
1 / 82 2025 : 10

Learning Algorithms for
Verification of Markov
Decision Processes

Received Mar 22, 2024
Revised Nov 6, 2024
Accepted Jan 12, 2025
Published April 1, 2025
Key words and phrasesMarkov decision processes andLearning

Tomáš Brázdila �

Krishnendu Chatterjeeb �

Martin Chmelikc

Vojtěch Forejtd

Jan Křet́ınskýa �

Marta Kwiatkowskad �

Tobias Meggendorfere � �

David Parkerd �

Mateusz Ujma f

a Masaryk University, Brno, CzechRepublic
b IST Austria, Klosterneuburg,Austria
c Google LLC, Zurich, Switzerland
d University of Oxford, Oxford, UK
e Lancaster University Leipzig,Leipzig, Germany
f Rogers Communications,Toronto, Canada

ABSTRACT. We present a general framework for applying learning algorithms and heuristical
guidance to the verification of Markov decision processes (MDPs). The primary goal of our
techniques is to improve performance by avoiding an exhaustive exploration of the state space,
instead focussing on particularly relevant areas of the system, guided by heuristics. Our work
builds on the previous results of Brázdil et al., significantly extending it as well as refining
several details and fixing errors.

The presented framework focuses on probabilistic reachability, which is a core problem in
verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of
the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven
partial exploration of the model, yielding precise lower and upper bounds on the required
probability. The second tackles the case where we may only sample the MDP without knowing

This research was funded in part by the European Research Council (ERC) under grant agreement AdG-267989 (QUAREM)*,AdG-246967 (VERIWARE)*, StG-279307 (Graph Games)*, CoG-863818 (ForM-SMArt), and AdG-834115 (FUN2MODEL),by the EU FP7 project HIERATIC*, by the German Research Foundation (DFG) project 427755713 (GOPro), by the AustrianScience Fund (FWF) projects S11402-N23 (RiSE)*, S11407-N23 (RiSE)*, and P23499-N23*, by the Czech Science Foundationgrant No P202/12/P612* and GA23-06963S, by the MUNI Award in Science and Humanities (MUNI/I/1757/2021) of the GrantAgency of Masaryk University, by EPSRC project EP/K038575/1*, and by the Microsoft faculty fellows award*. A preliminaryversion of this article appeared at ATVA 2014 [33]. The * indicates funding that supported that version.
Cite as Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch Forejt, JanKřet́ınský, Marta Kwiatkowska, Tobias Meggendorfer, David Parker, Mateusz Ujma.Learning Algorithms for Verification of Markov Decision Processes.TheoretiCS, Volume 4 (2025), Article 10, 1-82.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.10

https://orcid.org/0000-0002-4547-3261
https://orcid.org/0000-0002-4561-241X
https://orcid.org/0000-0002-8122-2881
https://orcid.org/0000-0001-9022-7599
mailto:tobias@meggendorfer.de
https://orcid.org/0000-0002-1712-2165
https://orcid.org/0000-0003-4137-8862

2 / 82 T. Brázdil et. al
the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both
the lower and upper bounds, which provides efficient stopping criteria for the approximation.
In particular, the latter is an extension of statistical model checking (SMC) for unbounded
properties in MDPs. In contrast to other related approaches, we do not restrict our attention to
time-bounded (finite-horizon) or discounted properties, nor assume any particular structural
properties of the MDP.

1. Introduction

Markov decision processes (MDP) [86, 67, 118] are a well established formalism for modelling,
analysis and optimization of probabilistic systems with non-determinism, with a large range of
application domains [16, 104]. For example, MDPs are used as models for concurrent proba-
bilistic systems [54] or probabilistic systems operating in open environments [123]. See [140,
139, 138] for further applications.

In essence, MDP comprise three major parts, namely states, actions, and probabilities.
Intuitively, the system evolves as follows: In any state, there is a set of actions to choose
from. This corresponds to the non-determinism of the system. After choosing an action, the
system then transitions into the next state according to the probability distribution associated
with that action. For example, we may use MDP to represent a robot moving around in a
2D world (sometimes called “gridworld”). The states then are (bounded, integer) coordinates,
representing the current position of the robot. In each state the robot can choose to move in
one of the four cardinal directions or carry out some task depending on the current location.
To illustrate the randomness, consider a “move east” action. Choosing this action may move the
robot to the next position east of the current one, but it might also be the case that, with some
probability, a navigation component of the robot fails and we instead end up in a state north of
our current position. Given such a system, the general goal is to optimize a given objective by
choosing optimal actions. For example, we may want to control the robot such that it reaches
an interesting research site with maximal probability. We additionally may be interested in
minimizing time or power consumption and avoiding dangerous terrain on our way to the site.

This example hints at one of the simplest, yet important objectives, namely reachability.
A reachability problem is specified by an MDP together with a set of designated target states.
The task is to compute the maximal probability with which the system can reach this set of
states. Reachability is of particular interest since in the infinite horizon setting many other
objectives, e.g., LTL or long-run average reward, can be reduced to variants of reachability. A
variety of approaches has been established to solve this problem. In theory, linear programming
[53, 68] is the most suitable approach, as it provides exact answers (rational numbers with no
representation imprecision) in polynomial time. See [19] for an application. Unfortunately, LP

3 / 82 Learning Algorithms for Verification of Markov Decision Processes
turns out to be quite inefficient in practice for classical reachability. For systems with more
than a few thousand states, linear programming often falls behind other approaches, see, e.g.,
[68, 7, 77]. As an alternative, one can apply iterative methods. Here, value iteration (VI) [86] is
the most prominent variant. See [49] for a detailed survey of VI. Notably, variations of VI are
the default method in the state-of-the-art probabilistic model checkers PRISM [104] and Storm
[62], even though it only provides an approximate solution, converging in the limit. In contrast,
strategy iteration (SI) (also known as policy iteration, PI) [86, 118, 99] yields precise answers, but
is also used to a lesser extent due to scalability issues. See for example [24] for an overview of
both methods, [77, 78] for recent comparisons of practical implementations of LP, VI, and SI for
MDP, [102] for a similar comparison on stochastic games (MDP with two antagonistic players),
and [4] for in-depth practical comparison of modern probabilistic model checkers.

Interval Iteration Surprisingly, until about a decade ago, standard value iteration as applied in
popular model checkers only yielded lower bounds on the true value, without any sound stopping
criterion. Concretely, this meant that the model checker might conclude that the computation is
finished and stop it, despite still being far off from the true result. We note that there exists a
tight, exponential a-priori bound on the number of steps VI requires until convergence, see e.g.
[49]. This could be used as “stopping criterion”, by simply iterating for this number of steps.
However, this is far too pessimistic on most models.

In [73, 33], a correct and adaptive stopping criterion was discovered independently. This
bound follows from under- and (newly obtained) over-approximations converging to the true
value, yielding a straightforward stopping criterion: iterate until upper and lower bound are
close enough. This criterion is adaptive in the sense that if the iteration should converge faster
than the naive a-priori bound, we can detect this case and stop early. Subsequent works included
this stopping criterion in model checkers [18] and developed further sound approaches [119,
79]. (Some more developments are discussed in the related work.)

However, despite value iteration scaling much better than linear programming, systems
with more than a few million states remain out of reach, not only because of time-outs, but
also memory-outs. Several approaches have been devised to deal with such large state spaces,
which we extensively survey in the related work section. Now, we outline a variant of VI, called
asynchronous VI. The central idea is to perform the iterative computations in an asynchronous
manner, i.e. apply the iteration operation to some states more often than to others, or even not
at all to some states. This allows to obtain speed-ups of several orders of magnitude. However,
since states are evaluated at different paces and, potentially, a set of states is omitted completely,
convergence is unclear and even its rate is unknown and hard to analyse. Yet, by exploiting the
discussed lower and upper bounds, we obtain a correct and efficient algorithm, inspired by
bounded real-time dynamic programming (BRTDP) [112]. This algorithm interleaves construction
of the model, analysis, and bound approximation. For example, we can sample a path through

4 / 82 T. Brázdil et. al
the system (constructing states that we have not seen so far on the fly) and apply the bound
update mechanism only on these paths. For some models, this allows to obtain tight bounds on
the true value while only constructing a small fraction of the complete state space.

Limited Information The methods discussed above (and most which are introduced in the
related work) rely on an exact formalization of the system being available. In particular they
require that the transition probabilities are known precisely. We call this situation the white
box or complete information setting. This is a common, valid assumption when verifying, e.g.,
formally defined protocols, but not so much when working with real-world systems comprising
difficult dynamics, where the effects of an action can be approximated at most. As such, these
systems can be treated as a black box, which accept a next action to take as input and output
the subsequent state, sampled from the associated underlying, unknown distribution.

Here statistical model checking (SMC) [144, 82] is applicable. The general idea of SMC is
to repeatedly sample the system in order to obtain strong statistical guarantees. Thus, SMC
approaches can (at most) be probably approximately correct (PAC), i.e. yield an answer close to
the true value with high probability, but there always is a small chance for a significant error. By
itself, SMC algorithms are restricted to systems without non-determinism, e.g., Markov chains
[142, 126]. A number of approaches tackling the issue of non-determinism have been presented
(see related work). However, these methods deal with non-determinism by either resolving it
uniformly at random or sample several schedulers, both of which can lead to surprising results
in certain scenarios [28]. Additionally, note that both approaches can only give a statistical
estimate of a lower bound of the true achievable maximal reachability. In particular, they do not
give any guarantees on the maximal achievable performance (i.e. an upper bound). Based on the
ideas of delayed Q-learning (DQL) [129] (which also only yields lower bounds) we present a PAC
model-free algorithm, yielding statistical upper and lower bounds on the maximal reachability.
(Model-free intuitively means that our algorithm only stores a fixed number of values per
state-action pair, independent of how many transitions are associated with that action; further
discussion can be found in Remark 5.1.) This approach is similar in spirit to the BRTDP approach
discussed above, however much more involved due to the underlying statistical arguments.
The main contribution of this algorithm is to prove the possibility of obtaining such a result,
exploring the boundaries of what exactly is necessary to obtain guarantees.

Algorithm Outline To provide the reader with a preliminary overview of our approach, we
present a high-level pseudo-code in Algorithm 1. As already mentioned, the fundamental idea is
to compute lower and upper bounds on the true probability of reaching the target in each state
(Line 2 to Line 6). Essentially, we want to iteratively update these bounds in a converging and
correct manner. In the complete information setting, this can be achieved by directly computing
the weighted average of the successor bounds. For the limited information setting, we instead

5 / 82 Learning Algorithms for Verification of Markov Decision Processes

Input: MDP M, target states 𝑇, precision 𝜀.
Output: Values (𝑙, 𝑢) which are 𝜀-optimal.

1: while difference between upper and lower bound in initial state is
larger than 𝜀 do

2: Obtain a set of states to update by, e.g., sampling a path.
foreach state and action in this set do

3: if this state is a target state then
4: Set its bounds to 1.
5: else
6: Update action bounds based on the weighted average of

its successors.
7: Detect end components in the relevant area of the system.
8: return lower and upper bound of the initial state.

Algorithm 1. High-level overview of the structure of our algorithms.

aggregate many successor samples. This yields a good approximation of this weighted average
with high probability.

The details of how the set of states to be updated is obtained in Line 2 are abstracted in
the complete information setting and we only require some basic properties. One possibility is
a sampling-based approach, which is guided by the currently computed bounds. We discuss
several alternatives later on. In contrast, the limited information setting requires a particular
kind of sampling approach in order to ensure correctness. We highlight these differences in the
respective sections.

Now, while it is rather simple to prove correctness of the computed bounds, the tricky
part is to obtain convergence. In particular, for general MDP, this approach would not converge.
To solve this, in the past many algorithms working with MDP often made assumptions about
the structure of the model. For example, it was sometimes required that the model is “strongly
connected” or free of end components [61] (except trivial ones). Instead, one of the main
contributions of [73, 33] is to identify end components as the sole “culprits” and devising
methods to deal with them in a general manner, obtaining convergence. While [73] tackles
the problem in a “global” manner (assuming to have access to the complete MDP at once), we
present an asynchronous way of treating end components. This treatment is “on-the-fly” and
can be interleaved with the iterative construction of the system.

6 / 82 T. Brázdil et. al
In the white box setting, we solve this problem by adapting exiting graph analysis algo-

rithms and incorporating them with our main procedure. However, with limited information
we again need to employ statistical methods. In essence, if we remain inside a particular region
of the system for a long enough time, there is a high probability that this region is an end
component. This overall process then is repeated until the computed bounds in the initial state
are close enough.

1.1 Related Work

We present a number of related ideas, all attempting, in one way or another, to make the analysis
of (large or black box) probabilistic system tractable.

Compositional techniques aim to first analyse parts of the system separately and combine
the sub-results to obtain an overall result, e.g. [42, 63, 83, 21, 45, 22]. Then, there are abstraction
approaches which try to merge states with equivalent or sufficiently similar behaviour w.r.t.
the objective in question, e.g. [57, 84, 75, 92, 75]. Reduction approaches try to eliminate states
from the system and restrict computation to a sub-system through structural properties, e.g.
[15, 14, 52, 64, 66, 30]. Guessing [50] tries to guess and verify the value of certain states, which
can lead to theoretical speed-ups when the guesses decompose the system into independent
parts. Another approach is symbolic computation, where the model and value functions are
compactly represented using BDD [35] and MTBDD / ADD [13, 70]. See [17, 105, 145, 141, 29, 96]
for further details and applications of symbolic methods.

In related fields such as planning and artificial intelligence, many learning-based and
heuristic-driven approaches for MDP have been proposed. In the complete information setting,
RTDP [20] and BRTDP [112] use very similar approaches, but have no stopping criterion or
do not converge in general, respectively. [117] uses upper and lower bounds in the setting of
partially observable MDP (POMDP). Many other algorithms rely on certain assumptions to ensure
convergence, for example by including a discount factor [93] or restricting to the Stochastic
Shortest Path (SSP) problems, whereas we deal with arbitrary MDP without discounting. This is
addressed by an approach called FRET [97], but this only yields a lower bound. Others similarly
only provide convergence in the limit [32, 89], which is usually satisfactory for applications to
planning or robotics, where systems have intractably large or even uncountable state spaces.
We are not aware of any attempts at generally applicable methods in the context of probabilistic
verification prior to [33]. An earlier, related paper is [3], where heuristic methods are applied
to MDP, but for generating counterexamples.

As mentioned, [73] independently discovered a stopping criterion for value iteration on
general MDP. The idea behind this criterion is very similar to [33], but they construct and
analyse the whole system at once. The underlying idea of “interval iteration”, spawned by these
two papers, is further developed in, e.g., [18, 72, 8].

7 / 82 Learning Algorithms for Verification of Markov Decision Processes
Additionally, the idea of optimistic value iteration (OVI) [79, 11] emerged. Here, instead of

always updating both lower and upper bound, only the lower bound is iterated (as in classical
value iteration). Then, based on heuristics, the algorithm optimistically conjectures that the
values actually converged. To verify that conjecture, a (potential) upper bound is guessed
based on the current lower bound (e.g. by incrementing all bounds by 𝜀) and then checked
for consistency by applying a few steps of VI. This approach turns out to be quite efficient
in practice when dealing with MDP in a “global” manner, however is incompatible with our
guided sampling approach, since we continuously use upper bounds for guidance. Similarly,
sound value iteration (SVI) [119] also works with lower and upper bounds, however they derive
bounds based on 𝑘-step reachability probabilities. These fundamentally require a global and
synchronous value iteration, which is precisely what we aim to avoid.

Statistical Methods There are two primary motivations to use statistical approaches. Firstly,
the model might be large, even too large to fit into memory, and analysing it by standard
approaches becomes infeasible, yet generating samples may be quick and easy. In this case,
one can decide to “only” aim for a statistical guarantee, which often comes with tremendous
speed-ups and space savings. Secondly, as explained above, the model might be an unknown
black box – we do not know how it works internally, only that it is some Markov process. If
we can observe and control the system, we can gather samples and from that derive statistical
guarantees for the considered value.

As mentioned, our approach focuses on the latter, however most statistical methods focus
on the former. Indeed, many of the following methods are only applicable to the “full knowledge”
setting, i.e. knowing the internals of the system. Here, significant improvements can be observed:
Several SMC algorithms have sub-linear or even constant space requirements (often called
model-free algorithms). Appropriately, SMC is an active area of research with extensive tool
support [87, 27, 31, 41, 60, 142, 126, 40] but also a lot of subtle pitfalls [103]. See also [98, 2, 109]
for extensive surveys and [121] for an application of SMC to a complex real world problem. In
contrast to our work, most algorithms focus on time-bounded or discounted properties, e.g.,
step-bounded reachability, rather than truly unbounded properties. Several approaches try to
bridge this gap by transforming unbounded properties into testing of bounded properties, for
example [143, 80, 120, 124]. However, these approaches target models without nondeterminism
and as such are not applicable to MDP. As a slight extension, [26] considers MDP with spurious
nondeterminism, where the resolution of nondeterminism does not influence the value of
interest.

Adapting SMC techniques to models with (true) nondeterminism such as MDP is an im-
portant topic, with several recent papers. See [43, 128] and [136, Chapter 4.1.5] for a survey
on simulation-based algorithms in this context. One approach is to give nondeterminism a
probabilistic interpretation, e.g., resolving it uniformly, as is done in PRISM for MDP [104]

8 / 82 T. Brázdil et. al
and Uppaal SMC for timed automata [60, 59, 107]. A second approach, taken for example by
recent versions of the modes tool [76, 56, 37], is to repeatedly sample schedulers, using for
example lightweight scheduler sampling (LSS) [110, 55], and then estimate the performance
of these controllers using existing SMC methods. Uppaal Stratego [58] synthesizes a “good”
scheduler and uses it for subsequent SMC analysis. All of the above methods only yield a lower
bound on the true reachability and the quality of this bound is highly dependent on the model.
Others aim to indeed quantify over all strategies and approximate the true maximal value, for
example [108, 81]. The work in those papers deals with the setting of discounted or bounded
properties, respectively. In [81], candidates for optimal schedulers are generated and gradually
improved, which does not give upper bounds on the convergence. The nearly simultaneously
published [69] essentially tackles the same problem. In contrast to our work, their approach
is model-based, i.e. the transition probabilities are learned, and is not guided by a heuristic,
requiring to learn the whole transition matrix.

In summary, most approaches are only applicable to the first case, or, if they can work in
the “limited information” setting, they require a purely probabilistic system, finite or discounted
properties, or only give lower bounds on the optimal value. Our focus explicitly lies on the
limited information case, and, similar to many approaches from statistical model checking [144,
82, 125, 69], we aim to provide PAC guarantees, however on the optimal value of an infinite
horizon objective in models with nondeterminism.

Another issue of statistical methods is the analysis of rare events. This is, of course, very
relevant for SMC approaches in general. They can be addressed using for example importance
sampling [87, 80] or importance splitting [88, 36]. We take a rather conservative approach
towards rare events and delegate more sophisticated handling of this issue to future work.

1.2 Differences to the Published Article

This work is a significant extension of [33]. Numerous details are refined and errors discovered
and fixed. We discuss major changes in the following. Notably, in the process of resolving some
of the issues of [33], we also discovered several problems in [129], on which the DQL method of
[33] is based, both conceptually and in terms of proof structure.

A complete rewrite, only retaining parts of the proof strategies.
The related work is updated with recent advances and work based on [33].
The BRTDP approach and related proofs are extended significantly to a generic template,
allowing for a variety of implementations of the sampling methods.
Both variants of the DQL algorithm have been restructured and simplified.
The proofs, especially those related to DQL, are more modular and easier to adapt / re-use
for similar endeavours in these directions.
Several technical issues of the original paper are fixed. Firstly, the proofs in the appendix
proved properties of slightly different algorithms, only to conclude with a brief, imprecise

9 / 82 Learning Algorithms for Verification of Markov Decision Processes
argument that the presented algorithms are not too different from the algorithms proven
correct. Some proofs were only given implicitly or assumed to be common knowledge, in
particular treatment of collapsed end components and similar. Moreover, several small
mistakes have been corrected.
Lemma 16 of the original paper both has a flawed proof and an erroneous statement,
which is now fixed: Firstly, the Algorithm as presented potentially never follows an 𝜀

optimal strategy, as exemplified in Example 3.7. Secondly, the proof applies the multiplica-
tive Chernoff bound to variables 𝑋𝑖 , which indicate whether the algorithm performed a
particular action during a time interval. To apply this bound, the variables would need to
be independent, but the 𝑋𝑖 are dependent. This is elaborated in detail later on.
Interestingly, a similar, yet slightly different error already is present in [129]. Firstly, their
Theorem 1 claims that the algorithm eventually follows an 𝜀 optimal strategy, which does
not hold due to the same reasons. Secondly, in the corresponding proof the authors apply
the Hoeffding bound to similar dependent variables. This happens at same location in the
overall proof layout as in [33], however the applied bound is different. Our alternative
approach to proving the statements is also applicable to the proof of [129].

1.3 Impact of the Presented Work

Since its publications about a decade ago, the two approaches introduced by [33], i.e. BRTDP
for complete information and DQL for limited information, have directly inspired a number of
subsequent works, of which we provide a (non-exhaustive) list. Firstly, the BRTDP approach has
been extended to settings with long-run average reward [7], continuous time Markov chains
[6], continuous space MDP [71], and stochastic games [65]. Notably, taking inspiration from
[33] and subsequent works, [101] recently provided a unified approach to value iteration for
stochastic games. Concretely, this work extends the central ideas required to obtain convergence
guarantees in MDP to stochastic games in a unified way, subsuming and extending, among
others, the ideas and algorithms of [33, 73, 7, 65]. In particular, this explains how to extend the
BRTDP approach to further objectives, such as safety, expected total reward, or mean payoff. In
an orthogonal direction, [100] modifies the approach of [33] to determine cores of probabilistic
systems, which intuitively describe “most” possible behaviours of the given system. (This can
also be viewed as a probabilistic generalization of the set of reachable states.)

Secondly, the DQL approach (and its proof strategy) inspired a model-based variant [10],
which improved scalability. (Note that, as remarked in [10, Appendix D], the convergence of
their “fast” variant is not proven.) Subsequently, this lead to a surge of papers considering
model-based SMC, for example adapting to MDP with reachability [9] or mean payoff objective
[1], continuous state-spaces [12], dynamic information flow tracking games [137], or changing
environments [130].

10 / 82 T. Brázdil et. al

𝑠 𝑠1 𝑠2

𝑠+

𝑠−

𝑎+

𝑎−
𝑏1

𝑏2

𝑎

𝑎1

𝑎2

0.5

0.5
0.5

0.5

Figure 1. An example Markov decision process. Boxes represent states, dots represent actions, andarrows correspond to transitions (with the respective probabilities as labels). For simplicity, actions witha single successor are depicted as a single, direct arrow and the probability 1 is omitted. We use thisnotation throughout the paper.

Thirdly, for practical impact, we highlight the tool PET [113, 115], which directly implements
and extends the BRTDP approach in a highly efficient manner. As seen in several evaluations,
the relevance of partial exploration in practice highly depends on the structure of the model (as
with many other approaches). In some cases, effectively the entire model has to be explored and
there is no improvement possible. However, for several families of models orders-of-magnitude
or even arbitrary speed-ups can be observed. This tool has also participated in several iterations
of the Comparison of Tools for the Analysis of Quantitative Formal Models (QComp), a friendly
competition of quantitative model checking tools, namely in 2019 [74] (as PRISM-TUMheuristic),
2020 [39], and 2023 [4].

1.4 Contributions and Structure

In Section 2 we set up notation and introduce some known results. We then present our
contributions as follows.

We introduce an extensible framework for efficient reachability on “complete information”
MDP without end components in Section 3 and extend it to arbitrary MDP in Section 4.
We introduce a model-free PAC learning algorithm for reachability on “limited information”
MDP without end components in Section 5 and extend it to arbitrary MDP in Section 6.

We conclude in Section 7. We intentionally omit an experimental evaluation and instead refer
to tools based on these ideas, see e.g. the works in Section 1.3.

2. Preliminaries

As usual, N and R refers to the (positive) natural numbers and real numbers, respectively.
Given two real numbers 𝑎, 𝑏 ∈ R with 𝑎 ≤ 𝑏, [𝑎, 𝑏] ⊆ R denotes the set of all real numbers
between 𝑎 and 𝑏 inclusively. For a set 𝑆, 𝑆 denotes its complement, while 𝑆★ and 𝑆𝜔 refers to the
set of finite and infinite sequences comprising elements of 𝑆, respectively. We often explicitly
name sub-claims in the form of [Fact I], and reference them by [I]. In the digital version, the
references are clickable.

11 / 82 Learning Algorithms for Verification of Markov Decision Processes
We assume familiarity with basic notions of probability theory, e.g., probability spaces and

probability measures. A probability distribution over a countable set 𝑋 is a mapping 𝑑 : 𝑋 →
[0, 1], such that

∑
𝑥∈𝑋 𝑑 (𝑥) = 1. Its support is denoted by supp(𝑑) = {𝑥 ∈ 𝑋 | 𝑑 (𝑥) > 0}. D(𝑋)

denotes the set of all probability distributions on 𝑋 . Some event happens almost surely (a.s.) if it
happens with probability 1. For readability, we omit detailed treatment of probability measures
on uncountable sets and instead direct the reader to appropriate literature, e.g. [25].

2.1 Markov Systems

Markov decision processes (MDPs) are a widely used formalism to capture both non-determinism
(for, e.g., control, concurrency) and probability. For a “complete” introduction to Markov sys-
tems, we direct the interested reader to [118, 90]. A lighter, more recent introduction can be
found in [114, Chapter 2].

First, we introduce Markov chains (MCs), which are purely stochastic.

DEF IN IT ION 2 .1. A Markov chain (MC) is a tuple M = (𝑆, 𝛿), where 𝑆 is a (countable) set
of states, and 𝛿 : 𝑆 → D(𝑆) is a transition function that for each state 𝑠 yields a probability
distribution over successor states.

Note that we do not require the set of states of a Markov chain to be finite. This is mainly
due to technical reasons, which become apparent later.

Next, we define MDP, which extend Markov chains with non-determinism.

DEF IN IT ION 2 .2. A Markov decision process (MDP) is a tupleM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ), where 𝑆 is
a finite set of states, 𝐴𝑐𝑡 is a finite set of actions, 𝐴𝑣 : 𝑆 → 2𝐴𝑐𝑡 \ {∅} assigns to every state a
non-empty set of available actions, and Δ : 𝑆 × 𝐴𝑐𝑡 → D(𝑆) is a transition function that for each
state 𝑠 and (available) action 𝑎 ∈ 𝐴𝑣(𝑠) yields a probability distribution over successor states.

