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ABSTRACT. We provide more sample-efficient versions of some basic routines in quantum
data analysis, along with simpler proofs. Particularly, we give a quantum “Threshold Search”
algorithm that requires only 𝑂((log2 𝑚)/𝜖2) samples of a 𝑑-dimensional state 𝜌. That is, given
observables 0 ≤ 𝐴1, 𝐴2, . . . , 𝐴𝑚 ≤ 1 such that tr(𝜌𝐴𝑖) ≥ 1/2 for at least one 𝑖, the algorithm
finds 𝑗 with tr(𝜌𝐴 𝑗) ≥ 1/2 − 𝜖. As a consequence, we obtain a Shadow Tomography algorithm
requiring only 𝑂((log2 𝑚) (log 𝑑)/𝜖4) samples, which simultaneously achieves the best known
dependence on each parameter 𝑚, 𝑑, 𝜖. This yields the same sample complexity for quantum
Hypothesis Selection among 𝑚 states; we also give an alternative Hypothesis Selection method
using 𝑂((log3 𝑚)/𝜖2) samples.

1. Introduction

Some of the most basic problems in statistics, unsupervised learning, and property testing
involve the following scenario: One can observe data that are assumed to be drawn indepen-
dently from an unknown probability distribution 𝑝; say that 𝑝 is discrete and supported on
[𝑑] = {1, 2, . . . , 𝑑}. The task is to learn, test, or estimate some properties of 𝑝. Completely
estimating 𝑝 up to error 𝜖 (in, say, total variation distance) requires Θ(𝑑/𝜖2) samples, so when 𝑑

is very large one may seek to only learn or test partial aspects of 𝑝. For example, one might only
want to estimate the means of some known, fixed random variables 𝑎1, . . . , 𝑎𝑚 : [𝑑] → [0, 1]
(sometimes called “statistical queries” in the learning/privacy literature). Or, one might want to
perform Hypothesis Selection over some set of two or more hypothesis distributions 𝑞1, . . . , 𝑞𝑚
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on [𝑑]. It is generally fairly straightforward to determine the optimal sample complexity
needed for these tasks. For example, it’s easy to show that one can simultaneously estimate
all expectations E𝑝[𝑎1], . . . ,E𝑝[𝑎𝑚] to accuracy ±𝜖 using a batch of 𝑛 = 𝑂((log𝑚)/𝜖2) samples
(independent of 𝑑): one simply computes the empirical mean for each 𝑎𝑖 , reusing the batch of
samples in each computation.

These kinds of questions become much more difficult to analyze when the classical source
of randomness 𝑝 is replaced by a quantum source of randomness, namely a 𝑑-dimensional
quantum state 𝜌 ∈ C𝑑×𝑑 (satisfying 𝜌 ≥ 0, tr(𝜌) = 1). The difficulties here are that: (i) one cannot
directly observe “outcomes” for 𝜌, one can only measure it; (ii) measuring the state 𝜌 inherently
alters it, hence reusing samples (i.e., copies of 𝜌) is problematic. For example, suppose we
now have some known, fixed observables 𝐴1, . . . , 𝐴𝑚 ∈ C𝑑×𝑑 with 0 ≤ 𝐴𝑖 ≤ 1 and we wish to
estimate each expectation E𝜌[𝐴𝑖] B tr(𝜌𝐴𝑖) to within ±𝜖. This is the “Shadow Tomography”
problem introduced by Aaronson in [2] (see [1] for applications to, e.g., quantum money). We
do not know if this is similarly possible using 𝑛 = 𝑂((log𝑚)/𝜖2) copies of 𝜌; indeed, prior to
this work the best known upper bound was

𝑛 = min
{
𝑂((log4 𝑚) (log 𝑑)/𝜖4), 𝑂((log2 𝑚) (log2 𝑑)/𝜖8)

}
.

Here the sample complexity on the left is from [1], combining a “Gentle Search” routine with an
online learning algorithm for quantum states from [3]. The sample complexity on the right was
obtained by Aaronson and Rothblum [4] by drawing inspiration and techniques from the field
of Differential Privacy.1

In fact, we propose that — rather than Differential Privacy — a closer classical match
for the Shadow Tomography problem is the task known as Adaptive Data Analysis, introduced
by [17]. In this problem, the random variables (“statistical queries”) 𝑎1, . . . , 𝑎𝑚 are not fixed
in advance for the learner, but are rather received one at a time, with the crucial feature that
each 𝑎𝑡 may adaptively depend on the preceding estimates of E𝑝[𝑎1], . . . ,E𝑝[𝑎𝑡−1] output by the
learner. In this case, conditioning on these output estimates skews the underlying i.i.d. product
distribution 𝑝⊗𝑛 — reminiscent of the way measuring a quantum state affects it — and this
prevents naive reuse of the sample data. Indeed, it’s far from obvious that the Adaptive Data
Analysis task is doable with poly(log𝑚, log 𝑑, 1/𝜖) samples; however this was shown by [17],
who achieved complexity 𝑛 = 𝑂((log𝑚)3/2(log 𝑑)1/2/𝜖7/2), and this was later improved by [7] to
𝑛 = 𝑂((log𝑚) (log 𝑑)1/2/𝜖3)). While Differential Privacy tools have been an ingredient in some
Adaptive Data Analysis routines, the topics are not inherently linked; e.g., a viewpoint based on
“KL-stability” is emphasized in [7].

1 See also [28] for sample complexity bounds that can be better for special kinds of 𝐴𝑖 ’s.
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1.1 Our work

1.1.1 Threshold Search

The first main result in our work concerns what we will call the quantum “Threshold Search”
problem.2 We state the problem here in a general form (recalling our notation E𝜌[𝐴𝑖] = tr(𝜌𝐴𝑖)):

Quantum Threshold Search problem: Given:
1. Parameters 0 < 𝜖, 𝛿 < 1

2 .
2. Access to unentangled copies of an unknown 𝑑-dimensional quantum state 𝜌.
3. A list of 𝑑-dimensional observables 0 ≤ 𝐴1, . . . , 𝐴𝑚 ≤ 1.
4. A list of thresholds 0 ≤ 𝜃1, . . . , 𝜃𝑚 ≤ 1.

The algorithm should either output:
“E𝜌[𝐴 𝑗] > 𝜃 𝑗 − 𝜖” for some particular 𝑗; or else,
“E𝜌[𝐴𝑖] ≤ 𝜃𝑖 for all 𝑖”.

The output of the algorithm is a sample from a distribution over indices 𝑗 such that
“E𝜌[𝐴 𝑗] > 𝜃 𝑗 − 𝜖” or “E𝜌[𝐴𝑖] ≤ 𝜃𝑖 for all 𝑖” if no such 𝑗 exists. The task is to minimize the
number 𝑛 of copies that are used, while ensuring the probability of a false output statement is
at most 𝛿.

We remark that all the difficulty of the problem is contained in the case where 𝜖 = 𝛿 = 1
4

and 𝜃 𝑗 =
3
4 for all 𝑗 (see Section 4.1). In this case, Aaronson [2] originally showed that the

Threshold Search problem can be solved using 𝑛 = 𝑂(log4 𝑚) copies of 𝜌. In the present paper,
we improve this result quadratically:

THEOREM 1.1. The quantum Threshold Search problem can be solved using

𝑛 = 𝑛TS(𝑚, 𝜖, 𝛿) = log2 𝑚 + l
𝜖2 · 𝑂(l) (l = log(1/𝛿))

copies of 𝜌. Furthermore, this solution is online in the sense that:
The algorithm is initially given only 𝑚, 𝜖, 𝛿. It then selects 𝑛 and obtains 𝜌⊗𝑛.
Next, observable/threshold pairs (𝐴1, 𝜃1), (𝐴2, 𝜃2), . . . are presented to the algorithm in
sequence. When each (𝐴𝑡, 𝜃𝑡) is presented, the algorithm must either “pass”, or else halt and
output “E𝜌[𝐴𝑡] > 𝜃𝑡 − 𝜖”.
If the algorithm passes on all (𝐴𝑡, 𝜃𝑡) pairs, then it ends by outputting “E𝜌[𝐴𝑖] ≤ 𝜃𝑖 for all 𝑖”.

2 Originally called the “Secret Acceptor” problem when it was introduced by Aaronson [2]. Later he called it “Gentle
Search” [1], but we find this name unsatisfactory as it is not necessary that a successful algorithm be “gentle”. In the
Differential Privacy literature, it is sometimes called “Report Noisy Max” (offline case) or “Above Threshold” (online
case) [18].
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Incidentally, the (offline) quantum Threshold Decision problem, where the algorithm
only needs to report “∃ 𝑗 : E𝜌[𝐴 𝑗] > 𝜃 𝑗 − 𝜖” without actually specifying 𝑗, is known to be
solvable using just 𝑛 = 𝑂(log(𝑚) log(1/𝛿)/𝜖2) copies [1]. We review the proof in Appendix A,
tightening/simplifying some quantitative aspects of the underlying theorem of Harrow, Lin,
and Montanaro [24]. In particular, our tightenings let us slightly improve the copy complexity
to 𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2).

1.1.2 𝜒2-stable threshold reporting

The most important technical ingredient going into our proof of Theorem 1.1 is a new, purely
classical statistical result fitting into the Adaptive Data Analysis framework (see, e.g., [38] for
some background). In that setting one might describe our result as follows: “adding exponential
noise provides a (composably) 𝜒2-stable mechanism for reporting if a distribution’s mean is
above a given threshold”. In more detail, the result says that given a Sample 𝑺 consisting
of the sum of 𝑛 draws from a Bernoulli(𝑝) distribution (i.e., 𝑺 ∼ Binomial(𝑛, 𝑝)), if we add
independent exponential noise 𝑿 and then check the event 𝐵 that 𝑺 + 𝑿 exceeds some large
threshold 𝜃𝑛, then conditioning on 𝐵 not occurring hardly changes the distribution of𝑺, provided
E[𝑿] ≫ stddev[𝑺]. Here the phrase “hardly changes” is in two very strong senses: (i) we show
the random variables 𝑺 | 𝐵 and 𝑺 are close even in 𝜒2-divergence, which is a more stringent
measure than KL-divergence (or Hellinger distance, or total variation distance) — that is, the
test is “𝜒2-stable”; (ii) the 𝜒2-divergence is not just absolutely small, but is even a small fraction
of P[𝐵]2 itself (hence the total variation closeness is a small fraction of P[𝐵]). This allows a
kind of composition (as in the “Sparse Vector” mechanism [18] from the Differential Privacy
literature) in which the same quantum sample can be reused for repeated “above threshold”
tests, up until the point where having at least one “above threshold” outcome becomes likely.
Precisely, our result is the following (refer to Section 2.1 for the definition and notation of the
quantities used below):

THEOREM 1.2. Let 𝑺 ∼ Binomial(𝑛, 𝑝). Assume that 𝑿 is an independent Exponential random
variable with mean at least stddev[𝑺] =

√︁
𝑝(1 − 𝑝)𝑛 (and also at least 1). Let 𝐵 be the event that

𝑺 + 𝑿 > 𝜃𝑛, and assume that P[𝐵] < 1
4 . Then

𝑑𝜒2 ((𝑺 | 𝐵), 𝑺) ≲
(
P[𝐵] · stddev[𝑺]

E[𝑿]

)2

≤ P[𝐵]2 · (𝑛/E[𝑿]2).

(Above we are using the notation 𝑌 ≲ 𝑍 to mean 𝑌 ≤ 𝐶 · 𝑍 for some universal constant 𝐶. We
are also abusing notation by writing the 𝜒2-divergence between two random variables to mean
the 𝜒2-divergence between their underlying distributions.)
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COROLLARY 1.3. Writing 𝑺′ for 𝑺 | 𝐵, standard inequalities for 𝑓 -divergences [21] imply

𝑑TV(𝑺′, 𝑺) ≤ 𝑑H(𝑺′, 𝑺) ≤
√︁
𝑑KL(𝑺′, 𝑺) ≤

√︃
𝑑𝜒2 (𝑺′, 𝑺) ≲ P[𝐵] · stddev[𝑺]

E[𝑿] ≤ P[𝐵] ·
√
𝑛

E[𝑿] .

Let us remark that our Theorem 1.2 is similar to results appearing previously in the
Differential Privacy/Adaptive Data Analysis literature; in particular, it is quite similar to (and
inspired by) a theorem (“Claim 41”) of Aaronson and Rothblum [4]. Although this Claim 41 is
presented in a quantum context, the essence of it is a theorem comparable to our Theorem 1.2,
with the following main differences: (i) it bounds the weaker KL-divergence (though for our
applications, this is acceptable); (ii) the proof is significantly more involved. (Minor differences
include: (i) their result uses two-sided exponential noise for a two-sided threshold event; (ii) our
bound has the stronger factor stddev[𝑺] instead of just

√
𝑛.)

1.1.3 Applications: Shadow Tomography and Hypothesis Selection

Given our improved Threshold Search algorithm, we present two applications in quantum data
analysis. The first is to the aforementioned Shadow Tomography problem, where we obtain
a sample complexity that simultaneously achieves the best known dependence on all three
parameters 𝑚, 𝑑, and 𝜖. Furthermore, our algorithm is online, as in the Adaptive Data Analysis
setting.

THEOREM 1.4. There is a quantum algorithm that, given parameters 𝑚 ∈ N, 0 < 𝜖 < 1
2 , and

access to unentangled copies of a state 𝜌 ∈ C𝑑×𝑑 , uses

𝑛 =
(log2 𝑚 + l) (log 𝑑)

𝜖4 · 𝑂(l) (l = log( log 𝑑
𝛿𝜖 ))

copies of 𝜌 and then has the following behavior: When any (adversarially/adaptively chosen)
sequence of observables 𝐴1, 𝐴2, . . . , 𝐴𝑚 ∈ C𝑑×𝑑 with 0 ≤ 𝐴𝑖 ≤ 1 is presented to the algorithm
one-by-one, once 𝐴𝑡 is presented the algorithm responds with an estimate �̂�𝑖 of E𝜌[𝐴𝑡] = tr(𝜌𝐴𝑡).
Except with probability at most 𝛿 (over the algorithm’s measurements), all 𝑚 estimates satisfy
|�̂�𝑖 − E𝜌[𝐴𝑡] | ≤ 𝜖.

The proof of this theorem is almost immediate from our Threshold Search algorithm,
using a known [1] black-box reduction to the mistake-bounded online quantum state learning
algorithm of Aaronson, Chen, Hazan, Kale, and Nayak [3].

