𝑗 ∥ − 3𝑐𝑟(𝑘)low ⩾ (1 − 𝜀
†)∥𝑥𝑖 − 𝑞∥ − (1 − 𝜀†)∥𝑞 − 𝑥 𝑗 ∥ − 3𝑐𝑟(𝑘)low

⩾

(
1 −

(
1 +

6𝑐𝑟(𝑘)low

𝜀† · ∥𝑥𝑖 − 𝑞∥

)
𝜀†

)
∥𝑥𝑖 − 𝑞∥ ⩾

(
1 −

(
1 + 1
(10𝑛𝑑)5

)
𝜀†

)
∥𝑥𝑖 − 𝑞∥.

The assumption that 𝜀‡ ⩾ 𝜀† finishes the proof of the claim by induction. ■

Claim 4.5 establishes the second conclusion of lemma from the fact that 𝐾 ⩽ ⌈log 𝑛⌉ + 1. When
|𝑍 | > 1 in Tres, we get by the triangle inequality, the fact that ∥�̃� − �̂�∥ ⩾ 𝑟low and the definition
of �̃� in Algorithm 6 that:

Ω
(

1
(𝑛𝑑)10𝑟apx

)
⩽ ∥𝑞 − �̂�∥ ⩽ 𝑂((𝑛𝑑)10𝑟apx).

Finally, for the bound on the runtime, note that Algorithm 6 queries at most 𝐾𝑙(𝑠 + 1) near
neighbor data structures built with at most 𝑛 points. Therefore, each query takes time at most
𝑂∗(𝑛𝜌𝑐). This proves our bound on the runtime of Algorithm 6. ■

Proof of Theorem3.2: Lemmas 4.1 to 4.3 now establish Theorem 3.2 barring the decoupling of
𝑑 and the 𝑛𝜌𝑐 term in the runtime guarantee. To do this, note that we may simply use the Median-
JL data structure (see Theorem 3.14 in Section 5) by instantiating 𝑙 = 𝑂(𝑑) many JL-sketches and
for each of them, instantiate an adaptive approximate nearest neighbor data structure in the
low dimensional space. At query time, we simply pick Ω(log 𝑛) of these sketches uniformly at
random, query each of the corresponding nearest neighbor data structures with the projection
of 𝑞 and return the best answer. This yields the improved runtimes from Theorem 3.2. ■
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Input: Data Structure D =
{
T , {DT ′}T ′∈T

}
, Query 𝑞

1: Tcur ← T
2: while TRUE do
3: Let Tcur =

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T

4: if |𝑍| = 1 then
5: return (𝑥,Tcur) for 𝑥 ∈ 𝑍
6: 𝜈← 𝛾

1000(𝑛𝑑)20 · 𝑟low

7: 𝑞𝑖 ←
⌊𝑞𝑖
𝜈

⌋
𝜈

8: 𝑖∗ ←
min

{
𝑖 : ∃ 𝑗 s.t D𝑖, 𝑗 (𝑞) returns 𝑥 ∈ 𝑍 satisfying ∥𝑞 − 𝑥∥ ⩽ 𝑐(1 + 𝛾) 𝑖𝑟low

}
9: if 0 < 𝑖∗ ⩽ 𝑙 then

10: Let 𝑥 ∈ 𝑍 be such that ∥𝑥 − 𝑞∥ ⩽ 𝑐(1 + 𝛾) 𝑖∗𝑟low

11: Return: (𝑥,Tcur)
12: else if 𝑖∗ = 0 then
13: Let 𝑥 ∈ 𝑍 be such that ∥𝑥 − 𝑞∥ ⩽ 𝑐𝑟low

14: Let 𝐶 ∈ Clow be such that 𝑥 ∈ 𝐶
15: Tcur ← T𝐶
16: else if 𝑖∗ = ∞ then
17: Tcur ← Trep

Algorithm 6. QueryAANN(D, 𝑞)

5. Median - JL

In this section, we will prove the following lemma which enabled speeding up our algorithms
by effectively projecting onto a low dimensional subspace essentially decoupling the terms that
depend on 𝑑 and 𝑛.

THEOREM 3.14. (Restated) Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , 𝜀 ∈

(
1√
𝑛𝑑
, 1

)
and 𝛿 ∈ (0, 1). Furthermore, let

{Π𝑖}𝑚
𝑖=1 ⊂ R

𝑘×𝑑 for 𝑚 ⩾ Ω((𝑑 + log 1/𝛿) log 𝑛𝑑) and 𝑘 ⩾ Ω
(

log 𝑛
𝜀2

)
with Π𝑖

𝑗,𝑙

𝑖𝑖𝑑
∼ N(0, 1/𝑘). Then, we

have:

∀𝑞 ∈ R𝑑 :
𝑚∑︁
𝑖=1

1
{
Π𝑖 satisfies 𝐴𝑃-𝐼𝑃(𝜀, 𝑋 ∪ {𝑞})

}
⩾ 0.95𝑚 (JL-Rep)

with probability at least 1 − 𝛿.

By setting 𝑥 = 𝑦 in AP-IP, we see that the above theorem is a generalization of the standard
Johnson-Lindenstrauss condition where in addition to maintaining distances between points, Π
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is also required to approximately maintain relative inner products between the points in the
augmented dataset. To begin the proof, we start by recalling the standard Johnson-Lindenstrauss
lemma (see, for example, [12]).

LEMMA 5.1. Let Π ∈ R𝑘×𝑑 be distributed according to Π𝑖, 𝑗
𝑖𝑖𝑑
∼ N(0, 1/𝑘), 𝛿 ∈ (0, 1) and 𝑘 ⩾

𝐶
log 1/𝛿
𝜀2 for some absolute constant 𝐶 > 0. Then, for any 𝑣 ∈ R𝑑 , we have:

P
{
(1 − 𝜀)∥𝑣∥2 ⩽ ∥Π𝑣∥2 ⩽ (1 + 𝜀)∥𝑣∥2

}
⩾ 1 − 𝛿.