A state 𝑠 ∈ 𝑆 is called terminal, if Δ(𝑠, 𝑎) (𝑠) = 1 for all enabled actions 𝑎 ∈ 𝐴𝑣(𝑠).

REMARK 2 .3. We assume w.l.o.g. that actions are unique for each state, i.e. 𝐴𝑣(𝑠) ∩ 𝐴𝑣(𝑠′) = ∅
for 𝑠 ≠ 𝑠′ and denote the unique state associated with action 𝑎 inM by state(𝑎,M). This can
be achieved in general by replacing 𝐴𝑐𝑡 with 𝑆 × 𝐴𝑐𝑡 and adapting 𝐴𝑣 and Δ.

Note that we assume the set of available actions to be non-empty in all states. This means
that a run can never get “stuck” in a degenerate state without successors. See Figure 1 for an
example of an MDP.

For ease of notation, we overload functions mapping to distributions 𝑓 : 𝑌 → D(𝑋) by
𝑓 : 𝑌 × 𝑋 → [0, 1], where 𝑓 (𝑦, 𝑥) B 𝑓 (𝑦) (𝑥). For example, instead of 𝛿(𝑠) (𝑠′) and Δ(𝑠, 𝑎) (𝑠′)
we write 𝛿(𝑠, 𝑠′) and Δ(𝑠, 𝑎, 𝑠′), respectively. Furthermore, given a distribution 𝑑 ∈ D(𝑋)
and a function 𝑓 : 𝑋 → R mapping elements of a set 𝑋 to real numbers, we write 𝑑⟨ 𝑓 ⟩ B∑
𝑥∈𝑋 𝑑 (𝑥) 𝑓 (𝑥) to denote the weighted sum of 𝑓 with respect to 𝑑. For example, 𝛿(𝑠)⟨ 𝑓 ⟩ and

12 / 82 T. Brázdil et. al
Δ(𝑠, 𝑎)⟨ 𝑓 ⟩ denote the weighted sum of 𝑓 over the successors of 𝑠 in MC and 𝑠 with action 𝑎 in
MDP, respectively.

State-Action Pairs

Throughout this work, we often speak about state-action pairs. This refers to tuples of the form
(𝑠, 𝑎) where 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴𝑣(𝑠) or equivalently 𝑎 ∈ 𝐴𝑐𝑡 and 𝑠 = state(𝑎,M). Due to our
restriction that each action is associated with exactly one state, denoting both the state and
action is superfluous, strictly speaking. We keep the terminology for consistency with other
works. In Section 6 this notation would however introduce significant overhead and we only
speak about actions there.

Given a set of states 𝑆′ ⊆ 𝑆 and an available-action function 𝐴𝑣′ : 𝑆′→ P(𝐴𝑐𝑡) \ ∅we write,
slightly abusing notation, 𝑆′ × 𝐴𝑣′ = {(𝑠, 𝑎) | 𝑠 ∈ 𝑆′, 𝑎 ∈ 𝐴𝑣′(𝑠)} to denote the set of state-action
pairs obtained in 𝑆′ using 𝐴𝑣′. In particular, 𝑆 × 𝐴𝑣 denotes the set of all state-action pairs in an
MDP. Moreover, for a set of state-action pairs 𝐾 we also write 𝑠 ∈ 𝐾 if there exists an action 𝑎
such that (𝑠, 𝑎) ∈ 𝐾 . Dually, we also write 𝑎 ∈ 𝐾 if an appropriate state 𝑠 exists.

Note that there are two isomorphic representations of sets of state-action pairs, namely as
a set of pairs 𝑋 ⊆ 𝑆 × 𝐴𝑣 or as a pair of sets (𝑅, 𝐵) ∈ 2𝑆 × 2𝐴𝑐𝑡. We make use of both views and
note explicitly when switching from one to another.

Paths & Strategies

An infinite path 𝜌 in a Markov chain is an infinite sequence 𝜌 = 𝑠1𝑠2 · · · ∈ 𝑆𝜔, such that for every
𝑖 ∈ N we have that 𝛿(𝑠𝑖 , 𝑠𝑖+1) > 0. A finite path (or history) 𝜚 = 𝑠1𝑠2 . . . 𝑠𝑛 ∈ 𝑆★ is a non-empty,
finite prefix of an infinite path of length |𝜚| = 𝑛, ending in some state 𝑠𝑛, denoted by 𝑙𝑎𝑠𝑡(𝜚). For
simplicity, we define |𝜌| = ∞ for infinite paths 𝜌. We use 𝜌(𝑖) and 𝜚(𝑖) to refer to the 𝑖-th state
𝑠𝑖 in a given (in)finite path. A state 𝑠 occurs in an (in)finite path 𝜌, denoted by 𝑠 ∈ 𝜌, if there
exists an 𝑖 ≤ |𝜌| such that 𝑠 = 𝜌(𝑖). We denote the set of all finite (infinite) paths of a Markov
chain M by FPathsM (PathsM). Further, we use FPathsM,𝑠 (PathsM,𝑠) to refer to all (in)finite paths
starting in state 𝑠 ∈ 𝑆. Observe that in general FPathsM and PathsM are proper subsets of 𝑆★ and
𝑆𝜔, respectively, as we imposed additional constraints.

An infinite path in an MDP is an infinite sequence 𝜌 = (𝑠1, 𝑎1) (𝑠2, 𝑎2) · · · ∈ (𝑆 × 𝐴𝑣)𝜔, such
that for every 𝑖 ∈ N, 𝑎𝑖 ∈ 𝐴𝑣(𝑠𝑖) and 𝑠𝑖+1 ∈ supp(Δ(𝑠𝑖 , 𝑎𝑖)), setting the length |𝜌| = ∞. Finite
paths 𝜚 and 𝑙𝑎𝑠𝑡(𝜚) are defined analogously as elements of (𝑆 × 𝐴𝑣)★ × 𝑆 and the respective last
state. Again, 𝜌(𝑖) and 𝜚(𝑖) refer to the 𝑖-th state in an (in)finite path with an analogous definition
of a state occurring, |𝜚| denotes the length of a finite path, we refer to the set of (in)finite paths of
an MDPM by FPathsM (PathsM), and write FPathsM,𝑠 (PathsM,𝑠) for all such paths starting in
a state 𝑠 ∈ 𝑆. Further, we use 𝜌𝑎(𝑖) and 𝜚𝑎(𝑖) to denote the 𝑖-th action in the respective path. We

13 / 82 Learning Algorithms for Verification of Markov Decision Processes
say that a state-action pair (𝑠, 𝑎) is in an (in)finite path 𝜚 if there exists an 𝑖 < |𝜚| with 𝑠 = 𝜚(𝑖)
and 𝑎 = 𝜚𝑎(𝑖).

A Markov chain together with a state 𝑠 ∈ 𝑆 naturally induces a unique probability measure
PrM,𝑠 over infinite paths [16, Chapter 10]. For MDP, we first need to eliminate the non-determinism
in order to obtain such a probability measure. This is achieved by strategies (also called policy,
controller, or scheduler).

DEF IN IT ION 2 .4. A strategy on an MDPM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) is a function mapping finite
paths to distributions over available actions, i.e. 𝜋 : FPathsM → D(𝐴𝑐𝑡) where supp(𝜋(𝜚)) ⊆
𝐴𝑣(𝑙𝑎𝑠𝑡(𝜚)) for all 𝜚 ∈ FPathsM .

Intuitively, a strategy is a “recipe” describing which step to take in the current state, given
the evolution of the system so far. Note that the strategy may yield a distribution on the actions
to be taken next.

A strategy 𝜋 is called memoryless (or stationary) if it only depends on 𝑙𝑎𝑠𝑡(𝜚) for all finite
paths 𝜚 and we identify it with 𝜋 : 𝑆 → D(𝐴𝑐𝑡). Similarly, it is called deterministic, if it always
yields a Dirac distribution, i.e. picks a single action to be played next, and we identify it with
𝜋 : FPathsM → 𝐴𝑐𝑡. Together, memoryless deterministic strategies can be treated as functions
𝜋 : 𝑆 → 𝐴𝑐𝑡 mapping each state to an action. We write ΠM to denote the set of all strategies of
an MDPM, ΠM

M for memoryless strategies, and ΠMD
M for all memoryless deterministic strategies.

Fixing a strategy 𝜋 induces a Markov chainM𝜋 = (FPathsM , 𝛿𝜋), where for a state 𝜚 =

𝑠1𝑎1 . . . 𝑠𝑛 ∈ FPathsM , action 𝑎𝑛+1 ∈ 𝐴𝑣(𝑠𝑛), and successor state 𝑠𝑛+1 ∈ supp(Δ(𝑠𝑛, 𝑎𝑛+1)), the
successor distribution is given by 𝛿𝜋 (𝜚, 𝜚𝑎𝑛+1𝑠𝑛+1) = 𝜋(𝜚, 𝑎𝑛+1) · Δ(𝑠, 𝑎𝑛+1, 𝑠𝑛+1). In particular, for
any MDPM, strategy 𝜋 ∈ ΠM , and state 𝑠, we obtain a measure over paths1 PrM𝜋,𝑠, which we
refer to as Pr𝜋M,𝑠. Observe that all these measures operate on the same probability space, namely
the set of all infinite paths PathsM . (See e.g. [118, Section 2.1.6] for further details.) Consequently,
given a measurable event 𝐴, we can define the maximal probability of this event starting from
state 𝑠 under any strategy by

Prsup
M,𝑠 [𝐴] B sup𝜋∈ΠMPr𝜋M,𝑠 [𝐴] .

Note that depending on the structure of 𝐴 it may be the case that no optimal witness exists,
thus we have to resort to the supremum instead of the maximum. We lift this restriction for
our particular use case later on. For a memoryless strategy 𝜋 ∈ ΠM

M , we can identifyM𝜋 with a
Markov chain over the states ofM.

Given an MDPM, memoryless strategy 𝜋 ∈ ΠM
M , and a function assigning a value to each

state-action pair 𝑓 : 𝑆 × 𝐴𝑣→ R, we define 𝜋[𝑓] : 𝑆 → R as the expected value of taking one

1 Technically, this measure operates on infinite sequences of finite paths, as each state ofM𝜋 is a finite path. But thismeasure can easily be projected directly on finite paths.

14 / 82 T. Brázdil et. al
step in state 𝑠 following the strategy 𝜋, i.e.

𝜋[𝑓] (𝑠) B
∑︁

𝑎∈𝐴𝑣(𝑠)𝜋(𝑠, 𝑎) · 𝑓 (𝑠, 𝑎).

Strongly Connected Components and End Components

A non-empty set of states 𝐶 ⊆ 𝑆 in a Markov chain is strongly connected if for every pair 𝑠, 𝑠′ ∈ 𝐶
there is a non-trivial path from 𝑠 to 𝑠′. Such a set 𝐶 is a strongly connected component (SCC) if it
is inclusion maximal, i.e. there exists no strongly connected 𝐶′ with 𝐶 ⊊ 𝐶′. Thus, each state
belongs to at most one SCC. An SCC is called bottom strongly connected component (BSCC) if
additionally no path leads out of it, i.e. for all 𝑠 ∈ 𝐶, 𝑠′ ∈ 𝑆 \ 𝐶 we have 𝛿(𝑠, 𝑠′) = 0. The set of
SCCs and BSCCs in an MC M is denoted by SCC(M) and BSCC(M), respectively.

The concept of SCCs is generalized to MDPs by so called (maximal) end components [61].
Intuitively, an end component describes a set of states in which the system can remain forever.

DEF IN IT ION 2 .5. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be an MDP. A pair (𝑅, 𝐵), where ∅ ≠ 𝑅 ⊆ 𝑆 and
∅ ≠ 𝐵 ⊆ ⋃

𝑠∈𝑅 𝐴𝑣(𝑠), is an end component of an MDPM if
(i) for all 𝑠 ∈ 𝑅, 𝑎 ∈ 𝐵 ∩ 𝐴𝑣(𝑠) we have supp(Δ(𝑠, 𝑎)) ⊆ 𝑅, and

(ii) for all 𝑠, 𝑠′ ∈ 𝑅 there is a finite path 𝜚 = 𝑠𝑎0 . . . 𝑎𝑛𝑠′ ∈ FPathsM ∩ (𝑅 × 𝐵)★ × 𝑅, i.e. the
path stays inside 𝑅 and only uses actions in 𝐵.

An end component (𝑅, 𝐵) is a maximal end component (MEC) if there is no other end component
(𝑅′, 𝐵′) such that 𝑅 ⊆ 𝑅′ and 𝐵 ⊆ 𝐵′.

We identify an end component with the respective set of states, e.g. 𝑠 ∈ 𝐸 = (𝑅, 𝐵) means
𝑠 ∈ 𝑅. Observe that given two overlapping ECs (𝑅1, 𝐵1) and (𝑅2, 𝐵2) with 𝑅1 ∩ 𝑅2 ≠ ∅, their
union (𝑅1 ∪ 𝑅2, 𝐵1 ∪ 𝐵2) also is an EC. Consequently, each state belongs to at most one MEC.
Again, a MEC is bottom if there are no outgoing transitions. The set of ECs of an MDPM is
denoted by EC(M), the set of MECs by MEC(M). For the MDP in Figure 1, the set of MECs is
given by ({𝑠1, 𝑠2}, {𝑎1, 𝑏1, 𝑏2}), ({𝑠+}, {𝑎+}), and ({𝑠−}, {𝑎−}).

REMARK 2 .6. For a Markov chain M, the computation of SCC(M), BSCC(M) and a topological
ordering of the SCCs can be achieved in linear time w.r.t. the number of states and transitions
by, e.g., Tarjan’s algorithm [133]. Similarly, the MEC decomposition of an MDP can be computed
in polynomial time [54]. For improved algorithms on general MDP and various special cases
see [48, 46, 47].

These components fully capture the limit behaviour of any Markov chain and decision
process, respectively. Intuitively, both of the following statements say that a run of such systems
eventually remains inside one BSCC or MEC forever, respectively. The measurability of the sets
in the following two lemmas is well known, see, e.g. [16, Chapter 10].

15 / 82 Learning Algorithms for Verification of Markov Decision Processes
LEMMA 2.7 (MC almost-sure absorption). For any MC M and state 𝑠, we have that PrM,𝑠 [{𝜌 |
∃𝑅𝑖 ∈ BSCC(M).∃𝑛0 ∈ N.∀𝑛 > 𝑛0.𝜌(𝑛) ∈ 𝑅𝑖}] = 1.

PROOF . Follows from [16, Theorem 10.27]. ■

LEMMA 2.8 (MDP almost-sure absorption). For any MDPM, state 𝑠, and strategy 𝜋, we have
that

Pr𝜋M,𝑠 [{𝜌 | ∃(𝑅𝑖 , 𝐵𝑖) ∈ MEC(M).∃𝑛0 ∈ N.∀𝑛 > 𝑛0.𝜌(𝑛) ∈ 𝑅𝑖}] = 1.

PROOF . Follows from [61, Theorem 3.2]. ■

2.2 Reachability

For an MDP M = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) and a set of target states 𝑇 ⊆ 𝑆, bounded reachability for
step 𝑘, denoted by ^≤𝑘𝑇 = {𝜌 ∈ PathsM | ∃𝑖 ∈ {1, . . . , 𝑘 + 1}. 𝜌(𝑖) ∈ 𝑇 }, is the set of all
infinite paths that reach a state in 𝑇 within 𝑘 steps. Analogously, (unbounded) reachability
^𝑇 = {𝜌 ∈ PathsM | ∃𝑖 ∈ N. 𝜌(𝑖) ∈ 𝑇 } are all paths which eventually reach the target set 𝑇 .
We overload the ^ operator to also accept sets of state-action pairs and sets of actions, with
analogous semantics. The sets of paths produced by ^ are measurable for any MDP, target set,
and step bound [16, Section 10.1.1].2 Note that for a set 𝑇 , both ^𝑇 and ^𝑇 are well-defined,
however they refer to two different concepts. The former denotes the set of all paths reaching
a state not in 𝑇 , whereas the latter is the set of all paths which never reach 𝑇 (also called
co-reachability or safety).

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDPM, target set 𝑇 , and state 𝑠, we are interested in computing the maximal
probability of eventually reaching 𝑇 , starting in state 𝑠. Formally, we want to compute the value
of state 𝑠, defined as

V(𝑠) B Prsup
M,𝑠 [^𝑇] = sup𝜋∈ΠMPr𝜋M,𝑠 [^𝑇] .

For an example, suppose we have 𝑇 = {𝑠+} in Figure 1. This can be reached from 𝑠 with
probability 0.5 by always choosing action 𝑎1 in 𝑠1 and 𝑎2 in 𝑠2, and this value is optimal. In
general, an optimal strategy always exists and memoryless deterministic strategies are sufficient
to achieve the optimal value [61, Theorem 3.10], i.e.

V(𝑠) = Prmax
M,𝑠 [^𝑇] = max𝜋∈ΠMPr𝜋M,𝑠 [^𝑇] = max𝜋∈ΠMD

M
Pr𝜋M,𝑠 [^𝑇] .

This state value function satisfies a straightforward fixed point equation, namely

V(𝑠) =
{

1 if 𝑠 ∈ 𝑇 ,

max𝑎∈𝐴𝑣(𝑠)Δ(𝑠, 𝑎)⟨V⟩ otherwise.
(1)

2 Recall that we defined MDP to have finite state and action sets.

16 / 82 T. Brázdil et. al
Moreover,V is the smallest fixed point of this equation [118]. In our approach, we also deal
with values of state-action pairs (𝑠, 𝑎) ∈ 𝑆 × 𝐴𝑣, where

V(𝑠, 𝑎) B Δ(𝑠, 𝑎)⟨V⟩ =
∑︁

𝑠′∈𝑆Δ(𝑠, 𝑎, 𝑠′) · V(𝑠′).

Intuitively,V(𝑠, 𝑎) is the value in state 𝑠 when playing action 𝑎 and then acting optimally (note
that 𝑎 might be a suboptimal action). The overall value of 𝑠,V(𝑠), is obtained by choosing an
optimal action, i.e.V(𝑠) = max𝑎∈𝐴𝑣(𝑠)V(𝑠, 𝑎).

REMARK 2 .9. Our algorithms primarily work by approximating these state-action values
and derive state-values by the above equation. This may seem counter-intuitive at first, since
we could as well directly work with state values and derive state-action values as described
above, saving memory. However, our approaches are inspired by reinforcement learning [131],
explained later, which traditionally assigns values to actions. Thus, we stick with this convention
in our algorithms as well. Finally, in the limited information setting of Sections 5 and 6, the
algorithms do not have access to the exact transition probabilities and hence cannot exploit the
above equation.

See [68, Section 4] for an in-depth discussion of reachability on finite MDP.

Approximate Solutions

The value of a stateV(𝑠) can, for example, be determined using linear programming [53, 68]3 in
polynomial time [95, 91]. Unfortunately, this approach turns out to be inefficient in practice [73,
7]. One way to potentially ease the task is by only considering approximate solutions. Concretely,
on top of an MDPM, starting state 𝑠, and target set 𝑇 , we assume that we are given a precision
requirement 𝜀 > 0. We say a strategy 𝜋 is 𝜀-optimal, if Pr𝜋M,𝑠 [^𝑇] + 𝜀 > V(𝑠). Analogously, a
tuple of values (𝑙, 𝑢) is 𝜀-optimal if 0 ≤ 𝑢 − 𝑙 < 𝜀 andV(𝑠) ∈ [𝑙, 𝑢], i.e. 𝑙 and 𝑢 are lower and
upper bounds on the value, respectively. All algorithms in this work are designed to efficiently
compute such 𝜀-optimal values. We omit computation of a witness strategy due to the technical
difficulties this would entail in the general cases. The general idea of obtaining the witness
strategies moreover is not specific to our approach, as such the related discussion may in turn
distract from the central results.

Note that requiring to find a single value 𝑣 such that |𝑣 − V(𝑠) | < 𝜀 is similar, however
slightly stricter. In particular, if we find (𝑙, 𝑢) with 0 ≤ 𝑢 − 𝑙 < 2𝜀 whereV(𝑠) ∈ [𝑙, 𝑢], we know
that 𝑣 = (𝑢 + 𝑙)/2 would satisfy this requirement (i.e. be at most 𝜀 away from the true value).

3 See [122] for details on linear programming in general.

17 / 82 Learning Algorithms for Verification of Markov Decision Processes
2.3 Probabilistic Learning Algorithms

In order to obtain such approximate solutions, we study a class of learning-based algorithms
that (stochastically) approximate the value function, inspired by approaches from the field
of machine learning. Let us fix an MDPM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ), starting state 𝑠, and target set
𝑇 ⊆ 𝑆. Recall that by approximating the state-action values, we approximate the overall value
of a state. Inspired by BRTDP (bounded real-time dynamic programming) [112]4, we consider
algorithms which maintain and update Upper bounds Up : 𝑆 × 𝐴𝑣→ [0, 1] and Lower bounds
Lo : 𝑆 × 𝐴𝑣→ [0, 1] of these sate-action valuesV(𝑠, 𝑎). The functions Up and Lo are initialised
to appropriate values such that Lo(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Up(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴𝑣(𝑠). This
is clearly satisfied by Lo(·, ·) = 0 and Up(·, ·) = 1, but non-trivial bounds obtained by previous
computations or domain knowledge can be incorporated. We define the state-bounds by

Up(𝑠) B max𝑎∈𝐴𝑣(𝑠)Up(𝑠, 𝑎), and Lo(𝑠) B max𝑎∈𝐴𝑣(𝑠)Lo(𝑠, 𝑎).

It may seem counter-intuitive at first that both sides are maximized. One can think of Up(𝑠)
as “an upper bound on the best this state can offer” (maximization) and Lo(𝑠) as “at least this
value can be obtained in this state” (also maximization).

Now, we clearly have Lo(𝑠) ≤ V(𝑠) ≤ Up(𝑠), thus we can determine the value of a state
𝜀-precise when these respective bounds are sufficiently close. In particular, if we have that

Up(𝑠) − Lo(𝑠) = max𝑎∈𝐴𝑣(𝑠)Up(𝑠, 𝑎) −max𝑎∈𝐴𝑣(𝑠)Lo(𝑠, 𝑎) < 𝜀,

the values (Lo(𝑠),Up(𝑠)) are 𝜀-optimal.
Our learning algorithms update the upper and lower bounds by repeatedly selecting “inter-

esting” / promising state-action pairs of the systemM, usually by sampling the system beginning
in the starting state 𝑠. As such, they are similar to Q-learning [135] approaches, a commonly used
reinforcement learning technique. By following appropriate sampling heuristics the algorithm
learns “important” areas of the system and focuses computation there, potentially omitting
irrelevant parts of the state space without sacrificing correctness. For example, given a state 𝑠
we propose to select an action 𝑎 with maximal upper bound Up(𝑠, 𝑎), as such an action is the
most “promising” one. Then, either this action keeps up to its promise, which will eventually
be reflected by an increasing lower bound, or the algorithm finds that the upper bound is too
high and lowers it. As such, this idea is very similar to optimism in the face of uncertainty [132,

Section 4.2], [106]: We only know that the exact value lies between the upper and lower bound,
thus we are optimistic and assume the best value (= the upper bound) during sampling. As
it turns out, this will lead us to either (i) proving that the upper bound is indeed correct (so
following it was the “correct” move all along) or (ii) proving that the bound is too optimistic, i.e.
leading us to lower it (so following it was “required” to realize this fact).

4 See [20] for the “non-bounded” case RTDP.

18 / 82 T. Brázdil et. al
The algorithms repeatedly experience (learning) episodes, where each episode consists of

several steps. One episode corresponds to sampling a path of some length in the system, while
one step corresponds to sampling the successor state, i.e. each episode comprises several steps.
Throughout this paper, we use e ∈ N exclusively to refer to the e-th episode of some algorithm
execution. Later we also refer to distinct steps within episodes by t ∈ N. In particular, t denotes
the t-th overall step. Finally, te denotes the first step of the e-th episode, i.e. its starting step.
These variables also appear in the algorithms.

The considered algorithms make heavy use of randomness during their execution. Thus,
in order to reason about them, we model them as a stochastic process over an appropriate
measure space (𝔄,A, PA). The entire state of our algorithms at the beginning of episode e
only depends on the sequences of state-action pairs considered until episode e.5 Hence, we
use episodes as our primitive objects. We need to consider both finite and infinite episodes,
since (i) a single episode might in theory comprise infinitely many state-action pairs and (ii) we
could see infinitely many episodes, each of finite length. (In both cases, the algorithm does
not terminate.) Thus, we set 𝔄 = ((𝑆 × 𝐴𝑣 × 𝑆)×)×, where 𝑆× = 𝑆★ ∪ 𝑆𝜔. (Note that this can be
encoded into a single sequence space by introducing a fresh symbol to separate the individual
episodes.) The tuples 𝑆 × 𝐴𝑣 × 𝑆 correspond to the current state, chosen action, and sampled
successor state, respectively. The 𝜎-fieldA is obtained analogously to the 𝜎-field for Markov
chains by considering cylinder sets induced by finite prefixes, see [118, Section 2.1.6]. For a given
prefix, its probability can be obtained by computing the probability of each episode occurring
in the MDP given the current state of the algorithm.

Now that we defined the probability space these algorithms operate in, we can define
notions like almost sure convergence.

DEF IN IT ION 2 .10. Denote by A(𝜀) the instance of learning algorithm A with precision 𝜀. We say
that A converges (almost) surely if, for every MDPM, starting state 𝑠, target set 𝑇 , and precision
𝜀 > 0, the computation of A(𝜀) terminates (almost) surely (w.r.t. PA) and yields 𝜀-optimal values
𝑙 and 𝑢.

We consider a symbolic input encoding, where the MDP’s properties are specified implicitly.
In particular, we design our algorithms such that they are applicable when the available actions
𝐴𝑣 and transition function Δ are given as oracles. This means that given a state 𝑠we can compute
𝐴𝑣(𝑠), and given a state-action pair (𝑠, 𝑎) we obtain the successor distribution Δ(𝑠, 𝑎). This
allows us to achieve sub-linear runtime for some classes of MDP w.r.t. their number of states
and transitions. Note that most practical modelling languages such as the PRISM language [104]
or JANI [38] describe models in such a way.

5 Due to their “template”-structure, Algorithms 2 and 3 are allowed to introduce some further side effects. For example,they may keep a round-robin counter on actions or other heuristics that are used to sample paths in the system.We assume w.l.o.g. that these side effects are either deterministic or can be properly incorporated into the abovemeasure space.

