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ABSTRACT. This paper focuses on the algebraic theory underlying the study of the complexity
and the algorithms for the Constraint Satisfaction Problem (CSP). We unify, simplify, and extend
parts of the three approaches that have been developed to study the CSP over finite templates –
absorption theory that was used to characterize CSPs solvable by local consistency methods
(JACM’14), and Bulatov’s and Zhuk’s theories that were used for two independent proofs of the
CSP Dichotomy Theorem (FOCS’17, JACM’20).

As the first contribution we present an elementary theorem about primitive positive
definability and use it to obtain the starting points of Bulatov’s and Zhuk’s proofs as corollaries.
As the second contribution we propose and initiate a systematic study of minimal Taylor algebras.
This class of algebras is broad enough that it suffices to verify the CSP Dichotomy Theorem on
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this class only, but still is unusually well behaved. In particular, many concepts from the three
approaches coincide in this class, which is in striking contrast with the general setting.

We believe that the theory initiated in this paper will eventually result in a simple and more
natural proof of the Dichotomy Theorem that employs a simpler and more efficient algorithm,
and will help in attacking complexity questions in other CSP-related problems.

1. Introduction

The Constraint Satisfaction Problem (CSP) has attracted much attention from researchers in
various disciplines. One direction of the CSP research has been greatly motivated by the so-called
Dichotomy Conjecture of Feder and Vardi [37, 38] that concerns the computational complexity of
CSPs over finite relational structures. The Constraint Satisfaction Problem over a finite relational
structure A of finite signature (also called a template), in its logical formulation, is the problem
of deciding the validity of a given primitive positive sentence (pp-sentence), i.e., a sentence
that is an existentially quantified conjunction of atomic formulas over A – the constraints.
Examples of problems in this class include satisfiability problems, graph coloring problems,
and solving systems of equations over finite algebraic structures (see [41, 45, 9, 52]). The CSP is
also ubiquitous in artificial intelligence [36].

A classic result in the field is a theorem by Schaefer [57] that completely classifies the
complexity of CSPs over relational structures with a two-element domain, so-called Boolean
structures, by providing a dichotomy theorem: each such a CSP is either solvable in polynomial
time or is NP-complete. The Dichotomy Conjecture of Feder and Vardi states that Schaefer’s
result extends to arbitrary finite domains. This conjecture inspired a very active research
program in the last 20 years, culminating in a positive resolution independently obtained by
Bulatov [23] and Zhuk [59, 60]. The exact borderline between tractability and hardness can be
formulated as follows [31, 10, 9].

THEOREM 1.1 (Dichotomy Theorem). Let A be a finite relational structure over a finite signa-
ture.

If every finite structure is homomorphically equivalent to a finite structure pp-interpretable
in A, then the CSP over A is NP-hard,
otherwise it is solvable in polynomial time.

It was already recognized in Schaefer’s work (in fact, it was the basis of his approach) that
the complexity of a CSP depends only on the set of relations that are pp-definable (i.e., definable
by a primitive positive formula) from the template. Such sets of relations are now usually
referred to as relational clones. The impetus of rapid development in the area after Feder and
Vardi’s seminal work [38] was a series of papers [45, 44] that brought to attention and applied a
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Galois connection between operations and relations studied in the sixties [40, 16], which gives
a bijective correspondence between relational clones and clones – sets of term operations of
algebras.

One way to phrase this core fact is as follows: for any finite algebra A, its set of invariant
relations (subuniverses of powers or subpowers in algebraic terminology) is always a relational
clone; every relational clone is of this form; and two algebras have the same relational clone of
subpowers if and only if they have the same set of term operations (see Subsection 2.1). For
instance, a Boolean CSP, say over the domain {0, 1}, is solvable in polynomial time if and only if
the relations of the template are subpowers of one of four types of algebras – an algebra with a
single constant operation, a semilattice, the majority algebra, or the affine Mal’cev algebra of
Z/2 (see Subsection 2.2).

This connection between relations and operations allowed researchers to apply techniques
from Universal Algebra. Application of these techniques became known as the algebraic ap-
proach to the CSP, although one may argue that the name misses the point a little – the success
of the approach lies mostly in combining and moving back and forth between the relational
and algebraic side, and this is the case for this paper as well. The general theory of the CSP was
further refined in subsequent papers [31, 10] and turned out to be an efficient tool in other types
of constraint problems including the Quantified CSP [17, 34, 62], the Counting CSP [30, 29], some
optimization problems, e.g. the Valued CSP [51] and robust approximability [7], infinite-domain
CSPs [15, 14], related promise problems such as “approximate coloring” and the Promise CSP [20,
2], and many others.

One useful technical finding of [31] is that every CSP is equivalent to a CSP over an idem-
potent template, i.e. a template that contains all the singleton unary relations. This allows
us to use parameters in pp-definitions and omit homomorphic equivalence in the first item
of Theorem 1.1. On the algebraic side, this allows us to concentrate on so-called idempotent
algebras (see Subsection 7.2). Another important contribution of that paper was a conjecture
postulating, for idempotent structures, the exact borderline between polynomial solvability
and NP-hardness, which coincides with the borderline stated in Theorem 1.1. The hardness part
was already dealt with in the same paper and what was left was the tractability part. Within the
realm of idempotent structures, the algebras corresponding to the second item of Theorem 1.1
are so-called Taylor algebras (see Subsection 2.3). The following theorem is therefore the core
of the two proofs of the Dichotomy Conjecture.

THEOREM 1.2 ([23, 59, 60]). Let A be an idempotent structure. If there exists an idempotent
Taylor algebra A such that all relations in A are subpowers of A, then the CSP over A is solvable
in polynomial time.

Partial results toward Theorem 1.2 include dichotomies for various classes of relational
structures and algebras (e.g. the class of 3-element algebras [22] and the class of structures
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containing all unary relations [25]), understanding of the limits of algorithmic techniques (e.g.
local consistency methods [6] and finding generators for the set of solutions [43]), and finding
potentially useful characterizations of Taylor algebras (e.g. by means of weak near-unanimity
operations [54] and by means of cyclic operations [4]). The papers [6] and [4] initiated a
technique which is now referred to as the absorption theory [5]. Absorption theory is one of the
fruits of CSP-motivated research which also impacted other CSP-related problems as well as
universal algebra (e.g. [1]) and it is one of the three theories this paper is concerned with.

Bulatov and Zhuk in their resolution of the Dichotomy Conjecture (and their prior and
subsequent work) developed novel techniques, which we refer to as Bulatov’s theory and Zhuk’s
theory in this paper. These theories are (understandably) mostly focused on the task at hand, to
prove Theorem 1.2, and as such have several shortcomings. First, some of the new concepts
are still evolving as the need arises, and they do not yet feel elegant and settled. Moreover, the
theories are technically complex which makes it difficult to master them and to apply them in
different contexts. This is best witnessed by the absence of results which employ these theories
from different authors (needless to say they have already witnessed their potential). Second,
they both employ the following trick. Instead of studying a general, possibly wild Taylor algebra,
one can first tame it by taking a certain Taylor reduct – an algebra whose operations are only
some of the term operations but which is still Taylor. Taking reducts does not result in any
loss of generality in Theorem 1.2, since reducts keep all the original invariant relations, so
proving tractability for a reduct is sufficient for tractability for the original problem. However,
taking reducts does result in loss of generality of the theory, and it is not yet clear to which
natural classes of algebras the theories apply. Moreover, these reducts are different in the two
approaches. Third, connections between Bulatov’s and Zhuk’s theories were not understood at
all. While Zhuk’s theory and absorption theory at least had some concepts in common, Bulatov’s
theory seemed quite orthogonal to the rest.

The contributions of this paper unify, simplify, and extend parts of these three theories,
making them, we hope, more accessible and reducing the prerequisites for the dichotomy proofs.
In particular, we initiate a systematic study of minimal Taylor algebras, i.e., those algebras that
are Taylor but such that none of their proper reducts is Taylor. Thus, we employ the above
trick to the extreme and study, in a sense, the tamest algebras or, in other words, “hardest”
tractable CSPs. This restriction, on the one hand, limits the scope of the theory but, on the other
hand, gives us a framework in which the three theories do not look separate at all anymore.
Indeed, the authors find the extent to which the notions of the three theories simplify and unify
in minimal Taylor algebras to be truly striking. Even though our results do not cover some
advanced parts of the three theories, we believe that they have the potential to evolve into one
coherent theory of finite algebras that would make the CSP Dichotomy Theorem an exercise
(albeit hard) and that would have applications well beyond constraint problems.
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The contributions can be divided into two groups, results for (all finite) Taylor algebras
stated in Section 4 and results for minimal Taylor algebras in Sections 5 and 6. We now describe
them in more detail together with more background.

1.1 Taylor algebras

The central concept in absorption theory is that of absorbing subuniverses introduced formally
in Subsection 3.2. These are invariant subsets of algebras with an additional property resembling
ideals in rings. A fundamental theorem, the absorption theorem [4], shows that nontrivial
absorbing subuniverses in Taylor algebras exist under rather mild conditions and this fact
makes the theory applicable in many situations. For instance, the strategy in [6] to provide
a global solution to a locally consistent instance is to propagate local consistency into proper
absorbing subuniverses. The abundance of absorption provided by the absorption theorem
makes this propagation often possible, and if it is not, gives us sufficient structural and algebraic
information about the instance which makes the propagation possible nevertheless, until the
instance becomes trivially solvable.

Zhuk’s starting point is a theorem stating that every Taylor algebra has a proper subuni-
verse of one of four special types (see Subsections 3.3). Zhuk derives the four types theorem [60]
from a complicated result in clone theory, Rosenberg’s classification of maximal clones [56]
(the dependence of this approach on Rosenberg’s result is removed in [61]). Given the four
types theorem, the overall strategy for the polynomial algorithm for Theorem 1.2 is natural and
similar in spirit to the absorption technique – to keep reducing to one of such subuniverses
until the problem becomes trivial. Although Zhuk’s theory has a nontrivial intersection with
the absorption theory, these connections were not properly explored and verbalized.

Bulatov’s algorithm in his proof of Theorem 1.2 employs a similar general idea, he reduces
the instance to certain subuniverses. However, these special subuniverses are defined, as
opposed to absorption and Zhuk’s theories, in a very local way. They are sets that are, in a
sense, closed under edges (e.g. strongly connected components) of a labeled directed graph
whose vertices are the elements of the algebra. Bulatov introduces three basic kinds of edges
(see Subsection 3.1), whose presence indicates that the local structure around the adjacent
vertices, namely the subuniverse generated by the two vertices, somewhat resembles the three
interesting tractable cases in Schaefer’s Boolean dichotomy. What makes this approach work is
a fundamental theorem (Theorem 1 [26], see also [24]), the connectivity theorem, which says that
the edges sufficiently approximate the algebra in the sense that the directed graph is connected.
The proof uses rather technically challenging constructions involving operations in the algebra.

In Section 4 we first describe some of the connections between absorption theory and
Zhuk’s theory, and explain simplifications and refinements that were scattered across literature,
including a refinement of the absorption theorem that follows from [59, 60]. We also give two
new results improving pieces of the two theories. The major novel contribution of Section 4 is
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Theorem 4.7, a purely relational fact which roughly states that each “interesting” relation that
uses all the domain elements in every coordinate pp-defines a binary relation with the same
properties or a ternary relation of a very particular shape. Although the proof is elementary and
not very long, it enables us to derive both Zhuk’s four types theorem and Bulatov’s connectivity
theorems as corollaries. It may be also of interest for some readers to note that theorems in this
section often even do not require the algebra to be Taylor – they concern all finite idempotent
algebras.

1.2 Minimal Taylor algebras

The advantage of studying minimal reducts within a class of interest was clearly demonstrated
in the work of Brady [18]. He concentrated on so-called bounded width algebras – these are
algebras that play the same role in solvability of CSPs by local consistency methods [6] as Taylor
algebras do for polynomial time solvability. The theory he developed enabled him to classify all
the minimal bounded width algebras on small domains. Our first contributions in Section 5
show that the basic facts for minimal bounded width algebras have their counterparts for
minimal Taylor algebras. For instance, Proposition 5.2 shows that every Taylor algebra does
have a minimal Taylor reduct, and so minimal Taylor algebras are indeed sufficiently general,
e.g., in the CSP context.

The main results in Section 5 show that in minimal Taylor algebras concepts of the three
approaches are simpler and have stronger properties (Subsection 5.2 for absorption and the
four types, Subsection 5.3 for edges) and there are deep connections among them (Subsec-
tion 5.4). Additional connections are given in Section 6, where various classes of algebras are
characterized in terms of algorithmic properties and types of edges, types of operations, and
types of absorption present in the algebras. We now discuss a sample of the obtained results.

Edges, as we already mentioned, are pairs of elements for which the local structure
around the pair resembles one of the three interesting polynomially solvable cases in Schaefer’s
Boolean dichotomy [57]. More precisely, and specializing to one kind of edges, we say that
(𝑎, 𝑏) is a majority edge if the subalgebra E generated by 𝑎 and 𝑏 has a proper congruence (i.e.,
invariant equivalence relation) 𝜃 and a term operation 𝑡 that acts as the majority operation on
the equivalence classes 𝑎/𝜃 and 𝑏/𝜃. The resemblance of the two-element majority algebra is in
general quite loose – the equivalence 𝜃 can have many more classes and there may be many
more operations in E other than 𝑡. However, in minimal Taylor algebras, E modulo 𝜃 is always
term equivalent to the two element majority algebra (Theorem 5.13).

The second sample concerns the simplest absorbing subuniverses, the 2-absorbing ones,
which also constitute one of the four types of Zhuk’s fundamental theorem. The 2-absorption
of a subuniverse 𝐵 is a relatively strong property that requires the existence of some binary
term operation 𝑡 whose result is always in 𝐵 provided at least one of the arguments is in 𝐵.
An extreme further strengthening is as follows: the result of applying any operation 𝑓 to an
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argument that contains an element in 𝐵 in any essential coordinate is in 𝐵. It turns out that
these notions actually coincide for minimal Taylor algebras (Theorem 5.7). What is perhaps
even more surprising is the connection to Bulatov’s theory: 2-absorbing sets are exactly subsets
stable (in a certain sense) under all the three kinds of edges (Theorem 5.19).

Finally, we mention that the clone of any minimal Taylor algebra is generated by a single
ternary operation (Theorem 5.24). This, together with other structural results in this paper, may
help in enumerating Taylor algebras – at the very least we know that there are at most 𝑛𝑛3 of
them over a domain of size 𝑛. Such a catalogue could be a valuable source of examples for
CSP-related problems as well as universal algebra. Additionally, having a complete catalogue
of minimal Taylor algebras for a given domain allows us to write down an explicit, concrete
generalization of Schaefer’s Dichotomy Theorem for a domain of that size.

1.3 Follow up work

Brady has already initiated the project of enumerating minimal Taylor algebras [19]. In partic-
ular, he has proved that, up to term-equivalence and permutations of the domain, there are
exactly 24 minimal Taylor algebras on a domain of size 3. This gives us a concrete list of the
hardest tractable CSPs on the 3-element domain, refining the main result of [22]. In an unpub-
lished work of a subset of the authors and Albert Vucaj, the number of cases required to state
the 3-element dichotomy was further reduced by means of the pp-constructibility technique
from [10].

Another novel contribution in Brady’s CSP notes [19] is the theory of stable sets which
provide a common generalization of three out of the four types in Zhuk’s approach. This theory is
applied to simplify and improve results on local consistency [6, 49] and robust approximation [7]
of CSPs.

1.4 Organization of the paper

The paper is split into two parts. In Part I we state and discuss the main concepts and results.
Part II provides the technical details, that is, additional definitions, results, and proofs of the
claims made in Part I.
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Part I: Main results

2. Basics

In this section we expand on the explanation of the algebraic approach given in the previous
section. The aim is to provide a short but self-contained introduction to the subject which,
however, cannot replace more comprehensive material such as [9]. Subsection 2.1 explains the
translation of the CSP to the algebraic language, Subsection 2.2 details Schaefer’s dichotomy
theorem, and Subsection 2.3 introduces the central concept of the algebraic theory of the CSP,
the Taylor algebra. Throughout the paper, notations and concepts are introduced as the need
arises, occasionally in a somewhat informal way; please see Section 7 for a more systematic list
of definitions.

2.1 From structures to algebras

To every CSP template A we assign a relational clone R, a clone C , and an algebra A. The
connections between these concepts can be depicted as follows.

relational structures→ relational clones↔ clones← algebras

We restrict our attention to idempotent structures, i.e., structures containing all the singleton
unary relations. This is, as already discussed, not a severe restriction. Let us fix an idempotent
relational structure A with finite universe 𝐴.

Let R be the set of all relations that are pp-definable from A, i.e., definable by a first
order formula using only relations in A, the equality relation, conjunction, and existential
quantification. This set is a relational clone, that is, it is closed under pp-definitions; and it
still captures the complexity of the CSP over A in the following sense: if a structure B with the
same universe as A contains only relations in R, then the CSP over B can be reduced to the CSP
over A by simply replacing each constraint by its pp-definition. Moreover, if B is rich enough,
e.g., contains the original relations in A, then the CSPs over A and B are polynomial-time (even
log-space) equivalent.

Next, we define C as the set of all operations, i.e., mappings 𝑓 : 𝐴𝑛 → 𝐴 for some 𝑛, that
preserve all relations in A (equivalently, all relations in R), i.e., 𝑓 applied coordinate-wise
to tuples in a relation of A gives a tuple which is again in that relation. Such operations are
also called compatible with A or polymorphisms of A, and we also say that relations in A are
invariant under 𝑓 . The set C is a clone, that is, it contains all the projections proj𝑛𝑖 (the 𝑛-ary
projection to the 𝑖-th coordinate) and is closed under composition. Since each 𝑓 ∈ C in particular
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preserves the singleton unary relations in A, it is idempotent, i.e., 𝑓 (𝑎, . . . , 𝑎) = 𝑎 for any 𝑎 ∈ 𝐴.
Importantly [40, 16], a relation is in R if and only if it is invariant under every 𝑓 ∈ C , so our
clone still captures the complexity of the CSP over A.

The final step from clones to algebras is not essential and is taken mostly for convenience:
algebras are more classical objects than clones, with a better established terminology. In
particular, we can apply the standard constructions of taking subalgebras or subuniverses
(universes of subalgebras), products, and quotients over congruences (invariant equivalence
relations). This final step is done by selecting some “generating operations” in C and giving
them names. Formally, we take an algebra A (with universe 𝐴) of some signature such that the
smallest clone containing the operations in A, called the clone of A and denoted Clo(A), is equal
to C . Note that Clo(A) is precisely the set of term operations of A, i.e., operations that can be
defined from the operations in A by a term. The algebra A is not uniquely determined by A,
any algebra A′ which is term-equivalent to A, i.e., Clo(A′) = Clo(A), can be taken instead. Also
observe that A is idempotent (consists of idempotent operations) and that the connection to R

remains valid: a relation 𝑅 is in R if and only if it is invariant under every operation of A; in
other words, if 𝑅 is a subpower (subuniverse of a finite power) of A. We use ≤ to denote the
subuniverse or subalgebra relation, e.g., 𝑅 ≤ A𝑛 means that 𝑅 is a subuniverse of the 𝑛-th power
of A. The set of all subpowers of A is denoted Inv(A).

In summary, to every idempotent relational structureAwe assigned an idempotent algebra
A so that the relational clone of all pp-definable relations is equal to Inv(A), the set of subpowers
of A; and the clone of all compatible operations is equal to Clo(A), the set of all term operations
ofA. The CSP overA is polynomial-time equivalent to the CSP over any sufficiently rich structure
whose relations are in Inv(A). It also follows that the CSP over some structure B is polynomial-
time reducible to the CSP over A whenever A is a reduct of an algebra B assigned to B, i.e.,
Clo(A) ⊆ Clo(B).

As we concentrate on algebras coming from finite idempotent relational structures, we
make the following running assumption in definitions and theorems: all the involved algebras
are finite and idempotent. We do not usually explicitly mention this assumption in our
theorem statements.

2.2 Boolean CSPs

We now discuss the dichotomy theorem for Boolean CSPs from the algebraic perspective. The
following three types of two-element algebras play a special role.

Two-element semilattice: a two-element set together with the binary maximum operation
with respect to one of the two possible orderings of the domain, e.g., A = ({0, 1};∨)where∨
is the maximum operation. Here Clo(A) is the set of operations of the form 𝑥𝑖1∨𝑥𝑖2∨· · ·∨𝑥𝑖𝑘
and Inv(A) is the set of relations pp-definable from the singleton unary relations and the
relation 𝑥 ∨ 𝑦 ∨ ¬𝑧 (note that we abuse the notation and use ∨ both for the maximum
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operation and logical disjunction). Therefore, if A is a reduct of an algebra associated to a
templateB, then the CSP overB can be reduced to Dual-Horn-3SAT (and thus to Horn-3SAT).
Two-element majority algebra: a two-element set together with the unique ternary opera-
tion that returns the majority of its arguments, e.g., A = ({0, 1}; maj), maj(𝑎1, 𝑎2, 𝑎3) = 1
iff there are at least two 𝑖s with 𝑎𝑖 = 1. Here Clo(A) consists of all idempotent, monotone
(compatible with the inequality relation ≤), and self-dual (i.e., compatible with the dis-
equality relation ≠) operations and Inv(A) is the set of relations pp-definable from the
binary relations 𝑥 ∨ 𝑦, ¬𝑥 ∨ 𝑦, and ¬𝑥 ∨ ¬𝑦. Therefore, if A is a reduct of an algebra
associated to a template B, then the CSP over B can be reduced to 2SAT.
Affine Mal’cev algebra of a two-element group: a two-element set together with the ternary
addition with respect to the unique group structure on the universe, e.g.,A = ({0, 1}; 𝑥+ 𝑦+𝑧
(mod 2)). Here Clo(A) is the set of operations of the form 𝑥𝑖1 + 𝑥𝑖2 + · · · + 𝑥𝑖𝑘 (mod 2) with
𝑘 odd and Inv(A) is the set of relations pp-definable from the relations 𝑥 + 𝑦 + 𝑧 ≡ 1
(mod 2) and 𝑥 + 𝑦 + 𝑧 ≡ 0 (mod 2). Therefore, if A is a reduct of an algebra associated to
a template B, then the CSP over B can be solved by Gaussian elimination.

It follows from the full description of clones on a two-element set by Post [55] (and is not
hard to verify) that every idempotent clone, except the clone consisting only of projections,
contains one of the two semilattice operations or the majority operation or the ternary addition.
Therefore, we have the following dichotomy for the CSP over A and an assigned algebra A.
Either

A contains only projections, in which case Inv(A) contains all relations, and then the CSP
over A is NP-complete since any CSP, e.g. 3SAT, can be reduced to it; or
A contains some nonprojection, in which case one of three types of algebras above is a
reduct of A, and then the CSP over A is solvable in polynomial time.

2.3 Taylor algebras

For two-element idempotent structures, the necessary and sufficient condition for polynomial-
time solvability is that A does not pp-define every finite structure or, in algebraic terms, A
contains a nonprojection. For larger universes, this condition is no longer sufficient and pp-
definability needs to be weakened to so called pp-interpretability. The algebraic counterpart
goes as follows.

DEF IN IT ION 2 .1. An (idempotent, finite) algebra A is a Taylor algebra if no quotient of a
subalgebra of a power of A is a two-element algebra whose every operation is a projection.

The following proposition shows that powers can be dropped from this definition. In particular,
a two element algebra is Taylor iff it has a nonprojection operation.
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PROPOS IT ION 2 .2 ([32]). An algebra A is Taylor if and only if no quotient of a subalgebra of A
is a two-element algebra whose every operation is a projection.

Birkhoff’s HSP Theorem [13] connects the three main algebraic constructions (subalgebras,
products, quotients) with identities, i.e., universally quantified equations. In particular, A is
Taylor iff its operations satisfy some set of identities which are not satisfiable by projections.
Several types of operations satisfying such identities generalize the three types in the previous
subsections.

A semilattice operation is a binary operation ∨ which is commutative, idempotent, and
associative. An algebra (𝐴;∨), where ∨ is a semilattice operation, is called a semilattice.
A majority operation is a ternary operation 𝑚 which satisfies 𝑚(𝑥, 𝑥, 𝑦) = 𝑚(𝑥, 𝑦, 𝑥) =
𝑚( 𝑦, 𝑥, 𝑥) = 𝑥 (for any 𝑥, 𝑦 in the universe). More generally, an 𝑛-ary near unanimity
operation is an operation 𝑓 satisfying 𝑓 (𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑥, 𝑥, . . . , 𝑥) = 𝑥 for any position
of 𝑦. An example for an odd 𝑛 is the 𝑛-ary majority operation maj𝑛 on {0, 1}, that is,
maj𝑛(𝑎1, . . . , 𝑎𝑛) = 1 iff the majority of the 𝑎𝑖 is 1.
A Mal’cev operation is a ternary operation 𝑝 satisfying 𝑝( 𝑦, 𝑥, 𝑥) = 𝑝(𝑥, 𝑥, 𝑦) = 𝑦. An
example is the operation 𝑥 − 𝑦 + 𝑧 on 𝐴, where + and − is computed with respect to an
abelian group structure on 𝐴. In this case the algebra (𝐴; 𝑥 − 𝑦 + 𝑧) is called the affine
Mal’cev algebra of that abelian group.

The two basic algorithmic ideas to efficiently solve a CSP are local propagation algo-
rithms [33, 6] and finding a generating set of all solutions [12, 43].

We say that a CSP, or its assigned algebra A, has bounded width if a local propagation
algorithm correctly decides it. Examples include algebras with a semilattice or a majority
operation, and a nonexample is an affine Mal’cev algebra of a nontrivial abelian group. The
bounded width theorem [6] characterizes bounded width algebras as algebras A such that no
quotient of a subalgebra of a power A is a nontrivial abelian algebra.

DEF IN IT ION 2 .3. An algebraA is abelian if the diagonal Δ𝐴 = {(𝑎, 𝑎) : 𝑎 ∈ 𝐴} is an equivalence
class of a congruence of A2.

An example of an abelian algebra is an algebra whose every operation is a projection. A more
interesting example is an affine Mal’cev algebra, where a congruence satisfying the definition
is the congruence 𝛼 defined by ((𝑥1, 𝑥2), ( 𝑦1, 𝑦2)) ∈ 𝛼 iff 𝑥1 − 𝑥2 = 𝑦1 − 𝑦2. More generally, each
affine module, i.e., an algebra whose term operations are exactly the idempotent term operations
of a module over a unital ring, is abelian. In fact, these are the only examples of abelian Taylor
algebras.

THEOREM 2.4 ([42]). A Taylor algebra is abelian if and only if it is an affine module.
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The original proof of this result makes use of tame congruence theory, a well-developed theory
of finite algebras that we have not mentioned yet. An alternative proof using absorption is
available [8].

We now turn to the other algorithmic idea, finding a generating set of all solutions. It turns
out [12] that A has “small” generating sets of powers (polynomial in the exponent) if and only
if it has few subpowers, i.e., the number of subuniverses of A𝑛 is 2𝑂(𝑛) . In such a case, the few
subpowers algorithm [43] finds a generating set of solutions in polynomial time. Examples of
algebras with few subpowers include algebras with a near unanimity or Mal’cev operation, and
a nonexample is any nontrivial semilattice.

Algebras with few subpowers were characterized in [53] as those that do not have certain
special subuniverses, called cube term blockers. It became clear that the concept is significant
beyond this context [8, 61]. For this reason we prefer the terminology from the latter paper and
call them projective subuniverses. In the definition, Clo𝑛(A) is the set of 𝑛-ary operations in
Clo(A), and we use 𝑎𝑖 to denote the 𝑖-th component of a tuple a.

DEF IN IT ION 2 .5. Let A be an algebra and 𝐵 ⊆ 𝐴. We say that 𝐵 is a projective subuniverse if
for every 𝑓 ∈ Clo𝑛(A) there exists a coordinate 𝑖 of 𝑓 such that 𝑓 (a) ∈ 𝐵 whenever a ∈ 𝐴𝑛 is
such that 𝑎𝑖 ∈ 𝐵.

Observe that a projective subuniverse of A is, indeed, a subuniverse.
Many of the algebraic concepts that we introduce (such as absorbing subuniverses or

strongly projective subuniverses from Section 5) have useful equivalent characterizations in
terms of relations. Such a characterization for projective subuniverses is especially elegant,
and we state it here for comparison with characterizations of absorption in Subsection 5.2.

PROPOS IT ION 2 .6 (Lemma 3.2 in [53]). Let A be an algebra and 𝐵 ⊆ 𝐴. Then 𝐵 is a projective
subuniverse of A if and only if, for every 𝑛, the relation 𝐵(𝑥1) ∨ 𝐵(𝑥2) ∨ · · · ∨ 𝐵(𝑥𝑛) is a subpower
of A.

3. Three approaches

In this section we introduce the central concepts and results from the three algebraic approaches.

3.1 Edges

We start by formally introducing the three types of edges used in Bulatov’s approach to the CSP.
These three types are inspired by the three types of two-element algebras from Subsection 2.2.
In the definition, SgA(𝑎, 𝑏) denotes the subalgebra of A generated by {𝑎, 𝑏}.

DEF IN IT ION 3.1. Let A be an algebra. A pair (𝑎, 𝑏) ∈ 𝐴2 is an edge if there exists a proper
congruence 𝜃 on SgA(𝑎, 𝑏), called a witness for the edge, such that one of the following happens:
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(semilattice edge) There is a term operation 𝑓 ∈ Clo2(A) acting as a join semilattice opera-
tion on {𝑎/𝜃, 𝑏/𝜃} with top element 𝑏/𝜃, i.e. 𝑓 (𝑎/𝜃, 𝑏/𝜃), 𝑓 (𝑏/𝜃, 𝑎/𝜃) ⊆ 𝑏/𝜃.
(majority edge) There is a term operation 𝑚 ∈ Clo3(A) acting as a majority operation on
{𝑎/𝜃, 𝑏/𝜃}.
(abelian edge) The algebra SgA(𝑎, 𝑏)/𝜃 is abelian.

An edge (𝑎, 𝑏) is called minimal if for some maximal congruence 𝜃 witnessing the edge and
every 𝑎′, 𝑏′ ∈ 𝐴 such that (𝑎, 𝑎′), (𝑏, 𝑏′) ∈ 𝜃, we have SgA(𝑎′, 𝑏′) = SgA(𝑎, 𝑏). Such 𝜃 is called a
witness for this minimal edge.

A witnessing congruence 𝜃 for an edge (𝑎, 𝑏) necessarily separates 𝑎 and 𝑏, i.e., (𝑎, 𝑏) ∉ 𝜃, since
each congruence class of an idempotent algebra is a subuniverse. Moreover, if 𝜃 is a witness for
an edge (𝑎, 𝑏), then any proper congruence of SgA(𝑎, 𝑏) containing 𝜃 witnesses the same edge.

Note that if (𝑎, 𝑏) is an edge of majority or abelian type, then so is (𝑏, 𝑎). If (𝑎, 𝑏) is a
semilattice edge it can happen that (𝑏, 𝑎) is not an edge at all, in fact this is always the case for
minimal edges in a minimal Taylor algebra, see Subsection 5.3.

In order to make the concepts in this paper elegant and theorems more general, we deviate
from the definition given in e.g. [24, 28]. There, majority edges have an additional requirement
that the same congruence does not witness the semilattice type, and abelian edges (called affine)
required the quotient to be an affine module. In Taylor algebras, abelian edges are the same as
affine edges by Theorem 2.4. Outside Taylor algebras, it makes sense to separate abelian edges
into two types: affine and sets whose only term operations are projections, as is done in [28].

Also note that the definition of abelian edges is of a different type: it restricts the set of
term operations from above, as opposed to semillatice and majority edges that restrict them
from below. We shall see in Theorem 5.13 that these differences disappear in minimal Taylor
algebras.

Minimal edges do not appear in Bulatov’s theory in this form. Somewhat related are thin
edges, which at present have rather technical definitions with the exception of thin semilattice
edges. We show in Proposition 5.15 that minimal semilattice edges and thin semilattice edges
coincide in minimal Taylor algebras.

The fundamental theorem of Bulatov’s approach shows that edges sufficiently approximate
any algebra in the following sense.

THEOREM 3.2. (The Connectivity Theorem [26, 24], link to proof) The directed graph formed by
the edges of any algebra is (weakly) connected.

