
1 / 47 2024 : 17

Constructing Deterministic
Parity Automata from
Positive and Negative
Examples

Received Jun 21, 2023
Revised Apr 3, 2024
Accepted May 11, 2024
Published Jul 30, 2024

Key words and phrases
deterministic parity automata,
learning from examples, learning
in the limit, family of right
congruences

León Bohna � �

Christof Lödinga � �

a RWTH Aachen University,
Ahornstr. 55, 52074 Aachen,
Germany

ABSTRACT. We present a polynomial time algorithm that constructs a deterministic parity
automaton (DPA) from a given set of positive and negative ultimately periodic example words.
We show that this algorithm is complete for the class of 𝜔-regular languages, that is, it can
learn a DPA for each regular 𝜔-language. For use in the algorithm, we give a definition of
a DPA, that we call the precise DPA of a language, and show that it can be constructed from
the syntactic family of right congruences for that language (introduced by Maler and Staiger
in 1997). Depending on the structure of the language, the precise DPA can be of exponential
size compared to a minimal DPA, but it can also be a minimal DPA. The upper bound that we
obtain on the number of examples required for our algorithm to find a DPA for 𝐿 is therefore
exponential in the size of a minimal DPA, in general. However, we identify two parameters of
regular 𝜔-languages such that fixing these parameters makes the bound polynomial.

1. Introduction

Construction of deterministic finite automata (DFA) from labeled example words is usually
referred to as passive learning of automata, and has been studied since the 1970s [7, 36, 18], see
[25] for a survey. A passive learning algorithm (passive learner for short) receives a sample
𝑆 = (𝑆+, 𝑆−) of positive and negative example words as input, and should return a DFA that
accepts all words in 𝑆+ and rejects all words in 𝑆−. In order to find passive learners that are
robust and generalize from the sample, Gold proposed the notion of “learning in the limit” [19].

The first author was supported by DFG grant LO 1174/7-1.

Cite as León Bohn, Christof Löding. Constructing Deterministic Parity Automata
from Positive and Negative Examples. TheoretiCS, Volume 3 (2024), Article 17,
1-47.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.17

mailto:bohn@lics.rwth-aachen.de
https://orcid.org/0000-0003-0881-3199
mailto:loeding@cs.rwth-aachen.de
https://orcid.org/0000-0002-1529-2806

2 / 47 L. Bohn and C. Löding

Given a class C of regular languages, a learner is said to learn every language in C in the limit,
if for each language 𝐿 ∈ C there is a DFAA and a characteristic sample 𝑆𝐿 that is consistent
with 𝐿, such that the learner returnsA for each sample that is consistent with 𝐿 and contains
all examples from 𝑆𝐿. In this case, we also say that the learner is complete for the class C.

In active DFA learning, the learning algorithm (referred to as active learner) has access
to an oracle for a regular target language 𝐿. Angluin proposed an active learner that finds the
minimal DFA for a target language 𝐿 in polynomial time based on membership and equivalence
queries [1]. A membership query asks for a specific word if it is in the target language, and the
oracle answers “yes” or “no”. An equivalence query asks if a hypothesis DFA accepts the target
language, and the oracle provides a counterexample if it does not.

Starting from these first works on DFA learning, many variations of the basic algorithms
have been developed and were implemented in recent years, e.g., in the framework learnlib
[21] and the library flexfringe [38].

The key property that is used in most learning algorithms for regular languages is the
characterization of regular languages by the Myhill/Nerode congruence: For a language 𝐿, two
words 𝑢, 𝑣 are equivalent if for each word 𝑤, either both 𝑢𝑤, 𝑣𝑤 are in 𝐿, or both are not in
𝐿. It is a basic result from automata theory that 𝐿 is regular if and only if the Myhill/Nerode
congruence has finitely many classes, and that these classes can be used as state set of the
minimal DFA for 𝐿 (see basic textbooks on automata theory, e.g. [20]). In particular, this means
that two words can lead to the same state if they cannot be separated by a common suffix. Based
on this observation, the transition structure of a minimal 𝑛 state DFA can be fully characterized
by a set of examples (words together with the information whether they are in 𝐿 or not) whose
size is polynomial in 𝑛.

In this paper, we consider the problem of constructing deterministic automata on infinite
words, so called 𝜔-automata, from examples. Automata on infinite words have been studied
since the early 1960s as a tool for solving decision problems in logic [11] (see also [33]), and are
nowadays used in procedures for formal verification and synthesis of reactive systems (see,
e.g., [5, 34, 28] for surveys and recent work). But in contrast to standard finite automata, very
little is known about learning deterministic 𝜔-automata.

The first problem, how to represent infinite example words, is easily solved by considering
ultimately periodic words. An infinite word is called periodic if it is of the form 𝑣𝜔 for a finite
word 𝑣, and ultimately periodic if it is of the form 𝑢𝑣𝜔 for finite words 𝑢, 𝑣 (where 𝑣 must be
non-empty). It is a classical result that a regular 𝜔-language is uniquely determined by the
ultimately periodic words that it contains, see e.g. [11] or [12, Fact 1].

The main obstacle in learning deterministic 𝜔-automata is that there is no Myhill/Nerode-
style characterization of deterministic 𝜔-automata. It is still true that two finite words 𝑢, 𝑣 that
are separated by 𝐿 with a common suffix 𝑤 (which is an infinite word in this case) have to
lead to different states in any deterministic 𝜔-automaton for 𝐿. But it is not true anymore that

3 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

all words that are not separated can lead to the same state. Currently, there are no active or
passive polynomial time learners that can infer a deterministic 𝜔-automaton for each regular
𝜔-language. The existing algorithms either learn different representations, use information
about the target automaton, or can only learn subclasses of the regular 𝜔-languages (see related
work at the end of this introduction).

In this paper, we focus on passive learning of deterministic parity automata (DPA). A
passive learner for DPAs receives a sample 𝑆 = (𝑆+, 𝑆−) of positive and negative ultimately
periodic example words as input, and returns a DPA that is consistent with the sample, that
is, it accepts all words from 𝑆+ and rejects all words from 𝑆−. We are interested in such a
passive learner that can learn a DPA for every regular 𝜔-language in the limit. Without further
requirements, such an algorithm is fairly easy to obtain by simple enumeration: Iterate through
all DPAs by increasing size and some lexicographic ordering for DPAs of same size, and output
the first DPA that is consistent with 𝑆. This algorithm is easily seen to infer a smallest DPA for
each regular 𝜔-language 𝐿 in the limit: A characteristic sample for 𝐿 only needs to contain
example words that separate 𝐿 from each language 𝐿′ that is accepted by a DPA that precedes
the first DPA for 𝐿 in the enumeration used by the algorithm. However, it is fairly obvious that
the running time of such an algorithm is exponential. And it is known that already for DFAs,
the minimum automaton identification problem is NP-hard [18] (follows also from [31]). This
easily transfers to DPAs.

So, as already proposed by Gold [18], the time and data requirements of a passive learner
are of interest. More precisely, the time complexity of a passive learner is its running time
measured in the size of the input sample. A polynomial time passive learner constructs a DPA
that is consistent with the input sample 𝑆 in time polynomial in the size of 𝑆. Note that this
property is independent of the learning-in-the-limit property, so it is not related to the size of
characteristic samples for identifying a language. This is what the data requirement is about: A
passive learner for DPAs identifies a class C of regular 𝜔-languages from polynomial data if for
each 𝐿 ∈ C there is a characteristic sample 𝑆𝐿 for 𝐿 whose size is polynomial in the size of a
smallest DPA for 𝐿. (Where, as for DFAs, 𝑆𝐿 is called characteristic for the passive learner and 𝐿
if the passive learner returns the same DPA for 𝐿 for each sample 𝑆 that is consistent with 𝐿

and contains all examples from 𝑆𝐿.)
Currently, no passive learner is known that runs in polynomial time and learns every reg-

ular 𝜔-language in the limit from polynomial data. In fact, all passive learners for deterministic
𝜔-automata that have been presented so far only learn subclasses of the regular 𝜔-languages in
the limit (see related work at the end of this introduction for more details). We present, to the
best of our knowledge, the first polynomial time passive learner for deterministic 𝜔-automata
that can learn every regular 𝜔-language in the limit. Furthermore, although we can only show
an exponential upper bound on the data requirement of our algorithm in general, the data

4 / 47 L. Bohn and C. Löding

requirement of our algorithm is polynomial for the subclasses of the regular 𝜔-languages for
which learning in the limit from polynomial data is already known (see Corollary 5.8).

In more detail, our contributions can be summarized as follows:
1. We introduce a DPA for a regular language 𝐿 that we call the precise DPA. The priority

assignment computed by this DPA corresponds to a priority assignment that is obtained
in a natural way by analyzing the periodic parts of words in the language. This analysis
yields what we call the precise family of weak priority mapping (precise FWPM), which is
a family of mappings that assign priorities to finite words. We give a construction that
joins this family of mappings into a single one. The minimal Mealy machine computing
this join mapping corresponds to the precise DPA.

2. We show how the precise DPA for 𝐿 can be constructed from the syntactic family of
right congruences (FORC) of 𝐿 [27] by showing that a family of Mealy machines for the
precise FWPM can be obtained in polynomial time by assigning priorities to the classes
of the syntactic FORC. From the Mealy machines for the precise FWPM one then obtains
a construction of the precise DPA that is only exponential in the number of required
priorities. In particular, it is polynomial (in the size of the syntactic FORC) if the number
of priorities is fixed. This improves the known upper bound for the construction of a
DPA for a language from its syntactic FORC that was known from [2], which first builds
a nondeterministic Büchi automaton whose size is polynomial in the size of the FORC,
and then determinizes this Büchi automaton. Because of the last step, this construction is
exponential in the size of the FORC.

3. We present a polynomial time passive learner for DPAs (an algorithm for constructing a
consistent DPA from given sets of positive and negative examples of ultimately periodic
words). The algorithm can be seen as an extension of the algorithm from [10], which is
for deterministic Büchi automata. However, this extension has completely new parts that
are based on the insights on the precise DPA of a language and its construction from the
syntactic FORC. The main steps of the algorithm are:

a. Infer a FORC from the examples using a state merging technique as in [8, 10]. For
this purpose, we propose a generic algorithm GLeRC for inferring right congruences
from samples. This algorithm is parameterized by a consistency function that is
invoked in order to check if a merge (an inserted transition) causes an inconsistency
with the sample. This algorithm can be instantiated in different settings and allows
us to give a uniform presentation of passive learners for different right congruences
and their completeness proofs for the learning in the limit property.

b. Compute a priority assignment on the prefixes of the example words, based on the
construction of the precise DPA from the syntactic FORC mentioned in contribution 2.
We show that, although the construction of the precise DPA from the FORC is
exponential, if it is only applied to the example words, then it induces a priority

5 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

assignment of polynomial size. This is important because we cannot simply apply
an exponential construction if we want to obtain a polynomial time passive learner.

c. Use (as black box) an active learning algorithm for Mealy machines (on finite words)
to infer a DPA that is consistent with the sample, using the priority assignment from
the previous step for answering queries of the active learning algorithm. This step
extends the priority mapping that is computed in the previous step on the prefixes
of the example words to the set of all finite words. Again, this step is done in order
to bypass the direct construction of the DPA from the FORC, which is exponential.

We show that this algorithm, in the limit, infers a DPA for each regular 𝜔-language 𝐿
(either the precise DPA or a smaller one). In general, our upper bound for the number of
examples that is required for inferring a DPA for 𝐿 is exponential in the size of a minimal
DPA for 𝐿. However, we identify two parameters of regular 𝜔-languages such that the
required data is polynomial if we fix these parameters, generalizing the currently known
results on passive learning of DPAs with polynomial time and data from [4, 8, 10].

The paper is structured as follows. We continue this introduction with a discussion on related
work. In Section 2 we introduce required notation and results. In Section 3 we introduce the
notion of precise DPA and prove some results on this class of DPAs. In Section 4 we show how
to construct the precise DPA of a language from its syntactic FORC. In Section 5 we present the
learning algorithm, and in Section 6 we conclude.

Related Work

The first paper explicitly dealing with construction of 𝜔-automata from examples that we are
aware of is [15], where example words𝑤 are finite and can be of one of the following four types:
all 𝜔-words with 𝑤 as prefix are in the language, at least one such 𝜔-word is in the language,
all of them are outside the language, or at least one is outside the language. It is shown in [15]
that from such examples, an adaption of a state merging technique for DFA can learn all safety
languages in the limit and runs in polynomial time on a sample (the class of safety languages
corresponds to the regular 𝜔-languages that can be characterized by forbidden prefixes, and is
quite restricted).

The construction of nondeterministic Büchi automata (NBAs) from examples is considered
in [6] by a reduction to SAT. This construction is used in order to reduce the size of a given NBA.
Roughly speaking, the algorithm collects some ultimately periodic example words of the form
𝑢𝑣𝜔 from the given NBA, and subsequently checks if there is a smaller NBA consistent with
these words (using a SAT instance). If it finds one, then it checks whether it is equivalent to the
given NBA. Otherwise, it adds a new example obtained from the equivalence test and continues.
Since the algorithm uses a reduction to SAT, it is clearly not a polynomial time algorithm.

6 / 47 L. Bohn and C. Löding

The construction of deterministic parity automata from examples is considered in [4] for
the class of IRC(parity) languages, which are the 𝜔-languages that can be accepted by a parity
automaton that uses the Myhill/Nerode congruence as its transitions structure. The transition
structure can hence be inferred from the examples in the same way as for DFA. It is shown
in [4] that the algorithm can infer every such language with polynomial time and data by
using a decomposition of parity automata that is known from [13] where it was used for the
minimization of the number of required priorities.

The well-known RPNI algorithm [30] that infers a DFA from examples by a state merging
technique has been adapted to deterministic 𝜔-automata in [8], resulting in a polynomial time
passive learner that can infer all IRC(parity) languages in the limit from polynomial data (the
same is shown for other acceptance conditions like Büchi, generalized Büchi, and Rabin). The
algorithm can also infer automata for languages that are not in this class, however it is also
known that there are regular 𝜔-languages for which it cannot infer a correct automaton.

Finally, [10] presents a polynomial time passive learner for deterministic Büchi automata
(DBA) that can infer a DBA for every DBA-recognizable language in the limit. The best known
upper bound for the number of examples and the size of the resulting DBA is, however, expo-
nential in the size (which is the number of states) of a minimal DBA for the language. For the
class of IRC(Büchi) languages, this algorithm only requires polynomial data.

There are also a few active learning algorithms for 𝜔-languages. We are focusing on
passive learning here, but as shown in [8, Proposition 13], a polynomial time active learner can
be turned into a polynomial time passive learner through simulation, given that the class of
target automata satisfies certain properties. We briefly summarize active learning algorithms
for 𝜔-languages in this context. If not mentioned otherwise, the active learners use membership
and equivalence queries.

The first active learning algorithm for 𝜔-languages can learn deterministic weak Büchi
automata in polynomial time [26]. This algorithm and the class of target automata satisfy the
properties from [8] and thus can be used to build a passive learner for deterministic weak Büchi
automata, which define a subclass of IRC(Büchi) languages.

The first active learner for the full class of regular 𝜔-languages was proposed in [17]. It can
learn an NBA for each regular 𝜔-language 𝐿 by learning a representation of 𝐿 using finite words
called 𝐿$ that was proposed in [12]. This representation contains all finite words of the form
𝑢$𝑣 (for a fresh symbol $) such that the ultimately periodic 𝜔-word 𝑢𝑣𝜔 is in 𝐿. A DFA for this
language can be learned using known active learning algorithms for DFAs. The main difficulty
is that the oracle expects an 𝜔-language on equivalence queries, and that an intermediate DFA
in the learning process might be inconsistent in the sense that it accepts 𝑢$𝑣 and rejects 𝑢′$𝑣′,
although 𝑢𝑣𝜔 = 𝑢′(𝑣′)𝜔. The algorithm in [17] transforms the DFAs into NBAs such that progress
in the DFA learning algorithm can be ensured. The resulting active learner can learn an NBA for
every regular 𝜔-language 𝐿 in time polynomial in the minimal DFA for 𝐿$ and in the length of

7 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

the shortest counterexample returned by the teacher. Note, however, that the size of a minimal
DFA for 𝐿$ may be exponential in the size of a minimal NBA for 𝐿.

A similar idea is used in [24] that also presents an active learner for NBAs. Instead of 𝐿$,
the algorithm learns a representation of the target 𝜔-language that is called family of DFAs
(FDFA for short). This formalism has been introduced in [22] based on the notion of family
of right congruences (FORC for short) from [27] (the technical report of [27] dates back to the
same year as [22]). FDFAs are very similar to the 𝐿$-representation by DFAs. In FDFAs, the pairs
are represented by several DFAs, one (actually just a deterministic transition system without
accepting states) for the first component, called the leading automaton, and one DFA for each
state 𝑞 of the leading DFA, called the progress automaton for 𝑞. A pair (𝑢, 𝑣) is accepted if 𝑣 is
accepted from the progress DFA of state 𝑞 that is reached via 𝑢 in the leading automaton. In
contrast to a DFA for 𝐿$, an FDFA needs only to correctly accept/reject pairs (𝑢, 𝑣) for which 𝑢
and 𝑢𝑣 reach the same state in the leading automaton (other pairs are don’t cares). For this
reason, the (syntactic) FDFA can be exponentially more succinct than a minimal DFA for 𝐿$ [3,

Theorem 2] (the statement in [3] is for the periodic FDFA, which is almost the same as a minimal
DFA for 𝐿$).

However, for FDFAs there is the same difficulty as for the 𝐿$ representation: An FDFA
might accept some decompositions of an ultimately periodic word and reject others. An FDFA is
called saturated if for each ultimately periodic word it accepts all relevant decompositions or
rejects all of them.

The algorithm in [24] uses an active FDFA learning algorithm as presented in [3]. But [3]
requires a teacher that can take a hypothesis in form of a general FDFA (i.e. one that is not
necessarily saturated)1. For turning this into a learning algorithm with a teacher for regular
𝜔-languages, [24] proposes two alternative constructions for transforming FDFAs into NBAs.

Since these two active learners from [17, 24] produce NBAs, they cannot be used to build a
passive learner for a deterministic automaton model.

It is shown in [2] that saturated FDFAs have many good closure and algorithmic properties
similar to deterministic automata. We are not aware of any passive learners for saturated
FDFAs. And the generic use of an active learner in a passive setting as described in [8] does not
work for the active FDFA learning algorithm from [3] because it works with general FDFAs, not
only saturated ones, and the best known algorithm for checking whether an FDFA is saturated
is in PSPACE [2]. So one cannot build, based on the currently available results, a polynomial
time passive learner for saturated FDFAs based on the active FDFA learner from [3].

Finally, there is the active learning algorithm for deterministic parity automata presented
in [29]. This algorithm does not purely use membership and equivalence queries, but addition-

1 The presentation of [3] contains an error because it assumes that the FDFAs used in the learning algorithm are
saturated and hence define an 𝜔-language, which is not correct. So the algorithm only works with a teacher for FDFAs
instead of 𝜔-languages.

8 / 47 L. Bohn and C. Löding

ally so called loop-index queries, which given an 𝜔-word 𝑤 return the number of symbols after
which the run of the target automaton on 𝑤 enters the looping part. In order to answer such
queries, one needs knowledge about the target automaton (and not just the language). So this
active learner cannot be used to directly obtain a passive learner through simulation.

2. Preliminaries

We use standard definitions and terminology from the theory of finite automata and𝜔-automata,
and assume some familiarity with these concepts (see, e.g., [35, 37, 39] for some background).
An alphabet Σ is a non-empty, finite set of symbols. We use the standard notations Σ∗, Σ𝜔 for
the sets of all finite words and all 𝜔-words, respectively, and let Σ+ := Σ∗ \ {𝜀}, where 𝜀 is the
empty word, and Σ∞ := Σ∗ ∪ Σ𝜔. For 𝑢 ∈ Σ∗ we write |𝑢| for its length. A word 𝑢 ∈ Σ∗ is called
prefix of 𝑣 ∈ Σ∞ if 𝑢𝑥 = 𝑣 for some 𝑥 ∈ Σ∞, and we write 𝑢 ⊑ 𝑣 in that case. For a word 𝑤 ∈ Σ∞,
we use Prf(𝑤) to refer to the set of all prefixes of 𝑤, and for 𝑋 ⊆ Σ∞, we write Prf(𝑋) for the
union of all Prf(𝑥) for 𝑥 ∈ 𝑋 . For 𝑢 ∈ Σ∗ and 𝑋 ⊆ Σ∞, we let 𝑢−1𝑋 := {𝑤 ∈ Σ∞ | 𝑢𝑤 ∈ 𝑋}. We
use the length-lexicographic (llex) ordering on finite words that is based on some underlying
ordering of the alphabet, and first compares words by length, and words of same length in the
lexicographic ordering.

We call ∼ ⊆ Σ∗×Σ∗ a right congruence (RC) if ∼ is an equivalence relation and 𝑢 ∼ 𝑣 implies
𝑢𝑎 ∼ 𝑣𝑎 for all 𝑎 ∈ Σ. For a word 𝑢 ∈ Σ∗, we use [𝑢]∼ (just [𝑢] if ∼ is clear from the context) to
denote the class of 𝑢 in ∼ and write [∼] for the set of all classes in ∼. We say that ∼1 refines ∼2,
written as ∼1 ⪯ ∼2 if 𝑢 ∼1 𝑣 implies 𝑢 ∼2 𝑣. We often use families indexed by classes of an RC.
In such cases we also use words as indices representing their class. For example, if we have a
family (𝛾𝑐)𝑐∈[∼] , then we often write 𝛾𝑢 to refer to 𝛾[𝑢]∼ . The index or size, denoted |∼|, of a right
congruence ∼ is the number of its classes. In the following, we tacitly assume that all considered
right congruences are of finite index, and not always explicitly mention this.

A (deterministic) transition system (TS) T = (𝑄, Σ, 𝜄, 𝛿) over the finite alphabet Σ consists
of a finite, non-empty set of states 𝑄, a transition function 𝛿 : 𝑄 × Σ → 𝑄 and an initial state
𝜄 ∈ 𝑄. We define 𝛿∗ : 𝑄 × Σ∗ → 𝑄 inductively by 𝛿∗(𝑞, 𝜀) = 𝑞 and 𝛿∗(𝑞, 𝑎𝑤) = 𝛿∗(𝛿(𝑞, 𝑎), 𝑤), and
write 𝛿∗(𝑢) or T (𝑢) for 𝛿∗(𝜄, 𝑢). The run of T on 𝑤 = 𝑎0𝑎1 . . . ∈ Σ∞ from 𝑞0 ∈ 𝑄 is a (possibly
infinite) sequence 𝑞0𝑞1 . . . with 𝑞𝑖+1 = 𝛿(𝑞𝑖 , 𝑎𝑖). We write InfT (𝑤) for the set of states that occur
infinitely often in the run of T on 𝑤 ∈ Σ𝜔, and InfT (𝑋) for the union of InfT (𝑤) for 𝑤 ∈ 𝑋 . A
strongly connected component (SCC) of T is a maximal strongly connected set (with the usual
definition). We write SCCT (𝑞) for the SCC of T that contains 𝑞. A partial TS is a TS in which 𝛿 is
a partial function.

