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ABSTRACT. The complexity of matrix multiplication is measured in terms of 𝜔, the smallest
real number such that two 𝑛 × 𝑛 matrices can be multiplied using 𝑂(𝑛𝜔+𝜖) field operations for
all 𝜖 > 0; the best bound until now is 𝜔 < 2.37287 [Le Gall’14]. All bounds on 𝜔 since 1986 have
been obtained using the so-called laser method, a way to lower-bound the ‘value’ of a tensor in
designing matrix multiplication algorithms. The main result of this paper is a refinement of the
laser method that improves the resulting value bound for most sufficiently large tensors. Thus,
even before computing any specific values, it is clear that we achieve an improved bound on 𝜔,
and we indeed obtain the best bound on 𝜔 to date:

𝜔 < 2.37286.

The improvement is of the same magnitude as the improvement that [Le Gall’14] obtained over
the previous bound [Vassilevska W.’12]. Our improvement to the laser method is quite general,
and we believe it will have further applications in arithmetic complexity.

1. Introduction

Settling the algorithmic complexity of matrix multiplication is one of the most fascinating open
problems in theoretical computer science. The main measure of progress on the problem is the
exponent 𝜔, defined as the smallest real number for which 𝑛 × 𝑛 matrices over a field can be
multiplied using 𝑂(𝑛𝜔+𝜀) field operations, for every 𝜀 > 0. The value of 𝜔 could depend on the
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field, although the algorithms we discuss in this paper work over any field. The straightforward
algorithm shows that 𝜔 ≤ 3, and we can see that 𝜔 ≥ 2 since any algorithm must output 𝑛2

entries. In 1969, Strassen [44] obtained the first nontrivial upper bound on 𝜔, showing that
𝜔 < 2.81. Since then, a long series of papers (e.g. [38, 9, 37, 42, 40, 23, 47, 22, 24, 48, 33, 20, 19,
21]) has developed a powerful toolbox of techniques, culminating in the best bound to date of
𝜔 < 2.37287.

In this paper, we add one more tool to the toolbox and lower the best bound on the matrix
multiplication exponent to

𝜔 < 2.37286.

The main contribution of this paper is a new refined version of the laser method which
we then use to obtain the new bound on 𝜔. The laser method (as coined by Strassen [47]) is
a powerful mathematical technique for analyzing tensors. In our context, it is used to lower
bound the “value” of a tensor in designing matrix multiplication algorithms. The laser method
also has applications beyond bounding 𝜔 itself, including to other problems in arithmetic
complexity like computing the “asymptotic subrank” of tensors [1], and to problems in extremal
combinatorics like constructing tri-colored sum-free sets [29]. We believe our improved laser
method may have other diverse applications.

We will see that our new method achieves better results than the laser method of prior
work when applied to almost any sufficiently large tensor, including most of the tensors which
arise in prior bounds on 𝜔. In fact, unlike in other recent work, it is clear before running any
code that our new method yields a new improved bound on 𝜔.

The last several improvements to the best bound on 𝜔 have been modest. Most recently, Le
Gall [33] brought the upper bound on 𝜔 from 2.37288 [48] to 2.37287, and we bring it down to
2.37286. (More precisely, we prove 𝜔 < 2.3728596.) A recent line of work has shown that only
modest improvements can be expected if one continues using similar techniques. All fast matrix
multiplication algorithms since 1986 use the laser method applied to the Coppersmith-Winograd
family of tensors [22]. The techniques can also be simulated within the group theoretic method
of Cohn and Umans [20, 19, 21]. It is known that the laser method, even our refined version of it,
when applied to powers of the particular Coppersmith-Winograd tensor 𝐶𝑊⊗32

5 that achieves
the current best bounds on 𝜔, cannot achieve 𝜔 < 2.3725 [6]. Furthermore, a sequence of
several papers [6, 5, 13, 14, 2, 3, 1, 18, 12, 51, 15] has given strong limitations on the power of
the laser method, the group theoretic method and their generalizations, showing that for many
natural families of tensors, even approaches substantially more general than the laser method
would not be able to prove that 𝜔 = 2.

That said, the known limitation results are very specific to the tensors they are applied
to, and so it is not ruled out that our improved laser method could be applied to a different
family of tensors to yield even further improved bounds on 𝜔. Even in the case of the smaller
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Coppersmith-Winograd tensor 𝐶𝑊1, the known limitations are weaker, and it is not ruled out
that one could achieve 𝜔 < 2.239 using it (see [6, Table 1]).

1.1 The Laser Method and Our Improvement

In this subsection, we give an overview of our improvement to the laser method. We assume
familiarity with basic notions related to tensors and matrix multiplication; unfamiliar readers
may want to read Section 2 first.

Fast matrix multiplication algorithms since the 1980s have been designed by making use
of a cleverly-chosen intermediate tensor 𝑇 . They have consisted of two main ingredients:

1. An algorithm for efficiently computing 𝑇 (i.e., a proof that 𝑇 has low asymptotic rank
�̃�(𝑇 )), and

2. A proof that 𝑇 has a high value for computing matrix multiplication (i.e., a restriction of
𝑇⊗𝑛 into a large direct sum of matrix multiplication tensors).

Since the work of Coppersmith and Winograd [22], the fastest matrix multiplication algorithms
have used 𝑇 = 𝐶𝑊𝑞, the Coppersmith-Winograd tensor. Coppersmith and Winograd showed
that the asymptotic rank of 𝐶𝑊𝑞 is as low as possible given its dimensions. Hence, subsequent
work has focused on improving the bound on the value of 𝐶𝑊𝑞, and this is the approach we
take as well.

The primary way that past work has bounded the values of tensors like 𝐶𝑊𝑞 is using the
laser method. The laser method was so-named by Strassen [46], and then further developed by
Coppersmith and Winograd [22] into its current form. We now describe the laser method at a
high level.

Consider a tensor 𝑇 over finite variables sets 𝑋,𝑌 , 𝑍, given by

𝑇 =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

∑︁
𝑧∈𝑍

𝑎𝑥 𝑦𝑧 · 𝑥 𝑦𝑧

for some coefficients 𝑎𝑥 𝑦𝑧 ∈ F from the underlying field F. Let us partition the variable sets as
𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑘𝑋 , 𝑌 = 𝑌1 ∪ · · · ∪ 𝑌𝑘𝑌 , and 𝑍 = 𝑍1 ∪ · · · ∪ 𝑍𝑘𝑍 . Hence, letting

𝑇𝑖 𝑗𝑘 =
∑︁
𝑥∈𝑋𝑖

∑︁
𝑦∈𝑌𝑗

∑︁
𝑧∈𝑍𝑘

𝑎𝑥 𝑦𝑧 · 𝑥 𝑦𝑧

be the subtensor of 𝑇 restricted to 𝑋𝑖 , 𝑌𝑗 , 𝑍𝑘, we have

𝑇 =

𝑘𝑋∑︁
𝑖=1

𝑘𝑌∑︁
𝑗=1

𝑘𝑍∑︁
𝑘=1

𝑇𝑖 𝑗𝑘 .

Suppose for now that each 𝑇𝑖 𝑗𝑘 is either 0 or else a matrix multiplication tensor; this will
simplify the presentation here but is not needed in the general setting. Hence, 𝑇 is a sum of
matrix multiplication tensors. The typical way to obtain matrix multiplication algorithms from
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a sum of matrix multiplication tensors, however, requires the sum to be a direct sum, and 𝑇 is
not a direct sum in general. One could zero-out many of the 𝑋𝑖 ,𝑌𝑗 , and 𝑍𝑘 parts until 𝑇 is a direct
sum of the remaining 𝑇𝑖 𝑗𝑘 subtensors, but this typically removes ‘too much’ from the tensor.

The laser method instead takes the following approach. First, we pick a probability distri-
bution 𝛼 on the nonzero subtensors of 𝑇 , which assigns probability 𝛼𝑖 𝑗𝑘 to 𝑇𝑖 𝑗𝑘. Next, we take a
large Kronecker power 𝑛 of 𝑇 :

𝑇⊗𝑛 =
∑︁

(𝑇1,𝑇2,...,𝑇𝑛)∈{𝑇𝑖 𝑗𝑘 |𝑖∈[𝑘𝑋 ], 𝑗∈[𝑘𝑌 ],𝑘∈[𝑘𝑍]}𝑛
𝑇1 ⊗ 𝑇2 ⊗ · · · ⊗ 𝑇𝑛.

The goal of the laser method is to zero-out variables in 𝑇⊗𝑛 so that what remains is a direct sum
of 𝐵 different subtensors of the form 𝑇1 ⊗ 𝑇2 ⊗ · · · ⊗ 𝑇𝑛 which are consistent with 𝛼, meaning,
for each 𝑖 ∈ [𝑘𝑋], 𝑗 ∈ [𝑘𝑌 ], 𝑘 ∈ [𝑘𝑍], we have |{ℓ ∈ [𝑛] | 𝑇ℓ = 𝑇𝑖 𝑗𝑘}| = 𝛼𝑖 𝑗𝑘 · 𝑛. Each subtensor
𝑇1 ⊗ 𝑇2 ⊗ · · · ⊗ 𝑇𝑛 is itself a matrix multiplication tensor, so this is a desired direct sum.

How large can we hope for 𝐵 to be? One upper bound is in terms of the marginals of 𝛼.
For each 𝑖 ∈ [𝑘𝑋], write 𝛼𝑋𝑖 :=

∑
𝑗∈[𝑘𝑌 ],𝑘∈[𝑘𝑍] 𝛼𝑖 𝑗𝑘. Each 𝑇1 ⊗ 𝑇2 ⊗ · · · ⊗ 𝑇𝑛 which is consistent

with 𝛼 uses the variables from a set 𝑋𝑎1 × 𝑋𝑎2 × · · · × 𝑋𝑎𝑛 where, for each 𝑖 ∈ [𝑘𝑋], we have
|{ℓ ∈ [𝑛] | 𝑎ℓ = 𝑖}| = 𝛼𝑋𝑖 · 𝑛. The number of such sets is given by the multinomial coefficient(

𝑛

𝛼𝑋1𝑛, 𝛼𝑋2𝑛, . . . , 𝛼𝑋𝑘𝑋𝑛

)
.

Since each of these sets can be used by at most one of the final 𝐵 subtensors, this multinomial
coefficient upper bounds 𝐵. The laser method shows that if 𝑇 and 𝛼 satisfy some additional
conditions, then roughly this bound on 𝐵 can actually be achieved!

One of these conditions, which is the focus of our new improvement, is on the marginals
of 𝛼. Let 𝐷𝛼 be the set of probability distributions 𝛽 with the same marginals as 𝛼 (i.e., with
𝛼𝑋𝑖 = 𝛽𝑋𝑖 for all 𝑖 ∈ [𝑘𝑋], 𝛼𝑌𝑗 = 𝛽𝑌𝑗 for all 𝑗 ∈ [𝑘𝑌 ], and 𝛼𝑍𝑘 = 𝛽𝑍𝑘 for all 𝑘 ∈ [𝑘𝑍]). The
laser method only achieves the aforementioned value of 𝐵 if there are no other probability
distributions 𝛽 in 𝐷𝛼. This is intuitively because the laser method is only zeroing-out sets of
variables, and so it cannot distinguish between two distributions which have the same marginals.
This is not an issue when analyzing smaller powers of 𝐶𝑊𝑞 as in [22, 24], since there the tensors
and partitions are small enough that the linear system defining 𝐷𝛼 has full rank. However, it
becomes an issue when analyzing larger powers of 𝐶𝑊𝑞 as in [48, 33].

The prior work dealt with this issue in a greedy way: Suppose that after the zeroing outs
described above, we are left with a direct sum of 𝐵 subtensors consistent with 𝛼, plus 𝑚 · 𝐵
other subtensors which are consistent with other distributions in 𝐷𝛼. We can repeatedly pick a
subtensor 𝑆 consistent with 𝛼, and zero-out roughly 𝑚 subtensors which aren’t consistent with
𝛼 until 𝑆 no longer shares variables with any remaining subtensors. We can then keep 𝑆 as an
independent subtensor, but we may have zeroed out roughly 𝑚 other subtensors consistent
with 𝛼 in the process. We repeat until only subtensors consistent with 𝛼 remain. Hence, the old
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approach leaves us with a direct sum of

Θ
(
𝐵

𝑚

)
subtensors consistent with 𝛼.

In this work, we present a new way to deal with this issue, which improves the number of
subtensors consistent with 𝛼 at the end of the laser method to

Θ
(
𝐵
√
𝑚

)
.

This directly improves the final value bound achieved by the laser method by a factor of Θ(
√
𝑚).

Since most of the applications of the laser method in the previous best bounds on 𝜔 [48, 33]
apply it in settings where 𝑚 ≫ 1 is large enough to reduce the final value, it is evident even
before running any code or computing any specific values that our improvement on the laser
method leads to an improved bound on 𝜔.

Similar to other steps of the laser method, our new construction is probabilistic. We show
that if one picks a random subset of roughly 𝐵/

√
𝑚 subtensors consistent with 𝛼, and zeroes

out all variables which aren’t used by any of them, then there is a nonzero probability that all
other subtensors are zeroed out.

It is worth asking whether the factor of
√
𝑚 can be further improved. We give evidence

that an improvement is not possible by constructing tensors for which our new probabilistic
argument is tight up to low-order factors. Our constructed tensors even share special properties
with the tensors that the laser method is usually applied to (they are “free”). That said, we
leave open the possibility of improving the

√
𝑚 bound for the specific tensors to which the laser

method ultimately applies our probabilistic argument.
We present our new probabilistic argument for dealing with distributions 𝛽 ∈ 𝐷𝛼 other

than 𝛼 in Section 3, and then we show how to incorporate it into the laser method in Section 4.
We then get into the details of actually applying the laser method to 𝐶𝑊𝑞 to achieve our new
bound on 𝜔: In Section 5 we discuss the computational problem of applying the laser method to
a given tensor, and some algorithms and heuristics for solving it, and in Section 6 we detail how
to apply the laser method to 𝐶𝑊𝑞 specifically. Our new bound of 𝜔 < 2.3728596 is achieved by
applying our refined laser method to 𝐶𝑊⊗32

5 , the same tensor used by [33].
Our primary new contribution is the improved factor of

√
𝑚 in the laser method, but we

do add some new heuristics to the optimization framework of [48, 33] for applying the laser
method to 𝐶𝑊𝑞 as well. Although many of the ideas in our proof are similar to past work, we
nonetheless give all the details, and we have written the body of the paper assuming little prior
knowledge from the reader. We recommend the reader go through the sections in order, as the
notation needed to apply the laser method is built up throughout.
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1.2 Other Related Work

Rectangular Matrix Multiplication We do not specifically address algorithms for rectangular
matrix multiplication in this paper. Since the best known algorithms for rectangular matrix
multiplication also make use of the laser method, our techniques can be used to design faster
rectangular matrix multiplication algorithms as well. That said, the computational issues which
arise when bounding the running time of rectangular matrix multiplication are even more
severe than when bounding𝜔, and in fact the best known algorithms only use the 4th Kronecker
power of 𝐶𝑊𝑞 [26], where our improved laser method does not yet kick in.

Lower Bounds for Matrix Multiplication As mentioned earlier, there are a number of differ-
ent limitation results showing that certain techniques cannot be used to prove 𝜔 = 2. However,
there is little known in the way of unconditional lower bounds against matrix multiplication.
Raz [39] showed that the restricted class of arithmetic circuits with bounded coefficients for
𝑛× 𝑛× 𝑛 matrix multiplication over C requires size Ω(𝑛2 log 𝑛). Another line of work [45, 34, 17,
32, 31] has shown border rank lower bounds for matrix multiplication tensors. The current best
bound by Landsberg and Michałek [31] shows that the 𝑛 × 𝑛 × 𝑛 matrix multiplication tensor
over C has border rank at least 2𝑛2 − log2(𝑛) − 1. Relatedly, the best known bound in a line of
work on rank lower bounds [10, 43, 30] shows that the 𝑛 × 𝑛 × 𝑛 matrix multiplication tensor
over C has rank at least 3𝑛2 − 𝑜(𝑛2) [30].