We obtain via a union bound over all pairs of points in the dataset, 𝑋 , the JL guarantee:

COROLLARY 5.2. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1, Π ∈ R𝑘×𝑑 with Π𝑖, 𝑗
𝑖𝑖𝑑
∼ N(0, 1/𝑘) with 𝑘 ⩾ 𝐶

(log 𝑛+log 1/𝛿)
𝜀2 .

Then, we have:

∀𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 : (1 − 𝜀)∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ ∥Π𝑥𝑖 − Π𝑥 𝑗 ∥ ⩽ (1 + 𝜀)∥𝑥𝑖 − 𝑥 𝑗 ∥

with probability at least 1 − 𝛿.

A second corollary we will make frequent use of is the following where we show that Π
also approximately preserves inner products.

COROLLARY 5.3. Let Π ∈ R𝑘×𝑑 be distributed according to Π𝑖, 𝑗
𝑖𝑖𝑑
∼ N(0, 1/𝑘) and 𝑘 ⩾ 𝐶 log 1/𝛿

𝜀2 .
Then, for any 𝑥, 𝑦 ∈ R𝑑 , we have:

P {|⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| ⩽ 𝜀∥𝑥∥∥ 𝑦∥} ⩾ 1 − 𝛿.

PROOF . If either 𝑥 or 𝑦 are 0, the conclusion follows trivially. Assume, 𝑥, 𝑦 ≠ 0. By scaling
both sides by ∥𝑥∥∥ 𝑦∥, we may assume that ∥𝑥∥ = ∥ 𝑦∥ = 1. We now have the following:

⟨Π𝑥,Π𝑦⟩ = 1
4

(
∥Π(𝑥 + 𝑦)∥2 − ∥Π(𝑥 − 𝑦)∥2

)
⟨𝑥, 𝑦⟩ = 1

4

(
∥(𝑥 + 𝑦)∥2 − ∥(𝑥 − 𝑦)∥2

)
.

By subtracting both equations, we get:

|⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| ⩽ 1
4

(��∥Π(𝑥 + 𝑦)∥2 − ∥𝑥 + 𝑦∥2�� + ��∥Π(𝑥 − 𝑦)∥2 − ∥𝑥 − 𝑦∥2��)
By the union bound, the triangle inequality and Lemma 5.1, we get with probability at least
1 − 𝛿:

|∥Π(𝑥 + 𝑦)∥2 − ∥𝑥 + 𝑦∥2 | ⩽ 𝜀

4
∥𝑥 + 𝑦∥2 ⩽ 𝜀 and

|∥Π(𝑥 − 𝑦)∥2 − ∥𝑥 − 𝑦∥2 | ⩽ 𝜀

4
∥𝑥 − 𝑦∥2 ⩽ 𝜀.

The inequalities in the previous display imply the lemma. ■

We start by establishing a simple lemma on the norms of the matrices Π𝑖 .
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LEMMA 5.4. Assume the setting of Theorem 3.14. Then, we have:
𝑚∑︁
𝑖=1

1
{
∥Π𝑖 ∥𝐹 ⩽ 𝑂(

√
𝑑)

}
⩾ 0.99𝑚

with probability at least 1 − 𝛿/4.

PROOF . Let𝑊𝑖 = 1
{
∥Π𝑖 ∥𝐹 ⩽ 𝑂(

√
𝑑)

}
. We have by an application of Bernstein’s inequality that

P(𝑊𝑖 = 1) ⩾ 0.995 as
∑
𝑗∈[𝑘],𝑙∈[𝑑] (Π𝑖

𝑗,𝑙
)2 is a 𝜒2 random variable with mean 𝑑. Since, the𝑊𝑖 are

iid, the conclusion follows by an application of Hoeffding’s inequality applied to the random
variable𝑊 =

∑𝑚
𝑖=1𝑊𝑖 . ■

LEMMA 5.5. Assume the setting of Theorem 3.14. Then, we have:

∀∥𝑣∥ = 1 :
𝑚∑︁
𝑖=1

1


(1 − 𝜀/128) ⩽ ∥Π𝑖𝑣∥2 ⩽ (1 + 𝜀/128)

∀𝑥, 𝑦 ∈ 𝑋 : |⟨Π𝑖𝑣,Π𝑖 (𝑥 − 𝑦)⟩ − ⟨𝑣, 𝑥 − 𝑦⟩| ⩽ 𝜀

128
· ∥𝑥 − 𝑦∥

∥Π𝑖 ∥𝐹 ⩽ 𝑂(
√
𝑑)


⩾ 0.98𝑚

with probability at least 1 − 𝛿/2.

PROOF . Let G be a 𝛾-net over S𝑑−1 with 𝛾 = 𝑐
(𝑛𝑑)10 for some small enough constant 𝑐. Further-

more, we may assume |G| ⩽ (𝑛𝑑)𝑂(𝑑) . Now, for 𝑢 ∈ G, let:

𝑊𝑖 (𝑢) = 1


(1 − 𝜀/256) ⩽ ∥Π𝑖𝑢∥2 ⩽ (1 + 𝜀/256)

∀𝑥, 𝑦 ∈ 𝑋 : |⟨Π𝑖𝑢,Π𝑖 (𝑥 − 𝑦)⟩ − ⟨𝑢, 𝑥 − 𝑦⟩| ⩽ 𝜀

256
· ∥𝑥 − 𝑦∥

 .
We have from Corollary 5.3, that P(𝑊𝑖 (𝑢) = 1) ⩾ 0.995. Therefore, we have by an application of
Hoeffding’s inequality and a union bound over G that:

P

{
∀𝑢 ∈ G :

𝑚∑︁
𝑖=1

𝑊𝑖 (𝑢) ⩾ 0.99𝑚

}
⩾ 1 − 𝛿/4.