A right congruence ∼ induces a TS T∼ = ([∼], Σ, [𝜀], 𝛿∼), where 𝛿∼(𝑐, 𝑎) = [𝑐𝑎] with [𝑐𝑎]
being the class of 𝑢𝑎 for an arbitrary 𝑢 ∈ 𝑐. Vice versa, a transition system T gives rise to the

9 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

congruence ∼T , where 𝑢∼T 𝑣 if and only if T (𝑢) = T (𝑣). So we interchange these objects and
often just speak of the TS ∼, meaning the TS T∼.

For a right congruence ∼ and a class 𝑐 ∈ [∼], we define 𝐸∼𝑐 = {𝑥 ∈ Σ+ | 𝑐𝑥 ∼ 𝑐} as the set of
non-empty words that loop on 𝑐. Often, we omit the superscript ∼ if it is clear from the context.

A language (over Σ) is a subset of Σ∗. A deterministic finite automaton (DFA)D consists of a
transition system and a subset 𝐹 ⊆ 𝑄 of final or accepting states. The accepted language is 𝐿(D)
with the standard definition, i.e. the set of all words on whichD has a run from its initial state
to some final state. An 𝜔-language is a set 𝐿 ⊆ Σ𝜔 of 𝜔-words. There are different automaton
models for defining the class of 𝜔-regular languages (see [35, 37, 39]). We are interested in
(transition-based) deterministic parity automata defined below.

A priority mapping is a function 𝜋 : Σ+ → {0, . . . , 𝑘 − 1} for some 𝑘 > 0. We overload
notation and write 𝜋(𝑤) for 𝑤 ∈ Σ𝜔 to denote the least 𝑖 such that 𝜋(𝑥) = 𝑖 for infinitely many
prefixes 𝑥 of 𝑤. The language 𝐿(𝜋) defined by 𝜋 is the set of all 𝜔-words 𝑤 such that 𝜋(𝑤) is
even. We call 𝜋 weak if 𝜋(𝑥 𝑦) ≤ 𝜋(𝑥) for all 𝑥 ∈ Σ+ and 𝑦 ∈ Σ+. If ∼ is a right congruence and
𝜋𝑐 for each 𝑐 is a weak priority mapping, then 𝜋 = (𝜋𝑐)𝑐∈[∼] is called a family of weak priority
mappings (FWPM).

A deterministic parity automaton (DPA) is of the form A = (𝑄, Σ, 𝜄, 𝛿, 𝜅) with a TS TA =

(𝑄, Σ, 𝜄, 𝛿) and a function 𝜅 : 𝑄 × Σ → {0, . . . , 𝑘 − 1} mapping transitions in A to priorities.
The size of A is the number of states, and we denote it by |A|. We overload notation and
denote the priority mapping induced by a DPA asA : Σ+ → {0, . . . , 𝑘 − 1} which is defined as
A(𝑢𝑎) := 𝜅(𝛿∗(𝑢), 𝑎) for 𝑢 ∈ Σ∗ and 𝑎 ∈ Σ. The 𝜔-language 𝐿(A) accepted byA is the language
of the induced priority mapping, i.e. the set of all 𝜔-words 𝑤 such that the least priority seen
infinitely often during the run ofA on 𝑤 is even.

For an automatonA, we use ∼A to refer to the right congruence of its transition system.
We call an 𝜔-language regular if it is accepted by a DPA. The Myhill/Nerode congruence ∼𝐿 of
a language 𝐿 ⊆ Σ◦ for ◦ ∈ {∗, 𝜔} is the right congruence defined by 𝑢 ∼𝐿 𝑣 if ∀𝑤 ∈ Σ◦ : (𝑢𝑤 ∈
𝐿⇔ 𝑣𝑤 ∈ 𝐿). If 𝐿 is regular, then ∼𝐿 is of finite index. If ∼ is a right congruence that refines ∼𝐿
and 𝑐 ∈ [∼] we let 𝐿𝑐 := 𝑢−1𝐿, where 𝑢 is an arbitrary word in 𝑐.

For 𝑢 ∈ Σ+ and 𝑞 ∈ 𝑄 we use Amin(𝑞, 𝑢) to refer to the minimal priority in the run of A
on 𝑢 from 𝑞. For a right congruence ∼ that is refined by ∼A , and a class 𝑐 of ∼, we call 𝑞 ∈ 𝑄 a
𝑐-state if the words that lead to 𝑞 inA from the initial state are in 𝑐.

The parity complexity of a regular 𝜔-language 𝐿, denoted pc(𝐿), is the least 𝑘 such that 𝐿 is
accepted by a DPA with priorities {0, . . . , 𝑘 − 1} (one may distinguish also whether the smallest
priority required is 0 or 1, but we omit this for simplicity). We call a DPA A = (𝑄, Σ, 𝜄, 𝛿, 𝜅)
normalized if 𝜅 is minimal in the following sense: For every 𝜅′ : 𝑄 × Σ→ Nwith 𝐿((TA , 𝜅′)) =
𝐿(A), we have 𝜅(𝑞, 𝑎) ≤ 𝜅′(𝑞, 𝑎) for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. This unique minimal priority function
on TA can be computed in polynomial time [13] (see also [16] for an adaption to transition-based
DPAs). We refer to this as normalization ofA.

10 / 47 L. Bohn and C. Löding

In some proofs in Section 3 we need some basic facts about normalized DPAs that are
somehow known, but we cannot give a concrete reference. So we state and prove them in the
following lemma. The intuition behind the lemma is the following: If a normalized DPA reads a
word 𝑢 from some state 𝑞 and visits minimal priority 𝑖 on the way, then it is possible to complete
a loop on 𝑞 that starts with 𝑢 and has 𝑖 as minimal priority (or the run changed the SCC and then
𝑖 = 0). Furthermore, if it is possible to have a loop with priority 𝑖 on 𝑞, then also with priority
𝑖 − 1 (for 𝑖 ≥ 2).

LEMMA 2.1. Let A = (𝑄, Σ, 𝜄, 𝛿, 𝜅) be a normalized DPA, 𝑞 ∈ 𝑄 and 𝑢 ∈ Σ+ be such that
Amin(𝑞, 𝑢) = 𝑖.

(a) Either there exists some word 𝑣 ∈ Σ∗ with 𝛿∗(𝑞, 𝑢𝑣) = 𝑞 andAmin(𝑞, 𝑢𝑣) = 𝑖, or 𝑖 = 0 and
SCCA (𝛿∗(𝑞, 𝑢)) ∩ SCCA (𝑞) = ∅.

(b) If 𝑖 ≥ 2, then there is 𝑦 ∈ Σ+ with 𝛿∗(𝑞, 𝑦) = 𝑞 andAmin(𝑞, 𝑦) = 𝑖 − 1.

PROOF . For (a), remove fromA all transitions with priority < 𝑖 and call the resulting partial
DPAA′. Let 𝑞′ := 𝛿∗(𝑞, 𝑢). SinceAmin(𝑞, 𝑢) = 𝑖, the 𝑢-path from 𝑞 to 𝑞′ still exists inA′. If there
is a path from 𝑞′ to 𝑞 inA′, then let 𝑣 be a word labeling such a path. ThenAmin(𝑞, 𝑢𝑣) = 𝑖 and
𝛿∗(𝑞, 𝑢𝑣) = 𝑞.

If there is no path from 𝑞′ to 𝑞 in A′, let 𝑢 = 𝑢1𝑎𝑢2 with 𝑢1, 𝑢2 ∈ Σ∗ and 𝑎 ∈ Σ such that
𝑞1 := 𝛿∗(𝑞, 𝑢1) is in SCCA′ (𝑞) and 𝛿(𝑞1, 𝑎) is not in SCCA′ (𝑞). Then every run inA that takes the
𝑎-transition from 𝑞1 infinitely often, contains a transition of priority < 𝑖 infinitely often. So,
if 𝑖 > 0, we can change the priority of the 𝑎-transition from 𝑞1 to 𝑖 − 1 without changing the
language of A, contradicting the fact that A is normalized (since the transition exists in A′,
its priority is at least 𝑖 inA). Thus, 𝑖 = 0 andA′ = A. This means that 𝑞 and 𝑞′ are in different
SCCs and thus there is no path back from 𝑞′ to 𝑞.

For (b), remove all transitions of priority < 𝑖 − 1 fromA, obtainingA′′. By (a), SCCA′′ (𝑞)
contains a loop and thus at least one transition. If SCCA′′ (𝑞) contains a transition with priority
𝑖 − 1, we are done (take as 𝑦 the label of a path inA′′ that starts in 𝑞, takes this (𝑖 − 1)-transition,
and goes back to 𝑞).

Otherwise, we show thatA cannot be normalized: Lower inA the priority of all transitions
that are in SCCA′′ (𝑞) by 2. Since 𝑖 ≥ 2 and no transition in SCCA′′ (𝑞) has priority 𝑖 − 1, this is
possible. Call the resulting DPA B. Consider the infinity set 𝑋 of transitions of a run (sinceA
and B have the same transition structure, it is the same infinity set in both). If 𝑋 ∩SCCA′′ (𝑞) = ∅,
the smallest priority in 𝑋 is the same inA and B. If 𝑋 ⊆ SCCA′′ (𝑞), then the minimal priority in
𝑋 differs by exactly 2 inA and B. Otherwise, 𝑋 contains a transition that exits SCCA′′ (𝑞), and
hence has priority ≤ 𝑖 − 2. Since all transitions inside SCCA′′ (𝑞) have priority ≥ 𝑖 − 2 inA and
B, the minimal priority in 𝑋 is the same inA and B. So in all cases, 𝑋 is accepting inA if and
only if it is in B, contradicting the fact thatA is normalized. ■

11 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

Deterministic parity automata can also be viewed as Mealy machines (with the priorities
as output alphabet). Given a DPAA, there is thus a unique minimal DPA that induces the same
priority mapping (when minimizingA as Mealy machine). Active learning algorithms for DFAs
(as described in the introduction) can be adapted to Mealy machines. In Section 5 we use the
fact that there are polynomial time active learning algorithms for Mealy machines that produce
growing sequences of hypotheses (so their hypotheses are always bounded by the target Mealy
machine). See [32] for a detailed introduction to Mealy machines, their minimization and active
learning.

For 𝑣 ∈ Σ+ we write 𝑣𝜔 for the periodic 𝜔-word 𝑣𝑣𝑣 · · · , and call an 𝜔-word ultimately
periodic if it is of the form 𝑢𝑣𝜔 for 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ+. It follows from [11] that two regular
𝜔-languages are the same if they contain the same ultimately periodic words, see also [12, Fact

1]. We use 𝜔-samples of the form 𝑆 = (𝑆+, 𝑆−), where 𝑆𝜎 for 𝜎 ∈ {+,−} is a finite set of ultimately
periodic words. For simplicity, we do not explicitly distinguish ultimately periodic words and
their representations, and 𝑢𝑣𝜔 ∈ 𝑆𝜎 means that some representation of that word is in 𝑆𝜎. We
sometimes write 𝑢𝑣𝜔 ∈ 𝑆 for 𝑢𝑣𝜔 ∈ 𝑆+ ∪ 𝑆−. A sample 𝑆 is consistent with 𝐿 if 𝐿 ∩ 𝑆− = ∅ and
𝑆+ ⊆ 𝐿.

A passive learner (for DPAs) is a function 𝑓 that maps 𝜔-samples to DPAs. 𝑓 is called a
polynomial-time learner if 𝑓 can be computed in polynomial time. A learner 𝑓 is consistent
if it constructs from each 𝜔-sample 𝑆 = (𝑆+, 𝑆−) a DPA A such that 𝐿(A) is consistent with 𝑆.
We say that 𝑓 can learn every regular 𝜔-language in the limit if for each such language 𝐿 there
is a characteristic sample 𝑆𝐿 such that 𝐿(𝑓 (𝑆𝐿)) = 𝐿 and 𝑓 (𝑆𝐿) = 𝑓 (𝑆) is the same DPA for all
samples 𝑆 that are consistent with 𝐿 and contain 𝑆𝐿. For a class C of regular 𝜔-languages we
say that 𝑓 can learn every language in C in the limit from polynomial data if the characteristic
samples for the languages in C are of polynomial size (in a smallest DPA for the corresponding
language).

3. Precise DPA of a language

In this section we introduce the precise DPA for a regular 𝜔-language 𝐿 (Definition 3.18). The
definition we give is parameterized by a right congruence ∼ of finite index that refines ∼𝐿,
meaning there is a precise DPA for 𝐿 and each such ∼. The precise DPA of an 𝜔-language 𝐿
is then the one where ∼ is the same as ∼𝐿. For defining the precise DPA, we first introduce
families of weak priority mappings that capture the periodic part of the language 𝐿 with regard
to ∼ (up to Lemma 3.12). Then we show how to combine them into a single priority mapping
(Definition 3.14, Lemma 3.16), and how to build a DPA for this combined priority mapping
(Lemma 3.17). We finish the section with an observation on precise DPAs, Lemma 3.21, which
later on plays a crucial role in achieving polynomial runtime of our learner.

12 / 47 L. Bohn and C. Löding

To get an intuition for the family of priority mappings based on which we later define the
precise DPA for a language, we fix a regular 𝜔-language 𝐿 and a right congruence ∼ that refines
∼𝐿. Our goal is to define a priority mapping for each ∼-class 𝑐 which assigns priorities to all
finite non-empty words, such that it correctly classifies all words 𝑣 that loop on 𝑐, in the sense
that the priority assigned to 𝑣 should be even if and only if 𝑣𝜔 ∈ 𝐿𝑐. Additionally, we want the
mapping to be weak, that is, non-increasing with growing length of the words. The intuition for
this is that the priority of a finite word 𝑣 should reflect the information that is contained in 𝑣
with respect to periods that loop on 𝑐 and start with 𝑣. In Example 3.2 below that illustrates the
formal definition, the language 𝐿 contains all words with finitely many 𝑏 or infinitely many
𝑎𝑏𝑎. Clearly, if 𝑣 contains the pattern 𝑎𝑏𝑎, then this is the “maximal” possible information: all
periodic words that start with 𝑣 are in the language. So the priority that is assigned to such 𝑣
is 0. If 𝑣 contains 𝑏 but not 𝑎𝑏𝑎, then all periodic words that start with 𝑣 are either not in the
language or contain 𝑎𝑏𝑎. We assign priority 1 to such words, corresponding to the information
that a periodic word starting with 𝑣 might be not in 𝐿, or it has a prefix that already contains
the maximal information, i.e. it is assigned priority 0. Finally, if 𝑣 does not contain 𝑏, then a
periodic word that starts with 𝑣 either is in 𝐿 because it contains 𝑏 finitely often, or it has a
prefix that is already assigned a priority 0 or 1. We assign 2 to such 𝑣.

More formally, to determine the priority for a word 𝑣 ∈ Σ+ in the context of a class 𝑐 of ∼,
we proceed inductively as follows (recall that 𝐿𝑐 denotes the residual of 𝐿 from class 𝑐, and 𝐸𝑐
denotes the set of all finite words that loop on 𝑐). If there exists no 𝑥 such that 𝑣𝑥 ∈ 𝐸𝑐, the word
𝑣 is assigned priority 0 since no extension of 𝑣 can ever loop on class 𝑐 and hence the priority
of 𝑣 is irrelevant in the context of 𝑐. Thus, in the following, we only need to consider words 𝑣
that actually have some extension 𝑥 such that 𝑣𝑥 loops on 𝑐, and we write 𝑣−1𝐸𝑐 to denote the
set of all such extensions. Now if for all 𝑥 ∈ 𝑣−1𝐸𝑐 holds that (𝑣𝑥)𝜔 ∈ 𝐿𝑐, then we assign 0 to
𝑣 because regardless of the suffix we append to 𝑣, the 𝜔-iteration is in 𝐿𝑐. Then, priority 1 is
assigned to words 𝑣 such that 𝑣 is not assigned 0, and for all extensions 𝑥 ∈ 𝑣−1𝐸𝑐 holds that
either (𝑣𝑥)𝜔 ∉ 𝐿𝑐, or (𝑣𝑥)𝜔 has a prefix that is assigned priority 0. From here on for priorities
𝑖 > 1, we proceed inductively until a priority has been identified for each word.

The definition we obtain from this procedure has some similarities with the definition of
natural color of an infinite word from [16], however we define a priority for each finite word
in the context of each class of ∼, whereas [16] defines one priority for each infinite word. We
will now give the formal definition of a family of sets 𝑃∼𝑐,𝑖 (𝐿) indexed by a class 𝑐 of ∼ and a
natural number 𝑖. The set 𝑃∼𝑐,𝑖 (𝐿) contains all words which are assigned priority 𝑖 or smaller in
the priority mapping for class 𝑐. The priority mapping itself, which assigns to 𝑣 the smallest 𝑖
such that 𝑣 is in 𝑃𝑐,𝑖 is then extracted in Definition 3.5.

13 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

DEF IN IT ION 3.1. Let 𝐿 be a regular 𝜔-language and ∼ be a right congruence that refines ∼𝐿.
For each class 𝑐 of ∼, we define

𝑃∼𝑐,0(𝐿) = {𝑣 ∈ Σ+ | ∀𝑥 ∈ 𝑣−1𝐸𝑐 : (𝑣𝑥)𝜔 ∈ 𝐿𝑐}
𝑃∼𝑐,𝑖 (𝐿) = {𝑣 ∈ Σ+ | ∀𝑥 ∈ 𝑣−1𝐸𝑐 :

((𝑣𝑥)𝜔 ∈ 𝑃∼𝑐,𝑖−1(𝐿)Σ𝜔 or ((𝑣𝑥)𝜔 ∈ 𝐿𝑐 iff 𝑖 is even))}.
One easily verifies that for a fixed class 𝑐, the sets 𝑃∼𝑐,𝑖 (𝐿) form an inclusion chain where

a larger index 𝑖 leads to a larger set. This is because the first condition in the definition of
𝑃∼𝑐,𝑖 (𝐿) is trivially satisfied by all words belonging to 𝑃∼𝑐,𝑖−1(𝐿). For a class 𝑐, we can now define a
priority mapping that assigns to a finite word 𝑣 the least priority such that 𝑣 ∈ 𝑃∼𝑐,𝑖 (𝐿). A formal
definition is deferred to Definition 3.5 below, until after we have showed that the obtained
inclusion chain is guaranteed to be finite whenever 𝐿 is a regular 𝜔-language and ∼ refines ∼𝐿.

EXAMPLE 3.2. Let 𝐿 ⊆ {𝑎, 𝑏}𝜔 consist of all 𝜔-words with finitely many occurrences of 𝑏, or
infinitely many occurrences of the infix 𝑎𝑏𝑎, i.e.

𝐿 = {𝑤 ∈ {𝑎, 𝑏}𝜔 | 𝑤 contains 𝑏 finitely often or 𝑤 contains 𝑎𝑏𝑎 infinitely often}.

As ∼ we take ∼𝐿, which has only one class (adding or removing finite prefixes is irrelevant for
membership in 𝐿). This also implies that the universally quantified 𝑥 in Definition 3.1 ranges
over all finite words. So a word 𝑣 belongs to 𝑃∼𝜀,0(𝐿) if for any possible extension 𝑥 ∈ Σ∗ holds
that (𝑣𝑥)𝜔 ∈ 𝐿𝜀. This is satisfied precisely by those words that contain the infix 𝑎𝑏𝑎.

Consider now a word 𝑣 that contains the letter 𝑏 and let 𝑥 ∈ Σ∗, then clearly (𝑣𝑥)𝜔 is
guaranteed to contain infinitely many 𝑏. If (𝑣𝑥)𝜔 also contains infinitely many 𝑎𝑏𝑎, then
it certainly has a prefix in 𝑃∼𝜀,0(𝐿), which means it satisfies the first condition. Otherwise,
(𝑣𝑥)𝜔 ∉ 𝐿𝜀 and the second condition is satisfied. So overall, 𝑃∼𝜀,1(𝐿) consists of all words that
have an occurrence of 𝑏.

Finally, 𝑃∼𝜀,2(𝐿) consists of all finite, non-empty words over Σ. Indeed, either (𝑣𝑥)𝜔 contains
𝑏 infinitely often, in which case (𝑣𝑥)𝜔 has a prefix in 𝑃∼𝜀,1(𝐿), or there are only finitely many
occurrences of 𝑏, implying (𝑣𝑥)𝜔 ∈ 𝐿𝜀. The languages 𝑃∼𝜀,𝑖 (𝐿) for 𝑖 ≤ 3 are given in the second
column of the table in Table 1. ■

𝑖 𝑃∼𝐿𝜀,𝑖 (𝐿) 𝑃∼𝐿′𝜀,𝑖 (𝐿′) 𝑃∼𝐿′𝑎,𝑖 (𝐿′)
0 Σ∗𝑎𝑏𝑎Σ∗ Σ∗𝑎𝑎Σ∗

1 Σ∗𝑏Σ∗ Σ∗𝑎Σ∗ Σ∗(𝑎 + 𝑏Σ∗𝑑 + 𝑑Σ∗𝑏)Σ∗
2 Σ+ Σ∗(𝑎 + 𝑏Σ∗𝑑 + 𝑑Σ∗𝑏)Σ∗ Σ+

3 Σ+ Σ+ Σ+

Table 1. An overview over languages arising from Definition 3.1 for the languages 𝐿 and 𝐿′ from
Example 3.2 and Example 3.3, respectively.

14 / 47 L. Bohn and C. Löding

EXAMPLE 3.3. Let Σ = {𝑎, 𝑏, 𝑑} and consider the language

𝐿′ ={𝑤 ∈ Σ𝜔 | there are infinitely many infixes 𝑎𝑎 in 𝑤}
∪{𝑤 ∈ Σ𝜔 | |𝑤|𝑎 is finite and

(
even iff 𝑤 contains infinitely many 𝑏 and 𝑑

)}.
As ∼, we use ∼𝐿′ , which has two classes, [𝜀] and [𝑎], which are reached when reading words
containing an even respectively odd number of 𝑎. A depiction of ∼ can be found in Figure 1
alongside DFAs recognizing the sets 𝑃∼𝜀,𝑖 (𝐿′) and 𝑃∼𝑎,𝑖 (𝐿′) for 𝑖 ≤ 3.

Regardless of the class 𝑐 we consider, if a word 𝑣 ∈ Σ+ contains an infix 𝑎𝑎, then for every
possible 𝑥 ∈ 𝑣−1𝐸𝑐, we have (𝑣𝑥)𝜔 ∈ 𝐿′𝑐 because any such 𝜔-iteration must contain infinitely
many occurrences of 𝑎𝑎. Hence, the sets 𝑃∼𝜀,0(𝐿′) and 𝑃∼𝑎,0(𝐿′) are equal and contain precisely
those words that have an infix 𝑎𝑎. Similarly, we see that if 𝑣 contains 𝑎, then either (𝑣𝑥)𝜔
contains the infix 𝑎𝑎 infinitely often or (𝑣𝑥)𝜔 does not belong to 𝐿𝑐. Thus, 𝑃∼𝜀,1(𝐿′) and 𝑃∼𝑎,1(𝐿′)
contain all words with an infix 𝑎.