Another important technical result for the edge approach is that the operations appearing
in Definition 3.1 can be significantly unified, see Theorem 7 in [26]. We give a much stronger
unification result in Theorem 5.23.
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3.2 Absorption

A central concept for the absorption theory, as well as for Zhuk’s theory, is an absorbing
subuniverse.

DEF IN IT ION 3.3. Let A be an algebra and 𝐵 ⊆ 𝐴. We call 𝐵 an 𝑛-absorbing set of A if there is
a term operation 𝑡 ∈ Clo𝑛(A) such that 𝑡(a) ∈ 𝐵 whenever a ∈ 𝐴𝑛 and |{𝑖 : 𝑎𝑖 ∈ 𝐵}| ≥ 𝑛 − 1.

If, additionally, 𝐵 is a subuniverse of A, we write 𝐵 ⊴𝑛 A, or 𝐵 ⊴ A when the arity is not
important.

We also say “𝐵 absorbs A (by 𝑡)” in the situation of Definition 3.3. Of particular interest for us
are 𝑛-absorbing subuniverses with 𝑛 = 2, e.g., {1} in the semilattice ({0, 1};∨), or 𝑛 = 3, e.g., {0}
and {1} in the two-element majority algebra on {0, 1}.

The fundamental theorem for the absorption theory states that every proper subdirect
linked subpower produces a nontrivial absorbing subuniverse. The required definitions are
as follows. We say that 𝑅 is a subdirect product of 𝐴1, . . . , 𝐴𝑛, and write 𝑅 ⊆𝑠𝑑 𝐴1 × · · · × 𝐴𝑛, if
𝑅 ⊆ 𝐴1 × · · · × 𝐴𝑛 and the projection of 𝑅 to any coordinate 𝑖 is full, i.e., equal to 𝐴𝑖 . Similarly,
we write 𝑅 ≤𝑠𝑑 A1 × · · · × A𝑛 if 𝑅 is additionally a subuniverse of that product. If 𝑅 ⊆𝑠𝑑 𝐴 × 𝐶,
we call 𝑅 linked if it is connected when viewed as a bipartite graph between disjoint copies of 𝐴
and 𝐶.

THEOREM 3.4 (The Absorption Theorem [4]). Suppose 𝑅 ≤𝑠𝑑 A × C is proper and linked, and
A and C are Taylor. Then A or C has a nontrivial absorbing subuniverse.

We will often take advantage of one of the results of the absorption theory, the characteri-
zation of Taylor algebras by means of cyclic operations. An alternative proof is now available
using Zhuk’s approach [61].

THEOREM 3.5 ([4]). The following are equivalent for any algebra.
A is Taylor.
There exists 𝑛 > 1 such that A has a term operation 𝑡 of arity 𝑛 which is cyclic, that is, for
any x ∈ 𝐴𝑛,

𝑡(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑡(𝑥2, . . . , 𝑥𝑛, 𝑥1).

For every prime 𝑝 > |𝐴|, A has a term operation 𝑡 of arity 𝑝 which is cyclic.

3.3 Four types

The fundamental theorem for Zhuk’s approach is that each Taylor algebra has a proper sub-
universe of one of four types. We first introduce the required additional concepts, centers and
polynomially complete algebras.
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The concept of a center is still evolving, and it is not yet clear what the best version would
be for general algebras. Our definition follows [60], although a more recent paper [61] made
an adjustment motivated by this work. As we shall see in Theorem 5.10, the situation is much
cleaner for minimal Taylor algebras.

Our definition of center of an algebra requires the concept of a (left/right) center of a
relation. The left center of 𝑅 ⊆ 𝐴 × 𝐵 is the set {𝑎 ∈ 𝐴 : (∀𝑏 ∈ 𝐵) (𝑎, 𝑏) ∈ 𝑅}. If 𝑅 has a nonempty
left center, it is called left central. Right center and right central relations are defined analogically.
A relation is central if it is left central and right central.

DEF IN IT ION 3.6. A subset 𝐵 ⊆ 𝐴 is a center of A if there exists an algebra C (of the same
signature) with no nontrivial 2-absorbing subuniverse and 𝑅 ≤𝑠𝑑 A × C such that 𝐵 is the left
center of 𝑅. The relation 𝑅 is called a witnessing relation. If C can be chosen Taylor, we call 𝐵 a
Taylor center of A.

An algebra A is polynomially complete if every operation on 𝐴 is in the clone generated by
A together with the constant operations. This property can be equivalently phrased in terms of
relations: A is polynomially complete if and only if it has no proper reflexive (that is, containing
all the tuples (𝑎, 𝑎, . . . , 𝑎)) irredundant (that is, no binary projection is the equality relation)
subpowers.

The fundamental theorem can now be stated as follows.

THEOREM 3.7. (The Four Types Theorem [60]) Let A be an algebra, then
(a) A has a nontrivial 2-absorbing subuniverse, or
(b) A has a nontrivial center (which is a Taylor center in the case where A is a Taylor algebra),

or
(c) A/𝛼 is abelian for some proper congruence 𝛼 of A, or
(d) A/𝛼 is polynomially complete for some proper congruence 𝛼 of A.

We referred to four types of subuniverses whereas cases (c) and (d) talk about congruences –
the subuniverses used in [60] are the equivalence classes of such congruences.

Examples of simple (with only trivial congruences) Taylor algebras, for which one of the
cases takes place and no other, are (a) a two-element semilattice, (b) a two-element majority
algebra, (c) an affine Mal’cev algebra, and (d) the three element rock-paper-scissors algebra

({paper, rock, scissors}; winner(𝑥, 𝑦)).

Note, however, that Theorem 3.7 does not require that A is Taylor. If it is, then we get additional
properties: centers are 3-absorbing by Proposition 4.3 and abelian algebras are term equivalent
to affine modules by Theorem 2.4. For non-Taylor idempotent algebras, [61] suggests a similar
five type theorem, which also follows immediately from our results.
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4. Taylor algebras

This section presents unifications, simplifications, and refinements of the three algebraic theo-
ries in the setting of Taylor algebras (still finite and idempotent) that are not necessarily minimal.
In Subsection 4.1 we discuss the already existing refinements to the proof of the absorption
theorem, and provide two additional new refinements in Proposition 4.2 and Proposition 4.4.
This gives tight links to centers and projective subuniverses. Subsection 4.2 contains the main
contribution of this section, Theorem 4.7. This theorem together with additional technical
contributions, Theorems 4.10 and 4.11, directly imply the fundamental facts in the two proofs
of the CSP Dichotomy Theorem – the four types theorem and the connectivity theorem. The
proofs of claims in this section are in Section 8.

4.1 Absorption theorem

We first sketch the original proof of the absorption theorem (Theorem 3.4) and then comment
on subsequent improvements and simplifications.

For simplicity, we sketch the proof for a slighty simplified version with A = C. So, we
assume that A is Taylor and that 𝑅 ≤𝑠𝑑 A2 is linked. The original proof that A then necessarily
has a proper absorbing subuniverse can be divided into 3 steps.

(1) From A being Taylor it is derived that A either has a nontrivial 2-absorbing subuniverse
or a transitive term operation 𝑡 of some arity 𝑛, i.e., for each 𝑏, 𝑐 ∈ 𝐴 and every coordinate
𝑖 of 𝑡, there exists a tuple a ∈ 𝐴𝑛 with 𝑎𝑖 = 𝑏 such that 𝑡(a) = 𝑐.

(2) Using the transitive operation, it is proved that if A has no nontrivial absorbing subuni-
verses, then 𝑅 is left or right central.

(3) It is shown that the transitive operation witnesses that the left (right) center absorbs A.

The first step was explored in more detail in [8]. Lemma 2.7 in [8] shows that each algebra
has a nontrivial projective subuniverse or a transitive term operation. A simple argument then
shows that every projective subuniverse in a Taylor algebra is 2-absorbing, a witness is, e.g.,
any operation of the form 𝑡(𝑥, . . . , 𝑥, 𝑦, . . . , 𝑦) where 𝑡 is cyclic.

As for the second step, it has turned out that left (or right) central relations can be very easily
obtained from linked relations by means of pp-definitions, avoiding algebraic considerations
altogether.

PROPOS IT ION 4.1. (link to proof) Let 𝑅 ⊆𝑠𝑑 𝐴 × 𝐶 be proper and linked. Then either 𝑅 is left
central or pp-defines a proper subdirect symmetric central relation on 𝐶.

We give a refined version for the case 𝐴 = 𝐶 that derives central relations with further properties.

PROPOS IT ION 4.2. (link to proof) Let 𝑅 ⊆𝑠𝑑 𝐴2 be linked and proper. Then 𝑅 pp-defines a
subdirect proper central relation on 𝐴 which is symmetric or transitive.
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The third step, that a transitive operation witnesses absorption of left centers, is straight-
forward, see Proposition 8.3. A significant refinement, Corollary 7.10.2 in [60], shows that
left centers are, in fact, 3-absorbing. An adjustment of the proof will also help us in proving
Theorem 5.10.

PROPOS IT ION 4.3. ([60], link to proof) If 𝐵 is a Taylor center of an algebra A, then 𝐵 ⊴3 A.

Note that in the previous propositionA need not be a Taylor algebra, but C (where the witnessing
relation is𝑅 ≤𝑠𝑑 A×C) must be. The following proposition states that we can switch the condition:

PROPOS IT ION 4.4. (link to proof) If 𝐵 is a center of a Taylor algebra A, then 𝐵 ⊴3 A.

The assumptions of the latter proposition are easier to satisfy — the algebra A is usually Taylor
by default.

Altogether, either of the propositions above provides the following improvement of the
absorption theorem, which does not seem to be explicitly stated in the literature.

COROLLARY 4.5. (link to proof) Suppose 𝑅 ≤𝑠𝑑 A × C is proper and linked, and C is Taylor.
Then A or C has a nontrivial 3-absorbing subuniverse.

4.2 Subdirect irredundant subpowers

We now present the unification result. It says that any “interesting” (subdirect irredundant
proper) relation either pp-defines an interesting binary relation or pp-defines (and is even
inter-pp-definable with) ternary relations of very particular shape (strongly functional). We
have recently found out that Theorem 4.7 can be also deduced from Szendrei’s results in [58].
Our contribution is thus the presented formulation, its alternative proof, and the application to
the fundamental theorems of the dichotomy proofs.

The definitions are as follows. A relation 𝑅 ⊆𝑠𝑑 𝐴𝑛 is irredundant if no projection to a pair
of coordinates is the graph of a bijection; in other words, there is no bijective correspondnce
between 𝑎𝑖 and 𝑎 𝑗 in tuples a ∈ 𝑅. We remark the definition of irredundancy is different than
in some other papers. Also note that this definition agrees with the definition of irredundancy
for reflexive relations given in Subsection 3.3.

Strongly functional relations can be defined as graphs of quasigroup operations or, more
explicitly, as follows.

DEF IN IT ION 4.6. A relation 𝑅 ⊆ 𝐴3 is called strongly functional if
the binary projections of 𝑅 are equal to 𝐴2, and
every tuple in 𝑅 is determined by its values on any two coordinates.
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We are ready to state the main result. In the theorem statement, pp-definability should
be understood as pp-definability with parameters, i.e., one is allowed to use singleton unary
relations.

THEOREM 4.7. (link to proof) Let 𝑅 ⊆𝑠𝑑 𝐴𝑛 be an irredundant proper relation. Then either
𝑅 pp-defines an irredundant and proper 𝑅′ ⊆𝑠𝑑 𝐴2, or
there exist strongly functional ternary relations 𝑅1, . . . , 𝑅𝑛 ⊆𝑠𝑑 𝐴3 such that the set {𝑅1, . . . ,
𝑅𝑚} is inter-pp-definable with 𝑅 (i.e., the 𝑅𝑖s pp-define 𝑅 and, conversely, 𝑅 pp-defines all the
𝑅𝑖s).

Theorem 4.7 implies that every algebra A has at least one of the following properties of its
invariant relations.

(1) A has no proper irredundant subdirect subpowers.
(2) A has a proper irredundant binary subdirect subpower.
(3) A has a ternary strongly functional subpower.

In the last case, it is easy to pp-define a congruence on A2 such that the diagonal is one of its
classes, so A is abelian in that case.

PROPOS IT ION 4.8. (link to proof) If 𝑅 ≤ A3 is a strongly functional relation, then A is abelian.

In case (1), subdirect relations have a very simple structure; for instance, any constraint𝑅(𝑥1, . . . ,
𝑥𝑛) with subdirect 𝑅 is effectively a conjunction of bijective dependencies 𝑥𝑖 = 𝑓 (𝑥 𝑗) (in par-
ticular, A is simple). It is also immediate that A is polynomially complete. Less trivially, case
(1) often leads to majority edges, as we show in Theorem 4.10 below. We require the following
definition first.

DEF IN IT ION 4.9. Let A be an algebra. By the connected-by-subuniverses equivalence, denoted
𝜇A, we mean the smallest equivalence containing all the pairs (𝑎, 𝑏) such that SgA(𝑎, 𝑏) ≠ 𝐴.

We remark that the equivalence 𝜇A is not, in general, a congruence of A, so this concept may
seem somewhat unnatural from the algebraic perspective. This equivalence may be full. If we
are in case (1) and 𝜇A is not full, then the following theorem produces majority edges.

THEOREM 4.10. (link to proof) Suppose that A has no subdirect proper irredundant subpowers.
Then there exists a term operation 𝑡 ∈ Clo3(A) such that for any 𝑎, 𝑏 ∈ 𝐴 with SgA(𝑎, 𝑏) = A (e.g.,
(𝑎, 𝑏) ∉ 𝜇A), 𝑡(𝑎, 𝑎, 𝑏) = 𝑡(𝑎, 𝑏, 𝑎) = 𝑡(𝑏, 𝑎, 𝑎) = 𝑎.

In case (2) and when A is simple, a binary irredundant relation is necessarily linked. Then we
get a central relation, e.g., by Proposition 4.2, and, by the following theorem, also semilattice
edges in case that 𝜇A is not full and the size of 𝐴 is at least three (in case that 𝜇A is full the
theorem is vacuously true).
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THEOREM 4.11. (link to proof) Suppose A with |𝐴| > 2 is simple and there exists a proper
irredundant subdirect binary subpower. Then there exists a 𝜇A-class 𝐵 such that, for every 𝑏 ∈
𝐵, 𝑎 ∉ 𝐵, the pair (𝑎, 𝑏) is a semilattice edge witnessed by the identity congruence.

Zhuk’s four types theorem (Theorem 3.7) is now a consequence of Theorem 4.7, Proposi-
tion 4.8, and Proposition 4.2. Indeed, one simply applies these facts to A factored by a maximal
congruence, which is a simple algebra, and then lifts 2-absorbing subuniverses and centers
back to A. Moreover, we can improve item (d) in the four types theorem as follows.

COROLLARY 4.12. (link to proof) Let A be an algebra, then
(a) A has a nontrivial 2-absorbing subuniverse, or
(b) A has a nontrivial center (which is a Taylor center in the case where A is a Taylor algebra),

or
(c) A/𝛼 is abelian for some proper congruence 𝛼 of A, or
(d) A/𝛼 has no proper irredundant subdirect subpowers for some proper congruence 𝛼 of A.

The connectivity theorem (Theorem 3.2) is also a straightforward consequence of the
obtained results, Theorem 4.7, Proposition 4.8, Theorem 4.10, and Theorem 4.11. In fact, a little
additional effort gives a somewhat stronger result.

COROLLARY 4.13. (link to proof) The directed graph formed by the minimal edges of any
algebra is (weakly) connected.

5. Minimal Taylor algebras

We start this section by recalling the central definition and giving some examples.

DEF IN IT ION 5.1. An algebra A is called a minimal Taylor algebra if it is Taylor but no proper
reduct of A is.

There exist exactly four minimal Taylor algebras on a two-element set, counted up to
term-equivalence: the two semilattices, the majority algebra, and the affine Mal’cev algebra.
Indeed, from the description of their term operations given in Subsection 2.2 it follows that
clones of these algebras are even minimal, in the sense that the only proper subclone is the
clone of projections. A nice example of a minimal Taylor algebra on a three-element domain is
the rock-paper-scissors algebra mentioned in Subsection 3.3. To see that this algebra is minimal
Taylor observe that any term operation behaves on any two-element set like the term operation
of a two-element semilattice with the same set of essential coordinates. Therefore, the original
operation can be obtained by identifying variables in any term operation having at least two
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essential coordinates. The same argument shows that any semilattice, not necessarily two-
element, is minimal Taylor. Affine Mal’cev algebras are also minimal Taylor; this can be deduced
e.g. from Theorem 2.4.

In Subsection 5.1 we give the basic general theorems that were proved in [18] in the context
of minimal bounded width algebras. Subsection 5.2 concentrates on absorption and related
concepts in Zhuk’s theory. It turns out that 2-absorbing sets are exactly projective subuniverses
(Theorem 5.7) and 3-absorbing sets are exactly centers (Theorem 5.10). Subsection 5.3 shows
that edges substantially simplify in minimal Taylor algebras (Theorem 5.13) and gives addi-
tional information for minimal edges; in particular, minimal semilattice edges coincide with
thin semilattice edges as defined in [26, 28] (Proposition 5.15). Finally, in Subsection 5.4, we
demonstrate a strong interaction between absorption and edges. We show that 2-absorbing sub-
universes are exactly subsets that are, in some sense, stable under all the edges (Theorem 5.19),
we provide somewhat weaker interaction between absorbing subuniverses and subsets stable
under semilattice and abelian edges (Theorem 5.21), we give a common witnessing operation
for all of the edges as well as all of the 2- and 3-absorbing subuniverses (Theorem 5.23), and
we show that each such a witnessing operation generates the whole clone of term operations
(Theorem 5.24). Proofs for this section, including verification of examples, are in Section 9.

5.1 General facts

It is not immediate from the definitions that each Taylor algebra has a minimal Taylor reduct.
Nevertheless, this fact easily follows from the characterization of Taylor algebras by means of
cyclic operations.

PROPOS IT ION 5.2. (link to proof) Every Taylor algebra has a minimal Taylor reduct.

Another simple, but important consequence of cyclic operations is the following proposition.
The result is slightly more technical than most of the others, but it is in the core of many strong
properties of minimal Taylor algebras. The proposition can be further strengthened, see [19,

Theorem 4.2.4.].

PROPOS IT ION 5.3. (link to proof) Let A be a minimal Taylor algebra and 𝐵 ⊆ 𝐴 be closed
under an operation 𝑓 ∈ Clo(A) such that 𝐵 together with the restriction of 𝑓 to 𝐵 forms a Taylor
algebra. Then 𝐵 is a subuniverse of A.

A similar argument based on cyclic operations proves that the class of minimal Taylor
algebras is closed under the standard constructions.

PROPOS IT ION 5.4. (link to proof) Any subalgebra, finite power, or quotient of a minimal Taylor
algebra is a minimal Taylor algebra.
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5.2 Absorption

The goal of this section is to show that absorbing subsets, which are abundant in general Taylor
algebras by Theorem 3.4, Theorem 3.7, and Proposition 4.4, have strong properties in minimal
Taylor algebras. We start with a surprising fact, which clearly fails in general Taylor algebras.

THEOREM 5.5. (link to proof) Let A be a minimal Taylor algebra and 𝐵 an absorbing set of A.
Then 𝐵 is a subuniverse of A.

Now we move on to 2-absorption. We have already mentioned in Subsection 4.1 that
projectivity is a stronger form of absorption in Taylor algebras, but we can go even further.

DEF IN IT ION 5.6. Let A be an algebra and 𝐵 ⊆ 𝐴. The set 𝐵 is a strongly projective subuniverse
of A if for every 𝑓 ∈ Clo𝑛(A) and every essential coordinate 𝑖 of 𝑓 , we have 𝑓 (a) ∈ 𝐵 whenever
a ∈ 𝐴𝑛 is such that 𝑎𝑖 ∈ 𝐵.

The property of being a strong projective subuniverse is indeed very strong. For example, in
any nontrivial clone, a strong projective subuniverse is 2-absorbing and every binary operation
of the clone, except for projections, witnesses the absorption. The next theorem states that
strong projectivity in minimal Taylor algebras is equivalent to 2-absorption, which in general is
a much weaker concept.

THEOREM 5.7. (link to proof) The following are equivalent for any minimal Taylor algebra A
and any 𝐵 ⊆ 𝐴.

(a) 𝐵 2-absorbs A.
(b) 𝑅(𝑥, 𝑦, 𝑧) = 𝐵(𝑥) ∨ 𝐵( 𝑦) ∨ 𝐵(𝑧) is a subuniverse of A3.
(c) 𝐵 is a projective subuniverse of A.
(d) 𝐵 is a strongly projective subuniverse of A.

The main value of this theorem is the implication showing that, in minimal Taylor algebras,
every 2-absorption, i.e. (a), is as strong as possible (d). Moreover, (b) provides a nice relational
description of 2-absorption, which collapses the general condition from Proposition 2.6 for
projectivity to arity 3. The implications (d) implies (c) implies (b) implies (a) hold for all Taylor
algebras. The following examples disprove the reverse implications. We leave the verification
as an exercise.

EXAMPLE 5.8. The algebra ({0, 1}; 𝑥 ∨ ( 𝑦 ∧ 𝑧)) is Taylor and {1} is a projective universe
which is not strongly projective. This shows that “(c) implies (d)” in Theorem 5.7 fails in Taylor
algebras.

Let 𝑡(𝑥, 𝑦, 𝑧, 𝑤) be an operation on {0, 1}which is equal to 𝑥∨ 𝑦∨ 𝑧∨𝑤 everywhere, except
that it is zero on the tuple (1, 0, 0, 0) and its cyclic shifts. Then A = ({0, 1}; 𝑡) is a Taylor algebra
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and the 𝑅 defined for 𝐵 = {1} in (b) of Theorem 5.7 is compatible with A. On the other hand 𝐵 is
not a projective subuniverse of A as witnessed by, for example, 𝑡 and thus (c) of Theorem 5.7 is
false.

Finally, the two-element lattice ({0, 1};∧,∨) is an example of a Taylor algebra such that (a)
of Theorem 5.7 holds, but (b) does not. ■

The following proposition collects some strong and unusual properties of 2-absorbing
subuniverses in minimal Taylor algebras. Already the first item might be surprising since the
union of two subuniverses is rarely a subuniverse.

PROPOS IT ION 5.9. (link to proof) Let A be a minimal Taylor algebra.
(1) If 𝐵 ⊴2 A and 𝐶 ≤ A, then 𝐵 ∪ 𝐶 ≤ A.
(2) If 𝐵 ⊴2 A and 𝐶 ⊴ A by 𝑓 , where ∅ ≠ 𝐵, 𝐶 ≠ 𝐴, then

a. 𝐵 ∪ 𝐶 ⊴ A by 𝑓 , and
b. 𝐵 ∩ 𝐶 ≠ ∅ and 𝐵 ∩ 𝐶 ⊴ A by 𝑓 .

(3) If C ⊴2 B ⊴2 A, then C ⊴2 A.
(4) A has a unique minimal 2-absorbing subalgebra B. Moreover, this algebra B does not have

any nontrivial 2-absorbing subalgebra.

As for absorption of higher arity, we have already shown in Proposition 4.4 that centers
are 3-absorbing. Next theorem says that, in minimal Taylor algebras, the converse is true as
well.

THEOREM 5.10. (link to proof) The following are equivalent for any minimal Taylor algebra A
and any 𝐵 ⊆ 𝐴.

(a) 𝐵 3-absorbs A.
(b) 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ 𝐵( 𝑦) is a subuniverse of A2.
(c) 𝐵 is a (Taylor) center of A.
(d) there exists C with Clo(C) ⊆ Clo({0, 1}; maj) such that 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ ( 𝑦 = 0) is a

centrality witness.

Moreover, if 𝐵 = {𝑏}, then these items are equivalent to
(e) 𝐵 absorbs A.

Just like in Theorem 5.7 we have that a relatively weak notion of 3-absorption implies a very
strong type of centrality which is (d). Let us investigate (d) in greater detail. The fact that 𝑅
is a subuniverse of A × C translates to the following fact. To every operation of A, say 𝑓 , we
can associate an operation 𝑓 ′ ∈ Clo({0, 1},maj) such that 𝑓 (a) ∈ 𝐵 whenever 𝑓 ′(x) = 1 and x is
the characteristic tuple of a with respect to 𝐵 (i.e. 𝑥𝑖 = 1 if and only if 𝑎𝑖 ∈ 𝐵). That is, from the
viewpoint of “being outside 𝐵” vs. “being inside 𝐵” every operation outputs “inside 𝐵” every
time the corresponding operation of Clo({0, 1}; maj) outputs 1.
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In fact, there exists a cyclic 𝑡 in A (say, 𝑝-ary) such that 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ ( 𝑦 = 0) is a
subuniverse of (𝐴; 𝑡) × ({0, 1}; maj𝑝) for every 3-absorbing 𝐵. This translates to a simpler
statement: for every 3-absorbing 𝐵 we have 𝑡(a) ∈ 𝐵 whenever majority of the 𝑎𝑖 belong to 𝐵,
and we cannot expect more, as witnessed by the 2-element majority algebra. Since 𝑡 is cyclic it
generates the whole clone and, for example, item (2) in Proposition 5.12 below becomes obvious.

Item (b) provides a relational description of 3-absorption, while item (c) provides a connec-
tion with the notion of a center (whether it is Taylor or not). We now give an example showing
that (e) and (a) are not equivalent even in minimal Taylor algebras if 𝐵 has more than one
element.

EXAMPLE 5.1 1. (link to verification) Consider the algebra A = ({0, 1, 2}, 𝑚) where 𝑚 is the
majority operation such that 𝑚(𝑎, 𝑏, 𝑐) = 𝑎 whenever |{𝑎, 𝑏, 𝑐}| = 3. This algebra is minimal
Taylor and the set 𝐶 = {0, 1} is an absorbing subuniverse of A. However, 𝐶 is not a center
of A. ■

Finally, we list some strong and unusual properties of 3-absorbing subuniverses. They are
not as strong as in the case of 2-absorbing subuniverses, which is to be expected since every
2-absorbing subuniverse is 3-absorbing but not vice versa.

PROPOS IT ION 5.12. (link to proof) Let A be a minimal Taylor algebra.
(1) If 𝐵, 𝐶 ⊴3 A, then 𝐵 ∪ 𝐶 ≤ A and 𝐵 ∩ 𝐶 ⊴3 A.
(2) If ∅ ≠ 𝐵, 𝐶 ⊴3 A and 𝐵 ∩ 𝐶 = ∅, then 𝐵2 ∪ 𝐶2 is a congruence on the subalgebra of A with

universe 𝐵 ∪ 𝐶 and the quotient is term-equivalent to a two-element majority algebra.
(3) If C ⊴3 B ⊴3 A, then C ⊴3 A.

5.3 Edges

The next theorem says that, in minimal Taylor algebras, every “thick” edge, in the terminology
of [26, 27], is automatically a subuniverse. This property is a simple consequence of the results
we have already stated, whereas it was relatively painful to achieve using the original approach.
We additionally obtain that semilattice and majority edges have unique witnessing congruences.

THEOREM 5.13. (link to proof) Let (𝑎, 𝑏) be an edge (semilattice, majority, or abelian) of a
minimal Taylor algebra A and 𝜃 a witnessing congruence of E = SgA(𝑎, 𝑏).

(a) If (𝑎, 𝑏) is a semilattice edge, then E/𝜃 is term equivalent to a two-element semilattice with
absorbing element 𝑏/𝜃.

(b) If (𝑎, 𝑏) is a majority edge, then E/𝜃 is term equivalent to a two-element majority algebra.
(c) if (𝑎, 𝑏) is an abelian edge, then E/𝜃 is term equivalent to an affine Mal’cev algebra of an

abelian group isomorphic to Z/𝑚 for some positive integer 𝑚, where Z/𝑚 denotes the group
of integers modulo 𝑚.
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Moreover, a semilatice edge is witnessed by exactly one congruence of E, and that congruence is
maximal. The same holds for majority edges.

For minimal edges we can say a bit more. If (𝑎, 𝑏) is a minimal edge witnessed by 𝜃, a congruence
on E = SgA(𝑎, 𝑏), then E/𝜃 is simple. In particular, for abelian minimal edges, E/𝜃 is an affine
Mal’cev algebra of a group isomorphic to Z/𝑝. Moreover, such an E has a unique maximal
congruence as shown in the next proposition. This implies that the type of a minimal edge is
unique and so is the direction of a semilattice minimal edge and the prime 𝑝 associated to an
abelian minimal edge.

PROPOS IT ION 5.14. (link to proof) Let (𝑎, 𝑏) be a minimal edge in a minimal Taylor algebra.
Then E = SgA(𝑎, 𝑏) has a unique maximal congruence equal to 𝜇E. In particular, minimal edges
have unique types.

The structure of minimal semilattice edges is especially simple.

PROPOS IT ION 5.15. (link to proof) Let (𝑎, 𝑏) be a minimal semilattice edge in a minimal Taylor
algebra. Then {𝑎, 𝑏} is a subuniverse of A, so SgA(𝑎, 𝑏) = {𝑎, 𝑏} and the witnessing congruence is
the equality.

Unfortunately, majority and abelian edges do not simplify in a similar way; see Example 5.16
and Example 5.17. Weaker versions of Proposition 5.15 have been developed by Bulatov (comp.
Lemma 12 and Corollary 13 in [26]) to deal with this problem.

EXAMPLE 5.16. (link to verification) Let 𝐴 = {0, 1, 2, 3} and 𝛼 the equivalence relation on 𝐴

with classes {0, 2} and {1, 3}. Define a symmetric ternary operation 𝑔 on 𝐴 as follows. When two
of the inputs to 𝑔 are equal, 𝑔 is given by 𝑔 (𝑎, 𝑎, 𝑎 + 1) = 𝑎, 𝑔 (𝑎, 𝑎, 𝑎 + 2) = 𝑔 (𝑎, 𝑎, 𝑎 + 3) = 𝑎 + 2
(all modulo 4) and when all three inputs to 𝑔 are distinct, 𝑔 is given by 𝑔 (𝑎, 𝑏, 𝑐) = 𝑑−1 (mod 4)
where 𝑎, 𝑏, 𝑐, 𝑑 are any permutation of 0, 1, 2, 3. Then A = (𝐴; 𝑔) is a minimal Taylor algebra, 𝛼
is a congruence on A, and each of pair of elements in different 𝛼-classes is a minimal majority
edge with witnessing congruence 𝛼. ■

EXAMPLE 5.17. (link to verification) Let A = ({𝑎, 𝑏, 𝑐, 𝑑}, 𝑝), where 𝑝 is a Mal’cev operation
with the following properties. The operation 𝑝 commutes with the permutations 𝜎 = (𝑎 𝑐) and
𝜏 = (𝑏 𝑑). The polynomials +𝑎 = 𝑝(·, 𝑎, ·), +𝑏 = 𝑝(·, 𝑏, ·) define abelian groups:

+𝑎 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑏 𝑐 𝑑

𝑏 𝑏 𝑐 𝑑 𝑎

𝑐 𝑐 𝑑 𝑎 𝑏

𝑑 𝑑 𝑎 𝑏 𝑐

+𝑏 𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑎 𝑑 𝑐

𝑏 𝑎 𝑏 𝑐 𝑑

𝑐 𝑑 𝑐 𝑏 𝑎

𝑑 𝑐 𝑑 𝑎 𝑏
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Then A is a minimal Taylor algebra, with a unique maximal congruence 𝜃 whose congruence
classes are {𝑎, 𝑐} and {𝑏, 𝑑}. Each pair of elements of A in different congruence classes of 𝜃 is a
minimal abelian edge of A with witnessing congruence 𝜃. ■

We can also provide nontrivial information about Sg(𝑎, 𝑏) in the case where (𝑎, 𝑏) is not
necessarily an edge, and this information helps in proving Theorem 5.24 in the next subsection
(and shows that case (d) in Theorem 3.7 is never necessary for two-generated algebras). However,
the following fundamental question remains open: Is there a minimal Taylor algebra such that,
for some 𝑎, 𝑏, neither (𝑎, 𝑏) nor (𝑏, 𝑎) is an edge?

5.4 Absorption and edges

We start this subsection with a definition that will connect absorption with edges.

DEF IN IT ION 5.18. Let A be an algebra, let 𝐵 ⊆ 𝐴 and let (𝑏, 𝑎) be an edge. We say that 𝐵 is
stable under (𝑏, 𝑎) if, for every witnessing congruence 𝜃 of SgA(𝑏, 𝑎) such that 𝑏/𝜃 intersects 𝐵,
each 𝜃-class intersects 𝐵.

