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ABSTRACT. We show that a randomly chosen linear map over a finite field gives a good
hash function in the ℓ∞ sense. More concretely, consider a set 𝑆 ⊂ F𝑛𝑞 and a randomly chosen
linear map 𝐿 : F𝑛𝑞 → F𝑡𝑞 with 𝑞𝑡 taken to be sufficiently smaller than |𝑆 |. Let𝑈𝑆 denote a random
variable distributed uniformly on 𝑆. Our main theorem shows that, with high probability over
the choice of 𝐿, the random variable 𝐿(𝑈𝑆) is close to uniform in the ℓ∞ norm. In other words,
every element in the range F𝑡𝑞 has about the same number of elements in 𝑆 mapped to it. This
complements the widely-used Leftover Hash Lemma (LHL) which proves the analog statement
under the statistical, or ℓ1, distance (for a richer class of functions) as well as prior work on
the expected largest ’bucket size’ in linear hash functions [2]. By known bounds from the load
balancing literature [23], our results are tight and show that linear functions hash as well
as truly random function up to a constant factor in the entropy loss. Our proof leverages a
connection between linear hashing and the finite field Kakeya problem and extends some of
the tools developed in this area, in particular the polynomial method.

1. Introduction

Let 𝑆 ⊂ {0, 1}𝑛 be a set. In many scenarios, one is interested in ‘hashing’ the space {0, 1}𝑛 into a
smaller space so that the set 𝑆 (on which we may have little or no information) is mapped in a
way that is close to uniform. Specifically, we may need to find a function 𝐻 : {0, 1}𝑛 → {0, 1}𝑡 so
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that the random variable 𝐻 (𝑈𝑆) is close to the uniform distribution, where𝑈𝑆 denotes a random
variable distributed uniformly on the set 𝑆. An important parameter here is the ‘entropy-loss’
given by log2 |𝑆 | − 𝑡. Clearly, this quantity has to be non negative, and, in practice, we would
like it to be as small as possible.

An important result in this area is the celebrated Leftover Hash Lemma (LHL) of Impagli-
azzo, Levin and Luby [18] which asserts that the above scenario can be handled by choosing 𝐻 at
random from a family of universal hash functions (one in which for every 𝑥 ≠ 𝑦 the probability
that 𝐻 (𝑥) = 𝐻 ( 𝑦) is at most 2−𝑡 over the choice of 𝐻).

LEMMA 1.1 (Leftover Hash Lemma [18]). Let 𝑆 ⊂ {0, 1}𝑛 and suppose 𝐻 : {0, 1}𝑛 → {0, 1}𝑡 is
chosen from a family of universal hash functions with 𝑡 ≤ log2 |𝑆 | − 2 log2(1/𝜖). Then the random
variable1 (𝐻, 𝐻 (𝑈𝑆)) is 𝜖-close to uniform in the ℓ1-norm.2

A few comments about the LHL are in order. The first is that, using a standard averaging
argument, the LHL implies that, for any given set, most choices of 𝐻 will be good, in the sense
that 𝐻 (𝑈𝑆) will be close to uniform in the ℓ1 distance. It is also known that the entropy loss of
the LHL, namely 2 log(1/𝜖), is the smallest possible for any family of functions [24]. Lastly, it is
possible to generalize the LHL to handle arbitrary distributions of high min-entropy3 (not just
those uniform on a set). This follows from the fact that any distribution with min-entropy 𝑘 is a
convex combination of ‘flat’ distributions (those uniform on a set of size 2𝑘).

A convenient choice of a universal family of hash functions is that given by all linear maps
over the finite field of two elements F2. That is, the LHL says that, if one picks a linear map
𝐿 : F𝑛2 → F𝑡2 uniformly at random, then, with high probability over the choice of 𝐿, the random
variable 𝐿(𝑈𝑆) will be close to uniform in the ℓ1-distance. Our main theorem shows that, with
slightly larger entropy loss, one can give a stronger guarantee on the output, stated in ℓ∞ distance
to uniform. A reason to consider linear maps is their simplicity and ease of implementation (only
requiring very basic bit operations) for applications. Since the full statement of the theorem
is quite technical (stemming from our attempts to optimize the various constants) we start by
giving an informal statement. The full statements of our results (also for other larger finite
fields) are given in Section 2.

THEOREM 1.2 (Main theorem (informal)). Let 𝑆 ⊂ F𝑛2 and let 𝑡 = log2 |𝑆 | −𝑂(log2(log2 |𝑆 |/𝜏𝛿)).
Then, a (1 − 𝛿)-fraction of all linear maps 𝐿 : F𝑛2 → F𝑡2 are such that 𝐿(𝑈𝑆) is 𝜏2−𝑡-close to uniform
in the ℓ∞ norm. That is, for all 𝑦 ∈ F𝑡2 we have

|Pr[𝐿(𝑈𝑆) = 𝑦] − 2−𝑡 | ≤ 𝜏2−𝑡 .

1 In the notation (𝐻, 𝐻 (𝑈𝑆) we assume that the function 𝐻 is represented by a string of bits of some fixed length.

2 Typically, the conclusion of the lemma is stated with respect to the statistical distance (or total variation distance)
which is defined to be 1/2 of the ℓ1 distance

3 A distribution has min-entropy at least 𝑘 if any output has probability at most 2−𝑘.
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An equivalent way to state this theorem comes from the observation that the set of elements
in F𝑛2 mapping to a particular 𝑦 ∈ F𝑡2 is always of the form 𝑎𝑦 +𝑈 , where𝑈 is the kernel of the
mapping 𝐿 and 𝑎𝑦 ∈ F𝑛2 is some shift. In this view, the theorem says that most (𝑛−𝑡)-dimensional
subspaces𝑈 ⊂ F𝑛2 are such that all of their shifts intersect 𝑆 in about the same number of points
(up to a multiplicative factor of 1 ± 𝜏). We devote Section 3 to a more detailed treatment of this
view, which will be the one used in the proof. The question of bounding the maximal ‘bucket
size’ (all elements mapping to a single 𝑦 ∈ F𝑡2) in a random linear hash function was previously
studied and we compare our results to the state-of-the-art in this area ([2]) in Section 2 after the
formal statement of our results.

Our choice of the letter 𝜏 instead of 𝜖 as in the LHL is not accidental and is meant to
highlight the fact that, in the ℓ∞ setting, we can take 𝜏 to be greater than 1. When 𝜏 < 1 the
conclusion of our theorem, namely that 𝐿(𝑈𝑆) is 𝜏/2−𝑡-close to uniform in ℓ∞, implies that 𝐿(𝑈𝑆)
is also 𝜏-close to uniform in ℓ1. However, our theorem is still meaningful when 𝜏 > 1, even
though it says nothing about ℓ1 distance. The advantage of taking 𝜏 to be large comes from the
fact that it can reduce our entropy loss (this can be done up to a point, as is stated in the formal
theorem statement below). To give an example of a scenario in which we can take large 𝜏,
consider the case where the linear map 𝐿 is used to derive a key for a digital signature scheme.
We would like the key 𝐿(𝑈𝑆) to be close to uniform since we know that a uniform key prevents
the adversary from producing a forgery with more than negligible probability. However, if we
apply our theorem with large 𝜏 (say polynomial in 𝑛) we get that the probability of producing a
forgery may increase by at most a factor of 1 + 𝜏 which still results in negligible probability of
forgery. More generally, the case of large 𝜏 is relevant whenever we only care about events of
small probability staying small. Another paper that focuses on these aspects of the LHL (that is,
when we only care about low probability events) is [3].

The need for ℓ∞ guarantees for hashing appears in many places in the literature. For
example, in Cryptography, in the context of key generation for local data storage [5] and batch
verifying zero-knowledge proofs [19] and in Computational in the context of uniformly generat-
ing a solution to NP-search problems (see Section 6.2.4.2 in [16]). It is possible to guarantee ℓ∞
hashing by using a larger and more complex classes of functions, for example high degree
polynomials over a large finite field [1]. For the applications in [5] and [16] our results allows
one to use linear maps instead of polynomials, hence simplifying the proofs.

Our proofs leverage a connection between linear hashing and finite field Furstenberg sets
(which generalize Kakeya sets). A 𝑘-dimensional Furstenberg set 𝑆 ⊂ F𝑛𝑞 is a set which has a
large intersection with a 𝑘-flat (𝑘-dimensional affine subspaces) in each direction. That is, for
any 𝑘-dimensional subspace𝑈 ⊂ F𝑛𝑞 there is a shift 𝑠(𝑈) such that the affine subspace 𝑠(𝑈) +𝑈
has a large intersection with the set 𝑆. The goal in this area is to prove lower bounds on the
size of such sets. Surprisingly, such lower bounds play a role in explicit constructions of seeded
extractors [13, 12] which are randomness efficient variants of the LHL. However, the connection
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between Furstenberg sets and linear hashing we leverage in this paper is unrelated to the work
on extractors mentioned above and is of a completely different nature. This connection was first
observed in [9] and was used there to improve the best lower bounds on Furstenberg sets. Our
work relies heavily on the methods developed in [9] (as well as other papers) and extends them
in several respects. We devote Section 3 to a more complete discussion of this connection and,
in particular, to explaining the phrase ‘two-sided Kakeya bounds’ from the title of the paper.

Acknowledgments: We are grateful to Or Ordentlich, Oded Regev and Barak Weiss for com-
ments that led us to pursue this line of work. Their interest in theorems of this kind arose
from trying to strengthen their breakthrough [22] on lattice coverings, which uses the two
dimensional Kakeya bounds of [20]. (A new paper by the same group of authors, using the
results of the current paper, is in preparation.) We are also grateful to the reviewers for their
suggestions, especially for pointing out that Theorem 3.4 also follows from our arguments.

Paper organization: The rest of the paper is organized as follows. In Section 2 we state our
main theorems formally. In Section 2.1 we discuss the tightness of our results, compare them to
prior work, and discuss possible generalizations. In Section 3 we discuss the connection to the
theory of Furstenberg/Kakeya sets and introduce notations and definitions that will be used in
the proofs. In Section 4 we give a high level overview of the proof. Section 5 contains the proofs
of our main theorems with a lemma, giving an improved bound on Furstenberg sets, proved in
Section 6.

2. Formal statement of our results

This section contains four variants of our main result. The four cases correspond to the distinc-
tion between large finite fields and F2 and between arbitrary 𝜏 and the special case 𝜏 > 1 (in
which we can get slightly better constants). We begin with the statement for large finite field
and arbitrary 𝜏.

THEOREM 2.1. Let 𝑛 ≥ 5 and let 𝑆 ⊂ F𝑛𝑞 be a set. Let 𝜏 > 0 be a real number and 𝛿 ∈ (0, 1) such
that

𝑞 ≥ 32 max
(
𝑛(1 + 𝜏)
(𝜏𝛿)2 , 𝑛

)
.

Suppose 𝑞𝑟 < |𝑆 | ≤ 𝑞𝑟+1 for some 4 ≤ 𝑟 ≤ 𝑛 − 1 and let 𝑡 = 𝑟 − 3. Then a (1 − 𝛿)-fraction of all
surjective linear maps 𝐿 : F𝑛𝑞 → F𝑡𝑞 are such that 𝐿(𝑈𝑆) is 𝜏/𝑞𝑡-close to the uniform distribution in
the ℓ∞ norm.

Notice that, in the setting above, the entropy loss, when measured in F𝑞-dimension is at
most 4. The restriction to the case of surjective linear maps is natural as these are maps that do
not ‘lose’ entropy unnecessarily (one can consider all linear maps by increasing 𝛿 slightly).
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The above theorem can be used to derive similar results for small fields, by treating blocks
of coordinates as representing elements in an extensions field. We do this for every possible
choice of basis to ensure that our theorem works for all surjective F2-linear maps. We only treat
the case of F2 as this is the field most commonly used in applications (the same proof strategy
will work for any finite field).

THEOREM 2.2. Let 𝑆 ⊂ F𝑛2 be such that |𝑆 | > 220 max(𝑛4(1 + 𝜏)4/(𝜏𝛿)8, 𝑛4) and let 𝑛, 𝜏, 𝛿 satisfy
𝑛 ≥ 5⌈log2(max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛))⌉ + 25. Then there exists a natural number

𝑡 ≥ log2 |𝑆 | − 4 log2

(
max

(
𝑛(1 + 𝜏)
(𝜏𝛿)2 , 𝑛

))
− 20,

such that a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 are such that 𝐿(𝑈𝑆) is
𝜏2−𝑡-close to uniform in the ℓ∞ norm.

When |𝑆 | is small we can improve the previous theorem by replacing the 𝑛 in the entropy
loss by log2 |𝑆 |. This is achieved using the following simple lemma, which allows us to first
hash 𝑆 into a universe of size roughly |𝑆 |2 without any collisions.

LEMMA 2.3. Let 𝑆 ⊂ F𝑛2 and
𝑡 ≥ log2( |𝑆 | ( |𝑆 | − 1)/2𝛿).

Then, at least a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 map 𝑆 injectively into F𝑡2.