We now condition on the event from the previous equation and the conclusion of Lemma 5.4.
To extend from the net G to the whole sphere, consider 𝑣 ∈ S𝑑−1 and its nearest neighbor 𝑢 ∈ G.
Note that ∥𝑣 − 𝑢∥ ⩽ 𝛾. Let 𝑖 ∈ [𝑚] be such that𝑊𝑖 (𝑢) = 1 and ∥Π𝑖 ∥𝐹 ⩽ 𝑂(

√
𝑑). We have:

|∥Π𝑖𝑣∥2 − ∥Π𝑖𝑢∥2 | = | (𝑣 + 𝑢)⊤(Π𝑖)⊤Π𝑖 (𝑣 − 𝑢) | ⩽ 2 · ∥Π𝑖 ∥2𝐹 · 𝛾 ⩽ 𝜀/256.

Furthermore, we have for all 𝑥, 𝑦 ∈ 𝑋 :

|⟨Π𝑖𝑣,Π𝑖 (𝑥 − 𝑦)⟩ − ⟨𝑣, 𝑥 − 𝑦⟩|
⩽ |⟨Π𝑖𝑢,Π𝑖 (𝑥 − 𝑦)⟩ − ⟨𝑢, 𝑥 − 𝑦⟩| + |⟨Π𝑖 (𝑣 − 𝑢),Π𝑖 (𝑥 − 𝑦)⟩| + |⟨𝑣 − 𝑢, 𝑥 − 𝑦⟩|

⩽
𝜀

256
· ∥𝑥 − 𝑦∥ + 𝛾 · ∥Π𝑖 ∥2𝐹 · ∥𝑥 − 𝑦∥ + 𝛾 · ∥𝑥 − 𝑦∥ ⩽

𝜀

128
· ∥𝑥 − 𝑦∥.

Since, for any 𝑢 ∈ G, at least 0.98𝑚 of the Π𝑖 satisfy 𝑊𝑖 (𝑢) = 1 and ∥Π𝑖 ∥𝐹 ⩽ 𝑂(
√
𝑑) with

probability at least 1 − 𝛿/2, the conclusion of the lemma follows. ■
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Proof of Theorem3.14: Finally, to establish Theorem 3.14, we will need to use a more intricate
multi-scale gridding argument than the one used to prove Lemma 5.5. Using a single grid of
resolution 𝛾 does not suffice as the dataset, 𝑋 , may contain pairs of points separated by much
less than 𝛾. Bounding the error of the embedding of 𝑞 in terms of its nearest neighbor in the
net does not suffice in such situations. On the other hand, using a finer net whose resolution
is comparable to the minimum distance between the points in the dataset leads to a choice of
𝑚 dependent on the aspect ratio of 𝑋 . The multi-scale argument presented here allows us to
circumvent these difficulties.

To define the grid, let 𝑟𝑖 𝑗 = ∥𝑥𝑖 − 𝑥 𝑗 ∥ for 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 and G𝑖 𝑗 be a 𝛾-net of B(𝑥𝑖 , 2(𝐶𝑛𝑑)10𝑟𝑖 𝑗)
with 𝛾 = (𝐶𝑛𝑑)−10 · 𝑟𝑖 𝑗 for some large enough constant 𝐶. The grid in our argument will consist
of the union of all the G𝑖 𝑗; that is G =

⋃
𝑖, 𝑗∈[𝑛] G𝑖 𝑗 . Now, for 𝑢 ∈ G, define𝑊𝑖 (𝑢) as follows:

𝑊𝑖 (𝑢) = 1
{
Π𝑖 satisfies 𝐴𝑃-𝐼𝑃(𝜀/256, 𝑋 ∪ {𝑢})

}
.

From Corollary 5.3, we have P(𝑊𝑖 (𝑢) = 1) ⩾ 0.995. Noting that |G| ⩽ (2𝑛𝑑)𝑂(𝑑) , we have by
Hoeffding’s Inequality and the union bound that with probability at least 1 − 𝛿/4, we have
for all 𝑢 ∈ G:

∑𝑚
𝑖=1𝑊𝑖 (𝑢) ⩾ 0.99𝑚. For the rest of the argument, we will also condition on the

conclusions of Lemma 5.5. Note, that this event occurs with probability at least 1 − 𝛿 from the
union bound. Therefore, we have by the union bound with probability at least 1 − 𝛿:

∀𝑢 ∈ G,∀∥𝑣∥ = 1 :
𝑚∑︁
𝑖=1

1



(1 − 𝜀/128) ⩽ ∥Π𝑖𝑣∥2 ⩽ (1 + 𝜀/128)

∀𝑥, 𝑦 ∈ 𝑋 : |⟨Π𝑖𝑣,Π𝑖 (𝑥 − 𝑦)⟩ − ⟨𝑣, 𝑥 − 𝑦⟩| ⩽ 𝜀

128
· ∥𝑥 − 𝑦∥

Π𝑖 satisfies 𝐴𝑃-𝐼𝑃(𝜀/256, 𝑋 ∪ {𝑢})
∥Π𝑖 ∥𝐹 ⩽ 𝑂(

√
𝑑)


⩾ 0.95𝑚.

Letting 𝑌𝑖 (𝑢, 𝑣) denote the indicator in the above expression, we now condition on the
above event for the rest of the proof. Let 𝑞 ∈ R𝑑 and 𝑥𝑞 = arg min𝑥∈𝑋 ∥𝑞− 𝑥∥ (its closest neighbor
in 𝑋). Note that the case where 𝑞 = 𝑥𝑞 is already covered by the condition on the𝑊𝑖 . Therefore,
we assume 𝑞 ≠ 𝑥𝑞. With 𝑣𝑞 =

(𝑞−𝑥𝑞)
∥𝑞−𝑥𝑞∥ and �̃� = arg min𝑢∈G∥𝑞− 𝑢∥, let J (𝑞) = {𝑖 : 𝑌𝑖 (�̃�, 𝑣𝑞) = 1}. We

will now prove for all 𝑖 ∈ J (𝑞):

∀�̃�, �̃�, �̃� ∈ 𝑋 ∪ {𝑞} : |⟨Π𝑖 (�̃� − �̃�),Π𝑖 ( �̃� − �̃�)⟩ − ⟨�̃� − �̃�, �̃� − �̃�⟩| ⩽ 𝜀∥�̃� − �̃�∥∥ �̃� − �̃�∥.

