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ABSTRACT. This paper investigates a series of optimization problems for one-counter Markov
decision processes (MDPs) and integer-weighted MDPs with finite state space. Specifically, it
considers problems addressing termination probabilities and expected termination times for
one-counter MDPs, as well as satisfaction probabilities of energy objectives, conditional and
partial expectations, satisfaction probabilities of constraints on the total accumulated weight,
the computation of quantiles for the accumulated weight, and the conditional value-at-risk for
accumulated weights for integer-weighted MDPs. Although algorithmic results are available
for some special instances, the decidability status of the decision versions of these problems is
unknown in general.

The paper demonstrates that these optimization problems are inherently mathematically
difficult by providing polynomial-time reductions from the Positivity problem for linear recur-
rence sequences. This problem is a well-known number-theoretic problem whose decidability
status has been open for decades and it is known that decidability of the Positivity problem
would have far-reaching consequences in analytic number theory. So, the reductions presented
in the paper show that an algorithmic solution to any of the investigated problems is not pos-
sible without a major breakthrough in analytic number theory. The reductions rely on the
construction of MDP-gadgets that encode the initial values and linear recurrence relations
of linear recurrence sequences. These gadgets can flexibly be adjusted to prove the various
Positivity-hardness results.

This paper is an extension of work published at ICALP 2020 [58]. It extends the conference version by the results for
one-counter MDPs, energy objectives, quantiles, and cost problems. These additional results are also presented in the
PhD thesis [57]. Furthermore, full proofs omitted in the conference version and a detailed and improved description of all
constructions are provided.
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1. Introduction

When modelling and analyzing computer systems and their interactions with their environment,
two qualitatively different kinds of uncertainty about the evolution of the system execution
play a central role: non-determinism and probabilism. If a system is, for example, employed in
an unknown environment or depends on user inputs or concurrent processes, modelling the
system as non-deterministic accounts for all possible external influences, sequences of user
inputs, or possible orders in which concurrent events take place. If transition probabilities
between the states of a system, such as the failure probability of components or the probabilities
in a probabilistic choice employed in a randomized algorithm, are known or can be estimated,
it is appropriate to model this behavior as probabilistic. A pure worst- or best-case analysis
is not very informative in such cases and the additional probabilistic information available
should be put to use. Markov decision processes (MDPs) are a standard operational model
combining non-deterministic and probabilistic behavior and are widely used in operations
research, artificial intelligence, and verification among others.

In each state of an MDP, there is a non-deterministic choice from a set of actions. Each
action specifies a probability distribution over the possible successor states according to which
a transition is chosen randomly. Typical optimization problems on MDPs require resolving the
non-deterministic choices by specifying a scheduler such that a quantitative objective function
is optimized. For example, the standard model-checking problem asks for the minimal or maxi-
mal probability that an execution satisfies a given linear-time property. Here, minimum and
maximum range over all resolutions of the non-deterministic choices, i.e., over all schedulers.
This model-checking problem is known to be 2EXPTIME-complete if the property is given in
linear temporal logic (LTL) [29] and solvable in polynomial time if the property is given by a
deterministic automaton [30, 10]. Many quantitative aspects of a system can be modeled by
equipping an MDP with weights that are collected in each step. These weights might represent
time, energy consumption, utilities, or generally speaking any sort of costs or rewards incurred.
Classical optimization problems in this context that are known to be solvable in polynomial
time include the optimization of the expected value of the total accumulated weight before
a target state is reached, the so-called stochastic shortest path problem (SSPP) [16, 30, 5], the
expected value of the reward earned on average per step, the so-called expected mean payoff
or long-run average, or the expected discounted accumulated weight where after each step a
discount factor is applied to all future weights (for the latter two, see, e.g., [40, 60]).

Of course, there is a vast landscape of further optimization problems on finite-state MDPs
that have been analyzed. We are, nevertheless, not aware of natural decision problems for
standard (finite-state) MDPs with a single weight function and single objective that are known
to be undecidable. Undecidability results have been established for more expressive models.
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This applies, e.g., to recursive MDPs [32], MDPs with two or more weight functions [12, 61], or
partially observable MDPs [44, 9].

In this paper, we will investigate a series of optimization problems that have been stud-
ied in the literature, but are open in general. We will show that these problems possess an
inherent mathematical difficulty that makes algorithmic solutions impossible without a ma-
jor breakthrough in analytic number theory. Formally, this result is obtained by reductions
from the Positivity problem for linear recurrence sequences, a number theoretic problem whose
decidability status has been open for many decades (see, e.g., [39, 51, 52]).

1.1 Positivity problem

DEF IN IT ION 1.1 (Positivity problem). The Positivity problem for linear recurrence sequences
asks whether such a sequence stays non-negative. More formally, given a natural number 𝑘 ≥ 2,
and rationals 𝛼𝑖 and 𝛽 𝑗 with 1 ≤ 𝑖 ≤ 𝑘 and 0 ≤ 𝑗 ≤ 𝑘 − 1, let (𝑢𝑛)𝑛≥0 be defined by the initial
values 𝑢0 = 𝛽0, . . . , 𝑢𝑘−1 = 𝛽𝑘−1 and the linear recurrence relation

𝑢𝑛+𝑘 = 𝛼1𝑢𝑛+𝑘−1 + · · · + 𝛼𝑘𝑢𝑛

for all 𝑛 ≥ 0. The Positivity problem asks to decide whether 𝑢𝑛 ≥ 0 for all 𝑛.1 The number 𝑘 is
called the order of the linear recurrence sequence.

The Positivity problem is closely related to the famous Skolem problem. The Skolem
problem asks whether there is an 𝑛 such that 𝑢𝑛 = 0 for a given linear recurrence sequence
(𝑢𝑛)𝑛≥0. It is well-known that the Skolem problem is polynomial-time reducible to the Positivity
problem (see, e.g., [33]). The Positivity problem and the Skolem problem are outstanding
problems in the fields of number theory and theoretical computer science (see, e.g., [39, 51,
52]) and their decidability has been open for many decades. Deep results establish decidability
for both problems for linear recurrence sequences of low order or for restricted classes of
sequences [62, 66, 53, 54, 55]. A proof of decidability or undecidability of the Positivity problem
for arbitrary sequences, however, withstands all known number-theoretic techniques. In [54],
it is shown that decidability of the Positivity problem (already for linear recurrence sequences
of order 6) would entail a major breakthrough in the field of Diophantine approximation of
transcendental numbers, an area of analytic number theory.

We call a problem to which the Positivity problem is reducible Positivity-hard. From
a complexity theoretic point of view, the Positivity problem is known to be at least as hard
as the decision problem for the universal fragment of the theory of the reals with addition,
multiplication, and order [55], a problem known to be coNP-hard and to lie in PSPACE [22]. As
most of the problems we will address are PSPACE-hard, the reductions in this paper do not

1 We do not distinguish between the Positivity problem and its complement in the sequel. So, we also refer to the
problem whether there is an 𝑛 such that 𝑢𝑛 < 0 as the Positivity problem.
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provide new lower bounds on the computational complexity. The hardness results in this paper
hence refer to the far-reaching consequences on major open problems that a decidability result
would imply. Furthermore, of course, the undecidability of the Positivity problem would entail
the undecidability of any Positivity-hard problem.

1.2 Problems under investigation and related work on these problems

In the sequel, we briefly describe the problems studied in this paper and describe related work
on these problems. In general, the decidability status of all of these problems is open and we
will prove them to be Positivity-hard.

Energy objectives, one-counter MDPs, and quantiles. If weights model a resource like
energy that can be consumed and gained during a system execution, a natural problem is to
determine the worst- or best-case probability that the system never runs out of the resource.
This is known as the energy objective. There has been work on combinations of the energy
objective with further objectives such as parity objectives [23, 46] and expected mean payoffs
[20]. Previous work on this objective focused on the possibility to satisfy the objective (or the
combination of objectives) almost surely. The quantitative problem whether it is possible to
satisfy an energy objective with probability greater than some threshold 𝑝 is open.

The complement of the energy objective can be found in the context of one-counter MDPs
(see [19, 18, 21]): Equipping an MDP with a counter that can be increased and decreased can be
used to model a simple form of recursion and can be seen as a special case of pushdown MDPs.
The process is said to terminate as soon as the counter value drops below 0 and the standard
task is to compute maximal or minimal termination probabilities. In one-counter MDPs that
terminate almost surely, one furthermore can ask for the extremal expected termination times,
i.e. the expected number of steps until termination. On the positive side, for one-counter
MDPs, it is decidable in polynomial time whether there is a scheduler that ensures termination
with probability 1 [19]. Furthermore, selective termination, which requires termination to
occur inside a specified set of states can be decided in exponential time [19]. On the other
hand, the computation of the optimal value and the quantitative decision problem whether the
optimal value exceeds a threshold 𝑝 are left open in the literature. For selective termination,
even the question whether the supremum of termination probabilities over all schedulers
is 1 is open. Furthermore, also the problem to compute the minimal or maximal expected
termination time of a one-counter MDP that terminates almost surely under any scheduler is
open. There are, however, approximation algorithms for the optimal termination probability
[18] and for the expected termination time of almost surely terminating one-counter MDPs [21].
One-counter MDPs can be seen as a special case of recursive MDPs [32]. For general recursive
MDPs, the qualitative decision problem whether the maximal termination probability is 1 is
undecidable while for restricted forms, so-called 1-exit recursive MDPs, the qualitative and also
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the quantitative problem is decidable in polynomial space [32]. One-counter MDPs can be seen
as a special case of 1-box recursive MDPs in the terminology of [32], a restriction orthogonal to
1-exit recursive MDPs.

The termination probability of one-counter MDPs and the satisfaction probability of the
energy objective are closely related to the computation of quantiles (see [64, 7, 61]). Given a
probability value 𝑝, here the task is to compute the best bound 𝑏 such that the maximal or
minimal probability that the accumulated weight exceeds the bound is at most or at least 𝑝.
The decision version whether the maximal or minimal probability that the accumulated weight
before reaching a target state exceeds 𝑏 is at least or at most 𝑝 is also known as the cost problem
(see [37, 38, 5]). The computation of quantiles and the cost problem have been addressed for
MDPs with non-negative weights and are solvable in exponential time in this setting [64, 37]. The
decision version of the cost problem with non-negative weights is furthermore PSPACE-hard for
a single inequality on the accumulated weight and EXPTIME-complete if a Boolean combination
of inequality constraints on the accumulated weight is considered [37]. For the setting with
arbitrary weights, [5] provides solutions to the qualitative question whether a constraint on
the accumulated weight is satisfied with probability 1 (or > 0). Further, it is known that the
quantitative problem is undecidable if multiple objectives with multiple weight functions have
to be satisfied simultaneously [61].

Non-classical stochastic shortest path problems (SSPPs). The classical SSPP described
above requires that a goal state is reached almost surely. In many situations, however, there
might be no schedulers reaching the target with probability 1 or schedulers that miss the
target with positive probability are of interest, too. Two non-classical variants that drop this
requirement are the conditional SSPP (see [11, 59]) and the partial SSPP (see [25, 26]). In the
conditional SSPP, the goal is to optimize the conditional expected accumulated weight before
reaching the target under the condition that the target is reached. In other words, the average
weight of all paths reaching the target has to be optimized. In the partial SSPP, paths not reaching
the target are not ignored, but assigned weight 0. Possible applications for these non-classical
SSPPs include the analysis of probabilistic programs where no guarantees on almost sure
termination can be given (see, e.g., [36, 42, 13, 24, 50]), the analysis of fault-tolerant systems
where error scenarios might occur with small, but positive probability, or the trade-off analysis
with conjunctions of utility and cost constraints that are achievable with positive probability,
but not almost surely (see, e.g., [8]). In [25] and [11], partial and conditional expectations,
respectively, have been addressed in the setting of non-negative weights. In both-cases, the
optimal value can be computed in exponential time [25, 11] while the threshold problem is
PSPACE-hard [59, 11]. In MDPs with positive and negative weights, it is known that the optimal
values might be irrational and that optimal schedulers might require infinite memory [59].
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Conditional expectations also play an important role for some risk measures. The con-
ditional value-at-risk (CVaR) is an established risk measure (see, e.g., [65, 1]) defined as the
conditional expected outcome under the condition that the outcome belongs to the 𝑝 worst
outcomes for a given probability value 𝑝. In the context of optimization problems on weighted
MDPs, the CVaR has been studied for mean-payoffs and weighted reachability where only one
terminal weight is collected per run (see [43]), and for the accumulated weight before reaching
a target state in MDPs with non-negative weights (see [3]). The CVaR for accumulated weights
can be optimized in MDPs with non-negative weights in exponential time [58, 48].

1.3 Contribution

We develop a technique to provide reductions from the Positivity problem to threshold problems
on MDPs, asking whether the optimal value of a quantity strictly exceeds a given rational
threshold. The resulting reductions are based on the construction of MDP-gadgets that allow to
encode the linear recurrence relation of a linear recurrence sequence and the initial values,
respectively. The approach turns out to be quite flexible. By adjusting the gadgets encoding initial
values, we can provide reductions of the same overall structure for several of the optimization
problems we discussed. Through further chains of reductions depicted in Figure 1, we establish
Positivity-hardness for the full series of optimization problems under investigation. The main
result of this paper consequently is the following:

Main result. The Positivity problem is polynomial-time reducible to the threshold problems
for the optimal values of the following quantities:

termination probabilities of one-counter MDPs,
expected termination times of almost surely terminating one-counter MDPs,
the satisfaction probabilities of energy objectives in MDPs with weights in Z,
the probability to satisfy an inequality on the accumulated weight (cost problem) in MDPs
with weights in Z,
conditional expectations (conditional SSPP) in MDPs with weights in Z,
partial expectations (partial SSPP) in MDPs with weights in Z,
conditional values-at-risk for accumulated weights (before reaching a goal) in MDPs with
weights in Z, and
a two-sided version of partial expectations in MDPs with two non-negative weight functions
with values in N.

Furthermore, an algorithm for
the computation of quantiles for accumulated weights in MDPs with weights in Z

would imply the decidability of the Positivity-problem.
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MDP-gadget encoding a linear recurrence relation

partial
expectations

(partial SSPP)

termination
probability
of one-

counter MDPs

conditional
value-at-risk
for total
rewards

conditional
expectations
(conditional

SSPP)

two-sided
partial

expectations
(weights in N)

cost problems,
computation
of quantiles

energy
objectives

expected
termination
time of one-

counter MDPs

gadget: initial values
in terms of termina-
tion probabilities of
one-counter MDPs

gadget: initial val-
ues in terms of par-
tial expectations

gadget: initial values
in terms of expecta-
tions of an auxiliary
random variable

Figure 1. Overview of the dependencies between the Positivity-hardness results. The squares refer to
the threshold problems for the respective quantities.
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1.4 Related work on Skolem- and Positivity-hardness in verification

In [4], the Positivity-hardness of decision problems for Markov chains has been established.
The problems studied in [4] are (1) to decide whether for given states 𝑠, 𝑡 and rational number 𝑝,
there is a positive integer 𝑛 such that the probability to reach 𝑡 from 𝑠 in 𝑛 steps is at least 𝑝, and
(2) the model checking problem for a probabilistic variant of monadic logic and a variant of
LTL that treats Markov chains as linear transformers of probability distributions. A connection
between similar problems and the Skolem problem and Positivity problem has also been
conjectured in [14, 2]. These decision problems are of quite different nature than the problems
studied here. In particular, the problems are shown to be Positivity-hard in Markov chains.
In contrast, e.g., partial and conditional expectations in Markov chains can be computed in
polynomial time [59] and the threshold problem for the termination probability of recursive
Markov chains, which subsume one-counter Markov chains, can be solved in polynomial space
[31]. So, the Positivity-hardness of the corresponding problems on MDPs is not inherited from
Positivity-hardness on Markov chains. Instead, our reductions show how the non-determinism
in MDPs allows encoding linear recurrence sequences in terms of optimal values of various
quantitative objectives by forcing an optimal scheduler to take certain decisions. Consequently,
the reductions are of a different nature than the reductions in [4]. There, the behavior of a
Markov chains in 𝑛 steps can directly be expressed by 𝑃𝑛 where 𝑃 is the transition probability
matrix, which resembles the matrix formulation of the Positivity problem, which asks for a
matrix 𝑀 and an initial vector 𝑣 whether there is an 𝑛 such that 𝑀𝑛𝑣 lies within a half-space 𝐻 .