Consider now a word 𝑣 that contains both 𝑏 and 𝑑, but not 𝑎. Such words appear at different
indices depending on the class 𝑐. We have 𝑣 ∈ 𝑃∼𝑎,1(𝐿′) since for each 𝑥 ∈ 𝑣−1𝐸𝑎, the 𝜔-iteration
(𝑣𝑥)𝜔 is not in 𝐿𝑎 unless (𝑣𝑥)𝜔 contains 𝑎𝑎 infinitely often. However, 𝑣 ∉ 𝑃∼𝜀,1(𝐿′) since already
𝑣𝜔 has no prefix in 𝑃∼𝜀,1(𝐿′) and 𝑣𝜔 ∈ 𝐿𝜀. So 𝑣 is in 𝑃∼𝜀,2(𝐿′). Finally, the sets 𝑃∼𝜀,3(𝐿′), 𝑃∼𝑎,2(𝐿′) and
𝑃∼𝑎,3(𝐿′) coincide and contain all non-empty finite words over Σ. The sequences of sets for both
classes are depicted in the last two columns of the table in Table 1. ■

[𝜀] [𝑎]

𝑏, 𝑑

𝑎

𝑏, 𝑑

𝑎
∼𝐿 𝑝0 𝑝1 𝑝2

𝑎

𝑏, 𝑑

𝑏, 𝑑

𝑎

Σ

B 𝑞0

𝑞1

𝑞2

𝑞3

𝑏

𝑑

𝑎

𝑏

𝑎, 𝑑

𝑑

𝑎, 𝑏

ΣC 𝑟0 𝑟1

𝑏, 𝑑

𝑎

Σ

D

Figure 1. The leading right congruence underlying the language 𝐿 from Example 3.3 is depicted on the
far left. We have 𝐿(B) = 𝑃∼𝐿0,𝜀(𝐿) = 𝑃∼𝐿0,𝑎(𝐿), 𝐿(C) = 𝑃∼𝐿2,𝜀(𝐿) = 𝑃∼𝐿1,𝑎(𝐿) and 𝐿(D) = 𝑃∼𝐿1,𝜀(𝐿). We omit the depiction
of a DFA for 𝑃∼𝐿3,𝜀(𝐿) = 𝑃∼𝐿2,𝑎(𝐿) = Σ+.

Note that all sets 𝑃𝑐,𝑖 arising from the given examples are regular. In Example 3.2 one can
directly see that the indices 0, 1, 2 naturally correspond to the priorities that a DPA would use to
accept the language (emit priority 0 whenever an infix 𝑎𝑏𝑎 is detected, and priority 1 for every
occurrence of 𝑏, and priority 2 otherwise). We show that this is not a coincidence by establishing

15 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

a tight connection between the sets 𝑃∼𝑐,𝑖 (𝐿) and the priorities visited by a normalized DPAA for
𝐿, namely, 𝑃∼𝑐,𝑖 (𝐿) contains precisely those words 𝑢 that are guaranteed to take a transition of
priority at most 𝑖 from every state in class 𝑐 (provided that ∼A refines ∼ as otherwise it makes
no sense to speak of 𝑐-states).

LEMMA 3.4. LetA be a normalized DPA with priorities {0, . . . , 𝑘 − 1} recognizing the language
𝐿 ⊆ Σ𝜔 and ∼ be a right congruence with ∼A ⪯ ∼ ⪯ ∼𝐿. Then for each class 𝑐 of ∼ and each 𝑖 ≥ 0
holds 𝑃∼𝑐,𝑖 (𝐿) = 𝑃∼𝑐,𝑖 (A) := {𝑢 ∈ Σ+ | max{Amin(𝑞, 𝑢) | 𝑞 is 𝑐-state} ≤ 𝑖}.

PROOF . For every class 𝑐 of ∼we show 𝑃∼𝑐,𝑖 (𝐿) = 𝑃∼𝑐,𝑖 (A) by induction on 𝑖. Note that by setting
𝑃∼𝑐,−1(𝐿) = ∅, we obtain a uniform definition of all 𝑃∼𝑐,𝑖 (𝐿) for 𝑖 ≥ 0. We can start the induction
at −1. Since A only uses priorities ≥ 0, we obtain 𝑃∼𝑐,−1(A) = ∅. So let 𝑖 ≥ 0 and assume by
induction that 𝑃∼𝑐,𝑖−1(𝐿) = 𝑃∼𝑐,𝑖−1(A).

We first show 𝑃∼𝑐,𝑖 (𝐿) ⊆ 𝑃∼𝑐,𝑖 (A) by establishing that for all 𝑢 ∈ 𝑃∼𝑐,𝑖 (𝐿) \ 𝑃∼𝑐,𝑖−1(𝐿) holds
𝑢 ∈ 𝑃∼𝑐,𝑖 (A). Let 𝑞 be a 𝑐-state, and let 𝑖′ := Amin(𝑞, 𝑢). We have to show that 𝑖′ ≤ 𝑖, so assume

towards a contradiction that 𝑖′ > 𝑖. Let 𝑥 be such thatA : 𝑞
𝑢𝑥−−→ 𝑞 with minimal priority 𝑖′ on

this loop (according to Lemma 2.1). Then no prefix of (𝑢𝑥)𝜔 is in 𝑃∼𝑐,𝑖 (A) because the minimal
priority seen from 𝑞 on any prefix of (𝑢𝑥)𝜔 is a least 𝑖′ > 𝑖. Since 𝑃∼𝑐,𝑖 (A) ⊇ 𝑃∼𝑐,𝑖−1(A), also no
prefix of (𝑢𝑥)𝜔 is in 𝑃∼𝑐,𝑖−1(A). By induction, it follows that no prefix of (𝑢𝑥)𝜔 is in 𝑃∼𝑐,𝑖−1(𝐿), and
thus (𝑢𝑥)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 is even. Since (𝑢𝑥)𝜔 is accepted from the 𝑐-state 𝑞 if and only if 𝑖′

is even, we obtain that 𝑖 is even if and only if 𝑖′ is even, and hence 𝑖′ − 1 > 𝑖 because 𝑖′ > 𝑖.
Let 𝑦 ∈ Σ∗ be such thatA : 𝑞

𝑦−→ 𝑞 with minimal priority 𝑖′ − 1 (according to Lemma 2.1).
Then (𝑢𝑥 𝑦)𝜔 is accepted from 𝑞 if and only if 𝑖′ − 1 is even if and only if 𝑖 is odd. Since 𝑢 is in
𝑃∼𝑐,𝑖 (𝐿), we obtain that (𝑢𝑥 𝑦)𝜔 has a prefix in 𝑃∼𝑐,𝑖−1(𝐿). This implies by induction that (𝑢𝑥 𝑦)𝜔
has a prefix in 𝑃∼𝑐,𝑖−1(A), contradicting the fact that the minimal priority that is seen from 𝑞 on
(𝑢𝑥 𝑦)𝜔 is 𝑖′ − 1 > 𝑖.

To establish the other inclusion 𝑃∼𝑐,𝑖 (A) ⊆ 𝑃∼𝑐,𝑖 (𝐿), we show for all 𝑢 ∈ 𝑃∼𝑐,𝑖 (A) \ 𝑃∼𝑐,𝑖−1(A)
that 𝑢 ∈ 𝑃∼𝑐,𝑖 (𝐿). So let 𝑥 ∈ Σ∗ with 𝑢𝑥 ∈ 𝐸𝑐, and let 𝑛 > |A|. Since 𝑢 ∈ 𝑃∼𝑐,𝑖 (A), also (𝑢𝑥)𝑛 ∈
𝑃∼𝑐,𝑖 (A).

If (𝑢𝑥)𝑛 ∈ 𝑃∼𝑐,𝑖−1(A), then by induction (𝑢𝑥)𝜔 has a prefix in 𝑃∼𝑐,𝑖−1(𝐿).
If (𝑢𝑥)𝑛 ∈ 𝑃∼𝑐,𝑖 (A) \ 𝑃∼𝑐,𝑖−1(A), then let 𝑞 be a 𝑐-state such that Amin(𝑞, (𝑢𝑥)𝑛) = 𝑖. Since

𝑛 > |A| and 𝑢𝑥 ∈ 𝐸𝑐, there is a 𝑐-state 𝑞′ and 𝑛1, 𝑛2 with 𝑛1 + 𝑛2 ≤ 𝑛 such that A : 𝑞
(𝑢𝑥)𝑛1−−−−−→

𝑞′
(𝑢𝑥)𝑛2−−−−−→ 𝑞′. Since 𝑢 ∈ 𝑃∼𝑐,𝑖 (A), the minimal priority on the loop 𝑞′

(𝑢𝑥)𝑛2−−−−−→ 𝑞′ is at most 𝑖. And by

choice of 𝑞, the minimal priority onA : 𝑞
(𝑢𝑥)𝑛1−−−−−→ 𝑞′

(𝑢𝑥)𝑛2−−−−−→ 𝑞′ is 𝑖. Hence, the minimal priority

on the loop 𝑞′
(𝑢𝑥)𝑛2−−−−−→ 𝑞′ is 𝑖, and thus (𝑢𝑥)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 is even.

We conclude that 𝑢 ∈ 𝑃∼𝑐,𝑖 (𝐿). ■

We already noted above that the sets 𝑃∼𝑐,𝑖 (𝐿) form an inclusion chain. As consequence
of Lemma 3.4, we obtain that this inclusion chain is of length 𝑘 whenever 𝐿 is a regular 𝜔-

16 / 47 L. Bohn and C. Löding

𝑚𝜀

𝑚𝑎𝑚𝑏

𝑚𝑎𝑏𝑚𝑏𝑎

𝑚𝑎𝑏𝑎

𝑎|2𝑏|1
𝑎|2

𝑏|1

𝑏|1
𝑎|1

𝑎|0

𝑏|1

𝑎|1
𝑏|1

𝑎|0
𝑏|0

M

𝑞0 𝑞2

𝑞1

𝑞3

𝑎

𝑏

𝑎
𝑏

𝑎

𝑏

𝑎, 𝑏

D0

𝑝0 𝑝2

𝑝1
𝑎

𝑏

𝑎
𝑏

𝑎, 𝑏D1 𝑞0, 𝑝0 𝑞1, 𝑝1

𝑞2, 𝑝0

𝑎|2
𝑏|1 𝑎|2

𝑏|1
𝑎|0
𝑏|1

A

Figure 2. On the left-hand side a Mealy machineM that computes 𝜋∼𝜀 for 𝐿 and ∼ from Example 3.2 is
shown. The DFAs D𝑖 for 𝑖 ∈ {0, 1} in the middle accept precisely the words that are assigned priority ≤ 𝑖

byM. On the right-hand side the precise DPA that is obtained from the D𝑖 is depicted.

language of parity complexity 𝑘 (the minimal number of priorities a DPA for 𝐿 needs is 𝑘). So
𝑃∼𝑐,0(𝐿) ⊆ · · · ⊆ 𝑃∼𝑐,𝑘−1(𝐿) = Σ+ and each set along the chain is regular. This implies that the
priority mappings we obtain from the following definition are totally defined, weak, and can be
computed by Mealy machines.

DEF IN IT ION 3.5. With the terminology from Definition 3.1 and 𝐿 of parity complexity 𝑘, we
represent the sets 𝑃∼𝑐,𝑖 (𝐿) for each class by a priority mapping 𝜋∼𝑐 : Σ+ → {0, . . . , 𝑘 − 1} defined
by 𝜋∼𝑐 (𝑢) = 𝑖 for the minimal 𝑖 such that 𝑢 ∈ 𝑃∼𝑐,𝑖 (𝐿). We write 𝜋∼ = (𝜋∼𝑐)𝑐∈[∼] for the family of
these priority mappings, and refer to it as the precise FWPM for 𝐿 and ∼.

With 𝐿 and ∼ as in Example 3.2, we obtain that 𝜋∼𝜀 (𝑢) = 0 if 𝑢 contains 𝑎𝑏𝑎, 𝜋∼𝜀 (𝑢) = 1 if 𝑢
contains 𝑏 but not 𝑎𝑏𝑎, and 𝜋∼𝜀 (𝑢) = 2 otherwise. The left-hand side of Figure 2 shows a Mealy
machine that computes 𝜋∼𝜀 (𝑢). We give a bound on the size of Mealy machines for computing
the precise FWPM, which can be derived from Lemma 3.4.

THEOREM 3.6. LetA be a normalized DPA with 𝑘 priorities that recognizes 𝐿, and ∼ be a right
congruence with ∼A ⪯ ∼ ⪯ ∼𝐿. Then for each class 𝑐 of ∼, the mapping 𝜋∼𝑐 can be computed by a
Mealy machineM𝑐 with at most 𝑚(𝑑𝑘)𝑑 states, where 𝑚 is the number of classes of ∼, and each
class of ∼-equivalent states has at most 𝑑 many states inA.

PROOF . According to Lemma 3.4, a Mealy machine only needs to keep track of the minimal
priority that is visited from each 𝑐-state of A (and it then outputs the maximum of those
numbers).

LetA = (𝑄, Σ, 𝑞0, 𝛿, 𝜅) and 𝑄𝑐 be the set of 𝑐-states inA. The states ofM𝑐 are pairs (𝜏, 𝜇)
of functions 𝜏 : 𝑄𝑐 → 𝑄 and 𝜇 : 𝑄𝑐 → {0, . . . , 𝑘 − 1}, where 𝜏(𝑞1) ∼ 𝜏(𝑞2) for all 𝑞1, 𝑞2 ∈ 𝑄𝑐.
There are 𝑚(𝑑𝑘)𝑑 such pairs of functions (not all of which need to be reachable inM).

17 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

The initial state is (𝜏0, 𝜇0) with 𝜏0(𝑞) = 𝑞 and 𝜇0(𝑞) = 𝑘 − 1 for all 𝑞 ∈ 𝑄𝑐. For (𝜏, 𝜇)
and an input 𝑎 ∈ Σ, let the 𝑎-successor of (𝜏, 𝜇) be (𝜏′, 𝜇′) with 𝜏′(𝑞) = 𝛿(𝜏(𝑞), 𝑎) and 𝜇′(𝑞) =
min(𝜇(𝑞), 𝜅(𝜏(𝑞), 𝑎)). The output ofM𝑐 on this transition is max𝑞∈𝑄𝑐 (𝜇′(𝑞)).

Then M𝑐 outputs on 𝑢 the least 𝑖 such that 𝑢 ∈ 𝑃𝑐,𝑖 (A), which corresponds to 𝜋∼𝑐 (𝑢)
according to Lemma 3.4 and Definition 3.5. ■

The following definition expresses what it means for an FWPM to correctly capture the
words that loop on the classes of the underlying right congruence ∼.

DEF IN IT ION 3.7. We say (with the terminology from Definition 3.1) that an FWPM (𝛾𝑐)𝑐∈[∼]
captures the periodic part of (𝐿,∼), if for all classes 𝑐 ∈ [∼] and 𝑣 ∈ 𝐸𝑐 holds that 𝑣𝜔 ∈ 𝐿𝑐 if and
only if 𝑣𝜔 ∈ 𝐿(𝛾𝑐).

LEMMA 3.8. Let 𝐿 be a regular 𝜔-language and ∼ refine ∼𝐿. The family 𝜋∼ = (𝜋∼𝑐)𝑐∈[∼] captures
the periodic part of (𝐿,∼).

PROOF . Let 𝑐 be a class of ∼, 𝑣 ∈ 𝐸𝑐 and set 𝑖 := 𝜋∼𝑐 (𝑣𝜔). We show that 𝑖 is even if and only
if 𝑣𝜔 ∈ 𝐿𝑐. Pick an 𝑛 such that 𝜋∼𝑐 (𝑣𝑛𝑥) = 𝑖 for all 𝑥 ⊑ 𝑣𝜔. This is possible since 𝜋∼𝑐 is weak. By
definition, 𝜋∼𝑐 (𝑣𝑛) = 𝑖 implies that either (𝑣𝑛)𝜔 has a prefix in 𝑃∼𝑐,𝑖−1(𝐿) or ((𝑣𝑛)𝜔 ∈ 𝐿𝑐 if and only
if 𝑖 is even). In the former case, there would exist some 𝑥 ⊑ 𝑣𝜔 with 𝜋∼𝑐 (𝑣𝑛𝑥) < 𝑖, contradicting
our choice of 𝑛. Hence, the second case must be true, which is what we set out to show. ■

The following technical lemma is only used to establish the result in Lemma 3.10 that
gives justification for the name “precise FWPM”. As it is not required for the other results of
this paper, readers may safely skip to after Lemma 3.10.

LEMMA 3.9. Let 𝜋∼ be as in Definition 3.5, 𝑐 be a class of ∼ and 𝑣 ∈ Σ+. If 𝜋∼𝑐 (𝑣) = 𝑖 ≥ 1, then
there exists an 𝑥 ∈ Σ∗ such that 𝑣𝑥 ∈ 𝐸𝑐 and 𝜋∼𝑐 ((𝑣𝑥)𝜔) = 𝑖. Moreover, if 𝜋∼𝑐 (𝑣) = 𝑖 ≥ 2, then there
exists 𝑦 ∈ Σ∗ with 𝑣𝑦 ∈ 𝐸𝑐 and 𝜋∼𝑐 ((𝑣𝑦)𝜔) = 𝑖 − 1.

PROOF . We show the first part of the claim. Let 𝑐 be a class of∼, 𝑣 ∈ Σ+ and 𝜋∼𝑐 (𝑣) = 𝑖 ≥ 1. Since
𝑣 ∉ 𝑃∼𝑐,𝑖−1(𝐿), there exists an 𝑥 ∈ Σ∗ such that 𝑣𝑥 ∈ 𝐸𝑐, ((𝑣𝑥)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 − 1 is odd), and
Prf((𝑣𝑥)𝜔) ∩ 𝑃∼𝑐,𝑖−2(𝐿) = ∅ (this corresponds to the negation of the condition for membership
in 𝑃∼𝑐,𝑖−1(𝐿)). Further, (𝑣𝑥)𝜔 also has no prefix in 𝑃∼𝑐,𝑖−1(𝐿). Otherwise, 𝜋∼𝑐 ((𝑣𝑥)𝜔) = 𝑖 − 1,
contradicting the fact that by Lemma 3.8, 𝜋∼ captures the periodic part of 𝐿. Thus, it must be
that 𝜋∼𝑐 ((𝑣𝑥)𝜔) = 𝑖.
For the second part, assume towards a contradiction that 𝑖 ≥ 2 and 𝜋∼𝑐 ((𝑣𝑦)𝜔) ≠ 𝑖 − 1 for all
𝑦 ∈ Σ∗ with 𝑣𝑦 ∈ 𝐸𝑐. Then for each such 𝑦, either 𝜋∼𝑐 ((𝑣𝑦)𝜔) ∈ {𝑖, 𝑖 − 2} or 𝜋∼𝑐 ((𝑣𝑦)𝜔) < 𝑖 − 2.
The former implies (𝑣𝑦)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 − 2 is even, while the latter means that (𝑣𝑦)𝜔 has
some prefix in 𝑃∼𝑐,𝑖−3(𝐿). In either case, 𝑣 ∈ 𝑃∼𝑐,𝑖−2(𝐿), contradicting 𝜋∼𝑐 (𝑣) = 𝑖. ■

18 / 47 L. Bohn and C. Löding

We now give the result that can be seen as justification for the name “precise FWPM”.
It shows that in a certain sense, each mapping 𝜋∼𝑐 of the precise FWPM provides the most
accurate information with regard to words that loop on 𝑐. For this, we partially order FWPMs
by point-wise comparison, that is, for two FWPMs 𝛾 = (𝛾𝑐)𝑐∈[∼] and 𝛾′ = (𝛾′𝑐)𝑐∈[∼] we let 𝛾 ≤ 𝛾′
if for all classes 𝑐 of ∼ and 𝑢 ∈ Σ+ holds 𝛾𝑐(𝑢) ≤ 𝛾′𝑐(𝑢). The following lemma now establishes
that with regard to this order, no smaller FWPM than the precise FPWM correctly captures the
periodic part of (𝐿,∼).

LEMMA 3.10. For a regular 𝜔-language 𝐿 and a right congruence ∼ that refines ∼𝐿, the family
𝜋∼ = (𝜋∼𝑐)𝑐∈[∼] is the unique least FWPM that captures the periodic part of (𝐿,∼).

PROOF . Let 𝛾 be an FWPM which captures the periodic part of (𝐿,∼). We show 𝜋∼ ≤ 𝛾. Let
𝑣 ∈ Σ+ be an arbitrary word with 𝛾𝑐(𝑣) = 𝑖. We show by induction on 𝑖 that 𝜋∼𝑐 (𝑣) ≤ 𝑖. For the
base, let 𝑖 = 0. Then 𝛾𝑐((𝑣𝑥)𝜔) = 0 for all 𝑥 ∈ 𝑣−1𝐸𝑐 since 𝛾𝑐 is weak. This means for all 𝑥 ∈ Σ∗, if
𝑣𝑥 ∈ 𝐸𝑐, then (𝑣𝑥)𝜔 ∈ 𝐿𝑐 since 𝛾 captures the periodic part of (𝐿,∼). Thus, 𝑣 ∈ 𝑃∼𝑐,0 and therefore
𝜋∼𝑐 (𝑣) = 0.

For an 𝑖 > 0, we assume towards a contradiction that 𝜋∼𝑐 (𝑣) = 𝑗 > 𝑖, implying 𝑗 ≥ 2. By
Lemma 3.9, there exists some 𝑥 ∈ Σ∗ such that 𝑣𝑥 ∈ 𝐸𝑐 and 𝜋∼𝑐 ((𝑣𝑥)𝜔) = 𝑗. Further, it must be
that 𝛾𝑐((𝑣𝑥)𝜔) = 𝑖, as otherwise if 𝛾𝑐((𝑣𝑥)𝜔) < 𝑖, it would follow by induction that 𝜋∼𝑐 ((𝑣𝑥)𝜔) < 𝑖.
This means 𝑗 is even if and only if 𝑖 is even and thus 𝑗 − 1 > 𝑖.
Using Lemma 3.9 once more, we pick some 𝑦 ∈ Σ∗ with 𝑣𝑥 𝑦 ∈ 𝐸𝑐 and 𝜋∼𝑐 ((𝑣𝑥 𝑦)𝜔) = 𝑗 − 1.
Again, by induction 𝛾𝑐((𝑣𝑥 𝑦)𝜔) = 𝑖 and hence (𝑣𝑥 𝑦)𝜔 ∈ 𝐿(𝛾𝑐) if and only if (𝑣𝑥 𝑦)𝜔 ∉ 𝐿(𝜋∼𝑐).
This contradicts our assumption that both 𝛾 and 𝜋∼ capture the periodic part of (𝐿,∼). Hence,
𝜋∼𝑐 (𝑣) ≤ 𝑖, concluding the proof. ■

The precise DPA for 𝐿 and ∼ that we introduce below is derived from the precise FWPM
for 𝐿 and ∼. In general, for the construction of a DPA from an FWPM that captures the periodic
part of (𝐿,∼), it is important that the individual priority mappings are compatible with each
other. Specifically, adding a prefix to a word should only lead to a smaller (i.e. more significant)
priority. This is expressed formally in the following definition.

DEF IN IT ION 3.1 1. We call an FWPM 𝛾 = (𝛾𝑐)𝑐∈[∼] monotonic if 𝛾𝑢(𝑣𝑥) ≤ 𝛾𝑢𝑣(𝑥) for all 𝑢, 𝑣 ∈
Σ∗, 𝑥 ∈ Σ+.

LEMMA 3.12. Let 𝐿 be a regular 𝜔-language, and ∼ refine ∼𝐿. The precise FWPM 𝜋∼ of (𝐿,∼) is
monotonic.

