
1 / 75 2024 : 19

Faster parameterized algorithms
for modification problems to
minor-closed classes

Received Jul 21, 2023
Revised May 31, 2024
Accepted Jul 21, 2024
Published Aug 12, 2024

Key words and phrases
Graph minors, Parameterized
algorithms, Graph modification
problems, Vertex deletion,
Elimination distance, Irrelevant
vertex technique, Flat Wall
Theorem, Obstruction set

Laure Morellea �
Ignasi Saua �
Giannos Stamoulisb �
Dimitrios M. Thilikosa �

a LIRMM, Université de
Montpellier, CNRS, Montpellier,
France

b Institute of Informatics,
University of Warsaw, Poland

ABSTRACT. Let G be a minor-closed graph class and let 𝐺 be an 𝑛-vertex graph. We say
that 𝐺 is a 𝑘-apex of G if 𝐺 contains a set 𝑆 of at most 𝑘 vertices such that 𝐺 \ 𝑆 belongs to G.
Our first result is an algorithm that decides whether 𝐺 is a 𝑘-apex of G in time 2poly(𝑘) · 𝑛2,
improving a previous algorithm by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022] whose
running time was 2poly(𝑘) · 𝑛3. The elimination distance of 𝐺 to G, denoted by edG (𝐺), is the
minimum number of rounds required to reduce each connected component of 𝐺 to a graph
in G by removing one vertex from each connected component in each round. Bulian and
Dawar [Algorithmica 2017] provided an FPT-algorithm, with parameter 𝑘, to decide whether
edG (𝐺) ≤ 𝑘. The class of graphs with ed𝐺 ≤ 𝑘 is minor-closed, hence characterized by a finite
set of excluded minors. The algorithm of Bulian and Dawar is based on the computability of this
finite minor-obstruction set and its dependence on 𝑘 is not explicit. We extend the techniques
used in our first algorithm to decide whether edG (𝐺) ≤ 𝑘 in time 222poly(𝑘)

· 𝑛2. This is the first
algorithm for this problem with an explicit parametric dependence in 𝑘. In the special case
where G excludes some apex-graph as a minor, we give two alternative algorithms, one running
in time 22O(𝑘2 log 𝑘) ·𝑛2 and one running in time 2poly(𝑘) ·𝑛3. As a stepping stone for these algorithms,
we provide an algorithm that decides whether edG (𝐺) ≤ 𝑘 in time 2O(tw·𝑘+tw log tw) · 𝑛, where tw

All authors where supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028), ELIT (ANR-20-CE48-0008), ESIGMA
(ANR-17-CE23-0010), the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027). The first and the
last author were also supported by the Franco-Norwegian project PHC AURORA 2024 (Projet no. 51260WL). Most of the
research work for this paper was conducted when Giannos Stamoulis was affiliated with LIRMM, Univ Montpellier, CNRS,
Montpellier, France. A conference version of this article appeared in the Proceedings of the 50th International Colloquium on
Automata, Languages, and Programming (ICALP) [56].

Cite as Laure Morelle, Ignasi Sau, Giannos Stamoulis, Dimitrios M. Thilikos. Faster
parameterized algorithms for modification problems to minor-closed classes.
TheoretiCS, Volume 3 (2024), Article 19, 1-75.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.19

mailto:laure.morelle@lirmm.fr
mailto:ignasi.sau@lirmm.fr
mailto:giannos.stamoulis@lirmm.fr
mailto:sedthilk@thilikos.info

2 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

is the treewidth of 𝐺. This algorithm combines the dynamic programming framework of Reidl,
Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only
the empty graph (i.e., for treedepth) with the representative-based techniques introduced by
Baste, Sau, and Thilikos [SODA 2020]. In the complexities above, poly is a polynomial function
whose degree depends on G, and the hidden constants also depend on G. Finally, we provide
explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of
graphs E𝑘 (G) = {𝐺 | edG (𝐺) ≤ 𝑘}.

1. Introduction

The distance from triviality is a concept formalized by Guo, Hüffner, and Niedermeier [35] to
express the closeness of a graph to a supposedly “simple” target graph class. One such a measure
of closeness is, for instance, the number of vertices or edges that one must delete/add from/to a
graph 𝐺 to obtain a graph in the target graph class. This concept of distance to a graph class has
recently gained the interest of the parameterized complexity community. The motivation is
that, if a problem is tractable on a graph class G, it is natural to study other classes of graphs
according to their “distance to G”. In this paper, we focus on two such measures of distance
from triviality: Given a target graph class G, we consider the vertex deletion distance to G and
the elimination distance to G, which we formalize next.

Given a target graph class G and a non-negative integer 𝑘, we defineA𝑘 (G) as the set of
all graphs containing a set 𝑆 of at most 𝑘 vertices whose removal results in a graph in G. If
𝐺 ∈ A𝑘 (G), then we say that 𝐺 is a 𝑘-apex of G. We refer to 𝑆 as a 𝑘-apex set of 𝐺 for the class G.
In other words, we consider the following meta-problem for a fixed class G.

Vertex Deletion to G
Input: A graph 𝐺 and a non-negative integer 𝑘.
Objective: Find, if it exists, a 𝑘-apex set of 𝐺 for the class
G.

Throughout the paper, we denote by 𝑛 the number of vertices of the input graph of the prob-
lem under consideration. The importance of Vertex Deletion to G can be illustrated by the
variety of graph modification problems that it encompasses (hence the term of meta-problem).
For instance, if G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval,
chordal) graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex Pla-
narization, Odd Cycle Transversal, (proper) Interval Vertex Deletion, Chordal Vertex
Deletion) problem.

The second measure of distance from triviality that we study was recently introduced by
Bulian and Dawar [17, 16]. Given a graph class G, we define the elimination distance of a graph

3 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

𝐺 to G, denoted by edG (𝐺), as follows:

edG (𝐺) =

0 if 𝐺 ∈ G,

1 +min{edG (𝐺 \ {𝑣}) | 𝑣 ∈ 𝑉 (𝐺)} if 𝐺 is connected,

max{edG (𝐻) | 𝐻 is a connected component of 𝐺} otherwise.

Given that edG (𝐺) ≤ 𝑘, a set 𝑆 ⊆ 𝑉 (𝐺) of vertices recursively deleted from 𝐺 to achieve
edG (𝐺) is called a 𝑘-elimination set of 𝐺 for G. We define the (parameterized) class of graphs
E𝑘 (G) = {𝐺 | edG (𝐺) ≤ 𝑘}. The above notion can be seen as a natural generalization of
treedepth (denoted by td), which corresponds to the case where G contains only the empty
graph. Treedepth, along with treewidth, are two of the most studied and widely used parameters
to measure the structural complexity of a graph [19, 48, 57]. The second meta-problem that we
consider is the following, again for a fixed class G.

Elimination Distance to G
Input: A graph 𝐺 and a non-negative integer 𝑘.
Objective: Find, if it exists, a 𝑘-elimination set of 𝐺 for
the class G.

Unsurprisingly, Vertex Deletion to G is NP-hard for every non-trivial graph class G [54],
while Elimination Distance to G is NP-hard even when G contains only the empty graph [60].
To circumvent this intractability, we study both problems from the parameterized complexity
point of view and consider their parameterizations by 𝑘. In this setting, the most desirable
behavior is the existence of an algorithm running in time 𝑓 (𝑘) · 𝑛O(1) , where 𝑓 is a computable
function depending only on 𝑘. Such an algorithm is called fixed-parameter tractable, or FPT-
algorithm for short, and a parameterized problem admitting an FPT-algorithm is said to belong
to the parameterized complexity class FPT. Also, the function 𝑓 is called parametric dependence
of the corresponding FPT-algorithm, and the challenge is to design FPT-algorithms with small
parametric dependencies and with a polynomial factor of small degree [19, 21, 25, 58]. We
may also consider XP-algorithms, i.e., algorithms running in time O(𝑓 (𝑘) · 𝑛𝑔 (𝑘)) for some
computable functions 𝑓 and 𝑔 depending only on 𝑘.

In general, for any of the two considered problems, we cannot expect FPT-algorithms for
every graph class G. For instance, the two problems are NP-hard, even for 𝑘 = 0, for every
graph class G whose recognition problem is NP-hard. This is the case of 3-colorable graphs,
which is a class closed under taking (induced) subgraphs. In this paper, we focus on a family of
graph classes that exhibits a nice behavior with respect to the considered problems (and many
others): we consider G to be a minor-closed graph class, i.e., such that every minor of a graph in
G (that is, obtained from a subgraph of a graph in G by contracting edges; see Subsection 2.1
for the formal definition) is also in G. Indeed, it turns out that, for every such a family G, the
problems become fixed-parameter tractable, as we proceed to discuss.

4 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

The minor-obstruction set (in short obstruction set) of G is the set of minor-minimal graphs
that do not belong to G, and is denoted by obs(G). Notice that obs(G) gives a complete charac-
terization of G as, for every graph 𝐺, it holds that 𝐺 ∈ G if and only if, for every 𝐻 ∈ obs(G),
𝐻 is not a minor of 𝐺. Because of Robertson and Seymour’s theorem [65], obs(G) is finite for
every minor-closed graph class. As checking whether an ℎ-vertex graph 𝐻 is a minor of 𝐺 can
be done in time 𝑓 (ℎ) · 𝑛2 [63, 43], the finiteness of obs(G) along with the above characterization
imply that, for every minor-closed graph class G, checking whether 𝐺 ∈ G can be done in time
𝑐 · 𝑛2, where 𝑐 is a constant depending on the graph class G. This meta-theorem implies the
existence of FPT-algorithms for a wide family of problems, including Vertex Deletion to G
and Elimination Distance to G. Indeed, this follows by observing that if G is minor-closed,
then for every non-negative integer 𝑘, the classesA𝑘 (G) and E𝑘 (G) are also minor-closed.

As Robertson and Seymour’s theorem [65] does not give any way to construct the corre-
sponding obstruction sets, the aforementioned argument is not constructive, i.e., it is not able to
construct the obstruction sets required for the corresponding FPT-algorithms. Moreover, these
algorithms are non-uniform in 𝑘, meaning that we have a distinct algorithm for every value of 𝑘.
Important steps towards the constructibility of such FPT-algorithms were done by Adler, Grohe,
and Kreutzer [2] and Bulian and Dawar [16], who respectively proved that obs(A𝑘 (G)) and
obs(E𝑘 (G)) are effectively computable. Hence, for both problems, it is possible to construct
uniform (in 𝑘) algorithms running in time 𝑓 (𝑘) · 𝑛2 for some computable function 𝑓 . However,
this does not imply any reasonable, or even explicit, parametric dependence of the obtained
algorithms.

The main focus of this paper is on the parametric and polynomial dependence of FPT-
algorithms to solve Vertex Deletion to G and Elimination Distance to G, i.e., for recognizing
the classesA𝑘 (G) and E𝑘 (G), when G is a minor-closed graph class.

Concerning Vertex Deletion to G, after a number of articles for particular cases of minor-
closed classes G, such as graphs of bounded treewidth [28, 46], planar graphs [55, 38], or graphs
of bounded genus [49], an explicit FPT-algorithm for any minor-closed graph G was recently
proposed by Sau, Stamoulis, and Thilikos [70], running in time 2O(𝑘𝑐) · 𝑛3, where 𝑐 is a constant
that depends on the maximum size of a graph in the obstruction set of G. Moreover, in the case
where obs(G) contains some apex-graph (that is, a 1-apex for the class of planar graphs), Sau,
Stamoulis, and Thilikos [70] gave an improved running time of 2O(𝑘𝑐) · 𝑛2. Note also that the
more general variant where G is a topological-minor-closed graph class is in FPT as well [29].

As for Elimination Distance to G when G is minor-closed, no explicit parametric de-
pendence was known, with the notable exception of treedepth, for which Reidl, Rossmanith,
Villaamil, and Sikdar [61] gave an algorithm deciding whether td(𝐺) ≤ 𝑘 in time 2O(𝑘·tw) · 𝑛,
where tw := tw(𝐺) (see also [15]). Using our terminology, and given that tw(𝐺) ≤ td(𝐺) for
every graph 𝐺, this yields an FPT-algorithm for Elimination Distance to G∅, where G∅ is the
class consisting of the empty graph, running in time 2O(𝑘2) · 𝑛. Note that this algorithm [61],

5 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

combined with the fact that td(𝐺) ≤ log(𝑛) · tw(𝐺) (see [15]), imply an XP-algorithm for the
problem of computing td when parameterized by tw, namely an algorithm that computes the
value of td(𝐺) in time 𝑛O(tw(𝐺)2) . To the best of our knowledge, it is open whether computing td
parameterized by tw is in FPT.

Before describing our results, let us mention some recent relevant results dealing with
Elimination Distance to G for classes G that are not necessarily minor-closed. Agrawal and
Ramanujan [6] (resp. Agrawal, Kanesh, Panolan, Ramanujan, and Saurabh [5]) provided FPT-
algorithms, with parameter 𝑘, when G is the class of cliques (resp. graphs of bounded degree).
Fomin, Golovach, and Thilikos [27] identified sufficient and necessary conditions for the ex-
istence of FPT-algorithms when G is definable in first-order logic (such as having bounded
degree). Jansen, de Kroon, and Włodarczyk [37] proved, among a number of other results, that
if G is a hereditary union-closed graph class and Vertex Deletion to G can be solved in time
2𝑘O(1) · 𝑛O(1) (as it is the case for every minor-closed class G by the results of [70]), then there is
an algorithm that, given an 𝑛-vertex graph 𝐺, computes an O(edG (𝐺)3)-elimination set of 𝐺 for
G in time 2edG (𝐺)O(1) · 𝑛O(1) . Therefore, for union-closed minor-closed graph classes G, the result
of [37] yields an FPT-approximation algorithm for Elimination Distance to G.

Note that, for every graph class G and every graph 𝐺, it holds that edG (𝐺) is not larger
than the smallest 𝑘 such that 𝐺 admits a 𝑘-apex for G. Thus, if Elimination Distance to G is in
FPT, so is Vertex Deletion to G. Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh,
and Zehavi [4] showed, among other results, that in many cases the reverse implication also
holds. Namely, they proved that if G is hereditary, union-closed, and definable in monadic
second-order logic, and Vertex Deletion to G is in FPT, then Elimination Distance to G is
also (non-uniformly) in FPT. Incidentally, they also showed that if G is defined by excluding a
finite number of connected topological minors, then Elimination Distance to G is (uniformly)
in FPT. We note that the results of [4] do not provide explicit parametric dependencies for these
FPT-algorithms. Also, let us mention that it was conjectured in [4] that Elimination Distance
to G is in FPT parameterized by a generalization of treewidth called G-treewidth (see [37, 4,
23]). Note that, if true, this conjecture would answer the open problem mentioned above of
whether computing td parameterized by tw is in FPT.

Our results. In this paper, we provide explicit FPT-algorithms for Vertex Deletion to G and
Elimination Distance to G for every fixed minor-closed graph class G. Our first result is the
following.

THEOREM 1.1. For every minor-closed graph class G, there exists an algorithm that solves
Vertex Deletion to G in time 2𝑘O(1) · 𝑛2.

The degree of 𝑘 in the running time of Theorem 1.1, as well as the constants hidden in the
O-notation in the running time of the algorithms of the results below, depend on the maximum

6 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

size of a graph in obs(G). Thus, the algorithm of Theorem 1.1, while being uniformly FPT in
𝑘, is not uniform in the target class G, as one needs to know an upper bound on the size of
the minor-obstructions. This “meta-non-uniformity” applies to all the algorithms presented
in this paper, and it is also the case, among many others, of the FPT-algorithms in [70]. The
algorithm of Theorem 1.1 improves the algorithm of [70] from cubic to quadratic complexity in
𝑛 while keeping the same parametric dependence on 𝑘. This answers positively one of the open
problems posed in [70].

Our next algorithmic results concern Elimination Distance to G and provide, to the
authors’ knowledge, the first FPT-algorithms for this problem, when G is minor-closed, with an
explicit parametric dependence.

THEOREM 1.2. For every minor-closed graph class G, there exists an algorithm that solves

Elimination Distance to G in time 222𝑘
O(1)

· 𝑛2. In the particular case where obs(G) contains an
apex-graph, this algorithm runs in time 22O(𝑘2 log 𝑘) · 𝑛2.

As examples of classes G where obs(G) contains an apex-graph, we may consider G
whose graphs have bounded Euler genus, such as planar graphs. Our next result improves the
parametric dependence of the algorithm of Theorem 1.2 when obs(G) contains an apex-graph,
but with a worse polynomial factor.

THEOREM 1.3. For every minor-closed graph class G such that obs(G) contains an apex-graph,
there exists an algorithm that solves Elimination Distance to G in time 2𝑘O(1) · 𝑛3.

As discussed later, a crucial ingredient in the algorithms of Theorem 1.2 and Theorem 1.3
is to solve Elimination Distance to G parameterized by the treewidth of the input graph. The
following result, which may be of independent interest, deals with this case.

THEOREM 1.4. For every minor-closed graph class G, there exists an algorithm that solves
Elimination Distance to G in time 2O(𝑘·tw+tw log tw) · 𝑛, where tw denotes the treewidth of the input
graph.

The algorithm of Theorem 1.4 can be seen as a generalization of the algorithm of Reidl,
Rossmanith, Villaamil, and Sikdar [61] deciding whether td(𝐺) ≤ 𝑘 in time 2O(𝑘·tw) · 𝑛. Since, for
any graph 𝐺 and any graph class G, edG (𝐺) ≤ td(𝐺) ≤ tw(𝐺) · log 𝑛, Theorem 1.4 implies the
existence of an XP-algorithm for Elimination Distance to G parameterized by treewidth, when
G is minor-closed, running in time 𝑛O(tw2) . Given that the conjecture of [4] is still open, this is
the best type of algorithm that one can expect for Elimination Distance to G parameterized
by treewidth. Furthermore, since tw(𝐺) ≤ td(𝐺) for any graph 𝐺, Theorem 1.4 implies an
FPT-algorithm for Elimination Distance to G parameterized by treedepth, running in time
2O(td

2) · 𝑛.

7 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Finally, for any minor-closed graph class G, we provide an upper bound on the size of the
graphs in the obstruction set of E𝑘 (G).

THEOREM 1.5. For every minor-closed graph class G and for every positive integer 𝑘, each

graph in obs(E𝑘 (G)) has at most 2222𝑘
O(1)

vertices. Moreover, if obs(G) contains an apex-graph,
this bound drops to 22𝑘O(1) .

The only previously known bound for the graphs in obs(E𝑘 (G)) is the one for treedepth
by Dvořák, Giannopoulou, and Thilikos [22], who proved that every graph in obs(E𝑘 (G∅)) has
size at most 22𝑘−1 . Theorem 1.5 can be seen as a generalization of the results of Sau, Stamoulis,
and Thilikos [69], who provided similar upper bounds for the graphs in obs(A𝑘 (G)).

These two results are, to the authors’ knowledge, the first upper bounds on the size of
the graphs in the obstruction set for the treedepth and the elimination distance parameters,
and give, as an immediate consequence, the first known upper bound for the size of these
obstruction sets.

Our techniques. We now proceed to provide a high-level overview of the main tools used
to prove our results, without getting into technical details. This paper builds heavily on the
techniques recently introduced in [70] in order to deal with Vertex Deletion to G, which
are based on exploiting the Flat Wall Theorem of Robertson and Seymour [63], namely the
version proved by Kawarabayashi, Thomas, and Wollan [44] and its recent restatement by Sau,
Stamoulis, and Thilikos [68]. In a nutshell, the idea of Theorem 1.1, Theorem 1.2, and Theorem 1.3
is that, as far as the treewidth of the input graph is sufficiently large as an appropriate function
of 𝑘, it is possible to either “branch” into a number of subproblems that depends only on 𝑘

and where the value of the parameter is strictly smaller, or to find an irrelevant vertex (i.e.,
a vertex that does not change the answer to the considered problem) and remove it from the
graph. The irrelevant vertex technique originates from Robertson and Seymour [63] and is
further developed in [68, 69, 70]. Once the treewidth is bounded, what remains is to apply
the most efficient possible algorithm to solve the problem via dynamic programming on tree
decompositions.

Let us focus more particularly on the techniques we use to prove Theorem 1.1. Contrary to
the algorithm of [70] that solves Vertex Deletion to G for any minor-closed class G, we avoid
using iterative compression. This explains the improvement from cubic to quadratic complexity
in 𝑛. The algorithm of Theorem 1.1 can be seen as an extension of the algorithm of [70] that
solves Vertex Deletion to G in the particular case where obs(G) contains some apex-graph,
and uses ideas that date back to the work of Marx and Schlotter [55] for the Planarization
problem, that is, when G is the class of planar graphs. In Section 3 we provide a sketch of the
algorithms claimed in Theorem 1.1, Theorem 1.2, and Theorem 1.3, and in Section 6, Section 8,
and Section 9, respectively, we present the algorithms in full detail, along with a proof of their
correctness.

8 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

The proof of Theorem 1.4 consists of a dynamic programming algorithm that combines
the framework of [61] for the particular case where G contains only the empty graph (i.e., for
treedepth) with the representative-based techniques introduced in [9]. A bit more precisely,
the idea is to encode the partial solutions (called characteristic) via sets of annotated trees with
some additional properties. Here, the trees correspond to partial elimination trees and the
annotations indicate the representatives, in the leaves of the elimination trees, with respect to
the canonical equivalence relation defined for the target class G. The size of the characteristic
(cf. Lemma 7.6) dominates the running time of the whole algorithm. As usual when dealing
with dynamic programming, the formal description of the algorithm, given in Section 7, is quite
technical and lengthy.

Finally, to obtain the upper bound on the size of a graph 𝐺 ∈ obs(E𝑘 (G)) claimed in
Theorem 1.5, we proceed in two steps. First, we bound the treewidth of 𝐺 by a function of
𝑘. To do so, we observe that if the treewidth of 𝐺 is big enough, then there is a big enough
wall in 𝐺, and we find an irrelevant vertex 𝑣 for Elimination Distance to G in 𝐺. However,
𝐺 \ {𝑣} ∈ E𝑘 (G) and 𝐺 ∉ E𝑘 (G), hence we reach a contradiction. The second step is to bound
the size of a minor-minimal obstruction of small treewidth. This uses the classic technique of
Lagergren [52] (see also [31, 30, 39, 40, 32, 51, 53, 69]) combined with the encoding of the tables
of the dynamic programming algorithm that we use to prove Theorem 1.4; see Section 10.

2. Basic definitions and restatement of the problems

In Subsection 2.1 we give some basic definitions on graphs and minors and in Subsection 2.2
we redefine the problems in a more convenient way and we establish some conventions that
we will use throughout the paper.

2.1 Basic definitions

Sets and integers. We denote by N the set of non-negative integers. Given two integers 𝑝
and 𝑞, the set [𝑝, 𝑞] contains every integer 𝑟 such that 𝑝 ≤ 𝑟 ≤ 𝑞. For an integer 𝑝 ≥ 1, we set
[𝑝] = [1, 𝑝] and N≥𝑝 = N \ [0, 𝑝 − 1]. Given a non-negative integer 𝑥, we denote by odd(𝑥) the
smallest odd number that is not smaller than 𝑥. For a set 𝑆, we denote by 2𝑆 the set of all subsets
of 𝑆 and, given an integer 𝑟 ∈ [|𝑆 |], we denote by

(𝑆
𝑟

)
the set of all subsets of 𝑆 of size 𝑟 and by(𝑆

≤𝑟
)

(resp.
(𝑆
<𝑟

)
) the set of all subsets of 𝑆 of size at most 𝑟 (resp. 𝑟 − 1). If S is a collection of

objects where the operation ∪ is defined, then we denote
⋃⋃⋃⋃⋃⋃⋃⋃⋃S =

⋃
𝑋∈S 𝑋 .

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and
without loops or multiple edges. We use standard graph-theoretic notation and we refer the
reader to [20] for any undefined terminology. For convenience, we use 𝑢𝑣 instead of {𝑢, 𝑣} to
denote an edge of a graph. Let 𝐺 be a graph. In the rest of this paper we always use 𝑛 = |𝐺 |

9 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

for the size of 𝐺, i.e., the cardinality of 𝑉 (𝐺), and 𝑚 for the cardinality of 𝐸(𝐺), where 𝐺 is
the input graph of the problem under consideration. We say that a pair (𝐿, 𝑅) ∈ 2𝑉 (𝐺) × 2𝑉 (𝐺)

is a separation of 𝐺 if 𝐿 ∪ 𝑅 = 𝑉 (𝐺) and there is no edge in 𝐺 between 𝐿 \ 𝑅 and 𝑅 \ 𝐿. The
order of (𝐿, 𝐺) is |𝐿 ∩ 𝐺 |. Given a vertex 𝑣 ∈ 𝑉 (𝐺), we denote by 𝑁𝐺 (𝑣) the set of vertices of
𝐺 that are adjacent to 𝑣 in 𝐺. A vertex 𝑣 ∈ 𝑉 (𝐺) is isolated if 𝑁𝐺 (𝑣) = ∅. For 𝑆 ⊆ 𝑉 (𝐺), we set
𝐺[𝑆] = (𝑆, 𝐸 ∩

(𝑆
2
)
) and use the shortcut 𝐺 \ 𝑆 to denote 𝐺[𝑉 (𝐺) \ 𝑆]. We may also use 𝐺 \ 𝑣

instead of 𝐺 \ {𝑣} for 𝑣 ∈ 𝑉 (𝐺). For 𝐴, 𝐵 ⊆ 𝑉 (𝐺), 𝐸(𝐴, 𝐵) denotes the set of edges of 𝐺 with one
extremity in 𝐴 and the other in 𝐵. We use cc(𝐺) to denote the set of connected components of 𝐺.

Dissolutions and subdivisions. Given a vertex 𝑣 ∈ 𝑉 (𝐺) of degree two with neighbors 𝑢
and 𝑤, we define the dissolution of 𝑣 to be the operation of deleting 𝑣 and, if 𝑢 and 𝑤 are not
adjacent, adding the edge 𝑢𝑤. Given two graphs 𝐻 and 𝐺, we say that 𝐻 is a dissolution of 𝐺
if 𝐻 can be obtained from 𝐺 after dissolving vertices of 𝐺. Given an edge 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺), we
define the subdivision of 𝑒 to be the operation of deleting 𝑒, adding a new vertex 𝑤 and making
it adjacent to 𝑢 and 𝑣. Given two graphs 𝐻 and 𝐺, we say that 𝐻 is a subdivision of 𝐺 if 𝐻 can be
obtained from 𝐺 after subdividing edges of 𝐺. Observe that 𝐺 is a subdivision of 𝐻 iff 𝐻 is a
dissolution of 𝐺.

Contractions and minors. The contraction of an edge 𝑒 = 𝑢𝑣 of a simple graph 𝐺 results in a
simple graph 𝐺′ obtained from 𝐺 \ {𝑢, 𝑣} by adding a new vertex 𝑤 adjacent to all the vertices
in the set 𝑁𝐺 (𝑢) ∪𝑁𝐺 (𝑣) \ {𝑢, 𝑣}. A graph 𝐺′ is a minor of a graph 𝐺, denoted by 𝐺′ ⪯ 𝐺, if 𝐺′ can
be obtained from 𝐺 by a sequence of vertex removals, edge removals, and edge contractions. If
only edge contractions are allowed, we say that 𝐺′ is a contraction of 𝐺. Let 𝐻 be a graph that is
a minor of a graph 𝐺. We call any subgraph 𝑀 of 𝐺 that can be contracted to 𝐻 a model of 𝐻 in
𝐺. Given two graphs 𝐻 and 𝐺, if 𝐻 is a minor of 𝐺 then for every vertex 𝑣 ∈ 𝑉 (𝐻) there is a set
of vertices in 𝐺 that are the endpoints of the edges of 𝐺 contracted towards creating 𝑣. We call
this set model of 𝑣 in 𝐺. Given a finite collection of graphs F and a graph 𝐺, we use notation
F ⪯ 𝐺 to denote that some graph in F is a minor of 𝐺.

Minor obstructions. Let G be a graph class that is closed under taking minors. Recall that
the minor obstruction set of G is defined as the set of all minor-minimal graphs that are not
in G, and is denoted by obs(G). Given a finite non-empty collection of non-empty graphs F ,
we denote by exc(F) the set containing every graph 𝐺 that excludes all graphs in F as minors.
We call each graph in exc(F) F -minor-free. We use G∅ for the graph class containing only the
empty graph 𝐺∅. Notice that obs(G∅) = {𝐾1}.

10 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

2.2 Restating the problems

Let G be a minor-closed graph class and F be its obstruction set. Clearly, Vertex Deletion to G
is the same problem as asking, given a graph 𝐺 and some 𝑘 ∈ N, for a vertex set 𝑆 ⊆ 𝑉 (𝐺) of at
most 𝑘 vertices such that 𝐺 \ 𝑆 ∈ exc(F). Following the terminology of [10, 11, 12, 9, 29, 28, 46,
47, 70], we call this problem F -M-Deletion. Likewise, Elimination Distance to G is the same
problem as asking whether edexc(F) (𝐺) ≤ 𝑘. We will thus follow a similar notation and call this
problem F -M-Elimination Distance. Using the notation, {𝐾1}-M-Elimination Distance is the
problem of asking whether td(𝐺) ≤ 𝑘. We say that F is non-trivial when all graphs in F contain
at least two vertices.

Some conventions. In the rest of the paper, we fix G to be a minor-closed graph class and F
to be the set obs(G). From Robertson and Seymour’s theorem [65], we know that F is a finite
collection of graphs. Given a graph 𝐺, we define its apex number to be the smallest integer 𝑎
for which there is a set 𝐴 ⊆ 𝑉 (𝐺) of size at most 𝑎 such that 𝐺 \ 𝐴 is planar. An apex-graph
is a graph with apex number one. Also, we define the detail of 𝐺, denoted by detail(𝐺), to
be the maximum among |𝐸(𝐺) | and |𝑉 (𝐺) |. We define three constants depending on F that
will be used throughout the paper whenever we consider such a collection F . We define 𝑎F
as the minimum apex number of a graph in F , we set 𝑠F := max{|𝑉 (𝐻) | | 𝐻 ∈ F }, and we
set ℓF := max{detail(𝐻) | | 𝐻 ∈ F }. Given a tuple t = (𝑥1, . . . , 𝑥ℓ) ∈ Nℓ and two functions
𝜒, 𝜓 : N → N, we write 𝜒(𝑛) = Ot(𝜓(𝑛)) in order to denote that there exists a computable
function 𝜙 : Nℓ → N such that 𝜒(𝑛) = O(𝜙(t) · 𝜓(𝑛)). Notice that 𝑠F ≤ ℓF ≤ 𝑠F (𝑠F − 1)/2, and
thus OℓF (·) = O𝑠F (·). Observe also thatA𝑘 (G) and E𝑘 (G) are 𝐾𝑠F+𝑘-minor-free graph classes,
and thus, due to [72], we can always assume that 𝐺 has O𝑠F (𝑘

√︁
log 𝑘 · 𝑛) edges, otherwise we

can directly conclude that (𝐺, 𝑘) is a no-instance for both problems.

3. Sketch of the algorithms

Before going further through the definitions, let us provide a sketch of the algorithms claimed
in Theorem 1.1, Theorem 1.2 and Theorem 1.3. As mentioned in the introduction, Theorem 1.1
can be seen as a generalization of the algorithm of [70] that solves F -M-Vertex Deletion in the
particular case where F contains some apex-graph. While many techniques taken from [70]
remain the same, some new ingredients are needed so as to deal with the possible existence of
many apices in all graphs in F . On the other hand, Theorem 1.2 and Theorem 1.3 can be seen
as an adaptation of Theorem 1.1 to F -M-Elimination Distance. Since these three algorithms
follow a common streamline, we sketch all of them simultaneously while pointing out the steps
where they differ. Moreover, the full proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3 are
given in Section 6, Section 8, and Section 9, respectively.

11 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Walls and flat walls. In this paper we extensively deal with walls and flat walls, following the
framework of [68]. Unfortunately, almost ten pages are required to provide all the technical
notions to correctly present all this framework, that is necessary to use the tools developed in
[68, 69, 70]. Thus, we only give some intuition on those definitions for the sketch of the algorithm,
while the formal definitions are deferred to Section 5. More precisely, in Subsection 5.1, we
introduce walls and several notions concerning them (just look at Figure 2 to understand what
a wall is). In Subsection 5.2 we provide the definitions of a rendition and a painting, which are
not crucial for understanding this section. Using the above notions, in Subsection 5.3 we define
flat walls and flatness pairs. There are a number of technical terms (such as tilts, influence,
regular flatness pairs, ...) that are not the main focus of the sketch. Let us just mention that the
perimeter of a flat wall of a graph 𝐺 separates𝑉 (𝐺) into two sets 𝑋 and 𝑌 with 𝑌 containing the
wall. The compass of a flat wall is 𝐺[𝑌]. See Figure 1: 𝑋 is the set of vertices in the light green
part, and 𝑌 the set of vertices in the pink part.

⋆

⋆

Figure 1. Illustration of a flat wall 𝑊 inside a graph 𝐺. The edges of 𝑊 are depicted in orange
and the compass of 𝑊 in 𝐺 is the union of all parts of 𝐺 that are drawn in pink cells. The graph
in each such pink cell corresponds to a flap of the flat wall.

In Subsection 5.4 and Subsection 5.5 we define canonical partitions and the notion of
bidimensionality. Informally speaking, a canonical partition of a graph with respect to some
wall𝑊 refers to a partition of the vertex set of a graph in bags that follow the structure of a
wall subgraph of the given graph; see Figure 3 for an illustration. The bidimensionality of a
vertex set 𝑋 with respect to a wall𝑊 of a graph 𝐺 intuitively expresses the “spread” of a set 𝑋

12 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

in a𝑊 -canonical partition of 𝐺. The crucial idea is that a set 𝑋 of small bidimensionality cannot
“destroy” a large (flat) wall too much.

Finally, in Subsection 5.6 we present homogeneous walls. Intuitively, homogeneous flat
walls are flat walls that allow the routing of the same set of (topological) minors in the aug-
mented flaps (i.e., the flaps together with the apex set) “cropped” by each one of their bricks.
Such a homogeneous wall can be detected in a big enough flat wall (Proposition 3.5) and this
“homogeneity” property implies that some central part of a big enough homogeneous wall can
be declared irrelevant (Proposition 3.6).

The first common step is to run the following algorithm that states that a graph 𝐺 in
A𝑘 (exc(F)) or E𝑘 (exc(F)) either has bounded treewidth (see Subsection 4.2 for the formal
definition) or contains a large wall. This result was proved in [70] in the case of F -M-Deletion.
The proof in the case of F -M-Elimination Distance, necessary for Theorem 1.2 and Theorem 1.3,
can be found in Subsection 8.1.

PROPOS IT ION 3.1 ([70], Subsection 8.1). Let F be a finite collection of graphs. There exist a
function 𝑓1 : N→ N and an algorithm with the following specifications:

Find-Wall(𝐺, 𝑟, 𝑘)
Input: A graph 𝐺, an odd 𝑟 ∈ N≥3, and 𝑘 ∈ N.
Output: One of the following:

Case 1: Either a report that (𝐺, 𝑘) is a no-instance of F -M-Deletion (resp. F -M-Elimination
Distance), or
Case 2: a report that 𝐺 has treewidth at most 𝑓1(𝑠F) · 𝑟 + 𝑘, or
Case 3: an 𝑟-wall𝑊 of 𝐺.

Moreover, 𝑓1(𝑠F) = 2O(𝑠
2
F ·log 𝑠F) , and the algorithm runs in time 2OℓF (𝑟

2+(𝑘+𝑟)·log(𝑘+𝑟)) · 𝑛 (resp.
2OℓF (𝑟

2+𝑘2) · 𝑛).

In Case 1, we can immediately conclude. In Case 2, since the treewidth of 𝐺 is bounded,
we use a dynamic programming algorithm to solve the corresponding problem. Namely, we
solve F -M-Deletion on instances of bounded treewidth using the main result from [9].

PROPOS IT ION 3.2 ([9]). For every finite collection of graphs F , there exists an algorithm that,
given a triple (𝐺, tw, 𝑘) where 𝐺 is a graph of treewidth at most tw and 𝑘 is a non-negative integer,
solves F -M-Deletion in time 2OℓF (tw·log tw) · 𝑛.

For F -M-Elimination Distance, we use Theorem 1.4 to conclude. The proof of this (quite
technically involved) dynamic programming algorithm is given in Section 7.

Therefore, it only remains to deal with Case 3. Given an 𝑟-wall𝑊 of 𝐺, we want to reduce
the size of 𝐺. To do so, we observe that we can either:

13 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Case 3a: find a subwall𝑊𝑎 of𝑊 and an apex set 𝐴𝑎 such that𝑊𝑎 is flat in 𝐺 \ 𝐴𝑎 and has
a compass of bounded treewidth, or
Case 3b: find a subwall𝑊𝑏 of𝑊 that is very “well connected” to an apex set 𝐴𝑏 of small
size.

The above distinction is done using two algorithmic versions of the Flat Wall Theorem consecu-
tively. The first one comes from [44, Theorem 7.7] and is translated here in the new framework
with tilts of [68]. Informally, we say that a graph 𝐻 is grasped by a wall𝑊 in a graph 𝐺 if there
is a model of 𝐻 in 𝐺 such that the model of every node of 𝐻 intersects𝑊 . See Section 5 for the
formal definition.

PROPOS IT ION 3.3 ([44]). There are two functions 𝑓2, 𝑓3 : N→ N, such that the images of 𝑓2
are odd integers, and an algorithm with the following specifications:

Grasped-or-Flat(𝐺, 𝑟, 𝑡,𝑊)
Input: A graph 𝐺, an odd 𝑟 ∈ N≥3, 𝑡 ∈ N≥1, and an 𝑓2(𝑡) · 𝑟-wall𝑊 of 𝐺.
Output: One of the following:

Either a model of a 𝐾𝑡-minor in 𝐺 grasped by𝑊 , or
a set 𝐴 ⊆ 𝑉 (𝐺) of size at most 𝑓3(𝑡) and a flatness pair (𝑊 ′,ℜ′) of 𝐺 \ 𝐴 of heigth 𝑟 such that
𝑊 ′ is a �̃� ′-tilt of some subwall �̃� ′ of𝑊 .

Moreover, 𝑓2(𝑡) = O(𝑡26), 𝑓3(𝑡) = O(𝑡24), and the algorithm runs in time O(𝑡24𝑚 + 𝑛).

We would like to mention that the notion of being grasped by a wall is one of the new main
arguments yileding the improvement of the complexity for F -M-Deletion compared to [70].

The second one comes from [70] and adds the condition that𝑊 ′ has a compass of bounded
treewidth, at the price of dropping the condition that the model of 𝐾𝑡 is grasped by𝑊 .

PROPOS IT ION 3.4 ([70]). There exist a function 𝑓4 : N → N and an algorithm with the
following specifications:

Clique-Or-twFlat(𝐺, 𝑟, 𝑡)
Input: A graph 𝐺, an odd 𝑟 ∈ N≥3, and 𝑡 ∈ N≥1.
Output: One of the following:

Either a report that 𝐾𝑡 is a minor of 𝐺, or
a tree decomposition of 𝐺 of width at most 𝑓4(𝑡) · 𝑟, or
a set 𝐴 ⊆ 𝑉 (𝐺) of size at most 𝑓3(𝑡) and a regular flatness pair (𝑊 ′,ℜ′) of 𝐺 \ 𝐴 of height 𝑟
whose ℜ′-compass has treewidth at most 𝑓4(𝑡) · 𝑟.

Moreover, 𝑓4(𝑡) = 2O(𝑡2 log 𝑡) and this algorithm runs in time 2O𝑡 (𝑟2) · 𝑛. The algorithm can be
modified to obtain an explicit dependence on 𝑡 in the running time, namely 22O(𝑡2 log 𝑡) ·𝑟3 log 𝑟 · 𝑛.