When �̃� = �̃� or �̃� = �̃�, the conclusion is trivial. Furthermore, for �̃�, �̃�, �̃� ∈ 𝑋 , the conclusion
follows from the definition of J . Hence, we may restrict ourselves to cases where �̃�, �̃� are
distinct from �̃� and at least one of �̃�, �̃�, �̃� are 𝑞. We first tackle the cases where �̃�, �̃�, �̃� are distinct
and we have the following subcases:

Case 1: �̃� = 𝑞 and �̃�, �̃� ∈ 𝑋 . In this case, we have from the definition of J :

|⟨Π𝑖 (𝑞 − �̃�),Π𝑖 ( �̃� − �̃�)⟩ − ⟨𝑞 − �̃�, �̃� − �̃�⟩|
⩽ |⟨Π𝑖 (𝑞 − 𝑥𝑞),Π𝑖 ( �̃� − �̃�)⟩ − ⟨𝑞 − 𝑥𝑞, �̃� − �̃�⟩| + |⟨Π𝑖 (𝑥𝑞 − �̃�),Π𝑖 ( �̃� − �̃�)⟩ − ⟨𝑥𝑞 − �̃�, �̃� − �̃�⟩|
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⩽
𝜀

128
· ∥𝑞 − 𝑥𝑞∥ · ∥ �̃� − �̃�∥ +

𝜀

256
· ∥𝑥𝑞 − �̃�∥ · ∥ �̃� − �̃�∥

⩽
𝜀

128
· ∥𝑞 − �̃�∥ · ∥ �̃� − �̃�∥ + 𝜀

256
· 2∥𝑞 − �̃�∥ · ∥ �̃� − �̃�∥ ⩽ 𝜀

64
· ∥𝑞 − �̃�∥ · ∥ �̃� − �̃�∥

concluding the proof in this case.
Case 2: �̃� = 𝑞 and �̃�, �̃� ∈ 𝑋 . We have by algebraic expansion:

|⟨Π𝑖 (�̃� − 𝑞),Π𝑖 ( �̃� − 𝑞)⟩ − ⟨�̃� − 𝑞, �̃� − 𝑞⟩| = | (�̃� − 𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) ( �̃� − 𝑞) |
⩽ | (�̃� − 𝑥𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) ( �̃� − 𝑥𝑞) | + |(𝑥𝑞 − 𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) ( �̃� − 𝑥𝑞) |+
|(�̃� − 𝑥𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑥𝑞 − 𝑞) | + |(𝑥𝑞 − 𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑥𝑞 − 𝑞) |

⩽
𝜀

256
· ∥𝑥𝑞 − �̃�∥∥𝑥𝑞 − �̃�∥ +

𝜀

128
· ∥𝑥𝑞 − 𝑞∥∥ �̃� − 𝑥𝑞∥

+ 𝜀

128
· ∥�̃� − 𝑥𝑞∥∥𝑞 − 𝑥𝑞∥ +

𝜀

128
· ∥𝑥𝑞 − 𝑞∥2

⩽
𝜀

256
· 2∥�̃� − 𝑞∥ · 2∥ �̃� − 𝑞∥ + 𝜀

128
· ∥�̃� − 𝑞∥ · 2∥ �̃� − 𝑞∥

+ 𝜀

128
· 2∥�̃� − 𝑞∥ · ∥ �̃� − 𝑞∥ + 𝜀

128
· ∥�̃� − 𝑞∥∥ �̃� − 𝑞∥

⩽
𝜀

16
· ∥�̃� − 𝑞∥ · ∥ �̃� − 𝑞∥

establishing the statement in this case as well.

We now move on to the case where �̃�, �̃�, �̃� are not distinct. As remarked before, it suffices to
consider 𝑥 = �̃� = �̃� ≠ �̃� and one of 𝑥, �̃� are 𝑞. Without loss of generality, we may assume �̃� = 𝑞.
When 𝑥 = 𝑥𝑞 the conclusion follows from the definition of J (𝑞). As a consequence, our goal
simplifies to establishing for all 𝑖 ∈ J (𝑞) and 𝑥 ≠ 𝑥𝑞:

|∥Π𝑖 (𝑞 − 𝑥)∥2 − ∥𝑞 − 𝑥∥2 | ⩽ 𝜀∥𝑞 − 𝑥∥2.

Let 𝑟 = ∥𝑥 − 𝑥𝑞∥ and here again, we have two cases:
Case 1: ∥𝑞 − 𝑥𝑞∥ ⩽ 2(𝐶𝑛𝑑)10𝑟. From the construction of G, we have ∥�̃� − 𝑞∥ ⩽ (𝐶𝑛𝑑)−10𝑟.
Furthermore, we have from the fact that 𝑟 ⩽ 2∥𝑞 − 𝑥∥:

|∥𝑞 − 𝑥∥2 − ∥�̃� − 𝑥∥2 | = |⟨𝑞 − �̃�, (𝑞 − 𝑥) + (�̃� − 𝑥)⟩|

⩽ (𝐶𝑛𝑑)−10 · 𝑟 · (∥𝑞 − 𝑥∥ + ∥�̃� − 𝑥∥) ⩽ 𝜀

1024
· ∥𝑞 − 𝑥∥2.

Additionally, we have:

| (∥Π𝑖 (𝑥 − 𝑞)∥2 − ∥𝑥 − 𝑞∥2) − (∥Π𝑖 (𝑥 − �̃�)∥2 − ∥𝑥 − �̃�∥2) |
= | (𝑥 − 𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑥 − 𝑞) − (𝑥 − �̃�)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑥 − �̃�) |
= | (�̃� − 𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) ((𝑥 − 𝑞) + (𝑥 − �̃�)) |

⩽ ∥�̃� − 𝑞∥(∥Π𝑖 ∥2𝐹 + 1) (∥𝑥 − 𝑞∥ + ∥𝑥 − �̃�∥) ⩽ 𝜀

1024
· ∥𝑥 − 𝑞∥2.
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The conclusion now follows from the inequalities in the previous two displays and the
following condition on Π𝑖 in the definition of J :

|∥Π𝑖 (�̃� − 𝑥)∥2 − ∥�̃� − 𝑥∥2 | ⩽ 𝜀

256
· ∥�̃� − 𝑥∥2 ⩽ 𝜀

128
∥𝑞 − 𝑥∥2.