PROOF . As surjective linear maps are a universal family of hash functions we have,

Pr[𝐿(𝑥) = 𝐿( 𝑦)] ≤ 1/2𝑡 ≤ 𝛿
2

|𝑆 | ( |𝑆 | − 1)

for a random surjective linear map 𝐿 : F𝑛2 → F𝑡2 and 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦. By applying the union
bound we see the probability that 𝐿 is not injective is upper bounded by 𝛿. ■

Applying the above lemma followed by Theorem 2.2 immediately leads to a concrete
instance of Theorem 1.2.

THEOREM 2.4. Let 𝑆 ⊂ F𝑛2 , 𝜏, 𝛿 ∈ (0, 1) and 𝑚 = log2( |𝑆 | ( |𝑆 | − 1)/𝛿) be such that

|𝑆 | > 220𝑚max(28(1 + 𝜏)4/(𝜏𝛿)8, 1) (1)

𝑚 ≥ 5 log2(𝑚max(4(1 + 𝜏)/(𝜏𝛿)2, 1)) + 25, (2)

then there exists a natural number

𝑡 ≥ log2 |𝑆 | − 4 log2

(
𝑚max

(
4(1 + 𝜏)
(𝜏𝛿)2 , 1

))
− 20,

such that a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 are such that 𝐿(𝑈𝑆) is
𝜏2−𝑡-close to uniform in the ℓ∞ norm.
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PROOF . We apply Lemma 2.3 for 𝛿/2 and linear maps from F𝑛2 → F𝑚2 followed by applying
Theorem 2.2 for 𝛿/2 and linear maps from F𝑚2 → F𝑡2. ■

The conditions (1) and (2) are not very restrictive. In the setting 𝜏 = 𝛿 = 1/𝑛𝐶 for some
constant 𝐶 conditions (1) and (2) are satisfied for |𝑆 | ≥ 𝑛𝐶

′ where 𝐶′ only depends on 𝐶.
An interesting setting of parameters for Theorem 2.4 is that of 𝜏 = 1/𝛿2. In this case (when 𝛿

is sufficiently small), the two terms in the ‘max’ function above are about the same and we get
an entropy loss of 4 log2(4 log2( |𝑆 | ( |𝑆 | − 1)/𝛿)). With this entropy loss, we get that the output
𝐿(𝑈𝑆) is (1/𝛿)2 · 2−𝑡 close to uniform in the ℓ∞ norm. Or, in other words, for (1 − 𝛿)-fraction of
linear maps 𝐿, the probability of any event under 𝐿(𝑈𝑆) is at most a multiplicative factor of
1/𝛿2 larger than its probability under the uniform distribution. In this setting (1) and (2) are
satisfied by ensuring |𝑆 | is larger than some fixed universal constant.

Improvements when 𝝉 > 1: In this setting, we can improve the constant in the above two
theorems slightly. We start with the case of large finite field. In the following theorem, the bound
on the size of 𝑞 does not contain the constant 32 appearing in Theorem 2.1. The dependence
of 𝑞 on 𝜏 changes from 1+𝜏

𝜏2 to 1+𝜏
(𝜏−

√
𝜏)2 which are asymptotically the same when 𝜏 grows. Hence,

when 𝜏 is sufficiently large, the saving in 𝑞 is roughly a factor of 32. The price we pay for this
improvement is the need for 𝑛 to be at least 20 (as opposed to 5) and an upper bound 𝛿 < 1/10.

THEOREM 2.5. Let 𝑛 ≥ 20 and let 𝑆 ⊂ F𝑛𝑞 be a set. Let 𝜏 > 1 be a real number and 𝛿 ∈ (0, 1/10)
such that

𝑞 ≥ max
(
𝑛

1 + 𝜏
(𝜏 −

√
𝜏)2𝛿2

, 𝑛

)
.

Suppose 𝑞𝑟 < |𝑆 | ≤ 𝑞𝑟+1 for some 4 ≤ 𝑟 ≤ 𝑛 − 1 and let 𝑡 = 𝑟 − 3. Then a (1 − 𝛿)-fraction of all
surjective linear maps 𝐿 : F𝑛𝑞 → F𝑡𝑞 are such that 𝐿(𝑈𝑆) is 𝜏/𝑞𝑡-close to the uniform distribution in
the ℓ∞ norm.

As before, this can be used to prove a version over F2 for large 𝜏 with improved constants.

THEOREM 2.6. Let 𝑆 ⊂ F𝑛2 and let 𝛿 ≤ 1/10, 𝜏 > 1 be such that |𝑆 | > max(𝑛4(1 + 𝜏)4/((𝜏 −
√
𝜏)𝛿)8, 𝑛4) and 𝑛, 𝜏, 𝛿 satisfy 𝑛 ≥ 20⌈log2(max(𝑛(1 + 𝜏)/((𝜏 −

√
𝜏)𝛿)2, 𝑛))⌉. Then there exists a

natural number
𝑡 ≥ log2 |𝑆 | − 4 log2

(
max

(
𝑛

1 + 𝜏
(𝜏 −

√
𝜏)2𝛿2

, 𝑛

))
,

such that a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 have the property that 𝐿(𝑈𝑆)
is 𝜏2−𝑡-close to uniform in the ℓ∞ norm.

We can again use Lemma 2.3 to improve the entropy loss in the previous theorem.
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THEOREM 2.7. Let 𝑆 ⊂ F𝑛2 and let 𝛿 ≤ 1/10, 𝜏 > 1 and 𝑚 = log2( |𝑆 | ( |𝑆 | − 1)/𝛿) be such that

|𝑆 | > 𝑚4 max(28(1 + 𝜏)4/((𝜏 −
√
𝜏)𝛿)8, 1)

𝑚 ≥ 20⌈log2(𝑚max(4(1 + 𝜏)/((𝜏 −
√
𝜏)𝛿)2, 1))⌉ .

Then there exists a natural number

𝑡 ≥ log2 |𝑆 | − 4 log2

(
𝑚max

(
4(1 + 𝜏)

(𝜏 −
√
𝜏)2𝛿2

, 1
))
,

such that a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 have the property that 𝐿(𝑈𝑆)
is 𝜏2−𝑡-close to uniform in the ℓ∞ norm.

2.1 Some comments

Tightness of our results: It is natural to ask whether our results are tight. Fixing the param-
eter 𝛿 to be constant for the sake of simplicity, can we possibly improve on the entropy loss
stated in Theorem 2.4? The answer is a resounding No! Even for a truly random function, the
results of [23] show that we need an entropy loss of at least log2(log2 |𝑆 |/𝜏2) (up to a additive
constant) to achieve the conclusion of Theorem 2.4. Hence, up to a reasonably small constant
factor (of about 32), linear functions hash as well as random functions.

Prior results on linear hash functions: Properties of random linear hashes with respect to
the ℓ∞ norm have been studied in earlier works [6, 21, 2] with [2] being the state-of-the-art. The
results in this area are typically stated as upper bounds on the expected ’maximal bucket size’
(that is, the maximum size of 𝐿−1( 𝑦) over all 𝑦 ∈ F𝑡𝑞). We will see that earlier results only give
bounds for 𝜏 ≫ 1 (as far as we know, our paper is the first to give ℓ∞ guarantees for small 𝜏).

Theorem 5 of [2] is the most relevant to this work and shows that, when log2 |𝑆 |−𝑡 = log2(𝑡)
the expected maximal bucket size is 𝑂(𝑡 log2(𝑡)). A Markov argument shows then, that, with
probability at least 1 − 𝛿, the maximal bucket size is at most 𝑂(𝑡 log2(𝑡)/𝛿) which is a factor of
log2(𝑡)/𝛿 larger than the trivial bound of |𝑆 |/2𝑡 = 𝑡. Note that log2(𝑡)/𝛿 ≫ 1.

Theorem 2.4 for small 𝜏 shows that when log2 |𝑆 | − 𝑡 ≈ 𝑂(log2(log2( |𝑆 |2/𝛿) (𝜏𝛿)−2)), the
maximal bucket size will be at most a factor of 1 + 𝜏 larger than the trivial bound of |𝑆 |/2𝑡 with
probability 1 − 𝛿 over the choice of the linear function. Hence, the results of [2] deal with the
case of smaller entropy loss (log2(𝑡) ≈ log2(log2( |𝑆 |)) instead of 𝑂(log2(log2( |𝑆 |2/𝛿) (𝜏𝛿)−2)) )
but are a multiplicative factor of log2(𝑡)/𝛿 ≫ 1 away from uniform instead of 𝜏 + 1 which can
be made arbitrarily close to 1 (by reducing 𝜏 and increasing the entropy loss).

We can also make comparisons in the regime of large 𝜏. As stated earlier for 𝜏 = 1/𝛿2

Theorem 2.4 shows that the maximal bucket size will be at most a factor of 1 + 1/𝛿2 larger than
the trivial bound of |𝑆 |/2𝑡 with probability 1 − 𝛿 over the choice of the linear function. In this
setting for 𝛿 ≫ 1/log2(𝑡), we lose a constant factor in the entropy loss (log2 log2 |𝑆 | in [2] and
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𝑂(log2 log2 |𝑆 |) for our result) and gain in the bucket size bound (log2(𝑡)𝛿 times |𝑆 |/2𝑡 in [2]
and 1 + 1/𝛿2 times |𝑆 |/2𝑡 for our result). Although it should be noted that the results in [2] are
incomparable in the sense that they compute the expected value of the bucket size while our
results only give bounds on the bucket size with high probability.

Other families of universal hash functions: In this section we look at whether our results
can hold for other universal families of hash functions.

We first show that our results can not hold for all families of universal hash functions by
means of an example. The family we will consider is linear maps from F2

𝑞2 to F𝑞2 which do form
a universal family. We will show that that known results from [2] prove that this family needs
at least an entropy loss of Ω(log2 |𝑆 |) to get the distance guarantees of Theorem 2.4. This also
shows that we need high dimensionality to get good linear hash function over large fields.

Theorem 8 of [2] proves that for any finite field F𝑞2 where 𝑞 is a prime power if we consider
the set of linear maps from F2

𝑞2 to F𝑞2 then there exists a set 𝑆0 of size 𝑞2 such that for every
linear map the maximal bucket size is at least 𝑞.

This implies that for any 𝑆′0 of size 𝑞2+𝜂, 𝜂 < 1 which contains 𝑆0, every linear map 𝐿 :
F2
𝑞2 → F𝑞2 will have a maximal bucket size of at least 𝑞. In other words 𝐿(𝑈𝑆′0) will be at least

1/𝑞1+𝜂 ≫ 𝐶/𝑞2 away from uniform in ℓ∞ distance. Equivalently, even for an entropy loss of
𝜂 log2(𝑞) = Ω(log2 |𝑆′0 |) ≫ 𝑂(log2 log2 |𝑆 |), linear maps from 𝐿 : F2

𝑞2 → F𝑞2 do not guarantee that
the image 𝐿(𝑈𝑆′0) will be 𝐶/𝑞2 close to uniform for any fixed constant 𝐶. This also means that
we need at least an entropy loss of Ω(log2 |𝑆 |) to get the distance guarantees of Theorem 2.4.

Other families of universal hash function could still achieve the guarantees of Theorem 2.4.
In particular, for a prime 𝑝 consider the family of hash functions ℎ𝑎,𝑏 : {0, 1, . . . , 𝑝 − 1} →
{0, . . . , 𝑚 − 1} for 𝑎 ∈ {1, . . . , 𝑝 − 1}, 𝑏 ∈ {0, . . . , 𝑝 − 1} defined as ℎ𝑎,𝑏(𝑥) = (𝑎𝑥 + 𝑏 mod 𝑝)
mod 𝑚. From [6], we know that this family is universal. By following the framework in Section 3,
it can be checked that proving ℓ∞-guarantees for this family is a generalization of the notoriously
difficult Arithmetic Kakeya problem [17].

The case of high min-entropy: As was mentioned before, The LHL holds not just for ‘flat’
distributions of the form𝑈𝑆, but for any distribution with high min-entropy. This more general
version can be derived easily from the LHL for sets using a convex combination argument. As
far as we can tell, this argument fails in the case of ℓ∞ and so we cannot automatically derive
a min-entropy analog of our results. While we do believe that our proof techniques could be
made to handle this more general case (e.g., as is the case in [9]), we leave it for future work.
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3. Connection to prior work on Kakeya and Furstenberg sets

In this section we will explain the connection between Theorem 2.1 and the finite field Kakeya-
Furstenberg problem. Along the way we will introduce notations and definitions that will be
used later on in the proofs.

We will now describe an equivalent formulation of Theorem 2.1 in terms of the kernel
of the linear map 𝐿 : F𝑛𝑞 → F𝑡𝑞 appearing in the theorem. This will allow us to highlight its
connection to the finite field Kakeya problem. To do so, we introduce some notations. For
1 ≤ 𝑘 ≤ 𝑛 we denote by L𝑘 (F𝑛𝑞) the set of 𝑘-dimensional flats in F𝑛𝑞 and by L∗

𝑘
(F𝑛𝑞) the set of

𝑘-dimensional subspaces (flats passing through the origin). Let 𝑆 ⊂ F𝑛𝑞 be a set. For 𝑘 ∈ [𝑛], we
denote by

𝐸𝑘 (𝑆) = |𝑆 |/𝑞𝑛−𝑘

the expectation of |𝑅 ∩ 𝑆 | with 𝑅 chosen uniformly in L𝑘 (F𝑛𝑞). When 𝑆 is clear from the context
we omit it and simply write 𝐸𝑘.