Grasped-or-Flat is used to find a big enough complete graph “controlled” by the input
wall, while we need Clique-or-twFlat to find a flat wall whose compass has bounded treewidth.

14 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Unfortunately, we cannot obtain both conditions simultaneously, and this is why we need both
results. If, after using both algorithms, we obtain a flatness pair (�̃� ′,ℜ′) of 𝐺 \ 𝐴𝑎 of heigth
𝑟𝑎 whose compass has bounded treewidth, then we are in Case 3a. In that case, the following
result from [70] provides an algorithm that, given a flatness pair of big enough height, outputs
a homogeneous flatness pair.

PROPOS IT ION 3.5 ([70]). There is a function 𝑓5 : N4 → N, whose images are odd integers, and
an algorithm with the following specifications:

Homogeneous(𝑟, �̃�, 𝑎, ℓ, 𝑡, 𝐺, 𝐴,𝑊,R)
Input: Five integers 𝑟 ∈ N≥3, �̃�, 𝑎, ℓ, 𝑡 ∈ N, where �̃� ≤ 𝑎, a graph 𝐺, a set 𝐴 ⊆ 𝑉 (𝐺) of size at most
𝑎, and a flatness pair (𝑊,ℜ) of 𝐺 \ 𝐴 of height 𝑓5(𝑟, 𝑎, �̃�, ℓ) whose ℜ-compass has treewidth at
most 𝑡.
Output: A flatness pair (�̆�, ℜ̆) of 𝐺 \ 𝐴 of height 𝑟 that is ℓ-homogeneous with respect to

(𝐴
≤�̃�
)

and
is a𝑊 ′-tilt of (𝑊,ℜ) for some subwall𝑊 ′ of𝑊 .
Moreover, 𝑓5(𝑟, �̃�, 𝑎, ℓ) = O(𝑟 𝑓6(�̃�,𝑎,ℓ)) where 𝑓6(�̃�, 𝑎, ℓ) = 2𝑎�̃�·2O((�̃�+ℓ) ·log(�̃�+ℓ)) and the algorithm runs
in time 2O(𝑓6(�̃�,𝑎,ℓ)·𝑟 log 𝑟+𝑡 log 𝑡) · (𝑛 +𝑚).

Then we use the next result, that essentially says that the central vertex 𝑣 of a big enough
homogeneous wall is irrelevant, i.e., (𝐺, 𝑘) and (𝐺 \ 𝑣, 𝑘) are equivalent instances of the cor-
responding problem. Here, bid𝐺\𝐴,𝑊 (𝑋) denotes the bidimensionality of a set 𝑋 in the wall𝑊
with apex set 𝐴. The combinatorial version of this result is stated in [69, Lemma 16] and can be
algorithmized using [68, Theorem 5] (Proposition 5.4). Before presenting the next result we give
some insight on the Unique Linkage Theorem.

A linkage 𝐿 of order 𝑘 in a graph 𝐺 is the union of a collection of 𝑘 pairwise-disjoint paths
of 𝐺. The set of pairs of vertices corresponding to the endpoints of these paths is the pattern of
𝐿. The Unique Linkage Theorem, proven in [67, 66] and also [45], asserts that there is a function
𝑓ul such that if 𝐿 is a linkage of pattern P of order 𝑘 in a graph 𝐺 with 𝑉 (𝐺) = 𝑉 (𝐿) and 𝐿 is
unique with pattern P, then the treewidth of 𝐺 is at most 𝑓ul(𝑘). The linkage function appears
in the general dependency of several results related to the application of the irrelevant vertex
technique (see [68, 69, 13, 33, 3, 26, 34]).

PROPOS IT ION 3.6 ([68, 69]). Let F be a finite collection of graphs. There exist two functions
𝑓7 : N4 → N and 𝑓8 : N2 → N, and an algorithm with the following specifications:

Find-Irrelevant-Vertex(𝑘, 𝑎, 𝐺, 𝐴,𝑊,R)
Input: Two integers 𝑘, 𝑎 ∈ N, a graph 𝐺, a set 𝐴 ⊆ 𝑉 (𝐺), and a regular flatness pair (𝑊,R) of
𝐺 \ 𝐴 of height at least 𝑓7(𝑎, ℓF , 3, 𝑘) that is 𝑓8(𝑎, ℓF)-homogeneous with respect to

(𝐴
≤𝑎
)
.

Output: A vertex 𝑣 of𝐺 \𝐴 such that for every set 𝑋 ⊆ 𝑉 (𝐺) with bid𝐺\𝐴,𝑊 (𝑋) ≤ 𝑘 and |𝐴\𝑋 | ≤ 𝑎,
it holds that 𝐺 \ 𝑋 ∈ exc(F) if and only if 𝐺 \ (𝑋 \ 𝑣) ∈ exc(F).

15 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Moreover, 𝑓7(𝑎, ℓF , 𝑞, 𝑘) = O(𝑘 · (𝑓ul(16𝑎 + 12ℓF))3 + 𝑞), where 𝑓ul is the function of the Unique
Linkage Theorem ([45, Theorem 1]) and 𝑓8(𝑎, ℓF) = 𝑎 + ℓF + 3, and this algorithm runs in time
O(𝑛 +𝑚).

We can prove that both 𝑘-apex sets and 𝑘-elimination sets have small bidimensionality
(cf. Observation 5.7 and Lemma 5.9). If, for every 𝑘-apex set 𝑆, 𝐺 \ 𝑆 ∈ exc(F) if and only if
𝐺 \ (𝑆 \ 𝑣) ∈ exc(F), then it is straightforward to see that 𝑣 is irrelevant for F -M-Deletion. It is
slightly less trivial to prove that, for each 𝑘-elimination set 𝑆, we can find some superset 𝑋 ⊇ 𝑆
of small bidimensionality such that a similar statement holds. Additional details are available
in Subsection 5.5 of Section 5.

Therefore we can recursively solve the problems on the instance (𝐺 \ 𝑣, 𝑘).

If no flatness pair whose compass has bounded treewidth was found, then we are in
Case 3b. In this case, inspired by [55] and [70], we use the following result of [69] that basically
says that if there is a big enough flat wall 𝑊 and an apex set 𝐴′ of 𝑎F vertices that are all
adjacent to many bags of a canonical partition of𝑊 , then each 𝑘-apex set or 𝑘-elimination set
intersects 𝐴′.

PROPOS IT ION 3.7 ([69]). There exist three functions 𝑓9, 𝑓10, 𝑓11 : N3 → N, such that if 𝐺 is a
graph, 𝑘 ∈ N, 𝐴 is a subset of𝑉 (𝐺), (𝑊,ℜ) is a flatness pair of𝐺 \𝐴 of height at least 𝑓9(𝑎F , 𝑠F , 𝑘),
Q̃ is a𝑊 -canonical partition of 𝐺 \ 𝐴, 𝐴′ is a subset of vertices of 𝐴 that are adjacent, in 𝐺, to
vertices of at least 𝑓10(𝑎F , 𝑠F , 𝑘) 𝑓11(𝑎F , 𝑠F , 𝑘)-internal bags of Q̃, and |𝐴′| ≥ 𝑎F , then for every
set 𝑋 ⊆ 𝑉 (𝐺) such that 𝐺 \ 𝑋 ∈ exc(F) and bid𝐺\𝐴,𝑊 (𝑋) ≤ 𝑘, it holds that 𝑋 ∩ 𝐴′ ≠ ∅. Moreover,
𝑓9(𝑎, 𝑠, 𝑘) = O(2𝑎 · 𝑠5/2 · 𝑘5/2), 𝑓10(𝑎, 𝑠, 𝑘) = O(2𝑎 · 𝑠3 · 𝑘3), and 𝑓11(𝑎, 𝑠, 𝑘) = O((𝑎2 + 𝑘) · 𝑠), where
𝑎 = 𝑎F and 𝑠 = 𝑠F .

For the F -M-Deletion problem, if we find such a set 𝐴′, then we can branch by guessing
which vertex 𝑣 ∈ 𝐴′ belongs to a 𝑘-apex set and recursively solving (𝐺 \ 𝑣, 𝑘 − 1). Given that 𝐴′

has size 𝑎F and that 𝑘 decreases after each guess, this step is applied at most 𝑎𝑘F times.

However, for F -M-Elimination Distance, 𝑘 does not decrease, given that the size of a
𝑘-elimination set may not depend on 𝑘. Thus, this step may be done 𝑎𝑛F times, which does not
give an FPT-algorithm. To circumvent this problem, we propose two alternatives:

Option 1: The first alternative is to only use Case 3a. This is possible given that (𝐾𝑠F+𝑘, 𝑘) is
a no-instance of both problems. Thus, when using the algorithms Grasped-or-Flat and Clique-

or-twFlat, we force the outcome to be an apex set 𝐴 and a flatness pair of 𝐺 \ 𝐴. However, the
bound on the size of 𝐴 now depends on 𝑘, and thus, so does the variable 𝑎 in the input of the
algorithm Homogeneous. This explains the triple-exponential parametric dependence on 𝑘 in
Theorem 1.2. Interestingly, a precise analysis of the time complexity, which can be found in
Section 8, shows that if 𝑎F = 1, i.e., when F contains an apex graph, the parametric dependence
is only double-exponential on 𝑘 (cf. Theorem 1.2).

16 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Option 2: The second alternative is to restrict ourselves to the case where 𝑎F = 1. Thus, in
Case 3b, we find a vertex 𝑣 that belongs to every 𝑘-elimination set. There is no need to branch,
and this step is done at most 𝑛 times. However, the fact that the time complexity of this step is
quadratic in 𝑛 explains the cubic complexity of the algorithm in Theorem 1.3.

It remains to show that if no flatness pair whose compass has bounded treewidth was
found, then we can find a flatness pair and a set 𝐴′ satisfying the conditions of Proposition 3.7.
To do so, using flow techniques, we find the set 𝐴 of vertices with sufficiently many internally-
disjoint paths to𝑊 , independently from one another. If this set is too large, we can safely declare
a no-instance. Otherwise, we extend the canonical partition of𝑊 and just check whether 𝑎F
vertices of 𝐴 are adjacent to many vertices of this new canonical partition. If this happens, then
we can safely use Proposition 3.7. The second main improvement with respect to the algorithm
in [70] is the new argument that the extension of the canonical partition of𝑊 can be done in
a totally arbitrary manner. The quadratic complexity of this step stems from the search for
internally-disjoint paths for every vertex of the input graph.

4. More definitions

In this section, we give some more definitions. Namely, in Subsection 4.1, we define elimination
trees, that is an alternative way to define elimination distance of a graph to a graph class. Next,
in Subsection 4.2, we define (nice) tree decompositions and we present some preliminary results.
Finally, in Subsection 4.3 we define boundaried graphs, an equivalence relation between them,
and the notion of representatives.

4.1 F-elimination trees

We start this subsection by defining some notions on (rooted) trees.

Trees and rooted trees. Let 𝑇 be a tree and 𝑢, 𝑣 be two nodes of 𝑇 . We denote by 𝑢𝑇𝑣 the
path in 𝑇 𝑢 and 𝑣. A rooted tree is a pair (𝑇, 𝑟) where 𝑇 is a tree and 𝑟 is a node of 𝑇 called root
of (𝑇, 𝑟). Let (𝑇, 𝑟) be a rooted tree and let 𝑢 be a node of 𝑇 . We define the descendants of 𝑢 in
(𝑇, 𝑟) by Desc𝑇,𝑟 (𝑢) = {𝑥 ∈ 𝑉 (𝑇) | 𝑢 ∈ 𝑉 (𝑥𝑇𝑟)} and the ancestors of 𝑢 in (𝑇, 𝑟) by Anc𝑇,𝑟 (𝑢) =
𝑉 (𝑟𝑇𝑢) \ {𝑢}. We define the leaves in (𝑇, 𝑟) by Leaf(𝑇, 𝑟) = {𝑢 ∈ 𝑉 (𝑇) | Desc𝑇,𝑟 (𝑢) = {𝑢}}
and the internal nodes in (𝑇, 𝑟) by Int(𝑇, 𝑟) = 𝑉 (𝑇) \ Leaf(𝑇, 𝑟). If 𝑢 ≠ 𝑟 then we denote by
Par𝑇,𝑟 (𝑢) the unique node in Anc𝑇,𝑟 (𝑢) ∩ 𝑁𝑇 (𝑢). We also agree that Par𝑇,𝑟 (𝑟) = void. We denote
by Ch𝑇,𝑟 (𝑢) = Desc𝑇,𝑟 (𝑢) ∩ 𝑁𝐺 (𝑢) the set of the children of 𝑢 (certainly Ch𝑇,𝑟 (𝑢) = ∅ if 𝑢 is a
leaf of 𝑇). Given 𝐾 ⊆ 𝑉 (𝑇), the least common ancestor of 𝐾 in (𝑇, 𝑟) is the node 𝑢 such that
𝐾 ⊆ Desc𝑇,𝑟 (𝑢) and there is no child 𝑣 of 𝑢 such that 𝐾 ⊆ Desc𝑇,𝑟 (𝑣).

17 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

The height function height𝑇,𝑟 : 𝑉 (𝑇) → N maps 𝑣 ∈ Leaf(𝑇, 𝑟) to 0 and 𝑣 ∈ Int(𝑇, 𝑟) to
1 +max{height𝑇,𝑟 (𝑥) | 𝑥 ∈ Ch𝑇,𝑟 (𝑣)}. The height of (𝑇, 𝑟) is height𝑇,𝑟 (𝑟). Note that the height
function is decreased by one here compared to the usual definition of the height.

We use (𝑇 𝑟𝑢 , 𝑢) to denote the rooted tree where 𝑇 𝑟𝑢 = 𝑇 [Desc𝑇,𝑟 (𝑢)] and we call (𝑇 𝑟𝑢 , 𝑢)
subtree of (𝑇, 𝑟) rooted at 𝑢. To simplify notation and when the root 𝑟 is clear from the context,
we use 𝑇𝑢 instead of 𝑇 𝑟𝑢 .

A rooted forest is a pair (𝐹, 𝑅) where 𝐹 is a forest and 𝑅 is a set of roots such that each tree
in 𝐹 has exactly one root in 𝑅. All notations above naturally extend to forests.

Elimination trees. We now define elimination trees, that can be used to define alternatively
graphs of bounded elimination distance. Let F be a non-empty finite collection of non-empty
graphs. An F -elimination tree of a connected graph 𝐺 is a triple (𝑇, 𝜒, 𝑟) where (𝑇, 𝑟) is a rooted
tree and 𝜒 : 𝑉 (𝑇) → 2𝑉 (𝐺) such that:

for each 𝑡 ∈ Int(𝑇, 𝑟), |𝜒(𝑡) | = 1,
(𝜒(𝑡))𝑡∈𝑉 (𝑇) is a partition of 𝑉 (𝐺),
for each 𝑢𝑣 ∈ 𝐸(𝐺), if 𝑢 ∈ 𝜒(𝑡1) and 𝑣 ∈ 𝜒(𝑡2), then 𝑡1 ∈ Anc𝑇,𝑟 (𝑡2) ∪ Desc𝑇,𝑟 (𝑡2),
for each 𝑡 ∈ Leaf(𝑇, 𝑟), 𝐺[𝜒(𝑡)] ∈ exc(F), and
for each 𝑡 ∈ 𝑉 (𝑇), 𝐺[𝜒(𝑇𝑡)] is connected.

The height of (𝑇, 𝜒, 𝑟) is the height of (𝑇, 𝑟). It is straightforward to see that the minimum
height of an F -elimination tree of a connected graph 𝐺 is edexc(F) (𝐺). Note that 𝜒(Int(𝑇, 𝑟)) is a
𝑘-elimination set of 𝐺 for exc(F) and that, if F is trivial, then, for each 𝑡 ∈ Leaf(𝑇, 𝑟), 𝜒(𝑡) = ∅.
Observe also that for every 𝑢 ∈ Int(𝑇, 𝑟) with at least two children 𝑥 and 𝑦, any path between
𝜒(𝑇𝑥) and 𝜒(𝑇𝑦) intersects 𝜒(𝑢𝑇𝑟).

An F -elimination forest of a graph 𝐺 is a triple (𝐹, 𝜒, 𝑅), such that, if cc(𝐺) = {𝐺1, ..., 𝐺𝑙},
then 𝐹 is the disjoint union of the trees 𝑇1, . . . , 𝑇𝑙 and 𝑅 = {𝑟1, ..., 𝑟𝑙} where (𝑇𝑖 , 𝜒 |𝑉 (𝑇𝑖) , 𝑟𝑖) is an
F -elimination tree of 𝐺𝑖 for 𝑖 ∈ [𝑙].

The following simple lemma is based on the fact that, given an F -elimination tree (𝑇, 𝜒, 𝑟)
of a graph 𝐺, for every non-leaf node 𝑢 of 𝑇 , 𝜒(𝑢𝑇𝑟) separates the vertex sets 𝜒(𝑇𝑥) and 𝜒(𝑇𝑦),
where 𝑥 and 𝑦 are distinct children of 𝑣 in (𝑇, 𝑟).

LEMMA 4.1. Let F be a finite collection of graphs. Let 𝐺 be a graph and let 𝐻 be a connected
subgraph of 𝐺. Let (𝐹, 𝜒, 𝑅) be an F -elimination forest of 𝐺. Then the least common ancestor of
𝜒−1(𝑉 (𝐻)) exists and belongs to 𝜒−1(𝑉 (𝐻)).

PROOF . Let 𝐾 := 𝜒−1(𝑉 (𝐻)). Since 𝐻 is connected, 𝐾 is a subset of a tree in 𝐹, and therefore
the least common ancestor of 𝐾 is defined. Let 𝑢 be the least common ancestor of 𝐾 . Let 𝑟 ∈ 𝑅
be the root of the tree containing 𝑢. Let 𝑥, 𝑦 ∈ 𝑉 (𝐻) such that the least common ancestor of
𝜒−1(𝑥) and 𝜒−1(𝑦) is 𝑢. Since 𝐻 is connected, there is a path 𝑃 in 𝐻 between 𝑥 and 𝑦. By the

18 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

third property of elimination trees, {𝑢} ∪ Anc𝐹,𝑅(𝑢) intersects 𝜒−1(𝑉 (𝑃)), and so {𝑢} ∪ Anc𝐹,𝑅(𝑢)
intersects 𝐾 . Since 𝑢 is the least common ancestor of 𝐾 , 𝑢 ∈ 𝐾 . ■

We now present a lemma to justify that the graphs with bounded elimination distance
to exc(F) are minor-free. Intuitively, the proof of this lemma is based on the fact that, due
to Lemma 4.1, the size of the largest clique minor that can “fit” inside an elimination tree is
equal to the height of the elimination tree.

LEMMA 4.2. Let F be a finite collection of graphs. Let 𝐺 be a graph and 𝑘 ∈ N such that
edexcF (𝐺) ≤ 𝑘. Then 𝐾𝑠F+𝑘 is not a minor of 𝐺.

PROOF . Let (𝐹, 𝜒, 𝑅) be an F -elimination forest of 𝐺 of height at most 𝑘. Suppose towards a
contradiction that there is a model of 𝐾𝑠F+𝑘 in 𝐺. Let 𝑥1, ..., 𝑥𝑠F+𝑘 be the vertices of 𝐾𝑠F+𝑘 and for
every 𝑖 ∈ [𝑠F + 𝑘], let 𝑉𝑖 be the model of 𝑥𝑖 in 𝐺. Let 𝐺′ be the graph obtained by contracting,
for each 𝑖 ∈ [𝑠F + 𝑘], the edges in each 𝑉𝑖 . Let 𝑣𝑖 , 𝑖 ∈ [𝑠F + 𝑘] be the resulting vertices after the
contraction of each 𝑉𝑖 . Thus, the graph 𝐺′[{𝑣1, ..., 𝑣𝑠F+𝑘}] is isomorphic to 𝐾𝑠F+𝑘.

Let (𝐹′, 𝜒′, 𝑅) be obtained from (𝐹, 𝜒, 𝑅) as follows. For every 𝑖 ∈ [𝑠F + 𝑘], let 𝑢𝑖 be the least
common ancestor of 𝐾𝑖 := 𝜒−1(𝑉𝑖) in (𝐹, 𝑅). Due to Lemma 4.1, 𝑢𝑖 ∈ 𝐾𝑖 . The forest 𝐹′ is obtained
after removing each node 𝑣 ∈ (𝐾𝑖 \ 𝑢𝑖) ∩ (Int(𝐹, 𝑅) \ 𝑅) from𝑉 (𝐹) and adding an edge between
Par𝐹,𝑅(𝑣) and each node in Ch𝐹,𝑅(𝑣). The function 𝜒′ is defined as 𝜒′(𝑣) := 𝜒(𝑣) if 𝑣 ∈ Int(𝐹′, 𝑅)
and 𝜒′(𝑣) := 𝜒(𝑣) \ (𝑉𝑖 \ 𝑢𝑖) if 𝑣 ∈ Leaf(𝐹′, 𝑅). In the latter case, if 𝐺′[𝜒′(𝑣)] is not connected,
then we update 𝐹′ by replacing 𝑣 by |cc(𝐺′[𝜒′(𝑣)]) | nodes, each one associated with a connected
component of 𝐺′[𝜒′(𝑣)]. Observe that (𝐹′, 𝜒′, 𝑅) is an F -elimination forest of 𝐺′ of height at most
𝑘 and that we can assume that for every 𝑖 ∈ [𝑠F + 𝑘], 𝑣𝑖 ∈ 𝜒′(𝑢𝑖).

Since the vertices in {𝑣1, ..., 𝑣𝑠F+𝑘} are pairwise connected by an edge in 𝐺′, the third prop-
erty of elimination trees implies that there is 𝑢 ∈ Leaf(𝐹′, 𝑅) and 𝑟 ∈ 𝑅 such that {𝑣1, ..., 𝑣𝑠F+𝑘} ⊆
𝜒′(𝑢𝐹′𝑟). Let 𝑢′ := Par𝐹′,𝑅(𝑢). For every 𝑡 ∈ 𝑢′𝐹′𝑟, 𝑡 ∈ Int(𝐹′, 𝑅), so |𝜒′(𝑡) | = 1, and therefore,
|𝜒′(𝑢′𝐹𝑟) | ≤ 𝑘. Thus, |𝜒′(𝑢) ∩𝑉 (𝐻) | ≥ 𝑠F . Therefore, 𝐾𝑠F is a minor of𝐺′[𝜒′(𝑢)]. This contradicts
the fact that 𝐺′[𝜒′(𝑢)] ∈ exc(F), so 𝐾𝑠F+𝑘 is not a minor of 𝐺. ■

4.2 Tree decompositions

The notions of tree decompositions and treewidth are used throughout the paper.

Treewidth. A tree decomposition of a graph 𝐺 is a pair (T, 𝛽) where T is a tree and 𝛽 : 𝑉 (T) →
2𝑉 (𝐺) such that⋃

𝑡∈𝑉 (T) 𝛽(𝑡) = 𝑉 (𝐺),
for every 𝑒 ∈ 𝐸(𝐺), there is a 𝑡 ∈ 𝑉 (T) such that 𝛽(𝑡) contains both endpoints of 𝑒, and
for every 𝑣 ∈ 𝑉 (𝐺), the subgraph of T induced by {𝑡 ∈ 𝑉 (T) | 𝑣 ∈ 𝛽(𝑡)} is connected.

19 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

The width of (T, 𝛽) is equal to max
{
|𝛽(𝑡) |−1

�� 𝑡 ∈ 𝑉 (T)} and the treewidth of𝐺, denoted by
tw(𝐺), is the minimum width over all tree decompositions of 𝐺. A rooted tree decomposition is a
triple (T, 𝛽, r) where (T, 𝛽) is a tree decomposition and (T, r) is a rooted tree. For every 𝑞 ∈ 𝑉 (T),
we set 𝐺 (T,𝛽,r)𝑞 = 𝐺[𝛽(T𝑞)]. We may write 𝐺𝑞 instead of 𝐺 (T,𝛽,r)𝑞 when there is no ambiguity about
(T, 𝛽, r).

To compute a tree decomposition of a graph of bounded treewidth, we use the recent
single-exponential 2-approximation algorithm for treewidth of Korhonen [50].

PROPOS IT ION 4.3 ([50]). There is an algorithm that, given an graph 𝐺 and an integer 𝑘,
outputs either a report that tw(𝐺) > 𝑘, or a tree decomposition of 𝐺 of width at most 2𝑘 + 1 with
O(𝑛) nodes. Moreover, this algorithm runs in time 2O(𝑘) · 𝑛.

The relation between the treedepth and the treewidth of a graph proved by Bodlaender,
Gilbert, Kloks, and Hafsteinsson in [15] will be used in Section 7 in order to obtain an XP-
algorithm for F -M-Elimination Distance parameterized by treewidth.

PROPOS IT ION 4.4 ([15]). Let𝐺 be a graph with 𝑛 vertices. Then tw(𝐺) ≤ td(𝐺) ≤ tw(𝐺) · log 𝑛.

The following result has been proved by Adler, Dorn, Fomin, Sau, and Thilikos in [1]. We
use it in Section 8 and, in particular, in the algorithm Find-Wall-Ed of Proposition 3.1, to detect
a wall in a graph of bounded treewidth.

PROPOS IT ION 4.5 ([1]). There is an algorithm that, given a graph𝐺 on𝑚 edges, a graph𝐻 on ℎ
edges without isolated vertices, and a tree decomposition of𝐺 of width at most 𝑘, outputs, if it exists,
a minor of 𝐺 isomorphic to 𝐻 . Moreover, this algorithm runs in time 2O(𝑘 log 𝑘) · ℎO(𝑘) · 2O(ℎ) · 𝑚.

We also show that given a graph 𝐺 and an integer 𝑘, the removal of a 𝑘-elimination set
from 𝐺 does not decrease the treewidth of 𝐺 more than 𝑘.

LEMMA 4.6. Let F be a finite collection of graphs. Let 𝑐, 𝑘 be two integers and let 𝐺 be a graph
such that tw(𝐺) ≥ 𝑐. Let 𝑆 be a 𝑘-elimination set of 𝐺 for exc(F). Then tw(𝐺 \ 𝑆) ≥ 𝑐 − 𝑘.

PROOF . Suppose first that 𝐺 is connected. Let (𝑇, 𝜒, 𝑟) be an F -elimination tree of 𝐺 with
𝜒(Int(𝑇, 𝑟)) = 𝑆. Let 𝑣1, ..., 𝑣𝑙 be the leaves of (𝑇, 𝑟), whose label is given by a depth-first search
order starting from 𝑟. Let 𝐶𝑖 := 𝐺[𝜒(𝑣𝑖)] for 𝑖 ∈ [𝑙], and note that tw(𝐺 \ 𝑆) = max𝑖∈[𝑙] tw(𝐶𝑖).
Suppose for contradiction that tw(𝐺 \ 𝑆) < 𝑐 − 𝑘, and we proceed to show that tw(𝐺) < 𝑐,
contradicting our hypothesis. Let (T𝑖 , 𝛽𝑖) be an optimal tree decomposition of 𝐶𝑖 of width 𝑤𝑖
and let 𝑃𝑖 be the path from the parent of 𝑣𝑖 to 𝑟 in 𝑇 , for 𝑖 ∈ [𝑙]. Let 𝑤 := max𝑖∈[𝑙] 𝑤𝑖 , so we
have that 𝑤 ≤ 𝑐 − 𝑘 − 1. We construct a tree decomposition (T , 𝛽) of 𝐺, starting from the
tree decompositions (T𝑖 , 𝛽𝑖), as follows. Create a path with nodes 𝑥1, ..., 𝑥𝑙 such that for 𝑖 ∈ [𝑙],

20 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

𝛽(𝑥𝑖) = 𝑉 (𝑃𝑖). Then for 𝑖 ∈ [𝑙], add an edge between 𝑥𝑖 and a node of T𝑖 . For each 𝑥 ∈ 𝑉 (T𝑖), we
set 𝛽(𝑥) := 𝛽𝑖 (𝑥) ∪𝑉 (𝑃𝑖). Since the height of (𝑇, 𝑟) is at most 𝑘, 𝑃𝑖 has size at most 𝑘 for 𝑖 ∈ [𝑙],
so (T , 𝛽) has width at most 𝑤 + 𝑘 ≤ 𝑐 − 1, a contradiction.

If𝐺 is not connected, we can apply the above proof to each of its connected components. ■

To describe our dynamic programming algorithm presented in Section 7, we need a
particular type of tree decompositions, namely nice tree decompositions.

Nice tree decompositions. A nice tree decomposition of a graph 𝐺 is a rooted tree decomposi-
tion (T, 𝛽, r) such that:

every node has either zero, one or two children,
if 𝑥 is a leaf of T, then 𝛽(𝑥) is a singleton (𝑥 is a leaf node),
if 𝑥 is a node of T with a single child 𝑦, then |𝛽(𝑥) \ 𝛽(𝑦) | = 1 (𝑥 is an introduce node) or
|𝛽(𝑦) \ 𝛽(𝑥) | = 1 (𝑥 is a forget node), and
if 𝑥 is a node with two children 𝑥1 and 𝑥2, then 𝛽(𝑥) = 𝛽(𝑥1) = 𝛽(𝑥2) (𝑥 is a join node).

To find a nice tree decomposition from a given a tree decomposition, we use the following
well-known result proved, for instance, in [7].

PROPOS IT ION 4.7 ([7]). Given a graph 𝐺 with 𝑛 vertices and a tree decomposition (T, 𝛽) of 𝐺
of width 𝑤, there is an algorithm that computes a nice tree decomposition of 𝐺 of width 𝑤 with at
most O(𝑤 · 𝑛) nodes in time O(𝑤2 · (𝑛 + |𝑉 (T) |)).

4.3 Boundaried graphs and representatives

Boundaried graphs are extensively used in Section 7 and Section 10. We present here some
useful definitions and results.

Boundaried graphs. Let 𝑡 ∈ N. A 𝑡-boundaried graph is a triple G = (𝐺, 𝐵, 𝜌) where 𝐺 is a
graph, 𝐵 ⊆ 𝑉 (𝐺), |𝐵| = 𝑡, and 𝜌 : 𝐵→ [𝑡] is a bijection. We say that two 𝑡-boundaried graphs
G1 = (𝐺1, 𝐵1, 𝜌1) and G2 = (𝐺2, 𝐵2, 𝜌2) are isomorphic if there is an isomorphism from 𝐺1 to 𝐺2

that extends the bijection 𝜌−1
2 ◦𝜌1. The triple (𝐺, 𝐵, 𝜌) is a boundaried graph if it is a 𝑡-boundaried

graph for some 𝑡 ∈ N. We denote by B𝑡 the set of all (pairwise non-isomorphic) 𝑡-boundaried
graphs. We also set B =

⋃
𝑡∈N B𝑡.

Minors of boundaried graphs. We say that a 𝑡-boundaried graph 𝐺1 = (𝐺1, 𝐵1, 𝜌1) is a minor
of a 𝑡-boundaried graph 𝐺2 = (𝐺2, 𝐵2, 𝜌2), denoted by𝐺1 ⪯ 𝐺2, if there is a sequence of removals
of non-boundary vertices, edge removals, and edge contractions in𝐺2, not allowing contractions
of edges with both endpoints in 𝐵2, that transforms 𝐺2 to a boundaried graph that is isomorphic
to 𝐺1 (during edge contractions, boundary vertices prevail). Note that this extends the usual
definition of minors in graphs without boundary.

21 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Equivalent boundaried graphs and representatives. We say that two boundaried graphs
G1 = (𝐺1, 𝐵1, 𝜌1) and G2 = (𝐺2, 𝐵2, 𝜌2) are compatible if 𝜌−1

2 ◦ 𝜌1 is an isomorphism from 𝐺1[𝐵1]
to 𝐺2[𝐵2]. Given two compatible boundaried graphs G1 = (𝐺1, 𝐵1, 𝜌1) and G2 = (𝐺2, 𝐵2, 𝜌2), we
define G1 ⊕ G2 as the graph obtained if we take the disjoint union of 𝐺1 and 𝐺2 and, for every
𝑖 ∈ [|𝐵1 |], we identify vertices 𝜌−1

1 (𝑖) and 𝜌−1
2 (𝑖). We also define G1⊕G2 as the boundaried graph

(G1 ⊕ G2, 𝐵1, 𝜌1). Given ℎ ∈ N, we say that two boundaried graphs G1 and G2 are ℎ-equivalent,
denoted by G1 ≡ℎ G2, if they are compatible and, for every graph 𝐻 with detail at most ℎ and
every boundaried graph F compatible with G1 (hence, with G2 as well), it holds that

𝐻 ⪯ F ⊕ G1 ⇐⇒ 𝐻 ⪯ F ⊕ G2.

Note that ≡ℎ is an equivalence relation on B. A minimum-sized (in terms of number of ver-
tices) element of an equivalent class of ≡ℎ is called representative of ≡ℎ. For 𝑡 ∈ N, a set of
𝑡-representatives for ≡ℎ, denoted by R𝑡ℎ, is a collection containing a minimum-sized representa-
tive for each equivalence class of ≡ℎ restricted to B𝑡.

The following results were proved by Baste, Sau, and Thilikos [9] and give a bound on the
size of a representative and on the number of representatives for this equivalence relation,
respectively.

PROPOS IT ION 4.8 ([9]). For every 𝑡 ∈ N, 𝑞, ℎ ∈ N≥1, and G = (𝐺, 𝐵, 𝜌) ∈ R𝑡ℎ, if 𝐺 is does not
contain 𝐾𝑞 as a minor, then |𝑉 (𝐺) | = O𝑞,ℎ(𝑡).

PROPOS IT ION 4.9 ([9]). For every 𝑡 ∈ N≥1, |R𝑡ℎ | = 2Oℎ(𝑡 log 𝑡) .

Moreover, given a boundaried graph of bounded size, the following lemma gives an
algorithm to find its representative. While this is might be considered folklore, we include here
its proof for the sake of completeness.

LEMMA 4.10. Given a finite collection of graphs F , ℎ, 𝑡, 𝑘 ∈ N, the set R of representatives in R𝑡ℎ
whose underlying graphs are F -minor-free, and a 𝑡-boundaried graph G with 𝑘 vertices whose
underlying graph is F -minor-free, there is an algorithm that outputs the representative of G in R
in time 2OℓF ,ℎ(𝑡 log 𝑡+log(𝑘+𝑡)) .

PROOF . Let H be the set of graphs with detail at most ℎ. For a 𝑡-boundaried graph G of
size 𝑘 whose underlying graph is F -minor-free, we define the matrix 𝑀G, whose rows are
the representatives in R and whose columns are the graphs of H , such that for R ∈ R and
𝐻 ∈ H , we have 𝑀G(R, 𝐻) = 1 if G and R are compatible and 𝐻 ⪯ G ⊕ R, and 𝑀G(R, 𝐻) = 0
otherwise. Observe that R ∈ R is the representative of G if and only if 𝑀R = 𝑀G. According to
Proposition 4.9, 𝑀G has size 2Oℎ(𝑡 log 𝑡) · Oℎ(1) = 2Oℎ(𝑡 log 𝑡) .

For all R ∈ R, we compute 𝑀R. Every representative in R has size at most O𝑠F ,ℎ(𝑡) by
Proposition 4.8, so when two representatives R and R′ are compatible, R ⊕ R′ has size OℓF ,ℎ(𝑡)

22 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

as well. From [43], we know that checking if a graph 𝐻 ∈ H is a minor of R ⊕ R′ can be done in
time OℓF ,ℎ(𝑡2). Therefore, we can compute 𝑀R in time 2Oℎ,𝑠F (𝑡 log 𝑡) .

Let G be a 𝑡-boundaried graph of size 𝑘 whose underlying graph is F -minor-free. For
R ∈ R compatible with G, G ⊕ R has size OℓF ,ℎ(𝑘 + 𝑡), so checking if 𝐻 ∈ H is a minor of G ⊕ R
can be done in time OℓF ,ℎ((𝑘 + 𝑡)2). Thus we can compute 𝑀G in time 2Oℎ(𝑡 log 𝑡) · OℓF ,ℎ((𝑘 + 𝑡)2) =
2OℓF ,ℎ(𝑡 log 𝑡+log(𝑘+𝑡)) .

Finally, we just need to find R ∈ R such that 𝑀R = 𝑀G, which can be done in time 2Oℎ(𝑡 log 𝑡) .
Thus, we can find the representative of G in time 2OℓF ,ℎ(𝑡 log 𝑡+log(𝑘+𝑡)) . ■

5. Evenmore definitions: Flat walls

In this section we deal with flat walls using the framework of [68]. More precisely, in Sub-
section 5.1, we introduce walls and several notions concerning them. In Subsection 5.2 we
provide the definitions of a rendition and a painting. Using the above notions, in Subsection 5.3
we define flat walls and provide some results about them, including the Flat Wall Theorem
(namely, the version proved in [44]) and its algorithmic version restated in the “more accurate”
framework of [68]. In Subsection 5.4 and Subsection 5.5, we define canonical partitions and the
notion of bidimensionality and give some combinatorial results that allow us to use branching
in the algorithm in Section 6. Finally in Subsection 5.6 we present homogeneous walls and give
some results to find an irrelevant vertex. We note that most of the definitions of this section
can also be found in [68, 69, 70] with more details and illustrations.

5.1 Walls and subwalls

We start with some basic definitions about walls.

Walls. Let 𝑘, 𝑟 ∈ N. The (𝑘 × 𝑟)-grid is the graph whose vertex set is [𝑘] × [𝑟] and two vertices
(𝑖, 𝑗) and (𝑖′, 𝑗′) are adjacent if and only if |𝑖− 𝑖′| + | 𝑗− 𝑗′| = 1. An elementary 𝑟-wall, for some odd
integer 𝑟 ≥ 3, is the graph obtained from a (2𝑟 × 𝑟)-grid with vertices (𝑥, 𝑦) ∈ [2𝑟] × [𝑟], after
the removal of the “vertical” edges {(𝑥, 𝑦), (𝑥, 𝑦 + 1)} for odd 𝑥 + 𝑦, and then the removal of all
vertices of degree one. Notice that, as 𝑟 ≥ 3, an elementary 𝑟-wall is a planar graph that has a
unique (up to topological isomorphism) embedding in the plane R2 such that all its finite faces
are incident to exactly six edges. The perimeter of an elementary 𝑟-wall is the cycle bounding
its infinite face, while the cycles bounding its finite faces are called bricks. Also, the vertices in
the perimeter of an elementary 𝑟-wall that have degree two are called pegs, while the vertices
(1, 1), (2, 𝑟), (2𝑟 − 1, 1), (2𝑟, 𝑟) are called corners (notice that the corners are also pegs).

An 𝑟-wall is any graph𝑊 obtained from an elementary 𝑟-wall �̄� after subdividing edges
(see Figure 2). A graph𝑊 is a wall if it is an 𝑟-wall for some odd 𝑟 ≥ 3 and we refer to 𝑟 as the

23 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Figure 2. A 13-wall and its six layers, depicted in alternating orange and green. The central vertices of
the wall are depicted in red and the corners are depicted in blue.

height of𝑊 . Given a graph 𝐺, a wall of 𝐺 is a subgraph of 𝐺 that is a wall. We insist that, for
every 𝑟-wall, the number 𝑟 is always odd.

We call the vertices of degree three of a wall𝑊 3-branch vertices. A cycle of𝑊 is a brick
(resp. the perimeter) of𝑊 if its 3-branch vertices are the vertices of a brick (resp. the perimeter)
of �̄� . We denote by C(𝑊) the set of all cycles of 𝑊 . We use 𝐷(𝑊) in order to denote the
perimeter of the wall𝑊 . A brick of𝑊 is internal if it is disjoint from 𝐷(𝑊).