PROOF . Let 𝑢, 𝑣 ∈ Σ∗, 𝑥 ∈ Σ+, and let 𝑐 = [𝑢]∼ and 𝑐′ = [𝑢𝑣]∼. We use Lemma 3.4, so let
A = (𝑄, Σ, 𝑞0, 𝛿, 𝜅) be a normalized DPA for 𝐿. Denote by 𝑄𝑐 and 𝑄𝑐′ the sets of 𝑐-states and
𝑐′-states in A, respectively. By Lemma 3.4, 𝜋∼𝑢 (𝑣𝑥) = max{Amin(𝑞, 𝑣𝑥) | 𝑞 ∈ 𝑄𝑐}. Further,
for each 𝑞 ∈ 𝑄𝑐 we have Amin(𝑞, 𝑣𝑥) ≤ Amin(𝛿∗(𝑞, 𝑣), 𝑥) because Amin(𝛿∗(𝑞, 𝑣), 𝑥) takes the

19 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

minimal priority of a run that is the suffix of the run considered inAmin(𝑞, 𝑣𝑥). We conclude
that

𝜋∼𝑢 (𝑣𝑥) = max{Amin(𝑞, 𝑣𝑥) | 𝑞 ∈ 𝑄𝑐}
≤ max{Amin(𝛿∗(𝑞, 𝑣), 𝑥) | 𝑞 ∈ 𝑄𝑐}
≤ max{Amin(𝑞′, 𝑥) | 𝑞′ ∈ 𝑄𝑐′}
= 𝜋∼𝑢𝑣(𝑥)

where the second inequality follows from the fact that 𝛿∗(𝑞, 𝑣) is a 𝑐′-state for a 𝑐-state 𝑞. ■

The Precise DPA. Our goal is now to construct, from a monotonic FWPM 𝛾 = (𝛾𝑐)𝑐∈[∼] that
captures the periodic part of (𝐿,∼), a combined priority mapping 𝛾⊲⊳ that defines 𝐿. We refer to
𝛾⊲⊳ as the join of 𝛾.

Recall that it is sufficient if 𝛾⊲⊳ works correctly on ultimately periodic words. Since 𝛾
captures the periodic part of 𝐿, for all 𝑢𝑣𝜔 such that 𝑢𝑣 ∼ 𝑢 we have that 𝛾𝑐(𝑣𝜔) is even if and
only if 𝑣𝜔 ∈ 𝐿𝑐, where 𝑐 is the ∼-class reached by 𝑢. The main problem when defining 𝛾⊲⊳ for an
input 𝑝 ∈ Σ+ is that we only know the prefix 𝑝 but not the ultimately periodic word 𝑢𝑣𝜔 that it
is a prefix of.

Intuitively, the idea for computing the join for an input 𝑝 is to consider all possible fac-
torizations 𝑢𝑣 = 𝑝 and their associated priorities 𝛾𝑢(𝑣). Of those, the most significant one
(i.e. the smallest) then determines the priority of 𝛾⊲⊳(𝑝). Naively defining the join based on this,
however, would just lead to the weak priority mapping for the initial class, since 𝛾 is monotonic.
Instead, the join ensures that all these values 𝛾𝑢(𝑣) are covered by the priority sequence on
𝑝, where 𝛾𝑢(𝑣) is covered if 𝛾⊲⊳ emits a priority less than or equal to 𝛾𝑢(𝑣) on the 𝑣-part of the
decomposition 𝑝 = 𝑢𝑣. Obviously, with this definition, it is possible to always emit priority
0. This clearly will cover all values 𝛾𝑢(𝑣), but it will certainly not lead to a correct priority
mapping for 𝐿. Instead, the join always picks the least significant priority that is necessary to
ensure that all values are covered. Assume that the whole input is 𝑤 = 𝑢𝑣𝜔 with 𝑢𝑣 ∼ 𝑢 and
𝛾𝑢(𝑣𝜔) = 𝑖 where priority 𝑖 is already assumed after one iteration of 𝑣, so 𝛾𝑢(𝑣) = 𝑖. This means
that 𝑖 = 𝛾𝑢(𝑣) = 𝛾𝑢𝑣(𝑣) = 𝛾𝑢𝑣𝑣(𝑣) · · · . Then the join will infinitely often emit a priority ≤ 𝑖 in
order to cover all these values. Based on the monotonicity of 𝛾 we can show in Lemma 3.15 that
indeed 𝑖 will be the dominating priority that is emitted by 𝛾⊲⊳.

In the following example, we further try to illustrate the idea of the join, before subse-
quently formalizing it in Definition 3.14.

EXAMPLE 3.13. Consider the FWPM (𝜋𝑐)𝑐∈[∼] from Example 3.2 which is displayed on the left
of Figure 3: 𝜋∼𝜀 assigns 0 to a word 𝑣 ∈ Σ+ precisely if 𝑣 contains the infix 𝑎𝑏𝑎, 1 if 𝑣 contains
a 𝑏 but no 𝑎𝑏𝑎 and 2 otherwise. Further, 𝜀 is the only class. The table on the right of Figure 3
visualizes the computation of the join for all prefixes of the word 𝑝 = 𝑎𝑏𝑎𝑎𝑏𝑎. The 𝑖-th letter
of this word is denoted by 𝑝𝑖 . As explained before, to compute 𝜋∼⊲⊳ for some prefix 𝑝0 · · · 𝑝𝑖
of 𝑝, we have to consider all values 𝜋∼𝑝0...𝑝 𝑗−1

(𝑝 𝑗 . . . 𝑝𝑖), which are given in the column for the

20 / 47 L. Bohn and C. Löding

𝜋∼𝜀 (𝑢) =


0 if 𝑢 contains 𝑎𝑏𝑎

1 if 𝑢 contains 𝑏 but not 𝑎𝑏𝑎

2 otherwise

𝑖 0 1 2 3 4 5
𝑝𝑖 𝑎 𝑏 𝑎 𝑎 𝑏 𝑎

𝜋∼𝜀 (𝑝0 . . . 𝑝𝑖) 2 1 0 0 0 0
𝜋∼𝑝0
(𝑝1 . . . 𝑝𝑖) 1 1 1 1 0

𝜋∼𝑝0...𝑝1
(𝑝2 . . . 𝑝𝑖) 2 2 1 0

𝜋∼𝑝0...𝑝2
(𝑝3 . . . 𝑝𝑖) 2 1 0

𝜋∼𝑝0...𝑝3
(𝑝4 . . . 𝑝𝑖) 1 0

𝜋∼𝑝0...𝑝4
(𝑝5 . . . 𝑝𝑖) 2

𝜋∼⊲⊳(𝑝0 . . . 𝑝𝑖) 2 1 0 2 1 0

Figure 3. On the left, the priority mapping 𝜋∼𝜀 associated with the FWPM (𝜋𝑐)𝑐∈[∼] from Example 3.2 is
shown. The table on the right displays the values of 𝜋∼𝑝0 ...𝑝𝑗−1

(𝑝𝑗 . . . 𝑝𝑖) where 𝑖 is the length of a prefix of
𝑝 and 𝑗 is a possible first position inside the looping part of the guessed ultimately periodic word.
In each column, we mark the value(s) that are not yet covered by underlining them.

corresponding value of 𝑖. Note that the subscript 𝑝0 . . . 𝑝 𝑗 , which denotes the class, does not
play a role in this example, because there is only one class. We nevertheless spell it out in the
example in order to match the formal definition.

For finding 𝜋∼⊲⊳(𝑝0 · · · 𝑝𝑖), we have to ensure that all the values from the column for the
corresponding 𝑖 are covered. The values that are not covered by a previous value of 𝜋∼⊲⊳ are
underlined. For 𝑖 = 0, no priority has been emitted by 𝜋∼⊲⊳, so we just take the maximal value
that covers 2, which is 2 itself. For 𝑖 = 1, the column contains two times priority 1, and since up
to now only 2 has been emitted by 𝜋∼⊲⊳, we obtain 𝜋∼⊲⊳(𝑎𝑏) = 1. Similarly, because priority 0 has
to be covered in the next step, we obtain 𝜋∼⊲⊳(𝑎𝑏𝑎) = 0.

Now, for 𝑖 = 3, the values that need to be covered are the four values in the column for
𝑖 = 3. The value 0 is coming from the decomposition (𝜀, 𝑎𝑏𝑎𝑎) in which the periodic part is
the whole word 𝑎𝑏𝑎𝑎. This value 0 is already covered by 𝜋∼⊲⊳(𝑎𝑏𝑎) = 0. Similarly, 𝜋∼⊲⊳(𝑎𝑏𝑎) = 0
covers the values 𝜋∼𝑎 (𝑏𝑎𝑎) = 1 and 𝜋∼𝑎𝑏(𝑎𝑎) = 2. The only value from the column for 𝑖 = 3 that
has not yet been covered, is the value 𝜋∼𝑎𝑏𝑎(𝑎) = 2, because 𝜋∼⊲⊳ did not yet emit anything on this
periodic part, which only includes the last letter. Hence, 𝜋∼⊲⊳(𝑎𝑏𝑎𝑎) = 2.

Let us jump to 𝑖 = 6. For finding 𝜋∼⊲⊳(𝑎𝑏𝑎𝑎𝑏𝑎), all values in the last column are considered.
The first three 0s are covered by 𝜋∼⊲⊳(𝑎𝑏𝑎) = 0 because they correspond to decompositions whose
periodic part contains position 𝑖 = 2. The other values have not yet been covered, and hence
𝜋∼⊲⊳(𝑎𝑏𝑎𝑎𝑏𝑎) = 0. ■

We are now ready to give the formal definition of the join. Note that since it is defined
inductively, we need to reference values of the join that have already been computed for prefixes

21 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

of the input. So while the definition speaks of partial priority mappings, the resulting mapping
is guaranteed to be total.

DEF IN IT ION 3.14. Let 𝑢 ∈ Σ+ and 𝛾 be a partial priority mapping that is defined for all
non-empty prefixes of 𝑢. Let 𝑦 be a non-empty suffix of 𝑢, that is 𝑢 = 𝑥 𝑦 for an 𝑥 ∈ Σ∗. We say
that 𝛾 covers 𝛾 on the suffix 𝑦 of 𝑢 if 𝛾(𝑥𝑧) ≤ 𝛾𝑥 (𝑦) for some non-empty prefix 𝑧 of 𝑦.

The priority mapping 𝛾⊲⊳ is defined inductively as follows. Assume that 𝛾⊲⊳ has been defined
for all non-empty prefixes of 𝑢 ∈ Σ∗, and let 𝑎 ∈ Σ. Then 𝛾⊲⊳(𝑢𝑎) is the maximal value such that
𝛾⊲⊳ covers 𝛾 on all non-empty suffixes of 𝑢𝑎.

We first show that 𝛾⊲⊳ behaves correctly on ultimately periodic words in an auxiliary
lemma. From this we can easily deduce that 𝛾⊲⊳ defines the correct language.

LEMMA 3.15. Let 𝛾 = (𝛾𝑐)𝑐∈[∼] be a monotonic FWPM, 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ+. If 𝑢 ∼ 𝑢𝑣, then
𝛾⊲⊳(𝑢𝑣𝜔) = 𝛾𝑢(𝑣𝜔).

PROOF . First note that if 𝑢′ and 𝑣′ are such that 𝑢′(𝑣′)𝜔 = 𝑢𝑣𝜔 and 𝑢′ ∼ 𝑢′𝑣′, then 𝛾𝑢(𝑣𝜔) =
𝛾𝑢′ ((𝑣′)𝜔). This is implied by monotonicity of 𝛾 (Definition 3.11): Assume w.l.o.g. that 𝑢 is a
prefix of 𝑢′. Then by monotonicity, we have 𝛾𝑢(𝑣𝜔) ≤ 𝛾𝑢′ ((𝑣′)𝜔). Now choose 𝑛 such that 𝑢′ is a
prefix of 𝑢𝑣𝑛. Then again by monotonicity, we have 𝛾𝑢′ ((𝑣′)𝜔) ≤ 𝛾𝑢𝑣𝑛 (𝑣𝜔) = 𝛾𝑢(𝑣𝜔).

This means that we can choose any representation of the given ultimately periodic word
for proving the claim.

We now turn to the claim of the lemma. Let 𝛾⊲⊳(𝑢𝑣𝜔) = 𝑖, then the least color assigned to
infinitely many prefixes of 𝑢𝑣𝜔 is 𝑖. Thus, we can rewrite 𝑢𝑣𝜔 such that 𝛾⊲⊳(𝑢) = 𝑖 and 𝛾⊲⊳(𝑢𝑥) ≥ 𝑖
for all non-empty prefixes 𝑥 ⊏ 𝑣𝜔. Further, we assume that 𝑢 is picked to be the shortest prefix
with this property.
Consider any non-empty 𝑥 ⊑ 𝑣𝜔 with 𝛾⊲⊳(𝑢𝑥) = 𝑖. By definition of 𝛾⊲⊳, there is a suffix 𝑧 of 𝑢𝑥 that
would not be covered if we had 𝛾⊲⊳(𝑢𝑥) > 𝑖. Since 𝛾⊲⊳(𝑢) = 𝑖, we conclude that 𝑧 is a suffix of 𝑥
(otherwise it would be covered by the value of 𝛾⊲⊳(𝑢)). Thus, we can write 𝑥 = 𝑦𝑧 with 𝛾𝑢𝑦 (𝑧) = 𝑖.
Since 𝛾 is monotonic, it follows that 𝛾𝑢(𝑥) = 𝛾𝑢(𝑦𝑧) ≤ 𝛾𝑢𝑦 (𝑧) = 𝑖. This inequality cannot be
strict because otherwise the suffix 𝑥 of 𝑢𝑥 would not be covered by 𝛾⊲⊳ since all 𝛾⊲⊳-values after
𝑢 are ≥ 𝑖. We conclude that 𝛾𝑢(𝑣𝜔) = 𝑖 as desired. ■

LEMMA 3.16. Let 𝐿 be an 𝜔-regular language and ∼ refine ∼𝐿. If 𝛾 is a monotonic FWPM that
captures the periodic part of (𝐿,∼), then 𝐿(𝛾⊲⊳) = 𝐿. In particular, 𝐿(𝜋∼⊲⊳) = 𝐿.

PROOF . If follows from [11] that if 𝐾 ∩ UP = 𝐿 ∩ UP for two regular 𝜔-languages 𝐾 and 𝐿,
then 𝐾 = 𝐿. Thus, it suffices to verify that for all 𝑢 ∈ Σ∗, 𝑣 ∈ Σ+ holds 𝑢𝑣𝜔 ∈ 𝐿 if and only if
𝑢𝑣𝜔 ∈ 𝐿(𝛾⊲⊳). Consider the sequence of classes [𝑢], [𝑢𝑣], [𝑢𝑣𝑣], Because ∼ has only finitely
many classes, there must exist 𝑖 < 𝑗 ≤ |∼| + 1 such that [𝑢𝑣𝑖] = [𝑢𝑣 𝑗]. Thus, we can pick 𝑥 and 𝑦

22 / 47 L. Bohn and C. Löding

such that 𝑢𝑣𝜔 = 𝑥 𝑦𝜔 and 𝑥 𝑦 ∼ 𝑥.
By definition, we have 𝑥 𝑦𝜔 ∈ 𝐿 if and only if 𝑦𝜔 ∈ 𝐿𝑥 . Since 𝑦 ∈ 𝐸𝑥 and 𝛾 captures the periodic
part of 𝐿, it further holds that 𝑦𝜔 ∈ 𝐿𝑥 iff 𝑦𝜔 ∈ 𝐿(𝛾𝑥). Applying Lemma 3.15 now gives us
𝛾⊲⊳(𝑥 𝑦𝜔) = 𝛾𝑥 (𝑦𝜔), from which we immediately conclude that 𝑥 𝑦𝜔 ∈ 𝐿(𝛾⊲⊳) if and only if
𝑥 𝑦𝜔 ∈ 𝐿.

The claim 𝐿(𝜋∼⊲⊳) = 𝐿 directly follows from Lemma 3.8 and Lemma 3.12. ■

We now explain how to construct a DPA that computes the priority mapping 𝛾⊲⊳ if 𝛾 is a
monotonic FWPM given by a familyM = (M𝑐)𝑐∈[∼] of Mealy machines. This DPA, which we
denote by A⊲⊳(M), has one component for tracking ∼, and one component for each priority
𝑖 that checks if there is a suffix of the input read so far that has to be covered and produces
priority 𝑖. The minimal such 𝑖 is emitted as priority, and all components for priorities ≥ 𝑖 are
reset to start tracking suffixes from this point. Note that the construction can be applied even if
𝛾 is not monotonic (but then we do not have any guarantees on the behavior of the resulting
DPA). We formalize this below.

Assume that the range of the mappings in 𝛾 is {0, . . . , 𝑘 − 1}. First, we extract for each
priority 𝑖 ∈ {0, . . . , 𝑘 − 1} from each Mealy machineM𝑐 a DFAD𝑐,𝑖 = (𝑄𝑐,𝑖 , Σ, 𝜄𝑐,𝑖 , 𝛿𝑐,𝑖 , 𝐹𝑐,𝑖) with
𝐿(D𝑐,𝑖) = {𝑢 ∈ Σ+ | 𝛾𝑐(𝑢) ≤ 𝑖}. This is achieved by taking the transition structure ofM𝑐 and
redirecting all transitions with output ≤ 𝑖 into an accepting sink state (recall that 𝛾𝑐 is weak),
and then minimizing the resulting DFA. This step is illustrated in Figure 2, where the class
index is omitted because there is only one class. Note that the DFAD𝑐,𝑘−1 always accepts every
non-empty word, so it is omitted in the example. However, it is convenient to keep it in the
formal construction.

To simplify notation, we assume that the 𝑄𝑐,𝑖 are pairwise disjoint, allowing us to write
𝛿(𝑞, 𝑎) and 𝑞 ∈ 𝐹 to refer to 𝛿𝑐,𝑖 (𝑞, 𝑎) resp. 𝑞 ∈ 𝐹𝑐,𝑖 for the unique 𝑐 ∈ [∼] and 𝑖 < 𝑘 such that
𝑞 ∈ 𝑄𝑐,𝑖 . We now define the DPAA⊲⊳(M) = (𝑄⊲⊳, Σ, 𝜄⊲⊳, 𝛿⊲⊳, 𝜅⊲⊳) with

𝑄⊲⊳ = 𝑄0 × · · · × 𝑄𝑘−1 × 𝑄∼, where 𝑄𝑖 =
⋃
𝑐∈[∼]
(𝑄𝑐,𝑖 \ 𝐹𝑐,𝑖) and 𝜄⊲⊳ = (𝜄[𝜀],0, . . . , 𝜄[𝜀],𝑘−1, [𝜀]).

In this product, we refer to the 𝑖-th component as the component for priority 𝑖 for 𝑖 ∈ {0, . . . , 𝑘−1}.
For each transition from some state 𝑞 = (𝑞0, . . . , 𝑞𝑘−1, 𝑐) ∈ 𝑄 on a symbol 𝑎 ∈ Σ, we begin by
computing the reset point 𝑟 < 𝑘, which corresponds to the least index of a DFA that reaches
a final state, meaning formally 𝑟 = min{𝑖 < 𝑘 | 𝛿(𝑞𝑖 , 𝑎) ∈ 𝐹}. Note that 𝑟 is always defined
because the DFA for priority 𝑘 − 1 accepts everything.

The reset point directly determines the priority of the transition, meaning 𝜅⊲⊳(𝑞, 𝑎) = 𝑟.
For computing the target of the transition, we first advance each 𝑞 𝑗 for 𝑗 < 𝑟 by 𝑎 in the
respective DFA and then reset all other states to the initial state of the appropriate DFA, i.e.

𝛿⊲⊳((𝑞0, . . . , 𝑞𝑘−1, 𝑐), 𝑎) = (𝛿(𝑞0, 𝑎), . . . , 𝛿(𝑞𝑟−1, 𝑎), 𝜄𝑐′,𝑟, . . . , 𝜄𝑐′,𝑘−1, 𝑐
′) where 𝑐′ = [𝑐𝑎]∼.

23 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

𝑝0, 𝑟0, 𝑞0

𝑝0, 𝑟0, 𝑞1

𝑝0, 𝑟0, 𝑞2

𝑝1, 𝑞0

𝑝0, 𝑞1

𝑝0, 𝑞2

𝑝0, 𝑞0 𝑝1, 𝑟0, 𝑞0
𝑎|1

𝑏|3

𝑑 |3

𝑎|1

𝑏|3

𝑑 |2

𝑎|1
𝑏|2

𝑑 |3

𝑎|0

𝑏|2

𝑑 |2

𝑎|1

𝑑 |1

𝑏|2

𝑎|1

𝑏|1

𝑑 |2

𝑎|1𝑏|2

𝑑 |2
𝑎|0

𝑏|3

𝑑 |3

A𝐿

Figure 4. The precise DPA for the language 𝐿 from example Example 3.3. The DPA is built using the
right congruence ∼𝐿 and DFAs for the sets 𝑃∼𝐿𝑐,𝑖 (𝐿) for 𝑖 ≤ 3 and 𝑑 ∈ [∼𝐿], which are depicted in Figure 1.
The states of A𝐿 are tuples, where the 𝑖-th position from the front is a state belonging to the
component for priority 𝑖, i.e. a DFA which keeps track of level 𝑖 of the parity decomposition. We omit a
component if the corresponding DFA accepts Σ+ and also do not include the last component, instead
depicting states belonging to class [𝜀]∼𝐿 in blue and those belonging to [𝑎]∼𝐿 in green. Note that reading
𝑎 from the initial state, the first component is not reset, as the corresponding DFA still waits on
completing an infix 𝑎𝑎. The DFA C from Figure 1 tracks priority 2 from [𝜀]∼𝐿 and priority 1 from [𝑎]∼𝐿.
Hence its states appear in two different positions in the tuples. The DFA B tracks priority 0 for both
classes, so the component for priority 0 is reset to 𝑝0 for both classes on transitions with priority 0 (the
orange and purple 𝑎-transitions).

In Figure 2 the resulting DPA for Example 3.2 is shown on the right-hand side. We omit the
component for the ∼-class and the component for priority 2, because they both only consists of
one state. The precise DPA for Example 3.3 is shown in Figure 4.

The following lemma establishes thatA⊲⊳(M) indeed computes the join.

LEMMA 3.17. IfM is a family of Mealy machines representing a monotonic FWPM 𝛾, then
A⊲⊳(M)(𝑢) = 𝛾⊲⊳(𝑢) for each 𝑢 ∈ Σ+. In particular, 𝐿(A⊲⊳(M)) = 𝐿(𝛾⊲⊳).

PROOF . We write A⊲⊳ for A⊲⊳(M). Further, for avoiding case distinctions, we let 𝛾⊲⊳(𝜀) :=
A⊲⊳(𝜀) := 0. Note that this has no influence on the claim of the lemma because the claim is only
on non-empty words.

We first prove the following characterization of 𝛾⊲⊳, and then show that this is precisely
whatA⊲⊳(M) computes:

24 / 47 L. Bohn and C. Löding

Claim: For 𝑢 ∈ Σ+, we have that 𝛾⊲⊳(𝑢) is the minimal 𝑖 such that there are 𝑥 ∈ Σ∗, 𝑦 ∈ Σ+

with 𝑢 = 𝑥 𝑦 and
(1) 𝛾𝑥 (𝑦) = 𝑖,
(2) ∀𝑧 ∈ Σ+ : 𝑧Ĺ 𝑦 ⇒ 𝛾⊲⊳(𝑥𝑧) > 𝑖, and
(3) 𝛾⊲⊳(𝑥) ≤ 𝑖.