In this context also the results of [27] and [45] are remarkable as they show the decidability,
subject to Schanuel’s conjecture, of reachability problems in continuous linear dynamical
systems and continuous-time MDPs, respectively, as instances of the continuous Skolem problem.
In other areas of formal verification, the Skolem problem and the Positivity problem play an
important role in the context of the termination of linear programs [15, 63, 17, 52].

The Positivity-hardness results leave the possibility open that the problems under consid-
eration are undecidable. Remarkable undecidability results in this context are presented in
[41]: The hardness of deciding almost sure termination and almost sure termination with finite
expected termination time for purely probabilistic programs formulated in the probabilistic
fragment of probabilistic guarded command language (pGCL) [47] is pinpointed to levels of
the arithmetical hierarchy (for details on the arithmetical hierarchy, see, e.g., [49]). The results
reach up to Π0

3-completeness for deciding universal almost sure termination with finite expected
termination time (Π0

1-complete problems are already undecidable while still co-recursively
enumerable). Undecidability is not surprising as the programs subsume ordinary programs. But
the universal halting problem for ordinary programs is only Π0

2-complete showing that deciding
universal termination with finite expected termination time of probabilistic programs is strictly
harder. Similarly deciding termination from a given initial configuration is Σ0

1-complete for or-
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dinary programs (halting problem) while deciding almost sure termination with finite expected
termination time for probabilistic programs from a given initial configuration is Σ0

2-complete.
Operational semantics of pGCL-programs can be given as infinite-state MDPs [36]. Applied to
the purely probabilistic fragment, this leads to infinite-state Markov chains.

1.5 Outline

In the following Section 2, we provide necessary definitions and present our notation. In
Section 3, we outline the general structure of the gadget-based reductions from the Positivity-
problem and construct an MDP-gadget in which a linear recurrence relation can be encoded in
terms of the optimal values for a variety of optimization problems (Section 3.2). Afterwards, we
construct gadgets encoding also the initial values of a linear recurrence sequence and provide
the reductions from the Positivity problems and all subsequent reductions as depicted in Figure 1
(Section 4). We conclude with final remarks and an outlook on future work (Section 5).

2. Preliminaries

We assume some familiarity with Markov decision processes and briefly introduce our notation
in the sequel. More details can be found in text books such as [60].

Markov decision process. A Markov decision process (MDP) is a tuple M = (𝑆,Act, 𝑃, 𝑠init)
where 𝑆 is a finite set of states, Act is a finite set of actions, 𝑃 : 𝑆 × Act × 𝑆 → [0, 1] ∩ Q is
the transition probability function for which we require that

∑
𝑡∈𝑆 𝑃(𝑠, 𝛼, 𝑡) ∈ {0, 1} for all

(𝑠, 𝛼) ∈ 𝑆 × Act, and 𝑠init ∈ 𝑆 is the initial state. Depending on the context, we enrich MDPs
with a weight function wgt : 𝑆 × Act → Z, a finite set of atomic propositions AP and a labeling
function 𝐿 : 𝑆 → 2AP, or a designated set of goal states Goal. The size of an MDP M, denoted by
size(M), is the sum of the number of states plus the total sum of the lengths of the encodings
of the non-zero probability values 𝑃(𝑠, 𝛼, 𝑠′) as fractions of co-prime integers in binary and, if
present, the lengths of the encodings of the weight values wgt(𝑠, 𝛼) in binary.

We write Act(𝑠) for the set of actions that are enabled in a state 𝑠, i.e., 𝛼 ∈ Act(𝑠) if and only
if

∑
𝑡∈𝑆 𝑃(𝑠, 𝛼, 𝑡) = 1. Whenever the process is in a state 𝑠, a non-deterministic choice between

the enabled actions Act(𝑠) has to be made. We call a state absorbing if the only enabled actions
lead to the state itself with probability 1 and weight 0. If there are no enabled actions, we call a
state terminal or a trap state. The paths of M are finite or infinite sequences 𝑠0 𝛼0 𝑠1 𝛼1 𝑠2 𝛼2 . . .

where states and actions alternate such that 𝑃(𝑠𝑖 , 𝛼𝑖 , 𝑠𝑖+1) > 0 for all 𝑖 ≥ 0. Throughout this
section, we assume that all states are reachable from the initial state in any MDP, i.e., that there
is a finite path from 𝑠init to each state 𝑠. We extend the weight function to finite paths. For a
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finite path 𝜋 = 𝑠0 𝛼0 𝑠1 𝛼1 . . . 𝛼𝑘−1 𝑠𝑘, we denote its accumulated weight by

wgt(𝜋) = wgt(𝑠0, 𝛼0) + . . . + wgt(𝑠𝑘−1, 𝛼𝑘−1).

Similarly, we extend the transition probability function to finite paths and write

𝑃(𝜋) = 𝑃(𝑠0, 𝛼0, 𝑠1) · . . . · 𝑃(𝑠𝑘−1, 𝛼𝑘−1, 𝑠𝑘).

A one-counter MDP is an MDP equipped with a counter. Each state-action pair increases or
decreases the counter or leaves the counter unchanged. A one-counter MDP is said to terminate
if the counter value drops below zero. We view one-counter MDPs as MDPs with a weight-
function wgt : 𝑆 × Act → {−1, 0, +1}. In this formulation a one-counter MDP terminates when a
prefix 𝜋 of a path satisfies wgt(𝜋) < 0.

A Markov chain is an MDP in which the set of actions is a singleton. There are no non-
deterministic choices in a Markov chain and hence we drop the set of actions. Consequently, a
Markov chain is a tuple M = (𝑆, 𝑃, 𝑠init), possibly extended with a weight function, a labeling, or
a designated set of goal states. The transition probability function 𝑃 is a function from 𝑆 × 𝑆 to
[0, 1] ∩ Q such that

∑
𝑡∈𝑆 𝑃(𝑠, 𝑡) ∈ {0, 1} for all 𝑠 ∈ 𝑆.

Scheduler. A scheduler for an MDP M = (𝑆,Act, 𝑃, 𝑠init) is a function 𝔖 that assigns to each
finite path 𝜋 not ending in trap state a probability distribution over Act(last(𝜋)) where last(𝜋)
denotes the last state of 𝜋. This probability distribution indicates which of the enabled actions
is chosen with which probability under 𝔖 after the process has followed the finite path 𝜋.

We allow schedulers to be randomized and history-dependent. By restricting the possibility
to randomize over actions or by restricting the amount of information from the history of a
run that can affect the choice of a scheduler, we obtain the following types of schedulers: A
scheduler 𝔖 is called deterministic if it does not make use of the possibility to randomize over
actions, i.e., if𝔖(𝜋) is a Dirac distribution for each path 𝜋. Such a scheduler𝔖 can be viewed as
a function that assigns an action to each finite path 𝜋. A scheduler 𝔖 is called memoryless if
𝔖(𝜋) = 𝔖(𝜋′) for all finite paths 𝜋, 𝜋′ with last(𝜋) = last(𝜋′). In this case, 𝔖 can be viewed as
a function that assigns to each state 𝑠 a distribution over Act(𝑠). A memoryless deterministic
scheduler hence can be seen as a function from states to actions. In an MDP with a weight
function, a scheduler 𝔖 is said to be weight-based if 𝔖(𝜋) = 𝔖(𝜋′) for all finite paths 𝜋, 𝜋′ with
wgt(𝜋) = wgt(𝜋′) and last(𝜋) = last(𝜋′). Such a scheduler assigns distributions over actions to
state-weight pairs from 𝑆 × Z.

Probability measure. Given an MDP M = (𝑆,Act, 𝑃, 𝑠init) and a scheduler 𝔖, we obtain a
probability measure Pr𝔖M,𝑠

on the set of maximal paths of M that start in 𝑠: For each finite path
𝜋 = 𝑠0 𝛼0 𝑠1 𝛼1 . . . 𝛼𝑘−1 𝑠𝑘 with 𝑠0 = 𝑠, we denote the cylinder set of all its maximal extensions
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by Cyl(𝜋). The probability mass of this cylinder set is then given by

Pr𝔖M,𝑠(Cyl(𝜋)) = 𝑃(𝜋) · Π𝑘−1
𝑖=0 𝔖(𝑠0 . . . 𝑠𝑖) (𝛼𝑖).

Recall that𝔖(𝑠0 . . . 𝑠𝑖) is a probability distribution over actions and that𝔖(𝑠0 . . . 𝑠𝑖) (𝛼𝑖) denotes
the probability that the scheduler𝔖 chooses action 𝛼 after the prefix 𝑠0 . . . 𝑠𝑖 of 𝜋. The set of
cylinder sets forms the basis of the standard tree topology on the set of maximal paths. By
Carathéodory’s extension theorem, we can extend the pre-measure Pr𝔖M,𝑠

(Cyl(𝜋)) defined on
the cylinder sets to a probability measure on the Borel 𝜎-algebra of the space of maximal paths
with the standard tree topology. We sometimes drop the subscript 𝑠 if 𝑠 is the initial state 𝑠init

of M. In a Markov chain N , we drop the reference to a scheduler and write PrN ,𝑠.
Let 𝑋 be a random variable on the set of maximal paths of M starting in 𝑠, i.e., 𝑋 is a

function assigning values from R ∪ {−∞, +∞} to maximal paths. We denote the expected value
of 𝑋 under the probability measure Pr𝔖M,𝑠

by E𝔖M,𝑠
(𝑋).

The values we are typically interested in are the worst- or best-case probabilities of an
event or the worst- or best-case expected values of a random variable. Worst or best case refers
to the possible ways to resolve the non-deterministic choices. Hence, these values are formally
expressed by taking the supremum or infimum over all schedulers. Given an MDP M, a state
𝑠, and an event, i.e., a set of maximal paths, 𝐸, or a random variable 𝑋 on the maximal paths
of M, we define

Prmax
M,𝑠 (𝐸) = sup

𝔖

Pr𝔖M,𝑠(𝐸), Prmin
M,𝑠(𝐸) = inf

𝔖
Pr𝔖M,𝑠(𝐸),

Emax
M,𝑠 (𝑋) = sup

𝔖

E𝔖M,𝑠(𝑋), and Emin
M,𝑠(𝑋) = inf

𝔖
E𝔖M,𝑠(𝑋),

where inf and sup range over all schedulers 𝔖 for M.
We use LTL-like notation such as “♢(accumulated weight < 0)” to denote the event that

a prefix of a path has a negative accumulated weight. Note that this event expresses the
termination of a one-counter MDP in our view of one-counter MDPs as MDPs with a weight-
function taking only values in {−1, 0, +1}.

Classical stochastic shortest path problem. Let M be an MDP with a weight function
wgt : 𝑆 × Act → Z and a designated set of terminal goal states Goal. We define the following
random variable Goal on maximal paths 𝜁 of M as follows:

Goal(𝜁 ) =


wgt(𝜁 ) if 𝜁 ⊨ ^Goal,

undefined otherwise.

The expected accumulated weight before reaching Goal under a scheduler 𝔖 is given by
the expected value E𝔖M,𝑠init

( Goal). It is evident that this expected value is only defined if
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Pr𝔖M,𝑠init
( Goal) = 1. The classical stochastic shortest path problem asks for the optimal value

Emax
M,𝑠init

( Goal) = sup
𝔖

E𝔖M,𝑠init
( Goal)

where the supremum ranges over all schedulers 𝔖 with Pr𝔖M,𝑠init
( Goal) = 1. The classical

stochastic shortest path problem can be solved in polynomial time [16, 30, 5].

3. Outline of the Positivity-hardness proofs

The Positivity-hardness results in this paper are obtained by sequences of reductions depicted
in Figure 1. The key steps for these sequences are the three direct reductions from the Positivity-
problem to the threshold problems for the maximal termination probability of one-counter
MDPs, the maximal partial expectation, and the maximal conditional value-at-risk, respectively.

3.1 Structure of the MDP constructed for the direct reductions from the Positivity
problem

The three direct reductions from the Positivity problem (at the top of Figure 1) follow a modular
approach: The MDPs constructed for the reductions are obtained by putting together three
gadgets as sketched in Figure 2. One gadget encodes a linear recurrence relation exploiting
the dependency of optimal values from different starting states after different amounts of
weight have been accumulated in the history of a run onto each other. A second gadget encodes
the initial values of a linear recurrence sequence. Together, these two gadget allow us to
encode linear recurrence sequences. Finally, an initial gadget is added in which each positive
amount of weight 𝑤 is accumulated with positive probability. Afterwards, the gadget is left
and a scheduler has to decide how to leave the initial gadget. The optimal decision if weight 𝑤
has been accumulated directly corresponds to whether the 𝑤th member of the given linear
recurrence sequence is non-negative.

More precisely, let a rational linear recurrence sequence be given in terms of the initial
values 𝑢0, . . . , 𝑢𝑘−1 and the coefficients 𝛼1, . . . , 𝛼𝑘 of the linear recurrence relation. The three
gadgets are connected via two states 𝑠 and 𝑡 as depicted in Figure 2. In state 𝑡 and 𝑠, actions
𝛾0, . . . , 𝛾𝑘−1 and 𝛿0, . . . , 𝛿𝑘−1, respectively, leading to the gadget encoding the initial values and
action 𝛾 and 𝛿, respectively leading to the gadget encoding the linear recurrence relation are
enabled. The gadgets will be constructed such that an optimal scheduler has to choose action 𝛾𝑖

or 𝛿𝑖 if the accumulated weight in state 𝑡 or 𝑠 is a value 𝑖 with 0 ≤ 𝑖 < 𝑘 and that it has to choose
action 𝛾 if the accumulated weight is at least 𝑘. After 𝛾 or 𝛿 is chosen, the accumulated weight
is decreased within the gadget encoding the linear recurrence relation before the MDP moves
back to the states 𝑠 and 𝑡 with positive probability.
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Figure 2. Interplay between the MDP-gadgets.

Let us now denote the maximal possible value for the quantity of interest when starting in
one of the states 𝑡 and 𝑠with accumulated weight𝑤 by𝑉 (𝑡, 𝑤) and𝑉 (𝑠, 𝑤). The linear recurrence
relation will be found in the difference 𝑑 (𝑤) def

= 𝑉 (𝑡, 𝑤) −𝑉 (𝑠, 𝑤). If the accumulated weight is
0 ≤ 𝑖 < 𝑘, the gadget encoding the initial values will make sure that 𝑑 (𝑖) = 𝑉 (𝑡, 𝑖) −𝑉 (𝑠, 𝑖) = 𝑢𝑖 .
For each of the three direct reductions from the Positivity problem, we construct one such
gadget tailored to the three respective quantities.

For accumulated weights 𝑤 of at least 𝑘, the gadget encoding the recurrence will exploit
the dependency of the optimal values 𝑉 (𝑡, 𝑤) and 𝑉 (𝑠, 𝑤) on the optimal values when starting
with lower accumulated weight. This gadget can be used in all reductions and will be described
in the next subsection.