Let us philosophically remark that we believe the importance of the parameters, in increas-
ing order, is 𝑑, then 𝜖, then 𝑚. Regarding 𝑑, “in practice” one may expect that log 𝑑, the number
of qubits in the unknown state, is not likely to be particularly large. Indeed, many problems
in quantum learning/tomography/statistics [25, 12, 31, 36, 34, 23, 35, 5, 6, 42, 43, 10, 41] have
polynomial dependence on 𝑑, so factors of polylog 𝑑 seem of lesser importance. Regarding 𝜖,
“in practice” this might be the most important parameter, as even with a very mild value like
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𝜖 = .1, a dependence of 1/𝜖4 is challenging. It’s peculiar that all works on Shadow Tomography
have achieved atypical 𝜖-dependence like 1/𝜖4, 1/𝜖5, and 1/𝜖8, instead of the “expected” 1/𝜖2;
on the other hand, this peculiarity also seems to occur in the Adaptive Data Analysis literature.
Finally, we feel that the dependence on 𝑚 is of the most interest (theoretical interest, at least),
and it would be extremely compelling if we could reduce the dependence from log2 𝑚 to log𝑚.
Our reason is related to quantum Hypothesis Selection, which we now discuss.

Hypothesis Selection. The classical (multiple) Hypothesis Selection problem [40, 13, 15] is
as follows: Given are 𝑚 fixed “hypothesis” probability distributions 𝑞1, . . . , 𝑞𝑚 on [𝑑], as well
as a parameter 𝜖 and access to samples from an unknown distribution 𝑝 on [𝑑]. The task is
to find (with probability at least 1 − 𝛿) a 𝑞 𝑗 which is, roughly, closest to 𝑝, while minimizing
the number of samples drawn from 𝑝. More precisely, if 𝜂 = min𝑖{𝑑TV(𝑝, 𝑞𝑖)}, the algorithm
should output a hypothesis 𝑞 𝑗 with 𝑑TV(𝑝, 𝑞 𝑗) ≤ 𝐶𝜂 + 𝜖 for some fixed small constant 𝐶. There
are a variety of solutions known to this problem, with standard ones [14, Chap. 6] achieving
𝑛 = 𝑂((log𝑚)/𝜖2) (and best constant 𝐶 = 3). There are also numerous variations, including
handling different distance measures besides 𝑑TV [9], the easier (“realizable/non-robust”) case
when 𝜂 = 0, and the case when there is a unique answer (as when the hypotheses 𝑞 𝑗 are pairwise
far apart). We emphasize that our focus is on the non-asymptotic regime, where we would like
an explicit sample bound 𝑛 = 𝑛(𝑚, 𝑑, 𝜖, 𝛿) holding for all values of 𝑚, 𝑑, 𝜖, 𝛿.3 One particularly
useful application of Hypothesis Selection is to learning an unknown probability distribution 𝑝

from a class C (even “agnostically”). Roughly speaking, if C has an 𝜖-cover of size 𝑚 = 𝑚(𝜖),
then one can learn 𝑝 to accuracy 𝑂(𝜖) using a Hypothesis Selection over 𝑚 hypotheses; i.e., with
𝑂((log𝑚)/𝜖2) samples in the classical case. For further discussion of the problem, see e.g. [30];
for Differentially Private Hypothesis Selection, see [11, 22]; for fast classical Hypothesis Selection
with a quantum computer, see [37].

The quantum Hypothesis Selection problem is the natural analogue in which probability
distributions are replaced by quantum states, and total variation distance is replaced by trace
distance. As with Shadow Tomography (and Differentially Private Hypothesis Selection), it
is nontrivial to upgrade classical algorithms due to the fact that samples cannot be naively
reused. We show that one can use Shadow Tomography as a black box to solve quantum
Hypothesis Testing. We also give a different method based on Threshold Search that achieves
an incomparable copy complexity, with a better dependence on 𝜖 but a worse dependence on 𝑚:
roughly (log3 𝑚)/𝜖2, versus the (log2 𝑚)/𝜖4 of Shadow Tomography. Finally, we show that if the
hypothesis states are pairwise far apart, we can match the optimal bound from the classical
case.

3 This is as opposed to the asymptotic regime. There, one focuses on achieving 𝛿 ≤ exp(−𝐶(𝑚, 𝑑, 𝜖)𝑛) for all 𝑛 ≥ 𝑛0 (𝑚, 𝑑, 𝜖),
where the rate function 𝐶(𝑚, 𝑑, 𝜖) should be as large as possible, but where 𝑛0 may be a completely uncontrolled
function of 𝑚, 𝑑, 𝜖. See, e.g., [32].
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THEOREM 1.5. There is a quantum algorithm that, given 𝑚 fixed hypothesis states 𝜎1, . . . , 𝜎𝑚 ∈
C𝑑×𝑑 , parameters 0 < 𝜖, 𝛿 < 1

2 , and access to unentangled copies of a state 𝜌 ∈ C𝑑×𝑑 , uses

𝑛 = min
{
(log2 𝑚 + l1) (log 𝑑)

𝜖4 · 𝑂(l1),
log3 𝑚 + log(l2/𝛿) · log𝑚

𝜖2 · 𝑂(l2 · log(l2/𝛿))
}

copies of 𝜌 (where l1 = log( log 𝑑
𝛿𝜖 ) and l2 = log(1/max{𝜂, 𝜖})) and has the following guarantee:

except with probability at most 𝛿, it outputs 𝑘 such that

𝑑tr(𝜌, 𝜎𝑘) ≤ 3.01𝜂 + 𝜖, where 𝜂 = min
𝑖

{𝑑tr(𝜌, 𝜎𝑖)}.

Further, assuming 𝜂 < 1
2 (min𝑖≠ 𝑗{𝑑tr(𝜎𝑖 , 𝜎 𝑗)}−𝜖) (so there is a unique 𝜎𝑖 near 𝜌), one can find

the 𝜎𝑘 achieving 𝑑tr(𝜌, 𝜎𝑘) = 𝜂 (except with probability at most 𝛿) using only 𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2)
copies of 𝜌.

The fact that quantum Hypothesis Selection black-box reduces to Shadow Tomography
provides significant motivation for trying to prove (or disprove) that Shadow Tomography can
be done with 𝑂(log𝑚) · poly((log 𝑑)/𝜖) copies; i.e., that the power on log𝑚 can be reduced to 1.
If this were possible, then as in the classical case we would be able to learn a quantum state 𝜌 ∈
C𝑑×𝑑 in a class C (to constant trace distance accuracy, say) using log( |cover(C)|) · polylog(𝑑)
copies, where cover(C) denotes a set of states that form a (trace-distance) cover for C. It’s
easy to see that the class C of all states has a cover of size at most 𝑂(𝑑)𝑑2 , and hence Shadow
Tomography with a log𝑚 dependence would yield a full quantum tomography algorithm with
copy complexity 𝑂(𝑑2), bypassing the sophisticated representation-theory methods of [34, 23,
35]. One might also hope for more efficient learning of other interesting subclasses of states;
e.g., the class separable states.

2. Preliminaries

2.1 Classical probability distributions and distances

Let 𝑝 = (𝑝1, . . . , 𝑝𝑑) denote a probability distribution on [𝑑] = {1, . . . , 𝑑}. We consider 𝐴 :
[𝑑] → R to be a random variable on [𝑑], and write

E
𝑝
[𝐴] = E

𝒊∼𝑝
[𝐴(𝒊)] =

𝑑∑︁
𝑖=1

𝑝𝑖𝐴(𝑖).

In particular, if 𝐴 : [𝑑] → {0, 1} we may think of it as an event 𝐴 ⊆ [𝑑].
Given another probability distribution 𝑞 on [𝑑], there are a variety of important dis-

tances/divergences between 𝑝 and 𝑞. We now recall all those appearing in Theorem 1.2 and
Corollary 1.3.
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The total variation distance 𝑑TV(𝑝, 𝑞) between 𝑝 and 𝑞 is defined by

𝑑TV(𝑝, 𝑞) =
1
2

𝑑∑︁
𝑖=1

|𝑝𝑖 − 𝑞𝑖 | = max
𝐴⊆[𝑑]

����E𝑝 [𝐴] − E
𝑞
[𝐴]

����.
The Bhattacharyya coefficient BC(𝑝, 𝑞) (an affinity between 𝑝 and 𝑞, rather than a distance) is
defined by

BC(𝑝, 𝑞) =
𝑑∑︁
𝑖=1

√
𝑝𝑖𝑞𝑖 .

This can be used to define squared Hellinger distance 𝑑H(𝑝, 𝑞)2 = 𝑑H2 (𝑝, 𝑞), viz.,

𝑑H2 (𝑝, 𝑞) = 2(1 − BC(𝑝, 𝑞)) =
𝑑∑︁
𝑖=1

(√
𝑝𝑖 −

√
𝑞𝑖

)2
.

The KL-divergence 𝑑KL(𝑝, 𝑞) between 𝑝 and 𝑞 is defined by

𝑑KL(𝑝, 𝑞) =
𝑑∑︁
𝑖=1

𝑝𝑖 ln(𝑝𝑖/𝑞𝑖) = E
𝒊∼𝑝

ln(𝑝𝒊/𝑞𝒊).

Finally, the 𝜒2-divergence 𝑑𝜒2 (𝑝, 𝑞) between 𝑝 and 𝑞 is defined by

𝑑𝜒2 (𝑝, 𝑞) =
𝑑∑︁
𝑖=1

𝑞𝑖

(
1 − 𝑝𝑖

𝑞𝑖

)2

= E
𝒊∼𝑞

[(
1 − 𝑝𝒊

𝑞𝒊

)2
]
.

2.2 Quantum states and measurements

A matrix 𝐴 ∈ C𝑑×𝑑 is said to be Hermitian, or self-adjoint, if 𝐴† = 𝐴; here 𝐴† denotes the conjugate
transpose of 𝐴. We write 𝐴 ≥ 0 to denote that 𝐴 is self-adjoint and positive semidefinite; e.g.,
𝐵†𝐵 ≥ 0 always. In general, we write 𝐴 ≥ 𝐵 to mean 𝐴−𝐵 ≥ 0. Recall that a positive semidefinite
matrix 𝐴 ≥ 0 has a unique positive semidefinite square root

√
𝐴 ≥ 0. We write 1 for the identity

matrix (where the dimension is understood from context).
A 𝑑-dimensional quantum state is any 𝜌 ∈ C𝑑 × 𝑑 satisfying 𝜌 ≥ 0 and tr 𝜌 = 1; physically

speaking, this is the state of a 𝑑-level quantum system, such as log2 𝑑 qubits. A 𝑑-dimensional
observable is any self-adjoint 𝐴 ∈ C𝑑×𝑑; physically speaking, this is any real-valued property of
the system. One can build an associated measuring device that takes in a quantum system in
state 𝜌, and reads out a (stochastic) real number; we denote its expected value, the expectation
of 𝐴 with respect to 𝜌, by

E
𝜌
[𝐴] = tr(𝜌𝐴).

It is a basic fact of linear algebra that E𝜌[𝐴] ≥ 0 whenever 𝐴 ≥ 0.
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Note that if 𝜌 and 𝐴 are diagonal matrices then we reduce to the classical case, where the
diagonal elements of 𝜌 form a probability distribution on [𝑑] and the diagonal elements of 𝐴
give a real-valued random variable.

We will use the term quantum event4 for an observable 𝐴 ∈ C𝑑×𝑑 with 0 ≤ 𝐴 ≤ 1; i.e.,
a self-adjoint operator with all its eigenvalues between 0 and 1. A state 𝜌 ∈ C𝑑×𝑑 assigns a
probability 0 ≤ E𝜌[𝐴] ≤ 1 to each event. We reserve the term projector for the special case
when 𝐴2 = 𝐴; i.e., when all of 𝐴’s eigenvalues are either 0 or 1. Note that we have not exactly
paralleled the classical terminology, where an “event” is a random variable with all its values
equal to 0 or 1, but: (i) it’s convenient to have a brief term for observables 𝐴 with 0 ≤ 𝐴 ≤ 1;
(ii) the terminology “projector” is very standard. Of course, by the spectral theorem, every
quantum event 𝐴 may be written as

𝐴 =

𝑟∑︁
𝑖=1

𝜆𝑖Π𝑖 , where each 0 ≤ 𝜆𝑖 ≤ 1, and Π𝑖 ’s are pairwise orthogonal projectors. (1)

A quantum measurement M, also known as a positive-operator valued measure (POVM), is
a sequence M = (𝐴1, . . . , 𝐴𝑘) of quantum events with 𝐴1 + · · · + 𝐴𝑘 = 1. Since

E
𝜌
[𝐴1] + · · · + E

𝜌
[𝐴𝑘] = E

𝜌
[𝐴1 + · · · + 𝐴𝑘] = E

𝜌
[1] = 1,

a state 𝜌 and a measurement M determine a probability distribution 𝑝 on [𝑘] defined by
𝑝𝑖 = E𝜌[𝐴𝑖] for 𝑖 = 1, . . . , 𝑘. A common scenario is that of a two-outcome measurement, associated
to any quantum event 𝐴; this is the measurement M = (𝐴, 𝐴), where 𝐴 = 1 − 𝐴.

For any quantum measurement M, one can physically implement a measuring device
that, given 𝜌, reports 𝒊 ∈ [𝑘] distributed according to 𝑝. Mathematically, an implementation of
M = (𝐴1, . . . , 𝐴𝑘) is a sequence of 𝑑-column matrices 𝑀1, . . . , 𝑀𝑘 with 𝑀†

𝑖
𝑀𝑖 = 𝐴𝑖 for 𝑖 = 1, . . . , 𝑘.

Under this implementation, conditioned on the readout being 𝒊 = 𝑖, the state 𝜌 collapses to the
new state 𝜌|𝑀𝑖

, defined as follows:

𝜌|𝑀𝑖
=

𝑀𝑖𝜌𝑀
†
𝑖

E𝜌[𝑀†
𝑖
𝑀𝑖]

=
𝑀𝑖𝜌𝑀

†
𝑖

E𝜌[𝐴𝑖]
.

Given M, we will define the canonical implementation to be the one in which 𝑀𝑖 =
√
𝐴𝑖 . In

particular, if we have any quantum event 𝐴 and we canonically implement the associated
two-outcome measurement (𝐴, 𝐴), then measuring 𝜌 and conditioning on 𝐴 occurring yields
the new state

𝜌|√𝐴 =

√
𝐴𝜌

√
𝐴

E𝜌[𝐴]
.

4 Also known as a POVM element in the quantum information literature.
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More generally, we have the notion of a quantum operation 𝑆 on 𝑑-dimensional states,
defined by 𝑑-column matrices 𝑀1, . . . , 𝑀𝑘 such that

𝑀†
1𝑀1 + · · · +𝑀†

𝑘
𝑀𝑘 ≤ 1.

The result of applying 𝑆 to a state 𝜌 is (the sub-normalized state)

𝑆(𝜌) = 𝑀1𝜌𝑀
†
1 + · · · +𝑀𝑘𝜌𝑀

†
𝑘
.

An operation 𝑆 defines a measurement

M𝑆 = (𝑀†
1𝑀1, 𝑀

†
2𝑀2, . . . , 𝑀

†
𝑘
𝑀𝑘, 1−(𝑀†

1𝑀1 + · · · +𝑀†
𝑘
𝑀𝑘)).

In Section 2.5 below, we will use the following terminology: we say a quantum operation 𝑆

rejects a state 𝜌 if the outcome of measuring 𝜌 according to M𝑆 corresponds to the quantum
event 1−(𝑀†

1𝑀1 + · · · +𝑀†
𝑘
𝑀𝑘); otherwise, we say 𝑆 accepts 𝜌.