Subwalls. Given an elementary 𝑟-wall �̄� , some odd 𝑖 ∈ {1, 3, . . . , 2𝑟 − 1}, and 𝑖′ = (𝑖 + 1)/2, the
𝑖′-th vertical path of �̄� is the one whose vertices, in order of appearance, are (𝑖, 1), (𝑖, 2), (𝑖 +
1, 2), (𝑖 + 1, 3), (𝑖, 3), (𝑖, 4), (𝑖 + 1, 4), (𝑖 + 1, 5), (𝑖, 5), . . . , (𝑖, 𝑟 − 2), (𝑖, 𝑟 − 1), (𝑖 + 1, 𝑟 − 1), (𝑖 + 1, 𝑟).
Also, given some 𝑗 ∈ [2, 𝑟 − 1] the 𝑗-th horizontal path of �̄� is the one whose vertices, in order
of appearance, are (1, 𝑗), (2, 𝑗), . . . , (2𝑟, 𝑗).

A vertical (resp. horizontal) path of an 𝑟-wall𝑊 is one that is a subdivision of a vertical
(resp. horizontal) path of �̄� . Notice that the perimeter of an 𝑟-wall 𝑊 is uniquely defined
regardless of the choice of the elementary 𝑟-wall �̄� . A subwall of𝑊 is any subgraph𝑊 ′ of𝑊
that is an 𝑟′-wall, with 𝑟′ ≤ 𝑟, and such the vertical (resp. horizontal) paths of𝑊 ′ are subpaths
of the vertical (resp. horizontal) paths of𝑊 .

Layers. The layers of an 𝑟-wall𝑊 are recursively defined as follows. The first layer of𝑊 is its
perimeter. For 𝑖 = 2, . . . , (𝑟 − 1)/2, the 𝑖-th layer of𝑊 is the (𝑖 − 1)-th layer of the subwall𝑊 ′

obtained from𝑊 after removing from𝑊 its perimeter and removing recursively all occurring
vertices of degree one. We refer to the (𝑟 − 1)/2-th layer as the inner layer of𝑊 . The central
vertices of an 𝑟-wall are its two 3-branch vertices that do not belong to any of its layers and that

24 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

are connected by a path of𝑊 that does not intersect any layer. See Figure 2 for an illustration
of the notions defined above.

Central walls. Given an 𝑟-wall 𝑊 and an odd 𝑞 ∈ N≥3 where 𝑞 ≤ 𝑟, we define the central
𝑞-subwall of 𝑊 , denoted by 𝑊 (𝑞) , to be the 𝑞-wall obtained from 𝑊 after removing its first
(𝑟 − 𝑞)/2 layers and all occurring vertices of degree one.

Tilts. The interior of a wall𝑊 is the graph obtained from𝑊 if we remove from it all edges of
𝐷(𝑊) and all vertices of 𝐷(𝑊) that have degree two in𝑊 . Given two walls𝑊 and �̃� of a graph
𝐺, we say that �̃� is a tilt of𝑊 if �̃� and𝑊 have identical interiors.

Minor models grasped by walls. Let 𝐺 be a graph and 𝑊 be an 𝑟-wall in 𝐺. Let 𝑃1, ..., 𝑃𝑟

be the horizontal paths and 𝑄1, ..., 𝑄𝑟 be the vertical paths of𝑊 . Let 𝑡 ≥ 1 be an integer and
𝑣1, ..., 𝑣𝑡 be the vertices in 𝐾𝑡. A model of a 𝐾𝑡-minor in 𝐺 is grasped by𝑊 if, for every model
𝑋𝑖 of 𝑣𝑖 , there exist distinct indices 𝑖1, ..., 𝑖𝑡 ∈ [𝑟] and distinct indices 𝑗1, ..., 𝑗𝑡 ∈ [𝑟] such that
𝑉 (𝑃𝑖𝑙) ∩𝑉 (𝑄 𝑗𝑙) ⊆ 𝑋𝑙 for all 𝑙 ∈ [𝑡].

We present the following result of Kawarabayashi and Kobayashi [42], which provides a
linear relation between the treewidth and the height of a largest wall in a minor-free graph.

PROPOS IT ION 5.1 ([42]). There is a function 𝑓12 : N → N such that, for every 𝑡, 𝑟 ∈ N and
every graph 𝐺 that does not contain 𝐾𝑡 as a minor, if tw(𝐺) ≥ 𝑓12(𝑡) · 𝑟, then 𝐺 contains an 𝑟-wall
as a subgraph. In particular, one may choose 𝑓12(𝑡) = 2O(𝑡2·log 𝑡) .

5.2 Paintings and renditions

In this subsection we present the notions of renditions and paintings, originating in the work of
Robertson and Seymour [63]. The definitions presented here were introduced in [44] (see also
[9, 68]).

Paintings. A closed (resp. open) disk is a set homeomorphic to the set {(𝑥, 𝑦) ∈ R2 | 𝑥2+ 𝑦2 ≤ 1}
(resp. {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 < 1}). Let Δ be a closed disk. Given a subset 𝑋 of Δ, we denote its
closure by �̄� and its boundary by bd(𝑋). A Δ-painting is a pair Γ = (𝑈, 𝑁) where

𝑁 is a finite set of points of Δ,
𝑁 ⊆ 𝑈 ⊆ Δ, and
𝑈 \𝑁 has finitely many arcwise-connected components, called cells, where for every cell 𝑐,

the closure 𝑐 of 𝑐 is a closed disk and
|𝑐| ≤ 3, where 𝑐 := bd(𝑐) ∩ 𝑁 .

We use the notation 𝑈 (Γ) := 𝑈 , 𝑁 (Γ) := 𝑁 and denote the set of cells of Γ by 𝐶(Γ). For
convenience, we may assume that each cell of Γ is an open disk of Δ.

25 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Notice that, given a Δ-painting Γ, the pair (𝑁 (Γ), {𝑐 | 𝑐 ∈ 𝐶(Γ)}) is a hypergraph whose
hyperedges have cardinality at most three and Γ can be seen as a plane embedding of this
hypergraph in Δ.

Renditions. Let 𝐺 be a graph and let Ω be a cyclic permutation of a subset of 𝑉 (𝐺) that we
denote by 𝑉 (Ω). By an Ω-rendition of 𝐺 we mean a triple (Γ, 𝜎, 𝜋), where

(a) Γ is a Δ-painting for some closed disk Δ,
(b) 𝜋 : 𝑁 (Γ) → 𝑉 (𝐺) is an injection, and
(c) 𝜎 assigns to each cell 𝑐 ∈ 𝐶(Γ) a subgraph 𝜎(𝑐) of 𝐺, such that

(1) 𝐺 =
⋃
𝑐∈𝐶(Γ) 𝜎(𝑐),

(2) for distinct 𝑐, 𝑐′ ∈ 𝐶(Γ), 𝜎(𝑐) and 𝜎(𝑐′) are edge-disjoint,
(3) for every cell 𝑐 ∈ 𝐶(Γ), 𝜋(𝑐) ⊆ 𝑉 (𝜎(𝑐)),
(4) for every cell 𝑐 ∈ 𝐶(Γ), 𝑉 (𝜎(𝑐)) ∩⋃𝑐′∈𝐶(Γ)\{𝑐}𝑉 (𝜎(𝑐′)) ⊆ 𝜋(𝑐), and
(5) 𝜋(𝑁 (Γ) ∩ bd(Δ)) = 𝑉 (Ω), such that the points in 𝑁 (Γ) ∩ bd(Δ) appear in bd(Δ) in the

same ordering as their images, via 𝜋, in Ω.

5.3 Flatness pairs

In this subsection we define the notion of a flat wall. The definitions given here are originating
from [68]. We refer the reader to that paper for a more detailed exposition of these definitions
and the reasons for which they were introduced. We use the more accurate framework of [68]
concerning flat walls, instead of that of [44], in order to be able to use tools that are developed
in [68, 69, 70].

Flat walls. Let𝐺 be a graph and let𝑊 be an 𝑟-wall of𝐺, for some odd integer 𝑟 ≥ 3. We say that
a pair (𝑃, 𝐶) ⊆ 𝑉 (𝐷(𝑊)) ×𝑉 (𝐷(𝑊)) is a choice of pegs and corners for𝑊 if𝑊 is a subdivision
of an elementary 𝑟-wall �̄� where 𝑃 and 𝐶 are the pegs and the corners of �̄� , respectively
(clearly, 𝐶 ⊆ 𝑃). To get more intuition, notice that a wall𝑊 can occur in several ways from the
elementary wall �̄� , depending on the way the vertices in the perimeter of �̄� are subdivided.
Each of them gives a different selection (𝑃, 𝐶) of pegs and corners of𝑊 .

We say that𝑊 is a flat 𝑟-wall of 𝐺 if there is a separation (𝑋,𝑌) of 𝐺 and a choice (𝑃, 𝐶) of
pegs and corners for𝑊 such that:

𝑉 (𝑊) ⊆ 𝑌 ,
𝑃 ⊆ 𝑋 ∩ 𝑌 ⊆ 𝑉 (𝐷(𝑊)), and
if Ω is the cyclic ordering of the vertices 𝑋 ∩ 𝑌 as they appear in 𝐷(𝑊), then there exists
an Ω-rendition (Γ, 𝜎, 𝜋) of 𝐺[𝑌].

We say that𝑊 is a flat wall of 𝐺 if it is a flat 𝑟-wall for some odd integer 𝑟 ≥ 3.

26 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Flatness pairs. Given the above, we say that the choice of the 7-tuple ℜ = (𝑋,𝑌 , 𝑃, 𝐶, Γ, 𝜎, 𝜋)
certifies that𝑊 is a flat wall of 𝐺. We call the pair (𝑊,ℜ) a flatness pair of 𝐺 and define the
height of the pair (𝑊,ℜ) to be the height of𝑊 . We use the term cell of ℜ in order to refer to the
cells of Γ.

We call the graph 𝐺[𝑌] the ℜ-compass of 𝑊 in 𝐺, denoted by Compassℜ(𝑊). We can
assume that Compassℜ(𝑊) is connected, updating ℜ by removing from 𝑌 the vertices of all
the connected components of Compassℜ(𝑊) except for the one that contains𝑊 and including
them in 𝑋 (Γ, 𝜎, 𝜋 can also be easily modified according to the removal of the aforementioned
vertices from 𝑌). We define the flaps of the wall 𝑊 in ℜ as Flapsℜ(𝑊) := {𝜎(𝑐) | 𝑐 ∈ 𝐶(Γ)}.
Given a flap 𝐹 ∈ Flapsℜ(𝑊), we define its base as 𝜕𝐹 := 𝑉 (𝐹) ∩ 𝜋(𝑁 (Γ)). A cell 𝑐 of ℜ is untidy if
𝜋(𝑐) contains a vertex 𝑥 of𝑊 such that two of the edges of𝑊 that are incident to 𝑥 are edges of
𝜎(𝑐). Notice that if 𝑐 is untidy then |𝑐| = 3. A cell 𝑐 of ℜ is tidy if it is not untidy.

Cell classification. Given a cycle 𝐶 of Compassℜ(𝑊), we say that 𝐶 is ℜ-normal if it is not
a subgraph of a flap 𝐹 ∈ Flapsℜ(𝑊). Given an ℜ-normal cycle 𝐶 of Compassℜ(𝑊), we call a
cell 𝑐 of ℜ 𝐶-perimetric if 𝜎(𝑐) contains some edge of 𝐶. Notice that if 𝑐 is 𝐶-perimetric, then
𝜋(𝑐) contains two points 𝑝, 𝑞 ∈ 𝑁 (Γ) such that 𝜋(𝑝) and 𝜋(𝑞) are vertices of 𝐶 where one, say
𝑃in
𝑐 , of the two (𝜋(𝑝), 𝜋(𝑞))-subpaths of 𝐶 is a subgraph of 𝜎(𝑐) and the other, denoted by 𝑃out

𝑐 ,
(𝜋(𝑝), 𝜋(𝑞))-subpath contains at most one internal vertex of 𝜎(𝑐), which should be the (unique)
vertex 𝑧 in 𝜕𝜎(𝑐) \ {𝜋(𝑝), 𝜋(𝑞)}. We pick a (𝑝, 𝑞)-arc 𝐴𝑐 in 𝑐 := 𝑐∪ 𝑐 such that 𝜋−1(𝑧) ∈ 𝐴𝑐 if and
only if 𝑃in

𝑐 contains the vertex 𝑧 as an internal vertex.
We consider the circle 𝐾𝐶 =

⋃⋃⋃⋃⋃⋃⋃⋃⋃{𝐴𝑐 | 𝑐 is a 𝐶-perimetric cell of ℜ} and we denote by Δ𝐶 the
closed disk bounded by 𝐾𝐶 that is contained in Δ. A cell 𝑐 of ℜ is called 𝐶-internal if 𝑐 ⊆ Δ𝐶
and is called 𝐶-external if Δ𝐶 ∩ 𝑐 = ∅. Notice that the cells of ℜ are partitioned into 𝐶-internal,
𝐶-perimetric, and 𝐶-external cells.

Let 𝑐 be a tidy 𝐶-perimetric cell of ℜ where |𝑐| = 3. Notice that 𝑐 \ 𝐴𝑐 has two arcwise-
connected components and one of them is an open disk 𝐷𝑐 that is a subset of Δ𝐶 . If the closure
𝐷𝑐 of 𝐷𝑐 contains only two points of 𝑐 then we call the cell 𝑐 𝐶-marginal.

Influence. For every ℜ-normal cycle 𝐶 of Compassℜ(𝑊) we define the set influenceℜ(𝐶) =
{𝜎(𝑐) | 𝑐 is a cell of ℜ that is not 𝐶-external}.

A wall𝑊 ′ of Compassℜ(𝑊) is ℜ-normal if 𝐷(𝑊 ′) is ℜ-normal. Notice that every wall of𝑊
(and hence every subwall of𝑊) is an ℜ-normal wall of Compassℜ(𝑊). We denote bySℜ(𝑊) the
set of all ℜ-normal walls of Compassℜ(𝑊). Given a wall𝑊 ′ ∈ Sℜ(𝑊) and a cell 𝑐 of ℜ, we say
that 𝑐 is𝑊 ′-perimetric/internal/external/marginal if 𝑐 is 𝐷(𝑊 ′)-perimetric/internal/external/mar-
ginal, respectively. We also use 𝐾𝑊 ′ , Δ𝑊 ′ , influenceℜ(𝑊 ′) as shortcuts for 𝐾𝐷(𝑊 ′) , Δ𝐷(𝑊 ′) , and
influenceℜ(𝐷(𝑊 ′)), respectively.

27 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Regular flatness pairs. We call a flatness pair (𝑊,ℜ) of a graph 𝐺 regular if none of its cells
is𝑊 -external,𝑊 -marginal, or untidy.

Tilts of flatness pairs. Let (𝑊,ℜ) and (�̃� ′, ℜ̃′) be two flatness pairs of a graph 𝐺 and let
𝑊 ′ ∈ Sℜ(𝑊). We assume that ℜ = (𝑋,𝑌 , 𝑃, 𝐶, Γ, 𝜎, 𝜋) and ℜ̃′ = (𝑋′, 𝑌 ′, 𝑃′, 𝐶′, Γ′, 𝜎′, 𝜋′). We say
that (�̃� ′, ℜ̃′) is a𝑊 ′-tilt of (𝑊,ℜ) if

ℜ̃′ does not have �̃� ′-external cells,
�̃� ′ is a tilt of𝑊 ′,
the set of �̃� ′-internal cells of ℜ̃′ is the same as the set of𝑊 ′-internal cells of ℜ and their
images via 𝜎′ and 𝜎 are also the same,
Compassℜ̃′ (�̃� ′) is a subgraph of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceℜ(𝑊 ′), and

if 𝑐 is a cell in 𝐶(Γ′) \ 𝐶(Γ), then |𝑐| ≤ 2.

The next observation follows from the third item above and the fact that the cells corre-
sponding to flaps containing a central vertex of𝑊 ′ are all internal (recall that the height of a
wall is always at least three).

OBSERVAT ION 5.2. Let (𝑊,ℜ) be a flatness pair of a graph 𝐺 and𝑊 ′ ∈ Sℜ(𝑊). For every
𝑊 ′-tilt (�̃� ′, ℜ̃′) of (𝑊,ℜ), the central vertices of𝑊 ′ belong to the vertex set of Compassℜ̃′ (�̃� ′).

Also, given a regular flatness pair (𝑊,ℜ) of a graph 𝐺 and a𝑊 ′ ∈ Sℜ(𝑊), for every𝑊 ′-tilt
(�̃� ′, ℜ̃′) of (𝑊,ℜ), by definition none of its cells is �̃� ′-external, �̃� ′-marginal, or untidy – thus,
(�̃� ′, ℜ̃′) is regular. Therefore, regularity of a flatness pair is a property that its tilts “inherit”.

OBSERVAT ION 5.3. If (𝑊,ℜ) is a regular flatness pair, then for every 𝑊 ′ ∈ Sℜ(𝑊), every
𝑊 ′-tilt of (𝑊,ℜ) is also regular.

Furthermore, we need the following propositions, that are the main results of [68].

PROPOS IT ION 5.4 ([68]). There exists an algorithm that, given a graph 𝐺, a flatness pair
(𝑊,ℜ) of 𝐺, and a wall𝑊 ′ ∈ Sℜ(𝑊), outputs a𝑊 ′-tilt of (𝑊,ℜ) in time O(𝑛 +𝑚).

PROPOS IT ION 5.5 ([68]). Let 𝐺 be a graph and (𝑊,ℜ) be a flatness pair of 𝐺. There is a
regular flatness pair (𝑊∗,ℜ∗) of 𝐺, with the same height as (𝑊,ℜ), such that Compassℜ∗ (𝑊∗) ⊆
Compassℜ(𝑊).

5.4 Canonical partitions

In this subsection, we define the notion of canonical partition of a graph with respect to some
wall. This refers to a partition of the vertex set of a graph in bags that follow the structure of a
wall subgraph of the given graph. For this reason, we start by defining the canonical partition
of a wall, as a “canonical” way to partition the vertices of the wall in connected subsets that
preserve the grid-like structure of the wall.

28 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Canonical partition of a wall. Let 𝑟 ≥ 3 be an odd integer. Let𝑊 be an 𝑟-wall and let 𝑃1, . . . , 𝑃𝑟

(resp. 𝐿1, . . . , 𝐿𝑟) be its vertical (resp. horizontal) paths. For every even (resp. odd) 𝑖 ∈ [2, 𝑟 − 1]
and every 𝑗 ∈ [2, 𝑟 − 1], we define 𝐴(𝑖, 𝑗) to be the subpath of 𝑃𝑖 that starts from a vertex of
𝑃𝑖 ∩ 𝐿 𝑗 and finishes at a neighbor of a vertex in 𝐿 𝑗+1 (resp. 𝐿 𝑗−1), such that 𝑃𝑖 ∩ 𝐿 𝑗 ⊆ 𝐴(𝑖, 𝑗) and
𝐴(𝑖, 𝑗) does not intersect 𝐿 𝑗+1 (resp. 𝐿 𝑗−1). Similarly, for every 𝑖, 𝑗 ∈ [2, 𝑟 − 1], we define 𝐵(𝑖, 𝑗) to
be the subpath of 𝐿 𝑗 that starts from a vertex of 𝑃𝑖 ∩ 𝐿 𝑗 and finishes at a neighbor of a vertex in
𝑃𝑖−1, such that 𝑃𝑖 ∩ 𝐿 𝑗 ⊆ 𝐵(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) does not intersect 𝑃𝑖−1.

Figure 3. A 5-wall and its canonical partition Q. The red bag is the external bag 𝑄ext.

For every 𝑖, 𝑗 ∈ [2, 𝑟 − 1], we denote by 𝑄(𝑖, 𝑗) the graph 𝐴(𝑖, 𝑗) ∪ 𝐵(𝑖, 𝑗) and by 𝑄ext the graph
𝑊 \ ⋃𝑖, 𝑗∈[2,𝑟−1] 𝑉 (𝑄𝑖, 𝑗). Now consider the collection Q = {𝑄ext} ∪ {𝑄𝑖, 𝑗 | 𝑖, 𝑗 ∈ [2, 𝑟 − 1]} and
observe that the graphs inQ are connected subgraphs of𝑊 and their vertex sets form a partition
of 𝑉 (𝑊). We call Q the canonical partition of 𝑊 . Also, we call every 𝑄𝑖, 𝑗 , 𝑖, 𝑗 ∈ [2, 𝑟 − 1] an
internal bag of Q, while we refer to 𝑄ext as the external bag of Q. See Figure 3 for an illustration
of the notions defined above. For every 𝑖 ∈ [(𝑟 − 1)/2], we say that a set 𝑄 ∈ Q is an 𝑖-internal
bag of Q if 𝑉 (𝑄) does not contain any vertex of the first 𝑖 layers of𝑊 . Notice that the 1-internal
bags of Q are the internal bags of Q.

Canonical partition of a graphwith respect to awall. Let𝑊 be a wall of a graph𝐺. Consider
the canonical partition Q of 𝑊 . The enhancement of the canonical partition Q on 𝐺 is the
following operation. We set Q̃ := Q and, as long as there is a vertex 𝑥 ∈ 𝐺\𝑉 (⋃⋃⋃⋃⋃⋃⋃⋃⋃Q̃) that is adjacent
to a vertex of a graph 𝑄 ∈ Q̃, we update Q̃ := Q̃ \ {𝑄} ∪ {�̃�}, where �̃� = 𝐺[{𝑥} ∪𝑉 (𝑄)]. We call
the �̃� ∈ Q̃ that contains 𝑄ext as a subgraph the external bag of Q̃, and we denote it by �̃�ext, while
we call internal bags of Q̃ all graphs in Q̃ \ {�̃�ext}. Moreover, we enhance Q̃ by adding all vertices
of 𝐺 \⋃�̃�∈Q̃ 𝑉 (�̃�) in its external bag, i.e., by updating �̃�ext := 𝐺[𝑉 (�̃�ext) ∪𝑉 (𝐺) \

⋃
�̃�∈Q̃ 𝑉 (�̃�)].

We call such a partition Q̃ a𝑊 -canonical partition of𝐺. Notice that a𝑊 -canonical partition
of 𝐺 is not unique, since the sets in Q can be “expanded” arbitrarily when introducing vertex 𝑥.

Let𝑊 be an 𝑟-wall of a graph 𝐺, for some odd integer 𝑟 ≥ 3 and let Q̃ be a𝑊 -canonical
partition of 𝐺. For every 𝑖 ∈ [(𝑟 − 1)/2], we say that a set 𝑄 ∈ Q̃ is an 𝑖-internal bag of Q̃ if it
contains an 𝑖-internal bag of Q as a subgraph.

29 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

We stress that given a graph 𝐺 and an 𝑟-wall 𝑊 of 𝐺 for some odd integer 𝑟 ≥ 3, a 𝑊 -
canonical partition Q̃ of 𝐺 can have internal bags that are adjacent to vertices of arbitrarily
many other bags. However, if𝑊 is a flat wall of𝐺 certified by some 7-tuple ℜ, the “flat structure”
of the ℜ-compass of𝑊 implies that every bag can be adjacent to only bags that contain vertices
of the same brick of𝑊 .

The next result is also proved in [69] and intuitively states that, given a flatness pair (𝑊,ℜ)
of “big enough” height and a𝑊 -canonical partition Q̃ of 𝐺, we can find a “packing” of subwalls
of𝑊 that are inside some central part of𝑊 and such that the vertex set of every internal bag
of Q̃ intersects the vertices of the flaps in the influence of at most one of these walls. We will
use this result in the case where the set 𝐴′ of Proposition 3.7 is “small”, i.e., there are only “few”
vertices in 𝐴 that have “big enough” degree with respect to the central part of the canonical
partition, and therefore Proposition 3.7 cannot justify branching. Following the latter condition
and Proposition 5.6, we will be able to find a flatness pair with “few” apices so as to build
irrelevant vertex arguments inside its compass. In [69], (𝑊,ℜ)-canonical partition is used to
denote a 𝑊 -canonical partition of 𝐺, where (𝑊,ℜ) is a flatness pair of 𝐺. However, in this
subsection we provide a more general definition that does not take into account the flatness of
𝑊 .

PROPOS IT ION 5.6 ([69]). There exists a function 𝑓13 : N3 → N such that if 𝑝, 𝑙 ∈ N≥1, 𝑟 ∈ N≥3

is an odd integer, 𝐺 is a graph, (𝑊,ℜ) is a flatness pair of 𝐺 of height at least 𝑓13(𝑙, 𝑟, 𝑝), and Q̃
is a𝑊 -canonical partition of 𝐺, then there is a collectionW = {𝑊1, . . . ,𝑊 𝑙} of 𝑟-subwalls of𝑊
such that

for every 𝑖 ∈ [𝑙], ⋃ influenceℜ(𝑊 𝑖) is a subgraph of
⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and

for every 𝑖, 𝑗 ∈ [𝑙], with 𝑖 ≠ 𝑗, there is no internal bag of Q̃ that contains vertices of both
𝑉 (⋃ influenceℜ(𝑊 𝑖)) and 𝑉 (⋃ influenceℜ(𝑊 𝑗)).

Moreover, 𝑓13(𝑙, 𝑟, 𝑝) = O(
√
𝑙 · 𝑟 + 𝑝) andW can be constructed in time O(𝑛 +𝑚).

5.5 Bidimensionality of sets

In this subsection, we present the notion of bidimensionality of a set with respect to a wall of a
graph. This notion intuitively expresses the “spread” of a set 𝑋 in a𝑊 -canonical partition of 𝐺.
The crucial idea is that a set 𝑋 of small bidimensionality cannot “destroy” a (flat) wall too much.

Bidimensionality. Let 𝑊 be a wall of a graph 𝐺, Q̃ be a 𝑊 -canonical partition of 𝐺, and
𝑋 ⊆ 𝑉 (𝐺). The bidimensionality of 𝑋 in 𝐺 with respect to Q̃, denoted by bidQ̃ (𝑋), is the number
of internal bags of Q̃ intersected by 𝑋 . The bidimensionality of 𝑋 in 𝐺 with respect to𝑊 , denoted
by bid𝐺,𝑊 (𝑋), is the maximum bidimensionality of 𝑋 with respect to a𝑊 -canonical partition of
𝐺.

30 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Observation 5.7 and Lemma 5.9 provide sets 𝑋 ⊆ 𝑉 (𝐺) that can be used to apply Proposi-
tion 3.7 to F -M-Deletion and F -M-Elimination Distance, respectively.

Every set 𝑆 ⊆ 𝑉 (𝐺) of size at most 𝑘 clearly has bidimensionality at most 𝑘.

OBSERVAT ION 5.7. Let F be a finite collection of graphs, let 𝐺 be a graph, let 𝑘 ∈ N, and let𝑊
be a wall of 𝐺. Then for every 𝑘-apex set 𝑆 of 𝐺 for exc(F) it holds that bid𝐺,𝑊 (𝑆) ≤ 𝑘.

Moreover, given a 𝑘-elimination set 𝑆, we can find a set 𝑋 ⊇ 𝑆 of bidimensionality at most
𝑘(𝑘 + 1)/2 such that 𝐺 \ 𝑋 ∈ exc(F). To prove this, we first prove the following result, which
intuitively states that a 𝑘-elimination set can intersect at most 𝑘 horizontal and vertical paths of
a wall.

LEMMA 5.8. Let F be a finite collection of graphs. Let 𝐺 be a graph, let 𝑘 ∈ N, let 𝑟, ℎ be odd
integers with 𝑟 ≥ ℎ + 𝑘, let𝑊 be an 𝑟-wall of 𝐺, and let 𝑆 be a 𝑘-elimination set of 𝐺 for exc(F).
Then there is an ℎ-subwall𝑊 ′ of𝑊 with 𝑉 (𝑊 ′) ∩ 𝑆 = ∅.

PROOF . Since 𝑆 is a 𝑘-elimination set of 𝐺 for exc(F), there is an F -elimination forest (𝐹, 𝜒, 𝑅)
of 𝐺 of height 𝑘 such that 𝜒(Int(𝐹, 𝑅)) = 𝑆.

We set𝑊0 :=𝑊 . For 𝑖 ∈ [𝑘], we proceed to construct an 𝑟𝑖-subwall𝑊𝑖 of the 𝑟𝑖−1-wall𝑊𝑖−1

with 𝑟𝑖 ≥ 𝑟 − 𝑖 such that for every 𝑖 ∈ [𝑘] there is a node 𝑧𝑖 of 𝐹 such that (𝐹𝑧𝑖 , 𝑧𝑖) has height at
most 𝑘 − 𝑖 and 𝑉 (𝑊𝑖) ⊆ 𝜒(𝑉 (𝐹𝑧𝑖)). This will imply the existence of a wall of size at least 𝑟 − 𝑘
whose vertex set will be a subset of 𝜒(𝑉 (𝐹𝑧), where 𝑧 ∈ Leaf(𝐹, 𝑅).

Let 𝑆𝑖 := 𝑉 (𝑊𝑖−1) ∩ 𝑆. If 𝑆𝑖 = ∅, we set𝑊 𝑗 := 𝑊𝑖−1 for 𝑗 ∈ [𝑖, 𝑘]. Otherwise, let 𝑢𝑖 be the
least common ancestor of 𝜒−1(𝑆𝑖) in (𝐹, 𝑅). According to Lemma 4.1, since𝑊𝑖−1 is connected, 𝑢𝑖
exists and belongs to 𝜒−1(𝑆𝑖).

We obtain an (𝑟𝑖−1 − 1)-subwall𝑊𝑖 of𝑊𝑖−1 that does not contain 𝜒(𝑢𝑖) by taking the wall
containing all horizontal and vertical paths of𝑊𝑖−1 aside from the ones intersecting 𝑢𝑖 and we
set 𝑟𝑖 := 𝑟𝑖−1 − 1 (to simplify the argument, here we call the resulting graph a wall even when
the height is even). Note that since𝑊𝑖 is a subgraph of 𝐺[𝜒(𝑉 (𝐹𝑢𝑖))] that is connected, there is a
𝑧𝑖 ∈ Ch𝐹𝑢𝑖 ,𝑢𝑖 (𝑢𝑖) such that 𝑉 (𝑊𝑖) ⊆ 𝑉 (𝐹𝑧𝑖). Notice that (𝐹𝑢𝑖 , 𝜒 |𝑉 (𝐹𝑢𝑖 , 𝑢𝑖) is an F -elimination forest
of 𝐺[𝜒(𝐹𝑢𝑖)] of height at most 𝑘 − 𝑖.

Observe that 𝑧𝑘 should be a leaf of (𝐹, 𝑅) and therefore, since we have that 𝑉 (𝑊𝑘) ⊆
𝑉 (𝐹𝑧𝑘) ⊆ 𝑉 (𝐺) \ 𝑆,𝑊𝑘 is a wall of 𝐺 \ 𝑆 of height at least 𝑟 − 𝑘 ≥ ℎ. ■

Now we prove our result regarding the bidimensionality of 𝑘-elimination sets.

LEMMA 5.9. Let F be a finite collection of graphs. Let 𝐺 be a graph, let 𝐴 ⊆ 𝑉 (𝐺), let 𝑘 ∈ N, let
𝑟 ≥ 2𝑘 + 3 be an odd integer, let (𝑊,ℜ) be a flatness pair of 𝐺 \ 𝐴, and let 𝑆 be a 𝑘-elimination set
of 𝐺 for exc(F). There is a set 𝑋 ⊇ 𝑆 such that 𝐺 \ 𝑋 ∈ exc(F) and bid𝐺\𝐴,𝑊 (𝑋) ≤ 𝑘(𝑘 + 1)/2.

31 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

PROOF . Let 𝑝 = odd(𝑟 − 𝑘). Let𝑊 ′ be a 𝑝-subwall of𝑊 that is a wall of 𝐺 \ 𝑆, which exists due
to Lemma 5.8. Let 𝐶 be the connected component of 𝐺 \ 𝑆 that contains𝑊 ′. Since 𝐶 ∈ exc(F),
𝐾𝑠F is not a minor of 𝐶. Moreover, since 𝑆 is a 𝑘-elimination set of 𝐺 for exc(F), there is a set
𝑃 ⊆ 𝑆 of size at most 𝑘 such that (𝐿, 𝑅) := (𝑉 (𝐺) \ 𝑉 (𝐶), 𝑉 (𝐶) ∪ 𝑃) is a separation of 𝐺 with
𝐿 ∩ 𝑅 = 𝑃.

Let us show that bid𝐺\𝐴,𝑊 (𝑉 (𝐺) \𝑉 (𝐶)) ≤ 𝑘(𝑘 + 1)/2. Let Q̃ be a𝑊 -canonical partition of
𝐺 \ 𝐴. Let 𝑙 be the number of internal bags of Q̃ intersected by 𝑃 and note that 𝑙 ≤ 𝑘.

Let 𝐺′ be the graph obtained from 𝐺 after contracting each bag of Q̃ to a vertex. It is easy
to observe that 𝐺′ is isomorphic to a planar supergraph of an ℎ-grid 𝐻 , where ℎ = 𝑟 − 2, together
with an additional vertex that is adjacent to every vertex of the perimeter of 𝐻 .

We let [ℎ]2 be the vertex set of 𝐻 , where (𝑖, 𝑗) and (𝑖′, 𝑗′) are adjacent if and only if
|𝑖 − 𝑖′| + | 𝑗 − 𝑗′| = 1. We will show that there is a separation (𝐿′, 𝑅′) of 𝐻 of order at most 𝑙 that
maximizes min{|𝐿′|, |𝑅′|}. Let 𝐴 = 𝐿′ ∩ 𝑅′. We suppose without loss of generality that |𝐿′| ≤ |𝑅′|.
Notice that 𝑙 < ℎ. We take 𝐴 := {(𝑖, 𝑗) ∈ [ℎ]2 | 𝑖 + 𝑗 = 𝑙}, i.e., 𝐿′ is the set of pairs of indices in the
triangle bounded by (0, 0), (0, 𝑙), and (𝑙, 0). Thus, |𝐿′| = 𝑙(𝑙 + 1)/2. It is easy to verify that this
maximizes |𝐿′|.

Therefore, since the vertices of 𝐻 are the internal bags of Q̃ and 𝑃 intersects 𝑙 internal
bags, it implies that one of 𝐿 and 𝑅 intersects at most 𝑙(𝑙 + 1)/2 ≤ 𝑘(𝑘 + 1)/2 internal bags of Q̃.
Recall that𝑊 ′ is a wall of 𝐶 of height 𝑝. It is easy to verify that an elementary 𝑥-wall𝑊∗ has
2𝑥2 − 2 vertices with 8𝑥 − 10 vertices in the perimeter. Hence, it has 2(𝑥 − 2)2 vertices not in
the perimeter, and therefore the canonical partition of𝑊∗ has (𝑥 − 2)2 internal bags. Thus, the
canonical partition of𝑊 ′ has (𝑝 − 2)2 internal bags. Observe that each such a bag is contained
in an internal bag of Q̃ and therefore 𝑉 (𝐶) intersects at least (𝑝 − 2)2 internal bags of Q̃. Since
(𝑝 − 2)2 ≥ (𝑟 − 𝑘 − 2)2 ≥ (𝑘 + 1)2 > 𝑘(𝑘 + 1)/2, it holds that bid𝐺\𝐴,𝑊 (𝑉 (𝐶) ∪ 𝑃) > 𝑘(𝑘 + 1)/2.
Therefore, bid𝐺\𝐴,𝑊 (𝑉 (𝐺) \𝑉 (𝐶)) ≤ 𝑘(𝑘 + 1)/2. ■

5.6 Homogeneous walls

In this subsection, we define homogeneous flat walls. Intuitively, homogeneous flat walls are
flat walls that allow the routing of the same set of (topological) minors in the augmented flaps
(i.e., the flaps together with the apex set) “cropped” by each one of their bricks. Such a flat wall
can be detected in a big enough flat wall (Proposition 3.5) and this “homogeneity” property
implies that some central part of a big enough homogeneous wall can be declared irrelevant
(Proposition 3.6). The results presented in this subsection are from [69, 70].

Folios. We say that (𝑀,𝑇) is a tm-pair if 𝑀 is a graph, 𝑇 ⊆ 𝑉 (𝑀), and all vertices in 𝑉 (𝑀) \ 𝑇
have degree two. We denote by diss(𝑀,𝑇) the graph obtained from 𝑀 by dissolving all vertices
in 𝑉 (𝑀) \ 𝑇 . A tm-pair of a graph 𝐺 is a tm-pair (𝑀,𝑇) where 𝑀 is a subgraph of 𝐺. We
call the vertices in 𝑇 branch vertices of (𝑀,𝑇). We need to deal with topological minors for

32 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

the notion of homogeneity defined below, on which the statement of [9, Theorem 5.2] relies.
If M = (𝑀, 𝐵, 𝜌) ∈ B and 𝑇 ⊆ 𝑉 (𝑀) with 𝐵 ⊆ 𝑇 , we call (M, 𝑇) a btm-pair and we define
diss(M, 𝑇) = (diss(𝑀,𝑇), 𝐵, 𝜌). Note that we do not permit dissolution of boundary vertices, as
we consider all of them to be branch vertices. If G = (𝐺, 𝐵, 𝜌) is a boundaried graph and (𝑀,𝑇)
is a tm-pair of 𝐺 where 𝐵 ⊆ 𝑇 , then we say that (M, 𝑇), where M = (𝑀, 𝐵, 𝜌), is a btm-pair of
G = (𝐺, 𝐵, 𝜌). Let G1,G2 be two boundaried graphs. We say that G1 is a topological minor of G2,
denoted by G1⪯tmG2, if G2 has a btm-pair (M, 𝑇) such that diss(M, 𝑇) is isomorphic to G1. Given
a G ∈ B and a positive integer ℓ, we define the ℓ-folio of G as

ℓ-folio(G) = {G′ ∈ B | G′⪯tmG and G′ has detail at most ℓ}.

Augmented flaps. Let 𝐺 be a graph, 𝐴 be a subset of 𝑉 (𝐺) of size 𝑎, and (𝑊,ℜ) be a flatness
pair of 𝐺 \ 𝐴. For each flap 𝐹 ∈ Flapsℜ(𝑊) we consider a labeling ℓ𝐹 : 𝜕𝐹 → {1, 2, 3} such that
the set of labels assigned by ℓ𝐹 to 𝜕𝐹 is one of {1}, {1, 2}, {1, 2, 3}. Also, let �̃� ∈ [𝑎]. For every set
�̃� ∈

(𝐴
�̃�

)
, we consider a bijection 𝜌�̃� : �̃�→ [�̃�]. The labelings in L = {ℓ𝐹 | 𝐹 ∈ Flapsℜ(𝑊)} and

the labelings in {𝜌�̃� | �̃� ∈
(𝐴
�̃�

)
} will be useful for defining a set of boundaried graphs that we

will call augmented flaps. We first need some more definitions.
Given a flap 𝐹 ∈ Flapsℜ(𝑊), we define an ordering Ω(𝐹) = (𝑥1, . . . , 𝑥𝑞), with 𝑞 ≤ 3, of the

vertices of 𝜕𝐹 so that
(𝑥1, . . . , 𝑥𝑞) is a counter-clockwise cyclic ordering of the vertices of 𝜕𝐹 as they appear in
the corresponding cell of 𝐶(Γ). Notice that this cyclic ordering is significant only when
|𝜕𝐹 | = 3, in the sense that (𝑥1, 𝑥2, 𝑥3) remains invariant under shifting, i.e., (𝑥1, 𝑥2, 𝑥3) is the
same as (𝑥2, 𝑥3, 𝑥1) but not under inversion, i.e., (𝑥1, 𝑥2, 𝑥3) is not the same as (𝑥3, 𝑥2, 𝑥1),
and
for 𝑖 ∈ [𝑞], ℓ𝐹 (𝑥𝑖) = 𝑖.