Subsequent Algorithms for Matrix Multiplication After the preliminary version of this
paper, subsequent work [25, 49] designed a further improved matrix multiplication algorithm,
achieving 𝜔 < 2.371552. The key idea behind these improvements is a new asymmetric way to
apply the laser method to 𝐶𝑊𝑞 and its subtensors. Interestingly, their analysis, and particularly
a new observation called “combination loss” [25], appears quite specific to the tensor 𝐶𝑊𝑞, and
it is unclear if the same approach would yield improvements for other tensors to which the
laser method applies. It also appears difficult to use this asymmetric approach in conjunction
with our refined laser method. Roughly, the new zeroing outs of the refined laser method may
interfere with other subtensors which are intended to be kept in the asymmetric approach; we
refer the reader to [49, End of Section 2.2] for a more technical discussion.

2. Preliminaries

2.1 Notation

For a positive integer 𝑛, we write [𝑛] := {1, 2, 3, . . . , 𝑛}. For a set 𝑆 and nonnegative integer 𝑘,
we write

(𝑆
𝑘

)
:= {𝑇 ⊆ 𝑆 | |𝑇 | = 𝑘}. For a set 𝑆, positive integer 𝑑, index 𝑖 ∈ [𝑑], and vector 𝑥 ∈ 𝑆𝑑 ,

we write 𝑥𝑖 for entry 𝑖 of 𝑥. Any other uses of subscripts should be clear from context.
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For nonnegative integers 𝑎1, . . . , 𝑎𝑘 with 𝑎1 + · · · + 𝑎𝑘 = 𝑛, we write
( 𝑛
[𝑎𝑖]𝑖∈[𝑘]

)
:=

( 𝑛
𝑎1,𝑎2,...,𝑎𝑘

)
for the multinomial coefficient. One standard bound on multinomial coefficients that we will
frequently make use of is that, if 𝑝1, . . . , 𝑝𝑘 ∈ [0, 1] sum to 𝑝1 + · · · + 𝑝𝑘 = 1, then for sufficiently
large positive integers 𝑛 such that 𝑝𝑖 · 𝑛 is an integer for all 𝑖 ∈ [𝑘], we have that(

𝑛

[𝑝𝑖 · 𝑛] 𝑖∈[𝑘]

)
=

(
𝑘∏
𝑖=1

𝑝
−𝑝𝑖
𝑖

)𝑛−𝑜(𝑛)
.

2.2 Tensors and Sums

Let F be any field, and 𝑋 = {𝑥1, . . . , 𝑥|𝑋 |}, 𝑌 = { 𝑦1, . . . , 𝑦|𝑌 |}, 𝑍 = {𝑧1, . . . , 𝑧 |𝑍 |} be finite sets (which
we will refer to as sets of variables). A tensor 𝑇 over 𝑋,𝑌 , 𝑍 is a trilinear form

𝑇 =

|𝑋 |∑︁
𝑖=1

|𝑌 |∑︁
𝑗=1

|𝑍 |∑︁
𝑘=1

𝑎𝑖 𝑗𝑘 · 𝑥𝑖 𝑦 𝑗𝑧𝑘,

where the 𝑎𝑖 𝑗𝑘 are coefficients from the field F. We’ll focus in particular on tensors 𝑇 whose
coefficients 𝑎𝑖 𝑗𝑘 are all 0 or 1, so that 𝑇 can be thought of as a tensor over any field. Such tensors
𝑇 can be thought of as subsets of 𝑋 ×𝑌 × 𝑍. For 𝑥𝑖 ∈ 𝑋, 𝑦 𝑗 ∈ 𝑌, 𝑧𝑘 ∈ 𝑍, we say 𝑥𝑖 𝑦 𝑗𝑧𝑘 has nonzero
coefficient in 𝑇 if 𝑎𝑖 𝑗𝑘 ≠ 0.

For tensor 𝑇 over 𝑋 = {𝑥1, . . . , 𝑥|𝑋 |}, 𝑌 = { 𝑦1, . . . , 𝑦|𝑌 |}, 𝑍 = {𝑧1, . . . , 𝑧 |𝑍 |} and tensor 𝑇 ′ over
𝑋′ = {𝑥′1, . . . , 𝑥′|𝑋 ′ |}, 𝑌

′ = { 𝑦′1, . . . , 𝑦′|𝑌 ′ |}, 𝑍
′ = {𝑧′1, . . . , 𝑧′|𝑍′ |}, given by

𝑇 =

|𝑋 |∑︁
𝑖=1

|𝑌 |∑︁
𝑗=1

|𝑍 |∑︁
𝑘=1

𝑎𝑖 𝑗𝑘 · 𝑥𝑖 𝑦 𝑗𝑧𝑘, 𝑇 ′ =
|𝑋 ′ |∑︁
𝑖′=1

|𝑌 ′ |∑︁
𝑗′=1

|𝑍′ |∑︁
𝑘′=1

𝑏𝑖′ 𝑗′𝑘′ · 𝑥′𝑖′ 𝑦
′
𝑗′𝑧

′
𝑘′ ,

we now describe a number of operations and relations. We will use these two tensors as running
notation throughout this section.

If 𝑋 = 𝑋′, 𝑌 = 𝑌 ′, and 𝑍 = 𝑍′, then the sum 𝑇 + 𝑇 ′ is the tensor whose coefficient of 𝑥𝑖 𝑦 𝑗𝑧𝑘
is 𝑎𝑖 𝑗𝑘 + 𝑏𝑖 𝑗𝑘. With our view of tensors as polynomials, this is the usual way to sum 𝑇 and 𝑇 ′.

The direct sum𝑇 ⊕𝑇 ′ is the sum𝑇 +𝑇 ′ over the disjoint unions 𝑋 ⊔𝑋′, 𝑌 ⊔𝑌 ′, 𝑍⊔𝑍′. In other
words, it is the sum 𝑇 + 𝑇 ′ after we first relabel the sets of variables so that they are disjoint.

We say 𝑇 and 𝑇 ′ are isomorphic, written 𝑇 ≡ 𝑇 ′, if one can get from one to the other by
renaming variables. In other words, they are isomorphic if |𝑋 | = |𝑋′|, |𝑌 | = |𝑌 ′|, |𝑍 | = |𝑍′|, and
there are bijections 𝜋𝑋 : [|𝑋 |] → [|𝑋′|], 𝜋𝑌 : [|𝑌 |] → [|𝑌 ′|], and 𝜋𝑍 : [|𝑍 |] → [|𝑍′|] such that
𝑎𝑖 𝑗𝑘 = 𝑏𝜋𝑥 (𝑖)𝜋𝑦 ( 𝑗)𝜋𝑧 (𝑘) for all 𝑖 ∈ [|𝑋 |], 𝑗 ∈ [|𝑌 |], and 𝑘 ∈ [|𝑍 |].

The rotation of 𝑇 , denoted 𝑇 𝑟, is the tensor over 𝑌, 𝑍, 𝑋 such that the coefficient of 𝑦 𝑗𝑧𝑘𝑥𝑖
in 𝑇 𝑟 is 𝑎𝑖 𝑗𝑘. We similarly write 𝑇 𝑟𝑟 for the corresponding tensor over 𝑍, 𝑋,𝑌 .
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2.3 Kronecker Products

The Kronecker product 𝑇 ⊗ 𝑇 ′ is a tensor over 𝑋 × 𝑋′, 𝑌 × 𝑌 ′, 𝑍 × 𝑍′ given by

𝑇 ⊗ 𝑇 ′ =
|𝑋 |∑︁
𝑖=1

|𝑌 |∑︁
𝑗=1

|𝑍 |∑︁
𝑘=1

|𝑋 ′ |∑︁
𝑖′=1

|𝑌 ′ |∑︁
𝑗′=1

|𝑍′ |∑︁
𝑘′=1

𝑎𝑖 𝑗𝑘 · 𝑏𝑖′ 𝑗′𝑘′ · (𝑥𝑖 , 𝑥′𝑖′) · ( 𝑦 𝑗 , 𝑦
′
𝑗′) · (𝑧𝑘, 𝑧

′
𝑘′).

One can think of 𝑇 ⊗ 𝑇 ′ as multiplying 𝑇 and 𝑇 ′ as polynomials, but then ‘merging’ together
pairs of 𝑥-variables, pairs of 𝑦-variables, and pairs of 𝑧-variables into single variables.

For a positive integer 𝑛, we write 𝑇⊗𝑛 := 𝑇 ⊗ 𝑇 ⊗ 𝑇 ⊗ · · · ⊗ 𝑇 (𝑛 times) for the Kronecker
power of 𝑇 , which is a tensor over 𝑋𝑛, 𝑌 𝑛, 𝑍𝑛. For 𝐼 ∈ [|𝑋 |]𝑛, we will write 𝑥𝐼 to denote the
element (𝑥𝐼1 , 𝑥𝐼2 , . . . , 𝑥𝐼𝑛) ∈ 𝑋𝑛, and similarly for 𝑌 𝑛, 𝑍𝑛, so that

𝑇⊗𝑛 =
∑︁

𝐼∈[|𝑋 |]𝑛

∑︁
𝐽∈[|𝑌 |]𝑛

∑︁
𝐾∈[|𝑍 |]𝑛

(
𝑛∏
ℓ=1

𝑎𝐼ℓ 𝐽ℓ𝐾ℓ

)
· 𝑥𝐼 𝑦𝐽𝑧𝐾 .

2.4 Tensor Rank

We say 𝑇 has rank 1 if we can write

𝑇 =

( |𝑋 |∑︁
𝑖=1

𝛼𝑖 · 𝑥𝑖

)
· ©­«

|𝑌 |∑︁
𝑗=1

𝛽 𝑗 · 𝑦 𝑗
ª®¬ ·

( |𝑍 |∑︁
𝑘=1

𝛾𝑘 · 𝑧𝑘

)
for some values 𝛼𝑖 , 𝛽 𝑗 , 𝛾𝑘 ∈ F. Equivalently, 𝑇 has rank 1 if there exist 𝛼𝑖 , 𝛽 𝑗 , 𝛾𝑘 ∈ F such that
𝑎𝑖 𝑗𝑘 = 𝛼𝑖 · 𝛽 𝑗 · 𝛾𝑘 for all 𝑖, 𝑗, 𝑘. The rank of a tensor 𝑇 , denoted 𝑅(𝑇 ), is the minimum nonnegative
integer such that there are rank 1 tensors 𝑇1, . . . , 𝑇𝑅(𝑇 ) over 𝑋,𝑌 , 𝑍 with 𝑇1 + · · · + 𝑇𝑅(𝑇 ) = 𝑇 . This
is analogous to the rank of a matrix. We call the sum 𝑇1 + · · · + 𝑇𝑅(𝑇 ) a rank 𝑅(𝑇 ) expression for
𝑇 . For tensors 𝑇,𝑇 ′, rank satisfies the basic properties:

𝑅(𝑇 + 𝑇 ′) ≤ 𝑅(𝑇 ) + 𝑅(𝑇 ′), by adding the rank expressions for 𝑇 and 𝑇 ′,
𝑅(𝑇 ) = 𝑅(𝑇 𝑟) by rotating the rank expression, and
𝑅(𝑇⊗𝑇 ′) ≤ 𝑅(𝑇 )·𝑅(𝑇 ′), by the distributive property, since one can verify that the Kronecker
product of two rank 1 tensors is also a rank 1 tensor.

This third property inspires the definition of the asymptotic rank �̃�(𝑇 ) of 𝑇 , given by

�̃�(𝑇 ) = lim
𝑛→∞

(𝑅(𝑇⊗𝑛))1/𝑛.

By Fekete’s lemma, �̃�(𝑇 ) is well-defined, and is upper-bounded by (𝑅(𝑇⊗𝑚))1/𝑚 for any fixed
positive integer 𝑚. As we will see, there are many tensors 𝑇 for which 𝑅(𝑇 ) > �̃�(𝑇 ), and this is
crucial in the study of matrix multiplication algorithms.
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2.5 Matrix Multiplication Tensors

For positive integers 𝑎, 𝑏, 𝑐, the 𝑎× 𝑏× 𝑐 matrix multiplication tensor, written ⟨𝑎, 𝑏, 𝑐⟩, is a tensor
over {𝑥𝑖 𝑗}𝑖∈[𝑎], 𝑗∈[𝑏] , { 𝑦 𝑗𝑘} 𝑗∈[𝑏],𝑘∈[𝑐] , {𝑧𝑘𝑖}𝑘∈[𝑐],𝑖∈[𝑎] , given by

⟨𝑎, 𝑏, 𝑐⟩ =
∑︁
𝑖∈[𝑎]

∑︁
𝑗∈[𝑏]

∑︁
𝑘∈[𝑐]

𝑥𝑖 𝑗 𝑦 𝑗𝑘𝑧𝑘𝑖 .

Note that ⟨𝑎, 𝑏, 𝑐⟩𝑟 ≡ ⟨𝑏, 𝑐, 𝑎⟩. The tensor ⟨𝑎, 𝑏, 𝑐⟩ is the trilinear form which one evaluates when
multiplying an 𝑎 × 𝑏 matrix with a 𝑏 × 𝑐 matrix. In other words, for 𝐴 ∈ F𝑎×𝑏 and 𝐵 ∈ F𝑏×𝑐,
if we substitute the (𝑖, 𝑗) entry of 𝐴 for 𝑥𝑖 𝑗 and the ( 𝑗, 𝑘) entry of 𝐵 for 𝑦 𝑗𝑘, then the resulting
coefficient of 𝑧𝑘𝑖 in ⟨𝑎, 𝑏, 𝑐⟩ is the (𝑖, 𝑘) entry of the matrix product 𝐴 × 𝐵.

One can verify that for any positive integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 we have ⟨𝑎, 𝑏, 𝑐⟩ ⊗ ⟨𝑑, 𝑒, 𝑓 ⟩ ≡
⟨𝑎𝑑, 𝑏𝑒, 𝑐 𝑓 ⟩. This corresponds to the fact that block matrices can be multiplied by appropriately
multiplying and adding together blocks.

For any positive integers 𝑞, 𝑟, if 𝑅(⟨𝑞, 𝑞, 𝑞⟩) = 𝑟, then one can use the corresponding rank
expression to design an arithmetic circuit for 𝑛 × 𝑛 × 𝑛 matrix multiplication of size 𝑂(𝑛log𝑞(𝑟)).
This follows from the recursive approach introduced by Strassen [44]; see e.g. [11, Proposition 1.1,

Theorem 5.2]. The exponent of matrix multiplication, 𝜔, is hence defined as

𝜔 := inf
𝑞∈N

log𝑞 𝑅(⟨𝑞, 𝑞, 𝑞⟩).

Thus, using Strassen’s recursive approach, for every 𝜀 > 0, there is an arithmetic circuit for
𝑛×𝑛×𝑛matrix multiplication of size𝑂(𝑛𝜔+𝜀). For instance, Strassen showed that 𝑅(⟨2, 2, 2⟩) ≤ 7,
which implied 𝜔 ≤ log2(7) < 2.81. Since ⟨𝑞, 𝑞, 𝑞⟩⊗𝑛 ≡ ⟨𝑞𝑛, 𝑞𝑛, 𝑞𝑛⟩, we can equivalently write
that, for any fixed integer 𝑞 ≥ 2,

𝜔 = log𝑞 �̃�(⟨𝑞, 𝑞, 𝑞⟩).

The value of 𝜔 could depend1 on the field F, although the bounds we give in this paper work
over any field. Note that bounding the rank of a rectangular matrix multiplication tensor can
also yield bounds on𝜔: if 𝑅(⟨𝑎, 𝑏, 𝑐⟩) ≤ 𝑟, then by symmetry, 𝑅(⟨𝑏, 𝑐, 𝑎⟩) ≤ 𝑟 and 𝑅(⟨𝑐, 𝑎, 𝑏⟩) ≤ 𝑟,
and so taking the Kronecker product of the three, we see 𝑅(⟨𝑎𝑏𝑐, 𝑎𝑏𝑐, 𝑎𝑏𝑐⟩) ≤ 𝑟3 which yields
𝜔 ≤ 3 log𝑎𝑏𝑐 𝑟.

