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ABSTRACT. We show that feasibility of the 𝑡th level of the Lasserre semidefinite programming
hierarchy for graph isomorphism can be expressed as a homomorphism indistinguishability
relation. In other words, we define a class L𝑡 of graphs such that graphs 𝐺 and 𝐻 are not
distinguished by the 𝑡th level of the Lasserre hierarchy if and only if they admit the same
number of homomorphisms from any graph in L𝑡. By analysing the treewidth of graphs in L𝑡,
we prove that the 3𝑡th level of Sherali–Adams linear programming hierarchy is as strong as the
𝑡th level of Lasserre. Moreover, we show that this is best possible in the sense that 3𝑡 cannot be
lowered to 3𝑡 − 1 for any 𝑡. The same result holds for the Lasserre hierarchy with non-negativity
constraints, which we similarly characterise in terms of homomorphism indistinguishability
over a family L+

𝑡 of graphs. Additionally, we give characterisations of level-𝑡 Lasserre with non-
negativity constraints in terms of logical equivalence and via a graph colouring algorithm akin to
the Weisfeiler–Leman algorithm. This provides a polynomial time algorithm for determining if
two given graphs are distinguished by the 𝑡th level of the Lasserre hierarchy with non-negativity
constraints.
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1. Introduction

The aim of this paper is to relate two rich sets of tools used to distinguish non-isomorphic graphs:
the Lasserre semidefinite programming hierarchy and homomorphism indistinguishability.

Distinguishing non-isomorphic graphs is a ubiquitous problem in the theoretical and
practical study of graphs. The ability of certain graph invariants to distinguish graphs has
long been a rich area of study, leading to fundamental questions such as the long-standing
open problem of whether almost all graphs are determined by their spectrum [39]. In practice,
deploying e.g. machine learning architectures powerful enough to distinguish graphs with
different features is of great importance [16]. This motivates an in-depth study of the power of
various graph invariants and tools used to distinguish graphs.

Among such techniques is the Lasserre semidefinite programming hierarchy [21] which can
be used to relax the integer quadratic program for graph isomorphism ISO(𝐺, 𝐻), cf. Section 2.4.
This yields a sequence of semidefinite programs, i.e. the level-𝑡 Lasserre relaxation of ISO(𝐺, 𝐻)
for 𝑡 ≥ 1, which are infeasible for more and more non-isomorphic graphs as 𝑡 grows. In [10, 30, 5],
it was shown that in general only the level-Ω(𝑛) Lasserre system of equations can distinguish all
non-isomorphic 𝑛-vertex graphs. In [2], the Lasserre hierarchy was compared with the Sherali–
Adams linear programming hierarchy [37], which is closely related to the Weisfeiler–Leman
algorithm [40, 4, 17, 24], the arguably most relevant combinatorial method for distinguishing
graphs. In general and not only for graph isomorphism, feasibility of the level-𝑡 Lasserre
relaxation of an integer program implies feasibility of its level-𝑡 Sherali–Adams relaxation
[22]. For graph isomorphism, it was shown in [2] that the converse holds up to multiplicative
offset in the number of levels. Thus, perhaps surprisingly, the Lasserre hierarchy is not more
powerful than the Sherali–Adams hierarchies when applied to ISO(𝐺, 𝐻). More precisely, by
[2, Corollary 6.7], there exists a constant 𝑐 such that if the level-𝑐𝑡 Sherali–Adams relaxation of
ISO(𝐺, 𝐻) is feasible for two graphs 𝐺 and 𝐻 then so is the level-𝑡 Lasserre relaxation.

Another set of expressive equivalence relations comparing graphs is given by homomor-
phism indistinguishability, a notion originating from the study of graph substructure counts.
Two graphs 𝐺 and 𝐻 are homomorphism indistinguishable over a family of graphs F , in symbols
𝐺 ≡F 𝐻 , if the number of homomorphisms from 𝐹 to 𝐺 is equal to the number of homomor-
phisms from 𝐹 to 𝐻 for every graph 𝐹 ∈ F . The study of this notion began in 1967, when
Lovász [23] showed that two graphs 𝐺 and 𝐻 are isomorphic if and only if they are homo-
morphism indistinguishable over all graphs. In recent years, many prominent equivalence
relations comparing graphs were characterised as homomorphism indistinguishability rela-
tions over restricted graph classes [13, 14, 15, 11, 25, 18, 3, 28, 1, 32, 31]. For example, a folklore
result asserts that two graphs have cospectral adjacency matrices iff they are homomorphism
indistinguishable over all cycle graphs, cf. [18]. Two graphs are quantum isomorphic iff they
are homomorphism indistinguishable over all planar graphs [25]. Furthermore, feasibility of
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the level-𝑡 Sherali–Adams relaxation of ISO(𝐺, 𝐻) has been characterised as homomorphism
indistinguishability over all graphs of treewidth at most 𝑡 − 1 [4, 17, 24]. In this way, notions
from logic [14, 15, 31], category theory [11, 28, 1], algebraic graph theory [13, 18], and quantum
groups [25] have been related to homomorphism indistinguishability.

1.1 Contributions

Although feasibility of the level-𝑡 Lasserre relaxation of ISO(𝐺, 𝐻) was sandwiched between
feasibility of the level-𝑐𝑡 and level-𝑡 Sherali–Adams relaxation in [2], the constant 𝑐 remained
unknown. In fact, this 𝑐 is not explicit and depends on the implementation details of an algorithm
developed in that paper. Our main result asserts that 𝑐 can be taken to be three and that this
constant is best possible.1

THEOREM 1.1. For two graphs 𝐺 and 𝐻 and every 𝑡 ≥ 1, the following implications hold:

𝐺 ≃SA
3𝑡 𝐻 =⇒ 𝐺 ≃L

𝑡 𝐻 =⇒ 𝐺 ≃SA
𝑡 𝐻

Furthermore, for every 𝑡 ≥ 1, there exist graphs 𝐺 and 𝐻 such that 𝐺 ≃SA
3𝑡−1 𝐻 and 𝐺 ;L

𝑡 𝐻 .

Here, 𝐺 ≃L
𝑡 𝐻 and 𝐺 ≃SA

𝑡 𝐻 denote that the level-𝑡 Lasserre relaxation and respectively the
level-𝑡 Sherali–Adams relaxation of ISO(𝐺, 𝐻) are feasible.

Theorem 1.1 is proven using the framework of homomorphism indistinguishability. In
previous works [13, 27, 18, 31], the feasibility of various systems of equations associated to
graphs like the Sherali–Adams relaxation of ISO(𝐺, 𝐻) was characterised in terms of homo-
morphism indistinguishability over certain graph classes. We continue this line of research by
characterising the feasibility of the level-𝑡 Lasserre relaxation of ISO(𝐺, 𝐻) by homomorphism
indistinguishability of 𝐺 and 𝐻 over the novel class of graphs L𝑡 introduced in Definition 4.1.

THEOREM 1.2. For every integer 𝑡 ≥ 1, there is a minor-closed graph class L𝑡 of graphs of
treewidth at most 3𝑡 − 1 such that for all graphs 𝐺 and 𝐻 it holds that 𝐺 ≃L

𝑡 𝐻 if and only if
𝐺 ≡L𝑡 𝐻 .

The bound on the treewidth of graphs in L𝑡 in Theorem 1.2 yields the upper bound in
Theorem 1.1 given the result of [4, 17, 2, 14] that two graphs𝐺 and𝐻 satisfy𝐺 ≃SA

𝑡 𝐻 if and only if
they are homomorphism indistinguishable over the class TW𝑡−1 of graphs of treewidth at most
𝑡−1. To our knowledge, Theorem 1.1 is the first result which tightly relates equivalence relations

1 The constant 𝑐 in [2, Theorem 6.3] depends on the implementation details of the algorithm that yields their Corollary 5.1.
This algorithm is also dependent on the precise version of the Lasserre system of equations used there. As discussed
in Section 2.4 and Appendix A, our Lasserre system of equations is defined slightly differently. In Theorem 1.1, we
abstract from these details by proving a statement that involves only the equivalence relations ≃SA𝑡 and ≃L𝑡 . Since
our Lasserre formulation and the one in [2] are equivalent (Lemma A.1), Theorem 1.1 yields that 𝑐 in [2, Theorem 6.3]
can be taken to be three (and that this is best possible). Our results do not imply bounds on the complexity of the
algorithm yielding [2, Corollary 5.1].
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OP PW2𝑡−1 TWmax{2𝑡−1,2}

TW𝑡−1 L𝑡 L+
𝑡 TW3𝑡−1

Figure 1. Relationship between L𝑡, L+
𝑡 , the classes of graphs of bounded treewidth, bounded

pathwidth, and the class of outerplanar graphs. An arrow A → B indicates that A ⊆ B and thus that
𝐺 ≡B 𝐻 implies 𝐺 ≡A 𝐻 for all graphs 𝐺 and 𝐻. For formal statements, see Sections 4.1 and 4.4.

on graphs by comparing the graph classes which characterise them in terms of homomorphism
indistinguishability.

Our techniques extend to a stronger version of the Lasserre hierarchy which imposes
non-negativity constraints on all variables. Denoting feasibility of the level-𝑡 Lasserre relaxation
of ISO(𝐺, 𝐻) with non-negativity constraints by 𝐺 ≃L+

𝑡 𝐻 , we characterise ≃L+
𝑡 in terms of

homomorphism indistinguishability over the graph class L+
𝑡 , defined in Definition 4.1 as a super

class of L𝑡. This is in line with previous work in [13, 18], where the feasibility of the level-𝑡
Sherali–Adams relaxation of ISO(𝐺, 𝐻) without non-negativity constraints was characterised as
homomorphism indistinguishable over the class PW𝑡−1 of graphs of pathwidth at most 𝑡 − 1.

THEOREM 1.3. For every integer 𝑡 ≥ 1, there is a minor-closed graph class L+
𝑡 of graphs of

treewidth at most 3𝑡 − 1 such that for all graphs 𝐺 and 𝐻 it holds that 𝐺 ≃L+
𝑡 𝐻 if and only if

𝐺 ≡L+
𝑡
𝐻 .

Given the aforementioned correspondence between the Sherali–Adams relaxation with
and without non-negativity constraints and homomorphism indistinguishability over graphs of
bounded treewidth and pathwidth, we conduct a detailed study of the relationship between
the class of graphs of bounded treewidth, pathwidth, and the classes L𝑡 and L+

𝑡 . Their results,
depicted in Figure 1, yield independent proofs of the known relations between feasibility of
the Lasserre relaxation with and without non-negativity constraints and the Sherali–Adams
relaxation with and without non-negativity constraints [5, 2, 18] using the framework of homo-
morphism indistinguishability.

In the course of proving Theorems 1.2 and 1.3, we derive further equivalent characteri-
sations of ≃L

𝑡 and ≃L+
𝑡 . These characterisations, which are mostly of a linear algebraic nature,

ultimately yield a characterisation of ≃L+
𝑡 in terms of a fragment of first-order logic with counting

quantifiers and indistinguishability under a polynomial time algorithm akin to the Weisfeiler–
Leman algorithm. In this way, we obtain the following algorithmic result. It implies that exact
feasibility of the Lasserre semidefinite program with non-negativity constraints can be tested in
polynomial time. In general, only the approximate feasibility of semidefinite programs can be
decided efficiently, e.g. using the ellipsoid method [20, 2]. Our reformulations of ≃L

𝑡 fall short of
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yielding a polynomial-time algorithm for exact feasibility of the Lasserre semidefinite program
without non-negativity constraints.

THEOREM 1.4. Let 𝑡 ≥ 1. Given graphs 𝐺 and 𝐻 , it can be decided in polynomial time whether
𝐺 ≃L+

𝑡 𝐻 .

Finally, for 𝑡 = 1, we show that L1 and L+
1 are respectively equal to the class OP of

outerplanar graphs and to the class of graphs of treewidth at most 2. The following Theorem 1.5
parallels a result of [25] asserting that two graphs 𝐺 and 𝐻 are indistinguishable under the
2-WL algorithm iff 𝐺 ≃L+

1 𝐻 .

THEOREM 1.5. Two graphs 𝐺 and 𝐻 satisfy 𝐺 ≃L
1 𝐻 if and only if 𝐺 ≡OP 𝐻 .

1.2 Techniques

In the first part of the paper (Section 3), linear algebraic tools developed in [26, 25] are gener-
alised to yield reformulations of the entire Lasserre hierarchy with and without non-negativity
constraints. Section 4 is concerned with the graph theoretic properties of the graph classes L𝑡

and L+
𝑡 . For understanding the homomorphism indistinguishability relations over these graph

classes, the framework of bilabelled graphs and their homomorphism tensors developed in
[27, 18] is used. Despite this, our approach is different from [18, 31] in the sense that here the
graph classes L𝑡 and L+

𝑡 are inferred from given systems of equations, namely the Lasserre
relaxation, rather than that a system of equations is built for a given graph class.

2. Preliminaries

2.1 Linear Algebra

Let PSD denote the family of real positive semidefinite matrices, i.e. of matrices 𝑀 of the
form 𝑀𝑖 𝑗 = 𝑣

𝑇
𝑖
𝑣 𝑗 for vectors 𝑣1, . . . , 𝑣𝑛, the Gram vectors of 𝑀 . Write 𝑀 ⪰ 0 iff 𝑀 ∈ PSD. Let

DNN denote the family of doubly non-negative matrices, i.e. of entry-wise non-negative positive
semidefinite matrices.

Let 𝑛, 𝑚 ≥ 1. Write id𝑛 ∈ C𝑛×𝑛 for the identity matrix. The tensor product of two matrices
𝑋 = (𝑥𝑖 𝑗) ∈ C𝑛×𝑛 and 𝑌 ∈ C𝑚×𝑚 is the block matrix

𝑋 ⊗ 𝑌 =

©­­­«
𝑥11𝑌 . . . 𝑥1𝑛𝑌
... . . . ...

𝑥𝑛1𝑌 . . . 𝑥𝑛𝑛𝑌

ª®®®¬ ∈ C
𝑛𝑚×𝑛𝑚.

A tensor is an element 𝐴 ∈ C𝑛𝑡×𝑛𝑡 for some 𝑛, 𝑡 ∈ N. For a tensor 𝐴 ∈ C𝑛𝑡×𝑛𝑡 , write
soe(𝐴) B ∑𝑛𝑡

𝑖, 𝑗=1 𝐴𝑖 𝑗 for its sum-of-entries. The symmetric group 𝔖2𝑡 acts on C𝑛𝑡×𝑛𝑡 by permuting
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the coordinates, i.e. for all 𝒖, 𝒗 ∈ [𝑛]𝑡 and 𝜎 ∈ 𝔖2𝑡, 𝐴𝜎 (𝒖, 𝒗) B 𝐴(𝒙, 𝒚) where 𝒙𝑖 B (𝒖𝒗)𝜎−1(𝑖)

and 𝒚 𝑗−𝑡 B (𝒖𝒗)𝜎−1( 𝑗) for all 1 ≤ 𝑖 ≤ 𝑡 < 𝑗 ≤ 2𝑡.
We recall the following lemmas from [27]. A linear map Φ: C𝑚×𝑚 → C𝑛×𝑛 is trace-

preserving if tr(Φ(𝑋)) = tr(𝑋) for all 𝑋 ∈ C𝑚×𝑚, unital if Φ(id𝑚) = id𝑛, K-preserving for a
family of matrices K if Φ(𝐾) ∈ K for all 𝐾 ∈ K , positive if it is PSD-preserving, i.e. if Φ(𝑋) is
positive semidefinite for all positive semidefinite 𝑋 , completely positive if id𝑟 ⊗Φ is positive for
all 𝑟 ∈ N. The Choi matrix of Φ is 𝐶Φ =

∑𝑚
𝑖, 𝑗=1 𝐸𝑖 𝑗 ⊗ Φ(𝐸𝑖 𝑗) ∈ C𝑚𝑛×𝑚𝑛. Here, 𝐸𝑖 𝑗 ∈ C𝑚×𝑚 denotes

the matrix whose (𝑖, 𝑗)-th entry is 1 and all whose other entries are zero. The statement of
Lemma 2.1 for PSD is well-known, cf. e.g. [9].

LEMMA 2.1 ([27, Lemma 4.4]). Consider a family of matrices K ∈ {DNN ,PSD} and a linear
map Φ: C𝑚×𝑚 → C𝑛×𝑛. The following are equivalent:

1. the map id𝑚 ⊗Φ is K-preserving,
2. the Choi matrix 𝐶Φ lies in K ,
3. Φ is completely K-preserving, i.e. id𝑟 ⊗Φ is K-preserving for all 𝑟 ∈ N.

For Φ: C𝑚×𝑚 → C𝑛×𝑛, write Φ∗ : C𝑛×𝑛 → C𝑚×𝑚 for the adjoint of Φ. As a matrix, Φ∗ is the
conjugate transpose of Φ.

LEMMA 2.2 ([27, Lemma 4.10]). Let Φ: C𝑛×𝑛 → C𝑛×𝑛 be a linear map which is completely
positive, trace-preserving, and unital. Then for any matrix 𝑋 such that Φ∗(Φ(𝑋)) = 𝑋 it holds that
Φ(𝑋𝑊) = Φ(𝑋)Φ(𝑊) and Φ(𝑊𝑋) = Φ(𝑊)Φ(𝑋) for all𝑊 ∈ C𝑛×𝑛.

A vector space A ⊆ C𝑛×𝑛 is an algebra if it is closed under matrix multiplication. It is
unital if it contains the identity matrix id𝑛. It is self-adjoint if it is closed under taking conjugate
transposes.

LEMMA 2.3 ([27, Lemma 5.1]). Let A and B be self-adjoint unital subalgebras of C𝑛×𝑛 and
𝜑 : A → B be a trace-preserving isomorphism such that 𝜑(𝑋∗) = 𝜑(𝑋)∗ for all 𝑋 ∈ A. Then there
exists a unitary𝑈 ∈ C𝑛×𝑛 such that 𝜑(𝑋) = 𝑈𝑋𝑈∗ for all 𝑋 ∈ A.

For two vectors 𝑣, 𝑤 ∈ C𝑛, write 𝑣 ⊙ 𝑤 for their Schur product, i.e. (𝑣 ⊙ 𝑤) (𝑖) B 𝑣(𝑖)𝑤(𝑖)
for all 𝑖 ∈ [𝑛].

LEMMA 2.4 ([27, Lemma 4.5]). Let 𝐷 ∈ C𝑚×𝑛 be a matrix and let 𝑢 ∈ C𝑛 and 𝑣 ∈ C𝑚. Then the
following are equivalent:

1. 𝐷(𝑢 ⊙ 𝑤) = 𝑣 ⊙ (𝐷𝑤) for all 𝑤 ∈ C𝑛,
2. 𝐷𝑖 𝑗 = 0 for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑣𝑖 ≠ 𝑢 𝑗 ,
3. 𝐷∗(𝑣 ⊙ 𝑧) = 𝑢 ⊙ (𝐷∗𝑧) for all 𝑧 ∈ C𝑚.
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2.2 Bilabelled Graphs and Homomorphism Tensors

All graphs in this article are undirected, finite, and without multiple edges. A graph is simple
if it does not contain any loops. A homomorphism ℎ : 𝐹 → 𝐺 from a graph 𝐹 to a graph 𝐺 is
a map 𝑉 (𝐹) → 𝑉 (𝐺) such that for all 𝑢𝑣 ∈ 𝐸(𝐹) it holds that ℎ(𝑢)ℎ(𝑣) ∈ 𝐸(𝐺). Note that this
implies that any vertex in 𝐹 carrying a loop must be mapped to a vertex carrying a loop in 𝐺.
Write hom(𝐹, 𝐺) for the number of homomorphisms from 𝐹 to 𝐺. For a family of graphs F
and graphs 𝐺 and 𝐻 write 𝐺 ≡F 𝐻 if 𝐺 and 𝐻 are homomorphism indistinguishable over F , i.e.
hom(𝐹, 𝐺) = hom(𝐹, 𝐻) for all 𝐹 ∈ F . Since the graphs𝐺 and𝐻 into which homomorphisms are
counted are throughout assumed to be simple, looped graphs in F can generally be disregarded
as they do not admit any homomorphisms into simple graphs.