As the next theorem states, stability under every edge can be added as an additional equivalent
condition in Theorem 5.7. This direct connection between absorption, which is a global property,
to the local concepts in Bulatov’s theory is among the most surprising phenomena that the
authors have encountered in this work.

THEOREM 5.19. (link to proof) The following are equivalent for any minimal Taylor algebra A
and any 𝐵 ⊆ 𝐴.

(a) 𝐵 2-absorbs A.
(b) 𝐵 is stable under all the edges.

The implication from (b) to (a) does not require the full strength of stability for semilattice and
majority edges. It is enough to require that for a minimal semilattice or a majority edge (𝑏, 𝑎)
it is never the case that 𝑏/𝜃 ⊆ 𝐵 and 𝑎/𝜃 ∩ 𝐵 = ∅, where 𝜃 is the edge-witnessing congruence
of Sg(𝑏, 𝑎) (which is the equality relation on {𝑎, 𝑏} in case of semilattice edges). The following
example shows that stability under abelian edges cannot be significantly weakened.

EXAMPLE 5.20. (link to verification) We consider the four-element algebra A = ({0, 1, 2, ∗}, ·)
with binary operation · given by

· 0 1 2 ∗
0 0 2 1 ∗
1 2 1 0 2
2 1 0 2 1
∗ ∗ 2 1 ∗
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Then A is a minimal Taylor algebra, with a semilattice edge (0, ∗), with {0, 1, 2} an affine
subalgebra, and with a congruence 𝜃 corresponding to the partition {0, ∗}, {1}, {2} such that
A/𝜃 is affine. The set {∗} is stable under semilattice and majority edges and there is no minimal
abelian edge (∗, 𝑎) with 𝑎 ≠ ∗. But {∗} is not an absorbing subalgebra of A. ■

For absorption of higher arity the connection to edges is not as tight as for 2-absorption.
Nevertheless, one direction still works, and both directions work for singletons.

THEOREM 5.21. (link to proof) Any absorbing set of a minimal Taylor algebra A is stable under
semilattice and abelian edges. Moreover, for any 𝑏 ∈ 𝐴 the following are equivalent.

(a) {𝑏} absorbs A.
(b) {𝑏} is stable under semilattice and abelian edges.

Stability under semilattice edges for the implication from (b) to (a) can be again replaced
by the requirement that there is no minimal semilattice edge (𝑏, 𝑎) with 𝑏 ∈ 𝐵 and 𝑎 ∉ 𝐵.
Example 5.20 shows that this is not the case for abelian edges.

The following example shows that the implication from (b) to (a) does not hold for non-
singleton subuniverses.

EXAMPLE 5.22. Consider the algebra A = ({0, 1, 2}, 𝑚) where 𝑚 is the majority operation
such that 𝑚(𝑎, 𝑏, 𝑐) = 2 whenever |{𝑎, 𝑏, 𝑐}| = 3. This algebra is minimal Taylor, every pair of
distinct elements forms a subuniverse, and every pair is a minimal majority edge. So there are
no semilattice or abelian edges. However, the subuniverse {0, 1} is not absorbing. ■

An important fact for the edge approach is that semilattice, majority, and Mal’cev opera-
tions coming from edges can be unified. In minimal Taylor algebras, a simple consequence of
the already stated results is that we not only have a common ternary witness for all the edges
but also for all the binary and ternary absorptions.

THEOREM 5.23. (link to proof) Every minimal Taylor algebra A has a ternary term operation 𝑓

such that if (𝑎, 𝑏) is an edge witnessed by 𝜃 on E = SgA(𝑎, 𝑏), then
if (𝑎, 𝑏) is a semilattice edge, then 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 on E/𝜃 (where 𝑏/𝜃 is the top);
if (𝑎, 𝑏) is a majority edge, then 𝑓 is the majority operation on E/𝜃 (which has two elements);
if (𝑎, 𝑏) is an abelian edge, then 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 on E/𝜃;
𝑓 witnesses all the 3-absorptions 𝐵 ⊴3 A;
any binary operation obtained from 𝑓 by identifying two arguments witnesses all the 2-
absorptions 𝐵 ⊴2 A.

In fact, any ternary operation 𝑓 defined from a cyclic term operation 𝑡 of odd arity 𝑝 ≥ 3 by

𝑓 (𝑥, 𝑦, 𝑧) = 𝑡(𝑥, 𝑥, . . . , 𝑥︸      ︷︷      ︸
𝑘×

, 𝑦, 𝑦, . . . , 𝑦︸       ︷︷       ︸
𝑙×

, 𝑧, 𝑧, . . . , 𝑧︸      ︷︷      ︸
𝑚×

),
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where 𝑘 + 𝑙, 𝑙 +𝑚, 𝑘 +𝑚 > 𝑝/2, satisfies all the items in Theorem 5.23 except possibly the third
one (which can be obtained by picking 𝑘, 𝑙, and 𝑚 a bit more carefully).

We finish this section with a theorem stating that any ternary witness of edges generates
the whole clone of the algebra. In particular, the number of minimal Taylor clones on a domain
of size 𝑛 is at most 𝑛𝑛3 .

THEOREM 5.24. (link to proof) If A is a minimal Taylor algebra, then Clo(𝐴; 𝑓 ) = Clo(A) for
any operation 𝑓 satisfying the first three items in Theorem 5.23.

6. Omitting types

In this section we consider classes of algebras whose graph only contains edges of certain types.
We say that an algebra is a-free if it has no abelian edges. More generally, an algebra is x-free or
is xy-free, where x, y ∈ {(a)belian, (m)ajority, (s)emilattice} if it has no edges of type x (of types
x, y).

It turns out that within minimal Taylor algebras these “omitting types” conditions are
often equivalent to important properties of algebras. In the theorems below we prove the
equivalence of the following four types of conditions: (i) the absence of edges of a certain type
(equivalently, minimal edges of the same type); (ii) properties of absorption and the four types
in Zhuk’s approach; (iii) the existence of a certain special term operations; (iv) algorithmic
properties of the CSP. Theorems in this section are consequences of the theory we have already
built in the previous section and known results (see [9]). The proofs are in Section 10.

The first theorem concerns the class of algebras omitting abelian edges. Numerous charac-
terizations of this class are known for general algebras and we do not add a new one, but we
state the characterization for comparison with the other classes. In order to state a characteri-
zation in terms of identities we recall that an operation 𝑓 is a weak near unanimity operation
(or wnu for short) if it satisfies 𝑓 ( 𝑦, 𝑥, . . . , 𝑥) = 𝑓 (𝑥, 𝑦, 𝑥, . . . , 𝑥) = · · · = 𝑓 (𝑥, . . . , 𝑥, 𝑦) for every
𝑥, 𝑦 in the algebra.

THEOREM 6.1. (link to proof) The following are equivalent for any algebra A.
(i) A is a-free.

(ii) No subalgebra of A has a nontrivial abelian quotient, i.e., no subalgebra of A falls into case
(c) in Theorem 3.7.

(iii) A has a wnu term operation of every arity 𝑛 ≥ 3.
(iv) A has bounded width.

Minimal Taylor algebras omitting other types of edges do have significantly stronger properties
than general Taylor algebras omitting those edges. Minimal s-free algebras are exactly those
for which option (a) in Theorem 3.7 does not hold, and that have few subpowers [27]. Few
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subpowers algebras can be characterized by the existence of an edge term operation [12] in
general. In minimal Taylor algebras, the second strongest edge operation always exists – the
3-edge operation defined by the identities 𝑒( 𝑦, 𝑦, 𝑥, 𝑥) = 𝑒( 𝑦, 𝑥, 𝑦, 𝑥) = 𝑒(𝑥, 𝑥, 𝑥, 𝑦) = 𝑥. This is
significant, because the exponent in the running time of the few subpowers algorithm depends
on the least 𝑘 such that the algebra has a 𝑘-edge term operation. The number 3 here is best
possible: a 2-edge operation is the same as a Mal’cev operation appearing in Theorem 6.6.

THEOREM 6.2. (link to proof) The following are equivalent for any minimal Taylor algebra A.
(i) A is s-free.

(ii) No subalgebra of A has a nontrivial 2-absorbing subuniverse, i.e., no subalgebra of A falls
into case (a) in Theorem 3.7.

(iii) A has a 3-edge term operation.
(iv) A has few subpowers.

For the remaining omitting-single-type condition, m-freeness, we do not provide a natural
condition in terms of identities, and we are not aware of algorithmic implications of this
condition. Nevertheless, it can be characterized by means of absorption.

THEOREM 6.3. (link to proof) The following are equivalent for any minimal Taylor algebra A.
(i) A is m-free.

(ii) Every center (3-absorbing subuniverse) of any B ≤ A 2-absorbs B, i.e., case (b) implies case
(a) in Theorem 3.7 in all the subalgebras of A.

(ii’) Every subalgebra of A has a unique minimal 3-absorbing subuniverse.

Surprisingly, if along with m-freeness we also limit the type of abelian edges allowed in an
algebra, the resulting condition is equivalent to the existence of a binary commutative term
operation. This is interesting to us (the authors), since we did not regard the existence of a
commutative term operation to be a natural requirement for the CSP (cf. [9]). We call an abelian
edge (𝑎, 𝑏) a Z/2-edge if the corresponding affine Mal’cev algebra Sg(𝑎, 𝑏)/𝜃 is isomorphic to
the affine Mal’cev algebra of Z/2.

THEOREM 6.4. (link to proof) The following are equivalent for any minimal Taylor algebra A.
(i) A is m-free and has no Z/2-edges.

(iii) A has a binary commutative term operation.
(iii’) Clo(A) can be generated by a collection of binary operations.

Properties of minimal Taylor algebras having edges of only one type can be derived as
conjunctions of the properties stated above. For two of these cases, sm-free and as-free, we
provide additional information.
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Minimal Taylor am-free algebras are exactly those which have wnu operations of every
arity 𝑛 ≥ 2. These are exactly the minimal spirals in the terminology of [18] and a significant
property is that for every (𝑎, 𝑏) such that neither (𝑎, 𝑏) nor (𝑏, 𝑎) is a minimal semilattice edge,
there is a surjective homomorphism from Sg{𝑎, 𝑏} onto the (three-element) free semilattice on
two generators.

The sm-free minimal Taylor algebras are those where cases (a) and (b) in Theorem 3.7
do not occur. Additionally, these are exactly the hereditarily absorption free algebras studied
in [8] and, also, the algebras with a Mal’cev term operation – a type of operation that played a
significant role in the CSP [21].

THEOREM 6.5. (link to proof) The following are equivalent for any minimal Taylor algebra A.
(i) A is sm-free.

(ii) No subalgebra of A has a nontrivial absorbing subuniverse.
(iii) A has a Mal’cev term operation.

Finally, the as-free algebras are those where cases (a) and (c) in Theorem 3.7 do not occur
and those that have bounded width and few subpowers. It is known [42, 12] that the latter
property in general implies having a near-unanimity term operation of some arity. Surprisingly,
in minimal Taylor algebras, the arity goes down directly to three. In the algorithmic language,
these algebras have strict width two [38, 9].

THEOREM 6.6. (link to proof) The following are equivalent for any minimal Taylor algebra A.
(i) A is as-free.

(iii) A has a near unanimity term operation.
(iii’) A has a majority term operation.



30 / 76 L. Barto, Z. Brady, A. Bulatov, M. Kozik and S. Zhuk

Part II: Technical details

7. Preliminaries

In this section we list definitions and facts that will be, often implicitly, used in the proofs.

7.1 Relations

A relation on 𝐴 is a subset of 𝐴𝑛, but we often work with more general “multisorted” relations
𝑅 ⊆ 𝐴1 × 𝐴2 × · · · × 𝐴𝑛. We call such an 𝑅 proper if 𝑅 ≠ 𝐴1 × · · · × 𝐴𝑛 and nontrivial if it is
nonempty and proper. Tuples are written in boldface and components of x ∈ 𝐴1 × · · · × 𝐴𝑛 are
denoted 𝑥1, 𝑥2, . . . . Both x ∈ 𝑅 and 𝑅(x) are used to denote the fact that x is in 𝑅. The projection
of 𝑅 onto the coordinates 𝑖1, . . . , 𝑖𝑘 is denoted proj𝑖1,...,𝑖𝑘 (𝑅). The relation 𝑅 is subdirect, denoted
𝑅 ⊆𝑠𝑑 𝐴1 × · · · × 𝐴𝑛, if proj𝑖 (𝑅) = 𝐴𝑖 for each 𝑖. We call 𝑅 redundant, if there exist coordinates
𝑖 ≠ 𝑗 such that proj𝑖 𝑗 (𝑅) is a graph of bijection from 𝐴𝑖 to 𝐴 𝑗; otherwise 𝑅 is irredundant. A
relation 𝑅 ⊆ 𝐴𝑛 is reflexive if (𝑎, 𝑎, . . . , 𝑎) ∈ 𝑅 for each 𝑎 ∈ 𝐴. Note that for a redundant reflexive
relation, some proj𝑖 𝑗 (𝑅), 𝑖 ≠ 𝑗, is the equality relation.

For a subset 𝑅 ⊆ 𝐴𝑋 , the projection of 𝑅 onto a set of coordinates 𝐼 ⊆ 𝑋 is also denoted
proj𝐼 (𝑅); it is a subset of 𝐴𝐼 .

We say that a set of relations R pp-defines 𝑆 if 𝑆 can be defined from R by a primitive
positive formula with parameters, that is, using the existential quantifier, relations from R, the
equality relation, and the singleton unary relations.

For binary relations we write −𝑅 instead of 𝑅−1 and 𝑅 + 𝑆 for the relational composition of
𝑅 and 𝑆, that is 𝑅 + 𝑆 = {(𝑎, 𝑐) : (∃𝑏) 𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑐)}. For a unary relation 𝐵 we write 𝐵 + 𝑆 to
denote the set {𝑐 : (∃𝑏) 𝐵(𝑏) ∧ 𝑆(𝑏, 𝑐)} and if 𝐵 is a singleton we often write 𝑏+ 𝑆 instead of 𝑏+ 𝑆.
Also, we set 𝑅−𝑆 = 𝑅+(−𝑆) = 𝑅◦𝑆−1. A relation 𝑅 ⊆ 𝐴×𝐵 is linked if (𝑅−𝑅)+(𝑅−𝑅)+· · ·+ (𝑅−𝑅)
is equal to (proj1(𝑅))2 for some number of summands. In other words, 𝑅 is connected when
viewed as a bipartite graph between disjoint copies of 𝐴 and 𝐵, with possible isolated vertices
if 𝑅 is not subdirect. The left center of 𝑅 ⊆ 𝐴 × 𝐵 is the set {𝑎 ∈ 𝐴 : 𝑎 + 𝑅 = 𝐵}. If 𝑅 has a
nonempty left center, it is called left central. Right center and right central relations are defined
analogically. A relation is central if it is left central and right central. Note that 𝑅 + 𝑆, −𝑅, and
the left (right) center of 𝑅 are pp-definable from {𝑅, 𝑆}, e.g., the left center of 𝑅 is defined by the
formula 𝑅(𝑥, 𝑏1) ∧ 𝑅(𝑥, 𝑏2) ∧ · · · ∧ 𝑅(𝑥, 𝑏𝑛), where the 𝑏𝑖 are selected so that {𝑏1, . . . , 𝑏𝑛} = 𝐵.
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7.2 Algebras

Algebras, i.e. structures with a purely functional signature, will be denoted by boldface capital
letters (e.g., A) and their universes (also called domains) typically by the same letter in the plain
font (e.g., 𝐴). The basic general algebraic concepts, such as subuniverses, subalgebras, products,
and quotients modulo congruences are used in the standard way (see, e.g. [11]). An algebra is
nontrivial if it has at least two elements, otherwise it is trivial. We use 𝐵 ≤ A to mean that 𝐵 is a
subuniverse of A. We often abuse notation and write 𝑡 both for a term and the induced term
operation 𝑡A of an algebra A. By a subpower we mean a subuniverse (or a subalgebra) of a finite
power. Subpowers are the same as invariant relations and we may also call them compatible
relations. The set of all subpowers is denoted Inv(A). The subuniverse (or the subalgebra) of A
generated by a set 𝑋 ⊆ 𝐴 is denoted SgA(𝑋) or SgA(𝑥1, . . . , 𝑥𝑛) when 𝑋 = {𝑥1, . . . , 𝑥𝑛}. An algebra
is simple if it has only the trivial congruences – the equality relation and the full relation.

An operation 𝑓 on 𝐴 is idempotent if 𝑓 (𝑎, 𝑎, . . . , 𝑎) = 𝑎 for every 𝑎 ∈ 𝐴. An algebra is
idempotent if all of its operations are. Recall that all theorems in this paper concern algebras
that are finite and idempotent.

An operation 𝑓 on 𝐴 is a semilattice operation if it is binary, commutative, idempotent,
and associative; cyclic operation if 𝑓 (𝑎1, . . . , 𝑎𝑛) = 𝑓 (𝑎2, . . . , 𝑎𝑛, 𝑎1) for all a ∈ 𝐴𝑛; weak near
unanimity (wnu) operation if 𝑓 (𝑏, 𝑎, . . . , 𝑎) = 𝑓 (𝑎, 𝑏, 𝑎, . . . , 𝑎) = · · · = 𝑓 (𝑎, . . . , 𝑎, 𝑏) for all 𝑎, 𝑏 ∈ 𝐴;
near unanimity operation if it is a wnu and 𝑓 (𝑏, 𝑎, . . . , 𝑎) = 𝑎; a majority operation if it is a ternary
near unanimity operation; a Mal’cev operation if 𝑓 (𝑏, 𝑎, 𝑎) = 𝑓 (𝑎, 𝑎, 𝑏) = 𝑏 for all 𝑎, 𝑏 ∈ 𝐴; and
affine Mal’cev operation if 𝑓 (𝑎, 𝑏, 𝑐) = 𝑎 − 𝑏 + 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, where +,− are computed with
respect to an abelian group structure on 𝐴. For an odd 𝑛, the 𝑛-ary majority operation on a
two-element domain is denoted maj𝑛, i.e., maj𝑛(𝑎1, . . . , 𝑎𝑛) = 𝑎 iff the majority of the 𝑎𝑖 is 𝑎. A
semilattice is an algebra with a semilattice operation (and no other operations); an affine Mal’cev
algebra is an algebra with an affine Mal’cev operation; and an affine algebra is an algebra whose
term operations are exactly the idempotent term operations of a module over a unital ring.

A (function) clone is a set of operations C on a set 𝐴 which contains all the projections proj𝑛𝑖
(the 𝑛-ary projection to the 𝑖-th coordinate, i.e., proj𝑛𝑖 (a) = 𝑎𝑖) and is closed under composition,
i.e., 𝑓 (𝑔1, . . . , 𝑔𝑛) ∈ C whenever 𝑓 ∈ C is 𝑛-ary and 𝑔1, . . . , 𝑔𝑛 ∈ C are all 𝑚-ary, where
𝑓 (𝑔1, . . . , 𝑔𝑛) denotes the operation defined by 𝑓 (𝑔1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑔𝑛(𝑥1, . . . , 𝑥𝑚)). By Clo(A)
(Clo𝑛(A), respectively), we denote the clone of all term operations (the set of all 𝑛-ary term
operations, respectively) of A. An algebra B is a reduct of A if they have the same universe 𝐴 = 𝐵

and Clo(B) ⊆ Clo(A). Algebras A and B are term-equivalent if each of them is a reduct of the
other, i.e., Clo(A) = Clo(B).

An algebra A is polynomially complete if every operation on 𝐴 is in the clone generated
by A together with the constant operations. Note that A is polynomially complete if and only if
it has no proper reflexive irredundant subpowers.
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A coordinate 𝑖 of an operation 𝑓 : 𝐴𝑛 → 𝐴 is essential if 𝑓 depends on the 𝑖th coordinate,
i.e., 𝑓 (a) ≠ 𝑓 (b) of some tuples a, b ∈ 𝐴𝑛 that differ only at the 𝑖th coordinate.

7.3 Star and cyclic composition

If 𝑡, 𝑠 are operations on the same set, of arities 𝑝 and 𝑞, then the star composition of 𝑡 and 𝑠 is
defined by

𝑡
(
𝑠(𝑥1, 𝑥𝑝+1, . . . , 𝑥𝑞𝑝−𝑝+1), . . . , 𝑠(𝑥𝑝, 𝑥2𝑝, . . . , 𝑥𝑞𝑝)

)
.

The star composition of a 𝑝-ary cyclic operation and a 𝑞-ary cyclic operation is a cyclic operation
of arity 𝑝𝑞.

If 𝑡 is a cyclic operation and 𝑠 is any operation of the same arity 𝑝, then the cyclic composition
of 𝑡 and 𝑠 is defined by

𝑡
(
𝑠(𝑥1, . . . , 𝑥𝑝), 𝑠(𝑥2, . . . , 𝑥𝑝, 𝑥1), . . . , 𝑠(𝑥𝑝, 𝑥1, . . . , 𝑥𝑝−1)

)
and it is a cyclic operation of arity 𝑝.

7.4 Subpowers and pp-definitions

Our proofs heavily exploit the fact that subpowers of algebras are closed under pp-definitions.
We have already mentioned in Subsection 7.1 that the relational composition 𝑅 + 𝑆, the

inverse relation −𝑅, and left and right centers of a binary relation 𝑅 are pp-definable from
{𝑅, 𝑆}. Therefore if 𝑅 and 𝑆 are subuniverses of A2, then 𝑅 + 𝑆 is a subuniverse of A2, and −𝑅 as
well as the centers of 𝑅 are subuniverses of A (and this also applies to the multisorted setting
when 𝑅 and 𝑆 are subuniverses of A × B). We now discuss further such observations that we
use often in this paper.

If 𝑅 is a subuniverse of A𝑛, then the projection onto a set of coordinates 𝐼 ⊆ {1, 2, . . . , 𝑛} is
a subpower of A as well. We sometimes fix some coordinate 𝑖 to a subuniverse 𝐵 ≤ A before
projecting, i.e., we consider the relation 𝑅′(𝑥1, . . . , 𝑥𝑛) ≡ 𝑅(𝑥1, . . . , 𝑥𝑛) ∧ 𝐵(𝑥𝑖).

Let 𝑅 now be a subdirect subuniverse ofA2. Recall that 𝑅 is linked if 𝑆 = (𝑅−𝑅)+· · ·+(𝑅−𝑅)
is equal to 𝐴2 when we take a sufficiently large number of summands. In general, 𝑆 is an
equivalence relation on 𝐴 which is a subuniverse of A2 – a congruence of A. In particular, if A
is simple, then 𝑆 is either 𝐴2 (so 𝑅 is linked) or the equality relation, in which case 𝑅 is a graph
of a permutation 𝐴→ 𝐴 – an automorphism A→ A. So, for a simple algebra A, an irredundant
binary relation 𝑅 ≤𝑠𝑑 A2 is necessarily linked.

One type of subpower is of particular importance. Fix 𝑛 and consider the subalgebra F of
A𝐴𝑛 with universe 𝐹 = Clo𝑛(A), the set of 𝑛-ary operations on 𝐴. Thus tuples in 𝐹 are 𝑛-ary term
operations of A, a coordinate of a tuple in 𝐹 is an element a of 𝐴𝑛, and the a-th component of
a tuple 𝑓 ∈ 𝐹 is the value 𝑓 (a). The algebra F is isomorphic to the free algebra for A over an
𝑛-element set of generators.
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7.5 Absorption and pp-definitions

Pairs of subpowers of A with B ⊴ C are also closed under pp-definitions in the following sense
(this folklore fact was recorded as Lemma 2.9 in [3]).

LEMMA 7.1. Assume that a subpower 𝑅 of A is defined by

𝑅(𝑥1, . . . , 𝑥𝑛) ≡ ∃ 𝑦1, . . . , 𝑦𝑚 : 𝑅1(𝜎1) ∧ · · · ∧ 𝑅𝑘 (𝜎𝑘),

where 𝑅1, . . . , 𝑅𝑘 are subpowers of A regarded as predicates and 𝜎1,. . . ,𝜎𝑘 stand for sequences of
(free or bound) variables. Let 𝑆1, . . . , 𝑆𝑘 be subpowers of A such that 𝑆𝑖 ⊴ R𝑖 for all 𝑖. Then the
subpower

𝑆(𝑥1, . . . , 𝑥𝑛) ≡ ∃ 𝑦1, . . . , 𝑦𝑚 : 𝑆1(𝜎1) ∧ · · · ∧ 𝑆𝑘 (𝜎𝑘),

absorbs R. Moreover, if all the absorptions 𝑆𝑖 ⊴ R𝑖 are witnessed by 𝑡, then so is 𝑆 ⊴ R.

In particular, if 𝑅 ≤𝑠𝑑 A2 and 𝐵 absorbs A, then 𝐵 + 𝑅 and 𝐵 − 𝑅 absorb A as well.
It is also useful to observe that absorption is transitive: if C ⊴ B by 𝑠 and B ⊴ A by 𝑡, then

C ⊴ A by the star composition of 𝑠 and 𝑡.

7.6 Relational descriptions

Many algebraic notions we deal with in this paper have their relational counterparts. We have
already stated such a characterization for projectivity in Proposition 2.6 and we have used a
relational description of abelianess as a definition for this concept in Definition 2.3. Now we
state two other helpful facts.

The first one is a characterization of absorption by means of so called 𝐵-essential rela-
tions (see e.g. Proposition 2.14 in [3]). A relation 𝑅 ⊆ 𝐴𝑛 is 𝐵-essential if 𝑅 does not intersect 𝐵𝑛

but every projection of 𝑅 onto all but one of the coordinates intersects the corresponding power
of 𝐵. The characterization is that 𝐵 ⊴𝑛 A if, and only if, there are no 𝐵-essential subuniverses
of A𝑛. We state this fact as follows.

PROPOS IT ION 7.2. Let A be an algebra and 𝐵 ≤ A. Then 𝐵 ⊴𝑛 A if and only if for every
a1, . . . , a𝑛 ∈ 𝐴𝑛 such that a𝑖

𝑗
∈ 𝐵 for 𝑖 ≠ 𝑗 we have SgA𝑛 (a1, . . . , a𝑛) ∩ 𝐵𝑛 ≠ ∅.

The second proposition characterizes strongly projective subuniverses.

PROPOS IT ION 7.3. Let A be an algebra and 𝐵 ⊆ 𝐴. Then 𝐵 is a strongly projective subuniverse
of A if and only if the relation 𝑅(𝑥, 𝑦, 𝑧) = 𝐵(𝑥) ∨ ( 𝑦 = 𝑧) is a subuniverse of A3.

PROOF . For the backward implication let 𝑓 be an 𝑛-ary term operation of A and say, without
loss of generality, that the first coordinate is essential as witnessed by tuples (𝑐, 𝑐2, . . . , 𝑐𝑛) and
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(𝑐′, 𝑐2, . . . , 𝑐𝑛). Take (𝑏, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐵 × 𝐴𝑛−1 and note that 𝑅(𝑏, 𝑐, 𝑐′), 𝑅(𝑎2, 𝑐2, 𝑐2), . . . , 𝑅(𝑎𝑛, 𝑐𝑛,
𝑐𝑛). Therefore

𝑅( 𝑓 (𝑏, 𝑎2, . . . , 𝑎𝑛), 𝑓 (𝑐, 𝑐2, . . . , 𝑐𝑛), 𝑓 (𝑐′, 𝑐2, . . . , 𝑐𝑛))

and, by the choice of 𝑐, 𝑐′, 𝑐2, . . . , 𝑐𝑛, we get 𝑓 (𝑏, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐵, as required.
For the forward implication we proceed by way of contradiction and suppose that an

application of an operation 𝑓 to triples from 𝑅 produces a triple outside. The resulting triple
does not have an element of 𝐵 at the first position, therefore, by the assumption, all the input
triples that have an element of 𝐵 on the first position appear on inessential coordinates of 𝑓 .
The remaining triples have the same element on the second and third positions, therefore so
does the resulting triple, a contradiction. ■

8. Proofs for Section 4: Taylor algebras

This section contains proofs of the claims made in Section 4.

8.1 Absorption theorem

We start by formally stating the already known improvements and refinements of the proof of
the absorption theorem (Theorem 3.4) discussed in Subsection 4.1. Some of these improvements
do not seem to be recorded in the literature or are hidden inside proofs of different results. As a
corollary we obtain an improved version of the absorption theorem, Corollary 4.5, which seems
to be new. Afterwards, we prove the two refinements of the theory which were promised in
Subsection 4.1.

The first step toward Corollary 4.5 can be divided into two sub-steps. The first sub-step is
Lemma 2.7 in [8].

PROPOS IT ION 8.1. Every algebra has a transitive operation or a nontrivial projective subuni-
verse.

The other sub-step has a short proof via Taylor operations, see the proof of Lemma 3.4 in [8]. An
elementary proof via clone homomorphisms is also available, but unpublished. It will appear
in another paper.

PROPOS IT ION 8.2. Every projective subuniverse of a Taylor algebra is 2-absorbing.

We remark that the argument for Proposition 8.2 via cyclic operations sketched in Subsection 4.1
is not “fair” since Theorem 3.5 heavily uses the absorption theorem, which uses this proposition
in its proof.

The second step is a purely relational fact and we provide a short proof.
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PROPOS IT ION 4.1. (Restated) Let 𝑅 ⊆𝑠𝑑 𝐴 × 𝐶 be proper and linked. Then either 𝑅 is left
central or pp-defines a proper subdirect symmetric central relation on 𝐶.

PROOF . Suppose that 𝑅 is not left central. Since 𝑅 (and then −𝑅 as well) is linked and subdirect,
we have (−𝑅 + 𝑅) + (−𝑅 + 𝑅) + · · · = 𝐶2 for a sufficiently large number of summands.

If −𝑅 + 𝑅 ≠ 𝐶2, then we first preprocess 𝑅 by taking (−𝑅 + 𝑅) + (−𝑅 + 𝑅) + . . . sufficiently
many times so that −𝑅 + 𝑅 = 𝐶2 and 𝑅 is still proper. If it became left central, we are done since
(−𝑅 + 𝑅) + . . . is symmetric.

For any set 𝐷 = {𝑐1, . . . , 𝑐𝑘} ⊆ 𝐶 consider the binary pp-definable relation 𝑆𝐷(𝑥, 𝑦) express-
ing “𝑥 , 𝑦, and all the 𝑐𝑖 have a common neighbor”, that is 𝑆𝐷(𝑥, 𝑦) ≡ (∃𝑎)𝑅(𝑎, 𝑥) ∧ 𝑅(𝑎, 𝑦) ∧
𝑅(𝑎, 𝑐1) ∧ · · · ∧𝑅(𝑎, 𝑐𝑘). Since −𝑅 +𝑅 = 𝐶2, the set 𝑆∅ is equal to 𝐶2, and since 𝑅 is not left central,
the set 𝑆𝐶 is empty. Take a maximal 𝐷 so that 𝑆𝐷 = 𝐶2 and take any 𝐸 ⊆ 𝐶 with 𝐷 ⊆ 𝐸 and
|𝐸 \ 𝐷| = 1. Now observe that 𝑆𝐸 is a proper symmetric subdirect relation on 𝐶 whose center is
nonempty since it contains 𝐸. ■

The third step shows how left central relations together with transitive operations on the
right side produce absorption. The argument is in the final part of the proof of Theorem 2.11
in [4].

PROPOS IT ION 8.3. Let A and C be algebras and suppose 𝑅 ≤𝑠𝑑 A × C is left-central. If C has a
transitive term operation 𝑡C, then the left center of 𝑅 absorbs A by 𝑡A.

PROOF . Let 𝑡C be a transitive term operation of C, say of arity 𝑛, and let 𝐵 be the left center
of 𝑅. We need to show that, for any a ∈ 𝐴𝑛 such that |{𝑖 : 𝑎𝑖 ∈ 𝐵}| ≥ 𝑛 − 1, the result 𝑡A(a) = 𝑏 is
in 𝐵, i.e., we need to show that for every 𝑐 ∈ 𝐶 we have (𝑏, 𝑐) ∈ 𝑅. Let 𝑖 be the only coordinate
for which 𝑎𝑖 ∉ 𝐵 (or take 𝑖 arbitrary if there is none such) and take 𝑑 such that (𝑎𝑖 , 𝑑) ∈ 𝑅. By
transitivity of 𝑡C, there exists d ∈ 𝐶𝑛 with 𝑑𝑖 = 𝑑 and 𝑡C(d) = 𝑐. All the component pairs (𝑎 𝑗 , 𝑑 𝑗)
are in 𝑅 since 𝐵 is the left center of 𝑅, so (𝑡A(a), 𝑡C(d)) = (𝑏, 𝑐) is in 𝑅, as required. ■

Note that the three steps combined already give us the absorption theorem (Theorem 3.4).
We prove a slightly stronger version where only C is assumed to be Taylor.