2.6 Schönhage’s Asymptotic Sum Inequality

By definition, in order to upper bound 𝜔, it suffices to upper bound the (asymptotic) rank of
some matrix multiplication tensor. Schönhage [42] showed that it also suffices to upper bound
the (asymptotic) rank of a direct sum of multiple matrix multiplication tensors.

1 In fact, it is known that 𝜔 depends only on the characteristic of F [42].
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THEOREM 2.1 ([42]). Suppose there are positive integers 𝑟 > 𝑚, and 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 for 𝑖 ∈ [𝑚], such
that the tensor

𝑇 =

𝑚⊕
𝑖=1

⟨𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖⟩

has �̃�(𝑇 ) ≤ 𝑟. Then, 𝜔 ≤ 3𝜏, where 𝜏 ∈ [2/3, 1] is the solution to
𝑚∑︁
𝑖=1

(𝑎𝑖 · 𝑏𝑖 · 𝑐𝑖)𝜏 = 𝑟.

2.7 Zeroing-Outs, Restrictions, and Value

We say 𝑇 ′ is a restriction of 𝑇 if there is an F-linear map 𝐴 : spanF(𝑋) → spanF(𝑋′), which
maps F-linear combinations of variables of 𝑋 to F-linear combinations of variables of 𝑋′, and
similarly F-linear maps 𝐵 : spanF(𝑌 ) → spanF(𝑌 ′), and 𝐶 : spanF(𝑍) → spanF(𝑍′), such that

𝑇 ′ =
|𝑋 |∑︁
𝑖=1

|𝑌 |∑︁
𝑗=1

|𝑍 |∑︁
𝑘=1

𝑎𝑖 𝑗𝑘 · 𝐴(𝑥𝑖) · 𝐵( 𝑦 𝑗) · 𝐶(𝑧𝑘).

It is not hard to verify that if 𝑇 ′ is a restriction of 𝑇 , then 𝑅(𝑇 ) ≥ 𝑅(𝑇 ′), and �̃�(𝑇 ) ≥ �̃�(𝑇 ′), since
the restriction of a rank 1 tensor is still a rank 1 tensor. Recent progress on bounding 𝜔 has
worked by cleverly picking a tensor 𝑇 , showing that �̃�(𝑇 ) is ‘small’, and showing that a ‘large’
direct sum of matrix multiplication tensors is a restriction of a power 𝑇⊗𝑛. We will follow this
approach as well.

In fact, we will only use a limited type of restriction called a zeroing out. We say 𝑇 ′ is a
zeroing out of 𝑇 if 𝑋′ ⊆ 𝑋 , 𝑌 ′ ⊆ 𝑌 , 𝑍′ ⊆ 𝑍, and the coefficient of 𝑥𝑖 𝑦 𝑗𝑧𝑘 is the same in 𝑇 and 𝑇 ′

for every 𝑥𝑖 ∈ 𝑋′, 𝑦 𝑗 ∈ 𝑌 ′, and 𝑧𝑘 ∈ 𝑍′. In this case, we write 𝑇 ′ = 𝑇 |𝑋 ′,𝑌 ′,𝑍′ . We say the variables
in 𝑋 \ 𝑋′, 𝑌 \ 𝑌 ′, and 𝑍 \ 𝑍′ have been zeroed-out; one can think of substituting in 0 for those
variables in 𝑇 to get to 𝑇 ′.

Coppersmith and Winograd [22] formalized this approach to bounding 𝜔 by defining the
value of a tensor. For 𝜏 ∈ [2/3, 1], the 𝜏-value of 𝑇 , written 𝑉𝜏 (𝑇 ), is given by the supremum
over all positive integers 𝑛, and all tensors of the form

⊕𝑚
𝑖=1⟨𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖⟩ which are restrictions of

(𝑇 ⊗ 𝑇 𝑟 ⊗ 𝑇 𝑟𝑟)⊗𝑛, of (
𝑚∑︁
𝑖=1

(𝑎𝑖 · 𝑏𝑖 · 𝑐𝑖)𝜏
) 1

3𝑛

.

When 𝜏 is clear from context, we will simply write𝑉 (𝑇 ) and call it the value of𝑇 . One can see that
for tensors 𝑇,𝑇 ′, the value𝑉𝜏 satisfies𝑉𝜏 (𝑇 ⊗𝑇 ′) ≥ 𝑉𝜏 (𝑇 ) ·𝑉𝜏 (𝑇 ′) and𝑉𝜏 (𝑇 ⊕𝑇 ′) ≥ 𝑉𝜏 (𝑇 ) +𝑉𝜏 (𝑇 ′).
We can also see that𝑉𝜏 (⟨𝑎, 𝑏, 𝑐⟩) = (𝑎𝑏𝑐)𝜏. We work with the tensor 𝑇 ⊗𝑇 𝑟 ⊗𝑇 𝑟𝑟 instead of just 𝑇
in the definition of 𝑉𝜏 (𝑇 ) since this more symmetric form can sometimes substantially increase
the value of relatively ‘asymmetric’ tensors.
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By Theorem 2.1, we get almost immediately that for any tensor 𝑇 , and any 𝜏 ∈ [2/3, 1],
if 𝑉𝜏 (𝑇 ) ≥ �̃�(𝑇 ), then 𝜔 ≤ 3𝜏. Thus, in this paper, we focus on lower-bounding the values of
certain tensors. We will give a recursive approach where the value of a tensor with certain
structure can be bounded in terms of the values of its subtensors.

2.8 Coppersmith-Winograd Tensors

For a nonnegative integer 𝑞, the Coppersmith-Winograd tensor𝐶𝑊𝑞 is a tensor over {𝑥0, . . . , 𝑥𝑞+1},
{ 𝑦0, . . . , 𝑦𝑞+1}, {𝑧0, . . . , 𝑧𝑞+1} given by

𝐶𝑊𝑞 := 𝑥0 𝑦0𝑧𝑞+1 + 𝑥0𝑧𝑞+1 𝑦0 + 𝑥𝑞+1 𝑦0𝑧0 +
𝑞∑︁
𝑖=1

(𝑥0 𝑦𝑖𝑧𝑖 + 𝑥𝑖 𝑦0𝑧𝑖 + 𝑥𝑖 𝑦𝑖𝑧0).

Notice in particular that

⟨1, 1, 𝑞⟩ ≡
𝑞∑︁
𝑖=1

𝑥0 𝑦𝑖𝑧𝑖 , ⟨𝑞, 1, 1⟩ ≡
𝑞∑︁
𝑖=1

𝑥𝑖 𝑦0𝑧𝑖 , ⟨1, 𝑞, 1⟩ ≡
𝑞∑︁
𝑖=1

𝑥𝑖 𝑦𝑖𝑧0,

so 𝐶𝑊𝑞 is the sum of three matrix multiplication tensors and three ‘corner terms’ (which are
also ⟨1, 1, 1⟩ matrix multiplication tensors). Coppersmith and Winograd [22] showed2 that
�̃�(𝐶𝑊𝑞) = 𝑞 + 2. The upper bounds on 𝜔 since Coppersmith and Winograd’s work [22, 24, 48,
33] have all been proved by giving value lower bounds for 𝐶𝑊𝑞. Our improvement in this paper
will come from further improving these value bounds.

2.9 Salem-Spencer Sets

The final technical ingredient from past work that we will need is a construction of large subsets
of Z𝑀 which avoid three-term arithmetic progressions.

THEOREM 2.2 ([41, 7]). For every positive integer 𝑀 , there is a subset 𝐴 ⊆ Z𝑀 of size |𝐴| ≥
𝑀 · 𝑒−𝑂(

√
log𝑀) such that any 𝑎, 𝑏, 𝑐 ∈ 𝐴 satisfy 𝑎 + 𝑏 = 2𝑐 (mod 𝑀) if and only if 𝑎 = 𝑏 = 𝑐.

We briefly mention a ‘tensor interpretation’ of Theorem 2.2. For odd prime 𝑀 , define the
tensor 𝐶𝑀 over {𝑥0, . . . , 𝑥𝑀−1}, { 𝑦0, . . . , 𝑦𝑀−1}, {𝑧0, . . . , 𝑧𝑀−1} by

𝐶𝑀 :=
𝑀−1∑︁
𝑖=0

𝑀−1∑︁
𝑗=0

𝑥𝑖 · 𝑦 𝑗 · 𝑧(𝑖+ 𝑗)/2 (mod 𝑀) .

Letting 𝐴 be the set from Theorem 2.2, if we zero-out all 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 for which 𝑖 ∉ 𝐴 in 𝐶𝑀 ,
then the result is the tensor ∑︁

𝑖∈𝐴
𝑥𝑖 · 𝑦𝑖 · 𝑧𝑖 ,

2 In fact, they showed that the ‘border rank’ of 𝐶𝑊𝑞 is ≤ 𝑞 + 2, and border rank is known to upper bound asymptotic
rank [8]. The fact that �̃�(𝐶𝑊𝑞) ≥ 𝑞 + 2 follows since 𝐶𝑊𝑞 is a ‘concise’ tensor; see, e.g., [16, Remark 14.38].
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which is a direct sum of |𝐴| ≥ 𝑀 · 𝑒−𝑂(
√

log𝑀) terms.

3. Diagonalizing Arbitrary Tensors with Zeroing Outs

We now present a main new technical tool which we will later use in proving value lower
bounds for tensors. It can be thought of as a generalization of Theorem 2.2 to tensors beyond
just 𝐶𝑀 . The resulting bound we get is not as large (it yields Ω(

√
𝑀) instead of 𝑀 · 𝑒−𝑂(

√
log𝑀)

for 𝐶𝑀), although we show later in Theorem 3.2 and Theorem 3.3 that such a loss is required
for this more general statement. The proof uses the probabilistic method.

THEOREM 3.1. Suppose 𝑇 is a tensor over 𝑋,𝑌 , 𝑍, with partitions 𝑋 = 𝑋1 ∪ 𝑋2 ∪ · · · ∪ 𝑋𝑛,
𝑌 = 𝑌1 ∪ 𝑌2 ∪ · · · ∪ 𝑌𝑛, 𝑍 = 𝑍1 ∪ 𝑍2 ∪ · · · ∪ 𝑍𝑛 for some positive integer 𝑛. For 𝑖, 𝑗, 𝑘 ∈ [𝑛], write
𝑇𝑖 𝑗𝑘 := 𝑇 |𝑋𝑖 ,𝑌𝑗 ,𝑍𝑘 . Let 𝑆 = {(𝑖, 𝑗, 𝑘) ∈ [𝑛]3 | 𝑇𝑖 𝑗𝑘 ≠ 0}, and suppose that:

(𝑖, 𝑖, 𝑖) ∈ 𝑆 for all 𝑖 ∈ [𝑛], and
for all other (𝑖, 𝑗, 𝑘) ∈ 𝑆, the three values 𝑖, 𝑗, 𝑘 are distinct.

Write 𝑚 := ( |𝑆 | − 𝑛)/𝑛, and suppose that 𝑚 ≥ 1. Then, there is a subset 𝐼 ⊆ [𝑛] of size |𝐼 | ≥ 2𝑛
3
√

3𝑚
such that 𝑇 has a zeroing out into

∑
𝑖∈𝐼 𝑇𝑖𝑖𝑖 .

PROOF . We use the probabilistic method. Let 𝑝 := 1√
3𝑚

, and let 𝑅 be a random subset of [𝑛]
where each element is included independently with probability 𝑝, so E[|𝑅|] = 𝑝 · 𝑛. Define
𝑆′ ⊆ 𝑆 by

𝑆′ = {(𝑖, 𝑗, 𝑘) ∈ 𝑆 | 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 and 𝑖, 𝑗, 𝑘 ∈ 𝑅}.

Any given (𝑖, 𝑗, 𝑘) ∈ 𝑆 with 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 is included in 𝑆′ with probability 𝑝3, and so E[|𝑆′|] =
𝑝3 · ( |𝑆 | − 𝑛) = 𝑝3 · 𝑛 · 𝑚. Let 𝐴 := {𝑖 | (𝑖, 𝑗, 𝑘) ∈ 𝑆′}, and let 𝐼 := 𝑅 \ 𝐴. We have that

E[|𝐼 |] ≥ E[|𝑅 |] − E[|𝐴|] ≥ E[|𝑅 |] − E[|𝑆′|] = 𝑝 · 𝑛 − 𝑝3 · 𝑛 · 𝑚 = 𝑛 · (𝑝 − 𝑝3𝑚) = 2𝑛
3
√

3𝑚
.

It follows that there is a choice of randomness with |𝐼 | ≥ 2𝑛
3
√

3𝑚
. Fix this choice, then let 𝑇 ′ be 𝑇

after zeroing-out every 𝑋 𝑗 , 𝑌𝑗 , and 𝑍 𝑗 such that 𝑗 ∉ 𝐼; we claim this is the desired zeroing out.
Evidently 𝑇𝑖𝑖𝑖 is not zeroed out for any 𝑖 ∈ 𝐼 . Meanwhile, for any other (𝑖, 𝑗, 𝑘) ∈ 𝑆, it must be
that 𝑇𝑖 𝑗𝑘 was zeroed out, i.e., at least one of 𝑖, 𝑗, 𝑘 is not in 𝐼 , since either at least one of 𝑖, 𝑗, 𝑘 is
not in 𝑅, in which case it would not be included in 𝐼 , or else 𝑖 would have been included in 𝐴

and hence excluded from 𝐼 . ■

Theorem 3.1 shows how to start with a tensor𝑇 which is a direct sum
⊕𝑛

𝑖=1𝑇𝑖𝑖𝑖 plus roughly
𝑚 · 𝑛 additional subtensors 𝑇𝑖 𝑗𝑘, and zero-out some variables so that Ω(𝑛/

√
𝑚) of the 𝑇𝑖𝑖𝑖 tensors

remain, but all other subtensors are zeroed out. We will use this fact in the proof of Theorem 4.1
below to show that the value of 𝑇 is at least𝑉𝜏 (𝑇 ) ≥ Ω

(
𝑛√
𝑚
· min𝑖∈[𝑛] 𝑉𝜏 (𝑇𝑖𝑖𝑖)

)
. It is natural to ask

whether this
√
𝑚 dependence is optimal; we next construct some tensors for which it is.
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We first give a technical ingredient, Theorem 3.2, which we will use in our tensor construc-
tion.

THEOREM 3.2. For positive integers 𝑛 ≥ 𝑚 with 𝑛 sufficiently large, there is a subset 𝑆 ⊆
{(𝑖, 𝑗, 𝑘) ∈ [𝑛]3 | 𝑖, 𝑗, 𝑘 distinct} with |𝑆 | = 𝑚𝑛 such that, for any subset 𝐼 ⊆ [𝑛] of size |𝐼 | = 𝑛 log 𝑛√

𝑚
,

there is an (𝑖, 𝑗, 𝑘) ∈ 𝑆 with 𝑖, 𝑗, 𝑘 ∈ 𝐼 .

PROOF . Let 𝐶 be the set of subsets 𝐼 ⊆ [𝑛] of size 𝑛 log 𝑛√
𝑚

. Hence,

|𝐶 | =
(
𝑛

𝑛 log 𝑛√
𝑚

)
≤ 𝑛

𝑛 log 𝑛√
𝑚 .

Initially let 𝑆 = ∅. We will repeatedly add an element (𝑖, 𝑗, 𝑘) to 𝑆, and then remove any
remaining 𝐼 ∈ 𝐶 with 𝑖, 𝑗, 𝑘 ∈ 𝐼 , until 𝐶 becomes empty. It suffices to show we only need to add
≤ 𝑚𝑛 elements to 𝑆.