We recall the following definitions from [25, 18]. Let 𝑘, ℓ ≥ 1. A (𝑘, ℓ)-bilabelled graph
is a tuple 𝑭 = (𝐹,𝒖, 𝒗) where 𝐹 is a graph and 𝒖 ∈ 𝑉 (𝐹)𝑘, 𝒗 ∈ 𝑉 (𝐹)ℓ. The 𝒖 are the in-labelled
vertices of 𝑭 while the 𝒗 are the out-labelled vertices of 𝑭 . Given a graph 𝐺, the homomorphism
tensor of 𝑭 for 𝐺 is 𝑭𝐺 ∈ C𝑉 (𝐺)𝑘×𝑉 (𝐺)ℓ whose (𝒙, 𝒚)-th entry is the number of homomorphisms
ℎ : 𝐹 → 𝐺 such that ℎ(𝒖𝑖) = 𝒙𝑖 and ℎ(𝒗 𝑗) = 𝒚 𝑗 for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ].

For a (𝑘, ℓ)-bilabelled graph 𝑭 = (𝐹,𝒖, 𝒗), write soe(𝑭) B 𝐹 for the underlying unlabelled
graph of 𝑭 . Here, soe stands for “sum-of-entries”. If 𝑘 = ℓ, write tr(𝑭) for the unlabelled graph
underlying the graph obtained from 𝑭 by identifying 𝒖𝑖 with 𝒗𝑖 for all 𝑖 ∈ [ℓ]. For 𝜎 ∈ 𝔖𝑘+ℓ,
write 𝑭𝜎 B (𝐹, 𝒙, 𝒚) where 𝒙𝑖 B (𝒖𝒗)𝜎(𝑖) and 𝒚 𝑗−𝑘 B (𝒖𝒗)𝜎( 𝑗) for all 1 ≤ 𝑖 ≤ 𝑘 < 𝑗 ≤ 𝑘 + ℓ,
i.e. 𝑭𝜎 is obtained from 𝑭 by permuting the labels according to 𝜎. As a special case, define
𝑭∗ B (𝐹, 𝒗,𝒖) the graph obtained by swapping in- and out-labels.

Let 𝑭 = (𝐹,𝒖, 𝒗) and 𝑭′ = (𝐹′,𝒖′, 𝒗′) be (𝑘, ℓ)-bilabelled and (𝑚, 𝑛)-bilabelled, respectively.
If ℓ = 𝑚, write 𝑭 · 𝑭′ for the (𝑘, 𝑛)-bilabelled graph obtained from them by series composition.
That is, the underlying unlabelled graph of 𝑭 · 𝑭′ is the graph obtained from the disjoint union
of 𝐹 and 𝐹′ by identifying 𝒗𝑖 and 𝒖′

𝑖
for all 𝑖 ∈ [ℓ]. Multiple edges arising in this process are

removed. Loops are retained. The in-labels of 𝑭 · 𝑭′ lie on 𝒖, the out-labels on 𝒗′. Moreover, if
𝑘 = 𝑚 and ℓ = 𝑛, write 𝑭 ⊙ 𝑭′ for the parallel composition of 𝑭 and 𝑭′. That is, the underlying
unlabelled graph of the (𝑘, ℓ)-bilabelled graph 𝑭 ⊙ 𝑭′ is the graph obtained from the disjoint
union of 𝐹 and 𝐹′ by identifying 𝒖𝑖 with 𝒖′

𝑖
and 𝒗 𝑗 with 𝒗′

𝑗
for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [ℓ]. Again,

multiple edges are dropped and loops retained. The in-labels of 𝑭 ⊙ 𝑭′ lie on 𝒖, the out-labels
on 𝒗.

As observed in [25, 18], the benefit of these combinatorial operations is that they have an
algebraic counterpart. Formally, for all graphs 𝐺 and all (ℓ, ℓ)-bilabelled graphs 𝑭 , 𝑭′, it holds
that

1. soe(𝑭𝐺) = hom(soe(𝑭), 𝐺),
2. tr(𝑭𝐺) = hom(tr(𝑭), 𝐺),
3. (𝑭𝐺)𝜎 = (𝑭𝜎)𝐺,
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4. 𝑭𝐺 · 𝑭′
𝐺 = (𝑭 · 𝑭′)𝐺, and

5. 𝑭𝐺 ⊙ 𝑭′
𝐺 = (𝑭 ⊙ 𝑭′)𝐺.

Slightly abusing notation, we say that two graphs 𝐺 and 𝐻 are homomorphism indistin-
guishable over a family of bilabelled graphsS, in symbols𝐺 ≡S 𝐻 if𝐺 and𝐻 are homomorphism
indistinguishable over the family {soe(𝑺) | 𝑺 ∈ S} of the underlying unlabelled graphs of the
𝑺 ∈ S.

2.3 Pathwidth and Treewidth

DEF IN IT ION 2 .5. For graphs 𝐹 and 𝑇 , a 𝑇 -decomposition of 𝐹 is a map 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐹) such
that

1.
⋃
𝑡∈𝑉 (𝑇 ) 𝛽(𝑡) = 𝑉 (𝐹),

2. for every 𝑒 ∈ 𝐸(𝐹), there is 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑒 ⊆ 𝛽(𝑡),
3. for every 𝑣 ∈ 𝑉 (𝐹), the set of 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑣 ∈ 𝛽(𝑡) induces a connected subgraph

of 𝑇 .

The width of a 𝑇 -decomposition 𝛽 is max𝑡∈𝑉 (𝑇 ) |𝛽(𝑡) | − 1.

A 𝑇 -decomposition for a tree 𝑇 is called a tree decomposition. A 𝑃-decomposition for a path
𝑃 is called a path decomposition. The treewidth tw 𝐹 of a graph 𝐹 is the minimal width of a tree
decomposition. Similarly, the pathwidth pw 𝐹 is the minimal width of a path decomposition.
For every 𝑡 ≥ 0, write TW𝑡 and PW𝑡 for the classes of all graphs of treewidth and respectively
pathwidth at most 𝑡. The following slight generalisation of [6, Lemma 8] is used repeatedly in
Section 4.1.

LEMMA 2.6 ([6, Lemma 8]). Let 𝐺 be a graph and 𝑘 ≥ 0 such that tw𝐺 ≤ 𝑘 and |𝑉 (𝐺) | ≥ 𝑘 + 1.
Then 𝐺 has a tree decomposition 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐺) such that |𝛽(𝑡) | = 𝑘 + 1 for all 𝑡 ∈ 𝑉 (𝑇 ) and
|𝛽(𝑠) ∩ 𝛽(𝑡) | = 𝑘 for all 𝑠𝑡 ∈ 𝐸(𝑇 ). Furthermore, if pw𝐺 ≤ 𝑘, then 𝑇 can be chosen to be a path.

PROOF . Suppose that the treewidth of 𝐺 is ℓ ≤ 𝑘. If |𝑉 (𝐺) | = 𝑘 + 1 then the tree decomposition
over the one-vertex tree is as desired. Otherwise, any tree decomposition of width at most 𝑘
must be over a graph on at least two vertices. Let 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐺) be any tree decomposition
of width ℓ. We repeatedly apply the following steps:

If 𝑠𝑡 ∈ 𝐸(𝑇 ) is such that 𝛽(𝑠) ⊆ 𝛽(𝑡) or 𝛽(𝑡) ⊆ 𝛽(𝑠) then the edge 𝑠𝑡 in 𝑇 can be contracted
and the set 𝛽(𝑠) ∪ 𝛽(𝑡) can be taken to be the bag at the vertex obtained by contraction.
If 𝑠𝑡 ∈ 𝐸(𝑇 ) and |𝛽(𝑠) | < 𝑘 + 1 and 𝛽(𝑡) ⊈ 𝛽(𝑠) then 𝛽(𝑠) can be enlarged by a vertex
𝑣 ∈ 𝛽(𝑠) \ 𝛽(𝑡).
If 𝑠𝑡 ∈ 𝐸(𝑇 ) and |𝛽(𝑠) | = |𝛽(𝑡) | = 𝑘 + 1 and |𝛽(𝑠) ∩ 𝛽(𝑡) | < 𝑘 then subdivide the edge 𝑠𝑡 in
𝑇 by introducing a fresh vertex 𝑟. Choose vertices 𝑣 ∈ 𝛽(𝑠) \ 𝛽(𝑡) and 𝑤 ∈ 𝛽(𝑡) \ 𝛽(𝑠) and
let 𝛽(𝑟) B (𝛽(𝑠) \ {𝑣}) ∪ {𝑤}.
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If none of these operations can be applied, the tree decomposition is as desired.
The operations used to manipulate the decomposition tree were contraction and subdivi-

sion. If the initial decomposition tree is in fact a path then the resulting tree will also be a path.
This yields the last assertion. ■

2.4 Systems of Equations for Graph Isomorphism

Let 𝐺 and 𝐻 be simple graphs with vertices 𝑔1, . . . , 𝑔ℓ ∈ 𝑉 (𝐺) and ℎ1, . . . , ℎℓ ∈ 𝑉 (𝐻) for ℓ ≥ 1.
The atomic type of a tuple of vertices of a graph is defined as follows: Let atp𝐺 (𝑔1, . . . , 𝑔ℓ) =
atp𝐻 (ℎ1, . . . , ℎℓ) if 𝑔𝑖 = 𝑔 𝑗 ⇔ ℎ𝑖 = ℎ 𝑗 and 𝑔𝑖𝑔 𝑗 ∈ 𝐸(𝐺) ⇔ ℎ𝑖ℎ 𝑗 ∈ 𝐸(𝐻) for all 𝑖, 𝑗 ∈ [ℓ]. In this
case, the set {𝑔1ℎ1, . . . 𝑔ℓℎℓ} ∈

(𝑉 (𝐺)×𝑉 (𝐻)
ℓ

)
is called a partial isomorphism.

Two simple graphs 𝐺 and 𝐻 are isomorphic if and only if there exists a {0, 1}-solution to
quadratic integer program ISO(𝐺, 𝐻) which comprises variables 𝑋𝑔ℎ for 𝑔ℎ ∈ 𝑉 (𝐺) ×𝑉 (𝐻) and
equations∑︁

ℎ∈𝑉 (𝐻)
𝑋𝑔ℎ − 1 = 0 for all 𝑔 ∈ 𝑉 (𝐺), (1)∑︁

𝑔∈𝑉 (𝐺)
𝑋𝑔ℎ − 1 = 0 for all ℎ ∈ 𝑉 (𝐻), (2)

𝑋𝑔ℎ𝑋𝑔′ℎ′ = 0 for all 𝑔ℎ, 𝑔′ℎ′ ∈ 𝑉 (𝐺) ×𝑉 (𝐻) s.t. atp𝐺 (𝑔, 𝑔′) ≠ atp𝐻 (ℎ, ℎ′). (3)

We define the Lasserre relaxation of ISO(𝐺, 𝐻) following [25]. See also Appendix A for a
comparison to the version used in [2].

DEF IN IT ION 2 .7. Let 𝑡 ≥ 1. The level-𝑡 Lasserre relaxation for graph isomorphism has variables
𝑦𝐼 ranging over R for 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡

)
. The constraints are

𝑀𝑡 ( 𝑦) B ( 𝑦𝐼∪𝐽)𝐼,𝐽∈(𝑉 (𝐺)×𝑉 (𝐻 )
≤𝑡 ) ⪰ 0, (4)∑︁

ℎ∈𝑉 (𝐻)
𝑦𝐼∪{𝑔ℎ} = 𝑦𝐼 for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡−2

)
and all 𝑔 ∈ 𝑉 (𝐺), (5)∑︁

𝑔∈𝑉 (𝐺)
𝑦𝐼∪{𝑔ℎ} = 𝑦𝐼 for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡−2

)
and all ℎ ∈ 𝑉 (𝐻), (6)

𝑦𝐼 = 0
for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡

)
such that 𝐼 is not a

partial isomorphism,
(7)

𝑦∅ = 1. (8)

If the system is feasible for two graphs 𝐺 and 𝐻 , write 𝐺 ≃L
𝑡 𝐻 . If the system together with the

constraint 𝑦𝐼 ≥ 0 for all 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻

≤2𝑡
)

is feasible, write 𝐺 ≃L+
𝑡 𝐻 .

In Theorem 3.8, we show that the 2𝑡 − 2 in Equations (5) and (6) can be replaced by 2𝑡 − 1
without loss of generality. That is, the system in Definition 2.7 has a (non-negative) real solution
if and only if the system obtained replacing Equations (5) and (6) with Equations (19) and (20)
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has a (non-negative) real solution. The 2𝑡 − 2 in Definition 2.7 is an artefact of its construction
from ISO(𝐺, 𝐻), cf. [27, Section 10] and [10, Equations (2d)–(2e)].

The second hierarchy of integer programming relaxation considered in this article is the
Sherali–Adams relaxation [37]. It has been applied both to the integer linear program and
to ISO(𝐺, 𝐻), the integer quadratic program for graph isomorphism. For the linear program,
it was shown in [4] that the Sherali–Adams levels are sandwiched between the levels of the
Weisfeiler–Leman hierarchy. Subsequently, variants of these linear programs were proposed in
[17] which correspond precisely to the levels of the latter hierarchy. In this work, we focus on
the Sherali–Adams relaxations of the integer quadratic program ISO(𝐺, 𝐻). See [19, Section 2.7]
for a definition. In [24], it was shown that the level-𝑡 Sherali–Adams relaxation of ISO(𝐺, 𝐻)
has a non-negative rational solution if and only if 𝐺 and 𝐻 are not distinguished by the (𝑡 − 1)-
dimensional Weisfeiler–Leman algorithm. The following Theorem 2.8 summarises equivalent
formulations.

THEOREM 2.8 ([24, 14, 7]). Let 𝑡 ≥ 1. For graphs 𝐺 and 𝐻 , the following are equivalent:
1. the level-𝑡 Sherali–Adams relaxation of ISO(𝐺, 𝐻) has a non-negative rational solution, i.e.

𝐺 ≃SA
𝑡 𝐻 ,

2. 𝐺 and 𝐻 satisfy the same sentences of 𝑡-variable first order logic with counting quantifiers,
3. 𝐺 and 𝐻 are homomorphism indistinguishable over the graphs of treewidth at most 𝑡 − 1,
4. 𝐺 and 𝐻 are not distinguished by the (𝑡 − 1)-dimensional Weisfeiler–Leman algorithm,

3. From Lasserre to Homomorphism Tensors

In this section, the tools are developed which will be used to translate a solution to the level-𝑡
Lasserre relaxation into a statement on homomorphism indistinguishability. For this purpose,
three equivalent characterisations of ≃L

𝑡 and ≃L+
𝑡 are introduced. Theorems 3.1 and 3.2 sum-

marise our results. The notions in items 2–4 and the graph classes L𝑡 and L+
𝑡 are defined in

Sections 3.1, 3.2, 3.4 and 4, respectively. Most of the proofs are of a linear algebraic nature.
Graph theoretical repercussions are discussed in Section 4.

THEOREM 3.1. Let 𝑡 ≥ 1. For graphs 𝐺 and 𝐻 , the following are equivalent:
1. the level-𝑡 Lasserre relaxation of ISO(𝐺, 𝐻) is feasible,
2. 𝐺 and 𝐻 are level-𝑡 PSD-isomorphic, cf. Definition 3.3,
3. there is a level-𝑡 PSD-isomorphism map from 𝐺 to 𝐻 , cf. Theorem 3.6,
4. 𝐺 and 𝐻 are partially 𝑡-equivalent, cf. Definition 3.13,
5. 𝐺 and 𝐻 are homomorphism indistinguishable over L𝑡, cf. Definition 4.1.

THEOREM 3.2. Let 𝑡 ≥ 1. For graphs 𝐺 and 𝐻 , the following are equivalent:
1. the level-𝑡 Lasserre relaxation of ISO(𝐺, 𝐻) with non-negativity constraints is feasible,
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2. 𝐺 and 𝐻 are level-𝑡 DNN -isomorphic, cf. Definition 3.3,
3. there is a level-𝑡 DNN -isomorphism map from 𝐺 to 𝐻 , cf. Theorem 3.6,
4. 𝐺 and 𝐻 are 𝑡-equivalent, cf. Definition 3.15,
5. 𝐺 and 𝐻 are homomorphism indistinguishable over L+

𝑡 , cf. Definition 4.1.

Variants of the notions in items 2–4 have already been defined for the case 𝑡 = 1 in [27].
Our contribution amounts to extending these definitions to the entire Lasserre hierarchy. A
recurring theme in this context is accounting for additional symmetries. The variables 𝑦𝐼 of
the Lasserre system of equations, cf. Definition 2.7, are indexed by sets of vertex pairs rather
than by tuples of such. Hence, when passing from such variables to tuple-indexed matrices, one
must impose the additional symmetries arising this way. This is formalised at various points
using an action of the symmetric group on the axes of the matrices. In the case 𝑡 = 1, such a
set-up is not necessary since indices 𝐼 are of size at most 2 and all occurring matrices can be
taken to be invariant under transposition.

In the subsequent sections, Theorems 3.1 and 3.2 will be proven in parallel. The equivalence
of items 1 and 2, 2 and 3, and 3 and 4 are established in Section 3.3, Section 3.2, and Section 3.4,
respectively. The statements on homomorphism indistinguishability are proven in Section 4.

3.1 Isomorphism Relaxations via Matrix Families

In this section, as a first step towards proving Theorems 3.1 and 3.2, the notion of level-𝑡
K-isomorphic graphs for arbitrary families of matrices K is introduced. In [27], level-1 K-
isomorphic graphs where studied for various families of matrices K . In this work, the main
interest lies on the family of positive semidefinite matrices PSD and the family of entry-wise
non-negative positive semidefinite matrices DNN . Level-𝑡 isomorphism for these families is
proven to correspond to ≃L

𝑡 and ≃L+
𝑡 respectively, cf. Theorems 3.8 and 3.12.

DEF IN IT ION 3.3. Let K be a family of matrices. Graphs 𝐺 and 𝐻 are said to be level-𝑡 K-
isomorphic, in symbols 𝐺 �𝑡K 𝐻 , if there is a matrix 𝑀 ∈ K with rows and columns indexed by
(𝑉 (𝐺)×𝑉 (𝐻))𝑡 such that for every 𝑔1ℎ1 . . . 𝑔𝑡ℎ𝑡, 𝑔𝑡+1ℎ𝑡+1 . . . 𝑔2𝑡ℎ2𝑡 ∈ (𝑉 (𝐺)×𝑉 (𝐻))𝑡 the following
equations hold:

For every 𝑖 ∈ [2𝑡],∑︁
𝑔𝑖∈𝑉 (𝐺)

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 =
∑︁

ℎ𝑖∈𝑉 (𝐻)
𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 , (9)∑︁

𝑔1,...,𝑔2𝑡∈𝑉 (𝐺)
𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 = 1 =

∑︁
ℎ1,...,ℎ2𝑡∈𝑉 (𝐻)

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 . (10)

If atp𝐺 (𝑔1, . . . , 𝑔2𝑡) ≠ atp𝐻 (ℎ1, . . . , ℎ2𝑡) then

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 = 0. (11)
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Figure 2. Examples of the atomic graphs from Definition 3.5. The gray lines (the wires [25]) indicate
the in-labels (left) and out-labels (right).

For all 𝜎 ∈ 𝔖2𝑡,

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 = 𝑀𝑔𝜎 (1)ℎ𝜎 (1) ...𝑔𝜎 (𝑡)ℎ𝜎 (𝑡) ,𝑔𝜎 (𝑡+1)ℎ𝜎 (𝑡+1) ...𝑔𝜎 (2𝑡)ℎ𝜎 (2𝑡) . (12)

Note that for 𝑡 = 1 and any family of matrices K closed under taking transposes Equa-
tion (12) is vacuous.

Systems of equations comparing graphs akin to Equations (9) to (12) were also studied
by [18]. Feasibility of such equations is typically invariant under taking the complements of the
graphs as remarked below. This semantic property of the relation �𝑡K is relevant in the context
of homomorphism indistinguishability as shown by [35].

REMARK 3.4. For a simple graph 𝐺, write 𝐺 for its complement, i.e. 𝑉 (𝐺) B 𝑉 (𝐺) and
𝐸(𝐺) B

(𝑉 (𝐺)
2
)
\ 𝐸(𝐺). For all graphs 𝐺 and 𝐻 and 𝑔1, . . . , 𝑔2𝑡 ∈ 𝑉 (𝐺), ℎ1, . . . , ℎ2𝑡 ∈ 𝑉 (𝐻), it holds

that

atp𝐺 (𝑔1, . . . , 𝑔2𝑡) = atp𝐻 (ℎ1, . . . , ℎ2𝑡) ⇐⇒ atp𝐺 (𝑔1, . . . , 𝑔2𝑡) = atp𝐻 (ℎ1, . . . , ℎ2𝑡).

Thus, 𝐺 �𝑡K 𝐻 if and only if 𝐺 �𝑡K 𝐻 for all families of matrices K and 𝑡 ∈ N.