(Where 𝑧Ĺ 𝑦 means that 𝑧 is a prefix of 𝑦 but not equal to 𝑦.)
From the definition of 𝛾⊲⊳ it follows that 𝛾⊲⊳(𝑢) is the minimal 𝑖 for which 𝑢 = 𝑥 𝑦 with

properties (1) and (2) exist, because these are precisely the suffixes of 𝑢 that need to be covered
by the value 𝛾⊲⊳(𝑢). So let 𝑖 be minimal such that there are 𝑥 ∈ Σ∗, 𝑦 ∈ Σ+ with 𝑢 = 𝑥 𝑦, 𝛾𝑥 (𝑦) = 𝑖,
and 𝛾⊲⊳(𝑥𝑧) > 𝑖 for all strict non-empty prefixes of 𝑦. Furthermore, choose 𝑥 and 𝑦 such that 𝑦
has maximal length with these properties. We now show that (3) is also satisfied, thus proving
the claim.

Assume for contradiction that 𝛾⊲⊳(𝑥) = 𝑗 > 𝑖. Then 𝑥 is non-empty because we defined
𝛾⊲⊳(𝜀) = 0. Let 𝑥 = 𝑥′𝑎 with 𝑎 ∈ Σ. Since 𝛾 is monotonic, 𝑖′ := 𝛾𝑥′ (𝑎𝑦) ≤ 𝛾𝑥 (𝑦) = 𝑖. Now let 𝑧 be a
nonempty strict prefix of 𝑎𝑦. If 𝑧 = 𝑎, then 𝛾⊲⊳(𝑥′𝑧) = 𝛾⊲⊳(𝑥) = 𝑗 > 𝑖. If 𝑧 = 𝑎𝑧′ with nonempty
𝑧′, then 𝛾⊲⊳(𝑥′𝑧) = 𝛾⊲⊳(𝑥𝑧′) > 𝑖 because 𝑥, 𝑦 and 𝑖 satisfy property (2). Overall, we obtain that
𝑥′, 𝑎 𝑦 and 𝑖′ satisfy properties (1) and (2). If 𝑖′ < 𝑖, this contradicts the choice of 𝑖 as the minimal
such value, and if 𝑖′ = 𝑖, this contradicts the choice of 𝑦 as longest suffix of 𝑢 such that 𝑥, 𝑦 and 𝑖
have properties (1) and (2).

Now let us show that the priority of A⊲⊳ after reading 𝑢 is the one characterized in the
claim. We assume inductively that A⊲⊳ has produced the same priorities as 𝛾⊲⊳ on all strict
non-empty prefixes of 𝑢. LetA⊲⊳(𝑢) =: 𝑖. Then the component for priority 𝑖 inA⊲⊳ has reached
a final state of the respective DFA that is currently running in that component, and none of the
DFAs in the components of smaller priorities has reached a final state. Let 𝑥 be the longest strict
prefix of 𝑢 such thatA⊲⊳(𝑥) ≤ 𝑖 (by our conventionA⊲⊳(𝜀) = 0, such an 𝑥 always exists), and let
𝑦 ∈ Σ+ be such that 𝑢 = 𝑥 𝑦.

By definition ofA⊲⊳, the component for priority 𝑖 is reset to the initial state ofD𝑥,𝑖 after
reading 𝑥, and since 𝑥 is the longest prefix on which priority ≤ 𝑖 is produced, none of the
components for priorities ≤ 𝑖 is reset after 𝑥. We had seen above that the component for
priority 𝑖 in A⊲⊳ has reached a final state, which means that 𝛾𝑥 (𝑦) ≤ 𝑖 by definition of D𝑥,𝑖 .
Since the components for priorities smaller than 𝑖 have not reached a final state, we obtain by
monotonicity that 𝛾𝑥 (𝑦) = 𝑖. Hence, 𝑥, 𝑦 and 𝑖 satisfy the properties (1)–(3) of the claim, and
thusA⊲⊳(𝑢) = 𝑖 ≥ 𝛾⊲⊳(𝑢).

Now assume that there is 𝑗 < 𝑖 that satisfies (1)–(3) for some appropriate 𝑥 and 𝑦. Then,
along the same lines as above, the component for priority 𝑗 is reset after that 𝑥, and reaches a
final state after reading 𝑦. This means thatA⊲⊳ would output a priority ≤ 𝑗. ■

25 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

We know from Theorem 3.6 that the precise FWPM 𝜋∼ for (𝐿,∼) can be computed by a
family of Mealy machines. This enables us now to define the central object of this section.

DEF IN IT ION 3.18. Let 𝐿 be a regular 𝜔-language, and let ∼ be a right congruence that refines
∼𝐿. The precise DPAA𝐿,∼ for (𝐿,∼) is the minimal DPA whose priority mapping is the join 𝜋∼⊲⊳ of
the precise FWPM 𝜋∼ for (𝐿,∼). The precise DPAA𝐿 for 𝐿 isA𝐿,∼𝐿 .

The DPA on the right-hand side of Figure 2 is minimal as a Mealy machine, so it is the
precise DPA for the language from Example 3.2. Similarly, the DPA in Figure 4 is the precise
DPA for the language from Example 3.3.

Note that 𝐿(A𝐿,∼) = 𝐿 because the precise FWPM 𝜋∼ for 𝐿 and ∼ captures the periodic part
of (𝐿,∼) according to Lemma 3.8, and hence 𝐿(𝜋∼⊲⊳) = 𝐿 by Lemma 3.16. Since, by definition, the
priority mapping ofA𝐿,∼ is 𝜋∼⊲⊳, we obtain that 𝐿(A𝐿,∼) = 𝐿. Furthermore, given an arbitrary
DPAA for 𝐿, and ∼ given as transition system, one can constructA𝐿,∼. For use in the Section 5,
we give an upper bound on the size of the precise DPA that is constructed from another DPA.

THEOREM 3.19. LetA be a DPA with priorities in {0, . . . , 𝑘 − 1} accepting some language 𝐿,
and ∼ be a right congruence with ∼A ⪯ ∼ ⪯ ∼𝐿. IfA has at most 𝑑 many 𝑐-states for each class 𝑐
of ∼𝐿, then |A𝐿,∼ | ≤ 𝑚(2𝑑 − 1)𝑘−1, where 𝑚 is the number of ∼ classes.

PROOF . We can assume thatA = (𝑄, Σ, 𝜄, 𝛿, 𝜅) is normalized (this does not change the transition
structure and does not increase the number of priorities). The precise DPA A𝐿,∼ can be con-
structed from the familyM of Mealy machines for 𝜋∼ by buildingA⊲⊳(M). In the construction
ofA⊲⊳(M), the first step is to extract the DFAsD𝑐,𝑖 for each class 𝑐 and each priority 𝑖 from the
Mealy machines inM. The DFAD𝑐,𝑖 accepts a word 𝑤 if 𝜋∼𝑐 (𝑤) ≤ 𝑖. From Lemma 3.4 we obtain
that 𝜋∼𝑐 (𝑤) ≤ 𝑖 if from every 𝑐-state 𝑞 inA, the run on 𝑢 has visited a priority ≤ 𝑖. We can directly
constructD𝑐,𝑖 fromA without going through the Mealy machines as follows. The states ofD𝑐,𝑖

are sets 𝑃 ⊆ 𝑄 such that all states in 𝑃 are pairwise ∼-equivalent. The initial state is the set 𝑄𝑐 of
𝑐-states inA. For a state 𝑃 ofD𝑐,𝑖 , the 𝑎-successor of 𝑃 is {𝛿(𝑝, 𝑎) | 𝑝 ∈ 𝑃 and 𝜅(𝑝, 𝑎) > 𝑖}. Since
∼A refines ∼, the property that all states in 𝑃 are ∼-equivalent is preserved by the transitions.
The only accepting state ofD𝑐,𝑖 is ∅.

The states ofA⊲⊳(M) are tuples (𝑃0, . . . , 𝑃𝑘−1, 𝑐) where each 𝑃𝑖 is a non-accepting state of
someD𝑐′,𝑖 , and 𝑐 is the ∼-class of the input read so far. By construction, allA-states in 𝑃𝑖 are in
𝑄𝑐. Further, inD𝑐,𝑘−1, every transition from the initial state directly leads to the accepting state.
So for each 𝑐 there are at most (2𝑑 − 1)𝑘−1 many states inA⊲⊳(M), which shows the claimed
bound. ■

We now present a family of examples showing that the precise DPA can be exponential in
the size of a minimal DPA. This is already witnessed by Büchi automata, so DPAs with priorities
{0, 1}. The example is taken from [10, Proposition 14].

26 / 47 L. Bohn and C. Löding

For a number 𝑑 ≥ 1, consider the alphabet Σ𝑑 = {𝑎0, . . . , 𝑎𝑑−1} and let 𝐿𝑑 ⊆ Σ𝜔𝑑 be the
language consisting of all 𝜔-words that contain each symbol from Σ𝑑 infinitely often. One easily
verifies that ∼𝐿𝑑 has only one class.

In a first approach for constructing a DPA for 𝐿𝑑 , one would build an automaton that
tracks precisely which symbols it has seen. This means that the states are subsets of Σ𝑑 , with ∅
as initial state, and transitions adding the processed symbol to the current state. Whenever a
transition would result in a state for the full set Σ𝑑 , the DPA emits priority 0, and resets the state
to ∅. All other transitions have priority 1.

Indeed, this is what the precise DPA does: The precise FWPM for 𝐿𝑑 and ∼𝐿𝑑 (consisting
only of one weak priority mapping since there is only one class), maps a finite word to priority
0 if it contains all symbols from Σ𝑑 , and to 1 otherwise. The precise DPA resulting from that
precise FWPM then behaves exactly as described above. So it has 2𝑑 − 1 states.

However, one can build a DPA with only 𝑑 states that waits for the next symbol from Σ𝑑
for some fixed order on Σ𝑑 , and resets to the initial state with priority 0 if it has reached the last
symbol in this order. For the standard order on {0, . . . , 𝑑 − 1} and state set {𝑞0, . . . , 𝑞𝑑−1}, the
resulting transition function is 𝛿(𝑞ℎ, 𝑎ℎ) = 𝑎ℎ+1 mod 𝑑 with priority 0 if ℎ = 𝑑 −1 and 1 otherwise,
and 𝛿(𝑞ℎ, 𝑎ℎ′) = 𝑞ℎ if ℎ ≠ ℎ′.

This family of examples might also convey some further intuition why we chose the name
“precise DPA”: It emits the accepting priority 0 precisely when all symbols have occurred. The
small DPA with only 𝑑 states emits priority 0 if all symbols have occurred in a specific order, so
it would not emit priority 0 on the finite word 𝑎2𝑎1𝑎0 (for 𝑑 = 3) but on 𝑎0𝑎1𝑎2. It seems hard to
define such a behavior just from the language definition in a canonical way.

The construction of the precise DPA for 𝐿 sets out a rough road map for the construction
of a DPA from a collection 𝑆 of positive and negative example words: Extract a right congruence
∼ from 𝑆 as candidate for ∼𝐿 (this is known how to do it). Then extract Mealy machinesM that
capture the periodic part of 𝑆 and ∼. ConstructA⊲⊳(M).

In Section 4 we present some results that enable us to realize the extraction of Mealy
machines. The problem with the last step is that the size of A⊲⊳(M) is of order |M|𝑘, where
𝑘 is the number of priorities. In a polynomial time procedure we therefore cannot simply
constructA⊲⊳(M) from the Mealy machines because this would result in an exponential step.
To overcome this issue, we show in the following that the size of the representation of the color
sequence produced byA⊲⊳(M) on an ultimately periodic word 𝑢𝑣𝜔 is polynomial in |𝑢𝑣| and
|M|. This allows us to construct a DPA of polynomial size, which approximatesA⊲⊳(M) in the
sense that it emits the correct color sequence for a set of ultimately periodic words (the details
how it is used are given in Section 5). In the following, we first state an auxiliary lemma.

LEMMA 3.20. Let 𝑣 ∈ Σ+. A DFAD with 𝑛 states accepts a prefix 𝑣𝜔 from a state 𝑞 if, and only
if, there exists a non-empty 𝑥 ∈ Prf(𝑣𝜔) ∩ 𝐿(D) with |𝑥 | ≤ 𝑛 · |𝑣|.

27 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

PROOF . Consider the run 𝑞 = 𝑞0
𝑣−→ 𝑞1

𝑣−→ 𝑞2
𝑣−→ · · · ofD on 𝑣𝜔. AsD has 𝑛 states, there must

be positions 𝑖 < 𝑗 ≤ 𝑛 at which a state repeats, i.e. 𝑞𝑖 = 𝑞 𝑗 . Either a final state is visited before
position 𝑗, or the DFA loops on 𝑣𝜔 without visiting a final state at all. ■

Note that the FWPM in the following lemma is not required to be monotonic.

LEMMA 3.21. Let 𝑢 ∈ Σ∗, 𝑣 ∈ Σ+ andM be a family of Mealy machines computing an FWPM 𝛾.
The sequence of priorities produced byA⊲⊳(M) on 𝑢𝑣𝜔 can be written as an ultimately periodic
word 𝑟𝑠𝜔 where |𝑟𝑠| is polynomial in |𝑢𝑣| and |M|. Furthermore, 𝑟 and 𝑠 can be computed in
polynomial time.

PROOF . To simplify notation, we letA := A⊲⊳(M) and use 𝛾 to refer to the priority mapping
computed byA. Further, we assume that 𝑢𝑣 ∼ 𝑢. Otherwise, we can rewrite the representation
of 𝑢𝑣𝜔 accordingly with only a polynomial blow-up of the representation.

We decompose 𝑢𝑣𝜔 into a sequence of non-empty finite factors 𝑥0, 𝑥1 · · · by making the
next cut for each 𝑥ℎ right after the first time A emits the smallest priority 𝑖ℎ it will emit on
the remaining suffix 𝑤ℎ. Formally, we define the sequence inductively with 𝑦0 := 𝜀, 𝑤0 := 𝑢𝑣𝜔,
and if 𝑦ℎ, 𝑤ℎ with 𝑦ℎ𝑤ℎ = 𝑢𝑣𝜔 are given, we let 𝑥ℎ be the shortest prefix of 𝑤ℎ such that
𝛾(𝑦ℎ𝑥ℎ) ≤ 𝛾(𝑦ℎ𝑥) for all non-empty prefixes 𝑥 of 𝑤ℎ. Then let 𝑖ℎ := 𝛾(𝑦ℎ𝑥ℎ), 𝑦ℎ+1 := 𝑦ℎ𝑥ℎ and
𝑤ℎ+1 such that 𝑤ℎ = 𝑥ℎ𝑤ℎ+1.

We first explain why 𝑖ℎ, 𝑥ℎ can be computed in polynomial time, and why the length of
each 𝑥ℎ is polynomial in |𝑢𝑣| and |M|.

By definition, the states ofA are tuples of the form (𝑝0, . . . , 𝑝𝑘−1, 𝑐), where 𝑐 is a class of ∼
and the 𝑝𝑖 are states of DFAs whose size is bounded by the size of the Mealy machines inM.
We already know thatA only emits priorities ≥ 𝑖ℎ−1 on the remaining suffix 𝑤ℎ (letting 𝑖−1 = 0
for ℎ = 0). And after the prefix 𝑦ℎ, all components for priorities 𝑗 ≥ 𝑖ℎ−1 are set to the initial
state of the DFAs for the current ∼-class 𝑐ℎ. To determine 𝑖ℎ, we can check in increasing order
starting from 𝑗 = 𝑖ℎ−1, whetherD𝑐ℎ, 𝑗 accepts a prefix of 𝑤ℎ. By Lemma 3.20 this can be done in
polynomial time, and if there is such a prefix, its length is bounded by |𝑢| + |𝑣| |D𝑐ℎ, 𝑗 |.

We now explain why we only need to compute a polynomial number of the factors.
Since each 𝑖ℎ is the smallest priority that appears on the remaining suffix, we have 𝑖0 ≤ 𝑖1 ≤

· · · . So for ℎ ≥ 𝑘 − 1, all 𝑖ℎ are the same, say 𝑖. SinceA resets all components for priorities ≥ 𝑖
after emitting 𝑖, we get for all ℎ, ℎ′ ≥ 𝑘 with 𝑤ℎ = 𝑤ℎ′ that 𝑥ℎ = 𝑥ℎ′ . Furthermore, the sequence
of priorities emitted on the factors 𝑥ℎ and 𝑥ℎ′ is also the same because it only depends on the
states in the components for priorities ≥ 𝑖, which are reset each time that 𝑖 is emitted.

Since the 𝑤ℎ are suffixes of 𝑢𝑣𝜔, such a repetition of a suffix happens after at most |𝑢| + |𝑣|
steps. But if 𝑤ℎ = 𝑤ℎ′ and 𝑥ℎ = 𝑥ℎ′ , then also 𝑤ℎ+1 = 𝑤ℎ′+1 and thus the sequence of priorities
becomes periodic at this point.

Thus, in order to compute an ultimately periodic representation of the priority sequence of
A on 𝑢𝑣𝜔, it suffices to compute the sequence of the 𝑤ℎ, 𝑦ℎ, 𝑥ℎ, 𝑖ℎ up to a point ℎ1 such that there

28 / 47 L. Bohn and C. Löding

is ℎ0 < ℎ1 with 𝑤ℎ1 = 𝑤ℎ0 and 𝑖ℎ1 = 𝑖ℎ0 . The resulting prefix 𝑥0𝑥1 · · · 𝑥ℎ1−1 is of polynomial length
in |𝑢𝑣| and |M| according to the above explanations. Then we let 𝑟 be the priority sequence of
A on 𝑥0 · · · 𝑥ℎ0−1 and 𝑠 the priority sequence ofA on 𝑥ℎ0 · · · 𝑥ℎ1−1. These can be computed on
the fly without fully constructingA, so their computation is polynomial in |𝑢𝑣| and |M|. ■

4. Families of Right Congruences

In Section 3 we have seen that we can construct a DPA for 𝐿 from ∼𝐿 or any right congruence ∼
that refines ∼𝐿, and from Mealy machines for the colorings 𝜋∼ = (𝜋∼𝑐)𝑐∈[∼] . Our goal is to learn
such Mealy machines from given examples. For this purpose, we explain in this section how to
define the Mealy machines using the formalism of families of right congruences (FORCs) [27,

Definition 5]. We start by giving some intuition, why and how we use this formalism, and then
go into the formal details.

The usual way to obtain a method that can construct a class of transition systems in the
limit from examples, is to characterize them by a right congruence on finite words, such that
non-equivalence of two words is witnessed by a finite set of positive and negative examples for
𝐿. For example, the non-equivalence of 𝑥, 𝑦 for ∼𝐿 is witnessed by two examples 𝑥𝑢𝑣𝜔 ∈ 𝐿⇔
𝑦𝑢𝑣𝜔 ∉ 𝐿. Then an appropriate method can extract the desired transition system if enough non-
equivalences are specified by the examples. We did not manage to characterize the transition
structure of a minimal Mealy machine for a coloring 𝜋∼𝑐 in such a way. To illustrate this, consider
the case that ∼ = ∼𝐿 has only one class 𝑐, and that only the priorities 0 and 1 are used. Write 𝑃0

for 𝑃∼𝑐,0 and similarly for 𝑃1. A minimal Mealy machine for 𝜋∼𝑐 consists of an initial part that
assigns 1 to the words in 𝑃1(𝐿), and a sink state that that is reached for all words in 𝑃0(𝐿). So two
words 𝑥, 𝑦 lead to different states in this Mealy machine if and only if there is an extension 𝑧with
(𝑥𝑧 ∈ 𝑃0(𝐿) ⇔ 𝑦𝑧 ∉ 𝑃0(𝐿)). Substituting the definition of 𝑃0(𝐿), we obtain that 𝑥 and 𝑦 lead to
a different state if and only if ∃𝑧 ∈ Σ∗ : (∀𝑧′ ∈ Σ∗ : (𝑥𝑧𝑧′)𝜔 ∈ 𝐿) ⇔ (∃𝑧′ ∈ Σ∗ : (𝑦𝑧𝑧′)𝜔 ∉ 𝐿).

This characterization of non-equivalence has a universal quantifier, and thus cannot be
witnessed by a finite set of examples. However, we can use a condition that is implied by the
above one, which means that we characterize a possibly larger transition system. If 𝑥 and
𝑦 satisfy the above non-equivalence condition, then, in particular, there are 𝑧, 𝑧′ ∈ Σ∗ with
(𝑥𝑧𝑧′)𝜔 ∈ 𝐿 ⇔ (𝑦𝑧𝑧′)𝜔 ∉ 𝐿. Rewriting this with a single word 𝑧 instead of 𝑧𝑧′, we get the
condition ∃𝑧 ∈ Σ∗ : (𝑥𝑧)𝜔 ∈ 𝐿⇔ (𝑦𝑧)𝜔 ∉ 𝐿 < for non-equivalence of 𝑥 and 𝑦, which is implied
by the first condition. Generalizing this to a right congruence ∼with several classes, directly
leads to the notion of a canonical FORC for ∼, as defined below.

A family of right congruences (FORC) [27] is a tuple F = (∼, (≈𝑐)𝑐∈[∼]) such that ∼ is a right
congruence over Σ∗, each ≈𝑐 for 𝑐 ∈ [∼] is a right congruence over Σ+, and for all 𝑥, 𝑦 ∈ Σ∗ and
𝑐 ∈ [∼] it holds that 𝑥 ≈𝑐 𝑦 implies 𝑢𝑥 ∼ 𝑢𝑦, for an arbitrary element 𝑢 ∈ 𝑐. Instead of writing

29 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

𝜀'𝜀

𝑎 𝑏

𝑎𝑏𝑏𝑎

𝑎𝑏𝑎𝑏𝑏

𝑏𝑎

𝑏𝑎𝑏 𝑏𝑎𝑏𝑏

𝑏𝑏

𝑏𝑏𝑎𝑏𝑏𝑎𝑏

𝑎𝑏𝑎

𝑎 𝑏

𝑎

𝑏

𝑎
𝑏

𝑎

𝑏

𝑎

𝑏

𝑏

𝑎𝑎

𝑏 𝑎

𝑏

𝑎

𝑏

𝑎

𝑏 𝑎

𝑏

𝑎

𝑏

𝑎, 𝑏

Figure 5. The PRC ≃𝜀 of the syntactic FORC for the language from Example 3.2. The colors code the
idempotent classes that are positive (𝑎𝑏𝑎 and 𝑎) and negative.

≈𝑐 for a class 𝑐, we sometimes also write ≈𝑢 for an arbitrary word 𝑢 ∈ 𝑐. We extend ≈𝑐 from Σ+

to Σ∗ by adding a new class that contains only 𝜀.
Adopting the terminology of [22, 3], we call ∼ the leading right congruence (LRC) of F ,

and each ≈𝑐 the progress right congruence (PRC) for 𝑐. FORCs can be used as acceptors for
𝜔-languages (see [27, Definition 6], [22, Definition of LFORC], [3, Definition 6]) but since this is not
relevant for our results, we do not go into the details of it. We are interested in the canonical
FORC for 𝐿 ⊆ Σ𝜔 and an LRC ∼ that refines ∼𝐿. For 𝑢 ∈ Σ∗, we define the canonical PRC ≃𝑢 for 𝐿
and ∼ by

𝑥≃𝑢 𝑦 iff 𝑢𝑥 ∼ 𝑢𝑦 and ∀𝑧 ∈ Σ∗ : 𝑢𝑥𝑧 ∼ 𝑢⇒ (𝑢(𝑥𝑧)𝜔 ∈ 𝐿⇔ 𝑢(𝑦𝑧)𝜔 ∈ 𝐿).

The syntactic FORC of 𝐿 [27, Definition 9] is the canonical FORC for 𝐿 and ∼𝐿. As a running
example, consider the language 𝐿 from Example 3.2. Then ∼𝐿 has only one class, and the PRC
for this class is shown in Figure 5. The transition structure of the Mealy machine in Figure 2 is
obtained by merging some of the classes in the PRC.