Finally, we will use the following special case of the well-known Naimark dilation theorem:

THEOREM 2.1 (Naimark). If 𝐴 ∈ C𝑑×𝑑 is a quantum event, then there exists a projector Π
operating on the space C2𝑑 such that, for any 𝜌 ∈ C𝑑×𝑑 ,

E
𝜌⊗|0⟩⟨0|

[Π] = E
𝜌
[𝐴] .

2.3 Quantum state distances

Just as with classical probability distributions, there are a variety of distances/divergences
between two quantum states 𝜌, 𝜎 ∈ C𝑑×𝑑 . In fact, for every classical “ 𝑓 -divergence” there is a
corresponding “measured quantum 𝑓 -divergence”, which is the maximal classical divergence
that can be achieved by performing the same measurement on 𝜌 and 𝜎. In this way, classical
total variation distance precisely corresponds to quantum trace distance, the Bhattacharyya
coefficient precisely corresponds to quantum fidelity, etc. See, e.g., [6, Sec. 3.1.2] for further
review; here we will simply directly define some quantum distances.

The trace distance 𝑑tr(𝜌, 𝜎) between states 𝜌 and 𝜎 is defined by

𝑑tr(𝜌, 𝜎) =
1
2
∥𝜌 − 𝜎∥1 = max

0≤𝐴≤1
|E
𝜌
[𝐴] − E

𝜎
[𝐴] |.

Here the second equality is known as the Holevo–Helstrom theorem [27, 26], and the maximum
is over all quantum events 𝐴 ∈ C𝑑 × 𝑑 . Moreover, the maximum is achieved by a projector. The
fidelity F(𝜌, 𝜎) between states 𝜌 and 𝜎 is defined by

F(𝜌, 𝜎) = ∥√𝜌
√
𝜎∥1 = tr

√︃√
𝜌𝜎

√
𝜌. (2)
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This can be used to define the squared Bures distance 𝑑Bures(𝜌, 𝜎)2 = 𝑑Bures2 (𝜌, 𝜎), viz.,

𝑑Bures2 (𝜌, 𝜎) = 2(1 − F(𝜌, 𝜎)).

It follows from the work of Fuchs and Caves [19] that 1
2𝑑Bures2 (𝜌, 𝜎) ≤ 𝑑tr(𝜌, 𝜎) ≤ 𝑑Bures(𝜌, 𝜎)

for all states 𝜌 and 𝜎.
Below we give a simpler formula for fidelity in the case when 𝜎 is a conditioned version of 𝜌

(such results are sometimes known under the name “gentle measurement”; see [39, Cor. 3.15]):

PROPOS IT ION 2 .2. Let 𝜌 ∈ C𝑑×𝑑 and 𝑀 ∈ C𝑑×𝑑 an observable. Then F(𝜌, 𝜌|𝑀)2 =
E𝜌[𝑀]2

E𝜌[𝑀2] . In

particular, for a projector Π we get F(𝜌, 𝜌|Π) =
√︁
E𝜌[Π], and for conditioning on the occurrence of

a quantum event 𝐴 (under the canonical implementation), F(𝜌, 𝜌|√𝐴) =
E𝜌[

√
𝐴]√︁

E𝜌[𝐴]
.

PROOF . Using the definition of 𝜌|𝑀 and the second formula for fidelity in Equation (2),

F(𝜌, 𝜌|𝑀)2 =

tr
(√︁√

𝜌𝑀𝜌𝑀†√𝜌
)2

E𝜌[𝑀†𝑀]
=

tr
(√︁√

𝜌𝑀
√
𝜌
√
𝜌𝑀

√
𝜌
)2

E𝜌[𝑀2] =
tr

(√
𝜌𝑀

√
𝜌
)2

E𝜌[𝑀2] =
E𝜌[𝑀]2

E𝜌[𝑀2] . ■

Below we give a further formula for F(𝜌, 𝜌|√𝐴) using the spectral decomposition of 𝐴. (We
remark that it may be obtained as a special case of the theorem of Fuchs and Caves [19].)

PROPOS IT ION 2 .3. Let 𝜌 ∈ C𝑑×𝑑 be a quantum state, and let 𝐴 ∈ C𝑑×𝑑 be a quantum event
with spectral decomposition 𝐴 =

∑𝑟
𝑖=1 𝜆𝑖Π𝑖 as in Equation (1). Let 𝑝 be the probability distribution

on [𝑟] determined by measurement M = (Π1, . . . ,Π𝑟) on 𝜌, and let 𝑞 be the one determined by M
on 𝜌|√𝐴. Then F(𝜌, 𝜌|√𝐴) = BC(𝑝, 𝑞).

PROOF . By definition,

E
𝜌|√𝐴

[Π𝑖] · E
𝜌
[𝐴] = tr(

√
𝐴𝜌

√
𝐴Π𝑖) = E

𝜌
[
√
𝐴Π𝑖

√
𝐴] = E

𝜌
[𝜆𝑖Π𝑖] = 𝜆𝑖𝑝𝑖 ,

and hence 𝑞𝑖 = 𝜆𝑖𝑝𝑖/E𝜌[𝐴]. It follows that

BC(𝑝, 𝑞) =
∑

𝑖

√
𝜆𝑖𝑝𝑖√︁

E𝜌[𝐴]
=
E𝜌[

√
𝐴]√︁

E𝜌[𝐴]
,

and the proof is complete by Proposition 2.2. ■

2.4 Naive expectation estimation

LEMMA 2.4. Let 𝐸 ∈ C𝑑×𝑑 be a quantum event and let 0 < 𝜖, 𝛿 < 1
2 . Then there exists 𝑛 =

𝑂(log(1/𝛿)/𝜖2) (not depending on 𝐸) and a measurement M = (𝐴0, . . . , 𝐴𝑛) such that, for any
quantum state 𝜌 ∈ C𝑑×𝑑 ,

P
[����𝒌𝑛 − tr(𝜌𝐸)

���� > 𝜖

]
≤ 𝛿,
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where 𝒌 ∈ {0, . . . , 𝑛} is the random outcome of the measurement M applied to the state 𝜌⊗𝑛.
Moreover, for any parameters 0 ≤ 𝜏, 𝑐 ≤ 1, there exists a quantum event 𝐵 such that

|tr(𝜌𝐸) − 𝜏 | > 𝑐 + 𝜖 =⇒ E
𝜌⊗𝑛

[𝐵] ≥ 1 − 𝛿 and

|tr(𝜌𝐸) − 𝜏 | ≤ 𝑐 − 𝜖 =⇒ E
𝜌⊗𝑛

[𝐵] ≤ 𝛿.

Additionally, if 𝐸 is a projector, then so is 𝐵.

PROOF . Let 𝐸1 = 𝐸 and 𝐸0 = 1 − 𝐸. For all 𝑥 ∈ {0, 1}𝑛, let 𝐸𝑥 ∈ (C𝑑×𝑑)⊗𝑛 be defined by
𝐸𝑥 = 𝐸𝑥1 ⊗ 𝐸𝑥2 ⊗ · · · ⊗ 𝐸𝑥𝑛 . For 𝑘 = 0, . . . , 𝑛, let 𝐴𝑘 ∈ (C𝑑×𝑑)⊗𝑛 be the quantum event defined by

𝐴𝑘 =
∑︁

𝑥∈{0,1}𝑛
|𝑥 |=𝑘

𝐸𝑥 .

Let M be the measurement defined by M = {𝐴0, . . . , 𝐴𝑛}.
Thus, if 𝒌 ∈ {0, . . . , 𝑛} is the random outcome of measuring 𝜌⊗𝑛 according to M, then 𝒌 is

distributed as Binomial(𝑛, tr(𝜌𝐸)). Hence, if 𝑛 = 𝑂(log(1/𝛿)/𝜖2), then, by Hoeffding’s inequality,

P
[����𝒌𝑛 − tr(𝜌𝐸)

���� ≥ 𝜖

]
≤ 2 exp(−2𝑛𝜖2) ≤ 𝛿.

Let parameters 𝜏, 𝑐 ∈ [0, 1] be given and let the function 𝑓 : [0, 1] → {0, 1} be defined by

𝑓 (𝑡) =


1, |𝑡 − 𝜏 | ≥ 𝑐,

0, otherwise.

Finally, let the quantum event 𝐵 be defined by

𝐵 =

𝑛∑︁
𝑘=0

𝑓 (𝑘/𝑛)𝐴𝑘 .

Thus, if 𝒌 ∼ Binomial(𝑛, tr(𝜌𝐸)), then

E
𝜌⊗𝑛

[𝐵] =
𝑛∑︁

𝑘=0
P[𝒌 = 𝑘] · 𝑓 (𝑘/𝑛) = E[ 𝑓 (𝒌/𝑛)] = P

[����𝒌𝑛 − 𝜏

���� ≥ 𝑐

]
.

If 𝑐 + 𝜖 ≤ |tr(𝜌𝐸) − 𝜏 |, then |tr(𝜌𝐸) − 𝒌/𝑛| < 𝜖 implies |𝒌/𝑛 − 𝜏 | ≥ 𝑐. Hence,

E
𝜌⊗𝑛

[𝐵] = P
[����𝒌𝑛 − 𝜏

���� ≥ 𝑐

]
≥ P

[����𝒌𝑛 − tr(𝜌𝐸)
���� < 𝜖

]
≥ 1 − 𝛿.

If 𝑐 − 𝜖 ≥ |tr(𝜌𝐸) − 𝜏 |, then |tr(𝜌𝐸) − 𝒌/𝑛| < 𝜖 implies |𝒌/𝑛 − 𝜏 | < 𝑐. Hence,

E
𝜌⊗𝑛

[𝐵] = P
[����𝒌𝑛 − 𝜏

���� < 𝑐

]
≥ P

[����𝒌𝑛 − tr(𝜌𝐸)
���� < 𝜖

]
≥ 1 − 𝛿.

If 𝐸 is a projector, then 𝐴𝑘 is a projector and 𝐴𝑘𝐴ℓ = 𝐴ℓ𝐴𝑘 = 0 for all 𝑘, ℓ ∈ {0, . . . , 𝑛}. Since 𝐵 is
a sum of orthogonal projectors 𝐴𝑘 with 𝑘 ∈ {0, . . . , 𝑛}, it follows that 𝐵 is a projector. ■
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2.5 Quantum union bound-style results

The following result is part of the “Damage Lemma” of Aaronson and Rothblum [4, Lemma 17].
Since the original proof of the “Damage Lemma” was found to be incorrect [29], we provide a
slightly different proof by induction below:

LEMMA 2.5. Let 𝑆1, . . . , 𝑆𝑚 be arbitrary quantum operations on 𝑑-dimensional quantum states.
Let 𝜌 be a quantum state on C𝑑 with 𝑝𝑖 = tr(𝑆𝑖 (𝜌)) > 0 for all 𝑖 ∈ [𝑚]. It holds that

|tr(𝑆𝑚(· · · 𝑆1(𝜌))) − 𝑝1 · · · 𝑝𝑚 | ≤ 2 ·
𝑚−1∑︁
𝑘=1

𝑝1 · · · 𝑝𝑘 · 𝑑tr

(
𝑆𝑘 (𝜌)

tr(𝑆𝑘 (𝜌))
, 𝜌

)
.

PROOF . For all 𝑘 ∈ [𝑚], let 𝑝[𝑘] = 𝑝1 · · · 𝑝𝑘 and 𝜎𝑘 = 𝑆𝑘 (𝜌)/tr(𝑆𝑘 (𝜌)). For all self-adjoint
matrices 𝑋 , |tr(𝑋) | ≤ ∥𝑋 ∥1 and ∥𝑆(𝑋)∥1 ≤ ∥𝑋 ∥1 for all quantum operations 𝑆. Hence,

|tr(𝑆𝑚(· · · 𝑆1(𝜌))) − 𝑝[𝑚] | = |tr(𝑆𝑚(· · · 𝑆1(𝜌))) − 𝑝[𝑚−1] tr(𝑆𝑚(𝜌)) |
= |tr(𝑆𝑚(· · · 𝑆1(𝜌)) − 𝑝[𝑚−1]𝑆𝑚(𝜌)) |
= |tr(𝑆𝑚(𝑆𝑚−1(· · · 𝑆1(𝜌)) − 𝑝[𝑚−1]𝜌)) |
≤ ∥𝑆𝑚(𝑆𝑚−1(· · · 𝑆1(𝜌)) − 𝑝[𝑚−1]𝜌)∥1

≤ ∥𝑆𝑚−1(· · · 𝑆1(𝜌)) − 𝑝[𝑚−1]𝜌∥1

≤ ∥𝑆𝑚−1(· · · 𝑆1(𝜌)) − 𝑝[𝑚−1]𝜎𝑚−1∥1 + ∥𝑝[𝑚−1]𝜎𝑚−1 − 𝑝[𝑚−1]𝜌∥1

= ∥𝑆𝑚−1(· · · 𝑆1(𝜌)) − 𝑝[𝑚−2]𝑆𝑚−1(𝜌)∥1 + 2𝑝[𝑚−1]𝑑tr(𝜎𝑚−1, 𝜌)
≤ ∥𝑆𝑚−2(· · · 𝑆1(𝜌)) − 𝑝[𝑚−2]𝜌∥1 + 2𝑝[𝑚−1]𝑑tr(𝜎𝑚−1, 𝜌).

Note that ∥𝑆1(𝜌) − 𝑝1𝜌∥1 = 𝑝1∥𝜎1 − 𝜌∥1 = 2𝑝[1]𝑑tr(𝜎1, 𝜌). Therefore, by induction,

|tr(𝑆𝑚(· · · 𝑆1(𝜌))) − 𝑝[𝑚] | ≤ 2 ·
𝑚−1∑︁
𝑘=1

𝑝[𝑘] · 𝑑tr(𝜎𝑘, 𝜌). ■

Lemma 2.5 compares the probability tr(𝑆1(𝜌)) · · · tr(𝑆𝑚(𝜌)) that the operations 𝑆1, . . . , 𝑆𝑚

accept the same state 𝜌 independently with the probability tr(𝑆𝑚(· · · 𝑆1(𝜌))) that all 𝑆1, . . . , 𝑆𝑚

accept when applied sequentially to the initial state 𝜌.
The following inequality, which appears in the proof of [33, Theorem 1.3], will be used

to show that when 𝑆1, . . . , 𝑆𝑚 are applied sequentially to the initial state 𝜌, the probability of
observing 𝑆1, . . . , 𝑆𝑡−1 accept and 𝑆𝑡 reject for certain “good” values of 𝑡 ∈ [𝑚] is bounded below
by a positive constant for specific 𝜌 and 𝑆1, . . . , 𝑆𝑚 (see proof of Lemma 4.2).