19 / 82 Learning Algorithms for Verification of Markov Decision Processes
Since our learning algorithms in essence only rely on being able to repeatedly sample the

system, we can drastically reduce the knowledge needed about the system. In particular, we
consider the setting of limited information, where the algorithm only has very restricted access
to the system in question. There, we are only provided with bounds on some properties of the
MDP, e.g., the number of states, together with a minimal interaction mechanism. Concretely,
we only get an oracle revealing the currently available actions and a “sampling” oracle, which
upon choosing one of the available actions moves the system into a successor state, sampled
according to the underlying, hidden distributions. The algorithm thus can only simulate an
execution of the MDP starting from the initial state 𝑠, repeatedly choosing an action from the
set of available actions and querying the sampling oracle for a successor. This corresponds to a
“black-box” setting, where we can easily interact with a system and observe the current state,
but have very limited knowledge about its internal transition structure, as might be the case
with complex physical systems.

Here, we cannot directly apply the ideas of Q-learning, since the value of the sampled suc-
cessor might not correspond to the actual value of the action. Instead, the algorithm remembers
the result of recent visits, delaying the learning update. Intuitively, by seeing many sampling
results, we can get a stochastic estimate of the distribution of successor values. In particular,
the average of these observations corresponds to the true value with high confidence. This idea
is exploited by delayed Q-learning [129]. In this setting, we inherently cannot guarantee almost
sure convergence, instead we demand that the algorithm terminates correctly with sufficiently
high probability, specified by the confidence 𝛿 > 0.

DEF IN IT ION 2 .1 1. Denote by A(𝜀, 𝛿) the instance of learning algorithm A with precision 𝜀

and confidence 𝛿. We say that A is probably approximately correct (PAC) if for every MDPM,
starting state 𝑠, target set 𝑇 , precision 𝜀 > 0, and confidence 𝛿 > 0, with probability at least
1 − 𝛿 the computation of A(𝜀, 𝛿) terminates and yields 𝜀-optimal values 𝑙 and 𝑢. In other words,
we require that the set of correct and terminating executions has a measure of at least 1 − 𝛿
under PA.

Note that the “confidence” parameter 𝛿 sometimes is used to refer to the probability of error
and sometimes for the probability of correct results. We deliberately use 𝛿 for the probability
of error to slightly simplify notation. See [134, 5, 129, 127] for several, slightly different variants
of PAC. Some (but not all) definitions also require that the result is obtained within a particular
time-bound (called efficient PAC-MDP in [127]). We prove appropriate bounds for both variants
of our PAC approach.

REMARK 2 .12. We assume the system to be “observable” in both settings, i.e. the algorithm
can access the precise current state of the system and the set of available actions. Extending our
methods to partially observable systems, e.g. POMDP, is left for future work. Moreover, we also
assume that the system can be repeatedly “reset” into the initial configuration 𝑠.

20 / 82 T. Brázdil et. al
3. Complete Information –MDPwithout End Components

In this section, we treat the case of complete information, i.e. the algorithm has full access to the
system, in particular its transition function Δ. Additionally, we assume that the system has no
MECs except two distinguished terminal states. This greatly simplifies the reachability problem
and allows us to gradually introduce our approach. In Section 4, we explain the issue of MECs
(see Example 4.1) and extend our approach to general MDP.

3.1 The Ideas of Value Iteration

Our approach is based on ideas related to value iteration (VI) [86]. Thus, we first explain the
basic principles of VI. Value iteration is a technique to solve, among others, reachability queries
on MDP. It essentially amounts to applying Bellman iteration [23] corresponding to the fixed
point equation in Equation (1) [68, Section 4.2]. In particular, starting from an initial value
vector 𝑣0 with 𝑣0(𝑠) = 1 if 𝑠 ∈ 𝑇 and 0 otherwise, we apply the iteration

𝑣𝑛+1(𝑠) =
{

1 if 𝑠 ∈ 𝑇 ,

max𝑎∈𝐴𝑣(𝑠)Δ(𝑠, 𝑎)⟨𝑣𝑛⟩ otherwise.

It is known that this iteration converges to the true valueV in the limit from below, i.e. for
all states 𝑠 we have (i) lim𝑛→∞ 𝑣𝑛(𝑠) = V(𝑠) and (ii) 𝑣𝑛(𝑠) ≤ 𝑣𝑛+1(𝑠) ≤ V(𝑠) for all iterations 𝑛
[118, Theorem 7.2.12]6. It is not difficult to construct a system where convergence up to a given
precision takes exponential time [73], but in practice VI often is much faster than methods
based on linear programming (LP)7 [77], which in theory has worst-case polynomial runtime
and yields precise answers [91]. An important practical issue of VI is the absence of a stopping
criterion, i.e. a straightforward way of determining in general whether the current values 𝑣𝑛(𝑠)
are close to the true value function V(𝑠), as discussed in, e.g., [68, Section 4.2]. As already
hinted at, we solve this problem by additionally computing upper bounds, converging to the
true value from above.

While the classical value iteration approach updates all states synchronously, the iteration
can also be executed asynchronously. This means that we do not have to update the values
of all states (or state-action pairs) simultaneously. Instead, the update order may be chosen
by heuristics, as long as fairness constraints are satisfied, i.e. eventually all states get updated.
This observation is essential for our approach, since we want to focus our computation on
“important” areas.

6 Note that reachability is a special case of expected total reward, obtained by assigning a one-time reward of 1 toeach goal state.7 See [16, Theorem 10.105] for an LP-based solution of reachability.

21 / 82 Learning Algorithms for Verification of Markov Decision Processes

Input: MDP M, state 𝑠, precision 𝜀, and initial bounds Up1 and
Lo1.

Output: 𝜀-optimal values (𝑙, 𝑢), i.e., V(𝑠) ∈ [𝑙, 𝑢] and 0 ≤ 𝑢 − 𝑙 < 𝜀.
1: e← 1 > Initialize
2: while Upe(𝑠) − Loe(𝑠) ≥ 𝜀 do
3: 𝜚e ← SamplePairs(M, 𝑠,Upe, Loe, 𝜀) > Sample pairs to update
4: Upe+1 ← Upe, Loe+1 ← Loe

5: forall (𝑠, 𝑎) ∈ 𝜚e do > Update the upper and lower bounds
6: Upe+1(𝑠, 𝑎) ← Δ(𝑠, 𝑎)⟨Upe⟩
7: Loe+1(𝑠, 𝑎) ← Δ(𝑠, 𝑎)⟨Loe⟩
8: e← e + 1
9: return (Loe(𝑠),Upe(𝑠))

Algorithm 2. The BRTDP learning algorithm for MDPs without ECs.

3.2 The No-EC BRTDP Algorithm

With these ideas in mind, we are ready to present our first algorithm. Throughout this section, fix
a required precision 𝜀 > 0, an MDPM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) with two distinguished states 𝑠+, 𝑠− ∈ 𝑆,
target set 𝑇 = {𝑠+}, and a starting state 𝑠. We assume thatM has no MECs except the two
terminal states 𝑠+ and 𝑠−.

Assumption 1. MDPM has no MECs, except two trivial ones comprising the target state 𝑠+ and
sink state 𝑠−, respectively. Formally, we require that MEC(M) = {({𝑠+}, 𝐴𝑣(𝑠+)), ({𝑠−}, 𝐴𝑣(𝑠−))}.

Observe that with Assumption 1 and 𝑇 = {𝑠+}, we haveV(𝑠+) = 1 andV(𝑠−) = 0.
We present our BRTDP approach in Algorithm 2. As already mentioned in the introduction,

the algorithm repeatedly samples sets of state-action pairs from the system. Based on these
experiences, it updates the upper and lower bounds using Bellman updates (or Bellman backups),
corresponding to Equation (1), until convergence. (Recall that Up(𝑠) = max𝑎∈𝐴𝑣(𝑠) Up(𝑠, 𝑎) and
Lo(𝑠) analogously.)

To allow for practical optimization, we leave the sampling method SamplePairs undefined
and instead only require some generic properties. A simple implementation is given by sampling
a path starting in the initial state and following random actions. However, SamplePairs may use
randomization and sophisticated guidance heuristics, as long as it satisfies certain conditions in
the limit (formally defined in Assumption 3).

22 / 82 T. Brázdil et. al
REMARK 3.1. We highlight that SamplePairs is not even required to return paths. Instead, it
can yield any set of state-action pairs. However, when dealing with the limited information
setting, we require sampling paths. Thus, it may be instructive to already think of SamplePairs
as a procedure returning paths.

3.3 Proof of Correctness

In this section, we prove correctness of the algorithm, i.e. that the returned result is correct and
that the algorithm terminates. We now first establish correctness of the result, assuming that
the received input is sane.

Assumption 2. We have that (i) the given initial bounds Up1 and Lo1 are correct, i.e. Lo1(𝑠, 𝑎) ≤
𝑉 (𝑠, 𝑎) ≤ Up1(𝑠, 𝑎) for all (𝑠, 𝑎) ∈ 𝑆 × 𝐴𝑣, and (ii) Lo1(𝑠+) = 1 and Up1(𝑠−) = 0.

LEMMA 3.2. Assume that Assumption 2 holds. Then, during any execution of Algorithm 2 we
have for every episode e and all state-action pairs (𝑠, 𝑎) that

Loe(𝑠, 𝑎) ≤ Loe+1(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Upe+1(𝑠, 𝑎) ≤ Upe(𝑠, 𝑎).

PROOF . Initially, we have that Lo1(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Up1(𝑠, 𝑎) by Assumption 2. The updates
in Lines 6 and 7 clearly preserve these inequalities by Equation (1). A simple inductive argument
concludes the proof. ■

LEMMA 3.3. Assume that Assumption 2 holds. Then, the result (𝑙, 𝑢) of Algorithm 2 is correct,
i.e. (i) 0 ≤ 𝑢 − 𝑙 < 𝜀, and (ii)V(𝑠) ∈ [𝑙, 𝑢].

PROOF . Clearly, (i) immediately follows from Lemma 3.2 and the main loop condition in Line 2.
Similarly, (ii) also follows from Lemma 3.2. ■

In order to prove (almost sure) convergence of Algorithm 2, we need some assumptions on
SamplePairs. Intuitively, SamplePairs may not neglect actions which might be the optimal ones.
In order to allow for a wide range of implementations for SamplePairs, we present the rather
liberal but technical condition of fairness in Assumption 3. We further explain each part of this
assumption in the following proof of convergence.

Before we continue to the assumption, we introduce a concept, namely the set of Up-
optimal actions, which is also used in the proof. We define the set of actions optimal w.r.t. Upe

in state 𝑠 during episode e as MaxAe(𝑠) B arg max𝑎∈𝐴𝑣(𝑠)Upe(𝑠, 𝑎). If the algorithm does not
converge, the set MaxAe(𝑠) may change infinitely often. For example, two equivalent actions
may get updated in an alternating fashion. Thus, for each state 𝑠, we also define the set of actions
that are optimal infinitely often as MaxA∞(𝑠) B

⋂∞
𝑘=1

⋃∞
e=𝑘MaxAe(𝑠). This set is non-empty, since

there are only finitely many actions and MaxAe(𝑠) is non-empty for any episode e.

23 / 82 Learning Algorithms for Verification of Markov Decision Processes
Assumption 3. Let {Upe}∞e=1 and {Loe}∞e=1 be consistent sequences of upper and lower bounds,
i.e. Lo1(𝑠, 𝑎) ≤ Lo2(𝑠, 𝑎) ≤ · · · ≤ V(𝑠, 𝑎) ≤ · · · ≤ Up2(𝑠, 𝑎) ≤ Up2(𝑠, 𝑎) for all state-action
pairs (𝑠, 𝑎). Assume that each call SamplePairs(M, 𝑠,Upe, Loe, 𝜀) terminates in finite time and let
𝜚1, 𝜚2, · · · ∈ P(𝑆 × 𝐴𝑐𝑡) \ ∅ the infinite sequence of non-empty state-action sets obtained from it.

Set 𝑆∞ =
⋂∞
𝑘=1

⋃∞
e=𝑘{𝑠 ∈ 𝑆 | 𝑠 ∈ 𝜚e} the set of all states which occur infinitely often, analogous

for the set of actions occurring infinitely often, denoted 𝐴𝑐𝑡∞. Then
1. the initial state is sampled infinitely often, i.e. 𝑠 ∈ 𝑆∞,
2. all actions which are optimal infinitely often are also sampled infinitely often, i.e. MaxA∞(𝑠) ⊆

𝐴𝑐𝑡∞ for every 𝑠 ∈ 𝑆∞, and
3. all successors of optimal actions are sampled infinitely often, i.e. for every 𝑠 ∈ 𝑆∞ and

𝑎 ∈ MaxA∞(𝑠) we have that supp(Δ(𝑠, 𝑎)) ⊆ 𝑆∞.

We say SamplePairs almost surely satisfies Assumption 3, if all of its conditions hold with
probability 1.

In essence, the assumption requires that all states which are reachable by following optimal
actions are indeed reached infinitely often in the limit: Starting from the initial state (Item 1),
we select each optimal action infinitely often (Item 2) and explore all successors of these actions
(Item 3). For each of these successors, we again select all optimal actions, etc. This insight directly
yields an implementation for SamplePairs, namely to repeatedly sample a path, starting in the
initial state and in each state selecting any optimal action from MaxAe(𝑠) uniformly at random,
until 𝑠+ or 𝑠− are reached. Variants of this implementation can, for example, select actions in
a round-robin fashion or sample from the optimal actions in a weighted manner. Similarly,
naively selecting all state-action pairs in every iteration (effectively classical value iteration) or
selecting a single pair at random would also satisfy the assumption.

LEMMA 3.4. Algorithm 2 terminates under Assumptions 1 to 3. It terminates almost surely if
Assumption 3 is satisfied almost surely.

PROOF . We prove the second case, i.e. almost sure termination, by contradiction. Assume that
Assumptions 1 and 2 hold, and that Assumption 3 holds a.s. Further, assume for contradiction
that the set of non-terminating executions of Algorithm 2 has non-zero measure. Since we
assume that each call to SamplePairs terminates in finite time (Assumption 3) a.s., the only way
Algorithm 2 does not terminate is when the central while-loop is executed infinitely often, i.e.
the bounds never converge.

Given some execution of Algorithm 3, define Diffe(𝑠, 𝑎) B Upe(𝑠, 𝑎) − Loe(𝑠, 𝑎). Fix
an arbitrary action 𝑎max

e (𝑠) ∈ MaxAe(𝑠) for each episode e. Clearly, for any such action
𝑎max

e (𝑠) we have Diffe(𝑠, 𝑎max
e (𝑠)) = Upe(𝑠) − Loe(𝑠, 𝑎max

e) ≥ Upe(𝑠) − Loe(𝑠). By Lemma 3.2,
the limits Up∞(𝑠, 𝑎) B lime→∞ Upe(𝑠, 𝑎) and Lo∞(𝑠, 𝑎) B lime→∞ Loe(𝑠, 𝑎) are well-defined
and finite for any state-action pair (𝑠, 𝑎). Thus, Diff (𝑠, 𝑎) B lime→∞ Diffe(𝑠, 𝑎) and Diff (𝑠) B

24 / 82 T. Brázdil et. al
lim supe→∞ Diffe(𝑠, 𝑎max

e (𝑠)) is also well-defined and finite. We prove that Diff (𝑠) = 0 for almost
all executions, contradicting the assumption, as then necessarily Upe(𝑠) − Loe(𝑠) ≤ Diffe(𝑠) < 𝜀

for some e a.s.
Observe that the preconditions of Assumption 3 are satisfied through Lemma 3.2 and

Assumption 2, hence we have 𝑠 ∈ 𝑆∞ a.s. [Fact I]. Let 𝑆∞ the set of states seen infinitely often
as defined in Assumption 3. By the assumption, we also have that supp(Δ(𝑠, 𝑎)) ⊆ 𝑆∞ for all
𝑠 ∈ 𝑆∞, 𝑎 ∈ MaxA∞(𝑠) a.s. [Fact II].

Now, we identify a witness action 𝑎Diff (𝑠) for the lim sup of Diff (𝑠), i.e. an action 𝑎Diff (𝑠)
such that Diff∞(𝑠) = lime→∞ Diffe(𝑠, 𝑎Diff (𝑠)) and then derive a fixed-point equation. We have
Up∞(𝑠, 𝑎) = Up∞(𝑠, 𝑎′) for all 𝑠 ∈ 𝑆∞ and 𝑎, 𝑎′ ∈ MaxA∞(𝑠), as otherwise one of the two actions
would not be optimal eventually. Consequently, lime→∞ Upe(𝑠, 𝑎max

e) is well-defined and equals
Up∞(𝑠, 𝑎) for any 𝑎 ∈ MaxA∞(𝑠). Equally, lim supe→∞ Loe(𝑠, 𝑎max

e) also is well-defined, since Loe

is bounded. Hence the lim sup of Diff (𝑠) distributes over the minus. Recall that for each state-
action pair, the limit of Lo∞(𝑠, 𝑎) is well-defined. As there are only finitely many actions, the
sequence Loe(𝑠, 𝑎max

e) only has finitely many accumulation points and there necessarily exists
an action 𝑎Diff (𝑠) ∈ MaxA∞(𝑠) such that lim supe→∞ Loe(𝑠, 𝑎max

e) = Lo∞(𝑠, 𝑎Diff (𝑠)). Together, we
have that Diff (𝑠) = Up∞(𝑠, 𝑎Diff (𝑠)) − Lo∞(𝑠, 𝑎Diff (𝑠)). Since all states 𝑆∞ and all optimal actions
MaxA∞ are visited infinitely often, we have that Up∞(𝑠, 𝑎) = Δ(𝑠, 𝑎)⟨Up∞⟩ and Lo∞(𝑠, 𝑎) =
Δ(𝑠, 𝑎)⟨Lo∞⟩ for all 𝑠 ∈ 𝑆∞ and 𝑎 ∈ MaxA∞(𝑠) by the back-propagation in Lines 6 and 7—if
not, they would get updated. Consequently, Diff (𝑠) = Δ(𝑠, 𝑎Diff (𝑠))⟨Diff⟩ for all 𝑠 ∈ 𝑆∞, since
𝑎Diff (𝑠) ∈ MaxA∞(𝑠) [Fact III].

Finally, we use Assumption 1 together with the above equation to show that Diff (𝑠) = 0.
Let the maximal difference Diffmax = max𝑠∈𝑆∞ Diff (𝑠) and define the witness states 𝑆Diff = {𝑠 ∈
𝑆∞ | Diff (𝑠) = Diffmax}. Assume for contradiction that Diff > 0 (a.s.). Then, clearly 𝑠+, 𝑠− ∉ 𝑆Diff ,
as Diff (𝑠+) = Diff (𝑠−) = 0 by Lemma 3.2 (the bounds of the special states are both set to 1 or 0
initially, respectively) and Assumption 2 (bounds are monotone). Consequently, 𝑆Diff cannot
contain any EC by Assumption 1 (the MDP is MEC-free). Since 𝑆Diff does not contain an EC, there
exists some state 𝑠 ∈ 𝑆Diff such that for all 𝑎 ∈ 𝐴𝑣(𝑠) we have supp(Δ(𝑠, 𝑎)) ⊈ 𝑆Diff . In other
words, for each action 𝑎 ∈ 𝐴𝑣(𝑠), there exists a state 𝑠𝑎 with both 𝑠𝑎 ∉ 𝑆Diff and Δ(𝑠, 𝑎, 𝑠𝑎) > 0.
By definition of 𝑆Diff (all states with maximal difference), we have that Diff (𝑠𝑎) < Diffmax. In
particular, Diff (𝑠, 𝑎Diff (𝑠)) < Diff (𝑠) [Fact IV]. We abbreviate the witness action from [III] by
𝑎 B 𝑎Diff (𝑠). Then

Diff (𝑠) [III]= Δ(𝑠, 𝑎)⟨Diffmax⟩ =
∑︁

𝑠′∈𝑆Δ(𝑠, 𝑎, 𝑠′) · Diff (𝑠′)
[II]
=

∑︁
𝑠′∈𝑆∞

Δ(𝑠, 𝑎, 𝑠′) · Diff (𝑠′)
=

∑︁
𝑠′∈𝑆∞\{𝑠𝑎}

Δ(𝑠, 𝑎, 𝑠′) · Diff (𝑠′) + Δ(𝑠, 𝑎, 𝑠𝑎) · Diff (𝑠𝑎)
≤

∑︁
𝑠′∈𝑆∞\{𝑠𝑎}

Δ(𝑠, 𝑎, 𝑠′) · Diffmax + Δ(𝑠, 𝑎, 𝑠𝑎) · Diff (𝑠𝑎)

25 / 82 Learning Algorithms for Verification of Markov Decision Processes

𝑠

𝑠+

𝑠−

𝑎1

𝑏1

0.5

0.5

0.75 0.25

Figure 2. Example MDP where following the upper bounds is wrong.

[IV]
<

∑︁
𝑠′∈𝑆∞\{𝑠𝑎}

Δ(𝑠, 𝑎, 𝑠′) · Diffmax + Δ(𝑠, 𝑎, 𝑠𝑎) · Diffmax

= Diffmax,

contradicting 𝑠 ∈ 𝑆Diff , i.e. Diff (𝑠) = Diffmax, and we have that Diffmax = 0. To conclude the
proof, observe that 𝑆Diff = 𝑆∞ a.s., as 0 ≤ Diff (𝑠) ≤ Diffmax = 0 for all 𝑠 ∈ 𝑆∞, and Diff (𝑠) = 0 a.s.,
since 𝑠 ∈ 𝑆∞ a.s. by [I].

Guaranteed convergence (instead of “only” almost sure) follows analogously. ■

As an immediate consequence of Lemma 3.3 (correctness) and Lemma 3.4 (termination), we get
the desired result.

THEOREM 3.5. Assume that Assumptions 1 and 2, and (almost surely) Assumption 3 hold. Then
Algorithm 2 is correct and converges (almost surely).

REMARK 3.6. If an implementation of SamplePairs satisfies Assumption 3 only almost surely,
we can easily obtain a surely terminating variant by interleaving it with a deterministic sampling
procedure, e.g., a round-robin method.

EXAMPLE 3.7. Interestingly, following the optimal upper bound does not necessarily yield
an 𝜀-optimal strategy, as shown by the MDP in Figure 2. Assume that initially we take action
𝑎1, setting Up2(𝑠, 𝑎1) = Lo2(𝑠, 𝑎1) = 1

2 . Then, Up2(𝑠, 𝑏1) = 1 > Up2(𝑠, 𝑎1) and we sample 𝑏1,
updating Up3(𝑠, 𝑏1) = 3

4 , Up4(𝑠, 𝑏1) = 3
4 · 3

4 , etc. This continues until the upper bound of 𝑏1

is 𝜀-close to 1
2 , when the algorithm terminates. Now, suppose that instead of Δ(𝑠, 𝑏1, 𝑠−) = 1

4

exactly, we have Δ(𝑠, 𝑏1, 𝑠−) = 𝑝. Then, Up𝑖 (𝑠, 𝑏1) = (1 − 𝑝)𝑖−1. For a fixed 𝜀, choose 𝑝 such that
1
2 < (1 − 𝑝)𝑘 < 1

2 + 𝜀 for some 𝑘. This means that in episode e = 𝑘 + 1 (where the algorithm
terminates) we have Upe(𝑠, 𝑏1) > Upe(𝑠, 𝑎1). Yet, following 𝑏1 yields a (highly) suboptimal value,
namely 0 instead of 1

2 .
It is straightforward to also apply this example to our DQL approach and as a counterex-

ample to [33, Lemma 16]. ■

Following the maximal lower bound yields a strategy achieving at least this value, using
results on asynchronous VI [118]. We omit formal treatment of this claim, since we are not

26 / 82 T. Brázdil et. al

𝑠 𝑠1

𝑠+

𝑠−

𝑎0

𝑎1

𝑏1
0.5

0.5

Figure 3. Example MDP with an EC where Algorithm 2 does not converge.

concerned with extracting a witness strategy to avoid distraction from the main result. (Note
that it is in general not correct to choose an arbitrary value-optimal action, i.e. any action
arg max𝑎∈𝐴𝑣(𝑠)V(𝑠, 𝑎).)

4. Complete Information – General Case

In this section, we deal with the case of general MDP, in particular, we allow for arbitrary
ECs. We first illustrate with an example the additional difficulties arising when considering
general MDPs with non-trivial ECs. In particular, Algorithm 2 does not converge, even on a
small example.

EXAMPLE 4.1. Consider the MDP depicted in Figure 3. Clearly, we can reach the goal 𝑇 = {𝑠+}
with probability 1

2 by playing 𝑎0 in 𝑠 and then 𝑏1 in 𝑠1. But the EC ({𝑠, 𝑠1}, {𝑎0, 𝑎1}) causes issues
for Algorithm 2. When running the algorithm on this example MDP, we eventually have that
Up(𝑠1, 𝑏1) = Lo(𝑠1, 𝑏1) = 1

2 , but Up(𝑠1, 𝑎1) = 1, since Up(𝑠) = 1. Similarly, we keep Up(𝑠, 𝑎0) = 1,
as Up(𝑠1) = 1. Informally, 𝑠 and 𝑠1 “promise” each other that the target state might still be
reachable with probability 1, but these promises depend on each other cyclically. Removing the
internal behaviour of this EC and “merging” 𝑠 and 𝑠1 into a single state (with only action 𝑏1)
solves this issue. ■

In general, by definition of ECs, every state inside an EC can be reached from any other
state with probability 1. Since we are interested in (unbounded) reachability, this means that
for an EC there can only be two cases. Either, the EC contains a target state. Then, reaching any
state of the EC is (a.s.) equivalent to reaching the target already and we do not need to treat
the internal transitions of the EC further. Otherwise, i.e. when the EC does not contain a target
state, we can also omit treatment of its internal behaviour and only consider its interaction
with outside states. For the remainder of the section, fix an arbitrary MDPM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ),
starting state 𝑠, target set 𝑇 , and precision 𝜀 > 0.

LEMMA 4.2. Let (𝑅, 𝐵) ∈ EC(M) be an EC ofM. Then, Prmax
M,𝑠 [^{𝑠′}] = 1 for any states 𝑠, 𝑠′ ∈ 𝑅

and consequently Prmax
M,𝑠 [^𝑇] = Prmax

M,𝑠′ [^𝑇] for any target set 𝑇 ⊆ 𝑆.