At each step, we simply greedily pick any (𝑖, 𝑗, 𝑘) ∈ [𝑛]3 with 𝑖, 𝑗, 𝑘 distinct which maxi-
mizes |{𝐼 ∈ 𝐶 | 𝑖, 𝑗, 𝑘 ∈ 𝐼}|. Note that if we pick three random distinct 𝑖, 𝑗, 𝑘 ∈ [𝑛], then for a
given 𝐼 ∈ 𝐶, the probability that 𝑖, 𝑗, 𝑘 ∈ 𝐼 is

|𝐼 |
𝑛

· |𝐼 | − 1
𝑛 − 1

· |𝐼 | − 2
𝑛 − 2

>

(
|𝐼 | − 2
𝑛 − 2

)3

=
©­«
𝑛 log 𝑛√

𝑚
− 2

𝑛 − 2
ª®¬

3

>
1
2

(
log 𝑛
√
𝑚

)3

for large enough 𝑛. It follows that we can pick 𝑖, 𝑗, 𝑘 which multiply |𝐶 | by a factor which is less

than 1 − 1
2

(
log 𝑛√
𝑚

)3
. After repeating 𝑛𝑚 times, the resulting size of 𝐶 will be less than

𝑛
𝑛√
𝑚 ·

(
1 − 1

2

(
log 𝑛
√
𝑚

)3
)𝑚𝑛

< 𝑛
𝑛√
𝑚 ·

(
1
𝑒

) 1
2𝑛 log3 𝑛/

√
𝑚

< 1,

for large enough 𝑛. Since |𝐶 | is an integer, it follows that |𝐶 | = 0 as desired. ■

Let 𝑆 ⊆ [𝑛]3 be the set from Theorem 3.2, with |𝑆 | = 𝑚 · 𝑛, and define the tensor 𝑇 over
{𝑥1, . . . , 𝑥𝑛}, { 𝑦1, . . . , 𝑦𝑛}, {𝑧1, . . . , 𝑧𝑛} by

𝑇 =
∑︁

(𝑖, 𝑗,𝑘)∈𝑆
𝑥𝑖 𝑦 𝑗𝑧𝑘 .

Theorem 3.2 says that, for any 𝐼 ⊆ [𝑛] such that 𝑇 has a zeroing out into
∑
𝑖∈𝐼 𝑥𝑖 𝑦𝑖𝑧𝑖 , we must

have |𝐼 | < 𝑛 log 𝑛√
𝑚

. This is nearly the size of the set 𝐼 constructed by Theorem 3.1.
The tensors to which we will apply Theorem 3.1 will have additional structure beyond those

stipulated by Theorem 3.1. It is worth investigating whether the
√
𝑚 factor in Theorem 3.1 can be

improved for those tensors in particular. One particular property is that they are free, meaning,
for any 𝑖, 𝑗, 𝑘, 𝑖′, 𝑗′, 𝑘′ ∈ [𝑛], such that 𝑥𝑖 𝑦 𝑗𝑧𝑘 and 𝑥𝑖′ 𝑦 𝑗′𝑧𝑘′ both have nonzero coefficients in 𝑇 , at
most one of 𝑖 = 𝑖′, 𝑗′ = 𝑗,𝑘 = 𝑘′ holds. We can see that the tensor constructed from Theorem 3.2
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is unlikely to be free. Nonetheless, with some additional work, we can construct a free tensor
for which the

√
𝑚 factor is still optimal:

THEOREM 3.3. For positive integers 𝑛 and 𝑚, with 𝑛 sufficiently large and log2 𝑛 ≤ 𝑚 ≤
√︁
𝑛/6,

there is a subset 𝑆 ⊆
([𝑛]

3
)

with |𝑆 | ≤ 𝑂(𝑚𝑛) such that
(1) any distinct {𝑖, 𝑗, 𝑘}, {𝑖′, 𝑗′, 𝑘′} ∈ 𝑆, have |{𝑖, 𝑗, 𝑘} ∩ {𝑖′, 𝑗′, 𝑘′}| ≤ 1, and
(2) for any subset 𝐼 ⊆ [𝑛] of size |𝐼 | = 𝑛 log(𝑛)√

𝑚
, there is an {𝑖, 𝑗, 𝑘} ∈ 𝑆 with 𝑖, 𝑗, 𝑘 ∈ 𝐼 .

PROOF . Let 𝑁 = 2𝑛, and let 𝑇 =
([𝑁]

3
)
. Construct 𝑆 ⊆ 𝑇 randomly by including each element of

𝑇 independently with probability 𝑝 := 𝑁𝑚
3|𝑇 | .

We compute some probabilities related to 𝑆.
First, note that E[|𝑆 |] = 𝑝 · |𝑇 | = 𝑁𝑚

3 , and so by Markov’s inequality, we have |𝑆 | ≤ 𝑁𝑚 =

2𝑛𝑚 with probability ≥ 2/3.
Second, consider any fixed set 𝐼 ⊆ [𝑁] of size |𝐼 | = 𝑛 log 𝑛√

𝑚
. For any three fixed elements

𝑖, 𝑗, 𝑘 ∈ 𝐼 which are pairwise distinct, the probability that {𝑖, 𝑗, 𝑘} is not in 𝑆 is 1 − 𝑁𝑚
3|𝑇 | ≤ 1 − 2𝑚

𝑁2 .
Thus, for large enough 𝑛, the probability that no triple of 𝐼 is in 𝑆 is at most(

1 − 2𝑚
𝑁2

)𝑁3(log3 𝑁)/(16𝑚3/2)
≤ 2−Ω( 𝑁 log3 𝑁√

𝑚
)
.

Meanwhile, the number of sets 𝐼 ⊆ [𝑁] of size |𝐼 | = 𝑛 log 𝑛√
𝑚

is only(
2𝑛
𝑛 log 𝑛√

𝑚

)
≤ 2𝑂(

𝑁 log2 𝑁√
𝑚

)
.

Thus the probability that all of those sets 𝐼 are covered by a triple in 𝑆 is overwhelming.
Let𝑈 = [𝑁] be the original universe. Now, repeat the following procedure that shrinks𝑈

somewhat. If there are two triples {𝑖, 𝑗, 𝑘}, {𝑖, 𝑗, 𝑘′} ∈ 𝑆 which share two elements, then remove
𝑖 from𝑈 (decreasing the size of𝑈 by one, e.g. effectively making𝑈 into [𝑁 − 1] the first time
an element is removed). This removes all subsets 𝐼 of size 𝑛(log 𝑛)/

√
𝑚 containing 𝑖 and also

removes all triples of 𝑆 containing 𝑖. The remaining subsets 𝐼 of𝑈 of size 𝑛(log 𝑛)/
√
𝑚 are still

covered by the remaining triples of 𝑆 as long as they were before we shrank𝑈 .
After this greedy procedure there are no more pairs of triples in 𝑆 that share a pair of

elements. Let us consider the size of𝑈 after the greedy procedure.
Let us fix two triples (𝑖, 𝑗, 𝑘), (𝑖, 𝑗, 𝑘′) ∈ 𝑇 . The probability that both of them end up in (the

original) 𝑆 is 𝑁2𝑚2

9|𝑇 |2 ≤ 2𝑚2

𝑁4 . The number of pairs of triples that share a pair of elements is ≤ 𝑁4.
Thus the expected number of such pairs that end up in 𝑇 is ≤ 2𝑚2. By Markov’s inequality, the
probability that there are > 6𝑚2 such pairs in 𝑇 is ≤ 1/3.

Thus, with probability at least 1 − 1/3 − 1/3 = 1/3, the original 𝑆 had size ≤ 𝑚𝑁 = 2𝑚𝑛
and we removed ≤ 6𝑚2 elements from the universe. Since 𝑚 ≤

√︁
𝑛/6, we have removed ≤ 𝑁/2

elements, and so the remaining universe size is at lest 𝑁/2 = 𝑛. If necessary, remove more
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elements from 𝑈 until |𝑈 | = 𝑛, effectively removing the triples of 𝑆 and subsets of 𝑈 of size
𝑛(log 𝑛)/

√
𝑚 that contain these elements.

We get that for the remaining 𝑆, |𝑆 | ≤ 𝑂(𝑚𝑛), and with high probability, all subsets of𝑈 of
size (𝑛/

√
𝑚) log(𝑛) are covered by 𝑆. ■

The requirement in Theorem 3.3 that 𝑚 ≤
√︁
𝑛/6 may seem restrictive, but all the tensors

to which we will apply Theorem 4.1 have this property. Of course, the tensors to which we
will apply Theorem 3.1 have even more structure still than just being free. We leave open the
question of whether Theorem 3.1 can be further improved for them.

4. Refined Laser Method

Let 𝑇 be a tensor over 𝑋,𝑌 , 𝑍, with partitions 𝑋 = 𝑋1 ∪ 𝑋2 ∪ · · · ∪ 𝑋𝑘𝑋 , 𝑌 = 𝑌1 ∪ 𝑌2 ∪ · · · ∪ 𝑌𝑘𝑌 ,
𝑍 = 𝑍1 ∪ 𝑍2 ∪ · · · ∪ 𝑍𝑘𝑍 for some positive integers 𝑘𝑋 , 𝑘𝑌 , 𝑘𝑍 , and for (𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋] × [𝑘𝑌 ] × [𝑘𝑍]
define 𝑇𝑖 𝑗𝑘 := 𝑇 |𝑋𝑖 ,𝑌𝑗 ,𝑍𝑘 . Let 𝑆 := {(𝑖, 𝑗, 𝑘) ∈ [𝑘𝑋] × [𝑘𝑌 ] × [𝑘𝑍] | 𝑇𝑖 𝑗𝑘 ≠ 0}, and suppose there is an
integer 𝑃 such that every (𝑖, 𝑗, 𝑘) ∈ 𝑆 satisfies 𝑖 + 𝑗 + 𝑘 = 𝑃. We call 𝑇 along with these partitions
a 𝑃-partitioned tensor. Some prior work called 𝑇 a partitioned tensor whose outer structure is
the tensor ∑︁

𝑖∈[𝑘𝑋 ], 𝑗∈[𝑘𝑌 ],𝑘∈[𝑘𝑍],𝑖+ 𝑗+𝑘=𝑃
𝑥𝑖 𝑦 𝑗𝑧𝑘 .

Let 𝐷 be the set of 𝛼 : 𝑆 → [0, 1] such that
∑

(𝑖, 𝑗,𝑘)∈𝑆 𝛼(𝑖, 𝑗, 𝑘) = 1. For each 𝛼 ∈ 𝐷, we define
a few quantities.

First, for (𝑖, 𝑗, 𝑘) ∈ 𝑆, write 𝛼𝑖 𝑗𝑘 := 𝛼(𝑖, 𝑗, 𝑘). For 𝑖 ∈ [𝑘𝑋] write

𝛼𝑋𝑖 :=
∑︁

𝑗∈[𝑘𝑌 ],𝑘∈[𝑘𝑍] | (𝑖, 𝑗,𝑘)∈𝑆
𝛼𝑖 𝑗𝑘,

and similarly define 𝛼𝑌𝑗 for 𝑗 ∈ [𝑘𝑌 ] and 𝛼𝑍𝑘 for 𝑘 ∈ [𝑘𝑍]. Define the three products3

𝛼𝐵 := ©­«
∏
𝑖∈[𝑘𝑋 ]

𝛼
−𝛼𝑋𝑖
𝑋𝑖

ª®¬
1/3

· ©­«
∏
𝑗∈[𝑘𝑌 ]

𝛼
−𝛼𝑌𝑗
𝑌𝑗

ª®¬
1/3

· ©­«
∏
𝑘∈[𝑘𝑍]

𝛼
−𝛼𝑍𝑘
𝑍𝑘

ª®¬
1/3

,

𝛼𝑁 :=
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

, and

𝛼𝑉𝜏 :=
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝑉𝜏 (𝑇𝑖 𝑗𝑘)𝛼𝑖 𝑗𝑘 for 𝜏 ∈ [2/3, 1] .

Finally, define 𝐷𝛼 ⊆ 𝐷, the set of 𝛽 ∈ 𝐷 which have the same marginals as 𝛼, by

𝐷𝛼 := {𝛽 ∈ 𝐷 | 𝛼𝑋𝑖 = 𝛽𝑋𝑖 ∀𝑖 ∈ [𝑘𝑋], 𝛼𝑌𝑗 = 𝛽𝑌𝑗 ∀ 𝑗 ∈ [𝑘𝑌 ], 𝛼𝑍𝑘 = 𝛽𝑍𝑘 ∀𝑘 ∈ [𝑘𝑍]}.

3 We use the convention 00 := 1.
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We will show how to get a lower bound on 𝑉𝜏 (𝑇 ) in terms of a given 𝛼 ∈ 𝐷, as follows:

THEOREM 4.1 (Refined Laser Method). For any tensor 𝑇 which is a 𝑃-partitioned tensor, any
𝛼 ∈ 𝐷, and any 𝜏 ∈ [2/3, 1], we have

𝑉𝜏 (𝑇 ) ≥ 𝛼𝑉𝜏 · 𝛼𝐵 ·
√︂

𝛼𝑁
max𝛽∈𝐷𝛼 𝛽𝑁

.

By comparison, the bound used by prior work [48, 33] was

𝑉𝜏 (𝑇 ) ≥ 𝛼𝑉𝜏 · 𝛼𝐵 ·
𝛼𝑁

max𝛽∈𝐷𝛼 𝛽𝑁
.

Our Theorem 4.1 improves this by a factor of
√︃

max𝛽∈𝐷𝛼 𝛽𝑁
𝛼𝑁

, which is a strict improvement when-
ever there is a 𝛽 ∈ 𝐷𝛼 with 𝛽𝑁 > 𝛼𝑁 . As we will see, this is frequently the case in the analysis of
powers of 𝐶𝑊𝑞 and their subtensors.

Throughout this section, we omit 𝜏 when writing 𝑉𝜏 and 𝛼𝑉𝜏 , and we will always use the
specific 𝜏 in the statement of Theorem 4.1.

4.1 Proof Plan

In the remainder of this section, we prove Theorem 4.1. Our proof strategy is as follows. Pick a
large positive integer 𝑛, and consider the tensor T := 𝑇⊗𝑛 ⊗ 𝑇 𝑟⊗𝑛 ⊗ 𝑇 𝑟𝑟⊗𝑛. We are going to show
that T can be zeroed out into a direct sum of

𝛼
3𝑛−𝑜(𝑛)
𝐵 · 𝛼1.5𝑛−𝑜(𝑛)

𝑁

max𝛽∈𝐷𝛼 𝛽
1.5𝑛−𝑜(𝑛)
𝑁

different tensors, each of which has value

𝛼3𝑛
𝑉 ,

which will imply the bound

𝑉𝜏 (T ) ≥
𝛼3𝑛
𝑉 · 𝛼3𝑛−𝑜(𝑛)

𝐵 · 𝛼1.5𝑛−𝑜(𝑛)
𝑁

max𝛽∈𝐷𝛼 𝛽
1.5𝑛−𝑜(𝑛)
𝑁

. (1)

As 𝑛→ ∞, this implies the desired bound on 𝑉𝜏 (𝑇 ) = 𝑉𝜏 (T )1/3𝑛.
Our construction is divided into four main steps. The first three are mostly the same as

the laser method from past work [22, 24, 48, 33], except that our analysis in step 3, in which
we make use of Salem-Spencer sets, is more involved than in past work as we choose different
parameters and need to preserve different properties of our tensor than in previous uses of the
laser method. The main novel idea comes in step 4, where we apply our Theorem 3.1 as a final
zeroing-out step which has not appeared in past work.

Before we begin, we make one technical remark: we will assume throughout this proof
that 𝛼𝑖 𝑗𝑘 · 𝑛 is an integer for all (𝑖, 𝑗, 𝑘) ∈ 𝑆. This can be achieved by adding a real number of
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magnitude at most 1/𝑛 to each𝛼𝑖 𝑗𝑘 so that they are all integer multiples of 1/𝑛, while maintaining
that

∑
(𝑖, 𝑗,𝑘)∈𝑆 𝛼(𝑖, 𝑗, 𝑘) = 1. In Appendix A below, we show that this is possible, and that the

resulting changes to 𝛼 only change the value bound (1) by a negligible multiplicative factor
between 2−𝑜(𝑛) and 2𝑜(𝑛) . Hence, this ‘rounding’ will not change the final bound in our proof.