Case 2: ∥𝑞 − 𝑥𝑞∥ ⩾ 2(𝐶𝑛𝑑)10𝑟. We have similarly to the previous case:

|∥𝑞 − 𝑥∥2 − ∥𝑞 − 𝑥𝑞∥2 | = |⟨𝑥𝑞 − 𝑥, (𝑞 − 𝑥) + (𝑞 − 𝑥𝑞)⟩|

⩽ 𝑟 · (∥𝑞 − 𝑥∥ + ∥𝑞 − 𝑥𝑞∥) ⩽
𝜀

1024
· ∥𝑞 − 𝑥∥2.

Now, we have:

| (∥Π𝑖 (𝑞 − 𝑥)∥2 − ∥𝑞 − 𝑥∥2) − (∥Π𝑖 (𝑞 − 𝑥𝑞)∥2 − ∥𝑞 − 𝑥𝑞∥2) |
= | (𝑞 − 𝑥)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑞 − 𝑥) − (𝑞 − 𝑥𝑞)⊤((Π𝑖)⊤Π𝑖 − 𝐼) (𝑞 − 𝑥𝑞) |
= | (𝑥𝑞 − 𝑥)⊤((Π𝑖)⊤Π𝑖 − 𝐼) ((𝑞 − 𝑥) + (𝑞 − 𝑥𝑞)) |

⩽ ∥𝑥𝑞 − 𝑥∥(∥Π𝑖 ∥2𝐹 + 1) (∥𝑞 − 𝑥∥ + ∥𝑞 − 𝑥𝑞∥) ⩽
𝜀

1024
· ∥𝑞 − 𝑥∥2.

Similarly, we conclude from the following inequality implied by the definition of J :

|∥Π𝑖 (𝑞 − 𝑥𝑞)∥2 − ∥𝑞 − 𝑥𝑞∥2 | ⩽
𝜀

128
· ∥𝑞 − 𝑥𝑞∥2 ⩽

𝜀

128
· ∥𝑞 − 𝑥∥2.

The four cases just enumerated establish the theorem assuming |J (𝑞) | ⩾ 0.95𝑚 for all
𝑞 ∈ R𝑑 . As shown before, this occurs with probability at least 1 − 𝛿 concluding the proof of the
theorem. ■
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A. Construct Partition Tree

In this section, we discuss our construction of a Partition Tree (Definition 2.7) and prove
Lemma 4.1 which we restate below:

LEMMA 4.1. (Restated) Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝛿 ∈ (0, 1). Then, Algorithm 8 when given 𝑋 , 𝛿

and 𝑛, runs in time 𝑂(𝑛𝑑 log(1/𝛿)) and constructs, T , satisfying:

∀T ′ =
(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T :

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
with probability at least 1 − 𝛿. Furthermore, as a consequence we have for all 𝑛 ⩾ 3:

Size(T ) ⩽ 𝐶𝑛 log 𝑛, ∀𝐶 ∈ Clow ∪ {𝐶rep} : |𝐶 | ⩽ |𝑍 |
2

and 𝑟med ⩽ 𝑟apx ⩽ 𝑛𝑟med.
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The algorithm works by recursively constructing the nodes of the tree starting from the
root and then partitioning the point set for that node to construct its children and so on. In
Appendix A.1 we show how to partition points at a single node and in Appendix A.2, we use this
to construct the full tree.

A.1 Partitioning at a Single Node

In this subsection, we describe the partitioning procedure at a single node. This will then be
incorporated into a recursive procedure to construct the entire tree. To begin, recall Defini-
tions 2.5 and 2.6 and the definition of 𝑟med from Section 2. While it is possible to compute 𝑟med(𝑋)
in time 𝑂(𝑛2𝑑), obtaining a crude estimate is sufficient for our purposes [7]. Furthermore, we
will also not require computing CC(𝑋, 𝑟) exactly but appropriate refinements and coarsenings
suffice. We first restate a simple lemma from [7]:

LEMMA A.1. Given𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 and 𝛿 ∈ (0, 1), there is a randomized algorithm, CompRmed,

that computes in time 𝑂(𝑛𝑑 log 1/𝛿) and outputs an estimate 𝑟apx satisfying:

P
{
𝑟apx ⩾ 𝑟med(𝑋)

}
= 1 and P

{
𝑟apx ⩽ 𝑛𝑟med(𝑋)

}
⩾ 1 − 𝛿.

PROOF . Let 𝐶 ∈ CC(𝑋, 𝑟med(𝑋)) be such that |𝐶 | ⩾ 𝑛/2. Picking a point, 𝑥, uniformly at random
from 𝑋 picks a point in 𝐶 with probability at least 1/2. Now, we compute distances {∥𝑥𝑖 − 𝑥∥}𝑛𝑖=1
and output their median, 𝑟apx. Conditioned on 𝑥 ∈ 𝐶, we have by the triangle inequality, that
𝑟apx ⩽ 𝑛𝑟med(𝑋) which proves the second claim with probability at least 1/2. For the first, note
that 𝑥 belongs to a connected component in CC(𝑋, 𝑟apx) of size at least 𝑛/2. This establishes the
first claim of the lemma. By repeating this procedure Ω(log 1/𝛿) times and taking the minimum
of the returned estimates establishes the lemma by an application of Hoeffding’s inequality. ■

LEMMA A.2. Let 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R
𝑑 , 𝑟 > 0 and 𝛿 ∈ (0, 1). Then, there is a randomized algorithm,

ConstructPartition that outputs a partitioning of 𝑋 , C, satisfying:

CC(𝑋, 1000𝑛2𝑟) ⊑ C ⊑ CC(𝑋, 𝑟)

with probability at least 1 − 𝛿. Furthermore, the algorithm runs in time 𝑂(𝑛𝑑 log(𝑛/𝛿)).