Put together, these two gadgets ensure that 𝑑 (𝑤) = 𝑢𝑤 for all 𝑤 ≥ 0. To complete the
reductions, we add an initial gadget I depicted in Figure 3 in which each positive amount



14 / 47 J. Piribauer and C. Baier

t s

choice

sinit

1
2 1

2

wgt : +1

τ σ

Figure 3. The initial gadget I.

of weight 𝑤 is accumulated with positive probability. Afterwards, a scheduler has to choose
whether to move to state 𝑡 or state 𝑠 via the actions 𝜏 and 𝜎, respectively. It is optimal to move
to 𝑡 if and only if 𝑢𝑤 ≥ 0. Let now𝔖 be the scheduler always choosing 𝜏 in the initial gadget and
afterwards behaving optimally when choosing from 𝛾0, . . . , 𝛾𝑘−1 and 𝛾 or 𝛿0, . . . , 𝛿𝑘−1 and 𝛿 as
described above. This scheduler is optimal if and only if the given linear recurrence sequence
is non-negative. The final step to complete the reduction is to compute the value 𝑉𝔖 (𝑠init, 0) that
is achieved by 𝔖 starting from the initial state. In all three reductions, we can compute this
rational value via converging matrix series. The optimal value𝑉max(𝑠init, 0) that can be achieved
from the initial state now satisfies

𝑉max(𝑠init, 0) ≤ 𝑉𝔖 (𝑠init, 0)

if and only if the given linear recurrence sequence is non-negative.

3.2 MDP-gadget for linear recurrence relations

In this section, we demonstrate how to construct the gadget ensuring that the difference of
optimal values 𝑉 (𝑡, 𝑤) − 𝑉 (𝑠, 𝑤) follows a given linear recurrence relation with respect to
different weight levels 𝑤. In the next section, the initial values of a linear recurrence sequence
will be encoded in MDP-gadgets tailored to the different quantities we address.

Optimality equations. Let us start by the following observations on the well-known relation
between the optimal values at different states in the classical stochastic shortest path prob-
lem, i.e., the maximal expected accumulated weights before reaching a goal state (defined in
Section 2). Let M = (𝑆,Act, 𝑃, 𝑠init,wgt,Goal) be an MDP. The solution to the classical stochastic
shortest path problem satisfies the so-called Bellman equation. If 𝑉 (𝑠) denotes the value when
starting in state 𝑠, i.e., the maximal expected accumulated weight before reaching Goal from
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state 𝑠, then
𝑉 (𝑠) = max

𝛼∈Act(𝑠)
wgt(𝑠, 𝛼) +

∑︁
𝑡∈𝑆

𝑃(𝑠, 𝛼, 𝑡) · 𝑉 (𝑡)

for 𝑠 ∉ Goal and 𝑉 (𝑠) = 0 for 𝑠 ∈ Goal. This simple form of optimality equation implies the
existence of optimal memoryless deterministic schedulers for the classical stochastic shortest
path problem (in case optimal schedulers exist, i.e., if the optimal values are finite).

For problems like the optimization of the termination probability of one-counter MDPs,
it is, however, clearly not sufficient to consider the optimal values only in dependency of the
starting state. The counter-value, i.e. the weight that has been accumulated so far, is essential.
So, let𝑉 (𝑠, 𝑤) denote the maximal termination probability of a one-counter MDP when starting
in state 𝑠 with counter value 𝑤. Letting 𝑉 (𝑠, 𝑤) = 1 if 𝑤 < 0, we obtain the following equation
for all states 𝑠 and all values 𝑤 ≥ 0:

𝑉 (𝑠, 𝑤) = max
𝛼∈Act(𝑠)

∑︁
𝑡∈𝑆

𝑃(𝑠, 𝛼, 𝑡) · 𝑉 (𝑡, 𝑤 + wgt(𝑠, 𝛼)). (∗)

Already in this equation, the value 𝑉 (𝑠, 𝑤) hence possibly depends on values of the form
𝑉 (𝑠, 𝑤− 𝑖) for some 𝑖. We want to exploit this interrelation to encode linear recurrence relations

𝑢𝑛+𝑘 = 𝛼1𝑢𝑛+𝑘−1 + · · · + 𝛼𝑘𝑢𝑛

into the optimal values 𝑉 (𝑠, 𝑤). Of course, the values 𝑃(𝑠, 𝛼, 𝑡) are all non-negative. So, we
cannot directly encode a linear recurrence into the optimal values for different weight levels at
one state as the coefficients might be negative. To overcome this problem, we instead consider
the difference 𝑉 (𝑡, 𝑤) −𝑉 (𝑠, 𝑤) for two different states 𝑠 and 𝑡.

Scaling down coefficients of a linear recurrence sequence. Given the coefficients
𝛼1, . . . , 𝛼𝑘, and initial values 𝑢0 = 𝛽0, . . . , 𝑢𝑘−1 = 𝛽𝑘−1 of a linear recurrence sequence, we
have to assume that these are all sufficiently small for the following constructions. So, let us
clarify why we can assume this without loss of generality and let us provide precise bounds. Let
(𝑢𝑛)𝑛≥0 be a linear recurrence sequence specified by the initial values 𝑢0 = 𝛽0, . . . , 𝑢𝑘−1 = 𝛽𝑘−1

and the linear recurrence relation 𝑢𝑛+𝑘 = 𝛼1𝑢𝑛+𝑘−1 + · · · + 𝛼𝑘𝑢𝑛 for all 𝑛 ≥ 0. For any 𝜇 > 0 and
𝜆 > 0, the sequence (𝑣𝑛)𝑛≥0 defined by 𝑣𝑛 = 𝜇 · 𝜆𝑛 · 𝑢𝑛 for all 𝑛 is non-negative if and only if
(𝑢𝑛)𝑛≥0 is non-negative. Furthermore, it satisfies 𝑣𝑖 = 𝜇 · 𝜆𝑖 · 𝛽𝑖 for 𝑖 < 𝑘 and

𝑣𝑛+𝑘 = 𝜆 · 𝛼1 · 𝑣𝑛+𝑘−1 + 𝜆2 · 𝛼2 · 𝑣𝑛+𝑘−2 + · · · + 𝜆𝑘 · 𝛼𝑘 · 𝑣𝑛.

By choosing 𝜆 and 𝜇 appropriately, we can scale down the initial values and coefficients of the
recurrence relation for any given input.

To obtain precise bounds that will be used throughout the following sections, let 𝛼 def
=∑𝑘

𝑖=1 |𝛼𝑖 |. and let 𝜆 def
= min

(
1

𝛼·(5𝑘+5) ,
1

(5𝑘+5)

)
. So, if 𝛼 > 1, then 𝜆 = 1

𝛼·(5𝑘+5) and else 𝜆 = 1
(5𝑘+5) . The

value 𝜆 can be computed in polynomial time. As the numerical value of 𝑘 is linear in the size of
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the given original input, the coefficients 𝛼′
1

def
= 𝜆 · 𝛼1, 𝛼

′
2

def
= 𝜆2 · 𝛼2, . . . , 𝛼

′
𝑘

def
= 𝜆𝑘 · 𝛼𝑘 of the linear

recurrence of the sequence (𝑣𝑛)𝑛≥0 can be computed in polynomial time as well. The choice
of 𝜆 ensures that

∑𝑘
𝑖=1 |𝛼′

𝑖
| < 1

5𝑘+5 .
Let now 𝛼′ def

=
∑𝑘

𝑖=1 |𝛼′
𝑖
| and 𝛽

def
= max0≤ 𝑗<𝑘 |𝛽 𝑗 |. We can choose 𝜇

def
=

min(𝛼′,1)
4𝑘2𝑘+2·𝛽 . Again, since

the value 𝑘 is linear in the size of the original input, 𝜇 can be computed in polynomial time.
The initial values of the new sequence (𝑣𝑛)𝑛≥0 are now 𝛽′

𝑖

def
= 𝑣𝑖 = 𝜇 · 𝜆𝑖 · 𝛽𝑖 for 𝑖 < 𝑘, computable

in polynomial time. The choice of 𝜇 guarantees that max0≤ 𝑗<𝑘 𝛽
′
𝑗
< min( 1

4𝑘2𝑘+2 ,
𝛼′

4 ).
Since this transformation can be carried out in polynomial time, we can w.l.o.g. from now

on work under the following assumption:

ASSUMPT ION 3.1. Given the coefficients 𝛼1, . . . , 𝛼𝑘, and initial values 𝑢0 = 𝛽0, . . . , 𝑢𝑘−1 = 𝛽𝑘−1

of a linear recurrence sequence, we assume that

𝛼
def
=

𝑘∑︁
𝑖=1

|𝛼𝑖 | <
1

5𝑘 + 5
and that max

0≤ 𝑗<𝑘
𝛽 𝑗 < min( 1

4𝑘2𝑘+2 ,
𝛼

4
).

MDP-gadget for linear recurrence relations. Given the coefficients 𝛼1, . . . , 𝛼𝑘 of a linear
recurrence relation satisfying Assumption 3.1, we construct the MDP-gadget depicted in Figure 4.
The gadget contains states 𝑠, 𝑡, and trap as well as 𝑠1, . . . , 𝑠𝑘 and 𝑡1, . . . , 𝑡𝑘. In state 𝑡, an action 𝛾 is
enabled which has weight 0 and leads to state 𝑡𝑖 with probability 𝛼𝑖 if 𝛼𝑖 > 0 and to state 𝑠𝑖 with
probability |𝛼𝑖 | if 𝛼𝑖 < 0 for all 𝑖. The remaining probability leads to trap. From each state 𝑡𝑖 ,
there is an action leading to 𝑡 with weight −𝑖. The action 𝛿 enabled in 𝑠 as well as the actions
leading from states 𝑠𝑖 to 𝑠 are constructed analogously. If 𝛼𝑖 is negative, action 𝛿 reaches state 𝑡𝑖

with probability |𝛼𝑖 |. Otherwise it reaches 𝑠𝑖 with probability 𝛼𝑖 . The state trap is absorbing. As
the gadget depends on the inputs �̄� = (𝛼1, . . . , 𝛼𝑘), we call it G�̄�.

This gadget G�̄� will be integrated into MDPs without further outgoing edges from states
𝑠1, . . . , 𝑠𝑘, 𝑡1, . . . , 𝑡𝑘. For any optimization problem for which the optimal values 𝑉 depend on
the state and the weight accumulated so far and satisfy equation (∗), we can encode a linear
recurrence in an MDP containing this gadget (and possibly further actions for state 𝑡 and 𝑠):
If we know that an optimal scheduler chooses action 𝛾 in state 𝑡 and action 𝛿 in state 𝑠 if the
accumulated weight is 𝑤, then

𝑉 (𝑡, 𝑤) −𝑉 (𝑠, 𝑤) =
(
1 −

𝑘∑︁
𝑖=1

|𝛼𝑖 |
)
(𝑉 (goal, 𝑤) −𝑉 (goal, 𝑤)) +∑︁

1≤𝑖≤𝑘, 𝛼𝑖≥0
𝛼𝑖𝑉 (𝑡, 𝑤−𝑖) − 𝛼𝑖𝑉 (𝑠, 𝑤−𝑖) +∑︁

1≤𝑖≤𝑘, 𝛼𝑖<0
(−𝛼𝑖)𝑉 (𝑠, 𝑤−𝑖) + (−𝛼𝑖)𝑉 (𝑡, 𝑤−𝑖)

=

𝑘∑︁
𝑖=1

𝛼𝑖 · (𝑉 (𝑡, 𝑤−𝑖) −𝑉 (𝑠, 𝑤−𝑖)).
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Figure 4. The gadget G𝛼 to encode linear recurrence relations. The example here is depicted for a
linear recurrence of depth 2 with 𝛼1 ≥ 0 and 𝛼2 < 0. The outgoing actions 𝛾𝑖 and 𝛿𝑖 lead to the gadget
encoding initial values as depicted in Figure 2.

Note that this linear recurrence relation also holds for the optimal values in the classical
stochastic shortest path problem for example. So, the gadget alone is not yet enough for a
hardness proof. The missing ingredient is the encoding of the initial values of a linear recurrence
sequence. In order to include the encoding of the initial values in our approach, it is necessary
that optimal schedulers cannot be chosen to be memoryless. The optimal decisions have to
depend on the weight that has been accumulated in the history of a run. If this is the case, we aim
to encode the initial values by adding further outgoing actions to the states 𝑡 and 𝑠. By fine-tuning
the weights and probabilities of these actions, we can achieve that for small weights 𝑤 some of
the new actions are optimal while for large weights the actions 𝛾 and 𝛿 of the gadget are optimal.
If we manage to design the other actions such that the differences 𝑉 (𝑡, 𝑤 + 𝑖) −𝑉 (𝑠, 𝑤 + 𝑖) are
equal to given starting values 𝛽𝑖 for a sequence of weights 𝑤,𝑤 + 1, . . . , 𝑤 + 𝑘 − 1 while actions 𝛾
and 𝛿 are optimal for weights of at least 𝑤 + 𝑘, we can encode arbitrary linear recurrence
sequences. This is the goal of the subsequent section.

4. Reductions from the Positivity problem

To encode initial values of a linear recurrence sequence, we construct further MDP gadgets.
For the termination probability and expected termination time of one-counter MDPs and for
partial expectations, we can construct these gadgets directly. For the conditional value-at-risk,
we use an intermediate auxiliary random variable. Putting together these gadgets with the
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gadget G�̄� from the previous section, we obtain the basis for the Positivity-hardness results
of the respective threshold problems. The Positivity-hardness of the remaining problems is
obtained as a consequence of these results via further reductions. An overview of the chains of
reductions used is presented in Figure 1.

4.1 One-counter MDPs, energy objectives, cost problems, and quantiles

The first problem we will show to be Positivity-hard is the threshold problem for the optimal
termination probability of one-counter MDPs. From this result, Positivity-hardness results for
energy objectives, cost problems, and the computation of quantiles follow easily. Afterwards,
we adjust the reduction to show Positivity-hardness of the threshold problem for the optimal
expected termination time of almost-surely terminating one-counter MDPs.

Termination probability of one-counter MDPs. We formulated the termination of a one-
counter MDP in terms of weighted MDPs M. Recall that a one-counter MDP terminates if the
counter value drops below zero. If we consider the weight that has been accumulated instead
of the counter value, the quantities we are interested are Propt

M (♢ accumulated weight < 0) for
opt = max and opt = min. The main result we prove in this section is the following:

THEOREM 4.1. The Positivity problem is reducible in polynomial time to the following problems:
Given an MDP M and a rational 𝜗 ∈ (0, 1),

1. decide whether Prmax
M,𝑠init

(♢(accumulated weight < 0)) > 𝜗.
2. decide whether Prmin

M,𝑠init
(♢(accumulated weight < 0)) < 𝜗.

Note that if weights are encoded in unary, we can transform a weighted MDP to a one-
counter MDP that can only increase or decrease the counter value by 1 in each step in polynomial
time. The MDPs that are constructed from a linear recurrence sequence of depth 𝑘 in the proof
of Theorem 4.1 will contain only weights with an absolute value of at most 𝑘. So, they can
be transformed to one-counter MDPs in time linear in the size of the original input and we
conclude that the following two threshold problems for the optimal termination probability of
one-counter MDPs are Positivity-hard:

COROLLARY 4.2. The Positivity problem is reducible in polynomial time to the following
problems: Given a one-counter MDP M viewed as an MDP with weights in {−1, 0, +1} and a
rational 𝜗 ∈ (0, 1),

1. decide whether Prmax
M,𝑠init

(♢(accumulated weight < 0)) > 𝜗.
2. decide whether Prmin

M,𝑠init
(♢(accumulated weight < 0)) < 𝜗.

Among the direct reductions from the Positivity problem we present, the construction
of the gadget encoding the initial values of a linear recurrence sequence is arguably the sim-
plest for these optimal termination probabilities. In the formulation with weighted MDPs,
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the termination of a one-counter MDP is moreover the complement of the energy objective
“□ accumulated weight ≥ 0”. We will first prove Positivity-hardness for the threshold problem
for maximal termination probabilities and outline the necessary adjustments to show Positivity-
hardness also for the threshold problem for minimal termination probabilities afterwards.

We split the proof of Theorem 4.1 into four parts. First, we provide the construction of an
MDP from a linear recurrence sequence. Then, we show that the linear recurrence sequence is
correctly encoded in this MDP in terms of the maximal termination probabilities. To complete
the proof of item 1, we then show how to compute the threshold 𝜗 for the threshold problem
and how this establishes the correctness of the reduction. Finally, we show how to adapt the
construction to prove hardness of the threshold problem for minimal termination probabilities.