COROLLARY 8.4. Suppose 𝑅 ≤𝑠𝑑 A × C is proper and linked, and C is Taylor. Then A or C has a
nontrivial absorbing subuniverse.

PROOF . Proposition 4.1 implies that there is a left central subuniverse 𝑆 of A×C or C2. The left
center 𝐵 of 𝑆 (which is a subuniverse of A or C depending on the case) is a Taylor center unless
C contains a nontrivial proper 2-absorbing subuniverse (in which case we are done). Then C
has no nontrivial projective subuniverses by Proposition 8.2, and therefore it has a transitive
term operation by Proposition 8.1. Proposition 8.3 finishes the proof by showing that 𝐵 is an
absorbing subuniverse (of A or C). ■
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For future reference we also record the following variation.

COROLLARY 8.5. Suppose 𝑅 ≤𝑠𝑑 A × C is left-central and C is Taylor. Then C has a nontrivial
projective and 2-absorbing subuniverse, or the left center of 𝑅 absorbs A.

PROOF . Either C has a nontrivial projective subuniverse (which is 2-absorbing by Proposi-
tion 8.2) or C has a transitive term operation by Proposition 8.1 and then the left center absorbsA
by Proposition 8.3. ■

Now we improve absorption to 3-absorption. We further divide this task into two sub-steps.
The first one isolates a property of centers that was, inspired by this paper, exploited in [61].

LEMMA 8.6. Let 𝐵 be a center of A and let 𝑎 ∈ 𝐴 \ 𝐵. Then (𝑎, 𝑎) is not in the subuniverse of A2

generated by ({𝑎} × 𝐵) ∪ (𝐵 × 𝐵) ∪ (𝐵 × {𝑎}).

PROOF . Let 𝑅 ≤𝑠𝑑 A × C be a witness of centrality. Suppose, for a contradiction that (𝑎, 𝑎) is
generated by a term operation 𝑓 A, so

𝑓 A(𝑎, . . . , 𝑎, 𝑏1, . . . , 𝑏𝑖) = 𝑎 = 𝑓 A(𝑏′1, . . . , 𝑏′𝑗 , 𝑎, . . . , 𝑎)

for some 𝑏1, . . . , 𝑏𝑖 , 𝑏
′
1, . . . , 𝑏

′
𝑗
∈ 𝐵 where 𝑖 + 𝑗 is not less than the arity of 𝑓 . Therefore 𝑓 C(𝑎 +

𝑅, . . . , 𝑎+𝑅, 𝑏1+𝑅, . . . , 𝑏𝑖+𝑅) ⊆ 𝑎+𝑅 and, denoting 𝐷 = 𝑎+𝑅, we have 𝑓 C(𝐷, . . . , 𝐷, 𝐶, . . . , 𝐶) ⊆ 𝐷

(with 𝑖 occurrences of 𝐶 on the left). Similarly, we obtain 𝑓 C(𝐶, . . . , 𝐶, 𝐷, . . . , 𝐷) ⊆ 𝐷 with 𝑗

occurrences of 𝐶. It follows that the binary operation on 𝐶 obtained from 𝑓 C by identifying
the first 𝑗 variables to 𝑥 and the rest to 𝑦 witnesses the nontrivial 2-absorption 𝐷 ⊴2 C, a
contradiction with the definition of a center. ■

The second sub-step derives 3-absorption from absorption and a weakening of the property
of centers isolated in the first sub-step.

PROPOS IT ION 8.7. Suppose 𝐵 ⊴ A and that for every 𝑎 ∈ 𝐴 \ 𝐵 we have (𝑎, 𝑎) ∉ SgA2 ({𝑎} ×
𝐵 ∪ 𝐵 × {𝑎}). Then 𝐵 3-absorbs A.

PROOF . Let 𝑛 be the minimal number such that 𝐵 ⊴𝑛+1 A and assume, striving for a contra-
diction, that 𝑛 > 2. By Proposition 7.2 there exist a1, . . . , a𝑛 ∈ 𝐴𝑛 such that 𝑎𝑖

𝑗
∈ 𝐵 for 𝑖 ≠ 𝑗 and

SgA𝑛 (a1, . . . , a𝑛) ∩ 𝐵𝑛 = ∅. Put 𝑅 = SgA𝑛 (a1, . . . , a𝑛) and assume that 𝑅 is an inclusion minimal
relation among all choices of a1, . . . , a𝑛 ∈ 𝐴𝑛.

By 𝑆 we denote the binary relation defined by

SgA2
(
({𝑎𝑛𝑛} × 𝐵) ∪ (𝐵 × {𝑎𝑛𝑛})

)
.

Note that 𝑎𝑛𝑛 is not in 𝐵. We will now work towards showing that (𝑎𝑛𝑛, 𝑎𝑛𝑛) is in 𝑆, which will
contradict the assumption on 𝐵.
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We pp-define 𝑅′ ≤ A2𝑛−2 by the formula

𝑅′(𝑥1, . . . ,𝑥𝑛−1, 𝑥
′
1, . . . , 𝑥

′
𝑛−1) = ∃𝑥𝑛, 𝑥′𝑛 :

𝑅(𝑥1, . . . , 𝑥𝑛) ∧ 𝑅(𝑥′1, . . . , 𝑥′𝑛) ∧ 𝑆(𝑥𝑛, 𝑥′𝑛).

For 𝑖 ∈ {1, . . . , 𝑛} by c𝑖 we denote a𝑖 with the last coordinate removed. By the definition of
𝑅′ and 𝑆, we have (c𝑖 , c𝑛), (c𝑛, c𝑖) ∈ 𝑅′ for every 𝑖 ∈ {1, . . . , 𝑛 − 1}. Moreover, these 2𝑛 − 2 tuples
satisfy the condition in the second part of Proposition 7.2. Therefore, if 𝑅′ ∩ 𝐵2𝑛−2 = ∅, then
𝐵 ̸⊴2𝑛−2 A. But 𝐵 ⊴𝑛+1 A and 2𝑛 − 2 ≥ 𝑛 + 1, a contradiction.

Since 𝑅′ ∩ 𝐵2𝑛−2 ≠ ∅, there exist d,d′ ∈ 𝑅 ∩ (𝐵𝑛−1 × 𝐴) such that (𝑑𝑛, 𝑑′𝑛) ∈ 𝑆. Let 𝐸 be
the projection of 𝑅 onto the last coordinate after fixing all the other coordinates to 𝐵, that is,
𝐸 = proj𝑛(𝑅∩(𝐵𝑛−1×𝐴)). Since 𝑅 was chosen inclusion minimal, we get proj𝑛(𝑅) ⊆ SgA(𝐵∪{𝑒})
for every 𝑒 ∈ 𝐸, otherwise we could replace a𝑛 by a tuple b ∈ 𝑅∩(𝐵𝑛−1×{𝑒}) and get a 𝐵-essential
relation properly contained in 𝑅.

Let 𝐸′ = 𝐸 + 𝑆. Since 𝐵 ∪ {𝑑′𝑛} ⊆ 𝐸′ (as 𝑎𝑛𝑛, 𝑑𝑛 ∈ 𝐸, (𝑑𝑛, 𝑑′𝑛) ∈ 𝑆, and (𝑎𝑛𝑛, 𝑏) ∈ 𝑆 for all 𝑏 ∈ 𝐵),
we have 𝐸′ ⊇ proj𝑛(𝑅), in particular 𝑎𝑛𝑛 ∈ 𝐸′. Therefore (𝑒, 𝑎𝑛𝑛) ∈ 𝑆 for some 𝑒 ∈ 𝐸. It follows that
𝐸′′ = 𝑎𝑛𝑛 − 𝑆 contains 𝐵 ∪ {𝑒} and we get 𝐸′′ ⊇ proj𝑛(𝑅), in particular 𝑎𝑛𝑛 ∈ 𝐸′′. So (𝑎𝑛𝑛, 𝑎𝑛𝑛) ∈ 𝑆,
which contradicts our assumption on 𝐵. ■

The argument in Corollary 8.4 together with Lemma 8.6 and Proposition 8.7 now proves
Proposition 4.3 (which is Corollary 7.10.2 in [60]) and also the improved absorption theorem.

PROPOS IT ION 4.3. ([60]) (Restated) If 𝐵 is a Taylor center of an algebra A, then 𝐵 ⊴3 A.

PROOF . The algebra C has no nontrivial projective subuniverses by Proposition 8.2, and
therefore it has a transitive term operation by Proposition 8.1. By Proposition 8.3, 𝐵 is an
absorbing subuniverse of A. Lemma 8.6 and Proposition 8.7 now imply 𝐵 ⊴3 A. ■

COROLLARY 4.5. (Restated) Suppose 𝑅 ≤𝑠𝑑 A × C is proper and linked, and C is Taylor. Then
A or C has a nontrivial 3-absorbing subuniverse.

PROOF . Proposition 4.1 implies that there is a left central subuniverse of A × C or C2. In both
cases, Proposition 4.3 finishes the proof. ■

Now we move on to the improvements of the theory. The first one is that centers of
Taylor algebras absorb. Note the difference to Proposition 4.3 which concerns Taylor centers in
arbitrary algebras.

PROPOS IT ION 4.4. (Restated) If 𝐵 is a center of a Taylor algebra A, then 𝐵 ⊴3 A.

PROOF . Let 𝑅 ≤𝑠𝑑 A × C be the witnessing relation from the definition of center. We define a
directed graph on 𝐴, by putting 𝑐→ 𝑑 if there exists a cyclic term 𝑡 and a choice of elements
𝑏2, . . . , 𝑏𝑛 ∈ 𝐵 such that 𝑡A(𝑐, 𝑏2, . . . , 𝑏𝑛) = 𝑑.
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Obviously the graph has no sinks, but it is also easy to see that it is transitively closed.
Indeed, let 𝑐→ 𝑐′ be witnessed by 𝑡 and 𝑏2, . . . , 𝑏𝑛, and 𝑐′→ 𝑐′′ be witnessed by 𝑡′ and 𝑏′2, . . . , 𝑏

′
𝑛′ .

Then the star composition of 𝑡′ and 𝑡, together with the tuple

𝑏2, . . . , 𝑏𝑛, 𝑏
′
2, . . . , 𝑏

′
2︸     ︷︷     ︸

𝑛

, . . . , 𝑏′𝑛′ , . . . , 𝑏
′
𝑛′︸       ︷︷       ︸

𝑛

,

reordered as in the definition of star composition, witnesses the edge 𝑐→ 𝑐′′.
Next we claim that there is no 𝑎 ∈ 𝐴 \ 𝐵 with a self-loop. For a contradiction, say 𝑎 is such

and let 𝑡A(𝑎, 𝑏2, . . . , 𝑏𝑛) = 𝑎 with 𝑎 ∈ 𝐴 \ 𝐵 and 𝑏2, . . . , 𝑏𝑛 ∈ 𝐵. The set 𝐷 = 𝑎 + 𝑅 is a subuniverse
of C, and moreover

𝑡C(𝑎 + 𝑅, 𝑏2 + 𝑅, . . . , 𝑏𝑛 + 𝑅) = 𝑡C(𝐷, 𝐶, . . . , 𝐶) ⊆ 𝐷

and the same holds for all the cyclic shifts of 𝑡. Therefore, 𝐷 is a 2-absorbing subuniverse of C
(by the operation 𝑡C(𝑥, 𝑦, . . . , 𝑦)), a contradiction.

We conclude that all the loops and directed cycles in this graph must be inside 𝐵. Therefore
there is a number 𝑚 so that starting with any 𝑎 ∈ 𝐴, and following any directed walk, after
𝑚 steps we necessarily arrive in 𝐵. It suffices to take any cyclic term of A and star-compose it
with itself 𝑚 times to obtain an operation which witnesses B ⊴ A. Now it is enough to apply
Lemma 8.6 and Proposition 8.7 ■

The second improvement, Proposition 4.2, shows that every linked relation 𝑅 ⊆ 𝐴 × 𝐵

with 𝐴 = 𝐵 pp-defines a central relation which is additionally symmetric or transitive. We need
an auxiliary, folklore lemma about iterated composition of a binary relation with itself. We use
the following notation for a positive integer 𝑛.

𝑛𝑅 = 𝑅 + 𝑅 + · · · + 𝑅︸             ︷︷             ︸
𝑛×

LEMMA 8.8. For any proper 𝑅 ⊆ 𝐴2 there exists 𝑛 ∈ N such that 𝑛𝑅 is proper and 2𝑛𝑅 is either
𝐴2 or 𝑛𝑅.

PROOF . First consider the case that 𝑘𝑅 = 𝐴2 for some 𝑘. Then 𝐴2 = (𝑘 − 1)𝑅 + 𝑅 implies that
the projection of 𝑅 to the second coordinate is full and therefore (𝑘 + 1)𝑅 = 𝐴2 + 𝑅 is full. By
induction, 𝑘′𝑅 is full for each 𝑘′ ≥ 𝑘 so we can define 𝑛 as the largest number such that 𝑛𝑅 is
proper and get 2𝑛𝑅 = 𝐴2.

Assume now that 𝑘𝑅 is proper for all 𝑘. Denote 𝑙 = |𝐴|! and observe that for any 𝑘 ≥ |𝐴|
we have 𝑘𝑅 ⊆ (𝑘 + 𝑙)𝑅. Indeed, if (𝑎, 𝑏) ∈ 𝑘𝑅, then there exists a directed walk from 𝑎 to 𝑏 of
length 𝑘 in the digraph with edge set 𝑅. Since 𝑘 ≥ |𝐴|, some segment of this walk is a directed
cycle. Its length is divisible by 𝑙, so we can make the directed walk longer by 𝑙 going along the
cycle multiple times, implying (𝑎, 𝑏) ∈ (𝑘 + 𝑙)𝑅.
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It follows that 𝑙𝑅 ⊆ 2𝑙𝑅 ⊆ 3𝑙𝑅 ⊆ . . ., therefore this sequence of proper relations eventually
stabilizes. We define 𝑛 = 𝑘𝑙 for a sufficiently large 𝑘 and obtain 2𝑛𝑅 = 𝑛𝑅. ■

PROPOS IT ION 4.2. (Restated) Let 𝑅 ⊆𝑠𝑑 𝐴2 be linked and proper. Then 𝑅 pp-defines a subdirect
proper central relation on 𝐴 which is symmetric or transitive.

PROOF . If the left or right center of 𝑅 is empty, we apply Proposition 4.1 to 𝑅 itself, or to −𝑅,
and the result follows. So, let 𝑅 be central. We also assume, without loss of generality, that the
left center of 𝑅 contains the maximal number of elements among central, proper and subdirect
relations pp-definable from 𝑅.

As is easily seen by induction, every 𝑛𝑅 is subdirect and central; moreover, the left center
of 𝑛𝑅 contains the left center of 𝑅. We give an argument only for the last claim. If 𝑎 is in the
left center of 𝑛𝑅, then for every 𝑏 ∈ 𝐴 we have (𝑐, 𝑏) ∈ 𝑅 for some 𝑐 (as 𝑅 is subdirect) and
(𝑎, 𝑐) ∈ 𝑛𝑅 (as 𝑎 is in the left center of 𝑛𝑅), therefore (𝑎, 𝑏) ∈ 𝑛𝑅 + 𝑅 = (𝑛 + 1)𝑅, i.e. 𝑎 is in the
left center of (𝑛 + 1)𝑅.

By Lemma 8.8, there exists 𝑛 such that 𝑛𝑅 is proper and 2𝑛𝑅 is either 𝐴2 or 𝑛𝑅. In the
latter case, 𝑛𝑅 is the desired subdirect, proper, central, and transitive relation (as 𝑛𝑅 + 𝑛𝑅 = 𝑛𝑅).
Assume now that 2𝑛𝑅 = 𝐴2 and define 𝑆 = 𝑛𝑅. The relation 𝑆 is subdirect, proper, and central, it
satisfies 𝑆 + 𝑆 = 𝐴2, and its left center is the same as the left center of 𝑅 (since 𝑅 was chosen to
have the largest possible left center).

Next, let 𝐵 be the right center of 𝑆, we consider two cases: either 𝐵 + 𝑆 = 𝐴 or 𝐵 + 𝑆 ≠ 𝐴.
(Note that 𝐵 is the right center, which implies 𝐵 − 𝑆 = 𝐴, but not necessarily 𝐵 + 𝑆 = 𝐴. So the
latter case cannot be excluded immediately.)

Case 1. 𝐵 + 𝑆 = 𝐴.

Consider 𝑆′ = 𝑆 ∩ −𝑆. This relation is proper (because 𝑆 is proper) and is symmetric by
construction. It is also subdirect, as 𝑆 + 𝑆 = 𝐴2 implies that for every 𝑎 there is 𝑏 such that
𝑆(𝑎, 𝑏) and 𝑆(𝑏, 𝑎). Finally, 𝑆′ is also linked. Indeed, note that, since 𝐵 is the right center, 𝐵2 ⊆ 𝑆,
and so 𝐵2 ⊆ 𝑆′. Also, the assumption 𝐵 + 𝑆 = 𝐴 implies that for any 𝑎 ∈ 𝐴 there is 𝑏 ∈ 𝐵 such
that (𝑏, 𝑎) ∈ 𝑆. On the other hand, (𝑎, 𝑏) ∈ 𝑆, because 𝑏 belongs to the right center. Therefore
(𝑎, 𝑏) ∈ 𝑆′, implying together with 𝐵2 ⊆ 𝑆′ that 𝑆′ is linked.

If 𝑆′ is central, then we are done. Otherwise, since 𝑆′ is symmetric, its right center is empty,
and we use Proposition 4.1 to obtain a symmetric central relation.

Case 2. 𝐵 + 𝑆 ≠ 𝐴.

We will derive a contradiction in order to show that this case is impossible. Let 𝐴 =

{𝑎1, . . . , 𝑎𝑛}, and for 𝑗 ≥ 0, let the relation 𝑇𝑗 be given by

𝑇𝑗 (𝑥, 𝑦) = (∃𝑧)𝑆(𝑥, 𝑧) ∧ 𝑆(𝑧, 𝑦) ∧
𝑗∧

𝑖=1
𝑆(𝑎𝑖 , 𝑧).
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Clearly, 𝑇0 = 𝐴2 and 𝑇𝑛 is not even subdirect. Indeed, for the latter claim if (𝑎, 𝑏) ∈ 𝑇𝑛, then the
value of 𝑧 in the pp-definition above belongs to 𝐵, the right center. As 𝐵 + 𝑆 ≠ 𝐴, there is 𝑐 ∈ 𝐴

such that (𝑧, 𝑐) ∉ 𝑆 for any feasible choice of 𝑧, witnessing that 𝑐 ∉ proj2(𝑇𝑛). Therefore there
is 𝑗 such that 𝑇𝑗−1 = 𝐴2, and 𝑇𝑗 ≠ 𝐴2. We will show that 𝑇𝑗 is central and has strictly larger left
center than 𝑆, which contradicts the choice of 𝑅.

By the definition of 𝑇𝑗 , for every 𝑏 ∈ 𝐴, we have (𝑎 𝑗 , 𝑏) ∈ 𝑇𝑗−1 if and only if 𝑇𝑗 (𝑎 𝑗 , 𝑏),
therefore 𝑎 𝑗 + 𝑇𝑗 = 𝐴. This implies that proj2(𝑇𝑗) = 𝐴 and that 𝑎 𝑗 is in the left center of 𝑇𝑗 . Note
that every element in the left center of 𝑆 is in the left center of 𝑇𝑗 , since for any 𝑎 in the left
center of 𝑆 we have 𝑎 + 𝑇𝑗 ⊇ 𝑎 𝑗 + 𝑇𝑗 = 𝐴. Note also that 𝑎 𝑗 does not belong to the left center of 𝑆,
because this would imply that 𝑇𝑗−1 = 𝑇𝑗 . Finally, we claim that proj1(𝑇𝑗) = 𝐴, so 𝑇𝑗 is subdirect.
Indeed, since 𝑆 has nonempty right center, for any 𝑎 ∈ 𝐴, we can choose the value of 𝑧 in the
definition of 𝑇𝑗 to be from the right center. Then (𝑎, 𝑧), (𝑎1, 𝑧), . . . , (𝑎 𝑗 , 𝑧) ∈ 𝑆, and a value for 𝑦

can be chosen with (𝑧, 𝑦) ∈ 𝑆.
Thus 𝑇𝑗 is proper, subdirect, central and pp-definable from 𝑅. However, its left center is a

proper superset of the left center of 𝑅 since it contains the element 𝑎 𝑗 which is not in the left
center of 𝑅. This is a contradiction with the choice of 𝑅. ■

8.2 Subdirect irredundant subpowers

In this subsection we prove our main pp-definability result, Theorem 4.7, and we also prove
Theorems 4.10 and 4.11 which will give us enough edges for the connectivity theorem. We start
with a technical lemma.

LEMMA 8.9. Let𝑅 ⊆𝑠𝑑 𝐴𝑛 be a relation and let 𝐼 ⊆ [𝑛] be an inclusion maximal set of coordinates
such that proj𝐼 (𝑅) is the full product 𝐴𝐼 . Suppose that 𝑅 does not pp-define 𝑅′ ⊆𝑠𝑑 𝐴2 which is
irredundant and proper. Then every tuple in 𝑅 is determined by its projection to 𝐼 .

PROOF . Let 𝑅 ⊆𝑠𝑑 𝐴𝑛 and 𝐼 ⊆ [𝑛] form a counterexample minimal with respect to 𝑛. In
particular, 𝑛 ≥ 2, 𝑅 is not the full relation, and no relation pp-definable from 𝑅, such as the
projection to a subset of variables, pp-defines a subdirect, irredundant, and proper binary
relation.

First, |𝐼 | has to be 𝑛 − 1. Indeed, otherwise |𝐼 | < 𝑛− 1 and, for any 𝑗 ∉ 𝐼 , the projection 𝑆 of
𝑅 onto 𝐼 ∪ { 𝑗} does not pp-define a subdirect, irredundant, and proper binary relation. Also, the
set of coordinates 𝐼 is maximal such that proj𝐼 (𝑆) is full. So, by the minimality of 𝑛, for every
tuple b ∈ 𝑆 the value 𝑏 𝑗 is determined by the remaining coordinates. It follows that every tuple
a ∈ 𝑅 is determined by the values 𝑎𝑖 , 𝑖 ∈ 𝐼 , which we know is not the case since 𝑅 and 𝐼 form a
counterexample.

Without loss of generality assume 𝐼 = {1, . . . , 𝑛 − 1}. Next, we claim that proj1,...,𝑛−2,𝑛(𝑅) is
full. Indeed, otherwise this projection together with {1, 2, . . . , 𝑛 − 2} is also a counterexample,
contradicting the minimality of 𝑛.
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Since 𝑅 is a counterexample, there are elements 𝑎 ≠ 𝑎′ and tuples (𝑎1, . . . , 𝑎𝑛−1, 𝑎), (𝑎1, . . . ,
𝑎𝑛−1, 𝑎

′) ∈ 𝑅. Also, as 𝑅 is not full, (𝑐1, . . . , 𝑐𝑛) ∉ 𝑅 for some tuple in 𝐴𝑛. Set 𝑇 = {(𝑏1, . . . , 𝑏𝑛−1) :
(𝑏1, . . . , 𝑏𝑛−1, 𝑐𝑛) ∈ 𝑅}. We show that 𝑇 together with 𝐼′ = {1, 2, . . . , 𝑛 − 2} is a smaller coun-
terexample, thus obtaining a contradiction. Indeed, the relation 𝑇 is proper, as it does not
contain (𝑐1, . . . , 𝑐𝑛−1). Also, proj𝐼 ′ (𝑇 ) is the full relation since proj1,...,𝑛−2,𝑛(𝑅) is. It remains to
show that tuples in 𝑇 are not determined by their projection to 𝐼′. To this end we consider
an auxiliary binary relation 𝑆 given by 𝑆 = {(𝑎, 𝑏) : (𝑎1, . . . , 𝑎𝑛−2, 𝑎, 𝑏) ∈ 𝑅}. This relation is
subdirect, as both proj𝐼 (𝑅) and proj1,...,𝑛−2,𝑛(𝑅) are full relations. The relation 𝑆 is also irre-
dundant, because (𝑎𝑛−1, 𝑎), (𝑎𝑛−1, 𝑎

′) ∈ 𝑆. By the assumptions about 𝑅, the relation 𝑆 cannot
be proper. Therefore, the tuples (𝑎1, . . . , 𝑎𝑛−2, 𝑎, 𝑐𝑛), (𝑎1, . . . , 𝑎𝑛−2, 𝑎

′, 𝑐𝑛) are in 𝑅, implying that
(𝑎1, . . . , 𝑎𝑛−2, 𝑎), (𝑎1, . . . , 𝑎𝑛−2, 𝑎

′) are in 𝑇 . ■

We are now in a position to prove Theorem 4.7.

THEOREM 4.7. (Restated)Let 𝑅 ⊆𝑠𝑑 𝐴𝑛 be an irredundant proper relation. Then either
𝑅 pp-defines an irredundant and proper 𝑅′ ⊆𝑠𝑑 𝐴2, or
there exist strongly functional ternary relations 𝑅1, . . . , 𝑅𝑛 ⊆𝑠𝑑 𝐴3 such that the set {𝑅1, . . . ,
𝑅𝑚} is inter-pp-definable with 𝑅 (i.e., the 𝑅𝑖s pp-define 𝑅 and, conversely, 𝑅 pp-defines all the
𝑅𝑖s).

PROOF . First, we argue that 𝑅 pp-defines some binary or ternary subdirect, proper, and
irredundant relation. Let 𝑅′ be a subdirect proper irredundant relation of minimal arity pp-
definable from 𝑅. Clearly 𝑅′ cannot be unary and if 𝑅′ is binary or ternary, we are done.
Otherwise observe that the projection of 𝑅′ onto any proper set of coordinates is the full relation.
Let (𝑎1, . . . , 𝑎𝑘) ∉ 𝑅′. Consider the relation 𝑆 given by

𝑆 = {(𝑥1, . . . , 𝑥𝑘−1) : (𝑥1, . . . , 𝑥𝑘−1, 𝑎𝑘) ∈ 𝑅′}.

This relation is proper, as (𝑎1, . . . , 𝑎𝑘) ∉ 𝑅′. It is also subdirect, because every binary projection
of 𝑅′ is the full relation. If 𝑆 is redundant, say, for 𝑖, 𝑗 ∈ {1, . . . , 𝑘 − 1} it holds that proj𝑖 𝑗 (𝑆) is the
graph of bijection, then proj𝑖 𝑗𝑘 (𝑅′) is a proper relation, a contradiction with the choice of 𝑅′.

If 𝑅 pp-defines a binary, subdirect, proper, and irredundant relation, the first item from the
conclusion of the theorem holds. So, suppose that such a binary relation cannot be defined. Let
𝑅1, . . . , 𝑅𝑚 ⊆𝑠𝑑 𝐴3 be all the proper, ternary, irredundant and subdirect relations pp-definable
from 𝑅. Any binary projection of each 𝑅𝑖 is the full relation, and by Lemma 8.9, any tuple from 𝑅𝑖

is determined by any pair of its entries, therefore each 𝑅𝑖 is strongly functional. It remains to
prove that the set {𝑅1, . . . , 𝑅𝑚} pp-defines 𝑅.

We show, by induction on the arity 𝑙, that any irredundant subdirect relation 𝑆 ⊆𝑠𝑑 𝐴𝑙

pp-definable from 𝑅1, . . . , 𝑅𝑚, 𝑅 is also pp-definable from 𝑅1, . . . , 𝑅𝑚. For 𝑙 < 3 the claim follows
trivially, so assume 𝑙 ≥ 3. By Lemma 8.9 there is some 𝐼 ⊆ {1, . . . , 𝑙} such that any tuple
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(𝑎1, . . . , 𝑎𝑙) ∈ 𝑆 is determined by its projection on 𝐼 and proj𝐼 (𝑆) is the full relation. Assume
𝐼 = {1, . . . , 𝑘}. If 𝑘 + 1 ≠ 𝑙, then

𝑆(𝑥1, . . . , 𝑥𝑘) =
𝑙∧

𝑗=𝑘+1
proj𝐼∪{ 𝑗} (𝑆(𝑥1, . . . , 𝑥𝑘, 𝑥 𝑗)).

By the induction hypothesis every proj𝐼∪{ 𝑗} (𝑆) is pp-definable from 𝑅1, . . . , 𝑅𝑚, hence, so is 𝑆
and we are done. Thus we may assume that 𝑘 + 1 = 𝑙.

Claim. Each projection 𝑆′ = proj𝐽 (𝑆) on 𝐽 ⊆ {1, . . . , 𝑙} with | 𝐽 | < 𝑙 is full or 𝑆 is pp-definable
from 𝑅1, . . . , 𝑅𝑚.

Indeed, it is the case if 𝐽 ⊆ 𝐼 by the choice of 𝐼 . Suppose for a contradiction that proj𝐽 (𝑆′)
is not full. Then we must have 𝑙 ∈ 𝐽 , and, as proj𝐽\{𝑙} (𝑆′) is the full relation, by Lemma 8.9 every
tuple from 𝑆′ is determined by its projection to 𝐽 \ {𝑙}. This means that 𝑆 can be obtained from
𝑆′ by extending the tuples from 𝑆′ in an arbitrary way, and this is a pp-definition of 𝑆 from 𝑆′.
By the induction hypothesis 𝑆′ is pp-definable from 𝑅1, . . . , 𝑅𝑚, therefore so is 𝑆.

We can therefore assume that the first case in the claim takes place. Since 𝑆 is proper, there
is some (𝑐1, . . . , 𝑐𝑙) ∉ 𝑆. Set 𝑇 = {(𝑎, 𝑏, 𝑐) : (𝑐1, . . . , 𝑐𝑙−3, 𝑎, 𝑏, 𝑐) ∈ 𝑆}. This relation is proper, since
(𝑐𝑙−2, 𝑐𝑙−1, 𝑐𝑙) ∉ 𝑇 . By the claim we get proj1,2(𝑇 ) = proj1,3(𝑇 ) = proj2,3(𝑇 ) = 𝐴2. Thus, 𝑇 is one
of the 𝑅𝑖 . Consider the relations 𝑈 and 𝑈′ given by

𝑈 (𝑥1, . . . , 𝑥𝑙, 𝑦) = 𝑆(𝑥1, . . . , 𝑥𝑙) ∧ 𝑇 ( 𝑦, 𝑥𝑙−1, 𝑥𝑙).

and

𝑈′(𝑥1, . . . , 𝑥𝑙, 𝑦) = proj1,...,𝑙−2,𝑙+1(𝑈 (𝑥1, . . . , 𝑥𝑙−2, 𝑦))
∧𝑇 ( 𝑦, 𝑥𝑙−1, 𝑥𝑙).

We will show that they are identical. This will imply the result, because, as is easily seen,
𝑆 = proj1,...,𝑙 (𝑈), and 𝑈′ is pp-definable from 𝑅1, . . . , 𝑅𝑚, as proj1,...,𝑙−2,𝑙+1(𝑈) is by the induction
hypothesis.

It is not hard to see that 𝑈 ⊆ 𝑈′. Next, note that 𝑈′′ = proj1,...,𝑙−2,𝑙+1(𝑈) is not full, since
𝑈 (𝑐1, . . . , 𝑐𝑙−3, 𝑎, 𝑏, 𝑐, 𝑑) imply that 𝑑 = 𝑎. On the other hand, proj1,...,𝑙−2(𝑈) is full. Therefore, by
Lemma 8.9 for any (𝑎1, . . . , 𝑎𝑙, 𝑎) ∈ 𝑈 the value 𝑎 is determined by 𝑎1, . . . , 𝑎𝑙−2.

Take a tuple (𝑎1, . . . , 𝑎𝑙, 𝑎) ∈ 𝑈′; since proj1,...,𝑙−1(𝑆) is the full relation, we have that
(𝑎1, . . . , 𝑎𝑙−1, 𝑐, 𝑑) ∈ 𝑈 for some 𝑐, 𝑑 ∈ 𝐴. Since (𝑎1, . . . , 𝑎𝑙−2, 𝑎) ∈ proj1,...,𝑙−2,𝑙+1(𝑈), and in
this relation the last value is determined by the first 𝑙 − 2 ones, we have 𝑑 = 𝑎. Again by
Lemma 8.9 the third coordinate of the relation 𝑇 is determined by the first two coordinates.
Therefore, as we have 𝑇 (𝑑, 𝑎𝑙−1, 𝑐) from the definition of 𝑈 , 𝑇 (𝑎, 𝑎𝑙−1, 𝑎𝑙) from the definition of
𝑈′, and 𝑑 = 𝑎, we also obtain 𝑐 = 𝑎𝑙. Thus (𝑎1, . . . , 𝑎𝑙, 𝑎) ∈ 𝑈 , completing the proof. ■
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As already discussed in Section 4, Theorem 4.7 implies that every algebra A has at least
one of the following properties of its invariant relations.