DEF IN IT ION 3.1. We say that 𝑅 ∈ L𝑘 (F𝑛𝑞) is 𝜏-balanced with respect to a set 𝑆 ⊂ F𝑛𝑞 if we have:

| |𝑅 ∩ 𝑆 | − 𝐸𝑘 (𝑆) | ≤ 𝜏 · 𝐸𝑘 (𝑆).

Otherwise, we say that 𝑅 is 𝜏-unbalanced with respect to 𝑆.

DEF IN IT ION 3.2. We say that 𝐴 ∈ L∗
𝑘
(F𝑛𝑞) is 𝜏-shift-balanced with respect to 𝑆 if, for all 𝑎 ∈ F𝑛𝑞 ,

the flat 𝑅 = 𝐴 + 𝑎 is 𝜏-balanced with respect to 𝑆.

Notice that if 𝐴 ∈ L∗
𝑘
(F𝑛𝑞) is 𝜏-shift-balanced with respect to 𝑆 and 𝐴′ ∈ L∗

𝑘′ (F
𝑛
𝑞) contains 𝐴

(with 𝑘′ > 𝑘) then 𝐴′ is also 𝜏-shift-balanced with respect to 𝑆.
We will now express Theorem 2.1 using this new notation. Suppose 𝐿 : F𝑛𝑞 → F𝑡𝑞 is an onto

linear map and let 𝐴 = ker(𝐿) be its 𝑘 = 𝑛 − 𝑡 dimensional kernel. Notice that, for each 𝑦 ∈ F𝑡𝑞,

Pr[𝐿(𝑈𝑆) = 𝑦] = | (𝐴 + 𝑎) ∩ 𝑆 |
|𝑆 | ,

for some 𝑎 ∈ F𝑛𝑞 for which 𝐿(𝑎) = 𝑦. Therefore,

|Pr[𝐿(𝑈𝑆) = 𝑦] − 𝑞−𝑡 | ≤ 𝜏𝑞−𝑡,

if and only if 𝐴 + 𝑎 is 𝜏-balanced with respect to 𝑆. Hence, Theorem 2.1 is equivalent to the
following theorem.

THEOREM 3.3. Let 𝑛 ≥ 5 and let 𝑆 ⊂ F𝑛𝑞 be a set such that |𝑆 | > 𝑞4. Let 𝜏 > 0, 𝛿 ∈ (0, 1) be
a real number such that 𝑞 ≥ 32 max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛). Let 4 ≤ 𝑟 ≤ 𝑛 − 1 be an integer such
that 𝑞𝑟 < |𝑆 | ≤ 𝑞𝑟+1 and let 𝑘 = 𝑛 − 𝑟 + 3. Then a (1 − 𝛿)-fraction of all subspaces in L∗

𝑘
(F𝑛𝑞) are

𝜏-shift-balanced with respect to 𝑆.



10 / 30 M. Dhar and Z. Dvir

The above statement can also be read as saying that for a dimension 𝑘 such that 𝑞𝑘 |𝑆 | > 𝑞𝑛+3

then most 𝑘 dimensional subspaces are going to shift-balanced. We can improve this by requiring
a larger field size. While this statement is not going to help improve our hashing result, we
believe it could have other applications.

THEOREM 3.4. Let 𝑛 ≥ 5, 𝜂 ∈ (0, 1] and let 𝑆 ⊂ F𝑛𝑞 be a set such that |𝑆 | > 𝑞4. Then there
exists a constant 𝐶𝜂 > 0 depending only on 𝜂 such that for any 𝜏 > 0, 𝛿 ∈ (0, 1) satisfying
𝑞𝜂 ≥ 𝐶𝜂 max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛) and any integer 𝑘 satisfying 𝑞𝑘 |𝑆 | > 𝑞𝑛+2+𝜂 we have that a (1 − 𝛿)-
fraction of all subspaces in L∗

𝑘
(F𝑛𝑞) are 𝜏-shift-balanced with respect to 𝑆.

We see that 𝜂 can be made arbitrarily small, as long as the field is large enough.
We now take a moment to explain the expression ‘two-sided Kakeya bounds’ from the title

and the connection to prior work on Kakeya sets. A Kakeya set in F𝑛𝑞 is a set containing a line in
each direction. The main question, asked by Wolff in [26], is to lower bound the size of such sets.
This question has now been completely resolved in the series of papers [11, 12, 4]. We will be
mostly interested in the high dimensional variants of this problem, asking about sets containing
𝑘-dimensional flats in all directions, or more generally, sets that have large intersection with a
flat in each direction (these are called Furstenberg sets). These type of questions have been also
studied extensively, with tight bounds obtained in some cases [15, 20, 14, 10, 9].

We start by recalling some definitions from that domain.

DEF IN IT ION 3.5 (𝑚-rich flats). We call a flat 𝑅 ∈ L𝑘 (F𝑛𝑞) 𝑚-rich with respect to a set 𝑆 ⊂ F𝑛𝑞 if
|𝑅 ∩ 𝑆 | ≥ 𝑚.

DEF IN IT ION 3.6 ((𝑘, 𝑚, 𝛽)-Furstenberg sets). We call a set 𝐾 ⊂ F𝑛𝑞 a (𝑘, 𝑚, 𝛽)-Furstenberg
set if 𝐾 has an 𝑚-rich 𝑘-flat for at least a 𝛽 fraction of directions. That is, for at least a 𝛽-fraction
of all 𝐴 ∈ L∗

𝑘
(F𝑛𝑞) there exists 𝑎 ∈ F𝑛𝑞 so that 𝑎 + 𝐴 is 𝑚-rich with respect to 𝐾 .

(𝑘, 𝑞𝑘, 1)-Furstenberg sets are also called Kakeya sets. Prior works on Kakeya/Furstenberg
sets were focused on giving lower bounds on the size of (𝑘, 𝑚, 1)-Furstenberg sets. For example,
in [9], it was shown that, if 𝑆 is a (𝑘, 𝑚, 1)-Furstenberg set then |𝑆 | > (1 − 𝜖)𝑚𝑞𝑛−𝑘, assuming 𝑞
is sufficiently large as a function of 𝑛 and 𝜖 (in particular, 𝑞 has to be exponential in 𝑛). Notice
that this is the best possible since any set of size 𝑚𝑞𝑛−𝑘 is (𝑘, 𝑚, 1)-Furstenberg. Stated in the
counter-positive direction, this theorem shows that: If

|𝑆 | ≤ (1 − 𝜖)𝑚𝑞𝑛−𝑘 (3)

then there exists a 𝑘-dimensional subspace 𝑅 such that all shifts of 𝑅 have less than 𝑚-points in
common with 𝑆. Notice that (3) gives us that

𝐸𝑘 (𝑆) ≤ (1 − 𝜖)𝑚.
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So, what we discover is that, the results in [9] simply say that, for every 𝑆, there is a subspace 𝑅
such that all shifts of 𝑅 have intersection with 𝑆 that is not much larger from the expectation 𝐸𝑘.
Hence, Theorem 3.3 can be viewed as a two-sided generalization of this statement by showing
that, in fact, there exists 𝑅 such that all shifts of 𝑅 have roughly the expected intersection with 𝑆.

4. Proof Overview

We now give a short sketch of the proof of Theorem 2.1. The proof of Theorem 2.5 (the case of
𝜏 > 1) is essentially the same as the proof of Theorem 2.1 with a different setting of a single
parameter and so we will not discuss it here. We will also not discuss the two theorems dealing
with the case of F2 as they will follow from the large field case by a simple encoding argument.

As discussed in Section 3, Theorem 2.1 is equivalent to Theorem 3.3 which is stated in
the language of shift-balanced sub-spaces. Given a set 𝑆 ⊂ F𝑛𝑞, the theorem claims that there
are many sub-spaces 𝐴 ∈ L∗

𝑘
(F𝑛𝑞) that are 𝜏-shift-balanced. Let us instead try and prove the

easier claim that there exists at least one such subspace. We will prove this by contradiction.
Suppose there are no 𝜏-shift balanced sub-spaces 𝐴. Then, for each 𝐴 ∈ L∗

𝑘
(F𝑛𝑞) we can find a

shift 𝑓 (𝐴) ∈ F𝑛𝑞 so that the flat 𝑇𝐴 = 𝑓 (𝐴) + 𝐴 is 𝜏-unbalanced.
At a very high level, the contradiction will follow by combining the following three state-

ments:
(Concentration Statement) A random 𝑘 − 2 flat is 𝜏/2-balanced with high probability.
(Anti concentration statement) If 𝑇 is a 𝜏-unbalanced 𝑘-flat and 𝑅 is a randomly chosen
(𝑘 − 2)-flat in 𝑇 then 𝑅 is 𝜏/2-unbalanced with high probability.
(Kakeya statement) Given a collection of 𝑘-flats, 𝑇𝐴, one in each direction 𝐴 ∈ L∗

𝑘
(F𝑛𝑞).

A randomly chosen (𝑘 − 2)-flat in a randomly chosen 𝑇𝐴 ‘behaves like’ a truly random
(𝑘 − 2)-flat.

Before we discuss the proofs of these statements, let us see how they can be combined
to derive a contradiction. Consider the distribution on (𝑘 − 2)-flats obtained by sampling
𝐴 ∈ L∗

𝑘
(F𝑛𝑞) uniformly at random and then choosing a random (𝑘 − 2)-flat 𝑅 inside 𝑓 (𝐴) + 𝐴,

where 𝑓 (𝐴) is defined above so that 𝑓 (𝐴) + 𝐴 is 𝜏-unbalanced. By the anti-concentration
statement, this distribution outputs a 𝜏/2-unbalanced 𝑅 with high probability. Now, from the
Kakeya statement we get that this should (in some way) also be the behaviour of a truly random
(𝑘 − 2)-flat, contradicting the concentration statement. This is essentially the structure of the
proof, with the ‘behaves like’ portion of the Kakeya statement replaced by a quantitative bound
on the probability of landing in a given small set (the set of unbalanced (𝑘 − 2) flats).

Let us now discuss the proofs of the three statements. The first two (concentration and
anti-concentration), follow easily from Chebyshev’s inequality and pair-wise independence and
so we will only be concerned with the proof of the third one. We can generalize the Kekeya
statement as follows, given a collection of 𝑘-flats 𝑇𝐴, one in each direction 𝐴, what can be said
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about the distribution of a random 𝑟-flat 𝑅 in a random 𝑇𝐴 where we allow 𝑟 to be in the range
{0, 1, . . . , 𝑘}. To recover the original (one dimensional) Kakeya problem all we have to do is
set 𝑘 = 1 and 𝑟 = 0. Now, we are asking about the distribution of a random point 𝑅 on a
line 𝑇𝐴 chosen so that its direction is uniformly random and its shift is arbitrary. The finite field
Kakeya conjecture (proved in [11]) says that the distribution of 𝑅 has large support. In [13, 12],
motivated by applications to extractors, it was shown that, in fact, the distribution of 𝑅 has high
min-entropy. These results can be easily ‘lifted up’ to the case where 𝑘 > 1 and 𝑟 = 𝑘 − 1 but,
alas, the known (and tight) quantitative bounds on the min entropy are not sufficient for our
purposes. Specifically, it is possible for the distribution of 𝑅 in this case to be contained in a set
of density 2−𝑛 inside F𝑛𝑞, which is much too small for our purposes. This motivates us to take
𝑟 = 𝑘 − 2, which reduces to understanding the case of 𝑘 = 2 and 𝑟 = 0. That is, given a family of
2-flats 𝑇𝐴, one in each direction, what can be said about the behaviour of a random point 𝑅 on a
random 𝑇𝐴? Luckily, in this case, the results of [20, 9] can be used to show that the distribution
of 𝑅 has support with density approaching one.

To prove our theorem we need to extend the results of [20, 9] in several ways, including
going from support size to min entropy, reducing the field size from exponential to polynomial
and handling the case of ‘many’ directions instead of ‘all’ (which corresponds to the parameter 𝛿
being less than one). The required lemma is stated below and proved in Section 6.

LEMMA 4.1 (Furstenberg lemma). For any 𝛾, 𝛽 ∈ [0, 1], 𝑛 ∈ N, 𝑞 a prime power every (2, 𝛾𝑞2, 𝛽)-
Furstenberg set 𝐾 ⊆ F𝑛𝑞 has size at least,

|𝐾 | ≥ 𝛽𝛾𝑛𝑞𝑛
(
1 + 1

𝑞

)−𝑛
.

We note that this lemma has been proven in [22] with a slightly worse lower bound of
𝛽𝛾𝑛𝑞𝑛

(
1 + 2

𝑞

)−𝑛
. This is enough to prove Theorem 2.1 leading to slightly worse constants in

the field size requirement and hence the entropy loss of the theorem. The proof in [22] uses a
combinatorial reduction to reduce the case of arbitrary 𝛽 to constant 𝛽. We give a new argument
to prove this lemma directly.