Proof of Theorem 4.1(1): construction of the MDP. Given a linear recurrence sequence
in terms of the rational coefficients 𝛼1, . . . , 𝛼𝑘 of the linear recurrence relation as well as the
rational initial values 𝛽0, . . . , 𝛽𝑘−1 for 𝑘 ≥ 2, our first goal is to construct an MDP M and a
rational 𝜗 ∈ (0, 1) such that

Prmax
M,𝑠init

(♢( accumulated weight < 0)) > 𝜗 if and only if 𝑢𝑛 < 0 for some 𝑛 ≥ 0.

By Assumption 3.1, we can assume that the input values are sufficiently small. More precisely,
we assume that

∑𝑘
𝑖=1 |𝛼𝑖 | < 1/(𝑘 + 1) and that 0 ≤ 𝛽 𝑗 < 1/(𝑘 + 1) for all 0 ≤ 𝑗 ≤ 𝑘 − 1, which is

ensured by the bounds in Assumption 3.1, and because the Positivity problem becomes trivial if
one of the values 𝛽 𝑗 with 0 ≤ 𝑗 ≤ 𝑘 − 1 is negative.

We denote the supremum of possible termination probabilities in terms of the current
state 𝑠 and counter value (accumulated weight) 𝑤 by 𝑝(𝑠, 𝑤). More precisely, in an MDP M for
𝑤 ≥ 0, we define

𝑝(𝑠, 𝑤) def
= Prmax

M,𝑠 (♢ accumulated weight < −𝑤).

The values 𝑝(𝑠, 𝑤) in an MDP with state space 𝑆 now satisfy the optimality equation (∗) from
Section 3.2 (where 𝑝(𝑠, 𝑤) takes the role of𝑉 (𝑠, 𝑤) in (∗)), which we restate here for convenience.
We have 𝑝(𝑠, 𝑤) = 1 for all states 𝑠 and all 𝑤 < 0 and

𝑝(𝑠, 𝑤) = max
𝛼∈Act(𝑠)

∑︁
𝑡∈𝑆

𝑃(𝑠, 𝛼, 𝑡) · 𝑝(𝑡, 𝑤 + wgt(𝑠, 𝛼)) for all 𝑠 ∈ 𝑆 and 𝑤 ≥ 0.

So, to capture the linear recurrence relation, we will be able to make use of the gadget G�̄� from
Section 3.2. The missing ingredient is a gadget to encode the initial values of a linear recurrence
sequence.

The new gadget O𝛽 encoding the initial values 𝛽 is depicted in Figure 5 and works as
follows: For 0 ≤ 𝑗 ≤ 𝑘−1, the action 𝛾 𝑗 enabled in 𝑡 leads to state 𝑥 𝑗 with probability 𝑘− 𝑗

𝑘+1 + 𝛽 𝑗 . By
assumption on 𝛽 𝑗 , this probability is less than 𝑘− 𝑗+1

𝑘+1 . The remaining probability leads to trap. In
state 𝑠, the action 𝛿 𝑗 leads to 𝑦 𝑗 with probability 𝑘− 𝑗

𝑘+1 and to trap with the remaining probability.
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Figure 5. Gadget O𝛽 encoding initial values of a linear recurrence sequence in terms of maximal
termination probabilities of one-counter MDPs.

For 0 ≤ 𝑗 ≤ 𝑘 − 1, one reaches trap from 𝑥 𝑗 and 𝑦 𝑗 with probability 1 and a counter change
of −( 𝑗 + 1).

Now, we glue together the initial gadget I defined in Section 3.1, the gadget encoding the
linear recurrence relation G�̄� from Section 3.2, and the new gadget O𝛽 at states 𝑡, 𝑠, and trap.
The resulting MDP M is depicted in Figure 6 – for better readability, it is depicted for 𝑘 = 2 and
assuming that 𝛼1 ≥ 0 while 𝛼2 < 0.

Proof of Theorem 4.1(1): correctness of the encoding of the linear recurrence se-
quence. In this paragraph, we show that the initial linear recurrence sequence is indeed
encoded in the maximal termination probabilities when starting from states 𝑡 and 𝑠 with differ-
ent counter values, i.e., values of accumulated weight as described in Section 3.1. More precisely,
let (𝑢𝑛)𝑛≥0 be the linear recurrence sequence given by the initial values 𝛽0, . . . 𝛽𝑘−1 and the
coefficients 𝛼1, . . . , 𝛼𝑘 of the linear recurrence relation. We prove the following:

LEMMA 4.3. For each 𝑤 ≥ 0, we have

𝑝(𝑡, 𝑤) − 𝑝(𝑠, 𝑤) = 𝑢𝑤

where 𝑝(𝑟, 𝑤) denotes the maximal termination probability from state 𝑟 ∈ {𝑠, 𝑡} when starting
with accumulated weight 𝑤 as defined above.

PROOF . For the correct interplay of the gadgets G�̄� and O𝛽, the optimal decisions in states 𝑡
and 𝑠 for different values of accumulated weights, i.e., different counter-values, are crucial.
In order to terminate, the accumulated weight has to drop below 0 before reaching trap. As
soon as the trap state is reached with non-negative accumulated weight, the process cannot
terminate anymore. The optimal decision in order to maximize the termination probability
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Figure 6. Full MDP for the reduction to the threshold problem for termination probabilities of
one-counter MDPs. The MDP contains the upper part for all 0 ≤ 𝑗 ≤ 𝑘 − 1. The middle part is depicted
for 𝑘 = 2, 𝛼1 ≥ 0, and 𝛼2 < 0.

in state 𝑡 is now easy to determine. Let ℓ be the current weight. If 0 ≤ ℓ ≤ 𝑘 − 1, choosing
action 𝛾 leads to termination with probability less than 1/(𝑘 + 1) as trap is reached immediately
with probability at least 𝑘/(𝑘 + 1) due to our assumption that

∑
𝑖≤𝑘 |𝛼𝑖 | < 1/(𝑘 + 1). Choosing

action 𝛾 𝑗 makes it impossible to terminate if ℓ > 𝑗. If ℓ ≤ 𝑗, then choosing 𝛾 𝑗 lets the process
terminate if 𝑥 𝑗 is reached. This happens with probability 𝑘− 𝑗

𝑘+1 + 𝛽 𝑗 . As 𝛽 𝑗 < 1/(𝑘 + 1) for all 𝑗,
the maximal termination probability is reached when choosing 𝛾ℓ. If ℓ ≥ 𝑘, then 𝛾 𝑗 leads to
termination with probability 0 for all 𝑗. Hence, action 𝛾 is optimal. Analogously, we see that the
optimal choice in state 𝑠 with weight ℓ is 𝛿ℓ if ℓ ≤ 𝑘 − 1 and 𝛿 otherwise.

The linear recurrence sequence (𝑢𝑛)𝑛≥0 now can be found in terms of the difference

𝑑 (𝑤) def
= 𝑝(𝑡, 𝑤) − 𝑝(𝑠, 𝑤).
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For counter value 𝑤 ≤ 𝑘 − 1, we have seen that 𝛾𝑤 and 𝛿𝑤, respectively, are the optimal actions.
Hence, 𝑑 (𝑤) = 𝑢𝑤 in this case as we have just seen that the optimal termination probability
when starting with weight 𝑤 ≤ 𝑘 − 1 is 𝑘−𝑤

𝑘+1 + 𝛽𝑤 in 𝑡 and 𝑘−𝑤
𝑘+1 in 𝑠. Furthermore, for 𝑤 > 𝑘 − 1,

actions 𝛾 and 𝛿 are optimal. So by the construction of gadget G�̄�,

𝑝(𝑡, 𝑤) − 𝑝(𝑠, 𝑤) =
(
1 −

𝑘∑︁
𝑖=1

|𝛼𝑖 |
)
(𝑝(trap, 𝑤) − 𝑝(trap, 𝑤)) +∑︁

1≤𝑖≤𝑘, 𝛼𝑖≥0
𝛼𝑖𝑝(𝑡, 𝑤−𝑖) − 𝛼𝑖𝑝(𝑠, 𝑤−𝑖) +∑︁

1≤𝑖≤𝑘, 𝛼𝑖<0
(−𝛼𝑖)𝑉 (𝑠, 𝑤−𝑖) + (−𝛼𝑖)𝑝(𝑡, 𝑤−𝑖)

=

𝑘∑︁
𝑖=1

𝛼𝑖 · (𝑝(𝑡, 𝑤−𝑖) − 𝑝(𝑠, 𝑤−𝑖)).

So, the sequence of differences satisfies the linear recurrence relation given by 𝛼1, . . . , 𝛼𝑘.
Therefore, 𝑑 (𝑤) = 𝑢𝑤 for all 𝑤 ≥ 0. ■

Proof of Theorem 4.1(1): computation of the threshold 𝝑. The state choice is reached
with any positive accumulated weight with positive probability. For the optimal choices in the
state choice with accumulated weight 𝑤, we observe that choosing 𝜏 is optimal if and only if
𝑑 (𝑤) ≥ 0. By Lemma 4.3, this holds if and only if 𝑢𝑤 ≥ 0.

Consider now the scheduler 𝔖 which always chooses 𝜏 in state choice and afterwards be-
haves according to the optimal choices as described in the proof of Lemma 4.3. This scheduler𝔖
is optimal if and only if the sequence (𝑢𝑛)𝑛≥0 is non-negative. To complete the reduction, we
will compute the value

𝜗
def
= Pr𝔖M,𝑠init

(♢(accumulated weight < 0)).

We will see that 𝜗 is a rational computable in polynomial time and we know that

Prmax
M,𝑠init

(♢(accumulated weight < 0)) ≤ 𝜗

if and only if the scheduler 𝔖 is optimal which is the case if and only if (𝑢𝑛)𝑛≥0 is non-negative.

LEMMA 4.4. In the constructed MDP M, the value 𝜗 = Pr𝔖M,𝑠init
(♢(accumulated weight < 0))

can be computed in polynomial time.

PROOF . In order to compute the value 𝜗, we first provide a recursive expression of the maximal
termination probabilities 𝑝(𝑡, 𝑤) and 𝑝(𝑠, 𝑤). By the definition of 𝔖, these are precisely the
termination probabilities under𝔖 when starting from 𝑡 or 𝑠 with some positive accumulated
weight 𝑤 ∈ N because 𝔖 behaves optimally as soon as state 𝑡 or 𝑠 has been reached.

For this recursive expression, we consider the following Markov chain C for 𝑛 ∈ N that
is also depicted in Figure 7 – for better readability, it is depicted for the case 𝑘 = 2 there:
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Figure 7. The Markov chain C depicted for 𝑘 = 2 with 𝛼1 ≥ 0 and 𝛼2 < 0.

The Markov chain C has 5𝑘 states named 𝑡−𝑘+1, . . . , 𝑡+𝑘, 𝑠−𝑘+1, . . . , 𝑠+𝑘, and goal+1, . . . , goal+𝑘.
States 𝑡−𝑘+1, . . . , 𝑡0, 𝑠−𝑘+1, . . . , 𝑠0, and goal+1, . . . , goal+𝑘 are terminal. For 0 < 𝑖, 𝑗 ≤ 𝑘, there are
transitions from 𝑡+𝑖 to 𝑡+𝑖− 𝑗 with probability 𝛼 𝑗 if 𝛼 𝑗 > 0, to 𝑠+𝑖− 𝑗 with probability |𝛼 𝑗 | if 𝛼 𝑗 < 0,
and to goal+𝑖 with probability 1 − |𝛼1 | − . . . − |𝛼𝑘 |. Transitions from 𝑠+𝑖 are defined analogously.

The idea behind this Markov chain is that the reachability probabilities describe how, for
arbitrary 𝑛 ∈ N and 1 ≤ 𝑖 ≤ 𝑘, the values 𝑝(𝑡, 𝑛𝑘 + 𝑖) and 𝑝(𝑠, 𝑛𝑘 + 𝑖) depend on the values
𝑝(𝑡, (𝑛 − 1)𝑘 + 𝑗) and 𝑝(𝑠, (𝑛 − 1)𝑘 + 𝑗) for 1 ≤ 𝑗 ≤ 𝑘. The transitions in C behave as 𝛾 and 𝛿

in M, but the decrease in the accumulated weight is explicitly encoded into the state space.
Namely, for 𝑛 ∈ N and 0 < 𝑖 ≤ 𝑘, we have

𝑝(𝑡, 𝑛𝑘 + 𝑖) =
𝑘∑︁
𝑗=1

(
PrC,𝑡+𝑖 (♢𝑡−𝑘+ 𝑗) · 𝑝(𝑡, (𝑛−1)𝑘 + 𝑗) + PrC,𝑡+𝑖 (♢𝑠−𝑘+ 𝑗) · 𝑝(𝑠, (𝑛−1)𝑘 + 𝑗)

)
(∗)

and analogously for 𝑝(𝑠, 𝑛𝑘 + 𝑖). We now group the optimal values together in the following
column vectors

𝑣𝑛 = (𝑝(𝑡, 𝑛𝑘 + 𝑘 − 1), 𝑝(𝑡, 𝑛𝑘 + 𝑘 − 2), . . . , 𝑝(𝑡, 𝑛𝑘), 𝑝(𝑠, 𝑛𝑘 + 𝑘 − 1), . . . , 𝑝(𝑠, 𝑛𝑘))⊤

for 𝑛 ∈ N. In other words, this vector contains the optimal values for the partial expectation
when starting in 𝑡 or 𝑠 with an accumulated weight from {𝑛𝑘, . . . , 𝑛𝑘 + 𝑘 − 1}. The vector 𝑣0 is
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the column vector

(𝑝(𝑡, 𝑘 − 1), . . . , 𝑝(𝑡, 0), . . . 𝑝(𝑠, 𝑘 − 1), . . . , 𝑝(𝑠, 0))⊤

and these values occur as transition probabilities in M under the actions 𝛾𝑘−1, . . . , 𝛾0 and
𝛿𝑘−1, . . . , 𝛿0.

As the reachability probabilities in C are rational and computable in polynomial time, we
conclude from equation (∗) that there is a matrix 𝐴 ∈ Q2𝑘×2𝑘 computable in polynomial time
such that 𝑣𝑛+1 = 𝐴𝑣𝑛 for all 𝑛 ∈ N. So, 𝑣𝑛 = 𝐴𝑛𝑣0 for all 𝑛 ∈ N.

As state choice is reached with weight 𝑤 with probability (1/2)𝑤 for all 𝑤 ≥ 1, the value
𝜗 =

∑∞
𝑤=1(1/2)𝑤𝑝(𝑡, 𝑤). Let 𝑐 = ( 1

2𝑘 ,
1

2𝑘−1 , . . . ,
1
21 , 0, . . . , 0). Observe that for all 𝑛 ∈ N,(

1
2𝑘

)𝑛
· 𝑐 · 𝑣𝑛 =

𝑘∑︁
𝑖=1

1
2𝑛𝑘+𝑖

𝑝(𝑡, 𝑛𝑘 + 𝑖).

Hence, we can write

𝜗 =

∞∑︁
𝑛=0

(
1
2𝑘

)𝑛
· 𝑐 · 𝑣𝑛 − 𝑝(𝑡, 0) = 𝑐 ·

∞∑︁
𝑛=0

(
1
2𝑘

)𝑛
· 𝑣𝑛 − 𝑝(𝑡, 0)

= 𝑐 ·
∞∑︁
𝑛=0

(
1
2𝑘

)𝑛
· 𝐴𝑛 · 𝑣0 − 𝑝(𝑡, 0) = 𝑐 ·

( ∞∑︁
𝑛=0

(
1
2𝑘

· 𝐴
)𝑛)

· 𝑣0 − 𝑝(𝑡, 0).