Notice that the second condition is necessary for completing the definition of the ordering Ω(𝐹),
and this is the reason why we set up the labelings in L.

For each set �̃� ∈
(𝐴
�̃�

)
and each 𝐹 ∈ Flapsℜ(𝑊) with 𝑡𝐹 := |𝜕𝐹 |, we fix 𝜌𝐹 : 𝜕𝐹 → [�̃�+1, �̃�+ 𝑡𝐹]

such that (𝜌−1
𝐹 (�̃� + 1), . . . , 𝜌−1

𝐹 (�̃� + 𝑡𝐹)) = Ω(𝐹). Also, we define the boundaried graph

F�̃� := (𝐺[�̃� ∪ 𝐹], �̃� ∪ 𝜕𝐹, 𝜌�̃� ∪ 𝜌𝐹)

and we denote by 𝐹 �̃� the underlying graph of F�̃�. We call F�̃� an �̃�-augmented flap of the flatness
pair (𝑊,ℜ) of 𝐺 \ 𝐴 in 𝐺.

Palettes and homogeneity. For each ℜ-normal cycle 𝐶 of Compassℜ(𝑊) and each set �̃� ⊆ 𝐴,
we define (�̃�, ℓ)-palette(𝐶) = {ℓ-folio(F�̃�) | 𝐹 ∈ influenceℜ(𝐶)}. Given a set �̃� ⊆ 𝐴, we say
that the flatness pair (𝑊,ℜ) of 𝐺 \ 𝐴 is ℓ-homogeneous with respect to �̃� if every internal brick
of𝑊 has the same (�̃�, ℓ)-palette (seen as a cycle of Compassℜ(𝑊)). Also, given a collection

33 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

S ⊆ 2𝐴, we say that the flatness pair (𝑊,ℜ) of 𝐺 \ 𝐴 is ℓ-homogeneous with respect to S if it is
ℓ-homogeneous with respect to every �̃� ∈ S.

6. Vertex deletion to aminor-closed graph class

In this section, we prove our main result for the F -M-Deletion problem. The following theorem
is a restatement of Theorem 1.2 using the reformulation introduced in Subsection 2.2.

THEOREM 6.1. For every finite collection of graphs F , there exists an algorithm that, given a
graph 𝐺 and a non-negative integer 𝑘, runs in time 2𝑘

OℓF (1) · 𝑛2 and either outputs a 𝑘-apex set of
𝐺 for exc(F) or reports that such a set does not exist.

This algorithm is a generalization of the algorithm in the apex-minor free case of [70].
In order to give an algorithm without the apex-minor restriction, we enhance the techniques
of [70] with some new tricks. We present this algorithm in this paper as a stepping stone to
present the algorithms for elimination distance in Section 8 and Section 9, since the techniques
used are similar (however not the same).

6.1 Description of the algorithm for F-M-Deletion

Our algorithm for F -M-Deletion has three steps. In Step 1, either we can easily conclude with
a positive or a negative answer or we find a big wall. If we can find a large flat wall of bounded
treewidth inside this wall, then we go to Step 2 and find an irrelevant vertex. Otherwise, we
proceed to Step 3 where, by using flow techniques, we find a set of vertices that intersects every
solution, and we branch on this set or we report a negative answer. The correctness of the
algorithm is not trivial and will be justified in Subsection 6.2. While the general scheme of the
algorithm is similar to the algorithm in [70] for F -M-Deletion in the case where F contains an
apex-graph, here, in order to obtain a quadratic algorithm for general F , we employ additional
novel tricks so as to deal with the possible existence of many apices in all graphs in F .

We define the following constants.

𝑎 = 𝑓3(𝑠F + 𝑎F − 1), 𝑏 = 𝑓3(𝑠F),
𝑞 = 𝑓10(𝑎F , 𝑠F , 𝑘), 𝑝 = 𝑓11(𝑎F , 𝑠F , 𝑘),
𝑙 = (𝑞 − 1) · (𝑘 + 𝑏), 𝑟6 = 𝑓7(𝑎 + 𝑏, ℓF , 3, 𝑘)
𝑑 = 𝑓8(𝑎 + 𝑏, ℓF) 𝑟5 = 𝑓5(𝑟6, 𝑎 + 𝑏, 𝑎 + 𝑏, 𝑑),
𝑡 = 𝑓4(𝑠F) · 𝑟5, 𝑟4 = odd(𝑡 + 3),
𝑟3 = 𝑓13(𝑎F , 𝑟4, 1), 𝑟2 = odd(2 + 𝑓2(𝑠F + 𝑎F − 1) · 𝑟3),
𝑟′2 = odd(max{ 𝑓9(𝑎F , 𝑠F , 𝑘), 𝑓13(𝑙 + 1, 𝑟2, 𝑝)}), 𝑟1 = odd(𝑓2(𝑠F) · 𝑟′2 + 𝑘).

34 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Note that 𝑟6 = OℓF (𝑘), 𝑟5, 𝑟4, 𝑟3, 𝑟2, 𝑡 = OℓF (𝑘𝑐) and 𝑟′2, 𝑟1 = OℓF (𝑘𝑐+2) where 𝑐 = 𝑓6(𝑎+ 𝑏, 𝑎+
𝑏, 𝑑). Recall from Subsection 2.2 that we assume that 𝐺 has O𝑠F (𝑘

√︁
log 𝑘 · 𝑛) edges.

Step 1. Run the algorithm Find-Wall from Proposition 3.1 with input (𝐺, 𝑟1, 𝑘) and, in time
2OℓF (𝑟

2
1+(𝑘+𝑟1) log(𝑘+𝑟1)) · 𝑛 = 2OℓF (𝑘

2(𝑐+2)) · 𝑛,
either report a no-instance, or
conclude that tw(𝐺) ≤ 𝑓1(𝑠F) ·𝑟1+𝑘 and solve F -M-Deletion in time 2OℓF ((𝑟1+𝑘) log(𝑟1+𝑘)) ·𝑛 =

2OℓF (𝑘
𝑐+2·log 𝑘) · 𝑛 using the algorithm of Proposition 3.2, or

obtain an 𝑟1-wall𝑊1 of 𝐺.

If the output of Proposition 3.1 is an 𝑟1-wall 𝑊1, consider all the
(𝑟1
𝑟2

)2
= 2OℓF (𝑘

𝑐 log 𝑘) 𝑟2-
subwalls of𝑊1. For each one of them, say𝑊2, let𝑊∗2 be the central (𝑟2−2)-subwall of𝑊2 and let
𝐷𝑊2 be the graph obtained from 𝐺 after removing the perimeter of𝑊2 and taking the connected
component containing𝑊∗2 . Run the algorithm Grasped-or-Flat of Proposition 3.3 with input
(𝐷𝑊2 , 𝑟3, 𝑠F + 𝑎F − 1,𝑊∗2). This can be done in time O𝑠F (𝑘

√︁
log 𝑘 · 𝑛).

If for some of these subwalls the result is a set 𝐴 ⊆ 𝑉 (𝐷𝑊2) with |𝐴| ≤ 𝑎 and a flatness pair
(𝑊3,ℜ3) of 𝐷𝑊2 \ 𝐴 of height 𝑟3 then, as in Proposition 5.6, compute a𝑊3-canonical partition Q̃
of 𝐷𝑊2 \ 𝐴 and a collectionW = {𝑊1, ...,𝑊𝑎F} of 𝑟4-subwalls of𝑊3 such that for every 𝑖 ∈ [𝑎F],⋃

influenceℜ3 (𝑊 𝑖) is a subgraph of
⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and for every 𝑖, 𝑗 ∈ [𝑎F],

with 𝑖 ≠ 𝑗, there is no internal bag of Q̃ that contains vertices of both𝑉 (⋃ influenceℜ3 (𝑊 𝑖)) and
𝑉 (⋃ influenceℜ3 (𝑊 𝑗)). This can be done in time O𝑠F (𝑘

√︁
log 𝑘 · 𝑛).

For 𝑖 ∈ [𝑎F], let𝑊 𝑖∗ be the central (𝑟4−2)-subwall of𝑊 𝑖 and let 𝐷𝑊 𝑖 be the graph obtained
from 𝐷𝑊2 after removing 𝐴 and the perimeter of 𝑊 𝑖 and taking the connected component
containing𝑊 𝑖∗. Run the algorithm Clique-or-twFlat of Proposition 3.4 with input (𝐷𝑊 𝑖 , 𝑟5, 𝑠F).
This takes time 2OℓF (𝑟

2
5) · 𝑛 = 2OℓF (𝑘

2𝑐) · 𝑛. If for one of these subwalls the result is a set 𝐴′ of size
at most 𝑏 and a regular flatness pair (𝑊5,ℜ5) of 𝐷𝑊 𝑖 \ 𝐴′ of height 𝑟5 whose ℜ5-compass has
treewidth at most 𝑡, then we proceed to Step 2.

If, for every flatness pair (𝑊3,ℜ3) and for every 𝑖 ∈ [𝑎F], the result is a report that 𝐾𝑠F is
a minor of 𝐷𝑊 𝑖 , then we proceed to Step 3.

Step 2 (irrelevant vertex case). We now obtain a 7-tuple ℜ′5 by adding all vertices of 𝐺 \
𝑉 (Compassℜ5

(𝑊5)) to the set in the first coordinate of ℜ5, such that (𝑊5,ℜ′5) is a regular flatness
pair of 𝐺 \ (𝐴 ∪ 𝐴′) whose ℜ′5-compass has treewidth at most 𝑡. We apply the algorithm
Homogeneous of Proposition 3.5 with input (𝑟6, 𝑎 + 𝑏, 𝑎 + 𝑏, 𝑑, 𝑡, 𝐺, 𝐴∪ 𝐴′,𝑊5,ℜ′5), which outputs,
in time 2OℓF (𝑡 log 𝑡+𝑘 log 𝑘) · 𝑛 = 2OℓF (𝑘

𝑐 log 𝑘) · 𝑛, a flatness pair (𝑊6,ℜ6) of 𝐺 \ (𝐴 ∪ 𝐴′) of height
𝑟6 that is 𝑑-homogeneous with respect to 2𝐴∪𝐴′ and is a𝑊∗-tilt of (𝑊5,ℜ′5) for some subwall
𝑊∗ of 𝑊5. We apply the algorithm Find-Irrelevant-Vertex of Proposition 3.6 with input
(𝑘, 𝑎 + 𝑏, 𝐺, 𝐴 ∪ 𝐴′,𝑊6,ℜ6), which outputs, in time O(𝑛 +𝑚) = OℓF (𝑘

√︁
log 𝑘 · 𝑛), a vertex 𝑣 such

35 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

that (𝐺, 𝑘) and (𝐺 \ 𝑣, 𝑘) are equivalent instances of F -M-Deletion. Then the algorithm runs
recursively on the equivalent instance (𝐺 \ 𝑣, 𝑘).

Step 3 (branching case). Consider all the 𝑟′2-subwalls of 𝑊1, which are at most
(𝑟1
𝑟′2

)2
=

2OℓF (𝑘
𝑐+2 log 𝑘) many, and for each of them, say 𝑊 ′2, compute its canonical partition Q. Then,

contract each bag 𝑄 of Q to a single vertex 𝑣𝑄, and add a new vertex 𝑣all and make it adjacent
to all 𝑣𝑄’s. In the resulting graph 𝐺′, for every vertex 𝑦 of 𝐺 \ 𝑉 (𝑊 ′2), check, using a flow
augmentation algorithm [20], whether there are 𝑞 internally vertex-disjoint paths from 𝑣all to 𝑦

in time O(𝑞 · 𝑚) = OℓF (𝑘4
√︁

log 𝑘 · 𝑛). Let �̃� be the set of all such 𝑦’s.

<If |�̃�| < 𝑎F , then report a no-instance.
If 𝑎F ≤ |�̃�| ≤ 𝑘 + 𝑏, then consider all the

(|�̃�|
𝑎F

)
= 2OℓF (log 𝑘) subsets of �̃� of size 𝑎F . For each

one of them, say 𝐴∗, construct Q̃ by enhancing Q on 𝐺 \ 𝐴∗. Then, we distinguish two cases
depending on whether for every 𝐴∗ all its vertices are adjacent to vertices of 𝑞 𝑝-internal bags
of Q̃.

If each vertex of 𝐴∗ is adjacent to vertices of 𝑞 𝑝-internal bags of Q̃, then (due to Proposi-
tion 3.7) 𝐴∗ should intersect every solution of F -M-Deletion for the instance (𝐺, 𝑘). Therefore,
the algorithm runs recursively on each instance (𝐺 \ 𝑦, 𝑘 − 1) for 𝑦 ∈ 𝐴∗. If one of them is
a yes-instance with (𝑘 − 1)-apex set 𝑆 of 𝐺 \ 𝑦, then (𝐺, 𝑘) is a yes-instance with 𝑘-apex set
𝑆 ∪ { 𝑦} of 𝐺. If all of them are no-instances, then report a no-instance. This concludes the case
where each vertex of 𝐴∗ is adjacent to vertices of 𝑞 𝑝-internal bags of Q̃.

If for every subset 𝐴∗ of �̃� of size 𝑎F , there is a vertex of 𝐴∗ that is not adjacent to vertices
of 𝑞 𝑝-internal bags of the given Q̃, then report a no-instance. This concludes the case that
𝑎F ≤ |�̃�| ≤ 𝑘 + 𝑏.

If for every wall, |�̃�| > 𝑘 + 𝑏, then report that (𝐺, 𝑘) is a no-instance of F -M-Deletion.

Notice that Step 3, when applied, takes time 2OℓF (𝑘
𝑐+2 log 𝑘) · 𝑛2, because we apply the flow

algorithms to each of the 2OℓF (𝑘
𝑐+2 log 𝑘) 𝑟′2-subwalls and for each vertex of 𝐺. However, the search

tree created by the branching technique has at most 𝑎F branches and depth at most 𝑘. So Step 3
cannot be applied more than 𝑎F 𝑘 times during the course of the algorithm. Since Step 1 runs in
time 2OℓF (𝑘

2(𝑐+2)) · 𝑛, Step 2 runs in time 2OℓF (𝑘
2𝑐) · 𝑛, and both may be applied at most 𝑛 times,

the claimed time complexity follows: the algorithm runs in time 2OℓF (𝑘
2(𝑐+2)) · 𝑛2.

6.2 Correctness of the algorithm

Suppose first that (𝐺, 𝑘) is a yes-instance and let 𝑆 be a 𝑘-apex set of 𝐺. The application of
the algorithm Find-Wall of Proposition 3.1 with input (𝐺, 𝑟1, 𝑘) either returns a report that
tw(𝐺) ≤ 𝑓1(𝑠F) · 𝑟1 + 𝑘 or returns an 𝑟1-wall. In the first case, i.e., if tw(𝐺) ≤ 𝑓1(𝑠F) · 𝑟1 + 𝑘,
the application of the algorithm of Proposition 3.2 correctly outputs a 𝑘-apex set of 𝐺. We will
focus on the latter case, i.e., where the algorithm Find-Wall returns an 𝑟1-wall of 𝐺, say𝑊1.

36 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Since 𝑟1 ≥ 𝑓2(𝑠F) · 𝑟′2 + 𝑘, there is an (𝑓2(𝑠F) · 𝑟′2)-subwall of𝑊1, say𝑊∗1 , that does not contain
vertices of 𝑆. Since 𝐺 \ 𝑆 does not contain 𝐾𝑠F as a minor, there is no model of 𝐾𝑠F grasped by
𝑊∗1 and therefore, due to Proposition 3.3 with input (𝐺 \ 𝑆, 𝑟′2, 𝑠F ,𝑊∗1), we know that there is a
set 𝐵 ⊆ 𝑉 (𝐺 \ 𝑆), with |𝐵| ≤ 𝑏, and a flatness pair (𝑊 ′2,ℜ′2) of 𝐺 \ (𝑆 ∪ 𝐵) of height 𝑟′2 such that
𝑊 ′2 is a𝑊 ′′-tilt of some subwall𝑊 ′′ of𝑊∗1 .

Let Q be the canonical partition of𝑊 ′2. Let 𝐺′ be the graph obtained by contracting each
bag 𝑄 of Q to a single vertex 𝑣𝑄, and adding a new vertex 𝑣all and making it adjacent to all 𝑣𝑄’s.
Let �̃� be the set of vertices 𝑦 of 𝐺 \𝑉 (𝑊 ′2) such that there are 𝑞 internally vertex-disjoint paths
from 𝑣all to 𝑦 in𝐺′. We claim that �̃� ⊆ 𝑆∪𝐵. To show this, we first prove that, for every 𝑦 ∉ 𝑆∪𝐵,
the maximum number of internally vertex-disjoint paths from 𝑣all to 𝑦 in 𝐺′ is 𝑘 + 𝑏 + 4. Indeed,
if 𝑦 is a vertex in the ℜ′2-compass of𝑊 ′2, there are at most 𝑘 + 𝑏 such paths that intersect the set
𝑆 ∪ 𝐵 and at most four paths that do not intersect 𝑆 ∪ 𝐵 (in the graph 𝐺′ \ (𝑆 ∪ 𝐵)) due to the fact
that (𝑊 ′2,ℜ′2) is a flatness pair of 𝐺 \ (𝑆 ∪ 𝐵). If 𝑦 is not a vertex in the ℜ′2-compass of𝑊 ′2, then,
since by the definition of flatness pairs the perimeter of𝑊 ′2 together with the set 𝑆 ∪ 𝐵 separate
𝑦 from the ℜ′2-compass of𝑊 ′2, every collection of internally vertex-disjoint paths from 𝑣all to
𝑦 in 𝐺′ should intersect the set {𝑣𝑄ext} ∪ 𝑆 ∪ 𝐵, where 𝑄ext is the external bag of Q. Therefore,
in both cases, if 𝑦 ∉ 𝑆 ∪ 𝐵, the maximum number of internally vertex-disjoint paths from 𝑣all

to 𝑦 in 𝐺′ is 𝑘 + 𝑏 + 4. Since 𝑘 + 𝑏 + 4 < 𝑞, we have that 𝑦 ∉ �̃�. Hence, �̃� ⊆ 𝑆 ∪ 𝐵 and therefore
|�̃�| ≤ 𝑘 + 𝑏. Hence, if (𝐺, 𝑘) is a yes-instance we cannot have that |�̃�| > 𝑘 + 𝑏, so the algorithm
correctly reports a no-instance at the end of Step 3.

Let Q̃ be a𝑊 ′2-canonical partition of 𝐺 \ (𝑆 ∪ 𝐵) obtained by enhancing Q on 𝐺 \ (𝑆 ∪ 𝐵).
Let �̃�′ be the set of vertices in 𝑆 ∪ 𝐵 that are adjacent to vertices of at least 𝑞 𝑝-internal bags of
Q̃ (recall that �̃� is the set of vertices in 𝑆 ∪ 𝐵 that are adjacent to vertices of at least 𝑞 internal
bags of Q̃). Note that �̃�′ ⊆ �̃� and therefore |�̃�′| ≤ |�̃�|.

If |�̃�′| < 𝑎F , then at most 𝑎F − 1 vertices of 𝑆 ∪ 𝐵 are adjacent to vertices of at least 𝑞
𝑝-internal bags of Q̃. This means that the 𝑝-internal bags of Q̃ that contain vertices adjacent to
some vertex of (𝑆 ∪ 𝐵) \ �̃�′ are at most (𝑞 − 1) · (𝑘 + 𝑏) = 𝑙.

Consider a familyW = {𝑊1, . . . ,𝑊 𝑙+1} of 𝑙 + 1 𝑟2-subwalls of𝑊 ′2 such that for every 𝑖 ∈
[𝑙 + 1], ⋃ influenceℜ′2 (𝑊

𝑖) is a subgraph of
⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and for every 𝑖, 𝑗 ∈

[𝑙+1], with 𝑖 ≠ 𝑗, there is no internal bag of Q̃ that contains vertices of both𝑉 (⋃ influenceℜ′2 (𝑊
𝑖))

and 𝑉 (⋃ influenceℜ′2 (𝑊
𝑗)). The existence ofW follows from Proposition 5.6 and the fact that

𝑟′2 ≥ 𝑓13(𝑙 + 1, 𝑟2, 𝑝).

The fact that the 𝑝-internal bags of Q̃ that contain vertices adjacent to some vertex of (𝑆∪𝐵)\
�̃�′ are at most 𝑙 implies that there exists an 𝑖 ∈ [𝑙+1] such that no vertex of𝑉 (⋃ influenceℜ′2 (𝑊

𝑖))
is adjacent, in 𝐺, to a vertex in (𝑆∪𝐵) \ �̃�′. Let𝑊2 :=𝑊 𝑖 , let𝑊∗2 be the central (𝑟2−2)-subwall of
𝑊2, and let 𝐷𝑊2 be the graph obtained from 𝐺 by removing the perimeter of𝑊2 and taking the
connected component that contains𝑊∗2 . Since no vertex of 𝑉 (⋃ influenceℜ′2 (𝑊

𝑖)) is adjacent,

37 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

in 𝐺, to a vertex in (𝑆 ∪ 𝐵) \ �̃�′, any path in 𝐷𝑊2 going from a vertex of𝑊∗2 to a vertex in 𝑆 must
intersect a vertex of �̃�′. Thus, there is no model of 𝐾𝑠F+𝑎F−1 grasped by 𝑊∗2 in 𝐷𝑊2 , because
otherwise, 𝐾𝑠F would be a minor of 𝐺 \ 𝑆. So, by applying the algorithm Grasped-or-Flat of
Proposition 3.3 with input (𝐷𝑊2 , 𝑟3, 𝑠F + 𝑎F −1,𝑊∗2), since 𝑟2−2 ≥ 𝑓2(𝑠F + 𝑎F −1) · 𝑟3, we should
find a set 𝐴 ⊆ 𝑉 (𝐷𝑊2) with |𝐴| ≤ 𝑎 and a flatness pair (𝑊3,ℜ3) of 𝐷𝑊2 \ 𝐴 of height 𝑟3, such that
𝑊3 is a tilt of some subwall �̃�3 of𝑊2.

Let Q̃′ be a 𝑊3-canonical partition of 𝐷𝑊2 \ 𝐴. LetW′ = {𝑊1, ...,𝑊𝑎F} be a collection
of 𝑟4-subwalls of 𝑊3 such that for every 𝑖 ∈ [𝑎F],

⋃
influenceℜ3 (𝑊 𝑖) is a subgraph of

⋃{𝑄 |
𝑄 is an internal bag of Q̃′} and for every 𝑖, 𝑗 ∈ [𝑎F], with 𝑖 ≠ 𝑗, there is no internal bag of Q̃′

that contains vertices of both𝑉 (⋃ influenceℜ3 (𝑊 𝑖)) and𝑉 (⋃ influenceℜ3 (𝑊 𝑗)). Since |�̃�′| < 𝑎F ,
there is an 𝑖 ∈ [𝑎F] such that 𝑉 (⋃ influenceℜ3 (𝑊 𝑖)) does not intersect �̃�′. The existence ofW′

follows from Proposition 5.6 and the fact that 𝑟3 ≥ 𝑓13(𝑎F , 𝑟4, 1).

Let𝑊4 :=𝑊 𝑖 . Let𝑊∗4 be the central (𝑟4−2)-subwall of𝑊4 and let 𝐷𝑊4 be the graph obtained
from 𝐷𝑊2 after removing 𝐴 and the perimeter of𝑊4 and taking the connected component con-
taining𝑊∗4 . Observe that any path between a vertex of 𝑆 and a vertex of 𝑉 (⋃ influenceℜ3 (𝑊4))
in 𝐷𝑊2 intersects �̃�′. Since �̃�′ does not intersect𝑉 (⋃ influenceℜ3 (𝑊4)), it implies that �̃�′ does not
intersect 𝐷𝑊4 , and thus 𝑆 ∩ 𝐷𝑊4 = ∅. Therefore, 𝐷𝑊4 is a minor of 𝐺 \ 𝑆 and 𝐾𝑠F is not a minor of
𝐷𝑊4 . Moreover,𝑊∗4 is a wall of 𝐷𝑊4 of height 𝑟4−2 ≥ 𝑡+1, so tw(𝐷𝑊4) > 𝑡 = 𝑓4(𝑠F) ·𝑟5. Therefore,
by applying the algorithm Clique-or-twFlat of Proposition 3.4 with input (𝐷𝑊4 , 𝑟5, 𝑠F), we
should obtain a set 𝐴′ of size at most 𝑏 and a regular flatness pair (𝑊5,ℜ5) of 𝐷𝑊4 \𝐴′ of height 𝑟5

whose ℜ5-compass has treewidth at most 𝑡. All this is checked in Step 1, and thus, the algorithm
should run Step 2.

If |�̃�′| ≥ 𝑎F , then, due to Proposition 3.7 and the fact that 𝑟′2 ≥ 𝑓9(𝑎F , 𝑠F , 𝑘), for any set
𝑋 ⊆ 𝑉 (𝐺) such that bid𝐺\(𝑆∪𝐵),𝑊 ′2 (𝑋) ≤ 𝑘 and such that 𝐺 \ 𝑋 ∈ exc(F), it holds that 𝑋 ∩ �̃�′ ≠ ∅.
In particular, for any 𝑘-apex set 𝑆′, 𝑆′ ∩ �̃�′ ≠ ∅ due to Observation 5.7. Thus, there is a vertex
𝑦 ∈ �̃�′ such that (𝐺 \ 𝑦, 𝑘 − 1) is a yes-instance. Hence, if the algorithm runs Step 3, it finds a
vertex 𝑦 ∈ �̃�′ such that (𝐺 \ 𝑦, 𝑘 − 1) is a yes-instance.

Note that the enhancement Q̃ of the canonical partition Q is not unique. In particular, �̃�′

depends on Q̃. However, as long as there is such a Q̃ such that |�̃�′| < 𝑎F , the algorithm finds the
wanted flatness pair (𝑊4,ℜ4) in Step 1 and then runs Step 2. Hence, if (𝐺, 𝑘) is a yes-instance,
the algorithm runs Step 3 only if for all such �̃�′, |�̃�′| ≥ 𝑎F . Note that, since |�̃�| ≥ |�̃�′|, in this
case we have that, for all such �̃�′, |�̃�| ≥ 𝑎F . This justifies the arbitrary canonical partition
enhancement in Step 3 and the fact that, if |�̃�| < 𝑎F in Step 3, then the algorithm reports a
no-instance.

Let us now show the correctness of Step 2, and for this we do not suppose anymore that
(𝐺, 𝑘) is a yes-instance since the argument is the same for both types of instances. Suppose that
the algorithm finds in Step 1 a set 𝐴′ of size at most 𝑏 and a regular flatness pair (𝑊5,ℜ5) of

38 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

𝐷𝑊4 \𝐴′ of height 𝑟5 whose ℜ5-compass has treewidth at most 𝑡. We obtain a 7-tuple ℜ′5 by adding
all vertices of 𝐺 \𝑉 (Compassℜ5

(𝑊5)) to the set in the first coordinate of ℜ5. Since (𝑊5,ℜ5) is a
regular flatness pair of 𝐷𝑊4 \ 𝐴′ and since the vertices added in ℜ′5 are either in 𝐴, or adjacent
at most to the perimeter of𝑊4, then (𝑊5,ℜ′5) is a regular flatness pair of 𝐺 \ (𝐴 ∪ 𝐴′). Since
Compassℜ5

(𝑊5) = Compassℜ′5 (𝑊5), Compassℜ′5 (𝑊5) has treewidth at most 𝑡. Thus, if we apply
the algorithm Homogeneous of Proposition 3.5 with input (𝑟6, 𝑎 + 𝑏, 𝑎 + 𝑏, 𝑑, 𝑡, 𝐺, 𝐴 ∪ 𝐴′,𝑊5,ℜ′5)
we obtain a flatness pair (𝑊6,ℜ6) of 𝐺 \ (𝐴∪𝐴′) of height 𝑟6 that is 𝑑-homogeneous with respect
to 2𝐴∪𝐴′ and is a 𝑊∗-tilt of (𝑊5,ℜ′5) for some subwall 𝑊∗ of 𝑊5. Due to Observation 5.3, we
know that (𝑊6,ℜ6) is regular. Since |𝐴 ∪ 𝐴′| ≤ 𝑎 + 𝑏, for any set 𝑋 ⊆ 𝑉 (𝐺), |𝐴 \ 𝑋 | ≤ 𝑎 + 𝑏. Since
𝐺 \𝑆 ∈ exc(F) and Observation 5.7 implies that bid𝐺\(𝐴∪𝐴′),𝑊6 (𝑆) ≤ 𝑘, by applying the algorithm
Find-Irrelevant Vertex of Proposition 3.6 with input (𝑘, 𝑎 + 𝑏, 𝐺, 𝐴 ∪ 𝐴′,𝑊6,ℜ6), we obtain
a vertex 𝑣 such that 𝐺 \ 𝑆 ∈ exc(F) if and only if 𝐺 \ (𝑆 \ 𝑣) ∈ exc(F). It follows that (𝐺, 𝑘) and
(𝐺 \ 𝑣, 𝑘) are indeed equivalent instances of F -M-Deletion.

We now suppose that (𝐺, 𝑘) is a no-instance. In the beginning of Step 1, the algorithm
either reports a no-instance or finds a wall. In the latter case, the algorithm either goes to
Step 2 or Step 3. If it runs Step 2, the previous paragraph justifies that the algorithm finds a
vertex 𝑣 such that (𝐺 \ 𝑣, 𝑘) is a no-instance. If the algorithm runs Step 3, then it either reports a
no-instance or recursively runs on instances (𝐺 \ 𝑦, 𝑘 − 1). If (𝐺 \ 𝑦, 𝑘 − 1) is yes-instance, then
so is (𝐺, 𝑘). Thus, (𝐺 \ 𝑦, 𝑘 − 1) is a no-instance for every considered vertex 𝑦 and the algorithm
always reports a no-instance. Hence, Theorem 6.1 follows.

7. Solving F-M-Elimination Distance on tree decompositions

In the rest of the paper (except for Section 11) we focus on F -M-Elimination Distance. In
order to design an algorithm for this problem and prove Theorem 1.2 and Theorem 1.3 , we
follow the same scheme as for F -M-Deletion. The first step of this strategy is to present a
dynamic programming algorithm that will allow us to solve F -M-Elimination Distance for
instances of bounded treewidth in FPT-time, namely Theorem 1.4. This is the analogue of for F -
M-Elimination Distance of the corresponding result for F -M-Deletion, namely Proposition 3.2.
The following theorem is a reformulation of Theorem 1.4.

THEOREM 7.1. For every finite collection of graphs F , there exists an algorithm that, given a
graph 𝐺 of treewidth at most tw and a non-negative integer 𝑘, decides whether edexc(F) (𝐺) ≤ 𝑘 in
time 2OℓF (tw·𝑘+tw log tw) · 𝑛.

According to Proposition 4.4, td(𝐺) ≤ tw(𝐺) · log 𝑛 for any graph 𝐺. Since edexc(F) (𝐺) ≤
td(𝐺) ≤ tw(𝐺)·log 𝑛, Theorem 7.1 implies the existence of an XP-algorithm forF -M-Elimination
Distance parameterized by treewidth.

39 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

COROLLARY 7.2. For every finite collection of graphs F , there exists an algorithm that, given
a graph 𝐺 of treewidth at most tw, computes edexc(F) (𝐺) in time 𝑛OℓF (tw

2) .

According to Proposition 4.4 again, tw(𝐺) ≤ td(𝐺) for any graph 𝐺. Since we moreover
have edexc(F) (𝐺) ≤ td(𝐺), Theorem 7.1 implies the existence of an FPT-algorithm for F -M-
Elimination Distance parameterized by treedepth.

COROLLARY 7.3. For every finite collection of graphs F , there exists an algorithm that, given
a graph 𝐺 of treedepth at most td, computes edexc(F) (𝐺) in time 2OℓF (td

2) · 𝑛.

Our algorithm takes inspiration from the dynamic programming algorithm of Reidl, Ross-
manith, Villaamil, and Sikdar [61] for treedepth.

PROPOS IT ION 7.4 ([61]). Given a graph 𝐺, a tree decomposition of 𝐺 of width𝑤, and an integer
𝑘, there is an algorithm that decides whether td(𝐺) ≤ 𝑘 in time 2O(𝑘·𝑤) · 𝑛.

If F = {𝐾1}, elimination distance reduces to treedepth. Recall that {𝐾1}-M-Elimination
Distance is the problem asking whether td(𝐺) ≤ 𝑘, which admits an algorithm in time 2O(𝑘·𝑤) ·𝑛
because of Proposition 7.4. Therefore, we may assume throughout this section that F is non-
trivial in order to have the useful property that a graph with a single vertex belongs to G =

exc(F). This will simplify the algorithm. Moreover, the elimination distance to exc(F) of a
disconnected graph is the maximum of the elimination distance of its connected components,
and therefore, we may assume that the considered graphs and boundaried graphs are connected.

Compared to the approach of [61], in order to deal with a general minor-closed graph
class G, we use the framework introduced in [9] based on the notion of representatives of an
appropriately defined equivalence relation on boundaried graphs. Intuitively, since the “leaves”
of the desired elimination tree are graphs in the minor-closed family G, it will be possible
to encode those graphs via their corresponding representatives. The fact that the boundary
size that we need to consider is bounded follows from the description of the algorithm and its
analysis.

In order to describe our dynamic programming algorithm, we have to describe its corre-
sponding tables, encode “partial elimination sets”, and show how to calculate this information
using a nice tree decomposition of the input graph. For this reason, in Subsection 7.1 we start by
giving some additional notations on functions on sets and in Subsection 7.2 we define annotated
trees. Annotated trees are labeled rooted trees that come together with a boundaried graph
such that the annotated nodes of the tree are mapped to the vertices of the boundaried graph
with the same label. This notion is used in Subsection 7.3 in order to define the characteristic of
a boundaried graph, which intuitively encodes how partial elimination trees can be present
inside the boundaried graph. Forget, introduce, and join procedures that shall be used in the
dynamic program on nice tree decompositions are presented in Subsection 7.4. In Subsection 7.5,

40 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

we present the dynamic program and prove its correctness. We conclude this section with
Subsection 7.6, where we show that boundaried graphs with the same characteristic can be
exchanged, i.e., give graphs of the same elimination distance to F when “glued” to the same
boundaried graph. This latter result will also be used in Section 10.

7.1 Some additional notation

We denote by Im(𝑓) the image of a function 𝑓 and by Ker(𝑓) its kernel, i.e., the elements whose
image by 𝑓 is 0. Given two sets 𝐴 and 𝐵, two subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵, a function 𝑓 : 𝐴′→ 𝐵′,
𝑎 ∈ 𝐴, and 𝑏 ∈ 𝐵, 𝑓 ⊕ [𝑎 ↦→ 𝑏] is the function that maps 𝑎 to 𝑏 and every 𝑎′ ∈ 𝐴′ \ {𝑎} to 𝑓 (𝑎′). If
𝑓 : 𝐴→ 𝐵, we denote by 𝑓 |𝐴′ the restriction of 𝑓 to 𝐴′. When 𝑓 is a bijection, 𝑓 |𝐴′ : 𝐴′→ Im(𝐴′)
is seen as a bijection. (𝑖 ↔ 𝑗) denotes the transposition of 𝑖 and 𝑗, for 𝑖, 𝑗 in some set 𝐼 ⊆ N.

7.2 Annotated trees

We proceed to define annotated trees, which we will use to codify the tables of our dynamic
program.

Annotated trees. An annotated tree is a tuple �̂� = (𝑇, 𝑟, ℎ,R, 𝑓), where (𝑇, 𝑟) is a rooted tree,
ℎ : 𝑉 (𝑇) → N, R = (𝑅, 𝐵, 𝜙) is a boundaried graph, and 𝑓 : [|𝐵|] → 𝑉 (𝑇). See Figure 4 for an
illustration of an annotated tree. We stress that different integers in [|𝐵|] can be mapped, via 𝑓 ,
to the same node of 𝑇 . The trivial annotated tree, denoted by 1̂, is (𝑇, 𝑟, ℎ,1, 𝑓) where 𝑇 is the
rooted tree with a single node 𝑟, ℎ is the constant function 0, 1 is the boundaried graph with one
single vertex that is also part of the boundary, and 𝑓 maps 1 to 𝑟. The height of an annotated
tree is ℎ(𝑟). Given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜙), 𝑓), we refer to (𝑇, 𝑟) as its rooted tree.
Given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜙), 𝑓) and a permutation 𝜎 of [|𝐵|], we use 𝜎(�̂�) to
denote (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜎 ◦ 𝜙), 𝑓 ◦ 𝜎−1).

We also define the following operations on annotated trees, which will be used to combine
the tables of the dynamic programming algorithm. The first one is inspired by a similar operation
introduced in [61].

Crop operation. Given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜙), 𝑓), the crop operation, denoted
by crop(�̂�), outputs the annotated tree obtained from �̂� by iteratively removing the leaves of 𝑇
that are not in Im(𝑓). Given a setA of annotated trees, crop(A) :=

⋃
�̂�∈A crop(�̂�).

Representation operation. Given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜙), 𝑓), the represen-
tation operation, denoted by rep(�̂�), outputs the annotated tree �̂� ′ = (𝑇, 𝑟, ℎ, (𝑅′, 𝐵, 𝜙), 𝑓) con-
structed as follows. For each 𝑣 ∈ Im(𝑓), let 𝐵𝑣 := 𝜙−1 ◦ 𝑓 −1(𝑣), let 𝜎𝑣 : 𝑓 −1(𝑣) → [|𝐵𝑣 |] be a
bijective function, and let 𝑅𝑣 be the union of the connected components of 𝑅 containing 𝐵𝑣. If
there is a node 𝑣 ∈ Im(𝑓) such that 𝑅𝑣 ∉ exc(F), then 𝑅′ := 𝐾𝑠F . Otherwise, for each 𝑣 ∈ Im(𝑓),

41 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

4

2

6

7

5 1, 3

4
2

6
7

5
1
3

Figure 4. An annotated tree made of a rooted tree (left) and a boundaried graph (right). The numbers
in the left figure correspond to the pre-images of 𝑓 for the nodes of 𝑉(𝑇) and the numbers on the right
figure correspond to the images of 𝜙. The function ℎ that gives a value to each node of the tree is not
represented.

let (𝑅′𝑣, 𝐵𝑣, 𝜎𝑣 ◦ 𝜙|𝐵𝑣) ∈ R
|𝐵𝑣 |
ℓF

be the representative of (𝑅𝑣, 𝐵𝑣, 𝜎𝑣 ◦ 𝜙|𝐵𝑣) for the equivalence rela-
tion ≡ℓF . Then 𝑅′ =

⋃
𝑣∈Im(𝑓) 𝑅

′
𝑣. Intuitively, if there is a node 𝑣 ∈ Im(𝑓) such that 𝑅𝑣 ∉ exc(F),

to store this information it suffices to set 𝑅′ := 𝐾𝑠F , while otherwise, we keep for each 𝑅𝑣 (in
fact, for the boundaried version of 𝑅𝑣) its representative.

An example of the crop and representation operation is give in Figure 5. Observe that
rep(1̂) = 1̂ since this is a minimum-sized representative and since we make the assumption
that F is non-trivial. Given a setA of annotated trees, rep(A) :=

⋃
�̂�∈A rep(�̂�).

4

2

6

7

5 1, 3

4
2

6
7

5
1
3

Figure 5. The crop and representation operation applied to the annotated tree of Figure 4. The
unlabeled leaves of the tree are iteratively removed. A representative of each component attached to
the boundary of the boundaried graph is kept.

Filter operation. Given a setA of annotated trees and a positive integer 𝑘, the filter operation,
denoted by filter𝑘, outputs the set of annotated trees inA with height at most 𝑘.

42 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Note that the crop, representation, and filter operations are commutative since they do
not modify the same objects. For more simplicity, we defineM𝑘 = filter𝑘 ◦ rep ◦ crop. We stress
thatM𝑘 is an operation acting on sets of annotated trees.