PROOF . Follows directly from [52, Lemma 1] (observe that the first claim is a special case of
the second claim with 𝑇 = {𝑠′}). ■

27 / 82 Learning Algorithms for Verification of Markov Decision Processes
In other words, states in the same EC are equivalent for reachability and we can apply

a quotienting construction w.r.t. to ECs. This idea has been exploited by the MEC quotient
construction [61, 52, 73], a preprocessing step where first all MECs are identified and then
“collapsed” into a representative state. However, this approach requires that the whole graph
structure of the MDP is known. Constructing the whole graph of the system may be prohibitively
expensive or even impossible, as, e.g., in our limited knowledge setting (see Definition 5.2).
Hence, we propose a modification to the BRTDP algorithm, which detects and handles ECs
“on-the-fly”. The algorithm will repeatedly identify ECs and maintain a separate, simplified
MDP, which is similar to a MEC quotient.

4.1 Collapsing End Components

As already explained, collapsing an EC can be viewed as replacing it with a single representative
state, omitting the internal behaviour of the EC. In the following definition, we introduce the
collapsed MDP, where end components are merged into representative states. Moreover, we
again introduce the special states 𝑠+ and 𝑠−, acting as a target and sink respectively, to avoid
corner cases. Many statements in this section are similar to [61, Section 6.4] but adapted to our
particular use case. Note that our definition of collapsed MDP in particular depends on the
target set 𝑇 .

DEF IN IT ION 4.3. Let EC = {(𝑅1, 𝐵1), . . . , (𝑅𝑛, 𝐵𝑛)} ⊆ EC(M) be a (possibly empty) set of ECs
inM with 𝑅𝑖 , 𝐵𝑖 ≠ ∅ and pairwise disjoint. Define 𝑅EC =

⋃
𝑖 𝑅𝑖 and 𝐵EC =

⋃
𝑖 𝐵𝑖 the set of all

states and actions in EC, respectively.
The collapsed MDP is defined asM𝑐 = (𝑆𝑐, 𝐴𝑐𝑡𝑐, 𝐴𝑣𝑐, Δ𝑐) = collapse(M, EC, 𝑠, 𝑇),
𝑆𝑐 = 𝑆 \ 𝑅EC ∪ {𝑠(𝑅𝑖 ,𝐵𝑖)} ∪ {𝑠+, 𝑠−}, where 𝑠(𝑅𝑖 ,𝐵𝑖) ∉ 𝑆 are new representative states, 𝑠+ is the
new target state, and 𝑠− is a new sink state,
𝐴𝑐𝑡𝑐 = 𝐴𝑐𝑡 \ 𝐵EC ∪ {rem𝑖} ∪ {𝑎+, 𝑎−}, where rem𝑖 ∉ 𝐴𝑐𝑡 are new remain actions (one per
state, as we assume actions to be uniquely associated with one state),
𝐴𝑣𝑐(𝑠) is defined by

𝐴𝑣𝑐(𝑠) = 𝐴𝑣(𝑠) for 𝑠 ∈ 𝑆 \ 𝑅EC,8

𝐴𝑣𝑐(𝑠(𝑅𝑖 ,𝐵𝑖)) =
⋃
𝑠∈𝑅𝑖 𝐴𝑣(𝑠) \ 𝐵𝑖 ∪ {rem𝑖},

𝐴𝑣𝑐(𝑠+) = {𝑎+}, 𝐴𝑣′(𝑠−) = {𝑎−}, and
Δ𝑐 is defined by (states is an auxiliary function defined below)

Δ𝑐(𝑠𝑐, 𝑎𝑐, 𝑠′𝑐) = ∑
𝑠′∈states(𝑠′𝑐) Δ(state(𝑎𝑐,M), 𝑎𝑐, 𝑠′) for 𝑠𝑐, 𝑠′𝑐 ∈ 𝑆𝑐 \ {𝑠+, 𝑠−} and 𝑎𝑐 ∈

𝐴𝑣𝑐(𝑠𝑐) ∩ 𝐵,
Δ𝑐(𝑠(𝑅𝑖 ,𝐵𝑖) , rem𝑖) = {𝑠+ ↦→ 1} if 𝑇 ∩ 𝑅𝑖 ≠ ∅ and {𝑠− ↦→ 1} otherwise, and
Δ𝑐(𝑠+, 𝑎+, 𝑠+) = 1, Δ′(𝑠−, 𝑎−, 𝑠−) = 1,

8 Recall that actions in 𝐵EC are only available for states in 𝑅EC, hence 𝐴𝑣(𝑠) ⊆ 𝐴𝑐𝑡𝑐 for other states.

28 / 82 T. Brázdil et. al

𝑠 𝑠1

𝑠2 𝑠3

𝑠({𝑠,𝑠1 },{𝑎0 ,𝑎1 })

𝑠({𝑠2 ,𝑠3 },{𝑎2 ,𝑎3 })

𝑠−

𝑠+

𝑎0

𝑎1

𝑎2

𝑎3

𝑏0 𝑏1 𝑏0 𝑏1

rem1

rem2

𝑎−

𝑎+

Figure 4. Example of an MDP (left) and its collapsed version (right) with 𝑇 = {𝑠2} and
EC = {({𝑠, 𝑠1}, {𝑎0, 𝑎1}), ({𝑠2, 𝑠3}, {𝑎2, 𝑎3})}.

with the following auxiliary functions
collapsed : 𝑆 → 𝑆𝑐 maps states ofM to their corresponding state in the collapsed MDP, i.e.
collapsed(𝑠) = 𝑠(𝑅𝑖 ,𝐵𝑖) if 𝑠 ∈ 𝑅𝑖 for some 𝑖 and collapsed(𝑠) = 𝑠 otherwise,
states : 𝑆𝑐 \ {𝑠+, 𝑠−} → 2𝑆 maps states in the collapsed MDP to the set of states they
represent, i.e. states(𝑠𝑐) = 𝑅𝑖 if 𝑠𝑐 = 𝑠(𝑅𝑖 ,𝐵𝑖) for some 𝑖 and states(𝑠𝑐) = {𝑠𝑐} ⊆ 𝑆 otherwise,
equiv : 𝑆 → 2𝑆 maps states ofM to all states in their EC, i.e. equiv(𝑠) = 𝑅𝑖 if 𝑠 ∈ 𝑅𝑖 for
some 𝑖 and equiv(𝑠) = {𝑠} otherwise.

Note that equiv(𝑠) = states(collapsed(𝑠)). For ease of notation, we extend these auxiliary
functions to sets of states in the obvious way, i.e. collapsed(𝑅) = {collapsed(𝑠) | 𝑠 ∈ 𝑅},
states(𝑅𝑐) =

⋃
𝑠𝑐∈𝑅𝑐 states(𝑠𝑐), and equiv(𝑅) =

⋃
𝑠∈𝑅 equiv(𝑠). Finally, if 𝑠 ∈ 𝑅𝑖 for some 𝑖,

we identify 𝑠 with 𝑠(𝑅𝑖 ,𝐵𝑖) for ease of notation. This guarantees that we always have 𝑠 ∈ 𝑆𝑐.

See Figure 4 for an example of a collapsed MDP. Observe that given a set EC explicitly, the
collapsed MDP can be computed on-the-fly, i.e. without constructing the original MDP com-
pletely. In particular, for a state 𝑠 in the MDPM, we can compute the corresponding state
𝑠𝑐 = collapsed(𝑠) as well as 𝐴𝑣𝑐(𝑠𝑐) and Δ𝑐(𝑠𝑐, 𝑎𝑐) for all actions 𝑎 ∈ 𝐴𝑣𝑐(𝑠𝑐), based on the given
set EC.

Now, we prove some useful properties about the collapsed MDP. These properties are
rather intuitive, however the corresponding proofs are surprisingly technical without revealing
relevant insights. Thus, the proofs may be skipped. In essence, we prove that (i) there is a corre-
spondence of paths between the original and the collapsed MDP, (ii) there is a correspondence
of ECs between the two MDPs, and, most importantly, (iii) the reachability probability is equal
on the two MDPs.

Fix a collapsed MDP of M as M𝑐 = (𝑆𝑐, 𝐴𝑐𝑡𝑐, 𝐴𝑣𝑐, Δ𝑐) = collapse(M, EC, 𝑠, 𝑇) for the
remainder of this section, where EC = {(𝑅𝑖 , 𝐵𝑖)}𝑛𝑖=1 is any appropriate set of end components.

LEMMA 4.4. We have that collapsed(state(𝑎,M)) = state(𝑎,M𝑐) for all 𝑎 ∈ 𝐴𝑐𝑡 ∩ 𝐴𝑐𝑡𝑐.

29 / 82 Learning Algorithms for Verification of Markov Decision Processes
PROOF . First, observe that 𝐴𝑐𝑡∩𝐴𝑐𝑡𝑐 = 𝐴𝑐𝑡𝑐\{𝑎+, 𝑎−, rem𝑖} by definition. The claim follows by
a case distinction on 𝑠𝑐 = state(𝑎,M𝑐). If 𝑠𝑐 ∈ 𝑆, then 𝐴𝑣(𝑠𝑐) = 𝐴𝑣𝑐(𝑠𝑐) and collapsed(𝑠𝑐) = 𝑠𝑐.
If instead 𝑠𝑐 = 𝑠(𝑅𝑖 ,𝐵𝑖) for some (𝑅𝑖 , 𝐵𝑖) ∈ EC, we have that 𝑎 ∈ ⋃

𝑠∈𝑅𝑖 𝐴𝑣(𝑠) \ 𝐵𝑖 . Thus, there exists
a state 𝑠 ∈ 𝑅𝑖 such that 𝑠 = state(𝑎,M). But then by definition collapsed(𝑠) = 𝑠𝑐. ■

The following two lemmas show how we can relate paths in the two MDPs with each other.
See [61, Section 6.4.1] for an alternative view. Intuitively, the collapsed MDP also gives us a
“quotient” on the set of paths. Essentially, a continuous sequence of state-action pairs belonging
to the same EC from EC is “collapsed” to the corresponding representative. Vice-versa, any path
in the collapsed MDP corresponds to a set of paths in the original MDP.

LEMMA 4.5. Let 𝜚 = 𝑠1𝑎1 . . . 𝑎𝑛−1𝑠𝑛 ∈ FPathsM be a finite path in the MDPM. There exists a
number 𝑚 ≤ 𝑛 and indices 𝑖1, . . . , 𝑖𝑚 with 1 ≤ 𝑖 𝑗 < 𝑖 𝑗+1 ≤ 𝑛 such that

𝜚𝑐 = collapsed(𝑠𝑖1)𝑎𝑖1 . . . 𝑎𝑖𝑚−1collapsed(𝑠𝑖𝑚) ∈ FPathsM𝑐

is a finite path in the collapsed MDPM𝑐 with collapsed(𝑠1) = collapsed(𝑠𝑖1) and collapsed(𝑠𝑛) =
collapsed(𝑠𝑖𝑚).

PROOF . We construct the path 𝜚𝑐 inductively. We start with 𝑖1 = 1 and 𝑠𝑐1 = collapsed(𝑠1). Now,
either all actions of 𝜚 are in 𝐵EC, then by definition of ECs all states of 𝜚 are within the same
EC and we are done. Otherwise, let 𝑎 be the first action along the path 𝜚 such that 𝑎 ∈ 𝐴𝑐𝑡𝑐 (i.e.
𝑎 ∉ 𝐵EC) and let its index equal 𝑗. Set 𝑖2 = 𝑗, 𝑎𝑐1 = 𝑎 and 𝑠𝑐2 = collapsed(𝑠𝑖+1). Then 𝑎 ∈ 𝐴𝑣(𝑠𝑐1).
Repeat the argument with the path 𝜚′ equal to the suffix of 𝜚 starting at 𝑗 + 1. ■

LEMMA 4.6. Let 𝜚𝑐 = 𝑠𝑐1𝑎
𝑐
1 . . . 𝑎

𝑐
𝑚−1𝑠

𝑐
𝑚 ∈ FPathsM𝑐 be a finite path in the collapsed MDPM𝑐 not

containing the special states 𝑠+, 𝑠−. There exists a finite path 𝜚 = 𝑠1𝑎1 . . . 𝑎𝑛−1𝑠𝑛 ∈ FPathsM in the
MDPM with 𝑛 ≥ 𝑚 and indices 𝑖1, . . . , 𝑖𝑚 with 1 ≤ 𝑖 𝑗 < 𝑖 𝑗+1 ≤ 𝑛 and

𝑠𝑘 ∈ states(𝑠𝑐𝑗) for all 𝑗 and 𝑘 with 𝑖 𝑗 ≤ 𝑘 < 𝑖 𝑗+1 (defining 𝑖𝑚+1 = 𝑛 + 1) and
if 𝑠𝑐𝑗 = 𝑠(𝑅𝑖 ,𝐵𝑖) then 𝑎𝑘 ∈ 𝐵𝑖 for all 𝑗 and 𝑘 with 𝑖 𝑗 ≤ 𝑘 < 𝑖 𝑗+1 − 1.

PROOF . Similar to the above proof, we construct the path 𝜚 inductively. Distinguish two cases
for 𝑠𝑐1. If 𝑠𝑐1 ∈ 𝑆, set 𝑠1 = 𝑠𝑐1 and 𝑎1 = 𝑎𝑐1 and repeat the argument with the next step of 𝜚𝑐.
Otherwise, we have that 𝑠𝑐1 = 𝑠(𝑅𝑖 ,𝐵𝑖) for some EC (𝑅𝑖 , 𝐵𝑖) ∈ EC. Since (𝑅𝑖 , 𝐵𝑖) is an EC inM, there
exists a finite path in FPathsM only using actions of 𝐵𝑖 from any state in 𝑅𝑖 to state(𝑎𝑐1,M). This
path corresponds to the first state-action pair in 𝜚𝑐. By definition, there exists a state 𝑠′ ∈ 𝑆 such
that 𝑠′ ∈ supp(Δ(state(𝑎𝑐1,M), 𝑎𝑐1)) and collapsed(𝑠′) = 𝑠𝑐2. Thus, we can extend the above path
by 𝑎𝑐1𝑠

′ and repeat the argument. ■

Based on the previous lemmas, we can establish a correspondence of end components between
the original MDP and its (partly) collapsed version. In particular, for every EC in the original
MDP there either exists a single state representing this EC or a new EC in the collapsed MDP.

30 / 82 T. Brázdil et. al
LEMMA 4.7. For any EC (𝑅, 𝐵) ∈ EC(M) in the MDPM we either have

1. an EC (𝑅𝑐, 𝐵𝑐) inM𝑐, where 𝑅𝑐 = collapsed(𝑅) and 𝐵𝑐 = 𝐵 ∩ 𝐴𝑐𝑡𝑐, or
2. a state 𝑠(𝑅′,𝐵′) ∈ 𝑆𝑐 with 𝑅 ⊆ 𝑅′ and 𝐵 ⊆ 𝐵′.

PROOF . Observe that Case 2 is trivial by definition, in particular this case is equivalent to
𝐵 ⊆ 𝐵𝑖 for some 𝑖. Moreover, Case 1 and Case 2 are mutually exclusive since by construction for
any EC (𝑅𝑖 , 𝐵𝑖) the internal actions 𝐵𝑖 are removed, thus there is no 𝐵 ⊆ 𝐵𝑖 such that ({𝑠(𝑅𝑖 ,𝐵𝑖)}, 𝐵)
is an EC inM𝑐.

Let thus (𝑅, 𝐵) be an EC in the MDPM with 𝐵 ⊈ 𝐵𝑖 for all 𝑖. We show that (𝑅𝑐, 𝐵𝑐) with
𝑅𝑐 = collapsed(𝑅) and 𝐵𝑐 = 𝐵 ∩ 𝐴𝑐𝑡𝑐 is an EC inM𝑐.

First, we show by contradiction that 𝐵 ⊈ 𝐵EC [Fact I], i.e. 𝐵 cannot comprise only internal
actions of the ECs in EC. Recall that by assumption on EC the EC states 𝑅𝑖 are disjoint and 𝐵𝑖

are subsets of the actions enabled in the respective states of 𝑅𝑖 . Since we assume not to be in
Case 2, (𝑅, 𝐵) is an EC with 𝐵 ⊈ 𝐵𝑖 for all 𝑖. Assume for contradiction that 𝐵 ⊆ 𝐵EC =

⋃
𝐵𝑖 . Then

(𝑅, 𝐵) necessarily has to contain states of at least two ECs from EC. Formally, there exist two
states 𝑠, 𝑠′ ∈ 𝑅 with 𝑠 ∈ 𝑅𝑖 , 𝑠′ ∈ 𝑅 𝑗 , and 𝑖 ≠ 𝑗. Since (𝑅, 𝐵) is an EC, there exists a path from 𝑠 to
𝑠′ and vice versa, using only actions from 𝐵. As 𝐵 ⊆ 𝐵EC, these actions were available in the ECs
before. Since 𝑠 and 𝑠′ are in two ECs with disjoint state sets and a path using only actions from
𝐵 exists between them, there exists a state 𝑠′′ and action 𝑎 ∈ 𝐵 ⊆ 𝐵EC with supp(Δ(𝑠′′, 𝑎)) ⊈ 𝑅𝑖 .
Since the 𝑎 ∈ 𝐵EC, we necessarily have 𝑎 ∈ 𝐵𝑖 , contradicting the assumption that (𝑅𝑖 , 𝐵𝑖) is an
EC, proving [I].

Next, we prove that 𝑅𝑐 =
⋃
𝑎∈𝐵𝑐 state(𝑎,M𝑐) [Fact II]. Observe that by assumption we have

𝑅 =
⋃
𝑎∈𝐵 state(𝑎,M). By definition of 𝐵𝑐 = 𝐵∩𝐴𝑐𝑡𝑐, we thus have that

⋃
𝑎𝑐∈𝐵𝑐 state(𝑎𝑐,M) ⊆ 𝑅.

Consequently ⋃
𝑎𝑐∈𝐵𝑐collapsed(state(𝑎𝑐,M)) ⊆ collapsed(𝑅) = 𝑅𝑐

Applying Lemma 4.4 yields⋃
𝑎𝑐∈𝐵𝑐collapsed(state(𝑎𝑐,M)) =

⋃
𝑎𝑐∈𝐵𝑐 state(𝑎𝑐,M𝑐),

thus
⋃
𝑎𝑐∈𝐵𝑐 state(𝑎𝑐,M𝑐) ⊆ 𝑅𝑐.

Now, assume for contradiction that there exists a state 𝑠𝑐 ∈ 𝑅𝑐 such that 𝑠𝑐 ≠ state(𝑎𝑐,M𝑐)
for all 𝑎𝑐 ∈ 𝐵𝑐. Due to the definition ofM𝑐, we either have 𝑠𝑐 ∈ 𝑆, 𝑠𝑐 = 𝑠(𝑅′,𝐵′) for some EC
(𝑅′, 𝐵′) ∈ EC, or 𝑠𝑐 ∈ {𝑠+, 𝑠−}. The third case immediately leads to a contradiction, since 𝐵𝑐 ⊆ 𝐴𝑐𝑡
and thus 𝑎+, 𝑎− ∉ 𝐵𝑐. In the first case, we have that 𝑠𝑐 ∉ 𝑅𝑖 for any 𝑖, thus 𝐴𝑣(𝑠𝑐) = 𝐴𝑣𝑐(𝑠𝑐) ⊆ 𝐴𝑐𝑡𝑐.
Hence, any action 𝑎 of this state contained in the EC (𝑅, 𝐵) is still available in the collapsed
MDP and thus also contained in the EC (𝑅𝑐, 𝐵𝑐). The second case implies, by definition of
𝑅𝑐 = collapsed(𝑅), that there exists an EC (𝑅𝑖 , 𝐵𝑖) ∈ EC such that 𝑅𝑖 ∩ 𝑅 ≠ ∅. Recall that
𝐴𝑣𝑐(𝑠(𝑅𝑖 ,𝐵𝑖)) =

⋃
𝑠∈𝑅𝑖 𝐴𝑣(𝑠)\𝐵𝑖 . The case assumption is thus equivalent to 𝐵𝑐∩(⋃𝑠∈𝑅𝑖 𝐴𝑣(𝑠)\𝐵𝑖) =

31 / 82 Learning Algorithms for Verification of Markov Decision Processes
∅. Inserting the definition of 𝐵𝑐 and 𝐴𝑐𝑡𝑐 yields

𝐵 ∩ (𝐴𝑐𝑡 \ 𝐵EC) ∩ (
⋃

𝑠∈𝑅𝑖
𝐴𝑣(𝑠) \ 𝐵𝑖) = 𝐵 ∩ (

⋃
𝑠∈𝑅𝑖

𝐴𝑣(𝑠) \ 𝐵𝑖) = ⋃
𝑠∈𝑅𝑖∩𝑅

𝐴𝑣(𝑠) ∩ 𝐵 \ 𝐵𝑖 = ∅.

This implies that 𝐴𝑣(𝑠) ∩ 𝐵 ⊆ 𝐵𝑖 for all 𝑠 ∈ 𝑅𝑖 ∩ 𝑅, i.e. all such states only have “internal” actions
of the EC (𝑅𝑖 , 𝐵𝑖) available in (𝑅, 𝐵). But this implies 𝑅 ⊆ 𝑅𝑖 and 𝐵 ⊆ 𝐵𝑖 , contradicting our
assumptions. This concludes the proof of [II].

Now, we prove that (𝑅𝑐, 𝐵𝑐) is a proper EC inM𝑐, i.e. that (i) 𝑅𝑐 ≠ ∅, ∅ ≠ 𝐵𝑐 ⊆ ⋃
𝑠𝑐∈𝑅𝑐 𝐴𝑣(𝑠𝑐),

(ii) for all 𝑠𝑐 ∈ 𝑅𝑐, 𝑎 ∈ 𝐵𝑐∩𝐴𝑣𝑐(𝑠𝑐)we have supp(Δ𝑐(𝑠𝑐, 𝑎𝑐)) ⊆ 𝑅𝑐, and (iii) for all states 𝑠𝑐, 𝑠′𝑐 ∈ 𝑅𝑐
there exists a path from 𝑠𝑐 to 𝑠′𝑐 only using actions from 𝐵𝑐.

For (i), we have 𝐵𝑐 ≠ ∅, otherwise 𝐵𝑐 = 𝐵 ∩ 𝐴𝑐𝑡𝑐 = ∅ implies 𝐵 ⊆ 𝐵EC, contradicting [I]. [II]
yields the second part of the first condition.

To prove (ii), assume a contradiction, i.e. let 𝑠𝑐 ∈ 𝑅𝑐, 𝑎 ∈ 𝐵𝑐 ∩ 𝐴𝑣𝑐(𝑠𝑐) such that 𝑠′𝑐 ∈
supp(Δ𝑐(𝑠𝑐, 𝑎𝑐)) \ 𝑅𝑐. Let 𝑠 = state(𝑎𝑐,M) (implying 𝑠𝑐 = collapsed(𝑠)). Again, we proceed by
a case distinction, this time on the successor 𝑠′𝑐. If 𝑠′𝑐 ∈ 𝑆, we have that 𝑠′𝑐 ∈ supp(Δ(𝑠, 𝑎𝑐)),
since 𝑠 ∈ 𝑅 and 𝑎𝑐 ∈ 𝐵 and (𝑅, 𝐵) is an EC. Further, Δ𝑐(𝑠𝑐, 𝑎𝑐, 𝑠′𝑐) = Δ(𝑠𝑐, 𝑎𝑐, 𝑠′𝑐), thus 𝑠′𝑐 ∈
supp(Δ𝑐(𝑠𝑐, 𝑎𝑐)), contradicting the assumption. If instead 𝑠′𝑐 = 𝑠(𝑅𝑖 ,𝐵𝑖) , then there exists a state
𝑠′ ∈ supp(Δ(𝑠, 𝑎𝑐))∩𝑅𝑖 by definition of Δ𝑐. But then 𝑠(𝑅𝑖 ,𝐵𝑖) ∈ 𝑅𝑐 by definition of 𝑅𝑐, contradiction.

Finally, to show (iii), we can directly apply Lemma 4.5 to obtain the required path as
follows. Let 𝑠𝑐, 𝑠′𝑐 ∈ 𝑅𝑐 two states and pick two arbitrary 𝑠, 𝑠′ ∈ 𝑅 with collapsed(𝑠) = 𝑠𝑐 and
collapsed(𝑠′) = 𝑠′𝑐. Since (𝑅, 𝐵) is an EC, there exists a finite path 𝜚 from 𝑠 to 𝑠′, using only
actions of 𝐵. By Lemma 4.5, we get a path 𝜚𝑐 from 𝑠𝑐 to 𝑠′𝑐 using only actions from 𝐵∩ 𝐴𝑐𝑡𝑐 = 𝐵𝑐,
concluding the proof of Case 1. ■

As expected, the corresponding reverse statement holds true, too, i.e. every EC in the collapsed
MDP yields a corresponding EC in the original MDP.

LEMMA 4.8. For all ECs (𝑅𝑐, 𝐵𝑐) inM𝑐 with 𝑠+, 𝑠− ∉ 𝑅𝑐 we have that (𝑅, 𝐵) with 𝑅 = states(𝑅𝑐)
and 𝐵 = 𝐵𝑐 ∪⋃

𝑠(𝑅𝑖 ,𝐵𝑖)∈𝑅𝑐 𝐵𝑖 is an EC inM.

PROOF . Fix an EC (𝑅𝑐, 𝐵𝑐) in M𝑐 and set 𝑅 = states(𝑅𝑐) and 𝐵 = 𝐵𝑐 ∪ ⋃
𝑠(𝑅𝑖 ,𝐵𝑖)∈𝑅𝑐 𝐵𝑖 . We

need to prove that (𝑅, 𝐵) is an EC inM. Clearly, 𝑅 and 𝐵 are non-empty. We show that 𝑅 =⋃
𝑎∈𝐵 state(𝑎,M). For any 𝑠 ∈ 𝑅, there exists a 𝑠𝑐 ∈ 𝑅𝑐 such that 𝑠 ∈ states(𝑠𝑐) by definition

of 𝑅. If 𝑠 = 𝑠𝑐 we have 𝑠 ∈ 𝑅𝑐 and there exists an action 𝑎𝑐 ∈ 𝐵𝑐 ⊆ 𝐵 with state(𝑎𝑐,M) = 𝑠.
Otherwise, there is an EC (𝑅𝑖 , 𝐵𝑖) ∈ EC with 𝑠 ∈ 𝑅𝑖 , 𝑠(𝑅𝑖 ,𝐵𝑖) ∈ 𝑅𝑐, and, since (𝑅𝑖 , 𝐵𝑖) is in EC inM,
there is an action 𝑎 ∈ 𝐵𝑖 ⊆ 𝐵 with state(𝑎,M) = 𝑠. Similarly, for any action 𝑎 ∈ 𝐵 we have that
state(𝑎,M) ∈ 𝑅 by analogous reasoning.