We have to subtract 𝑝(𝑡, 0) as the state choice cannot be reached with weight 0, but the summand
1 · 𝑝(𝑡, 0) occurs in the sum. As 𝑝(𝑡, 0) = 𝑘

𝑘+1 + 𝛽0, this does not cause a problem.
We claim that the matrix series involved converges to a rational matrix. We observe that

the maximal row sum in 𝐴 is at most |𝛼1 |+ . . . +|𝛼𝑘 | < 1 because the rows of the matrix contain
exactly the probabilities to reach 𝑡0, . . . 𝑡−𝑘+1, 𝑠0, . . . , and 𝑠−𝑘+1 from a state 𝑡+𝑖 or 𝑠+𝑖 in C for
1 ≤ 𝑖 ≤ 𝑘. But the probability to reach goal+𝑖 from these states is already 1−|𝛼1 |− . . .−|𝛼𝑘 |. Hence,
∥𝐴∥∞, the operator norm induced by the maximum norm ∥ · ∥∞, which equals max𝑖

∑2𝑘
𝑗=1 |𝐴𝑖 𝑗 |,

is less than 1. So, in particular, also ∥ 1
2𝑘𝐴∥∞ < 1 and hence the Neumann series

∑∞
𝑛=0

(
1
2𝑘𝐴

)𝑛
converges to

(
𝐼2𝑘 − 1

2𝑘𝐴
)−1

where 𝐼2𝑘 is the identity matrix of size 2𝑘×2𝑘. So,

𝜗 = 𝑐 ·
(
𝐼2𝑘 −

1
2𝑘

𝐴

)−1

· 𝑣0 − 𝑝(𝑡, 0)

is computable in polynomial time. ■

All in all, this finishes the proof of item (1) of Theorem 4.1: We have seen that the MDP M
and the threshold 𝜗 can be constructed in time polynomial in the size of the representations
of 𝛼1, . . . , 𝛼𝑘 and 𝛽0, . . . , 𝛽𝑘−1. As 𝜗 = Pr𝔖M,𝑠init

(♢(accumulated weight < 0)), we furthermore
know that

Prmax
M,𝑠init

(♢(accumulated weight < 0)) > 𝜗
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if and only if the scheduler 𝔖 is not optimal. By Lemma 4.3, this is the case if and only if the
given linear recurrence sequence (𝑢𝑛)𝑛≥0 has a negative member: If 𝑢𝑤 < 0 for some 𝑤 ∈ N,
then the following scheduler 𝔗 achieves a value greater than 𝜗. The scheduler 𝔗 behaves like𝔖
except when in state choice with accumulated weight 𝑤. In this case, 𝔗 chooses 𝜎 instead of 𝜏.
As choice is reached with accumulated weight 𝑤 with positive probability and 𝑝(𝑠, 𝑤) > 𝑝(𝑡, 𝑤)
this scheduler outperforms 𝔖 as it behaves optimally when reaching state 𝑡 with accumulated
weight 𝑤 as shown in the proof of Lemma 4.3. If on the other hand 𝑢𝑤 ≥ 0 for all 𝑤 ∈ N, then
𝑝(𝑡, 𝑤) > 𝑝(𝑠, 𝑤) for all 𝑤 and hence action 𝜏 is always optimal in state choice. As 𝔖 behaves
optimally once 𝑡 or 𝑠 is reached and always chooses 𝜏, scheduler 𝔖 is indeed optimal in this
case.

Finally, we want to emphasize again that the absolute values of the weights in the con-
structed MDP are at most 𝑘. Hence, if we want to view M as a one-counter MDP in which
the counter value can only be increased or decreased by 1 in each step, the constructed MDP
becomes only polynomially larger after we replace the transitions with a weight +𝑤 or −𝑤 for a
1 ≤ 𝑤 ≤ 𝑘 by a sequence of 𝑤 states decreasing or increasing the counter value, which allowed
us to conclude Corollary 4.2.

Proof of Theorem 4.1(2). The construction we provided so far shows that the threshold
problem for the maximal termination probability of one-counter MDPs is Positivity-hard. Using
exactly the same ideas, we can show that the threshold problem for the minimal termination
probability is Positivity-hard as well. Let us describe the necessary changes in the construction
that are also depicted in Figure 8. We rename the state trap to trap′ and add a transition with
weight −𝑘 to a new absorbing state trap. For all 0 ≤ 𝑗 ≤ 𝑘 − 1, now state trap is reached directly
with probability 1 and weight − 𝑗 from the states 𝑥 𝑗 and 𝑦 𝑗 . Furthermore, the probability to
reach 𝑥 𝑗 when choosing 𝛾 𝑗 in 𝑡 is changed to 𝑗+1

𝑘+1 +𝛽 𝑗 and the probability to reach trap′ is adjusted
accordingly. The analogous change is performed for 𝛿 𝑗 . Now, it is easy to check that the optimal
choice to minimize the termination probability in state 𝑡 is to choose 𝛾 if the accumulated weight
is ≥ 𝑘. In this case the probability of termination is less than 1

𝑘+1 . If the accumulated weight
is 0 ≤ ℓ < 𝑘, the optimal choice is 𝛾ℓ. The analogous result holds in state 𝑠. From then on the
proof is analogous to the proof for the maximal termination probability with the change that we
have to consider the scheduler𝔖 always choosing 𝜎 in the state choice this time. This scheduler
is optimal to minimize the termination probability if and only if the given linear recurrence
sequence is non-negative. With these adjustments, we conclude:

COROLLARY 4.5. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDP M and a rational 𝜗 ∈ (0, 1), decide whether

Prmin
M,𝑠init

(♢(accumulated weight < 0)) < 𝜗.
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Figure 8. Necessary changes to the construction for the result for minimal termination probabilities.
The initial component of the MDP is omitted here and stays unchanged.

REMARK 4.6. There is no obvious way to adjust the construction such that the Positivity-
hardness of the question whether Prmax

M,𝑠init
(♢(accumulated weight < 0)) ≥ 𝜗 would follow. One

attempt would be to provide an 𝜀 such that Prmax
M,𝑠init

(♢(accumulated weight < 0)) > 𝜗 if and
only if Prmin

M,𝑠init
(♢(accumulated weight < 0)) ≥ 𝜗 + 𝜀. This, however, probably requires a bound

on the position at which the given linear recurrence sequence first becomes negative. But this
question lies at the core of the Positivity problem. The analogous observation applies to the
question whether Prmin

M,𝑠init
(♢(accumulated weight < 0)) ≤ 𝜗 and all Positivity-hardness results

in the sequel.

Energy objectives. As the energy objective □(accumulated weight ≥ 0) is satisfied if and only
if ♢(accumulated weight < 0) does not hold, the Positivity-hardness of the threshold problem
of the optimal satisfaction probability of an energy objective follows easily. As

Prmax
M,𝑠init

(□(accumulated weight ≥ 0)) = 1 − Prmin
M,𝑠init

(♢(accumulated weight < 0)),

we conclude:

COROLLARY 4.7. The Positivity problem is reducible in polynomial time to the following
problems: Given an MDP M and a rational 𝜗 ∈ (0, 1),
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1. decide whether Prmax
M,𝑠init

(□(accumulated weight ≥ 0)) > 𝜗.
2. decide whether Prmin

M,𝑠init
(□(accumulated weight ≥ 0)) < 𝜗.

Cost problems and quantiles. The proof of the Positivity-hardness of the threshold problem
for the termination probability of one-counter MDPs in fact also serves as a proof that cost
problems and the computation of quantiles of the accumulated weight before reaching a goal
state are Positivity-hard. Observe that in the MDP constructed for Theorem 4.1 and Corollary
4.5, almost all paths 𝜁 under any scheduler satisfy ♢(accumulated weight < 0) if and only if
they satisfy trap(𝜁 ) < 0 if and only if their total accumulated weight is less than 0. Thus, we
obtain the following corollary:

COROLLARY 4.8. The Positivity problem is reducible in polynomial time to the following
problems: Given an MDP M with a designated set of trap states Goal and a rational 𝜗 ∈ (0, 1),

1. decide whether Prmax
M,𝑠init

( Goal < 0) > 𝜗.
2. decide whether Prmin

M,𝑠init
( Goal < 0) < 𝜗.

The analogous result also holds for the total accumulated weight.

Termination times of one-counter MDPs. To conclude the section, we show that not only
the threshold problems for optimal termination probabilities, but also for the optimal expected
termination times in one-counter MDPs that terminate almost surely is Positivity-hard. We
again work with weighted MDPs. Let 𝑇 be the random variable that assigns to each path in a
weighted MDP M the length of the shortest prefix 𝜋 such that wgt(𝜋) < 0. To reflect precisely
the behavior of a one-counter MDP, we now will work with MDPs where the weight is reduced
or increased by at most 1 in each step. We make a small change to the MDP constructed for the
proof of Corollary 4.5 that is depicted in Figure 8. The initial component (that is not depicted)
stays unchanged. For the remaining transitions, all transition reduce the weight or leave it
unchanged. The transitions with weight 0 do not occur directly after each other except for
the loop at the state trap that we adjust in a moment. Hence, we can add additional auxiliary
states such that along each path starting from 𝑠 or 𝑡 not reaching the state trap, the weight is
left unchanged and reduced by 1 in an alternating fashion. So, if a path starts in state 𝑠 or 𝑡 with
accumulated weight 𝑤 and terminates (i.e., reaches accumulated weight −1) before reaching
the state trap this takes 2(𝑤 + 1) steps. Now, we replace the loop at the state trap by the gadget
depicted in Figure 9 and let us call the resulting MDP N . So, when reaching trap the accumulated
weight is increased by 1 before it is reduced in every other step until termination. That means
that if a path starting in state 𝑠 or 𝑡 with weight 𝑤 does not terminate before reaching trap, the
termination time is 2(𝑤 + 1) + 3 steps.
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trap

terminal terminal ′

c : +1

c : 0

c : −1

Figure 9. Necessary
changes to the construction
for the result for for maximal
expected termination times.

Now, let 𝔖 be a scheduler and denote the probability not to terminate before reaching
trap under 𝔖 by 𝑝𝔖. For the expected termination time 𝑇 in N , we now have

E𝔖N ,𝑠init
=

( ∞∑︁
𝑖=1

(1/2)𝑖 (𝑖 + 2(𝑖 + 1))
)
+ 3 · 𝑝𝔖 = 8 + 3 · 𝑝𝔖 .

The summands (1/2)𝑖 (𝑖 + 2(𝑖 + 1)) correspond to the probability to accumulated weight 𝑖 in the
initial component which takes 𝑖 steps and the 2(𝑖 + 1) steps needed to terminate by alternatingly
leaving the weight unchanged and reducing it by 1. The three additional steps after trap occur
precisely with probability 𝑝𝔖.

Not terminating before trap corresponds exactly to not terminating at all in the MDP con-
structed for Corollary 4.5. The termination probability there is hence 1− 𝑝𝔖 for any scheduler𝔖.
It is hence possible to terminate with a probability less than 𝜗 in that MDP if and only if it is
possible to reach an expected termination time of more than 11 − 3𝜗 in N . By Corollary 4.5
and the fact that termination is reached almost surely in N under any scheduler, we hence
conclude:

COROLLARY 4.9. Let M be a one-counter MDP with initial state 𝑠init that terminates almost
surely under any scheduler, let 𝜗 be a rational, and let 𝑇 be the random variable assigning the
termination time to runs. The Positivity problem is polynomial-time reducible to the problem
whether

Emax
M,𝑠init

(𝑇 ) > 𝜗.

The analogous argument with similar changes to the MDP used in the proof of Theorem 4.1
can be used to show the analogous result for the problem whether Emin

M,𝑠init
(𝑇 ) < 𝜗.

4.2 Partial and conditional stochastic shortest path problems

Our next goal is to prove that the partial and conditional SSPPs are Positivity-hard. Note that
this stands in strong contrast to the classical SSPP, which is solvable in polynomial time [16, 30,
5]. We start by providing a formal definition of the decision versions of these two problems.
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Let M be an MDP with a designated set of terminal states Goal. We define the random
variable ⊕Goal on maximal paths 𝜁 of M:

⊕Goal(𝜁 ) =


wgt(𝜁 ) if 𝜁 ⊨ ♢Goal,

0 otherwise.

The objective in the partial SSPP is to maximize the expected value of ⊕Goal which we call the
partial expected accumulated weight, or partial expectation for short, i.e., to compute the value

PEmax
M

def
= Emax

M,𝑠init
(⊕Goal) = sup

𝔖

E𝔖M,𝑠init
(⊕Goal)

where the supremum ranges over all schedulers 𝔖. The threshold problem asks, given a
rational 𝜗, whether

PEmax
M > 𝜗.

Note that the minimization of the partial expectation can be reduced to the maximization by
multiplying all weights in M with −1.

The conditional expectation under a scheduler𝔖 that reaches Goal with positive probability
is the value

CE𝔖M
def
= E𝔖M (⊕Goal | ♢Goal).

Again, we are interested in the maximal value

CEmax
M

def
= sup

𝔖

CE𝔖

where the supremum ranges over all schedulers 𝔖 with Pr𝔖M (♢Goal) > 0. Consequently, the
threshold problem asks for a given rational 𝜗 whether

CEmax > 𝜗.

Again, multiplying all weights with −1 reduces the minimization of the conditional expectation
to the maximization. Furthermore, given a further set of states 𝐹, the problem to maximize
E𝔖M ( Goal | ♢𝐹) among all schedulers 𝔖 that reach 𝐹 with positive probability can be reduced
to the conditional SSPP in our formulation as shown in [11]2.

Partial SSPP. In the sequel, we will provide a direct reduction from the Positivity problem to
the partial SSPP using our modular approach via MDP-gadgets to prove the following result:

THEOREM 4.10. The Positivity problem is polynomial-time reducible to the decision version of
the partial SSPP, i.e., the question whether

PEmax
M > 𝜗

2 In [11], only MDPs with non-negative weights are considered. The reduction of [11], however, does not require the
restriction to non-negative weights.
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s

fail

1− ( 1
2k2(k−j)

+ βj)

1
2k2(k−j)

+ βj

γj|wgt : +k − j

1− 1
2k2(k−j)

1
2k2(k−j)

δj|wgt : +k − j

Figure 10. The gadget P𝛽 encoding the initial values in the reduction to the threshold problem for
partial expectations.

for a given MDP M and a given rational 𝜗.

Again, we split up the proof of the theorem into the construction of the MDP with the proof
of the correctness of the encoding of the linear recurrence sequence and the computation of
the threshold 𝜗.

Proof of Theorem 4.10: construction of the MDP and correctness of the encoding
of a linear recurrence sequence. Let 𝑘 be a natural number and let (𝑢𝑛)𝑛≥0 be the linear
recurrence sequence given by rationals 𝛼𝑖 for 1 ≤ 𝑖 ≤ 𝑘 and 𝛽 𝑗 for 0 ≤ 𝑗 ≤ 𝑘−1 via 𝑢0 = 𝛽0, . . . ,
𝑢𝑘−1 = 𝛽𝑘−1 and 𝑢𝑛+𝑘 = 𝛼1𝑢𝑛+𝑘−1 + · · · + 𝛼𝑘𝑢𝑛 for all 𝑛 ≥ 0. By Assumption 3.1, we can assume
w.l.o.g. that

∑
𝑖 |𝛼𝑖 | < 1

4 and that 0 ≤ 𝛽 𝑗 <
1

4𝑘2𝑘+2 for all 𝑗.
We begin by constructing a gadget P𝛽 that encodes the initial values 𝛽0, . . . , 𝛽𝑘−1. The

gadget is depicted in Figure 10 and contains states 𝑡, 𝑠, goal, and fail. For each 0 ≤ 𝑗 ≤ 𝑘 − 1, it
additionally contains states 𝑥 𝑗 and 𝑦 𝑗 . In state 𝑥 𝑗 , there is one action enabled that leads to goal
with probability 1

2𝑘2(𝑘− 𝑗) + 𝛽 𝑗 and to fail otherwise. From state 𝑦 𝑗 , goal is reached with probability
1

2𝑘2(𝑘− 𝑗) and fail otherwise. In state 𝑡, there is an action 𝛾 𝑗 leading to 𝑥 𝑗 with weight 𝑘 − 𝑗 for each
0 ≤ 𝑗 ≤ 𝑘 − 1. Likewise, in state 𝑠 there is an action 𝛿 𝑗 leading to 𝑦 𝑗 with weight 𝑘− 𝑗 for each
0 ≤ 𝑗 ≤ 𝑘 − 1.