(1) A has no proper irredundant subdirect subpowers.
(2) A has a proper irredundant binary subdirect subpower.
(3) A has a ternary strongly functional subpower.

Proposition 4.8 shows that A is abelian in case (3).

PROPOS IT ION 4.8. (Restated) If 𝑅 ≤ A3 is a strongly functional relation, then A is abelian.

PROOF . We define a binary relation 𝑆 on 𝐴2 by

𝑆((𝑥1, 𝑥2), ( 𝑦1, 𝑦2)) = ∃𝑢, 𝑣, 𝑢′, 𝑣′ :

𝑅(𝑢, 𝑣, 𝑥1) ∧ 𝑅(𝑢, 𝑣′, 𝑥2) ∧ 𝑅(𝑢′, 𝑣, 𝑦1) ∧ 𝑅(𝑢′, 𝑣′, 𝑦2).

Since a tuple of 𝑅 is determined by any two coordinates, 𝑥1 = 𝑥2 implies 𝑣 = 𝑣′, and this implies
𝑦1 = 𝑦2, and vice versa. Since any binary projection of 𝑅 is full, for any (𝑥1, 𝑥2) we can choose 𝑢

and then 𝑣, 𝑣′ such that (𝑢, 𝑣, 𝑥1), (𝑢, 𝑣′, 𝑥2) ∈ 𝑅. Setting 𝑢′ = 𝑢, 𝑦1 = 𝑥1, and 𝑦2 = 𝑥2, we see that
𝑆 is a reflexive relation on 𝐴2, in particular, the projection of 𝑆 to any of the two coordinates
is 𝐴2. Finally, any pair of the form ((𝑥, 𝑥), ( 𝑦, 𝑦)) is in 𝑆 as witnessed by picking 𝑢 arbitrarily
and then choosing 𝑣 = 𝑣′ and 𝑢′ appropriately. It follows that the “linkedness” congruence
(𝑆 − 𝑆) + · · · + (𝑆 − 𝑆) is a congruence on A2 such that one of its classes is the diagonal Δ𝐴, so A is
abelian. ■

The next theorem produces majority edges in case (1) when 𝜇A is not full.

THEOREM 4.10. (Restated) Suppose that A has no subdirect proper irredundant subpowers.
Then there exists a term operation 𝑡 ∈ Clo3(A) such that for any 𝑎, 𝑏 ∈ 𝐴 with SgA(𝑎, 𝑏) = A (e.g.,
(𝑎, 𝑏) ∉ 𝜇A), 𝑡(𝑎, 𝑎, 𝑏) = 𝑡(𝑎, 𝑏, 𝑎) = 𝑡(𝑏, 𝑎, 𝑎) = 𝑎.

PROOF . We consider the subalgebra F of A𝐴3 formed by all the ternary term operations of A,
i.e., 𝐹 = Clo3(A). We set 𝑃 = {(𝑎, 𝑏) : SgA(𝑎, 𝑏) = A} and define an equivalence relation ∼
on 𝑃 by (𝑎, 𝑏) ∼ (𝑎′, 𝑏′) if 𝑡(𝑎, 𝑎, 𝑏) determines 𝑡(𝑎′, 𝑎′, 𝑏′) and vice versa; in other words, if
{(𝑡(𝑎, 𝑎, 𝑏), 𝑡(𝑎′, 𝑎′, 𝑏′)) : 𝑡 ∈ 𝐹} is the graph of a bijection (from 𝐴 to 𝐴). Note that ∼ is indeed
an equivalence relation on 𝑃 and that (𝑎, 𝑏) ∼ (𝑎′, 𝑏′) if, and only if, 𝑡(𝑎, 𝑏, 𝑎) and 𝑡(𝑎′, 𝑏′, 𝑎′)
determine each other (since coordinates of operations in 𝐹 can be permuted) and this happens
if, and only if, 𝑡(𝑏, 𝑎, 𝑎) and 𝑡(𝑏′, 𝑎′, 𝑎′) determine each other. Let 𝑃′ be a subset of 𝑃 that contains
exactly one representative from each ∼-class, let 𝐼 =

⋃
(𝑎,𝑏)∈𝑃′{(𝑎, 𝑎, 𝑏), (𝑎, 𝑏, 𝑎), (𝑏, 𝑎, 𝑎)}, and

finally let R ≤ A𝐼 be the projection of F onto the set of coordinates 𝐼 .
By the definition of 𝑃, the subpower 𝑅 is subdirect. We claim that 𝑅 is irredundant, i.e., that

𝑆 = proj(𝑎1,𝑎2,𝑎3),(𝑎′1,𝑎
′
2,𝑎
′
3)
(𝑅) = {(𝑡(𝑎1, 𝑎2, 𝑎3), 𝑡(𝑎′1, 𝑎′2, 𝑎′3)) : 𝑡 ∈ 𝐹} is not a graph of a bijection

for any distinct triples (𝑎1, 𝑎2, 𝑎3), (𝑎′1, 𝑎′2, 𝑎′3) in 𝐼 . Indeed, if the position of the nonrepeating
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element in these two triples is different, then already the pairs (𝑎1, 𝑎
′
1), (𝑎2, 𝑎

′
2), (𝑎3, 𝑎

′
3) (which

are in 𝑆 since 𝐹 contains the three ternary projections) witness this. On the other hand, if the
position of the nonrepeating element is the same, then 𝑆 is not a graph of a bijection by the
definition of ∼ and 𝑃′, and the mentioned equivalent definitions.

Since A has no subdirect proper irredundant subpowers, we get 𝑅 = 𝐴𝐼 . In particular,
there exists 𝑡 ∈ 𝐹 such that 𝑡(𝑎′, 𝑎′, 𝑏′) = 𝑡(𝑎′, 𝑏′, 𝑎′) = 𝑡(𝑏′, 𝑎′, 𝑎′) = 𝑎′ for every (𝑎′, 𝑏′) ∈ 𝑃′. It
remains to observe that these equalities hold for every (𝑎, 𝑏) ∈ 𝑃. Indeed, by the definition
of 𝑃′ there exists (𝑎′, 𝑏′) ∈ 𝑃′ such that (𝑎, 𝑏) ∼ (𝑎′, 𝑏′). We have proj31(𝑎′, 𝑎′, 𝑏′) = 𝑎′ and
proj31(𝑎, 𝑎, 𝑏) = 𝑎, therefore 𝑡(𝑎′, 𝑎′, 𝑏′) = 𝑎′ implies 𝑡(𝑎, 𝑎, 𝑏) = 𝑎. By a similar argument we get
𝑡(𝑎, 𝑏, 𝑎) = 𝑎 = 𝑡(𝑏, 𝑎, 𝑎) and the proof is concluded. ■

In case (2) and when A is simple and 𝜇A is not full we get semilattice edges by the following
theorem.

THEOREM 4.11. (Restated) Suppose A with |𝐴| > 2 is simple and there exists a proper irredun-
dant subdirect binary subpower. Then there exists a 𝜇A-class 𝐵 such that, for every 𝑏 ∈ 𝐵, 𝑎 ∉ 𝐵,
the pair (𝑎, 𝑏) is a semilattice edge witnessed by the identity congruence.

PROOF . We assume that 𝜇A is not full, otherwise the theorem is vacuously true. We prove
the conclusion via a sequence of claims. We start with a basic observation: if 𝑅 ≤𝑠𝑑 A2 and
(𝑎, 𝑏), (𝑎′, 𝑏) ∈ 𝑅 for some (𝑎, 𝑎′) ∉ 𝜇A then 𝑏 is in the right center of 𝑅 (since SgA(𝑎, 𝑎′) = 𝐴).

CLAIM 8.10. Every irredundant, proper 𝑅 ≤𝑠𝑑 A2 is central.

PROOF . Since A is simple, 𝑅 needs to be linked. Therefore, since 𝜇A is not the full relation, we
have (𝑎, 𝑏), (𝑎′, 𝑏) ∈ 𝑅 for some (𝑎, 𝑎′) ∉ 𝜇A which implies that 𝑏 is in the right center of 𝑅. The
proof for left center is symmetric. ■

CLAIM 8.1 1. Let 𝑅 ≤𝑠𝑑 A2 be irredundant and proper. If 𝑎 and 𝑎′ are in the left (right) center of
𝑅 then (𝑎, 𝑎′) ∈ 𝜇A.

PROOF . Suppose not. Then for every 𝑏 ∈ 𝐴 we have (𝑎, 𝑏), (𝑎′, 𝑏) ∈ 𝑅 which implies that 𝑏 is
in the right center. This cannot happen in a proper 𝑅. ■

CLAIM 8.12. Let 𝑅 ≤𝑠𝑑 A2 be irredundant and proper. If 𝑎 is in the left center of 𝑅 and 𝑎′ is in
the right center then (𝑎, 𝑎′) ∈ 𝜇A.

PROOF . Suppose, for a contradiction, that 𝑎 is in the left center of 𝑅, 𝑎′ is in the right center,
and (𝑎, 𝑎′) ∉ 𝜇A. Since (𝑎, 𝑎), (𝑎′, 𝑎′) ∈ 𝑅 then, for every 𝑏 ∈ 𝐴, we have (𝑏, 𝑏) ∈ 𝑅.

Consider any 𝑎′′ such that (𝑎′′, 𝑎′) ∉ 𝜇A. Then 𝑎′′ is in the left center of 𝑅, as both (𝑎′′, 𝑎′′)
and (𝑎′′, 𝑎′) are in 𝑅. This implies, by the previous claim, that (𝑎′′, 𝑎) ∈ 𝜇A.
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In particular we conclude that 𝜇A has two equivalence classes, and that the left center is
equal to 𝑎/𝜇A. By a symmetric argument, the right center is equal to 𝑎′/𝜇A. Altogether, 𝜇A is the
equivalence with classes 𝑎/𝜇A and 𝑎′/𝜇A which are the left and right centers, respectively.

Also note that no pair (𝑏, 𝑏′) with 𝑏 ∉ 𝑎/𝜇A and 𝑏′ ∉ 𝑎′/𝜇A is in 𝑅: otherwise (𝑏, 𝑏), (𝑏, 𝑏′) ∈
𝑅 implies that 𝑏 is in the left center, which is not the case. Therefore 𝑅 = (𝑎/𝜇A × 𝐴) ∪ (𝐴 ×
𝑎′/𝜇A), but then 𝑅 ∩ −𝑅 = 𝜇A is a proper congruence (recall |𝐴| > 2) on a simple algebra A, a
contradiction. ■

So far we have shown that each subdirect, irredundant, and proper 𝑅 is central and both
centers are contained in a single 𝜇A-class 𝐵. We refer to 𝐵 as the central 𝜇A-class of 𝑅.

CLAIM 8.13. Let 𝑅 ≤𝑠𝑑 A2 be irredundant and proper, 𝐵 its central 𝜇A-class, and 𝑆 ≤𝑠𝑑 A2

redundant. Then 𝐵 + 𝑆 = 𝐵.

PROOF . The relation 𝑅 + 𝑆 is clearly irredundant and proper, its left center is equal to the left
center of 𝑅, and its right center is 𝐶 + 𝑆, where 𝐶 is the right center of 𝑅. Therefore the central
𝜇A-class of 𝑅 + 𝑆 is 𝐵 and 𝐶 + 𝑆 ⊆ 𝐵.

The relation 𝑆 is the graph of an isomorphism from A to A. Since isomorphism map
subuniverses to subuniverses, it maps each 𝜇A-class to a 𝜇A-class. In particular 𝐵+𝑆 is a 𝜇A-class
and since it contains 𝐶 + 𝑆 ⊆ 𝐵, we get 𝐵 + 𝑆 = 𝐵. ■

CLAIM 8.14. Let 𝑅, 𝑆 ≤𝑠𝑑 A2 be irredundant and proper and 𝐵, 𝐶 their central 𝜇A-classes,
respectively. Then 𝐵 = 𝐶.

PROOF . Suppose, for a contradiction, that 𝐵 ≠ 𝐶. Let 𝑏, 𝑏′ be some elements of the left and right
centers of 𝑅, respectively, and similarly 𝑐, 𝑐′ for 𝑆. Let 𝑇 = 𝑅 ∩ 𝑆, and note that (𝑏, 𝑐′), (𝑐, 𝑏′) ∈ 𝑇 .
As (𝑏, 𝑐) ∉ 𝜇A and (𝑐′, 𝑏′) ∉ 𝜇A, the relation 𝑇 is subdirect in 𝐴2.

Since 𝐵 ∩ 𝐶 = ∅ the relation 𝑇 has no center, and thus by Claim 8.10 needs to be redundant.
The previous claim implies 𝑐′ ∈ (𝐵 + 𝑇 ) ∩ 𝐶 = 𝐵 ∩ 𝐶 = ∅, a contradiction. ■

To finish the proof we take a proper irredundant subdirect binary relation 𝑅 provided
by the assumption and set 𝐵 to be its central 𝜇A-class. Take any 𝑏 ∈ 𝐵, 𝑎 ∉ 𝐵 and let 𝑆 =

SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)). The relation 𝑆 is subdirect (as (𝑎, 𝑏), (𝑏, 𝑎) ∈ 𝑆) and cannot be redundant as
𝑎 ∈ 𝐵 + 𝑆 would contradict Claim 8.13. Thus, by Claim 8.10 and Claim 8.14, there is 𝑏′ ∈ 𝐵 in the
left center of 𝑆. Since (𝑏′, 𝑏), (𝑎, 𝑏) ∈ 𝑆 we conclude that 𝑏 is in the right center of 𝑆, in particular
(𝑏, 𝑏) ∈ 𝑆 and we are done as witnessed by the operation generating (𝑏, 𝑏) from the generators
(𝑎, 𝑏), (𝑏, 𝑎). ■

We are ready to derive the promised refinements of the fundamental theorems for Zhuk’s
and Bulatov’s approach as corollaries.

COROLLARY 4.12. (Restated) Let A be an algebra, then
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(a) A has a nontrivial 2-absorbing subuniverse, or
(b) A has a nontrivial center (which is a Taylor center in the case where A is a Taylor algebra),

or
(c) A/𝛼 is abelian for some proper congruence 𝛼 of A, or
(d) A/𝛼 has no proper irredundant subdirect subpowers for some proper congruence 𝛼 of A.

PROOF . Let us first assume that A is simple. If case (d) does not apply, then there exists a
proper irredundant subdirect subpower of A. By Theorem 4.7, such a relation pp-defines a
strongly functional ternary relation or a proper irredundant subdirect binary relation 𝑅. The
former situation leads to case (c) via Proposition 4.8. In the latter case, the binary relation
𝑅 ≤𝑠𝑑 A2 is linked (as A is simple) and thus it defines a proper left central relation 𝑆 ≤𝑠𝑑 A2 by
Proposition 4.1. Now either A has a nontrivial 2-absorbing subuniverse and we are in case (a)
or 𝑆 witnesses that we are in case (b).

In the general case, take a maximal congruence 𝛼 of A, apply what we have already proved
to the simple algebra A/𝛼, and observe that 2-absorbing subuniverse and centers can be lifted:
if 𝑅 is a 2-absorbing (central) subuniverse of A/𝛼, then the preimage of 𝑅 under the quotient
map 𝐴→ 𝐴/𝛼 is a 2-absorbing (central) subuniverse of A. ■

THEOREM 3.2. (The Connectivity Theorem [26, 24]) (Restated) The directed graph formed by
the edges of any algebra is (weakly) connected.

PROOF . We prove the claim by induction on the size of A. If A has two elements the result
follows from the classification of Boolean clones by Post [55], so we assume |𝐴| ≥ 3.

Suppose that 𝜇A is full, that is, each pair of elements in 𝐴 is connected by proper subuni-
verses. Since all the proper subalgebras of A have connected directed graphs of edges by the
induction hypothesis, and these edges are trivially also edges in A, it follows that the digraph of
edges of A is connected. Suppose further that 𝜇A is not full.

If A is simple, then each equivalence class of 𝜇A is connected by edges by the induction
hypothesis. We apply Theorem 4.7 together with Proposition 4.8, Theorem 4.10, or Theorem 4.11
to conclude that either A is abelian and every pair is an abelian edge, or every pair (𝑎, 𝑎′) ∉ 𝜇A

is a majority edge, or that there exists a 𝜇A-class 𝐵 such that every pair 𝑎 ∉ 𝐵, 𝑏 ∈ 𝐵 forms a
semilattice edge (𝑎, 𝑏) (and in every case the witnessing congruence is the identity congruence).

IfA is not simple we consider any maximal congruence 𝛼 onA. By the induction hypothesis
the congruence classes of 𝛼 as well as A/𝛼 have connected directed graphs of edges. But since
any edge (𝑎/𝛼, 𝑏/𝛼) in A/𝛼 witnessed by 𝜃 on SgA/𝛼(𝑎/𝛼, 𝑏/𝛼) gives rise to edge (𝑎, 𝑏) in A
witnessed by the lifted congruence 𝜃′ on SgA(𝑎, 𝑏), the proof is concluded in the nonsimple case
as well. ■

COROLLARY 4.13. (Restated) The directed graph formed by the minimal edges of any algebra
is (weakly) connected.
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PROOF . Let A be a minimal counterexample to the theorem. By Theorem 3.2, 𝐴 is connected
by edges and it suffices to show that each pair of elements connected by an edge is connected
by minimal edges. Let (𝑎, 𝑏) be an edge in A and let 𝜃 be a maximal congruence on SgA(𝑎, 𝑏)
witnessing the edge. The equivalence classes of 𝜃 are connected by minimal edges by the
minimality of A. Choose 𝑎′, 𝑏′ such that (𝑎, 𝑎′), (𝑏, 𝑏′) ∈ 𝜃 and B = SgA(𝑎′, 𝑏′) is inclusion
minimal. If 𝐵 = 𝐴, then (𝑎, 𝑏) is a minimal edge and we are done. Otherwise 𝑎′ and 𝑏′ are
connected by minimal edges by the minimality of A, and then so are 𝑎 and 𝑏. ■

9. Proofs for Section 5: Minimal Taylor algebras

This section contains proofs of the theorems from Section 5 together with a number of lemmas
mentioned there, or needed for the proofs. The final subsection gives proofs of the claims in
examples in Section 5.

9.1 General facts

PROPOS IT ION 5.2. (Restated) Every Taylor algebra has a minimal Taylor reduct.

PROOF . LetA be a Taylor algebra and 𝑝 > |𝐴| be a prime number. By Theorem 3.5 the algebraA
has a cyclic term operation of a prime arity 𝑝. Consider a family of clones generated by such
cyclic operations (the family is finite), and choose a term 𝑡 which defines a minimal (under
inclusion) clone in this family. The algebra (𝐴; 𝑡) is clearly a Taylor reduct of A. If (𝐴; 𝑡) had a
proper Taylor reduct then, by Theorem 3.5, it would have a 𝑝-ary cyclic term operation. This
contradicts the choice of 𝑡 and shows that (𝐴; 𝑡) is a minimal Taylor algebra. ■

PROPOS IT ION 5.3. (Restated) Let A be a minimal Taylor algebra and 𝐵 ⊆ 𝐴 be closed under
an operation 𝑓 ∈ Clo(A) such that 𝐵 together with the restriction of 𝑓 to 𝐵 forms a Taylor algebra.
Then 𝐵 is a subuniverse of A.

PROOF . Choose a prime number 𝑝 > |𝐴|. The set 𝐵 together with the restriction of 𝑓 to 𝐵,
call it 𝑓 ′, forms a Taylor algebra. By Theorem 3.5 (𝐵; 𝑓 ′) has a cyclic operation of arity 𝑝. This
operation is defined by a term in 𝑓 ′, and we let ℎ to be the operation of A defined by the same
term after replacing 𝑓 ′ by 𝑓 . The set 𝐵 is closed under ℎ and ℎ is a cyclic operation on 𝐵. Let 𝑠
be a cyclic composition of ℎ and a cyclic operation of A of arity 𝑝 denoted by 𝑡 (𝑡 exists by
Theorem 3.5). The operation 𝑠 is cyclic and, more importantly, preserves 𝐵 as 𝑡 is idempotent
and 𝑠 is cyclic on 𝐵. Since A is minimal Taylor, Clo(A) = Clo(𝐴; 𝑠) and 𝐵 is a subuniverse of A. ■

PROPOS IT ION 5.4. (Restated) Any subalgebra, finite power, or quotient of a minimal Taylor
algebra is a minimal Taylor algebra.

PROOF . For finite powers the claim follows from the definition of a power. Let A be a minimal
Taylor algebra and let B be a subalgebra or quotient of A. We choose a prime number 𝑝 > |𝐴|
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and a 𝑝-ary cyclic term operation 𝑡 of A. Using Theorem 3.5 and Proposition 5.2 we find
𝑠 ∈ Clo(A) such that 𝐵 together with the corresponding term operation 𝑠B of B is minimal
Taylor. Then the cyclic composition ℎ of 𝑡 and 𝑠 is a cyclic operation on A and the corresponding
ℎB coincides with 𝑠B. Since A is minimal Taylor, we have Clo(A) = Clo(𝐴;ℎ) and therefore
Clo(B) = Clo(𝐵;ℎB) = Clo(𝐵; 𝑠B), which completes the proof. ■

The following, additional, proposition is proved in a similar way.

PROPOS IT ION 9.1. Any term operation of a minimal Taylor algebra A can be obtained by
identifying and permuting coordinates (and adding dummy coordinates) of a cyclic term operation
of A.

PROOF . Since A is minimal Taylor, Clo(A) = Clo(𝐴; 𝑡) for any cyclic operation 𝑡 ∈ Clo(A)
(which exists by Theorem 3.5). The claim now follows by noting that the star composition of
cyclic operations is a cyclic operation and that, since 𝑡 is idempotent, any term operation defined
by a term in the symbol 𝑡 can be defined by star composing 𝑡 multiple times and then permuting
and identifying coordinates. ■

9.2 Absorption

We begin by proving an auxiliary lemma.

LEMMA 9.2. Suppose A is a minimal Taylor algebra, ∅ ≠ 𝐵 ⊊ 𝐶 ⊆ 𝐴, and SgA(𝐶𝑛 \ 𝐵𝑛) ∩ 𝐵𝑛 = ∅
for every 𝑛. Then for every 𝑓 ∈ Clo𝑛(A) and every essential coordinate 𝑖 of 𝑓 we have 𝑓 (a) ∉ 𝐵

whenever a ∈ 𝐶𝑛 is such that 𝑎𝑖 ∈ 𝐶 \ 𝐵.

PROOF . Any cyclic term operation satisfies the required property (by using the compatibility
with SgA(𝐶𝑛 \ 𝐵𝑛) on cyclic permutations of a) and the property is stable under identifying and
permuting coordinates (and introducing dummy ones). The claim now follows from Proposi-
tion 9.1. ■

THEOREM 5.5. (Restated) Let A be a minimal Taylor algebra and 𝐵 an absorbing set of A. Then
𝐵 is a subuniverse of A.

PROOF . Let 𝑓 be a witness for 𝐵 absorbing A and assume, for a contradiction, that 𝐵 is not a
subuniverse.

Let A′ be a reduct of A with all the operations from Clo(A) that preserve 𝐵. Since A′ is
a proper reduct, it is not a Taylor algebra, and so some quotient of a subalgebra of A′ is a
two-element algebra such that every operation restricts to a projection (see Proposition 2.2).
Let 𝐵0 and 𝐵1 be the congruence classes in this quotient, clearly every operation 𝑡 from Clo(A′)
acts like a projection on {𝐵0, 𝐵1}. Note that 𝑓 preserves 𝐵, therefore it has this property and we
assume, without loss of generality, that 𝑓 acts like the first projection on {𝐵0, 𝐵1}.
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It follows from the previous paragraph that, for every 𝑛, the relation 𝑆𝑛 = (𝐵0 ∪ 𝐵1)𝑛 \ 𝐵𝑛
0

(just like any other relation “built” out of the blocks 𝐵0 and 𝐵1) is compatible with every operation
from Clo(A′) and is thus pp-definable from Inv(A) and 𝐵. Let 𝑇𝑛 be the relation defined by the
same pp-definition with each conjunct 𝐵(𝑥) replaced by the void 𝐴(𝑥). Since 𝐵 absorbs A′ by 𝑓 ,
we also know that 𝑆𝑛 absorbs 𝑇𝑛 by the same 𝑓 (see Lemma 7.1)

Suppose that 𝑇𝑛 ∩ 𝐵𝑛
0 ≠ ∅ and choose a ∈ 𝑇𝑛 ∩ 𝐵𝑛

0 and b ∈ 𝐵𝑛
1. Then 𝑓 (a,b, . . . ,b) belongs

to 𝐵𝑛
0 because 𝑓 acts like the first projection on {𝐵0, 𝐵1}, and it also belongs to 𝑆𝑛 because 𝑆𝑛

absorbs 𝑇𝑛 by 𝑓 . This contradiction shows that 𝑇𝑛 ∩ 𝐵𝑛
0 = ∅ for every 𝑛. Note that 𝑆𝑛 ⊆ 𝑇𝑛 and 𝑇𝑛

is a subpower of A, hence SgA𝑛 ((𝐵0 ∪ 𝐵1)𝑛 \ 𝐵𝑛
0) ∩ 𝐵𝑛

0 = ∅ for every 𝑛. We apply Lemma 9.2 and
consider the behaviour of 𝑓 : it preserves 𝐵0∪𝐵1 and has at least two essential coordinates (since
it is a witness for a nontrivial absorption) and therefore cannot act like a projection on {𝐵0, 𝐵1}
— this is a contradiction. ■

THEOREM 5.7. (Restated) The following are equivalent for any minimal Taylor algebra A and
any 𝐵 ⊆ 𝐴.

(a) 𝐵 2-absorbs A.
(b) 𝑅(𝑥, 𝑦, 𝑧) = 𝐵(𝑥) ∨ 𝐵( 𝑦) ∨ 𝐵(𝑧) is a subuniverse of A3.
(c) 𝐵 is a projective subuniverse of A.
(d) 𝐵 is a strongly projective subuniverse of A.

PROOF . We begin with the implications that were discussed in the main part of the paper. The
implications from (d) to (c) and from (c) to (b) hold for all algebras. The first one is trivial, and
the second one follows immediately from the definitions. The implication from (b) to (a) fails in
a trivial clone, but holds in Taylor algebras. To see this we assume (b) and let 𝑡 be a cyclic term
operation of A of arity 2𝑘 + 1. Define 𝑓 (𝑥, 𝑦) = 𝑡(𝑥, . . . , 𝑥, 𝑦, . . . 𝑦) where 𝑥 appears exactly 𝑘 + 1
times. It is easy to see that 𝑓 witnesses the 2-absorption of 𝐵. Indeed, take any 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and
let c1 = (𝑎, . . . , 𝑎, 𝑏, . . . , 𝑏) with exactly 𝑘 + 1 𝑎’s. Let c2 be a cyclic shift of c1 by 𝑘 positions and c3

by 𝑘 + 1 positions. Clearly (𝑡(c1), 𝑡(c2), 𝑡(c3)) ∈ 𝑅 and, as it is a constant tuple, we conclude that
𝑡(c1) = 𝑓 (𝑎, 𝑏) ∈ 𝐵. The case of 𝑓 (𝑏, 𝑎) is similar, so we are done showing that (b) implies (a).

For the implication from (a) to (d) let 𝑔 be a binary operation witnessing the 2-absorption
of 𝐵 into 𝐴 and let 𝑡 ∈ Clo(A) be a cyclic operation of arity 𝑝. Define ℎ(𝑥1, . . . , 𝑥𝑝) as

𝑔 (· · · 𝑔 (𝑔 (𝑥1, 𝑥2), 𝑥3), . . . 𝑥𝑝)

and note that ℎ(𝑎1, . . . , 𝑎𝑝) ∈ 𝐵 whenever at least one of the 𝑎𝑖 is in 𝐵. The same property holds
for the cyclic composition, call it 𝑠, of 𝑡 and ℎ. To see this, take a 𝑝-tuple a which, in some
position, has an element from 𝐵. In the subterms of 𝑠 the operation ℎ is applied to cyclic shifts
of a, and every time the result is in 𝐵. Then 𝑡 is applied to elements from 𝐵 and, by Theorem 5.5,
the result is in 𝐵 as well. The operation 𝑠 is cyclic and therefore generates the whole clone of A.
Thus if any variable appearing in a term 𝑓 build from 𝑠 (in particular, a variable corresponding
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to an essential coordinate of 𝑓 A) is an element of 𝐵, then the whole term evaluates to an element
of 𝐵. ■

PROPOS IT ION 5.9. (Restated) Let A be a minimal Taylor algebra.
(1) If 𝐵 ⊴2 A and 𝐶 ≤ A, then 𝐵 ∪ 𝐶 ≤ A.
(2) If 𝐵 ⊴2 A and 𝐶 ⊴ A by 𝑓 , where ∅ ≠ 𝐵, 𝐶 ≠ 𝐴, then

a. 𝐵 ∪ 𝐶 ⊴ A by 𝑓 , and
b. 𝐵 ∩ 𝐶 ≠ ∅ and 𝐵 ∩ 𝐶 ⊴ A by 𝑓 .

(3) If C ⊴2 B ⊴2 A, then C ⊴2 A.
(4) A has a unique minimal 2-absorbing subalgebra B. Moreover, this algebra B does not have

any nontrivial 2-absorbing subalgebra.

PROOF . For (1) consider the result of applying an operation 𝑓 ∈ Clo(A) to a tuple a. If 𝑎𝑖 ∈ 𝐶
for all of the essential coordinates 𝑖 of 𝑓 , then the result is in 𝐶 (as 𝐶 ≤ A), and if 𝑎𝑖 ∈ 𝐵 for an
essential 𝑖, then the result is in 𝐵 by item (d) in Theorem 5.7.

The argument for (2.a) is similar. From (1) we know that 𝐵 ∪ 𝐶 is a subuniverse. For the
absorption note that if a tuple a has all but one entry in 𝐵 ∪ 𝐶, then 𝑓 (a) ∈ 𝐵 in the case where
𝑎𝑖 ∈ 𝐵 for some essential 𝑖, or 𝑓 (a) ∈ 𝐶 in the other case (as 𝐶 ⊴ A by 𝑓 and the inessential
coordinates can be substituted with elements of 𝐶). For (2.b) first note that 𝑓 has at least two
essential coordinates. Then 𝐵 ∩ 𝐶 ⊴ A follows again from item (d) in Theorem 5.7, and 𝐵 ∩ 𝐶
is nonempty since it contains 𝑓 (𝑐, . . . , 𝑐, 𝑏, 𝑐, . . . , 𝑐) for any 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 (where 𝑏 is at an
essential coordinate).

To prove (3) note that, by strong projectivity, both absorptions C ⊴2 B ⊴2 A can be
witnessed by the same operation 𝑓 (and, in fact, any binary term operation of A such that both
coordinates are essential can be taken as a witness) and then 𝑓 ( 𝑓 ( 𝑓 (𝑥, 𝑦), 𝑥), 𝑓 ( 𝑓 ( 𝑦, 𝑥), 𝑦))
witnesses C ⊴2 A

The first part of item (4) follows from (2.b) as, again, all 2-absorptions have a common
witness. The second part follows from (3). ■

We are moving on to the proof of Theorem 5.10. The argument is similar in spirit to
Theorem 5.7 but the reasoning is a bit more technical. The following notion, which can be
thought of as a common generalization of projectivity and absorption, will be useful.

DEF IN IT ION 9.3. Let 𝑓 : 𝐴𝑛 → 𝐴, let 𝐵 ⊆ 𝐴, and let 𝑔 : {0, 1}𝑛 → {0, 1} be monotone. We
write 𝑓 ⇝𝐵 𝑔 if 𝑓 (a) ∈ 𝐵 whenever 𝑔 (x) = 1, where x is the characteristic tuple of a with
respect to 𝐵 (i.e. 𝑥𝑖 = 1 iff 𝑎𝑖 ∈ 𝐵).