7.3 Characteristic of a boundaried graph

In this subsection we define the characteristic of a boundaried graph that shall be computed by
the dynamic program in Subsection 7.5. This characteristic will consist of a set of annotated
trees with some additional properties. In order to present this definition, we first define the
complete characteristic of a boundaried graph, that is a slightly more complicated way to see
F -elimination trees with some distinguished nodes.

Complete characteristic of a boundaried graph. Given a connected boundaried graph
G = (𝐺, 𝑋, 𝜌), the complete characteristic of G, denoted by char∗(G), is the set of annotated trees
�̂� = (𝑇, 𝑟, ℎ,R, 𝑓) such that

|Im(𝑓) | = |𝑋 |,
there exists a function 𝜒 : 𝑉 (𝑇) → 2𝑉 (𝐺) such that (𝑇, 𝜒, 𝑟) is an F -elimination tree of 𝐺
and for 𝑥 ∈ 𝑋 , 𝑥 ∈ 𝜒 ◦ 𝑓 ◦ 𝜌(𝑥),
there exists an isomorphism 𝜎 between R and (⋃𝑣∈Im(𝑓) 𝐺[𝜒(𝑣)], 𝑋, 𝜌), and
ℎ is the height function height𝑇,𝑟.

(𝜒, 𝜎) is called the witness pair of �̂� with respect to G. Since (𝑇, 𝜒, 𝑟) is an F -elimination
tree, it is straightforward to see that for any boundaried graph G with underlying graph 𝐺, the
minimum height of an annotated tree in char∗(G) is edexc(F) (𝐺).

Characteristic of a boundaried graph. Let G = (𝐺, 𝑋, 𝜌) be a boundaried graph and 𝑘 be an
integer. The characteristic of G, denoted by char𝑘 (G), is the setM𝑘 (char∗(G)).

LEMMA 7.5. Given a boundaried graphG = (𝐺, 𝑋, 𝜌) with 𝑋 ≠ ∅ and an integer 𝑘, the elimination
distance of 𝐺 to exc(F) is the minimum height of an annotated tree in char𝑘 (G) if edexc(F) (𝐺) ≤ 𝑘,
and char𝑘 (G) = ∅ otherwise.

PROOF . Let G = (𝐺, 𝑋, 𝜌) be a boundaried graph with 𝑋 ≠ ∅ and let �̂� ∈ char∗(G). Since 𝑋 ≠ ∅,
the crop operation will not remove the root of the underlying tree of �̂� . Moreover, neither the
crop operation nor the representation operation change the height of the nodes that stay in the
tree. So the height of rep ◦ crop(�̂�) is equal to the height of �̂� . ■

We now prove that the size of the characteristic of a boundaried graph is upper-bounded
by a function of its boundary size and 𝑘.

43 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

LEMMA 7.6. There exists a function 𝑓14 : N2 → N such that, given two integers 𝑘 and 𝑤,
if G = (𝐺, 𝑋, 𝜌) is a boundaried graph with |𝑋 | ≤ 𝑤, then |char𝑘 (G) | ≤ 𝑓14(𝑤, 𝑘). Moreover,
𝑓14(𝑤, 𝑘) = 2OℓF (𝑤·𝑘+𝑤 log𝑤) .

PROOF . Let �̂� = (𝑇, 𝑟, ℎ,R, 𝑓) be an annotated tree in char𝑘 (G). Let 𝑙 := |𝑋 |. Let 𝑥1, ..., 𝑥𝑙 be an
ordering of the nodes in Im(𝑓) such that if 𝑥𝑖 ∈ Anc𝑇,𝑟 (𝑥 𝑗), then 𝑖 < 𝑗. Without loss of generality,
we suppose that 𝑓 (𝑖) = 𝑥𝑖 for 𝑖 ∈ [𝑙] (this is true up to a permutation of [𝑙]). Let 𝑓𝑖 be the
restriction of 𝑓 to [𝑖], let 𝑇𝑖 be the tree obtained from 𝑇 by iteratively removing the leaves not in
Im(𝑓𝑖), and let ℎ𝑖 be the restriction of ℎ to𝑉 (𝑇𝑖). Note that Im(ℎ𝑖) ⊆ [0, 𝑘] and 𝑇𝑖 is a tree with at
most 𝑖 leaves because the leaves of 𝑇 are in Im(𝑓𝑖) and |Im(𝑓𝑖) | = 𝑖. So 𝑇𝑖 has at most 𝑖 · (𝑘 + 1)
nodes.

We set (𝑇0, ℎ0, 𝑓0) to be the empty triple. Let us bound the number of triples (𝑇𝑖 , ℎ𝑖 , 𝑓𝑖) that
can be constructed from (𝑇𝑖−1, ℎ𝑖−1, 𝑓𝑖−1) for 𝑖 ∈ [𝑙]. For 𝑖 ∈ [𝑙], we can construct (𝑇𝑖 , ℎ𝑖 , 𝑓𝑖) from
(𝑇𝑖−1, ℎ𝑖−1, 𝑓𝑖−1) by choosing a node of 𝑇𝑖−1 (if it exists) and adding a path of length at most 𝑘
with leaf 𝑥𝑖 (all nodes in this path are new, except from 𝑥𝑖). We consider the function ℎ𝑖 that has
the same values as ℎ𝑖−1 on 𝑉 (𝑇𝑖−1) and values in [0, 𝑘] on the new path such that the value of
ℎ𝑖 strictly increases from a leaf to the root 𝑟. Observe that the value of ℎ𝑖 on the new path is a
subset of 2[𝑘+1] . Therefore, the number of different triples (𝑇, ℎ, 𝑓) is at most

𝑤∏
𝑖=1

𝑖 (𝑘 + 1)2𝑘+1 = 𝑤!(𝑘 + 1)𝑤2𝑤(𝑘+1) ≤ 2𝑤 log𝑤+𝑤 log(𝑘+1)+𝑤(𝑘+1) .

Since �̂� = (𝑇, 𝑟, ℎ,R, 𝑓) is an annotated tree in char𝑘 (G), it holds that R is the union of 𝑙 repre-
sentatives R𝑖 ∈ R𝑤𝑖ℓF for 𝑖 ∈ [𝑙] where 𝑙 = |Im(𝑓) |, such that

∑𝑙
𝑖=1 𝑤𝑖 = 𝑙 ≤ 𝑤. By Proposition 4.9,

|R𝑤𝑖ℓF | = 2OℓF (𝑤𝑖 log𝑤𝑖) . So the number of ways to construct R is bounded by

𝑙∏
𝑖=1

2OℓF (𝑤𝑖 log𝑤𝑖) = 2OℓF (
∑𝑙
𝑖=1 𝑤𝑖 log𝑤)

= 2OℓF (𝑤 log𝑤) .

Hence, we obtain the desired result. ■

7.4 The procedures

We define here the procedures that will be used in the dynamic programming algorithm. Given a
nice tree decomposition T of a graph𝐺, we want to define forget, introduce, and join procedures
to obtain the characteristic of 𝐺𝑣 for each internal node 𝑣 in T , given the characteristics of
𝐺𝑣′ for each child 𝑣′ of 𝑣. Before defining the procedures for the characteristics, we define the
procedures for the complete characteristics.

44 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

7.4.1 Forget procedure

With the forget procedure, given the characteristic of a boundaried graph, we want to compute
the characteristic of the boundaried graph obtained by removing a vertex from the boundary.

Complete forget procedure. The complete forget procedure applied on the annotated tree
(𝑇, 𝑟, ℎ,R, 𝑓) corresponds to removing the vertex with the largest label from the boundary of R.
More formally, given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝐵, 𝜙), 𝑓), the complete forget procedure,
denoted by forget∗(�̂�), outputs the annotated tree �̂� ′ = (𝑇, 𝑟, ℎ, (𝑅, 𝐵′, 𝜙|𝐵′), 𝑓 | [|𝐵′ |])), where
𝐵′ = 𝐵 \ 𝜙−1(|𝐵|). Given a setA of annotated trees, forget∗(A) :=

⋃
�̂�∈A forget∗(�̂�).

LEMMA 7.7. Let 𝐺 be a graph, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣 be a forget node of T
with child 𝑣′ and forgotten vertex 𝑥, 𝜌 : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection, and 𝜌′ := 𝜌⊕ [𝑥 ↦→ |𝛽(𝑣′) |].
LetA := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌) andA′ := char∗(𝐺𝑣′ , 𝛽(𝑣′), 𝜌′). ThenA = forget∗(A′).

PROOF . Let �̂� ∈ forget∗(A′). There exists �̂� ′ ∈ A′ with witness pair (𝜒′, 𝜎′) such that
forget∗(�̂� ′) = �̂� . Let (𝑇, 𝑟) (resp. (𝑇 ′, 𝑟)) be the rooted tree of �̂� (resp. �̂� ′). Note that height𝑇,𝑟 =
height𝑇 ′,𝑟. Thus, it is easy to see that (𝜒′, 𝜎′) also witnesses that �̂� ∈ A. Conversely, let
�̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓) ∈ A with witness pair (𝜒, 𝜎). Let 𝑢 := 𝜒−1(𝑥), 𝑤 := 𝜎−1(𝑥), and
𝑡 = |𝑋 | + 1. Let �̂� ′ := (𝑇, 𝑟, ℎ, (𝑅, 𝑋 ∪ {𝑤}, 𝜙 ⊕ [𝑤 ↦→ 𝑡]), 𝑓 ⊕ [𝑡 ↦→ 𝑢]). Then forget∗(�̂� ′) = �̂� and
the pair (𝜒, 𝜎) also witnesses that �̂� ′ ∈ A′, so �̂� ∈ forget∗(A′). ■

Forget procedure. Given an annotated tree �̂� , the forget procedure, denoted by forget(�̂�),
outputs rep ◦ crop ◦ forget∗(�̂�). See Figure 6 for an illustration. Note that we do not apply the
filter operation since the height does not change under the forget procedure. Given a setA of
annotated trees, forget(A) outputs

⋃
�̂�∈A forget(�̂�).

4

2

6 5 1, 3

4
2

6

5
1
3

Figure 6. The forget procedure applied to the annotated tree of Figure 4.

45 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

LEMMA 7.8. Let 𝐺 be a graph, 𝑘 be an integer, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣
be a forget node of T with child 𝑣′ and forgotten vertex 𝑥, 𝜌 : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection,
and 𝜌′ := 𝜌 ⊕ [𝑥 ↦→ |𝛽(𝑣′) |]. Let A := char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌) and A′ := char𝑘 (𝐺𝑣′ , 𝛽(𝑣′), 𝜌′). Then
A = forget(A′).

PROOF . Let D := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌) and D′ := char∗(𝐺𝑣′ , 𝛽(𝑣′), 𝜌′). According to Lemma 7.7,
D = forget∗(D′). The representation and the crop operation do not change the labels of
an annotated tree, while the complete forget procedure only changes the labels of the input
annotated tree and it does not change its height. Thus, rep ◦ forget∗ = rep ◦ forget∗ ◦ rep,
crop ◦ forget∗ = crop ◦ forget∗ ◦ crop, and filter𝑘 ◦ forget∗ = forget∗ ◦ filter𝑘. Since the three
operations are commutative, it follows thatM𝑘◦forget∗ = rep◦crop◦forget∗◦M𝑘 = forget◦M𝑘.
Hence,A =M𝑘 (D) =M𝑘 ◦ forget∗(D′) = forget(M𝑘 (D′)) = forget(A′). ■

7.4.2 Introduce procedure

With the introduce procedure, given the characteristic of a boundaried graph and a set 𝐼 of
labels from the boundary, we want to compute the characteristic of the boundaried graph
obtained by adding a new vertex to the boundary, which is adjacent to the nodes with a label in
𝐼 .

Diamond-introduce operation. Let (𝑇, 𝑟) be a rooted tree, 𝑤 be an integer, 𝑓 : [𝑤] → 𝑉 (𝑇)
be a function, and 𝐼 be a subset of [𝑤]. (𝑇, 𝑟, 𝑓)♦intr𝐼 is defined as the set of all pairs (𝑇 ′, 𝑟′, 𝑓 ′)
such that:

1. (𝑇 ′, 𝑟′) is a rooted tree,
2. 𝑉 (𝑇 ′) = 𝑉 (𝑇) ∪ {𝑢} for some new node 𝑢,
3. 𝑓 ′ = 𝑓 ⊕ [𝑤 + 1 ↦→ 𝑢],
4. if 𝑣1 ∈ 𝑉 (𝑇) and 𝑣2 ∈ Anc𝑇,𝑟 (𝑣1), then 𝑣2 ∈ Anc𝑇 ′,𝑟′ (𝑣1),
5. if 𝑣 ∈ 𝑓 (𝐼), then 𝑣 ∈ Anc𝑇,𝑟 (𝑢) ∪ Desc𝑇,𝑟 (𝑢), and
6. 𝑇 ′𝑢 ∩ 𝑓 (𝐼) ≠ ∅, or 𝑢 ∈ Leaf(𝑇 ′, 𝑟′) and Par𝑇 ′,𝑟′ (𝑢) ∈ 𝑓 (𝐼).

This operation corresponds to introducing a new node 𝑢 in 𝑇 so that 𝑢 has ancestor-
descendant relations with the nodes labeled by a label in 𝐼 . The last item, which states that 𝑢
either has a descendant in 𝑓 (𝐼) or is a leaf and its parent belongs to 𝑓 (𝐼), is a property needed
to ensure connectivity and allows the application of the crop operation in Lemma 7.9 and
Lemma 7.10.

Let (𝑇, 𝑟) be a rooted tree, 𝐾 be a subset of 𝑉 (𝑇), and ℎ : 𝐾 → N. We define the function
update𝑇,𝑟,𝐾 (ℎ) : 𝑉 (𝑇) → N, that maps every 𝑣 ∈ 𝑉 (𝑇) to the integer

update𝑇,𝑟,𝐾 (ℎ) (𝑣) = max{ℎ(𝑣), 1 + max
𝑐∈Ch(𝑣)

{update𝑇,𝑟,𝐾 (ℎ) (𝑐)}},

46 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

where we suppose that ℎ(𝑣) = 0 if 𝑣 ∉ 𝐾 and update𝑇,𝑟,𝐾 (ℎ) (𝑐) = −1 if 𝑣 is childless. Let (𝑇 ′, 𝑟′)
be a rooted tree with𝑉 (𝑇 ′) = 𝐾 and such that the ancestor-descendant relationship between the
nodes of 𝐾 is the same in (𝑇, 𝑟) and (𝑇 ′, 𝑟′). Then we can observe that update𝑇,𝑟,𝐾 (height𝑇 ′,𝑟′) =
height𝑇,𝑟.

Complete introduce procedure. Let �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓) be an annotated tree and let 𝐼
be a set of labels in [|𝑋 |]. The complete introduce procedure corresponds to adding a new vertex
𝑣 to the boundary 𝑋 of the boundaried graph (𝑅, 𝑋, 𝜙) of an annotated tree (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓),
such that 𝑣 is adjacent to the nodes with a label in 𝐼 and it is either mapped, via 𝑓 ◦ 𝜙, to an
already existing leaf of 𝑇 (item (a) below) or to a new node of 𝑇 (item (b) below).

More formally, given an annotated tree �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓), a set 𝐼 ⊆ [|𝑋 |] of labels,
the complete introduce procedure, denoted by intr∗(�̂� , 𝐼), outputs a set A of annotated trees
constructed as follows. For each (𝑇 ′, 𝑟′, 𝑓 ′) ∈ (𝑇, 𝑟, 𝑓)♦intr𝐼 , let 𝑤 = |Im(𝑓 ′) |, 𝑢 := 𝑓 ′(𝑤), and
𝑢′ := Par𝑇 ′,𝑟′ (𝑢) (or 𝑢′ := 𝑢 if 𝑢 is the root). We add a new vertex 𝑣 to 𝑅 and we set 𝑋′ := 𝑋 ∪ {𝑣}
and 𝜙′ := 𝜙 ⊕ [𝑣 ↦→ 𝑤]. Let (𝑅𝑢′ , 𝑋𝑢′ , 𝜙𝑢′) be the part of the representative 𝑅 corresponding to 𝑢′,
as defined for the representation operation (i.e., 𝑅𝑢′ is the union of the connected components
of 𝑅 containing 𝜙−1 ◦ 𝑓 −1(𝑢′), 𝑋𝑢′ = 𝜙−1 ◦ 𝑓 −1(𝑢′), 𝜙𝑢′ = 𝜎𝑢′ ◦ 𝜙|𝑋𝑢′ and 𝜎𝑢′ : 𝑓 −1(𝑢′) → [|𝑋𝑢′ |] is
a bijective function).

(a) If ℎ(𝑢′) = 0: We set 𝑓 ′′ := 𝑓 ⊕ [𝑤 ↦→ 𝑢′] and 𝑅′ := (𝑉 (𝑅) ∪ {𝑣}, 𝐸(𝑅) ∪ 𝐸({𝑣}, 𝜙−1(𝐼) ∩ 𝑋𝑢′))
and we add (𝑇, 𝑟, ℎ, (𝑅′, 𝑋′, 𝜙′), 𝑓 ′′) to A if the connected component of 𝑅′ containing 𝑣
belongs to exc(F).

(b) If 𝑢′ ∉ Im(𝑓), or if 𝑢′ ∈ Im(𝑓) and |𝑉 (𝑅𝑢′) | = 1: We set 𝑅′ := (𝑉 (𝑅) ∪ {𝑣}, 𝐸(𝑅)) and
ℎ′ := update𝑇 ′,𝑟′,𝑉 (𝑇) (ℎ) and we add (𝑇 ′, 𝑟′, ℎ′, (𝑅′, 𝑋,′𝜙′), 𝑓 ′) toA.

Note that this is not a dichotomy: if both criteria are fulfilled, then we apply both cases. Given a
setA of annotated trees, we define intr∗(A, 𝐼) :=

⋃
�̂�∈A intr∗(�̂� , 𝐼).

LEMMA 7.9. Let 𝐺 be a graph, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣 be an introduce node
of T with child 𝑣′ and introduced vertex 𝑥, 𝜌′ : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection, 𝜌 := 𝜌′ ⊕ [𝑥 ↦→
|𝛽(𝑣) |], and 𝐼 := 𝜌(𝑁𝐺𝑣 (𝑥)). Let A := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌) and A′ := char∗(𝐺𝑣′ , 𝛽(𝑣′), 𝜌′). Then
A = intr∗(A′, 𝐼).

PROOF . Let �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓) ∈ intr∗(A′, 𝐼). There is �̂� ′ = (𝑇 ′, 𝑟′, ℎ′,R′, 𝑓 ′) ∈ A′ with
witness pair (𝜒′, 𝜎′) such that �̂� ∈ intr∗(𝑇 ′, 𝐼). Let 𝜒 := 𝜒′ ⊕ [𝑢 ↦→ 𝑥] and 𝜎 = 𝜎′ ⊕ [𝑤→ 𝑥] where
𝑢 := 𝑓 (|𝑋 |) and 𝑤 := 𝜙−1(|𝑋 |).

Suppose that we are in case (a). Thus, ℎ = ℎ′ = height𝑇 ′,𝑟′ = height𝑇,𝑟. By the construction
of R from R′, since 𝑥 is only adjacent in 𝐺𝑣 to the nodes with a label in 𝐼 , 𝜎 is an isomorphism
between R and (⋃𝑤∈Im(𝑓) 𝐺𝑣[𝜒(𝑤)], 𝛽(𝑣), 𝜌). Moreover, 𝑇 = 𝑇 ′ so (𝑇, 𝜒, 𝑟) is an F -elimination
tree of 𝐺𝑣. Hence, (𝜒, 𝜎) witnesses that �̂� ∈ A.

47 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Suppose now that we are in case (b). Notice that in this case

ℎ = update𝑇,𝑟,𝑉 (𝑇 ′) (ℎ′) = update𝑇,𝑟,𝑉 (𝑇 ′) (height𝑇 ′,𝑟′) = height𝑇,𝑟 .

It is easy to see that 𝜎 is an isomorphism between R and (⋃𝑤∈Im(𝑓) 𝐺𝑣[𝜒(𝑤)], 𝛽(𝑣), 𝜌). More-
over, as �̂� ∈ intr∗(𝑇 ′, 𝐼), it holds that (𝑇, 𝑟, 𝑓) ∈ (𝑇 ′, 𝑟′, 𝑓 ′)♦intr𝐼 and therefore (𝑇, 𝑟) keeps the
ancestor-descendant relations from (𝑇 ′, 𝑟′) (item 4 of the ♦intr operation), while adding ancestor-
descendant relations between the new node of 𝑇 and the nodes labeled by 𝐼 (item 5), and
guaranteeing the connectivity of 𝐺𝑣[𝜒(𝑇𝑤)] for each node 𝑤 ∈ 𝑉 (𝑇) (item 6). Hence, (𝜒, 𝜎)
witnesses that �̂� ∈ A.

Conversely, let �̂� = (𝑇, 𝑟, ℎ,R, 𝑓) ∈ A with witness pair (𝜒, 𝜎). If 𝜒(𝜒−1(𝑥)) = {𝑥}, then let
𝑇 ′ be the tree obtained from 𝑇 by removing 𝑢 := 𝜒−1(𝑥) and adding edges between the parent
of 𝑢 and the children of 𝑢, if any. Otherwise, set 𝑇 ′ := 𝑇 . Let ℎ′ be the height function of 𝑇 ′

and 𝑟′ be the root of 𝑇 ′. Let (𝑅′, 𝑋′, 𝜙′) be the boundaried graph obtained from R by removing
𝜎−1(𝑥). Let 𝑓 ′ := 𝑓 |𝑋 ′ . Then the functions obtained from 𝜒 and 𝜎 after restricting their image
to 𝑉 (𝐺) \ 𝑥 witness that �̂� ′ = (𝑇 ′, 𝑟′, ℎ′, (𝑅′, 𝑋′, 𝜙′), 𝑓 ′) ∈ A′. To show that �̂� ∈ intr∗(𝑇 ′, 𝐼), the
only non-trivial part is to prove that either 𝑇𝑢 ∩ 𝑓 (𝐼) ≠ ∅, or 𝑢 ∈ Leaf(𝑇, 𝑟) and Par𝑇,𝑟 (𝑢) ∈ 𝑓 (𝐼)
(item 6 of the ♦intr operation). Suppose that 𝑇𝑢 ∩ 𝑓 (𝐼) = ∅. We know that 𝑥 is exactly adjacent to
𝜌−1(𝐼) in 𝐺𝑣 since it is an introduce vertex. Moreover, (𝑇, 𝜒, 𝑟) is an F -elimination tree of 𝐺𝑣, so
𝐺𝑣[𝜒(𝑇𝑤)] is connected for all 𝑤 ∈ 𝑉 (𝑇). In particular, 𝐺𝑣[𝜒(𝑇𝑢)] is connected, but 𝑥 ∈ 𝐺𝑣[𝜒(𝑇𝑢)]
and 𝜌−1(𝐼) ∉ 𝐺𝑣[𝜒(𝑇𝑢)] because 𝑇𝑢 ∩ 𝑓 (𝐼) = ∅. Thus, we must have 𝐺𝑣[𝜒(𝑇𝑢)] = {𝑥}, and so
𝑢 ∈ Leaf(𝑇, 𝑟). Since 𝐺𝑣[𝜒(𝑇Par𝑇,𝑟 (𝑢))] is also connected, it implies that 𝜒(Par𝑇,𝑟 (𝑢)) and 𝑥 are
connected, so Par𝑇,𝑟 (𝑢) ∈ 𝑓 (𝐼). Hence, �̂� ∈ intr∗(A′, 𝐼). ■

Introduce procedure. Given an annotated tree �̂� , a set 𝐼 of labels, and a positive integer 𝑘,
the introduce procedure, denoted by intr𝑘 (�̂� , 𝐼), outputs filter𝑘 ◦ rep ◦ intr∗(�̂� , 𝐼). Examples of the
introduce procedure can be found in Figure 7. Note that we do not apply the crop operation,
since the complete introduction procedure applied to a cropped annotated tree outputs a
cropped annotated tree. Given a setA of annotated trees, intr𝑘 (A, 𝐼) outputs

⋃
�̂�∈A intr𝑘 (�̂� , 𝐼).

LEMMA 7.10. Let 𝐺 be a graph, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣 be an introduce node
of T with child 𝑣′ and introduced vertex 𝑥, 𝜌′ : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection, 𝜌 := 𝜌′⊕[𝑥 ↦→ |𝛽(𝑣) |],
and 𝐼 := 𝜌(𝑁𝐺𝑣 (𝑥)). Let 𝑘 be an integer, A := char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌), andA′ := char𝑘 (𝐺𝑣′ , 𝛽(𝑣′), 𝜌′).
ThenA = intr𝑘 (A′, 𝐼).

PROOF . Let D := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌) and D′ := char∗(𝐺𝑣′ , 𝛽(𝑣′), 𝜌′). According to Lemma 7.9,
D = intr∗(D′, 𝐼).

The crop operation acts on the tree𝑇 of an annotated tree (𝑇, 𝑟, ℎ,R, 𝑓) to remove the leaves
that are not in Im(𝑓). By item 6 of the ♦intr operation, the complete introduce procedure may
only add a new node in 𝑇 above a node in Im(𝑓), or add a leaf to 𝑇 with a parent node in Im(𝑓).

48 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

4

2

6, 8

7

5 1, 3

4
2

6
8

751

3 4

8

2

7

5 1, 3

6

4
2

8
6

751

3

Figure 7. Two annotated trees obtained from the introduce procedure applied to the annotated tree of
Figure 4 with 𝐼 = {2, 6}.

Hence, the new node may only be added to the cropped tree. Since the new vertex is also in the
boundary, it implies that, given a set C of annotated trees, crop ◦ intr∗(C, 𝐼) = intr∗(crop(C), 𝐼).

The representation operation acts on R to replace it by a boundaried graph whose con-
nected components are representatives of the connected components of R. The complete
introduce procedure adds a new vertex in the boundary of R that is adjacent to boundary
vertices only. Hence, rep ◦ intr∗(C, 𝐼) = rep ◦ intr∗(rep(C), 𝐼).

Moreover, the complete introduce procedure can only increase the height of an annotated
tree. Therefore, filter𝑘 ◦ intr∗(C, 𝐼) = filter𝑘 ◦ intr∗(filter𝑘 (C), 𝐼).

Since the three operations are commutative, we have thatM𝑘 ◦ intr∗(C, 𝐼) = filter𝑘 ◦
rep ◦ intr∗(M𝑘 (C), 𝐼) = intr𝑘 (M𝑘 (C), 𝐼). Therefore, A = M𝑘 (D) = M𝑘 ◦ intr∗(D′, 𝐼) =

intr𝑘 (M𝑘 (D′), 𝐼) = intr𝑘 (A′, 𝐼). ■

For the introduce procedure, we finally prove that it can generate a bounded number of
annotated trees.

LEMMA 7.1 1. Let 𝑤 and 𝑘 be two positive integers, let G be a 𝑤-boundaried graph, let 𝐼 ⊆ [𝑤],
and let �̂� ∈ char𝑘 (G). Then |intr𝑘 (�̂� , 𝐼) | = O(𝑤 · 𝑘).

PROOF . Let �̂� = (𝑇, 𝑟, ℎ,R, 𝑓). Let us show that | (𝑇, 𝑟, 𝑓)♦intr𝐼 | = O(𝑤 · 𝑘). Since Leaf(𝑇, 𝑟) ⊆
Im(𝑓), 𝑇 has at most 𝑤 leaves. Thus, 𝑇 has at most 𝑤 · (𝑘 + 1) nodes. The ♦intr operation consists
in adding a new node to 𝑇 , either as the new parent of a node, or as a new leaf of 𝑇 . Therefore,
| (𝑇, 𝑟, 𝑓)♦intr𝐼 | ≤ 2𝑤 · (𝑘 + 1).

Let (𝑇 ′, 𝑟′, 𝑓 ′) ∈ (𝑇, 𝑟, 𝑓)♦intr𝐼 . In the introduction procedure, we obtain at most two
annotated trees from (𝑇 ′, 𝑟′, 𝑓 ′). Therefore, |intr𝑘 (�̂� , 𝐼) | ≤ 4𝑤 · (𝑘 + 1). ■

49 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

7.4.3 Join procedure

With the join procedure, given the characteristic of two boundaried graphs G1 and G2 that are
compatible, we want to compute the characteristic of G1⊕G2.

Diamond-join operation. Let (𝑇1, 𝑟1) and (𝑇2, 𝑟2) be two rooted trees, 𝑤 be an integer, and 𝑓1 :
[𝑤] → 𝑉 (𝑇1) and 𝑓2 : [𝑤] → 𝑉 (𝑇2) be two functions such that { 𝑓 −1

1 (𝑢) | 𝑢 ∈ Im(𝑓1)} = { 𝑓 −1
2 (𝑢) |

𝑢 ∈ Im(𝑓2)}. Thanks to this equality, we can identify 𝑓1 with 𝑓2 and say that𝑉 (𝑇1)∩𝑉 (𝑇2) = Im(𝑓1).
We define (𝑇1, 𝑟1, 𝑓1)♦join(𝑇2, 𝑟2, 𝑓2) as the set of all pairs (𝑇, 𝑟, 𝑓) such that:

1. 𝑓 = 𝑓1 = 𝑓2,
2. (𝑇, 𝑟) is a rooted tree,
3. 𝑉 (𝑇) = 𝑉 (𝑇1) ∪𝑉 (𝑇2),
4. for 𝑖 ∈ {1, 2}, if 𝑢 ∈ 𝑉 (𝑇𝑖) and 𝑣 ∈ Anc𝑇𝑖 ,𝑟𝑖 (𝑢), then 𝑣 ∈ Anc𝑇,𝑟 (𝑢), and
5. for every 𝑣 ∈ Leaf(𝑇, 𝑟) and every 𝑤 ∈ Anc𝑇,𝑟 (𝑣), if 𝑉 (𝑣𝑇𝑤) ∩ Im(𝑓) = ∅, then there is an

𝑖 ∈ {1, 2} such that 𝑣𝑇𝑤 = 𝑣𝑇𝑖𝑤.

The last item, which states that a branch of 𝑇 that does not intersect Im(𝑓) either belongs
to 𝑇1 or 𝑇2, is a property needed to ensure connectivity and allows the application of the crop
operation in Lemma 7.12 and Lemma 7.13.

Let (𝑇, 𝑟) be a rooted tree, and for 𝑖 ∈ {1, 2}, let 𝐾𝑖 ⊆ 𝑉 (𝑇) and ℎ𝑖 : 𝐾𝑖 → N.
update𝑇,𝑟,𝐾1,𝐾2

(ℎ1, ℎ2) is the function that maps 𝑣 ∈ 𝑉 (𝑇) to the maximum of

ℎ1(𝑣), ℎ2(𝑣), and max𝑐∈Ch(𝑣){1 + update𝑇,𝑟,𝐾1,𝐾2
(ℎ1, ℎ2) (𝑐)},

when they are defined. For 𝑖 ∈ {1, 2}, let (𝑇𝑖 , 𝑟𝑖) be a rooted tree with 𝑉 (𝑇𝑖) = 𝐾𝑖 and such that
the ancestor-descendant relationship between the nodes of 𝐾𝑖 is the same in 𝑇 and 𝑇𝑖 . Then we
can observe that update𝑇,𝑟,𝐾1,𝐾2

(height𝑇1,𝑟1
, height𝑇2,𝑟2

) = height𝑇,𝑟.

Complete join procedure. The join procedure corresponds to “merging” two annotated trees
whose intersection is exactly their boundary. More formally, given two annotated trees �̂�1 =

(𝑇1, 𝑟1, ℎ1,R1, 𝑓1) and �̂�2 = (𝑇2, 𝑟2, ℎ2,R2, 𝑓2), the complete join procedure, denoted by join(�̂�1, �̂�2),
outputs a setA of annotated trees constructed as follows. Initially,A is empty. If R1 and R2 are
compatible (i.e., such that { 𝑓 −1

1 (𝑢) | 𝑢 ∈ Im(𝑓1)} = { 𝑓 −1
2 (𝑢) | 𝑢 ∈ Im(𝑓2)}) and such that Ker(ℎ1 ◦

𝑓1) = Ker(ℎ2 ◦ 𝑓2), then for (𝑇, 𝑟, 𝑓) ∈ (𝑇1, 𝑟1, 𝑓1)♦join(𝑇2, 𝑟2, 𝑓2), let ℎ := update𝑇,𝑟,𝑉 (𝑇1),𝑉 (𝑇2) (ℎ1, ℎ2).
Let (𝑅, 𝑋, 𝜌) := R1⊕R2. If each connected component of 𝑅 belongs to exc(F), then we add
(𝑇, 𝑟, ℎ,R1⊕R2, 𝑓) toA. Given two setsA1 andA2 of annotated trees, we set join∗(A1,A2) :=⋃
�̂�1∈A1,�̂�2∈A2

join∗(�̂�1, �̂�2).

LEMMA 7.12. Let 𝐺 be a graph, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣 be a join node of
T with children 𝑣1 and 𝑣2, and 𝜌 : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection. Let A := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌),
A1 := char∗(𝐺𝑣1 , 𝛽(𝑣1), 𝜌), andA2 := char∗(𝐺𝑣2 , 𝛽(𝑣2), 𝜌). ThenA = join∗(A1,A2).

50 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

PROOF . Let �̂� = (𝑇, 𝑟, ℎ, (𝑅, 𝑋, 𝜙), 𝑓) ∈ join∗(A1,A2). There is �̂�1 = (𝑇1, 𝑟1, ℎ1,R1, 𝑓1) ∈ A1 and
�̂�2 = (𝑇2, 𝑟2, ℎ2,R2, 𝑓2) ∈ A2 such that �̂� ∈ join∗(�̂�1, �̂�2) with witness pair (𝜒1, 𝜎1) and (𝜒2, 𝜎2),
respectively, such that 𝜒1|Im(𝑓) = 𝜒2|Im(𝑓) and 𝜎1|𝑋 = 𝜎2|𝑋 . Note that

ℎ := update𝑇,𝑟,𝑉 (𝑇1),𝑉 (𝑇2) (ℎ1, ℎ2) = update𝑇,𝑟,𝑉 (𝑇1),𝑉 (𝑇2) (height𝑇1,𝑟1
, height𝑇2,𝑟2

) = height𝑇,𝑟 .

Let (𝜒, 𝜎) = (𝜒1 ∪ 𝜒2, 𝜎1 ∪ 𝜎2).
It is easy to see that 𝜎 is an isomorphism between R and (⋃𝑤∈Im(𝑓) 𝐺[𝜒(𝑤)], 𝛽(𝑣), 𝜌). If

𝑢𝑣 ∈ 𝐸(𝐺𝑣), since 𝐺𝑣1 \ 𝛽(𝑣) and 𝐺𝑣2 \ 𝛽(𝑣) are not connected, then there is 𝑖 ∈ {1, 2} such that
𝜒𝑖 (𝑢) ∈ Anc𝑇,𝑟 (𝜒𝑖 (𝑣)) ∪Desc𝑇,𝑟 (𝜒𝑖 (𝑣)) holds, so 𝜒(𝑢) ∈ Anc𝑇,𝑟 (𝜒(𝑣)) ∪Desc𝑇,𝑟 (𝜒(𝑣)) due to item 4
of the ♦join operation.

Moreover, item 5 of the ♦join operation ensures the connectivity of 𝐺𝑣[𝜒(𝑇𝑤)] for each
𝑤 ∈ 𝑉 (𝑇). Indeed, let 𝑖 ∈ {1, 2} be such that 𝑤 ∈ 𝑉 (𝑇𝑖). Suppose towards a contradiction
that 𝐺𝑣[𝜒(𝑇𝑤)] is not connected. Note that it implies that 𝑤 ∉ Im(𝑓), because Im(𝑓) ⊆ 𝑉 (𝑇1) ∪
𝑉 (𝑇2) and (𝑇1, 𝜒1, 𝑟1) and (𝑇2, 𝜒2, 𝑟2) are F -elimination trees of 𝐺𝑣1 and 𝐺𝑣2 , respectively, so
𝐺𝑣1 [𝜒1((𝑇1)𝑤)] and 𝐺𝑣2 [𝜒2((𝑇2)𝑤)] are connected and therefore 𝐺𝑣[𝜒(𝑇𝑤)] would be connected.
We assume that 𝑤 is a minimal node such that 𝐺𝑣[𝜒(𝑇𝑤)] is not connected, i.e., for every 𝑢 ∈
𝑉 (𝑇𝑤) \{𝑤},𝐺𝑣[𝜒(𝑇𝑢)] is connected. Hence, there is 𝑢 ∈ Ch𝑇,𝑟 (𝑤) such that 𝜒(𝑤) is not connected
to𝐺𝑣[𝜒(𝑇𝑢)]. So𝑉 (𝑇𝑢)∪𝑉 (𝑇𝑖) = ∅, since otherwise, the connectivity of𝐺𝑣𝑖 [𝜒𝑖 ((𝑇𝑖)𝑤)] would imply
the connectivity of 𝜒(𝑤) with 𝐺𝑣[𝜒(𝑇𝑢)]. Thus, there is an 𝑥 ∈ Leaf(𝑇, 𝑟) such that 𝑢 ∈ Anc𝑇,𝑟 (𝑥),
and therefore 𝑤 ∈ Anc𝑇,𝑟 (𝑥), and 𝑉 (𝑥𝑇𝑤) ∩ Im(𝑓) = ∅. So, according to item 5 of the ♦join

operation, there is 𝑖 ∈ {1, 2} such that 𝑥𝑇𝑤 = 𝑥𝑇𝑖𝑤. This contradicts the fact that𝑤 ∈ 𝑉 (𝑇𝑖)\Im(𝑓)
and 𝑉 (𝑇𝑢) ⊆ 𝑉 (𝑇𝑗) \ Im(𝑓) where {𝑖, 𝑗} = {1, 2}. Thus, (𝑇, 𝜒, 𝑟) is an F -elimination tree of 𝐺𝑣.
Therefore, (𝜒, 𝜎) witnesses that �̂� ∈ A.

Conversely, let �̂� ∈ A with witness pair (𝜒, 𝜎). Let (𝜒1, 𝜎1) and (𝜒2, 𝜎2) be the co-restrictions
of (𝜒, 𝜎) to 𝐺𝑣1 and 𝐺𝑣2 , respectively.

Let 𝑇1 be the tree obtained from 𝑇 by removing the nodes not in Im(𝜒1) and adding
edges between the parent and children of each removed node. Let 𝑟1 be the root of 𝑇1 and
ℎ1 := height𝑇1,𝑟1

. Let R1 be obtained from R by removing the vertices not in Im(𝜎1). Then it
is easy to see that �̂�1 = (𝑇1, 𝑟1, ℎ1,R1, 𝑓) belongs to 𝐵1 with witness pair (𝜒1, 𝜎1). We construct
similarly �̂�2 = (𝑇2, 𝑟2, ℎ2,R2, 𝑓) ∈ 𝐵2 with witness pair (𝜒2, 𝜎2).