We furthermore reuse the initial gadget I and the gadget encoding the linear recurrence
relation G�̄� from the previous section. In the gadget G�̄�, we rename the absorbing state trap to
the terminal state goal which is the target state for the partial SSPP. As before, we glue together
the three gadgets I, G�̄� and P𝛽 at states 𝑠, 𝑡, and goal. Let us call the full MDP that we obtain in
this way M which is depicted in Figure 11. We denote the state space by 𝑆.

The somewhat complicated choices of probability values lead to the following lemma
showing the correct interplay between the gadgets constructed via straight-forward computa-
tions.
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Figure 11. The full MDP for the Positivity-hardness proof for partial expectations. The MDP contains
the upper part for all 0 ≤ 𝑗 ≤ 𝑘 − 1. The middle part is depicted for 𝑘 = 2, 𝛼1 ≥ 0, and 𝛼2 < 0.

LEMMA 4.11. Consider the full MDP M. Let 0 ≤ 𝑗 ≤ 𝑘 − 1. Starting with weight −(𝑘−1)+ 𝑗 in
state 𝑡 or 𝑠, action 𝛾 𝑗 and 𝛿 𝑗 maximize the partial expectation. For positive starting weight, 𝛾 and
𝛿 are optimal.

PROOF . Suppose action 𝛾𝑖 is chosen in state 𝑡 when starting with weight −(𝑘 − 1) + 𝑗. So, state
𝑥𝑖 is reached with weight −(𝑘 − 1) + 𝑗 + (𝑘 − 𝑖) = 1 + 𝑗 − 𝑖. Then the partial expectation achieved
from this situation is

(1 + 𝑗 − 𝑖) ( 1
2𝑘2(𝑘−𝑖) + 𝛽𝑖).
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For 𝑖 > 𝑗 this value is ≤ 0 and hence 𝛾𝑖 is certainly not optimal. For 𝑖 = 𝑗, we obtain a partial
expectation of

1
2𝑘2(𝑘− 𝑗) + 𝛽 𝑗 .

For 𝑖 < 𝑗, state 𝑥𝑖 is reached with weight 1 + 𝑗 − 𝑖 ≤ 𝑘. Further, 𝛽𝑖 ≤ 1
4𝑘2𝑘+2 and 1

2𝑘2(𝑘−𝑖 ) ≤ 1
2𝑘2(𝑘− 𝑗) ·𝑘2 .

So, the partial expectation obtained via 𝛾𝑖 is at most

𝑘

2𝑘2(𝑘− 𝑗) · 𝑘2 + 𝑘

4𝑘2𝑘+2 <
1

2𝑘2(𝑘− 𝑗) .

So, indeed action 𝛾 𝑗 maximizes the partial expectation among the actions 𝛾𝑖 with 0 ≤ 𝑖 ≤ 𝑘 − 1
when the accumulated weight in state 𝑡 is −(𝑘 − 1) + 𝑗. The argument for state 𝑠 is the same
with 𝛽𝑖 = 0 for all 𝑖. It is easy to see that for accumulated weight −(𝑘 − 1) + 𝑗 with 0 ≤ 𝑗 ≤ 𝑘 − 1
actions 𝛾 or 𝛿 are not optimal in state 𝑡 or 𝑠: If goal is reached immediately, the weight is not
positive and otherwise states 𝑡 or 𝑠 are reached with lower accumulated weight again. The
values 𝛽 𝑗 are chosen small enough such that also a switch from state 𝑡 to 𝑠 while accumulating
negative weight does not lead to a higher partial expectation.

For positive accumulated weight 𝑤, the optimal partial expectation when choosing 𝛾 first is
at least 3

4𝑤 by construction and the fact that a positive value can be achieved from any possible
successor state via one of the actions 𝛾 𝑗 and 𝛿 𝑗 with 0 ≤ 𝑗 ≤ 𝑘 − 1. Choosing 𝛾 𝑗 on the other
hands results in a partial expectation of at most (𝑘 +𝑤) · ( 1

4𝑘2𝑘+2 + 1
2𝑘2 ) which is easily seen to be

less than 3
4𝑤 as 𝑘 ≥ 2. ■

For each weight 𝑤, denote by 𝑒(𝑡, 𝑤) and 𝑒(𝑠, 𝑤) the optimal partial expectation when
starting in state 𝑡 or 𝑠 with accumulated weight 𝑤 in M as if the respective state was reached
from the initial state with weight 𝑤 and probability 1. For each weight 𝑤 ≥ −𝑘 + 1, denote by
𝑑 (𝑤) the difference 𝑒(𝑡, 𝑤) − 𝑒(𝑠, 𝑤) between these optimal partial expectation when starting
in state 𝑡 and 𝑠 with weight 𝑤. Comparing action 𝛾 𝑗 and 𝛿 𝑗 for starting weight −(𝑘−1)+ 𝑗, we
conclude from the previous lemma that the difference between optimal values 𝑑 (−(𝑘−1)+ 𝑗) is
equal to 𝛽 𝑗 , for 0 ≤ 𝑗 ≤ 𝑘 − 1.

The important fact we use next is that for partial expectations, the optimal values 𝑒(𝑟, 𝑤)
for states 𝑟 ∈ 𝑆 \ {goal} and starting weights 𝑤 ∈ Z satisfies the optimality equation (∗) from
Section 3.2 when setting 𝑒(goal, 𝑤) = 𝑤 as already shown in [25]:

𝑒(𝑟, 𝑤) = max
𝛼∈Act(𝑟)

∑︁
𝑟′∈𝑆

𝑃(𝑟, 𝛼, 𝑟′) · 𝑒(𝑟′, 𝑤 + wgt(𝑠, 𝛼)).

By the fact that G�̄� encodes the given linear recurrence relation as soon as 𝛾 and 𝛿 are the
optimal actions as shown in Section 3.2, we conclude the following lemma:

LEMMA 4.12. Consider the linear recurrence sequence (𝑢𝑛)𝑛≥0 given above by 𝛼1, . . . , 𝛼𝑘 and
𝛽0, . . . , 𝛽𝑘−1 and the MDP M constructed from this sequence. We have

𝑑 (−(𝑘−1) + 𝑛) = 𝑢𝑛
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for all 𝑛 with the values 𝑑 (𝑤) just defined.

Proof of Theorem 4.10: computation of the threshold 𝝑. Let us now consider a run of the
MDP M. For any 𝑤 > 0, state 𝑐 is reached with accumulated weight 𝑤 with positive probability.
As before, an optimal scheduler has to decide whether the partial expectation when starting
with weight 𝑤 is better in state 𝑠 or 𝑡: Action 𝜏 is optimal in 𝑐 for accumulated weight 𝑤 if and
only if 𝑑 (𝑤) ≥ 0. Once 𝑡 or 𝑠 is reached, the optimal actions are given by Lemma 4.11. Let
𝔖 be the scheduler that always chooses 𝜏 in 𝑐 and actions 𝛾, 𝛾0, . . . , 𝛾𝑘−1, 𝛿, . . . as described in
Lemma 4.11. We conclude that 𝔖 is optimal if and only if the given linear recurrence sequence
is non-negative. The remaining step is hence in our reduction is hence to prove that the partial
expectation under 𝔖 is rational and can be computed in polynomial time:

LEMMA 4.13. Let𝔖 be the scheduler for the constructed MDP M always choosing 𝜏 in 𝑐 and ac-
tions 𝛾, 𝛾0, . . . , 𝛾𝑘−1, 𝛿, . . . as described in Lemma 4.11. The value PE𝔖M is rational and computable
in polynomial time.

PROOF . Recall that the scheduler 𝔖 chooses 𝛾 and 𝛿, respectively, as long as the accumulated
weight is positive. For an accumulated weight of −(𝑘 − 1) + 𝑗 for 0 ≤ 𝑗 ≤ 𝑘 − 1, it chooses
actions 𝛾 𝑗 and 𝛿 𝑗 , respectively.

Analogously to the proof of Lemma 4.4, we want to recursively express the partial expecta-
tions under𝔖 starting from 𝑡 or 𝑠 with some positive accumulated weight 𝑛 ∈ Nwhich we again
denote by 𝑒(𝑡, 𝑛) and 𝑒(𝑠, 𝑛), respectively. In order to do so, we reuse the following Markov
chain C from Lemma 4.4 also depicted in Figure 7 which we briefly recall here: The Markov
chain C has 5𝑘 states named 𝑡−𝑘+1, . . . , 𝑡+𝑘, 𝑠−𝑘+1, . . . , 𝑠+𝑘, and goal+1, . . . , goal+𝑘. States 𝑡−𝑘+1, . . . ,
𝑡0, 𝑠−𝑘+1, . . . , 𝑠0, and goal+1, . . . , goal+𝑘 are absorbing. For 0 < 𝑖, 𝑗 ≤ 𝑘, there are transitions from
𝑡+𝑖 to 𝑡+𝑖− 𝑗 with probability 𝛼 𝑗 if 𝛼 𝑗 > 0, to 𝑠+𝑖− 𝑗 with probability |𝛼 𝑗 | if 𝛼 𝑗 < 0, and to goal+𝑖 with
probability 1 − |𝛼1 | − . . . − |𝛼𝑘 |. Transitions from 𝑠+𝑖 are defined analogously.

The idea behind this Markov chain is that the reachability probabilities describe how, for
arbitrary 𝑛 ∈ N and 1 ≤ 𝑖 ≤ 𝑘, the values 𝑒(𝑡, 𝑛𝑘 + 𝑖) and 𝑒(𝑠, 𝑛𝑘 + 𝑖) depend on 𝑛 and the values
𝑒(𝑡, (𝑛 − 1)𝑘 + 𝑗) and 𝑒(𝑠, (𝑛 − 1)𝑘 + 𝑗) for 1 ≤ 𝑗 ≤ 𝑘. The transitions in C behave as 𝛾 and 𝛿

in M, but the decrease in the accumulated weight is explicitly encoded into the state space.
Namely, for 𝑛 ∈ N and 0 < 𝑖 ≤ 𝑘, we have

𝑒(𝑡, 𝑛𝑘 + 𝑖) =
𝑘∑︁
𝑗=1

(
PrC,𝑡+𝑖 (♢𝑡−𝑘+ 𝑗) · 𝑒(𝑡, (𝑛−1)𝑘 + 𝑗) + PrC,𝑡+𝑖 (♢𝑠−𝑘+ 𝑗) · 𝑒(𝑠, (𝑛−1)𝑘 + 𝑗)

)
+

𝑘∑︁
𝑗=1

PrC,𝑡+𝑖 (♢goal+ 𝑗) · (𝑛𝑘 + 𝑗) (∗∗)
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and analogously for 𝑒(𝑠, 𝑛𝑘 + 𝑖). We now group the optimal values together in the following
column vectors

𝑣𝑛 = (𝑒(𝑡, 𝑛𝑘 + 𝑘), 𝑒(𝑡, 𝑛𝑘 + 𝑘 − 1), . . . , 𝑒(𝑡, 𝑛𝑘 + 1), 𝑒(𝑠, 𝑛𝑘 + 𝑘), . . . , 𝑒(𝑠, 𝑛𝑘 + 1))⊤

for 𝑛 ∈ N. In other words, this vector contains the optimal values for the partial expectation
when starting in 𝑡 or 𝑠 with an accumulated weight from {𝑛𝑘 + 1, . . . , 𝑛𝑘 + 𝑘}. Further, we define
the vector containing the optimal values for weights in {−𝑘 +1, . . . , 0} which are the least values
of accumulated weight reachable under scheduler 𝔖.

𝑣−1 = (𝑒(𝑡, 0), 𝑒(𝑡,−1), . . . , 𝑒(𝑡,−𝑘 + 1), 𝑒(𝑠, 0), 𝑒(𝑠,−1), . . . , 𝑒(𝑠,−𝑘 + 1))⊤.

As we have seen, these values are given as follows:

𝑒(𝑡,−𝑘 + 1 + 𝑗) = 1
2𝑘2(𝑘− 𝑗) + 𝛽 𝑗 and 𝑒(𝑠,−𝑘 + 1 + 𝑗) = 1

2𝑘2(𝑘− 𝑗)

for 0 ≤ 𝑗 ≤ 𝑘 − 1.
As the reachability probabilities in C are rational and computable in polynomial time, we

conclude from (∗∗) that there are a matrix 𝐴 ∈ Q2𝑘×2𝑘, and vectors 𝑎 and 𝑏 in Q2𝑘 computable
in polynomial time such that

𝑣𝑛 = 𝐴𝑣𝑛−1 + 𝑛𝑎 + 𝑏,

for all 𝑛 ∈ N. We claim that the following explicit representation for 𝑛 ≥ −1 satisfies this
recursion:

𝑣𝑛 = 𝐴𝑛+1𝑣−1 +
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖𝑎 +
𝑛∑︁
𝑖=0

𝐴𝑖𝑏.

We show this by induction: Clearly, this representation yields the correct value for 𝑣−1. So,
assume 𝑣𝑛 = 𝐴𝑛+1𝑣−1 +

∑𝑛
𝑖=0(𝑛 − 𝑖)𝐴𝑖𝑎 + ∑𝑛

𝑖=0 𝐴
𝑖𝑏. Then,

𝑣𝑛+1 = 𝐴(𝐴𝑛+1𝑣−1 +
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖𝑎 +
𝑛∑︁
𝑖=0

𝐴𝑖𝑏) + (𝑛 + 1)𝑎 + 𝑏

= 𝐴𝑛+2𝑣−1 +
(

𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖+1𝑎

)
+ (𝑛 + 1)𝐴0𝑎 +

(
𝑛+1∑︁
𝑖=1

𝐴𝑖𝑏

)
+ 𝐴0𝑏

= 𝐴𝑛+2𝑣−1 +
𝑛+1∑︁
𝑖=0

(𝑛 + 1 − 𝑖)𝐴𝑖𝑎 +
𝑛+1∑︁
𝑖=0

𝐴𝑖𝑏.

So, we have an explicit representation for 𝑣𝑛. The value we are interested in is

PE𝔖M =

∞∑︁
ℓ=1

(1/2)ℓ𝑒(𝑡, ℓ).
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Let 𝑐 = ( 1
2𝑘 ,

1
2𝑘−1 , . . . ,

1
21 , 0, . . . , 0). Then,

( 1
2𝑘

)𝑛𝑐 · 𝑣𝑛 =
𝑘∑︁
𝑖=1

1
2𝑛𝑘+𝑖

𝑒(𝑡, 𝑛𝑘 + 𝑖).

Hence, we can write

PE𝔖M =

∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝑐 · 𝑣𝑛 = 𝑐 ·
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝑣𝑛

= 𝑐 ·
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛(𝐴𝑛+1𝑣−1 +
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖𝑎 +
𝑛∑︁
𝑖=0

𝐴𝑖𝑏)

= 𝑐 ·
(
(
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝐴𝑛+1)𝑣−1 + (
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖)𝑎 + (
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛
𝑛∑︁
𝑖=0

𝐴𝑖)𝑏
)
.