LEMMA 2.6. Let 𝜌 be a mixed quantum state and let 𝐴1, . . . , 𝐴𝑚 denote quantum events on C𝑑

with E𝜌[𝐴𝑖] > 0 for all 𝑖 ∈ [𝑚]. Let 𝑝0 = 1, 𝑞0 = 1, 𝜌0 = 𝜌, 𝑝𝑖 = 1 − E𝜌[𝐴𝑖], and 𝜌𝑖 = 𝜌𝑖−1 |√𝐴𝑖
for

all 𝑖 ∈ [𝑚].
Suppose the measurements (𝐴1, 𝐴1), . . . , (𝐴𝑚, 𝐴𝑚) are applied to 𝜌 sequentially; for all 𝑡 ∈

[𝑚], let 𝑞𝑡 denote the probability of observing outcomes 𝐴1, . . . , 𝐴𝑡 and let 𝑠𝑡 denote the probability
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of observing outcomes 𝐴1, . . . , 𝐴𝑡−1, 𝐴𝑡. It holds that

1 ≤ √
𝑞𝑚 F(𝜌, 𝜌𝑚) +

𝑚∑︁
𝑖=1

√
𝑠𝑖
√
𝑝𝑖 .

PROOF . Since 1 = 𝑞0 F(𝜌, 𝜌0) and 𝑞𝑖 = 𝑞𝑖−1 · E𝜌𝑖−1 [𝐴𝑖] for all 𝑖 ∈ [𝑚],

1 − √
𝑞𝑚 F(𝜌, 𝜌𝑚) =

𝑚∑︁
𝑖=1

(√
𝑞𝑖−1 F(𝜌, 𝜌𝑖−1) −

√
𝑞𝑖 F(𝜌, 𝜌𝑖)

)
=

𝑚∑︁
𝑖=1

(
√
𝑞𝑖−1 F(𝜌, 𝜌𝑖−1) −

√
𝑞𝑖−1

√︃
E
𝜌𝑖−1

[𝐴𝑖] F(𝜌, 𝜌𝑖)
)

=

𝑚∑︁
𝑖=1

√
𝑞𝑖−1

(
F(𝜌, 𝜌𝑖−1) −

√︃
E
𝜌𝑖−1

[𝐴𝑖] F(𝜌, 𝜌𝑖)
)
.

By [33, Lemma 2.1] and the inequality 1−
√
𝐴𝑖 ≤ 𝐴𝑖 ,

F(𝜌, 𝜌𝑖−1) −
√︃

E
𝜌𝑖−1

[𝐴𝑖] F(𝜌, 𝜌𝑖) ≤
√︂
E
𝜌
[1−

√︁
𝐴𝑖]

√︂
E
𝜌𝑖−1

[1−
√︁
𝐴𝑖] ≤

√︂
E
𝜌
[𝐴𝑖]

√︂
E
𝜌𝑖−1

[𝐴𝑖] .

Hence,

1 − √
𝑞𝑚 F(𝜌, 𝜌𝑚) ≤

𝑚∑︁
𝑖=1

√
𝑞𝑖−1

√︂
E
𝜌
[𝐴𝑖]

√︂
E
𝜌𝑖−1

[𝐴𝑖] ≤
𝑚∑︁
𝑖=1

√
𝑠𝑖
√
𝑝𝑖 .

■

Finally, for the “unique decoding” part of our Hypothesis Selection routine we will use a
related result, Gao’s quantum Union Bound [20]:

LEMMA 2.7. For each of 𝑖 = 1, . . . , 𝑚, let Π1
𝑖
∈ C𝑑 × 𝑑 be a projector and write Π0

𝑖
= 1 − Π1

𝑖
. Then

for any quantum state 𝜌 ∈ C𝑑 × 𝑑 ,

E
𝜌
[(Π1

1 · · ·Π1
𝑚) (Π1

1 · · ·Π1
𝑚)†] ≥ 1 − 4

𝑚∑︁
𝑖=1

E
𝜌
[Π0

𝑖 ] .

COROLLARY 2 .8. In the setting of Lemma 2.7, suppose that 𝑥 ∈ {0, 1}𝑚 is such that E𝜌[Π𝑥𝑖
𝑖
] ≥

1 − 𝜖 for all 1 ≤ 𝑖 ≤ 𝑚. If an algorithm sequentially measures 𝜌 with (Π0
1,Π

1
1), measures the

resulting state with (Π0
2,Π

1
2), measures the resulting state with (Π0

3,Π
1
3), etc., then the probability

that the measurement outcomes are precisely 𝑥1, 𝑥2, . . . , 𝑥𝑚 is at least 1 − 4𝜖𝑚.

3. 𝝌2-stable Threshold Reporting

Our goal in this section is to prove Theorem 1.2 and to show how this classical result applies to
quantum states and measurements. We begin with some preparatory facts.

The following is well known [8]:
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PROPOS IT ION 3.1. For 𝑺 a random variable and 𝑓 : R→ R 1-Lipschitz, Var[ 𝑓 (𝑺)] ≤ Var[𝑺].

PROOF . Let 𝑺′ be an independent copy of 𝑺. Since the function 𝑓 is 1-Lipschitz, we always
have 1

2 ( 𝑓 (𝑺) − 𝑓 (𝑺′))2 ≤ 1
2 (𝑺 − 𝑺′)2. The result follows by taking expectations of both sides. ■

We will also use the following simple numerical inequality:

LEMMA 3.2. Fix 0 ≤ 𝑝 ≤ 1, 𝑞 = 1 − 𝑝. Then for 𝐶 = (𝑒 − 1)2 ≤ 3, we have

𝑞 + 𝑝𝑒2𝜆 ≤ (1 + 𝐶𝑝𝑞𝜆2) · (𝑞 + 𝑝𝑒𝜆)2 ∀𝜆 ∈ [0, 1] .

PROOF . Since (𝑞 + 𝑝𝑒𝜆)2 ≥ (𝑞 + 𝑝)2 = 1 for 𝜆 ≥ 0, it suffices to show

𝑞 + 𝑝𝑒2𝜆 ≤ (𝑞 + 𝑝𝑒𝜆)2 + 𝐶𝑝𝑞𝜆2 ∀𝜆 ∈ [0, 1] .

But (𝑞 + 𝑝Λ2) − (𝑞 + 𝑝Λ)2 = 𝑝𝑞(Λ − 1)2 when 𝑝 + 𝑞 = 1, so it is further equivalent to show

(𝑒𝜆 − 1)2 ≤ 𝐶𝜆2 ∀𝜆 ∈ [0, 1] .

But this indeed holds with 𝐶 = (𝑒 − 1)2, as it is equivalent to 𝑒𝜆 ≤ 1 + (𝑒 − 1)𝜆 on [0, 1], which
follows from convexity of 𝜆 ↦→ 𝑒𝜆 . ■

We now do a simple calculation showing how much a random variable changes (in 𝜒2-
divergence) when conditioning on an event. In using the below, the typical mindset is that 𝐵 is
an event that “rarely” occurs, so P[𝐵] is close to 1.

PROPOS IT ION 3.3. Let 𝑺 be a discrete random variable, and let 𝐵 be an event on the same
probability space with P[𝐵] < 1. For each outcome 𝑠 of 𝑺, define 𝑓 (𝑠) = P[𝐵 | 𝑺 = 𝑠]. Then

𝑑𝜒2 ((𝑺 | 𝐵), 𝑺) = Var[ 𝑓 (𝑺)]
/
P[𝐵]2.

PROOF . We have the likelihood ratio P[𝑺 = 𝑠 | 𝐵]
/
P[𝑺 = 𝑠] = (1 − 𝑓 (𝑠))

/
P[𝐵], by Bayes’

theorem. Hence,

𝑑𝜒2 ((𝑺 | 𝐵), 𝑺) = E

[(
1 − 1 − 𝑓 (𝑺)

P[𝐵]

)2
]
=

1
P[𝐵]2

E
[
( 𝑓 (𝑺) − P[𝐵])2] = Var[ 𝑓 (𝑺)]

/
P[𝐵]2,

where the last step uses E[ 𝑓 (𝑺)] = P[𝐵]. ■

We can now prove Theorem 1.2, which we restate for convenience:

THEOREM 1.2. (Restated) Let 𝑺 ∼ Binomial(𝑛, 𝑝). Assume that 𝑿 is an independent Exponen-
tial random variable with mean at least stddev[𝑺] =

√︁
𝑝(1 − 𝑝)𝑛 (and also at least 1). Let 𝐵 be

the event that 𝑺 + 𝑿 > 𝜃𝑛, and assume that P[𝐵] < 1
4 . Then

𝑑𝜒2 ((𝑺 | 𝐵), 𝑺) ≲
(
P[𝐵] · stddev[𝑺]

E[𝑿]

)2

≤ P[𝐵]2 · (𝑛/E[𝑿]2).



16 / 34 C. Bădescu, R. O’Donnell

PROOF . Write 𝜆 = 1/E[𝑿], so 𝑿 ∼ Exponential(𝜆) and we have the assumptions 𝜆 ≤ 1√
𝑝𝑞𝑛

and
𝜆 ≤ 1. Using Proposition 3.3 and P[𝐵] > 3

4 , it suffices to show

Var[ 𝑓 (𝑺)] ≲ P[𝐵]2 · 𝑝𝑞𝑛𝜆2,

where
𝑓 (𝑠) = P[𝑿 > 𝜃𝑛 − 𝑠] = min(1, 𝑔 (𝑠)), 𝑔 (𝑠) = exp(−𝜆 (𝜃𝑛 − 𝑠)).

Since 𝑦 ↦→ min(1, 𝑦) is 1-Lipschitz, Proposition 3.1 tells us that Var[ 𝑓 (𝑺)] ≤ Var[𝑔 (𝑺)].
Var[𝑔 (𝑺)] can be computed using the moment-generating function of 𝑺 ∼ Binomial(𝑛, 𝑝),
namely E[exp(𝑡𝑺)] = (𝑞 + 𝑝𝑒𝑡)𝑛:

E[𝑔 (𝑺)] = E[exp(−𝜆 (𝜃𝑛 − 𝑺))] = exp(−𝜆𝜃𝑛) · (𝑞 + 𝑝𝑒𝜆)𝑛,
E[𝑔 (𝑺)2] = E[exp(−2𝜆 (𝜃𝑛 − 𝑺))] = exp(−2𝜆𝜃𝑛) · (𝑞 + 𝑝𝑒2𝜆)𝑛.

Thus

Var[𝑔 (𝑺)] = E[𝑔 (𝑺)]2 ·
(
E[𝑔 (𝑺)2]
E[𝑔 (𝑺)]2 − 1

)
= E[𝑔 (𝑺)]2 ·

((
𝑞 + 𝑝𝑒2𝜆

(𝑞 + 𝑝𝑒𝜆)2

)𝑛
− 1

)
≤ E[𝑔 (𝑺)]2 ·

(
(1 + 3𝑝𝑞𝜆2)𝑛 − 1

)
(Lemma 3.2)

≲ E[𝑔 (𝑺)]2 · 𝑝𝑞𝑛𝜆2 (as 𝜆2 ≤ 1
𝑝𝑞𝑛)

and it therefore remains to establish

E[𝑔 (𝑺)] = exp(−𝜆𝜃𝑛) · (𝑞 + 𝑝𝑒𝜆)𝑛 ≲ P[𝐵] . (3)

Intuitively this holds because 𝑔 (𝑠) should not be much different from 𝑓 (𝑠), and E[ 𝑓 (𝑺)] = P[𝐵]
by definition. Formally, we consider two cases: 𝑝 ≥ 1

𝑛 (intuitively, the main case) and 𝑝 ≤ 1
𝑛 .

Case 1: 𝑝 ≥ 1
𝑛 . In this case we use that P[𝑺 > 𝑝𝑛] ≥ 1

4 (see, e.g., [16]), and hence: (i) it must be
that 𝜃 ≥ 𝑝, since we are assuming P[𝐵] = P[𝑺 +𝑿 > 𝜃𝑛] < 1

4 ; and, (ii) P[𝐵] ≥ P[𝑺 > 𝑝𝑛] ·P[𝑿 ≥
(𝜃 − 𝑝)𝑛] ≥ 1

4 exp(−𝜆 (𝜃 − 𝑝)𝑛), where the first inequality used independence of 𝑺 and 𝑿 and
the second inequality used (𝜃 − 𝑝)𝑛 ≥ 0 (by (i)). Thus, to establish Inequality (3), it remains to
show exp(−𝜆𝜃𝑛) · (𝑞 + 𝑝𝑒𝜆)𝑛 ≲ exp(−𝜆 (𝜃 − 𝑝)𝑛).

Since 0 < 𝜆 ≤ 1,

𝑒𝜆 − 1 =
∑︁
𝑖≥1

𝜆𝑖

𝑖!
= 𝜆 + 𝜆2

∑︁
𝑖≥2

𝜆𝑖−2

𝑖!
≤ 𝜆 + 𝜆2

∑︁
𝑖≥2

1
𝑖!

≤ 𝜆 + 𝜆2𝑒.
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By a similar argument, 𝑒−𝜆 − 1 ≤ −𝜆 + 𝜆2𝑒. Using these two inequalities and 1 + 𝑥 ≤ 𝑒𝑥 for 𝑥 ∈ R,
we obtain

(𝑞 + 𝑝𝑒𝜆)𝑛 = (1 + 𝑝(𝑒𝜆 − 1))𝑛 ≤ exp(𝑝(𝑒𝜆 − 1)𝑛) ≤ exp(𝜆𝑝𝑛) exp(𝑒𝜆2 · 𝑝 · 𝑛) and

(𝑞 + 𝑝𝑒𝜆)𝑛 = exp(𝜆𝑛) (𝑝 + 𝑞𝑒−𝜆)𝑛 = exp(𝜆𝑛) (1 + 𝑞(𝑒−𝜆 − 1))𝑛

≤ exp(𝜆𝑛) exp(𝑞(𝑒−𝜆 − 1)𝑛) ≤ exp(𝜆𝑝𝑛) exp(𝑒𝜆2 · 𝑞 · 𝑛).

Hence, (𝑞 + 𝑝𝑒𝜆)𝑛 ≤ exp(𝜆𝑝𝑛) exp(𝑒𝜆2 · min{𝑝, 𝑞} · 𝑛). Since, 𝜆2 ≤ 1/𝑝𝑞𝑛, by assumption, it
follows that 𝜆2 min{𝑝, 𝑞}𝑛 ≤ 1/max{𝑝, 𝑞} ≤ 2, so

(𝑞 + 𝑝𝑒𝜆)𝑛 ≤ exp(𝜆𝑝𝑛) exp(𝑒/max{𝑝, 𝑞}) ≤ exp(𝜆𝑝𝑛) exp(2𝑒).

Therefore, exp(−𝜆𝜃𝑛) · (𝑞 + 𝑝𝑒𝜆)𝑛 ≲ exp(−𝜆𝜃𝑛) exp(𝜆𝑝𝑛) = exp(−𝜆 (𝜃 − 𝑝)𝑛), as needed.