The syntactic FORC is a canonical object for representing regular 𝜔-languages: In [27,

Theorem 22 and Theorem 24] it is shown that 𝐿 ⊆ Σ𝜔 is regular if and only if its syntactic FORC
is finite, and the syntactic FORC is the coarsest FORC with ∼𝐿 as leading right congruence that
recognizes 𝐿.

We define the size of a FORC as the sum of the sizes of the LRC and the PRC. Note that if
the syntactic FORC of 𝐿 is finite, then also the canonical PRCs for each ∼ that refines 𝐿 are finite,
as a direct consequence of the definition of the canonical FORC for ∼.

We now explain how we can use the PRCs ≃𝑐 of the canonical FORC for 𝐿 and ∼ in order to
obtain a Mealy machine for the priority mappings 𝜋∼𝑐 . So in the following, let 𝐿 ⊆ Σ𝜔 be regular
with parity complexity 𝑘, let ∼ be a refinement of ∼𝐿, and let ≃𝑐 be the canonical PRC for each
class 𝑐 of ∼. We call a class [𝑥]≃𝑐 with 𝑥 ∈ 𝐸𝑐 positive if 𝑥𝜔 ∈ 𝐿𝑐, and negative otherwise (by the

30 / 47 L. Bohn and C. Löding

definition of ≃𝑐 this is independent of the chosen word from the class). In the example from
Figure 5, the positive classes are the ones of 𝑎, 𝑎𝑏, 𝑏𝑎, and 𝑎𝑏𝑎.

We define a coloring 𝜅𝑐 on the classes of≃𝑐 (so on the states of the transition system defined
by ≃𝑐) such that the Mealy machine that outputs the color of its target state on each transition
defines 𝜋∼𝑐 (see Lemma 4.2). For this coloring, idempotent classes of ≃𝑐 play a central role. We
call a word 𝑥 ∈ Σ+ idempotent in ≃𝑐 if 𝑥 ∈ 𝐸𝑐 and 𝑥 ≃𝑐 𝑥𝑥. The following lemma states two useful
properties on idempotent words in ≃𝑐.

LEMMA 4.1. If 𝑥 ∈ Σ+ is idempotent in ≃𝑐, then each 𝑦 ∈ Σ+ with 𝑦 ≃𝑐 𝑥 is idempotent in ≃𝑐.
Furthermore, for each 𝑥 ∈ 𝐸𝑐, there is a number 𝑛 ≥ 1 such that 𝑥𝑛 is idempotent in ≃𝑐.

PROOF . We begin with the first claim. Let 𝑢 ∈ 𝑐. First note that 𝑦 ∈ 𝐸𝑐 because 𝑥 ∈ 𝐸𝑐 and
𝑦 ≃𝑐 𝑥 implies 𝑢𝑥 ∼ 𝑢𝑦. For showing 𝑦 ≃𝑐 𝑦 𝑦, consider 𝑧 ∈ Σ+ with 𝑢𝑦𝑧 ∼ 𝑢. Then

𝑢(𝑦𝑧)𝜔 ∈ 𝐿 ⇔ 𝑢(𝑥𝑧)𝜔 ∈ 𝐿 because 𝑦 ≃𝑐 𝑥
⇔ 𝑢(𝑥𝑥𝑧)𝜔 ∈ 𝐿 as 𝑥 ∈ 𝐸𝑐 is idempotent

⇔ 𝑢(𝑦𝑥𝑧)𝜔 ∈ 𝐿 𝑦 ≃𝑐 𝑥
⇔ 𝑢𝑦(𝑥𝑧 𝑦)𝜔 ∈ 𝐿 𝑢𝑦 ∼ 𝑢 and ∼ refines ∼𝐿
⇔ 𝑢𝑦(𝑦𝑧 𝑦)𝜔 ∈ 𝐿 𝑦 ≃𝑐 𝑥
⇔ 𝑢(𝑦 𝑦𝑧)𝜔 ∈ 𝐿 as 𝑢𝑦 ∼ 𝑢 and ∼ refines ∼𝐿.

We now show the second claim. Since ≃𝑐 has finitely many classes, there are 𝑛1, 𝑛2 ≥ 1
such that 𝑥𝑛1 ≃𝑐 𝑥𝑛1+𝑛2 . Then it is not hard to see that for 𝑛 := 𝑛1𝑛2 we have 𝑥𝑛 ≃ 𝑥2𝑛. ■

Accordingly, we call a class of≃𝑐 idempotent if one (and hence all) of its members are idempotent.
In the example PRC in Figure 5, the only non-idempotent classes are the classes of 𝑏, 𝑎𝑏 and 𝑏𝑎.

The algorithm for computing 𝜅𝑐 considers positive and negative idempotent classes (the
classification of non-idempotent classes as positive or negative does not play any role). In the
example from Figure 5, the positive idempotent classes are the ones of 𝑎 and 𝑎𝑏𝑎. The other
two positive classes 𝑎𝑏 and 𝑏𝑎 are not idempotent.

Now let 𝜅𝑐 : [≃𝑐] → {0, . . . , 𝑘} be defined by
𝜅𝑐([𝑥]≃𝑐) = 0 if there is no 𝑧 such that [𝑥𝑧]≃𝑐 is a negative idempotent class. In other words,
if no negative idempotent class is reachable from 𝑥.
Let 𝑖 ≥ 1 and assume that 𝜅𝑐 has already been defined for all values {0, . . . , 𝑖 − 1}. Then
𝜅𝑐([𝑥]≃𝑐) = 𝑖 for 𝑖 ≥ 1 if each idempotent class of the form [𝑥𝑧]≃𝑐

either already has a 𝜅𝑐 value less than 𝑖,
or is positive iff 𝑖 is even.

In the example from Figure 5, the class of 𝑎𝑏𝑎 is assigned 0. Then all remaining classes of words
that contain 𝑏 are assigned value 1, and finally, the class of 𝑎 is assigned 2.

31 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

The following lemma shows that this indeed gives the desired coloring of Σ+. In particular,
all classes of ≃𝑐 are assigned a value by the above procedure.

LEMMA 4.2. For all 𝑥 ∈ Σ+: 𝜅𝑐(𝑥) = 𝑖 if and only if 𝜋∼𝑐 (𝑥) = 𝑖.

PROOF . The proof goes by induction on 𝑖. For the base case, note that 𝑥 ∈ 𝑃∼𝑐,0(𝐿) if and only if
(𝑥𝑧)𝜔 ∈ 𝐿𝑐 for all 𝑧 ∈ Σ∗ with 𝑥𝑧 ∈ 𝐸𝑐. In particular, this means that all idempotent classes of ≃𝑐
that are reachable from the class of 𝑥, and hence contain a word of the form 𝑥𝑧, must be positive.
So 𝜅𝑐 assigns 0 to all classes [𝑥]≃𝑐 with 𝜋∼𝑐 (𝑥) = 0. Vice versa, if no negative idempotent classes
are reachable from the class of 𝑥, then (𝑥𝑧)𝜔 ∈ 𝐿𝑐 for all 𝑧 ∈ Σ∗ with 𝑥𝑧 ∈ 𝐸𝑐 (if (𝑥𝑧)𝜔 ∉ 𝐿𝑐, then
it has an idempotent (𝑥𝑧)𝑛 as prefix by Lemma 4.1, which would then be negative).

Now let 𝑖 ≥ 1 and assume by induction that 𝜅𝑐 and 𝜋∼𝑐 coincide for all values less than 𝑖.
The proof is a simple reasoning using the definitions of 𝜅𝑐 and 𝜋∼𝑐 .

Let 𝑥 ∈ Σ+. If 𝜋∼𝑐 (𝑥) = 𝑖, then we already know by induction that 𝜅𝑐(𝑥) ≥ 𝑖. We show that
𝜅𝑐(𝑥) = 𝑖. Consider an idempotent class that is reachable from the class of 𝑥. This class is of the
form [𝑥𝑧]≃𝑐 for some 𝑧 with 𝑥𝑧 ∈ 𝐸𝑐. By definition, 𝜋∼𝑐 (𝑥) = 𝑖 implies that for each 𝑧 ∈ Σ∗ with
𝑥𝑧 ∈ 𝐸𝑐, either (𝑥𝑧)𝜔 has a prefix in 𝑃∼𝑐,𝑖−1(𝐿), or ((𝑥𝑧)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 is even). In the first
case, if (𝑥𝑧)𝜔 has a prefix in 𝑃∼𝑐,𝑖−1(𝐿), then there is an 𝑛 such that 𝜋∼𝑐 ((𝑥𝑧)𝑛) ≤ 𝑖 − 1 (because 𝜋∼𝑐
is weak). Then by induction also 𝜅𝑐((𝑥𝑧)𝑛) ≤ 𝑖 − 1. Since 𝑥𝑧 is idempotent, we have 𝑥𝑧 ≃𝑐 (𝑥𝑧)𝑛,
and thus also 𝜅𝑐(𝑥𝑧) ≤ 𝑖 − 1. In the second case, ((𝑥𝑧)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 is even), the class
of 𝑥𝑧 is positive if and only if 𝑖 is even. Hence, each idempotent class that is reachable from 𝑥

either has a 𝜅𝑐 value smaller than 𝑖 or is positive if and only if 𝑖 is even. Hence 𝜅𝑐(𝑥) = 𝑖.
For the other direction, assume that 𝜅𝑐(𝑥) = 𝑖 and show that 𝜋∼𝑐 (𝑥) = 𝑖. By induction,

𝜋∼𝑐 (𝑥) ≥ 𝑖, which means that 𝑥 ∉ 𝑃∼𝑐,𝑖−1. Let 𝑧 ∈ Σ∗ be such that 𝑥𝑧 ∈ 𝐸𝑐. Let 𝑛 be such that the
class of (𝑥𝑧)𝑛 is idempotent (by Lemma 4.1). Since 𝜅𝑐(𝑥) = 𝑖, the class of (𝑥𝑧)𝑛 has a 𝜅𝑐-value
less than 𝑖, or it is positive if and only if 𝑖 is even. In the first case, we get by induction that
(𝑥𝑧)𝑛 ∈ 𝑃∼𝑐,𝑖−1. In the second case, ((𝑥𝑧)𝑛)𝜔 = (𝑥𝑧)𝜔 ∈ 𝐿𝑐 if and only if 𝑖 is even. So 𝑥 ∈ 𝑃∼𝑐,𝑖 and
hence 𝜋∼𝑐 (𝑥) = 𝑖. ■

If there are a negative and a positive idempotent class in the same SCC of a PRC, then none
of them will satisfy the conditions for being assigned value 𝑖 by 𝜅𝑐. This contradicts the fact that
every class is assigned a value as a consequence of Lemma 4.2. We use this structural property
of the PRCs in Section 5, and hence state it as a lemma.

LEMMA 4.3. If two idempotent classes in a PRC of a canonical FORC are in the same SCC, then
both are positive or both are negative. Furthermore, two classes in the same SCC of ≃𝑐 have the
same 𝜅𝑐-value.

As a consequence of Lemma 4.2, we obtain a construction from canonical FORCs to DPAs
that is only exponential in the parity complexity of the language, improving the upper bound

32 / 47 L. Bohn and C. Löding

from [2, Proposition 5.9] that is exponential in the size of the FORC (the statement in [2] is about
saturated families of DFAs, which are basically refinements of canonical FORCs up to some
small details).

THEOREM 4.4. Let 𝐿 be a regular 𝜔-language of parity complexity 𝑘, ∼ be a right congruence
that refines ∼𝐿, and (∼, (≈𝑐)𝑐∈[∼]) be the canonical FORC for 𝐿 and ∼. Then the precise DPAA∼𝐿
for 𝐿 and ∼ has at most 𝑛𝑘 states, where 𝑛 is the size of the FORC.

PROOF . The Mealy machine obtained from the PRC ≃𝑐 by using the transition structure of ≃𝑐
and assigning the 𝜅𝑐-value of the target state to a transition computes 𝜋∼𝑐 according to Lemma 4.2.
Denote the resulting family of Mealy machines byM. Then A⊲⊳(M) computes the priority
mapping 𝜋∼⊲⊳ and thus accepts 𝐿 by Lemma 3.16. Since each ≃𝑐 refines ∼ by definition, the
component for ∼ in the construction ofA⊲⊳(M) is not required (and even if it is used it does
not blow up the state space). The states used for the component of priority 𝑖 inA⊲⊳(M) is the
sum of the states of theD𝑐,𝑖 , each of which has size bounded by the size of ≃𝑐. So the number of
states used for the component of priority 𝑖 is at most 𝑛. Hence, the size ofA⊲⊳(M) is bounded
by 𝑛𝑘. ■

Our completeness result for the learning algorithm uses the fact that we can infer the
syntactic FORC of a language if the sample contains enough information. For bounding the
number of required examples, we give an upper bound on the size of the syntactic FORC for 𝐿
in the size of a DPA for 𝐿.

PROPOS IT ION 4.5. LetA be a normalized DPA with priorities {0, . . . , 𝑘 − 1} recognizing the
language 𝐿 ⊆ Σ𝜔 and ∼ be a right congruence with ∼A ⪯ ∼ ⪯ ∼𝐿. Let 𝑚 be the number of ∼-classes,
and 𝑑 such that for each class 𝑐 of ∼ there are at most 𝑑 many 𝑐-states inA. Then for the canonical
FORC of 𝐿 with LRC ∼, the size of each PRC is at most 𝑚(𝑑𝑘)𝑑 .

PROOF . LetA = (𝑄, Σ, 𝑞0, 𝛿, 𝜅), let 𝑐 be a class of ∼, and let ≃𝑐 be the canonical PRC for 𝑐. Let
𝑄𝑐 ⊆ 𝑄 be the set of 𝑐-states ofA. Then by assumption |𝑄𝑐 | ≤ 𝑑. For 𝑥 ∈ Σ∗ define the function
Δ𝑐,𝑥 : 𝑄𝑐 → 𝑄 × {0, . . . , 𝑘 − 1} by induction on the length of 𝑥 by Δ𝑐,𝜀(𝑞) = (𝑞, 𝑘 − 1) and for
𝑥 = 𝑥′𝑎 with Δ𝑐,𝑥′ (𝑞) = (𝑞′, 𝑖) let Δ𝑐,𝑥′𝑎(𝑞) = (𝛿(𝑞′, 𝑎),min(𝑖, 𝜅(𝑞, 𝑎))).

If two words 𝑥, 𝑦 ∈ Σ+ with 𝑢𝑥 ∼ 𝑢𝑦 define the same function Δ𝑐,𝑥 = Δ𝑐, 𝑦, then 𝑥 ≃𝑐 𝑦. To
see this, let 𝑢 ∈ 𝑐, and 𝑧 ∈ Σ∗ such that 𝑢𝑥𝑧 ∼ 𝑢. For verifying 𝑢𝑥 ∼ 𝑢𝑦, let 𝑞 := 𝛿∗(𝑞0, 𝑢) ∈ 𝑄𝑐. By
assumption Δ𝑐,𝑥 (𝑞) = Δ𝑐, 𝑦 (𝑞) =: (𝑞′, 𝑖). Thus, 𝛿∗(𝑞0, 𝑢𝑥) = 𝛿∗(𝑞0, 𝑢 𝑦) = 𝑞′, and hence 𝑢𝑥 ∼ 𝑢𝑦.

For verifying (𝑢(𝑥𝑧)𝜔 ∈ 𝐿⇔ 𝑢(𝑦𝑧)𝜔 ∈ 𝐿), consider the runs ofA on the two words. On 𝑢
they are the same. On 𝑥 and 𝑦 they might differ, but they reach the same state and see the same
minimal priority on the way (because Δ𝑐,𝑥 = Δ𝑐, 𝑦). On 𝑧 they agree again, so they are in the same
state after 𝑢𝑥𝑧 and 𝑢𝑦𝑧. Since 𝑢𝑥𝑧 ∼ 𝑢, this state is in 𝑄𝑐. We can now repeat this argument, so
the two runs only differ on the parts resulting from the 𝑥, respectively 𝑦, segments of the word.

33 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

But on these segments, the same minimal priority is visited. Hence, the minimal priority that
appears infinitely often is the same in the two runs.

Since ∼A refines ∼, Δ𝑐,𝑥 (𝑞1) and Δ𝑐,𝑥 (𝑞2) are ∼-equivalent for all 𝑞1, 𝑞2 ∈ 𝑄𝑐. Hence, all the
states in the image of Δ𝑐,𝑥 are ∼-equivalent. This implies that there are at most 𝑚(𝑑𝑘)𝑑 different
possible functions for Δ𝑐,𝑥 . Hence, the number of classes in ≃𝑐 on Σ+ is bounded by 𝑚(𝑑𝑘)𝑑 . ■

5. DPA learner

In this section, we introduce the passive learner DPAInf (for “DPA inference”), which constructs
in polynomial time a DPA that is consistent with a given input sample. Furthermore, the learner
is designed in such a way that it can infer a DPA for every regular 𝜔-language 𝐿, given that the
sample contains enough information on 𝐿 (which is made precise in the proof of Theorem 5.7).

Throughout this section, we assume 𝑆 = (𝑆+, 𝑆−) is a finite 𝜔-sample of ultimately periodic
words. The overall idea of the algorithm is to first infer a FORC from 𝑆 (step 1), color it according
to the procedure outlined in Section 4 (step 2), and then construct the precise DPA from it as
in Theorem 4.4. However, the upper bound on the size of the precise DPA is exponential (in
the number of priorities) compared to the size of the FORC, and further, even if the precise
DPA is small, the construction might produce a large intermediate result before minimizing
the DPA as a Mealy machine that emits priorities. For this reason, the step that transforms the
coloring on the FORC into a DPA is split up into two parts (steps 3 and 4 of the algorithm). In
step 3, the coloring of the precise DPA on prefixes of the sample is computed. This can be done
in polynomial time thanks to Lemma 3.21. In step 4 an active learner for Mealy machines is
used, where the oracle answers queries based on the coloring computed in step 3. This ensures
that no large intermediate result is produced and that the computation remains polynomial in
the size of the sample.

Note that these descriptions are given under the assumption that the sample contains
enough information from an underlying language 𝐿 for inferring the correct objects in each
step. However, the algorithm has to produce some DPA that is consistent with the sample in
polynomial time, even if the sample does not fully characterize the objects required by our
algorithm. In such situations, it might happen that intermediate results are inconsistent with
the sample. For example, in step 1 the algorithm might not be able to infer a FORC that is
consistent with the sample, or in step 3, the coloring on the prefixes of the sample might not
be consistent with the sample. In such cases, the algorithm defaults, for that step, to a simple
structure that is guaranteed to be consistent with the sample, such that it can proceed with
the next step. In such situations, one could also immediately return some default DPA that is
consistent with the sample. We decided to return default structures for the corresponding step
because then the algorithm still might generalize from the sample in the following steps.

34 / 47 L. Bohn and C. Löding

Input: A function cons and a complete TS T0, where
cons maps a partial TS to a boolean
T0 serves as default and verifies cons(T0) = true.

Output: A complete TS T with cons(T) = true and |T | ≤ |T0 |.
1: 𝑄← {𝜀}, 𝛿← ∅,T ← (𝑄, Σ, 𝛿, 𝜀)
2: while T is not complete do
3: if |T | > |T0 | then return T0
4: 𝑝𝑎← llex. minimal word in 𝑄Σ such that 𝛿(𝑝, 𝑎) is undefined
5: foreach 𝑞 ∈ 𝑄 in length-lexicographic order do
6: 𝛿′← 𝛿 ∪ {𝑝 𝑎−→ 𝑞}
7: if cons((𝑄, Σ, 𝜀, 𝛿′)) returns true then
8: 𝛿← 𝛿′

9: continue with next iteration of while loop

10: 𝑄← 𝑄 ∪ {𝑝𝑎}, 𝛿← 𝛿 ∪ {𝑝 𝑎−→ 𝑝𝑎}
11: return T

Algorithm 1. GLeRC

We later show that if 𝑆 contains enough information on the language 𝐿, then the syntactic
FORC and thus the precise coloring will be inferred, and that the construction of the DPA
from the coloring will result in a correct DPA for 𝐿 whose size is bounded by the precise DPA
(Theorem 5.7).

The theoretical foundations for the steps 2,3,4 have been developed in the previous sections.
We now give more details on the first step, and then describe the learning algorithm.

For learning the FORC, we use the procedure Greedily Learn Right Congruence (GLeRC),
which can be seen in Algorithm 1. It receives as input a consistency function cons and incre-
mentally constructs a TS T by adding missing transitions, first trying existing states as targets in
canonical order. After inserting a transition to a potential target, GLeRC verifies whether cons is
satisfied. If yes, GLeRC keeps the transition and proceeds to the next iteration. Otherwise, if no
existing state works, GLeRC adds a new state as target for the transition. To ensure termination,
GLeRC has a second input, which is a fallback transition system T0. If the constructed TS T
exceedsT0 in size at any point, the algorithm terminates and returnsT0. This guarantees runtime
that is polynomial in the execution time of cons and in the size of T0, since GLeRC attempts to
insert at most polynomially many transitions.

35 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

PROPOS IT ION 5.1. For a consistency function cons and a complete transition system T0 with
cons(T0) = true, the algorithm GLeRC computes a complete TS T such that cons(T) = true in
time polynomial in the runtime of cons and the size of T0.

Before we go into the details of how we instantiate GLeRC in our setting for learning the
congruences of a FORC, let us briefly comment on the default transition system that is used for
ensuring termination. The algorithm GLeRC has emerged as an abstract version of the learning
algorithm Sprout for deterministic 𝜔-automata presented in [8], which itself can be seen as
an extension of the RPNI algorithm for learning DFAs from samples of finite words [30]. The
instantiation of GLeRC that corresponds to the RPNI algorithm for samples of finite words does
not require a default transition system, because after polynomially many steps all finite words
from the sample do have a path that completely lies inside the constructed transition system,
and after that point no new states will be created by GLeRC. In the context of 𝜔-words, however,
this is not necessarily the case: It was established in [8, Proposition 10] that there exist samples
for which the Sprout algorithm does not terminate without the use of a default transition
system. While this example does not directly apply to the instantiations of GLeRC that we use
below, there are no easy termination arguments in the setting of 𝜔-words as it is the case for
finite words. For this reason, we use the default transition system. This allows us to cover
existing algorithms in a unified form, and it gives an easy termination argument.

Let us now describe how we instantiate GLeRC for learning the congruences of a FORC.
The cons functions that we pass to GLeRC, verify that the constructed TS satisfies certain notions
of consistency with the sample, which relativize the definitions of the canonical FORC and its
coloring from Section 4 to a sample 𝑆 (Definition 5.2). In Lemma 5.3 and Lemma 5.4 we show
that these consistency checks can be performed in polynomial time. We then combine these
two consistency notions into a notion of consistency of a sample with a FORC (Definition 5.5),
followed by a short description of the default transition system that we use in combination
with the two consistency functions. This allows us to subsequently use the GLeRC algorithms
with different cons functions for inferring the leading and progress right congruences in step 1
of the learning algorithm. As we see later in the proof of Theorem 5.7, for these consistency
functions there are simple arguments for showing that the appropriate transition systems are
inferred in the limit.

DEF IN IT ION 5.2. Let 𝑆 = (𝑆+, 𝑆−) be an 𝜔-sample and T be a partial transition system. Two
words 𝑥, 𝑦 ∈ Σ∗ are separated by T , if T (𝑥) or T (𝑦) is undefined, or if T (𝑥) ≠ T (𝑦).