It remains to show that (i) for all 𝑠 ∈ 𝑅, 𝑎 ∈ 𝐵 ∩ 𝐴𝑣(𝑠) we have supp(Δ(𝑠, 𝑎)) ⊆ 𝑅, and
(ii) for all 𝑠, 𝑠′ ∈ 𝑅 there is a finite path from 𝑠 to 𝑠′ only using actions from 𝐵. For (i), we

32 / 82 T. Brázdil et. al
again assume contradiction, i.e. there are states 𝑠 ∈ 𝑅, 𝑠′ ∈ 𝑆 and an action 𝑎 ∈ 𝐴𝑣(𝑠) ∩ 𝐵
such that 𝑠′ ∈ supp(Δ(𝑠, 𝑎)) \ 𝑅. We again proceed by case distinctions, but now first on 𝑎. If
𝑎 ∈ 𝐵𝑐, then supp(Δ𝑐(collapsed(𝑠), 𝑎)) ⊆ 𝑅𝑐, as (𝑅𝑐, 𝐵𝑐) is an EC. By definition of Δ𝑐, we have
collapsed(𝑠′) ∈ supp(Δ𝑐(collapsed(𝑠), 𝑎)). Together, this implies 𝑠′ ∈ 𝑅, yielding a contradiction.
If instead 𝑎 ∈ 𝐵𝑖 for some EC (𝑅𝑖 , 𝐵𝑖) ∈ EC, then 𝑠, 𝑠′ ∈ 𝑅𝑖 ⊆ 𝑅, also leading to a contradiction.
Finally, to prove (ii), we can directly apply Lemma 4.6 to a path from collapsed(𝑠) to collapsed(𝑠′)
in (𝑅𝑐, 𝐵𝑐), yielding a path from 𝑠 to 𝑠′ in (𝑅, 𝐵). ■

The previous statement implies that if we collapse a MEC of the original MDP, then there can be
no EC in the collapsed MDP containing the MEC representative state.

LEMMA 4.9. Let {(𝑅′𝑖 , 𝐵′𝑖)}𝑚𝑖=1 ⊆ EC ∩MEC(M) be some MECs ofM in EC. Then, we have that
𝑠(𝑅′𝑖 ,𝐵′𝑖) ∉ 𝑅

𝑐 for any EC (𝑅𝑐, 𝐵𝑐) inM𝑐.

PROOF . Assume there is such an EC (𝑅𝑐, 𝐵𝑐) with 𝑠(𝑅′𝑖 ,𝐵′𝑖) ∈ 𝑅𝑐. Lemma 4.8 yields an EC (𝑅, 𝐵)
with 𝑅′𝑖 ⊆ 𝑅, 𝐵′𝑖 ⊊ 𝐵, contradiction to (𝑅, 𝐵) being a MEC inM. ■

The statement of Lemma 4.9 does not hold for any EC (𝑅′𝑖 , 𝐵′𝑖) ∈ EC, since there might be a
larger EC containing 𝑠(𝑅′𝑖 ,𝐵′𝑖) . For example, in Figure 4, the collapsed MDP has an EC containing
representative states. However, if all MECs are collapsed, the resulting collapsed MDP indeed
has no ECs except two trivial ones.

COROLLARY 4.10. LetM𝑐 = collapse(M,MEC(M), 𝑠, 𝑇) be the collapsed MDP ofM with
EC = MEC(M). Then,M𝑐 satisfies Assumption 1.

PROOF . Follows directly from the above Lemma 4.9. ■

Finally, we also get that the reachability probabilities are preserved.

LEMMA 4.11. LetM𝑐 = (𝑆𝑐, 𝐴𝑐𝑡𝑐, 𝐴𝑣𝑐, Δ𝑐) = collapse(M, EC, 𝑠, 𝑇) be the collapsed MDP ofM,
where EC = {(𝑅𝑖 , 𝐵𝑖)}𝑛𝑖=1 is any appropriate set of end components. Then, for any state 𝑠 ∈ 𝑆 it
holds that

Prmax
M,𝑠 [^𝑇] = Prmax

M𝑐,collapsed(𝑠) [^collapsed(𝑇)] = Prmax
M𝑐,collapsed(𝑠) [^({𝑠+} ∪ (𝑇 ∩ 𝑆𝑐))] .

PROOF . First, observe that Prmax
M𝑐,𝑠𝑐 [^{𝑠+}] = 1 for any state 𝑠𝑐 = 𝑠(𝑅𝑖 ,𝐵𝑖) with 𝑅𝑖 ∩ 𝑇 ≠ ∅ by

definition. Moreover,𝑇 ∩𝑆𝑐 = 𝑇 \𝑅EC, i.e. all target states which are not part of an EC in EC. Every
state 𝑠𝑐 ∈ collapsed(𝑇) is of one of these two kinds. Hence, Prmax

M𝑐,collapsed(𝑠) [^({𝑠+} ∪ (𝑇 ∩𝑆𝑐))] =
Prmax
M𝑐,collapsed(𝑠) [^collapsed(𝑇)], proving the second equality.

For the first equality, we argue how to transform the witness strategies, achieving the same
overall reachability probability. Thus, let 𝜋 ∈ ΠMD

M be a (memoryless deterministic) strategy in
M maximizing the probability of reaching 𝑇 . We define a strategy 𝜋𝑐 onM𝑐 simulating 𝜋 as

33 / 82 Learning Algorithms for Verification of Markov Decision Processes
follows. Note that 𝜋𝑐 does not have to be memoryless or deterministic. For all states 𝑠𝑐 ∈ 𝑆, i.e.
𝑠𝑐 is not a collapsed representative, 𝜋𝑐 mimics 𝜋, i.e. 𝜋𝑐(𝑠) = 𝜋(𝑠). For the other case, namely
𝑠𝑐 = 𝑠(𝑅𝑖 ,𝐵𝑖) for some EC (𝑅𝑖 , 𝐵𝑖) ∈ EC, recall that 𝜋𝑐 is allowed to have memory. In particular,
it can remember the action 𝑎 leading to 𝑠𝑐. Clearly, for any such action 𝑎 and other action
𝑎′ ∈ 𝐴𝑣𝑐(𝑠𝑐) we can compute the probability of 𝑎′ action being the first action not in 𝐵𝑖 under
𝜋. Then, 𝜋𝑐 simply selects 𝑎′ in 𝑠𝑐 after 𝑎 with this probability. Moreover, we also need to
compute the probability of remaining inside 𝑅𝑖 forever, which corresponds to the probability of
𝜋𝑐 choosing rem𝑖 . It is easy to see that 𝜋𝑐 achieves the same reachability as 𝜋.

If we instead start with a strategy in the collapsed MDP 𝜋𝑐 ∈ ΠMD
M𝑐 , we construct the

respective strategy 𝜋 onM as follows. Again, on states 𝑠 ∉ 𝑅EC, we simply replicate the choice
of 𝜋𝑐. On states 𝑠(𝑅𝑖 ,𝐵𝑖) the strategy 𝜋𝑐 chooses a single action 𝑎𝑐 ∈ 𝐴𝑣𝑐(𝑠(𝑅𝑖 ,𝐵𝑖)), since it is
deterministic. If that action is rem𝑖 , 𝜋 simply picks any internal 𝑎 ∈ 𝐵𝑖 in each state𝑅𝑖 . Otherwise,
there exists a strategy 𝜋′ on 𝑅𝑖 reaching state state(𝑎,M) with probability 1. Thus, 𝜋 mimics 𝜋′

until that state is reached and then plays 𝑎𝑐, again achieving the same reachability. ■

4.2 The General BRTDP Algorithm

Now, we present our modification of Algorithm 2, using the idea of collapsing, to obtain the
general approach as shown in Algorithm 3. On top of the previously presented ideas, the
algorithm maintains a growing set of ECs and repeatedly collapses the input MDP.

The new auxiliary procedure UpdateECs is supposed to identify ECs in M. As with
SamplePairs, we only require some properties instead of giving a concrete implementation.
Essentially, UpdateECs should only grow its list of ECs and eventually identify all ECs which are
repeatedly visited by SamplePairs.

Assumption 4. Let EC1 ⊆ EC(M) be an initial set of state-disjoint ECs, ECe+1 = UpdateECs(M, ECe)
the identified ECs, andM𝑐

e = collapse(M, ECe, 𝑠, 𝑇) the corresponding collapsed MDPs. Then, for
any episode e and EC (𝑅, 𝐵) ∈ ECe, (𝑅, 𝐵) is an EC ofM and there exists (𝑅′, 𝐵′) ∈ ECe+1 with
𝑅 ⊆ 𝑅′ and 𝐵 ⊆ 𝐵′.

This is, for example, easily satisfied by searching for ECs in the set of visited states in every
step. However, an efficient implementation may want to choose the times when it actually
searches heuristically.

Since there are only finitely many states, this assumption implies that eventually ECe

and thusM𝑐
e stabilizes, i.e. there exists some episode e such that for all e ≥ e we have that

ECe = ECe+1 and thusM𝑐
e =M𝑐

e+1. We call e the EC-stable episode.

Assumption 5. Let ECe andM𝑐
e as in Assumption 4 and assume that assumption holds. Fur-

ther, let 𝜚e ∈ FPathsM𝑐
e

be an infinite series of sets of state-action pairs inM𝑐
e and define 𝑆𝑐∞ =

34 / 82 T. Brázdil et. al

Input: MDP M, state 𝑠, target set 𝑇, precision 𝜀, initial bounds
Up1 and Lo1, and initial set of ECs EC1.

Output: 𝜀-optimal values (𝑙, 𝑢), i.e., V(𝑠) ∈ [𝑙, 𝑢] and 0 ≤ 𝑢 − 𝑙 < 𝜀.
1: e← 1, M𝑐

1 ← collapse(M, EC1, 𝑠, 𝑇)
2: Up1(𝑠+, 𝑎+) ← 1, Lo1(𝑠+, 𝑎+) ← 1, Up1(𝑠−, 𝑎−) ← 0, Lo1(𝑠−, 𝑎−) = 0
3: while Upe(𝑠) − Loe(𝑠) ≥ 𝜀 do
4: forall (𝑅 𝑗, 𝐵 𝑗) ∈ ECe do > Initialize bounds of representative states
5: forall 𝑎 ∈ 𝐴𝑣(𝑠(𝑅 𝑗 ,𝐵 𝑗)) \ {rem 𝑗} do > Copy bounds for existing actions
6: Upe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , 𝑎) ← Upe(state(𝑎,M), 𝑎)
7: Loe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , 𝑎) ← Loe(state(𝑎,M), 𝑎)
8: if 𝑅 𝑗 ∩ 𝑇 = ∅ then > Set bounds for remain action
9: Upe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , rem 𝑗) ← 0, Loe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , rem 𝑗) ← 0

10: else
11: Upe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , rem 𝑗) ← 1, Loe(𝑠(𝑅 𝑗 ,𝐵 𝑗) , rem 𝑗) ← 1
12: Upe+1 ← Upe, Loe+1 ← Loe

13: 𝜚← SamplePairs(M𝑐
e, 𝑠,Upe, Loe, 𝜀) > Sample a path in collapsed MDP

14: forall (𝑠, 𝑎) ∈ 𝜚 do > Update the upper and lower bounds
15: Upe+1(𝑠, 𝑎) ← Δ(𝑠, 𝑎)⟨Upe⟩
16: Loe+1(𝑠, 𝑎) ← Δ(𝑠, 𝑎)⟨Loe⟩
17: ECe+1 ← UpdateECs(M, ECe) > Search for new ECs
18: M𝑐

e+1 ← collapse(M, ECe+1, 𝑠, 𝑇) > Update the collapsed MDP
19: e← e + 1
20: return (Loe(𝑠),Upe(𝑠))

Algorithm 3. The BRTDP learning algorithm for general MDPs.

⋂∞
𝑘=1

⋃∞
e=𝑘{𝑠 ∈ 𝑆𝑐e | 𝑠 ∈ 𝜚𝑐e} the set of states occurring infinitely often.9 Then, there exists no EC

(𝑅𝑐, 𝐵𝑐) inM𝑐
e with 𝑅𝑐 ⊆ 𝑆𝑐∞ except 𝑅𝑐 = {𝑠+} or 𝑅𝑐 = {𝑠−}.

4.3 Proof of Correctness

We now continue to prove correctness and termination of Algorithm 3. First, we argue that the
algorithm indeed is well-defined, i.e. it never accesses undefined values.

LEMMA 4.12. Algorithm 3 is well-defined.

9 As mentioned above, due to Assumption 4 we get a EC-stable episode e and thus have 𝑆𝑐∞ ⊆ 𝑆𝑐e, i.e. the set of infinitelyoften seen states are all states ofM𝑐
e.

35 / 82 Learning Algorithms for Verification of Markov Decision Processes
PROOF . We only need to show that the states introduced by the collapsing in Lines 1 and 18
are assigned bounds before being accessed. By definition of the collapsed MDP, we add a state
for each EC together with an additional action, and the special states {𝑠+, 𝑠−}. The initial collapse
in Line 1 adds the special states together with their corresponding actions. Their values are
initialised in the following line. Furthermore, the EC collapsing in Lines 1 and 18 adds a state
𝑠(𝑅,𝐵) for any EC (𝑅, 𝐵) ∈ ECe and a corresponding rem action. Their values are initialised in
Lines 4 and 11 and not accessed prior to that. ■

As in Assumption 2, we again assume that the initial inputs are correct.

Assumption 6. The given initial bounds Up1 and Lo1 are correct, i.e. Lo1(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤
Up1(𝑠, 𝑎) for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑣(𝑠). Furthermore, the given initial set of ECs is correct, i.e. EC1 ⊆
EC(M) and pairwise disjoint.

LEMMA 4.13. Assume that Assumption 6 holds. Then, during any execution of Algorithm 3 we
have for every episode e, all states 𝑠 ∈ 𝑆e and action 𝑎 ∈ 𝐴𝑣𝑐e(𝑠) that

Loe(𝑠, 𝑎) ≤ Loe+1(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Upe+1(𝑠, 𝑎) ≤ Upe(𝑠, 𝑎).

PROOF . We prove that the initialization of values for newly added states is correct. The
remaining proof then is completely analogous to the proof of Lemma 3.2.

Since 𝑠+ is the target inM𝑐, setting Lo1(𝑠+, 𝑎+) = 1 is correct. Analogously, we see that 𝑠−
has no outgoing action and thus cannot reach 𝑠+, justifying Up1(𝑠−, 𝑎−) = 0.

The correctness of updates for the collapsed states follows from Lemma 4.11. ■

LEMMA 4.14. The result of Algorithm 3 is correct under Assumption 6, i.e. (i) 0 ≤ 𝑢 − 𝑙 < 𝜀, and
(ii)V(𝑠) ∈ [𝑙, 𝑢].

PROOF . As in Lemma 3.3, the claims follows from the algorithm and Lemma 4.13. ■

Finally, we can prove termination of our presented algorithm. The proof is very similar to
the proof of Lemma 3.4 and we only need to incorporate the new assumptions about UpdateECs.

LEMMA 4.15. Algorithm 3 terminates under Assumptions 3 to 6. It terminates almost surely if
Assumption 3 is satisfied almost surely.

PROOF . We apply the same reasoning as in Lemma 3.4 until Assumption 1 is applied in the
final part of the proof. Since we do not necessarily explore all ofM,M𝑐

e may still contain
MECs. In the proof, Assumption 1 is used only to show that 𝑆Diff ⊆ 𝑆∞ does not contain MECs.
Observe that any non-terminating execution eventually reaches an EC-stable episode e, thus
the collapsed MDP considered by the algorithm does not change. Now, 𝑆∞ in the previous proof
exactly corresponds to 𝑆𝑐∞ of Assumption 5, which yields that again there is no EC in 𝑆𝑐∞. Thus,
we can continue to apply the previous proof’s reasoning. ■

36 / 82 T. Brázdil et. al
Again, we get the overall soundness as a direct consequence.

THEOREM 4.16. Assume that (almost surely) Assumption 3, as well as Assumptions 4 to 6 hold.
Then Algorithm 3 is correct and converges (almost surely).

4.4 Relation to Interval Iteration

We briefly outline how our BRTDP algorithm presented in Algorithm 3 generalizes both the
original BRTDP algorithm of [33] and the interval iteration algorithm of [73]. To this end, we
give a brief overview of interval iteration. The algorithm first identifies all MECs and constructs
a quotient similar to the one we presented in Section 4.1. Then, each state is initialised with
straightforward upper and lower bounds. These bounds then are iterated globally according to
the Bellman operator. We can emulate this behaviour by directly yielding the set of all MECs
in UpdateECs and returning 𝑆𝑐 × 𝐴𝑣𝑐 on each call to SamplePairs. All variants of [33] can be
obtained by choosing the appropriate path sampling heuristics for SamplePairs.

5. Limited Information –MDPwithout End Components

We adapt our approach to the setting of limited information, where we can access the system
only as a “black box” and we are given some bounds on the shape of the system (see Section 2.3).
Intuitively, since we are interested in an 𝜀-precise solution, we can repeatedly sample the system
to learn the transition probabilities with high confidence. By adapting our previous ideas, we
can enhance this approach to only learn “interesting” transitions. Since we can never bound
the transition probabilities with absolute certainty, we aim for a probably approximately correct
algorithm, which gives an 𝜀-optimal solution with probability at least 1 − 𝛿.

Relevance and Applicability Before we go into the details, we discuss the purpose and
motivation for the subsequent algorithms. As mentioned in the introduction, our primary
aim is to provide a possibility result, showing that it is possible to obtain PAC bounds on the
maximal value on infinite horizon reachability values in a black box setting, only using samples
of finite length and only starting in the initial state, and all this for general MDP (with ECs) even
in a model-free setting (see below for a brief comment on model-free). Due to this focus, the
bounds that the presented approaches obtain are rather impractical and of mostly theoretical
value. This can be alleviated in several ways. For one, tighter statistical methods could be used,
see [116] for a recent discussion (we use the näıve Hoeffding’s inequality to simplify proofs).
Additionally, our approach is generic in the sense that it assumes the worst of the system.
Specific knowledge about the model, e.g. (in-)dependence of states, could be incorporated to
significantly improve practical scalability. Yet, these points are orthogonal to our aim of proving
the possibility of (model-free) PAC, for which we provide a complete proof in the following.

37 / 82 Learning Algorithms for Verification of Markov Decision Processes
Moreover, an additional aim of this work is to provide a re-usable framework for proofs in this
direction. We believe that several statements in the proofs below might be useful for other
endeavours of this kind, especially the auxiliary statements in Appendix A.

REMARK 5.1. Intuitively, the idea of “model-free” is that such approaches do not try to learn
the concrete transition probabilities or the entire graph structure, but more “compressed”
quantities such as state- or action-values. Indeed, our algorithm only stores a fixed number
of values per state-action pair, not for each transition. In most literature, model-free is only
loosely defined, as it is difficult to formalize precisely [129]. In [129, Definition 1], the authors
try to capture model-free by requiring that the space complexity of an approach should be
𝑜(|𝑆 |2 |𝐴𝑐𝑡 |) (in other words, less than the explicit graph representation of the MDP). At the same
time, the space complexity naturally also depends on parameters such as 𝜀 and 𝛿 (e.g. suppose
that 𝜀 were of exponential size w.r.t. the entire system). As such, we are interested in the above
complexity for fixed parameters. The estimates our algorithm obtains are based on repeated
updates to action values. Later, in Lemma 5.3, we show that (for fixed parameters) the number
of executed updates is bounded by |𝐴𝑐𝑡 |, and thus one can prove that the updates only involves
numbers that are of size |𝐴𝑐𝑡 |. In any case, proving that our approach formally satisfies (one of
the many) definition of model-free is not our main goal, but rather observing that it captures
the “spirit” of model-free by not learning probabilities but rather values directly.

For a model-based approach to this problem, we direct the reader to [10, 116]. These
approaches essentially obtain bounds on every single transition probability in the system and
then solve the induced interval MDP to obtain bounds on the value.

5.1 Definition of Limited Information

We define the limited information setting.

DEF IN IT ION 5.2. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be some MDP, 𝑠 ∈ 𝑆 a starting state, and 𝑇 ⊆ 𝑆 a
target set. An algorithm has limited information if it can access

the starting state 𝑠,
a target oracle for 𝑇 , i.e. given a state 𝑠 it can query whether 𝑠 ∈ 𝑇 ,
an upper bound 𝐴 of the number of actions, 𝐴 ≥ |𝐴𝑐𝑡 |,
a lower bound 𝑞 on the transition probabilities under any uniform strategy, 0 < 𝑞 ≤ 𝑝min =

min{|𝐴𝑣(𝑠) |−1 · Δ(𝑠, 𝑎, 𝑠′) | 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑣(𝑠), 𝑠′ ∈ supp(Δ(𝑠, 𝑎))},
an oracle for the set of available actions 𝐴𝑣, and
a successor oracle succ, which given a state-action pair yields a successor state, sampled
according to the underlying, hidden probability distribution Δ.

To tackle this problem, we combine the BRTDP approach with delayed Q-learning (DQL)
[129]. In essence, DQL temporarily accumulates sampled values for each state-action pair and

38 / 82 T. Brázdil et. al
only attempts an update after a certain delay, i.e. after enough samples have been gathered for a
particular pair. Intuitively, with a large enough delay, the average of the sampled values is close
to the true average with high confidence. Moreover, the attempted update is only successful if
the value is changed by at least some margin. If instead the update fails, another update is only
allowed if any other value in the system has changed significantly. This way, we can bound
the total number of attempted updates and thus control the overall probability of any “wrong”
update occurring. We explain all these ideas in more detail later on.

5.2 The No-EC DQL Algorithm

First, we again restrict ourselves to the case of no end components, as these pose an additional
difficulty. Thus, we assume the MDPM satisfies Assumption 1 and instead of a target state oracle,
the algorithm is explicitly given the special states 𝑠+ and 𝑠−. We present our DQL-based approach
in Algorithm 4. While it is similar in spirit to Algorithm 2, we give a concrete instantiation of
SamplePairs, since this setting needs a lot of additional guarantees.

The algorithm contains several auxiliary variables. Most are values kept for each state-
action pair, and separate for both the upper and lower bound. We give a brief intuition for each
variable, where ◦ ∈ {Up, Lo} and (𝑠, 𝑎) is a state-action pair inM:

t: The number of steps the algorithm took so far, increased by 1 after each iteration of the
main loop, as already mentioned in the preliminaries.
𝑠t, 𝑎t, 𝑠′t: The state, action, and the sampled successor state in step t, respectively.
Upt(𝑠, 𝑎) and Lot(𝑠, 𝑎): The (estimated) upper and lower bounds for the state-action pair
(𝑠, 𝑎) at step t. Note that in contrast to the previous algorithm, the upper and lower bounds
are updated at each step instead of each episode.
learn◦t (𝑠, 𝑎): A three-valued flag (yes, once, or no) indicating whether the algorithm
currently tries to learn and update the ◦-bounds for (𝑠, 𝑎). The meaning of once is explained
in the following. We additionally use the Decrease function for convenience, which is
defined by yes ↦→ once, once ↦→ no, and no ↦→ no.
count◦t (𝑠, 𝑎): The number of times a value for (𝑠, 𝑎) was experienced. When count◦t (𝑠, 𝑎)
is large enough, we can attempt an update with sufficient confidence.
acc◦t (𝑠, 𝑎): The accumulated sampled values of the last count◦t (𝑠, 𝑎) visits to (𝑠, 𝑎). We
want acc◦t (𝑠, 𝑎)/count◦t (𝑠, 𝑎) to approximate the true ◦-bound.

Moreover, the algorithm contains the two constants 𝜀 and 𝑚. We define their value (and the
value of another constant, used for readability) as follows.

𝜀 =
𝜀

2
· 𝑝
|𝑆 |
min

3|𝑆 | 𝜉 = 2|𝐴𝑐𝑡 |
(
1 + |𝐴𝑐𝑡 |

𝜀

)
𝑚 =

⌈
1

2𝜀2 ln
(

8
𝛿
𝜉

)⌉
We call 𝜀 the update step (the smallest update increment considered significant by the algorithm),
𝜉 the update count (the maximal possible number of update attempts, mainly introduced for

39 / 82 Learning Algorithms for Verification of Markov Decision Processes

Input: Inputs as given in Definition 5.2 satisfying Assumption 1,
special states 𝑠+, 𝑠−, precision 𝜀, and confidence 𝛿.

Output: Values (𝑙, 𝑢) which are 𝜀-optimal, i.e., V(𝑠) ∈ [𝑙, 𝑢] and
0 ≤ 𝑢 − 𝑙 < 𝜀, with probability at least 1 − 𝛿.

1: Up1(·, ·) ← 1, Lo1(·, ·) ← 0, Up1(𝑠−, ·) ← 0, Lo1(𝑠+, ·) ← 1
2: for ◦ ∈ {Up, Lo} do
3: learn◦1(·, ·) ← yes, acc◦1(·, ·) ← 0, count◦1(·, ·) ← 0
4: e← 1, t← 1
5: while Upt(𝑠) − Lot(𝑠) ≥ 𝜀 do
6: for 𝑠 ∈ 𝑆 do MaxAe(𝑠) ← arg max𝑎∈𝐴𝑣(𝑠) Upt(𝑠, 𝑎)
7: 𝑠t ← 𝑠

8: while 𝑠t ∉ {𝑠+, 𝑠−} do > Experience the current learning episode
9: 𝑎t ← sampled uniformly from MaxAe(𝑠t) > Pick an action

10: 𝑠′t ← succ(𝑠t, 𝑎t) > Query successor oracle
> Update bound estimates

11: for ◦ ∈ {Up, Lo} do
12: if learn◦t (𝑠t, 𝑎t) ≠ no then
13: count◦t+1(𝑠t, 𝑎t) ← count◦t (𝑠t, 𝑎t) + 1
14: acc◦t+1(𝑠t, 𝑎t) ← acc◦t (𝑠t, 𝑎t) + ⃝t(𝑠′t)

> Learn upper bounds
15: if countUp

t+1(𝑠t, 𝑎t) = 𝑚 then > Attempt update of Up

16: if accUp
t+1(𝑠t, 𝑎t)/𝑚 < Upt(𝑠t, 𝑎t) − 2𝜀 then

17: Upt+1(𝑠t, 𝑎t) ← accUp
t+1(𝑠t, 𝑎t)/𝑚+ 𝜀 > Successful update

18: learnUp
t+1(·, ·) ← yes > Re-enable learning for all actions

19: else
20: learnUp

t+1(𝑠t, 𝑎t) ← Decrease(learnUp
t (𝑠t, 𝑎t)) > Failed update

21: countUp
t+1(𝑠t, 𝑎t) ← 0, accUp

t+1(𝑠t, 𝑎t) ← 0
> Learn lower bounds

22: if countLo
t+1(𝑠t, 𝑎t) = 𝑚 then > Attempt update of Lo

23: if accLo
t+1(𝑠t, 𝑎t)/𝑚 > Lot(𝑠t, 𝑎t) + 2𝜀 then

24: Lot+1(𝑠t, 𝑎t) ← accLo
t+1(𝑠t, 𝑎t)/𝑚− 𝜀 > Successful update

25: learnLo
t+1(·, ·) ← yes > Re-enable learning for all actions

26: else
27: learnLo

t+1(𝑠t, 𝑎t) ← Decrease(learnLo
t (𝑠t, 𝑎t)) > Failed update

28: countLo
t+1(𝑠t, 𝑎t) ← 0, accLo

t+1(𝑠t, 𝑎t) ← 0
29: 𝑠t+1 ← 𝑠′t, t← t + 1 > Increase step counter
30: e← e + 1 > Increase episode counter
31: return (Lot(𝑠),Upt(𝑠))

Algorithm 4. The DQL learning algorithm for MDPs without ECs.