Our proof of this lemma follows along the lines of prior works in this area and uses the
polynomial method. One important ingredient is a new variant of the celebrated Schwartz-
Zippel lemma which allows us to improve the dependence on 𝛽 above from 𝛽𝑛 to just 𝛽 (See
Corollary 6.12). We believe this lemma could have applications in other situations where the
polynomial method is used. For instance in a later work [7] extensions of these arguments are
used to prove maximal Kakeya bounds in the general setting of the integers modulo a composite
number.
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5. Proof of Theorems 2.1 and 2.5

We prove Theorems 2.1 and 2.5 by contradiction. We will prove the equivalent versions of the
theorems stated using 𝜏-shift-balanced subspaces (Theorem 3.3 and similarly for Theorem 2.5
even though it was not stated separately). The proof of Theorem 3.4 is nearly identical, we give
the modifications at the end of this section.

PROOF . Suppose the Theorems are not true. Then there exists a function with parameters as
in the Theorems:

𝑓 : L∗
𝑘 (F

𝑛
𝑞) → F𝑛𝑞

such that, for a 𝛿 fraction of 𝐴 ∈ L∗
𝑘
(F𝑛𝑞), the flat 𝑓 (𝐴) + 𝐴 is 𝜏-unbalanced with respect to 𝑆.

Notice that 𝑓 (𝐴) can be taken to be any point on the flat 𝑓 (𝐴) + 𝐴 (the choice doesn’t matter for
this proof).

For a real number 𝜎 > 0, let
𝐵𝜎𝑘−2 ⊂ L𝑘−2(F𝑛𝑞)

denote the set of (𝑘 − 2)-flats that are 𝜎-unbalanced with respect to 𝑆. We will eventually set
𝜎 to one of two values: To prove Theorem 2.1 we will set 𝜎 = 𝜏/2 and, to prove Theorem 2.5
(when 𝜏 > 1) we will set 𝜎 =

√
𝜏. Notice that, in both cases, we have 𝜏 − 𝜎 > 0.

For a 𝑘-flat 𝑇 ∈ L𝑘 (F𝑛𝑞) we let L𝑘−2(𝑇 ) be the set of (𝑘 − 2)-flats contained in 𝑇 and let

𝐵𝜎𝑘−2(𝑇 ) = 𝐵
𝜎
𝑘−2 ∩ L𝑘−2(𝑇 )

denote the set of 𝜎-unbalanced (𝑘 − 2)-flats with respect to 𝑆 that are contained in 𝑇 .
Notice first that, by our assumption on 𝑟, we have

4 ≤ 𝑘 ≤ 𝑛 − 1 (4)

Throughout, we use V(𝑋) to refer to the variance of a random variable 𝑋 .
Our first claim shows that a random (𝑘 − 2) flat is balanced with high probability This

gives the ‘concentration’ part of the argument laid out in the proof overview.

CLAIM 5.1. If 𝑅 is chosen uniformly in L𝑘−2(F𝑛𝑞) then

Pr[𝑅 ∈ 𝐵𝜎𝑘−2] ≤
1
𝜎2𝑞

.

PROOF . Since 𝑘 ≥ 3 we can use pairwise independence and Chebyshev. The probability that
|𝑅 ∩ 𝑆 | deviates from its expectation 𝐸𝑘−2 by at least 𝜎𝐸𝑘−2 is at most

V( |𝑅 ∩ 𝑆 |)
(𝜎𝐸𝑘−2)2 ≤ 1

𝜎2𝐸𝑘−2
≤ 1
𝜎2𝑞

,

where we use the fact that 𝐸𝑘−2 = |𝑆 |/𝑞𝑛−𝑘+2 ≥ 𝑞 for 𝑘 = 𝑛 − 𝑟 + 3. ■
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The next claim gives the ‘anti concentration’ part of the proof overview, showing that a
random (𝑘 − 2)-flat in an unbalanced 𝑘-flat is unbalanced with high probability

CLAIM 5.2. Let 𝑇 ∈ L𝑘 (F𝑛𝑞) be 𝜏-unbalanced with respect to 𝑆. Suppose 𝑅 is chosen uniformly at
random from L𝑘−2(𝑇 ). Then

Pr[𝑅 ∈ 𝐵𝜎𝑘−2(𝑇 )] ≥ 1 − 1 + 𝜏
(𝜏 − 𝜎)2𝑞

.

PROOF . As before, the size of 𝑅 ∩ 𝑆 is a sum of pairwise independent indicator variables with
expectation:

E[|𝑅 ∩ 𝑆 |] = |𝑆 ∩ 𝑇 |
|𝑇 | 𝑞𝑘−2 = |𝑆 ∩ 𝑇 |/𝑞2. (5)

Since 𝑇 is 𝜏-unbalanced, we have that

| |𝑆 ∩ 𝑇 | − 𝐸𝑘 | ≥ 𝜏𝐸𝑘 . (6)

Therefore, dividing by 𝑞2 and using (5) we have that

|E[|𝑅 ∩ 𝑆 |] − 𝐸𝑘−2 | ≥ 𝜏𝐸𝑘−2. (7)

We will separate into two cases: case 1 is when

E[|𝑅 ∩ 𝑆 |] ≤ (1 − 𝜏)𝐸𝑘−2. (8)

In this case (which can only happen if 𝜏 < 1), using Chebyshev, the probability that 𝑅 is
𝜎-balanced is bounded from above by,

Pr[|𝑅 ∩ 𝑆 | − 𝐸𝑘−2 ≥ −𝜎𝐸𝑘−2] ≤
Pr[|𝑅 ∩ 𝑆 | − E[|𝑅 ∩ 𝑆 |] ≥ (𝜏 − 𝜎)𝐸𝑘−2] ≤

V( |𝑅 ∩ 𝑆 |)
(𝜏 − 𝜎)2𝐸2

𝑘−2
≤ E( |𝑅 ∩ 𝑆 |)

(𝜏 − 𝜎)2𝐸2
𝑘−2

≤ 1 − 𝜏
(𝜏 − 𝜎)2𝑞

.

In the second case we have,

E[|𝑅 ∩ 𝑆 |] ≥ (1 + 𝜏)𝐸𝑘−2.

In this case the probability that 𝑅 is 𝜎-balanced is bounded above by,

Pr[|𝑅 ∩ 𝑆 | − 𝐸𝑘−2 ≤ 𝜎𝐸𝑘−2] ≤
Pr [| |𝑅 ∩ 𝑆 | − E[|𝑅 ∩ 𝑆 |] | ≥ E[|𝑅 ∩ 𝑆 |] − (1 + 𝜎)𝐸𝑘−2] ≤

Pr
[
| |𝑅 ∩ 𝑆 | − E[|𝑅 ∩ 𝑆 |] | ≥ E[|𝑅 ∩ 𝑆 |] · 𝜏 − 𝜎

1 + 𝜏

]
≤

V( |𝑅 ∩ 𝑆 |)
(𝜏 − 𝜎)2/(1 + 𝜏)2E[|𝑅 ∩ 𝑆 |]2 ≤ (1 + 𝜏)2

(𝜏 − 𝜎)2E[|𝑅 ∩ 𝑆 |] ≤ 1 + 𝜏
(𝜏 − 𝜎)2𝐸𝑘−2

≤ 1 + 𝜏
(𝜏 − 𝜎)2𝑞

.

Hence, the probability that 𝑅 is 𝜎 balanced is bounded by (1 + 𝜏)/((𝜏 − 𝜎)2𝑞) and so we are
done. ■



15 / 30 Linear Hashing with ℓ∞ guarantees and two-sided Kakeya bounds

We next define three important sets:
(L∗

𝑘−2(𝑇 )) : For 𝑇 ∈ L𝑘 (F𝑛𝑞), we define L∗
𝑘−2(𝑇 ) to be the set of subspaces in L∗

𝑘−2(F
𝑛
𝑞)

which on translation can lie in 𝑇 (or equivalently are parallel to 𝑇 ).
(L𝑘−2(𝑇, ∥𝑊)) : For 𝑇 ∈ L𝑘 (F𝑛𝑞) and𝑊 ∈ L∗

𝑘−2(𝑇 ) we let L𝑘−2(𝑇, ∥𝑊) be the set of (𝑘 − 2)
flats in 𝑇 which are parallel to𝑊 (notice that there are exactly 𝑞2 such flats and that their
disjoint union is 𝑇 ).
(𝐶𝜎,𝑐
𝑘−2(𝑇 )) : For 𝑇 ∈ L𝑘 (F𝑛𝑞) we let 𝐶𝜎,𝑐

𝑘−2(𝑇 ) be the set of flats𝑊 in L∗
𝑘−2(𝑇 ) such that at least

a
(
1 − 𝑐(1+𝜏)

(𝜏−𝜎)2𝑞

)
-fraction of the flats in L𝑘−2(𝑇, ∥𝑊) are in 𝐵𝜎

𝑘−2(𝑇 ) (we will set 𝑐 ≥ 1 to two
different values for Theorem 2.1 and Theorem 2.5).

The previous lemma can now be used to prove that, if 𝑇 is unbalanced, then many𝑊 ’s are
in fact in the set 𝐶𝜎,𝑐

𝑘−2(𝑇 ) defined above (this is essentially a Markov style averaging argument).

CLAIM 5.3. Let 𝑇 ∈ L𝑘 (F𝑛𝑞) be 𝜏-unbalanced with respect to 𝑆. Suppose𝑊 is chosen uniformly
at random from L∗

𝑘−2(𝑇 ). Then

Pr[𝑊 ∈ 𝐶𝜎,𝑐
𝑘−2(𝑇 )] ≥ 1 − 1/𝑐.

PROOF . Let us say the claim is false then with probability less than 1 − 1/𝑐,𝑊 ∈ 𝐶𝜎,𝑐
𝑘−2(𝑇 ) for a

uniformly random𝑊 ∈ L∗
𝑘−2(𝑇 ). Equivalently, with probability greater than 1/𝑐,𝑊 ∉ 𝐶𝜎,𝑐

𝑘−2(𝑇 ).
We can sample a uniformly random chosen𝑅 ∈ L𝑘−2(𝑇 ) by first picking a direction𝑊 ∈ L∗

𝑘−2(𝑇 )
at random and then taking 𝑅 to be a random shift of𝑊 inside 𝑇 . The above assumption will
then give us that:

Pr[𝑅 ∈ 𝐵𝜎𝑘−2(𝑇 )] ≤ Pr[𝑊 ∉ 𝐶𝜎,𝑐
𝑘−2(𝑇 )]

(
1 − 𝑐(1 + 𝜏)

(𝜏 − 𝜎)2𝑞

)
+ Pr[𝑊 ∈ 𝐶𝜎,𝑐

𝑘−2(𝑇 )]

≤ 1 − Pr[𝑊 ∉ 𝐶𝜎,𝑐
𝑘−2(𝑇 )]

𝑐(1 + 𝜏)
(𝜏 − 𝜎)2𝑞

< 1 − 1 + 𝜏
(𝜏 − 𝜎)2𝑞

.

This contradicts Claim 5.2. ■

Given𝑊 ∈ L∗
𝑘−2(F

𝑛
𝑞), let L𝑘−2(∥𝑊) be the set of 𝑘 − 2 flats parallel to𝑊 and L∗

𝑘
(∥𝑊) be

the set of 𝑘-dimensional subspaces containing𝑊 . Let

𝐵𝜎𝑘−2(∥𝑊) = 𝐵𝜎𝑘−2 ∩ L𝑘−2(∥𝑊)

denote the set of 𝜎-unbalanced flats parallel to𝑊 .
The next claim shows that there is a ‘good’ choice of𝑊 ∈ L∗

𝑘−2(F
𝑛
𝑞) to which we should

restrict our attention (that is, we will consider only 𝑘 − 2 flats parallel to𝑊).4 This𝑊 should
preserve the typical behavior of a random𝑊 in two respects: one is that 𝐵𝜎

𝑘−2 should still have
low density when restricted to flats parallel to𝑊 . The other is that𝑊 hits 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴) for
many 𝐴 ∈ L∗

𝑘
(∥𝑊).

4 This part of the proof corresponds to the statement in the proof overview arguing that the case of general 𝑘 and 𝑟 can
be reduced to the case of 𝑟 = 0 and 𝑘 ↦→ 𝑘 − 𝑟.
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CLAIM 5.4. There exists𝑊 ∈ L∗
𝑘−2(F

𝑛
𝑞) such that

1. |𝐵𝜎
𝑘−2(∥𝑊) | ≤ 1

𝜎2𝑞(1−
√

1−𝛿(1−1/𝑐))
· |L𝑘−2(∥𝑊) | ≤ 2𝑐

(𝑐−1)𝜎2𝛿
𝑞𝑛−𝑘+1

2. Pr𝐴∼L∗
𝑘
(∥𝑊) [𝑊 ∈ 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴)] ≥ 1 −
√︁

1 − 𝛿(1 − 1/𝑐) ≥ (𝑐−1)𝛿
𝑐+𝑐

√
1−𝛿/2

≥ 𝛿(𝑐−1)
2𝑐 .