We call T MN-consistent with 𝑆, if for all 𝑥𝑢𝑣𝜔 ∈ 𝑆+, 𝑦𝑢𝑣𝜔 ∈ 𝑆−, the prefixes 𝑥 and 𝑦 are
separated by T , and
say that T is iteration consistent with (𝑆,∼, 𝑐), where ∼ represents a complete transition
system that is MN-consistent with 𝑆 and 𝑐 is a class of ∼, if for all 𝑥𝑧, 𝑦𝑧 ∈ 𝐸∼𝑐 with
(𝑥𝑧)𝜔 ∈ 𝑆+, (𝑦𝑧)𝜔 ∈ 𝑆− holds that 𝑥 and 𝑦 are separated by T

36 / 47 L. Bohn and C. Löding

A check for MN-consistency is part of the consistency checks in the learning algorithms
from [8]. For making the paper self-contained, we nevertheless describe a possible algorithm
below. For showing that MN- and iteration consistency can be verified in polynomial time, we
reduce the problems to a unified setting, which can be solved by performing a polynomial
number of reachability analyses. Specifically, we construct two DFAs A1,A2 and a conflict
relation 𝐶 ⊆ 𝑄1 × 𝑄2 from the sample, to encode the pairs of words 𝑥, 𝑦 which are not allowed
to lead to the same state in a consistent transition system T . Now we can check for consistency
of T by verifying for all 𝑥, 𝑦 ∈ Σ∗, that (𝛿∗1(𝜄1, 𝑥), 𝛿∗2(𝜄2, 𝑦)) ∈ 𝐶 implies that 𝑥 and 𝑦 do not lead
to the same state in T . In other words T is not consistent if and only if there is some 𝑞 in T
such that (𝑞, 𝑞1) and (𝑞, 𝑞2) are reachable in T × A1 and T × A2, respectively, and (𝑞1, 𝑞2) ∈ 𝐶.
This can clearly be checked in time polynomial in the size of |T |, |A1 | and |A2 |. In the proof of
the following two lemmas, we thus only need to show that suitable DFAsA1,A2 and a conflict
relation 𝐶 can be constructed in polynomial time.

LEMMA 5.3. It can be verified in polynomial time whether a (partial) transition system T is
MN-consistent with an 𝜔-sample 𝑆.

PROOF . We construct DFAs A1,A2 such that A1 and A2 accept all prefixes of 𝑆+ and 𝑆−,
respectively. This can easily be done by using the prefix trees for 𝑆+, respectively 𝑆−, and
attaching a loop for the periodic part once the prefix uniquely identifies the example. All states
of the resulting transition system are accepting. Missing transitions are directed into a rejecting
sink state.

A pair (𝑞1, 𝑞2) of states with 𝑞𝑖 ∈ A𝑖 for 𝑖 ∈ {1, 2} is in the conflict relation 𝐶, if there exists
an infinite run in the product automatonA1 × A2, which starts in (𝑞1, 𝑞2) and stays in 𝐹1 × 𝐹2.
Checking for the existence of such an infinite run starting in a pair (𝑞1, 𝑞2) can be done by
restricting the product to 𝐹1×𝐹2 and searching for a loop. As the productA1×A2 is polynomial
in 𝑆, the construction of 𝐶 is clearly possible in polynomial time.

To see that the construction is correct, let 𝑞 be a state of T such that (𝑞, 𝑞1) and (𝑞, 𝑞2) are
reachable in T × A1 and T × A2, respectively, and (𝑞1, 𝑞2) ∈ 𝐶. Further, let 𝑟1, 𝑟2 ∈ Σ∗ be such
that T ×A𝑖 reaches (𝑞, 𝑞𝑖) when reading 𝑟𝑖 from the initial state. As (𝑞1, 𝑞2) ∈ 𝐶, there exists an
infinite run from (𝑞1, 𝑞2) inA1 ×A2, which stays in 𝐹1 × 𝐹2. This means for some 𝑥 ∈ Σ∗, 𝑦 ∈ Σ+

we have (𝑞1, 𝑞2) 𝑥−→ (𝑝1, 𝑝2)
𝑦−→ (𝑝1, 𝑝2) while only visiting states from 𝐹1 × 𝐹2. Then 𝑟1𝑥 𝑦𝜔 ∈ 𝑆+

and 𝑟2𝑥 𝑦𝜔 ∈ 𝑆− and because 𝑟1 and 𝑟2 reach the same state in T , T cannot be MN-consistent
with 𝑆.

For the other direction, assume that T is not MN-consistent with 𝑆. This means there exist
𝑥𝑤, 𝑦𝑤 ∈ 𝑆 with 𝑥𝑤 ∈ 𝑆+ and 𝑦𝑤 ∈ 𝑆−, but 𝑥 and 𝑦 lead to the same state 𝑞 in T . The pair
(𝑞1, 𝑞2) := (𝛿∗1(𝜄1, 𝑥), 𝛿∗2(𝜄2, 𝑦)) is in 𝐶, because for each prefix 𝑧 of𝑤, 𝑥𝑧, 𝑦𝑧 ∈ Prf 𝑆, guaranteeing
that there exists an infinite run that starts in (𝑞1, 𝑞2) and remains in 𝐹1 × 𝐹2.

37 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

Overall, T is not MN-consistent with 𝑆, if and only if there is some 𝑞 in T such that (𝑞, 𝑞1)
and (𝑞, 𝑞2) are reachable in T × A1 and T × A2, respectively, and (𝑞1, 𝑞2) ∈ 𝐶. As the sizes
of A1,A2 and 𝐶 are polynomial in |𝑆 |, it follows from the remarks preceding this proof that
MN-consistency can be checked in polynomial time. ■

LEMMA 5.4. For a given finite 𝜔-sample 𝑆, a right congruence ∼whose TS is MN-consistent with
𝑆, a class 𝑐 of ∼, and a partial TS T , it can be checked in polynomial time whether T is iteration
consistent with (𝑆,∼, 𝑐).

PROOF . The proof of this lemma is analogous to the preceding Lemma 5.3, but differs in the
construction of theA1,A2 and the conflict relation. We build the DFAs such that

A1 accepts a word 𝑥 if 𝑥 ∈ 𝐸∼𝑐 and 𝑥𝜔 ∈ 𝑆+, whereas
A2 accepts 𝑥 if 𝑥 ∈ 𝐸∼𝑐 and 𝑥𝜔 ∈ 𝑆−.

For the construction of the A𝑖 , let �̌�𝜎 for 𝜎 ∈ {+,−} be the set consisting of all 𝑦 such that 𝑦
is a shortest word with 𝑦𝜔 ∈ 𝑆𝜎. For computing the sets �̌�𝜎, one can consider each 𝑢𝑣𝜔 in 𝑆,
check whether it is periodic, and if yes, compute the shortest 𝑦 with 𝑦𝜔 = 𝑢𝑣𝜔. This can be done,
for example, by building a DFA that accepts precisely the prefixes of 𝑢𝑣𝜔 (using the prefixes of
𝑢𝑣 as states, identifying the states for 𝑢 and 𝑢𝑣). This DFA can be minimized, and then 𝑢𝑣𝜔 is
periodic if and only if the minimal DFA consists of a loop of accepting states (with one rejecting
sink). The label sequence of this loop gives the shortest word 𝑦. One can also use other methods
for computing �̌�𝜎, for example the characterization of minimal representations of ultimately
periodic words from [23, Proposition 4.42].

Now it is not hard to see that the words 𝑥 with 𝑥𝜔 ∈ 𝑆𝜎 are precisely those of the form 𝑦𝑛

with 𝑦 ∈ �̌�𝜎. To see that, note that 𝑥𝜔 ∈ 𝑆𝜎 implies that 𝑥𝜔 = 𝑦𝜔 for some 𝑦 ∈ �̌�𝜎. So 𝑥 must be
of the form 𝑦𝑛𝑧 with 𝑧 a strict prefix of 𝑦. If 𝑧 ≠ 𝜀, this would imply that 𝑧𝜔 = 𝑦𝜔, contradicting
the fact that 𝑦 is the shortest word representing 𝑦𝜔.

With these observations, it is then easy to build the DFAsA1,A2: The states are prefixes of
𝑦𝜔 for 𝑦 ∈ �̌�𝜎 (with 𝜎 = + forA1, and 𝜎 = − forA2). For the least 𝑘 such that 𝑦𝑘 is not a prefix
of another (𝑦′)𝜔 anymore, start looping on 𝑦. Finally, we intersect the resulting automata with
DFAs for 𝐸∼𝑐 , which can be directly obtained from the transition structure of ∼ by using 𝑐 as
initial and final state (since the DFAs that we built from �̌�𝜎 only accept non-empty words, we
do not need to exclude the empty word in the DFA for 𝐸∼𝑐). Overall, the size of the resulting
automata is clearly polynomial in |𝑆 |.

The conflict relation is the least relation 𝐶 over 𝑄1 × 𝑄2 containing 𝐹1 × 𝐹2 and verifying
that (𝛿1(𝑞1, 𝑎), 𝛿2(𝑞2, 𝑎)) ∈ 𝐶 implies (𝑞1, 𝑞2) ∈ 𝐶. The relation 𝐶 can be obtained by a fixpoint
iteration, ensuring that the number of iterations is bounded by |𝑄1 ×𝑄2 |. Thus, the computation
of 𝐶 is possible in polynomial time.

For the correctness of the construction, let 𝑞 be a state of a partial TS T which is MN-
consistent with 𝑆. Further, let (𝑞, 𝑞1) and (𝑞, 𝑞2) with (𝑞1, 𝑞2) ∈ 𝐶 be reachable on 𝑟1 in T × A1

38 / 47 L. Bohn and C. Löding

𝜀 𝑎

𝑎𝑎

𝑎𝑏 𝑎𝑏𝑏

𝑎
𝑎

𝑏

𝑎

𝑏

𝑎

Figure 6. An example for the construction of a default structure ∼𝑆 for the sample 𝑆 containing only the
examples 𝑎𝜔 and 𝑎𝑏(𝑏𝑎)𝜔. Note, that the classification of these words is not relevant for the definition
of the default structure ∼𝑆, which is why we omit it from this description.

and on 𝑟2 in T × A2, respectively. As (𝑞1, 𝑞2) ∈ 𝐶, there must exist some word 𝑥 ∈ Σ∗ such that
(𝑝1, 𝑝2) := (𝛿∗1(𝑞1, 𝑥), 𝛿∗2(𝑞2, 𝑥)) ∈ 𝐹1 × 𝐹2. This means 𝑟1𝑥, 𝑟2𝑥 ∈ 𝐸∼𝑐 and (𝑟1𝑥)𝜔, (𝑟2𝑥)𝜔 ∈ 𝑆 with
((𝑟1𝑥)𝜔 ∈ 𝑆+ ⇔ (𝑟2𝑥)𝜔 ∈ 𝑆−). But then because 𝑟1 and 𝑟2 reach the same state in T , it follows
that T is not iteration consistent with (𝑆,∼, 𝑐).

For the other direction, assume that T is MN-consistent with 𝑆 but not iteration consistent
with (𝑆,∼, 𝑐). This means we can find 𝑥𝑧, 𝑦𝑧 ∈ 𝐸∼𝑐 such that (𝑥𝑧)𝜔 ∈ 𝑆+, (𝑦𝑧)𝜔 ∈ 𝑆− and 𝑥, 𝑦
lead to the same state 𝑝 in T . Clearly it holds that (𝑞1, 𝑞2) := (𝛿∗1(𝑥𝑧), 𝛿∗2(𝑦𝑧)) ∈ 𝐹1 × 𝐹2 ⊆ 𝐶.
Moreover, our definition of 𝐶 ensures that removing the common suffix 𝑧 from both words
retains membership in 𝐶, meaning (𝛿∗1(𝑥), 𝛿∗2(𝑦)) ∈ 𝐶.

Overall, we obtain that T is not iteration consistent with (𝑆,∼, 𝑐), if and only if there is
some 𝑞 in T such that (𝑞, 𝑞1) and (𝑞, 𝑞2) are reachable in T ×A1 and T ×A2, respectively, and
(𝑞1, 𝑞2) ∈ 𝐶. As A1,A2 and 𝐶 can be constructed in polynomial time, checking for iteration
consistency effectively reduces to computing the reachable states in the two products T × A1

andT ×A2 and checking whether a pair with the properties outlined above exists. This is clearly
possible in time polynomial in the size of |T |, |A1 | and |A2 |, thus concluding the proof. ■

We now combine the notions of MN- and iteration consistency to define the conditions
under which a FORC is consistent with a sample.

DEF IN IT ION 5.5. A FORC (∼, (≈𝑐)𝑐∈[∼]) is consistent with 𝑆 if
∼ is MN-consistent with 𝑆 and
for each 𝑐 ∈ [∼], ≈𝑐 is MN-consistent with 𝑆𝑐 and iteration consistent with (𝑆𝑐,∼, 𝑐), where
𝑆𝑐 = (𝑆𝑐,+, 𝑆𝑐,−) and 𝑆𝑐,𝜎 = {𝑢𝑣𝜔 | ∃𝑥 ∈ 𝑐 with 𝑥𝑢𝑣𝜔 ∈ 𝑆𝜎} for 𝜎 ∈ {+,−}.

In the following, we outline how default structures that are MN- and iteration consistent
with a given sample 𝑆 can be constructed. An illustration for this construction can be seen in
Figure 6. For a given sample 𝑆, we can construct default structures that are MN- and iteration
consistent as follows. Consider the prefix tree of 𝑆, to which we add one sink state for words that
are not prefixes of 𝑆, and loops on the shortest words which are prefix of exactly one example
word. Formally, we define ∼𝑆 as 𝑥 ∼𝑆 𝑦 if 𝑥, 𝑦 ∉ Prf (𝑆) or we have 𝑥−1𝑆 = 𝑦−1𝑆 and |𝑥−1𝑆 | = 1. It

39 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

input
𝑆 = (𝑆+, 𝑆−)

∼
consistent with 𝑆

FORC (∼, (≈𝑐)𝑐∈[∼])
consistent with 𝑆

Family of MMsM
for FWPM that captures

the periodic part of (𝑆,∼)

DPA B consistent with
𝑆, which computesA⊲⊳(M)

on the prefixes of 𝑆

Active learner
for Mealy Machines

outputHeq
ui

v
no

,c
.e

x.
𝑢 if consistent

with 𝑆

ou
tp

ut

𝑢

     B(
𝑢
)i

f𝑢
∈P

rf
(𝑆
)

0
el

se

1

2

3

4

GLeRC

GLeRC

coloring
Section 4

Lemma 3.21

Figure 7. Schematic view of the DPAInf algorithm, details for each step are in the text.

is not hard to see that the size of ∼𝑆 is polynomial in |𝑆 |, see for example [9, Appendix B]. Further,
∼𝑆 is MN- and iteration consistent with 𝑆 because it separates all words 𝑥, 𝑦 that are prefixes of
different words in 𝑆, which directly implies that the conditions from Definition 5.2 are satisfied.

Formal description of the learner The learner that we propose consists of several steps
(which are sketched at beginning of this Section 5). An overview of the algorithm can be
found in Figure 7. Roughly speaking, it extracts a FORC from the given sample, colors it using
the algorithm from Section 4, builds a family of Mealy machines for weak priority mappings
capturing the periodic part of the sample, and then uses an active learner for Mealy machines
for joining the learned FWPM. In the following, we explain each step of the learner DPAInf
in more detail. The full arguments why this results in a polynomial time consistent learner
that can learn every regular 𝜔-language in the limit is given in the proofs of Theorem 5.6 and
Theorem 5.7. In the description of the steps we only indicate some of these arguments in order
to ease the understanding of the algorithm.

Step 1 In the first step, DPAInf learns a FORC that is consistent with the sample 𝑆 using GLeRC.
The procedures for checking MN-consistency and iteration consistency are based on Lemma 5.3
and Lemma 5.4. For the LRC, DPAInf calls GLeRC with ∼𝑆 as default and using LRC-cons as
consistency function, where LRC-cons(𝑇) returns true if and only if 𝑇 is MN-consistent with
𝑆 (see Lemma 5.3). We denote the resulting right congruence with ∼. For each 𝑐 ∈ [∼] and

40 / 47 L. Bohn and C. Löding

𝜎 ∈ {+,−}, the learner now computes the sets

𝑆𝑐,𝜎 = {𝑢𝑣𝜔 | ∃𝑥 ∈ 𝑐 with 𝑥𝑢𝑣𝜔 ∈ 𝑆𝜎} 𝑅𝑐,𝜎 = {𝑣𝜔 | ∃𝑥 ∈ 𝑐 with 𝑥𝑣𝜔 ∈ 𝑆𝜎 and 𝑥𝑣 ∼ 𝑥}.

It then executes GLeRC with the product (∼𝑆𝑐 × ∼) as default and the consistency function
PRC-cons(T), which returns true if

T is MN-consistent and iteration consistent with 𝑆𝑐
SCCT (𝑞) ∩ SCCT (𝑞′) = ∅ for all 𝑞 ∈ InfT (𝑅𝑐,+), 𝑞′ ∈ InfT (𝑅𝑐,−).

Thereby, a FORC F = (∼, (≈𝑐)𝑐∈[∼]) that is consistent with 𝑆 is obtained. The second condition
ensures that F meets the properties of Lemma 4.3. This makes it possible to compute a coloring
analogous to 𝜅𝑐, in the next step.

Step 2 In the following, we use F = (∼, (≈𝑐)𝑐∈[∼]) to refer to the FORC that is constructed in
step 1. The algorithm now builds a family of Mealy machinesM = (M𝑐)𝑐∈[∼] computing a weak
priority mapping 𝛾 = (𝛾𝑐)𝑐∈[∼] . This is done in a way which mimics the definition of the coloring
𝜅𝑐 in Section 4 and ensures that 𝛾 is the precise FWPM of 𝐿, provided the syntactic FORC was
learned in step 1 (see Lemma 4.2). For a class 𝑐 ∈ [∼], we proceed as follows:

Label all states with 𝜎 in T≈𝑐 , the TS that represents ≈𝑐, that appear in InfT (𝑅𝑐,𝜎) with
𝜎 ∈ {+,−}.
For each state 𝑞, compute the set 𝑃𝑞 containing all states that are reachable from 𝑞 and
have a classification.
Starting with 𝑖 = 0 and increasing 𝑖 after every iteration, assign 𝑖 to those states 𝑞 such that
each 𝑝 ∈ 𝑃𝑞 either already has a priority, or (𝑝 has classification + if and only if 𝑖 is even).

As the construction of F in step 1 ensures that no SCCs with positive and negative looping
sample words exist, each class of a PRC ≈𝑐 is assigned a priority. For each class 𝑐 of ∼, we obtain
a Mealy machineM𝑐 on the transition system of ≈𝑐, which uses the priority (with regard to the
computed coloring) of the target state for each transition. Overall, this procedure returns in
polynomial time a family of Mealy machinesM = (M𝑐)𝑐∈[∼] whose size is polynomial in F .

Step 3 In the following, we useA⊲⊳ to refer to the DPAA⊲⊳(M) from Section 3. Note that we
cannot simply constructA⊲⊳(M) because its size (or the size of an intermediate result) can be
exponential inM. Instead, DPAInf builds a DPA B which computes the priority mapping

B : 𝑢 ↦→ A⊲⊳(𝑢) if 𝑢 ∈ Prf(𝑆) and 𝑢 ↦→ 0 otherwise.

It can be shown by using Lemma 3.21 that constructing B is possible in polynomial time
(see the proof of Theorem 5.6 below). Then, our algorithm checks if B is consistent with 𝑆,
i.e. that 𝑆+ ⊆ 𝐿(B) and 𝑆− ∩ 𝐿(B) = ∅. If yes, the algorithm proceeds to step 4. Otherwise,
we redefine B as a fallback DPA that outputs 1 on infixes of negative loops and 0 otherwise.
Formally, the fallback DPA computes the priority mapping B : Σ+ → {0, 1} with B(𝑢) ↦→ 1

41 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

iff 𝑢 ∈ Prf
(⋃

𝑐∈[∼] 𝑅𝑐,−
)
. Note that this fallback DPA is consistent with 𝑆 since it outputs only

priority 1 on all negative examples, and finally only priority 0 on all other 𝜔-words. Hence, the
DPA B that is passed to the next step is consistent with 𝑆.

Step 4 The purpose of this step is to compute a small DPA that is consistent with the sample
and minimal viewed as a Mealy machine. To achieve this, step 4 runs a polynomial time active
learner MMAL for Mealy machines as a black box, answering the queries based on the coloring
computed in step 3. If the sample is complete for a language 𝐿, then step 3 terminates with a
coloring on the prefixes of the sample that corresponds to the one computed by the precise DPA
for 𝐿. If all queries posed by MMAL can be answered using prefixes of the sample, we can prove
that the precise DPA for 𝐿 (or a smaller one) will be learned.

The oracle that is provided to MMAL uses the DPA B from step 3 and reacts to the posed
queries as follows:

output(𝑢) ⇝ answer B(𝑢)

equiv(H) ⇝


terminate and returnH ifH is consistent with 𝑆

answer minllex{𝑥 ∈ Prf(𝑆) | B(𝑥) ≠ H(𝑥)} otherwise.

Note that, by definition, if this step terminates, then the resulting DPA is consistent with
the sample. Further, this step is guaranteed to terminate because the coloring from step 3 is
consistent with the sample (see proof of Theorem 5.6).

This concludes the description of the algorithm, and we now state the main results of this
section.

THEOREM 5.6. DPAInf computes in polynomial time a DPA that is consistent with the 𝜔-sample
𝑆 it receives as input.

PROOF . Let 𝑆 = (𝑆+, 𝑆−) be the sample on which DPAInf is called. By definition, step 4 always
terminates with a hypothesisH that is consistent with 𝑆. Thus, it remains to show that DPAInf
always terminates in polynomial time. In the following, we consider each step of the algorithm
individually:

In Lemma 5.3 and Lemma 5.4, it was established that the two consistency functions
LRC-cons and PRC-cons, which are passed to GLeRC, run in polynomial time. Thus, by
Proposition 5.1, it follows that the first step terminates in polynomial time.
The second step begins by computing the infinity sets of all sample words from 𝑅𝑐 in the
respective PRC≈𝑐 for a 𝑐 ∈ [∼], which is possible in time polynomial in | ≈𝑐 | and 𝑆. Further,
the number of distinct priorities is bounded for each class 𝑐 ∈ [∼] by the number of SCCs
in ≈𝑐. Therefore the computation of each 𝜅𝑐 terminates after at most polynomially many
iterations. Since each iteration consists of a reachability analysis and some elementary
operations, the construction ofM is clearly possible in polynomial time.