Case 2: 𝑝 ≤ 1
𝑛 . Since 𝜆 ∈ (0, 1], we have 𝑒𝜆 ≤ 1 + 2𝜆. Hence, 𝑞 + 𝑝𝑒𝜆 ≤ 1 + 2𝑝𝜆 ≤ 1 + 2

𝑛 , and so
(𝑞 + 𝑝𝑒𝜆)𝑛 ≲ 1, meaning that Inequality (3) follows from P[𝐵] ≥ P[𝑿 > 𝜃𝑛] = exp(−𝜆𝜃𝑛). ■

3.1 The quantum version

Having established Theorem 1.2, we now show how this result applies to quantum states and
measurements. Specifically, we prove that for any quantum event 𝐴 ∈ C𝑑×𝑑 , there exists a
corresponding event 𝐵 ∈ (C𝑑×𝑑)⊗𝑛 which exhibits the same statistics as the classical event
𝑺 + 𝑿 > 𝜃𝑛 from Theorem 1.2 with 𝑺 ∼ Binomial(𝑛, tr(𝜌𝐴)) when 𝜌⊗𝑛 is measured according to
𝐵. Moreover, we also relate the fidelity between the states 𝜌⊗𝑛 and 𝜌⊗𝑛

��√
1−𝐵 (i.e. the state 𝜌⊗𝑛

conditioned on the event 1− 𝐵) to the Bhattacharyya coefficient between 𝑺 and (𝑺 | 𝑺 +𝑿 ≤ 𝜃𝑛)
(i.e. 𝑺 conditioned on the event 𝑺 + 𝑿 ≤ 𝜃𝑛).

LEMMA 3.4. Let 𝜌 ∈ C𝑑×𝑑 represent an unknown quantum state and let 𝐴 ∈ C𝑑×𝑑 be a projector.
Let 𝑛 ∈ N, let 𝜆 > 0, and let 𝜃 ∈ [0, 1] be an arbitrary threshold. Let 𝑺 and 𝑿 be classical random
variables with distributions defined by 𝑺 ∼ Binomial(𝑛,E𝜌[𝐴]) and 𝑿 ∼ Exponential(𝜆). There
exists a quantum event 𝐵 ∈ (C𝑑×𝑑)⊗𝑛 such that E𝜌⊗𝑛 [𝐵] = P[𝑺 + 𝑿 > 𝜃𝑛] and

F
(
𝜌⊗𝑛, 𝜌⊗𝑛

��√
1−𝐵

)
= BC((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺).

PROOF . Let 𝜚 = 𝜌⊗𝑛. Let 𝐴1 = 𝐴 and 𝐴0 = 1 − 𝐴. For all 𝑥 ∈ {0, 1}𝑛, let 𝐴𝑥 ∈ (C𝑑×𝑑)⊗𝑛 denote
the event defined by 𝐴𝑥 = 𝐴𝑥1 ⊗ 𝐴𝑥2 ⊗ · · · ⊗ 𝐴𝑥𝑛 . For 𝑘 ∈ {0, . . . , 𝑛}, let 𝐸𝑘 ∈ (C𝑑×𝑑)⊗𝑛 be the
event defined by

𝐸𝑘 =
∑︁

𝑥∈{0,1}𝑛
|𝑥 |=𝑘

𝐴𝑥 .

Since 𝐴 is a projector, 𝐴𝑥 is also a projector and 𝐴𝑥𝐴 𝑦 = 𝐴 𝑦𝐴𝑥 = 0 for all 𝑥, 𝑦 ∈ {0, 1}𝑛 with 𝑥 ≠ 𝑦.
Thus, each 𝐸𝑘 is a sum of orthogonal projectors, so 𝐸𝑘 is a projector as well and 𝐸𝑘𝐸ℓ = 𝐸ℓ𝐸𝑘 = 0
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for all 𝑘, ℓ ∈ {0, . . . , 𝑛} with 𝑘 ≠ ℓ. Moreover,
𝑛∑︁

𝑘=0
𝐸𝑘 =

∑︁
𝑥∈{0,1}𝑛

𝐴𝑥 = 1.

Let 𝐵 ∈ (C𝑑×𝑑)⊗𝑛 denote the quantum event defined by

𝐵 =

𝑛∑︁
𝑘=0

P[𝑿 + 𝑘 > 𝜃𝑛] · 𝐸𝑘 .

The statistics of the measurement {𝐸𝑘 | 𝑘 = 0, . . . , 𝑛} applied to 𝜚 follow a binomial distribution
Binomial(𝑛, tr(𝜌𝐴)), so E𝜚[𝐸𝑘] = P[𝑺 = 𝑘]. Hence,

E
𝜚
[𝐵] =

𝑛∑︁
𝑘=0

P[𝑿 + 𝑘 > 𝜃𝑛] · E
𝜚
[𝐸𝑘] =

𝑛∑︁
𝑘=0

P[𝑿 + 𝑘 > 𝜃𝑛] · P[𝑺 = 𝑘] = P[𝑺 + 𝑿 > 𝜃𝑛] .

For all ℓ ∈ {0, . . . , 𝑛},
√
1 − 𝐵 · 𝐸ℓ = 𝐸ℓ ·

√
1 − 𝐵 =

√︁
P[𝑿 + ℓ ≤ 𝜃𝑛] · 𝐸ℓ.

Hence,

tr
(
𝜚|√

1−𝐵 · 𝐸ℓ

)
=

1
E𝜚[𝐵]

· tr(
√
1 − 𝐵 · 𝜚 ·

√
1 − 𝐵 · 𝐸ℓ)

=
1

E𝜚[𝐵]
· tr(𝐸ℓ ·

√
1 − 𝐵 · 𝜚 ·

√
1 − 𝐵 · 𝐸ℓ)

=
P[𝑿 + ℓ ≤ 𝜃𝑛]

E𝜚[𝐵]
· tr(𝐸ℓ · 𝜚 · 𝐸ℓ)

=
P[𝑿 + ℓ ≤ 𝜃𝑛]

E𝜚[𝐵]
· E
𝜚
[𝐸ℓ]

=
P[𝑿 + ℓ ≤ 𝜃𝑛]
P[𝑺 + 𝑿 ≤ 𝜃𝑛] · P[𝑺 = ℓ] .

Thus, the measurement {𝐸𝑘 | 𝑘 = 0, . . . , 𝑛} applied to 𝜚|√
1−𝐵 yields statistics distributed as

(𝑺 | 𝐵). Therefore, by Proposition 2.3,

F
(
𝜚, 𝜚|√

1−𝐵

)
=

𝑛∑︁
𝑘=0

√︁
tr(𝜚 · 𝐸𝑘)

√︂
tr

(
𝜚|√

1−𝐵 · 𝐸𝑘
)
= BC((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺). ■

Using Lemma 3.4, we obtain the following “quantum version” of Theorem 1.2:

COROLLARY 3.5. Let 𝜌 ∈ C𝑑×𝑑 represent an unknown quantum state and let 𝐴 ∈ C𝑑×𝑑 be a
projector. Let 𝑛 ∈ N, let 𝜆 > 0, and let 𝜃 ∈ [0, 1] be an arbitrary threshold. Fix 𝑝 = E𝜌[𝐴] and let 𝑺
and 𝑿 be defined as in Theorem 1.2. If 𝑝, 𝜆, 𝑛, and 𝜃 satisfy the conditions of Theorem 1.2, then
there exists a quantum event 𝐵 ∈ (C𝑑×𝑑)⊗𝑛 such that E𝜌⊗𝑛 [𝐵] = P[𝑺 + 𝑿 > 𝜃𝑛] and

𝑑Bures

(
𝜌⊗𝑛, 𝜌⊗𝑛

��√
1−𝐵

)
≲ E

𝜌⊗𝑛
[𝐵] · stddev[𝑺]

E[𝑿] .
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Moreover,

E
𝜌⊗𝑛

[𝐵] ≤ exp(−𝑛𝜆 (𝜃 − (𝑒 − 1) E
𝜌
[𝐴])).

PROOF . Let 𝜚 = 𝜌⊗𝑛. By Lemma 3.4, there exists a quantum event 𝐵 ∈ (C𝑑×𝑑)⊗𝑛 such that
E𝜚[𝐵] = P[𝑺 + 𝑿 > 𝜃𝑛] and F

(
𝜚, 𝜚|√

1−𝐵

)
= BC((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺). Note that, for all distri-

butions 𝜇 and 𝜈, 1 − BC(𝜇, 𝜈) ≤ 𝑑𝜒2 (𝜇, 𝜈). Hence, by Lemma 3.4 and Corollary 1.3, it follows
that

𝑑Bures

(
𝜌⊗𝑛, 𝜌⊗𝑛

��√
1−𝐵

)
=

√︂
2
(
1 − F

(
𝜚, 𝜚|√

1−𝐵

))
=

√︁
2(1 − BC((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺))

= 𝑑H((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺)

≤
√︃
𝑑𝜒2 ((𝑺 | 𝑺 + 𝑿 ≤ 𝜃𝑛), 𝑺)

≲ E
𝜌⊗𝑛

[𝐵] · stddev[𝑺]
E[𝑿]

Since E𝜚[𝐵] = P[𝑺 + 𝑿 > 𝜃𝑛],

E
𝜚
[𝐵] = P[𝑺 + 𝑿 > 𝜃𝑛]

≤ E[exp(−𝜆 (𝜃𝑛 − 𝑺))] (by P[𝑿 > 𝑡] ≤ exp(−𝜆𝑡))
= exp(−𝜆𝜃𝑛) E[exp(𝜆𝑺)]
= exp(−𝜆𝜃𝑛) (1 − 𝑝 + 𝑝𝑒𝜆)𝑛 (E[exp(𝜆𝑺)] is the m.g.f. of 𝑺)

= exp(−𝜆𝜃𝑛) (1 + 𝑝(𝑒𝜆 − 1))𝑛

≤ exp(−𝜆𝜃𝑛) (1 + 𝑝(𝑒 − 1)𝜆)𝑛 (by 𝑒𝑥 ≤ 1 + (𝑒 − 1)𝑥 for 𝑥 ∈ [0, 1])
≤ exp(−𝜆𝜃𝑛) exp((𝑒 − 1)𝑛𝜆𝑝) (by 1 + 𝑥 ≤ 𝑒𝑥 for 𝑥 ∈ R)

= exp(−𝑛𝜆 (𝜃 − (𝑒 − 1)𝑝)). ■

4. Threshold Search

In this section, we prove Theorem 1.1.

4.1 Preliminary reductions

We begin with several reductions that allow us to reduce to the case of projectors, and to the
case when 𝜖, 𝛿, and the 𝜃𝑖 ’s are all fixed constants.

Reduction to projectors. Let 𝜌 ∈ C𝑑×𝑑 denote the unknown quantum state and let 𝐴1, . . . , 𝐴𝑚

be the observables in the quantum Threshold Search problem (which we assume are given in an
online fashion). If we extend the unknown state 𝜌 to 𝜌 ⊗ |0⟩⟨0|, then by Naimark’s Theorem 2.1,
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there exists a projector Π𝑖 ∈ C𝑑×𝑑 ⊗ C2×2 for each 𝐴𝑖 such that E𝜌⊗|0⟩⟨0| [Π𝑖] = E𝜌[𝐴𝑖] for all
𝑖 = 1, . . . , 𝑚. Since the state 𝜌 ⊗ |0⟩⟨0| can be prepared without knowing 𝜌 and this extension
increases the dimension of the quantum system only by a constant factor, by replacing 𝜌 by
𝜌 ⊗ |0⟩⟨0| and each 𝐴𝑖 by the corresponding Π𝑖 , it follows that we can assume, without loss of
generality, that the observables 𝐴1, . . . , 𝐴𝑚 are projectors.

Reduction to 3/4 vs. 1/4. Let 0 < 𝜖 < 1
2 be given, and recall that in the Threshold Search

problem the algorithm is presented with a stream of projector/threshold pairs (𝐴𝑖 , 𝜃𝑖), with the
goal of distinguishing the cases E𝜌[𝐴𝑖] > 𝜃𝑖 and E𝜌[𝐴𝑖] ≤ 𝜃𝑖 − 𝜖. We may have the algorithm
use Lemma 2.4 (the latter part, with 𝜏 = 0, 𝑐 = 𝜃𝑖 − 𝜖/2, 𝛿 = 1/4, and 𝜖 replaced by 𝜖/2), which
establishes that for some 𝑛0 = 𝑂(1/𝜖2), each 𝐴𝑖 may be replaced with a projector 𝐵𝑖 ∈ (C𝑑×𝑑)⊗𝑛0

satisfying
i. if E𝜌[𝐴𝑖] > 𝜃𝑖 , then E𝜌⊗𝑛0 [𝐵𝑖] > 3/4;

ii. if E𝜌[𝐴𝑖] ≤ 𝜃𝑖 − 𝜖, then E𝜌⊗𝑛0 [𝐵𝑖] ≤ 1/4.

Thus we can reduce to the “3/4 vs. 1/4” version of Threshold Search at the expense of paying
an extra factor of 𝑛0 = 𝑂(1/𝜖2) in the copy complexity. Note that the parameter 𝑑 has increased
to 𝑑𝑛0 , as well, but (crucially) our Theorem 1.1 has no dependence on the dimension parameter.

Reduction to a promise-problem version, with fixed 𝜹. So far we have reduced proving
Theorem 1.1 to proving the following:

THEOREM 4.1. There is an algorithm that, given 𝑚 ∈ N and 0 < 𝛿 < 1
2 , first obtains 𝑛∗ =

𝑂(log2 𝑚 + log(1/𝛿)) · log(1/𝛿) copies 𝜌⊗𝑛
∗ of an unknown state 𝜌 ∈ C𝑑×𝑑 . Next, a sequence of

projectors 𝐴1, . . . 𝐴𝑚 ∈ C𝑑×𝑑 is presented to the algorithm (possibly adaptively). After each 𝐴𝑡,
the algorithm may either select 𝑡, meaning halt and output the claim “E𝜌[𝐴𝑡] > 1/4”, or else
pass to the next projector. If the algorithm passes on all 𝑚 projectors, the algorithm must claim
“E𝜌[𝐴𝑖] ≤ 3/4 for all 𝑖”. Except with probability at most 𝛿, the algorithm’s output is correct.

The main work we will do is to show the following similar result:

LEMMA 4.2. There is an algorithm that, given 𝑚 ∈ N, first obtains 𝑛 = 𝑂(log2 𝑚) copies 𝜌⊗𝑛 of
an unknown state 𝜌 ∈ C𝑑×𝑑 . Next, a sequence of projectors 𝐴1, . . . 𝐴𝑚 ∈ C𝑑×𝑑 , obeying the promise
that E𝜌[𝐴 𝑗] > 3/4 for at least one 𝑗, is presented to the algorithm. After each 𝐴𝑡, the algorithm
may either halt and select 𝑡, or else pass to the next projector. With probability at least 0.01, the
algorithm selects a 𝑡 with E𝜌[𝐴𝑡] ≥ 1/3.