Moreover, we claim that �̂� ∈ join∗(�̂�1, �̂�2). To prove this claim, the less trivial part is to
show that 𝑇 respects item 5 of the ♦join operation. Let 𝑥 ∈ Leaf(𝑇, 𝑟) and 𝑤 ∈ Anc𝑇,𝑟 (𝑥) such that
𝑉 (𝑥𝑇𝑤) ∩ Im(𝑓) = ∅. Suppose towards a contradiction that 𝑉 (𝑥𝑇𝑤) ∩𝑉 (𝑇1) ≠ ∅ and 𝑉 (𝑥𝑇𝑤) ∩
𝑉 (𝑇2) ≠ ∅. Thus, there exist 𝑢1 ∈ 𝑉 (𝑥𝑇𝑤) ∩ 𝑉 (𝑇1) \ Im(𝑓) and 𝑢2 ∈ 𝑉 (𝑥𝑇𝑤) ∩ 𝑉 (𝑇2) \ Im(𝑓).
Without loss of generality, suppose that 𝑥 ∈ 𝑉 (𝑇1). We take such a node 𝑢2 that is closest to 𝑥
and 𝑢1 to be the node just before 𝑢2 in the path from 𝑥 to 𝑢2. Since 𝑉 (𝑥𝑇𝑢1) ⊆ 𝑉 (𝑇1) \ Im(𝑓)
and 𝑢2 ∈ 𝑉 (𝑇2) \ Im(𝑓), 𝜒(𝑢2) and 𝜒(𝑥𝑇𝑢1) are not connected. This contradicts the fact that
𝐺𝑣[𝜒(𝑇𝑢2)] is connected. Therefore, �̂� ∈ join∗(�̂�1, �̂�2), which implies that �̂� ∈ join∗(A1,A2). ■

51 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Join procedure. Given two annotated trees �̂�1 and �̂�2, the join procedure, denoted by join(�̂�1, �̂�2),
outputs filter𝑘 ◦ rep ◦ join∗(�̂�1, �̂�2). See Figure 8 for an example. Note that we do not apply the
crop operation since joining two cropped annotated trees gives a cropped annotated tree. Given
two setsA1 andA2 of annotated trees, join(A1,A2) outputs

⋃
�̂�1∈A1,�̂�2∈A2

join(�̂�1, �̂�2).

4

2

6

7

5 1, 3

4
2

6
7

5
1

3

7 4

2

6 5 1, 3

4
2

6
7

5
1

3

4

7

2

6

5 1, 3

4
2

6
7

5

1
3

Figure 8. An annotated tree (below) obtained from the join procedure applied to the two annotated
trees above.

LEMMA 7.13. Let 𝐺 be a graph, (T, 𝛽, r) be a nice tree decomposition of 𝐺, 𝑣 be a join node
of T with children 𝑣1 and 𝑣2, and 𝜌 : 𝛽(𝑣) → [|𝛽(𝑣) |] be a bijection. Let 𝑘 be an integer,
A := char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌), A1 := char𝑘 (𝐺𝑣1 , 𝛽(𝑣1), 𝜌), and A2 := char𝑘 (𝐺𝑣2 , 𝛽(𝑣2), 𝜌). Then
A = join𝑘 (A1,A2).

PROOF . Let B := char∗(𝐺𝑣, 𝛽(𝑣), 𝜌), B1 := char∗(𝐺𝑣1 , 𝛽(𝑣1), 𝜌), and B2 := char∗(𝐺𝑣2 , 𝛽(𝑣2), 𝜌).
According to Lemma 7.12, B = join∗(B1,B2).

Let �̂� = (𝑇, 𝑟, ℎ,R, 𝑓) ∈ B, �̂�1 = (𝑇1, 𝑟1, ℎ1,R1, 𝑓1) ∈ B1, and �̂�2 = (𝑇2, 𝑟2, ℎ2,R2, 𝑓2) ∈ B2,
such that �̂� ∈ join∗(�̂�1, �̂�2). The complete join procedure joins R1 and R2 to obtain R, without
modifying their boundary nor deleting vertices or edges, so given two sets of annotated trees
C1 and C2, rep ◦ join∗(C1, C2) = rep ◦ join∗(rep(C1), rep(C2)).

The procedure can only increase the height of annotated trees, so filter𝑘 ◦ join∗(C1, C2) =
filter𝑘 ◦ join∗(filter𝑘 (C1), filter𝑘 (C2)).

52 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Moreover, item 6 of the ♦join operation implies that, if for𝑤 ∈ 𝑉 (𝑇),𝑉 (𝑇𝑤)∩Im(𝑓) = ∅, then
there is 𝑖 ∈ {1, 2} such that𝑇𝑤 = (𝑇𝑖)𝑤. Therefore, each cropped subtree of𝑇 is exactly a cropped
subtree of 𝑇1 or a cropped subtree of 𝑇2. Thus, crop ◦ join∗(C1, C2) = join∗(crop(C1), crop(C2)).

Since these three operations are commutative, we have A = M𝑘 (B) = filter𝑘 ◦ rep ◦
join∗(M𝑘 (B1),M𝑘 (B2)) = join𝑘 (A1,A2). ■

For the join procedure, we finally prove that it can generate a bounded number of anno-
tated trees.

LEMMA 7.14. Let𝑤 and 𝑘 be two positive integers, letG1 andG2 be two compatible𝑤-boundaried
graphs, let �̂�1 ∈ char𝑘 (G1), and let �̂�2 ∈ char𝑘 (G2). Then |join𝑘 (�̂�1, �̂�2) | = 2O(𝑤·𝑘) .

PROOF . Let �̂�1 = (𝑇1, 𝑟1, ℎ1,R1, 𝑓1) and �̂�2 = (𝑇2, 𝑟2, ℎ2,R2, 𝑓2). We will first show that

| (𝑇1, 𝑟1, 𝑓1)♦join(𝑇2, 𝑟2, 𝑓2) | = 2O(𝑤·𝑘) .

Let (𝑇, 𝑟, 𝑓) ∈ (𝑇1, 𝑟1, 𝑓1)♦join(𝑇2, 𝑟2, 𝑓2). Notice that (𝑇, 𝑟) has at most𝑤 leaves and height at most
𝑘. Each leaf of (𝑇, 𝑟) is in Im(𝑓) = Im(𝑓1) = Im(𝑓2), so it corresponds to both a leaf of (𝑇1, 𝑟1) and
a leaf of (𝑇2, 𝑟2). Also note that𝑇 is obtained by choosing, for each path from a leaf 𝑣 to 𝑟, a subset
that corresponds to the path 𝑣𝑇1𝑟 (the rest is the path 𝑣𝑇2𝑟). There are at most 𝑤 such paths
from a leaf to 𝑟, and each of them has length at most 𝑘 +1. So | (𝑇1, 𝑟1, 𝑓1)♦join(𝑇2, 𝑟2, 𝑓2) | ≤ 2𝑤(𝑘+1) .
Then, to construct an annotated tree (𝑇, 𝑟, ℎ,R, 𝑓), the function ℎ and the boundaried graph R
are totally determined by 𝑇 , ℎ1, ℎ2, R1, and R2. So we obtain the desired result. ■

7.5 The algorithm

We finally present a recursive algorithm (Algorithm 1) that computes the elimination distance
to exc(F) of a graph of bounded treewidth and proves Theorem 7.1. More precisely, given a
boundary graph G, a nice tree decomposition, and an integer 𝑘, the algorithm outputs char𝑘 (G).

Note that using backtracking in Algorithm 1, we can easily construct an annotated tree of
minimum height in char∗(G) as well as its witness pair. In other words, given a connected graph
𝐺 such that edexc(F) (𝐺) ≤ 𝑘, we can construct an F -elimination tree of 𝐺 of height edexc(F) (𝐺)
using Algorithm 1.

LEMMA 7.15. Given a connected graph 𝐺, an integer 𝑘, a nice tree decomposition T = (T, 𝛽, r)
of 𝐺 of width 𝑤, a bijection 𝜌 : 𝛽(r) → [|𝛽(r) |], and 𝑣 ∈ 𝑉 (T), recEd((𝐺, 𝛽(𝑣), 𝜌),T , 𝑘, 𝑣)
outputs char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌). Moreover, recEd((𝐺, 𝛽(r), 𝜌),T , 𝑘, r) outputs char𝑘 (𝐺, 𝛽(r), 𝜌) in time
2OℓF (𝑤·𝑘+𝑤 log𝑤) · 𝑛.

PROOF . We prove that for every 𝑣 ∈ 𝑉 (T), by induction on the height of T𝑣, the algorithm
recEd of Algorithm 1 with input ((𝐺, 𝛽(𝑣), 𝜌),T , 𝑘, 𝑣) returns char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌). Indeed, if 𝑣 is a
leaf, then char𝑘 (𝐺𝑣, 𝛽(𝑣), 𝜌) = {1̂} = recEd((𝐺, 𝛽(𝑣), 𝜌),T , 𝑘, 𝑣). Otherwise, 𝑣 is either a forget

53 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Input: A connected boundaried graph G = (𝐺, 𝑋, 𝜌), a nice tree
decomposition T = (T, 𝛽, r) of 𝐺, an integer 𝑘, and a node
𝑣 ∈ 𝑉(T) such that 𝑋 = 𝛽(𝑣).

Output: The characteristic char𝑘(G) of G.
1: A ← ∅
2: 𝑤← |𝛽(𝑣) |
3: if 𝑣 is a leaf then
4: A ← {1}
5: else if 𝑣 is a forget node with child 𝑣′ and forgotten vertex 𝑥

then
6: 𝜌′← 𝜌 ⊕ [𝑥 ↦→ 𝑤 + 1]
7: A′← recEd((𝐺, 𝛽(𝑣′), 𝜌′),T , 𝑘, 𝑣′)
8: A ← forget(A′)
9: else if 𝑣 is an introduce node with child 𝑣′ and introduced vertex

𝑥 then
10: 𝜏← (𝑥 ↔ 𝜌−1(𝑤))
11: 𝜌′← 𝜌 ◦ 𝜏
12: A′← recEd((𝐺, 𝛽(𝑣′), 𝜌′|𝛽(𝑣′)),T , 𝑘, 𝑣′)
13: 𝑁← 𝑁𝐺[𝛽(𝑣)] (𝑥)
14: A ← 𝜏(intr𝑘(A′, 𝜌′(𝑁)))
15: else if 𝑣 is a join node with children 𝑣1 and 𝑣2 then
16: A1 ← recEd((𝐺, 𝛽(𝑣), 𝜌),T , 𝑘, 𝑣1)
17: A2 ← recEd((𝐺, 𝛽(𝑣), 𝜌),T , 𝑘, 𝑣2)
18: A ← join𝑘(A1,A2)
19: return A

Algorithm 1. recEd(G,T , 𝑘, 𝑣)

node, or an introduce node, or a join node, and the correctness of the algorithm is implied from
the induction hypothesis and Lemma 7.8, Lemma 7.10, and Lemma 7.13, respectively. Finally,
since 𝐺 = 𝐺r, we have recEd((𝐺, 𝛽(r), 𝜌),T , 𝑘, r) = char𝑘 (𝐺, 𝛽(r), 𝜌).

We now analyze the running time. A nice tree decomposition of width 𝑤 constructed by
Proposition 4.7 has O(𝑤 · 𝑛) bags, hence the linear dependence follows.

Let us first analyze the join procedure. During this procedure, we recursively obtain two
characteristics of size 2OℓF (𝑤·𝑘+𝑤 log𝑤) according to Lemma 7.6. Each pair of annotated trees
can be joined in 2O(𝑤·𝑘) ways, according to Lemma 7.14. Let R1 and R2 be the boundaried

54 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

graphs of such a pair of annotated trees. There is an integer 𝑧 ≤ 𝑤 such that they belong to
R𝑧ℓF . By Proposition 4.8, R1 and R2 have size OℓF (𝑧). So R := R1⊕R2 has size OℓF (𝑧) as well. The
representation operation applied to R during the join operation for those two annotated trees
finds the representative of 𝑙 ≤ 𝑧 boundaried graphs of respective boundaries of sizes 𝑧1, ..., 𝑧𝑙

with
∑𝑙
𝑖=1 𝑧𝑖 ≤ 𝑧 and with OℓF (𝑧𝑖) vertices in the underlying graph due to Proposition 4.8. So by

Lemma 4.10, the representation operation in the join procedure takes time
∑𝑙
𝑖=1 2OℓF (𝑤𝑖 log𝑤𝑖) =

2OℓF (𝑤 log𝑤) . Checking that this is an annotated tree, that its height is at most 𝑑, and that we did
not already create it also takes time 2OℓF (𝑤·𝑘+𝑤 log𝑤) . Hence, the total running time of the join
procedure is 2OℓF (𝑤·𝑘+𝑤 log𝑤) .

It is easy to see that the forget procedure applied to an annotated tree creates at most
one annotated tree. Moreover, the introduce procedure applied to an annotated tree creates
O(𝑤 · 𝑘) annotated trees according to Lemma 7.11. Similarly, the representation, crop, and filter
operations in these procedures take time 2OℓF (𝑤·𝑘+𝑤 log𝑤) . So the lemma follows. ■

We can finally prove Theorem 7.1.

PROOF OF THEOREM 7.1 . If F = {𝐾1}, the algorithm of Proposition 7.4 outputs the desired
result in time 2O(tw·𝑘) · 𝑛. So let us assume that F is non-trivial.

Suppose first that 𝐺 is connected. By Proposition 4.3 and Proposition 4.7, we can obtain a
nice tree decomposition T = (T, 𝛽, r) of width 2tw + 1 in time 2O(tw) · 𝑛. Let 𝜌 : 𝛽(r) → [|𝛽(r) |]
be an arbitrary ordering on the vertices of 𝛽(r). We apply recEd with input ((𝐺, 𝛽(r), 𝜌),T , 𝑘, r).
By Lemma 7.15, this gives the desired result in time 2OℓF (tw(𝑘+log tw)) · 𝑛.

If 𝐺 is not connected, we apply the same procedure on each connected component. The
running time is the same as in the above case. ■

7.6 Exchangeability of boundaried graphs with the same characteristic

We give here a simple technical lemma on characteristics that will be used in Section 10. We
show that boundaried graphs with the same characteristic can be exchanged, i.e., give graphs
of the same elimination distance to F when “glued” to the same boundaried graph.

Given a positive integer 𝑘 and a (possibly disconnected) boundaried graph G, we define
char𝑘 (G) as (char𝑘 (C))C∈cc(G) . Note that we still have |char𝑘 (G) | = 2OℓF (𝑤·𝑘+𝑤 log𝑤) . Therefore, we
can extend 𝑓14 so that |char𝑘 (G) | ≤ 𝑓14(𝑤, 𝑘) with 𝑓14(𝑤, 𝑘) = 2OℓF (𝑤·𝑘+𝑤 log𝑤) for any boundaried
graph G.

LEMMA 7.16. Let G, G′, and G′′ be three compatible boundaried graphs and let 𝑘 be an integer
such that edexc(F) (G⊕G′′) ≤ 𝑘 and char𝑘 (G) = char𝑘 (G′). Then edexc(F) (G⊕G′′) = edexc(F) (G′⊕
G′′).

55 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

PROOF . We suppose without loss of generality that G ⊕ G′′, and therefore G′ ⊕ G′′ as well, is
connected. Indeed, if this is not the case, we may apply the following proof to each one of the
connected components separately.

Let cc(G) = {C1, ...,C𝑙} and cc(G′) = {C′1, ...,C′𝑙}, such that char𝑘 (C𝑖) = char𝑘 (C′𝑖) for 𝑖 ∈ [𝑙].
Let 𝑖 ∈ [𝑙]. We write C𝑖 = (𝐶𝑖 , 𝐵𝑖 , 𝜌𝑖). Let T𝑖 = (T𝑖 , 𝛽𝑖 , r𝑖) be a nice tree decomposition of C𝑖 , i.e.,
such that 𝛽𝑖 (r𝑖) = 𝐵𝑖 . Since the 𝐵𝑖 ’s are pairwise disjoint, there is a rooted tree decomposition
T ∗ = (T∗, 𝛽∗, r) of 𝐺′′, where 𝐺′′ is the underlying graph of G′′, such that, for 𝑖 ∈ [𝑙], there is
𝑣𝑖 ∈ Leaf(T∗, r) with 𝛽∗(𝑣𝑖) = 𝐵𝑖 . Let T = (T, 𝛽, r) be the tree decomposition obtained from T ∗

and the T𝑖 ’s by identifying 𝑣𝑖 with r𝑖 for 𝑖 ∈ [𝑙] and adding nodes in T ∗ using Proposition 4.7, so
that T is a nice tree decomposition of G ⊕ G′′.

Let T ′ = (T′, 𝛽′, r) be a nice tree decomposition of the graph G′ ⊕ G′′ obtained from T by
replacing T𝑖 by a nice tree decomposition T ′𝑖 = (T′𝑖 , 𝛽

′
𝑖 , r
′
𝑖) of C′𝑖 for 𝑖 ∈ [𝑙]. Observe that, for every

𝑖 ∈ [𝑙], according to Lemma 7.15, recEd((G⊕G′′, 𝛽(𝑣𝑖), 𝜌𝑣𝑖),T , 𝑘, 𝑣𝑖) = char𝑘 (G⊕G′′, 𝛽(𝑣𝑖), 𝜌) =
char𝑘 (C𝑖). Similarly, recEd((G′⊕G′′, 𝛽′(𝑣𝑖), 𝜌𝑣𝑖),T ′, 𝑘, 𝑣𝑖) = char𝑘 (C′𝑖). Thus, Algorithm 1 applied
with input ((G ⊕ G′′, 𝛽(𝑣𝑖), 𝜌𝑣𝑖),T , 𝑘, 𝑣𝑖) and ((G′ ⊕ G′′, 𝛽′(𝑣𝑖), 𝜌𝑣𝑖),T ′, 𝑘, 𝑣𝑖) outputs the same
result.

We next set 𝑈 := 𝑉 (T \ ⋃𝑖∈[𝑙] 𝑉 (T𝑖)). Note that 𝑈 = 𝑉 (T′ \ ⋃𝑖∈[𝑙] 𝑉 (T′𝑖)). Therefore, in
each node 𝑢 of 𝑈 , Algorithm 1 applied with input ((G ⊕ G′′, 𝛽(𝑢), 𝜌𝑢),T , 𝑘, 𝑢) and ((G′ ⊕
G′′, 𝛽′(𝑢), 𝜌𝑢),T ′, 𝑘, 𝑢) outputs the same result. Thus, Algorithm 1 applied with input ((G ⊕
G′′, 𝛽(r), 𝜌r),T , 𝑘, r) and ((G′ ⊕ G′′, 𝛽′(r), 𝜌r),T ′, 𝑘, r) outputs the same result. So char𝑘 (G ⊕
G′′, 𝛽(r), 𝜌r) = char𝑘 (G′ ⊕ G′′, 𝛽′(r), 𝜌r). Therefore, according to Lemma 7.5, edexc(F) (G ⊕ G′′) =
edexc(F) (G′ ⊕ G′′). ■

8. Elimination distance to aminor-closed graph class

We finally present our main result for F -M-Elimination Distance. The following theorem is a
restatement of Theorem 1.2.

THEOREM 8.1. For every finite collection of graphs F , there exists an algorithm that, given a

graph 𝐺 and an integer 𝑘, decides whether edexc(F) (𝐺) ≤ 𝑘 in time 222𝑘
OℓF (1)

· 𝑛2. In the particular

case when F contains an apex-graph, this algorithm runs in time 22
OℓF (𝑘

2 log 𝑘)
· 𝑛2.

This algorithm is very similar to the one in Section 6. We use the same propositions
and lemmata, except from the ones that were tailored for F -M-Deletion and for which we
need to find an analogous result for F -M-Elimination Distance. In Section 7, we described
an algorithm to find the elimination distance when the treewidth is bounded, which is the
analogue of Proposition 3.2 for F -M-Elimination Distance. In Subsection 8.1, we present an
analogue of Proposition 3.1, which either reports an upper bound on the treewidth of the input
graph, or finds a wall, or reports that we deal with a no-instance.

56 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

In contrast to the algorithm for F -M-Deletion, we cannot use branching the same way
because we do not have a bound in 𝑘 on the number of vertices in a 𝑘-elimination set, like
we had for a 𝑘-apex set. Thus, while Step 3 of Section 6 could be applied at most 𝑎𝑘F times,
such a Step 3 would now be applied at most 𝑎𝑛F times, which is not efficient. Since we do not
use branching anymore to reduce the size of the apex set of a flatness pair, when we apply
Proposition 3.5, the size 𝑎 of the apex set in the input depends on 𝑘. Hence, we need to find
in the beginning a wall whose size dependence in 𝑘 is triple-exponential. This explains the
triple-exponential in 𝑘 that appears in the running time of Theorem 8.1. The above algorithm is
described in Subsection 8.2 and in Subsection 8.3 we present the proof of its correctness.

8.1 Quickly finding a wall

We first prove Proposition 3.1 in the case of F -M-Elimination Distance. The proof is very
similar to the one given in [70] for Proposition 3.1 in the case of F -M-Deletion and is achieved
using the following result from Perkovic and Reed[59]. The main difference with respect to the
proof of Proposition 3.1 given in [70] is that we need to use two new ingredients tailored for
F -M-Elimination Distance, namely Theorem 7.1 and Lemma 4.6.

PROPOS IT ION 8.2 ([59]). There exists an algorithm with the following specifications:

Input: A graph 𝐺 and 𝑡 ∈ N such that |𝑉 (𝐺) | ≥ 12𝑡3.
Output: A graph 𝐺∗ such that |𝑉 (𝐺∗) | ≤ (1 − 1

16𝑡2) · |𝑉 (𝐺) | and,
either 𝐺∗ is a subgraph of 𝐺 such that tw(𝐺) = tw(𝐺∗), or
𝐺∗ is obtained from 𝐺 after contracting the edges of a matching in 𝐺.

Moreover, the algorithm runs in time 2O(𝑡) · 𝑛.

PROOF OF PROPOS IT ION 3.1 IN THE CASE OF F -M -EL IMINATION DISTANCE .

Let 𝑐 := 𝑓12(𝑠F) · 𝑟 + 𝑘.

Suppose that |𝑉 (𝐺) | < 12𝑐3. Run the algorithm of [8] that, in time O(|𝑉 (𝐺) |𝑐+2) =

2OℓF ((𝑟+𝑘)·log(𝑟+𝑘)) , checks whether tw(𝐺) ≤ 𝑐. If this is the case, report the same and stop.
If not, we aim to find an 𝑟-wall of 𝐺 or conclude that we are dealing with a no-instance. First
consider an arbitrary ordering (𝑣1, . . . , 𝑣|𝑉 (𝐺) |) of the vertices of 𝐺. For each 𝑖 ∈ [|𝑉 (𝐺) |], set 𝐺𝑖
to be the graph induced by the vertices 𝑣1, . . . , 𝑣𝑖 . Iteratively run the algorithm of Proposition 4.3
on 𝐺𝑖 and 𝑐 for increasing values of 𝑖. This algorithm runs in time 2O(𝑐) · |𝑉 (𝐺) | = 2OℓF (𝑟+𝑘) .
Let 𝑗 ∈ [|𝑉 (𝐺) |] be the smallest integer such that the above algorithm outputs a report that
tw(𝐺 𝑗) > 𝑐 (it exists since tw(𝐺) > 𝑐) and notice that there exists a tree decomposition (T 𝑗 , 𝛽 𝑗)
of 𝐺 𝑗 of width at most 2𝑐 + 2, obtained by the one of 𝐺 𝑗−1 by adding the vertex 𝑣 𝑗 to all the bags.
Thus, we can call the algorithm of Theorem 7.1 with input (𝐺 𝑗 , 2𝑐 + 2, 𝑘), which runs in time
2OℓF (𝑐·(𝑘+log 𝑐)) · |𝑉 (𝐺 𝑗) | = 2OℓF ((𝑟+𝑘)·(𝑘+log(𝑟+𝑘))) , in order to find, if it exists, a 𝑘-elimination set 𝑆 𝑗
of 𝐺 𝑗 for exc(F).

57 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

• If such a set 𝑆 𝑗 does not exist, then safely report that (𝐺, 𝑘) is a no-instance.
• If such a set 𝑆 𝑗 exists, then call the algorithm of Proposition 4.5 for 𝐺 𝑗 \ 𝑆 𝑗 , (and the

decomposition of 𝐺 𝑗 \ 𝑆 𝑗 obtained from (T 𝑗 , 𝛽 𝑗) by removing the vertices of 𝑆 𝑗 from all
the bags) in order to check whether it contains an elementary 𝑟-wall𝑊 as a minor. This
algorithm runs in time 2O(𝑐·log 𝑐) · 𝑟O(𝑐) · 2O(𝑟2) · |𝑉 (𝐺 𝑗 \ 𝑆 𝑗) | = 2OℓF ((𝑟+𝑘)·log(𝑟+𝑘)) · 𝑟OℓF (𝑟+𝑘) ·
2O(𝑟2) = 2OℓF (𝑟

2+(𝑟+𝑘)·log(𝑟+𝑘)) , since |𝐸(𝑊) | = O(𝑟2). Since all connected components of
𝐺 𝑗 \ 𝑆 𝑗 are in exc(F), 𝐺 𝑗 \ 𝑆 𝑗 does not contain 𝐾𝑠F as a minor. By Lemma 4.6, tw(𝐺 𝑗 \ 𝑆 𝑗) ≥
𝑐 − 𝑘 = 𝑓12(𝑠F) · 𝑟. So because of Proposition 5.1, the algorithm of Proposition 4.5 will
output an elementary 𝑟-wall𝑊 of 𝐺 𝑗 \ 𝑆 𝑗 . We also return𝑊 as a wall of 𝐺.

Therefore, in the case where |𝑉 (𝐺) | < 12𝑐3, we obtain one of the three possible outputs in time
2OℓF (𝑟

2+𝑘2) .

If |𝑉 (𝐺) | ≥ 12𝑐3, then call the algorithm of Proposition 8.2 with input (𝐺, 𝑐), which outputs
a graph 𝐺∗ such that |𝑉 (𝐺∗) | ≤ (1 − 1

16𝑐2) · |𝑉 (𝐺) | and
either 𝐺∗ is a subgraph of 𝐺 such that tw(𝐺) = tw(𝐺∗), or
𝐺∗ is obtained from 𝐺 after contracting the edges of a matching in 𝐺.

In both cases, recursively call the algorithm on 𝐺∗ and distinguish the following two cases.

Case 1: 𝐺∗ is a subgraph of 𝐺 such that tw(𝐺) = tw(𝐺∗).

(a) If the recursive call on 𝐺∗ reports that tw(𝐺∗) ≤ 𝑐, then return that tw(𝐺) ≤ 𝑐.
(b) If the recursive call on 𝐺∗ outputs an 𝑟-wall𝑊 of 𝐺∗, then return𝑊 as a wall of 𝐺.
(c) If (𝐺∗, 𝑘) is a no-instance, then report that (𝐺, 𝑘) is also a no-instance.

Case 2: 𝐺∗ is obtained from 𝐺 after contacting the edges of a matching in 𝐺.

(a) If the recursive call on 𝐺∗ reports that tw(𝐺∗) ≤ 𝑐, then do the following. First notice that
the fact that tw(𝐺∗) ≤ 𝑐 implies that tw(𝐺) ≤ 2𝑐, since we can obtain a tree decomposition
(T, 𝛽) of 𝐺 from a tree decomposition (T∗, 𝛽∗) of 𝐺∗, by replacing, in every 𝑡 ∈ 𝑉 (T∗), every
occurrence of a vertex of 𝐺∗ that is a result of an edge contraction by its endpoints in 𝐺.
Thus, we can call the algorithm of Theorem 7.1 with input (𝐺, 2𝑐, 𝑘), which runs in time
2OℓF (𝑐(𝑘+log 𝑐)) · 𝑛, in order to find, if it exists, a 𝑘-elimination set 𝑆 of 𝐺 for exc(F). We
distinguish again two cases.

• If such a set 𝑆 does not exist, then the algorithm reports that (𝐺, 𝑘) is a no-instance.
• If such a set 𝑆 exists, then apply the algorithm of Proposition 4.3 with input (𝐺 \𝑆, 2𝑐),

which runs in time 2O(𝑐) · 𝑛, and obtain a tree decomposition of 𝐺 \ 𝑆 of width at most
4𝑐 + 1. Using this decomposition, call the algorithm of Proposition 4.5 for 𝐺 \ 𝑆 in
order to check whether it contains an elementary 𝑟-wall𝑊 as a minor. This algorithm
runs in time 2O(𝑐·log 𝑐) · 𝑟O(𝑐) · 2O(𝑟2) · 𝑛 = 2OℓF ((𝑟+𝑘)·log(𝑟+𝑘)) · 𝑟OℓF (𝑟+𝑘) · 2O(𝑟2) · 𝑛 =

2OℓF (𝑟
2+(𝑟+𝑘)·log(𝑟+𝑘)) · 𝑛, since |𝐸(𝐺 \ 𝑆) | = O(𝑛) and |𝐸(𝑊) | = O(𝑟2). If this algorithm

58 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

outputs an elementary 𝑟-wall𝑊 of 𝐺 \ 𝑆, then output𝑊 . Otherwise, safely report,
because of Proposition 5.1 and Lemma 4.6, that tw(𝐺) ≤ 𝑓12(𝑠F) · 𝑟 + 𝑘 = 𝑐.

(b) If the recursive call on 𝐺∗ outputs an 𝑟-wall𝑊∗ of 𝐺∗, then by uncontracting the edges of
𝑀 in𝑊∗, we can return an 𝑟-wall of 𝐺.

(c) If (𝐺∗, 𝑘) is a no-instance, then report that (𝐺, 𝑘) is also a no-instance.

It is easy to see that the running time of the above algorithm is given by the function

𝑇 (𝑛, 𝑘, 𝑟) ≤ 𝑇

(
(1 − 1

16𝑐2) · 𝑛, 𝑘, 𝑟
)
+ 2OℓF (𝑟

2+𝑘2) · 𝑛,

which implies that 𝑇 (𝑛, 𝑘, 𝑟) = 2OℓF (𝑟
2+𝑘2) · 𝑛, as claimed. ■

8.2 Description of the algorithm for F-M-Elimination Distance

We define the following constants.

𝑎 = 𝑓3(𝑠F + 𝑘), 𝑞 = 𝑓10(𝑎F , 𝑠F , 𝑘(𝑘 + 1)/2),
𝑝 = 𝑓11(𝑎F , 𝑠F , 𝑘(𝑘 + 1)/2), 𝑙 = (𝑞 − 1) · 𝑎,
𝑑 = 𝑓8(𝑎F − 1, ℓF), 𝑟4 = 𝑓7(𝑎F − 1, ℓF , 3, 𝑘(𝑘 + 1)/2),
𝑟3 = 𝑓5(𝑟4, 𝑎F − 1, 𝑎, 𝑑), 𝑟2 = odd(max{ 𝑓13(𝑙 + 1, 𝑟3, 𝑝), 𝑓9(𝑎F , 𝑠F , 𝑘(𝑘 + 1)/2)}),
𝑟1 = odd(𝑓4(𝑠F + 𝑘) · 𝑟2),

Note that 𝑟4 = OℓF (𝑘2), 𝑟3 = OℓF (𝑘2·𝑐), 𝑟2 = OℓF (𝑘2·𝑐+15), and 𝑟1 = 2OℓF (𝑘
2 log 𝑘+𝑐 log 𝑘) , where

𝑐 = 𝑓6(𝑎F − 1, 𝑎, 𝑑) = 2OℓF (𝑘
24· (𝑎F−1)) . Recall from Subsection 2.2 that we assume that 𝐺 has

O𝑠F (𝑘
√︁

log 𝑘 · 𝑛) edges.

Run the algorithm Find-Wall-Ed from Proposition 3.1 with input (𝐺, 𝑟1, 𝑘) and, in time

2OℓF (𝑟
2
1+𝑘

2) · 𝑛 = 22
OℓF (𝑘

2 log 𝑘+𝑐 log 𝑘)
· 𝑛,

either report a no-instance, or
conclude that tw(𝐺) ≤ 𝑓1(𝑠F) · 𝑟1 + 𝑘 and solve F -M-Elimination Distance in time

2OℓF ((𝑟1+𝑘)𝑘+(𝑟1+𝑘) log(𝑟1+𝑘)) · 𝑛 = 22
OℓF (𝑘

2 log 𝑘+𝑐 log 𝑘)
· 𝑛 using the algorithm of Theorem 7.1, or

obtain an 𝑟1-wall𝑊1 of 𝐺.

If the output of Proposition 3.1 is a wall𝑊1, then run the algorithm Clique-or-twFlat of

Proposition 3.4 with input (𝐺, 𝑟2, 𝑠F +𝑘). This takes time 22
OℓF (𝑘

2 log 𝑘) ·𝑟3
2 log 𝑟2 ·𝑛 = 22

OℓF (𝑘
2 log 𝑘+𝑐 log 𝑘)

·𝑛.
If the result is a set 𝐴 of size at most 𝑎 and a regular flatness pair (𝑊2,ℜ2) of 𝐺 \ 𝐴 of height 𝑟2

whose ℜ2-compass has treewidth at most 𝑟1, then proceed, otherwise output a no-answer.

Compute a 𝑊2-canonical partition Q̃ of 𝐺 \ 𝐴. Compute the set 𝐵 of vertices of 𝐴 that
are adjacent to at least 𝑞 𝑝-internal bags of Q̃. As in Proposition 5.6, compute a collection
W = {𝑊1, ...,𝑊 𝑙+1} of 𝑟3-subwalls of𝑊2 such that for every 𝑖 ∈ [𝑙 + 1], ⋃ influenceℜ2 (𝑊 𝑖) is a
subgraph of

⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and for every 𝑖, 𝑗 ∈ [𝑙 + 1], with 𝑖 ≠ 𝑗, there is no

59 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

internal bag of Q̃ that contains vertices of both𝑉 (⋃ influenceℜ2 (𝑊 𝑖)) and𝑉 (⋃ influenceℜ2 (𝑊 𝑗)).
By the choice of 𝑙, there is an 𝑖 ∈ [𝑙 + 1] such that no vertex of

⋃
influenceℜ2 (𝑊 𝑖) is adjacent to

a vertex of 𝐴 \ 𝐵.

Run the algorithm from Proposition 5.4 with input (𝐺 \ 𝐵,𝑊2,ℜ2,𝑊 𝑖) to obtain a𝑊 𝑖-tilt
(𝑊3,ℜ3) of (𝑊2,ℜ2) in time O𝑠F (𝑘

√︁
log 𝑘 · 𝑛).

As a next step, we apply the algorithm Homogeneous of Proposition 3.5 with input (𝑟4, 𝑎F −
1, 𝑎, 𝑑, 𝑟1, 𝐺, 𝐵,𝑊3,ℜ3), which, in time 2O(𝑐·𝑟4 log 𝑟4+𝑟1 log 𝑟1) · (𝑛 +𝑚) = 22

OℓF (𝑘
2 log 𝑘+𝑐 log 𝑘)

· 𝑛, outputs a
flatness pair (𝑊4,ℜ4) of 𝐺 \ 𝐵 of height 𝑟4 that is 𝑑-homogeneous with respect to

(𝐵
<𝑎F

)
and is a

𝑊∗-tilt of (𝑊3,ℜ3) for some subwall𝑊∗ of𝑊3.

Finally, apply the algorithm Find-Irrelevant-Vertex of Proposition 3.6 with input (𝑘(𝑘+
1)/2, 𝑎F − 1, 𝐺, 𝐵,𝑊4,ℜ4), which outputs, in time O𝑠F (𝑘

√︁
log 𝑘 · 𝑛), an irrelevant vertex 𝑣 such

that (𝐺, 𝑘) and (𝐺 \ 𝑣, 𝑘) are equivalent instances of F -M-Elimination Distance. Then the
algorithm runs recursively on the equivalent instance (𝐺 \ 𝑣, 𝑘).

Since each run takes time 22
OℓF (𝑘

2 log 𝑘+𝑐 log 𝑘)
· 𝑛 and there are at most 𝑛 runs, the algorithm

indeed runs in time 22
OℓF (𝑘

2 log 𝑘+𝑐 log 𝑘)
· 𝑛2.

Note that 𝑐 = 2OℓF (𝑘
24· (𝑎F−1)) , so if F contains an apex-graph, i.e., if 𝑎F = 1, then 𝑐 = OℓF (1).

Thus, the running time is 222
OℓF (𝑘

24· (𝑎F−1))

· 𝑛2 in the general case and 22
OℓF (𝑘

2 log 𝑘)
· 𝑛2 in the case

where F contains an apex-graph.

8.3 Correctness of the algorithm

Let (𝐺, 𝑘) be a yes-instance and let 𝑆 be a 𝑘-elimination set of 𝐺 for exc(F). By running
Proposition 3.1 with input (𝐺, 𝑟1, 𝑘), the algorithm should either get a report that tw(𝐺) ≤
𝑓1(𝑠F) · 𝑟1 + 𝑘 or find an 𝑟1-wall. The correctness of the former is obvious, so we will focus on

the latter.

Let𝑊1 be an 𝑟1-wall of 𝐺. According to Lemma 4.2, 𝐾𝑠F+𝑘 is not a minor of 𝐺. Moreover,
since𝑊1 is a wall of𝐺 of height 𝑟1, tw(𝐺) ≥ tw(𝑊1) ≥ 𝑟1 ≥ 𝑓4(𝑠F +𝑘) · 𝑟2. Hence, if the algorithm
runs Clique-or-twFlat of Proposition 3.4 with input (𝐺, 𝑟2, 𝑠F + 𝑘), it should obtain a set 𝐴 of
size at most 𝑎 and a regular flatness pair (𝑊2,ℜ2) of 𝐺 \ 𝐴 of height 𝑟2 whose ℜ2-compass has
treewidth at most 𝑟1.

As described in the algorithm, due to Proposition 5.6 and the fact that 𝑟2 ≥ 𝑓13(𝑙 + 1, 𝑟3, 𝑝),
there is an 𝑟3-wall𝑊 𝑖 that is a subwall of𝑊2 such that no vertex of

⋃
influenceℜ2 (𝑊 𝑖) is adjacent

to a vertex of 𝐴 \ 𝐵, where 𝐵 is the set of vertices of 𝐴 adjacent to at least 𝑞 𝑝-internal bags of a
𝑊2-canonical partition Q̃ of 𝐺 \ 𝐴.

When the algorithm applies Proposition 5.4 with input (𝐺\𝐵,𝑊2,ℜ2,𝑊 𝑖), it obtains a𝑊 𝑖-tilt
(𝑊3,ℜ3) of (𝑊2,ℜ2). Due to Observation 5.2 and Observation 5.3, (𝑊3,ℜ3) is a regular flatness

60 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

pair of 𝐺 \ 𝐵 whose ℜ5-compass has treewidth at most 𝑟1. Thus, since 𝑟3 = 𝑓5(𝑟4, 𝑎F − 1, 𝑎, 𝑑), the
algorithm can apply Homogeneous of Proposition 3.5 with input (𝑟4, 𝑎F − 1, 𝑎, 𝑑, 𝑟1, 𝐺, 𝐵,𝑊3,ℜ3)
to obtain a flatness pair (𝑊4,ℜ4) of 𝐺 \ 𝐵 of height 𝑟4 that is 𝑑-homogeneous with respect to(𝐵
<𝑎F

)
and is a 𝑊∗-tilt of (𝑊3,ℜ3) for some subwall 𝑊∗ of 𝑊3. According to Observation 5.3,

(𝑊4,ℜ4) is regular.

Let 𝑆′ be a 𝑘-elimination set of 𝐺 for exc(F). Lemma 5.9 implies that there is a set 𝑋𝑆′ ⊇ 𝑆′

such that 𝐺 \ 𝑋𝑆′ ∈ exc(F) and bid𝐺\𝐴,𝑊2 (𝑋𝑆′) ≤ 𝑘(𝑘 + 1)/2.

Since 𝑟2 ≥ 𝑓9(𝑎F , 𝑠F , 𝑘(𝑘 + 1)/2), every subset of 𝐵 of size 𝑎F intersects 𝑋𝑆′ according to
Proposition 3.7. Hence, |𝐵 \ 𝑋𝑆′ | ≤ 𝑎F − 1.