3.2 Choi Matrices and Isomorphism Maps

In this section, an alternative characterisation for level-𝑡K-isomorphism is given. Intuitively, the
indices of the matrix 𝑀 ∈ C(𝑉 (𝐺)×𝑉 (𝐻))𝑡×(𝑉 (𝐺)×𝑉 (𝐻))𝑡 from Definition 3.3 are regrouped yielding
a linear map Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 . In linear algebraic terms, 𝑀 is the Choi matrix
of Φ. The map Φ will later be interpreted as a function sending homomorphism tensors of
(𝑡, 𝑡)-bilabelled graphs 𝑭𝐺 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 with respect to 𝐺 to their counterparts 𝑭𝐻 for 𝐻 .

The most basic bilabelled graphs, so-called atomic graphs, make their first appearance in
Theorem 3.6. These graphs are used to reformulate Equations (7) and (11). The atomic graphs
are also the graphs which the sets L𝑡 and L+

𝑡 of Theorems 1.2 and 1.3 are generated by, cf.
Definition 4.1. Examples are depicted in Figures 2 and 4.
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DEF IN IT ION 3.5. Let 𝑡 ≥ 1. A (𝑡, 𝑡)-bilabelled graph 𝑭 = (𝐹,𝒖, 𝒗) is atomic if all its vertices
are labelled. Write A𝑡 for the set of (𝑡, 𝑡)-bilabelled atomic graphs. Note that the set of atomic
graphs A𝑡 is generated under parallel composition by the graphs

𝑱 B ( 𝐽 , (1, . . . , 𝑡), (𝑡 + 1, . . . , 2𝑡)) with 𝑉 ( 𝐽) = [2𝑡], 𝐸( 𝐽) = ∅,
𝑨𝑖 𝑗 B (𝐴𝑖 𝑗 , (1, . . . , 𝑡), (𝑡 + 1, . . . , 2𝑡)) with 𝑉 (𝐴𝑖 𝑗) = [2𝑡], 𝐸(𝐴𝑖 𝑗) = {𝑖 𝑗} for 1 ≤ 𝑖 < 𝑗 ≤ 2𝑡,
𝑰 𝑖 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 2𝑡 which is obtained from 𝑨𝑖 𝑗 by contracting the edge 𝑖 𝑗 and removing
the resulting loop.

The following Theorem 3.6 relates the properties of Φ and 𝑀 . In Equation (15), 𝐽 denotes
the all-ones matrix of appropriate dimension.

THEOREM 3.6. Let 𝑡 ≥ 1. Let 𝐺 and 𝐻 be graphs and K ∈ {DNN ,PSD} be a family of
matrices. Let Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 be a linear map. Then the following are equivalent.

1. The Choi matrix 𝐶Φ of Φ satisfies Equations (9) to (12) and 𝐶Φ ∈ K ,
2. Φ is a level-𝑡 K-isomorphism map from 𝐺 to 𝐻 , i.e. it satisfies

Φ is completely K-preserving, (13)

Φ(𝑨𝐺 ⊙ 𝑋) = 𝑨𝐻 ⊙ Φ(𝑋) for all atomic 𝑨 ∈ A𝑡 and all 𝑋 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 , (14)

Φ( 𝐽) = 𝐽 = Φ∗( 𝐽), (15)

Φ(𝑋𝜎) = Φ(𝑋)𝜎 for all 𝜎 ∈ 𝔖2𝑡 and all 𝑋 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 . (16)

3. Φ∗ is a level-𝑡 K-isomorphism map from 𝐻 to 𝐺.

We remark that Theorem 3.6 and in particular its Equation (15) have brought us closer
to interpreting the Lasserre system of equation from the perspective of homomorphism indis-
tinguishability. As argued in Remark 3.7, the map Φ, which will be understood as mapping
homomorphism tensors 𝑭𝐺 to 𝑭𝐻 , is sum-preserving. Since the sum of the entries of these
tensors equals the number of homomorphisms from their underlying unlabelled graphs to
𝐺 and 𝐻 , respectively, this is relevant for establishing a connection between K-isomorphism
maps and homomorphism indistinguishability.

REMARK 3.7. If a linear map Φ: C𝑛×𝑛 → C𝑚×𝑚 is such that 𝐽 = Φ∗( 𝐽) then it is sum-preserving,
i.e. soe(𝑋) = soe(Φ(𝑋)) for all 𝑋 ∈ C𝑛×𝑛. Indeed, soe(𝑋) = ⟨𝑋, 𝐽⟩ = ⟨𝑋,Φ∗( 𝐽)⟩ = ⟨Φ(𝑋), 𝐽⟩ =

soe(Φ(𝑋)) where ⟨𝐴, 𝐵⟩ B tr(𝐴𝐵∗). In particular, if there is Φ satisfying Equations (14) and (15)
for graphs 𝐺 and 𝐻 then |𝑉 (𝐺) | = |𝑉 (𝐻) |.

Equipped with Remark 3.7, we conduct the proof of Theorem 3.6.

PROOF OF THEOREM 3.6 . The equivalence of Items 2 and 3 follows immediately from Lem-
mas 2.1 and 2.4.
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...
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j − 1 j − 1

j j

j + 1 j + 1

t t

Figure 3. The atomic graph 𝑲 𝑗 as defined in Equation (17).

For the equivalence of Items 1 and 2, first note that, by Lemma 2.1, 𝐶Φ ∈ K if and only if
Property (13) holds. Moreover, for 𝑔1, . . . , 𝑔2𝑡 ∈ 𝑉 (𝐺) and ℎ1, . . . , ℎ2𝑡 ∈ 𝑉 (𝐻), the assertions

∀𝑨 ∈ A(𝑡, 𝑡), 𝑨𝐺 (𝑔1 . . . 𝑔𝑡, 𝑔𝑡+1 . . . 𝑔2𝑡) = 𝑨𝐻 (ℎ1 . . . ℎ𝑡, ℎ𝑡+1 . . . ℎ2𝑡)

and atp𝐺 (𝑔1, . . . , 𝑔2𝑡) = atp𝐻 (ℎ1, . . . , ℎ2𝑡) are equivalent. By Lemma 2.4, Equations (11) and (14)
are equivalent. Furthermore, Equations (12) and (16) and Equations (10) and (15) are respec-
tively equivalent.

Finally, we argue that Items 2 and 3 imply Equation (9). To that end, consider the atomic
graph 𝑲 𝑗 ∈ A(𝑡, 𝑡) for 𝑗 ∈ [𝑡] as defined in Equation (17) and depicted by Figure 3.

𝑲 𝑗 B 𝑰1,𝑡+1 ⊙ · · · ⊙ 𝑰 𝑗−1,𝑡+ 𝑗−1 ⊙ 𝑰 𝑗+1,𝑡+ 𝑗+1 ⊙ · · · ⊙ 𝑰 𝑡,2𝑡 . (17)

In order to apply Lemma 2.2, we first argue that Φ is trace-preserving. Let

𝑰 B 𝑰1,𝑡+1 ⊙ · · · ⊙ 𝑰 𝑡,2𝑡 ∈ A(𝑡, 𝑡).

By Equation (15) and Remark 3.7, Φ is sum-preserving. For every 𝑋 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 ,

tr(Φ(𝑋)) = soe(𝑰𝐻 ⊙ Φ(𝑋)) (14)
= soe(Φ(𝑰𝐺 ⊙ 𝑋)) = soe(𝑰𝐺 ⊙ 𝑋) = tr(𝑋).

Thus, Lemma 2.2 and Equation (14) yield that for all 𝑗 ∈ [𝑡] and all 𝑋 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 ,

Φ(𝑲 𝑗
𝐺𝑋) = Φ(𝑲 𝑗

𝐺)Φ(𝑋) and Φ(𝑋𝑲 𝑗
𝐺) = Φ(𝑋)Φ(𝑲 𝑗

𝐺). (18)

Next, we substitute standard basis elements for 𝑋 in Equation (18). For 𝑔1, . . . , 𝑔2𝑡 ∈ 𝑉 (𝐺), write
𝐸𝑔1...𝑔2𝑡 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 for the corresponding standard basis vector. To ease notation, we verify
Equation (9) for 𝑖 = 1. For all 𝑔1, . . . , 𝑔2𝑡 ∈ 𝑉 (𝐺) and ℎ1, . . . , ℎ2𝑡 ∈ 𝑉 (𝐻),∑︁

𝑔∈𝑉 (𝐺)
𝑀𝑔ℎ1𝑔2ℎ2...𝑔2𝑡ℎ2𝑡 =

∑︁
𝑔∈𝑉 (𝐺)

Φℎ1...ℎ2𝑡 ,𝑔𝑔2...𝑔2𝑡

=
∑︁

𝑔∈𝑉 (𝐺)
Φ(𝐸𝑔𝑔2...𝑔2𝑡)ℎ1...ℎ2𝑡
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= Φ(𝑲1
𝐺𝐸

𝑔1...𝑔2𝑡)ℎ1...ℎ2𝑡

(18)
= (Φ(𝑲1

𝐺)Φ(𝐸𝑔1...𝑔2𝑡))ℎ1...ℎ2𝑡

(14)
= (𝑲1

𝐻Φ(𝐸𝑔1...𝑔2𝑡))ℎ1...ℎ2𝑡

=
∑︁

ℎ∈𝑉 (𝐻)
Φℎℎ2...ℎ2𝑡 ,𝑔1...𝑔2𝑡

=
∑︁

ℎ∈𝑉 (𝐺)
𝑀𝑔1ℎ𝑔2ℎ2...𝑔2𝑡ℎ2𝑡 ,

as desired. ■

3.3 From K-Isomorphism Maps to the Lasserre Hierarchy

By the following Theorems 3.8 and 3.12, the notions introduced in Definition 3.3 and Theorem 3.6
are equivalent to the object of our main interest, namely feasibility of the level-𝑡 Lasserre relax-
ation with and without non-negativity constraints. Our results extend those of [27, Lemma 10.1]
to the entire Lasserre hierarchy.

THEOREM 3.8. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are level-𝑡 PSD-isomorphic if and only if
𝐺 ≃L

𝑡 𝐻 .

PROOF . Suppose that ( 𝑦𝐼)𝐼∈(𝑉 (𝐺)×𝑉 (𝐻 )
≤2𝑡 ) is a solution to Equations (4) to (8). It is argued that

the matrix defined via 𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 B 𝑦{𝑔1ℎ1,...,𝑔2𝑡ℎ2𝑡} satisfies Equations (9) to (12).
Equation (11) follows directly from Equation (7). Equation (12) is immediate from the definition.

By Equation (4), let 𝑣𝐼 for 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡
)

be vectors such that 𝑦𝐼∪𝐽 =
〈
𝑣𝐼 , 𝑣𝐽

〉
for 𝐼, 𝐽 ∈(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡
)
. Then

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1 = 𝑦{𝑔1ℎ1,...,𝑔2𝑡ℎ2𝑡} =
〈
𝑣{𝑔1ℎ1,...,𝑔𝑡ℎ𝑡}, 𝑣{𝑔𝑡+1ℎ𝑡+1,...,𝑔2𝑡ℎ2𝑡}

〉
.

Thus, 𝑀 is positive semidefinite. It remains to verify Equations (9) and (10).

CLAIM 3.9. Every 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡−1
)

satisfies
∑
𝑔∈𝑉 (𝐺) 𝑣𝐼∪{𝑔ℎ} = 𝑣𝐼 =

∑
ℎ∈𝑉 (𝐻) 𝑣𝐼∪{𝑔ℎ}.

Proof. Recall that 𝑦𝐼∪𝐽 =
〈
𝑣𝐼 , 𝑣𝐽

〉
for 𝐼, 𝐽 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤𝑡

)
. By Equations (6) and (7),〈 ∑︁

𝑔∈𝑉 (𝐺)
𝑣𝐼∪{𝑔ℎ},

∑︁
𝑔∈𝑉 (𝐺)

𝑣𝐼∪{𝑔ℎ}

〉
=

∑︁
𝑔,𝑔′∈𝑉 (𝐺)

〈
𝑣𝐼∪{𝑔ℎ}, 𝑣𝐼∪{𝑔′ℎ}

〉
=

∑︁
𝑔,𝑔′∈𝑉 (𝐺)

𝑦𝐼∪{𝑔ℎ}∪{𝑔′ℎ}

(7)
=

∑︁
𝑔∈𝑉 (𝐺)

𝑦𝐼∪{𝑔ℎ}
(6)
= 𝑦𝐼 .

Observe that Equation (6) indeed applies since 𝑡 − 1 ≤ 2𝑡 − 2 for all 𝑡 ≥ 1. Moreover,〈
𝑣𝐼 ,

∑︁
𝑔∈𝑉 (𝐺)

𝑣𝐼∪{𝑔ℎ}

〉
=

∑︁
𝑔∈𝑉 (𝐺)

𝑦𝐼∪{𝑔ℎ} = 𝑦𝐼
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and hence combining the above equalities,





𝑣𝐼 − ∑︁
𝑔∈𝑉 (𝐺)

𝑣𝐼∪{𝑔ℎ}








2

= 𝑦𝐼 − 2𝑦𝐼 + 𝑦𝐼 = 0

The claim is proven analogously when summation is over ℎ ∈ 𝑉 (𝐻). ■

Claim 3.9 and Equation (8) imply Equation (10). Indeed,∑︁
𝑔1...𝑔2𝑡∈𝑉 (𝐺)

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 =
∑︁

𝑔1...𝑔2𝑡∈𝑉 (𝐺)
𝑦{𝑔1ℎ1,...,𝑔𝑡ℎ𝑡}∪{𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡}

=
∑︁

𝑔1...𝑔2𝑡∈𝑉 (𝐺)

〈
𝑣{𝑔1ℎ1,...,𝑔𝑡ℎ𝑡}, 𝑣{𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡}

〉
= ⟨𝑣∅, 𝑣∅⟩
= 𝑦∅

= 1.

Moreover, for Equation (9), letting 𝑖 = 1 to ease notation,∑︁
𝑔1∈𝑉 (𝐺)

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 =
∑︁

𝑔1∈𝑉 (𝐺)
𝑦{𝑔1ℎ1}∪{𝑔2ℎ2...𝑔𝑡ℎ𝑡}∪{𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡}

=
∑︁

𝑔1∈𝑉 (𝐺)

〈
𝑣{𝑔1ℎ1}∪{𝑔2ℎ2...𝑔𝑡ℎ𝑡}, 𝑣{𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡}

〉
=

∑︁
ℎ1∈𝑉 (𝐺)

〈
𝑣{𝑔1ℎ1}∪{𝑔2ℎ2...𝑔𝑡ℎ𝑡}, 𝑣{𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡}

〉
=

∑︁
ℎ1∈𝑉 (𝐺)

𝑀𝑔1ℎ1...𝑔𝑡ℎ𝑡 ,𝑔𝑡+1ℎ𝑡+1...𝑔2𝑡ℎ2𝑡 .

This concludes the proof that 𝑀 satisfies Equations (9) to (12).
Conversely, let 𝑣®𝐼 for ®𝐼 ∈ (𝑉 (𝐺) ×𝑉 (𝐻))𝑡 denote the Gram vectors of a matrix 𝑀 satisfying

Equations (9) to (12). Define 𝑣𝐼 B 𝑣®𝐼 for |𝐼 | = 𝑡 and any ordering. By Equation (12), 𝑣𝐼 is
well-defined. Let furthermore,

𝑣
𝑔𝑖+1...𝑔𝑡
𝐼 B

∑︁
ℎ𝑖+1,...,ℎ𝑡∈𝑉 (𝐻)

𝑣®𝐼𝑔𝑖+1ℎ𝑖+1...𝑔𝑡ℎ𝑡

for 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

𝑖

)
and 𝑔𝑖+1 . . . 𝑔𝑡 ∈ 𝑉 (𝐺)𝑡−𝑖 . Define 𝑣ℎ𝑖+1...ℎ𝑡

𝐼 analogously.

CLAIM 3.10. For all 𝑔𝑖+1 . . . 𝑔𝑡, 𝑔
′
𝑖+1 . . . 𝑔

′
𝑡 ∈ 𝑉 (𝐺)𝑡−𝑖 , it holds that 𝑣𝑔𝑖+1...𝑔𝑡

𝐼 = 𝑣
𝑔′
𝑖+1...𝑔

′
𝑡

𝐼 .

Proof. By definition, the term



𝑣𝑔𝑖+1...𝑔𝑡

𝐼 − 𝑣𝑔
′
𝑖+1...𝑔

′
𝑡

𝐼




2
is equal to∑︁

ℎ𝑖+1,...,ℎ𝑡∈𝑉 (𝐻),
ℎ′
𝑖+1,...,ℎ

′
𝑡∈𝑉 (𝐻)

(
𝑀®𝐼𝑔𝑖+1ℎ𝑖+1...𝑔𝑡ℎ𝑡 ,®𝐼𝑔𝑖+1ℎ

′
𝑖+1...𝑔𝑡ℎ

′
𝑡
− 2𝑀®𝐼𝑔𝑖+1ℎ𝑖+1...𝑔𝑡ℎ𝑡 ,®𝐼𝑔′𝑖+1ℎ

′
𝑖+1...𝑔

′
𝑡ℎ

′
𝑡
+𝑀®𝐼𝑔′

𝑖+1ℎ𝑖+1...𝑔
′
𝑡ℎ𝑡 ,

®𝐼𝑔′
𝑖+1ℎ

′
𝑖+1...𝑔

′
𝑡ℎ

′
𝑡

)
.

By Equation (9), this expression is zero. ■
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By Claim 3.10, the reference to 𝑔𝑖+1 . . . 𝑔𝑡 can be dropped, yielding vectors 𝑣𝐺𝐼 and 𝑣𝐻𝐼 . It
follows that

|𝑉 (𝐺) |𝑡−𝑖𝑣𝐺𝐼 =
∑︁

𝑔𝑖+1...𝑔𝑡∈𝑉 (𝐺)𝑡−𝑖
𝑣
𝑔𝑖+1...𝑔𝑡
𝐼 =

∑︁
𝑔𝑖+1...𝑔𝑡∈𝑉 (𝐺)𝑡−𝑖
ℎ𝑖+1...ℎ𝑡∈𝑉 (𝐻)𝑡−𝑖

𝑣®𝐼𝑔𝑖+1ℎ𝑖+1...𝑔𝑡ℎ𝑡

=
∑︁

ℎ𝑖+1...ℎ𝑡∈𝑉 (𝐻)𝑡−𝑖
𝑣ℎ𝑖+1...ℎ𝑡
𝐼 = |𝑉 (𝐻) |𝑡−𝑖𝑣𝐻𝐼 .

This implies that 𝑣𝐺𝐼 = 𝑣𝐻𝐼 since 𝐺 and 𝐻 have the same number of vertices, cf. Remark 3.7. Let
𝑣𝐼 B 𝑣𝐺𝐼 = 𝑣𝐻𝐼 . The following Claim 3.11 is immediate from Equation (12):

CLAIM 3.1 1. If 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ for 𝐼, 𝐼′, 𝐽 , 𝐽′ ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡
)

then
〈
𝑣𝐼 , 𝑣𝐽

〉
=
〈
𝑣𝐼 ′ , 𝑣𝐽 ′

〉
.

Hence, 𝑦𝐼 for 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤2𝑡
)

can be set to ⟨𝑣𝐼 ′ , 𝑣𝐼 ′′⟩ for any 𝐼′, 𝐼′′ ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡
)

such that
𝐼 = 𝐼′ ∪ 𝐼′′. Then Equations (4) to (6) holds by construction. In fact, it follows that Equations (19)
and (20) below, which imply Equations (5) and (6), hold:∑︁

ℎ∈𝑉 (𝐻)
𝑦𝐼∪{𝑔ℎ} = 𝑦𝐼 for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡−1

)
and all 𝑔 ∈ 𝑉 (𝐺), (19)∑︁

𝑔∈𝑉 (𝐺)
𝑦𝐼∪{𝑔ℎ} = 𝑦𝐼 for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡−1

)
and all ℎ ∈ 𝑉 (𝐻). (20)

Equation (7) follows from Equation (11). ■

The following Theorem 3.12 is proven analogously, observing that the construction in the
proof of Theorem 3.8 preserves non-negativity in both directions.

THEOREM 3.12. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are level-𝑡 DNN -isomorphic if and only if
𝐺 ≃L+

𝑡 𝐻 .