One needs a slight bit of care to reduce Theorem 4.1 to Lemma 4.2 while maintaining the
online nature of the algorithm:
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PROOF OF THEOREM 4.1 , ASSUMING LEMMA 4.2 . The algorithm in Lemma 4.2 will be
used as a kind of “subroutine” for the main theorem. Our first step is to augment this subroutine
in the following way:

Given parameter 𝛿 for the main theorem, the subroutine will use a parameter 𝛿′ =

𝛿/(𝐶 log(1/𝛿)), where 𝐶 is a universal constant to be chosen later.
𝑛 is increased from 𝑂(log2 𝑚) to 𝑛′ = 𝑂(log2 𝑚) + 𝑂(log(1/𝛿′)), where the first 𝑂(log2 𝑚)
copies of 𝜌 are used as usual, and the additional 𝑂(log(1/𝛿′)) copies are reserved as a
“holdout”.
If ever the subroutine is about to halt and select 𝑡, it first performs a “failsafe” check: It
applies Lemma 2.4 with 𝜏 = 0, 𝑐 = .3, 𝜖 = .03, 𝛿 = 𝛿′, and measures with the holdout copies.
(Note that 𝑐 + 𝜖 < 1/3 and also 𝑐 − 𝜖 > 1/4.) If event “𝐵” as defined in Lemma 3.4 occurs,
the subroutine goes ahead and selects 𝑡; otherwise, the algorithm not only passes, but it
“aborts”, meaning that it automatically passes on all subsequent 𝐴𝑖 ’s without considering
them.

We make two observations about this augmented subroutine:
When run under the promise that E𝜌[𝐴 𝑗] > 3/4 for at least one 𝑗, it still selects a 𝑡

satisfying E𝜌[𝐴𝑡] ≥ 1/3 with probability at least 0.005. This is because the “failsafe” causes
an erroneous change of mind with probability at most 𝛿′, and we may assume 𝛿′ ≤ 0.005
(taking 𝐶 large enough).
When run without the promise that E𝜌[𝐴 𝑗] > 3/4 for at least one 𝑗, the failsafe implies
that the probability the algorithm ever selects a 𝑡 with E𝜌[𝐴𝑡] < 1/4 is at most 𝛿′.

With the augmented subroutine in hand, we can now give the algorithm that achieves The-
orem 4.1. The algorithm will obtain 𝑛∗ = 𝑛′ · 𝐿 copies of 𝜌, where 𝐿 = 𝑂(log(1/𝛿)); these
are thought of as 𝐿 “batches”, each with of 𝑛′ copies. As the projectors 𝐴𝑖 are presented to
the algorithm, it will run the augmented subroutine “in parallel” on each batch. If any batch
wants to halt accept a certain 𝐴𝑡, then the overall algorithm halts and outputs “E𝜌[𝐴𝑡] > 1/4”.
Otherwise, if all the batches pass on 𝐴𝑡, so too does the overall algorithm. Of course, if the
overall algorithm passes on all 𝐴𝑖 ’s, it outputs “E𝜌[𝐴𝑖] ≤ 3/4 for all 𝑖”.

We now verify the correctness of this algorithm. First, if there exists some 𝐴 𝑗 withE𝜌[𝐴 𝑗] >
3/4, the probability of the algorithm wrongly outputting “E𝜌[𝐴𝑖] ≤ 3/4 for all 𝑖” is at most
(1− .005)𝐿, which can be made smaller than 𝛿 by taking the hidden constant in 𝐿 = 𝑂(log(1/𝛿))
suitably large. On the other hand, thanks to the “failsafe” and a union bound, the probability
the algorithm ever wrongly outputs “E𝜌[𝐴𝑡] > 1/4” is at most 𝐿𝛿′ = 𝐿 · 𝛿/(𝐶 log(1/𝛿)), which is
again at most 𝛿 provided 𝐶 is taken large enough. ■
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4.2 The main algorithm (proof of Lemma 4.2)

In this section, we will prove Lemma 4.2. Let 𝑛 = 𝑛(𝑚) and 𝜆 = 𝜆 (𝑚) be parameters to be fixed
later and let 𝜃 = 2/3. As stated in Lemma 4.2, we may explicitly assume there exists 𝑖 ∈ [𝑚]
with E𝜌[𝐴𝑖] ≥ 3/4. For each projector 𝐴𝑖 , let 𝐵𝑖 denote the event obtained from Lemma 3.4. The
algorithm proceeds as follows:

Let 𝜚 denote the current quantum state, with 𝜚 = 𝜌⊗𝑛 initially. Given projector 𝐴𝑖 , let 𝐵𝑖

be the event obtained from Lemma 3.4. Measure the current state 𝜚 with (𝐵𝑖 , 𝐵𝑖) using the
canonical implementation. If 𝐵𝑖 occurs, halt and select 𝑖; otherwise, pass.

Note that the 𝑛 copies of 𝜌 are only prepared once and reused, and that the current state 𝜚

collapses to a new state after each measurement.
The algorithm has the following modes of failure:

(FN) the algorithm passes on every observable because the event 𝐵𝑖 occurs for every 𝑖 ∈ [𝑚];
(FP) the algorithm picks an observable 𝐴 𝑗 with E𝜌[𝐴 𝑗] < 1/3.

We want to show that the algorithm does not make errors of type FP or FN with probability
at least 0.1. To this end, we introduce the following notation.

NOTAT ION 4.3. For 𝑖 = 1, . . . , 𝑚, let:
1. 𝑺𝑖 be a random variable distributed as Binomial(𝑛,E𝜌[𝐴𝑖]);
2. 𝑝𝑖 = E𝜌⊗𝑛 [𝐵𝑖] be the probability that 𝐵𝑖 would occur if 𝜌⊗𝑛 were measured with (𝐵𝑖 , 𝐵𝑖);
3. 𝜚0 = 𝜌⊗𝑛 and let 𝜚𝑖 be the quantum state after the 𝑖th measurement, conditioned on the

event 𝐵 𝑗 occurring for all 1 ≤ 𝑗 ≤ 𝑖;
4. 𝑟𝑖 = E𝜚𝑖−1 [𝐵𝑖] be the probability that the event 𝐵𝑖 occurs assuming all the events 𝐵 𝑗 with

1 ≤ 𝑗 ≤ 𝑖 − 1 occurred;
5. 𝑞𝑖 = 𝑟1 · · · 𝑟𝑖 be the probability that all of the events 𝐵 𝑗 with 1 ≤ 𝑗 ≤ 𝑖 occur;
6. 𝑠𝑖 = 𝑞𝑖−1 · E𝜚𝑖−1 [𝐵𝑖] be the probability of observing outcomes 𝐵1, . . . , 𝐵𝑖−1, 𝐵𝑖 .

Note that the 𝑝𝑖 ’s refer to a “hypothetical,” whereas the 𝑟𝑖 ’s, 𝑞𝑖 ’s, and 𝑠𝑖 ’s concern what
actually happens over the course of the algorithm. In particular, 𝑞𝑚 is the probability that
the algorithm passes on every observable. The following claim shows that, as long as the
noise expectation E[𝑿] = 1/𝜆 used in Lemma 3.4 is sufficiently large, the probability of a false
negative (FN) is bounded above by 4/5:

CLAIM 4.4. For E[𝑿] = Ω(
√
𝑛), there exists 𝑡 ∈ [𝑚] such that 𝑞𝑡 ≤ 4/5. Moreover, if 𝑡 > 1, then

𝑞𝑡−1 ≥ 3/4 and 𝑝1 + · · · + 𝑝𝑡−1 ≤ 1/4.

PROOF . By Lemma 3.4, 𝑝𝑖 = E𝜌⊗𝑛 [𝐵𝑖] = P[𝑺𝑖 +𝑿 > 𝜃𝑛]. Let 𝑘 ∈ [𝑚] be such that E𝜌[𝐴𝑘] ≥ 3/4.
Thus, 𝑺𝑘 is a binomial random variable with mean at least 3/4. Since 𝜃 = 2/3 < 3/4, if 𝑛 is taken
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to be a sufficiently large constant,

𝑝𝑘 = P[𝑺𝑘 + 𝑿 > 𝜃𝑛] ≥ P[𝑺𝑘 > (2/3)𝑛] ≥ 1 − exp(−1/4).

Therefore, there exists a minimal 𝑡 ∈ [𝑚] such that (1 − 𝑝1) · · · (1 − 𝑝𝑡) ≤ exp(−1/4). If
𝑡 = 1, then 𝑞1 = 1 − 𝑝1 ≤ exp(−1/4) ≤ 4/5. Otherwise, since 𝑡 is minimal, it follows that
(1 − 𝑝1) · · · (1 − 𝑝𝑡−1) ≥ exp(−1/4). Hence,

exp(−1/4) ≤ (1 − 𝑝1) · · · (1 − 𝑝𝑡−1) ≤ exp(−(𝑝1 + · · · + 𝑝𝑡−1)),

whence 𝑝1 + · · · + 𝑝𝑡−1 ≤ 1/4. Thus, by Lemma 2.5 and Corollary 3.5,

| (1 − 𝑝1) · · · (1 − 𝑝𝑡) − 𝑞𝑡 | ≤ 2
𝑡−1∑︁
𝑖=1

𝑑tr

(
𝜌⊗𝑛, 𝜌⊗𝑛

��√
1−𝐵𝑖

)
≲

𝑡−1∑︁
𝑖=1

E
𝜌⊗𝑛

[𝐵𝑖] ·
stddev[𝑺𝑖]

E[𝑿] ≤
√
𝑛

E[𝑿] · (𝑝1 + . . . + 𝑝𝑡−1) ≤
1
4
·

√
𝑛

E[𝑿] .

By a similar argument,

| (1 − 𝑝1) · · · (1 − 𝑝𝑡−1) − 𝑞𝑡−1 | ≲
√
𝑛

E[𝑿] · (𝑝1 + . . . + 𝑝𝑡−2) ≤
1
4
·

√
𝑛

E[𝑿] .

Therefore, since 3/4 < exp(−1/4) < 4/5, we have 𝑞𝑡 ≤ 4/5 and 𝑞𝑡−1 ≥ 3/4, for E[𝑿] =

Ω(
√
𝑛). ■

Assuming E[𝑿] = Ω(
√
𝑛), let 𝑡 ∈ [𝑚] be as in Claim 4.4. Since 𝑞𝑚 ≤ 𝑞𝑡 ≤ 4/5, it follows

that the probability the algorithm makes an FN error is at most 4/5. In fact, since 𝑞𝑡 ≤ 4/5, the
algorithm will pick an index 𝑖 ≤ 𝑡 with probability at least 1/5. Thus, to show that the algorithm
succeeds w.p. at least 0.1, it suffices to show that w.h.p. the algorithm does not pick an index
𝑖 ∈ B, where B ⊆ [𝑚] is the subset defined by

B = {𝑖 ∈ [𝑚] | 1 ≤ 𝑖 ≤ 𝑡 and E
𝜌
[𝐴𝑖] < 1/3}.

First, we show that an event 𝐵𝑖 with 𝑖 ∈ B is unlikely to occur when the initial state 𝜌⊗𝑛 is
measured according to (𝐵𝑖 , 𝐵𝑖):

CLAIM 4.5. Let 𝜂 ∈ (0, 1], to be specified later. If 𝑛 is of order 𝑂(log2(𝑚/𝜂)), then 𝑝𝑖 ≤ (𝜂/𝑚)2

for all 𝑖 ∈ B.

PROOF . By Corollary 3.5, for all 𝑖 ∈ [𝑚],

𝑝𝑖 = E
𝜌⊗𝑛

[𝐵𝑖] ≤ exp(−𝑛𝜆 (𝜃 − (𝑒 − 1) E
𝜌
[𝐴𝑖])).
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Since 𝜃 = 2/3 and 𝑖 ∈ B, we have E𝜌[𝐴𝑖] < 1/3 and 𝜃 − (𝑒 − 1) E𝜌[𝐴𝑖] ≥ 0.09. Since 𝑛𝜆 = Ω(
√
𝑛),

there exists a constant 𝐶 > 0 such that 𝑛𝜆 ≥ 𝐶
√
𝑛. Thus,

𝑝𝑖 = E
𝜌⊗𝑛

[𝐵𝑖] ≤ exp(−0.09𝐶
√
𝑛).

Therefore, if 𝑛 ≥ log2((𝑚/𝜂)2)/(0.09𝐶)2, then 𝑝𝑖 ≤ (𝜂/𝑚)2. ■

Next, we show that the algorithm picks an index 𝑖 ∈ [𝑡] such that E𝜌[𝐴𝑖] ≥ 1/3 with
probability at least 0.03, proving Lemma 4.2.

PROOF OF LEMMA 4.2 . Fix 𝜂 = 0.01, so that 𝑛 = 𝑂(log2 𝑚) as promised. By Lemma 2.6,

1 ≤ √
𝑞𝑡 F(𝜌⊗𝑛, 𝜚𝑡) +

𝑡∑︁
𝑖=1

√
𝑠𝑖
√
𝑝𝑖 .

By Claim 4.5 and the Cauchy–Schwarz inequality,
𝑡∑︁

𝑖=1

√
𝑠𝑖
√
𝑝𝑖 ≤

𝜂

𝑚

∑︁
𝑖∈B

√
𝑠𝑖 +

∑︁
𝑖∉B

√
𝑠𝑖
√
𝑝𝑖 ≤ 𝜂 +

√︄∑︁
𝑖∉B

𝑠𝑖

√︄∑︁
𝑖∉B

𝑝𝑖 ,

where 𝑖 ∉ B denotes 𝑖 ∈ [𝑡] \ B. By Claim 4.4, 𝑝1 + · · · + 𝑝𝑡 ≤ 1/4. Hence,

1 − √
𝑞𝑡 F(𝜌⊗𝑛, 𝜚𝑡) − 𝜂 ≤

√︄∑︁
𝑖∉B

𝑠𝑖

√︄∑︁
𝑖∉B

𝑝𝑖 ≤
1
2

√︄∑︁
𝑖∉B

𝑠𝑖 .

Since F(𝜌⊗𝑛, 𝜚𝑡) ≤ 1, 𝜂 = 0.01, and, by Claim 4.4, 𝑞𝑡 ≤ 4/5, it follows that

1
2

√︄∑︁
𝑖∉B

𝑠𝑖 ≥ 0.99 −
√︁

4/5 =⇒
∑︁
𝑖∉B

𝑠𝑖 ≥ 4 · (0.99 −
√︁

4/5)2 ≥ 0.03.

Since
∑

𝑖∉B 𝑠𝑖 is the probability that the algorithm returns an index 𝑖 ∈ [𝑡] with E𝜌[𝐴𝑖] ≥ 1/3, it
follows that the algorithm is correct with probability at least 0.03. ■

5. Shadow Tomography and Hypothesis Selection

5.1 Shadow Tomography

We begin by describing how to deduce our online Shadow Tomography result, Theorem 1.4,
from our online Threshold Search result, Theorem 1.1. As mentioned earlier, this deduction
is known [1] to follow almost immediately from a mistake-bounded learning algorithm for
quantum states due to Aaronson, Chen, Hazan, Kale, and Nayak [3], described below. We will
fill in a few details that are not spelled out in [1].