We claim that all of the matrix series involved converge to rational matrices. As in the
proof of Lemma 4.4, we observe that the maximal row sum in 𝐴 is at most |𝛼1 |+ . . . +|𝛼𝑘 | < 1
because the rows of the matrix contain exactly the probabilities to reach 𝑡0, . . . 𝑡−𝑘+1, 𝑠0, . . . , and
𝑠−𝑘+1 from a state 𝑡+𝑖 or 𝑠+𝑖 in C for 1 ≤ 𝑖 ≤ 𝑘. But the probability to reach goal+𝑖 from these
states is already 1−|𝛼1 |− . . .−|𝛼𝑘 |. Hence, ∥𝐴∥∞, the operator norm induced by the maximum
norm ∥ · ∥∞, which equals max𝑖

∑2𝑘
𝑗=1 |𝐴𝑖 𝑗 |, is less than 1. So, of course also ∥ 1

2𝑘𝐴∥∞ < 1 and hence
the Neumann series

∑∞
𝑛=0( 1

2𝑘𝐴)
𝑛 converges to (𝐼2𝑘 − 1

2𝑘𝐴)
−1 where 𝐼2𝑘 is the identity matrix of

size 2𝑘×2𝑘. So,
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝐴𝑛+1 = 𝐴
∞∑︁
𝑛=0

( 1
2𝑘

𝐴)𝑛 = 𝐴(𝐼2𝑘 −
1
2𝑘

𝐴)−1.

Note that ∥𝐴∥∞ < 1 also implies that 𝐼2𝑘 − 𝐴 is invertible. We observe that for all 𝑛,
𝑛∑︁
𝑖=0

𝐴𝑖 = (𝐼2𝑘 − 𝐴)−1(𝐼2𝑘 − 𝐴𝑛+1)

which is shown by straight-forward induction. Therefore,
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛
𝑛∑︁
𝑖=0

𝐴𝑖 = (𝐼2𝑘 − 𝐴)−1

( ∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝐼2𝑘 − 𝐴
∞∑︁
𝑛=0

( 1
2𝑘

𝐴)𝑛
)

= (𝐼2𝑘 − 𝐴)−1
(

2𝑘

2𝑘−1
𝐼2𝑘 − 𝐴(𝐼2𝑘 −

1
2𝑘

𝐴)−1
)
.

Finally, we show by induction that
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖 = (𝐼2𝑘 − 𝐴)−2(𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴)).
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This is equivalent to

(𝐼2𝑘 − 𝐴)2
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖 = 𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴).

For 𝑛 = 0, both sides evaluate to 0. So, we assume the claim holds for 𝑛.

(𝐼2𝑘 − 𝐴)2
𝑛+1∑︁
𝑖=0

(𝑛 + 1 − 𝑖)𝐴𝑖 = (𝐼2𝑘 − 𝐴)2
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖 + (𝐼2𝑘 − 𝐴)2
𝑛∑︁
𝑖=0

𝐴𝑖

IH
= 𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴) + (𝐼2𝑘 − 𝐴)2

𝑛∑︁
𝑖=0

𝐴𝑖

= 𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴) + (𝐼2𝑘 − 𝐴)2(𝐼2𝑘 − 𝐴)−1(𝐼2𝑘 − 𝐴𝑛+1)
= 𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴) + 𝐼2𝑘 − 𝐴 − 𝐴𝑛+1 + 𝐴𝑛+2

= 𝐴𝑛+2 − 𝐴 + (𝑛 + 1) (𝐼2𝑘 − 𝐴).

The remaining series is the following:
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛
𝑛∑︁
𝑖=0

(𝑛 − 𝑖)𝐴𝑖 =

∞∑︁
𝑛=0

( 1
2𝑘

)𝑛(𝐼2𝑘 − 𝐴)−2(𝐴𝑛+1 − 𝐴 + 𝑛(𝐼2𝑘 − 𝐴))

= (𝐼2𝑘 − 𝐴)−2

( ∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝐴𝑛+1 −
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝐴 +
∞∑︁
𝑛=0

( 1
2𝑘

)𝑛𝑛(𝐼2𝑘 − 𝐴)
)

= (𝐼2𝑘 − 𝐴)−2
(
𝐴(𝐼2𝑘 −

1
2𝑘

𝐴)−1 − 2𝑘

2𝑘−1
𝐴 + 2𝑘

(2𝑘−1)2 (𝐼2𝑘 − 𝐴)
)
.

We conclude that all expressions in the representation of PE𝔖M above are rational and
computable in polynomial time. ■

As we have also seen before, the originally given linear recurrence sequence contains a
negative member if and only if the scheduler 𝔖 is not optimal: If the sequence is non-negative,
the scheduler𝔖 is optimal as it behaves optimally once 𝑡 or 𝑠 has been reached and as it always
moves to state 𝑡 instead of 𝑠 from choice for any value 𝑤 of accumulated weight, which is
optimal by Lemma 4.12. If the sequence is negative at position 𝑛, then a scheduler that behaves
like 𝔖, except for choosing 𝜎 for accumulated weight 𝑤 = 𝑛 − (𝑘−1) in state choice is better
than 𝔖 as 𝑒(𝑠, 𝑤) > 𝑒(𝑡, 𝑤) in this case. Note that for positions 𝑛 = 0, . . . , 𝑘−1, we may assume
that 𝑢𝑛 is non-negative as otherwise the sequence trivially becomes negative. So, the originally
given linear recurrence sequence contains a negative member if and only if PEmax

M > PE𝔖M for
the MDP M constructed from the linear recurrence sequence in polynomial time above. This
finishes the proof of Theorem 4.10.

Conditional SSPP. For the Positivity-hardness of the threshold problem for conditional ex-
pectations, we provide a reduction from the threshold problem for partial expectations in the
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following lemma. Note that a reduction in the other direction is provided in [59] rendering the
two problems polynomial-time inter-reducible.

LEMMA 4.14. The threshold problem for the partial SSPP is polynomial-time reducible to the
threshold problem of the conditional SSPP.

PROOF . Let M be an MDP with a designated terminal target state goal and let 𝜗 be a rational
number. We construct an MDP N such that PEmax

M > 𝜗 if and only if CEmax
N > 𝜗. We obtain N

by adding a new initial state 𝑠′init, renaming the state goal to goal′, and adding a new state goal
to M. In 𝑠′init, one action with weight 0 is enabled leading to the old initial state 𝑠init and to goal
with probability 1/2 each. From goal′ there is one new action leading to goal with probability 1
and weight +𝜗.

Each scheduler𝔖 for M can be seen as a scheduler for N and vice versa. Now, we observe
that for any scheduler 𝔖,

CE𝔖N =
1/2(PE𝔖M + Pr𝔖M (♢goal)𝜗)

1/2 + 1/2Pr𝔖M (♢goal)
=
PE𝔖M + Pr𝔖M (♢goal)𝜗

1 + Pr𝔖M (♢goal)
.

Hence, PEmax
M > 𝜗 if and only if CEmax

N > 𝜗. ■

Together with the Positivity-hardness of the threshold problem for partial expectations
(Theorem 4.10), we conclude:

THEOREM 4.15. The Positivity problem is reducible in polynomial time to the following problem:
Given an MDP M and a rational 𝜗, decide whether CEmax

M > 𝜗.

Two-sided partial SSPP. To conclude this section, we prove the Positivity-hardness of a
two-sided version of the partial SSPP with two non-negative weight functions. The key idea is
that, instead of using arbitrary integer weights, we can simulate the non-monotonic behavior of
the accumulated weight along a path in the partial SSPP with arbitrary weights with two non-
negative weight functions. In the definition of the random variable ⊕Goal, we can replace the
choice that paths not reaching Goal are assigned weight 0 by a second weight function. Let M =

(𝑆,Act, Pr, 𝑠init,wgtgoal,wgtfail, goal, fail) be an MDP with two designated terminal states goal and
fail and two non-negative weight functions wgtgoal : 𝑆 × Act → N and wgtfail : 𝑆 × Act → N.
Assume that the probability Prmin

M,𝑠init
(♢{goal, fail}) = 1. Define the following random variable 𝑋

on maximal paths 𝜁 :

𝑋 (𝜁 ) =


wgtgoal(𝜁 ) if 𝜁 ⊨ ♢goal,

wgtfail(𝜁 ) if 𝜁 ⊨ ♢fail.

Due to the assumption that goal or fail is reached almost surely under any scheduler, the expected
value E𝔖M,𝑠init

(𝑋) is well-defined for all schedulers 𝔖 for M. We call the value Emax
M,𝑠init

(𝑋) =

sup𝔖 E
𝔖
M,𝑠init

(𝑋) the optimal two-sided partial expectation. We can show that the threshold
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Figure 12. The gadget T𝛽
encoding initial values in
terms of two-sided partial
expectations.

problem for the two-sided partial expectation is Positivity-hard as well by a small adjustment
of the construction above.

THEOREM 4.16. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDP M = (𝑆,Act, Pr, 𝑠init,wgtgoal,wgtfail, goal, fail) as above and a rational 𝜗, decide
whether Emax

M,𝑠init
(𝑋) > 𝜗.

PROOF . Given the parameters 𝛼1, . . . , 𝛼𝑘 and 𝛽0, . . . , 𝛽𝑘−1 of a rational linear recurrence se-
quence, we can construct an MDP M′ = (𝑆,Act, Pr, 𝑠init,wgt, goal, fail) with one weight function
wgt : 𝑆 × Act → Z similar to the MDP M depicted in Figure 11. W.l.o.g., we again assume that∑

𝑖 |𝛼𝑖 | < 1
4 and that 0 ≤ 𝛽 𝑗 <

1
4𝑘2𝑘+2 for all 𝑗. The non-negativity of the values 𝛽 𝑗 for all 𝑗 can

be assumed as the Positivity problem is trivial otherwise. The initial gadget and the gadget G�̄�

are as before. The gadget P𝛽, however, is slightly modified and replaced by the gadget xT𝛽
depicted in Figure 12. For this gadget, we define 𝛼 =

∑𝑘
𝑖=1 |𝛼𝑖 |, 𝑝1 = (1 − 𝛼) ( 1

2𝑘2(𝑘− 𝑗) + 𝛽 𝑗),
𝑝2 = (1 − 𝛼) (1 − ( 1

2𝑘2(𝑘− 𝑗) + 𝛽 𝑗)), 𝑞1 = (1 − 𝛼) 1
2𝑘2(𝑘− 𝑗) , and 𝑞2 = (1 − 𝛼) (1 − 1

2𝑘2(𝑘− 𝑗) ). With the
transitions as in the figure, the probability to reach goal or fail and the weight accumulated
does not change when choosing action 𝛾 𝑗 or 𝛿 𝑗 compared to the gadget P𝛽. The only difference
is that the expected time to reach goal or fail changes. The steps alternate between probability
1 − 𝛼 and probability 0 to reach goal or fail – just as in the gadget G�̄�. In this way, it makes no
difference for the expected time before reaching goal or fail when a scheduler stops choosing 𝛾

and 𝛿. We can, in fact, compute the expected time 𝑇 to reach goal or fail from 𝑠init under any
scheduler quite easily: Reaching 𝑡 or 𝑠 takes 3 steps in expectation. Afterwards, the number of
steps taken is 1 + 2ℓ with probability 𝛼ℓ · (1 − 𝛼). In expectation, this yields

∞∑︁
ℓ=0

(1 + 2ℓ)𝛼ℓ · (1 − 𝛼) =
( ∞∑︁
ℓ=0

2(ℓ + 1)𝛼ℓ · (1 − 𝛼)
)
− 1 =

2
1 − 𝛼

− 1.

additional steps. So,
𝑇 = 3 + 2

1 − 𝛼
− 1 = 2 + 2

1 − 𝛼
.
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The optimal scheduler𝔖 for the partial expectation in M′ is the same as in the MDP M above.
Also, the value 𝜗 of this scheduler can be computed as in Lemma 4.13. So, PEmax

M′,𝑠init
> 𝜗 if and

only if the given linear recurrence sequence is eventually negative.
Note that all weights in M′ are ≥ −𝑘. We define two new weight functions to obtain an

MDP N from M′: We let wgtgoal(𝑠, 𝛼) = wgt(𝑠, 𝛼) +𝑘 and wgtfail(𝑠, 𝛼) = +𝑘 for all (𝑠, 𝛼) ∈ 𝑆×Act.
Both weight functions take only non-negative integer values.

Any scheduler 𝔖 for M′ can be viewed as a scheduler for N , and vice versa, as the two
MDPs only differ in the weight functions. Further, we observe that for each maximal path 𝜁

ending in goal or fail in M′ and at the same time in N , we have 𝑋 (𝜁 ) = ⊕goal(𝜁 ) + 𝑘 · length(𝜁 ).
(Recall that ⊕goal(𝜁 ) equals wgt(𝜁 ) if 𝜁 reaches goal and 0 if 𝜁 reaches fail.) As the expected
time before goal or fail is reached is constant, namely 𝑇 under any scheduler, it follows that for
all schedulers 𝔗 we have

E𝔗N ,𝑠init
(𝑋) = PE𝔗M′,𝑠init

+ 𝑘 · 𝑇 .

Therefore, Emax
N ,𝑠init

(𝑋) > 𝜗 + 𝑘 · 𝑇 if and only if the given linear recurrence sequence eventually
becomes negative. ■

4.3 Conditional value-at-risk for accumulated weights

Lastly, we aim to prove the Positivity-hardness of the threshold problem for the CVaR in this
section. To this end, we provide a further direct reduction from the Positivity-problem to the
threshold problem for the expected value of an auxiliary random variable closely related to the
CVaR using our MDP-gadgets.

Conditional Value-at-Risk. Given an MDP M = (𝑆,Act, 𝑃, 𝑠init,wgt,Goal) with a scheduler𝔖,
a random variable 𝑋 defined on runs of the MDP with values in R and a value 𝑝 ∈ [0, 1], we
define the value-at-risk as VaR𝔖

𝑝 (𝑋) = sup{𝑟 ∈ R|Pr𝔖M (𝑋 ≤ 𝑟) ≤ 𝑝}. So, the value-at-risk is the
point at which the cumulative distribution function of 𝑋 reaches or exceeds 𝑝. The conditional
value-at-risk is now the expectation of 𝑋 under the condition that the outcome belongs to
the 𝑝 worst outcomes – in this case, the 𝑝 lowest outcomes. Denote VaR𝔖

𝑝 (𝑋) by 𝑣. Following
the treatment of random variables that are not continuous in general in [43], we define the
conditional value-at-risk as follows:

CVaR𝔖
𝑝 (𝑋) = 1/𝑝(Pr𝔖M (𝑋 < 𝑣) · E𝔖M (𝑋 |𝑋 < 𝑣) + (𝑝 − Pr𝔖M (𝑋 < 𝑣)) · 𝑣).

Outcomes of 𝑋 which are less than 𝑣 are treated differently to outcomes equal to 𝑣 as it is
possible that the outcome 𝑣 has positive probability and we only want to account exactly for
the 𝑝 worst outcomes. Hence, we take only 𝑝 − Pr𝔖M (𝑋 < 𝑣) of the outcomes which are exactly
𝑣 into account as well. To provide worst-case guarantees or to find risk-averse policies, we are
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interested in the maximal and minimal conditional value-at-risk

CVaRmax
𝑝 (𝑋) = sup

𝔖

CVaR𝔖
𝑝 (𝑋) and CVaRmin

𝑝 (𝑋) = inf
𝔖

CVaR𝔖
𝑝 (𝑋).

In our formulation here, low outcomes are considered to be bad. Completely analogously, one
can define the conditional value-at-risk for the highest 𝑝 outcomes.

The main result of the section is the following:

THEOREM 4.17. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDP M and rationals 𝜗 and 𝑝 ∈ (0, 1), decide whether

CVaRmax
𝑝 ( goal) > 𝜗.

We will use an auxiliary optimization problem to prove this result. We begin with the
following consideration: Given an MDP M with initial state 𝑠init, we construct a new MDP N . We
add a new initial state 𝑠′init. In 𝑠′init, there is only one action with weight 0 enabled leading to 𝑠init

with probability 1
3 and to goal with probability 2

3 . So, at least two thirds of the paths accumulate
weight 0 before reaching the goal. Hence, we can already say that VaR𝔖

1/2( goal) = 0 in N under
any scheduler 𝔖. Note that schedulers for M can be seen as schedulers for N and vice versa.
This considerably simplifies the computation of the conditional value-at-risk in N . Define the
random variable goal on paths 𝜁 by

goal(𝜁 ) = min( goal(𝜁 ), 0).