3.4 Isomorphisms between Matrix Algebras

To the two reformulations of ≃L
𝑡 and ≃L+

𝑡 from the previous sections, a third characterisation
is added in this section. It is shown that two graphs are level-𝑡 PSD-isomorphic (DNN -
isomorphic) if and only if certain matrix algebras associated to them are isomorphic. These
algebras will be identified as the algebras of homomorphism tensors for graphs from the
families L𝑡 and L+

𝑡 . The so-called (partially) coherent algebras considered in this section are
natural generalisations of the coherent algebras which are well-studied in the context of the
2-dimensional Weisfeiler–Leman algorithm [8].

3.4.1 Partially Coherent Algebras and PSD-Isomorphism Maps

Let 𝑆 ⊆ C𝑛𝑡×𝑛𝑡 . A matrix algebra A ⊆ C𝑛𝑡×𝑛𝑡 is 𝑆-partially coherent if it is unital, self-adjoint,
contains the all-ones matrix, and is closed under Schur products with any matrix in 𝑆. A matrix
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algebra A ⊆ C𝑛𝑡×𝑛𝑡 is self-symmetrical if for every 𝐴 ∈ A and 𝜎 ∈ 𝔖2𝑡 also 𝐴𝜎 ∈ A. Note that for
𝑡 = 1, an algebra A is self-symmetrical if for all 𝐴 ∈ A also 𝐴𝑇 ∈ A where 𝐴𝑇 is the transpose
of 𝐴.

DEF IN IT ION 3.13. Given a graph 𝐺, define its 𝑡-partially coherent algebra Â𝑡
𝐺 as the minimal

self-symmetrical 𝑆-partially coherent algebra where 𝑆 is the set of homomorphism tensors of
(𝑡, 𝑡)-bilabelled atomic graphs for 𝐺.

Two 𝑛-vertex graphs 𝐺 and 𝐻 are partially 𝑡-equivalent if there is a partial 𝑡-equivalence,
i.e. a vector space isomorphism 𝜑 : Â𝑡

𝐺 → Â𝑡
𝐻 such that

1. 𝜑(𝑀∗) = 𝜑(𝑀)∗ for all 𝑀 ∈ Â𝑡
𝐺,

2. 𝜑(𝑀𝑁) = 𝜑(𝑀)𝜑(𝑁) for all 𝑀, 𝑁 ∈ Â𝑡
𝐺,

3. 𝜑(𝐼) = 𝐼 , 𝜑(𝑨𝐺) = 𝑨𝐻 for all 𝑨 ∈ A𝑡, and 𝜑( 𝐽) = 𝐽 ,
4. 𝜑(𝑨𝐺 ⊙ 𝑀) = 𝑨𝐻 ⊙ 𝜑(𝑀) for all 𝑨 ∈ A𝑡 and any 𝑀 ∈ Â𝑡

𝐺.
5. 𝜑(𝑀𝜎) = 𝜑(𝑀)𝜎 for all 𝑀 ∈ Â𝑡

𝐺 and all 𝜎 ∈ 𝔖2𝑡.

The following Theorem 3.14 extends [27, Theorem 6.2].

THEOREM 3.14. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are partially 𝑡-equivalent if and only if there is
a level-𝑡 PSD-isomorphism map from 𝐺 to 𝐻 .

PROOF . Let Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 be a level-𝑡 PSD-isomorphism map from 𝐺 to 𝐻 ,
i.e. it satisfies Equations (13) to (16). By Remark 3.7 and Equations (14) and (15), Φ(𝑨𝐺) = 𝑨𝐻

for all atomic 𝑨 ∈ A𝑡 and |𝑉 (𝐺) | = |𝑉 (𝐻) | C 𝑛. Similarly, Φ∗(𝑨𝐻) = 𝑨𝐺 for all atomic 𝑨 by
Theorem 3.6. By Equations (13) and (14), Φ is completely positive and unital. By Theorem 3.6,
Φ∗(𝐼) = 𝐼 and thus Φ is trace-preserving [27, Lemma 4.2]. Furthermore,

Φ(𝑨𝐺) = 𝑨𝐻 , Φ∗(𝑨𝐻) = 𝑨𝐺, Φ( 𝐽) = 𝐽 = Φ∗( 𝐽).

for all atomic 𝑨 ∈ A𝑡. Thus, Lemma 2.2 implies that for any𝑊 ∈ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 we have Φ(𝑨𝐺𝑊) =
𝑨𝐻Φ(𝑊) and Φ(𝑊𝑨𝐺) = Φ(𝑊)𝑨𝐻 for all atomic 𝑨 ∈ A𝑡. Hence, the restriction of Φ to Â𝑡

𝐺

witnesses that 𝐺 and 𝐻 are partially 𝑡-equivalent.
Conversely, suppose that 𝜑 : Â𝑡

𝐺 → Â𝑡
𝐻 is as in Definition 3.13. By [27, Lemma 5.3], 𝜑 is

trace-preserving. By Lemma 2.3, there exists a unitary matrix 𝑈 ∈ C𝑛𝑡×𝑛𝑡 such that 𝜑(𝑋) =

𝑈𝑋𝑈∗ for all 𝑋 ∈ Â𝑡
𝐺. Let 𝜑 : C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 be the map given by 𝜑(𝑋) = 𝑈𝑋𝑈∗.

Let Π: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → Â𝑡
𝐺 be the orthogonal projection onto Â𝑡

𝐺. Define Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 →
C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 by Φ B 𝜑 ◦ Π. By [27, Lemma 5.3], 𝜑 is completely positive and trace-preserving. By
[27, Lemma 5.4], so is Π and hence their composition Φ. Hence, Equation (13) holds.

Furthermore, Π( 𝐽) = 𝐽 and hence Φ( 𝐽) = 𝐽 = Φ∗( 𝐽). So Φ satisfies Equation (15).
For Equation (16), consider the linear map Λ𝜎 : 𝑋 ↦→ 𝑋𝜎 for 𝜎 ∈ 𝔖2𝑡. Since Â𝐺 is closed

under the action of 𝔖2𝑡, it holds that Λ𝜎 ◦ Π = Π ◦ Λ𝜎 ◦ Π. Furthermore, (Λ𝜎)∗ = Λ𝜎−1 and Π is
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Figure 4. The three atomic graphs in A1.

self-adjoint, i.e. Π∗ = Π. Hence,

Π ◦ Λ𝜎 = Π∗ ◦ Λ𝜎 = (Λ𝜎−1 ◦ Π)∗ = (Π ◦ Λ𝜎−1 ◦ Π)∗ = Π ◦ Λ𝜎 ◦ Π = Λ𝜎 ◦ Π.

So Π and Λ𝜎 commute. Hence,

Φ(𝑋𝜎) = (𝜑 ◦ Π ◦ Λ𝜎) (𝑋) = (𝜑 ◦ Λ𝜎 ◦ Π) (𝑋) = ((𝜑 ◦ Π) (𝑋))𝜎 = Φ(𝑋)𝜎 .

Equation (14) follows similarly, cf. the proof of [27, Theorem 6.2]. ■

3.4.2 Coherent Algebras and DNN-Isomorphism Maps

A matrix algebra A ⊆ C𝑛𝑡×𝑛𝑡 is coherent if it is unital, self-adjoint, contains the all-ones matrix
and is closed under Schur products.

For 𝑡 = 1, the 1-adjacency algebra as defined below is equal to the well-studied adjacency
algebra of a graph 𝐺, cf. [8]. The latter is the smallest coherent algebra containing the adjacency
matrix of the graph. The former is generated by the homomorphism tensors of (1, 1)-bilabelled
atomic graphs. These graphs are depicted in Figure 4. Their homomorphism tensors are the
all-ones matrix, the adjacency matrix of the graph, and the identity matrix.

DEF IN IT ION 3.15. Let 𝑡 ≥ 1. The 𝑡-adjacency algebra A𝑡
𝐺 of a graph 𝐺 is the self-symmetrical

coherent algebra generated by the homomorphism tensors of the atomic graphs A𝑡.
Two 𝑛-vertex graphs 𝐺 and 𝐻 are 𝑡-equivalent if there is 𝑡-equivalence, i.e. a vector space

isomorphism 𝜑 : A𝑡
𝐺 → A𝑡

𝐻 such that
1. 𝜑(𝑀∗) = 𝜑(𝑀)∗ for all 𝑀 ∈ A𝑡

𝐺,
2. 𝜑(𝑀𝑁) = 𝜑(𝑀)𝜑(𝑁) for all 𝑀, 𝑁 ∈ A𝑡

𝐺,
3. 𝜑(𝐼) = 𝐼 , 𝜑(𝑨𝐺) = 𝑨𝐻 for all 𝑨 ∈ A𝑡, and 𝜑( 𝐽) = 𝐽 ,
4. 𝜑(𝑀 ⊙ 𝑁) = 𝜑(𝑀) ⊙ 𝜑(𝑁) for all 𝑀, 𝑁 ∈ A𝑡

𝐺.
5. 𝜑(𝑀𝜎) = 𝜑(𝑀)𝜎 for all 𝑀 ∈ A𝑡

𝐺 and all 𝜎 ∈ 𝔖2𝑡.

The following Theorem 3.16 extends [27, Theorem 7.3].

THEOREM 3.16. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are 𝑡-equivalent if and only if there is a level-𝑡
DNN -isomorphism map from 𝐺 to 𝐻 .

PROOF . Let Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 be a level-𝑡 DNN -isomorphism map. Let 𝜑 be the
restriction of Φ to A𝑡

𝐺. Given the arguments in the proof of Theorem 3.14, it suffices to show
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that 𝜑(𝑀 ⊙ 𝑁) = 𝜑(𝑀) ⊙ 𝜑(𝑁) for all 𝑀, 𝑁 ∈ A𝑡
𝐺 and that 𝜑∗(𝑀 ⊙ 𝑁) = 𝜑∗(𝑀) ⊙ 𝜑∗(𝑁) for all

𝑀, 𝑁 ∈ A𝑡
𝐻 . This follows from [27, Lemma 7.2].

Conversely, suppose that 𝜑 : A𝑡
𝐺 → A𝑡

𝐻 is as in Definition 3.15. It follows as in [27,

Lemma 5.3] that 𝜑 is trace-preserving. By Lemma 2.3, there exists a unitary matrix𝑈 ∈ C𝑛𝑡×𝑛𝑡

such that 𝜑(𝑋) = 𝑈𝑋𝑈∗ for all 𝑋 ∈ A𝑡
𝐺. Let 𝜑 : C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 be the map given

by 𝜑(𝑋) = 𝑈𝑋𝑈∗. Let Π: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → A𝑡
𝐺 be the orthogonal projection onto A𝑡

𝐺. Define
Φ: C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 → C𝑉 (𝐻)𝑡×𝑉 (𝐻)𝑡 by Φ B 𝜑 ◦ Π. Given Theorem 3.14, it suffices to argue that the
Choi matrix of Φ is entry-wise non-negative. This can be done as in the proof of [27, Theo-

rem 7.3]. ■

4. Homomorphism Indistinguishability

Using techniques from [18], we finally establish a characterisation of when the level-𝑡 Lasserre
relaxation of ISO(𝐺, 𝐻) is feasible in terms of homomorphism indistinguishability of 𝐺 and 𝐻 .
In order to do so, we introduce the graph classes L𝑡 and L+

𝑡 . In Sections 4.1 and 4.3, we relate
L𝑡 and L+

𝑡 to the classes of graphs of bounded treewidth and pathwidth obtaining the results
depicted in Figure 1. In Section 4.4, L1 and L+

1 are identified as the classes of outerplanar graphs
and graphs of treewidth two, respectively.

DEF IN IT ION 4.1. Let 𝑡 ≥ 1. Write L+
𝑡 for the class of (𝑡, 𝑡)-bilabelled graphs generated by the

set of atomic graphs A𝑡 under parallel composition, series composition, and the action of 𝔖2𝑡

on the labels.
Write L𝑡 ⊆ L+

𝑡 for the class of (𝑡, 𝑡)-bilabelled graphs generated by the set of atomic graphs
A𝑡 under parallel composition with graphs from A𝑡, series composition, and the action of 𝔖2𝑡

on the labels.

Note that the only difference between L𝑡 and L+
𝑡 is that L𝑡 is closed under parallel compo-

sition with atomic graphs only. This reflects an observation by [18] relating the closure under
arbitrary gluing products to non-negative solutions to systems of equations characterising homo-
morphism indistinguishability. Intuitively, one may use arbitrary Schur products, the algebraic
counterparts of gluing, for a Vandermonde interpolation argument, cf. [19, Corollary 4.3].

The following Observation 4.2 illustrates how the operations in Definition 4.1 can be used
to generate more complicated graphs from the atomic graphs, cf. Figure 5.

OBSERVAT ION 4.2. Let 𝑡 ≥ 1. The class L𝑡 contains a bilabelled graph whose underlying
unlabelled graph is isomorphic to the 3𝑡-clique 𝐾3𝑡.

PROOF . Let 𝑬 B
⊙

1≤𝑖< 𝑗≤2𝑡 𝑨
𝑖 𝑗 ∈ A𝑡. The graph underlying 𝑬⊙ (𝑬 ·𝑬) is isomorphic to 𝐾3𝑡. ■

The only missing implications of Theorems 3.1 and 3.2 follow from the next two theorems:
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Figure 5. The bilabelled graphs in Observation 4.2 for 𝑡 = 2.

THEOREM 4.3. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are homomorphism indistinguishable over L𝑡 if
and only if they are partially 𝑡-equivalent.

THEOREM 4.4. Let 𝑡 ≥ 1. Two graphs 𝐺 and 𝐻 are homomorphism indistinguishable over L+
𝑡

if and only if they are 𝑡-equivalent.

For the proofs of Theorems 4.3 and 4.4, we extend the framework developed by [18]. In
this work, the authors introduced tools for constructing systems of equations characterising
homomorphism indistinguishably over classes of labelled graphs. A requirement of these tools
is that the graph class in question is inner-product compatible [18, Definition 24]. This means that
for every two labelled graphs 𝑹 and 𝑺 one can write the inner-product of their homomorphism
vectors 𝑹𝐺 and 𝑺𝐺 as the sum-of-entries of some 𝑻𝐺 where 𝑻 is labelled graph from the class.
Due to the correspondence between combinatorial operations on labelled graphs and algebraic
operations on their homomorphism vectors, cf. Section 2.2, this is equivalent to the graph
theoretic assumption that soe(𝑹⊙𝑺) = soe(𝑻 ), i.e. the unlabelled graph obtained by unlabelling
the gluing product of 𝑹 and 𝑺 can be labelled such that the resulting labelled graph is in the
class.

We extend this notion to bilabelled graphs. A class of (𝑡, 𝑡)-bilabelled graphs S is said to be
inner-product compatible if for all 𝑹, 𝑺 ∈ S there is a graph 𝑻 ∈ S such that tr(𝑹 · 𝑺∗) = soe(𝑻 ).
This definition is inspired by the inner-product on C𝑛×𝑛 given by ⟨𝐴, 𝐵⟩ B tr(𝐴𝐵∗).

LEMMA 4.5. Let 𝑡 ≥ 1. The classes L𝑡 and L+
𝑡 are inner-product compatible.

PROOF . Since L𝑡 is closed under matrix products and taking transposes, it suffices to show
that for every 𝑺 ∈ L𝑡 the graph tr(𝑺) is the underlying unlabelled graph of some element of
L𝑡. Indeed, for every (𝑡, 𝑡)-bilabelled graphs 𝑭 it holds that tr(𝑭) = soe(𝑰1,𝑡+1 ⊙ · · · ⊙ 𝑰 𝑡,2𝑡 ⊙ 𝑭)
where the 𝑰 𝑖 𝑗 are as in Definition 3.5. Since L𝑡 is closed under parallel composition with atomic
graphs, the claim follows. For L+

𝑡 , an analogous argument yields the claim. ■

The following Theorem 4.6, which extends the toolkit for constructing systems of equations
characterising homomorphism indistinguishability over families of bilabelled graphs, is the
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bilabelled analogue of [18, Theorem 13]. Write CS𝐺 ⊆ C𝑉 (𝐺)𝑡×𝑉 (𝐺)𝑡 for the vector space spanned
by homomorphism tensors 𝑺𝐺 for 𝑺 ∈ S.

THEOREM 4.6. Let 𝑡 ≥ 1 and S be an inner-product compatible class of (𝑡, 𝑡)-bilabelled graphs
containing 𝑱 . For graphs 𝐺 and 𝐻 , the following are equivalent:

1. 𝐺 and 𝐻 are homomorphism indistinguishable over S,
2. there exists a sum-preserving vector space isomorphism 𝜑 : CS𝐺 → CS𝐻 such that 𝜑(𝑺𝐺) =

𝑺𝐻 for all 𝑺 ∈ S.

PROOF . For the forward direction, observe that for all 𝑹, 𝑺 ∈ S it holds that ⟨𝑹𝐺, 𝑺𝐺⟩ =

tr(𝑹𝐺𝑺∗𝐺) = ⟨𝑹𝐻 , 𝑺𝐻⟩ by inner-product compatibility. Hence, by a Gram–Schmidt argument [19,

Lemma 2.1], there exists a unitary map such that 𝜑(𝑺𝐺) = 𝑺𝐻 for all 𝑺 ∈ S. Since 𝜑( 𝑱𝐺) = 𝑱𝐻 and
𝜑 is unitary, it is sum-preserving by Remark 3.7. Conversely, let 𝜑 be as stipulated. For every
𝑺 ∈ S, it holds that soe(𝑺𝐻) = soe(𝜑(𝑺𝐺)) = soe(𝑺𝐺) since 𝜑 is sum-preserving. ■

This completes the preparations for the proof of Theorems 4.3 and 4.4.

PROOF OF THEOREMS 4.3 AND 4.4 . By comparing the operations from Definitions 4.1
and 3.13, it follows that CS𝐺 = Â𝑡

𝐺 for S = L𝑡. By Lemma 4.5 and Theorem 4.6, 𝐺 and 𝐻 are
homomorphism indistinguishable over L𝑡 if and only if there is a sum-preserving vector space
isomorphism 𝜑 : Â𝑡

𝐺 → Â𝑡
𝐻 satisfying 𝜑(𝑺𝐺) = 𝑺𝐻 for all 𝑺 ∈ L𝑡.

For all atomic 𝑨 ∈ A𝑡, it holds that 𝜑(𝑨𝐺) = 𝑨𝐻 . Furthermore, since L𝑡 is closed under
the action of 𝔖2𝑡, 𝜑(𝑺𝜎𝐺) = 𝜑((𝑺𝜎)𝐺) = (𝑺𝜎)𝐻 = 𝑺𝜎𝐻 for all 𝜎 ∈ 𝔖2𝑡. Finally, for all 𝑺,𝑻 ∈ L𝑡 it
holds that 𝜑(𝑺𝐺 · 𝑻𝐺) = 𝜑((𝑺 · 𝑻 )𝐺) = 𝑺𝐻 · 𝑻𝐻 and 𝜑(𝑺𝐺 ⊙ 𝑻𝐺) = 𝜑((𝑺 ⊙ 𝑻 )𝐺) = 𝑺𝐻 ⊙ 𝑻𝐻 . The
homomorphism matrices 𝑺𝐺 for 𝑺 ∈ L𝑡 span CS𝐺 = Â𝑡

𝐺. Hence, 𝜑 is a partial 𝑡-equivalence.
Conversely, every partial 𝑡-equivalence 𝜑 : Â𝑡

𝐺 → Â𝑡
𝐻 is such that 𝜑(𝑺𝐺) = 𝑺𝐻 for all 𝑺 ∈ L𝑡

by definition of L𝑡. With slight modifications, [27, Lemma 5.3] yields that 𝜑 is trace-preserving,
which implies with 𝜑( 𝐽) = 𝐽 that 𝜑 is sum-preserving. The proof of Theorem 4.4 is analogous. ■

4.1 The Classes L𝒕 and L+
𝒕 and Graphs of Bounded Treewidth

In this section, the classes L𝑡 and L+
𝑡 are compared to the classes of graphs of bounded treewidth

and pathwidth. Figure 1 depicts the relationships between these classes. The first result,
Lemma 4.7, gives an upper bound on the treewidth of graphs in L+

𝑡 .

LEMMA 4.7. Let 𝑡 ≥ 1. The treewidth of an unlabelled graph 𝐹 underlying some 𝑭 = (𝐹,𝒖, 𝒗) ∈
L+
𝑡 is at most 3𝑡 − 1.