40 / 82 T. Brázdil et. al

𝑠 𝑠1 𝑠2 · · · 𝑠𝑛
𝑝𝑎0 𝑎1 𝑎2𝑝

1 − 𝑝
𝑝

1 − 𝑝

𝑝

1 − 𝑝

Figure 5. Example MDP to explain the choices and interpretations of some constants.

readability), and 𝑚 the update delay (the number of samples we want to obtain for a state-action
pair before we attempt an update). These three constants are used throughout this and the
following section. Note that bounds on these constants can be obtained from Definition 5.2
(recalling that |𝐴𝑐𝑡 | is an upper bound on |𝑆 |). Within the proofs, an even smaller value for 𝜀 or
an even larger value for 𝑚 are also sufficient. We define the constants with “tight” values to aid
readability and intuition.

These constants are closely related to the worst-case mixing rate (see e.g. [111, Chapter 5] for
a detailed discussion) of the MDP, which intuitively indicates how fast information “propagates”
through the system. For Markov chains, this is given by the difference between first and second
eigenvalue of the transition matrix, which is also called spectral gap. This gap can be (quite
conservatively) bounded by 𝑝|𝑆 |min. This also gives a bound on the convergence rate of the power
iteration, which in the context of Markov chains and MDP is closely related to value iteration.
(See, for example, [118, Theorem 8.5.2], noting that 𝑝|𝑆 |min is a lower bound for 𝜂 with 𝐽 = |𝑆 |.)

The concept of information propagation (and the tightness of the 𝑝|𝑆 |min bound) is illustrated
in Figure 5. In order to propagate any information about state 𝑠𝑛 to the initial state 𝑠, we need |𝑆 |
steps. Moreover, after this many steps only a fraction 𝑝|𝑆 |min of the information is propagated, so,
intuitively, to “observe” a difference of 𝜀, we need to perform ≈ |𝑆 |𝑝−|𝑆 |min/𝜀 steps. Thus, we need
to visit a state-action pair often enough, i.e. 𝑚 times, before an update to ensure that relevant
information has propagated already with high confidence. Dually, if a state-action pair was
visited often enough and new information does not differ from the previous information by
more than 𝜀, there likely is no new information to be propagated and we may assume that the
values of this state-action pair have converged.

Inside the main loop, the algorithm repeats two steps to obtain a path. First, an action
maximizing the upper bounds (at the beginning of the episode) is randomly picked. More
precisely, we again consider the set MaxAe(𝑠) B arg max𝑎∈𝐴𝑣(𝑠) Upte

(𝑠, 𝑎) and uniformly select
an action thereof. To obtain the successor, we query the successor oracle with the given action
to obtain the successor 𝑠′. In other words, in episode e the algorithm samples a path in the MDP
using a memoryless strategy randomizing uniformly over MaxAe(𝑠) in each state. We call this
strategy the sampling strategy 𝜋e(𝑠, 𝑎) B |MaxAe(𝑠) |−1 if 𝑎 ∈ MaxAe(𝑠) and 0 otherwise. We will
later on introduce the upper bound maximizing strategy 𝜋t, which selects among Up-optimal
actions at the current step t. Note that if the algorithm follows this strategy 𝜋t while sampling,

41 / 82 Learning Algorithms for Verification of Markov Decision Processes
the samples would not be obtained from a memoryless strategy in general, since an update
might happen while sampling and thus change the strategy. One might be tempted to solve
this issue by first sampling a path until 𝑠+ or 𝑠− is reached and then propagating the values.
However this path might be of exponential size w.r.t. the number of states; this already occurs
for the structurally simple example in Figure 5.

After sampling a tuple (𝑠, 𝑎, 𝑠′), the algorithm learns from this “experience”. It does so
by learning upper and lower bounds separately, depending on the respective learn flags,
which are explained later. In case one of the bounds should be learned (learn◦t (𝑠, 𝑎) ≠ no),
the accumulator is updated with the newly observed values, i.e. the respective bound of the
successor 𝑠′. Furthermore, if the algorithm has gathered enough information, i.e. this pair has
been experienced 𝑚 times, an update of (𝑠, 𝑎)’s estimate is attempted (if the respective learn is
yes or once). By choosing 𝑚 large enough, the information we gathered about the bounds of
(𝑠, 𝑎) very likely is a faithful approximation of the true expected value over its successors. If the
newly learned estimate, i.e. the average over the last𝑚 experiences of (𝑠, 𝑎), significantly differs
from the current estimate stored in Up or Lo, the current estimates are updated conservatively.
If instead this new estimate is close to the current estimate, the algorithm marks this state-action
pair as (potentially) converged by “decreasing” its learn flag, as specified by Decrease.

The learned bounds of a pair depend on the bounds of other state-action pairs. In particular,
whenever any bound is changed, we may need to re-learn the values for all other state-action
pairs. This is taken care of by globally resetting the learn flags to yes in Lines 18 and 25. We
highlight that this is one of the main differences to [10], where samples are instead used to
learn bounds on the transition probabilities while the actual values are propagated according
to these estimates, trading memory for speed of convergence.

The need for the intermediate value once of learn arises from the asynchronicity of the
updates. Suppose an update of some pair (𝑠, 𝑎) succeeds and we reset all learn values to yes.
However, for some other state-action pair (𝑠′, 𝑎′) we are very close to an update, too. Then,
the values which will be used for an attempted update of (𝑠′, 𝑎′) were mostly learned before
the update of (𝑠, 𝑎). Now, if for example 𝑠 is a successor of (𝑠′, 𝑎′), the values of (𝑠′, 𝑎′) may be
influenced significantly by the update of (𝑠, 𝑎). Hence, we need to learn the value of (𝑠′, 𝑎′) once
more in order to be on the safe side. A different solution approach would be to simply reset all
count and acc values after every successful update, however this would be much less efficient:
If we again consider the above example, it might be the case that the values we gathered for
(𝑠′, 𝑎′) before the update of (𝑠, 𝑎) already are sufficient for a successful update, discarding them
would slow down convergence drastically.

In the algorithms of [129, 33], this problem instead is taken care of by remembering the last
globally successful update. There, learn(𝑠, 𝑎) is only set to no if the previous attempted update
of (𝑠, 𝑎) happened after the last successful update. This similarly implies that all values which

42 / 82 T. Brázdil et. al
are considered in the current update attempt are “up to date”. We decided for this alternative
approach since we have to track less variables.

5.3 Proof of Correctness

We now prove that Algorithm 4 is probably approximately correct. We first prove correctness
of the result by showing that the computed bounds are faithful upper and lower bounds in
Lemma 5.6. However, we cannot guarantee that this is always the case due to statistical outliers.
Thus we first obtain bounds on the probability of these outliers. Then, in order to prove
termination with high probability, we argue that by our choice of constants the propagation of
values is probably correct. This means that whenever we update the bounds of a state-action
pair (𝑠, 𝑎), the updated value is close to the true average under Δ(𝑠, 𝑎). Finally, we show that
with high probability an update will occur as long as the bounds are not 𝜀-close.

LEMMA 5.3. The number of successful updates of Up and Lo is bounded by |𝐴𝑐𝑡 |
𝜀

each.

PROOF . Let 𝑎 ∈ 𝐴𝑐𝑡 be some action and 𝑠 = state(𝑎,M) the associated state. The upper bound
of (𝑠, 𝑎) is initialised to 1 or 0, similar for the lower bound. Whenever Upt(𝑠, 𝑎) is updated in
Line 17, its value is decreased by at least 𝜀: We have that accUp

t (𝑠, 𝑎)/𝑚 < Upt(𝑠, 𝑎) − 2𝜀, hence
accUp

t (𝑠, 𝑎)/𝑚 + 𝜀 < Upt(𝑠, 𝑎) − 𝜀. Thus, Upt+1(𝑠, 𝑎) < Upt(𝑠, 𝑎) − 𝜀. Analogously, Lot(𝑠, 𝑎) is
always increased by at least 𝜀 whenever updated.

Moreover, accUp
t (𝑠, 𝑎) ≥ 0 and accLo

t (𝑠, 𝑎) ≤ 𝑚 by initialization and update of these values,
hence we never set Upt(𝑠, 𝑎) to a negative value and Lot(𝑠, 𝑎) is always smaller or equal to 1.
Consequently, we change the value of Upt(𝑠, 𝑎) and Lot(𝑠, 𝑎) at most 1

𝜀
times and there are at

most |𝐴𝑐𝑡 |
𝜀

successful updates to the upper and lower bounds, respectively. Note that we do not
necessarily have Upt(𝑠, 𝑎) ≤ Lot(𝑠, 𝑎) for all executions of the algorithm, hence there are at
most |𝐴𝑐𝑡 |

𝜀
updates for each of the bounds individually. ■

Observe that this implies that for every execution, eventually there will be no more successful
updates of Up and the sampling strategy 𝜋e does not change. This fact will be used in some
of the subsequent proofs. Moreover, we can use the above result to show that similarly, the
number of attempted updates is bounded.

LEMMA 5.4. The number of attempted updates of the upper bounds Up and lower bounds Lo is
bounded by 𝜉 = 2|𝐴𝑐𝑡 | (1 + |𝐴𝑐𝑡 |

𝜀
), respectively.

PROOF . Let (𝑠, 𝑎) ∈ 𝑆 × 𝐴𝑣 be a state-action pair. Suppose an update of Upt(𝑠, 𝑎) is attempted
at step t, i.e. 𝑎t = 𝑎, countt(𝑠, 𝑎) = 𝑚 − 1, and learnUp

t (𝑠, 𝑎) ≠ no. Then, either the update is
successful or learnUp

t+1(𝑠, 𝑎) is updated with Decrease. The learn flag is only set to yes again if
some other upper bound is successfully updated. Analogous reasoning applies to updates of the
lower bounds.

43 / 82 Learning Algorithms for Verification of Markov Decision Processes
By Lemma 5.3, there are at most |𝐴𝑐𝑡 |

𝜀
successful updates to either bounds in total. If an

update of a particular state-action pair is attempted, it either succeeds or fails. In the latter
case, at most one more update of this state-action pair will be attempted until an other update
succeeds. Hence, for a particular state-action pair (𝑠, 𝑎) we have in the worst case two attempted
Up-updates after every successful Up-update (of any pair). Together, there are at most 2 + 2 |𝐴𝑐𝑡 |

𝜀

(two more attempts can occur after the last successful update). Since there are |𝐴𝑐𝑡 | state-action
pairs in total, the statement follows. ■

Assumption 7. Suppose an Up-update of the state-action pair (𝑠, 𝑎) is attempted at step t. Let
𝑘1 < 𝑘2 < . . . < 𝑘𝑚 = t be the steps of the 𝑚 most recent visits to (𝑠, 𝑎). Then 1

𝑚

∑𝑚
𝑖=1V(𝑠′𝑘𝑖) ≥

V(𝑠, 𝑎) − 𝜀. Analogously, for an attempted Lo-update, we have 1
𝑚

∑𝑚
𝑖=1V(𝑠′𝑘𝑖) ≤ V(𝑠, 𝑎) + 𝜀.

LEMMA 5.5. The probability that Assumption 7 is violated during the execution of Algorithm 4
is bounded by 𝛿

4 .

PROOF . We show that the claim for the upper bound is violated with probability at most 𝛿
8 .

The lower bound part follows analogously and the overall claim via union bound.
Let (𝑠, 𝑎) and 𝑘𝑖 as in Assumption 7, i.e. an Up-update of (𝑠, 𝑎) is attempted at step 𝑘𝑚 =

t. First, observe that due to the Markov property, the successor state under (𝑠, 𝑎) does not
depend on the algorithm’s execution. Hence, the states 𝑠′𝑘𝑖 , i.e. the successor states after each
visit of (𝑠, 𝑎), are distributed i.i.d. according to the underlying probability distribution Δ(𝑠, 𝑎).
Define 𝑌𝑖 = V(𝑠′𝑘𝑖). Clearly, 𝑌𝑖 are i.i.d., since the actual value of a stateV(𝑠) is independent
of the algorithm’s execution. Moreover, E[𝑌𝑖] = V(𝑠, 𝑎), since V satisfies the fixed point
conditions V(𝑠, 𝑎) = Δ(𝑠, 𝑎)⟨V⟩. Define the empirical average 𝑌 = 1

𝑚

∑𝑚
𝑖=1𝑌𝑖 . Observe that

E[𝑌] = 1
𝑚

∑𝑚
𝑖=1 E[𝑌𝑖] = V(𝑠, 𝑎). By the Hoeffding bound [85] we have that

PA
[
E

[
𝑌
] − 𝑌 > 𝜀

] ≤ 𝑒−2𝑚𝜀2
=
𝛿

8
· 𝜉−1

By reordering, we obtain that PA[V(𝑠, 𝑎) − 𝜀 > 1
𝑚

∑𝑚
𝑖=1V(𝑠𝑖)] ≤ 𝛿

8 · 𝜉
−1

[Fact I]. To conclude
the proof, we extend the above argument to all steps 𝑘1 satisfying the preconditions of the
assumption. By Lemma 5.4, the number of attempted updates to Up and Lo is bounded by 𝜉,
respectively [Fact II]. Consequently, by employing the union bound, we see that

PA

[
“

1
𝑚

∑︁𝑚

𝑖=1
V(𝑠𝑘𝑖) < V(𝑠, 𝑎) − 𝜀 for some 𝑘1”

]
≤ PA

[⋃
𝑘1

“
1
𝑚

∑︁𝑚

𝑖=1
V(𝑠𝑘𝑖) < V(𝑠, 𝑎) − 𝜀 for 𝑘1”

]
[I]≤

∑︁
𝑘1

𝛿

8
· 𝜉−1 [II]≤ 𝛿

8
. ■

44 / 82 T. Brázdil et. al
LEMMA 5.6. Assume that Assumption 7 holds. Then, during any execution of Algorithm 4 we
have for every step t, all states 𝑠 ∈ 𝑆e and action 𝑎 ∈ 𝐴𝑣e(𝑠) that

Lot(𝑠, 𝑎) ≤ Lot+1(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Upt+1(𝑠, 𝑎) ≤ Upt(𝑠, 𝑎).

PROOF . First, by definition of the algorithm we clearly have that Up can only decrease and
Lo can only increase. It remains to show that Lot(𝑠, 𝑎) ≤ V(𝑠, 𝑎) ≤ Upt(𝑠, 𝑎). We proceed by
induction on the step t. For t = 0, the statement clearly holds, since Up1(𝑠, 𝑎) = 1 for all states
except the special state 𝑠−, which by assumption cannot reach the target 𝑠+. Analogously, the
statement holds for Lo1(𝑠, 𝑎). Now, fix an arbitrary step t. We have that Upt′ (𝑠, 𝑎) ≥ V(𝑠, 𝑎) for
all steps t′ ≤ t (IH). Assume that (𝑠, 𝑎) is the state-action pair sampled at step t. If no successful
update takes place there is nothing to prove, since the values of Up and Lo do not change.
Otherwise, Assumption 7 is applicable and we get

Upt+1(𝑠, 𝑎) =
1
𝑚

∑︁𝑚

𝑖=1
Up𝑘𝑖 (𝑠𝑘𝑖) + 𝜀

[IH]≥ 1
𝑚

∑︁𝑚

𝑖=1
V(𝑠𝑘𝑖) + 𝜀 ≥ V(𝑠, 𝑎).

Analogously, we have Lot+1(𝑠, 𝑎) ≤ V(𝑠, 𝑎). ■

This gives us correctness of the returned result with high confidence upon termination. It
remains to show that the algorithm also terminates with high probability.

To this end, we introduce the upper bound maximizing strategy 𝜋t which selects in each
state 𝑠 uniformly among all actions maximal with respect to the current upper bounds, i.e.
Upt(𝑠, ·). This allows us to reason about the current value at step t. Note that this strategy differs
from the sampling strategy 𝜋e, since 𝜋t might change during an episode. However, once there
are no updates to upper bounds, we have that 𝜋e = 𝜋t. We use this fact in the final convergence
proof. Once the two strategies align, we can transfer properties proven with respect to 𝜋t to the
actual sampling behaviour of the algorithm.

Using this strategy, we define the set of converged state-action pairs.

DEF IN IT ION 5.7. For every step t, defineKUp
t ,KLo

t ⊆ 𝑆 × 𝐴𝑣 by

KUp
t B {(𝑠, 𝑎) | Upt(𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋t[Upt]⟩ ≤ 3𝜀} and

KLo
t B {(𝑠, 𝑎) | Δ(𝑠, 𝑎)⟨𝜋t[Lot]⟩ − Lot(𝑠, 𝑎) ≤ 3𝜀},

i.e. all state-action pairs whose Up- or Lo-value is close to the respective value of its successors
under 𝜋t. If (𝑠, 𝑎) ∈ KUp

t , we say that (𝑠, 𝑎) is Up-converged at step t, analogously (𝑠, 𝑎) ∈ KLo
t is

called Lo-converged at step t.

The approach for the convergence proof is to show that (with high probability) (i) if an
update of some bound fails, the current bound is consistent with its successors, i.e. the respective
pair is converged, and (ii) we visit non-converged pairs only finitely often. Finally, we combine
these two facts non-trivially to prove convergence.

45 / 82 Learning Algorithms for Verification of Markov Decision Processes
LEMMA 5.8. We have for every step t and state 𝑠 that

𝜋t[Upt] (𝑠) = Upt(𝑠) and 𝜋t[Lot] (𝑠) ≤ Lot(𝑠).

Moreover, if (𝑠, 𝑎) ∉ KUp
t , then (𝑠, 𝑎) ∉ KUp

t′ for all t′ > t until an Up-update of (𝑠, 𝑎) succeeds. If
no more updates of upper bounds take place, the analogous statement holds for lower bounds, too.

PROOF . Since the strategy 𝜋t maximizes the upper bound we have

𝜋t[Upt] (𝑠) =
∑︁

𝑎∈𝐴𝑣(𝑠)𝜋t(𝑠, 𝑎) · Upt(𝑠, 𝑎) = max𝑎∈𝐴𝑣(𝑠)Upt(𝑠, 𝑎) = Upt(𝑠).

We also trivially have that 𝜋t[Lot] (𝑠) ≤ Lot(𝑠), as Lot(𝑠) is the maximum over all actions.
For the second claim, recall that Up-values can only decrease. If (𝑠, 𝑎) ∉ KUp

t , we have
Upt(𝑠, 𝑎) > 3𝜀 + Δ(𝑠, 𝑎)⟨𝜋t[Upt]⟩ = 3𝜀 + Δ(𝑠, 𝑎)⟨Upt⟩. Since (i) Upt(𝑠, 𝑎) = Upt+1(𝑠, 𝑎) unless a
successful Up-update of (𝑠, 𝑎) occurs and (ii) Upt(𝑠) ≥ Upt+1(𝑠) for all states 𝑠, we obtain the
claim. The lower bound statement is proven analogously, noting that once upper bounds remain
fixed the only way to changeKLo

t is a successful update of some lower bound. ■

Assumption 8. Suppose an update of the upper bound (lower bound) of the state-action pair (𝑠, 𝑎)
is attempted at step t. Let 𝑘1 < 𝑘2 < . . . < 𝑘𝑚 = t be the steps of the 𝑚 most recent visits to (𝑠, 𝑎).
If (𝑠, 𝑎) is not Up-converged (Lo-converged) at step 𝑘1, the update at step t is successful.

Intuitively, this assumption says that whenever the bound for a state-action pair is significantly
different from its successors and we visit that pair often enough, we obtain a significantly better
estimate. We cannot guarantee this surely due to outliers, but we bound the probability of this
assumption being violated using our choice of the delay 𝑚.

LEMMA 5.9. The probability that Assumption 8 is violated during the execution of Algorithm 4
is bounded by 𝛿

4 .

PROOF . As in Lemma 5.5, we prove that an attempted update of the upper bounds fails with
probability at most 𝛿8 . The same bound then can be obtained for the lower bound variant with a
mostly analogous proof. The overall result again follows using the union bound.

Let (𝑠, 𝑎) and 𝑘𝑖 as in Assumption 8, i.e. (𝑠, 𝑎) ∉ KUp
𝑘1

and an update of the upper bound is
attempted at step t [Fact I]. Define 𝑋𝑖 = 𝜋𝑘1 [Up𝑘1

] (𝑠′𝑘𝑖). Note that all 𝑋𝑖 are defined using Up𝑘1

and 𝜋𝑘1 (instead of Up𝑘𝑖 and 𝜋𝑘𝑖). Consequently, the 𝑋𝑖 are i.i.d. and we can apply the Hoeffding
bound to the empirical average 𝑋 = 1

𝑚

∑𝑚
𝑖=1 𝑋𝑖 . This yields that

PA[𝑋 − E[𝑋] ≥ 𝜀] ≤ 𝑒−2𝑚𝜀2
=
𝛿

8
· 𝜉−1

.

Since the 𝑋𝑖 are i.i.d., we have that E[𝑋] = E[𝑋𝑖] for all 1 ≤ 𝑖 ≤ 𝑚, in particular E[𝑋] = E[𝑋1].
Thus, the probability that 𝑋 −E[𝑋1] ≥ 𝜀 is at most 𝛿8 · 𝜉

−1
[Fact II]. For the lower bound proof, we

analogously define 𝑋𝑖 = 𝜋𝑘1 [Lo𝑘1] (𝑠′𝑘𝑖) and prove that E[𝑋1] − 𝑋 ≥ 𝜀 with the same probability.

46 / 82 T. Brázdil et. al
Now, we show that if 𝑋 − E[𝑋1] < 𝜀 the update at step t will be successful [Fact III]. Recall

that an update is successful when the 𝑚 most recent samples significantly differ from the
currently stored value, i.e. when the currently stored value Upt(𝑠, 𝑎) is significantly larger than
the newly learned value. We have that (reasoning below)

Upt(𝑠, 𝑎) −
1
𝑚

∑︁𝑚

𝑖=1
Up𝑘𝑖 (𝑠′𝑘𝑖) ≥ Upt(𝑠, 𝑎) −

1
𝑚

∑︁𝑚

𝑖=1
Up𝑘1
(𝑠′𝑘𝑖) (2)

= Upt(𝑠, 𝑎) −
1
𝑚

∑︁𝑚

𝑖=1
𝜋𝑘1 [Up𝑘1

] (𝑠′𝑘𝑖) (3)

> Upt(𝑠, 𝑎) − E[𝑋1] − 𝜀 (4)

= Up𝑘1
(𝑠, 𝑎) − E[𝑋1] − 𝜀 (5)

= Up𝑘1
(𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋𝑘1 [Up𝑘1

]⟩ − 𝜀 (6)

> 2𝜀. (7)

Inequality (2) follows from the fact that Up-values can only decrease over time by definition of
the algorithm. Equality (3) follows directly from Lemma 5.8. Inequality (4) follows from the
above derivation. Equality (5) follows from the fact that Up𝑘𝑖 (𝑠, 𝑎) = Up𝑘1

(𝑠, 𝑎) for all 1 ≤ 𝑖 ≤ 𝑚:
Since an update is attempted at step 𝑘𝑚 = 𝑡, there can be no update attempts in the previous
𝑚−1 visits, consequently the value of Up𝑘𝑖 (𝑠, 𝑎) does not change between 𝑘1 and 𝑘𝑚. Equality (6)
follows directly from the definition of 𝑋1. Finally, Inequality (7) follows from [I], i.e. that (𝑠, 𝑎)
is not Up-converged at step 𝑘1, formally Up𝑘1

(𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋𝑘1 [Up𝑘1
]⟩ > 3𝜀.

For the lower bound, we prove a similar result:

1
𝑚

∑︁𝑚

𝑖=1
Lo𝑘𝑖 (𝑠′𝑘𝑖) − Lot(𝑠, 𝑎) ≥ 1

𝑚

∑︁𝑚

𝑖=1
Lo𝑘1 (𝑠′𝑘𝑖) − Lot(𝑠, 𝑎)

≥ 1
𝑚

∑︁𝑚

𝑖=1
𝜋𝑘1 [Lo𝑘1] (𝑠′𝑘𝑖) − Lot(𝑠, 𝑎)

> E[𝑋1] − 𝜀 − Lot(𝑠, 𝑎)
= E[𝑋1] − 𝜀 − Lo𝑘1 (𝑠, 𝑎)
= Δ(𝑠, 𝑎)⟨𝜋𝑘1 [Lo𝑘1]⟩ − 𝜀 − Lo𝑘1 (𝑠, 𝑎)
> 2𝜀.

The only major difference lies in the second inequality (corresponding to Equality (3)), where
we instead use the fact that 𝜋t[Lot] (𝑠) ≤ Lot(𝑠).

Finally, we again extend the argument to all steps 𝑘1 similar to Lemma 5.5, i.e. that by
Lemma 5.4 the number of attempted updates is bounded by 𝜉 [Fact IV]. Together with the union
bound, we thus obtain

PA [“Assumption 8 is violated for Up”]
= PA

[⋃
𝑘1

“𝑘1 satisfies condition [I], but the Up-update fails”
]

≤
∑︁

𝑘1
PA [“𝑘1 satisfies condition [I], but the Up-update fails”]

47 / 82 Learning Algorithms for Verification of Markov Decision Processes
[III]≤

∑︁
𝑘1
PA

[
“𝑋 − E[𝑋1] ≥ 𝜀 for 𝑘1”

]
[II]≤

∑︁
𝑘1

𝛿

8
· 𝜉−1 [IV]≤ 𝛿

8
. ■

LEMMA 5.10. Assume that Assumption 8 holds. If an attempted Up-update of (𝑠, 𝑎) at step t
fails and learnUp

t+1(𝑠, 𝑎) = no, then (𝑠, 𝑎) ∈ KUp
t+1. If no more updates of upper bounds take place,

the analogous statement holds for the lower bounds, too.