42 / 47 L. Bohn and C. Löding

We use A⊲⊳ to denote A⊲⊳(M). For the computation of B, we first build what we call a
colored sample 𝑆 as follows. For each sample word 𝑢𝑣𝜔 ∈ 𝑆, we compute the sequence of
colors produced byA⊲⊳ on 𝑢𝑣𝜔. By Lemma 3.21, we can write this sequence as 𝑟𝑠𝜔, where
|𝑟𝑠| is polynomial in |𝑢𝑣| and |M|. The product of 𝑢𝑣𝜔 with 𝑟𝑠𝜔 (which is a sequence of
letter-priority pairs), is then polynomial in |𝑆 |. Overall, the size of the colored sample 𝑆 is
polynomial in |𝑆 |.
B then basically is the prefix tree of 𝑆 starting to loop on the periodic part if the prefix
uniquely identifies the word in 𝑆, and a sink state 𝑞⊥ for all non-prefixes of 𝑆. More formally,
for each colored example �̂��̂�𝜔, there is 𝑛, polynomial in the size of 𝑆, such that �̂��̂�𝑛 is not a
prefix of any other example in 𝑆. As states of B we take all the prefixes of �̂��̂�𝑛+1 (for all the
examples from 𝑆). For some prefix �̂� and a letter 𝑎, we define the transitions 𝛿B (�̂�, 𝑎) as
follows. If for all 𝑖, �̂� (𝑎, 𝑖) is not a prefix of 𝑆, then 𝛿(�̂�, 𝑎) = (𝑞⊥, 0). Otherwise, �̂� (𝑎, 𝑖) is a
prefix of 𝑆 for a unique 𝑖. If �̂� (𝑎, 𝑖) is a state of B, then 𝛿B (�̂�, 𝑎) = (�̂� (𝑎, 𝑖), 𝑖). Otherwise, �̂�
is of the form �̂��̂�𝑛+1, and �̂��̂�𝑛+1(𝑎, 𝑖) is a prefix of �̂��̂�𝜔, and only of that word. We then set
𝛿B (�̂�, 𝑎) = (�̂��̂�𝑛(𝑎, 𝑖), 𝑖), defining the loop for the periodic part of �̂��̂�𝜔. This construction
results in a polynomial size DPA B that computes the priority mapping defined in step 3.
It can be checked in polynomial time whether B is consistent with the sample (actually,
this can already be checked on 𝑆 by looking at the minimal priorities on the loops of the
colored examples). In case B is not consistent with 𝑆, DPAInf constructs a fallback DPA.
The construction of such a fallback DPA also works in polynomial time along the same
lines as the construction explained above (take infixes of the periodic parts of negative
example words as states, entering a loop once the infix uniquely identifies the periodic
part of a negative example).
Finally, in step 4, all answers provided to MMAL are consistent with the DPA B from step
3, which by the previous considerations is polynomial in |𝑆 |. Since B itself is consistent
with 𝑆, it follows from the properties of MMAL, that it terminates at the latest with the DPA
B, or it terminates earlier with a strictly smaller DPA that is consistent with 𝑆.
To conclude that the execution of MMAL indeed terminates in polynomial time, we need
to verify that each counterexample provided by the teacher is polynomial in |𝑆 |. So letH
be the hypothesis posed by MMAL, which is not consistent with 𝑆. This meansH and B
viewed as Mealy machines compute different priority mappings and a counterexample
corresponds to a prefix 𝑥 of 𝑆 witnessing thatH(𝑥) ≠ B(𝑥). As all hypotheses given by
MMAL in an equivalence query have at most as many states as B, the shortest such 𝑥 is
clearly polynomial in 𝑆.

As each step of DPAInf runs in polynomial time, and we have shown that the DPA it constructs
must be consistent with 𝑆, the statement follows. ■

43 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

The core idea for constructing a characteristic sample is to simulate a run DPAInf and
whenever the algorithm would make a mistake in producing the canonical object we are
interested in, we add words preventing it, which leads to the following theorem.

THEOREM 5.7. DPAInf can learn a DPAA for every 𝜔-regular language 𝐿 in the limit. Moreover,
the size ofA is bounded by the size of the precise DPAA𝐿 for 𝐿, and there exists a characteristic
sample 𝑆𝐿 for 𝐿 that is polynomial in the maximum of the size ofA𝐿 and the size of the syntactic
FORC for 𝐿.

PROOF . Let 𝐿 be a regular𝜔-language over some alphabet Σ. Recall that our goal is to construct
a characteristic sample 𝑆𝐿 = (𝑆+, 𝑆−) for 𝐿, meaning that DPAInf infers a DPA for 𝐿 from any
sample 𝑆′ which contains 𝑆𝐿 and is consistent with 𝐿. In the following, we illustrate how the
sample 𝑆𝐿 can be built in such a way that it guarantees that

the syntactic FORC F𝐿 = (∼𝐿, (≃𝑐)𝑐∈[∼]) for 𝐿 is learned in the first step,
a family of Mealy machinesM = (M𝑐)𝑐∈[∼𝐿] for the precise coloring 𝜋∼𝐿 = (𝜋𝑐)𝑐∈[∼𝐿] is
learned in step 2,
for all output(𝑢) queries posed by MMAL in step 4, 𝑢 ∈ Prf(𝑆𝐿) and
it contains the necessary counterexamples to ensure that MMAL terminates with a DPA
for 𝐿.

For convenience, we do not describe 𝑆𝐿 directly. Instead, we build a set𝑊 of ultimately periodic
words and subsequently define 𝑆𝐿 = (𝑊 ∩ 𝐿,𝑊 \ 𝐿).

The core idea for ensuring that the syntactic FORC F𝐿 is learned in the first step, is to
simulate the necessary executions of GLeRC step by step, and to extend𝑊 whenever GLeRC
would otherwise insert a transition that is not present in the target RC. Let T be the partial
TS that GLeRC has constructed up to the point at which we want to prevent the insertion of a
transition. For a state 𝑞 of T , we use mr(𝑞) to denote the length-lexicographically minimal word
that reaches 𝑞. Then, if a transition 𝛿(𝑞, 𝑎) = 𝑝 has to be prevented, it must be that 𝑥𝑎 ≁ 𝑦 for
𝑥 = mr(𝑞), 𝑦 = mr(𝑝) because up to now all transitions have been inserted correctly. Depending
on the kind of right congruence we want to learn, we add the following words to𝑊 :

If ∼ is the LRC of F𝐿 and 𝑥𝑎 ≁𝐿 𝑦:
There exist 𝑢 ∈ Σ∗, 𝑣 ∈ Σ+ with 𝑥𝑎𝑢𝑣𝜔 ∈ 𝐿 if and only if 𝑦𝑢𝑣𝜔 ∉ 𝐿, i.e. 𝑢𝑣𝜔 separates 𝑥𝑎 and
𝑦 in ∼𝐿. We pick the length-lexicographically minimal such 𝑢 and 𝑣 and add the words
𝑥𝑎𝑢𝑣𝜔 and 𝑦𝑢𝑣𝜔 to𝑊 .
If ≃𝑐 is the PRC for some class 𝑐 ∈ [∼𝐿] and 𝑥𝑎 ;𝑐 𝑦:
Let 𝑢 = mr(𝑐). If not 𝑢𝑥𝑎 ∼𝐿 𝑢𝑦, then we proceed as for the LRC. Otherwise, there exists
some 𝑧 ∈ Σ∗ with 𝑢𝑥𝑎𝑧 ∼𝐿 𝑢 and (𝑢(𝑥𝑎𝑧)𝜔 ∈ 𝐿 ⇔ 𝑢(𝑦𝑧)𝜔 ∉ 𝐿). Again, we choose the
length-lexicographically minimal such 𝑧 and add 𝑢(𝑥𝑎𝑧)𝜔 and 𝑢(𝑦𝑧)𝜔 to𝑊 .

For computing the coloring, DPAInf considers all words in 𝑅𝑐,𝜎 for 𝜎 ∈ {+,−}. To ensure
that the second step of DPAInf terminates with the precise coloring 𝜋∼𝐿 for (𝐿,∼𝐿) we add to𝑊

44 / 47 L. Bohn and C. Löding

words which guarantee that all idempotent classes of ≃𝑐 are in the infinity set of some word
in 𝑅𝑐. Let 𝑐 ∈ [∼𝐿] be a class and 𝑢 ∈ 𝑐. From each idempotent class of ≃𝑐, we pick the length-
lexicographically least representative 𝑥 and add 𝑢𝑥𝜔 to𝑊 . Note that since 𝑥 is idempotent in ≃𝑐,
it must also be in 𝐸𝑐 and hence 𝑥𝜔 will be in the set 𝑅𝑐 that is computed in the beginning of step
2. This guarantees that if the syntactic FORC is learned in the first step, every idempotent class
of ≃𝑐 obtains a correct classification in step 2 of DPAInf. As the subsequent computation of the
mapping mirrors that of 𝜅𝑐 from Section 4, it is guaranteed that the family of Mealy machines
M returned by step 2 computes the precise FWPM 𝜋∼𝐿 .

LetA⊲⊳ := A⊲⊳(M) andB be as constructed in step 3. Further, let 𝑆 = (𝑆+, 𝑆−) = (𝑊 ∩𝐿,𝑊 \
𝐿) be the obtained from the set𝑊 constructed so far. SinceM computes the precise FWPM 𝜋∼𝐿 ,
it follows from Lemma 3.17 that A⊲⊳ computes the priority mapping of A𝐿. By definition, B
behaves likeA⊲⊳ on prefixes from 𝑆, which guarantees that B must be consistent with 𝑆 and
the algorithm does not default to the fallback DPA. However, in the last step, there might be
some output(𝑢) queries posed by MMAL, which are (falsely) answered with 0 purely because
𝑢 is not a prefix of 𝑆. Thus, to ensure that all queries are answered correctly, we simulate an
execution of MMAL with a teacher forA⊲⊳ and whenever MMAL poses an output(𝑢) query for a
word that is not yet a prefix of𝑊 , we add 𝑢𝜔 to𝑊 . Additionally, for each equivalence query
equiv(H) with 𝐿(H) ≠ 𝐿, we add the least counterexample to𝑊 that witnesses the inequality.
The overall construction of 𝑆𝐿 is guaranteed to terminate, because all answers given to MMAL
are consistent withA𝐿, which by the properties of MMAL guarantees that it terminates at the
latest with the DPAA𝐿.

In the end, 𝑆𝐿 = (𝑆+, 𝑆−) = (𝑊∩𝐿,𝑊 \𝐿) is the characteristic sample for 𝐿. Our construction
ensures that if called on a sample which is consistent with 𝐿 and contains 𝑆𝐿, DPAInf infers the
syntactic FORC of 𝐿 in step 1, and then computes the precise FWPM 𝜋∼𝐿 in step 2. The output
queries of MMAL are all on prefixes of 𝑆𝐿, and as long as MMAL does not propose a hypothesis
that is consistent with 𝐿, the sample contains an example witnessing the difference. Hence,
DPAInf terminates with a DPAA for 𝐿.

For an upper bound on the size of 𝑆𝐿, we consider the words which are added in each step.
The number of insertions that have to be prevented in step 1 and the number of idempotent
classes that need to be considered in step two are clearly polynomial in the syntactic FORC
F𝐿. The shortest words for witnessing the inequivalences that prevent the insertions are
polynomial in the size of F𝐿. In step four, the number of added words (because of output or
equivalence queries) and their lengths are polynomial in the size of the precise DPAA𝐿 because
the hypotheses are growing and bounded by the size of A𝐿, and the algorithm runs in time
polynomial in the resulting Mealy machine and the length of the longest counterexample. In
summary, the size of 𝑆𝐿 is polynomial in the maximum of |F𝐿 | and |A𝐿 |. ■

45 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

By combining Theorem 5.7 with Proposition 4.5 and Theorem 3.19, we can recover and
extend the currently known results on passive learning of deterministic 𝜔-automata from
polynomial data. For that purpose, we consider the subclasses IRC(DPA) and 𝑑-IRC(𝑘-DPA) of
the 𝜔-regular languages. The first one contains all languages 𝐿 that can be accepted by a DPA
that has exactly one state for each ∼𝐿-class. Polynomial time passive learners that can learn
each language from this class in the limit from polynomial data are presented in [4, 8]. The
class 𝑑-IRC(𝑘-DPA) contains all languages 𝐿 that can be recognized by a DPA with priorities in
{0, . . . , 𝑘 − 1} and at most 𝑑 many 𝑐-states for each ∼𝐿 class 𝑐. A polynomial time passive learner
that, for fixed 𝑑, can learn each language in 𝑑-IRC(2-DPA) in the limit from polynomial data is
presented in [10]

The languages in IRC(DPA) are those for which 𝑑 = 1 in Proposition 4.5 and Theorem 3.19.
In this case, the term in Theorem 3.19 reduces to 𝑚 and the one in Proposition 4.5 to 𝑚𝑘. If 𝑑
and 𝑘 are both fixed, both expressions become linear in 𝑚. This implies the following.

COROLLARY 5.8. The algorithm DPAInf can learn a DPA for every language in IRC(DPA)
from polynomial data. Furthermore, there is a fixed polynomial 𝑔 such that for every 𝑘 and 𝑑,
DPAInf can learn a DPA for every language in 𝑑-IRC(𝑘-DPA) in the limit from polynomial data
with characteristic samples of size O(𝑔).

6. Conclusion

We have presented a passive learner for deterministic parity automata that runs in polynomial
time and can learn a DPA for every regular 𝜔-language in the limit. Our upper bound for
the size of complete samples is, in general, exponential in the size of a minimal DPA for the
language. However, for fixed number of priorities and fixed maximal number of pairwise
language equivalent states, this bound becomes polynomial. The learning algorithm is based
on the precise DPA of a language that we introduced in this paper, and that can be constructed
from the syntactic FORC of the language.

We see two natural main directions of future research based on the results presented here.
First, we proposed a basic version of the algorithm that is complete for the class of regular 𝜔-
languages and runs in polynomial time. But there are many parts of the algorithm that allow for
optimizations and variations without losing these properties. These variations should then be
implemented and compared in an empirical study. For example, all the progress congruences of
the FORC are learned independently, while there are strong dependencies between the progress
congruences of the syntactic FORC. One can explore techniques for learning these congruences
while respecting mutual dependencies. And one can also try other types of passive learning
algorithms from finite automata adapted to learning FORCs. Also, variations of the active learner
used in the last step of the algorithm can have an impact on the running time and the result
produced by the overall procedure.

46 / 47 L. Bohn and C. Löding

Second, the precise DPA for a language deserves further study. An understanding which
structural properties of a language can cause the precise DPA to be much larger than a minimal
DPA for the language might give insights to minimization problems for DPAs. Furthermore, our
construction of the precise DPA from the syntactic FORC has similarities with a construction that
starts from the syntactic semigroup (see specifically Lemma 22 in [14]). And the construction
of the precise FWPM from the syntactic FORC using idempotent classes suggests a variation
of FDFAs with “idempotent acceptance”, which could lead to smaller representations of 𝜔-
languages by FDFAs. There is also a connection to the canonical representation by good-for-
games automata from [16, Definition 4], in the sense that the precise DPA computes the natural
color in the limit. Finally, one can show that the class of precise DPAs for a language subsumes
the class of normalized DPAs in the sense that a DPAA is normalized and minimal as a Mealy
machine if it is the precise DPA for (𝐿(A),∼A). So it seems that studying precise DPAs and their
construction in more detail can lead to further insights on connections between representations
of 𝜔-languages.

References
[1] Dana Angluin. Learning regular sets from queries
and counterexamples. Information and
Computation, 75(2):87–106, 1987. DOI (2)

[2] Dana Angluin, Udi Boker, and Dana Fisman.
Families of DFAs as acceptors of 𝜔-regular
languages. Logical Methods in Computer Science,
14, 2018. DOI (4, 7, 32)

[3] Dana Angluin and Dana Fisman. Learning regular
omega languages. Theoretical Computer Science,
650:57–72, 2016. DOI (7, 29)

[4] Dana Angluin, Dana Fisman, and Yaara Shoval.
Polynomial identification of 𝜔-automata.
Proceedings of the 26th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2020), pages 325–343.

DOI (5, 6, 45)

[5] Christel Baier and Joost-Pieter Katoen. Principles
of model checking. MIT Press, 2008. (2)

[6] Stephan Barth and Martin Hofmann. Learn with
SAT to minimize Büchi automata. Proceedings of
the 3rd International Symposium on Games,
Automata, Logics and Formal Verification (GandALF
2012), pages 71–84. DOI (5)

[7] Alan W. Biermann and Jerome A. Feldman. On the
synthesis of finite-state machines from samples of
their behavior. IEEE Transactions on Computers,
21(6):592–597, 1972. DOI (1)

[8] León Bohn and Christof Löding. Constructing
deterministic 𝜔-automata from examples by an
extension of the RPNI algorithm. Proceedings of
the 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2021),
20:1–20:18. DOI (4–7, 35, 36, 45)

[9] León Bohn and Christof Löding. Constructing
deterministic 𝜔-automata from examples by an
extension of the RPNI algorithm. arXiv
e-prints:arXiv:2108.03735, August 2021. DOI (39)

[10] León Bohn and Christof Löding. Passive learning of
deterministic Büchi automata by combinations of
DFAs. Proceedings of the 49th International
Colloquium on Automata, Languages, and
Programming (ICALP 2022), 114:1–114:20. DOI
(4–6, 25, 45)

[11] J Richard Büchi. Symposium on decision problems:
on a decision method in restricted second order
arithmetic, Studies in Logic and the Foundations of
Mathematics. Volume 44, pages 1–11. 1966. (2, 11,
21)

[12] Hugues Calbrix, Maurice Nivat, and
Andreas Podelski. Ultimately periodic words of
rational 𝜔-languages. Mathematical Foundations of
Programming Semantics, pages 554–566, Berlin,
Heidelberg, 1994. DOI (2, 6, 11)

[13] Olivier Carton and Ramón Maceiras. Computing
the Rabin index of a parity automaton. RAIRO -
Theoretical Informatics and Applications,
33(6):495–505, 1999. DOI (6, 9)

[14] Thomas Colcombet. Green’s relations and their use
in automata theory. Proceedings of the 5th
International Conference on Language and
Automata Theory and Applications (LATA 2011),
pages 1–21. DOI (46)

[15] Colin de la Higuera and Jean-Christophe Janodet.
Inference of 𝜔-languages from prefixes.
Theoretical Computer Science, 313(2):295–312,
2004. DOI (5)

https://doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.23638/LMCS-14(1:15)2018
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1007/978-3-030-45237-7_20
https://doi.org/10.4204/EPTCS.96
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.4230/LIPIcs.MFCS.2021.20
https://doi.org/10.48550/arXiv.2108.03735
https://doi.org/10.4230/LIPIcs.ICALP.2022.114
https://doi.org/https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1051/ita:1999129
https://doi.org/10.1007/978-3-642-21254-3_1
https://doi.org/10.1016/j.tcs.2003.11.009

47 / 47 Constructing Deterministic Parity Automata from Positive and Negative Examples

[16] Rüdiger Ehlers and Sven Schewe. Natural Colors of
Infinite Words. Proceedings of the 42nd IARCS
Annual Conference on Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS 2022), 36:1–36:17. DOI (9, 12, 46)

[17] Azadeh Farzan, Yu-Fang Chen, Edmund M. Clarke,
Yih-Kuen Tsay, and Bow-Yaw Wang. Extending
automated compositional verification to the full
class of 𝜔-regular languages. Proceedings of the
14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS 2008), pages 2–17. DOI (6, 7)

[18] E. Mark Gold. Complexity of automaton
identification from given data. Information and
Control, 37(3):302–320, 1978. DOI (1, 3)

[19] E. Mark Gold. Language identification in the limit.
Information and Control, 10(5):447–474, 1967. DOI
(1)

[20] John E. Hopcroft and Jeffrey D. Ullman. Formal
Languages and their Relation to Automata.
Addison-Wesley, 1969. (2)

[21] Malte Isberner, Falk Howar, and Bernhard Steffen.
The open-source learnlib - A framework for active
automata learning. Proceedings of the 27th
International Conference of Computer Aided
Verification (CAV 2015), pages 487–495. DOI (2)

[22] Nils Klarlund. A homomorphism concept for
𝜔-regularity. Proceedings of the 8th International
Workshop on Computer Science Logic (CSL 1994),
volume 933, pages 471–485. DOI (7, 29)

[23] Patrick Landwehr. Tree automata with constraints
on infinite trees. Dissertation, RWTH Aachen
University, Aachen, 2021. DOI (37)

[24] Yong Li, Yu-Fang Chen, Lijun Zhang, and
Depeng Liu. A novel learning algorithm for Büchi
automata based on family of DFAs and
classification trees. Proceedings of the 23rd
International Conference on Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS 2017), pages 208–226. DOI (7)

[25] Damian López and Pedro Garćıa. On the inference
of finite state automata from positive and negative
data, Topics in Grammatical Inference. Springer,
2016. DOI (1)

[26] Oded Maler and Amir Pnueli. On the learnability of
infinitary regular sets. Information and
Computation, 118(2):316–326, 1995. DOI (6)

[27] Oded Maler and Ludwig Staiger. On syntactic
congruences for 𝜔-languages. Theoretical
Computer Science, 183(1):93–112, 1997. DOI (4, 7,
28, 29)

[28] Philipp J. Meyer, Salomon Sickert, and
Michael Luttenberger. Strix: explicit reactive
synthesis strikes back! Proceedings of the 30th
International Conference on Computer Aided
Verification (CAV 2018), pages 578–586. DOI (2)

[29] Jakub Michaliszyn and Jan Otop. Learning
infinite-word automata with loop-index queries.
Artificial Intelligence, 307:103710, 2022. DOI (7)

[30] Jose Oncina and Pedro Garćıa. Inferring regular
languages in polynomial update time.World
Scientific, January 1992. DOI (6, 35)

[31] Charles P. Pfleeger. State reduction in incompletely
specified finite-state machines. IEEE Transactions
on Computers, C-22(12):87–106, 1973. DOI (3)

[32] Bernhard Steffen, Falk Howar, and Maik Merten.
Introduction to active automata learning from a
practical perspective. Proceedings of the 11th
International School on Formal Methods for the
Design of Computer, Communication and Software
Systems (SFM 2011), pages 256–296. DOI (11)

[33] Wolfgang Thomas. Automata on infinite objects.
Handbook of Theoretical Computer Science (Vol.
B): Formal Models and Semantics. Cambridge, MA,
USA, 1991., pages 133–191. DOI (2)

[34] Wolfgang Thomas. Facets of synthesis: revisiting
Church’s problem. Proceedings of the 12th
International Conference on Foundations of
Software Science and Computational Structures
(FOSSACS 2009), pages 1–14. DOI (2)

[35] Wolfgang Thomas. Languages, automata, and
logic, Handbook of Formal Languages, Volume 3:
Beyond Words, pages 389–455. 1997. DOI (8, 9)

[36] BA Trakhtenbrot and Ya M Barzdin. Finite
automata—behaviour and synthesis, vol. 1 of.
Fundamental Studies in Computer Science, 1973.
(1)

[37] Moshe Y Vardi and Thomas Wilke. Automata: from
logics to algorithms. Logic and automata,
2:629–736, 2008. (8, 9)

[38] Sicco Verwer and Christian A. Hammerschmidt.
Flexfringe: A passive automaton learning package.
Proceedings of the 33rd IEEE International
Conference on Software Maintenance and
Evolution (ICSME 2017), pages 638–642. URL (2)

[39] Thomas Wilke. 𝜔-automata. arXiv preprint
arXiv:1609.03062, 2016. (8, 9)

2024 : 17
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© León Bohn, Christof Löding.

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.36
https://doi.org/10.1007/978-3-540-78800-3_2
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/BFb0022276
https://doi.org/10.18154/RWTH-2021-12010
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/https://doi.org/10.1007/978-3-662-48395-4_4
https://doi.org/10.1006/inco.1995.1070
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/https://doi.org/10.1016/j.artint.2022.103710
https://doi.org/https://doi.org/10.1142/9789812797902_0004
https://doi.org/https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/https://doi.org/10.1016/B978-0-444-88074-1.50009-3
https://doi.org/https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/978-3-642-59126-6_7
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8090480

	Introduction
	Preliminaries
	Precise DPA of a language
	Families of Right Congruences
	DPA learner
	Conclusion
	References