PROOF . By structural induction, it is shown that every 𝑭 = (𝐹,𝒖, 𝒗) ∈ L+
𝑡 admits a tree

decomposition 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐹) of width at most 3𝑡 − 1 such that the labelled vertices 𝒖 and 𝒗

lie together in one bag, i.e. there exists 𝑥 ∈ 𝑉 (𝑇 ) such that {𝒖1, . . . ,𝒖𝑡, 𝒗1, . . . , 𝒗𝑡} ⊆ 𝛽(𝑥).
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In the base case, i.e. if 𝑭 ∈ A𝑡, then 𝑭 has at most 2𝑡 vertices, which can all be placed in
the single bag of a tree decomposition over the singleton tree.

For the inductive step, let 𝑭 = (𝐹,𝒖, 𝒗) and 𝑭′ = (𝐹′,𝒖′, 𝒗′) from L+
𝑡 be given. Suppose there

are tree decompositions 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐹) and 𝛽′ : 𝑉 (𝑇 ′) → 2𝑉 (𝐹′) as in the inductive hypothesis.
Let 𝑥 ∈ 𝑉 (𝑇 ) and 𝑥′ ∈ 𝑉 (𝑇 ′) be such that the labelled vertices of 𝑭 and 𝑭′ lie in 𝛽(𝑥) and 𝛽′(𝑥′)
respectively. Let 𝑆 be the tree obtained by taking the disjoint union of 𝑇 , 𝑇 ′, and a fresh vertex
𝑦, and connecting 𝑥 and 𝑥′ to 𝑦.

For the graph 𝑭 · 𝑭′, an 𝑆-decomposition is given by the function

𝛾 : 𝑧 ↦→


𝛽(𝑧), if 𝑧 ∈ 𝑉 (𝑇 ),

𝛽′(𝑧), if 𝑧 ∈ 𝑉 (𝑇 ′),

{𝒖1, . . . ,𝒖𝑡, 𝒗′1, . . . , 𝒗
′
𝑡, 𝒗1, . . . , 𝒗𝑡}, if 𝑧 = 𝑦.

where one may note that 𝒗𝑖 = 𝒖′
𝑖

for every 𝑖 ∈ [𝑡] in 𝑭 · 𝑭′. It is easy to check that Definition 2.5
is satisfied. The decomposition is of width 3𝑡 − 1.

For the graph 𝑭 ⊙ 𝑭′, an 𝑆-decomposition is given by the function

𝛾 : 𝑧 ↦→


𝛽(𝑧), if 𝑧 ∈ 𝑉 (𝑇 ),

𝛽′(𝑧), if 𝑧 ∈ 𝑉 (𝑇 ′),

{𝒖1, . . . ,𝒖𝑡, 𝒗1, . . . , 𝒗𝑡}, if 𝑧 = 𝑦.

where one may note that 𝒖𝑖 = 𝒖′
𝑖

and 𝒗𝑖 = 𝒗′
𝑖

for every 𝑖 ∈ [𝑡] in 𝑭 ⊙ 𝑭′. Again, it is easy to check
that Definition 2.5 is satisfied. The decomposition is of width at most 3𝑡 − 1. ■

Lemma 4.7 in conjunction with Theorems 3.1 and 3.2 implies Theorems 1.2 and 1.3. As a
corollary, this yields the upper bound in Theorem 1.1. Indeed, by Theorem 2.8, 𝐺 ≃SA

𝑡 𝐻 if and
only if 𝐺 and 𝐻 are homomorphism indistinguishable over the class of graphs of treewidth at
most 𝑡 − 1. Hence, if 𝐺 ≃SA

3𝑡 𝐻 then 𝐺 ≃L+
𝑡 𝐻 and in particular 𝐺 ≃L

𝑡 𝐻 .
It remains to show the lower bound asserted by Theorem 1.1, i.e. that 3𝑡 cannot be replaced

by 3𝑡 − 1 for no 𝑡 ≥ 1. To that end, first observe that Observation 4.2 implies that the bound
in Lemma 4.7 is tight. However, this syntactic property of the graph class L𝑡 does not suffice
to derive the aforementioned semantic property of ≃SA

𝑡 and ≃L
𝑡 . In fact, it could well be that

for all graphs 𝐺 and 𝐻 if 𝐺 and 𝐻 are homomorphism indistinguishable over the graphs of
treewidth at most 3𝑡 − 2 also hom(𝐾3𝑡, 𝐺) = hom(𝐾3𝑡, 𝐻) despite that tw 𝐾3𝑡 > 3𝑡 − 2. That
this does not hold is implied by a conjecture of the first author [32] which asserts that every
minor-closed graph class F which is closed under taking disjoint unions (union-closed) is
homomorphism distinguishing closed, i.e. for all 𝐹 ∉ F there exist graphs 𝐺 and 𝐻 such that
𝐺 ≡F 𝐻 but hom(𝐹, 𝐺) ≠ hom(𝐹, 𝐻). Although being generally open, this conjecture was
proven by Neuen [29] for the class of graphs of treewidth at most 𝑡 for every 𝑡. Theorem 4.8
implies the last assertion of Theorem 1.1.
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THEOREM 4.8. For every 𝑡 ≥ 1, there exist graphs 𝐺 and 𝐻 such that 𝐺 ≃SA
3𝑡−1 𝐻 and 𝐺 ;L

𝑡 𝐻 .

PROOF . Since tw(𝐾3𝑡) = 3𝑡 − 1, there exist, by [29, Theorem 2], two graphs 𝐺 and 𝐻 such that
𝐺 ≡TW3𝑡−2 𝐻 and hom(𝐾3𝑡, 𝐺) ≠ hom(𝐾3𝑡, 𝐻). By Theorem 2.8, 𝐺 ≃SA

3𝑡−1 𝐻 . By Observation 4.2
and Theorem 3.1, 𝐺 ;L

𝑡 𝐻 . ■

4.2 Bilabelled Minors

It is worth noting that the classes of unlabelled graphs underlying the elements of L𝑡 and L+
𝑡

are themselves minor-closed and union-closed. Hence, they are subject to the aforementioned
conjecture. Furthermore, by the Robertson–Seymour Theorem and [34], membership in L𝑡 and
L+
𝑡 can be tested in polynomial time for every fixed 𝑡 ≥ 1.

LEMMA 4.9. Let 𝑡 ≥ 1. The class of graphs underlying the elements of L𝑡 and the class of graphs
underlying the elements of L+

𝑡 are minor-closed and union-closed.

In order to proof Lemma 4.9, we introduce bilabelled analogues of graph minors. The
tools developed here will also be used in Section 4.4.

DEF IN IT ION 4.10. Let 𝑴 and 𝑭 be (ℓ, 𝑘)-bilabelled graphs for some 𝑘, ℓ ∈ N. Then 𝑴 is a
bilabelled minor of 𝑭 , in symbols 𝑴 ≤ 𝑭 , if it can be obtained from 𝑭 by applying a sequence of
the following bilabelled minor operations:

1. edge contraction,
2. edge deletion,
3. deletion of unlabelled vertices,

A family of bilabelled graphs F is minor-closed if it is closed under taking bilabelled minors.

Note that for (0, 0)-bilabelled graphs, i.e. unlabelled graphs, Definition 4.10 and the stan-
dard definition of graph minors coincide.

EXAMPLE 4.1 1. Let 𝑡 ≥ 1. The class of atomic graphs A𝑡 as defined in Definition 3.5 is
minor-closed. ■

We proceed to prove various lemmas characterising how bilabelled minors behave under
the operations applied to bilabelled graphs, namely labelling and unlabelling and series and
parallel composition.

LEMMA 4.12 (Minor Unlabelling Lemma). Let 𝑴 ≤ 𝑭 be bilabelled. Then soe(𝑴) ≤ soe(𝑭).

PROOF . It is argued by induction on the number of bilabelled minor operations necessary
to transform 𝑭 into 𝑴 . If 𝑴 = 𝑭 then soe(𝑴) = soe(𝑭), and the claim follows. Suppose that
𝑴 ≤ 𝑴 ′ ≤ 𝑭 where 𝑴 ′ can be transformed into 𝑴 by applying a single minor operation and
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𝑴 ′ is minimal among all such graphs with respect to the number of minor operations necessary
to derive it from 𝑭 . By the inductive hypothesis, soe(𝑴 ′) ≤ soe(𝑭). Since bilabelled minor
operations are more restrictive than minor operations, any operation of Definition 4.10 carried
out on 𝑴 ′ can be applied to soe(𝑴 ′). It follows that soe(𝑴) ≤ soe(𝑭). ■

LEMMA 4.13 (Minor Labelling Lemma). Let 𝑭 be bilabelled and𝑀 be unlabelled. If𝑀 ≤ soe(𝑭)
then there exists 𝑴 ≤ 𝑭 such that soe(𝑴) is the disjoint union of 𝑀 and potential isolated vertices
which are labelled in 𝑴 .

PROOF . It is argued by induction on the number of minor operations needed to transform
soe(𝑭) into 𝑀 . If 𝑀 = soe(𝑭), let 𝑴 B 𝑭 . Now suppose there are 𝑀 ≤ 𝑀′ ≤ soe(𝑭) such that
𝑀′ can be transformed into 𝑀 by applying a single minor operation. Then there exists 𝑴 ′ ≤ 𝑭

such that soe(𝑴 ′) is the disjoint union of 𝑀′ and potential isolated vertices. Distinguish cases:
𝑀 is obtained from 𝑀′ by deleting or contracting an edge 𝑒. Then 𝑒 has a counterpart in
𝑴 ′ since soe(𝑴 ′) contains 𝑀′. Contracting/deleting the edge there yields the desired 𝑴 .
𝑀 is obtained from 𝑀′ by deleting a vertex 𝑣. If 𝑣 is unlabelled in 𝑴 ′ then it can be deleted
from 𝑴 ′ yielding 𝑴 . If 𝑣 is labelled in 𝑴 ′, remove all edges incident to 𝑣 and let 𝑴 be the
resulting graph. In this case, soe(𝑴) is the disjoint union of 𝑀 and an isolated vertex. ■

Intuitively, the following Lemmas 4.14 and 4.15 assert that minor operations commute
with bilabelled graph multiplication.

LEMMA 4.14 (Minor Parallel Composition Lemma). Let 𝑷1 and 𝑷2 be (𝑘, ℓ)-bilabelled graphs.
1. If 𝑴1 is a minor of 𝑷1 and 𝑴2 is a minor of 𝑷2 then 𝑴1 ⊙ 𝑴2 is a minor of 𝑷1 ⊙ 𝑷2.
2. If 𝑲 is a minor of 𝑷1⊙𝑷2 then there exist (𝑘, ℓ)-bilabelled 𝑴1 and 𝑴2 such that 𝑲 = 𝑴1⊙𝑴2,

𝑴1 is a minor of 𝑷1, and 𝑴2 is a minor of 𝑷2.

PROOF . For the first claim, it is argued by induction on the sum of the number of minor
operations applied to transform 𝑷1 into 𝑴1 and 𝑷2 into 𝑴2. For the base case, 𝑴1 = 𝑷1 and
𝑴2 = 𝑷2, and the claim follows trivially.

Now suppose that 𝑴1 is obtained from 𝑴 ′
1, a minor of 𝑷1, by applying a single minor

operation. Suppose inductively that 𝑴 ′
1 ⊙ 𝑴2 is a minor of 𝑷1 ⊙ 𝑷2. Distinguish cases:

𝑴1 is obtained from 𝑴 ′
1 by contracting an edge 𝑒. In 𝑴 ′

1 ⊙ 𝑴2, this edge is either a loop or
a proper edge. In the former case, it can be deleted, in the latter case, it can be contracted,
yielding in both cases 𝑴1 ⊙ 𝑴2.
𝑴1 is obtained from 𝑴 ′

1 by deleting an edge 𝑒. In 𝑴 ′
1 ⊙ 𝑴2, this edge is either a loop or a

proper edge. In both cases, it can be deleted yielding 𝑴1 ⊙ 𝑴2.
𝑴1 is obtained from 𝑴 ′

1 by deleting an unlabelled vertex 𝑣. Then 𝑣 is unlabelled in 𝑴 ′
1⊙𝑴2

and can be deleted. The resulting graph is 𝑴1 ⊙ 𝑴2.
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For the second claim, it is argued by induction on the number of minor operations necessary
to transform 𝑷1 ⊙ 𝑷2 into 𝑲 . For the base case, if 𝑲 = 𝑷1 ⊙ 𝑷2, let 𝑴 B 𝑲 , 𝑴1 B 𝑷1, and
𝑴2 B 𝑷2.

Now suppose that 𝑲 is a minor of 𝑷1 ⊙ 𝑷2. Then there exists a (𝑘, ℓ)-bilabelled graph
𝑲′ such that 𝑲′ is a minor of 𝑷1 ⊙ 𝑷2 and 𝑲 is obtained from 𝑲′ by applying a single minor
operation. By the induction hypothesis, there exist 𝑴 ′

1 and 𝑴 ′
2 such that the assertions of this

lemma are satisfied. Distinguish cases:
𝑲 is obtained from 𝑲′ by deleting or contracting an edge 𝑒.
The edge 𝑒 may lie in both 𝑴 ′

1 and 𝑴 ′
2 or in only one of the two graphs. In either case,

construct 𝑴1 and 𝑴2 by respectively deleting or contracting the edge in 𝑴 ′
1 and 𝑴 ′

2 or
leaving the graph unchanged if it does not contain the edge.
𝑲 is obtained from 𝑲′ by deleting an unlabelled vertex 𝑣.
Since no vertex is unlabelled under parallel composition, the vertex 𝑣 is also unlabelled in
the graph 𝑴 ′

1 or 𝑴 ′
2 which it contains. It follows that 𝑣 can be deleted from 𝑴 ′

𝑖
leaving the

other graph untouched. This yields 𝑴1 and 𝑴2. ■

LEMMA 4.15 (Minor Series Composition Lemma). Let 𝑷1 be (𝑘, ℓ)-bilabelled and 𝑷2 be (ℓ, 𝑗)-
bilabelled.

1. If 𝑴1 is a minor of 𝑷1 and 𝑴2 is a minor of 𝑷2 then 𝑴1 · 𝑴2 is a minor of 𝑷1 · 𝑷2.
2. If 𝑲 is a minor of 𝑷1 · 𝑷2 then there exists a (𝑘, 𝑗)-bilabelled 𝑴 , a (𝑘, ℓ)-bilabelled 𝑴1, and a

(ℓ, 𝑗)-bilabelled 𝑴2 such that
a. 𝑴 is the disjoint union of 𝑲 and potential isolated unlabelled vertices, which are

labelled in 𝑴1 and 𝑴2,
b. 𝑴 = 𝑴1 · 𝑴2, and
c. 𝑴1 is a minor of 𝑷1 and 𝑴2 is a minor of 𝑷2.

PROOF . The proof of the first claim is analogous to the proof of the first claim of Lemma 4.14.
For the second claim, it is argued by induction on the number of minor operations necessary

to transform 𝑷1 · 𝑷2 into 𝑲 . For the base case, if 𝑲 = 𝑷1 · 𝑷2, let 𝑴 B 𝑲 , 𝑴1 B 𝑷1, and 𝑴2 B 𝑷2.
Now suppose that 𝑲 is a minor of 𝑷1 · 𝑷2. Then there exists a (𝑘, 𝑗)-bilabelled graph 𝑲′

such that 𝑲′ is a minor of 𝑷1 ·𝑷2 and 𝑲 is obtained from 𝑲′ by applying a single minor operation.
By the induction hypothesis, there exist 𝑴 ′, 𝑴 ′

1, and 𝑴 ′
2 such that Items a to c are satisfied.

Distinguish cases:
𝑲 is obtained from 𝑲′ by deleting or contracting an edge 𝑒.
Define 𝑴 by deleting/contracting the same edge in 𝑴 ′. The edge 𝑒 may lie in both 𝑴 ′

1 and
𝑴 ′

2 or only in one of the two graphs. In the first case, both endpoints of 𝑒 are labelled in
both graphs. In either case, construct 𝑴1 and 𝑴2 by respectively deleting or contracting
the edge in 𝑴 ′

1 and 𝑴 ′
2 or leaving the graph unchanged if it does not contain the edge.
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𝑲 is obtained from 𝑲′ by deleting an unlabelled vertex 𝑣.
If 𝑣 is among the unlabelled vertices of 𝑴 ′

𝑖
for 𝑖 ∈ {1, 2} then define 𝑴 by deleting 𝑣 from

𝑴 ′. It follows that 𝑣 can be deleted from 𝑴 ′
𝑖

leaving the other graph untouched. This yields
𝑴1 and 𝑴2.
If otherwise 𝑣 is among the vertices at which 𝑴 ′

1 and 𝑴 ′
2 are glued together then define

𝑴 as the graph obtained from 𝑴 ′ by deleting all edges incident with 𝑣 but keeping the
vertex. By the inductive hypothesis, 𝑴 ′ is the disjoint union of 𝑲′ and isolated unlabelled
vertices and via the aforementioned construction the same holds for 𝑴 and 𝑲 . Note that
𝑣 is neither in-labelled in 𝑴 ′

1 nor out-labelled in 𝑴 ′
2 as it would otherwise be labelled

in 𝑴 . Delete all edges incident to 𝑣 in both 𝑴 ′
1 and 𝑴 ′

2. The resulting 𝑴1 and 𝑴2 satisfy
𝑴 = 𝑴1 · 𝑴2, as desired. ■

With these general facts at hand, we proceed to show the following about our graph classes
L𝑡 and L+

𝑡 :

LEMMA 4.16. Let 𝑡 ≥ 1. The classes L𝑡 and L+
𝑡 are closed under taking bilabelled minors.

PROOF . By induction on the structure of elements 𝑭 ∈ L𝑡, it is proven that if 𝑲 ≤ 𝑭 then
also 𝑲 ∈ L𝑡. For L+

𝑡 , the proof is very similar, requiring fewer case distinctions. It is therefore
omitted. If 𝑭 is atomic then all its minors are atomic by Example 4.11. This constitutes the base
case of the induction.

If 𝑭 = 𝑭1 ⊙ 𝑭2 for 𝑭1 ∈ A𝑡, 𝑭2 ∈ L𝑡 to which the inductive hypothesis applies, and 𝑲 ≤ 𝑭

then, by Lemma 4.14, there exist 𝑲1 ≤ 𝑭1 and 𝑲2 ≤ 𝑭2 such that 𝑲 = 𝑲1 ⊙ 𝑲2. By Example 4.11,
𝑲1 is atomic and, by the inductive hypothesis, 𝑲2 ∈ L𝑡. Hence, 𝑲 ∈ L𝑡.

If 𝑭 = 𝑭1 · 𝑭2 for two 𝑭1, 𝑭2 ∈ L𝑡 to which the inductive hypothesis applies and 𝑲 ≤ 𝑭

then, by Lemma 4.15, there exist 𝑴 , 𝑴1, 𝑴2 such that 𝑴1 ≤ 𝑭1, 𝑴2 ≤ 𝑭2, and 𝑴 = 𝑴1 · 𝑴2 is
the disjoint union of 𝑲 and potential isolated unlabelled vertices which are labelled both in 𝑴1

and 𝑴2. By the inductive hypothesis, 𝑴1,𝑴2 ∈ L𝑡. It remains to remove these isolated vertices.
Suppose that the 𝑖-th out-label of 𝑴1 and the 𝑖-th in-label of 𝑴2 are carried by an isolated vertex.
Then graph (𝑰1,𝑡+1+𝑖 ⊙ 𝑴1) · 𝑴2 does not contain this isolated vertex since taking the parallel
composition with 𝑰1,𝑡+1+𝑖 as defined in Definition 3.5 amounts to gluing it to the first in-labelled
vertex of 𝑴1. Observe that 𝑰1,𝑡+1+𝑖 ⊙ 𝑴1 ∈ L𝑡. Proceeding in this fashion, one can construct
𝑲1, 𝑲2 ∈ L𝑡 such that 𝑲 = 𝑲1 · 𝑲2 ∈ L𝑡, as desired.

If 𝑭 = 𝑭𝜎1 for 𝜎 ∈ 𝔖2𝑡, 𝑭1 ∈ L𝑡 to which the inductive hypothesis applies, and 𝑲 ≤ 𝑭 then
𝑲𝜎−1 ≤ 𝑭1 and 𝑲𝜎−1 ∈ L𝑡 by the inductive hypothesis. Hence, 𝑲 ∈ L𝑡, as desired. ■

This concludes the preparations for the proof of Lemma 4.9.