PROOF . Let 𝛼 = 1 −
√︁

1 − 𝛿(1 − 1/𝑐). Notice, that 𝐵𝜎
𝑘−2 is a disjoint union of 𝐵𝜎

𝑘−2(∥ 𝑊) over
all𝑊 ∈ L∗

𝑘−2(F
𝑛
𝑞). Suppose𝑊 is chosen uniformly at random from L∗

𝑘−2(F
𝑛
𝑞) and let 𝐸1 be the

event
|𝐵𝜎𝑘−2(∥𝑊) | > 1

𝜎2𝑞𝛼
· |L𝑘−2(∥𝑊) |.

In other words 𝐸1 is the event when𝑊 does not satisfy 1. above. We then have,

1
𝜎2𝑞𝛼

Pr𝑊∼L∗
𝑘−2(F

𝑛
𝑞) [𝐸1] ≤ Pr[𝑅 ∈ 𝐵𝜎𝑘−2] .

Then, by Claim 5.1, we have that the probability that𝑊 does not satisfy 1. above is less
than 𝛼 = 1 −

√︁
1 − 𝛿(1 − 1/𝑐).

Consider the bi-partite graph𝐺 between L∗
𝑘
(F𝑛𝑞) and L∗

𝑘−2(F
𝑛
𝑞) where the edges correspond

to pairs (𝐴,𝑊) ∈ L∗
𝑘
(F𝑛𝑞) × L∗

𝑘−2(F
𝑛
𝑞) such that𝑊 ⊂ 𝐴. Let 𝜇 be the distribution over the pairs

(𝐴,𝑊) ∈ L∗
𝑘
(F𝑛𝑞) × L∗

𝑘−2(F
𝑛
𝑞) which is uniform over the edges of 𝐺. As the graph 𝐺 is regular on

both sides sampling from 𝜇 is equivalent to sampling 𝐴 uniformly from L∗
𝑘
(F𝑛𝑞) and𝑊 uniformly

from L∗
𝑘−2(𝐴). It also is equivalent to uniformly sampling𝑊 ∈ L∗

𝑘−2(F
𝑛
𝑞) and sampling 𝐴 from

L∗
𝑘
(∥ 𝑊). By Claim 5.3 and the fact that at least for a 𝛿 fraction of 𝐴 ∈ L∗

𝑘
(F𝑛𝑞), 𝑓 (𝐴) + 𝐴 is

𝜏-unbalanced we have,

Pr(𝐴,𝑊)∼𝜇 [𝑊 ∈ 𝐶𝜎,𝑐
𝑘−2( 𝑓 (𝐴) + 𝐴)] ≥ 𝛿(1 − 1/𝑐). (9)

Let 𝐸2 be the event

Pr𝐴∼L∗
𝑘
(∥𝑊) [𝑊 ∉ 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴)] >
√︁

1 − 𝛿(1 − 1/𝑐)

for a random𝑊 (that is 2. above is not satisfied). We have,

Pr𝑊∼L∗
𝑘−2(F

𝑛
𝑞) [𝐸1] (1 − 𝛼) ≤ Pr(𝐴,𝑊)∼𝜇 [𝑊 ∉ 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴)] .

Using (9), we get that the probability that𝑊 does not satisfy 2. above is at most
√︁

1 − 𝛿(1 − 1/𝑐).
By a union bound we now see that there exists a𝑊 ∈ L∗

𝑘−2(F
𝑛
𝑞) which satisfies the two properties

in the claim. ■

Fix𝑊 = �̂� satisfying the two numbered items of Claim 5.4. Let𝐺�̂� be the random variable
which outputs the random 2-flat

𝑓 (span{𝑈,�̂�}) +𝑈

for uniformly random𝑈 ∈ L∗
2(F𝑛𝑞). Notice that there is a small probability that span{𝑈,�̂�} is

not 𝑘 dimensional. In this case we set 𝑓 (span{𝑈,�̂�}) = 0.
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We will now show that 𝐺�̂� has large intersections with a small set with high probability.
The particular structure of the random variable 𝐺�̂� allows us to state this using the notion of a
Furstenberg set.

CLAIM 5.5. There exists a set 𝐾 ⊂ F𝑛𝑞 such that
1. |𝐾 | ≤ 2𝑐

(𝑐−1)𝜎2𝛿
𝑞𝑛−1.

2. 𝐾 is
(
2,
(
1 − 𝑐(1+𝜏)

(𝜏−𝜎)2𝑞

)
𝑞2, 𝛿 𝑐−1

2𝑐 (1 − 1/𝑞 − 1/𝑞2)
)
-Furstenberg.

PROOF . We take
𝐾 =

⋃
𝑅∈𝐵𝜎

𝑘−2(∥�̂�)

𝑅,

to be the union of all 𝜎-unbalanced (𝑘 − 2)-flats parallel to �̂� . To show that 1. holds, we use the
first item of Claim 5.4 and the fact that each 𝑅 has 𝑞𝑘−2 points.

For a uniformly random𝑈 ∈ L∗
2(F𝑛𝑞), 𝐹 = 𝑓 (span(𝑈,�̂�)) +𝑈 gives us a sample from 𝐺�̂� .

Let 𝑇 = 𝑓 (span(𝑈,�̂�)) + span(𝑈,�̂�). If �̂� ∈ 𝐶𝜎,𝑐
𝑘−2(𝑇 ) then that means at least(

1 − 𝑐(1 + 𝜏)
(𝜏 − 𝜎)2𝑞

)
𝑞2

many flats in L𝑘−2(𝑇, ∥ �̂�) are in 𝐵𝜎
𝑘−2(𝑇 ) and hence contained in 𝐾 . 𝐹 will intersect with each

of these flats (and hence 𝐾) in distinct points. This is because 𝑇 is a 𝑓 (span(𝑈,�̂�))-shift of
the span of 𝑈 and �̂� and 𝑈 ∩ �̂� = {0} so 𝑇 is a disjoint union of shifts of �̂� by elements in
𝐹 = 𝑓 (span(𝑈,�̂�)) +𝑈 . This implies that 𝐹 is (1 − 𝑐(1 + 𝜏)/(𝜏 − 𝜎)2𝑞)𝑞2-rich with respect to 𝐾 .
Finally, note that conditioned on the event that span(𝑈,�̂�) is 𝑘-dimensional 𝑇 has the same
distribution as 𝑓 (𝐴) + 𝐴 where 𝐴 is uniformly distributed over L∗

𝑘
(∥ �̂�). This means

Pr
[
𝐺�̂� is

(
1 − 𝑐(1 + 𝜏)

(𝜏 − 𝜎)2𝑞

)
𝑞2-rich with respect to 𝐾

]
≥

Pr𝐴∼L∗
𝑘
(∥�̂�)

[
�̂� ∈ 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴)
]
· Pr𝑈∈L∗

2 (F
𝑛
𝑞)
[
dim span{𝑈,�̂�} = 𝑘

]
.

We note Pr𝑈∈L∗
2 (F

𝑛
𝑞) [dim span{𝑈,�̂�} = 𝑘] is at least 1 − 1/𝑞 − 1/𝑞2. If we generate 𝑈 by

picking two random vectors then the first one being in �̂� has probability at most 1/𝑞𝑛−𝑘+2 ≤
1/𝑞2 and the second being in the space spanned by the first and �̂� has probability at most
1/𝑞𝑛−𝑘+1 ≤ 1/𝑞. Now using Claim 5.3 and the equation above we have,

Pr
[
𝐺�̂� is

(
1 − 𝑐(1 + 𝜏)

(𝜏 − 𝜎)2𝑞

)
𝑞2-rich

]
≥ (𝑐 − 1)𝛿

2𝑐

(
1 − 1

𝑞
− 1
𝑞2

)
.

The above equation implies 2. as 𝐺�̂� by definition takes a uniformly chosen𝑈 ∈ L∗
2(F𝑛𝑞)

and outputs a flat parallel to𝑈 . ■

To finish the proof of the theorem we need a bound for (2, 𝛾𝑞2, 𝛽)-Furstenberg Sets. We will
use Lemma 4.1 which we prove in the next section. We restate the Lemma here for convenience.
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LEMMA 4.1 (Furstenberg lemma). (Restated) For any 𝛾, 𝛽 ∈ [0, 1], 𝑛 ∈ N, 𝑞 a prime power
every (2, 𝛾𝑞2, 𝛽)-Furstenberg set 𝐾 ⊆ F𝑛𝑞 has size at least,

|𝐾 | ≥ 𝛽𝛾𝑛𝑞𝑛
(
1 + 1

𝑞

)−𝑛
.

Given this lemma, we substitute the values

𝛾 =

(
1 − 𝑐(1 + 𝜏)

(𝜏 − 𝜎)2𝑞

)
, 𝛽 =

𝛿(𝑐 − 1)
2𝑐

(
1 − 1

𝑞
− 1
𝑞2

)
and the bound on |𝐾 | given by Claim 5.5 into the lemma above. We get the bound,

2𝑐
(𝑐 − 1)𝜎2𝛿

𝑞𝑛−1 ≥ |𝐾 | ≥ 𝑞𝑛
(
1 − 𝑐(1 + 𝜏)

(𝜏 − 𝜎)2𝑞

)𝑛 (
1 + 1

𝑞

)−𝑛
𝛿(𝑐 − 1)

2𝑐

(
1 − 1

𝑞
− 1
𝑞2

)
. (10)

To prove Theorem 2.1 use 𝑞 ≥ 32 max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛), 𝑐 = 4, 𝜎 = 𝜏/2 and 𝛿 ≤ 1 in (10)
and re-arrange to get:

8
9𝑛

≥
(
1 − 1

2𝑛

)𝑛 (
1 + 1

32𝑛

)−𝑛 (
1 − 1

32𝑛
− 1

322𝑛2

)
.

Using (1 − 𝑥/𝑛)𝑛 ≥ 𝑒−𝑥 (1 − 𝑥2/𝑛) for 𝑥 < 𝑛, (1 + 𝑥/𝑛)𝑛 ≤ 𝑒𝑥 and 𝑛 ≥ 5 then implies:

8
45

> 𝑒−1/5(1 − 1/20)𝑒−1/32(1 − 1/160 − 1/(160)2)

which leads to a contradiction proving Theorem 2.1.
To prove Theorem 2.5 use 𝑞 ≥ max(𝑛(1+𝜏)/(𝜏−

√
𝜏)2𝛿2, 𝑛),𝜎 =

√
𝜏, 𝛿 ≤ 1/10 and set 𝑐 = 10

in (10) to get:
400
81𝑛

≥ 400(𝜏 −
√
𝜏)2

81𝜏(𝜏 + 1)𝑛 ≥
(
1 − 1

10𝑛

)𝑛 (
1 + 1

𝑛

)−𝑛 (
1 − 1

𝑛
− 1
𝑛2

)
.

Using (1 − 𝑥/𝑛)𝑛 ≥ 𝑒−𝑥 (1 − 𝑥2/𝑛) for 𝑥 < 𝑛, (1 + 𝑥/𝑛)𝑛 ≤ 𝑒𝑥 and 𝑛 ≥ 20 gives us:

400
81 · 20

> 𝑒−1/10(1 − 1/(100 · 20))𝑒−1(1 − /20 − 1/400)

which leads to a contradiction proving Theorem 2.5. ■

Modifications to prove Theorem 3.4: In the setting of Theorem 3.4 we have 𝐸𝑘−2 = |𝑆 |/𝑞𝑘−2 ≥
𝑞𝜂. We see the statements of the various claim can be appropriately modified to prove Theo-
rem 3.4. We state the appropriate modification of the main claims proven assuming Theorem 3.4
is false. That is there exists a function 𝑓 : L∗

𝑘
(F𝑛𝑞) → F𝑛𝑞 (with parameters as in Theorem 3.4)

such that for a 𝛿 fraction of 𝐴 ∈ L∗
𝑘
(F𝑛𝑞), the flat 𝑓 (𝐴) + 𝐴 is 𝜏 unbalanced with respect to 𝑆. We

do not give the proofs as the arguments are identical.

CLAIM 5.6. If 𝑅 is chosen uniformly in L𝑘−2(F𝑛𝑞) then

Pr[𝑅 ∈ 𝐵𝜎𝑘−2] ≤
1

𝜎2𝑞𝜂
.
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CLAIM 5.7. Let 𝑇 ∈ L𝑘 (F𝑛𝑞) be 𝜏-unbalanced with respect to 𝑆. Suppose 𝑅 is chosen uniformly at
random from L𝑘−2(𝑇 ). Then

Pr[𝑅 ∈ 𝐵𝜎𝑘−2(𝑇 )] ≥ 1 − 1 + 𝜏
(𝜏 − 𝜎)2𝑞𝜂

.