4.2 Step 1: Removing blocks which are inconsistent with 𝜶

Let 𝑛 and T := 𝑇⊗𝑛 ⊗ 𝑇 𝑟⊗𝑛 ⊗ 𝑇 𝑟𝑟⊗𝑛 be as above, and note that T is a tensor over X := 𝑋𝑛 × 𝑌 𝑛 ×
𝑍𝑛,Y := 𝑌 𝑛 × 𝑍𝑛 × 𝑋𝑛,Z := 𝑍𝑛 × 𝑋𝑛 × 𝑌 𝑛. For 𝐼 ∈ [𝑘𝑋]𝑛, we write 𝑋𝐼 :=

∏
ℓ∈[𝑛] 𝑋𝐼ℓ ⊆ 𝑋𝑛, so

that 𝑋𝑛 is partitioned by the 𝑋𝐼 for 𝐼 ∈ [𝑘𝑋]𝑛. We similarly define 𝑌𝐽 for 𝐽 ∈ [𝑘𝑌 ]𝑛 and 𝑍𝐾 for
𝐾 ∈ [𝑘𝑍]𝑛. Thus, X is partitioned by 𝑋𝐼 × 𝑌𝐽 × 𝑍𝐾 for (𝐼, 𝐽 , 𝐾) ∈ [𝑘𝑋]𝑛 × [𝑘𝑌 ]𝑛 × [𝑘𝑍]𝑛; we call
such an 𝑋𝐼 × 𝑌𝐽 × 𝑍𝐾 an X-block, and we similarly define Y-blocks and Z-blocks.

We say 𝑋𝐼 for 𝐼 ∈ [𝑘𝑋]𝑛 is consistent with 𝛼 if, for all 𝑖 ∈ [𝑘𝑋], we have

𝛼𝑋𝑖 =
1
𝑛
· |{ℓ ∈ [𝑛] | 𝐼ℓ = 𝑖}|.

We define consistency with 𝛼 for 𝑌𝐽 for 𝐽 ∈ [𝑘𝑌 ]𝑛, and 𝑍𝐾 for 𝐾 ∈ [𝑘𝑍]𝑛, similarly.
In T , zero-out all X-blocks 𝑋𝐼 × 𝑌𝐽 × 𝑍𝐾 where at least one of 𝑋𝐼 , 𝑌𝐽 , or 𝑍𝐾 is not consistent

with 𝛼. Similarly, zero-out all Y-blocks 𝑌𝐽 × 𝑍𝐾 × 𝑋𝐼 and all Z-blocks 𝑍𝐾 × 𝑋𝐼 ×𝑌𝐽 where at least
one of 𝑋𝐼 , 𝑌𝐽 , or 𝑍𝐾 is not consistent with 𝛼. Let T ′ denote T after these zeroing outs.

The number of 𝑋𝐼 which are consistent with 𝛼 is(
𝑛

[𝛼𝑋𝑖 · 𝑛] 𝑖∈[𝑘𝑋 ]

)
=

©­«
∏
𝑖∈[𝑘𝑋 ]

𝛼
−𝛼𝑋𝑖
𝑋𝑖

ª®¬
𝑛−𝑜(𝑛)

.

Hence, recalling that

𝛼𝐵 =
©­«

∏
𝑖∈[𝑘𝑋 ]

𝛼
−𝛼𝑋𝑖
𝑋𝑖

ª®¬
1/3

· ©­«
∏
𝑗∈[𝑘𝑌 ]

𝛼
−𝛼𝑌𝑗
𝑌𝑗

ª®¬
1/3

· ©­«
∏
𝑘∈[𝑘𝑍]

𝛼
−𝛼𝑍𝑘
𝑍𝑘

ª®¬
1/3

,

we have that the number 𝑁𝐵 of remaining (not zeroed out) X-blocks, Y-blocks, or Z-blocks in
T ′ is

𝑁𝐵 = 𝛼
3𝑛−𝑜(𝑛)
𝐵 .

4.3 Step 2: Defining and counting nonzero block triples in T′

For an X-block 𝐵𝑋 = 𝑋𝐼 ×𝑌𝐽 ′ × 𝑍𝐾′′ , Y-block 𝐵𝑌 = 𝑌𝐽 × 𝑍𝐾′ × 𝑋𝐼 ′′ , and Z-block 𝐵𝑍 = 𝑍𝐾 × 𝑋𝐼 ′ ×𝑌𝐽 ′′ ,
we write T ′

𝐵𝑋𝐵𝑌𝐵𝑍
:= T ′|𝐵𝑋 ,𝐵𝑌 ,𝐵𝑍 . We call T ′

𝐵𝑋𝐵𝑌𝐵𝑍
a block triple, and say that it uses 𝐵𝑋 , 𝐵𝑌 , and 𝐵𝑍 .

For a 𝛽 ∈ 𝐷, we say that (𝑋𝐼 , 𝑌𝐽 , 𝑍𝐾) is consistent with 𝛽 if, for all (𝑖, 𝑗, 𝑘) ∈ 𝑆,

|{ℓ ∈ [𝑛] | (𝐼ℓ, 𝐽ℓ, 𝐾ℓ) = (𝑖, 𝑗, 𝑘)}| = 𝛽𝑖 𝑗𝑘 · 𝑛.
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Similarly, for 𝛽, 𝛽′, 𝛽′′ ∈ 𝐷, we say that T ′
𝐵𝑋𝐵𝑌𝐵𝑍

is consistent with (𝛽, 𝛽′, 𝛽′′) if (𝑋𝐼 , 𝑌𝐽 , 𝑍𝐾) is
consistent with 𝛽, (𝑋𝐼 ′ , 𝑌𝐽 ′ , 𝑍𝐾′) is consistent with 𝛽′, and (𝑋𝐼 ′′ , 𝑌𝐽 ′′ , 𝑍𝐾′′) is consistent with 𝛽′′.

Let 𝐷𝛼,𝑛 ⊆ 𝐷𝛼 be the set of 𝛽 ∈ 𝐷𝛼 such that 𝛽𝑖 𝑗𝑘 is an integer multiple of 1/𝑛 for all
(𝑖, 𝑗, 𝑘) ∈ 𝑆. Note that, because of the zeroing outs from the previous step, every nonzero block
triple T ′

𝐵𝑋𝐵𝑌𝐵𝑍
in T ′ is consistent with a (𝛽, 𝛽′, 𝛽′′) where 𝛽, 𝛽′, 𝛽′′ ∈ 𝐷𝛼,𝑛. We can count that

|𝐷𝛼,𝑛 | ≤ poly(𝑛), for some polynomial depending only on 𝑘𝑋 , 𝑘𝑌 , 𝑘𝑍.
Recalling that

𝛽𝑁 =
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝛽
−𝛽𝑖 𝑗𝑘
𝑖 𝑗𝑘

,

we can count that the number of nonzero block triples T ′
𝐵𝑋𝐵𝑌𝐵𝑍

in T ′ consistent with a given
(𝛽, 𝛽′, 𝛽′′) for 𝛽, 𝛽′, 𝛽′′ ∈ 𝐷𝛼,𝑛 is(

𝑛

[𝛽𝑖 𝑗𝑘 · 𝑛] (𝑖, 𝑗,𝑘)∈𝑆

)
·
(

𝑛

[𝛽′𝑖 𝑗𝑘 · 𝑛] (𝑖, 𝑗,𝑘)∈𝑆

)
·
(

𝑛

[𝛽′′𝑖 𝑗𝑘 · 𝑛] (𝑖, 𝑗,𝑘)∈𝑆

)
=
©­«

∏
(𝑖, 𝑗,𝑘)∈𝑆

𝛽
−𝛽𝑖 𝑗𝑘
𝑖 𝑗𝑘

ª®¬
𝑛−𝑜(𝑛)

· ©­«
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝛽′

−𝛽′𝑖 𝑗𝑘
𝑖 𝑗𝑘

ª®¬
𝑛−𝑜(𝑛)

· ©­«
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝛽′′

−𝛽′′𝑖 𝑗𝑘
𝑖 𝑗𝑘

ª®¬
𝑛−𝑜(𝑛)

=(𝛽𝑁 · 𝛽′𝑁 · 𝛽′′𝑁 )𝑛−𝑜(𝑛) .

In particular, the number 𝑁𝛼 of nonzero block triples in T ′ consistent with (𝛼, 𝛼, 𝛼) is

𝑁𝛼 = 𝛼
3𝑛−𝑜(𝑛)
𝑁 .

Moreover, we can count that the total number 𝑁𝑇 of nonzero block triples in T ′ is at most

𝑁𝑇 ≤
∑︁

𝛽,𝛽′,𝛽′′∈𝐷𝛼,𝑛
(𝛽𝑁 · 𝛽′𝑁 · 𝛽′′𝑁 )𝑛−𝑜(𝑛) ≤ |𝐷𝛼,𝑛 |3 · max

𝛽∈𝐷𝛼,𝑛
𝛽

3𝑛−𝑜(𝑛)
𝑁 ≤ poly(𝑛) · max

𝛽∈𝐷𝛼
𝛽

3𝑛−𝑜(𝑛)
𝑁 .

4.4 Step 3: Carefully sparsifying T′ using Salem-Spencer sets

We will now describe a randomized process for zeroing-out more X-blocks, Y-blocks, and Z-
blocks. The ultimate goal is to zero-out blocks so that at least a exp(−𝑜(𝑛)) fraction of blocks is
not zeroed out, and so that for every remaining X-block, Y-block, and Z-block, there is exactly
one block triple which uses that block and is consistent with (𝛼, 𝛼, 𝛼). Note that currently, by
symmetry, every X-block, Y-block, and Z-block in T ′ has the same number 𝑅 of block triples
which use that block and are consistent with (𝛼, 𝛼, 𝛼). We can compute 𝑅 by dividing the total
number of block triples consistent with (𝛼, 𝛼, 𝛼) by the total number of blocks, to see that

𝑅 =
𝑁𝛼
𝑁𝐵

.

Let 𝑀 be a prime number in the range [100𝑅, 200𝑅]. We are going to define three random
hash functions ℎ𝑋 : [𝑘𝑋]𝑛 × [𝑘𝑌 ]𝑛 × [𝑘𝑍]𝑛 → Z𝑀 , ℎ𝑌 : [𝑘𝑌 ]𝑛 × [𝑘𝑍]𝑛 × [𝑘𝑋]𝑛 → Z𝑀 , and
ℎ𝑍 : [𝑘𝑍]𝑛 × [𝑘𝑋]𝑛 × [𝑘𝑌 ]𝑛 → Z𝑀 as follows, similar to [46, 22] and subsequent work. Recall that
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there is an integer 𝑃 such that every (𝑖, 𝑗, 𝑘) ∈ 𝑆 satisfies 𝑖 + 𝑗 + 𝑘 = 𝑃. Pick independently and
uniformly random𝑤0, 𝑤1, 𝑤2, . . . , 𝑤3𝑛 ∈ Z𝑀 . Defineℎ𝑋 , ℎ𝑌 , ℎ𝑍 , for 𝐼 ∈ [𝑘𝑋]𝑛, 𝐽 ∈ [𝑘𝑌 ]𝑛, 𝐾 ∈ [𝑘𝑍]𝑛,
by:

ℎ𝑋 (𝐼, 𝐽 , 𝐾) := 2
𝑛∑︁
ℓ=1

(𝑤ℓ · 𝐼ℓ + 𝑤ℓ+𝑛 · 𝐽ℓ + 𝑤ℓ+2𝑛 · 𝐾ℓ) (mod 𝑀),

ℎ𝑌 ( 𝐽 , 𝐾, 𝐼) := 2𝑤0 + 2
𝑛∑︁
ℓ=1

(𝑤ℓ · 𝐽ℓ + 𝑤ℓ+𝑛 · 𝐾ℓ + 𝑤ℓ+2𝑛 · 𝐼ℓ) (mod 𝑀),

ℎ𝑍 (𝐾, 𝐼, 𝐽) := 𝑤0 +
𝑛∑︁
ℓ=1

(𝑤ℓ · (𝑃 − 𝐾ℓ) + 𝑤ℓ+𝑛 · (𝑃 − 𝐼ℓ) + 𝑤ℓ+2𝑛 · (𝑃 − 𝐽ℓ)) (mod 𝑀).

Consider any X-block 𝐵𝑋 = 𝑋𝐼 × 𝑌𝐽 ′ × 𝑍𝐾′′ , Y-block 𝐵𝑌 = 𝑌𝐽 × 𝑍𝐾′ × 𝑋𝐼 ′′ , and Z-block
𝐵𝑍 = 𝑍𝐾 × 𝑋𝐼 ′ × 𝑌𝐽 ′′ , such that T ′

𝐵𝑋𝐵𝑌𝐵𝑍
is a nonzero block triple in T ′. Notice that

ℎ𝑋 (𝐼, 𝐽′, 𝐾′′) + ℎ𝑌 ( 𝐽 , 𝐾′, 𝐼′′) = 2ℎ𝑍 (𝐾, 𝐼′, 𝐽′′) (mod 𝑀), regardless of the choice of random-
ness, since for every ℓ ∈ [𝑛] we have 𝐼ℓ + 𝐽ℓ + 𝐾ℓ = 𝐼′ℓ + 𝐽

′
ℓ + 𝐾

′
ℓ = 𝐼

′′
ℓ + 𝐽

′′
ℓ + 𝐾′′

ℓ = 𝑃,
The three values ℎ𝑋 (𝐼, 𝐽′, 𝐾′′), ℎ𝑌 ( 𝐽 , 𝐾′, 𝐼′′), and ℎ𝑍 (𝐾, 𝐼′, 𝐽′′) are each uniformly random
values in Z𝑀 , even when conditioned on one of the other two values, and
ℎ𝑋 is pairwise-independent, i.e., for any two distinct (𝐼, 𝐽 , 𝐾), (𝐼′, 𝐽′, 𝐾′) ∈ [𝑘𝑋]𝑛 × [𝑘𝑌 ]𝑛 ×
[𝑘𝑍]𝑛, the values ℎ𝑋 (𝐼, 𝐽 , 𝐾) and ℎ𝑋 (𝐼′, 𝐽′, 𝐾′) are independent (and similarly for ℎ𝑌 or ℎ𝑍).

For an X-block 𝐵𝑋 = 𝑋𝐼 × 𝑌𝐽 ′ × 𝑍𝐾′′ , write ℎ𝑋 (𝐵𝑋) := ℎ𝑋 (𝐼, 𝐽′, 𝐾′′), and similarly define ℎ𝑌 (𝐵𝑌 )
for a Y-block 𝐵𝑌 and ℎ𝑍 (𝐵𝑍) for a Z-block 𝐵𝑍.

Let 𝐴 ⊆ Z𝑀 be a set of size |𝐴| ≥ 𝑀1−𝑜(1) , such that for 𝑎, 𝑏, 𝑐 ∈ 𝐴, we have 𝑎 + 𝑏 = 2𝑐
(mod 𝑀) if and only if 𝑎 = 𝑏 = 𝑐. Such a set 𝐴 exists with these properties by Theorem 2.2. In
T ′, zero-out every X-block 𝐵𝑋 such that ℎ𝑋 (𝐵𝑋) ∉ 𝐴, every Y-block 𝐵𝑌 such that ℎ𝑌 (𝐵𝑌 ) ∉ 𝐴,
and every Z-block 𝐵𝑍 such that ℎ𝑍 (𝐵𝑍) ∉ 𝐴. Let the resulting tensor be T ′′.

Previous iterations of the laser method used this same hashing scheme, but we now need
to analyze it more carefully to determine what parameters it gives when we use it in conjunction
with Theorem 3.1 in step 4 below. Toward this goal, we will bound the expected values of the
following three random variables:

𝐶1, the number of nonzero block triples in T ′′ consistent with (𝛼, 𝛼, 𝛼),
𝐶2, the number of pairs of nonzero block triples in T ′′ which are both consistent with
(𝛼, 𝛼, 𝛼) and which share a block (i.e., both use the same X-block, Y-block, or Z-block),
and
𝐶3, the number of nonzero block triples in T ′′.

We start with 𝐶1. The number of nonzero block triples in T ′ consistent with (𝛼, 𝛼, 𝛼) is 𝑁𝛼.
Each is not zeroed out in T ′′ with probability |𝐴|

𝑀2 , since this happens if and only if its X-block
hashes to a value in 𝐴 (which happens with probability |𝐴|

𝑀 ) and its Y-block hashes to that
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same value (which happens with probability 1
𝑀 since ℎ𝑌 (𝐵𝑌 ) is uniformly random, even when

conditioned on ℎ𝑋 (𝐵𝑋)). Hence, E[𝐶1] = |𝐴|·𝑁𝛼
𝑀2 .