PROOF OF LEMMA 4.9 . For (𝑡, 𝑡)-bilabelled graphs 𝑭 and 𝑭′ and 𝑱 ∈ A𝑡 as defined in Defini-
tion 3.5, the graph underlying 𝑭 · 𝑱 ·𝑭′ is isomorphic to the disjoint union of the graphs underlying
𝑭 and 𝑭′. Hence, the classes of graphs underlying elements of L𝑡 and L+

𝑡 are union-closed.
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Given Lemma 4.16, it remains to observe that the classes of unlabelled graphs underlying
the elements of L𝑡 and L+

𝑡 are minor closed. By Lemma 4.13, if an unlabelled graph 𝑀 is a
minor of soe(𝑭) for some 𝑭 ∈ L𝑡 then there exists 𝑴 ≤ 𝑭 such that soe(𝑴) is the disjoint union
of 𝑀 and potential isolated vertices which are labelled in 𝑴 . By Lemma 4.16, 𝑴 ∈ L𝑡. As in the
proof of Lemma 4.16, the potential isolated vertices can be identified with other labelled in 𝑴

by taking the parallel composition of this graph with atomic graphs. Hence, it may be assumed
that 𝑀 = soe(𝑴). This yields the claim. ■

4.3 Further Relations between TW𝒕, PW𝒕, L𝒕, and L+
𝒕

This subsection is dedicated to some further relations between the classes of graphs of bounded
treewidth or pathwidth, L𝑡, and L+

𝑡 . These facts give independent proofs for the correspondence
between the feasibility of the level-𝑡 Sherali–Adams relaxation (without non-negativity con-
straints), which corresponds to homomorphism indistinguishability over graphs of treewidth
(pathwidth) at most 𝑡−1, as proven by [13, 18], and the feasibility of the level-𝑡 Lasserre relaxation
with and without non-negativity constraints.

First of all, dropping the semidefiniteness constraint Equation (4) of the level-𝑡 Lasserre
system of equations turns this system essentially into the level-2𝑡 Sherali–Adams system of
equations without non-negativity constraints, e.g. as defined in [19, Section 2.7]. This is paralleled
by Lemma 4.17.

LEMMA 4.17. Let 𝑡 ≥ 1. For every graph 𝐹 with pw 𝐹 ≤ 2𝑡 − 1, there is a graph 𝑭 ∈ L𝑡 whose
underlying unlabelled graph is isomorphic to 𝐹.

PROOF . If |𝑉 (𝐹) | ≤ 2𝑡 then there exists an atomic graph 𝑭 ∈ A𝑡 whose underlying unlabelled
graph is isomorphic to 𝐹. Otherwise, by Lemma 2.6, there exists a path decomposition 𝛽 : 𝑉 (𝑃) →
2𝑉 (𝐹) such that |𝛽(𝑣) | = 2𝑡 for all 𝑣 ∈ 𝑉 (𝑃) and |𝛽(𝑠) ∩ 𝛽(𝑡) | = 2𝑡 − 1 for all 𝑠𝑡 ∈ 𝐸(𝑃).

It is shown by induction on |𝑉 (𝑃) | that for every vertex 𝑟 ∈ 𝑉 (𝑃) of degree at most one
there exist 𝒖 = 𝑢1 . . . 𝑢𝑡 ∈ 𝑉 (𝐹)𝑡, 𝒗 = 𝑣1 . . . 𝑣𝑡 ∈ 𝑉 (𝐹)𝑡 with 𝛽(𝑟) = {𝑢1, . . . , 𝑢𝑡, 𝑣1, . . . , 𝑣𝑡} such
that 𝑭 = (𝐹,𝒖, 𝒗) ∈ L𝑡.

The inductive argument is very similar to the one in the proof of Lemma 4.18. Indeed, since
the vertex 𝑟 has at most one neighbour, ℓ ≤ 1 in the proof of Lemma 4.18 and the construction
does not require arbitrary parallel compositions. ■

Furthermore, one may drop Equation (4) from the level-𝑡 Lasserre system of equations
with non-negativity constraints to obtain the level-2𝑡 Sherali–Adams system of equations in its
original form, i.e. with non-negativity constraints. This is paralleled by Lemma 4.18.

LEMMA 4.18. Let 𝑡 ≥ 1. For every graph 𝐹 with tw 𝐹 ≤ 2𝑡 − 1, there is a graph 𝑭 ∈ L+
𝑡 whose

underlying unlabelled graph is isomorphic to 𝐹.
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PROOF . If |𝑉 (𝐹) | ≤ 2𝑡 then there exists an atomic graph 𝑭 ∈ A𝑡 whose underlying unlabelled
graph is isomorphic to 𝐹. Otherwise, by Lemma 2.6, there exists a tree decomposition 𝛽 : 𝑉 (𝑇 ) →
2𝑉 (𝐹) of 𝐹 such that |𝛽(𝑣) | = 2𝑡 for all 𝑣 ∈ 𝑉 (𝑇 ) and |𝛽(𝑠) ∩ 𝛽(𝑡) | = 2𝑡 − 1 for all 𝑠𝑡 ∈ 𝐸(𝑇 ).
It is shown by induction on |𝑉 (𝑇 ) | that for every 𝑟 ∈ 𝑉 (𝑇 ) there exist 𝒖 = 𝑢1 . . . 𝑢𝑡 ∈ 𝑉 (𝐹)𝑡,
𝒗 = 𝑣1 . . . 𝑣𝑡 ∈ 𝑉 (𝐹)𝑡 with 𝛽(𝑟) = {𝑢1, . . . , 𝑢𝑡, 𝑣1, . . . , 𝑣𝑡} such that 𝑭 = (𝐹,𝒖, 𝒗) ∈ L+

𝑡 . Observe
that this implies that the labels of 𝑭 lie on distinct vertices of 𝐹.

In the base case, when |𝑉 (𝑇 ) | = 1, the tuples 𝒖 and 𝒗 can be chosen arbitrarily subject to
the desired condition and 𝑭 is an atomic graph.

Let |𝑉 (𝑇 ) | ≥ 2 and 𝑟 ∈ 𝑉 (𝑇 ) be arbitrary. Write 𝑠1, . . . , 𝑠ℓ for the neighbours of 𝑟 in 𝑇 . First
a bilabelled graph 𝑭 𝑖 ∈ L+

𝑡 is constructed for each 𝑖 ∈ [ℓ]. Let 𝑇𝑖 be the connected component of
𝑇 \ {𝑟} containing 𝑠𝑖 . Let 𝐹𝑖 be the induced subgraph of 𝐹 on

⋃
𝑡∈𝑉 (𝑇𝑖) 𝛽(𝑡). The restriction of 𝛽 to

𝑉 (𝑇𝑖) is a tree decomposition of 𝐹𝑖 with the properties stated in the inductive hypothesis. Hence,
there exist 𝒖𝑖 = 𝑢𝑖1 . . . 𝑢

𝑖
𝑡 ∈ 𝑉 (𝐹𝑖)𝑡, 𝒗𝑖 = 𝑣𝑖1 . . . 𝑣𝑖𝑡 ∈ 𝑉 (𝐹𝑖)𝑡 with 𝛽(𝑠𝑖) = {𝑢𝑖1, . . . , 𝑢𝑖𝑡, 𝑣𝑖1, . . . , 𝑣𝑖𝑡} such

that 𝑭 𝑖 B (𝐹𝑖 ,𝒖𝑖 , 𝒗𝑖) ∈ L+
𝑡 .

Let 𝑥1, . . . , 𝑥2𝑡 denote the vertices in 𝛽(𝑟). By permuting labels, it can be guaranteed that
for every 𝑖 ∈ [ℓ], the tuples 𝑢𝑖1 . . . 𝑢

𝑖
𝑡𝑣
𝑖
1 . . . 𝑣

𝑖
𝑡 and 𝑥1 . . . 𝑥2𝑡 differ at precisely one index 𝑗𝑖 ∈ [2𝑡].

Recall the bilabelled graphs defined in Definition 3.5 and 𝑲 𝑗 from Equation (17) and Figure 3.
Let 𝑭′

𝑖
B 𝑲 𝑗𝑖 · 𝑭 𝑖 if 𝑗𝑖 ≤ 𝑡 and 𝑭′

𝑖
B 𝑭 𝑖 · 𝑲 𝑗𝑖−𝑡 otherwise. Intuitively, the bilabelled graph 𝑭′

𝑖

is obtained from 𝑭 𝑖 by adding a fresh vertex and moving the 𝑗𝑖-th label to this vertex. Since
𝑭 𝑖 ∈ L+

𝑡 and 𝑲 𝑗𝑖 ∈ A𝑡, it holds that 𝑭′
𝑖
∈ L+

𝑡 . Finally, let 𝑭 = 𝑭′
1 ⊙ · · · ⊙ 𝑭′

ℓ ⊙
⊙

𝑥𝑖𝑥 𝑗∈𝐸(𝐹) 𝑨
𝑖 𝑗 . ■

Since the diagonal entries of a positive semidefinite matrix are necessarily non-negative,
Equation (4) implies that any solution ( 𝑦𝐼) to the level-𝑡 Lasserre system of equations is such that
𝑦𝐼 ≥ 0 for all 𝐼 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤𝑡

)
. Hence, such a solution is a solution to the level-𝑡 Sherali–Adams

system of equations as well. This is paralleled by Lemma 4.19.

LEMMA 4.19. Let 𝑡 ≥ 1. For every graph 𝐹 with tw 𝐹 ≤ 𝑡 − 1, there is a graph 𝑭 ∈ L𝑡 whose
underlying unlabelled graph is isomorphic to 𝐹.

PROOF . If |𝑉 (𝐹) | ≤ 𝑡 then there exists an atomic graph 𝑭 ∈ A𝑡 whose underlying unlabelled
graph is isomorphic to 𝐹. Otherwise, by Lemma 2.6, there exists a tree decomposition 𝛽 : 𝑉 (𝑇 ) →
2𝑉 (𝐹) of 𝐹 such that |𝛽(𝑣) | = 𝑡 for all 𝑣 ∈ 𝑉 (𝑇 ) and |𝛽(𝑠) ∩ 𝛽(𝑡) | = 𝑡 − 1 for all 𝑠𝑡 ∈ 𝐸(𝑇 ). It
is shown by induction on |𝑉 (𝑇 ) | that for every 𝑟 ∈ 𝑉 (𝑇 ) there exist 𝒖 = 𝑢1 . . . 𝑢𝑡 ∈ 𝑉 (𝐹)𝑡 with
𝛽(𝑟) = {𝑢1, . . . , 𝑢𝑡} such that 𝑭 = (𝐹,𝒖,𝒖) ∈ L𝑡.

In the base case, when |𝑉 (𝑇 ) | = 1, the tuple 𝒖 can be chosen arbitrarily and 𝑭 is an atomic
graph.

Let |𝑉 (𝑇 ) | ≥ 2 and 𝑟 ∈ 𝑉 (𝑇 ) be arbitrary. Write 𝑠1, . . . , 𝑠ℓ for the neighbours of 𝑟 in 𝑇 . First
a graph 𝑭 𝑖 ∈ L𝑡 is constructed for each 𝑖 ∈ [ℓ]. Let 𝑇𝑖 be the connected component of 𝑇 \ {𝑟}
containing 𝑠𝑖 . Let 𝐹𝑖 be the induced subgraph of 𝐹 on

⋃
𝑡∈𝑉 (𝑇𝑖) 𝛽(𝑡). The restriction of 𝛽 to 𝑉 (𝑇𝑖)
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is a tree decomposition of 𝐹𝑖 with the properties listed in the inductive hypothesis. Hence, there
exist 𝒖𝑖 = 𝑢𝑖1 . . . 𝑢

𝑖
𝑡 ∈ 𝑉 (𝐹𝑖)𝑡 with 𝛽(𝑠𝑖) = {𝑢𝑖1, . . . , 𝑢𝑖𝑡} such that 𝑭 𝑖 B (𝐹𝑖 ,𝒖𝑖 ,𝒖𝑖) ∈ L𝑡.

Let 𝑥1, . . . , 𝑥𝑡 denote the vertices in 𝛽(𝑟). By permuting labels, it can be guaranteed that
for every 𝑖 ∈ [ℓ], the tuples 𝑢𝑖1 . . . 𝑢

𝑖
𝑡 and 𝑥1 . . . 𝑥𝑡 differ at precisely one index 𝑗𝑖 ∈ [𝑡]. Recall

the bilabelled graphs defined in Definition 3.5 and 𝑲 𝑗 from Equation (17) and Figure 3. Let
𝑭′
𝑖
B 𝑰 𝑗𝑖 ,𝑡+ 𝑗𝑖 ⊙ (𝑲 𝑗𝑖 · 𝑭 · 𝑲 𝑗𝑖). By construction, 𝑭′

𝑖
∈ L𝑡. The labelled vertices of 𝑭 𝑖 differ from

those of 𝑭 𝑖 in 𝑥 𝑗𝑖 . Finally, let

𝑭 B (𝑰1,𝑡+1 ⊙ · · · ⊙ 𝑰 𝑡,2𝑡) ⊙ (𝑭′
1 · · · · · 𝑭′

ℓ) ⊙
⊙

𝑥𝑖𝑥 𝑗∈𝐸(𝐹)
𝑨𝑖 𝑗 .

This graph is as desired. ■

4.4 The Classes L1 and L+
1

The classes L1 and L+
1 can be identified as the class of outerplanar graphs and as the class of

graphs of treewidth at most two, respectively. This yields Theorem 1.5.

THEOREM 4.20. The class of unlabelled graphs underlying an element of L+
1 coincides with the

class of graphs of treewidth at most two.

PROOF . Given Lemmas 4.7 and 4.18, it suffices to show that if a graph 𝐹 is such that tw 𝐹 = 2
then there is a graph 𝑭 ∈ L+

1 whose underlying unlabelled graph is isomorphic to 𝐹.
By Lemma 2.6, there exists a tree decomposition 𝛽 : 𝑉 (𝑇 ) → 2𝑉 (𝐹) of 𝐹 such that |𝛽(𝑣) | = 3

for all 𝑣 ∈ 𝑉 (𝑇 ) and |𝛽(𝑠) ∩ 𝛽(𝑡) | = 2 for all 𝑠𝑡 ∈ 𝐸(𝑇 ). It is shown by induction on |𝑉 (𝑇 ) | that
for every 𝑟 ∈ 𝑉 (𝑇 ) and 𝑥 ≠ 𝑦 ∈ 𝛽(𝑟) the graph 𝑭 = (𝐹, 𝑥, 𝑦) is in L+

1 .
If |𝑉 (𝑇 ) | = 1, write {𝑥, 𝑦, 𝑧} for the unique bag. Since 𝐹 has treewidth 2, it is isomorphic to

the 3-clique which is the underlying unlabelled graph of 𝑨12 ⊙ (𝑨12 · 𝑨12), cf. Observation 4.2,
which is contained in L+

1 by construction.
Assuming |𝑉 (𝑇 ) | ≥ 2, let 𝑟 ∈ 𝑉 (𝑇 ) be arbitrary. Write 𝛽(𝑟) = {𝑥1, 𝑥2, 𝑥3}. Partition the

neighbours of 𝑟 in 𝑇 in three sets 𝑋1, 𝑋2, 𝑋3 such that 𝑠 ∈ 𝑋𝑖 iff 𝑥𝑖 ∈ 𝛽(𝑟) \ 𝛽(𝑠) for 𝑖 ∈ [3].
For every neighbour 𝑠 of 𝑟, let 𝑇𝑠 be the connected component of 𝑇 \ {𝑟} containing 𝑠.

Let 𝐹𝑠 be the induced subgraph of 𝐹 on
⋃
𝑡∈𝑉 (𝑇𝑠) 𝛽(𝑡). The restriction of 𝛽 to 𝑉 (𝑇𝑠) is a tree

decomposition of 𝐹𝑠 with the properties listed in the inductive hypothesis. Hence, for every
𝑠, there exists 𝑭𝑠 ∈ L+

1 as stipulated. By permuting labels, it may be supposed that for every
𝑠 ∈ 𝑋1 the labels of 𝑭𝑠 lie on 𝑥2𝑥3, for 𝑭𝑠 with 𝑠 ∈ 𝑋2 on 𝑥1𝑥3, and for 𝑭𝑠 with 𝑠 ∈ 𝑋3 on 𝑥1𝑥2. For
𝑖 ∈ [3], let

𝑭 𝑖 B


⊙

𝑠∈𝑋𝑖 𝑭𝑠, if 𝑋𝑖 ≠ ∅,

𝑨12, if 𝑋𝑖 = ∅ and the two vertices in 𝛽(𝑟) \ {𝑥𝑖} are adjacent,

𝑱 , otherwise.
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Finally, let 𝑭 B 𝑭2 ⊙ (𝑭3 · 𝑭1). This graph is as desired if 𝑥1, 𝑥3 are required to be labelled. For
other choices of labels, 𝑭1, 𝑭2, 𝑭3 can be permuted and if necessary transposed yielding any
desired labelling. ■

A graph 𝐹 is outerplanar if it does not have 𝐾4 or𝐾2,3 as a minor. Equivalent, it is outerplanar
if it has a planar drawing such that all its vertices lie on the same face [38].

THEOREM 4.21. The class of unlabelled graphs underlying an element of L1 coincides with the
class of outerplanar graphs.

Before we prove Theorem 4.21, we derive the following corollary:

COROLLARY 4.22. If 𝐺 ≡L1 𝐻 then 𝐺 is connected iff 𝐻 is connected.

PROOF . Let 𝑫 = (𝐷, 𝑣, 𝑣) be the (1, 1)-bilabelled graph with 𝑉 (𝐷) = {𝑢, 𝑣} and 𝐸(𝐷) = {𝑢𝑣}
and write 𝑨 as before for the (1, 1)-bilabelled graph corresponding to the adjacency matrix. For
every graph𝐺, the homomorphism matrix 𝑫𝐺−𝑨𝐺 equals its Laplacian matrix. By [39, Lemma 4],
if two graphs𝐺 and 𝐻 have cospectral Laplacians then they have the same number of connected
components. The former condition holds iff tr

(
(𝑫𝐺 − 𝑨𝐺)𝑖

)
= tr

(
(𝑫𝐻 − 𝑨𝐻)𝑖

)
for all 𝑖 ∈ N

by Newton’s identities [12]. The bilabelled graphs appearing as summands in the expression
tr
(
(𝑫 − 𝑨)𝑖

)
are cactus graphs and hence outerplanar. By Theorem 4.21, if 𝐺 ≡L1 𝐻 then 𝐺 and

𝐻 have cospectral Laplacians and hence the same number of connected components. ■

Towards proving Theorem 4.21, we define a class of (1, 1)-bilabelled graphs whose under-
lying unlabelled graphs are outerplanar. In general, carefully imposing conditions on where
the labels are placed is essential for ensuring that the class of bilabelled graphs is closed under
the desired operations and also generated by atomic graphs under them, cf. [31, p. 2271].

DEF IN IT ION 4.23. The expansion of a (1, 1)-bilabelled graphs 𝑭 = (𝐹, 𝑢, 𝑣) is the graph 𝐹′

obtained from 𝐹 by adding a path of length two between 𝑢 and 𝑣, i.e. 𝑉 (𝐹′) B 𝑉 (𝐹) ⊔ {𝑥} and
𝐸(𝐹′) B 𝐸(𝐹) ⊔ {𝑢𝑥, 𝑥𝑣}. Write OP for the class of (1, 1)-bilabelled graphs 𝑭 whose expansion
is outerplanar.

Note that the above definition implies that for all 𝑭 = (𝐹, 𝑢, 𝑣) ∈ OP the underlying
unlabelled graph 𝐹 is outerplanar as it is a minor of the expansion of 𝑭 . If the two labels of
𝑭 coincide then its expansion is obtained by adding a dangling edge and outerplanar iff the
underlying unlabelled graph of 𝑭 is outerplanar.

Write 𝑨 and 𝑰 for the (1, 1)-bilabelled graphs corresponding to the adjacency matrix and
the identity matrix respectively. In the notation of Definition 3.5, 𝑨 = 𝑨12 and 𝑰 = 𝑰12. These
graphs are depicted in Figure 4.

LEMMA 4.24. The class OP possesses the following closure properties:
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1 1

(a) The graph 𝑷 = 𝑨 · 𝑨.

1 1

(b) The graph 𝑪.

Figure 6. Bilabelled graphs from the proof of Lemma 4.24.