PROOF . The randomized algorithm is detailed in the following pseudocode.
By the definition of Algorithm 7, we see that for every (𝑥, 𝑦) ∈ 𝐸, we must have ∥𝑥− 𝑦∥ ⩽ 𝜈.

Therefore, we obtain C refines CC(𝑋, 1000𝑛2𝑟). We now show that CC(𝑋, 𝑟) refines C. To do this,
we will need the following claim:

CLAIM A.3. For 𝑥, 𝑦 ∈ R𝑑 and 𝑔 ∼ N(0, 𝐼), we have:

P {|⟨𝑔, 𝑥 − 𝑦⟩| ⩽ 𝜏} ⩾ 999
1000

if ∥𝑥 − 𝑦∥ ⩽ 𝑟

P {|⟨𝑔, 𝑥 − 𝑦⟩| ⩽ 𝜏} ⩽ 1
100𝑛2 if ∥𝑥 − 𝑦∥ ⩾ 𝜈.
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Input: Point set 𝑋 = {𝑥𝑖}𝑛𝑖=1 ⊂ R𝑑, Resolution 𝑟,
Failure Probability 𝛿

1: 𝐾 ← 10 log(𝑛/𝛿), 𝜏← 10𝑟, 𝜈← 1000𝑛2𝑟

2: 𝑉 ← 𝑋, 𝐸 ← 𝜙

3: for 𝑘 = 1 : 𝐾 do
4: 𝑔𝑘 ∼ N(0, 𝐼)
5: For all 𝑖 ∈ [𝑛], let 𝑣

(𝑘)
𝑖 = ⟨𝑥𝑖, 𝑔𝑘⟩

6: Let 𝑥
(𝑘)
1 , . . . , 𝑥

(𝑘)
𝑛 be an ordering of the 𝑥𝑖 increasing in 𝑣

(𝑘)
𝑖

7: 𝑖 ← 1
8: while 𝑖 < 𝑛 do
9: 𝑖𝑛 = max{𝑖 < 𝑗 ⩽ 𝑛 : 𝑣(𝑘)𝑗 ⩽ 𝑣

(𝑘)
𝑖 + 𝜏}

10: Add (𝑥(𝑘)𝑖 , 𝑥
(𝑘)
𝑗 ) to 𝐸 for 𝑗 ∈ {𝑖 + 1, . . . , 𝑖𝑛} if ∥𝑥(𝑘) − 𝑥(𝑘) ∥ ⩽ 𝜈

11: 𝑖 ← max(𝑖 + 1, 𝑖𝑛)
12: C ← ConnectedComponents(𝑉, 𝐸)
13: return C

Algorithm 7. ConstructPartition(𝑋, 𝑟, 𝛿)

Proof. The first inequality follows from the observation that ⟨𝑔, 𝑥 − 𝑦⟩ is a Gaussian with
variance ∥𝑥 − 𝑦∥2 and the definition of 𝜏. The second follows from the same fact and the fact
that pdf of the standard normal distribution takes maximum value 1/

√
2𝜋. ■

Now, fix an outer iteration 𝑘. From Claim A.3, we have with probability at least 1/100, that
|𝑣(𝑘)
𝑖
− 𝑣(𝑘)

𝑗
| > 𝜏 for all ∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩾ 𝜈. Let 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 with ∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ 𝑟. Then with probability at

least 0.999, we have that |𝑣(𝑘)
𝑖
− 𝑣(𝑘)

𝑗
| ⩽ 𝜏. For the rest of the argument, we condition on the

previous two events and we assume, without loss of generality, that 𝑣(𝑘)
𝑖
⩽ 𝑣(𝑘)

𝑗
. Note that since

𝑣
(𝑘)
𝑗
− 𝑣(𝑘)

𝑖
⩽ 𝜏, one of the following cases must occur:

Case 1: (𝑥𝑖 , 𝑥 𝑗) ∈ 𝐸,
Case 2: (𝑧, 𝑥𝑖), (𝑧, 𝑥 𝑗) ∈ 𝐸 for some 𝑧 ∈ 𝑋 or
Case 3: (𝑧, 𝑥𝑖), (𝑧, 𝑤), (𝑤, 𝑥 𝑗) ∈ 𝐸 for some 𝑧, 𝑤 ∈ 𝑋 .

In all three cases, we see that 𝑥𝑖 and 𝑥 𝑗 are in the same connected component with respect to 𝐸.
Note that 𝑥𝑖 , 𝑥 𝑗 are in the same connected component if our good event occurs for at least 1 of
the 𝐾 outer iterations of the algorithm. Therefore, the probability that 𝑥𝑖 , 𝑥 𝑗 are in the same
connected component over all 𝐾 runs is at least 1 − 𝛿/𝑛2. By a union bound, this establishes
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that with probability at least 1 − 𝛿, 𝑥𝑖 , 𝑥 𝑗 are in the same connected component in 𝐸 for all
∥𝑥𝑖 − 𝑥 𝑗 ∥ ⩽ 𝑟.

The runtime of the algorithm follows from the fact that we add at most𝑂(𝑛 log(𝑛/𝛿)) edges
to 𝐸 over the entire run of the algorithm and we do at most 𝑂(𝑛𝑑) amount of work in each run
of the while loop. ■

A.2 Constructing the Partition Tree - Proof of Lemma 4.1

We will now use the results of Appendix A.1 to construct the whole tree, proving Lemma 4.1.
We will first assume that the functions CompRmed and ConstructPartition run successfully

(that is, they satisfy the conclusions of Lemmas A.1 and A.2 respectively) in every recursive call
of Algorithm 8 and then finally bound the probability of this event. Note that when CompRmed
runs successfully, 𝑟apx always satisfies 𝑟med ⩽ 𝑟apx ⩽ 𝑛𝑟med for every recursive call of Algorithm 8
(Lemma A.1). Together with the correctness of ConstructPartition (Lemma A.2), we get that:

CC(𝑍, 1000𝑛2𝑟apx) ⊑ Chigh ⊑ CC(𝑍, 𝑟apx) ⊑ CC(𝑍, 𝑟med) ⊑ CC
(
𝑍,
𝑟apx

10𝑛

)
⊑ Clow ⊑ CC

(
𝑍,

𝑟apx

1000𝑛3

)
for every node T ′ =

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
∈ T . Furthermore, for any such