PROOF . We prove the statement for the upper bound, with the corresponding lower bound
statement following analogously. Assume an unsuccessful Up-update of (𝑠, 𝑎) occurs at step t
and let 𝑘1 < 𝑘2 < . . . < 𝑘𝑚 = t be the 𝑚 most recent visits to (𝑠, 𝑎). We consider three cases:

1. If (𝑠, 𝑎) ∉ KUp
𝑘1

, then by Assumption 8 the Up-update of (𝑠, 𝑎) at step t will be successful
and there is nothing to prove.

2. We have (𝑠, 𝑎) ∈ KUp
𝑘1

and there exists 𝑖 ∈ {2, . . . , 𝑚} such that (𝑠, 𝑎) is not Up-converged
at step 𝑘𝑖 . It follows that there must have been a successful update of some Up-value
between steps 𝑘1 and 𝑘𝑚, say step t′. By Line 18, learnUp

t′+1(𝑠, 𝑎) is set to yes and there is
nothing to prove.

3. For the last case, we have that for all 𝑖 ∈ {1, . . . , 𝑚} that (𝑠, 𝑎) is Up-converged at step 𝑘𝑖 ,
particularly (𝑠, 𝑎) ∈ KUp

𝑘𝑚
= KUp

t . As the attempt to update the Up-value of (𝑠, 𝑎) at step t
was unsuccessful, we have thatKUp

t = KUp
t+1.

For the lower bound statement, observe thatKLo
t may be changed by a successful update of Upt.

Hence, the above reasoning can only be followed once upper bounds do not change. ■

LEMMA 5.11. Assume that Assumption 8 holds. Then, there are at most 2𝑚 · |𝐴𝑐𝑡 |
𝜀

visits to
state-action pairs which are not Up-converged. Moreover, once the upper bounds are not updated
any more, there are at most 2𝑚 · |𝐴𝑐𝑡 |

𝜀
visits to state-action pairs which are not Lo-converged.

PROOF . We show that whenever a state-action pair (𝑠, 𝑎) is not Up-converged at step t, then in
at most 2𝑚 more visits to (𝑠, 𝑎) a successful Up-update will occur. Assume that (𝑠, 𝑎) is visited
at step t and it is not Up-converged, i.e. (𝑠, 𝑎) ∉ KUp

t . We distinguish two cases.
1. learnUp

t (𝑠, 𝑎) = no: This implies that the last attempted Up-update of (𝑠, 𝑎) was not
successful. Let t′ be the step of this attempt, t′ < t. We have learnUp

t′+1(𝑠, 𝑎) = no. By
Lemma 5.10, we have that (𝑠, 𝑎) ∈ KUp

t′+1. Since we assumed (𝑠, 𝑎) ∉ KUp
t , there was a

successful update of some Up-value between t′ and t, otherwise we would haveKUp
t′+1 = KUp

t .
Consequently, we have learnUp

t+1(𝑠, 𝑎) = yes. By Assumption 8 the next attempted Up-
update of (𝑠, 𝑎) will be successful. This attempt will occur after 𝑚 more visits to (𝑠, 𝑎).

2. learnUp
t (𝑠, 𝑎) ≠ no: By construction of the algorithm, we have that in at most 𝑚 − 1

more visits to (𝑠, 𝑎), an Up-update of (𝑠, 𝑎) will be attempted. Suppose this attempt takes
place at step t′, t′ ≥ t and the most 𝑚 recent visits to (𝑠, 𝑎) prior to t′ happened at steps
𝑘1 < 𝑘2 < . . . < 𝑘𝑚 = t′. Note that we do not necessarily have that t = 𝑘1 or t = 𝑘𝑚, but

48 / 82 T. Brázdil et. al
surely t ∈ {𝑘1, . . . , 𝑘𝑚}. If the Up-update at step t′ succeeds, there is nothing to prove,
hence assume that this update fails. There are two possibilities:

a. If (𝑠, 𝑎) is not Up-converged at step 𝑘1, then by Assumption 8 the Up-update at step
t′ will be successful, contradicting the assumption.

b. If instead (𝑠, 𝑎) is Up-converged at step 𝑘1, we have that KUp
𝑘1

≠ KUp
t , since we

assumed that (𝑠, 𝑎) ∉ KUp
t . Consequently, there was a successful Up-update of some

other state-action pair at some step t′′ with 𝑘1 < t′′ ≤ t and thus learnUp
t′′+1(𝑠, 𝑎) =

yes. Moreover, we necessarily have that no Up-update of (𝑠, 𝑎) is attempted after t′′.
Together, we have that learnUp

t′+1(𝑠, 𝑎) = once even though the attempted Up-update
at step t′ fails. By Lemma 5.8, we have that (𝑠, 𝑎) ∉ KUp

t′+1, as (𝑠, 𝑎) ∉ KUp
t and no

successful Up-update of (𝑠, 𝑎) occurred between t and t′. By Assumption 8 the next
attempt to update Up-value of (𝑠, 𝑎) will succeed.

By Lemma 5.3, the number of successful Up-updates is bounded by |𝐴𝑐𝑡 |
𝜀

, and by the previous
arguments we have that if for some t the pair (𝑠, 𝑎) is not Up-converged then in at most 2𝑚
more visits to (𝑠, 𝑎), there will be a successful update to Up(𝑠, 𝑎). Hence, there can be at most
2𝑚 · |𝐴𝑐𝑡 |

𝜀
steps t such that the current state-action pair is not Up-converged. Once no more

Up-updates take place, 𝜋t remains fixed andKLo
t only changes due to successful updates of the

lower bounds, yielding an analogous proof for Lo. ■

As a last auxiliary lemma, we show that whenever the probability of reaching a non-converged
pair is low, we necessarily are close to the optimal value.

LEMMA 5.12. Assume that Assumption 7 holds and fix a step t. Then, for every state 𝑠 ∈ 𝑆 we
have that

Upt(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋t
M,𝑠 [^K

Up
t] ≤

Pr𝜋t
M,𝑠 [^{𝑠+}] ≤

Lot(𝑠) + 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Pr𝜋t
M,𝑠 [^KLo

t] .

PROOF . The central idea of this proof is to apply Lemma A.5 twice, with 𝑋 (𝑠, 𝑎) = Upt(𝑠, 𝑎)
and 𝑋 (𝑠, 𝑎) = Lot(𝑠, 𝑎), respectively.

For the first application, set 𝜅𝑙 = −1, 𝜅𝑢 = 3𝜀, and 𝜋 = 𝜋t. Then,K = KUp
t and

Pr𝜋t
M′,𝑠 [^{𝑠+}] − Pr𝜋t

M,𝑠 [^K
Up
t] ≤ Pr𝜋t

M,𝑠 [^{𝑠+}] (8)

sinceM′ andM are equivalent onKUp
t . The lemma then yields that

𝜋t[Upt] (𝑠) − Pr𝜋t
M′𝑡 ,𝑠
[^{𝑠+}] ≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min. (9)

Recall that 𝜋𝑡 is a strategy randomizing uniformly over some of the available actions in each
state, hence 𝛿min(𝜋) is at least 𝑝min. For the second application, we dually set 𝜅𝑙 = −3𝜀, 𝜅𝑢 = 1,

49 / 82 Learning Algorithms for Verification of Markov Decision Processes
and 𝜋 = 𝜋t. Again, we haveK = KLo

t and

Pr𝜋t
M,𝑠 [^{𝑠+}] ≤ Pr𝜋t

M′,𝑠 [^{𝑠+}] + Pr𝜋t
M,𝑠 [^KLo

t] . (10)

The lemma gives us
Pr𝜋t
M′𝑡 ,𝑠
[^{𝑠+}] − 𝜋t[Lot] (𝑠) ≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min. (11)

Now, recall that 𝜋t[Upt] (𝑠) = Upt(𝑠) and 𝜋t[Lot] (𝑠) ≤ Lot(𝑠) [Fact I] due to Lemma 5.8.
Together, we have

Upt(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min
[I]
= 𝜋t[Upt] (𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min

(9)≤ Pr𝜋t
M′𝑡 ,𝑠
[^{𝑠+}],

Pr𝜋t
M′,𝑠 [^{𝑠+}] − Pr𝜋t

M,𝑠 [^K
Up
t]

(8)≤ Pr𝜋t
M,𝑠 [^{𝑠+}]

(10)≤ Pr𝜋t
M′,𝑠 [^{𝑠+}] + Pr𝜋t

M,𝑠 [^KLo
t], and

Pr𝜋t
M′𝑡 ,𝑠
[^{𝑠+}]

(11)≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min + 𝜋t[Lot] (𝑠)
[I]≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Lot(𝑠). ■

Combining all the above statements now yields the overall result.

THEOREM 5.13. Algorithm 4 terminates and yields a correct result with probability at least
1 − 𝛿 after at most O(POLY(|𝐴𝑐𝑡 |, 𝑝−|𝑆 |min, 𝜀

−1, ln 𝛿)) steps.

PROOF . We only consider executions where Assumptions 7 and 8 hold. By Lemmas 5.5 and 5.9
together with the union bound, this happens with probability at least 1 − 𝛿

2 .
Now, observe that if the algorithm terminates at some step t, we have that Upt(𝑠)−Lot(𝑠) <

𝜀 by definition. With Lemma 5.6, we get Lot(𝑠) ≤ V(𝑠) ≤ Upt(𝑠). Reordering yields the result.
We show by contradiction that the algorithm terminates for almost all considered execu-

tions. Thus, assume that the execution does not halt with non-zero probability. Since the MDP
M satisfies Assumption 1, almost all episodes eventually visit either 𝑠+ or 𝑠− due to Lemma 2.8
and thus are of finite length. Thus, almost all executions for which the algorithm does not
terminate comprise infinitely many episodes. We restrict our attention to only those executions.

Recall that due to Lemma 5.4, there are only finitely many attempted updates on almost
all considered executions. Consequently, on these executions the algorithm eventually does
not change Up, since no successful updates can occur from some step t onwards. This means
that all following samples are obtained by sampling according to the strategy 𝜋t. Note that both
the time of convergence and the actual strategy 𝜋t depends on the execution 𝔞. Thus, we need
to employ Lemma A.7—the algorithm clearly qualifies as Markov process, since its evolution
only depends on its current valuations. More precisely, it is not difficult to see that the whole
execution of the algorithm (with fixed inputs) can be modelled as a (very unwieldy) countable
Markov chain, showing that the considered properties are measurable. In particular, they are
reachability objectives on this induced Markov chain.

Let us now consider the set of executions for which the upper bounds eventually converge
and moreover Pr𝜋t

M,𝑠 [^K
Up
t] ≥ 𝜌 > 0 infinitely often. Assume that this set of executions has

50 / 82 T. Brázdil et. al
a non-zero measure. By Lemma A.7, on almost all of these executions KUp

t is also reached
infinitely often, contradicting Lemma 5.11. For the lower bounds, we can prove a completely
analogous statement. Consequently, Pr𝜋t

M,𝑠 [^K
Up
t] → 0 and Pr𝜋t

M,𝑠 [^KLo
t] → 0 on almost all

considered executions for t→∞.
Inserting the definition of 𝜀, we have for a sufficiently large step t that

Upt(𝑠) −
𝜀

2
< Upt(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋t

M,𝑠 [^K
Up
t]

and dually
Lot(𝑠) + 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Pr𝜋t

M,𝑠 [^KLo
t] < Lot(𝑠) + 𝜀2

for all considered executions. Thus, by Lemma 5.12, we have

Upt(𝑠) −
𝜀

2
< Pr𝜋t

M,𝑠 [^{𝑠+}] < Lot(𝑠) + 𝜀2 ,

i.e. Upt(𝑠) − Lot(𝑠) < 𝜀, contradicting the assumption.
We have proven that the result is approximately correct with probability 1 − 𝛿

2 . Now, we
additionally need to prove the step bound. To this end, we first bound the number of sampled
paths and then bound the length of each path. Central to the following proof is Lemma 5.11,
bounding the number of visits to non-converged state-action pairs. First, we treat the upper
bounds. Observe that the probability of visiting a non-Up-converged state-action pair either
is 0 or at least 𝑝|𝑆 |min (due to Lemma A.1). Moreover, while this probability may fluctuate, once
it reaches 0 it remains at 0, since then the sampling strategy does not change and all pairs
reachable under this strategy are Up-converged. So, in the worst case, the probability of
reaching such a pair is exactly 𝑝|𝑆 |min until they are visited often enough. We model this process
as a series of Bernoulli trials 𝑋𝑖 , equalling 1 if at least one Up-update happens while sampling
the 𝑖-th path.10 While the exact probabilities are not independent, they are always at least
as large as the success probability 𝑝 B 𝑝|𝑆 |min of these trials (or 0 if all reachable pairs are Up-
converged). Hence, we approximate the number of trials we need to perform until we observe
at least 𝑐 B 2𝑚 · |𝐴𝑐𝑡 |

𝜀
successes with high probability—then, all upper bounds necessarily

are converged by Lemma 5.11. Now, we are essentially dealing with a binomially distributed
variable 𝑋𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 and want to find an 𝑛 such that P[𝑋𝑛 ≥ 𝑐] ≥ 1− 𝛿

4 . Since we are interested
in the limit behaviour, we can apply the de Moivre–Laplace theorem, allowing us to replace this
binomial distribution with an appropriate normal distribution. Thus, we obtain

P[𝑋𝑛 ≥ 𝑐] ≈ 1 − Φ

(
𝑐 − 𝑛𝑝√︁
𝑛𝑝(1 − 𝑝)

)
,

10 We deliberately use 𝑖 instead of e to emphasize that 𝑋𝑖 does not operate on the probability space of the algorithm
(𝔄,A, PA). Instead, they represent a crude under-approximation to allow for a feasible analysis.

51 / 82 Learning Algorithms for Verification of Markov Decision Processes
and rearranging yields

𝑛−
1
2 (𝑐 − 𝑛𝑝) ≈ Φ−1

(
𝛿

4

)
·
√︁
𝑝(1 − 𝑝).

For readability, we set 𝑎 B Φ−1
(
𝛿
4

)
. Solving for 𝑛 gives us

𝑛 ≈ 𝑐

𝑝
− 𝑎

2𝑝

√︁
(1 − 𝑝)2𝑎2 + 4𝑐(1 − 𝑝) + (1 − 𝑝)𝑟

2

2𝑝
.

Inserting the definitions yields that 𝑛 ∈ O(POLY(|𝐴𝑐𝑡 |, 𝑝−|𝑆 |min, 𝜀
−1, ln 𝛿)). This bounds the number

of paths sampled by the algorithm. We furthermore prove that the length of all those paths
is polynomial with high probability. To this end, we employ Lemma A.3. Recall that sampling
of a path stops once we reach one of the two special states 𝑠+ and 𝑠−. Due to Assumption 1,
the probability of eventually reaching them is 1. Hence, Pr𝜋e

M,𝑠 [^≤𝑁 {𝑠+, 𝑠−}] ≥ 1 − 𝜏, where
𝑁 ≥ ln(2𝜏) · |𝑆 |𝑝

−|𝑆 |
min for any sampling strategy 𝜋e. In other words, the probability of a sampled

path being longer than 𝑁 is at most 𝜏. Then, by the union bound, the probability of any of the 𝑛
paths being longer than 𝑁 is at most 𝑛 · 𝜏. By choosing 𝜏 = 𝛿

4𝑛 , this happens with probability
at most 𝛿

4 . Then, ln(2𝜏) = ln(8𝑛) − ln(𝛿), i.e. the length of each path again is bounded by a
polynomial in the input values. Together, we obtain the results, since polynomials are closed
under multiplication. ■

REMARK 5.14 (Relation to [129]). Before we proceed to the general case, we briefly discuss
how our proof structure relates to the one of [129] and how it can be used to derive a variant
of their Theorem 1. Most of our proofs are quite analogous. For example, Assumption 8 is
practically equivalent to their Assumption A1, similarly Lemmas 5.6 and 5.9 to 5.11 and the
respective proofs correspond to their Lemma 1 to 4 (however, note the different bounds). Since
we are dealing with unbounded reachability (assuming almost sure absorption by Assumption 1),
the purpose of Lemma 5 corresponds to our Lemma A.5.

Major differences arise in the actual proof of [129, Theorem 1]. As we already pointed out,
the Hoeffding bound is not applicable to variables indicating whether an update has occurred
in a particular step due to the clear dependency. The related proof step aims to show that with
high probability after a certain number of steps, the number of possible updates is exhausted
(by virtue of Lemma 5.11) and then bounds the deviation from the true value based on this.
We prove a similar statement via Lemma 5.12, connecting the probability of visiting a non-
converged state-action pair to the convergence of the bounds. Note that the proof of Lemma 5.12
employs the auxiliary Lemma A.5.

6. Limited Information – General Case

As before, MECs pose an additional challenge, since they introduce superfluous upper fixed
points. The key difference to the full information setting is that MECs cannot be directly

52 / 82 T. Brázdil et. al
identified. Instead, we identify a set of state-action pairs as an end component if it occurs
sufficiently often. By bounding the probability of falsely identifying such a set as an end
component, we can replicate the previous proof structure.

6.1 Collapsing End Components with Limited Information

Before we present the complete algorithm, we first show how we identify end components in
this section.

DEF IN IT ION 6.1. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be an MDP, 𝜌 ∈ PathsM and 𝑖, 𝑗 ≥ 0. We define the
state-action pairs which appear at least 𝑖 times on the path 𝜌 during the first 𝑗 steps as

𝐴𝑝𝑝𝑒𝑎𝑟(𝜌, 𝑖, 𝑗) = {(𝑠, 𝑎) ∈ 𝑆 × 𝐴𝑣 | |{𝑘 | 𝑘 ≤ 𝑗 ∧ 𝜌𝑎(𝑘) = 𝑎}| ≥ 𝑖}.

We overload the definition of 𝐴𝑝𝑝𝑒𝑎𝑟 to also accept finite paths of sufficient length. Moreover,
we also define 𝐴𝑝𝑝𝑒𝑎𝑟 for paths of Markov chains, which yields the states occurring more than
𝑖 times.

For notational convenience, we identify the result of 𝐴𝑝𝑝𝑒𝑎𝑟 with the corresponding
state-action tuple (𝑅, 𝐵) since we will use these results as candidates for end components. With
appropriate 𝑖 and 𝑗, 𝐴𝑝𝑝𝑒𝑎𝑟 is an EC with high probability.

LEMMA 6.2. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be an MDP, 𝑠 ∈ 𝑆 an initial state,𝑇 ⊆ 𝑆 a set of target states,
and 𝜋 ∈ ΠMD

M a memoryless strategy onM such that Pr𝜋M,𝑠 [^𝑇] = 0 for all 𝑠 ∈ 𝑇 , i.e.𝑇 is absorbing
under 𝜋. Set 𝑆𝜋 =

⋃
𝑠∈𝑆 supp(𝜋(𝑠)), 𝜅 = |𝑆𝜋 | + 1, and pick 𝑖 ≥ 𝜅. Then either Pr𝜋M,𝑠 [^≤2𝑖3𝑇] = 1 or

Pr𝜋M,𝑠

[
𝐴𝑝𝑝𝑖 | ^≤2𝑖3𝑇

]
≥ 1 − 2(1 + 𝑖2) · 𝑒−(𝑖−1) 𝛿min (𝜋)𝜅

𝜅 · 𝛿min(𝜋)−𝜅,

where 𝐴𝑝𝑝𝑖 = {𝜌 ∈ PathsM | 𝐴𝑝𝑝𝑒𝑎𝑟(𝜌, 𝑖, 2𝑖3) ∈ EC(M)}.

Informally, this lemma shows that, when sampling according to a memoryless strategy,
paths of sufficient length either end up in an already known set of ECs or frequently reappearing
state-action pairs also form an EC with high probability.

PROOF . If Pr𝜋M,𝑠 [^≤2𝑖3𝑇] = 1, there is nothing to prove, hence we assume the opposite, i.e. that

Pr𝜋M,𝑠 [^≤2𝑖3𝑇] > 0 [Fact I].
Given an MDP, a designated initial state 𝑠, and a memoryless strategy, we can construct a

finite state Markov chain which exactly captures the behaviour of the MDP under the given
strategy. We define the Markov chain M𝜋 = ({𝑠} ∪ 𝑆𝜋, 𝛿𝜋), where 𝛿𝜋 is defined as

𝛿(𝑠, 𝑎) = 𝜋(𝑠, 𝑎) for 𝑎 ∈ supp(𝜋(𝑠))
𝛿(𝑎, 𝑎′) = Δ(state(𝑎,M), 𝑎, state(𝑎′,M)) · 𝜋(state(𝑎′,M), 𝑎′).

53 / 82 Learning Algorithms for Verification of Markov Decision Processes
In other words, 𝛿(𝑎, 𝑎′) equals the probability of reaching some state 𝑠′ after playing action 𝑎
and then continuing with action 𝑎′. Recall that each action is tied to a unique state. As such, the
paths in M𝜋 exactly correspond to the paths inM following 𝜋. Furthermore, it is easy to see
that each BSCC of M𝜋 corresponds to an end component inM. Observe that, by definition, 𝜅
equals the number of states in M𝜋 [Fact II] and 𝛿min(𝜋) equals the smallest positive transition
probability in M𝜋 [Fact III]. For readability, we define 𝑐 = exp(−𝛿min(𝜋)𝜅/𝜅).

Let 𝐴𝑝𝑝𝑖,𝜋 ⊆ PathsM𝜋 be the event corresponding to 𝐴𝑝𝑝𝑖 in the Markov chain M𝜋. Infor-
mally, 𝐴𝑝𝑝𝑖,𝜋 denotes the set of all (infinite) paths 𝜌 which within 2𝑖3 steps (i) visit all states of
some BSCC at least 𝑖 times, and (ii) all other states at most 𝑖 − 1 times, i.e. all paths such that
𝐴𝑝𝑝𝑒𝑎𝑟(𝜌, 𝑖, 2𝑖3) is a BSCC of M𝜋. We now show that

PrM𝜋,𝑠 [𝐴𝑝𝑝𝑖,𝜋 | ^≤2𝑖3𝑇] ≥ 1 − 2𝑐𝑖𝑖3 · 𝛿min(𝜋)−𝜅,

i.e. the probability of 𝐴𝑝𝑝𝑖,𝜋 given that 𝑇 is not reached within 2𝑖3 steps is at least 1 − 2𝑐𝑖𝑖3 ·
𝛿min(𝜋)−𝜅. Since the paths of M𝜋 exactly correspond to paths obtained inM by following the
strategy 𝜋, this proves the claim.

First, we show that [Fact IV]

PrM𝜋,𝑠
[
𝐴𝑝𝑝𝑖,𝜋

] ≥ 1 − 2(1 + 𝑖2) · 𝑐𝑖−1.

Let 𝐵 =
⋃
𝑅∈BSCC(M𝜋) 𝑅 be the set of all states in BSCCs of M𝜋. We have that PrM𝜋,𝑠 [^𝐵] = 1 by

Lemma 2.7. We apply Lemma A.3 with 𝑁 = 𝑖 − 1 and 𝜏 = 2𝑐𝑖−1. By [II] and [III]

|𝑆𝜋 | · ln
(

2
𝜏

)
· 𝛿min(𝜋)−|𝑆𝜋 | = 𝜅 · ln

(
exp

(
(𝑖 − 1) · 𝛿min(𝜋)𝜅

𝜅

))
· 𝛿min(𝜋)−𝜅 = 𝑖 − 1.

Thus PrM𝜋,𝑠 [^≤𝑖−1𝐵] ≥ 1 − 2𝑐𝑖−1. In other words, an infinite path of M𝜋 starting in 𝑠 does not
visit a BSCC of M𝜋 within 𝑖 − 1 steps with probability at most 2𝑐𝑖−1.

Now, let 𝑅 = {𝑠1, . . . , 𝑠𝑛} ⊆ 𝐵 be some BSCC of M𝜋 and fix two states 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑅. Since
𝑅 is an BSCC, we have PrM𝜋,𝑠𝑖 [^{𝑠 𝑗}] = 1, and we can apply Lemma A.3 again to obtain that
PrM𝜋,𝑠𝑖 [^≤𝑖{𝑠 𝑗}] ≥ 1 − 2𝑐𝑖−1. Consequently, the probability of visiting all states of 𝑅, one after
another, with at most 𝑖 − 1 steps between visiting the respective next state, is at least 1− 𝑛 · 2𝑐𝑖−1.
Repeating this argument, with probability at least 1− 𝑖 ·𝑛 ·2𝑐𝑖−1 ≥ 1− 𝑖 ·𝜅 ·2𝑐𝑖−1, this round trip is
successful 𝑖 times in a row and has a length of at most 𝑖·𝑛·(𝑖−1) ≤ 𝑖2𝜅 ≤ 𝑖3. Using the union bound
again, we get that with probability at least 1−2𝑐𝑖−1−𝑖𝜅 ·2𝑐𝑖−1 = 1−2𝑐𝑖−1(1+𝑖𝜅) ≥ 1−2(1+𝑖2) ·𝑐𝑖−1

a path of length 𝑖3 ends up in a BSCC within 𝑖 − 1 steps and then visits all states of the BSCC at
least 𝑖 times, proving [IV].

Let 𝑇𝜋 = {𝑎 ∈ 𝑆𝜋 | state(𝑎,M) ∈ 𝑇 } the states of M𝜋 corresponding to the given state set 𝑇 .
Recall that we assumed that Pr𝜋M,𝑠 [^𝑇] = 0 for 𝑠 ∈ 𝑇 , i.e. PrM,𝑎[^𝑇𝜋] = 0 for all 𝑎 ∈ 𝑇𝜋 (recall
that the states of M are actions 𝑎 ofM). Consequently, each BSCC of M𝜋 either is contained in

54 / 82 T. Brázdil et. al
𝑇𝜋 or disjoint from it: Assume that there exists a BSCC 𝑅 with states 𝑎, 𝑎′ ∈ 𝑅 where 𝑎 ∈ 𝑇𝜋 and
𝑎′ ∉ 𝑇𝜋. Since 𝑅 is a BSCC, we have PrM𝜋,𝑎[^{𝑎′}] = 1, contradicting PrM𝜋,𝑎[^𝑇𝜋] = 0.

Due to [I], there exists at least one BSCC which is disjoint from 𝑇𝜋—otherwise any run
would eventually end up in 𝑇𝜋. Let 𝑠 be some state in this BSCC. By construction, there exists
a path of length at most 𝜅 from 𝑠 to 𝑠 [II], and thus the probability of reaching such a BSCC is
bounded from below by 𝛿min(𝜋)𝜅, using [III]. Formally, we have [Fact V]

PrM𝜋,𝑠

[
^≤2𝑖3𝑇𝜋

]
> 𝛿min(𝜋)𝜅.