1. If 𝑭 ∈ OP then 𝑭∗ ∈ OP.
2. If 𝑭 ∈ OP then 𝑨 ⊙ 𝑭 ∈ OP and 𝑰 ⊙ 𝑭 ∈ OP.
3. If 𝑭1, 𝑭2 ∈ OP then 𝑭1 · 𝑭2 ∈ OP.

PROOF . The first claim is purely syntactical. The underlying unlabelled graphs of 𝑭 and 𝑭∗

are isomorphic and so are their expansions. Thus, 𝑭∗ ∈ OP if 𝑭 ∈ OP.
For the second claim, first consider the case when the labels of 𝑭 coincide. Then 𝑰 ⊙ 𝑭 = 𝑭

and 𝑨 ⊙ 𝑭 differs from 𝑭 only in the loop at the labelled vertex. Hence, 𝑨 ⊙ 𝑭 is in OP. Now
consider the case when the labelled vertices of 𝑭 are distinct. Write 𝐹 for the unlabelled graph
underlying 𝑭 and 𝐹′ for the expansion of 𝑭 . It can be easily seen that the graphs underlying
𝑨 ⊙ 𝑭 and 𝑰 ⊙ 𝑭 are minors of 𝐹′ and thus outerplanar. The expansion of 𝑰 ⊙ 𝑭 is a minor of the
expansion of 𝑨 ⊙ 𝑭 . Thus, it suffices to argue that the expansion of 𝑨 ⊙ 𝑭 is outerplanar.

Write 𝐾 for the unlabelled graph underlying 𝑨⊙𝑭 and 𝐾′ for the expansion of 𝑨⊙𝑭 . Since
𝐾 and 𝐹′ are outerplanar, any 𝐾4-minor of 𝐾′ can be obtained from 𝐾′ without contracting the
triangle induced by the labelled vertices of 𝑨⊙𝑭 and the vertex added by expansion. This cannot
be since the latter vertex is of degree two. By the same argument, since 𝐾2,3 is triangle-free, the
graph 𝐾′ does not contain any 𝐾2,3-minor either.

For the third claim, let 𝐹 denote the graph underlying 𝑭1 · 𝑭2. Let 𝑦 denote the vertex at
which 𝑭1 and 𝑭2 are glued together and write 𝑥, 𝑧 for the vertices labelled in 𝑭1 · 𝑭2. The graph
𝐹 − 𝑦 is disconnected. Hence, if 𝐾4 or 𝐾2,3 is a minor of 𝐹 then 𝑭1 or 𝑭2 are not outerplanar.
Hence, 𝐹 is outerplanar.

Write 𝐹′ for the expansion of 𝑭 B 𝑭1 · 𝑭2. In symbols, 𝐹′ = soe(𝑷 ⊙ 𝑭) where 𝑷 is the
bilabelled graph in Figure 6a. For 𝐾 ∈ {𝐾4, 𝐾2,3}, observe the following: If 𝐹′ contains 𝐾 as a
minor then, by Lemma 4.13, there exists a bilabelled minor 𝑲 ≤ 𝑷 ⊙ 𝑭 such that soe(𝑲) is the
disjoint union of 𝐾 and potential isolated vertices which are labelled in 𝑲 . By Lemma 4.14, 𝑲
can be written as 𝑲 = 𝑲1 ⊙ 𝑲2 such that 𝑲1 ≤ 𝑷 and 𝑲2 ≤ 𝑭 . The graph 𝑷 has six bilabelled
minors. Distinguish cases:

1. If 𝑲1 = 𝑷 then 𝐾 = 𝐾2,3. The labels of 𝑲2 must lie on distinct vertices because 𝑲 does
not contain any vertices of degree one. Furthermore, the labelled vertices in 𝑲 must be
connected via a path of length two with an intermediate vertex of degree two. Hence,
𝑲2 = 𝑪 where 𝑪 is the graph in Figure 6b.
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2. If 𝑲1 = 𝑨 then the labels of 𝑲2 must lie on distinct vertices because 𝑲 does not contain
any loops. Furthermore, the labelled vertices in 𝑲 must be adjacent. Hence, 𝑲2 is a graph
obtained from 𝐾4 or 𝐾2,3 by labelling two adjacent vertices and potentially removing the
edge between them. In any case, 𝑪 ≤ 𝑲2.

3. If 𝑲1 = 𝑰 then 𝑲2 is obtained from 𝐾4 or 𝐾2,3 by either picking one vertex and placing
both labels on it or by adding a fresh vertex, placing a label on it, and connecting it to a
subset of the neighbours of a chosen original vertex, which receives the other label.

4. If 𝑲1 = 𝑱 then 𝑲2 = 𝑲 . In particular, 𝑲2 is obtained from 𝐾4 or 𝐾2,3 by the procedure
described in Item 3.

5. 𝑲1 cannot be any of the two remaining bilabelled minors of 𝑷 since these contain an
unlabelled vertex of degree at most one which is not the case for 𝑲 .

For Items 1 and 2 when 𝑪 ≤ 𝑭 = 𝑭1 · 𝑭2, then, by Lemma 4.15, 𝑪 ≤ 𝑭1 or 𝑪 ≤ 𝑭2 because
the graph 𝑪 cannot be written as the series composition of two graphs different from 𝑰 . The
bilabelled minor 𝑪 of 𝑭1 or 𝑭2 gives rise to a 𝐾2,3-minor in their expansion, contradicting that
𝑭1, 𝑭2 ∈ OP.

For Items 3 and 4, let 𝑲2 be the graph described there. This graph can only be written
as the series composition of two graphs different from 𝑰 if the two labels do not coincide. In
this case, one of the labelled vertices is adjacent to a subset of neighbours of the other labelled
vertex. The graph 𝑲2 may be written as series composition of 𝑨 or 𝑱 with another graph 𝑲′

2.
The graph soe(𝑲′

2) contains 𝐾4 or 𝐾2,3 as a minor. By Lemma 4.12, one of the factors 𝑭1 or 𝑭2 is
not outerplanar, a contradiction. ■

We proceed to prove the following auxiliary lemma. For a vertex 𝑢 of a graph 𝐹, write
𝑁𝐹 (𝑢) B {𝑣 ∈ 𝑉 (𝐹) | 𝑢𝑣 ∈ 𝐸(𝐹)} for the set of neighbours of 𝑢.

LEMMA 4.25. Let 𝐹 be an outerplanar graph with vertex 𝑢 ∈ 𝑉 (𝐹). If 𝑢 is not isolated then there
exists a neighbour 𝑣 ∈ 𝑁𝐹 (𝑢) such that the graph obtained from 𝐹 by subdividing the edge 𝑢𝑣 is
outerplanar.

PROOF . Take an outerplanar embedding of 𝐹 which has some face incident to all the vertices,
consider some edge incident to 𝑢 that is incident to this face, and subdivide that edge. Since the
vertex created by subdivision is incident to the outer face, the embedding remains outerplanar
when the edge is subdivided. Alternatively, one may consider the following argument:

If 𝑢 is of degree one or two, then any of its neighbours is as desired. If 𝑢 has degree at least
three, observe that 𝐹 [𝑁𝐹 (𝑢)] cannot contain 𝐾3 as a minor. Indeed, any such minor would give
rise to a 𝐾4-minor in 𝐹. Hence, 𝐹 [𝑁𝐹 (𝑢)] is a forest and contains a vertex 𝑣 of degree at most
one in 𝐹 [𝑁𝐹 (𝑢)]. Write 𝐹′ for the graph obtained from 𝐹 by subdividing the edge 𝑢𝑣. Write 𝑤
for the vertex added this way.

If 𝐹′ is not outerplanar then it contains a minor 𝐾4 or 𝐾2,3 which can be obtained from 𝐹′

without undoing the subdivision. This minor cannot be 𝐾4 because 𝑤 is of degree two. Hence,
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𝐹′ contains a 𝐾2,3-minor which can be obtained from 𝐹 such that the path 𝑢𝑤𝑣 is not contracted.
This implies that 𝑣 is adjacent to at least two neighbours of 𝑢 which cannot be since it was
chosen to be of degree one in 𝐹 [𝑁𝐹 (𝑢)], a contraction. The graph 𝐹′ is outerplanar. ■

Lemma 4.25 facilitates decomposing bilabelled outerplanar graphs into simpler ones.

LEMMA 4.26. Let 𝑭 = (𝐹, 𝑢, 𝑣) ∈ OP have 𝑛 ≥ 3 vertices.
1. If 𝑢 = 𝑣 then 𝑭 = 𝑰 ⊙ (𝑲 · 𝑱) or 𝑭 = 𝑰 ⊙ ((𝑨 ⊙ 𝑲) · 𝑱) where 𝑲 = (𝐾, 𝑥, 𝑦) ∈ OP has at most

𝑛 vertices and 𝑥 ≠ 𝑦.
2. If 𝑢𝑣 ∈ 𝐸(𝐹) then 𝑭 = 𝑨 ⊙ 𝑲 where 𝑲 = (𝐾, 𝑥, 𝑦) ∈ OP has at most 𝑛 vertices and satisfies

𝑥 ≠ 𝑦 and 𝑥 𝑦 ∉ 𝐸(𝐾),
3. If 𝑢 ≠ 𝑣 and 𝑢𝑣 ∉ 𝐸(𝐹) then 𝑭 = 𝑲 · 𝑳 where 𝑲 , 𝑳 ∈ OP have at least 2 and at most 𝑛 − 1

vertices.

PROOF . For Item 1, distinguishing two cases.
If 𝑢 = 𝑣 is isolated in 𝐹 then let 𝑥 ∈ 𝑉 (𝐹) \ {𝑢} be arbitrary. Define 𝐾 B 𝐹. Then
𝑲 B (𝐾, 𝑢, 𝑥) is such that 𝑭 = 𝑰 ⊙ (𝑲 · 𝑱). By definition, 𝐾 is outerplanar. Since 𝑢 is isolated,
the expansion of 𝑲 differs from 𝑲 only in the loop at 𝑢. Hence, 𝑲 is outerplanar as well.
If 𝑢 = 𝑣 is not isolated, pick a neighbour 𝑥 in virtue of Lemma 4.25, and let 𝐾 be the graph
obtained from 𝐹 by deleting the edge 𝑢𝑥, i.e. 𝑉 (𝐾) B 𝑉 (𝐹) and 𝐸(𝐾) B 𝐸(𝐹) \ {𝑢𝑥}. Let
𝑲 B (𝐾, 𝑢, 𝑥). As a subgraph of 𝐹, 𝐾 is outerplanar. The expansion of 𝑲 is the graph
obtained from 𝐹 by subdividing the edge 𝑢𝑥 and outerplanar by Lemma 4.25. Hence,
𝑲 ∈ OP. Furthermore, 𝑭 = 𝑰 ⊙ ((𝑨 ⊙ 𝑲) · 𝑱).

For Item 2, define 𝐾 by removing the edge 𝑢𝑣 from 𝐹, i.e. 𝑉 (𝐾) B 𝑉 (𝐹) and 𝐸(𝐾) B
𝐸(𝐹) \ {𝑢𝑣}. The graph 𝑲 B (𝐾, 𝑢, 𝑣) satisfies 𝑭 = 𝑨 ⊙ 𝑲 and all other stipulated properties.

For Item 3, first suppose that 𝑢 and 𝑣 lie in the same connected component of 𝐹. Observe
that there no two internally vertex-disjoint paths from 𝑢 to 𝑣 since a pair of two such paths
would give rise to a 𝐾2,3-minor in the expansion of 𝑭 . By Menger’s Theorem, there exists a vertex
𝑥 ≠ 𝑢, 𝑣 meeting all paths from 𝑢 to 𝑣. Thus, removing 𝑥 from 𝐹 causes 𝑢 and 𝑣 to lie in separate
connected components. Let 𝐴 denote the connected component of 𝐹 − 𝑥 containing 𝑢, 𝐵 the
connected component of 𝐹 − 𝑥 containing 𝑣, and 𝐶 the union of all connected components of
𝐹 − 𝑥 containing neither 𝑢 nor 𝑣. By definition, 𝑉 (𝐹) = 𝐴 ⊔ 𝐵 ⊔ 𝐶 ⊔ {𝑥}. Define 𝐾 B 𝐹 [𝐴 ∪ {𝑥}]
as the subgraph of 𝐹 induced by 𝐴 ∪ {𝑥} and similarly 𝐿 B 𝐹 [𝐵 ∪ 𝐶 ∪ {𝑥}]. Let 𝑲 B (𝐾, 𝑢, 𝑥)
and 𝑳 B (𝐿, 𝑥, 𝑣). Then 𝑭 = 𝑲 · 𝑳, as desired. As they are induced subgraphs of 𝐹, the graphs 𝐾
and 𝐿 are outerplanar. The expansions of 𝑲 and 𝑳 are minors of the expansion of 𝑭 and thus
outerplanar. Observe that |𝑉 (𝐾) | + |𝑉 (𝐿) | = 𝑛 + 1 and |𝑉 (𝐾) |, |𝑉 (𝐿) | ≥ 2, as desired.

Now suppose that 𝑢 and 𝑣 lie in separate connected components of 𝐹. Let 𝐴 denote
the connected component of 𝐹 containing 𝑢, 𝐵 the connected component of 𝐹 containing 𝑣,
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and 𝐶 the union of all connected components of 𝐹 containing neither 𝑢 nor 𝑣. Observe that
|𝐴| + |𝐵| + |𝐶 | = 𝑛 ≥ 3. Distinguish cases:

If |𝐴| + |𝐶 | ≥ 2, let 𝐾 B 𝐹 [𝐴 ∪ 𝐶] and 𝐿′ B 𝐹 [𝐵]. Define 𝑲 B (𝐾, 𝑢, 𝑢), 𝑳′ B (𝐿′, 𝑣, 𝑣), and
𝑳 B 𝑱 · 𝑳′.
Otherwise, it holds that |𝐵| ≥ 2. Let 𝐾′ B 𝐹 [𝐴 ∪ 𝐵] and 𝐿 B 𝐹 [𝐵]. Define 𝑲′ B (𝐾′, 𝑢, 𝑢),
𝑳 B (𝐿, 𝑣, 𝑣), and 𝑲 B 𝑲′ · 𝑱 .

In both cases, 𝑭 = 𝑲 · 𝑳 and 𝑲 , 𝑳 ∈ OP. Furthermore, writing 𝐾 and 𝐿 for the graphs under-
lying 𝑲 and 𝑳 respectively, it holds that |𝑉 (𝐾) | + |𝑉 (𝐿) | = 𝑛 + 1 and |𝑉 (𝐾) |, |𝑉 (𝐿) | ≥ 2 since
multiplication with 𝑱 amounts to adding a fresh isolated vertex. ■

The following Theorem 4.27 implies Theorem 4.21.

THEOREM 4.27. The classes L1 and OP coincide.

PROOF . For the inclusion L1 ⊆ OP, observe that the atomic graphs in A1 are 𝑨, 𝑱 , 𝑰 ∈ OP,
cf. Figure 4. By Lemma 4.24, OP is closed under series composition, parallel composition with
atomic graphs, and permutation of labels. It follows inductively that L1 ⊆ OP.

For the inclusion L1 ⊇ OP, it is argued that 𝑭 ∈ L1 if 𝑭 ∈ OP by induction on the number
of vertices in 𝑭 . If 𝑭 has at most two vertices, this is clear. Suppose 𝑭 = (𝐹, 𝑢, 𝑣) has 𝑛 ≥ 3
vertices. By Items 1 and 2 of Lemma 4.26 and the closure properties of L1 from Definition 4.1,
it may be supposed that 𝑢 ≠ 𝑣 and 𝑢𝑣 ∉ 𝐸(𝐹). In this case, again by Lemma 4.26, 𝑭 = 𝑲 · 𝑳 for
graphs 𝑲 and 𝑳, to which the inductive hypothesis applies. It follows that 𝑭 ∈ L1. ■

5. Deciding Exact Feasibility of the Lasserre Relaxation with Non-
Negativity Constraints in Polynomial Time

This section is dedicated to proving Theorem 1.4. To that end, it is argued that ≃L+
𝑡 has equivalent

characterisations in terms of a counting logic and a colouring algorithm akin to the Weisfeiler–
Leman algorithm [40]. This algorithm has polynomial running time. It is defined as follows:

DEF IN IT ION 5.1. Let 𝑡 ≥ 1. For a graph 𝐺, an integer 𝑖 ≥ 1, and 𝒓, 𝒔 ∈ 𝑉 (𝐺)𝑡, define

mwl0𝐺 (𝒓𝒔) B atp𝐺 (𝒓𝒔),

mwl𝑖−1/2
𝐺 (𝒓𝒔) B

(
mwl𝑖−1

𝐺 (𝜎(𝒓𝒔))
�� 𝜎 ∈ 𝔖2𝑡

)
,

mwl𝑖𝐺 (𝒓𝒔) B
(
mwl𝑖−1/2

𝐺 (𝒓𝒔),
{{(
mwl𝑖−1/2

𝐺 (𝒓𝒕),mwl𝑖−1/2
𝐺 (𝒕𝒔)

) ��� 𝒕 ∈ 𝑉 (𝐺)𝑡}}) .
The mwl𝑖𝐺 for 𝑖 ∈ N define increasingly fine colourings of 𝑉 (𝐺)2𝑡. Let mwl∞𝐺 denote the finest
such colouring. Two graphs 𝐺 and 𝐻 are not distinguished by the 𝑡-dimensional mwl algorithm if
the multisets {{

mwl∞𝐺 (𝒓𝒔)
�� 𝒓, 𝒔 ∈ 𝑉 (𝐺)𝑡

}}
and

{{
mwl∞𝐻 (𝒖𝒗)

�� 𝒖, 𝒗 ∈ 𝑉 (𝐻)𝑡
}}
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are the same.

Since the finest colouring mwl∞𝐺 is reached in ≤ 𝑛2𝑡 − 1 iterations for graphs on 𝑛 vertices,
for fixed 𝑡, it can be tested in polynomial time whether two graphs are not distinguished by the
𝑡-dimensional mwl algorithm. We are about to show that the latter happens if and only if the
level-𝑡 Lasserre relaxation with non-negative constraints is feasible. As a by-product, we obtain
a logical characterisation for this equivalence relation akin to [7].

DEF IN IT ION 5.2. For 𝑡 ≥ 1, an M𝑡-formula has 2𝑡 free variables and is of the following form:
every quantifier-free FO-formula with equality over the signature {𝐸} with 2𝑡 variables is
an M𝑡-formula,
if 𝜑, 𝜓 are M𝑡-formulae with the same free variables then ¬𝜑, 𝜑 ∧ 𝜓, and 𝜑 ∨ 𝜓 are M𝑡-
formulae,
if 𝜑, 𝜓 are M𝑡-formulae and 𝑛 ∈ N then ∃≥𝑛 𝒚. (𝜑(𝒙, 𝒚) ∧ 𝜓( 𝒚, 𝒛)) is an M𝑡-formula. Here,
the boldface letters 𝒙, 𝒚, 𝒛 denote pairwise disjoint 𝑡-tuples of distinct variables.

An M𝑡-sentence is an expression ∃≥𝑛𝒙. 𝜑(𝒙) where 𝜑 is an M𝑡-formula, 𝒙 is a tuple of 2𝑡 distinct
variables, and 𝑛 ∈ N.

The semantics of the quantifier ∃≥𝑛 𝒚. 𝜑( 𝒚) is that there exist at least 𝑛 many | 𝒚 |-tuples
of vertices from the graph over which the formula is evaluated which satisfy 𝜑. The following
Theorem 5.3 may be thought of as a analogue of Theorem 2.8 for L+

𝑡 .

THEOREM 5.3. Let 𝑡 ≥ 1. For graphs 𝐺 and 𝐻 , the following are equivalent:
1. 𝐺 and 𝐻 are not distinguished by the 𝑡-dimensional mwl algorithm,
2. 𝐺 and 𝐻 are homomorphism indistinguishable over L+

𝑡 ,
3. 𝐺 and 𝐻 satisfy the same M𝑡-sentences.

The proof of Theorem 5.3 is conceptually similar to arguments of [7, 14]. It is implied by
the following Theorem 5.4:

THEOREM 5.4. Let 𝑡 ≥ 1. For graphs 𝐺 and 𝐻 with 𝒓, 𝒔 ∈ 𝑉 (𝐺)𝑡 and 𝒖, 𝒗 ∈ 𝑉 (𝐻)𝑡, the following
are equivalent:

1. mwl∞𝐺 (𝒓𝒔) = mwl∞𝐻 (𝒖𝒗),
2. 𝑭𝐺 (𝒓𝒔) = 𝑭𝐻 (𝒖𝒗) for all 𝑭 ∈ L+

𝑡 , and
3. 𝐺 |= 𝜑(𝒓𝒔) if and only if 𝐻 |= 𝜑(𝒖𝒗) for all M𝑡-formulae 𝜑.