We next consider 𝐶2, the number of pairs of nonzero block triples in T ′′ which are both
consistent with (𝛼, 𝛼, 𝛼) and which both use the same X-block, Y-block, or Z-block. The
number of such pairs in T ′ is 3𝑁𝐵 ·

(𝑅
2
)
, since there are 𝑁𝐵 each of X-blocks, Y-blocks, and

Z-blocks in T ′, and each has 𝑅 different block triples consistent with (𝛼, 𝛼, 𝛼) which use it.
Consider a fixed one of those pairs of T ′

𝐵𝑋 ,𝐵𝑌 ,𝐵𝑍
and T ′

𝐵𝑋 ,𝐵
′
𝑌 ,𝐵

′
𝑍
, where we are assuming without

loss of generality that they share an X-block 𝐵𝑋 . They will both not be zeroed out in T ′′ if and
only if ℎ𝑋 (𝐵𝑋) ∈ 𝐴, ℎ𝑌 (𝐵𝑌 ) = ℎ𝑋 (𝐵𝑋), and ℎ𝑌 (𝐵′𝑌 ) = ℎ𝑋 (𝐵𝑋), which happens with probability
( |𝐴|/𝑀) · (1/𝑀) · (1/𝑀) = |𝐴|/𝑀3, as those three events are independent from the properties of
ℎ𝑋 and ℎ𝑌 . Recall that 𝑅 = 𝑁𝛼/𝑁𝐵 by definition of 𝑅, and 𝑀 ≥ 100 · 𝑅 by definition of 𝑀 . Hence,
using linearity of expectation, we can bound

E[𝐶2] =
|𝐴|
𝑀3 · 3𝑁𝐵 ·

(
𝑅

2

)
≤ 3 · |𝐴| · 𝑁𝐵 · 𝑅2

2𝑀3 ≤ 3 · |𝐴| · 𝑁𝐵 · 𝑅
200𝑀2 =

3 · |𝐴| · 𝑁𝛼
200𝑀2 .

Finally, we consider𝐶3, the number of nonzero block triples in T ′′. Similar to𝐶1, each of the
𝑁𝑇 nonzero block triples in T ′ is not zeroed out in T ′′ with probability |𝐴|

𝑀2 , and so E[𝐶3] = |𝐴|·𝑁𝑇
𝑀2 .

Now we define the random variable 𝐶′1 := max{0, 𝐶1 − 2𝐶2}. We have

E[𝐶′1] ≥ E[𝐶1 − 2𝐶2] = E[𝐶1] − 2E[𝐶2] ≥
|𝐴| · 𝑁𝛼
𝑀2 − 2

3 · |𝐴| · 𝑁𝛼
200𝑀2 =

97 · |𝐴| · 𝑁𝛼
100 ·𝑀2 .

Since E[𝐶′1] ≥
97·|𝐴|·𝑁𝛼
100·𝑀2 and E[𝐶3] = |𝐴|·𝑁𝑇

𝑀2 , it follows that there is a choice of randomness
(i.e., a choice of 𝑤0, 𝑤1, 𝑤2, . . . , 𝑤3𝑛 defining the hash functions) for which

𝐶
′3/2
1

𝐶
1/2
3

≥

(
97·|𝐴|·𝑁𝛼
100·𝑀2

)3/2

(
|𝐴|·𝑁𝑇
𝑀2

)1/2 . (2)

(This follows from the power mean inequality; see Lemma B.1 in Appendix B below for a proof.)
Let us fix this choice of randomness in the remainder of the proof.

4.5 Step 4: Converting T′′ to an independent sum of (𝜶, 𝜶, 𝜶)-consistent block
triples

Next, we will zero-out some more blocks in T ′′ so that there are no pairs of nonzero block
triples in T ′′ which are both consistent with (𝛼, 𝛼, 𝛼) and which both use the same X-block,
Y-block, or Z-block. We do this in the following greedy way: repeatedly pick any block used by
𝑔 ≥ 2 nonzero block triples in T ′′ consistent with (𝛼, 𝛼, 𝛼), and zero-out that block, until there
are none left. Note that each time, when we zero-out 𝑔 ≥ 2 block triples which are consistent
with (𝛼, 𝛼, 𝛼), the number of pairs of such block triples we remove is

(𝑔
2
)
≥ 𝑔/2. Recall that

there were initially 𝐶2 such pairs. It follows that throughout this process, the expected number



21 / 32 A Refined Laser Method and Faster Matrix Multiplication

of such block triples we zero-out is at most 2 · 𝐶2. Let T ′′′ be T ′′ after this process is complete.
Hence, the remaining nonzero block triples in T ′′′ consistent with (𝛼, 𝛼, 𝛼) do not share any
blocks with each other, and the number of such block triples is at least max{0, 𝐶1 − 2 · 𝐶2} = 𝐶′1.
Meanwhile, the total number of nonzero block triples in T ′′′ is at most the number in T ′′, which
is 𝐶3.

For the final zeroing out, we will apply Theorem 3.1 to T ′′′. The partition of the variables of
T ′′′ needed for Theorem 3.1 is given by the blocks, and we order them such that the block triples
consistent with (𝛼, 𝛼, 𝛼) appear along the diagonal; we know from the previous paragraph that
they do not share blocks with each other. Recall that T ′′′ consists of at least 𝐶′1 block triples
consistent with (𝛼, 𝛼, 𝛼), plus at most 𝐶3 other block triples. It follows from Theorem 3.1 that
we can zero-out T ′′′ into a direct sum of 𝐿 block triples consistent with (𝛼, 𝛼, 𝛼), where

𝐿 ≥ 2
3
√

3
·

𝐶′1√︁
𝐶3/𝐶′1

.

Recalling that 𝑁𝛼 = 𝛼
3𝑛−𝑜(𝑛)
𝑁 , 𝑁𝐵 = 𝑁𝛼/𝑅 = 𝛼

3𝑛−𝑜(𝑛)
𝐵 , and 𝑁𝑇 ≤ poly(𝑛) · max𝛽∈𝐷𝛼 𝛽

3𝑛−𝑜(𝑛)
𝑁 ,

we can lower-bound 𝐿 by

𝐿 ≥ 2
3
√

3
·

𝐶′1√︁
𝐶3/𝐶′1

=
2

3
√

3
·
𝐶
′3/2
1

𝐶
1/2
3

≥ 2
3
√

3
·

(
97·|𝐴|·𝑁𝛼
100·𝑀2

)3/2

(
|𝐴|·𝑁𝑇
𝑀2

)1/2

=
97

√
291

4500
·
(
|𝐴| · 𝑁𝛼
𝑀2

)
·
√︂
𝑁𝛼
𝑁𝑇

=

(
𝑁𝛼

𝑀1+𝑜(1)

)
·
√︂
𝑁𝛼
𝑁𝑇

≥
(

𝑁𝛼

(200 · 𝑅)1+𝑜(1)

)
·
√︂
𝑁𝛼
𝑁𝑇

≥ 𝑁
1−𝑜(1)
𝐵 ·

√︄
𝑁

1−𝑜(1)
𝛼

𝑁𝑇

≥ 1
poly(𝑛) ·

𝛼
3𝑛−𝑜(𝑛)
𝐵 · 𝛼1.5𝑛−𝑜(𝑛)

𝑁

max𝛽∈𝐷𝛼 𝛽
1.5𝑛−𝑜(𝑛)
𝑁

.

Each block triple T ′′′
𝑋𝐵,𝑌𝐵,𝑍𝐵

consistent with (𝛼, 𝛼, 𝛼) can be written as

T ′′′
𝑋𝐵,𝑌𝐵,𝑍𝐵

≡
⊗

(𝑖, 𝑗,𝑘)∈𝑆
(𝑇𝑖 𝑗𝑘 ⊗ 𝑇 𝑟𝑖 𝑗𝑘 ⊗ 𝑇

𝑟𝑟
𝑖 𝑗𝑘)

𝛼𝑖 𝑗𝑘 ·𝑛,
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and hence has value

𝑉𝜏 (T ′′′
𝑋𝐵,𝑌𝐵,𝑍𝐵

) ≥
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝑉𝜏 (𝑇𝑖 𝑗𝑘 ⊗ 𝑇 𝑟𝑖 𝑗𝑘 ⊗ 𝑇

𝑟𝑟
𝑖 𝑗𝑘)

𝛼𝑖 𝑗𝑘 ·𝑛 =
∏

(𝑖, 𝑗,𝑘)∈𝑆
𝑉𝜏 (𝑇𝑖 𝑗𝑘)3𝛼𝑖 𝑗𝑘 ·𝑛 = 𝛼3𝑛

𝑉 .

It follows that

𝑉𝜏 (T ′′′) ≥ 𝐿 · 𝛼3𝑛
𝑉 ≥ 1

poly(𝑛) ·
𝛼3𝑛
𝑉 · 𝛼3𝑛−𝑜(𝑛)

𝐵 · 𝛼1.5𝑛−𝑜(𝑛)
𝑁

max𝛽∈𝐷𝛼 𝛽
1.5𝑛−𝑜(𝑛)
𝑁

,

and hence that

𝑉𝜏 (𝑇 ) ≥ 𝑉𝜏 (T ) 1
3𝑛 ≥ 𝑉𝜏 (T ′′′) 1

3𝑛 ≥
𝛼𝑉 · 𝛼1−𝑜(1)

𝐵 · 𝛼1/2−𝑜(1)
𝑁

max𝛽∈𝐷𝛼 𝛽
1/2−𝑜(1)
𝑁

.

The desired result follows as 𝑛→ ∞.

5. Algorithms and Heuristics for Applying Theorem4.1

We now move on to applying Theorem 4.1 to the Coppersmith-Winograd tensor𝐶𝑊𝑞. Throughout
this section we use the same notation as in Section 4. The high-level idea is to apply Theorem 4.1
in a recursive fashion: to bound 𝑉𝜏 (𝑇 ) for a tensor 𝑇 (in our case, 𝑇 will be 𝐶𝑊⊗𝑘

𝑞 or one of its
subtensors), we pick a partitioning of its variables, recursively bound𝑉𝜏 (𝑇𝑖 𝑗𝑘) for each subtensor
𝑇𝑖 𝑗𝑘, then pick an 𝛼 ∈ 𝐷 to get a resulting lower bound on 𝑉𝜏 (𝑇 ).

When using this approach, there are two choices we need to make at each level: which
partitioning of the variables to use, and which 𝛼 ∈ 𝐷 to pick. As we will see in Section 6, there
are very natural partitionings of the variables of 𝐶𝑊⊗𝑘

𝑞 and its subtensors that we will use.
The main practical difficulty which arises in this approach is picking the optimal value of 𝛼.
Indeed, maximizing the value bound of Theorem 4.1 over all 𝛼 ∈ 𝐷 is a non-convex optimization
problem, and for large enough tensors (including 𝐶𝑊⊗8

𝑞 , as well as the subtensors of 𝐶𝑊⊗𝑘
𝑞 for

𝑘 ≥ 16), modern software seems unable to solve it in a reasonable amount of time. (Modern
software does actually solve the optimization problem for the subtensors of 𝐶𝑊⊗𝑘

𝑞 for 𝑘 ≤ 8.)
Instead, as in past work [48, 33], we use some heuristics to find choices of 𝛼 which we

believe are close to optimal. The heuristics we use are different from those of past work, in
order to take advantage of the new improvement in Theorem 4.1; we will see that the heuristics
we use here achieve better value bounds than the heuristics of past work. In the remainder of
this section, we give a detailed description of these heuristics that we use.

5.1 Optimizing over 𝜶 ∈ 𝑫𝜸 for fixed 𝜸 ∈ 𝑫

Although optimizing the bound of Theorem 4.1 over all 𝛼 ∈ 𝐷 appears difficult, we begin by
remarking that, for any fixed 𝛾 ∈ 𝐷, optimizing over all 𝛼 ∈ 𝐷𝛾 can be done by solving two
programs:
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PROBLEM 1. Maximize
𝛼𝑉𝜏 · 𝛼𝐵 ·

√
𝛼𝑁

subject to 𝛼 ∈ 𝐷𝛾.

PROBLEM 2. Maximize
𝛽𝑁

subject to 𝛽 ∈ 𝐷𝛾.

Recall that 𝛼 ∈ 𝐷𝛾 if and only if 𝛼𝑋𝑖 = 𝛾𝑋𝑖 for all 𝑖 ∈ [𝑘𝑋], 𝛼𝑌𝑗 = 𝛾𝑌𝑗 for all 𝑗 ∈ [𝑘𝑌 ], and
𝛼𝑍𝑘 = 𝛾𝑍𝑘 for all 𝑘 ∈ [𝑘𝑍]. In other words, in both of these problems, the constraints are all
linear constraints. Meanwhile, in both, the objective function is a concave function. Hence, we
can efficiently solve these two problems using a convex optimization library to obtain 𝛼, 𝛽 ∈ 𝐷𝛾.
Theorem 4.1 then implies the bound

𝑉𝜏 (𝑇 ) ≥ 𝛼𝑉𝜏 · 𝛼𝐵 ·
√︂
𝛼𝑁
𝛽𝑁
,

and this is the best possible bound we can get using an 𝛼 ∈ 𝐷𝛾.

5.2 Heuristics for picking 𝜸 ∈ 𝑫

As discussed, it seems computationally difficult to find the optimal 𝛾 ∈ 𝐷 to use in the above
approach. Instead, when analyzing a tensor 𝑇 , we try the following heuristic choices of 𝛾, and
take the maximum value bound which results from any of them.

Our first heuristic is a slight improvement of that of [33, Algorithm B].

HEUR IST IC 1. Use the 𝛾 which maximizes
𝛾𝑉𝜏 · 𝛾𝐵

subject to 𝛾 ∈ 𝐷 and 𝛾 = arg max𝛾′∈𝐷𝛾 𝛾𝑁 .

With this choice of 𝛾, we know that when we compute the value bound of Section 5.1, we will
pick 𝛽 = 𝛾, and so the final value we output will be at least 𝛾𝑉𝜏 · 𝛾𝐵, but possibly even greater if
a better choice of 𝛼 is found. By comparison, [33, Algorithm B] computes this same 𝛾, but then
outputs the value one gets from picking 𝛼 = 𝛽 = 𝛾 in Section 5.1.

As written, it is not evident that Heuristic 1 can be computed much more quickly than
the optimal choice of 𝛾 ∈ 𝐷. However, prior work [48, Figure 1], [33, Proposition 4.1] gives a way
to define a set of nonlinear constraints NonLin(𝛾) on 𝛾 ∈ 𝐷 which are satisfied if and only if
𝛾 = arg max𝛾′∈𝐷𝛾 𝛾𝑁 . (These can also be defined by analyzing the convex program in Problem 2
directly.) The number of constraints in NonLin(𝛾) is small enough for many of the subtensors
of 𝐶𝑊⊗16

𝑞 that optimization software can still compute the 𝛾 in Heuristic 1 after replacing the
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constraint 𝛾 = arg max𝛾′∈𝐷𝛾 𝛾𝑁 with NonLin(𝛾). We find that this heuristic runs quickly enough
and gives good value bounds for many of the subtensors of 𝐶𝑊⊗16

𝑞 .
Our remaining heuristics only involve solving convex programs over linear constraints to

compute 𝛾, and run quickly enough for all the tensors we need to analyze.

HEUR IST IC 2 . Use the 𝛾 which maximizes
𝛾𝑉𝜏 · 𝛾𝐵

subject to 𝛾 ∈ 𝐷.

HEUR IST IC 3. Use the 𝛾 which maximizes

𝛾𝑉𝜏 · 𝛾𝐵 + 𝜆/𝛾𝑁

subject to 𝛾 ∈ 𝐷, for various nonnegative constant parameters 𝜆. This gener-
alizes Heuristic 2.

HEUR IST IC 4 . Use the 𝛾 which maximizes
𝛾𝑉𝜏 · 𝛾𝐵 ·

√
𝛾𝑁

subject to 𝛾 ∈ 𝐷.