For instance, for 𝑔 defined by 𝑔 (x) = 1 iff
∑
𝑥𝑖 ≥ 𝑛 − 1, we have 𝑓 ⇝𝐵 𝑔 iff 𝐵 absorbs 𝐴 by 𝑓 ; if

𝑔 is constant 0, then 𝑓 ⇝𝐵 𝑔 for any 𝑓 and 𝐵.
We begin with a basic property of the relation⇝𝐵.
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PROPOS IT ION 9.4. Fix 𝐴 and 𝐵 ⊆ 𝐴. If 𝑓 ⇝𝐵 𝑔 are 𝑛-ary and 𝑓1⇝𝐵 𝑔1, . . . , 𝑓𝑛⇝𝐵 𝑔𝑛 are all
𝑘-ary, then 𝑓 ( 𝑓1, . . . , 𝑓𝑛) ⇝𝐵 𝑔 (𝑔1, . . . , 𝑔𝑛).

PROOF . Let 𝑓 , 𝑓1, . . . , 𝑓𝑛 and 𝑔, 𝑔1, . . . , 𝑔𝑛 be as in the statement of the proposition. Take any
a ∈ 𝐴𝑘 and let x be its characteristic 𝑘-tuple (with respect to 𝐵). Assume that 𝑔 (𝑔1, . . . , 𝑔𝑛) (x) = 1
and note that if 𝑔𝑖 (x) = 1 then 𝑓𝑖 (a) ∈ 𝐵. Therefore the characteristic 𝑛-tuple of ( 𝑓1(a), . . . , 𝑓𝑛(a))
is above the tuple (𝑔1(x), . . . , 𝑔𝑛(x)) and since 𝑔 applied to the latter tuple outputs 1, it outputs 1
on the former as well. By the definition of⇝𝐵, this implies that 𝑓 ( 𝑓1(a), . . . , 𝑓𝑛(a)) ∈ 𝐵, and the
proposition is proved. ■

Note that the previous proposition is especially useful when the algebra A is generated by
a single operation. More formally if 𝐵 ⊆ 𝐴 and 𝑓 ⇝𝐵 𝑔 , then any 𝑓 ′ ∈ Clo(𝐴; 𝑓 ) is⇝𝐵 related to
some 𝑔′ ∈ Clo({0, 1}; 𝑔). Indeed, for any fixed 𝑘, it suffices to start with proj𝑘𝑖 (on 𝐴)⇝𝐵 proj𝑘𝑖
(on {0, 1}), for all 𝑖 ≤ 𝑘, and apply the previous proposition as many times as needed. This is in
fact exactly how we prove “(a) implies (d)” in Theorem 5.10 – the proof of this implication is
extracted to the following theorem.

THEOREM 9.5. Let A be a minimal Taylor algebra. There exists an arity preserving map 𝑓 ↦→ 𝑓 ′

from Clo(A) to Clo({0, 1}; maj) such that:
if a set 𝐵 3-absorbs 𝐴 then 𝑓 ⇝𝐵 𝑓 ′ for every 𝑓 in Clo(A), and
for every prime 𝑝 > |𝐴| there is a cyclic term of A of arity 𝑝 which is mapped to maj𝑝.

PROOF . For any prime 𝑝 > |𝐴|, we have a 𝑝-ary cyclic operation, say 𝑡, in A. If 𝑡 satisfies
𝑡⇝𝐵 maj𝑝 then one can generate, as in discussion after Proposition 9.4, a subdirect relation⇝𝐵

between Clo(A) and Clo({0, 1}; maj). Once this is done, we see that for any 𝑓 ∈ Clo(A) we can
choose any operation⇝𝐵-related to 𝑓 and fix it to be 𝑓 ′. Such a map satisfies the conclusion of
the theorem, for the set 𝐵 in question. If the initial condition, i.e. 𝑡⇝𝐵 maj𝑝, held for a number
of 𝐵’s then the conclusion will hold for all of them. We will prove the theorem by induction on
the size of the set of 𝐵’s.

Given a set B of 3-absorbing subsets of 𝐴 and a cyclic operation 𝑡 ∈ Clo𝑝(A), such that
𝑡⇝𝐵 maj𝑝 for every 𝐵 ∈ B, we will find another cyclic term operation 𝑠 which will still work
for any 𝐵 ∈ B and, additionally, for a new 3-absorbing subset 𝐶 in A. The claim will then follow
by induction since we can start with the empty B and any 𝑝-ary cyclic term operation of A (in
such a case we can choose an arbitrary map 𝑓 ↦→ 𝑓 ′ sending 𝑡 to maj𝑝).

Let 𝑓 ↦→ 𝑓 ′ be a map compatible with⇝𝐵 for all 𝐵 ∈ B and such that 𝑡 ↦→ maj𝑝. Let 𝑓

be a witness for 𝐶 3-absorbing A, and let 𝑓 ′ be the image of 𝑓 . Finally, let ℎ be the 𝑝-ary term
operation ofA defined from 𝑓 by the same term as a term defining maj𝑝 from maj (the latter term
exists since Clo({0, 1},maj) is the clone of monotone selfdual operations – see the discussion in
Section 5) and let 𝑠 be the cyclic composition of 𝑡 and ℎ. Our aim is to verify that 𝑠⇝𝐵 maj𝑝 for
every 𝐵 ∈ B ∪ {𝐶}.
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Observe that 𝑓 ⇝𝐶 maj by the definition of absorption, therefore ℎ ⇝𝐶 maj𝑝 by the
definition of ℎ and Proposition 9.4. Further 𝑠⇝𝐶 maj𝑝 by the definition of 𝑠 and the fact that
𝐶 ≤ A (which follows from Theorem 5.5). We thus further concentrate on the case 𝐵 ∈ B. If
𝑓 ′ (the image of 𝑓 from the previous paragraph) is maj, then ℎ⇝𝐵 maj𝑝 and further 𝑠⇝𝐵 maj𝑝
for all 𝐵 ∈ B by the same reasoning, so this case is done.

Otherwise 𝑓 ′ is a projection (again by the structure of the majority clone) and Proposi-
tion 9.4 implies that ℎ⇝𝐵 proj𝑖 for some 𝑖. But then, again using Proposition 9.4, a 𝑘-shift of ℎ
(i.e. a term obtained by cyclically shifting the arguments of ℎ by 𝑘 positions) is⇝𝐵 related to
proj𝑖+𝑘 mod 𝑝. Finally 𝑠⇝𝐵 maj𝑝 by the definition of 𝑠 (and, again, Proposition 9.4). This finishes
the proof of the theorem. ■

We now prove a version of Theorem 5.10 formulated in terms of the relation⇝𝐵. Note
that in this formulation we reordered the items to better match the strength of the concepts.

THEOREM 9.6. The following are equivalent for any minimal Taylor algebra A and any 𝐵 ⊆ 𝐴.
(a) 𝐵 3-absorbs A.
(b) 𝐵 is a center of A.
(c) The relation 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ 𝐵( 𝑦) is a subuniverse of A2.
(d) for every 𝑓 ∈ Clo(A) there exists 𝑔 ∈ Clo({0, 1}; maj) such that 𝑓 ⇝𝐵 𝑔 .

Moreover, if 𝐵 = {𝑏}, then these items are equivalent to
(e) 𝐵 absorbs A.

PROOF . We will begin by showing that (c) is equivalent to (d) in every algebra. For the impli-
cation from (d) to (c) take any 𝑛-ary operation 𝑓 of algebra A, and let 𝑔 be such that 𝑓 ⇝𝐵 𝑔.
Take two tuples a, a′ such that (𝑎1, 𝑎

′
1), . . . , (𝑎𝑛, 𝑎′𝑛) ∈ 𝑅. If 𝑓 (a) ∈ 𝐵 then ( 𝑓 (a), 𝑓 (a′)) ∈ 𝑅 and

we are done, so suppose 𝑓 (a) ∉ 𝐵. Let x be the characteristic tuple of a; by the definition of⇝𝐵

we have 𝑔 (x) = 0. On the other hand, the definition of 𝑅 and the choice of a, a′ implies that x′ –
the characteristic tuple of a′ – is greater than or equal to 1− x = (1− 𝑥1, . . . , 1− 𝑥𝑛). Since 𝑔 is in
Clo({0, 1}; maj), the clone of monotone selfdual operations, we get 𝑔 (x′) ≥ 𝑔 (1−x) = 1−𝑔 (x) = 1,
therefore 𝑓 (a′) ∈ 𝐵. This proves the first implication.

For the implication from (c) to (d), note that to every 𝑛-ary operation 𝑓 ∈ Clo(A) we
can associate 𝑔′ : {0, 1}𝑛 → {0, 1} by putting 𝑔′(x) = 1 if and only if 𝑓 (a) ∈ 𝐵 for all a with
characteristic tuple greater than or equal to x. The operation 𝑔′ is monotone by definition, and
clearly 𝑓 ⇝𝐵 𝑔′. From 𝑔′ we define 𝑔 in the following way: for every x we put 𝑔 (x) = 𝑔′(x)
unless 𝑔′(x) = 𝑔′(1 − x) = 1 and 𝑥1 = 0 – in this case we put 𝑔 (x) = 0. The operation 𝑔 is clearly
monotone, and we obviously have 𝑓 ⇝𝐵 𝑔 . We will show that 𝑔 is self-dual, which will conclude
the proof of (d). Indeed, if 𝑔 is not self-dual then we have 𝑔′(x) = 𝑔′(1 − x) = 0. From the
definition of 𝑔′ we have two tuples a and a′ with characteristic tuples greater than or equal to x
and 1 − x respectively and such that 𝑓 (a), 𝑓 (a′) ∈ 𝐴 \ 𝐵. Note that for every 𝑖 we have 𝑅(𝑎𝑖 , 𝑎′𝑖),
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and by compatibility ( 𝑓 (a), 𝑓 (a′)) ∈ 𝑅, but this contradicts the condition that both 𝑓 (a) and
𝑓 (a′) are outside 𝐵.

Next, we assume (d) and aim to prove (b). Again, no assumptions on the algebra are
necessary. We set {0, 1} to be the universe of C and for every basic operation of A, say 𝑓 A,
put 𝑓 C = 𝑔 where 𝑔 is any operation such that 𝑓 ⇝𝐵 𝑔. Clearly Clo(C) ⊆ Clo({0, 1}; maj)
and therefore C has no 2-absorbing subuniverses. Moreover, we claim that the relation 𝑅 =

𝐴 × {0} ∪ 𝐵 × {1} is a subuniverse of A × C. Take (𝑎1, 𝑦1), . . . , (𝑎𝑛, 𝑦𝑛) ∈ 𝑅, any 𝑛-ary symbol 𝑓
and let x be the characteristic tuple of a. If 𝑓 A(a) ∈ 𝐵 we are done, so suppose that 𝑓 A(a) ∈ 𝐴 \𝐵
and therefore 𝑓 C(x) = 0. Then y ≤ x and so 𝑓 C(y) = 0, which completes the proof.

For (b) implies (a) see Proposition 4.4 and for (a) implies (d) see Theorem 9.5. Finally (a)
always implies (e). For the converse implication we will use Proposition 8.7. By assumption,
𝐵 = {𝑏} ⊴ A. Take any 𝑎 ∈ 𝐴 \ 𝐵 and consider SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)). If (𝑎, 𝑎) is an element of this
algebra, then there is a term operation 𝑡 satisfying 𝑡(𝑎, 𝑏) = 𝑎 = 𝑡(𝑏, 𝑎) and, by Proposition 5.3,
the set {𝑎, 𝑏} is a subuniverse. Since 𝑡 acts on {𝑎, 𝑏} as a semilattice with absorbing element 𝑎,
the subalgebra of A with universe {𝑎, 𝑏} (which is minimal Taylor by Proposition 5.4) is term-
equivalent to the semilattice with absorbing element 𝑎, but then {𝑏} can not be an absorbing
subuniverse. This contradiction shows that the assumption of Proposition 8.7 is satisfied and
that {𝑏} 3-absorbs A as required. ■

Theorem 5.10 now easily follows, we just need to deal with the Taylor part in item (c).

THEOREM 5.10. (Restated) The following are equivalent for any minimal Taylor algebra A and
any 𝐵 ⊆ 𝐴.

(a) 𝐵 3-absorbs A.
(b) 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ 𝐵( 𝑦) is a subuniverse of A2.
(c) 𝐵 is a (Taylor) center of A.
(d) there exists C with Clo(C) ⊆ Clo({0, 1}; maj) such that 𝑅(𝑥, 𝑦) = 𝐵(𝑥) ∨ ( 𝑦 = 0) is a

centrality witness.

Moreover, if 𝐵 = {𝑏}, then these items are equivalent to
(e) 𝐵 absorbs A.

PROOF . The proof of the previous theorem shows that all of the items other than “𝐵 is a Taylor
center of A” are equivalent to the witness of centrality in item (d). If Clo(C) = Clo({0, 1},maj),
then 𝐵 is a Taylor center. In the other case, where Clo(C) is the clone of projections, all of the
term operations are⇝𝐵-related to a projection, so 𝐵 is projective and then strongly projective
by Theorem 5.7. We define an algebra D in the signature of A term-equivalent to the rock-
paper-scissors algebra by interpreting an 𝑛-ary symbol 𝑓 in D using an arbitrarily chosen term
involving all the essential variables of 𝑓 A, e.g., 𝑓 D(𝑑1, . . . , 𝑑𝑛) = winner(𝑑1,winner(𝑑2, . . . ) . . . )
if all the coordinates of 𝑓 A are essential. The witness for 𝐵 being a Taylor center can then
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be taken 𝑅 = (𝐴 × {rock}) ∪ (𝐵 × 𝐷). Indeed, D has no nontrivial 2-absorbing subuniverse
and 𝑅 is a subuniverse of A × D: if 𝑓 is an 𝑛-ary symbol and a,d tuples such that (𝑎𝑖 , 𝑑𝑖) ∈ 𝑅

for each 𝑖, then either 𝑎𝑖 ∈ 𝐵 for some essential coordinate 𝑖 of 𝑓 A and then 𝑓 A(a) ∈ 𝐵 by
strong projectivity, or 𝑎𝑖 ∉ 𝐵 for all the essential coordinates 𝑖 of 𝑓 A, but then 𝑑𝑖 = rock for all
essential coordinates, therefore 𝑓 D(d) = rock by idempotency (note that 𝑓 A and 𝑓 D have the
same essential coordinates). In both cases ( 𝑓 A(a), 𝑓 D(d)) ∈ 𝑅. ■

Proposition 5.12 is a simple consequence of Theorem 9.5.

PROPOS IT ION 5.12. (Restated) Let A be a minimal Taylor algebra.
(1) If 𝐵, 𝐶 ⊴3 A, then 𝐵 ∪ 𝐶 ≤ A and 𝐵 ∩ 𝐶 ⊴3 A.
(2) If ∅ ≠ 𝐵, 𝐶 ⊴3 A and 𝐵 ∩ 𝐶 = ∅, then 𝐵2 ∪ 𝐶2 is a congruence on the subalgebra of A with

universe 𝐵 ∪ 𝐶 and the quotient is term-equivalent to a two-element majority algebra.
(3) If C ⊴3 B ⊴3 A, then C ⊴3 A.

PROOF . Items (1) and (2) are proved using a cyclic operation 𝑡 of some odd arity 𝑝 such that
𝑡⇝𝐵 maj𝑝 and 𝑡⇝𝐶 maj𝑝. Such an operation is provided by Theorem 9.5.

Note that 𝑡 generates the whole clone of A. For (2) and the first part of (1) we apply 𝑡

to a tuple consisting of elements from 𝐵 ∪ 𝐶. The result will be from 𝐵 if the majority of the
arguments are from 𝐵 and similarly for 𝐶.

For the second part of (1) take 𝑓 (𝑥, 𝑦, 𝑧) = 𝑡(𝑥, . . . , 𝑥, 𝑦, . . . , 𝑦, 𝑧, . . . , 𝑧) where the number
of 𝑥’s, 𝑦’s and 𝑧’s is roughly equal (more precisely, the number of 𝑥’s and 𝑦’s is at least 𝑝/2 and
the same is true for the other two pairs). By construction 𝑓 is a witness both for 𝐵 ⊴3 A and for
𝐶 ⊴3 A, and thus for 𝐵 ∩ 𝐶 as well.

To show (3), recall that absorption is transitive (see Subsection 7.5), so it is enough to verify
that, for any 𝑎 ∈ 𝐴 \ 𝐶, the pair (𝑎, 𝑎) is not in Sg(𝐶 × {𝑎} ∪ {𝑎} × 𝐶) and apply Proposition 8.7.
If 𝑎 ∉ 𝐵, this follows from the fact that the relation 𝐵(𝑥) ∨ 𝐵( 𝑦) is a subuniverse of A2 (see
Theorem 5.10) and if 𝑎 ∈ 𝐵 \ 𝐶, this follows from the fact that the relation 𝐶(𝑥) ∨ 𝐶( 𝑦) on 𝐵 is a
subuniverse of B2. ■

9.3 Edges

THEOREM 5.13. (Restated) Let (𝑎, 𝑏) be an edge (semilattice, majority, or abelian) of a minimal
Taylor algebra A and 𝜃 a witnessing congruence of E = SgA(𝑎, 𝑏).

(a) If (𝑎, 𝑏) is a semilattice edge, then E/𝜃 is term equivalent to a two-element semilattice with
absorbing element 𝑏/𝜃.

(b) If (𝑎, 𝑏) is a majority edge, then E/𝜃 is term equivalent to a two-element majority algebra.
(c) if (𝑎, 𝑏) is an abelian edge, then E/𝜃 is term equivalent to an affine Mal’cev algebra of an

abelian group isomorphic to Z/𝑚 for some positive integer 𝑚, where Z/𝑚 denotes the group
of integers modulo 𝑚.
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Moreover, a semilatice edge is witnessed by exactly one congruence of E, and that congruence is
maximal. The same holds for majority edges.

PROOF . In case (a) there is a binary term operation acting like the semilattice operation
on {𝑎/𝜃, 𝑏/𝜃} with top element 𝑏/𝜃. By Proposition 5.3 together with Proposition 5.4, the set
{𝑎/𝜃, 𝑏/𝜃} is a subuniverse of E/𝜃 and thus is equal to it. By the classification of Post [55] and
minimality of E/𝜃we conclude (a). Case (b) is identical, except the operation is a ternary majority.
In (c), Theorem 2.4 implies that we have the Mal’cev operation 𝑥 − 𝑦 + 𝑧 for some abelian group
G, so E/𝜃 is term equivalent to the affine Mal’cev algebra of G. Since 𝐸/𝜃 = SgE/𝜃(𝑎/𝜃, 𝑏/𝜃) =
𝑎/𝜃 + {𝑡 · (𝑏/𝜃 − 𝑎/𝜃) : 𝑡 ∈ Z} (where + and · are computed in G), the set {𝑡 · (𝑏/𝜃 − 𝑎/𝜃) : 𝑡 ∈ Z}
covers 𝐺, therefore the group homomorphism Z→ G defined by 𝑡 ↦→ 𝑡(𝑏/𝜃 − 𝑎/𝜃) is surjective.
We conclude using the first isomorphism theorem that G is isomorphic to Z/𝑚 for some 𝑚.

For the last statement, suppose we have two different congruences 𝜃 and 𝛾 (put 𝛿 = 𝛾 ∩ 𝜃)
witnessing the same semilattice (resp. majority) edge. If we have a binary (resp. ternary)
operation acting as a semilattice operation 𝑡 with matching top elements (or a majority operation)
on both {𝑎/𝜃, 𝑏/𝜃} and {𝑎/𝛾, 𝑏/𝛾}, then 𝑡 acts as a semilattice (majority) on {𝑎/𝛿, 𝑏/𝛿}. But then,
by Proposition 5.3, 𝐸 = 𝑎/𝛿 ∪ 𝑏/𝛿 which contradicts the fact that 𝜃 and 𝛾 were different.

It remains to obtain an operation acting as a semilattice on both semilattice edges. In
the semilattice case both 𝑏/𝜃 and 𝑏/𝛾 are 2-absorbing subuniverses of E and, by Theorem 5.7,
e.g. 𝑡(𝑥, 𝑦, . . . 𝑦) for a cyclic 𝑡 is such an operation. In the majority case the reasoning is
identical except that all the sets 𝑎/𝜃, 𝑏/𝜃, 𝑎/𝛾, 𝑏/𝛾 are 3-absorbing and all these absorptions can
be witnessed by a single term (e.g. the term obtained by identifying variables in a cyclic term as
in the proof of Proposition 5.12). ■

PROPOS IT ION 5.14. (Restated) Let (𝑎, 𝑏) be a minimal edge in a minimal Taylor algebra. Then
E = SgA(𝑎, 𝑏) has a unique maximal congruence equal to 𝜇E. In particular, minimal edges have
unique types.

PROOF . Let E = SgA(𝑎, 𝑏) and let 𝜃 be a maximal congruence on E witnessing the minimal
edge. Since the only simple affine Mal’cev algebras are (up to isomorphism) the affine Mal’cev
algebras of Z/𝑝 for a prime 𝑝, we have by Theorem 5.13 that E/𝜃 is term-equivalent to a two-
element semilattice, a two-element majority algebra, or an affine Mal’cev algebra of a group
isomorphic to Z/𝑝. None of these algebras have a nontrivial subalgebra and so, by minimality,
there is no congruence incomparable with 𝜃. Indeed, if a congruence 𝛼 is incomparable with
the maximal congruence 𝜃, then at least one 𝛼-class 𝐵 intersects two of the 𝜃-classes. Since
𝐵/𝜃 ≤ E/𝜃 and E/𝜃 does not have nontrivial subalgebras, then 𝐵 intersects all of the classes;
in particular the classes containing 𝑎 and 𝑏. By minimality of the edge (𝑎, 𝑏), we get 𝐵 = 𝐸, a
contradiction. Similarly, since 𝜃 ⊆ 𝜇𝐸, also 𝜇𝐸 = 𝜃. Indeed, otherwise by definition of 𝜇𝐸 there is
a proper subuniverse 𝐵 of E intersecting two of the 𝜃-classes, which leads to a contradiction as
above. ■
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Proposition 5.15 is an immediate consequence of the following proposition.

PROPOS IT ION 9.7. Let A be minimal Taylor algebra:
1. If B ⊴2 A and 𝑎 ∈ 𝐴 \ 𝐵 there exists 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) is a semilattice edge and

SgA(𝑎, 𝑏) = {𝑎, 𝑏}.
2. If B ⊴3 A and 𝑎 ∈ 𝐴 \ 𝐵 there exists 𝑏 ∈ 𝐵 such that:

a. (𝑎, 𝑏) is a semilattice edge and SgA(𝑎, 𝑏) = {𝑎, 𝑏}, or
b. (𝑎, 𝑏) is a majority edge and SgA(𝑎, 𝑏) ∩ 𝐵 is one of the two equivalence classes of the

congruence witnessing it.

PROOF . We will prove both items simultaneously. First we choose 𝑏 ∈ 𝐵 such that SgA(𝑎, 𝑏) is
minimal under inclusion in the set {SgA(𝑎, 𝑏)}𝑏∈𝐵. We let C = SgA(𝑎, 𝑏) and 𝐷 = 𝐶 ∩ 𝐵, and note
that by our choice of 𝑏, for every 𝑏′ ∈ 𝐷 we have 𝐶 = SgA(𝑎, 𝑏′).

We put 𝑅 = SgC2 ((𝑎, 𝑏), (𝑏, 𝑎)). The first step is to show that if 𝐷2∩𝑅 ≠ ∅ then (𝑏, 𝑏) ∈ 𝑅 and
(𝑎, 𝑏) is semilattice edge such that SgC(𝑎, 𝑏) = {𝑎, 𝑏}. Indeed, if 𝐷2 ∩ 𝑅 ≠ ∅ then (𝐷 + 𝑅) ∩ 𝐷 ≠ ∅
and 𝑎 ∈ 𝐷 + 𝑅 and consequently 𝐷 + 𝑅 = 𝐶. Further, if 𝐷 + 𝑅 = 𝐶 then there exists 𝑏′ ∈ 𝐷

such that (𝑏′, 𝑏) ∈ 𝑅, but then 𝑏 − 𝑅 contains both 𝑎 and 𝑏′ and thus 𝑏 − 𝑅 = 𝐶; in particular
(𝑏, 𝑏) ∈ 𝑅. We have shown that in this case there is a binary term operation acting on {𝑎, 𝑏}
as a join-semilattice operation with top 𝑏. By Proposition 5.3, {𝑎, 𝑏} is a subuniverse of A, by
Proposition 5.4 the subalgebra with this subuniverse is a minimal Taylor algebra, which is
clearly term equivalent to a two-element semilattice.

Going back to the claims in the proposition, if 𝐵 ⊴2 A, then a pair in 𝐷2 ∩ 𝑅 is produced
by a single application of the operation witnessing the 2-absorption to (𝑎, 𝑏) and (𝑏, 𝑎). This
finishes the 2-absorption case.

We are left with the case of 𝐵 ⊴3 A and 𝑅 ∩ 𝐷2 = ∅. Note that 𝐷 ⊴3 C and, by Theorem 5.10,
𝑅 ⊆ 𝐵(𝑥) ∨ 𝐵( 𝑦). Therefore 𝐷 + 𝑅 = 𝐶 \ 𝐷 is a 3-absorbing subuniverse of C. By item (2) in
Proposition 5.12, we conclude that the partition of 𝐶 into 𝐷 and 𝐶 \ 𝐷 defines a congruence of C
and the quotient modulo this congruence is term equivalent to a two-element majority algebra.
This finishes the proof. ■

PROPOS IT ION 5.15. (Restated) Let (𝑎, 𝑏) be a minimal semilattice edge in a minimal Taylor
algebra. Then {𝑎, 𝑏} is a subuniverse of A, so SgA(𝑎, 𝑏) = {𝑎, 𝑏} and the witnessing congruence is
the equality.

PROOF . Let (𝑎, 𝑏) be as in the statement. Put A′ = SgA(𝑎, 𝑏) and 𝜃 a congruence witnessing
the edge. The subalgebra 𝑏/𝜃 2-absorbs A′, and Proposition 9.7 provides 𝑏′ in 𝑏/𝜃 such that
SgA′ (𝑎, 𝑏′) = {𝑎, 𝑏′}. Since (𝑎, 𝑏) is a minimal edge, we get 𝑏 = 𝑏′. ■
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9.4 Absorption and edges

The first major goal of this subsection is to prove the connection between absorption and
stability under edges stated in Theorems 5.19 and 5.21. The following observation will be often
implicitly used in proofs: if 𝐵 is stable under semilattice (majority, abelian) edges in an algebra
A and C ≤ A, then 𝐵 ∩ 𝐶 is stable under semilattice (majority, abeialn) edges in the algebra C.

The first lemma proves one direction in the mentioned theorems.

LEMMA 9.8. Let A be a minimal Taylor algebra and 𝐵 ⊆ 𝐴. If 𝐵 absorbs A, then 𝐵 is stable
under all the abelian and semilattice edges. Moreover, if 𝐵 2-absorbs A, then 𝐵 is stable under all
the edges.

PROOF . Assume that 𝐵 absorbs A and (𝑏, 𝑎) is an edge with witnessing congruence 𝜃 of E :=
SgA(𝑏, 𝑎) such that 𝑏/𝜃 intersects 𝐵. By Theorem 5.5, 𝐵 is a subuniverse of A. As 𝐵 ⊴ A we also
have 𝐵 ∩ 𝐸 ⊴ E and then 𝑏/𝜃 ∈ (𝐵 ∩ 𝐸)/𝜃 ⊴ E/𝜃.

By Theorem 5.13, if (𝑏, 𝑎) is a semilattice edge, then E/𝜃 is term equivalent to the two
element semilattice with absorbing element 𝑎/𝜃. By the description of term operations in the
two element semilattice (see Subsection 2.2), the only nontrivial absorbing subuniverse of E/𝜃
is {𝑎/𝜃}, therefore (𝐵 ∩ 𝐸)/𝜃 = 𝐸/𝜃, so each 𝜃-class indeed intersects 𝐵. If (𝑏, 𝑎) is an abelian
edge, then E/𝜃 is term equivalent to an affine Mal’cev algebra. These algebras do not have
any nontrivial absorbing subuniverses (since, e.g., the term operations are of the form

∑
𝑎𝑖𝑥𝑖

where
∑
𝑎𝑖 = 1 and these operations do not witness any nontrivial absorption) and we get

(𝐵 ∩ 𝐸)/𝜃 = 𝐸/𝜃 in this case as well. If, additionally, 𝐵 2-absorbs A, then (𝐵 ∩ 𝐸)/𝜃 ⊴2 E/𝜃 and
we get the same conclusion by the description of term operations in the two-element majority
algebra. ■

Our next aim is to prove the other direction in Theorem 5.19, that subsets stable under all
the edges are 2-absorbing. As we will often work with minimal semilattice edges and sequences
of such edges, the following terminology will be useful.

DEF IN IT ION 9.9. Let A be a minimal Taylor algebra.
An s-edge is a minimal semilattice edge.
An s-walk is a sequence 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 such that (𝑎𝑖 , 𝑎𝑖+1) is an s-edge for every 𝑖 ∈
{1, . . . , 𝑘 − 1}. (We allow the trivial walk with 𝑘 = 1.)
A set 𝐵 ⊆ 𝐴 is s-closed if 𝑎 ∈ 𝐵 whenever (𝑏, 𝑎) is an s-edge with 𝑏 ∈ 𝐵.

Recall (Proposition 5.15) that for an s-edge (𝑎, 𝑏) in a minimal Taylor algebra A, the set {𝑎, 𝑏} is
a subuniverse of A (so the witnessing congruence for this edge is the equality relation on {𝑎, 𝑏}).
It follows that every set stable under semilattice edges is s-closed.

Before proving Theorem 5.19 we give a useful criterion for s-closed subsets to be 2-
absorbing.



58 / 76 L. Barto, Z. Brady, A. Bulatov, M. Kozik and S. Zhuk

PROPOS IT ION 9.10. Suppose that 𝐵 is an s-closed subset of a minimal Taylor algebra A. Then
the following are equivalent:

(a) 𝐵 2-absorbs A,
(b) for all 𝑎 ∈ 𝐴\𝐵 and all 𝑏 ∈ 𝐵, the algebra SgA(𝑎, 𝑏) has a nontrivial 2-absorbing subuniverse,
(c) for all 𝑎 ∈ 𝐴 and all 𝑏 ∈ 𝐵, there is a directed s-walk from 𝑎 to an element in 𝐵 which is

contained in SgA(𝑎, 𝑏).

PROOF . To see that (a) implies (b), note that 𝐵 ⊴2 A implies that 𝐵 ∩ SgA(𝑎, 𝑏) ⊴2 SgA(𝑎, 𝑏).
We prove that (b) implies (c) by induction on the size of A (assuming that the implication

is true for all algebras of strictly smaller size). Let E = SgA(𝑎, 𝑏) and let 𝐶 be a nontrivial
2-absorbing subuniverse of E. By Proposition 9.7 there is an s-walk from 𝑎 to some 𝑎′ ∈ 𝐶

contained in 𝐸: either 𝑎 ∉ 𝐶 and there is an s-edge (𝑎, 𝑎′) by that proposition, or 𝑎 ∈ 𝐶 and
we have the trivial s-walk 𝑎 from 𝑎 to 𝑎. If 𝑎′ ∈ 𝐵, then we are done, so we assume 𝑎′ ∉ 𝐵.
Similarly, there is an s-walk from 𝑏 to some 𝑏′ ∈ 𝐶 and, since 𝐵 is s-closed, we have 𝑏′ ∈ 𝐵. Let
A′ = Sg(𝑎′, 𝑏′) and 𝐵′ = 𝐵 ∩ 𝐴′. Note that A′ is a proper subalgebra of A (since 𝐴′ ⊆ 𝐶 ⊊ 𝐸 ⊆ 𝐴),
that 𝐵′ is an s-closed subset of A′ (since 𝐵 is s-closed in A and 𝐵′ ⊆ 𝐵), and that A′with 𝐵′ satisfies
the condition of item (b). By induction hypothesis there is an s-walk from 𝑎′ to some element
𝑏′′ ∈ 𝐵′ contained in Sg(𝑎′, 𝑏′′) ⊆ 𝐸. But we also have a walk from 𝑎 to 𝑎′ contained in 𝐸 and we
are done by concatenating these two walks.