Mistake-bounded learning scenario. Consider the following kind of interaction between
a “student” and a “teacher”, given parameters 𝑑 ∈ N and 0 < 𝜖 < 1

2 . There is a quantum state
𝜌 ∈ C𝑑×𝑑 that is unknown to the student (and possibly also unknown to the teacher). The teacher
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presents a sequence of quantum events 𝐴1, 𝐴2, 𝐴3, . . . (possibly adaptively) to the student. Upon
receiving 𝐴𝑡, the student must output a prediction �̂�𝑡 of 𝜇𝑡 = E𝜌[𝐴𝑡]. After each prediction, the
teacher must either “pass”, or else declare a “mistake” and supply a value 𝜇′𝑡.

THEOREM 5.1 ([3]). Assume the following Teacher Properties hold for each 𝑡:
If |�̂�𝑡 − 𝜇𝑡 | > 𝜖, the teacher always declares “mistake”.
If |�̂�𝑡 − 𝜇𝑡 | ≤ 3

4𝜖, the teacher always passes.
If the teacher ever declares “mistake”, the supplied value 𝜇′𝑡 always satisfies |𝜇′𝑡 − 𝜇𝑡 | ≤ 1

4𝜖.
(If 3

4𝜖 < |�̂�𝑡 − 𝜇𝑡 | ≤ 𝜖, the teacher may either pass or declare a mistake; but, if the latter, recall
that |𝜇′𝑡 − 𝜇𝑡 | ≤ 1

4𝜖.)

Then there is an algorithm for the student that causes at most 𝐶0(log 𝑑)/𝜖2 “mistakes” (no matter
how many events are presented), where 𝐶0 is a universal constant.

The above theorem is similar to, but not quite the same, as “Theorem 1” in [3]. However it
is easy to check that [3]’s Section 3.3 (“Proof of Theorem 1”) applies equally well to establish
Theorem 5.1 above.5

To use this theorem for the online Shadow Tomography problem, it only remains for the
Shadow Tomography algorithm to implement the teacher’s role itself, given copies of 𝜌. This
will be done using our Threshold Search algorithm; let us first slightly upgrade it so that (i) it is
concerned with E𝜌[𝐴𝑖] ≈ 𝜃𝑖 rather than E𝜌[𝐴𝑖] < 𝜃𝑖; (ii) if it finds 𝑗 with E𝜌[𝐴 𝑗] 0 𝜃 𝑗 , then it
also reports a very good estimate of E𝜌[𝐴 𝑗].

LEMMA 5.2. Consider the version of quantum Threshold Search where the inputs are the same,
but the algorithm should correctly (except with probability at most 𝛿) output:

“ |E𝜌[𝐴 𝑗] − 𝜃 𝑗 | > 3
4𝜖, and in fact |E𝜌[𝐴 𝑗] − 𝜇′

𝑗
| ≤ 1

4𝜖”, for some particular 𝑗 and value 𝜇′
𝑗
; or

else,
“ |E𝜌[𝐴𝑖] − 𝜃𝑖 | ≤ 𝜖 for all 𝑖”.

Then as in Theorem 1.1, the problem can be solved in an online fashion using

𝑛′TS(𝑚, 𝜖, 𝛿) = log2 𝑚 + l
𝜖2 · 𝑂(l) (l = log(1/𝛿))

copies of 𝜌.

PROOF . Given 𝑚, 𝜖, 𝛿, we obtain 𝑛 = 𝑛TS(2𝑚, 1
4𝜖, 𝛿/2) + 𝑐 log(1/𝛿)/𝜖2 copies of 𝜌, where 𝑐 is

a universal constant to be specified later. This 𝑛 indeed has the asymptotic form of 𝑛′TS given
above. We save the 𝑐 log(1/𝛿)/𝜖2 copies as a “holdout”, and use the remaining copies to apply

5 Briefly: the RTFL/MMW algorithm will only do an update in the “mistake” rounds. The loss is taken to be |�̂�𝑡 − 𝜇′
𝑡 |. On

any mistake, we have |�̂�𝑡 − 𝜇𝑡 | > 3
4𝜖 and |𝜇′

𝑡 − 𝜇𝑡 | ≤ 1
4𝜖, hence the student incurs loss at least 1

2𝜖. On the other hand,
answering according to the true 𝜇𝑡 would only incur loss at most 1

4𝜖. The regret calculation bounding the number of
mistakes is now the same.
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Theorem 1.1 (with parameters 2𝑚, 1
4𝜖, 𝛿/2), converting our given observable/threshold pairs

(𝐴1, 𝜃1), . . . , (𝐴𝑚, 𝜃𝑚) to a “simulated input” of

(𝐴1, 𝜃1 + 𝜖), (1 − 𝐴1, 1 − 𝜃1 + 𝜖), . . . , (𝐴𝑚, 𝜃𝑚 + 𝜖), (1 − 𝐴𝑚, 1 − 𝜃𝑚 + 𝜖).

Except with probability at most 𝛿/2 we get a correct answer from the simulation, from which
we can derive a correct final output as described below.

If the simulation passes on all 2𝑚 pairs, then Theorem 1.1 tells us that we must have

E
𝜌
[𝐴𝑖] ≤ 𝜃𝑖 + 𝜖 and E

𝜌
[1 − 𝐴𝑖] ≤ 1 − 𝜃𝑖 + 𝜖

for all 𝑖, and therefore we may correctly output “ |E𝜌[𝐴𝑖] − 𝜃𝑖 | ≤ 𝜖 for all 𝑖”.
On the other hand, suppose the simulation halts by outputting

“E
𝜌
[𝐴 𝑗] > 𝜃 𝑗 + 𝜖 − 1

4𝜖” or “E
𝜌
[1 − 𝐴 𝑗] > 1 − 𝜃 𝑗 + 𝜖 − 1

4𝜖”

for some particular 𝑗. Then our algorithm can correctly output “ |E𝜌[𝐴 𝑗] − 𝜃 𝑗 | > 3
4𝜖”. Further-

more, at this point the algorithm may use the holdout copies of 𝜌 to obtain an estimate 𝜇′
𝑗

of
E𝜌[𝐴 𝑗] (in the naive way) that satisfies |E𝜌[𝐴 𝑗] − 𝜇′

𝑗
| ≤ 1

4𝜖 except with probability at most 𝛿/2,
provided 𝑐 is large enough. ■

With Lemma 5.2 in place, we can obtain our online Shadow Tomography algorithm:

PROOF OF THEOREM 1.4 . Define

𝑅 = ⌈𝐶0(log 𝑑)/𝜖2⌉ + 1, 𝛿0 = 𝛿/𝑅, 𝑛0 = 𝑛′TS(𝑚, 𝜖, 𝛿0).

The number of copies of 𝜌 used by our online Shadow Tomography algorithm will be 𝑛 = 𝑅𝑛0,
which is indeed

𝑛 =
(log2 𝑚 + l) (log 𝑑)

𝜖4 · 𝑂(l)

for l = log( log 𝑑
𝛿𝜖 ), as claimed.

Upon receiving 𝑛 copies of 𝜌, our Shadow Tomography algorithm partitions it into 𝑅

“batches” of size 𝑛0 each. The idea is that each batch will be devoted to (up to) one “mistake” of
the “student”. We now describe the algorithm, and then give its analysis.

To begin, recall that our Shadow Tomography algorithm receives the input quantum events
𝐴1, 𝐴2, . . . in an online fashion. As it receives them, it will run the following online algorithms
concurrently:

the mistake-bounded learning algorithm of Theorem 5.1 (implementing the student’s
algorithm);
the Threshold Search algorithm from Lemma 5.2 (to implement the teacher), initially using
only the first batch of 𝜌⊗𝑛0 .
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The algorithm simulates both the teacher and student roles of the mistake-bounded setting
of [3] and runs in rounds. A new round is started whenever the teacher declares a mistake and
a fresh batch of 𝑛0 copies of the state 𝜌 is used by the teacher in each round. When it receives
input 𝐴𝑡, the algorithm runs the next iteration of the mistake-bounded learning algorithm of
Theorem 5.1 to get the student’s prediction �̂�𝑡. Then it runs the next iteration of the Threshold
Search algorithm from Lemma 5.2 with input (𝐴𝑡, �̂�𝑡); the estimates �̂�𝑡 output by the student
serve as the 𝜃𝑡 threshold values used in Lemma 5.2.

Whenever the Threshold Search algorithm “passes” on an (𝐴𝑡, �̂�𝑡) pair, the teacher also
“passes”, and �̂�𝑡 serves as the Shadow Tomography algorithm’s final estimate for E𝜌[𝐴𝑡]. On
the other hand, if the Threshold Search algorithm outputs “ |E𝜌[𝐴𝑡] − �̂�𝑡 | > 3

4𝜖, and in fact
|E𝜌[𝐴𝑡] − 𝜇′𝑡 | ≤ 1

4𝜖”, then the teacher will declare a “mistake” and supply the value 𝜇′𝑡 to the
student. This 𝜇′𝑡 will also serve as the Shadow Tomography algorithm’s final estimate for E𝜌[𝐴𝑡].
Furthermore, at this point the teacher will abandon any remaining copies of 𝜌 in the current
batch, and will use a “fresh” batch 𝜌⊗𝑛0 for the subsequent application of Lemma 5.2. We refer
to this as moving on to the next “round”.

Let us now show that with high probability there are at most 𝑅 − 1 mistakes and hence at
most 𝑅 rounds. (If the Shadow Tomography algorithm tries to proceed to an (𝑅 + 1)th round,
and thereby runs out of copies of 𝜌, we simply declare an overall failure.)

The total probability of error made by the Threshold Search algorithm within each round
is bounded by 𝛿0. By a union bound, the probability of any incorrect answer over all 𝑅 rounds
is at most 𝑅𝛿0, i.e., at most 𝛿. Below we will show that if there are no incorrect answers, then
the “Teacher Properties” of Theorem 5.1 hold, and therefore the total number of mistakes is
indeed at most ⌈𝐶0(log 𝑑)/𝜖2⌉ = 𝑅 − 1 with probability at least 1 − 𝛿.

It remains to verify that — assuming correct answers from all uses of Lemma 5.2 — our
Shadow Tomography algorithm satisfies the Teacher Properties of Theorem 5.1 and also that
all 𝑚 estimates for E𝜌[𝐴𝑖] produced by the algorithm are correct to within an additive error 𝜖.
Let us first note that within each round of the Shadow Tomography algorithm, we never supply
more than 𝑚 quantum events to the Threshold Search algorithm from Lemma 5.2. The main
point to observe is that if our Threshold Search routine from Lemma 5.2 ever passes on some
(𝐴𝑡, �̂�𝑡) pair, it must be that |E𝜌[𝐴𝑡] − �̂�𝑡 | ≤ 𝜖; the reason is that passing implies the Threshold
Search algorithm is prepared to output “ |E𝜌[𝐴𝑖] − 𝜃𝑖 | ≤ 𝜖 for all 𝑖”. On the other hand, it’s
immediate from Lemma 5.2 that if the teacher declares “mistake” on some (𝐴𝑡, �̂�𝑡) pair, then
indeed we have |E𝜌[𝐴𝑡] − �̂�𝑡 | > 3

4𝜖, and the supplied correction 𝜇′𝑡 satisfies |E𝜌[𝐴𝑡] − 𝜇′𝑡 | ≤ 1
4𝜖 (as

is necessary for the Teacher Properties, and is more than sufficient for the Shadow Tomography
guarantee). ■
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5.2 Hypothesis Selection

In this section we establish our quantum Hypothesis Selection result, Theorem 1.5. This theorem
effectively has three different bounds, and we prove them via Propositions 5.3, 5.5 and 5.6.

Recall that in the Hypothesis Selection problem there are given fixed hypothesis states
𝜎1, . . . , 𝜎𝑚 ∈ C𝑑×𝑑 , as well as access to copies of an unknown state 𝜌 ∈ C𝑑×𝑑 . We write

𝜂 = min
𝑖

{𝑑tr(𝜌, 𝜎𝑖)}, 𝑖∗ = argmin
𝑖

{𝑑tr(𝜌, 𝜎𝑖)},

with the quantity 𝜂 being unknown to the algorithm. Recall that the Holevo–Helstrom theorem
implies that for each pair 𝑖 ≠ 𝑗, there is a quantum event 𝐴𝑖 𝑗 such that

E
𝜎𝑖
[𝐴𝑖 𝑗] − E

𝜎 𝑗

[𝐴𝑖 𝑗] = 𝑑tr(𝜎𝑖 , 𝜎 𝑗),

and furthermore we may take 𝐴 𝑗𝑖 = 𝐴𝑖 𝑗 = 1 − 𝐴𝑖 𝑗 . These events are known to the algorithm.
One way to solve the quantum Hypothesis Selection problem is to simply use Shadow

Tomography as a black box. Given parameters 0 < 𝜖, 𝛿 < 1
2 for the former problem, we can run

Shadow Tomography with parameters 𝜖/2, 𝛿, and the
(𝑚

2
)

quantum events (𝐴𝑖 𝑗 : 𝑖 < 𝑗). Then
except with probability at most 𝛿, we obtain values �̂�𝑖 𝑗 with |E𝜌[𝐴𝑖 𝑗] − �̂�𝑖 𝑗 | ≤ 𝜖/2 for all 𝑖, 𝑗. Now
we can essentially use any classical Hypothesis Selection algorithm; e.g., the “minimum distance
estimate” method of Yatracos [40]. We select as our hypothesis 𝜎𝑘, where 𝑘 = argminℓ Δ̂ℓ is a
minimizer of

Δ̂ℓ = max
𝑖< 𝑗

|E
𝜎ℓ
[𝐴𝑖 𝑗] − �̂�𝑖 𝑗 |.

Recalling 𝜂 = 𝑑tr(𝜌, 𝜎𝑖∗), we have

Δ̂𝑘 ≤ Δ̂𝑖∗ ≤ max
𝑖< 𝑗

{| E
𝜎𝑖∗
[𝐴𝑖 𝑗] − E

𝜌
[𝐴𝑖 𝑗] | + |E

𝜌
[𝐴𝑖 𝑗] − �̂�𝑖 𝑗 |} ≤ 𝜂 + 𝜖/2, (4)

where the last inequality used the Holevo–Helstrom theorem again, and the Shadow Tomography
guarantee. We now obtain the following result (with the proof being an almost verbatim repeat
of the one in [14, Thm. 6.3]):

PROPOS IT ION 5.3. The above-described method selects 𝜎𝑘 with 𝑑tr(𝜌, 𝜎𝑘) ≤ 3𝜂+𝜖 (except with
probability at most 𝛿), using a number of copies of 𝜌 that is the same as in Shadow Tomography
(up to constant factors).