Out of these heuristics, the best bounds were obtained for most tensors via Heuristic 3
for various choices of 𝜆 between 0 (as in Problem 2) and 107. It is not immediately clear which
choice of 𝜆 in Heuristic 3 is best, although experimentally, it seems that using larger values of 𝜆
produces better results. We also tried a few other heuristics, including maximizing 𝛾𝑉𝜏 · 𝛾𝐵/

√
𝛾𝑁

or 1/𝛾𝑁 over 𝛾 ∈ 𝐷, but these didn’t yield the best value bounds for any tensors we analyzed.

5.3 Faster Computation on Tensors with Symmetries

We briefly note one additional technique which can be used to speed up the calculations needed
when applying Theorem 4.1 to a tensor𝑇 which exhibits some symmetry (either the calculations
to apply the Theorem optimally, or the heuristics described earlier in this section). Suppose,
for instance, that for all (𝑖, 𝑗, 𝑘) ∈ 𝑆 we have 𝑉𝜏 (𝑇𝑖 𝑗𝑘) = 𝑉𝜏 (𝑇𝑗𝑖𝑘). As we will see below, this
will be the case in nearly all our applications of Theorem 4.1. Then, in all of the optimization
problems over 𝛼 ∈ 𝐷 (or similarly 𝛽 ∈ 𝐷 or 𝛾 ∈ 𝐷) that we need to solve, we may assume
without loss of generality that 𝛼𝑖 𝑗𝑘 = 𝛼 𝑗𝑘𝑖 for all (𝑖, 𝑗, 𝑘) ∈ 𝑆. Prior work also used such symmetry
considerations; see [24, 48, 33] for more details.
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6. Bounding𝑽𝝉(𝑪𝑾𝒒)

Recall the definition of the family of Coppersmith-Winograd tensors 𝐶𝑊𝑞 parameterized by
integer 𝑞 ≥ 0. 𝐶𝑊𝑞 is a tensor over {𝑥0, . . . , 𝑥𝑞+1}, { 𝑦0, . . . , 𝑦𝑞+1}, {𝑧0, . . . , 𝑧𝑞+1} given by

𝐶𝑊𝑞 := 𝑥0 𝑦0𝑧𝑞+1 + 𝑥0𝑧𝑞+1 𝑦0 + 𝑥𝑞+1 𝑦0𝑧0 +
𝑞∑︁
𝑖=1

(𝑥0 𝑦𝑖𝑧𝑖 + 𝑥𝑖 𝑦0𝑧𝑖 + 𝑥𝑖 𝑦𝑖𝑧0).

Coppersmith and Winograd [22] showed that �̃�(𝐶𝑊𝑞) = 𝑞 + 2. We will apply the approach from
Section 5 to give a lower bound on 𝑉𝜏 (𝐶𝑊𝑞), and hence an upper bound on 𝜔.

6.1 Variable Partition for 𝑪𝑾𝒒

𝐶𝑊𝑞 has a natural partitioning of its variables into 𝑋 = 𝑋0 ∪ 𝑋1 ∪ 𝑋2, 𝑌 = 𝑌 0 ∪ 𝑌 1 ∪ 𝑌 2,
𝑍 = 𝑍0 ∪ 𝑍1 ∪ 𝑍2, where 𝑋0 = {𝑥0}, 𝑋1 = {𝑥1, . . . , 𝑥𝑞}, 𝑋2 = {𝑥𝑞+1}, 𝑌 0 = { 𝑦0}, 𝑌 1 = { 𝑦1, . . . , 𝑦𝑞},
𝑌 2 = { 𝑦𝑞+1}, and 𝑍0 = {𝑧0}, 𝑍1 = {𝑧1, . . . , 𝑧𝑞}, 𝑍2 = {𝑧𝑞+1}. For 𝑖, 𝑗, 𝑘 ∈ {0, 1, 2}, we write
𝑇𝑖 𝑗𝑘 := 𝐶𝑊𝑞 |𝑋 𝑖 ,𝑌 𝑗 ,𝑍𝑘 , and call these the subtensors of 𝐶𝑊𝑞. We see that the nonzero subtensors
are: 𝑇002 = 𝑥0 𝑦0𝑧𝑞+1, 𝑇020 = 𝑥0𝑧𝑞+1 𝑦0, 𝑇200 = 𝑥𝑞+1 𝑦0𝑧0, 𝑇011 =

∑𝑞
𝑖=1 𝑥0 𝑦𝑖𝑧𝑖 , 𝑇101 =

∑𝑞
𝑖=1 𝑥𝑖 𝑦0𝑧𝑖 , and

𝑇110 =
∑𝑞
𝑖=1 𝑥𝑖 𝑦𝑖𝑧0. In particular, we see that 𝑇𝑖 𝑗𝑘 ≠ 0 if and only if 𝑖 + 𝑗 + 𝑘 = 2, meaning

𝐶𝑊𝑞 =
∑︁

𝑖, 𝑗,𝑘∈{0,1,2}|𝑖+ 𝑗+𝑘=2

𝑇𝑖 𝑗𝑘 .

Hence, 𝐶𝑊𝑞 is a 2-partitioned tensor as defined in Section 4, and so we can apply Theorem 4.1
to it to bound its value 𝑉𝜏 (𝐶𝑊𝑞).

The subtensors of 𝐶𝑊𝑞 are all isomorphic to matrix multiplication tensors, and so their
values can all be computed by following the definition of 𝑉𝜏. The subtensors 𝑇002, 𝑇020, and 𝑇200

are all isomorphic to ⟨1, 1, 1⟩ and have value 1 for any 𝜏 ∈ [2/3, 1]. Meanwhile, 𝑇011, 𝑇101, and
𝑇110 are isomorphic to ⟨1, 1, 𝑞⟩ or one of its two rotations, and thus have value 𝑞𝜏. We can thus
apply Theorem 4.1 to bound the value of 𝐶𝑊𝑞.

6.2 Variable Partition for 𝑪𝑾⊗𝒕
𝒒

However, as in prior work, instead of applying Theorem 4.1 only to 𝐶𝑊𝑞, we will apply it to
𝐶𝑊⊗𝑡

𝑞 for 𝑡 a power of 2. We focus on 𝑡 ∈ {2, 4, 8, 16, 32} as these are the powers for which the
software solvers obtain solutions. In general, it is not clear that applying Theorem 4.1 to a power
of a tensor rather than the tensor itself should yield an improved value. However, prior work on
analyzing the value of 𝐶𝑊𝑞 has noticed that the laser method applied to powers of 𝐶𝑊𝑞 can yield
an improved bound because of a ‘merging’ phenomenon, wherein we can prove better value
bounds on certain subtensors of 𝐶𝑊⊗𝑡

𝑞 by merging together different matrix multiplication
tensors into single, larger matrix multiplication tensors. We will also take advantage of this
here.
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We first describe the necessary variable partitioning of 𝐶𝑊⊗𝑡
𝑞 . Recall that 𝐶𝑊⊗𝑡

𝑞 is a tensor
over the variables {𝑥𝐴}, { 𝑦𝐵}, {𝑧𝐶} for 𝐴, 𝐵, 𝐶 ∈ {0, 1, . . . , 𝑞 + 1}𝑡. Inspired by the variable
partitions of 𝐶𝑊𝑞, we define a function 𝜅 : {0, 1, . . . , 𝑞 + 1} → {0, 1, 2} which maps 𝜅(0) = 0,
𝜅(𝑞+ 1) = 2, and each other each 𝑖 ∈ {1, . . . , 𝑞} to 𝜅(𝑖) = 1. For 𝐼 ∈ {0, 1, . . . , 2𝑡}, let 𝐿𝑡,𝐼 be the set
of index sequences whose coordinates sum to 𝐼 , i.e., 𝐿𝑡,𝐼 := {𝐴 ∈ {0, 1, . . . , 𝑞 + 1}𝑡 | ∑𝑡

ℓ=1 𝜅(𝐴ℓ) =
𝐼}. Then, for each 𝐼, 𝐽 , 𝐾 ∈ {0, . . . , 2𝑡}, we define 𝑋 𝑡,𝐼 := {𝑥𝐴 | 𝐴 ∈ 𝐿𝑡,𝐼}, 𝑌 𝑡,𝐽 := { 𝑦𝐵 | 𝐵 ∈ 𝐿𝑡,𝐽},
and 𝑍𝑡,𝐾 := {𝑧𝐶 | 𝐶 ∈ 𝐿𝑡,𝐾}, and write 𝑇 𝑡𝐼 𝐽𝐾 := 𝐶𝑊⊗𝑡

𝑞 |𝑋 𝑡,𝐼𝑌 𝑡,𝐽𝑍𝑡,𝐾 .
As an example, the subtensor 𝑇2

112 of 𝐶𝑊⊗2
𝑞 is

𝑞∑︁
𝑖=1

𝑥0,𝑖 𝑦0,𝑖𝑧𝑞+1,0 +
𝑞∑︁
𝑖=1

𝑥𝑖,0 𝑦𝑖,0𝑧0,𝑞+1 +
𝑞∑︁
𝑖=1

𝑞∑︁
𝑗=1

(𝑥0, 𝑗 𝑦𝑖,0𝑧𝑖, 𝑗 + 𝑥𝑖,0 𝑦0, 𝑗𝑧𝑖, 𝑗).

Since every term 𝑥𝑖 𝑦 𝑗𝑧𝑘 with nonzero coefficient in 𝐶𝑊𝑞 has 𝜅(𝑖) +𝜅( 𝑗) +𝜅(𝑘) = 2, it follows
that every nonzero 𝑇 𝑡𝐼 𝐽𝐾 in 𝐶𝑊⊗𝑡

𝑞 has 𝐼 + 𝐽 + 𝐾 = 2𝑡, and so the 𝑋 𝑡,𝐼 , 𝑌 𝑡,𝐽 , 𝑍𝑡,𝐾 give a partitioning
of the variables of 𝐶𝑊⊗2𝑡

𝑞 with

𝐶𝑊⊗𝑡
𝑞 =

∑︁
𝐼,𝐽 ,𝐾∈{0,...,2𝑡}|𝐼+𝐽+𝐾=2𝑡

𝑇 𝑡𝐼 𝐽𝐾 .

Hence, 𝐶𝑊⊗𝑡
𝑞 is a partitioned tensor with outer structure 𝐶2𝑡+1.

In order to apply Theorem 4.1 to 𝐶𝑊⊗𝑡
𝑞 , we need a way to bound the values of subtensors

𝑇 𝑡𝐼 𝐽𝐾 . As we can see with 𝑇2
112 above, these subtensors are no longer always isomorphic to matrix

multiplication tensors when 𝑡 ≥ 2, and so bounding these values will be less straightforward
than before.

6.3 Variable Partition for 𝑻𝒕𝑰 𝑱𝑲

Let us assume that 𝑡 is even (as we will be dealing with powers of 2). Fix 𝐼, 𝐽 , 𝐾 ∈ {0, 1, . . . , 2𝑡}
with 𝐼 + 𝐽 + 𝐾 = 2𝑡. To bound 𝑉𝜏 (𝑇 𝑡𝐼 𝐽𝐾), we will again use Theorem 4.1. Again, to do this, we
need a partition of the variables of 𝑇 𝑡𝐼 𝐽𝐾 . The key remark is that for any 𝐼 ∈ {0, 1, . . . , 2𝑡} and
any 𝐴 ∈ 𝐿𝑡,𝐼 , there is some 𝐼′ ∈ {0, 1, . . . , 𝐼} such that

∑𝑡/2
ℓ=1 𝐴ℓ = 𝐼

′, and
∑𝑡
ℓ=𝑡/2+1 𝐴ℓ = 𝐼 − 𝐼′. This

splitting gives rise to the decomposition:

𝑇 𝑡𝐼,𝐽 ,𝐾 =
∑︁

𝐼 ′,𝐽 ′,𝐾′∈{0,...,𝑡},𝐼 ′+𝐽 ′+𝐾′=𝑡,𝐼 ′≤𝐼,𝐽 ′≤ 𝐽 ,𝐾′≤𝐾
𝑇
𝑡/2
𝐼 ′,𝐽 ′,𝐾′ ⊗ 𝑇 𝑡/2

(𝐼−𝐼 ′),( 𝐽−𝐽 ′),(𝐾−𝐾′) .

For instance, as can be seen above,

𝑇2
112 = 𝑇002 ⊗ 𝑇110 + 𝑇110 ⊗ 𝑇002 + 𝑇011 ⊗ 𝑇101 + 𝑇101 ⊗ 𝑇011.

For 𝐼′, 𝐽′, 𝐾′ ∈ {0, 1, . . . , 𝑡} with 𝐼′ + 𝐽′ + 𝐾′ = 𝑡, 𝐼′ ≤ 𝐼, 𝐽′ ≤ 𝐽 , 𝐾′ ≤ 𝐾 , write

𝑇 𝑡 (𝐼′, 𝐽′, 𝐾′) := 𝑇 𝑡𝐼 ′,𝐽 ′,𝐾′ ⊗ 𝑇 𝑡𝐼−𝐼 ′,𝐽−𝐽 ′,𝐾−𝐾′ .
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𝑇 𝑡 (𝐼′, 𝐽′, 𝐾′) is a tensor over the variables 𝑋 𝑡/2,𝐼 ′ × 𝑋 𝑡/2,𝐼−𝐼 ′ , 𝑌 𝑡/2,𝐽 ′ × 𝑌 𝑡/2,𝐽−𝐽 ′ , 𝑍𝑡/2,𝐾′ × 𝑍𝑡/2,𝐾−𝐾′ .
Hence, these sets for 𝐼′, 𝐽′, 𝐾′ ∈ {0, 1, . . . , 𝑡} with 𝐼′ ≤ 𝐼, 𝐽′ ≤ 𝐽 , 𝐾′ ≤ 𝐾 partition the variables of
𝑇 𝑡𝐼 𝐽𝐾 , and they show that 𝑇 𝑡𝐼 𝐽𝐾 is a 𝑡-partitioned tensor via

𝑇 𝑡𝐼,𝐽 ,𝐾 =
∑︁

𝐼 ′,𝐽 ′,𝐾′∈{0,...,𝑡},𝐼 ′+𝐽 ′+𝐾′=𝑡,𝐼 ′≤𝐼,𝐽 ′≤ 𝐽 ,𝐾′≤𝐾
𝑇 𝑡 (𝐼′, 𝐽′, 𝐾′).

6.4 Larger Values of Some Subtensors from Merging

Finally, for a few subtensors, we can prove an even greater bound on their value than is given
by the approach of Section 6.3. This is the key reason why analyzing higher powers of 𝐶𝑊𝑞

with Theorem 4.1 can yield higher values. The idea is to note that 𝑇 𝑡𝐼 𝐽𝐾 is isomorphic to a matrix
multiplication whenever 𝐼 = 0, 𝐽 = 0, or 𝐾 = 0.

Consider, for instance, 𝑇2
220. As above, we have that

𝑇2
220 = 𝑇200 ⊗ 𝑇020 + 𝑇020 ⊗ 𝑇200 + 𝑇110 ⊗ 𝑇110

= 𝑥𝑞+1,0 𝑦0,𝑞+1𝑧0,0 + 𝑥0,𝑞+1 𝑦𝑞+1,0𝑧0,0 +
𝑞∑︁
𝑖=1

𝑥𝑖,𝑖 𝑦𝑖,𝑖𝑧0,0.

If we ‘rename’ 𝑥𝑞+1,0 to 𝑥0,0, 𝑦0,𝑞+1 to 𝑦0,0, 𝑥0,𝑞+1 to 𝑥𝑞+1,𝑞+1, and 𝑦𝑞+1,0 to 𝑦𝑞+1,𝑞+1, then this shows

𝑇2
220 ≡ 𝑥0,0 𝑦0,0𝑧0,0 + 𝑥𝑞+1,𝑞+1 𝑦𝑞+1,𝑞+1𝑧0,0 +

𝑞∑︁
𝑖=1

𝑥𝑖,𝑖 𝑦𝑖,𝑖𝑧0,0 =

𝑞+1∑︁
𝑖=0

𝑥𝑖,𝑖 𝑦𝑖,𝑖𝑧0,0 ≡ ⟨𝑞 + 2, 1, 1⟩.