T ′, we get from the fact that CC(𝑍, 𝑟med) ⊑ Clow, that all 𝐶 ∈ Clow satisfy |𝐶 | ⩽ |𝑍 |/2. In addition,
the definition of 𝑟med and the fact that Chigh ⊑ CC(𝑍, 𝑟med) yield |𝐶rep | ⩽ |𝑍 |/2. To bound, first
note that |𝐶rep | ⩽ |Clow | from the fact that Chigh ⊑ Clow and the construction of 𝐶rep. To bound
Size(T ), define 𝐵(𝑛) as follows:

𝐵(𝑛) = 𝑛 + max
𝑛1,...,𝑛𝑘 ,𝑘∑𝑘
𝑖=1 𝑛𝑖=𝑛

𝑘⩽𝑛/2,∀𝑖∈[𝑘]:1⩽𝑛𝑖⩽𝑛/2

𝐵(𝑘) +
𝑘∑︁
𝑖=1

𝐵(𝑛𝑖) and 𝐵(1) = 1.

From the definition of 𝐵(𝑛), we see that 𝐵(𝑛) is monotonic in 𝑛 and from this, we get that 𝐵(𝑛)
is an upper bound on Size(T ). We now recall the following claim from [7]:

CLAIM A.4 ([7]). For all 𝑛 ⩾ 3, 𝐵(𝑛) ⩽ 𝐶𝑛 log 𝑛.

The above claim establishes the bound on Size(T ).
Finally, we bound the probability that any execution of CompRmed and ConstructPartition

fail. We start by bounding the probability that any of the first 5𝐵(𝑛) runs of CompRmed and
ConstructPartition fail. From the definition of 𝛿†, the probability that any of the 5𝐵(𝑛) runs
of CompRmed and ConstructPartition fail is at most 1 − 𝛿 by the union bound. However, the
preceding argument shows that the algorithm terminates with fewer than 𝐵(𝑛) recursive calls if
none of the executions of CompRmed and ConstructPartition fail. Therefore, the probability that
any of the executions of CompRmed and ConstructPartition fail in the running of the algorithm
is at most 1−𝛿. This yields the previously derived conclusions with probability at least 1−𝛿. ■
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Input: Point set 𝑍 = {𝑥𝑖}𝑚𝑖=1 ⊂ R𝑑, Failure Probability 𝛿, Total Number
of points 𝑛

1: if |𝑋 | = 1 then
2: return (𝑋, 𝜙, 𝜙, 𝜙, 𝜙, 𝜙)
3: 𝛿† ← 𝑐prob𝛿

𝑛2

4: 𝑟apx ← CompRmed(𝑍, 𝛿†)
5: Clow ← ConstructPartition(𝑍, 𝑟apx/(1000𝑛3), 𝛿†),

Chigh ← ConstructPartition(𝑍, 𝑟apx, 𝛿
†)

6: For 𝐶 ∈ Clow, let T𝐶 ← ConstructPartitionTree(𝐶, 𝑛, 𝛿)
7: For 𝐶 ∈ Chigh, pick representative 𝑥 ∈ 𝐶 and add it to 𝐶rep

8: Trep ← ConstructPartitionTree(𝐶rep, 𝑛, 𝛿)
9: return

(
𝑍, {T𝐶}𝐶∈Clow ,Trep, Clow, Chigh, 𝐶rep, 𝑟apx

)
Algorithm 8. ConstructPartitionTree(𝑋, 𝑛, 𝛿)

B. Miscellaneous Results

In this section, we develop some standard tools needed for our constructions. In Appendix B.1,
we recall some basic facts about the Ellipsoid algorithm for convex optimization [11, 3] and
analyze it when it’s instantiated with a weak oracle as in our terminal embedding construction.

B.1 Ellipsoid Algorithm Preliminaries

We recall some basic facts regarding the operation of the Ellipsoid algorithm for convex opti-
mization. We will instead use a weaker version where your goal is simply to output a feasible
point in a convex set. In what follows, our goal is to find a point in a closed convex set, 𝐾 ⊂ R𝑑

and we are given a starting 𝑥 and 𝑅 ⩾ 0 such that for all 𝐾 ⊆ B(𝑥, 𝑅). Furthermore, the
algorithm assumes access to an oracle O which when given a point 𝑥 ∈ R𝑑 either:

1. Outputs 𝑣 ≠ 0 such that ∀𝑦 ∈ 𝐾 , ⟨𝑦 − 𝑥, 𝑣⟩ ⩾ 0 or
2. Outputs FAIL.

Given access to such an oracle the Ellipsoid algorithm proceeds as follows:
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Input: Initialization 𝑥 ∈ R𝑑, Initial Distance 𝑅 > 0, Separating
Oracle O

1: 𝑥(0) ← 𝑥, 𝐴(0) ← 𝑅2 · 𝐼, 𝑡 ← 0
2: while 𝑣(𝑡) = O(𝑥(𝑡)) ≠ FAIL do
3: 𝑢(𝑡+1) ← 𝐴(𝑡)𝑣 (𝑡)√

(𝑣 (𝑡) )⊤𝐴(𝑡)𝑣 (𝑡)

4: 𝑥(𝑡+1) ← 𝑥(𝑡) + 1
(𝑑+1)𝑢

(𝑡+1)

5: 𝐴(𝑡+1) ← 𝑑2

𝑑2−1
(
𝐴(𝑡) − 2

𝑑+1𝑢
(𝑡) (𝑢(𝑡))⊤

)
6: 𝑡 ← 𝑡 + 1
7: return 𝑥(𝑡)

Algorithm 9. Ellipsoid(𝑥, 𝑅,O)

We recall some classical facts regarding the operation of Algorithm 9 whereE(𝑥, 𝐴) denotes
the ellipsoid { 𝑦 ∈ R𝑑 : ( 𝑦 − 𝑥)⊤𝐴−1( 𝑦 − 𝑥) ⩽ 1}.