PROOF . By the triangle inequality for 𝑑tr we have

𝑑tr(𝜎𝑘, 𝜌) ≤ 𝜂 + 𝑑tr(𝜎𝑘, 𝜎𝑖∗) = 𝜂 + |E
𝜎𝑘
[𝐴𝑘𝑖∗] − E

𝜎𝑖∗
[𝐴𝑘𝑖∗] |

≤ 𝜂 + |E
𝜎𝑘
[𝐴𝑘𝑖∗] − �̂�𝑘𝑖∗ | + | E

𝜎𝑖∗
[𝐴𝑘𝑖∗] − �̂�𝑘𝑖∗ | ≤ 𝜂 + Δ̂𝑘 + Δ̂𝑖∗ ,

and the result now follows from Inequality (4). ■
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Now we give a different, incomparable method for Hypothesis Selection. It will use the
following “decision version” of quantum Threshold Search, which we prove at the end of
Appendix A (see Corollary A.4):

COROLLARY 5.4. Consider the scenario of quantum Threshold Search (i.e., one is given param-
eters 0 < 𝜖0, 𝛿0 < 1

2 , and 𝑚0 event/threshold pairs (𝐴𝑖 , 𝜃𝑖)). Suppose one is further given values
𝜂1, . . . , 𝜂𝑚0 . Then using just 𝑛0 = 𝑂(log(𝑚0/𝛿0)/𝜖2

0) copies of 𝜌, one can correctly output (except
with probability at most 𝛿):

“there exists 𝑗 with |E𝜌[𝐴 𝑗] − 𝜃 𝑗 | > 𝜂 𝑗”; or else,
“ |E𝜌[𝐴𝑖] − 𝜃𝑖 | ≤ 𝜂𝑖 + 𝜖 for all 𝑖”.

Indeed, the algorithm can be implemented by a projector applied to 𝜌⊗𝑛0 .

Returning to Hypothesis Selection, let us define

Δ𝑘 = max
𝑖< 𝑗

|E
𝜎𝑘
[𝐴𝑖 𝑗] − E

𝜌
[𝐴𝑖 𝑗] |,

and note that Δ𝑖∗ ≤ 𝜂, by the Holevo–Helstrom theorem. Let us also assume the algorithm has
a candidate upper bound 𝜂 on 𝜂. Now suppose our algorithm is able to find ℓ with Δℓ ≤ 𝜂 + 𝜖.
Then the proof of Proposition 5.3 similarly implies that 𝜎ℓ satisfies 𝑑tr(𝜎ℓ, 𝜌) ≤ 2𝜂 + 𝜂 + 𝜖.

Now let T𝑘 denote the following Threshold Decision instance (as in Corollary 5.4): 𝜖0 = 𝜖,
𝛿0 = 1/3, 𝑚0 =

(𝑚
2
)
, the quantum events are all the 𝐴𝑖 𝑗 ’s, the thresholds are 𝜃𝑖 𝑗 = E𝜎𝑘 [𝐴𝑖 𝑗], each

“𝜂𝑖 𝑗” is 𝜂. Then Corollary 5.4 gives us a projector 𝐵𝑘 on (C𝑑)⊗𝑛0 , where 𝑛0 = 𝑂(log(𝑚)/𝜖2), with
the following property: When it is used to measure 𝜚 = 𝜌⊗𝑛0 ,

Δ𝑘 ≤ 𝜂 =⇒ E
𝜚
[𝐵𝑘] ≥ 2/3, E

𝜚
[𝐵𝑘] > 1/3 =⇒ Δ𝑘 ≤ 𝜂 + 𝜖. (5)

We can now apply our Threshold Search routine to the 𝐵𝑘’s (with all thresholds 𝜃𝑘 = 1/2), using
𝑛TS(𝑚, 1/6, 𝛿′) copies of 𝜚, for some 𝛿′ ∈ (0, 1] to be specified shortly. Provided that indeed
𝜂 ≤ 𝜂, we know there is at least one 𝑘 (namely 𝑘 = 𝑖∗) with Δ𝑘 ≤ 𝜂; thus except with probability
at most 𝛿′, the Threshold Search routine will find an ℓ with Δℓ ≤ 𝜂 + 𝜖.

If we wish to assume our Hypothesis Selection algorithm “knows” 𝜂, then we are done. Oth-
erwise, we can search for the approximate value of 𝜂, as follows: We perform the above routine
with 𝜂 = 1, 1

2 ,
1
4 ,

1
8 , . . . , using fresh copies for each iteration and stopping either when Threshold

Search fails to find any ℓ or when 𝜂 ≤ 𝜖. If we stop for the first reason, we know that our second-
to-last 𝜂 is at most 2𝜂; if we stop for the second reason, we know that 𝜂 ≤ 𝜖. Either way, assuming
no failure on any of the Threshold Searches, we end with a guarantee of 𝑑tr(𝜎ℓ, 𝜌) ≤ 4𝜂 + 2𝜖. To
bound the overall failure probability we take 𝛿′ = 𝛿/Θ(log(1/max{𝜂, 𝜖})). It’s easy to check that
the geometric decrease of 𝜂 means we only use 𝑂(𝑛TS(𝑚, 1/6, 𝛿′) · log(1/max{𝜂, 𝜖})) copies of 𝜚,
which is 𝑂(𝑛TS(𝑚, 1/6, 𝛿′) · log(1/max{𝜂, 𝜖}))𝑛0 copies of 𝜌. Finally, by tuning the constants we
can make the final guarantee 𝑑tr(𝜎ℓ, 𝜌) ≤ 3.01𝜂 + 𝜖. We conclude:
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PROPOS IT ION 5.5. The above-described method selects 𝜎ℓ with 𝑑tr(𝜌, 𝜎ℓ) ≤ 3.01𝜂 + 𝜖 (except
with probability at most 𝛿), using

𝑛 =
log3 𝑚 + log(L/𝛿) · log𝑚

𝜖2 · 𝑂(l · log(l/𝛿))

copies of 𝜌, where l = log(1/max{𝜂, 𝜖}).

It remains to establish the last part of Theorem 1.5, which operates under the assumption
that 𝜂 < 1

2 (𝛼 − 𝜖), where 𝛼 = min𝑖≠ 𝑗 𝑑tr(𝜎𝑖 , 𝜎 𝑗). Writing 𝜂 = 1
2 (𝛼 − 𝜖) (which is a quantity known

to the algorithm), we have Δ𝑖∗ ≤ 𝜂 ≤ 𝜂, but Δ𝑘 > 𝜂 + 𝜖 for all 𝑘 ≠ 𝑖∗; the reason for this last claim
is that

Δ𝑘 ≥ |E
𝜎𝑘
[𝐴𝑖∗𝑘] − E

𝜌
[𝐴𝑖∗𝑘] | ≥ |E

𝜎𝑘
[𝐴𝑖∗𝑘] − E

𝜎𝑖∗
[𝐴𝑖∗𝑘] | − 𝜂 = 𝑑tr(𝜎𝑖∗ , 𝜎𝑘) − 𝜂 ≥ 𝛼 − 𝜂 = 2𝜂 + 𝜖− 𝜂 > 𝜂 + 𝜖

where the second inequality above used the Holevo–Helstrom theorem and 𝜂 = 𝑑tr(𝜌, 𝜎𝑖∗) and
the last inequality used 𝜂 > 𝜂. Now if we perform Threshold Search to achieve Inequality (5)
as before, except that we select 𝛿0 = 𝛿/(4𝑚) rather than 1/3, we’ll get projectors 𝐵1, . . . , 𝐵𝑚 on
(C𝑑)𝑛 for 𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2) such that, for 𝜚 = 𝜌⊗𝑛,

E
𝜚
[𝐵𝑖∗] ≥ 1 − 𝛿/(4𝑚), E

𝜚
[𝐵𝑘] ≤ 𝛿/(4𝑚) ∀𝑘 ≠ 𝑖∗.

It remains to apply the Quantum Union Bound (specifically, Corollary 2.8) to 𝐵1, . . . , 𝐵𝑚 and 𝜚 to
pick out 𝑖∗ except with probability at most 4

∑
𝑖 𝛿/(4𝑚) ≤ 𝛿. We conclude:

PROPOS IT ION 5.6. Using the assumption 𝜂 < 1
2 (𝛼 − 𝜖), where 𝛼 = min𝑖≠ 𝑗 𝑑tr(𝜎𝑖 , 𝜎 𝑗), the

above-described method selects 𝜎𝑖∗ (except with probability at most 𝛿), using 𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2)
copies of 𝜌.
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A. The quantum Threshold Decision problem

As mentioned at the end of Section 1.1.1, Aaronson [1] showed that the decision version of
quantum Threshold Search can be done with 𝑛 = 𝑂(log(𝑚) log(1/𝛿)/𝜖2) copies, through the use
of a theorem of Harrow, Lin, and Montanaro [24, Cor. 11]. In Theorem A.2 below, we give a new
version of the Harrow–Lin–Montanaro theorem, with a mild qualitative improvement. This
improvement also lets us improve the quantum Threshold Decision copy complexity slightly, to
𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2) (see Corollary A.4).

First, a lemma:
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PROOF . This follows from the matrix form of Cauchy–Schwarz:
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THEOREM A.2. Let 0 ≤ 𝐴1, . . . , 𝐴𝑚 ≤ 1 be 𝑑-dimensional observables and define #𝐴 = 𝐴1 +
· · · + 𝐴𝑚. Let 𝜈 > 0 and let 𝐵 be the orthogonal projector onto the span of eigenvectors of #𝐴 with
eigenvalue at least 𝜈. Then for any state 𝜌 ∈ C𝑑×𝑑 , writing 𝑝max = max𝑖

{
E𝜌[𝐴𝑖]

}
, we have

𝑝max − 2
√
𝜈 ≤ E

𝜌
[𝐵] ≤ E

𝜌
[#𝐴]/𝜈.

REMARK A.3. One can read out a similar result in the work of Harrow, Lin, and Montanaro [24,

Cor. 11], except with a lower bound of E𝜌[𝐵] ≥ .632(𝑝max − 𝜈)2. Note that unlike our bound,
their lower bound is never close to 1, even when 𝑝max is very close to 1. It is this difference that
leads to our slight improvement for the Threshold Decision problem. We speculate that the
lower bound in our result can be sharpened further, to (1 − 𝑂(

√
𝜈))𝑝max.

PROOF . The upper bound in the theorem is just “Markov’s inequality”; it follows immediately
from #𝐴 ≥ 𝜈𝐵 (and 𝜌 ≥ 0). As for the lower bound, suppose 𝑝max = E𝜌[𝐴 𝑗] = 1 − 𝛿. Using the
notation 𝐵 = 1 − 𝐵, and defining 𝛽 = E𝜌[𝐵𝐴 𝑗𝐵], we have

𝛽 ≤ E
𝜌
[𝐵 · #𝐴 · 𝐵] < 𝜈,

since 𝐴 𝑗 ≤ #𝐴 and 𝐵 · #𝐴 · 𝐵 < 𝜈1 by definition. On the other hand, write 𝑝 = E𝜌[𝐵], so our goal
is to show 𝑝 < 𝛿 + 2

√
𝜈. Then

𝑝 = E
𝜌
[𝐵] = E

𝜌
[𝐴 𝑗 · 𝐵] + E

𝜌
[𝐴 𝑗 · 𝐵] ≤

√︃
E
𝜌
[𝐴 𝑗]

√︂
E
𝜌
[𝐵𝐴 𝑗𝐵] +

√︂
E
𝜌
[𝐴 𝑗]

√︂
E
𝜌
[𝐵 𝐴 𝑗𝐵]

=
√

1 − 𝛿
√︁
𝛽 +

√
𝛿
√︁
𝑝 − 𝛽,

where the inequality is by Lemma A.1, and the subsequent equality uses 𝑝 = E𝜌[𝐵(𝐴 𝑗 + 𝐴 𝑗)𝐵].
The above deduction, together with 𝛽 < 𝜈, yields an upper bound on 𝑝. Eschewing the tightest
possible bound, we deduce from the above that

𝑝 ≤
√︁
𝛽 +

√
𝛿
√
𝑝 <

√
𝜈 + 𝛿 + 𝑝

2
=⇒ 𝑝 ≤ 2

√
𝜈 + 𝛿. ■

Given Theorem A.2, it’s easy to obtain the following quantum Threshold Decision algorithm,
similar to [1, Lem. 14]:

COROLLARY A.4. In the scenario of quantum Threshold Search, suppose one only wishes to
solve the decision problem, meaning the algorithm has only two possible outputs:

“there exists 𝑗 with E𝜌[𝐴 𝑗] > 𝜃 𝑗 − 𝜖”; or else,
“E𝜌[𝐴𝑖] ≤ 𝜃𝑖 for all 𝑖”.

This can be solved using just 𝑛 = 𝑂(log(𝑚/𝛿)/𝜖2) copies of 𝜌 and probability of error at most 𝛿.
The algorithm can be implemented by a projector applied to 𝜌⊗𝑛.
Furthermore, Corollary 5.4 holds.
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PROOF . Writing 𝜚 = 𝜌⊗𝑛, a standard Chernoff bound implies there are quantum events
𝐴′

1, . . . , 𝐴
′
𝑚 satisfying

E
𝜌
[𝐴𝑖] > 𝜃 =⇒ E

𝜚
[𝐴′

𝑖] ≥ 1 − 𝛿/2, E
𝜌
[𝐴𝑖] ≤ 𝜃 − 𝜖 =⇒ E

𝜚
[𝐴′

𝑖] ≤ 𝛿3/(16𝑚).

We apply Theorem A.2 to 𝐴′
1, . . . , 𝐴

′
𝑚 and 𝜚, with 𝜈 = 𝛿2/16, obtaining the projector 𝐵 with

max
𝑖

{E
𝜚
[𝐴′

𝑖]} − 𝛿/2 ≤ E
𝜚
[𝐵] ≤ (16/𝛿2) E

𝜚
[#𝐴′] .

Now on one hand, if there exists 𝑗 with E𝜌[𝐴 𝑗] > 𝜃, we conclude E𝜚[𝐵] ≥ 1 − 𝛿. On the other
hand, if E𝜌[𝐴𝑖] ≤ 𝜃 − 𝜖 for all 𝑖, then E𝜚[#𝐴′] ≤ 𝑚 · 𝛿3/(16𝑚) and hence E𝜚[𝐵] ≤ 𝛿. Thus the
algorithm can simply measure 𝐵 with respect to 𝜚, reporting “there exists 𝑗 with E𝜌[𝐴 𝑗] > 𝜃− 𝜖”
when 𝐵 occurs, and “E𝜌[𝐴 𝑗] ≤ 𝜃 for all 𝑖” when 𝐵 occurs. This completes the main proof.

The “Furthermore” proof of Corollary 5.4 is exactly the same, except we let 𝐴′
𝑖

be the
quantum event that has

|E
𝜌
[𝐴𝑖] − 𝜃𝑖 | > 𝜂𝑖 + 𝜖 =⇒ E

𝜚
[𝐴′

𝑖] ≥ 1 − 𝛿/2, |E
𝜌
[𝐴𝑖] − 𝜃𝑖 | ≤ 𝜂𝑖 =⇒ E

𝜚
[𝐴′

𝑖] ≤ 𝛿3/(16𝑚). ■
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