Hence, 𝑉𝜏 (𝑇2
220) = (𝑞 + 2)𝜏. One can verify that this is better than we would have gotten by

applying Theorem 4.1 to 𝑇2
220 as in Section 6.3. This is intuitively because that approach would

have treated the three parts 𝑇200 ⊗ 𝑇020, 𝑇020 ⊗ 𝑇200, 𝑇110 ⊗ 𝑇110 as separate tensors instead of
‘merging’ them together into a single matrix multiplication tensor.

More generally, the subtensor 𝑇 𝑡𝐼 𝐽0 for 𝐽 ∈ {0, 1, . . . , 𝑡/2} and 𝐼 = 𝑡 − 𝐽 ≥ 𝐽 can be merged
into a single matrix multiplication tensor, yielding the value

𝑉𝜏 (𝑇 𝑡𝐼 𝐽0) =
©­«

∑︁
𝑏≤ 𝐽 ,𝑏≡𝐽 (mod 2)

(
𝑡/2

𝑏,
𝐽−𝑏

2 , 𝐼−𝑏2

)
· 𝑞𝑏ª®¬

𝜏

.

See [48, Claim 1] for the full calculation. The similar value bound holds for any 𝑇 𝑡𝐼 𝐽𝐾 where at
least one of 𝐼, 𝐽 , 𝐾 is 0 by symmetry.

6.5 Numerical Value Bounds

Finally, we have written code to carry out the recursive procedure described in this section.
We ultimately find that, for 𝜏 = 2.3728596/3, we get 𝑉𝜏 (𝐶𝑊⊗32

5 ) > 732 + 9.19 × 1022. The code to
verify this bound can be found at the link in [50]. The basis of our code is the publicly available
code of Le Gall [33]. We then added new functions to compute the maximum possible value
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achievable by Theorem 4.1, as well as all of the aforementioned heuristics. Our code makes
use of both the NLPSolve function in Maple [35], and the CVX convex optimization software for
Matlab [27, 28, 36].

The values for the subtensors of 𝐶𝑊⊗𝑡
5 for 𝑡 ∈ {2, 4, 8} are bounded by finding the optimal

𝛾 to use in Section 5.1. Most of the values for the subtensors of 𝐶𝑊⊗16
5 , and all of the values for

the subtensors of 𝐶𝑊⊗32
5 , are bounded using Heuristic 2 from Section 5.2. For the subtensors of

𝐶𝑊⊗16
5 whose values are bounded using a different heuristic, the exact point 𝛾 that we use in

Section 5.1 is included with the code4. Finally, the ‘global’ value bound for 𝐶𝑊⊗32
5 is computed

using Heuristic 2. All of the subtensor value bounds we compute are provided along with the
code.
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[41] Raphaël Salem and Donald C. Spencer. On sets ofintegers which contain no three terms inarithmetical progression. Proceedings of the
National Academy of Sciences, 28(12):561–563,
1942. DOI (11)

[42] Arnold Schönhage. Partial and total matrixmultiplication. SIAM J. Comput. 10(3):434–455,
1981. DOI (2, 9, 10)

[43] Amir Shpilka. Lower bounds for matrix product.
SIAM J. Comput. 32(5):1185–1200, 2003. DOI (6)

[44] Volker Strassen. Gaussian elimination is notoptimal. Numerische mathematik, 13(4):354–356,
1969. DOI (2, 9)

[45] Volker Strassen. Rank and optimal computation ofgeneric tensors. Linear algebra and its applications,
52:645–685, 1983. DOI (6)

[46] Volker Strassen. Relative bilinear complexity andmatrix multiplication. J. reine angew. Math. (Crelles
Journal), 375–376:406–443, 1987. DOI (3, 18)

[47] Volker Strassen. The asymptotic spectrum oftensors and the exponent of matrix multiplication.
Proceedings of the 27th IEEE Symposium on
Foundations of Computer Science, FOCS 1986,
pages 49–54, 1986. DOI (2)

[48] Virginia Vassilevska Williams. Multiplying matricesfaster than Coppersmith-Winograd. Proceedings of
the 44th Symposium on Theory of Computing
Conference, STOC 2012, pages 887–898, 2012.
DOI (2, 4, 5, 11, 16, 22–24, 27)

[49] Virginia Vassilevska Williams, Yinzhan Xu,
Zixuan Xu, and Renfei Zhou. New bounds formatrix multiplication: from alpha to omega.
Proceedings of the 2024 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2024,
pages 3792–3835. SIAM, 2024. DOI (6)

[50] Verification code for the numerical value bounds.
http://code.joshalman.com/MM, 2021. (27)

[51] Maciej Wojtala. Irreversibility of structure tensorsof modules. Collectanea Mathematica,
74(2):487–499, 2023. DOI (2)

A. Rounding 𝜶 in the proof of Theorem 4.1

Recall the notation from Section 4. Fix any 𝛼 ∈ 𝐷 and any sufficiently large positive integer 𝑛.

LEMMA A.1. There is an 𝛼′ ∈ 𝐷 such that, for all (𝑖, 𝑗, 𝑘) ∈ 𝑆,
𝛼′
𝑖 𝑗𝑘

is an integer multiple of 1
𝑛 , and

|𝛼𝑖 𝑗𝑘 − 𝛼′𝑖 𝑗𝑘 | <
1
𝑛 .

PROOF . Let 𝑆′ ⊆ 𝑆 be the set of (𝑖, 𝑗, 𝑘) ∈ 𝑆 such that 𝛼𝑖 𝑗𝑘 is not an integer multiple of 1
𝑛 .

For each (𝑖, 𝑗, 𝑘) ∈ 𝑆 \ 𝑆′, we pick 𝛼′
𝑖 𝑗𝑘

= 𝛼𝑖 𝑗𝑘. Initially, for each (𝑖, 𝑗, 𝑘) ∈ 𝑆′, let 𝛼′
𝑖 𝑗𝑘

be 𝛼𝑖 𝑗𝑘
rounded down to the next integer multiple of 1

𝑛 , i.e., pick 𝛼′
𝑖 𝑗𝑘

=
⌊𝑛·𝛼𝑖 𝑗𝑘⌋

𝑛 . Since 𝛼 ∈ 𝐷 we have that∑
(𝑖, 𝑗,𝑘)∈𝑆 𝛼𝑖 𝑗𝑘 = 1. Let 𝑡 =

∑
(𝑖, 𝑗,𝑘)∈𝑆 𝛼

′
𝑖 𝑗𝑘

. 𝑡 is an integer multiple of 1
𝑛 . Moreover, we have that

1 − 𝑡 = 1 −
∑︁

(𝑖, 𝑗,𝑘)∈𝑆
𝛼′𝑖 𝑗𝑘 =

∑︁
(𝑖, 𝑗,𝑘)∈𝑆

𝛼𝑖 𝑗𝑘 − 𝛼′𝑖 𝑗𝑘 =
∑︁

(𝑖, 𝑗,𝑘)∈𝑆′
𝛼𝑖 𝑗𝑘 − 𝛼′𝑖 𝑗𝑘 ≤

∑︁
(𝑖, 𝑗,𝑘)∈𝑆′

1
𝑛
=
|𝑆′|
𝑛
.

There is hence a nonnegative integer 𝐾 ≤ |𝑆′| such that 𝑡 = 1 − 𝐾
𝑛 . Pick any 𝐾 elements (𝑖, 𝑗, 𝑘)

of 𝑆′ and add 1
𝑛 to 𝛼′

𝑖 𝑗𝑘
. We now have

∑
(𝑖, 𝑗,𝑘)∈𝑆 𝛼

′
𝑖 𝑗𝑘

= 1, and so 𝛼′ ∈ 𝐷.
We always have that 𝛼′

𝑖 𝑗𝑘
is an integer multiple of 1

𝑛 , since we originally picked integer
multiples of 1

𝑛 , and then possibly added 1
𝑛 to them. Finally, we always have |𝛼𝑖 𝑗𝑘 − 𝛼′𝑖 𝑗𝑘 | <

1
𝑛

since we initially rounded each 𝛼𝑖 𝑗𝑘 for (𝑖, 𝑗, 𝑘) ∈ 𝑆′ down to the next integer multiple of 1
𝑛 , then

possibly added 1
𝑛 to it. ■
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LEMMA A.2. Let 𝛼, 𝛼′ ∈ 𝐷 be as above. Then,
1

2𝑜(𝑛)
≤ 𝛼𝑁
𝛼′𝑁

≤ 2𝑜(𝑛) .

PROOF . Recall that
𝛼𝑁 :=

∏
(𝑖, 𝑗,𝑘)∈𝑆

𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

.

Thus,
𝛼𝑁
𝛼′𝑁

=
∏

(𝑖, 𝑗,𝑘)∈𝑆

𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′𝑖 𝑗𝑘
𝑖 𝑗𝑘

.

Since 𝑆 is a constant-sized set, it is sufficient to show that for any fixed (𝑖, 𝑗, 𝑘) ∈ 𝑆 we have

1
2𝑜(𝑛)

≤
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′

𝑖 𝑗𝑘

𝑖 𝑗𝑘

≤ 2𝑜(𝑛) .

First, if 𝛼𝑖 𝑗𝑘 is an integer multiple of 1/𝑛, including if 𝛼𝑖 𝑗𝑘 = 0, then we have 𝛼′
𝑖 𝑗𝑘

= 𝛼𝑖 𝑗𝑘, and so
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′𝑖 𝑗𝑘
𝑖 𝑗𝑘

= 1. Otherwise, let 𝛿 = 𝛼′
𝑖 𝑗𝑘

− 𝛼𝑖 𝑗𝑘, so we have 0 < |𝛿| < 1
𝑛 . Consider first when 𝛿 > 0. We

can write

log
©­­«
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′

𝑖 𝑗𝑘

𝑖 𝑗𝑘

ª®®¬ = (𝛼𝑖 𝑗𝑘 + 𝛿) log(𝛼𝑖 𝑗𝑘 + 𝛿) − 𝛼𝑖 𝑗𝑘 log𝛼𝑖 𝑗𝑘 = 𝛼𝑖 𝑗𝑘 log
(
1 + 𝛿

𝛼𝑖 𝑗𝑘

)
+ 𝛿 log(𝛼𝑖 𝑗𝑘 + 𝛿).

Using the fact that log(1 + 𝑥) = 𝑥 − 𝑂(𝑥2) as 𝑥 → 0+, and that 𝛼𝑖 𝑗𝑘 is a positive constant, we can
bound

𝛼𝑖 𝑗𝑘 log
(
1 + 𝛿

𝛼𝑖 𝑗𝑘

)
≤ 𝛼𝑖 𝑗𝑘

(
𝛿

𝛼𝑖 𝑗𝑘
+ 𝑂(𝛿2)

)
≤ 𝑂(𝛿) = 𝑂

(
1
𝑛

)
.

For large enough 𝑛, we also have

𝛿 log(𝛼𝑖 𝑗𝑘 + 𝛿) ≤ 𝛿 log(2𝛼𝑖 𝑗𝑘) ≤ 𝑂

(
1
𝑛

)
.

It follows that
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′

𝑖 𝑗𝑘

𝑖 𝑗𝑘

≤ 2𝑂(1/𝑛) .

We have
𝛼
−𝛼𝑖 𝑗𝑘
𝑖 𝑗𝑘

𝛼′
−𝛼′𝑖 𝑗𝑘
𝑖 𝑗𝑘

≥ 1 since 𝛿 > 0, which completes the proof for 𝛿 > 0. The proof for 𝛿 < 0 is

nearly identical. ■

Very similar proofs show that, for 𝛼, 𝛼′ ∈ 𝐷 as above, the ratios 𝛼𝑉𝜏
𝛼′𝑉𝜏

, 𝛼𝐵𝛼′𝐵 , and max𝛽∈𝐷𝛼 𝛽𝑁
max𝛽∈𝐷𝛼′ 𝛽𝑁

, are

all bounded between 2−𝑜(𝑛) and 2𝑜(𝑛) as well.
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B. Lemma for Section 4.4

We now prove Lemma B.1, which was used in the proof in Section 4.4 above. To apply it there,
𝑖 = 1, . . . , 𝑐 are the different choices of randomness (i.e., the choices of 𝑤0, . . . , 𝑤2𝑛) defining the
hash functions.

LEMMA B.1. Suppose 𝑐 is a positive integer, and 𝐴, 𝐵, 𝑎1, . . . , 𝑎𝑐, 𝑏1, . . . , 𝑏𝑐 are positive real num-
bers such that

∑𝑐
𝑖=1 𝑎𝑖 = 𝑐 · 𝐴 and

∑𝑐
𝑖=1 𝑏𝑖 = 𝑐 · 𝐵. Then, there exists an 𝑖 ∈ [𝑐] such that

𝑎
3/2
𝑖

𝑏
1/2
𝑖

≥ 𝐴3/2

𝐵1/2 .

PROOF . It suffices to prove that
𝑐∑︁
𝑖=1

𝑎3
𝑖

𝑏𝑖
≥ 𝑐 · 𝐴

3

𝐵
. (3)

Indeed, if (3) is true, then by the pigeonhole principle, there must exist an 𝑖 which achieves at
least the average value

𝑎3
𝑖

𝑏𝑖
≥ 𝐴3

𝐵
,

and hence by taking square roots,
𝑎

3/2
𝑖

𝑏
1/2
𝑖

≥ 𝐴3/2

𝐵1/2 ,

as desired.
To prove (3), we first apply the power mean inequality, then combine this with the Cauchy-

Schwarz inequality. The power mean inequality says that(
1
𝑐

𝑐∑︁
𝑖=1

𝑎
3/2
𝑖

)2/3

≥ 1
𝑐

𝑐∑︁
𝑖=1

𝑎𝑖 = 𝐴,

and so by cubing both sides, (
1
𝑐

𝑐∑︁
𝑖=1

𝑎
3/2
𝑖

)2

≥ 𝐴3. (4)

Next we apply the Cauchy-Schwarz inequality, which says(
𝑐∑︁
𝑖=1

𝑎3
𝑖

𝑏𝑖

) (
𝑐∑︁
𝑖=1

𝑏𝑖

)
≥

(
𝑐∑︁
𝑖=1

𝑎
3/2
𝑖

)2

.

Combining this with (4) gives(
𝑐∑︁
𝑖=1

𝑎3
𝑖

𝑏𝑖

)
≥

(∑𝑐
𝑖=1 𝑎

3/2
𝑖

)2∑𝑐
𝑖=1 𝑏𝑖

=

𝑐2 ·
(

1
𝑐

∑𝑐
𝑖=1 𝑎

3/2
𝑖

)2

𝑐 · 𝐵 ≥ 𝑐 · 𝐴3

𝐵
,

as desired. ■

2024 :21
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Josh Alman, Virginia Vassilevska Williams.


	Introduction
	The Laser Method and Our Improvement
	Other Related Work

	Preliminaries
	Notation
	Tensors and Sums
	Kronecker Products
	Tensor Rank
	Matrix Multiplication Tensors
	Schönhage's Asymptotic Sum Inequality
	Zeroing-Outs, Restrictions, and Value
	Coppersmith-Winograd Tensors
	Salem-Spencer Sets

	Diagonalizing Arbitrary Tensors with Zeroing Outs
	Refined Laser Method
	Proof Plan
	Step 1: Removing blocks which are inconsistent with alpha
	Step 2: Defining and counting nonzero block triples in T'
	Step 3: Carefully sparsifying T' using Salem-Spencer sets
	Step 4: Converting T'' to an independent sum of (alpha,alpha,alpha)-consistent block triples

	Algorithms and Heuristics for Applying Theorem 4.1
	Optimizing over alpha in D gamma for fixed gamma in D
	Heuristics for picking gamma in D
	Faster Computation on Tensors with Symmetries

	Bounding V(CWq)
	Variable Partition for CWq
	Variable Partition for CWqot
	Variable Partition for TIJKt
	Larger Values of Some Subtensors from Merging
	Numerical Value Bounds

	References
	Rounding alpha in the proof of Theorem 4.1
	Lemma for Section 4.4