Now suppose that (c) holds. Let F be the subalgebra of A𝐴2 formed by all the binary term
operations of A (recall Subsection 7.4) and let R ≤ A𝑋 be the projection of F onto the set of
coordinates 𝑋 = {(𝑎, 𝑏), (𝑏, 𝑎) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Notice that any 𝑓 ∈ 𝑅 ∩ 𝐵𝑋 witnesses that 𝐵 is a
2-absorbing subset of A, therefore it is enough to show that 𝑅 intersects 𝐵𝑋 . Assume that this is
not the case, for the sake of proving a contradiction.

Let 𝑌 ⊆ 𝑋 , 𝑛 ∈ N be such that
𝑌 is maximal such that the projection of 𝑅 onto 𝑌 intersects 𝐵𝑌 (note that 𝑌 ⊊ 𝑋 by the
assumption), and
𝑛 is the smallest number such that there exists a coordinate x ∈ 𝑋 \ 𝑌 , there exists 𝑓 ∈ 𝑅
with 𝑓 |𝑌 ∈ 𝐵𝑌 , and there exists an s-walk 𝑎1, . . . , 𝑎𝑛 in projx 𝑅 with 𝑎1 = 𝑓 (x) and 𝑎𝑛 ∈ 𝐵
(and fix such a pair x and an s-walk).

Note that the definition in the second item makes sense since projx 𝑅 contains an element of 𝐵
(as witnessed by one of the two projection operations in 𝑅), so such an s-walk 𝑎1, . . . , 𝑎𝑛 exists
by (c). Now {𝑎2} is a 2-absorbing subuniverse of SgA(𝑎1, 𝑎2) = {𝑎1, 𝑎2} since (𝑎1, 𝑎2) is an s-edge.
Therefore the subuniverse 𝑅′ of R obtained by fixing the coordinate x of 𝑅 to {𝑎2} 2-absorbs the
subalgebra of R obtained by fixing the same coordinate to {𝑎1, 𝑎2}. By Proposition 9.7, there
exists an s-edge from 𝑓 to an element of 𝑅′, giving us an s-edge ( 𝑓 , 𝑔) in 𝑅 for some 𝑔 ∈ 𝑅

with 𝑔 (x) = 𝑎2. Since ( 𝑓 , 𝑔) is an s-edge, the pair ( 𝑓 (y), 𝑔 (y)) is, for any y ∈ 𝑌 , also an s-edge
(witnessed by the same term). Recalling that 𝐵 is s-closed we obtain 𝑔 |𝑌 ∈ 𝐵𝑌 . But 𝑔 (x) starts
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the s-walk 𝑎2, . . . , 𝑎𝑛, which is one step shorter than the original walk 𝑎1, . . . , 𝑎𝑛, a contradiction
to the minimality of 𝑛 (if 𝑛 > 2) or the maximality of 𝑌 (if 𝑛 = 2). ■

The last lemma needed for the proof of Theorem 5.21 provides some information about two-
generated algebras which do not necessarily form edges. It is a weaker version of Theorem 9.16.

LEMMA 9.11. If A is a minimal Taylor algebra which is generated by two distinct elements
𝑎, 𝑏 ∈ 𝐴, then either A has a nontrivial abelian quotient, or A has a nontrivial 3-absorbing
subuniverse.

PROOF . Factoring by a maximal congruence we can assume that A is simple (as 3-absorbing
subuniverses lift from quotients). If A has a ternary strongly functional subpower or a binary
irredundant subdirect subpower, then we are done by Proposition 4.8 or Corollary 4.5 (since
the subpower is then necessarily linked by the simplicity of A). Also, if (𝑎, 𝑏) is an s-edge, we
are done as well.

Otherwise, SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)) is not full (it does not contain (𝑏, 𝑏)), so it must be a graph of
a bijection – an automorphism of A. Moreover, by Theorem 4.7, A has no proper irredundant
subdirect subpowers, therefore SgA3 ((𝑏, 𝑎, 𝑎), (𝑎, 𝑏, 𝑎), (𝑎, 𝑎, 𝑏)) is full. In particular, it contains
(𝑎, 𝑎, 𝑎), therefore there exists a term operation 𝑡 such 𝑡(𝑏, 𝑎, 𝑎) = 𝑡(𝑎, 𝑏, 𝑎) = 𝑡(𝑎, 𝑎, 𝑏) = 𝑎.
Since A has an automorphism switching 𝑎 and 𝑏 we see that 𝑡 acts as a majority operation on
{𝑎, 𝑏}. Now {𝑎, 𝑏} is a subuniverse of A by Proposition 5.3, therefore 𝐴 = {𝑎, 𝑏} as A is generated
by 𝑎,𝑏. The majority operation witnesses that {𝑎} (and {𝑏}) 3-absorbs A. ■

THEOREM 5.19. (Restated) The following are equivalent for any minimal Taylor algebra A and
any 𝐵 ⊆ 𝐴.

(a) 𝐵 2-absorbs A.
(b) 𝐵 is stable under all the edges.

PROOF . Lemma 9.8 shows that (a) implies (b), and so we concentrate on the other direction.
By Proposition 9.10, it is enough to show that for any 𝑎 ∈ 𝐴 \ 𝐵 and any 𝑏 ∈ 𝐵, there is

an s-edge from 𝑎 to an element of Sg(𝑎, 𝑏) ∩ 𝐵. We may assume without loss of generality that
Sg(𝑎, 𝑏) = 𝐴, and we will inductively assume that the theorem is true for algebras of size smaller
than |𝐴|.

If A has a nontrivial affine quotient, then since 𝐵 is stable under abelian edges, 𝐵 must
intersect the congruence class which contains 𝑎, so we can apply the inductive assumption to
find an s-edge from 𝑎 to 𝐵 which is contained in that congruence class. Otherwise, Lemma 9.11
implies that there is some nontrivial 3-absorbing subalgebra C of A.

Next we show that 𝐶 intersects 𝐵. Suppose the contrary and apply Proposition 9.7 to the
element 𝑏 and 𝐶 ⊴3 A – we get an s-edge from 𝑏 to 𝐶, which is impossible since 𝐵 is s-closed,
or a majority edge (𝑏, 𝑐) with 𝑐 ∈ 𝐶 such that the witnessing congruence 𝜃 of E = SgA(𝑏, 𝑐) has



60 / 76 L. Barto, Z. Brady, A. Bulatov, M. Kozik and S. Zhuk

two equivalence classes, 𝐶 ∩ 𝐸 and 𝐸 \ 𝐶, which is impossible since 𝐵 is stable under majority
edges. (Note that we can get a stronger form of instability in the majority case as follows. We
get 𝐵 ∩ 𝐸 ⊴2 𝐸 \ 𝐶 by induction hypothesis, therefore 𝐵 ∩ 𝐸 ⊴3 E by transitivity of 3-absorption
stated in item (3) of Proposition 5.12. Then the union of 𝐵 ∩ 𝐸 and 𝐶 ∩ 𝐸 is a subuniverse of E
by item (1) in Proposition 5.12. Since 𝐸 is generated by 𝑏 ∈ 𝐵 ∩ 𝐸 and 𝑐 ∈ 𝐶 ∩ 𝐸, we obtain
𝐸 \ 𝐶 = 𝐵 ∩ 𝐸.)

Now we have 𝐶 ∩ 𝐵 ≠ ∅ and we can apply the induction hypothesis to see that 𝐶 ∩ 𝐵

2-absorbs C. This implies that 𝐶 ∩ 𝐵 is a 3-absorbing subalgebra of A by the transitivity of
3-absorption (item (3) in Proposition 5.12). Thus we may assume without loss of generality that
𝐶 ⊆ 𝐵.

By Proposition 9.7, there is either a semilattice edge from 𝑎 to 𝑐 ∈ 𝐶, or a majority edge
from 𝑎 to 𝑐 ∈ 𝐶 witnessed by the congruence on Sg(𝑎, 𝑐) with classes Sg(𝑎, 𝑐) ∩𝐶 and Sg(𝑎, 𝑐) \𝐶.
In the first case we are done, so suppose we are in the second case. Since Sg(𝑎, 𝑐)∩𝐶 ⊆ 𝐵 and 𝐵 is
stable under majority edges, the congruence class Sg(𝑎, 𝑐)\𝐶 has a nonempty intersection with 𝐵.
Then we may apply the induction hypothesis to Sg(𝑎, 𝑐) \𝐶 to see that there is a semilattice edge
from 𝑎 to (Sg(𝑎, 𝑐) \ 𝐶) ∩ 𝐵, which finishes the proof. ■

Notice that the proof of (b) implies (a) shows a stronger claim: it is enough to assume that
𝐵 is stable under abelian edges, it is s-closed, and that there is no (minimal) majority edge (𝑏, 𝑎),
witnessed by a congruence 𝜃 on Sg(𝑏, 𝑎), such that 𝑏/𝜃 ⊆ 𝐵 and 𝑎/𝜃 ∩ 𝐵 = ∅.

Our next project is to prove that (b) implies (a) in Theorem 5.21. The following lemma
combines the relational description of strongly projective subuniverses in Proposition 7.3 and
the sufficient condition for abelianess in Proposition 4.8.

LEMMA 9.12. Let A be a simple algebra and 𝑅 ≤𝑠𝑑 A3 be a symmetric ternary relation whose
projection to each pair of coordinates is full. For any 𝑎 ∈ 𝐴 denote by 𝑅𝑎 the relation 𝑅𝑎(𝑥, 𝑦) ≡
𝑅(𝑎, 𝑥, 𝑦). Then either A is abelian or the set 𝐵 = {𝑎 ∈ 𝐴 : 𝑅𝑎 is linked } is a nonempty strongly
projective subuniverse of A.

PROOF . Consider the ternary relation 𝑆 defined by 𝑆(𝑥, 𝑦, 𝑧) if 𝑦 and 𝑧 are ”left-linked” in 𝑅𝑥 ,
that is, ( 𝑦, 𝑧) is in the relation (𝑅𝑥 − 𝑅𝑥) + · · · + (𝑅𝑥 − 𝑅𝑥) with a sufficient number of summands.
Note that 𝑆 is pp-definable from 𝑅, so 𝑆 is a subuniverse of A3. Since the projection of 𝑅 onto each
pair of coordinates is full, the relation 𝑅𝑎 is subdirect for every 𝑎. If 𝑅𝑎 is linked, then 𝑆𝑎 (defined
analogously to 𝑅𝑎) is full. If 𝑅𝑎 is not linked, then it is the graph of a bijection 𝐴→ 𝐴 (since A is
simple), so 𝑆𝑎 is the equality relation. In summary, 𝑆 is equal to the relation 𝐵(𝑥) ∨ ( 𝑦 = 𝑧). By
Proposition 7.3, 𝐵 is strongly projective.

If 𝐵 is empty, then every𝑅𝑎 is the graph of a bijection. But then, by symmetry of𝑅, fixing any
coordinate to any 𝑎 and projecting out this coordinate gives the graph of a bijection. Therefore
𝑅 is strongly functional, so A is abelian by Proposition 4.8, finishing the proof. ■
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We are ready to prove the main tool for Theorem 5.21. It will be useful to generalize the
concept of a 𝐵-essential relation introduced in Subsection 7.5 to infinite powers: A subuniverse 𝑅
of A𝑋 is 𝐵-essential if 𝑅 does not intersect 𝐵𝑋 but every projection of 𝑅 onto all but one of the
coordinates intersects the corresponding power of 𝐵. By Proposition 7.2, {𝑎} absorbs A by a
term operation of arity 𝑛 if and only if it does not have any {𝑎}-essential subpower of arity 𝑛.

THEOREM 9.13. Let A be a Taylor algebra and 𝑎 ∈ 𝐴. Suppose that {𝑎} does not absorb A but
does absorb every proper subalgebra of A that contains {𝑎}. Then

A has a nontrivial abelian quotient or
there exists a nonempty projective subuniverse 𝐵 of A such that 𝑎 ∉ 𝐵.

PROOF . First, observe that it is enough to prove the claim for simpleA. Indeed, if𝛼 is a maximal
congruence of A, then either 𝑎/𝛼 absorbs 𝐴 (in which case {𝑎} absorbs A by transitivity of
absorption, a contradiction to the assumptions), or it does not (in which case we apply the
simple case – observe that projective subuniverses lift from quotients). Assume therefore that
A is simple.

We further assume that every relation 𝑆 ≤𝑠𝑑 A2 whose left center contains 𝑎 is full. Indeed,
if it is not, then by Corollary 8.5 either A has a proper projective and 2-absorbing subuniverse 𝐵

or the left center of 𝑅 is an absorbing subuniverse of A. By transitivity of absorption and the
assumptions, no absorbing subuniverse of A can contain 𝑎. Therefore 𝐵 would be a projective
subuniverse not containing 𝑎 and the proof would be concluded.

Next we observe that there exists a symmetric {𝑎}-essential relation 𝑅 ≤ AN (here it will
be convenient to use an infinitary relation). Indeed, for any arity 𝑛 there exists by Proposi-
tion 7.2 some {𝑎}-essential relation, i.e., containing tuples (𝑏1, 𝑎, 𝑎, . . . , 𝑎), (𝑎, 𝑏2, 𝑎 . . . , 𝑎), . . .
and not containing (𝑎, 𝑎, . . . , 𝑎). Taking an element 𝑏 = 𝑏(𝑛) that appears the most often
among the 𝑏𝑖 and fixing (and projecting out) the other coordinates to 𝑎 we get an {𝑎}-essential
relation of arity at least 𝑛/|𝐴| containing (𝑏, 𝑎, 𝑎 . . . ), (𝑎, 𝑏, 𝑎, . . . ), . . . . Finally, by taking 𝑅 =

SgAN ((𝑏, 𝑎, 𝑎, . . . , ), (𝑎, 𝑏, 𝑎, . . . ), . . . ), where 𝑏 is an element that appears infinitely many times
among the 𝑏(𝑛), we get a symmetric {𝑎}-essential relation.

For a symmetric relation 𝑅 ≤ AN, denote 𝐵(𝑅) = {𝑏 ∈ 𝐴 : (𝑏, 𝑎, 𝑎, . . . ) ∈ 𝑅}, and take
a symmetric {𝑎}-essential relation 𝑅 (i.e., 𝑎 ∉ 𝐵(𝑅) ≠ ∅) such that 𝐵(𝑅) is maximal. Set 𝐵 =

𝐵(𝑅). We will show that 𝑅 either gives us a ternary subpower forcing strong projectivity or
abelianess, or 𝑅 is a witness for 𝐵 being a projective subuniverse, i.e., after fixing any co-finite
collection coordinates to 𝑎 and projecting them out, 𝑅 becomes 𝐵(𝑥1) ∨ 𝐵(𝑥2) ∨ · · · ∨ 𝐵(𝑥𝑘) (see
Proposition 2.6); observe here that the obtained relation is indeed a subpower of A despite the
infinite arity of 𝑅. Since 𝑎 ∉ 𝐵 we will be done.

We claim that SgA(𝑎, 𝑏) = 𝐴 for every 𝑏 ∈ 𝐵. Indeed, otherwise the relation 𝑅 defined by
SgAN{(𝑏, 𝑎, 𝑎, . . . ), (𝑎, 𝑏, 𝑎, . . . ), . . . } is an {𝑎}-essential symmetric subuniverse of (SgA(𝑎, 𝑏))N,
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so {𝑎} does not absorb SgA(𝑎, 𝑏) by Proposition 7.2 (consider, as above, the relations obtained
by fixing co-finite collections of coordinates to 𝑎), contradicting the assumptions of the theorem.

Next observe that the projection of 𝑅, call it 𝑄, to any two distinct coordinates is full, even
after fixing all but one of the remaining coordinates to 𝑎. Indeed, such a projection 𝑄 contains
the pairs (𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎) (for any 𝑏 ∈ 𝐵). As Sg(𝑎, 𝑏) = 𝐴, the left center of 𝑄 contains {𝑎} so
it is full by the assumption made in the second paragraph of the proof.

Denote by 𝑆 the projection of 𝑅 onto two of the coordinates after fixing the rest to 𝑎, i.e.,
𝑆(𝑥, 𝑦) ≡ 𝑅(𝑥, 𝑦, 𝑎, 𝑎, 𝑎, . . . ). Note that if we fix a coordinate of 𝑅 to a set 𝐶 and project onto the
remaining coordinates, then we get a symmetric relation 𝑅′ with 𝐵(𝑅′) = 𝐶 + 𝑆, which will be
{𝑎}-essential iff 𝑎 ∉ 𝐶 + 𝑆 ≠ ∅.

Consider the relation 𝑅′ obtained by fixing a coordinate of 𝑅 to 𝐵 + 𝑆 and projecting to
the remaining coordinates. Observe that 𝑅′ is symmetric and the set 𝐵′ := 𝐵(𝑅′) = 𝐵 + 𝑆 + 𝑆
contains 𝐵 (note that 𝑆 is symmetric) therefore, by the maximality of 𝐵 = 𝐵(𝑅), either 𝐵′ = 𝐵 or
𝑎 ∈ 𝐵′.

If 𝐵′(= 𝐵 + 𝑆 + 𝑆) = 𝐵, then 𝑆 is not linked, so it is a graph of a bijection by simplicity of A.
We fix all but three arbitrarily selected coordinates of 𝑅 to 𝑎, project onto the three coordinates,
and call 𝑇 the obtained subuniverse of A3. The relation 𝑇 has full projection to the first two
coordinates (as we argued above) and the binary relation obtained by fixing a coordinate
to 𝑎 is the graph of a bijection. Lemma 9.12 now implies that either A is abelian or A has a
nonempty strongly projective subuniverse that does not contain 𝑎. Since strong projectivity
implies projectivity, we are done.

If 𝑎 ∈ 𝐵′, then from 𝑎 + 𝑆 = 𝐵 we see that there exists some (𝑏, 𝑏′) ∈ (𝐵 × 𝐵) ∩ 𝑆. By similar
reasoning to the proof of Proposition 9.7, 𝑆 contains 𝐵(𝑥1) ∨ 𝐵(𝑥2) (it contains (𝑎, 𝑏′) as well as
(𝑏, 𝑏′) so also 𝐴 × {𝑏′} since Sg{𝑎, 𝑏} = 𝐴; then for any 𝑏′′ ∈ 𝐵 it contains (𝑏′′, 𝑏′) and (𝑏′′, 𝑎) so
{𝑏′′} × 𝐴 as well). Furthermore, 𝑆 is equal to 𝐵(𝑥1) ∨ 𝐵(𝑥2) since otherwise there is (𝑐, 𝑐′) ∈ 𝑆,
𝑐, 𝑐′ ∉ 𝐵, but then we can fix in 𝑅 a coordinate to 𝑐 (and project onto the remaining ones): the
obtained 𝑅′ has 𝐵(𝑅′) = 𝑐 + 𝑆, which contains 𝐵 and 𝑐′ but does not contain 𝑎, a contradiction to
the maximality of 𝐵 = 𝐵(𝑅).

Pick any 𝑏 ∈ 𝐵 and consider 𝑇 (𝑥, 𝑦) = 𝑅(𝑥, 𝑦, 𝑏, 𝑎, 𝑎, . . . ). It contains (𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑎),
therefore it is the full relation 𝐴2 (as the left center of 𝑇 contains 𝑎). It follows that after fixing
in 𝑅 all but three coordinates to 𝑎 (and projecting them out), the resulting ternary relation
contains 𝐵(𝑥1) ∨ 𝐵(𝑥2) ∨ 𝐵(𝑥3). Similarly to the argument above, it cannot contain any other
triple, such as (𝑐, 𝑐′, 𝑐′′), because we would fix two coordinates to (𝑐, 𝑐′) (and project them out)
and get a relation 𝑅′ with larger 𝐵(𝑅′) (containing 𝐵 and 𝑐′′).

If the algebra A is minimal Taylor we can stop the proof here, because we have already
obtained the subpower 𝐵(𝑥1) ∨ 𝐵(𝑥2) ∨ 𝐵(𝑥3) (see Theorem 5.7). For general Taylor algebras, we
can by induction obtain the subpower 𝐵(𝑥1) ∨ 𝐵(𝑥2) ∨ · · · ∨ 𝐵(𝑥𝑛) for every 𝑛, in a completely
analogous way. ■
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Theorem 5.21 is a simple consequence of the results proved so far.

THEOREM 5.21. (Restated) Any absorbing set of a minimal Taylor algebra A is stable under
semilattice and abelian edges. Moreover, for any 𝑏 ∈ 𝐴 the following are equivalent.

(a) {𝑏} absorbs A.
(b) {𝑏} is stable under semilattice and abelian edges.

PROOF . That absorbing sets are stable under semilattice and abelian edges and that (a) im-
plies (b) follow from Lemma 9.8. That (b) implies (a) follows from Theorem 9.13. Indeed, if {𝑏}
does not absorb A then we take a minimal subalgebra B of A such that 𝑏 ∈ 𝐵 and {𝑏} does not
absorb B, and apply the theorem. Either B has a nontrivial abelian quotient, in which case {𝑏}
is not stable under abelian edges, or B has a nonempty projective subuniverse 𝐶 that does not
contain 𝑏. In the latter case 𝐶 ⊴2 A by Proposition 8.2 and there exists a (minimal) semilattice
edge (𝑏, 𝑐) with 𝑐 ∈ 𝐶 by Proposition 9.7, therefore {𝑏} is not stable under semilattice edges. ■

The “unified operations” theorem, Theorem 5.23, is a simple consequence of the results
proved so far as well. The following proposition implies a refined version discussed in Subsec-
tion 5.4.

PROPOS IT ION 9.14. Let 𝑡 be an 𝑛-ary cyclic term operation of a minimal Taylor algebra A and
𝐵 ⊴3 A. Then for any 𝑚 ≥ 𝑛/2 and any a ∈ 𝐴𝑛 such that 𝑎1, . . . , 𝑎𝑚 ∈ 𝐵 we have 𝑡(a) ∈ 𝐵.

PROOF . Let b be the tuple obtained by cyclically shifting the tuple a by 𝑛 −𝑚 positions. Since
𝑚 ≥ 𝑛/2, each pair (𝑎𝑖 , 𝑏𝑖) is in the relation 𝐵(𝑥1) ∨ 𝐵(𝑥2); and since 𝑡 is cyclic, we have
𝑡(a) = 𝑡(b). But 𝑡 is compatible with 𝐵(𝑥1) ∨ 𝐵(𝑥2) by Theorem 5.10, therefore 𝑡(a) ∈ 𝐵. ■

THEOREM 5.23. (Restated) Every minimal Taylor algebra A has a ternary term operation 𝑓

such that if (𝑎, 𝑏) is an edge witnessed by 𝜃 on E = SgA(𝑎, 𝑏), then
if (𝑎, 𝑏) is a semilattice edge, then 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧 on E/𝜃 (where 𝑏/𝜃 is the top);
if (𝑎, 𝑏) is a majority edge, then 𝑓 is the majority operation on E/𝜃 (which has two elements);
if (𝑎, 𝑏) is an abelian edge, then 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 on E/𝜃;
𝑓 witnesses all the 3-absorptions 𝐵 ⊴3 A;
any binary operation obtained from 𝑓 by identifying two arguments witnesses all the 2-
absorptions 𝐵 ⊴2 A.

PROOF . Choose positive integers 𝑛, 𝑘, 𝑙 such that 𝑛 ≡ 1 (mod |𝐴|!), 𝑘 ≡ 1 (mod |𝐴|!), 2𝑘+𝑙 = 𝑛,
and 2𝑘 ≥ 𝑙. Let 𝑚 = 𝑘. Note that A has a cyclic operation 𝑡 of arity 𝑛: every prime divisor 𝑝 of 𝑛
is greater than |𝐴| and thus there exists a cyclic term operation 𝑡𝑝 of arity 𝑝 by Theorem 3.5.
The operation 𝑡 can then be obtained by a star composition of the 𝑡𝑝s.
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Define 𝑓 by
𝑓 (𝑥, 𝑦, 𝑧) = 𝑡(𝑥, 𝑥, . . . , 𝑥︸      ︷︷      ︸

𝑘×

, 𝑦, 𝑦, . . . , 𝑦︸       ︷︷       ︸
𝑙×

, 𝑧, 𝑧, . . . , 𝑧︸      ︷︷      ︸
𝑚×

).

Because E/𝜃 andA are both minimal Taylor algebras, the operation 𝑓 satisfies the second and the
fourth item by using the cyclicity of 𝑡 and Proposition 9.14, and it satisfies the first and the fifth
item by Theorem 5.7. Note that for these claims we actually only need 𝑘 + 𝑙, 𝑘 +𝑚, 𝑙 +𝑚 ≥ 𝑛/2.

For the third item recall item (c) in Theorem 5.13 and note that a cyclic operation in an
affine Mal’cev algebra of Z/𝑞 is equal to

∑𝑛
𝑖=1 𝑎𝑥𝑖 (mod 𝑞) where 𝑛𝑎 ≡ 1 (mod 𝑞). By simple

arithmetic we conclude that if the conditions on 𝑘, 𝑙, 𝑚 hold, then the ternary operation 𝑓 is
𝑥 − 𝑦 + 𝑧. Indeed, since 𝑞 divides |𝐴|!, we get 𝑘 = 𝑚 ≡ 1 ≡ 𝑛 (mod 𝑞), 𝑎 ≡ 𝑛𝑎 ≡ 1 (mod 𝑞), and
𝑙 = 𝑛 − 2𝑘 ≡ −1 (mod 𝑞), so 𝑓 (𝑥, 𝑦, 𝑧) ≡ 𝑎𝑘𝑥 + 𝑎𝑙 𝑦 + 𝑎𝑧𝑚 ≡ 𝑥 − 𝑦 + 𝑧 (mod 𝑞). ■

Now our aim is to prove a refined version of Lemma 9.11 with the final goal of Theorem 5.24.
The following lemma will be used to produce a proper 3-absorbing subuniverse containing a
generator.

LEMMA 9.15. Let A be a minimal Taylor algebra generated by 𝑎, 𝑏 ∈ 𝐴. Suppose that 𝐶 ⊴3 A is
nontrivial and 2-absorbs a subalgebra of A containing 𝑎 and a subalgebra of A containing 𝑏. Then
A has a proper 3-absorbing subuniverse containing 𝑎 or 𝑏.

PROOF . For simplicity, we will say that a set 2-absorbs 𝑎 (or 𝑏) if it 2-absorbs a subalgebra
containing 𝑎 (or 𝑏). Let 𝑆 = SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)). As a first step we obtain a nontrivial 3-absorbing
subuniverse 𝐷 that 2-absorbs 𝑎 and 𝑏 and such that 𝑆 ∩ (𝐶 × 𝐷) is nonempty: take 𝐷 = 𝐶 if
𝐶 + 𝑆 = 𝐴, or 𝐷 = 𝐶 + 𝑆 otherwise. Fix (𝑐, 𝑑) ∈ 𝑆 ∩ (𝐶 × 𝐷) and let 𝑓 be a witness for (𝑐, 𝑑) ∈ 𝑆,
that is, 𝑓 (𝑎, 𝑏) = 𝑐 and 𝑓 (𝑏, 𝑎) = 𝑑. Next observe that if 𝑎 is in 𝐶 or 𝐷, then the goal is reached.
Suppose henceforth that 𝐶 ∪ 𝐷 does not contain 𝑎.

By Theorem 9.5, 𝑓 ⇝𝐶 𝑓 ′ and 𝑓 ⇝𝐷 𝑓 ′ for some monotone selfdual binary operation,
i.e., 𝑓 ′ is one of the two projections. Suppose 𝑓 ′ is the first projection, so 𝑓 (𝐶, 𝐴) ⊆ 𝐶 and
𝑓 (𝐷, 𝐴) ⊆ 𝐷. From these inclusions, from 𝑓 (𝑎, 𝑏), 𝑓 (𝑏, 𝑎) ∈ 𝐶 ∪ 𝐷, and from 𝑓 ({𝑎, 𝑏}, 𝐶) ⊆ 𝐶,
𝑓 ({𝑎, 𝑏}, 𝐷) ⊆ 𝐷 (by strong projectivity from Theorem 5.7) it follows that 𝐶 ∪ 𝐷 ∪ {𝑏} absorbs
the set 𝐸 = 𝐶 ∪ 𝐷∪ {𝑎, 𝑏} by 𝑓 . It is therefore enough to show that 𝐸 is a subuniverse of A – then
𝐸 = Sg(𝑎, 𝑏) and the proof will be concluded.

Let 𝑡 be a cyclic term operation of arity 𝑝, take

𝑠(𝑥1, . . . , 𝑥𝑝) = 𝑓 ( 𝑓 ( 𝑓 (. . . 𝑓 (𝑥1, 𝑥2), 𝑥3), 𝑥4) . . . 𝑥𝑝),

and let ℎ be the cyclic composition of 𝑡 and 𝑠. The result of applying 𝑠 to a tuple e ∈ 𝐸𝑝 is, by
the properties above, in 𝐶 ∪ 𝐷 whenever e is not the constant tuple of 𝑎’s or 𝑏’s. We then have
ℎ(e) ∈ 𝑡(𝐶 ∪ 𝐷, . . . , 𝐶 ∪ 𝐷), which is by item (1) of Proposition 5.12 a subset of 𝐶 ∪ 𝐷. Since ℎ

is a cyclic operation and it preserves 𝐸, we see that 𝐸 is a subuniverse of A by Proposition 5.3,
which concludes the proof. ■
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THEOREM 9.16. If A is a minimal Taylor algebra which is generated by two distinct elements
𝑎, 𝑏 ∈ 𝐴, then either A has a nontrivial abelian quotient, or at least one of 𝑎, 𝑏 is contained in a
proper 3-absorbing subuniverse of A.

PROOF . Just like in the proof of Lemma 9.11 we can assume that A is simple and not abelian,
and assume for contradiction that neither of the generators 𝑎, 𝑏 is contained in a proper absorb-
ing 3-subuniverse. We also assume that A has no proper 2-absorbing subuniverse, as otherwise
Lemma 9.15 gives a contradiction immediately.

First we will prove that every reflexive relation 𝑆 ≤𝑠𝑑 A2 is either the equality or the full
relation. Suppose not. Then, by simplicity of A, 𝑆 is linked. By replacing 𝑆 by 𝑆 − 𝑆, perhaps
multiple times if necessary, we can further assume that 𝑆 − 𝑆 = 𝐴2 while 𝑆 is still not full. Then
there is some 𝑐 ∈ 𝐴 such that (𝑎, 𝑐), (𝑏, 𝑐) ∈ 𝑆, and since 𝐴 = Sg(𝑎, 𝑏), we see that 𝑆 has a
nontrivial right center 𝐶 and is still reflexive.

We claim that 𝐶 2-absorbs the subalgebra D of A with universe 𝑎 + 𝑆 (which contains 𝑎
since 𝑆 is reflexive). By Proposition 9.10. we just need to check that for any 𝑑 ∈ 𝐷 \ 𝐶 and any
𝑐 ∈ 𝐶, Sg(𝑑, 𝑐) has a proper 2-absorbing subuniverse. To see this, note that the binary relation
𝑇 = 𝑆 ∩ (𝐴 × Sg(𝑑, 𝑐)) is a subdirect subuniverse of A × Sg(𝑑, 𝑐) (since 𝑐 is in the right center
of 𝑆) and 𝑎 is contained in the left center of 𝑇 (since 𝑑, 𝑐 ∈ 𝑎 + 𝑆). Since 𝑑 ∉ 𝐶, we see that 𝑇
is a proper subset of 𝐴 × Sg(𝑑, 𝑐), so the left center of 𝑇 is a proper subalgebra of A. Thus if
Sg(𝑑, 𝑐) has no proper 2-absorbing subuniverse, then the left center of 𝑇 is a center of A, and 𝑎

is contained in a proper 3-absorbing subuniverse of A by Proposition 4.3, a contradiction. The
same argument shows that 𝐶 2-absorbs a subalgebra containing 𝑏. Application of Lemma 9.15
then gives us a contradiction, so we have proved that every reflexive subdirect subuniverse
of A2 is the equality or the full relation.

Observe next that 𝑆 = SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)) is a graph of a bijection. Indeed, it cannot be full
as otherwise (𝑏, 𝑏) ∈ 𝑆 implies that (𝑎, 𝑏) is an s-edge and then {𝑏} 2-absorbs 𝐴 = {𝑎, 𝑏}. If it is
proper and linked, then we can use the same argument as above with the little tweak that 𝐷
may contain 𝑏 (not 𝑎) since 𝑆 is not reflexive (but contains (𝑎, 𝑏)).