In this proof we redefine 𝐶𝜎,𝑐
𝑘−2(𝑇 ) as follows: For 𝑇 ∈ L𝑘 (F𝑛𝑞) we let 𝐶𝜎,𝑐

𝑘−2(𝑇 ) be the set of

flats𝑊 in L∗
𝑘−2(𝑇 ) such that at least a

(
1 − 𝑐(1+𝜏)

(𝜏−𝜎)2𝑞𝜂

)
-fraction of the flats in L𝑘−2(𝑇, ∥𝑊) are in

𝐵𝜎
𝑘−2(𝑇 ).

CLAIM 5.8. Let 𝑇 ∈ L𝑘 (F𝑛𝑞) be 𝜏-unbalanced with respect to 𝑆. Suppose𝑊 is chosen uniformly
at random from L∗

𝑘−2(𝑇 ). Then

Pr[𝑊 ∈ 𝐶𝜎,𝑐
𝑘−2(𝑇 )] ≥ 1 − 1/𝑐.

CLAIM 5.9. There exists𝑊 ∈ L∗
𝑘−2(F

𝑛
𝑞) such that

1. |𝐵𝜎
𝑘−2(∥𝑊) | ≤ 1

𝜎2𝑞𝜂 (1−
√

1−𝛿(1−1/𝑐))
· |L𝑘−2(∥𝑊) | ≤ 2𝑐

(𝑐−1)𝜎2𝛿
𝑞𝑛−𝑘+2−𝜂

2. Pr𝐴∼L∗
𝑘
(∥𝑊) [𝑊 ∈ 𝐶𝜎,𝑐

𝑘−2( 𝑓 (𝐴) + 𝐴)] ≥ 1 −
√︁

1 − 𝛿(1 − 1/𝑐) ≥ (𝑐−1)𝛿
𝑐+𝑐

√
1−𝛿/2

≥ 𝛿(𝑐−1)
2𝑐 .

Using the previous claims we can prove the next claim that will contradict Lemma 4.1
completing the proof.

CLAIM 5.10 (Furstenberg Set construction from assuming Theorem 3.4 is false). There exists
a set 𝐾 ⊂ F𝑛𝑞 such that

1. |𝐾 | ≤ 2𝑐
(𝑐−1)𝜎2𝛿

𝑞𝑛−𝜂.

2. 𝐾 is
(
2,
(
1 − 𝑐(1+𝜏)

(𝜏−𝜎)2𝑞𝜂

)
𝑞2, 𝛿 𝑐−1

2𝑐 (1 − 1/𝑞 − 1/𝑞2)
)
-Furstenberg.

5.1 The case of F2

In this section we prove Theorem 2.2 using Theorem 2.1. The same argument can be used to
derive Theorem 2.6 from Theorem 2.5. We restate the theorem for convenience.

THEOREM 2.2. (Restated) Let 𝑆 ⊂ F𝑛2 be such that |𝑆 | > 220 max(𝑛4(1 + 𝜏)4/(𝜏𝛿)8, 𝑛4) and let
𝑛, 𝜏, 𝛿 satisfy 𝑛 ≥ 5⌈log2(max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛))⌉ + 25. Then there exists a natural number

𝑡 ≥ log2 |𝑆 | − 4 log2

(
max

(
𝑛(1 + 𝜏)
(𝜏𝛿)2 , 𝑛

))
− 20,

such that a (1 − 𝛿)-fraction of all surjective linear maps 𝐿 : F𝑛2 → F𝑡2 are such that 𝐿(𝑈𝑆) is
𝜏2−𝑡-close to uniform in the ℓ∞ norm.

PROOF . Take
ℓ = ⌈log2(32 max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛))⌉ .
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and set
𝑞 = 2ℓ.

Let
𝑛′ = ⌈𝑛/ℓ⌉

so that we have
2𝑛 ≤ 𝑞𝑛

′
.

We now identify F𝑛2 with an F2-linear subspace of F𝑛′𝑞 , e.g., by identifying F𝑛′𝑞 with F𝑛′ℓ2 as F2-vector
spaces and then identifying F𝑛2 with the first 𝑛 ≤ 𝑛′ℓ coordinates (the rest can be set to zero).
The above embedding of F𝑛2 in F𝑛′𝑞 allows us to think of the set 𝑆 as sitting in F𝑛′𝑞 and so we can
apply Theorem 2.1 if we check that all the conditions are met. We first see that, by our choice
of ℓ, the bound on 𝑞 ≥ 32 max(𝑛′(1 + 𝜏)/(𝜏𝛿)2, 𝑛′) is met (notice that 𝑛′ ≤ 𝑛). We also need to
check that |𝑆 | > 𝑞4 which holds from our assumption |𝑆 | ≥ 220 max(𝑛4(1 + 𝜏)4/(𝜏𝛿)8, 𝑛4). 𝑛′ ≥ 5
is also satisfied.

Hence we can apply Theorem 2.1 in our setting. Let 𝑟 be such that

𝑞𝑟 < |𝑆 | ≤ 𝑞𝑟+1

and set
𝑡′ = 𝑟 − 3.

We get that for a (1 − 𝛿)-fraction of all surjective linear maps 𝐿′ : F𝑛′𝑞 → F𝑡
′
𝑞 satisfy the

property that 𝐿′(𝑈𝑆) is 𝜏𝑞−𝑡′-close to uniform in the ℓ∞ distance. Since an F𝑞-linear map is also
an F2-linear map, we can think of 𝐿′ as an F2-linear map from F𝑛′ℓ2 to F𝑡′ℓ2 . Setting

𝑡 = 𝑡′ℓ

and let 𝐿 be the restriction of 𝐿′ to the subspace we previously identified with F𝑛2 (which
contains 𝑆) we get that for any such 𝐿 : F𝑛2 → F𝑡2, 𝐿(𝑈𝑆) is 𝜏2−𝑡-close to uniform in the ℓ∞
distance (clearly 𝐿(𝑈𝑆) and 𝐿′(𝑈𝑆) have the same distribution).

We now bound the ‘entropy loss’ or log2 |𝑆 | − 𝑡. Notice that

log2 |𝑆 | ≤ (𝑟 + 1)ℓ

and that
𝑡 = 𝑡′ℓ = (𝑟 − 3)ℓ.

Combining the last two inequalities we get that

log2 |𝑆 | − 𝑡 ≤ 4ℓ ≤ 4 log2(max(𝑛(1 + 𝜏)/(𝜏𝛿)2, 𝑛) − 20.
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We are not done yet as not all surjective linear maps from F𝑛2 to F𝑡2 will be restrictions of
surjective linear maps from F𝑛′𝑞 to F𝑡′𝑞 . We now overcome this obstacle using a random rotation
argument. We started out with embedding 𝑆 ⊆ F𝑛2 in a bigger space F𝑛′ℓ2 . If we can show a
(1 − 𝛿)-fraction of surjective linear maps from F𝑛′ℓ2 to F𝑡2 satisfy the desired property we are
also done. We also let 𝜙 : F𝑛′ℓ2 → F𝑛′𝑞 be the F2-linear isomorphism between F𝑛′ℓ2 and F𝑛′𝑞 we had
implicitly chosen in the beginning.

Let 𝐻 be the set of surjective linear maps from F𝑛′ℓ2 to F𝑡2 which are also surjective linear
maps from F𝑛′𝑞 to F𝑡′𝑞 (indeed every surjective linear map from F𝑛′𝑞 to F𝑡′𝑞 is a surjective linear map
from F𝑛′ℓ2 to F𝑡2 but the converse is not the case). We just showed that a (1 − 𝛿)-fraction of the
maps in 𝐻 satisfy the desired property. Let 𝑀 be a random invertible linear map in GL𝑛′ℓ (F2).
We note 𝜙 ◦𝑀 is also a valid F2-linear isomorphism between F𝑛2𝑛

′ℓ and F𝑛′𝑞 . If we repeated our
earlier argument with this isomorphism we will have proven that a (1 − 𝛿)-fraction of the maps
in 𝑀 · 𝐻 = {𝐿 ◦𝑀 |𝐿 ∈ 𝐻} satisfy the desired property. But under a random rotation we see that
each surjective linear map from F𝑛′ℓ2 to F𝑡2 will be included in an equal number of 𝑀 · 𝐻 . This
proves that there is at least a (1 − 𝛿)-fraction of surjective linear maps from F𝑛′ℓ2 to F𝑡2 which
satisfy the desired property. ■

6. Proof of Lemma 4.1 using the polynomial method

We will be using the polynomial method to lower bound the sizes of (2, 𝛾𝑞2, 𝛽)-Furstenberg sets
in F𝑛𝑞 which are needed to prove our hashing guarantees. As stated earlier, these bounds have
been proven in [22] using a combinatorial reduction. The bounds from [22] can be directly used
to prove our hashing theorems with slightly worse constants.

We will give a new proof to lower bound these set sizes by extending ideas developed
in [8] to prove bounds for Kakeya sets over rings of integers modulo a composite number. The
advantages are three fold: we get slightly better constants, the argument here gives significantly
better bounds for (1, 𝛾𝑞, 𝛽)-Furstenberg sets (although not important for our application) and
as mentioned earlier these ideas were later used to resolve the maximal Kakeya conjecture
over rings of integers modulo a composite number [7].

In this section we develop improvements to the polynomial method argument to get the
desired dependence on 𝛽. In a nutshell, our improvement comes from picking a carefully
chosen set of monomials, instead of just taking all monomials up to a specified degree. This
section will be divided into three sub-sections. First, we review basic definitions and results
on the polynomial method (with multiplicities) as developed in [12]. Then, we devote a section
to understanding ranks of sub-matrices of a special matrix which maps a polynomial to its
evaluations (with derivatives) on a given set of points. Finally, we put everything together to
prove Lemma 4.1.
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6.1 Multiplicities and Hasse derivative

We first review the definitions of multiplicities and Hasse derivatives that will be needed in
the proof (see [12] for a more detailed discussion). We will allow the definitions to be over an
arbitrary field F since we will need to apply them both for F = F𝑞 (which is the usual case) and
also for F = F𝑞(𝑡1, 𝑡2) (the field of rational function in 𝑡1, 𝑡2 with coefficients in F𝑞). Working over
this extension field is natural when handling two-dimensional flats and already appears in [20].

DEF IN IT ION 6.1 (Hasse Derivatives). Let F be a field. Given a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛]
and an i ∈ Z𝑛≥0 the ith Hasse derivative of 𝑓 is the polynomial 𝑓 (i) in the expansion

𝑓 (𝑥 + 𝑧) =
∑︁
j∈Z𝑛≥0

𝑓 (j) (𝑥)𝑧j

where 𝑥 = (𝑥1, ..., 𝑥𝑛), 𝑧 = (𝑧1, ..., 𝑧𝑛) and 𝑧j =
∏𝑛

𝑘=1 𝑧
𝑗𝑘
𝑘

.

Hasse derivatives satisfy the following useful property (see [12] for a proof). We will only
need this property to show that, if 𝑓 (i+j) vanishes at a point then so does ( 𝑓 (i)) (j) .

LEMMA 6.2. Given a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] and i, j ∈ Z𝑛≥0, we have

( 𝑓 (i)) (j) = 𝑓 (i+j)
𝑛∏
𝑘=1

(
𝑖𝑘 + 𝑗𝑘
𝑖𝑘

)
We make precise what it means for a polynomial to vanish on a point 𝑎 ∈ F𝑛 with mul-

tiplicity. First we recall for a point j in the non-negative lattice Z𝑛≥0, its weight is defined as
wt(j) = ∑𝑛

𝑖=1 𝑗𝑖 .

DEF IN IT ION 6.3 (Multiplicity). For a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] and a point 𝑎 ∈ F𝑛 we
say 𝑓 vanishes on 𝑎 with multiplicity 𝑚 ∈ Z≥0, if 𝑚 is the largest integer such that all Hasse
derivatives of 𝑓 of weight strictly less than 𝑚 vanish on 𝑎. We use mult( 𝑓 , 𝑎) to refer to the
multiplicity of 𝑓 at 𝑎.

Note that the number of Hasse derivatives overF[𝑥1, . . . , 𝑥𝑛] with weight strictly less than𝑚
is

(𝑛+𝑚−1
𝑛

)
. Hence, requiring that a polynomial vanishes to order 𝑚 at a single point 𝑎 enforces

the same number of homogeneous linear equations on the coefficients of the polynomial. We
will use the following simple property concerning multiplicities of composition of polynomials
(see [12] for a proof).

LEMMA 6.4. Given a polynomial 𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛] and a tuple 𝐻 = (ℎ1, . . . , ℎ𝑛) of polynomials
in F[ 𝑦1, . . . , 𝑦𝑚], and 𝑎 ∈ F𝑚 we have,

mult( 𝑓 ◦ 𝐻, 𝑎) ≥ mult( 𝑓 , 𝐻 (𝑎)).
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We will now state the multiplicity version of the Schwartz-Zippel bound [25, 27] (see [12]
for a proof). We denote by F[𝑥1, .., 𝑥𝑛]≤𝑑 the space of polynomials of total degree at most 𝑑 with
coefficients in F.