Now, the conditional value-at-risk for the probability value 1/2 under a scheduler 𝔖 in N is
given by CVaR𝔖

1/2( goal) = 2 · E𝔖N ,𝑠init
( goal) = 2

3 · E
𝔖
M,𝑠init

( goal). So, the result follows from the
following lemma:

LEMMA 4.18. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDP M and a rational 𝜗, decide whether Emax

M,𝑠init
( goal) > 𝜗.

PROOF . The first important observation is that the optimal expectation 𝑒(𝑞, 𝑤) of goal for
different starting states 𝑞 and starting weights 𝑤 satisfies equation (∗) from Section 3.2, i.e.,
𝑒(𝑞, 𝑤) = ∑

𝑟∈𝑆 𝑃(𝑞, 𝛼, 𝑟) · 𝑒(𝑟, 𝑤+wgt(𝑞, 𝛼)) if an optimal scheduler chooses actions 𝛼 in state
𝑞 ≠ goal when the accumulated weight is 𝑤. The value 𝑒(goal, 𝑤) is 𝑤 if 𝑤 ≤ 0 and 0 otherwise.
This allows us to reuse the gadget G�̄� to encode a linear recurrence relation.

We again adjust the gadget encoding the initial values of a linear recurrence sequence. So,
let 𝑘 be a natural number, 𝛼1, . . . , 𝛼𝑘 be rational coefficients of a linear recurrence sequence,
and 𝛽0, . . . , 𝛽𝑘−1 ≥ 0 the rational initial values. W.l.o.g. we again assume these values to be small
using Assumption 3.1, namely:

∑
1≤𝑖≤𝑘 |𝛼𝑖 | ≤ 1

5(𝑘+1) and for all 𝑗, 𝛽 𝑗 ≤ 1
3𝛼 where 𝛼 =

∑
1≤𝑖≤𝑘 |𝛼𝑖 |.

The new gadget that encodes the initial values of a linear recurrence sequence is depicted
in Figure 13. In states 𝑡 and 𝑠, there is a choice between actions 𝛾 𝑗 and 𝛿 𝑗 , respectively, for
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Figure 13. The gadget encoding initial values for the reduction to the threshold problem for the
conditional value-at-risk. The gadget contains the depicted states and actions for each 0 ≤ 𝑗 ≤ 𝑘 − 1.
The probability 𝛼 is ∑

1≤𝑖≤𝑘 |𝛼 𝑖 |.

0 ≤ 𝑗 ≤ 𝑘 − 1. After gluing together this gadget with the gadget G�̄� at states 𝑡, 𝑠, and goal,
we prove that the interplay between the gadgets is correct: Let 0 ≤ 𝑗 ≤ 𝑘 − 1. Starting with
accumulated weight −𝑘+ 𝑗 in state 𝑡, the action 𝛾 𝑗 maximizes the partial expectation among
the actions 𝛾0, . . . , 𝛾𝑘−1. Likewise, 𝛿 𝑗 is optimal when starting in 𝑠 with weight −𝑘+ 𝑗. If the
accumulated weight is non-negative in state 𝑠 or 𝑡, then 𝛾 or 𝛿 are optimal. The idea is that
for positive starting weights, the tail loss of 𝛾𝑖 and 𝛿𝑖 is relatively high while for weights just
below 0, the chance to reach goal with positive weight again outweighs this tail loss.

First, we estimate the expectation of goal when choosing 𝛿𝑖 and 𝛿 while the accumulated
weight is −𝑘+ 𝑗 in 𝑠. If 𝑖 > 𝑗, then 𝛿𝑖 and 𝛿 lead to goal directly with probability 1−𝛼 and weight
≤ −1. So, the expectation is less than −(1 − 𝛼) ≤ −1+ 1

5(𝑘+1) .
If 𝑖 ≤ 𝑗, then with probability 1−𝛼 goal is reached with positive weight, hence goal is 0

on these paths.
With probability 𝛽𝑖 , goal is reached via 𝑦′

𝑗
. In this case all runs reach goal with negative

weight. On the way to 𝑦′
𝑗

weight 2𝑘 is added, but afterwards subtracted again at least once.
In expectation weight 2𝑘 is subtracted 𝑘+1

𝑘 many times. Furthermore, −2𝑘+𝑖 is added to the
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starting weight of −𝑘+ 𝑗. So, these paths contribute 𝛽𝑖 · (2𝑘 − 2𝑘 𝑘+1
𝑘 −3𝑘+ 𝑗+𝑖) = (−3𝑘+ 𝑗+𝑖−2) · 𝛽𝑖

to the expectation of goal.
The remaining paths reach goal via 𝑦 𝑗 and all reach goal with negative weight as well.

The probability to reach 𝑦 𝑗 is 𝛼 − 𝛽 𝑗 . On the way to 𝑦 𝑗 , the initial weight of −𝑘+𝑖 is changed
to −2𝑘+ 𝑗+𝑖. Afterwards, weight −𝑘 is accumulated 𝑘+1

𝑘 -many times in expectation. So, these
remaining paths contribute (−3𝑘+ 𝑗+𝑖−1) · (𝛼 − 𝛽𝑖). So, all in all the expectation of goal
in this situation is 𝛼·(−3𝑘+ 𝑗+𝑖−1)−𝛽𝑖 . Now, as 𝛼 ≤ 1

5(𝑘+1) and 𝛽𝑖 ≤ 𝛼
3 for all 𝑖, we see that

𝛼·(−3𝑘+ 𝑗+𝑖−1)−𝛽𝑖 ≥ −(3𝑘 + 2)𝛼 ≥ −1+ 1
5(𝑘+1) . The optimum with 𝑖 ≤ 𝑗 is obtained for 𝑖 = 𝑗 as

𝛽𝑖 ≤ 𝛼/3 for all 𝑖. Hence indeed 𝛿 𝑗 is the optimal action. For 𝛾 𝑗 the same proof with 𝛽𝑖 = 0 for
all 𝑖 leads to the same result.

Now assume that the accumulated weight in 𝑡 or 𝑠 is ℓ ≥ 0. Then, all actions lead to goal
with a positive weight with probability 1 − 𝛼. In this case goal is 0. However, a scheduler𝔖
which always chooses 𝛾 and 𝛿 is better than a scheduler choosing 𝛾 𝑗 or 𝛿 𝑗 for any 𝑗 ≤ 𝑘−1. Under
scheduler𝔖 starting from 𝑠 or 𝑡 a run returns to {𝑠, 𝑡} with probability 𝛼 while accumulating
weight ≥ −𝑘 and the process is repeated. After choosing 𝛾 𝑗 or 𝛿 𝑗 the run moves to 𝑥 𝑗 , 𝑦 𝑗 or 𝑦′

𝑗

while accumulating a negative weight. From then on, in each step it will stay in that state with
probability greater than𝛼 and accumulate weight ≤ −𝑘. Hence, the expectation of goal is lower
under 𝛾 𝑗 or 𝛿 𝑗 than under 𝔖. Therefore indeed 𝛾 and 𝛿 are the best actions for non-negative
accumulated weight in states 𝑠 and 𝑡.

Let now 𝑒(𝑡, 𝑤) and 𝑒(𝑠, 𝑤) denote the optimal expectations of goal when starting in 𝑡

or 𝑠 with weight 𝑤. Further, let 𝑑 (𝑤) = 𝑒(𝑡, 𝑤) − 𝑒(𝑠, 𝑤). From the argument above, we also
learn that the difference 𝑑 (−𝑘+ 𝑗) is equal to 𝛽 𝑗 , for 0 ≤ 𝑗 ≤ 𝑘 − 1 . Put together with the linear
recurrence encoded in G�̄� this shows that 𝑑 (−𝑘 + 𝑤) = 𝑢𝑤 for all 𝑤 where (𝑢𝑛)𝑛∈N is the linear
recurrence sequence specified by the 𝛼𝑖 , 𝛽 𝑗 , 1 ≤ 𝑖 ≤ 𝑘, and 0 ≤ 𝑗 ≤ 𝑘−1.

Finally, we add the same initial component as in the previous section to obtain an MDP M.
Let 𝔖 be the scheduler always choosing 𝜏 in state 𝑐 and afterwards following the optimal
actions as described above is optimal if and only if the linear recurrence sequence stays non-
negative. The remaining argument goes completely analogously to the proof of Theorem 4.1.
Grouping together the optimal values in vectors 𝑣𝑛 with 2𝑘 entries as done there, we can use
the same Markov chain as in that proof to obtain a matrix 𝐴 such that 𝑣𝑛+1 = 𝐴𝑣𝑛. This allows
us to compute the rational value 𝜗 = E𝔖M,𝑠init

( goal) via a matrix series in polynomial time and
Emax
M,𝑠init

( goal) > 𝜗 if and only if the given linear recurrence sequence is eventually negative. ■

By the discussion above, this lemma directly implies Theorem 4.17. With adaptions similar
to the previous section, it is possible to obtain the analogous result for the minimal expectation
of goal. This implies that also the threshold problem whether the minimal conditional value-
at-risk is less than a threshold 𝜗, CVaRmin

𝑝 ( goal) < 𝜗, is Positivity-hard.
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5. Conclusion

The Positivity-hardness results established in this paper show that a series of problems on
finite-state MDPs that have been studied and left open in the literature exhibit an inherent
mathematical difficulty. A decidability result for any of these problems would imply a major
break-through in analytic number theory. At the heart of our Positivity-hardness proofs lies
the construction of modular MDPs consisting of three gadgets. This construction provides a
versatile proof strategy to establish Positivity-hardness results: It allowed us to provide three
direct reductions from the Positivity problem by constructing structurally identical MDPs that
only differ in the gadget encoding the initial values. The further chains of reductions depicted
in Figure 1 established Positivity-hardness for a landscape of different problems on one-counter
MDPs and integer-weighted MDPs.

The proof technique might be applicable to further threshold problems associated to opti-
mization problems on MDPs. A main requirement for the direct applicability of the technique
is that the optimal values 𝑉 (𝑠, 𝑤) in terms of the current state 𝑠 and the weight 𝑤 accumulated
so far, or a similar quantity that can be increased and decreased, satisfy an optimality equation
of the form

𝑉 (𝑠, 𝑤) = max
𝛼∈Act(𝑠)

∑︁
𝑡∈𝑆

𝑃(𝑠, 𝛼, 𝑡) · 𝑉 (𝑡, 𝑤 + wgt(𝑠, 𝛼)).

In addition, the optimum must not be achievable with memoryless schedulers, but the optimal
decisions have to depend on the accumulated weight to make it possible to encode initial values
of a linear recurrence sequence. This combination of conditions is quite common as we have
seen.

Furthermore, our Positivity-hardness results can be used to establish Positivity-hardness
of further decision problems on MDPs, which are on first sight of a rather different nature:
In [58, 57], it is shown how our proof of the Positivity-hardness of the two-sided partial SSPP
can be modified to prove the Positivity-hardness of two problems concerning the long-run
satisfaction of path properties, namely the threshold problem for long-run probabilities and the
model-checking problem of frequency-LTL. Both of these problems address the degree to which
a property is satisfied by the sequence of suffixes of a run in order to analyze the long-run
behavior of systems. The long-run probability of a property 𝜑 in an MDP M under a scheduler𝔖
is the expected long-run average of the probability that a suffix generated by𝔖 in M satisfies 𝜑.
Similarly, frequency-LTL extends LTL by an operator that requires a certain percentage of
the suffixes of a run to satisfy a property. Long-run probabilities and frequency-LTL in MDPs
have been investigated in [6] and [34, 35], respectively, where decidable special cases of the
mentioned decision problems have been identified. In general, however, the decidability status
of these problems is open. The reductions in [58, 57] show how the two-sided partial SSPP can
be encoded into the long-run probability as well as the long-run frequency of the satisfaction of
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a simple regular co-safety property, i.e., the negation of a safety property, yielding Positivity-
hardness for the threshold problem for long-run probabilities and the model-checking problem
of frequency-LTL in MDPs.

It is worth mentioning that in the special case of Markov chains, several of the problems
investigated here are decidable: In Markov chains, partial and conditional expectations can be
computed in polynomial time [59]. Furthermore, one-counter Markov chains constitute a special
case of recursive Markov chains, for which the threshold problem for the termination probability
can be decided in polynomial space [31]. Remarkably however, the threshold problem for the
probability that the accumulated cost satisfies a Boolean combination of inequality constraints
in finite-state Markov chains is open [38].

Finally, the Positivity-hardness results leave the possibility open that some or all of the
problems we studied are in fact harder than the Positivity problem. In particular, it could be
the case that the problems are undecidable and that a proof of the undecidability would yield
no implications for the Positivity problem. For this reason, investigating whether some or all of
the threshold problems are reducible to the Positivity problem constitutes a very interesting
– and challenging – direction for future work. Such an inter-reducibility result would show
that studying any of the discussed optimization problems on MDPs could be a worthwhile
direction of research to settle the decidability status of the Positivity-problem. Some hope for an
inter-reducibility result can be drawn from the fact that the optimal values are approximable
for several of the problems – for termination probabilities and expected termination times of
one-counter MDPs, this was shown in [18, 21] and for partial and conditional expectations in
[59]. This indicates that there is at least a major difference to undecidable problems in a similar
context such as the emptiness problem for probabilistic finite automata where the optimal
value cannot be approximated [56, 28].
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James Worrell. On the Skolem problem for
continuous linear dynamical systems. 43rd
International Colloquium on Automata, Languages,
and Programming (ICALP), volume 55 of LIPIcs,
100:1–100:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. DOI (8)

[28] Anne Condon and Richard J. Lipton. On the
complexity of space bounded interactive proofs
(extended abstract). 30th Annual Symposium on
Foundations of Computer Science (FOCS),
pages 462–467. IEEE Computer Society, 1989. DOI
(44)

https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1145/2108242.2108243
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1093/LOGCOM/EXL004
https://doi.org/10.1145/2400676.2400679
https://doi.org/10.1287/MOOR.16.3.580
https://doi.org/10.1007/11817963_34
https://doi.org/10.1016/J.IC.2012.01.008
https://doi.org/10.1137/1.9781611973075.70
https://doi.org/10.1137/1.9781611973075.70
https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/978-3-642-31585-5_16
https://doi.org/10.1145/62212.62257
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/S10703-013-0183-7
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.4230/LIPICS.ICALP.2016.100
https://doi.org/10.1109/SFCS.1989.63519


46 / 47 J. Piribauer and C. Baier

[29] Costas Courcoubetis and Mihalis Yannakakis. The
complexity of probabilistic verification. Journal of
the ACM, 42(4):857–907, 1995. DOI (2)

[30] Luca de Alfaro. Computing minimum and maximum
reachability times in probabilistic systems. 10th
International Conference on Concurrency Theory
(CONCUR), volume 1664 of Lecture Notes in
Computer Science, pages 66–81. Springer, 1999.
DOI (2, 12, 28)

[31] Kousha Etessami and Mihalis Yannakakis.
Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations.
Journal of the ACM, 56(1):1:1–1:66, 2009. DOI (8,
44)

[32] Kousha Etessami and Mihalis Yannakakis.
Recursive Markov decision processes and
recursive stochastic games. Journal of the ACM,
62(2):11:1–11:69, 2015. DOI (3–5)

[33] Graham Everest, Alfred J. van der Poorten,
Igor E. Shparlinski, and Thomas Ward. Recurrence
Sequences, volume 104 of Mathematical surveys
and monographs. American Mathematical Society,
2003. URL (3)

[34] Vojtech Forejt and Jan Krcál. On frequency LTL in
probabilistic systems. 26th International
Conference on Concurrency Theory (CONCUR),
volume 42 of LIPIcs, pages 184–197. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
DOI (43)

[35] Vojtech Forejt, Jan Krcál, and Jan Kret́ınský.
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