Moreover, note that (𝑊3,ℜ3) is a𝑊 𝑖-tilt of (𝑊2,ℜ2), (𝑊4,ℜ4) is a𝑊∗-tilt of (𝑊3,ℜ3), and
(𝑊4,ℜ4) is a flatness pair of 𝐺 \ 𝐵 with 𝐵 ⊆ 𝐴. Thus, given a𝑊4-canonical partition 𝑄1 of 𝐺 \ 𝐵,
there is a𝑊2-canonical partition 𝑄2 of 𝐺 \ 𝐴 such that each internal bag of 𝑄1 is an internal bag
of 𝑄2. Thus, bid𝐺\𝐵,𝑊4 (𝑋𝑆′) ≤ bid𝐺\𝐴,𝑊2 (𝑋𝑆′).

Hence, the algorithm can apply Find-Irrelevant-Vertex of Proposition 3.6 with input
(𝑘(𝑘 + 1)/2, 𝑎F − 1, 𝐺, 𝐵,𝑊4,ℜ4) and obtain a vertex 𝑣 such that, for any 𝑘-elimination set 𝑆′ of
𝐺 for exc(F), 𝐺 \𝑋𝑆′ ∈ exc(F) if and only if 𝐺 \ (𝑋𝑆′ \ 𝑣) ∈ exc(F). Thus, there is a 𝑘-elimination
set of 𝐺 for exc(F) if and only if there is a 𝑘-elimination set of 𝐺 \ 𝑣 for exc(F). It follows that
(𝐺, 𝑘) and (𝐺 \ 𝑣, 𝑘) are equivalent instances of F -M-Elimination Distance.

Suppose now that (𝐺, 𝑘) is a no-instance. Note that as long as Proposition 3.4 outputs a
flatness pair (𝑊2,ℜ2), what follows in the proof of correctness works even if (𝐺, 𝑘) is a no-
instance. Therefore, we will find an irrelevant vertex. Otherwise, we would have declared a
no-instance beforehand. Thus, Theorem 8.1 follows.

9. Elimination distancewhen excluding an apex-graph

In the case where F contains an apex-graph, we obtain an alternative algorithm whose com-
plexity is single-exponential in 𝑘 and cubic in 𝑛. The following theorem is a restatement of
Theorem 1.3.

THEOREM 9.1. For every finite collection of graphs F that contains an apex-graph, there exists
an algorithm that, given a graph 𝐺 and an integer 𝑘, decides whether edexc(F) (𝐺) ≤ 𝑘 in time
2𝑘
OℓF (1) · 𝑛3.

Contrary to the previous section, since 𝑎F = 1, any vertex fulfilling the criteria of Proposi-
tion 3.7 belongs to every 𝑘-elimination set 𝑆 of the input graph for exc(F). In the case where F
contains an apex-graph in [70], a Step 3 similar to the one of Section 6 can be applied, where
a vertex belonging to every 𝑘-apex set can be found. Hence, after running Step 3 𝑘 times, a
𝑘-apex set is found and the algorithm stops. However, a 𝑘-elimination set may have size Ω(𝑛),

61 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

so we may run Step 3 Ω(𝑛) times. Since our Step 3 below runs in quadratic time, this gives the
cubic dependence of this algorithm. Fortunately, since we apply Step 3, just like in Section 6
and contrary to Section 8, we manage to find a flatness pair along with an apex set whose size
does not depend on 𝑘. Hence, when applying Proposition 3.5, we do not get a triple-exponential
dependence on 𝑘 anymore for the size of the wall we need to find originally.

In order to remember the vertices that are found to belong to every 𝑘-elimination set,
since they do not decrease 𝑘 like in Section 6, we need to distinguish them in the input. Hence,
we actually give here an algorithm to solve a more general problem with annotations described
in Subsection 9.1.

9.1 Generalization to annotated elimination distance

Contrary to the previous section, since 𝑎F = 1, when applying Proposition 3.7, we find a vertex
that belongs to every 𝑘-elimination set 𝑆. Such vertices are taken into account by considering
the following generalization of F -M-Elimination Distance.

Annotated F -M-Elimination Distance
Input: A graph 𝐺, a set 𝑆0 ⊆ 𝑉 (𝐺), and a non-negative integer
𝑘.
Objective: Find, if it exists, a 𝑘-elimination set 𝑆 of 𝐺 for the
class exc(F) such that 𝑆0 ⊆ 𝑆.

𝑆0 is a set of annotated vertices that corresponds to the vertices identified as vertices of
every 𝑘-elimination set 𝑆 while running the algorithm. Clearly, F -M-Elimination Distance is
the particular case of Annotated F -M-Elimination Distance when 𝑆0 is empty.

In the following lemma, we generalize Theorem 7.1 to its “annotated” version. More
precisely, we present a simple trick to reduce the above problem to its “unannotated” version
while not changing the treewidth of the input graph so much.

LEMMA 9.2. Let F be a finite collection of graphs. There is an algorithm that, given a graph
𝐺, a set 𝑆0 ⊆ 𝑉 (𝐺), and two integers 𝑘 and tw such that the treewidth of 𝐺 is bounded by tw,
decides whether (𝐺, 𝑆0, 𝑘) is a yes-instance of Annotated F -M-Elimination Distance in time
2OℓF (tw·𝑘+tw log tw)) · 𝑛.

PROOF . Given a minor-closed graph class G, let C(G) := {𝐺 | ∀𝐶 ∈ cc(𝐺), 𝐶 ∈ G}. Bulian
and Dawar [16] showed that if 𝐻 ∈ obs(G) has 𝑙 connected components, then each graph �̄�

obtained from 𝐻 by adding 𝑙 − 1 edges to obtain a connected graph belongs to obs(C(G)). Thus,
let 𝐻F ∈ obs(Cexc(F))) obtained in such a way. As said above, 𝐻F is connected.

Let 𝐺 be a graph of treewidth at most tw and 𝑆0 be a subset of 𝑉 (𝐺). Let 𝐺′ be a graph
obtained from 𝐺 by gluing a graph 𝐻𝑣 isomorphic to 𝐻F to each vertex 𝑣 of 𝑆0, where 𝑣 is
identified with an arbitrarily chosen vertex of 𝐻𝑣.

62 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

Let us show that (𝐺, 𝑆0, 𝑘) is a yes-instance of Annotated F -M-Elimination Distance if
and only if (𝐺′, 𝑘) is a yes-instance of obs(Cexc(F)))-M-Elimination distance. If 𝑆0 = ∅, the
proof is trivial, so we suppose 𝑆0 ≠ ∅.

Let (𝐹′, 𝜒′, 𝑅′) be a Cexc(F))-elimination forest of 𝐺′ of height at most 𝑘 with associated
𝑘-elimination set 𝑆′. For each 𝑣 ∈ 𝑆0, the fact that 𝐻𝑣 ∉ Cexc(F)) implies that 𝑉 (𝐻𝑣) ∩ 𝑆′ ≠ ∅.
Let 𝑦 ∈ 𝑉 (𝐹′) be the least common ancestor of 𝜒′−1(𝐻𝑣) in 𝐹′. Since 𝐻𝑣 is connected, according
to Lemma 4.1, 𝑦 exists and belongs to 𝜒′−1(𝐻𝑣). Moreover, since 𝑉 (𝐻𝑣) ∩ 𝑆′ ≠ ∅, 𝑦 ∈ Int(𝐹′, 𝑅′).

Let (𝐹′′, 𝜒′′, 𝑅′′) be the F -elimination forest of 𝐺 obtained from (𝐹′, 𝜒′, 𝑅′) as follows. For
every 𝑣 ∈ 𝑆0 and every 𝑡 ∈ 𝜒′−1(𝐻𝑣\𝑣) if 𝑡 ∈ Int(𝐹′, 𝑅′), remove 𝑡 from 𝐹′′ and add edges between
the parent and the children of 𝑡 and if 𝑡 ∈ Leaf(𝐹′, 𝑅′), remove 𝐻𝑣 \ 𝑣 from 𝜒′′(𝑡). If 𝐺[𝜒′′(𝑡)] is
not connected, then we update 𝐹′′ by replacing 𝑡 by |cc(𝐺[𝜒′′(𝑡)]) | nodes, each one associated
with a connected component of 𝐺[𝜒′′(𝑡)].

Thus, we have an F -elimination forest of 𝐺 associated with a 𝑘-elimination set 𝑆 with
𝑆0 ⊆ 𝑆 and with height at most 𝑘, implying that (𝐺, 𝑆0, 𝑘) is a yes-instance of Annotated
F -M-Elimination Distance.

Conversely, given an F -elimination forest (𝐹, 𝜒, 𝑅) of 𝐺 of height at most 𝑘, and 𝑆0 ⊆ 𝑆 :=
𝜒(Int(𝐹, 𝑅)), we can obtain a obs(Cexc(F)))-elimination forest (𝐹′, 𝜒′, 𝑅′) of 𝐺′ of height at most
𝑘 by adding to each node 𝜒−1(𝑣) for 𝑣 ∈ 𝑆0 ⊆ 𝑆 a leaf associated with 𝐻𝑣 \ 𝑣 ∈ Cexc(F)).
The height of (𝐹′, 𝜒′, 𝑅′) is indeed still at most 𝑘. Therefore, (𝐺, 𝑆0, 𝑘) is a yes-instance for
Annotated F -M-Elimination Distance if and only if (𝐺′, 𝑘) is a yes-instance for obs(Cexc(F)))-
M-Elimination distance.

Thus, if we apply the algorithm of Theorem 7.1 to (𝐺′, 𝑘) to solve obs(Cexc(F)))-M-
Elimination distance, we solve Annotated F -M-Elimination Distance on instance (𝐺, 𝑆0, 𝑘)
in time 2OℓF (tw(𝐺

′)·𝑘+tw(𝐺′) log tw(𝐺′))) · |𝑉 (𝐺′) |.
Given a tree decomposition T = (T, 𝛽) of 𝐺 of width 𝑡, we can obtain a tree decomposition

T ′ of 𝐺′ of width at most 𝑡 + |𝑉 (𝐻F) | by adding a node 𝑥𝑣 for each 𝑣 ∈ 𝑆0 such that 𝛽(𝑣) = 𝑉 (𝐻𝑣),
adjacent to a node 𝑦 of 𝑇 such that 𝑣 ∈ 𝛽(𝑦). Thus, tw(𝐺′) ≤ tw(𝐺) + |𝑉 (𝐻F) | = tw(𝐺) + OℓF (1).
Moreover, |𝑉 (𝐺′) | = |𝑉 (𝐺) | + (|𝑉 (𝐻F) | − 1) · |𝑆0 | = OℓF (|𝑉 (𝐺) |). Therefore, we can solve
Annotated F -M-Elimination Distance on instance (𝐺, 𝑆0, 𝑘) in time 2OℓF (tw·𝑘+tw log tw)) · 𝑛, and
the lemma follows. ■

9.2 Description of the algorithm for F-M-Elimination Distancewhen 𝒂F = 1

We now describe the algorithm to solve Annotated F -M-Elimination Distance, and hence
F -M-Elimination Distance, when 𝑎F = 1, i.e., when F contains an apex-graph. Note that,
similarly to this algorithm, the one from Section 8 in the general case can also very easily be
generalized to its “annotated” version. We stress that the reason for the better parametric
dependence of this algorithm compared to the algorithm of Theorem 1.2 is that we pursue
homogeneous flat walls where homogeneity is asked for subsets of size not depending on 𝑘.

63 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

We define the following constants.

𝑎 = 𝑓3(𝑠F), 𝑞 = 𝑓10(1, 𝑠F , 𝑘(𝑘 + 1)/2),
𝑝 = 𝑓11(1, 𝑠F , 𝑘(𝑘 + 1)/2), 𝑙 = (𝑞 − 1) · (𝑘 + 𝑎),
𝑑 = 𝑓8(𝑎, ℓF) 𝑟4 = 𝑓7(𝑎, ℓF , 3, 𝑘(𝑘 + 1)/2),
𝑟3 = 𝑓5(𝑟4, 𝑎, 𝑎, 𝑑), 𝑡 = 𝑓4(𝑠F) · 𝑟3,

𝑟2 = odd(𝑡 + 3), 𝑟′2 = odd(max{ 𝑓9(1, 𝑠F , 𝑘(𝑘 + 1)/2), 𝑓13(𝑙 + 1, 𝑟2, 𝑝)}),
𝑟′1 = odd(𝑓2(𝑠F) · 𝑟′2), 𝑟1 = odd(𝑟′1 + 𝑘).

Note that 𝑟4 = OℓF (𝑘2), 𝑟3, 𝑟2 = OℓF (𝑘2𝑐), and 𝑟′2, 𝑟
′
1, 𝑟1 = OℓF (𝑘2𝑐+7/2), where 𝑐 = 𝑓6(𝑎, 𝑎, 𝑑) =

OℓF (1). Recall from Subsection 2.2 that we assume that 𝐺 has O𝑠F (𝑘
√︁

log 𝑘 · 𝑛) edges.
The input of this algorithm is a graph 𝐺, a set 𝑆0 ⊆ 𝑉 (𝐺), and an integer 𝑘.

Step 1. Run the algorithm Find-Wall-Ed from Proposition 3.1 with input (𝐺 \ 𝑆0, 𝑟1, 𝑘) and, in
time 2OℓF (𝑟

2
1+𝑘

2) · 𝑛 = 2OℓF (𝑘
4𝑐+7) · 𝑛,

either report a no-instance, or
conclude that tw(𝐺 \ 𝑆0) ≤ 𝑓1(𝑠F) · 𝑟1 + 𝑘 and solve Annotated F -M-Elimination Distance
with input (𝐺, 𝑆0, 𝑓1(𝑠F) · 𝑟1 + 2𝑘, 𝑘) in time 2OℓF ((𝑟1+𝑘)·𝑘+(𝑟1+𝑘) log(𝑟1+𝑘))) · 𝑛 = 2OℓF (𝑘

2𝑐+9/2) · 𝑛
using the algorithm of Lemma 9.2, or
obtain an 𝑟1-wall𝑊1 of 𝐺.

If the output of Proposition 3.1 is a wall𝑊1, consider all the
(𝑟1
𝑟2

)2
= 2OℓF (𝑘

2𝑐 log 𝑘) 𝑟2-subwalls
of𝑊1 and for each one of them, say𝑊2, let𝑊∗2 be the central (𝑟2 − 2)-subwall of𝑊2 and let 𝐷𝑊2

be the graph obtained from 𝐺 \ 𝑆0 after removing the perimeter of𝑊2 and taking the connected
component containing𝑊∗2 . Run the algorithm Clique-or-twFlat of Proposition 3.4 with input
(𝐷𝑊2 , 𝑟3, 𝑠F). This takes time 2OℓF (𝑟

2
3) · 𝑛 = 2OℓF (𝑘

4𝑐) · 𝑛. If for one of these subwalls the result
is a set 𝐴 of size at most 𝑎 and a regular flatness pair (𝑊3,ℜ3) of 𝐷𝑊2 \ 𝐴 of height 𝑟3 whose
ℜ3-compass has treewidth at most 𝑡, then we proceed to Step 2, otherwise proceed to Step 3.

Step 2. We obtain a 7-tuple ℜ′3 by adding all vertices of 𝐺 \ (𝑆0 ∪𝑉 (Compassℜ3
(𝑊3))) to the

set in the first coordinate of ℜ3, such that (𝑊3,ℜ′3) is a regular flatness pair of 𝐺 \ (𝑆0 ∪ 𝐴).

We first apply the algorithm Homogeneous of Proposition 3.5 with input (𝑟4, 𝑎, 𝑎, 𝑑, 𝑡, 𝐺 \
𝑆0, 𝐴,𝑊3,ℜ′3), which outputs, in time 2OℓF (𝑟4 log 𝑟4+𝑡 log 𝑡) · (𝑛 +𝑚) = 2OℓF (𝑘

2𝑐 log 𝑘) · 𝑛 a flatness pair
(𝑊4,ℜ4) of 𝐺 \ (𝑆0 ∪ 𝐴) of height 𝑟4 that is 𝑑-homogeneous with respect to 2𝐴 and is a𝑊∗-tilt
of (𝑊3,ℜ′3) for some subwall𝑊 ′ of𝑊 . At this point, we stress that the reason for the better
parametric dependence of this algorithm compared to the previous one comes from the fact
that the third input parameter 𝑎 in Homogeneous does not depend of 𝑘. We apply the algorithm
Find-Irrelevant-Vertex of Proposition 3.6 with input (𝑘(𝑘 + 1)/2, 𝑎, 𝐺 \ 𝑆0, 𝐴,𝑊4,ℜ4), which
outputs, in time O𝑠F (𝑘

√︁
log 𝑘 · 𝑛), a vertex 𝑣 such that (𝐺, 𝑆0, 𝑘) and (𝐺 \ 𝑣, 𝑆0, 𝑘) are equivalent

64 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

instances of Annotated F -M-Elimination Distance. Then the algorithm runs recursively on
the equivalent instance (𝐺 \ 𝑣, 𝑆0, 𝑘).

Step 3. Consider all the 𝑟′2-subwalls of𝑊1, which are
(𝑟1
𝑟′2

)2
= 2OℓF (𝑘

2𝑐+7/2 log 𝑘) many, and for each
of them, say𝑊 ′2, compute its canonical partition Q. Then, contract each bag 𝑄 of Q to a single
vertex 𝑣𝑄, remove the vertices 𝑣𝑄 where 𝑄 is not a 𝑝-internal bag of Q, and add a new vertex
𝑣all and make it adjacent to all remaining 𝑣𝑄’s. In the resulting graph 𝐺′, for every vertex 𝑦

of (𝐺 \ 𝑆0) \ 𝑉 (𝑊 ′2), check, in time O(𝑞 · 𝑚) = OℓF (𝑘7
√︁

log 𝑘 · 𝑛), using a flow augmentation
algorithm [20], whether there are 𝑞 internally vertex-disjoint paths from 𝑣all to 𝑦. Let �̃� be the
set of such 𝑦’s.

If �̃� = ∅, then report a no-instance.

If 1 ≤ |�̃�| ≤ 𝑘 + 𝑎, then each vertex of �̃� should intersect every 𝑘-elimination set 𝑆 of 𝐺 for
exc(F). The algorithm runs recursively on (𝐺, 𝑆0 ∪ �̃�, 𝑘).

If, for every wall, |�̃�| > 𝑘 + 𝑎, then report that (𝐺, 𝑆0, 𝑘) is a no-instance of Annotated
F -M-Elimination Distance.

After Step 2, the size of 𝐺 decreases by one, so Step 2 can be applied at most 𝑛 times. After
Step 3, the size of 𝑆0 increases by at least one, so Step 3 can also be applied at most 𝑛 times.
Note that, if 𝑆0 = 𝑉 (𝐺), then tw(𝐺 \ 𝑆0) = 0, so the algorithm stops. Thus, the algorithm finishes.
Notice also that Step 3, when applied, takes time 2OℓF (𝑘

2𝑐+7/2 log 𝑘) · 𝑛2, because we apply a flow
algorithm for each of the 2OℓF (𝑘

2𝑐+7/2 log 𝑘) 𝑟′2-subwalls and for each vertex of 𝐺. Since Step 1 and
Step 2 run in time 2OℓF (𝑘

4𝑐+7) · 𝑛 and 2OℓF (𝑘
2𝑐 log 𝑘) · 𝑛, respectively, and both may be applied at

most 𝑛 times, the claimed time complexity follows: the algorithm runs in time 2OℓF (𝑘
4𝑐+7) · 𝑛3.

9.3 Correctness of the algorithm

Let (𝐺, 𝑆0, 𝑘) be a yes-instance and let 𝑆 be a 𝑘-elimination set of 𝐺 for exc(F) with 𝑆0 ⊆ 𝑆. By
running Proposition 3.1 with input (𝐺 \ 𝑆0, 𝑟1, 𝑘), the algorithm should either get a report that
tw(𝐺 \ 𝑆0) ≤ 𝑓1(𝑠F) · 𝑟1 + 𝑘 or find an 𝑟1-wall.

If tw(𝐺 \𝑆0) ≤ 𝑓1(𝑠F) · 𝑟1+𝑘, then since 𝑆0 ⊆ 𝑆, tw(𝐺 \𝑆) ≤ 𝑓1(𝑠F) · 𝑟1+𝑘. Hence, according
to Lemma 4.6, tw(𝐺) ≤ 𝑓1(𝑠F) · 𝑟1 + 2𝑘.

Otherwise, let𝑊1 be an 𝑟1-wall of 𝐺 \ 𝑆0. According to Lemma 5.8, since 𝑟1 ≥ 𝑟′1 + 𝑘, there
is an 𝑟′1-subwall𝑊 ′1 of𝑊1 that is a subwall of 𝐺 \ 𝑆. Let 𝐻 be the connected component of 𝐺 \ 𝑆
containing𝑊2. The fact that 𝐻 belongs to exc(F) implies that it has no 𝐾𝑠F -minor. Therefore,
by Proposition 3.3, since 𝑟′1 ≥ 𝑓2(𝑠F) · 𝑟′2, there is a set 𝐵 ⊆ 𝑉 (𝐻), with |𝐵| ≤ 𝑎, and a flatness
pair (𝑊 ′2,ℜ′2) of 𝐻 \ 𝐵 of height 𝑟′2.

Let Q be the canonical partition of𝑊 ′2. Let𝐺′ be the graph obtained after contracting every
bag 𝑄 of Q to a single vertex 𝑣𝑄, removing the vertices 𝑣𝑄 where 𝑄 is not a 𝑝-internal bag of Q,

65 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

and adding a new vertex 𝑣all and making it adjacent to all remaining 𝑣𝑄’s. Let �̃� be the set of
vertices 𝑦 of 𝐺 \𝑉 (𝑊 ′2) such that there are 𝑞 internally vertex-disjoint paths from 𝑣all to 𝑦 in
𝐺′. Since 𝑆 is a 𝑘-elimination set of 𝐺 for exc(F), there is a set 𝑃 ⊆ 𝑆 of size at most 𝑘 so that
(𝐿, 𝑅) := (𝑉 (𝐺) \𝑉 (𝐻), 𝑉 (𝐻) ∪ 𝑃) is a separation of 𝐺 with 𝑃 = 𝐿 ∩ 𝑅.

Note that �̃� ⊆ 𝑃 ∪ 𝐵. To show this, we first prove that, for every 𝑦 ∉ 𝑃 ∪ 𝐵, the maximum
number of internally vertex-disjoint paths from 𝑣all to 𝑦 in 𝐺′ is less than 𝑞. Indeed, if 𝑦 is a
vertex in (𝑉 (𝐺) \𝑉 (𝐻)) \ 𝑃, then every path from 𝑦 to a vertex of𝑊 ′2 intersects 𝑃. Therefore,
there are at most 𝑘 < 𝑞 internally vertex-disjoint paths from 𝑣all to such a 𝑦 ∈ (𝑉 (𝐺) \𝑉 (𝐻)) \ 𝑃
in 𝐺′. If 𝑦 ∈ 𝑉 (𝐻) \ 𝐵, then we distinguish two cases. First, if 𝑦 is a vertex in the ℜ′2-compass of
𝑊 ′2, there are at most 𝑘 + 𝑎 such paths that intersect the set 𝑃 ∪ 𝐵 and at most four paths that do
not intersect 𝑃 ∪ 𝐵 (in the graph 𝐺′ \ (𝑃 ∪ 𝐵)) due to the flatness of𝑊 ′2. If 𝑦 is in 𝑉 (𝐻) but not
a vertex in the ℜ′2-compass of𝑊 ′2, then, since by the definition of flatness pairs the perimeter
of𝑊 ′2 together with the set 𝑃 ∪ 𝐵 separate 𝑦 from the ℜ′2-compass of𝑊 ′2, every collection of
internally vertex-disjoint paths from 𝑣all to 𝑦 in 𝐺′ should intersect the set {𝑣𝑄ext} ∪ 𝑃 ∪ 𝐵, where
𝑄ext is the external bag of Q. Therefore, in all cases, if 𝑦 ∉ 𝑃 ∪ 𝐵, the maximum number of
internally vertex-disjoint paths from 𝑣all to 𝑦 in 𝐺′ is at most 𝑘 + 𝑎 + 4 < 𝑞. Therefore, 𝑦 ∉ �̃�.
Hence, |�̃�| ≤ 𝑘 + 𝑎.

Let ℜ′′2 be the 7-tuple obtained by adding all vertices of ((𝐺 \ 𝑆0) \ 𝑃) \ 𝐻 to the set in the
first coordinate of ℜ′2. Notice that since every path between 𝐺 \ 𝐻 and 𝐻 intersects 𝑃, (𝑊 ′2,ℜ′′2)
is a flatness pair of 𝐺 \ (𝑃 ∪ 𝐵).

If �̃� = ∅, then let Q̃ be an enhancement of Q on 𝐺 \ (𝑃 ∪ 𝐵). No vertex of (𝑃 ∪ 𝐵) \ 𝑆0 is
adjacent to vertices of at least 𝑞 𝑝-internal bags of Q̃. This means that the 𝑝-internal bags of Q̃
that contain vertices adjacent to some vertex of 𝑃 ∪ 𝐵 are at most (𝑞 − 1) · (𝑘 + 𝑎) = 𝑙.

Consider a familyW = {𝑊1, . . . ,𝑊 𝑙+1} of 𝑙+1 𝑟2-subwalls of𝑊 ′2 such that for every 𝑖 ∈ [𝑙+
1], ⋃ influenceℜ′′2 (𝑊

𝑖) is a subgraph of
⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and for every 𝑖, 𝑗 ∈ [𝑙+

1], with 𝑖 ≠ 𝑗, there is no internal bag of Q̃ that contains vertices of both 𝑉 (⋃ influenceℜ′′2 (𝑊
𝑖))

and 𝑉 (⋃ influenceℜ′′2 (𝑊
𝑗)). The existence ofW follows from Proposition 5.6 and the fact that

𝑟′2 ≥ 𝑓13(𝑙 + 1, 𝑟2, 𝑝).

The fact that the 𝑝-internal bags of Q̃ that contain vertices adjacent to some vertex of
(𝑃 ∪ 𝐵) \ 𝑆0 are at most 𝑙 implies that there exists an 𝑖 ∈ [𝑙 + 1] such that no vertex of
𝑉 (⋃ influenceℜ′′2 (𝑊

𝑖)) is adjacent, in 𝐺, to a vertex in (𝑃 ∪ 𝐵) \ 𝑆0.

Let𝑊2 :=𝑊 𝑖 , let𝑊∗2 be the central (𝑟2−2)-subwall of𝑊2, and let 𝐷𝑊2 be the graph obtained
from 𝐺 \𝑆0 after removing the perimeter of𝑊2 and taking the connected component containing
𝑊∗2 . Any path going from a vertex in 𝐻 to a vertex in 𝐺 \ 𝐻 intersects 𝑃. Thus, 𝐷𝑊2 ⊆ 𝐻 and
therefore, 𝐾𝑠F is not a minor of 𝐷𝑊2 . Moreover, 𝑊∗2 is a wall of 𝐷𝑊2 of height 𝑟2 − 2 ≥ 𝑡 + 1,
so tw(𝐷𝑊2) > 𝑡 = 𝑓4(𝑠F) · 𝑟3. Therefore, since , if the algorithm runs Clique-or-twFlat of
Proposition 3.4 with input (𝐷𝑊2 , 𝑟3, 𝑠F), it should obtain a set 𝐴 of size at most 𝑎 and a regular

66 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

flatness pair (𝑊3,ℜ3) of 𝐷𝑊2 \ 𝐴 of height 𝑟3 whose ℜ3-compass has treewidth at most 𝑡. Hence,
the algorithm then runs Step 2.

If �̃� ≠ ∅, then recall that for every 𝑦 ∈ �̃�, 𝑦 has 𝑞 internally vertex-disjoint paths 𝑃1, ..., 𝑃𝑞

to different 𝑝-internal bags 𝑄1, ..., 𝑄𝑞 of Q in 𝐺. Hence, there is an enhancement Q̃ 𝑦 of Q on
𝐺 \ (𝑃 ∪ 𝐵) such that 𝑃𝑖 belongs to the bag �̃�𝑖 that extends 𝑄𝑖 for 𝑖 ∈ [𝑞]. Therefore, 𝑦 is
adjacent to vertices of at least 𝑞 𝑝-internal bags of Q̃ 𝑦. Let 𝑆′ be a 𝑘-elimination set of 𝐺 for
exc(F). According to Lemma 5.9, there is a set 𝑋𝑆′ ⊆ 𝑉 (𝐺) such that 𝐺 \ 𝑋𝑆′ ∈ exc(F) and
bid𝐺\(𝑃∪𝐵),𝑊 ′2 (𝑋𝑆′) ≤ 𝑘(𝑘 + 1)/2. Therefore, 𝑦 ∈ 𝑋𝑆′ due to Proposition 3.7 and the fact that
𝑟′2 ≥ 𝑓9(1, 𝑠F , 𝑘(𝑘 + 1)/2). Let 𝐶𝑆′ := 𝐺 \ 𝑋𝑆′ . Recall that 𝑦 is adjacent to 𝑞 > 𝑘(𝑘 + 1)/2 𝑝-internal
bags of Q̃ 𝑦. However, bidQ̃ 𝑦 (𝑋𝑆′) ≤ bid𝐺\(𝑃∪𝐵),𝑊 ′2 (𝑋𝑆′) ≤ 𝑘(𝑘 + 1)/2. Therefore, 𝑦 is adjacent to
𝐶𝑆′ , so 𝑦 ∈ 𝑆′. Since for every 𝑦 ∈ �̃�, for every 𝑘-elimination set 𝑆′, we have 𝑦 ∈ 𝑆′, it implies
that �̃� is included in every 𝑘-elimination set of 𝐺 for exc(F). Hence, if the algorithm runs Step 3,
it then recursively runs on the equivalent instance (𝐺, 𝑆0 ∪ �̃�, 𝑘).

We do not suppose that (𝐺, 𝑘) is a yes-instance anymore. Let us show the correctness
of Step 2. Suppose that we obtained the wanted flatness pair (𝑊3,ℜ3) in Step 1. We obtain a
7-tuple ℜ′3 by adding all vertices of𝐺 \ (𝑆0∪𝑉 (Compassℜ3

(𝑊3))) to the set in the first coordinate
of ℜ3. Since (𝑊3,ℜ3) is a regular flatness pair of 𝐷𝑊 𝑖 \ 𝐴 whose ℜ3-compass has treewidth at
most 𝑡 and since the vertices added in ℜ′3 are only adjacent to the perimeter of𝑊 𝑖 , it follows
that (𝑊3,ℜ′3) is a regular flatness pair of 𝐺 \ (𝑆0 ∪ 𝐴) whose ℜ′3-compass has treewidth at most 𝑡.

If the algorithm applies the algorithm Homogeneous of Proposition 3.5 with (𝑟4, 𝑎, 𝑎, 𝑑, 𝑡, 𝐺 \
𝑆0, 𝐴,𝑊3,ℜ′3) as input, it obtains a flatness pair (𝑊4,ℜ4) of 𝐺 \ (𝑆0 ∪ 𝐴) of height 𝑟4 that is 𝑑-
homogeneous with respect to 2𝐴 and is a𝑊∗-tilt of (𝑊3,ℜ′3) for some subwall𝑊 ′ of𝑊 . According
to Observation 5.3, (𝑊4,ℜ4) is regular.

Lemma 5.9 implies that for every 𝑘-elimination set 𝑆′ ⊇ 𝑆0, there is a set 𝑋𝑆′ ⊇ 𝑆′ with
bid𝐺\(𝑆0∪𝐴),𝑊4 (𝑋𝑆′) ≤ 𝑘(𝑘 + 1)/2 and 𝐺 \ 𝑋𝑆′ ∈ exc(F). We have that |𝐴 \ 𝑋 | ≤ |𝐴| ≤ 𝑎, so the
algorithm can apply Find-Irrelevant-Vertex of Proposition 3.6 with input (𝑘(𝑘 + 1)/2, 𝑎, 𝐺 \
𝑆0, 𝐴,𝑊4,ℜ4) to obtain a vertex 𝑣 such that for every 𝑘-elimination set 𝑆′ ⊇ 𝑆0, 𝐺 \ 𝑋𝑆′ ∈ exc(F)
if and only if 𝐺 \ (𝑋𝑆′ \ 𝑣) ∈ exc(F). It follows that (𝐺, 𝑆0, 𝑘) and (𝐺 \ 𝑣, 𝑆0, 𝑘) are equivalent
instances of Annotated F -M-Elimination Distance.

Suppose now that (𝐺, 𝑆0, 𝑘) is a no-instance. In Step 1, the algorithm either reports a
no-instance or finds a wall. In the latter case, the algorithm either goes to Step 2 or to Step 3.
If it runs Step 2, the previous paragraph justifies that the algorithm finds a vertex 𝑣 such that
(𝐺 \ 𝑣, 𝑆0, 𝑘) is a no-instance. If the algorithm runs Step 3, then it either reports a no-instance
or recursively runs on the instance (𝐺 \ 𝑦, 𝑆0 ∪ �̃�, 𝑘). If (𝐺 \ 𝑦, 𝑆0 ∪ �̃�, 𝑘) is yes-instance, then
so is (𝐺, 𝑘). Thus, (𝐺 \ 𝑦, 𝑆0 ∪ �̃�, 𝑘). is a no-instance. Hence, the algorithm always report a
no-instance. Therefore, Theorem 9.1 follows.

67 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

Constructing the elimination ordering. Notice that the results of Theorem 8.1 and Theo-
rem 9.1 solve the decision version of Elimination Distance to G. Using the dynamic program-
ming algorithm of Section 7, we may find a 𝑘-elimination set 𝑋 certifying that edG (𝐺) ≤ 𝑘. One
may further determine, from 𝑋 , the way the elimination ordering is applied on the vertices of 𝑋
as follows. Let torso(𝐺, 𝑋) be the graph obtained from 𝐺[𝑋] if, for every connected component
𝐶 of 𝐺 − 𝑋 , we make adjacent all pairs of vertices in 𝑁𝐺 (𝑉 (𝐶)) in 𝐺[𝑋]. Then we know that
td(torso(𝐺, 𝑋)) ≤ 𝑘 and the required elimination ordering is the same as the one for torso(𝐺, 𝑋),
which can be computed by the algorithm of [61] in time 2O(𝑘2) · 𝑛.

10. Bounding the obstructions of E𝒌(exc(F))

In this section, we prove the following result that provides an upper bound on the size of the
graphs in obs(E𝑘 (exc(F))). The following theorem is a reformulation of Theorem 1.5.

THEOREM 10.1. Let F be a non-empty finite collection of non-empty graphs and 𝑘 be a positive

integer. Every graph in obs(E𝑘 (exc(F))) has 2222𝑘
OℓF (1)

vertices. In the particular case when F
contains an apex-graph, every graph in obs(E𝑘 (exc(F))) has 22𝑘

OℓF (1)

vertices.

Recall that when F = {𝐾1} = obs(G∅), it is known [22] that every graph in obs(E𝑘 (G∅))
has at most 22𝑘−1 vertices.

Theorem 10.1 implies that one can construct an algorithm that receives as input obs(exc(F))
and 𝑘, and outputs obs(E𝑘 (exc(F))). This is done by enumerating all graphs on at most 𝑓 (𝑘)
vertices, where 𝑓 (𝑘) is the bound on the number of vertices given by Theorem 10.1, and filtering
out those that are members of E𝑘 (exc(F)) and taking those that are minor-minimal in what is

left. The running time of the algorithm can be bounded by O(22222𝑘
OℓF (1)

· 𝑛2) in the general case

and by O(222𝑘
OℓF (1)

· 𝑛2) if F contains an apex-graph.
Note that this brute-force algorithm can be used to solve F -M-Elimination Distance.

Indeed, to solve F -M-Elimination Distance, we can compute obs(E𝑘 (exc(F))) and then check
whether there is a graph in obs(E𝑘 (exc(F))) that is a minor of the input graph. Of course, this
algorithm is much less efficient than the ones presented in the previous sections.

The rest of the section is structured as follows: in Subsection 10.1 we bound the treewidth
of a minor-minimal obstruction of E𝑘 (exc(F)), while in Subsection 10.2 we bound the size
of a minor-minimal obstruction of E𝑘 (exc(F)) of small treewidth. This immediately implies
Theorem 10.1.

68 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

10.1 Bounding the treewidth of an obstruction

In this subsection we aim to prove an upper bound on the treewidth of a minor-minimal
obstruction of E𝑘 (exc(F)).

LEMMA 10.2. Let F be a finite collection of graphs. There exists a function 𝑓15 : N3 →
N such that if 𝐺 ∈ obs(E𝑘 (exc(F))), then tw(𝐺) ≤ 𝑓15(𝑘, 𝑎F , 𝑠F). Moreover, 𝑓15(𝑘, 𝑎, 𝑠) =

2log(𝑘·𝑐)·2𝑘𝑎−1 ·2O(𝑠
2 log 𝑠)

, where 𝑎 = 𝑎F , 𝑠 = 𝑠F , and 𝑐 is a constant depending on ℓF .

Note that when 𝑎F = 1, 𝑓15(𝑘, 1, 𝑠) = OℓF (𝑘22O(𝑠
2 log 𝑠)
).

PROOF . For simplicity, we use 𝑠, 𝑎, and ℓ instead of 𝑠F , 𝑎F , and ℓF , respectively. We set

𝑏 = 𝑓3(𝑠) + 𝑘 + 1, 𝑑 = 𝑓8(𝑎 − 1, ℓ),
𝑟4 = 𝑓7(𝑎 − 1, ℓ, 3, 𝑘(𝑘 + 1)/2), 𝑟3 = 𝑓5(𝑟4, 𝑎 − 1, 𝑏, 𝑑),
𝑥 = 𝑓10(𝑎, 𝑠, 𝑘(𝑘 + 1)/2), 𝑝 = 𝑓11(𝑎, 𝑠, 𝑘(𝑘 + 1)/2),
𝑙 = (𝑥 − 1) · 𝑏, 𝑟2 = odd(max{ 𝑓13(𝑙 + 1, 𝑟3, 𝑝), 𝑓9(𝑎, 𝑠, 𝑘(𝑘 + 1)/2)}),
𝑟1 = 𝑓2(𝑠) · 𝑟2, and 𝑤 = 𝑓12(𝑠) · 𝑟1 + 𝑘 + 1.

It is easy to verify that 𝑤 = 2log(𝑘·𝑐)·2𝑘𝑎−1 ·2O(𝑠
2 log 𝑠)

.

Suppose towards a contradiction that tw(𝐺) > 𝑤. Since 𝐺 ∈ obs(E𝑘 (exc(F))), for each
𝑣 ∈ 𝑉 (𝐺), 𝐺 \ 𝑣 ∈ E𝑘 (exc(F)). Therefore, there exists a (𝑘 + 1)-elimination set 𝑆 of 𝐺 for exc(F).
Thus, for each𝐶 ∈ cc(𝐺\𝑆), 𝐶 ∈ exc(F). According to Lemma 4.6, tw(𝐺\𝑆) > 𝑤−𝑘−1 = 𝑓12(𝑠) ·𝑟1,
so there is 𝐶 ∈ cc(𝐺 \𝑆), such that tw(𝐶) > 𝑓12(𝑠) ·𝑟1. Moreover, 𝐾𝑠 is not a minor of 𝐶. Therefore,
according to Proposition 5.1, 𝐶 contains an 𝑟1-wall𝑊1.

Since 𝑟1 = 𝑓2(𝑠) · 𝑟2, by Proposition 3.3, there is a set 𝐴 ⊆ 𝑉 (𝐶) of size at most 𝑓3(𝑠) and
a flatness pair (𝑊2,ℜ2) of 𝐶 \ 𝐴 of height 𝑟2 such that 𝑊2 is a tilt of a subwall of 𝑊1. Due to
Proposition 5.5, there is a regular flatness pair (𝑊 ′2,ℜ′2) of 𝐶 \ 𝐴 of height 𝑟2.