LEMMA 6.5 (Schwartz-Zippel with multiplicities). Let F be a field, 𝑑 ∈ Z≥0 and let 𝑓 ∈
F[𝑥1, .., 𝑥𝑛]≤𝑑 be a non-zero polynomial. Then, for any finite subset𝑈 ⊆ F ,∑︁

𝑎∈𝑈𝑛
mult( 𝑓 , 𝑎) ≤ 𝑑 |𝑈 |𝑛−1.

6.2 The EVAL matrix, its submatrices and their ranks

If 𝑀 is a matrix over an extension field of F𝑞, we define the F𝑞-rank of 𝑀 , denoted by rankF𝑞𝑀 ,
to be the size of the largest subset of columns of 𝑀 which are F𝑞-linearly independent (in other
words, no non-zero F𝑞-linear combination of those columns is 0). For convenience, we define
the coefficient matrix of a matrix with entries in F𝑞[𝑡1, 𝑡2]. This will help us argue about the
F𝑞-rank of a matrix over an extension, by connecting it with the rank of a matrix with entries
in F𝑞.

DEF IN IT ION 6.6 (Coefficient matrix of 𝐸). Let 𝐸 be an 𝑛1×𝑛2 matrix with entries inF𝑞[𝑡1, 𝑡2]≤𝑑 .
The coefficient matrix of 𝐸, denoted byCoeff(𝐸), is a

(𝑑+2
2
)
𝑛1×𝑛2 matrix with entries in F𝑞 whose

rows are labelled by elements in ((𝑖, 𝑗), 𝑘) ∈ Z2
≥0 × [𝑛1] and whose entry in row ((𝑖, 𝑗), 𝑘) and

column ℓ is given by the coefficient of 𝑡𝑖1𝑡
𝑗
2 of the polynomial in the (𝑘, ℓ)’th entry of 𝐸.

In other words, to construct Coeff(𝐸) we replace each entry with a (column) vector of its
coefficients. For example:

𝐸 =

[
𝑡1 𝑡2 + 1

2 + 4𝑡1 𝑡1 + 3𝑡2

]
, Coeff(𝐸) =





0 1
1 0
0 1
2 0
4 1
0 3

.

By construction we have,

rankF𝑞𝐸 = rankF𝑞Coeff(𝐸).

Our main object of interest is the matrix encoding the evaluation of a subset of monomials
(with their derivatives) on a subset of points.

DEF IN IT ION 6.7 (EVAL𝑚(𝑆,𝑊) matrix). Let F be a field, and let 𝑛, 𝑚 ∈ N. Given a set 𝑆 ⊂ F𝑛

and a set of monomials𝑊 ⊂ F[𝑥1, . . . , 𝑥𝑛], we let EVAL𝑚(𝑆,𝑊) denote an |𝑆 |
(𝑚−1+𝑛

𝑛

)
×|𝑊 | matrix
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whose columns are indexed by𝑊 and rows are indexed by tuples (𝑥, j) ∈ 𝑆 × Z𝑛≥0 such that
wt(j) < 𝑚. The ((𝑥, j), 𝑓 )th entry of this matrix is,

𝑓 (j) (𝑥).

In other words, the (𝑥, j)th row of the matrix consists of the evaluation of the j’th Hasse derivative
of all 𝑓 ∈ 𝑊 at 𝑥. Equivalently, the 𝑓 ’th column of the matrix consists of the evaluations of
weight strictly less than 𝑚 Hasse derivatives of 𝑓 at all points in 𝑆.

We let,

V = {𝑢′𝑡1 + 𝑣′𝑡2 |𝑢′, 𝑣′ ∈ F𝑞}𝑛 = {𝑢𝑡1 + 𝑣𝑡2 |𝑢, 𝑣 ∈ F𝑛𝑞} ⊆ (F𝑞[𝑡1, 𝑡2])𝑛

denote the set of 𝑛-tuples of homogeneous linear forms in 𝑡1, 𝑡2 and

Vfull = {𝑢𝑡1 + 𝑣𝑡2 ∈ V | dimF𝑞 span{𝑢, 𝑣} = 2} ⊆ V

denote the subset of V in which the coefficient vectors of 𝑡1 and of 𝑡2 are linearly independent.
Let𝑊𝑑,𝑛 denote the set of monomials in 𝑛-variables 𝑥1, . . . , 𝑥𝑛 of degree at most 𝑑. Our first

lemma shows that the F𝑞-rank of EVAL𝑚(V ,𝑊𝑑,𝑛) is maximal whenever 𝑑 is not too large. This
is essentially the Schwartz-Zippel lemma since it means that a polynomial of bounded degree
could be recovered from its evaluations (up to high enough order) on a product set.

LEMMA 6.8 (Rank of EVAL𝑚(V ,𝑊𝑑,𝑛)). Let 𝑚 ∈ N then for all 𝑑 < 𝑚𝑞2 we have,

rankF𝑞EVAL𝑚(V , 𝑀𝑑,𝑛) = |𝑊𝑑,𝑛 | =
(
𝑑 + 𝑛
𝑑

)
.

PROOF . Recall V = {𝑢′𝑡1 + 𝑣′𝑡2 ∈ F𝑞(𝑡1, 𝑡2) |𝑢, 𝑣 ∈ F𝑞}𝑛. Any F𝑞-linear combination of columns
in EVAL𝑚(𝑆,𝑊𝑑,𝑛) for some subset 𝑆 ⊆ V corresponds to looking at the evaluation of the weight
< 𝑚 Hasse derivatives on 𝑆 of a degree at most 𝑑 polynomial in F𝑞[𝑥1, . . . , 𝑥𝑛]. To be precise
if we take the linear combination of columns corresponding to the monomials 𝑓1, 𝑓2, . . . , 𝑓ℓ
with coefficients 𝛼1, . . . , 𝛼ℓ ∈ F𝑞 the column vector we get will be the evaluation of the weight
< 𝑚 Hasse derivatives of

∑ℓ
𝑖=1 𝛼𝑖 𝑓𝑖 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] over 𝑆. Note that the polynomial we are

considering has coefficients only in F𝑞 while the evaluations are being done over the field
F𝑞(𝑡1, 𝑡2).

For any 𝑑 < 𝑚𝑞2 any F𝑞-linear combination of columns in EVAL𝑚(V ,𝑊𝑑,𝑛) being 0 will
be equivalent to a degree at most 𝑚𝑞2 − 1 polynomial vanishing on V with multiplicity 𝑚. By
Lemma 6.5 we see that a non-zero polynomial of degree at most 𝑑 vanishing on V (which is a
product set of size 𝑞2𝑛) with multiplicity at least 𝑚 satisfies

𝑑𝑞2(𝑛−1) ≥ 𝑚𝑞2𝑛
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which leads to a contradiction (as 𝑑 < 𝑚𝑞2). This means EVAL𝑚(V ,𝑊𝑑,𝑛) has F𝑞-rank |𝑊𝑑,𝑛 | for
𝑑 < 𝑚𝑞2. Note this proof would also show that the F𝑞(𝑡1, 𝑡2)-rank of EVAL𝑚(V ,𝑊𝑑,𝑛) is |𝑊𝑑,𝑛 |
for 𝑑 < 𝑚𝑞2. ■

We next show that the same rank bound holds even if we restrict the rows to only come from
the smaller set Vfull.

LEMMA 6.9. EVAL𝑚(Vfull,𝑊𝑑,𝑛) has F𝑞-rank |𝑊𝑑,𝑛 | for 𝑑 < 𝑚𝑞2.

PROOF . This lemma will need the fact that we are only computing the F𝑞 (and not F𝑞(𝑡1, 𝑡2))
rank. Consider any F𝑞-linear combination 𝑓 of monomials in𝑊𝑑,𝑛. It suffices to show that if 𝑓
vanishes with multiplicity at least 𝑚 over Vfull then it vanishes with multiplicity at least 𝑚
over V . V \Vfull contains elements of the form 𝑢𝑡1 or 𝑢(𝑐𝑡1 + 𝑡2) where 𝑢 ∈ F𝑛𝑞 and 𝑐 ∈ F𝑞. First
we consider 𝑢 ∈ F𝑛𝑞 \ {0}. We can pick a 𝑣 ∈ F𝑛𝑞 such that 𝑣 and 𝑢 are linearly independent.
𝑢𝑡1+𝑣𝑡2 now is an element in Vfull. This means 𝑓 vanishes on 𝑢𝑡1+𝑣𝑡2 with multiplicity at least𝑚.
𝑓 is a polynomial in F𝑞[𝑥1, . . . , 𝑥𝑛] which means all its Hasse derivatives are also F𝑞-polynomials.
Therefore, for any i ∈ Z𝑛≥0 we get 𝑓 (i) (𝑢𝑡1) by setting 𝑡2 = 0 in 𝑓 (i) (𝑢𝑡1 + 𝑣𝑡2). This implies that 𝑓
vanishes on 𝑢𝑡1 with multiplicity at least 𝑚. Setting 𝑡1 = 0 then shows that 𝑓 vanishes on 0 with
multiplicity at least 𝑚. Again as 𝑡1 is a formal variable and 𝑓 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] we can replace 𝑡1
with 𝑐𝑡1 + 𝑡2 to get 𝑓 vanishes on 𝑢(𝑐𝑡1 + 𝑡2) with multiplicity at least 𝑚. ■

Our final lemma, which is the heart of this section, shows that any 𝛿-fraction of the rows
in EVAL𝑚(Vfull,𝑊𝑑,𝑛) have rank at least 𝛿 times the rank of the full matrix. This is not true for
an arbitrary matrix and uses the fact that the general linear group acts on the set of rows in a
transitive way.

LEMMA 6.10 (Rank of EVAL𝑚(𝑆,𝑊𝑑,𝑛)). Let 𝑚 ∈ N and 𝑆 ⊆ Vfull with |𝑆 | ≥ 𝛿|Vfull |, 𝛿 ∈ [0, 1]
then for all 𝑑 < 𝑚𝑞2 we have,

rankF𝑞EVAL𝑚(𝑆,𝑊𝑑,𝑛) ≥ 𝛿 · |𝑊𝑑,𝑛 | = 𝛿
(
𝑑 + 𝑛
𝑑

)
.

PROOF . Consider 𝑆 ⊆ Vfull such that |𝑆 | = 𝛿|Vfull |. For any 𝑀 ∈ GL𝑛(F𝑞) we let 𝑀 act on
𝑢𝑡1 + 𝑣𝑡2 where 𝑢, 𝑣 ∈ F𝑛𝑞 as 𝑀 · (𝑢𝑡1 + 𝑣𝑡2) = 𝑀𝑢𝑡1 +𝑀𝑣𝑡2. Let 𝑀 · 𝑆 = {𝑀 · 𝑦 | 𝑦 ∈ 𝑆}.

CLAIM 6.1 1.

rankF𝑞EVAL𝑚(𝑆,𝑊𝑑,𝑛) = rankF𝑞EVAL𝑚(𝑀 · 𝑆,𝑊𝑑,𝑛).

Proof. We will prove this statement by constructing an isomorphism between the column-space
of the two matrices. An element in the column space of EVAL𝑚(𝑆,𝑊𝑑,𝑛) is the evaluation of
the weight strictly less than 𝑚 Hasse derivatives on 𝑆 of a polynomial 𝑓 (𝑥) ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] of
degree at most 𝑑. We map such a vector to the evaluation of the weight strictly less than 𝑚

Hasse derivatives on 𝑀 · 𝑆 of the polynomial 𝑓 (𝑀−1𝑥) which will also be of degree at most 𝑑.
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The choice of 𝑓 in the beginning can be ambiguous but if there are two polynomials 𝑓 (𝑥) and
𝑔 (𝑥) having the same evaluation of weight strictly less than 𝑚 Hasse derivatives over 𝑆 then
𝑓 (𝑥) − 𝑔 (𝑥) vanishes on 𝑆 with multiplicity at least 𝑚. By Lemma 6.2, 𝑓 (𝑀−1𝑥) − 𝑔 (𝑀−1𝑥)
vanishes on 𝑀 · 𝑆 with multiplicity 𝑚 which implies 𝑓 (𝑀−1𝑥) and 𝑔 (𝑀−1𝑥) evaluate to the
same weight strictly less than 𝑚 Hasse derivatives over 𝑀 · 𝑆. The inverse map can be similarly
constructed. ■

The above claim shows it suffices to show the rank bound for any 𝑀 · 𝑆 where 𝑀 ∈ GL𝑛(F𝑞).
We do this by a probabilistic method argument.