Finally, consider the subdirect symmetric relation 𝑅 = SgA3{(𝑎, 𝑎, 𝑏), (𝑎, 𝑏, 𝑎), (𝑏, 𝑎, 𝑎)}.
Since the projection proj12(𝑅) of 𝑅 onto the first two coordinates contains (𝑎, 𝑎), (𝑎, 𝑏) and
Sg(𝑎, 𝑏) = 𝐴, we see that proj12(𝑅) has a left center that contains 𝑎. The center cannot be proper
since otherwise we get a nontrivial 2-absorbing subuniverse or the center of proj12(𝑅) is a
Taylor center of A and we apply Proposition 4.3 to get a contradiction. Therefore proj12(𝑅) = 𝐴2.
If (𝑎, 𝑎, 𝑎) ∈ 𝑅, then the same argument as in Lemma 9.11 shows that (𝑎, 𝑏) is a majority edge,
which gives us a proper 3-absorbing subuniverse containing 𝑎 (and also one containing 𝑏), a
contradiction. The binary relation 𝑇 (𝑥, 𝑦) ≡ 𝑅(𝑎, 𝑥, 𝑦) is thus subdirect (as the projection of 𝑅
onto any two coordinates is full) but not full (as (𝑎, 𝑎) ∉ 𝑇 ). Observe that 𝑇 + 𝑆 is reflexive but
cannot be full (as otherwise 𝑇 = (𝑇 + 𝑆) + 𝑆 is full as well), therefore it is the equality relation
and hence 𝑇 is a graph of a bijection. It follows that the strongly projective subuniverse 𝐵 from
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Lemma 9.12 is neither empty (as A is not abelian) nor equal to 𝐴 (as 𝑎 ∉ 𝐵). Theorem 5.7 shows
that 𝐵 2-absorbs A, which is a contradiction. ■

While we do not have an example of a minimal Taylor algebra in which some pair (or its
reverse) is not an edge, we do not have strong support for the nonexistence of such an example
either. However, we conjecture the following.

CONJECTURE 9.17. If A is a minimal Taylor algebra which is generated by two elements 𝑎, 𝑏 ∈
𝐴 such that neither (𝑎, 𝑏) nor (𝑏, 𝑎) is an edge, then there are proper 3-absorbing subuniverses
𝐶, 𝐷 ⊴3 A such that 𝑎 ∈ 𝐶 and 𝑏 ∈ 𝐷.

Theorem 5.24 follows from the following more general theorem.

THEOREM 9.18. LetA be a minimal Taylor algebra and 𝑓1, ..., 𝑓𝑛 any collection of term operations
of A such that for each edge (𝑎, 𝑏) with witnessing maximal congruence 𝜃 of SgA(𝑎, 𝑏), at least
one 𝑓𝑖 acts nontrivially on SgA(𝑎, 𝑏)/𝜃 (that is, does not act as a projection). Then 𝑓1, ..., 𝑓𝑛 generate
the clone of A.

PROOF . Let G be the reduct of A with basic operations 𝑓1, ..., 𝑓𝑛. By Proposition 2.2 it is enough
to show that for any 𝑎, 𝑏 ∈ 𝐺, there is no two-element quotient SgG(𝑎, 𝑏)/𝛼 such that each 𝑓𝑖

acts as a projection. Suppose for contradiction that there was such a pair 𝑎, 𝑏 and congruence 𝛼

on SgG(𝑎, 𝑏), and choose 𝑎, 𝑏 such that SgG(𝑎, 𝑏) is inclusion minimal. Note that 𝑎/𝛼, 𝑏/𝛼, and
SgG(𝑎, 𝑏) might not be subuniverses of A.

By Theorem 9.16, we see that either SgA(𝑎, 𝑏) has a nontrivial abelian quotient and then
SgA{𝑎, 𝑏}/𝜃 can be chosen of prime order by taking a maximal 𝜃 (by Theorem 5.13), or one of
𝑎, 𝑏 is contained in a proper 3-absorbing subuniverse of SgA(𝑎, 𝑏).

If there is a congruence 𝜃 such that SgA(𝑎, 𝑏)/𝜃 is affine of prime order, then by assumption
some 𝑓𝑖 acts nontrivially on SgA(𝑎, 𝑏)/𝜃, so there is some ternary term operation 𝑝 ∈ Clo3(G)
such that the restriction of 𝑝 to SgA(𝑎, 𝑏)/𝜃 is Mal’cev (by the fact that the affine Mal’cev algebra
of Z/𝑝 has minimal clone which follows e.g. from the description of term operations of this
algebra). Since 𝑓𝑖 acts as a projection on SgG(𝑎, 𝑏)/𝛼, 𝑝 also acts as a projection on SgG(𝑎, 𝑏)/𝛼.
Suppose without loss of generality that 𝑝 does not act like third projection on SgG(𝑎, 𝑏)/𝛼. Then
we have

𝑝(𝑎, 𝑎, 𝑏) ∈ 𝑎/𝛼 ∩ 𝑏/𝜃.

But then SgG(𝑝(𝑎, 𝑎, 𝑏), 𝑏)/𝛼 = SgG(𝑎, 𝑏)/𝛼 and

SgG(𝑝(𝑎, 𝑎, 𝑏), 𝑏) ⊆ SgG(𝑎, 𝑏) ∩ 𝑏/𝜃,

contradicting the minimality of SgG(𝑎, 𝑏) (as the latter set does not contain 𝑎 because 𝜃 separates
𝑎 and 𝑏).
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Now suppose that 𝑎 is contained in a proper 3-absorbing subalgebra C of SgA(𝑎, 𝑏). We
show that this absorption is witnessed by an operation in Clo(G).

If 𝐶 is a 2-absorbing subuniverse of SgA(𝑎, 𝑏), then there is some s-edge going into 𝐶 (by
Proposition 9.7), and then some 𝑓𝑖 acts nontrivially on this edge, so there is a binary term
operation 𝑠 of G which acts as a semilattice operation on this edge. Since both coordinates
of 𝑠 are essential and 𝐶 is a strongly projective subuniverse of SgA(𝑎, 𝑏) by Theorem 5.7, this
operation witnesses the 2-absorption 𝐶 ⊴2 SgA(𝑎, 𝑏).

If 𝐶 is not a 2-absorbing subuniverse of SgA(𝑎, 𝑏), then 𝐶 is not stable under majority edges
by Lemma 9.8 and Theorem 5.19. Let (𝑐, 𝑑) with witnessing congruence 𝛽 be a majority edge
such that 𝑐 ∈ 𝐶 and 𝑑/𝛽 ∩ 𝐶 = ∅. Some 𝑓𝑖 acts nontrivially on SgA(𝑐, 𝑑)/𝛽, so there is a ternary
term operation 𝑚 of G that acts as the majority operation on SgA(𝑐, 𝑑)/𝛽. We claim that 𝑚
witnesses 𝐶 ⊴3 SgA(𝑎, 𝑏). Indeed, 𝑚⇝𝐶 𝑔 for some 𝑔 ∈ Clo({0, 1},maj) by Theorem 5.10, but
𝑔 cannot be a projection: e.g., if 𝑔 is the first projection, then 𝑚(𝑐, 𝑑, 𝑑) ∈ 𝐶 (because 𝑚 is⇝𝐶-
related to the first projection) and 𝑚(𝑐, 𝑑, 𝑑) ∈ 𝑑/𝛽 (because 𝑚 acts as the majority operation
on the majority edge), a contradiction. Therefore 𝑔 = maj and 𝑚⇝𝐶 maj implies the claim.

In both cases, we see that there is some ternary operation 𝑡 ∈ Clo(G) which witnesses the
3-absorption 𝐶 ⊴3 SgA(𝑎, 𝑏), and we may suppose without loss of generality that 𝑡 acts like the
first projection on SgG(𝑎, 𝑏)/𝛼. Then we have

𝑡(𝑏, 𝑎, 𝑎) ∈ 𝑏/𝛼 ∩ 𝐶.

But then SgG(𝑎, 𝑡(𝑏, 𝑎, 𝑎))/𝛼 = SgG(𝑎, 𝑏)/𝛼 and

SgG(𝑎, 𝑡(𝑏, 𝑎, 𝑎)) ⊆ SgG(𝑎, 𝑏) ∩ 𝐶,

contradicting the minimality of SgG(𝑎, 𝑏) again, and concluding the proof. ■

THEOREM 5.24. (Restated) If A is a minimal Taylor algebra, then Clo(𝐴; 𝑓 ) = Clo(A) for any
operation 𝑓 satisfying the first three items in Theorem 5.23.

PROOF . This is a consequence of Theorem 9.18. ■

9.5 Examples from Section 5

EXAMPLE 5.1 1. (Restated) Consider the algebra A = ({0, 1, 2}, 𝑚) where 𝑚 is the majority
operation such that 𝑚(𝑎, 𝑏, 𝑐) = 𝑎 whenever |{𝑎, 𝑏, 𝑐}| = 3. This algebra is minimal Taylor and
the set 𝐶 = {0, 1} is an absorbing subuniverse of A. However, 𝐶 is not a center of A. ■

PROOF . The algebra is minimal Taylor because 𝑚 generates a minimal clone (see [35]). The
set 𝐶 = {0, 1} is an absorbing subuniverse of A as witnessed by the 4-ary operation

𝑚(𝑚(𝑚(𝑥1, 𝑥2, 𝑥3), 𝑥2, 𝑥4), 𝑥3, 𝑥4).
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The set 𝐶 is not a center of A since for any potentially witnessing relation 𝑅 ≤𝑠𝑑 A × B the
subuniverse 𝐷 = 2 + 𝑅 ≤ B satisfies 𝑚(𝐷, 𝐵, 𝐵) ⊆ 𝐷 (as 𝑚(2, 1, 0) = 2) and 𝑚(𝐵, 𝐷, 𝐷) ⊆ 𝐷 (as
𝑚(0, 2, 2) = 2), so 𝑚(𝑥, 𝑦, 𝑦) witnesses that 𝐷 is a 2-absorbing subuniverse of B. ■

EXAMPLE 5.16. (Restated) Let 𝐴 = {0, 1, 2, 3} and 𝛼 the equivalence relation on 𝐴 with classes
{0, 2} and {1, 3}. Define a symmetric ternary operation 𝑔 on 𝐴 as follows. When two of the
inputs to 𝑔 are equal, 𝑔 is given by 𝑔 (𝑎, 𝑎, 𝑎 + 1) = 𝑎, 𝑔 (𝑎, 𝑎, 𝑎 + 2) = 𝑔 (𝑎, 𝑎, 𝑎 + 3) = 𝑎 + 2 (all
modulo 4) and when all three inputs to 𝑔 are distinct, 𝑔 is given by 𝑔 (𝑎, 𝑏, 𝑐) = 𝑑 − 1 (mod 4)
where 𝑎, 𝑏, 𝑐, 𝑑 are any permutation of 0, 1, 2, 3. Then A = (𝐴; 𝑔) is a minimal Taylor algebra, 𝛼
is a congruence on A, and each of pair of elements in different 𝛼-classes is a minimal majority
edge with witnessing congruence 𝛼. ■

PROOF . That A is Taylor follows from the fact that 𝑔 is symmetric. To show that A is minimal
Taylor, we will show that every Taylor reduct A′ of A has a ternary cyclic term 𝑓 , and that every
ternary cyclic term 𝑓 of A generates the same clone as 𝑔 .

Consider any Taylor reduct A′ of A, and note that the congruence 𝛼 is also a congruence
on A′. Each congruence class of 𝛼 is a Taylor reduct of an abelian algebra of size 2, so A′ has
a ternary term 𝑝 which acts as the minority operation on the congruence classes of 𝛼, and
A′/𝛼 is a Taylor reduct of a majority algebra, so A′ has a ternary term 𝑚 which acts as the
majority operation on A′/𝛼. Cyclically composing these terms, we get a ternary cyclic term
𝑓 (𝑥, 𝑦, 𝑧) = 𝑝(𝑚(𝑥, 𝑦, 𝑧), 𝑚( 𝑦, 𝑧, 𝑥), 𝑚(𝑧, 𝑥, 𝑦)). Thus every Taylor reduct of A has a ternary
cyclic term 𝑓 .

To constrain the set of possible ternary cyclic terms 𝑓 of A, we will use the fact that every
relation of A which is preserved by 𝑔 must also be preserved by 𝑓 . To this end, we need to find
interesting relations on A.

Note that the cyclic permutation (0 1 2 3) is an automorphism of A, so the same is true for
any reduct of A (equivalently, the graph of the permutation (0 1 2 3) is a binary relation on A
which is preserved by 𝑔). One can easily verify that the binary relation S = SgA2{(0, 1), (1, 0)} is
equal to {(𝑥, 𝑦) | 𝑥 = 𝑦 ± 1 (mod 4)}, and that there is a congruence 𝜃 on S with congruence
classes {(𝑥, 𝑦) | 𝑥 = 𝑦 + 1 (mod 4)} and {(𝑥, 𝑦) | 𝑥 = 𝑦− 1 (mod 4)}. Additionally, the quotient
S/𝜃 is isomorphic to the 2-element minority algebra.

By the above, the operation 𝑓 must be compatible with the automorphism (0 1 2 3),
the binary relation S, and the congruences 𝛼 and 𝜃. Additionally, 𝑓 must act as the minority
operation on {0, 2} and on S/𝜃, and 𝑓 must act as the majority operation on A′/𝛼.

The above constraints on 𝑓 allow us to determine every value of 𝑓 in terms of the value
of 𝑓 (0, 0, 1). To see this, note that since 𝑓 acts as the minority operation on S/𝜃, we can deter-
mine the value of 𝑓 (𝑎 ± 1, 𝑏 ± 1, 𝑐 ± 1) from the value of 𝑓 (𝑎, 𝑏, 𝑐). For instance, we have
𝑓 (1, 1, 0) = 𝑓 (0, 0, 1) − 1 (mod 4) and 𝑓 (0, 2, 1) = 𝑓 (1, 1, 0) − 1 (mod 4) = 𝑓 (0, 0, 1) − 2
(mod 4). This, together with the fact that 𝑓 is cyclic, allows us to determine the value of
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𝑓 (𝑎, 𝑏, 𝑐) for every triple 𝑎, 𝑏, 𝑐 not all of the same parity from the value of 𝑓 (0, 0, 1). If 𝑎, 𝑏, 𝑐
all have the same parity, then 𝑓 acts as the minority operation on {𝑎, 𝑏, 𝑐}. Since 𝑓 acts as
majority on A′/𝛼, we have 𝑓 (0, 0, 1) ∈ {0, 2}, so there are only two possibilities for 𝑓 . If
𝑓 (0, 0, 1) = 0, then 𝑓 is equal to 𝑔. Otherwise, if 𝑓 (0, 0, 1) = 2, then we have 𝑔 (𝑥, 𝑦, 𝑧) =

𝑓 ( 𝑓 (𝑥, 𝑥, 𝑓 (𝑥, 𝑦, 𝑧)), 𝑓 ( 𝑦, 𝑦, 𝑓 (𝑥, 𝑦, 𝑧)), 𝑓 (𝑧, 𝑧, 𝑓 (𝑥, 𝑦, 𝑧))), so 𝑓 and 𝑔 generate the same clone.
■

EXAMPLE 5.17. (Restated) Let A = ({𝑎, 𝑏, 𝑐, 𝑑}, 𝑝), where 𝑝 is a Mal’cev operation with the
following properties. The operation 𝑝 commutes with the permutations 𝜎 = (𝑎 𝑐) and 𝜏 = (𝑏 𝑑).
The polynomials +𝑎 = 𝑝(·, 𝑎, ·), +𝑏 = 𝑝(·, 𝑏, ·) define abelian groups:

+𝑎 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑏 𝑐 𝑑

𝑏 𝑏 𝑐 𝑑 𝑎

𝑐 𝑐 𝑑 𝑎 𝑏

𝑑 𝑑 𝑎 𝑏 𝑐

+𝑏 𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑎 𝑑 𝑐

𝑏 𝑎 𝑏 𝑐 𝑑

𝑐 𝑑 𝑐 𝑏 𝑎

𝑑 𝑐 𝑑 𝑎 𝑏

Then A is a minimal Taylor algebra, with a unique maximal congruence 𝜃 whose congruence
classes are {𝑎, 𝑐} and {𝑏, 𝑑}. Each pair of elements of A in different congruence classes of 𝜃 is a
minimal abelian edge of A with witnessing congruence 𝜃. ■

PROOF . The algebra S = SgA2{(𝑎, 𝑏), (𝑏, 𝑎)} has a congruence 𝜓 such that S/𝜓 is isomorphic
to (Z/4, 𝑥 − 𝑦 + 𝑧). Explicitly, the congruence classes of 𝜓 are {(𝑎, 𝑏), (𝑐, 𝑑)}, {(𝑏, 𝑎), (𝑑, 𝑐)},
{(𝑎, 𝑑), (𝑐, 𝑏)},{(𝑏, 𝑐), (𝑑, 𝑎)}, and in this order they correspond to the elements 0, 1, 2, 3 of Z/4.
Abusing notation, we will identify the congruence classes of 𝜓 with the elements of Z/4 in the
remainder of the proof.

To prove that this example is minimal Taylor, first note that every pair of elements forms
an abelian edge, so the same must be true in any Taylor reduct. Thus by Theorem 6.5, any Taylor
reduct A′ of A must have a Mal’cev term 𝑞(𝑥, 𝑦, 𝑧). The restriction of 𝑞 to any two-element affine
subalgebra or quotient must be the minority operation. This fixes the restriction of 𝑞 to the sets
{𝑎, 𝑐} and {𝑏, 𝑑}, as well as the restriction of 𝑞 to the quotient A/𝜃, and the fact that Z/4 has
only one Mal’cev term forces 𝑞 to act on S/𝜓 = Z/4 as 𝑥 − 𝑦 + 𝑧.

Similarly to the previous example, the above constraints on the term 𝑞 imply that 𝑞 is
completely determined by the restriction of 𝑞 to the set {𝑎, 𝑏}. For instance, we have (𝑞(𝑎, 𝑏, 𝑑),
𝑞(𝑏, 𝑎, 𝑎))/𝜓 = 𝑞(0, 1, 3) = 2 = (𝑎, 𝑑)/𝜓, so from 𝑞(𝑏, 𝑎, 𝑎) = 𝑏 we can conclude that 𝑞(𝑎, 𝑏, 𝑑) = 𝑐.
Since 𝑞 is Mal’cev, the only undetermined values of 𝑞 with all inputs from {𝑎, 𝑏} are the values
of 𝑞(𝑎, 𝑏, 𝑎) and 𝑞(𝑏, 𝑎, 𝑏), which determine each other. Thus 𝑞 is completely determined by the
value of 𝑞(𝑎, 𝑏, 𝑎), which is either 𝑏 or 𝑑. If 𝑞(𝑎, 𝑏, 𝑎) = 𝑏, then 𝑞 is equal to 𝑝. Otherwise, if
𝑞(𝑎, 𝑏, 𝑎) = 𝑑, then we have 𝑝(𝑥, 𝑦, 𝑧) = 𝑞(𝑥, 𝑞(𝑥, 𝑞(𝑥, 𝑧, 𝑦), 𝑞( 𝑦, 𝑧, 𝑦)), 𝑧), so 𝑝 and 𝑞 generate
the same clone. ■
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EXAMPLE 5.20. (Restated) We consider the four-element algebra A = ({0, 1, 2, ∗}, ·) with
binary operation · given by

· 0 1 2 ∗
0 0 2 1 ∗
1 2 1 0 2
2 1 0 2 1
∗ ∗ 2 1 ∗

Then A is a minimal Taylor algebra, with a semilattice edge (0, ∗), with {0, 1, 2} an affine
subalgebra, and with a congruence 𝜃 corresponding to the partition {0, ∗}, {1}, {2} such that
A/𝜃 is affine. The set {∗} is stable under semilattice and majority edges and there is no minimal
abelian edge (∗, 𝑎) with 𝑎 ≠ ∗. But {∗} is not an absorbing subalgebra of A. ■

PROOF . First we will show that every Taylor reduct of A is term-equivalent to A. Since A has
no majority edges and no Z/2 edges, and since every pair of elements forms an edge, the same
must be true in any Taylor reduct, so any Taylor reduct must have a binary commutative term 𝑓

by Theorem 6.4.
Since Z/3 has only one idempotent binary commutative term operation, the restriction

of 𝑓 to {0, 1, 2} is given by 𝑓 (𝑥, 𝑦) = 2𝑥 + 2𝑦 (mod 3). Similarly, the restriction of 𝑓 to {0, ∗}
is given by 𝑓 (0, ∗) = 𝑓 (∗, 0) = ∗. Finally, because the values of 𝑓 on A/𝜃 are known, we have
𝑓 (1, ∗)/𝜃 = 𝑓 (1, 0)/𝜃 = 2/𝜃, so 𝑓 (1, ∗) = 2, and similarly 𝑓 (2, ∗) = 1. Thus 𝑓 is the same as the
operation · displayed above.

To see that {∗} is not absorbing, note that by Theorem 5.10 and Theorem 6.3, if {∗} was
absorbing, then {∗} would be 2-absorbing, and then by Theorem 5.7, the binary operation ·
would witness the absorption. However, we have 1 · ∗ = 2 ∉ {∗}, so {∗} is not 2-absorbing. ■

10. Proofs for Section 6: Omitting types

This section contains proofs of the theorems stated in Section 6.

THEOREM 6.1. (Restated) The following are equivalent for any algebra A.
(i) A is a-free.

(ii) No subalgebra of A has a nontrivial abelian quotient, i.e., no subalgebra of A falls into case
(c) in Theorem 3.7.

(iii) A has a wnu term operation of every arity 𝑛 ≥ 3.
(iv) A has bounded width.

PROOF . Combining the results of [6, 27] and [24], A has bounded width if and only if no
subalgebra of A has a nontrivial abelian quotient. The proof of Theorem 2.8 in [50] shows that
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this is also equivalent to having wnu term operations of every arity 𝑛 ≥ 3. Thus, (ii), (iii), and
(iv) are equivalent. To show that (ii) implies (i), it suffices to observe that if A contains an abelian
edge (𝑎, 𝑏) and congruence 𝜃 witnesses that, then the algebra SgA(𝑎, 𝑏)/𝜃 is abelian. Finally, to
show that (i) implies (ii), assume that there is a subalgebra B of A and a congruence 𝜃 on B such
that B/𝜃 is abelian. Then for any 𝑎, 𝑏 from different equivalence classes of 𝜃, the pair (𝑎, 𝑏) is
an abelian edge. ■

THEOREM 6.2. (Restated) The following are equivalent for any minimal Taylor algebra A.
(i) A is s-free.

(ii) No subalgebra of A has a nontrivial 2-absorbing subuniverse, i.e., no subalgebra of A falls
into case (a) in Theorem 3.7.

(iii) A has a 3-edge term operation.
(iv) A has few subpowers.

PROOF . First, to show that (i) implies (ii) let 𝐵 ⊴2 A′ ≤ A. If 𝐵 is a nonempty proper subset of 𝐴′,
then Proposition 9.7 gives us a minimal semilattice edge in A′ and thus in A, a contradiction.

By Theorem 2.12. of [12] the existence of a 3-edge term operation is equivalent to a so-called
3-cube operation and then (ii) implies (iii) follows from Theorem 4.5 in [46] (see also [47]) which
provides a 3-cube operation whenever Clo(A) is generated by a single ternary operation (which
is the case by Theorem 5.24) and no subalgebra of A has a nontrivial projective subuniverse
(which is the case by Proposition 8.2).

From [12] it follows that (iii) implies (iv) – it is proved there that the existence of an edge
(or cube) term operation is equivalent to having few subpowers.

Finally, we show that (iv) implies (i). If A contains a semilattice edge, then by Theo-
rem 5.13(a) it also has a subalgebra term equivalent to a 2-element semilattice. It is known from
[12, 43] that a semilattice does not have few subpowers. ■

THEOREM 6.3. (Restated) The following are equivalent for any minimal Taylor algebra A.
(i) A is m-free.

(ii) Every center (3-absorbing subuniverse) of any B ≤ A 2-absorbs B, i.e., case (b) implies case
(a) in Theorem 3.7 in all the subalgebras of A.

(ii’) Every subalgebra of A has a unique minimal 3-absorbing subuniverse.

PROOF . To see that (i) implies (ii) recall that 3-absorbing subuniverses and centers are the
same by Theorem 5.10, that 3-absorbing subuniverses are stable under abelian and semilattice
edges by Theorem 5.21, and that 2-absorbing subuniverses are exactly those stable under all
the edges by Theorem 5.19. By item (4) in Proposition 5.9, (ii) implies (ii’). The fact that every
majority edge defines two disjoint 3-absorbing subuniverses shows that (ii’) implies (i). ■

Before proving Theorem 6.4, we first verify one of the implications.



72 / 76 L. Barto, Z. Brady, A. Bulatov, M. Kozik and S. Zhuk

PROPOS IT ION 10.1. If A is a minimal Taylor algebra without majority edges and Z/2-edges,
then A has a commutative binary term operation.

PROOF . By Lemma 4.4 in [4] it is enough to show that for any 𝑎, 𝑏 ∈ A there is a term op-
eration 𝑓 such that 𝑓 (𝑎, 𝑏) = 𝑓 (𝑏, 𝑎), or in other words that the binary symmetric subpower
SgA2 ((𝑎, 𝑏), (𝑏, 𝑎)) of A contains a tuple of the form (𝑐, 𝑐). Observe that, conversely, any sym-
metric nonempty binary subpower of an algebra with a commutative binary term operation
intersects the diagonal.

Let A be a minimal counterexample to the proposition with respect to |𝐴| and choose
𝑎, 𝑏 ∈ 𝐴 such that 𝑆 = Sg{(𝑎, 𝑏), (𝑏, 𝑎)} does not intersect the diagonal. Clearly Sg(𝑎, 𝑏) = 𝐴 by
minimality. If A has a proper congruence 𝜃, then there is some 𝑐 ∈ A such that 𝑆 ∩ (𝑐/𝜃)2 ≠ ∅
(since A/𝜃 is not a counterexample), but then 𝑆∩ (𝑐/𝜃)2 ≤ 𝑐/𝜃2 is a binary nonempty symmetric
subpower of 𝑐/𝜃 that avoids the diagonal, a contradiction to the minimality of A.

Suppose now that A has a proper 3-absorbing subuniverse 𝐵. If 𝐵 ∩ (𝐵 + 𝑆) ≠ ∅, then there
exist 𝑑, 𝑒 such that (𝑑, 𝑒) ∈ 𝑆 ∩ 𝐵2 (take any 𝑒 ∈ 𝐵 ∩ (𝐵 + 𝑆) and then 𝑑 ∈ 𝐵 such that (𝑑, 𝑒) ∈ 𝑆),
so since 𝑑, 𝑒 generate a proper subalgebra of A we see by minimality that Sg((𝑑, 𝑒), (𝑒, 𝑑)) ≤ S
contains a diagonal element, a contradiction. On the other hand, if 𝐵 ∩ (𝐵 + 𝑆) = ∅, then by
item (2) in Proposition 5.12 𝐸 = 𝐵 ∪ (𝐵 + 𝑆) must be a subuniverse of A with congruence 𝜃

corresponding to the partition 𝐵, 𝐵 + 𝑆, such that E/𝜃 is a two element majority algebra. Any
pair in different equivalence classes is then a majority edge, a contradiction.

It remains to deal with the case that A is simple and A has no nontrivial 3-absorbing
subuniverse. It then follows from Proposition 9.11 that A is abelian, so A is term equivalent
to an affine Mal’cev algebra of a group isomorphic to Z/𝑝. By the absence of Z/2-edges, 𝑝 is
odd. Moreover, Corollary 4.5 implies that 𝑆 is the graph of a bijection 𝐴→ 𝐴 – the graph of an
automorphism of A. Since 𝑆 is generated by (𝑎, 𝑏) and (𝑏, 𝑎), the automorphism has order 2.
But |𝐴| = 𝑝 is odd, so 𝛼(𝑐) = 𝑐 for some 𝑐, therefore 𝑆 contains (𝑐, 𝑐), a contradiction. ■

THEOREM 6.4. (Restated) The following are equivalent for any minimal Taylor algebra A.
(i) A is m-free and has no Z/2-edges.

(iii) A has a binary commutative term operation.
(iii’) Clo(A) can be generated by a collection of binary operations.

PROOF . By Proposition 10.1, (i) implies (iii), and (iii) implies (iii’) by minimality of the Taylor
algebra.

That (iii’) implies (i) follows from the fact that the two element majority algebra and the
two element affine Mal’cev algebra both have no nontrivial binary operations. ■

THEOREM 6.5. (Restated) The following are equivalent for any minimal Taylor algebra A.
(i) A is sm-free.
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(ii) No subalgebra of A has a nontrivial absorbing subuniverse.
(iii) A has a Mal’cev term operation.

PROOF . To prove that (i) implies (ii) assume for contradiction that 𝐵 is a nontrivial absorbing
subuniverse of A′ ≤ A. By Corollary 4.13 there exist 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴′ \𝐵 such that (𝑎, 𝑏) or (𝑏, 𝑎)
is a minimal edge. Since A′ is sm-free, we get that (𝑏, 𝑎) (and (𝑎, 𝑏)) is necessarily a minimal
abelian edge; let 𝜃 be a witnessing congruence of Sg(𝑏, 𝑎). By Theorem 5.21, the set 𝐵 is stable
under abelian edges, therefore each 𝜃-class intersects 𝐵, in particular there exists 𝑎′ in 𝐵 ∩ 𝑎/𝜃.
But then Sg(𝑏, 𝑎′) ⊆ 𝐵 is strictly contained in Sg(𝑏, 𝑎), contradicting the minimality of the edge.

Condition (ii) is the property HAF from [8]. By Theorem 1.4 from the same paper A has a
Mal’cev term operation, so (iii) holds.

Finally, if A has a semilattice or a majority edge (𝑎, 𝑏) witnessed by a congruence 𝜃, then
the algebra SgA(𝑎, 𝑏)/𝜃 (and thus A) cannot have a Mal’cev term operation by Theorem 5.13.
Therefore (iii) implies (i). ■

THEOREM 6.6. (Restated) The following are equivalent for any minimal Taylor algebra A.
(i) A is as-free.

(iii) A has a near unanimity term operation.
(iii’) A has a majority term operation.

PROOF . Let us show that (i) implies (iii’). Since A has no abelian and semilattice edges, by
Theorem 5.21 every 1-element subset of A is an absorbing subuniverse. By Theorem 5.10 every
such subset is also 3-absorbing. Finally, by Theorem 5.23 there exists a ternary operation 𝑓

witnessing all 3-absorptions. Since every singleton is a 3-absorbing subuniverse, 𝑓 is a majority
operation.

Clearly (iii’) implies (iii).
Since both a two-element semilattice and an affine Mal’cev algebra do not have a near

unanimity term operation, by Theorem 5.13 (iii) implies (i). ■

11. Conclusion

We have introduced the concept of minimal Taylor algebras and used it to significantly unify,
simplify, and extend the three main algebraic approaches to the CSP – via absorption, via four
types of subalgebras, and via edges. We believe that the theory started in this paper will help
in attacking further open problems in computational complexity of CSP-related problems and
Universal Algebra. There are, however, many directions which call for further exploration.

First, several technical questions naturally arise from the presented results: Do every two
elements of a minimal Taylor algebra form an edge? How can we characterize sets stable under
affine and semilattice edges in a global way? Is it possible to characterize (3-)absorption in
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terms of edges? Does stability under other edge-types correspond to a global property? Is every
minimal bounded width algebra a minimal Taylor algebra? Are the equivalent characterizations
in Theorem 6.3 equivalent to “every subalgebra has a unique minimal absorbing (rather than
3-absorbing) subuniverse”?

Second, an interesting question arises in connection to the enumeration project discussed
in Subsection 1.3. Are all minimal Taylor algebras finitely related? Here an algebra is finitely
related if its relational clone of invariant relations is generated by finitely many relations. The
question is already open for 3-element algebras, a positive answer would e.g. give us a concrete
list of hardest tractable CSPs in terms of relations.

Third, both CSP dichotomy proofs [23, 60] require and develop more advanced Commutator
Theory [39, 48] concepts and results, while in this paper we have merely used some fundamental
facts about the basic concept, the abelian algebra. Is it possible to develop our theory in this
direction as well, potentially providing sufficient tools for the dichotomy result? Also, is there a
natural concept that would replace thin edges in Bulatov’s approach?

Fourth, which of the facts presented in the paper have their counterpart for nonminimal
Taylor algebras or even general finite idempotent algebras? Here we would like to mention
Ross Willard’s work (unpublished) that provides a generalization for some of the advanced
facts in Zhuk’s approach.

Finally, there is yet another, older, and highly developed theory of finite algebras, the tame
congruence theory started in [42]. What are the connections to the theory initiated in this
paper?
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