LEMMA B.1 ([11, 3]). Let 𝑥 ∈ R𝑑 , 𝐴 ≻ 0. Then for any 𝑣 ≠ 0, let:

𝑢 =
𝐴𝑣
√
𝑣⊤𝐴𝑣

, �̃� = 𝑥 + 1
𝑑 + 1

𝑢 and 𝐴 =
𝑑2

𝑑2 − 1

(
𝐴 − 2

𝑑 + 1
𝑢𝑢⊤

)
.

Then, we have:

E(𝑥, 𝐴) ∩ { 𝑦 : ⟨𝑦 − 𝑥, 𝑣⟩ ⩾ 0} ⊆ E(�̃�, 𝐴) and Vol(E(�̃�, 𝐴)) ⩽ exp
(
− 1

2(𝑑 + 1)

)
Vol(E(𝑥, 𝐴)).

We now use Lemma B.1 to establish a slightly weaker guarantee for the Algorithm 9
corresponding to our weaker oracle.

LEMMA 3.8. (Restated) Suppose 𝜀 > 0 and 𝐾 ⊂ R𝑑 be a closed convex set such that there exists
𝑥∗ ∈ 𝐾 such that for all 𝑦 ∈ B(𝑥∗, 𝜀), 𝑦 ∈ 𝐾 . Furthermore, let 𝑥 ∈ R𝑑 and 𝑅 > 0 be such that
𝐾 ⊂ B(𝑥, 𝑅). Suppose further that O satisfies for any input 𝑧, O:

1. Outputs 𝑣 ≠ 0 such that for all 𝑦 ∈ 𝐾 , we have ⟨𝑣, 𝑦 − 𝑥⟩ ⩾ 0 or
2. Outputs FAIL.

Then, Algorithm 9 when instantiated with 𝑥, 𝑅 and O, outputs �̂� satisfying O(�̂�) = FAIL. Further-
more, the number of iterations of the algorithm is bounded by 𝑂

(
𝑑2 log 𝑅

𝜀

)
and hence the total

computational complexity is bounded by 𝑂
(
𝑑4 log 𝑅

𝜀

)
.

PROOF . Suppose Algorithm 9 ran for𝑇 iterations with iterates, (𝑥 (𝑡) , 𝐴(𝑡))𝑇𝑡=0. From Lemma B.1,
we have for any 𝑡 ∈ {0, . . . , 𝑇 − 1}, Vol(E(𝑥 (𝑡+1) , 𝐴(𝑡+1))) ⩽ exp

(
− 1

2(𝑑+1)

)
Vol(E(𝑥 (𝑡) , 𝐴(𝑡))). Fur-

thermore, Lemma B.1 along with our assumption on O also implies that for all 𝑡 ∈ {0, . . . , 𝑇 },
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𝐾 ⊆ E(𝑥 (𝑡) , 𝐴(𝑡)). From these facts, we have:

exp
(
− 𝑇

2(𝑑 + 1)

)
Vol(B(𝑥, 𝑅)) = exp

(
− 𝑇

2(𝑑 + 1)

)
Vol(E(𝑥, 𝑅2 · 𝐼)) ⩾ Vol(𝐾) ⩾ Vol(B(𝑥∗, 𝜀)).

By taking rearranging the above inequality, taking logarithms on both sides and by using the
homogeneity properties of Euclidean volume, we get the desired bound on the number of
iterations. The bound on the computational complexity of the algorithm follows from the fact
that each iteration takes time 𝑂(𝑑2) to compute. ■

B.2 Miscellaneous Technical Results

Here, we present miscellaneous technical results needed in other parts of our proof.

LEMMA 3.4. (Restated) Let 𝑋 = {𝑥𝑖}𝑛𝑖=1, 0 < 𝜀 < 1 and 𝑇 =

{
𝑥−𝑦
∥𝑥−𝑦∥ : 𝑥 ≠ 𝑦 ∈ 𝑋

} ⋃{0}. Further-
more, suppose Π ∈ R𝑘×𝑑 has 𝜀-convex hull distortion for 𝑋 . Then, we have:

∀𝑥, 𝑦 ∈ Conv(𝑇 ) : |⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| ⩽ 6𝜀.

PROOF . We have by the definition of the inner product:

⟨𝑥, 𝑦⟩ = 1
4

(
∥𝑥 + 𝑦∥2 − ∥𝑥 − 𝑦∥2

)
.

Now, let 𝑥, 𝑦 ∈ Conv(𝑇 ). If 𝑥 = 𝑦, the result is true from the fact that Π has 𝜀-convex hull
distortion for 𝑋 . Therefore, assume 𝑥 ≠ 𝑦. We have:

|⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| = 1
4

(
|∥Π(𝑥 + 𝑦)∥2 − ∥Π(𝑥 − 𝑦)2∥ − ∥𝑥 + 𝑦∥2 + ∥𝑥 − 𝑦∥2 |

)
⩽

1
4

(
|∥Π(𝑥 + 𝑦)∥2 − ∥𝑥 + 𝑦∥2 | + |∥Π(𝑥 − 𝑦)2∥ − ∥𝑥 − 𝑦∥2 |

)
.

For the first term, we have:

|∥Π(𝑥 + 𝑦)∥2 − ∥𝑥 + 𝑦∥2 | = 4
(


Π

(𝑥 + 𝑦
2

)


 + 


𝑥 + 𝑦2




) ���


Π
(𝑥 + 𝑦

2

)


 − 


𝑥 + 𝑦2




��� ⩽ 12𝜀

where the final inequality follows from the fact that 𝑥+𝑦
2 ∈ Conv(𝑇 ), the fact that ∥𝑥∥, ∥ 𝑦∥ ⩽ 1

and the assumption that Π has 𝜀-convex hull distortion for 𝑋 . A similar inequality for the second
term yields:

|⟨Π𝑥,Π𝑦⟩ − ⟨𝑥, 𝑦⟩| ⩽ 1
4
(12𝜀 + 12𝜀) = 6𝜀

concluding the proof of the lemma. ■
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