The previous Lemma implies that Coeff(EVAL𝑚(Vfull,𝑊𝑑,𝑛)) has F𝑞-rank |𝑊𝑑,𝑛 |. As this
is a matrix with F𝑞 entries this means that there exists a |𝑊𝑑,𝑛 | =

(𝑑+𝑛
𝑛

)
subset of rows 𝑅 of

Coeff(EVAL𝑚(Vfull,𝑊𝑑,𝑛)) which are linearly independent. These rows are indexed by tuples

(𝑥, i, ( 𝑗, 𝑘)) ∈ Vfull × Z𝑛≥0 × Z2
≥0

with wt(i) < 𝑚 and 𝑗 + 𝑘 ≤ 𝑑. The (𝑥, i, ( 𝑗, 𝑘))th row is the coefficient of 𝑡 𝑗1𝑡
𝑘
2 in the evaluation

of the ith Hasse Derivative at 𝑥 of the monomials in𝑊𝑑,𝑛.
We pick an 𝑀 ∈ GL𝑛(F𝑞) uniformly at random. We now calculate the expected fraction of

the rows from 𝑅 which appear in Coeff(EVAL𝑚(𝑀 · 𝑆, 𝑀𝑑,𝑛)).
A row in 𝑅 indexed by (𝑥, 𝑖, ( 𝑗, 𝑘)) ∈ Vfull × Z𝑛≥0 × Z2

≥0 will appear in Coeff(EVAL𝑚(𝑀 ·
𝑆,𝑊𝑑,𝑛)) if and only if 𝑥 ∈ 𝑀 · 𝑆. As the action of GL𝑛(F𝑞) on Vfull we see that this hap-
pens with probability at least 𝛿. This means the expected fraction of rows in 𝑅 appearing
in Coeff(EVAL𝑚(𝑀 · 𝑆,𝑊𝑑,𝑛)) is at least 𝛿. This ensures that there is some matrix 𝑀 such that
Coeff(EVAL𝑚(𝑀 · 𝑆,𝑊𝑑,𝑛)) and hence EVAL𝑚(𝑀 · 𝑆,𝑊𝑑,𝑛) has F𝑞-rank at least 𝛿|𝑊𝑑,𝑛 |. ■

We note the above lemma could be proven in a more general setting where we wanted to
compare the F𝑞 rank of EVAL𝑚(𝐺,𝑊𝑑,𝑛) for 𝐺 = 𝑆 ⊆ F𝑛 and 𝐺 = 𝑆′ ⊆ 𝑆 a large subset of 𝑆 as
long as the general linear group acts transitively on 𝑆. For instance, this style of argument was
also used in [8] to obtain a better dependence on 𝛽 for (1, 𝑚, 𝛽)-Furstenberg sets5 over Z/𝑝𝑘Z.

We will use a simple corollary of this lemma.

COROLLARY 6.12. Let 𝑟 ∈ N and 𝑆 ⊆ Vfull with |𝑆 | ≥ 𝛿|Vfull |, 𝛿 ∈ [0, 1] then for any 𝑑 < 𝑟𝑞2

there exists a set 𝑃𝑆 (𝑑, 𝑟), |𝑃𝑆 (𝑑, 𝑟) | = 𝛿
(𝑑+𝑛
𝑛

)
of monomials of degree at most 𝑑 such that no

non-zero F𝑞-linear combination of monomials in 𝑃𝑆 (𝑑, 𝑟) vanishes with multiplicity at least 𝑟 over
all points in 𝑆.

6.3 Proving the bound on Furstenberg sets

We first give a brief description of the polynomial method argument as was used for example
in [20]. Given a (𝑘, 𝛾𝑞2, 𝛽)-Furstenberg set 𝐾 we take a polynomial 𝑄 of degree at most 𝑑

5 Denoted as (𝑚, 𝛽)-Kakeya sets in [8].
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(where 𝑑 depends on 𝛽, 𝛾 and 𝑞) which vanishes with high multiplicity on 𝐾 . If |𝐾 | small, such
a polynomial can be found by solving a system of linear constraints. For at least a 𝛽 fraction of
the flats 𝐴 ∈ L∗

2(F𝑛𝑞) there is a shift 𝑎 + 𝐴, 𝑎 ∈ F𝑛𝑞 such that 𝑎 + 𝐴 is 𝛾𝑞2-rich with respect to 𝐾 . By
restricting 𝑄 to 𝑎 + 𝐴 and using Lemma 6.5 we then show that 𝑄 vanishes identically on 𝑎 + 𝐴
which implies that the highest degree homogeneous part of 𝑄 vanishes identically on 𝐴. This
will imply that the highest degree homogenous part of 𝑄 vanishes on a 𝛽 fraction of 𝐴 ∈ L∗

2(F𝑛𝑞).
Another application of the Lemma 6.5 then gives us a size bound for |𝐾 | by arguing that deg(𝑄)
cannot be too small (here, the dependency between 𝛽 and 𝑑 comes into play). The size of 𝐾 is
lower bounded by the number of at most degree 𝑑 monomials

(𝑑+𝑛
𝑛

)
. The dependence of 𝛽 on 𝑑

leads to a loss of 𝛽𝑛 in the final bound.
In [22] they overcome this problem by using random rotations to reduce to the case of

constant 𝛽. We overcome this loss by instead using Corollary 6.12 to start out with a subset
of monomials of degree at most 𝑑′ (here 𝑑′ will not depend on 𝛽) of size 𝛽

(𝑑′+𝑛
𝑛

)
such that any

F𝑞-linear combination of those will not vanish on the 𝛽 fraction of flats in L∗
𝑘
(F𝑛𝑞) which have

𝛾𝑞2-rich shifts with respect to 𝐾 . Now the standard polynomial method argument will let us
prove Lemma 4.1.

LEMMA 4.1 (Furstenberg lemma). For any 𝛾, 𝛽 ∈ [0, 1], 𝑛 ∈ N, 𝑞 a prime power every (2, 𝛾𝑞2, 𝛽)-
Furstenberg set 𝐾 ⊆ F𝑛𝑞 has size at least,

|𝐾 | ≥ 𝛽𝛾𝑛𝑞𝑛
(
1 + 1

𝑞

)−𝑛
.

PROOF . Let
𝑡 = ⌈𝛾𝑞2⌉/𝑞 ≥ 𝛾𝑞.

As 𝐾 is a (2, 𝛾𝑞2, 𝛽)-Furstenberg set then there exists a subset F ⊆ L∗
2(F𝑛𝑞) of size at least

𝛽 |L∗
2(F𝑛𝑞) | such that for every 𝐴 ∈ F there exists a 𝑡𝑞 = ⌈𝛾𝑞2⌉-rich shift 𝑎 + 𝐴 for some 𝑎 ∈ F𝑛𝑞.

To F we can also associate a set of elements

F ′ = {𝑢𝑡1 + 𝑣𝑡2 |𝑢, 𝑣 ∈ F𝑛𝑞 , span{𝑢, 𝑣} ∈ F } ⊆ F𝑞(𝑡1, 𝑡2)𝑛 ⊂ Vfull.

Note, in general for each flat 𝐴 ∈ L∗
2(F𝑛𝑞) there are (𝑞2 − 1) (𝑞2 − 𝑞) elements in Vfull

corresponding to it (because there are (𝑞2 − 1) (𝑞2 − 𝑞) ordered pairs of vectors which span 𝐴)
and each element 𝑢𝑡1 + 𝑣𝑡2 ∈ Vfull corresponds to a unique choice of basis. Thus, we have

|F ′| ≥ 𝛽 |Vfull |.

Let ℓ be an integer parameter (we will later send ℓ to infinity) and take

𝑚 = (𝑞2 + 𝑡 − 1)ℓ

and
𝑑 = 𝑞2𝑡ℓ − 1
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for ℓ ∈ N. As 𝑑 < 𝑞2𝑡ℓ, using Corollary 6.12 we can find a set 𝑃F ′ (𝑑, 𝑡ℓ) of monomials of degree
at most 𝑑 so that

|𝑃F ′ (𝑑, 𝑡ℓ) | ≥ 𝛽

(
𝑑 + 𝑛
𝑛

)
and such that no F𝑞-linear combination of monomials in 𝑃F ′ (𝑑, 𝑡ℓ) vanishes over all points
in F ′ with multiplicity at least 𝑡ℓ. If

𝛽

(𝑑+𝑛
𝑛

)(𝑚+𝑛−1
𝑛

) > |𝐾 |,

then we can find (by solving a system of homogeneous linear equations) a non-zero polynomial
𝑄 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] of degree at most 𝑑 spanned by monomials in 𝑃F ′ (𝑑, 𝑡ℓ) vanishing with
multiplicity at least 𝑚 on every point in 𝐾 . Let 𝑄𝐻 be the highest degree homogenous part of 𝑄.

CLAIM 6.13. For any 𝑥 ∈ F ′ we have mult(𝑄𝐻 , 𝑥) ≥ 𝑡ℓ.

PROOF . Let j ∈ Z𝑛≥0 be such that wt(j) < 𝑡ℓ. By Lemma 6.2,𝑄(j) vanishes on 𝐾 with multiplicity
at least 𝑚 − wt(j). 𝑄(j) is also of degree at most 𝑑 − wt(j)

By construction for every element 𝑢𝑡1 + 𝑣𝑡2 ∈ F ′ there exists an element 𝑐𝑢,𝑣 ∈ F𝑛𝑞 such
that 𝑐𝑢,𝑣 + {𝑢𝑡1 + 𝑣𝑡2 |𝑡1, 𝑡2 ∈ F𝑞} is 𝑞𝑡-rich with respect to 𝐾 . By Lemma 6.4 we have that the
bivariate polynomial 𝑄(j) (𝑐𝑢,𝑣 + 𝑢𝑡1 + 𝑣𝑡2) vanishes on 𝑞𝑡 many points in F2

𝑞 with multiplicity at
least 𝑚 − wt(j).

By Lemma 6.5, we have that, if 𝑄(j) (𝑐𝑢,𝑣 + 𝑢𝑡1 + 𝑣𝑡2) is non-zero then,

(𝑑 − wt(j))𝑞 ≥ (𝑚 − wt(j))𝑞𝑡.

Rearranging gives us:
𝑑 + wt(j) (𝑡 − 1) ≥ 𝑚𝑡.

Substituting 𝑑 = 𝑞2𝑡ℓ − 1, 𝑚 = (𝑞2 + 𝑡 − 1)ℓ and using the fact that wt(j) < 𝑡ℓ gives us:

𝑞2𝑡ℓ − 1 + (𝑡 − 1)𝑡ℓ > 𝑞2𝑡ℓ + (𝑡 − 1)𝑡ℓ.

This leads to a contradiction. This means that 𝑄(j) (𝑐𝑢,𝑣 + 𝑢𝑡1 + 𝑣𝑡2) is identically 0. We note,
𝑄(j) (𝑐𝑢,𝑣 + 𝑢𝑡1 + 𝑣𝑡2) ∈ F𝑞[𝑡1, 𝑡2] and its highest degree homogeneous part is (𝑄𝐻) (j) (𝑢𝑡1 + 𝑣𝑡2).
This means (𝑄𝐻) (j) (𝑢𝑡1 + 𝑣𝑡2) = 0 for all j such that wt(j) < 𝑡ℓ. This proves the claim. ■

As 𝑄𝐻 is a non-zero polynomial with coefficients in F𝑞 spanned by monomials in 𝑃F ′ (𝑑, 𝑡ℓ)
and it vanishes with multiplicity at least 𝑡ℓ on every point in F ′, we get a contradiction to
Corollary 6.12. Therefore, we can conclude that

𝛽

(𝑑+𝑛
𝑛

)(𝑚+𝑛−1
𝑛

) ≤ |𝐾 |.
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Substituting 𝑑 = 𝑞2𝑡ℓ − 1, 𝑚 = (𝑞2 + 𝑡 − 1)ℓ gives us:

|𝐾 | ≥ 𝛽
(𝑞2𝑡ℓ − 1 + 𝑛) (𝑞2𝑡ℓ − 2 + 𝑛) . . . (𝑞2𝑡ℓ)

((𝑞2 + 𝑡 − 1)ℓ + 𝑛 − 1) ((𝑞2 + 𝑡 − 1)ℓ + 𝑛 − 2) . . . ((𝑞2 + 𝑡 − 1)ℓ) .

Letting ℓ → ∞ gives us:

|𝐾 | ≥ 𝛽𝑡𝑛
(
1 + 𝑡 − 1

𝑞2

)−𝑛
.

As 𝑞 ≥ 𝑡 ≥ 𝛾𝑞 the proof of the lemma is complete. ■

We note the arguments in this section easily generalizes for (𝑘, 𝛾𝑞𝑘, 𝛽)-Furstenberg sets
for all 𝑘 ≥ 1 to prove the following theorem.

THEOREM 6.14 (Size of (𝑘, 𝛾𝑞𝑘, 𝛽)-Furstenberg Sets). For any 𝛾 ∈ [0, 1], 𝛽 ∈ [0, 1], 𝑛 ∈ N, 𝑞 a
prime power every (𝑘, 𝛾𝑞𝑘, 𝛽)-Furstenberg set 𝐾 ⊆ F𝑛𝑞 has size at least,

|𝐾 | ≥ 𝛽𝛾𝑛𝑞𝑛
(
1 + 1

𝑞𝑘−1

)−𝑛
.

The [22] reduction gives a quantitatively worse bound of 𝛽𝛾𝑛𝑞𝑛(2𝑛 log2(2𝑒𝑛)𝑒)−1 compared
to 𝛽𝛾𝑛𝑞𝑛2−𝑛 for 𝑘 = 1. Note that for 𝑘 ≥ 5, Theorem 3.3 gives us much better bounds for 𝑞 >> 𝑛.
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