The proof of Theorem 5.4 is based on the following lemma, which is adopted from [14,

Lemma 6]. An L+
𝑡 -quantum graph is a finite linear combination 𝑞 =

∑
𝛼𝑖𝑭 𝑖 of graphs 𝑭 𝑖 ∈ L+

𝑡

with real coefficients 𝛼𝑖 ∈ R. Operations like series or parallel composition can be extended
linearly to quantum graphs. Write 𝑞𝐺 for the linear combination

∑
𝛼𝑖𝑭 𝑖𝐺 of homomorphism

tensors.
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LEMMA 5.5. Let 𝑡 ≥ 1 and 𝑛 ∈ N. For every M𝑡-formula 𝜑, there exists an L+
𝑡 -quantum graph 𝑞

such that for all graphs 𝐺 on at most 𝑛 vertices and 𝒓, 𝒔 ∈ 𝑉 (𝐺)𝑡,
if 𝐺 |= 𝜑(𝒓𝒔) then 𝑞𝐺 (𝒓𝒔) = 1, and
if 𝐺 ̸ |= 𝜑(𝒓𝒔) then 𝑞𝐺 (𝒓𝒔) = 0.

PROOF . If 𝜑 is a quantifier-free formula then there exists an atomic graph 𝑭 ∈ A𝑡 such that
𝐺 |= 𝜑(𝒓𝒔) if and only if 𝑭𝐺 (𝒓𝒔) = 1. Furthermore, the homomorphism tensor of any atomic
graph has entries from {0, 1}.

If 𝜑 is of the form ¬𝜓, let 𝑞 denote L+
𝑡 -quantum graph constructed inductively for 𝜓. Then

𝑟 B 𝑱 − 𝑞 for 𝑱 as defined in Definition 3.5 is an L+
𝑡 -quantum graph as desired.

If 𝜑 is of the form 𝜓∧ 𝜒 where 𝜓 and 𝜒 have the same free variables as 𝜑, let 𝑞 and 𝑟 denote
L+
𝑡 -quantum graphs constructed inductively for 𝜓 and 𝜒, respectively. Then 𝑠 B 𝑞 ⊙ 𝑟 is an

L+
𝑡 -quantum graph as desired.

If 𝜑 is of the form 𝜓 ∨ 𝜒 where 𝜓 and 𝜒 have the same free variables as 𝜑, it is equivalent
to ¬(¬𝜓 ∧ ¬𝜒) and the two previous cases can be applied jointly.

It remains to consider the case in which 𝜑 is of the form ∃≥ℓ 𝒚. 𝜓(𝒙, 𝒚) ∧ 𝜒( 𝒚, 𝒛). Let 𝑞
and 𝑟 denote the L+

𝑡 -quantum graphs constructed inductively for 𝜓 and 𝜒, respectively. Then
(𝑞 · 𝑟)𝐺 (𝒓, 𝒔) =

∑
𝒕∈𝑉 (𝐺)𝑡 𝑞𝐺 (𝒓, 𝒕)𝑟𝐺 (𝒕, 𝒔) is equal to the number of elements 𝒕 ∈ 𝑉 (𝐺)𝑡 such

that 𝐺 |= 𝜓(𝒓, 𝒕) ∧ 𝜒(𝒕, 𝒔). Let 𝑃 =
∑
𝑐𝑖𝑥

𝑖 ∈ R[𝑥] be a polynomial which evaluates to 0 on
{0, 1, . . . , ℓ − 1} and to 1 on {ℓ, ℓ + 1, . . . , 𝑛𝑡}. Then the quantum graph 𝑃(𝑞 · 𝑟) = ∑

𝑐𝑖 (𝑞 · 𝑟)⊙𝑖

where (𝑞 · 𝑟)⊙𝑖 denotes the parallel composition of 𝑖 copies of 𝑞 · 𝑟 is as desired. ■

PROOF OF THEOREM 5.4 . Supposing Item 1, Item 2 is proven by induction on the structure
of 𝑭 . If 𝑭 is atomic then the statement follows from atp𝐺 (𝒓, 𝒔) = atp𝐻 (𝒖, 𝒗). For 𝑭 = 𝑲 ⊙ 𝑳 and
𝑭 = 𝑲𝜎 with 𝑲 , 𝑳 ∈ L+

𝑡 , the statement is easily verified. It remains to consider the case 𝑭 = 𝑲 · 𝑳.
By definition of mwl, there exists a bijection 𝜋 : 𝑉 (𝐺)𝑡 → 𝑉 (𝐻)𝑡 such that

mwl∞𝐺 (𝒓, 𝒕) = mwl∞𝐻 (𝒖, 𝜋(𝒕)) and mwl∞𝐺 (𝒕, 𝒔) = mwl∞𝐻 (𝜋(𝒕), 𝒗)

for all 𝒕 ∈ 𝑉 (𝐺)𝑡. Hence,

𝑭𝐺 (𝒓, 𝒔) =
∑︁

𝒕∈𝑉 (𝐺)𝑡
𝑲𝐺 (𝒓, 𝒕)𝑳𝐺 (𝒕, 𝒔) =

∑︁
𝒕∈𝑉 (𝐺)𝑡

𝑲𝐻 (𝒖, 𝜋(𝒕))𝑳𝐻 (𝜋(𝒕), 𝒗) = 𝑭𝐻 (𝒖, 𝒗).

Thus, Item 2 holds.
Now suppose that Item 2 holds. If 𝜑 is a M𝑡-formula such that 𝐺 |= 𝜑(𝒓, 𝒔) and 𝐻 ̸ |= 𝜑(𝒖, 𝒗)

then, by Lemma 5.5, there exists a graph 𝑭 ∈ L+
𝑡 such that 𝑭𝐺 (𝒓, 𝒔) ≠ 𝑭𝐻 (𝒖, 𝒗). This yields

Item 3.
That Item 3 implies Item 1 is proven similarly as [7, Theorem 5.2] by induction on the

number of iterations. Since atp𝐺 and atp𝐻 can be defined using quantifier-free M𝑡-formulae,
mwl0𝐺 (𝒓, 𝒔) = mwl0𝐻 (𝒖, 𝒗).
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Since M𝑡 is closed under permuting the names of the variables, it holds for all 𝜎 ∈ 𝔖2𝑡

that 𝐺 |= 𝜑(𝒓𝒔) ⇐⇒ 𝐻 |= 𝜑(𝒖𝒗) for all 𝜑 ∈ M𝑡 with 2𝑡 free variables if and only if 𝐺 |=
𝜑(𝜎(𝒓𝒔)) ⇐⇒ 𝐻 |= 𝜑(𝜎(𝒖𝒗)) for all 𝜑 ∈ M𝑡 with 2𝑡 free variables. Hence, if mwl𝑖𝐺 (𝒓𝒔) =

mwl𝑖𝐻 (𝒖𝒗) for some 𝑖 ∈ N then also mwl𝑖+1/2
𝐺 (𝒓𝒔) = mwl𝑖+1/2

𝐻 (𝒖𝒗).
For the step from 𝑖 + 1/2 to 𝑖 + 1, suppose contrapositively that mwl𝑖+1

𝐺 (𝒓𝒔) ≠ mwl𝑖+1
𝐻 (𝒖𝒗).

By the previous argument, it can be supposed that mwl𝑖+1/2
𝐺 (𝒓𝒔) = mwl𝑖+1/2

𝐻 (𝒖𝒗). Hence, there
exists a pair of colours

(
mwl𝑖+1/2

𝐺 (𝒓𝒕),mwl𝑖+1/2
𝐺 (𝒕𝒔)

)
which appears in the multisets for 𝐺 and 𝐻

differently often, wlog more often in 𝐺 than in 𝐻 . By the inductive hypothesis, for each pair
of distinct mwl𝑖+1/2-colours there exists an M𝑡-formula 𝜑 which is satisfied by all vertex tuples
of the first colour and by none of the second colour. By taking the conjunction of several such
formulae, a formula can be constructed which holds for a 2𝑡-tuple of vertices of 𝐺 or 𝐻 if and
only if they have a specified colour in mwl𝑖+1/2. Let 𝜑 and 𝜓 be formulae which hold exactly
for the 2𝑡-tuples of vertices of 𝐺 or 𝐻 of colours mwl𝑖+1/2

𝐺 (𝒓𝒕) and mwl𝑖+1/2
𝐺 (𝒕𝒔), respectively. By

assumption, there is an 𝑁 ∈ N such that the formula 𝜒 B ∃≥𝑁 𝒚. 𝜑(𝒙, 𝒚) ∧ 𝜓( 𝒚, 𝒛) ∈ M𝑡 is such
that 𝐺 |= 𝜒(𝒓𝒔) and 𝐻 ̸ |= 𝜒(𝒖𝒗). This yields Item 1. ■

Finally, we derive Theorem 5.3 from Theorem 5.4.

PROOF OF THEOREM 5.3 . Supposing Item 1, let 𝜋 : 𝑉 (𝐺)2𝑡 → 𝑉 (𝐻)2𝑡 be a bijection such
that mwl∞𝐺 (𝒓𝒔) = mwl∞𝐻 (𝜋(𝒓𝒔)) for all 𝒓, 𝒔 ∈ 𝑉 (𝐺)𝑡. By Theorem 5.4, for 𝑭 = (𝐹,𝒖, 𝒗) ∈ L+

𝑡 ,

hom(𝐹, 𝐺) = soe(𝑭𝐺) =
∑︁

𝒓,𝒔∈𝑉 (𝐺)𝑡
𝑭𝐺 (𝒓, 𝒔) =

∑︁
𝒓,𝒔∈𝑉 (𝐺)𝑡

𝑭𝐻 (𝜋(𝒓𝒔)) = soe(𝑭𝐻) = hom(𝐹, 𝐻),

so Item 2 holds.
Assuming Item 2 holds, let Φ = ∃≥ℓ𝒙. 𝜑(𝒙) be an M𝑡-sentence where 𝜑 is an M𝑡-formula,

ℓ ∈ N and 𝒙 is a tuple of 2𝑡 distinct variables. Let 𝑞 denote the L+
𝑡 -quantum graph constructed

for 𝜑 and 𝑛 B max{|𝑉 (𝐺) |, |𝑉 (𝐻) |} via Lemma 5.5. Then Item 2 implies that��{𝒓𝒔 ∈ 𝑉 (𝐺)2𝑡 | 𝐺 |= 𝜑(𝒓𝒔)}
�� = ∑︁

𝒓𝒔∈𝑉 (𝐺)2𝑡

𝑞𝐺 (𝒓𝒔) = soe(𝑞𝐺) =
��{𝒖𝒗 ∈ 𝑉 (𝐻)2𝑡 | 𝐻 |= 𝜑(𝒖𝒗)}

�� .
Hence, 𝐺 |= Φ if and only if 𝐻 |= Φ. This yields Item 3.

Assuming Item 3 holds, suppose that 𝐺 and 𝐻 are distinguished by the mwl algorithm and
let 𝐶 ⊆ 𝑉 (𝐺)2𝑡 denote an mwl-colour class in 𝐺 whose counterpart 𝐷 ⊆ 𝑉 (𝐻)2𝑡 has different
size. By Theorem 5.4, there exists an M𝑡-formula 𝜑 which is satisfied by tuples in 𝐶 and 𝐷 and
by no other tuples. The M𝑡-sentence ∃≥ℓ𝒙. 𝜑(𝒙) is not satisfied by both 𝐺 and 𝐻 for a suitable
ℓ ∈ N. This yields Item 1. ■

It would be desirable to extend Theorem 1.4 to ≃L
𝑡 . The key property of the graph class L+

𝑡

which was exploited in the proof of Theorem 5.3 is that L+
𝑡 is closed under arbitrary parallel

compositions. Therefore, an interpolation argument in the proof of Lemma 5.5 succeeds to re-
duce testing homomorphism indistinguishability over L+

𝑡 to the execution of the mwl-colouring
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algorithm. However, for L𝑡, arbitrary parallel compositions are not available. Thus, designing a
suitable colouring algorithm for this graph classes does not seem feasible.

6. Conclusion

We have established a characterisation of the feasibility of the level-𝑡 Lasserre relaxation with
and without non-negativity constraints of the integer program ISO(𝐺, 𝐻) for graph isomor-
phism in terms of homomorphism indistinguishability over the graph classes L𝑡 and L+

𝑡 . By
analysing the treewidth of the graphs L𝑡 and L+

𝑡 and invoking results from the theory of ho-
momorphism indistinguishability, we have determined the precise number of Sherali–Adams
levels necessary such that their feasibility guarantees the feasibility of the level-𝑡 Lasserre
relaxation. This concludes a line of research brought forward in [2]. For feasibility of the level-𝑡
Lasserre relaxation with non-negativity constraints, we have given, besides linear algebraic
reformulations generalising the adjacency algebra of a graph, a polynomial time algorithm
deciding this property.

Missing in Theorem 1.1 is a tight lower bound on the number of Lasserre levels necessary
to ensure feasibility of a given Sherali–Adams level:

QUEST ION 6.1. Do there exist for every 𝑡 ≥ 3 graphs 𝐺 and 𝐻 such that 𝐺 ≃L
𝑡−1 𝐻 and 𝐺 ;SA

𝑡 𝐻?

Following the path taken in this paper, this question could potentially be resolved in two
steps: Firstly, one would need to prove the graph theoretic assertion that the class L𝑡 does
not contain TW𝑡 for all 𝑡 ≥ 2. Secondly, one would need to show that L𝑡 is homomorphism
distinguishing closed or at least that the homomorphism distinguishing closure [32] of L𝑡 does
not contain TW𝑡 for all 𝑡 ≥ 2. Given the means currently available for proving such a statement
[32, 29], this would involve giving game characterisations for L𝑡 (mimicking the robber-cops
game for TW𝑡) and for ≡L𝑡 (similar to the bijective (𝑡 + 1)-pebble game for TW𝑡). For the
former, finding analogies to the notions of brambles or heavens seems necessary [36].

Another interesting extension of our work might be an efficient algorithm for computing
an explicit partial 𝑡-equivalence between two graphs, cf. Definitions 3.13 and 3.15, or deciding
that no such map exists. This would yield an efficient algorithm for deciding the exact feasibility
of the Lasserre semidefinite program without non-negativity constraints, cf. [2].
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[27] Laura Mančinska, David E. Roberson, and
Antonios Varvitsiotis. Graph isomorphism: physical
resources, optimization models, and algebraic
characterizations. Math. Program. 205(1):617–660,
2024. DOI ePrint (3, 5, 6, 10, 11, 15, 18–20, 22)
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A. Versions of the Lasserre Hierarchy

The level-𝑡 Lasserre relaxation for graph isomorphism studied in [2] has a slightly different
form. For every 𝛼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) , it comprises a real-valued variable 𝑧𝛼. For an integer 𝑡 ∈ N,
write 𝑀𝑡 (𝑧) for the matrix whose rows and columns are indexed by 𝛼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) such that
|𝛼| B ∑

𝑔ℎ∈𝑉 (𝐺)×𝑉 (𝐻) 𝛼𝑔ℎ ≤ 𝑡 with (𝛼, 𝛽)-th entry 𝑧𝛼+𝛽. Abusing notation by writing 𝑔ℎ for the
𝑔ℎ-th standard basis vector in N𝑉 (𝐺)×𝑉 (𝐻) , the equations can be written as

𝑀𝑡 (𝑧) ⪰ 0 (21)
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∑︁
𝑔∈𝑉 (𝐺)

𝑧𝛼+𝑔ℎ = 𝑧𝛼 for all 𝛼 such that |𝛼| ≤ 2𝑡 − 2, (22)∑︁
ℎ∈𝑉 (𝐻)

𝑧𝛼+𝑔ℎ = 𝑧𝛼 for all 𝛼 such that |𝛼| ≤ 2𝑡 − 2, (23)

𝑧𝛼 = 0 for all 𝛼 such that 𝛼 is not a partial isomorphism, (24)

𝑧𝛼+2𝑔ℎ = 𝑧𝛼+𝑔ℎ for all 𝛼 such that |𝛼| ≤ 2𝑡 − 2, (25)

(𝑧𝛼+𝛽+𝑔ℎ) |𝛼|,|𝛽 |≤2𝑡−2 ⪰ 0 for all 𝑔ℎ ∈ 𝑉 (𝐺) ×𝑉 (𝐻), (26)

(𝑧𝛼+𝛽 − 𝑧𝛼+𝛽+𝑔ℎ) |𝛼|,|𝛽 |≤2𝑡−2 ⪰ 0 for all 𝑔ℎ ∈ 𝑉 (𝐺) ×𝑉 (𝐻), (27)

𝑧∅ = 1. (28)

The vector 𝛼 is a partial isomorphism if and only if atp𝐺 (𝑔𝑔′) = atp𝐻 (ℎℎ′) for all 𝑔ℎ and
𝑔′ℎ′ such that 𝛼𝑔ℎ, 𝛼𝑔′ℎ′ > 0.

LEMMA A.1. The system Equations (21) to (28) has a solution iff the system Equations (4) to (8)
has a solution.

PROOF . Let ( 𝑦𝐼)𝐼∈(𝑉 (𝐺)×𝑉 (𝐻 )
≤2𝑡 ) be a solution to Equations (4) to (8). For 𝛼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) with

|𝛼| ≤ 2𝑡, define 𝑧𝛼 to be 𝑦[𝛼] where [𝛼] ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤2𝑡
)

is the set {𝑔ℎ | 𝛼𝑔ℎ ≥ 1}. Observe that
[𝛼 + 𝛽] = [𝛼] ∪ [𝛽] for all 𝛼, 𝛽 ∈ N𝑉 (𝐺)×𝑉 (𝐻) .

By Equation (4), let 𝑣𝐼 for 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤𝑡
)

be real vectors such that 𝑦𝐼∪𝐽 =
〈
𝑣𝐼 , 𝑣𝐽

〉
for

all 𝐼, 𝐽 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤2𝑡
)
. Then 𝑧𝛼+𝛽 = 𝑦[𝛼+𝛽] = 𝑦[𝛼]∪[𝛽] = ⟨𝑣[𝛼] , 𝑣[𝛽]⟩. Hence, the vectors 𝑣[𝛼] for

𝛼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) with |𝛼| ≤ 2𝑡 witness Equation (21). Furthermore,

𝑧𝛼+𝛽+𝑔ℎ = 𝑦[𝛼+𝛽+𝑔ℎ] = 𝑦[𝛼]∪{𝑔ℎ}∪[𝛽]∪{𝑔ℎ} = ⟨𝑣[𝛼+𝑔ℎ] , 𝑣[𝛽+𝑔ℎ]⟩.

Hence, the matrix in Equation (26) is positive semidefinite. For Equation (27), similarly,

𝑧𝛼+𝛽 − 𝑧𝛼+𝛽+𝑔ℎ = 𝑧𝛼+𝛽 + 𝑧𝛼+𝛽+𝑔ℎ − 𝑧𝛼+𝛽+𝑔ℎ − 𝑧𝛼+𝛽+𝑔ℎ = ⟨𝑣[𝛼] − 𝑣[𝛼+𝑔ℎ] , 𝑣[𝛽] − 𝑣[𝛽+𝑔ℎ]⟩.

Equations (22) to (24) and (28) follow from Equations (5) to (8), respectively. Equation (25) holds
by definition since [𝛼 + 2𝑔ℎ] = [𝛼 + 𝑔ℎ].

Conversely, let (𝑧𝛼) be a solution to Equations (21) to (28). Define 𝑦𝐼 for 𝐼 ∈
(𝑉 (𝐺)×𝑉 (𝐻)

≤2𝑡
)

as 𝑧𝛿𝐼 where 𝛿𝐼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) is the indicator vector of 𝐼 , i.e. (𝛿𝐼)𝑔ℎ = 1 if 𝑔ℎ ∈ 𝐼 and (𝛿𝐼)𝑔ℎ = 0
otherwise. By Equation (25), 𝑧𝛿𝐼∪𝐽 = 𝑧𝛿𝐼+𝛿𝐽 for all 𝐼, 𝐽 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡

)
. Hence, Equations (5) to (8)

follow from Equations (22) to (24) and (28), respectively.
For Equation (4), let 𝑣𝛼 for 𝛼 ∈ N𝑉 (𝐺)×𝑉 (𝐻) with |𝛼| ≤ 𝑡 be vectors such that 𝑧𝛼+𝛽 =

〈
𝑣𝛼, 𝑣𝛽

〉
for all 𝛼, 𝛽, by Equation (21). Then 𝑦𝐼∪𝐽 = 𝑧𝛿𝐼+𝛿𝐽 = ⟨𝑣𝛿𝐼 , 𝑣𝛿𝐽 ⟩. for all 𝐼, 𝐽 ∈

(𝑉 (𝐺)×𝑉 (𝐻)
≤2𝑡

)
. Hence,

Equation (4) holds. ■
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