Since 𝑆 is a (𝑘 + 1)-elimination set of 𝐺 for exc(F) and 𝐶 ∈ cc(𝐺 \ 𝑆), there exists a set
𝑃 ⊆ 𝑆 of size at most 𝑘 + 1 such that (𝐿, 𝑅) := (𝑉 (𝐺) \𝑉 (𝐶), 𝑉 (𝐶) ∪ 𝑃) is a separation of 𝐺 with
𝐿 ∩ 𝑅 = 𝑃. Thus, if ℜ′′2 is the 7-tuple obtained by adding the vertices of 𝐺 \ (𝐶 ∪ 𝑃) to the set in
the first coordinate of ℜ′2, (𝑊 ′2,ℜ′′2) is a regular flatness pair of 𝐺 \ (𝐴 ∪ 𝑃) of height 𝑟2.

Let Q̃ be a 𝑊 ′2-canonical partition of 𝐺 \ (𝐴 ∪ 𝑃). Let 𝐵 be the set of vertices of 𝐴 ∪ 𝑃
adjacent to vertices of at least 𝑥 𝑝-internal bags of Q̃. Let W = {𝑊1, ...,𝑊 𝑙+1} be a family
of 𝑙 + 1 𝑟3-subwalls of 𝑊 ′2 such that for every 𝑖 ∈ [𝑙 + 1], ⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceℜ′′2 (𝑊

𝑖) is a subgraph of⋃⋃⋃⋃⋃⋃⋃⋃⋃{𝑄 | 𝑄 is a 𝑝-internal bag of Q̃} and for every 𝑖, 𝑗 ∈ [𝑙 + 1] with 𝑖 ≠ 𝑗, there is no internal
bag 𝑄 ∈ Q̃ that contains vertices of both 𝑉 (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceℜ′′2 (𝑊

𝑖)) and 𝑉 (⋃⋃⋃⋃⋃⋃⋃⋃⋃influenceℜ′′2 (𝑊
𝑗)). The

existence ofW follows from the fact that 𝑟2 ≥ 𝑓13(𝑙 + 1, 𝑟3, 𝑝) and Proposition 5.6. Notice that
the set 𝑁𝐺 ((𝐴 ∪ 𝑃) \ 𝐵) intersects the vertex set of at most (𝑥 − 1) · | (𝐴 ∪ 𝑃) \ 𝐵| ≤ 𝑙 𝑝-internal

69 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

bags of Q̃. Thus, there is an 𝑖 ∈ [𝑙 + 1] such that no vertex in (𝐴 ∪ 𝑃) \ 𝐵 is adjacent to vertices
of
⋃⋃⋃⋃⋃⋃⋃⋃⋃

influenceℜ′′2 (𝑊
𝑖).

Let (𝑊3,ℜ3) be a 𝑊 𝑖-tilt of (𝑊 ′2,ℜ′′2). Since |𝐵| ≤ |𝐴 ∪ 𝑃 | ≤ 𝑓3(𝑠) + 𝑘 + 1 = 𝑏 and 𝑟3 =

𝑓5(𝑟4, 𝑏, 𝑎 − 1, 𝑑), by Proposition 3.5, there is a flatness pair (𝑊4,ℜ4) of 𝐺 \ 𝐵 of height 𝑟4 that is
𝑑-homogeneous with respect to

(𝐵
<𝑎

)
and is a tilt of a subwall of (𝑊3,ℜ3). By Observation 5.2

and Observation 5.3, (𝑊4,ℜ4) is regular.
Recall that (𝑊3,ℜ3) is a𝑊 𝑖-tilt of (𝑊 ′2,ℜ′′2), (𝑊4,ℜ4) is a tilt of a subwall of (𝑊3,ℜ3), and

(𝑊4,ℜ4) is a flatness pair of𝐺\𝐵with 𝐵 ⊆ 𝐴∪𝑃. Thus, given a𝑊4-canonical partition Q̃1 of𝐺\𝐵,
there is a𝑊 ′2-canonical partition Q̃2 of 𝐺 \ (𝐴∪ 𝑃) such that each internal bag of Q̃1 is contained
in an internal bag of Q̃2. Therefore, for every set 𝑋 ⊆ 𝑉 (𝐺), bid𝐺\𝐵,𝑊4 (𝑋) ≤ bid𝐺\(𝐴∪𝑃),𝑊 ′2 (𝑋).

Moreover, since 𝑟2 ≥ 𝑓9(𝑎, 𝑠, 𝑘(𝑘 + 1)/2), according to Proposition 3.7, every subset of 𝐵 of
size 𝑎 intersects every set 𝑋 ⊆ 𝑉 (𝐺) such that 𝐺 \ 𝑋 ∈ exc(F) and bid𝐺\(𝐴∪𝑃),𝑊 ′2 (𝑋) ≤ 𝑘(𝑘 + 1)/2.
Hence, for any such 𝑋 , |𝐵 \ 𝑋 | < 𝑎.

Thus, according to Proposition 3.6, since 𝑟4 = 𝑓7(𝑎− 1, ℓ, 3, 𝑘(𝑘 + 1)/2), it holds that there is
a vertex 𝑣 such that, for every set 𝑋 ⊆ 𝑉 (𝐺) with 𝐺 \ 𝑋 ∈ exc(F) and bid𝐺\𝐵,𝑊4 (𝑋) ≤ 𝑘(𝑘 + 1)/2,
𝐺 \ 𝑋 ∈ exc(F) if and only if 𝐺 \ (𝑋 \ 𝑣) ∈ exc(F).

Lemma 5.9 implies that for any 𝑘-elimination set 𝑆′ of 𝐺 \ 𝑣 for exc(F), there is a set
𝑋 ⊇ 𝑆′ such that 𝐺 \ 𝑋 ∈ exc(F) and bid𝐺\(𝐴∪𝑃),𝑊 ′2 (𝑋) ≤ 𝑘(𝑘 + 1)/2. Since bid𝐺\𝐵,𝑊4 (𝑋) ≤
bid𝐺\(𝐴∪𝑃),𝑊 ′2 (𝑋), we also have that bid𝐺\𝐵,𝑊4 (𝑋) ≤ 𝑘(𝑘 + 1)/2. Thus, 𝐺 \ 𝑋 ∈ exc(F) if and only
if 𝐺 \ (𝑋 \ 𝑣) ∈ exc(F) and 𝐺 ∈ E𝑘 (exc(F)) if and only if 𝐺 \ 𝑣 ∈ E𝑘 (exc(F)). However, since
𝐺 ∈ obs(E𝑘 (exc(F))), it holds that 𝐺 ∉ E𝑘 (exc(F)) and 𝐺 \ 𝑣 ∈ E𝑘 (exc(F)), a contradiction. ■

10.2 Bounding the size of an obstruction of small treewidth

In order to bound the size of an obstruction of small treewidth, we first present some additional
notions on tree decompositions on boundaried graphs.

Treewidth of boundaried graphs. Let G = (𝐺, 𝐵, 𝜌) be a boundaried graph. A tree decomposi-
tion of G is a rooted tree decomposition (T, 𝛽, r) of 𝐺 such that 𝛽(r) = 𝐵. The width of (T, 𝛽, r) is
the width of (T, 𝛽). The treewidth of a boundaried graph G is the minimum width over all its tree
decompositions and is denoted by tw(G). A nice tree decomposition of G is a tree decomposition
(T, 𝛽, r) of G that is also a nice tree decomposition of 𝐺 rooted at r.

Let G = (𝐺, 𝐵, 𝜌) be a boundaried graph and T = (T, 𝛽, r) be a tree decomposition of
G. Notice that if 𝑎, 𝑏 ∈ 𝑉 (T) and 𝑎 ∈ AncT,r(𝑏), then 𝐺𝑏 is a subgraph of 𝐺𝑎. We define the
𝑡𝑞-boundaried graph Ḡ𝑞 = (�̄�𝑞, 𝛽(𝑞), 𝜌𝑞), where �̄�𝑞 = 𝐺 \ (𝑉 (𝐺𝑞) \ 𝛽(𝑞)). Notice that G𝑞 and Ḡ𝑞
are compatible and G𝑞 ⊕ Ḡ𝑞 = 𝐺.

Linked tree decompositions. Our next step is to use a special type of tree decompositions,
namely linked tree decompositions, defined by Robertson and Seymour in [62]. Thomas in [71]

70 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

proved that every graph 𝐺 admits a linked tree decomposition of width tw(𝐺) (see also [14,
24]). By combining the result of [71] and [18, Lemma 4], we can consider tree decompositions as
asserted in the following result.

PROPOS IT ION 10.3 ([18]). Let 𝑡 ∈ N≥1. For every boundaried graph G = (𝐺, 𝐵, 𝜌) of treewidth
𝑡 − 1, there exists a tree decomposition (T, 𝛽, r) of G of width 𝑡 − 1 such that

1. (T, r) is a binary tree,
2. for every 𝑎, 𝑏 ∈ 𝑉 (T) where 𝑎 is a child of 𝑏 in (T, r), if |𝛽(𝑎) | = |𝛽(𝑏) | then 𝐺𝑎 is a proper

subgraph of 𝐺𝑏, i.e., |𝑉 (𝐺𝑎) | < |𝑉 (𝐺𝑏) |,
3. for every 𝑠 ∈ N and every pair 𝑢1, 𝑢2 ∈ 𝑉 (T), where 𝑢1 ∈ AncT,r(𝑢2) and |𝛽(𝑢1) | = |𝛽(𝑢2) |,

either there is an internal vertex 𝑤 of 𝑢1T𝑢2 such that |𝛽(𝑤) | < 𝑠, or there exists a collection
of 𝑠 vertex-disjoint paths in 𝐺 between 𝛽(𝑢1) and 𝛽(𝑢2), and

4. |𝑉 (𝐺) | ≤ 𝑡 · |𝑉 (T) |.

In fact, linked tree decompositions are defined as the tree decompositions satisfying only
property (3) [62, 71]. In our proofs, we will need the extra properties (1), (2), and (4) that are
provided by [18, Lemma 4].

We bound the size of a minor-minimal obstruction of small treewidth in Lemma 10.5. To
do so, we need the following result (for a proof see e.g. [31, Lemma 14]).

PROPOS IT ION 10.4 ([31]). Let 𝑟, 𝑚 ∈ N≥1 and 𝑤 be a word of length 𝑚𝑟 over the alphabet
[𝑟]. Then there is a number 𝑘 ∈ [𝑟] and a subword 𝑢 of 𝑤 such that 𝑢 contains only numbers not
smaller than 𝑘 and 𝑢 contains the number 𝑘 at least 𝑚 times.

We are now ready to prove Lemma 10.5. The idea is to apply the technique of Lagergren
[52] combined with the bound on the number of characteristics provided in Subsection 7.6. The
proof of Lemma 10.5 is very similar to the corresponding proof in [69] for obs(A𝑘 (exc(F))).

LEMMA 10.5. Let F be a finite non-trivial collection of graphs. There exists a function 𝑓16 :
N2 → N such that if 𝑘 is an integer and 𝐺 is a graph in obs(E𝑘 (exc(F))) of treewidth tw, then

|𝑉 (𝐺) | ≤ 𝑓16(tw, 𝑘). Moreover, 𝑓16(𝑡, 𝑘) = 22
OℓF (𝑡

3+𝑘 ·𝑡2)
.

PROOF . Let 𝐺 ∈ obs(E𝑘 (exc(F))). We set 𝑡 := tw(𝐺) + 1. For simplicity, we use ℓ instead of ℓF .
We set

𝑑 = 𝑓14(𝑡 − 1, 𝑘) + 1, 𝑚 = 2(
𝑡
2) · (𝑑 − 1) + 1,

𝑥 = 𝑚𝑡, and 𝑏 = 𝑡 · 2𝑥 .

It is easy to verify that 𝑏 = 22
OℓF (𝑡

3+𝑘 ·𝑡2)
.

Suppose towards a contradiction that |𝑉 (𝐺) | > 𝑏. Let (T, 𝛽) be a tree decomposition of 𝐺
of width tw(𝐺) and let r ∈ 𝑉 (T). We consider the rooted tree (T, r) and we set 𝐵 := 𝛽(r) and a

71 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

bijection 𝜌 : 𝐵→ [|𝐵|]. We set G = (𝐺, 𝐵, 𝜌) and observe that (T, 𝛽, r) is a tree decomposition of
G of width tw(𝐺). Since tw(G) = tw(𝐺) = 𝑡 − 1, by Proposition 10.3, we can assume that for the
tree decomposition (T, 𝛽, r) of G of width 𝑡 − 1, Properties (1) to (4) are satisfied.

Since |𝑉 (𝐺) | > 𝑏 = 𝑡 ·2𝑥 , Property (4) implies that |𝑉 (T) | > 2𝑥 . Also, by Property (1), (T, r) is
a binary tree and therefore there exists a leaf 𝑢 of T such that |𝑉 (𝑟T𝑢) | ≥ 𝑥. We set 𝑙 := |𝑉 (𝑟T𝑢) |.

We set 𝑣1 = 𝑟 and for every 𝑖 ∈ [𝑙 − 1], we set 𝑣𝑖+1 to be the child of 𝑣𝑖 in (𝑇, 𝑟) that belongs
to𝑉 (𝑟𝑇𝑢). Keep in mind that 𝑣𝑙 = 𝑢. For every 𝑖 ∈ [𝑙], we set 𝑐𝑖 := |𝛽(𝑣𝑖) | and observe that, since
(T, 𝛽, r) has width 𝑡 − 1, 𝑐𝑖 ∈ [𝑡].

Let 𝐶 be the word 𝑐1 · · · 𝑐𝑥 . Since 𝑥 = 𝑚𝑡 and every 𝑐𝑖 ∈ [𝑡], then, due to Proposition 10.4,
there is a 𝑡′ ∈ [𝑡] and a subword 𝐶′ of 𝐶 such that, for every 𝑐 in 𝐶′, 𝑐 ≥ 𝑡′ and there are at least
𝑚 numbers in 𝐶′ that are equal to 𝑡′. Therefore, there exists a set {𝑧1, . . . , 𝑧𝑚} ⊆ 𝑉 (T) such that
for every 𝑖 ∈ [2, 𝑚], 𝑧𝑖 is a descendant of 𝑧𝑖−1 in (T, r), for every 𝑧′ ∈ 𝑉 (𝑧1T𝑧𝑚) it holds that
|𝛽(𝑧′) | ≥ 𝑡′, and, for every 𝑖 ∈ [𝑚], |𝛽(𝑧𝑖) | = 𝑡′. Hence, Property (3) of the tree decomposition
(T, 𝛽, r) of G implies that there exists a collection P = {𝑃1, . . . , 𝑃𝑡′} of 𝑡′ vertex-disjoint paths in
𝐺 between 𝛽(𝑧1) and 𝛽(𝑧𝑚).

For every 𝑖 ∈ [𝑚], let 𝜌𝑖 be the function mapping a vertex 𝑣 in 𝛽(𝑧𝑖) to the index of the
path of P it intersects, i.e., for every 𝑗 ∈ [𝑡′], if 𝑣 is a vertex in 𝑉 (𝑃 𝑗) ∩ 𝛽(𝑧𝑖), where 𝑃 𝑗 ∈ P,
then 𝜌𝑖 (𝑣) = 𝑗. Also, for every 𝑖 ∈ [𝑚], let G𝑧𝑖 be the 𝑡′-boundaried graph (𝐺𝑧𝑖 , 𝛽(𝑧𝑖), 𝜌𝑖). Since,
𝑚 = 2(𝑡2) · (𝑑 − 1) + 1, there is a set 𝐽 ⊆ [𝑚] of size 𝑑 such that for every 𝑖, 𝑗 ∈ 𝐽 , the graph
𝐺𝑧𝑖 [𝛽(𝑧𝑖)] is isomorphic to the graph 𝐺𝑧 𝑗 [𝛽(𝑧 𝑗)]. Therefore, for every 𝑖, 𝑗 ∈ 𝐽 , G𝑧𝑖 and G𝑧 𝑗 are
compatible. Furthermore, observe that for every 𝑖, 𝑗 ∈ 𝐽 with 𝑖 ≤ 𝑗, G𝑧 𝑗 ⪯ G𝑧𝑖 . To see why this
holds, for every 𝑖, 𝑗 ∈ 𝐽 with 𝑖 < 𝑗, let P𝑖, 𝑗 be the collection of subpaths of P between the vertices
of 𝛽(𝑧𝑖) and 𝛽(𝑧 𝑗) and consider the graph 𝐺𝑧𝑖 [𝛽(𝑧𝑖)] ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃P𝑖, 𝑗 ∪ 𝐺𝑧 𝑗 , which is a subgraph of 𝐺𝑧𝑖 .
By contracting the edges in P𝑖, 𝑗 , we obtain a boundaried graph isomorphic to G𝑧 𝑗 .

Recall that | 𝐽 | = 𝑑 = 𝑓14(𝑡 − 1, 𝑘) + 1. Thus, by Lemma 7.6, there exist 𝑖, 𝑗 ∈ 𝐽 such that 𝑗
is the smallest element in 𝐽 that is greater than 𝑖 and char𝑘 (G𝑧𝑖) = char𝑘 (G𝑧 𝑗). For simplicity,
we set 𝑎 := 𝑧𝑖 and 𝑏 := 𝑧 𝑗 . Notice that, in 𝐺, by contracting the edges of the paths in P𝑖, 𝑗 and
removing the vertices of 𝐺𝑎 that are not vertices of 𝐺𝑏, we obtain a graph isomorphic to Ḡ𝑎 ⊕ G𝑏.
Therefore, Ḡ𝑎 ⊕ G𝑏 is a minor of 𝐺. Furthermore, |𝑉 (Ḡ𝑎 ⊕ G𝑏) | < |𝑉 (𝐺) |. To prove this, we
argue that 𝐺𝑏 is a proper subgraph of 𝐺𝑎. First recall that for every 𝑦 ∈ 𝑉 (𝑎T𝑏), |𝛽(𝑦) | ≥ 𝑡′.
If there is a 𝑦 ∈ 𝑉 (𝑎T𝑏) such that |𝛽(𝑦) | > 𝑡′, then there is a vertex 𝑣 ∈ 𝛽(𝑦) that is a vertex
of 𝑉 (𝐺𝑎) \ 𝑉 (𝐺𝑏) and thus 𝐺𝑏 is a proper subgraph of 𝐺𝑎, while in the case where for every
𝑦 ∈ 𝑉 (𝑎T𝑏), |𝛽(𝑦) | = 𝑡′, Property (2) of Proposition 10.3 implies that 𝐺𝑏 is a proper subgraph of
𝐺𝑎.

Let 𝐺′ := Ḡ𝑎 ⊕ G𝑏. Since |𝑉 (𝐺′) | < |𝑉 (𝐺) |, 𝐺′ is a minor of 𝐺, and 𝐺 ∈ obs(E𝑘 (exc(F))),
it holds that 𝐺′ ∈ E𝑘 (exc(F)). By Lemma 7.16, since char𝑘 (G𝑎) = char𝑘 (G𝑏), we have that
edexc(F) (Ḡ𝑎⊕G𝑎) = edexc(F) (Ḡ𝑎⊕G𝑏) and therefore edexc(F) (𝐺) = edexc(F) (𝐺′). This contradicts
the fact that edexc(F) (𝐺) > 𝑘 and edexc(F) (𝐺′) ≤ 𝑘. ■

72 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

11. Concluding remarks

For a minor-closed graph class G, we proved that Vertex Deletion to G can be solved in time
2poly(𝑘) · 𝑛2 and that Elimination Distance to G can be solved in time 222poly(𝑘)

· 𝑛2, and in time
22𝑐·𝑘2 log 𝑘 · 𝑛2 and 2poly(𝑘) · 𝑛3 in the case where the obstruction set of G contains an apex-graph.
Here the degree of poly and 𝑐 heavily depend on the size of the obstructions of G. An open
question is whether poly(𝑘) could be replaced by 𝑐 · 𝑘𝑑 for some constant 𝑐 depending on G
and some universal constant 𝑑 (independent of G). We tend to believe that this dependence on
G in the exponent of the polynomial is unavoidable, at least if we want to use the irrelevant
vertex technique, and specially our definition of homogeneity.

On the other hand, we are not aware, for any of the two considered problems, of any
lower bound, assuming the Exponential Time Hypothesis [36], stronger than 2𝑜(𝑘) · 𝑛O(1) , which
follows quite easily from known results for Vertex Cover. Proving stronger lower bounds
seems to be quite challenging.

Another open problem is whether it is possible to drop the time complexity of Elimination
Distance to G to 2poly(𝑘) · 𝑛2 for every minor-closed graph class G. We tend to believe that this
should be possible. However, it seems to require to use branching ingeniously and, in particular,
to find equivalent instances of Elimination Distance to G with a decreasing value of 𝑘.

As for the polynomial running time of our FPT-algorithms, a priori, nothing prevents the
existence of algorithms running in linear time, although we are quite far from achieving this.
Kawarabayashi [41] presented such a linear FPT-algorithm for the Planarization problem,
heavily relying on the embedding on the resulting planar graph. Extending this technique
to general minor-closed classes would require a very compact encoding of the (entangled)
structure of minor-free graphs [64] that would be possible to handle in linear time.

We also proposed an XP-algorithm for Elimination Distance to G parameterized by the
treewidth of the input graph (with running time 𝑛O(tw2)). As mentioned in the introduction (see
also [4]), the existence of an FPT-algorithm for Elimination Distance to G, parameterized
by treewidth, remains wide open and this is the case even in the very special case where G
contains only the empty graph, where Elimination Distance to G is equivalent to the problem
of computing treedepth.

A last direction is to improve the bounds on the size of the obstructions given in Theorem 1.5.
We believe that any substantial improvement should demand novel methodologies that go
beyond the irrelevant vertex technique.

73 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

References
[1] Isolde Adler, Frederic Dorn, Fedor V. Fomin,
Ignasi Sau, and Dimitrios M. Thilikos. Faster
parameterized algorithms for minor containment.
Theoretical Computer Science, 412(50):7018–7028,
2011. DOI (19)

[2] Isolde Adler, Martin Grohe, and Stephan Kreutzer.
Computing excluded minors. Proc. of the 19th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 641–650, 2008. URL
(4)

[3] Isolde Adler, Stavros G. Kolliopoulos,
Philipp Klaus Krause, Daniel Lokshtanov,
Saket Saurabh, and Dimitrios M. Thilikos. Irrelevant
vertices for the planar disjoint paths problem.
Journal of Combinatorial Theory, Series B,
122:815–843, 2017. DOI (14)

[4] Akanksha Agrawal, Lawqueen Kanesh,
Daniel Lokshtanov, Fahad Panolan,
M. S. Ramanujan, Saket Saurabh, and
Meirav Zehavi. Deleting, Eliminating and
Decomposing to Hereditary Classes Are All
FPT-Equivalent. Proc. of the 2022 ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 1976–2004, 2022. DOI (5, 6, 72)

[5] Akanksha Agrawal, Lawqueen Kanesh,
Fahad Panolan, M. S. Ramanujan, and
Saket Saurabh. A fixed-parameter tractable
algorithm for elimination distance to bounded
degree graphs. SIAM J. Discret. Math.
36(2):911–921, 2022. DOI (5)

[6] Akanksha Agrawal and M. S. Ramanujan. On the
parameterized complexity of clique elimination
distance. Proc. of the 15th International Symposium
on Parameterized and Exact Computation (IPEC),
volume 180 of LIPIcs, 1:1–1:13, 2020. DOI (5)

[7] Ernst Althaus and Sarah Ziegler. Optimal tree
decompositions revisited: a simpler linear-time fpt
algorithm, Graphs and Combinatorial Optimization:
from Theory to Applications. Volume 5, AIRO
Springer Series, pages 67–78. Springer, 2021. DOI
(20)

[8] Stefan Arnborg, Derek G. Corneil, and
Andrzej Proskurowski. Complexity of finding
embeddings in a 𝑘-tree. SIAM Journal on Algebraic
Discrete Methods, 8(2):277–284, 1987. DOI (56)

[9] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos.
A complexity dichotomy for hitting connected
minors on bounded treewidth graphs: the chair and
the banner draw the boundary. Proc. of the 31st
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 951–970, 2020. DOI
(8, 10, 12, 21, 24, 32, 39)

[10] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos.
Hitting minors on bounded treewidth graphs. I.
General upper bounds. SIAM Journal on Discrete
Mathematics, 34(3):1623–1648, 2020. DOI (10)

[11] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos.
Hitting minors on bounded treewidth graphs. II.
Single-exponential algorithms. Theoretical
Computer Science, 814:135–152, 2020. DOI (10)

[12] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos.
Hitting minors on bounded treewidth graphs. III.
Lower bounds. Journal of Computer and System
Sciences, 109:56–77, 2020. DOI (10)

[13] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos.
Hitting minors on bounded treewidth graphs. IV. an
optimal algorithm. SIAM J. Comput. 52(4):865–912,
2023. DOI (14)

[14] Patrick Bellenbaum and Reinhard Diestel. Two
short proofs concerning tree-decompositions.
Combinatorics, Probability and Computing,
11(6):541–547, 2002. DOI (70)

[15] Hans L. Bodlaender, John R. Gilbert, Ton Kloks,
and Hjálmtyr Hafsteinsson. Approximating
treewidth, pathwidth, and minimum elimination
tree height. Proc. of the 17th International
Workshop on Graph-Theoretic Concepts in
Computer Science (WG), volume 570 of LNCS,
pages 1–12, 1991. DOI (4, 5, 19)

[16] Jannis Bulian and Anuj Dawar. Fixed-parameter
tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. DOI (2, 4, 61)

[17] Jannis Bulian and Anuj Dawar. Graph isomorphism
parameterized by elimination distance to bounded
degree. Algorithmica, 75(2):363–382, 2016. DOI
(2)

[18] Dimitris Chatzidimitriou, Dimitrios M. Thilikos, and
Dimitris Zoros. Sparse obstructions for
minor-covering parameters. Discrete Applied
Mathematics, 278:28–50, 2020. DOI (70)

[19] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik,
Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015. DOI
(3)

[20] Reinhard Diestel. Graph Theory, volume 173.
Springer-Verlag, 5th edition, 2017. DOI (8, 35, 64)

[21] Rodney G. Downey and Michael R. Fellows.
Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013. DOI (3)

[22] Zdenek Dvorák, Archontia C. Giannopoulou, and
Dimitrios M. Thilikos. Forbidden graphs for
tree-depth. European Journal of Combinatorics,
33(5):969–979, 2012. DOI (7, 67)

[23] Eduard Eiben, Robert Ganian, Thekla Hamm, and
O-joung Kwon. Measuring what matters: A hybrid
approach to dynamic programming with treewidth.
Journal of Computer and System Sciences,
121:57–75, 2021. DOI (5)

[24] Joshua Erde. A unified treatment of linked and lean
tree-decompositions. Journal of Combinatorial
Theory, Series B, 130:114–143, 2018. DOI (70)

[25] Jörg Flum and Martin Grohe. Parameterized
Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2006. DOI
(3)

https://doi.org/10.1016/j.tcs.2011.09.015
http://dl.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/21M1396824
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.1007/978-3-030-63072-0_6
https://doi.org/10.1137/0608024
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/19M1287146
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1137/21M140482X
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1016/j.dam.2019.10.021
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.ejc.2011.09.014
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1016/j.jctb.2017.12.001
https://doi.org/10.1007/3-540-29953-X

74 / 75 L. Morelle, I. Sau, G. Stamoulis, D.M. Thilikos

[26] Fedor V. Fomin, Petr A. Golovach, Ignasi Sau,
Giannos Stamoulis, and Dimitrios M. Thilikos.
Compound logics for modification problems. 50th
International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023,
Paderborn, Germany, volume 261 of LIPIcs,
61:1–61:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. DOI (14)

[27] Fedor V. Fomin, Petr A. Golovach, and
Dimitrios M. Thilikos. Parameterized complexity of
elimination distance to first-order logic properties.
ACM Transactions on Computational Logic,
23(3):17:1–17:35, 2022. DOI (5)

[28] Fedor V. Fomin, Daniel Lokshtanov,
Neeldhara Misra, and Saket Saurabh. Planar
F -Deletion: Approximation, Kernelization and
Optimal FPT Algorithms. Proc. of the 53rd Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 470–479, 2012. DOI (4,
10)

[29] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan,
Saket Saurabh, and Meirav Zehavi. Hitting
topological minors is FPT. Proc. of the 52nd Annual
ACM Symposium on Theory of Computing (STOC),
pages 1317–1326, 2020. DOI (4, 10)

[30] Archontia C. Giannopoulou, O-joung Kwon,
Jean-Florent Raymond, and Dimitrios M. Thilikos.
A menger-like property of tree-cut width. J. Comb.
Theory B, 148:1–22, 2021. DOI (8)

[31] Archontia C. Giannopoulou, Michal Pilipczuk,
Jean-Florent Raymond, Dimitrios M. Thilikos, and
Marcin Wrochna. Cutwidth: obstructions and
algorithmic aspects. Algorithmica, 81(2):557–588,
2019. DOI (8, 70)

[32] Archontia C. Giannopoulou, Michal Pilipczuk,
Jean-Florent Raymond, Dimitrios M. Thilikos, and
Marcin Wrochna. Linear kernels for edge deletion
problems to immersion-closed graph classes. Proc.
of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 80
of LIPIcs, 57:1–57:15, 2017. DOI (8)

[33] Petr A. Golovach, Giannos Stamoulis, and
Dimitrios M. Thilikos. Combing a linkage in an
annulus. SIAM J. Discret. Math. 37(4):2332–2364,
2023. DOI (14)

[34] Petr A. Golovach, Giannos Stamoulis, and
Dimitrios M. Thilikos. Model-checking for
first-order logic with disjoint paths predicates in
proper minor-closed graph classes. Proceedings of
the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 3684–3699. SIAM, 2023. DOI
(14)

[35] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A
structural view on parameterizing problems:
distance from triviality. Proc. of the 1st International
Workshop on Parameterized and Exact
Computation (IWPEC), volume 3162 of LNCS,
pages 162–173, 2004. DOI (2)

[36] Russell Impagliazzo, Ramamohan Paturi, and
Francis Zane.Which problems have strongly
exponential complexity? Journal of Computer and
System Sciences, 63(4):512–530, 2001. DOI (72)

[37] Bart M. P. Jansen, Jari J. H. de Kroon, and
Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. Proc. of the
53rd Annual ACM-SIGACT Symposium on Theory of
Computing (STOC), pages 1757–1769, 2021. DOI
(5)

[38] Bart M. P. Jansen, Daniel Lokshtanov, and
Saket Saurabh. A near-optimal planarization
algorithm. Proc. of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 1802–1811, 2014. DOI (4)

[39] Mamadou Moustapha Kanté and O-joung Kwon.
An upper bound on the size of obstructions for
bounded linear rank-width, 2014. URL (8)

[40] Mamadou Moustapha Kanté and O-joung Kwon.
Linear rank-width of distance-hereditary graphs II.
vertex-minor obstructions. European Journal of
Combinatorics, 74:110–139, 2018. DOI (8)

[41] Ken-ichi Kawarabayashi. Planarity allowing few
error vertices in linear time. Proc. of the 50th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 639–648, 2009.
DOI (72)

[42] Ken-ichi Kawarabayashi and Yusuke Kobayashi.
Linear min-max relation between the treewidth of
an H-minor-free graph and its largest grid minor.
Journal of Combinatorial Theory, Series B,
141:165–180, 2020. DOI (24)

[43] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and
Bruce A. Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory,
Series B, 102(2):424–435, 2012. DOI (4, 22)

[44] Ken-ichi Kawarabayashi, Robin Thomas, and
Paul Wollan. A new proof of the flat wall theorem.
Journal of Combinatorial Theory, Series B,
129:204–238, 2018. DOI (7, 13, 22, 24, 25)

[45] Ken-ichi Kawarabayashi and Paul Wollan. A
Shorter Proof of the Graph Minor Algorithm: The
Unique Linkage Theorem. Proc. of the 42nd ACM
Symposium on Theory of Computing (STOC),
pages 687–694, 2010. DOI (14, 15)

[46] Eun Jung Kim, Alexander Langer, Christophe Paul,
Felix Reidl, Peter Rossmanith, Ignasi Sau, and
Somnath Sikdar. Linear kernels and
single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms,
12(2):21:1–21:41, 2016. DOI (4, 10)

[47] Eun Jung Kim, Maria J. Serna, and
Dimitrios M. Thilikos. Data-compression for
parametrized counting problems on sparse graphs.
Proc. of the 29th International Symposium on
Algorithms and Computation (ISAAC), volume 123
of LIPIcs, 20:1–20:13, 2018. DOI (10)

[48] Ton Kloks. Treewidth, Computations and
Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994. DOI (3)

[49] Tomasz Kociumaka and Marcin Pilipczuk. Deleting
Vertices to Graphs of Bounded Genus.
Algorithmica, 81(9):3655–3691, 2019. DOI (4)

https://doi.org/10.4230/LIPICS.ICALP.2023.61
https://doi.org/10.1145/3517129
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1016/J.JCTB.2020.12.005
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.4230/LIPIcs.ICALP.2017.57
https://doi.org/10.1137/22M150914X
https://doi.org/10.1137/1.9781611977554.CH141
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1137/1.9781611973402.130
http://arxiv.org/abs/1412.6201
https://doi.org/10.1016/j.ejc.2018.07.009
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/j.jctb.2019.07.007
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1145/1806689.1806784
https://doi.org/10.1145/2797140
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/s00453-019-00592-7

75 / 75 Faster parameterized algorithms for modification problems to minor-closed classes

[50] Tuukka Korhonen. A single-exponential time
2-approximation algorithm for treewidth. Proc. of
the 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 184–192, 2021.
DOI (19)

[51] Jens Lagergren. An upper bound on the size of an
obstruction, Graph Structure Theory. Volume 147,
Contemporary Mathematics, pages 601–621.
American Mathematical Society, 1991. DOI (8)

[52] Jens Lagergren. Upper bounds on the size of
obstructions and intertwines. Journal of
Combinatorial Theory, Series B, 73:7–40, 1998.
DOI (8, 70)

[53] Jens Lagergren and Stefan Arnborg. Finding
minimal forbidden minors using a finite congruence.
Proc. of the 18th International Colloquium on
Automata, Languages and Programming (ICALP),
volume 510 of LNCS, pages 532–543, 1991. DOI
(8)

[54] John M. Lewis and Mihalis Yannakakis. The
node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System
Sciences, 20(2):219–230, 1980. DOI (3)

[55] Dániel Marx and Ildikó Schlotter. Obtaining a
planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. DOI (4, 7, 15)

[56] Laure Morelle, Ignasi Sau, Giannos Stamoulis, and
Dimitrios M. Thilikos. Faster Parameterized
Algorithms for Modification Problems to
Minor-Closed Classes. Proc. of the 50th
International Colloquium on Automata, Languages,
and Programming (ICALP), volume 261 of Leibniz
International Proceedings in Informatics (LIPIcs),
93:1–93:19, Dagstuhl, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. DOI (1)

[57] Jaroslav Nesetril and Patrice Ossona de Mendez.
Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics.
Springer, 2012. DOI (3)

[58] Rolf Niedermeier. Invitation to fixed parameter
algorithms, volume 31. Oxford University Press,
2006. DOI (3)

[59] Ljubomir Perkovic and Bruce A. Reed. An improved
algorithm for finding tree decompositions of small
width. International Journal of Foundations of
Computer Science, 11(3):365–371, 2000. DOI
(56)

[60] Alex Pothen. The complexity of optimal elimination
trees. Technical Report. Pennsylvania State
University. Dept. of Computer Science, 1988. URL
(3)

[61] Felix Reidl, Peter Rossmanith,
Fernando Sánchez Villaamil, and Somnath Sikdar.
A faster parameterized algorithm for treedepth.
Proc. of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP),
volume 8572 of LNCS, pages 931–942, 2014. DOI
(4, 6, 8, 39, 40, 67)

[62] Neil Robertson and Paul D. Seymour. Graph Minors.
V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(2):92–114, 1986.

DOI (69, 70)

[63] Neil Robertson and Paul D. Seymour. Graph Minors.
XIII. The Disjoint Paths Problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995.

DOI (4, 7, 24)

[64] Neil Robertson and Paul D. Seymour. Graph Minors.
XVI. Excluding a non-planar graph. Journal of
Combinatorial Theory, Series B, 89(1):43–76, 2003.
DOI (72)

[65] Neil Robertson and Paul D. Seymour. Graph Minors.
XX. Wagner’s conjecture. Journal of Combinatorial
Theory, Series B, 92(2):325–357, 2004. DOI (4,
10)

[66] Neil Robertson and Paul D. Seymour. Graph Minors.
XXI. Graphs with unique linkages. Journal of
Combinatorial Theory, Series B, 99(3):583–616,
2009. DOI (14)

[67] Neil Robertson and Paul D. Seymour. Graph Minors.
XXII. Irrelevant vertices in linkage problems.
Journal of Combinatorial Theory, Series B,
102(2):530–563, 2012. DOI (14)

[68] Ignasi Sau, Giannos Stamoulis, and
Dimitrios M. Thilikos. A more accurate view of the
Flat Wall Theorem, 2021. URL (7, 11, 13, 14, 22,
24, 25, 27)

[69] Ignasi Sau, Giannos Stamoulis, and
Dimitrios M. Thilikos. k-apices of minor-closed
graph classes. i. bounding the obstructions. J.
Comb. Theory B, 161:180–227, 2023. DOI (7, 8,
11, 14, 15, 22, 25, 29, 31, 70)

[70] Ignasi Sau, Giannos Stamoulis, and
Dimitrios M. Thilikos. k-apices of minor-closed
graph classes. II. parameterized algorithms. ACM
Trans. Algorithms, 18(3):21:1–21:30, 2022. DOI
(4–7, 10–16, 22, 25, 31, 33, 56, 60)

[71] Robin Thomas. A Menger-like property of
tree-width: The finite case. Journal of
Combinatorial Theory, Series B, 48(1):67–76, 1990.
DOI (69, 70)

[72] Andrew Thomason. The extremal function for
complete minors. Journal of Combinatorial Theory,
Series B, 81(2):318–338, 2001. DOI (10)

2024 : 19
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Laure Morelle, Ignasi Sau, Giannos Stamoulis, Dimitrios M. Thilikos.

https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1090/conm/147/01202
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1142/S0129054100000247
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2008.08.003
https://doi.org/10.1016/j.jctb.2007.12.007
https://arxiv.org/abs/2102.06463
https://doi.org/10.1016/J.JCTB.2023.02.012
https://doi.org/10.1145/3519028
https://doi.org/10.1016/0095-8956(90)90130-R
https://doi.org/10.1016/0095-8956(90)90130-R
https://doi.org/10.1006/jctb.2000.2013

	Introduction
	Basic definitions and restatement of the problems
	Basic definitions
	Restating the problems

	Sketch of the algorithms
	More definitions
	F-elimination trees
	Tree decompositions
	Boundaried graphs and representatives

	Even more definitions: Flat walls
	Walls and subwalls
	Paintings and renditions
	Flatness pairs
	Canonical partitions
	Bidimensionality of sets
	Homogeneous walls

	Vertex deletion to a minor-closed graph class
	Description of the algorithm for F-M-Deletion
	Correctness of the algorithm

	Solving F-M-Elimination Distance on tree decompositions
	Some additional notation
	Annotated trees
	Characteristic of a boundaried graph
	The procedures
	Forget procedure
	Introduce procedure
	Join procedure

	The algorithm
	Exchangeability of boundaried graphs with the same characteristic

	Elimination distance to a minor-closed graph class
	Quickly finding a wall
	Description of the algorithm for F-M-Elimination Distance
	Correctness of the algorithm

	Elimination distance when excluding an apex-graph
	Generalization to annotated elimination distance
	Description of the algorithm for F-M-Elimination Distance when aF=1
	Correctness of the algorithm

	Bounding the obstructions of Ek(exc(F))
	Bounding the treewidth of an obstruction
	Bounding the size of an obstruction of small treewidth

	Concluding remarks
	References