Finally, we obtain

PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋 | ^≤2𝑖3𝑇

]
[I]
= PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋 ∩ ^≤2𝑖3𝑇

]
/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
= PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋 \ ^≤2𝑖3𝑇

]
/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
= (PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋

]− PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋 ∩ ^≤2𝑖3𝑇

]
)/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
≥ (PrM𝜋,𝑠

[
𝐴𝑝𝑝𝑖,𝜋

]− PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
)/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
[IV]≥ (1 − 2𝑐𝑖−1(1 + 𝑖2) − (1 − PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
))/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
= (PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
− 2𝑐𝑖−1(1 + 𝑖2))/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
= 1 − (2𝑐𝑖−1(1 + 𝑖2))/PrM𝜋,𝑠

[
^≤2𝑖3𝑇

]
[V]≥ 1 − 2(1 + 𝑖2) · 𝑐𝑖−1 · 𝛿min(𝜋)−𝜅. ■

6.2 The General DQL Algorithm

We define the general DQL algorithm in Algorithm 5. Essentially, the algorithm works similar to
the previous Algorithm 4. The main difference is that it further employs Lemma 6.2 to detect
whether the current sample is stuck in a yet to be discovered EC. To this end, the algorithm
introduces a small set of additional auxiliary variables, necessary to track representative states
similar to the collapsed MDP of Section 4. In particular, collapsede stores the representatives of
each state. Since we might discover growing ECs, this representative might be part of another
already discovered EC. Thus, we use repe to resolve the current representative of a given state 𝑠
by repeatedly applying collapsede until a fixed point is reached. Practically, we would store repe

as a map, pointing each “original” state of the MDP to its current representative. We introduce
the “layered” representation through collapsede only as notational convenience. Additionally,
Ze contains all states which are part of a bottom EC without a target state. We choose the
parameter i, controlling the length of each sample and when to check for an EC, such that

|𝐴𝑐𝑡 | · 2(1 + i2) · 𝑒−(i−1) 𝑝min (𝜋) |𝑆 |+1

|𝑆 |+1 · 𝑝min(𝜋)−(|𝑆 |+1) ≤ 𝛿
4

and i ≥ |𝐴𝑐𝑡 |. (12)

55 / 82 Learning Algorithms for Verification of Markov Decision Processes

Input: Inputs as given in Definition 5.2, precision 𝜀, and
confidence 𝛿.

Output: Values (𝑙, 𝑢) which are 𝜀-optimal, i.e., V(𝑠) ∈ [𝑙, 𝑢] and
0 ≤ 𝑢 − 𝑙 < 𝜀, with probability at least 1 − 𝛿.

1: Initialize all variables as in Algorithm 4
2: e← 1, t← 1
3: for 𝑠 ∈ 𝑆 do collapsede(𝑠) ← 𝑠

4: 𝑆1 ← 𝑆, 𝐴𝑣1 ← 𝐴𝑣, 𝑇1 ← 𝑇, Z1 ← ∅
5: while Upt(𝑠) − Lot(𝑠) ≥ 𝜀 do
6: for 𝑠 ∈ 𝑆e do MaxAe(𝑠) ← arg max𝑎∈𝐴𝑣e(𝑠) Upt(𝑎)
7: 𝑠t ← 𝑠, te ← t
8: while 𝑠t ∉ 𝑇e ∪ Ze and t − te < 2i3 do
9: 𝑎t ← sampled uniformly from MaxAe(𝑠t) > Pick an action

10: 𝑠′′t ← succ(𝑎t) > Query successor oracle
11: 𝑠′t ← repe(𝑠′′t)
12: Perform updates as in Algorithm 4 > Update Bounds
13: 𝑠t+1 ← 𝑠′t, t← t + 1
14: if t − te ≥ 2i3 then > Update ECs
15: (R, B) ← 𝐴𝑝𝑝𝑒𝑎𝑟(𝑠te𝑎te𝑠te+1 . . . 𝑎t−1𝑠t, i, 2i3)
16: 𝐶 ← ⋃

𝑠∈R 𝐴𝑣e(𝑠) \ 𝐵
17: if B ≠ ∅ then
18: if 𝑇e ∩ R ≠ ∅ then
19: 𝑇e+1 ← 𝑇e ∪ R
20: for 𝑎 ∈ B do Lot(𝑎) ← 1
21: else if 𝐶 = ∅ then
22: Ze+1 ← Ze ∪ R
23: for 𝑎 ∈ B do Upt(𝑎) ← 0
24: else
25: 𝑆e+1 ← (𝑆e \ 𝑅) ∪ {𝑠(𝑅,𝐵)}
26: 𝐴𝑣e+1(𝑠(𝑅,𝐵)) ← 𝐶

27: for 𝑠 ∈ R ∪ {𝑠(R,B)} do collapsede+1(𝑠) ← 𝑠(R,B)
28: if 𝑠 ∈ R then 𝑠← 𝑠(R,B)
29: e← e + 1
30: return (Lot(𝑠),Upt(𝑠))

Algorithm 5. The DQL learning algorithm for general MDPs.

56 / 82 T. Brázdil et. al
This technical choice becomes more apparent in the proof of Lemma 6.13. Note that such an i
always exists since the left side of the first inequality converges to 0 for i→∞. Moreover, we
can find such an i using the values provided by the limited information setting as defined in
Definition 5.2.

REMARK 6.3. In contrast to the previous sections, the domain of the bounds Up and Lo are
actions instead of state-action pairs. This simplifies notation, since the algorithm frequently
changes the state associated with an action.

REMARK 6.4. We implicitly assume that we can continue sampling with an action of our choice:
When we collapse, for example, an EC (R, B) with states 𝑠, 𝑠′ ∈ R into a single representative
state, we might enter the EC in state 𝑠 but then continue sampling with an action 𝑎 ∈ 𝐴𝑣(𝑠′).
This is not an essential restriction: Upon entering an already detected EC, we can simply pause
the algorithm and randomly pick actions in B until we reach the state enabling the next action
mandated by the algorithm.

6.3 Proof of Correctness

Now, to prove correctness of the algorithm, we again can reuse a lot of the previous reasoning.
However, we need to invest significant effort in the treatment of end components. First of all,
we again prove that the algorithm is well-defined.

LEMMA 6.5. During all episodes, we have that 𝐴𝑣e(𝑠) ∩ 𝐴𝑣e(𝑠′) = ∅ for all states 𝑠, 𝑠′ ∈ 𝑆e with
𝑠 ≠ 𝑠′.

PROOF . The algorithm only modifies the set of available actions 𝐴𝑣e whenever a new repre-
sentative state 𝑠(𝑅,𝐵) is added. In this case, we have 𝐴𝑣e+1(𝑠(𝑅,𝐵)) ← 𝐶 ⊆ ⋃

𝑠∈𝑅 𝐴𝑣e(𝑠) and all
states of 𝑅 are removed. ■

LEMMA 6.6. Algorithm 5 is well-defined.

PROOF . To prove this statement, we have to show that (i) no undefined values are accessed,
(ii) all assignments are free of contradictions, and (iii) we require no more information than
given by Definition 5.2.

For (i) and (ii), observe that when assigning the next episode’s variables, we only use the
variables of the current episode. Since we copy all unchanged variables, we only need to take
care of the newly introduced arguments, i.e. the representative states 𝑠(𝑅,𝐵) . Such a state is only
added in Line 25. In the following lines, we define the state’s actions 𝐴𝑣, which is non-empty
and disjoint from other states by Lemma 6.5. As no new actions are added, the action values in
𝑠(𝑅,𝐵) still are defined. Observe that in Line 10 the successor oracle is only given states of the
original MDP. Claim (iii) follows immediately. ■

57 / 82 Learning Algorithms for Verification of Markov Decision Processes
Now, we show several statements related to the newly added handling of end components. Our
goal is to show that the algorithm essentially samples from a collapsed MDP where the ECs
identified by the algorithm are collapsed. Then, we replicate the proof ideas of the EC-free DQL
algorithm on this collapsed MDP in order to again obtain the correctness.

LEMMA 6.7. Algorithm 5 enters Line 15 at most |𝐴𝑐𝑡 | times.

PROOF . First, observe that due to the pigeon-hole principle, 𝐵 never is empty: By (12), our
choice of i is larger than |𝐴𝑐𝑡 |, thus a path of length at least i2 contains at least one action i times.
Consequently, whenever the algorithm enters Line 15, 𝐵 is non-empty. Initially, the size of 𝐵 is
bounded by

∑
𝑠∈𝑆1 |𝐴𝑣1(𝑠) | = |𝐴𝑐𝑡 |. We show that in any of the three cases, we remove at least

one action which can never occur again as part of 𝐵. Consequently, after at most |𝐴𝑐𝑡 | visits to
Line 15, 𝐵 would necessarily be empty, contradicting the above.

Whenever a state is added to either𝑇e or Ze, this state and its actions will not be considered
again—in particular, it will not occur as part of 𝐵. For the third case, we show that the number
of available actions

∑
𝑠∈𝑆e |𝐴𝑣e(𝑠) | is reduced whenever a new representative state is added. In

that case, we have 𝐶 ← ⋃
𝑠∈𝑅 𝐴𝑣e(𝑠) \ 𝐵, 𝑆e+1 ← (𝑆e \ 𝑅) ∪ {𝑠(𝑅,𝐵)}, and 𝐴𝑣e+1(𝑠(𝑅,𝐵)) ← 𝐶. By

construction of the algorithm and definition of 𝐴𝑝𝑝𝑒𝑎𝑟, we have ∅ ≠ 𝐵 ⊆ ⋃
𝑠∈𝑅 𝐴𝑣e(𝑠). Using

Lemma 6.5 we thus have |𝐶 | < |⋃𝑠∈𝑅 𝐴𝑣e(𝑠) |. Consequently,
∑
𝑠∈𝑆e+1 |𝐴𝑣e+1(𝑠) | <

∑
𝑠∈𝑆e |𝐴𝑣e(𝑠) |.

■

LEMMA 6.8. Algorithm 5 terminates or experiences an infinite number of episodes.

PROOF . Since the length of each episode is limited, i.e. the loop of Line 8 always terminates after
a bounded number of steps, we only need to show that all other loops terminate. All for-loops
iterate over (sub-)sets of states or actions, which are finite by assumption. The only remaining
loop is the computation of repe in Line 11, where the representative state is resolved. Observe
that by construction of the algorithm, we either have that collapsede(𝑠) = 𝑠 or collapsede(𝑠) =
𝑠(𝑅,𝐵) with 𝑠 ∈ 𝑅. Since we only modify collapsed when a new representative state is added, this
happens only finitely often, due to Lemma 6.7. ■

LEMMA 6.9. If we add a representative state 𝑠(𝑅,𝐵) in Line 25 after an episode e the bounds of
any action 𝑎 ∈ 𝐵 are not changed after episode e.

PROOF . During each episode e, we only consider states in 𝑆e and actions which are available
in such states, as the call to repe in Line 11 always yields an element of the current state set 𝑆e

due to Lemma 6.10. Since all states corresponding to actions in 𝐵 are removed when adding a
representative state 𝑠(𝑅,𝐵) and these actions are not enabled in the newly added state, they do
not appear again. ■

LEMMA 6.10. For any execution of the algorithm, we always have that repe(𝑠) ∈ 𝑆e for any
state 𝑠 ∈ 𝑆.

58 / 82 T. Brázdil et. al
PROOF . We prove by induction: Initially, we have rep1(𝑠) = collapsed1(𝑠) = 𝑠 for all 𝑠 ∈ 𝑆1 by
definition. Whenever we modify 𝑆e, i.e. remove some states 𝑅 and add a representative 𝑠(𝑅,𝐵) ,
we set collapsede+1(𝑠) ← 𝑠(𝑅,𝐵) ∈ 𝑆e+1 for all 𝑠 ∈ 𝑅. ■

In order to properly reason about the paths sampled by the algorithm, we introduce a special
MDP which corresponds to the current “view” of the given MDP.

DEF IN IT ION 6.1 1. For any episode e, let the sampling MDPMe = (𝑆e, 𝐴𝑐𝑡e, 𝐴𝑣e, Δe),

Δe(𝑠, 𝑎) = {𝑠 ↦→ 1} for 𝑠 ∈ 𝑆e ∩ (𝑇e ∪ Ze), 𝑎 ∈ 𝐴𝑣e(𝑠), and

Δe(𝑠, 𝑎, 𝑠′) =
∑︁
{𝑠′′∈𝑆 |repe(𝑠′′)=𝑠′}

Δ(state(𝑎,M), 𝑎, 𝑠′′) for other states 𝑠, 𝑎 ∈ 𝐴𝑣e(𝑠),

and 𝐴𝑐𝑡e =
⋃
𝑠∈𝑆e 𝐴𝑣e(𝑠).

Note that the sampling MDP is well-defined due to Lemmas 6.5 and 6.10.

LEMMA 6.12. Fix an execution of the algorithm until some episode e and let 𝜚 be the finite
path sampled by the algorithm during episode e. The probability of sampling this path equals the
probability of obtaining this path onMe following the strategy 𝜋e starting in state 𝑠.

PROOF . We prove by induction over the path 𝜚, using the Markov property. We show that for
any finite prefix, the probability of selecting action 𝑎 and then reaching state 𝑠′ in the next step
is equal in both the algorithm and the sampling MDP. Observe that we always have 𝑠 ∈ 𝑆e due
to Line 28 and the induction start is trivial.

For the induction step, suppose we are in a state 𝑠. By construction of the algorithm,
𝑠 ∉ 𝑇e∪Ze. The algorithm now uniformly selects an action 𝑎 from MaxAe(𝑠), i.e. with probability
|MaxAe(𝑠) |−1 for any such action. Then, a successor 𝑠′′ ∈ 𝑆 is sampled according to succ(𝑠, 𝑎),
i.e. with probability Δ(𝑠, 𝑎, 𝑠′′). The overall successor then equals 𝑠′ = repe(𝑠′′). We have 𝑠′ ∈ 𝑆e

by Lemma 6.10. Hence, a state 𝑠′ ∈ 𝑆e is sampled with probability
∑
{𝑠′′∈𝑆 |repe(𝑠′′)=𝑠′} Δ(𝑠, 𝑎, 𝑠′′),

just as in the MDPMe under strategy 𝜋e. ■

Assumption 9. Whenever the algorithm reaches Line 15, (R, B) is an EC ofMe.

LEMMA 6.13. The probability that Assumption 9 is violated during the execution of Algorithm 5
is bounded by 𝛿

4 .

PROOF . We apply Lemma 6.2 withM =Me, 𝑇 = 𝑇e ∪ Ze and 𝜋 = 𝜋e. By construction ofMe

and the choice of 𝑇 , we have that 𝜋e trivially satisfies the condition of this lemma, since each
state in 𝑇 only has self-loops inMe. Clearly, we have that |𝑆𝜋 | ≤

∑
𝑠∈𝑆e |𝐴𝑣(𝑠) | ≤ |𝐴𝑐𝑡 |, since no

actions are added during the execution of the algorithm. Consequently, we have that either
Pr𝜋e
Me,𝑠
[^≤2𝑖3 (𝑇e ∪ Ze)] = 1 or

Pr𝜋e
Me,𝑠

[
𝐴𝑝𝑝i | ^≤2i3 (𝑇e ∪ Ze)

]
≥ 1 − 2(1 + i2) · 𝑒−(i−1) 𝑝min (𝜋) |𝑆 |+1

|𝑆 |+1 · 𝑝min(𝜋)−(|𝑆 |+1) ,

59 / 82 Learning Algorithms for Verification of Markov Decision Processes
where 𝐴𝑝𝑝i are all paths 𝜌 ∈ PathsMe such that 𝐴𝑝𝑝𝑒𝑎𝑟(𝜌, i, 2i3) is an EC inMe.

Now, observe that the algorithm only enters Line 15 if after 2i3 steps neither 𝑇e nor Ze is
reached. By applying Lemma 6.12, we get that the probability of (𝑅, 𝐵) being an EC given that
Line 15 is entered exactly equals Pr𝜋e

Me,𝑠
[𝐴𝑝𝑝i | ^≤2i3 (𝑇e ∪ Ze)]. Since Line 15 is entered at most

|𝐴𝑐𝑡 | times due to Lemma 6.7, the statement follows by inserting the definition of i from (12). ■

LEMMA 6.14. Assume that Assumption 9 holds and fix some episode e. Let 𝑠 ∈ 𝑆e some state of
the MDPMe and 𝑠′ ∈ 𝑆 such that repe(𝑠′) = 𝑠 Then, 𝑠 and 𝑠′ have the same value:

Ve(𝑠) = Prmax
Me,𝑠
[^𝑇e] = Prmax

M,𝑠′ [^𝑇] = V(𝑠′)
PROOF . We prove by induction over the episode number. Initially, we have thatM1 is quite
similar to the original MDPM. Recall that Z1 = ∅ and rep1(𝑠) = 𝑠 for all states. Hence, the only
difference lies in the transition function of all states 𝑠 ∈ 𝑇 . These only have self-loops inM1,
while inM they may have arbitrary transitions. This is irrelevant for the value of the states,
since it equals 1 in both cases.

Now fix an arbitrary episode e. We have thatVe(𝑠) = V(𝑠′) (IH) for any two states 𝑠, 𝑠′ as
in the claim.Me is only modified when Line 15 is entered. Let (𝑅, 𝐵) the identified set of states
and actions. Due to Assumption 9, (𝑅, 𝐵) is an EC ofMe. To conclude, we distinguish the three
cases in the algorithm:

𝑇e ∩ 𝑅 ≠ ∅: Since (𝑅, 𝐵) is an EC, any state 𝑠 ∈ 𝑅 can reach 𝑇e with probability one. Hence
Ve+1(𝑠) = 1 = Ve(𝑠) = V(𝑠′) [IH]. In particular, by adding all states of 𝑅 to 𝑇e+1, we do
not change their value.
𝐶 = ∅: Once in 𝑅, this EC cannot be left, i.e. Prmax

Me,𝑠
[^𝑅] = 0 for all 𝑠 ∈ 𝑅. Consequently, we

have thatVe(𝑠) = 0 = V(𝑠′) [IH]. This value is unchanged by adding the states of 𝑅 to
Ze+1 and thus introducing a self-loop inMe.
Add a representative state: By assumption, we have that repe(𝑠′) ∈ 𝑅 and thus repe+1(𝑠′) =
𝑠(𝑅,𝐵) . We need to prove thatVe+1(𝑠(𝑅,𝐵)) = V(𝑠′). As (𝑅, 𝐵) is an EC by assumption, each
state in 𝑅 has the same value by Lemma 4.2. The representative state 𝑠(𝑅,𝐵) has this value
by applying the same reasoning as in Lemma 4.11. ■

LEMMA 6.15. Assume that Assumption 9 holds and fix some episode e. For any EC (𝑅, 𝐵) ∈
EC(Me) and e′ ≤ e there exists an EC (𝑅′, 𝐵′) ∈ EC(Me′) with 𝐵 ⊆ 𝐵′.
PROOF . Note that we do not necessarily have that 𝑅 ⊆ 𝑅′, since some states of the EC may
have been replaced by a representative state.

We prove by induction on the episode e. Fix any such episode e and EC (𝑅, 𝐵) ∈ EC(Me+1).
We only modify the MDPMe when the algorithm enters Line 15, hence w.l.o.g. we assume that
this happened in episode e. Let (R, B) be the set of states and actions identified in Line 15 during
episode e. By Assumption 9, (R, B) is an EC ofMe. As above, we distinguish the three cases in
the algorithm:

60 / 82 T. Brázdil et. al
𝑇e ∩ R ≠ ∅: Then, all actions in B are changed to a self-loop inMe+1 and hence we either
have 𝐵 = {𝑎} ⊆ B or 𝐵 ∩ B = ∅. In the former case, (R, B) satisfies the conditions of the
claim. In the latter, the EC (𝑅, 𝐵) already existed inMe, since no state or action of (𝑅, 𝐵)
was modified.
𝐶 = ∅: Analogously to the above, all actions in B are now a self-loop inMe+1 and the same
reasoning applies.
Add a representative state: If 𝑠(R,B) ∉ 𝑅, we necessarily have that B ∩ 𝐵 = ∅. Hence, the
EC (𝑅, 𝐵) again already existed inMe, since none of its components was modified by this
step. If instead 𝑠(R,B) ∈ 𝑅, we have that (R ∪ 𝑅, B ∪ 𝐵) is an EC inMe, following the same
reasoning as in Lemma 4.8. ■

LEMMA 6.16. Assume that Assumption 9 holds and fix some step t with corresponding episode
e. Let (𝑅, 𝐵) ∈ EC(Me) be any EC inMe. For any 𝑎 ∈ 𝐵 we have that (i) if state(𝑎,Me) ∈ Ze, then
Upt(𝑎) = 0 and (ii) Upt(𝑎) = 1 otherwise.

PROOF . Item (i) immediately follows from the definition of the algorithm andMe. When a
state is added to Ze, we set Upt(𝑎) = 0 for all its actions. We prove Item (ii) by induction, showing
that the statement holds for all ECs at each step t. Initially, we have Up1(𝑎) = 1 for all actions by
definition of the algorithm. For the induction step fix some step t. We have that Upt′ (𝑎) = 1 for
all actions 𝑎 in all ECs without zero-states for all t′ ≤ t (IH). Now, let e′ be the episode of step
t + 1 and fix any EC (𝑅, 𝐵) inMe′ with 𝑅 ∩ Ze = ∅. By repeatedly applying Lemma 6.15, there
exists an EC (𝑅e′ , 𝐵e′) ∈ EC(Me′) with 𝐵 ⊆ 𝐵e′ for all e′ ≤ e. Since we have no zero-states in
the EC in step t + 1, none of the 𝑅e′ contain zero-states either, by construction of the algorithm
andMe. Thus, the induction hypothesis [IH] is applicable and we have that Upt′ (𝑎) = 1 for any
action 𝑎 ∈ 𝐵e′ and t′ ≤ t. Hence, we necessarily have that Upt′ (𝑠) = 1 for all 𝑠 ∈ 𝑅e′ and t′ ≤ t
(also using Lemma 6.9). Whenever any action 𝑎 ∈ 𝐵 is selected at any step t′ ≤ t during episode
e′ ≤ e, all of its successors are part of the EC (𝑅e′ , 𝐵e′), thus Upt′ (𝑠) = 1 for all successors by
the above reasoning. Consequently, we always add a value of 1 to accUp

t (𝑎) and whenever an
Up-update is attempted for action 𝑎 at some step t′ ≤ t, we would set Upt′ (𝑎) = 1. ■

LEMMA 6.17. Assume that Assumption 9 holds and fix some step t with corresponding episode
e. Let t′ ≥ t with episode e′ ≥ e. We have for any state 𝑠 ∈ 𝑆 that Upt′ (repe′ (𝑠)) ≤ Upt(repe(𝑠))
and Lot(repe(𝑠)) ≤ Lot′ (repe′ (𝑠)).

PROOF . The bounds of actions are modified by (i) the usual update, which only increases
or decreases, respectively (ii) in Lines 20 and 23, where upper bounds are set to 0 and lower
bounds set to 1, or (iii) when an EC is collapsed and thus the set of available actions is modified
in Line 26. Cases (i) and (ii) preserve monotonicity of the state bound by definition. Case (iii)
is proven separately for upper and lower bounds, with the proof of the lower bound being

61 / 82 Learning Algorithms for Verification of Markov Decision Processes
significantly more involved. For the upper bounds, observe that 𝐴𝑣e′ (𝑠) ⊆ 𝐴𝑣e(𝑠) by definition,
i.e. we never add new actions to any state. Consequently, the maximum over the set of available
actions does not increase. For the lower bounds, we have to show that while collapsing ECs and
thus removing actions, we never remove all those which are optimal w.r.t. the lower bound, i.e.
all actions 𝑎 ∈ 𝐴𝑣e(𝑠) with Lot(𝑎) = Lot(𝑠).

We proceed by additionally proving an auxiliary statement by induction on the step t
in parallel. In particular, we prove that for any step t with corresponding episode e (i) the
statement of the lemma holds (IH1) and (ii) Lot(𝑎) ≤ max𝑠∈𝑅,𝑎′∈𝐴𝑣e(𝑠)\𝐵 Lot(𝑎′) for all actions
𝑎 ∈ 𝐵 (or 0 if no such actions 𝑎′ exist) in all ECs (𝑅, 𝐵) ∈ EC(Me) without a target state, i.e.
𝑅 ∩ 𝑇e = ∅. (IH2).

Initially, we have Lo1(𝑎) = 0 by definition of the algorithm and both statements trivially
hold. For the induction step fix some time step t. We first treat the case when the lower bound of
action an action 𝑎 is successfully updated in step t and later on deal with the case of an EC being
collapsed. Note that [IH1] trivially holds in this case, since the value of 𝑎 is never decreased.
We only need to show the second statement [IH2], thus assume that the updated action 𝑎 is an
internal action of some EC (𝑅, 𝐵), i.e. 𝑎 ∈ 𝐵. For readability, denote 𝐶 =

⋃
𝑠∈𝑅 𝐴𝑣e(𝑠) \ 𝐵 the set

of outgoing actions of (𝑅, 𝐵). If 𝐶 = ∅, the statement follows directly: Since all lower bounds are
initialised to zero, the EC does not contain any target states by assumption, and there are no
outgoing actions, the algorithm never updates the lower bound of any action in 𝐵 to a non-zero
value. Thus, assume that 𝐶 ≠ ∅. By applying [IH2] to all states of the EC (𝑅, 𝐵), we get that
max𝑎′∈𝐶Lot(𝑎′) = max𝑠∈𝑅Lot(𝑠) [Fact I]. Furthermore, let 𝑘1 < . . . < 𝑘𝑚 = t the steps of the most
recent visits to 𝑎 with corresponding episodes e1 ≤ . . . ≤ e𝑚 = e and sampled successors 𝑠′𝑘𝑖 .
Now, let 𝑅𝑖 = repe𝑖 (statese(𝑅)) for 1 ≤ 𝑖 ≤ 𝑚 the set of states in episode e𝑖 which eventually are
collapsed to 𝑅. By applying the reasoning of Lemma 6.15 and 4.8, there exists a set of actions
𝐵𝑖 with 𝐵 ⊆ 𝐵𝑖 such that (𝑅𝑖 , 𝐵𝑖) is an EC inMe𝑖 and thus 𝑠′𝑘𝑖 ∈ 𝑅𝑖 [Fact II], since 𝑎 ∈ 𝐵𝑖 . By
construction, we have that repe(𝑅𝑖) = 𝑅 [Fact III]. Finally, we observe that the value of the
outgoing actions does not decrease, hence the value we assign to 𝑎 in step t satisfies

Lot+1(𝑎) + 𝜀 def
=

1
𝑚

∑︁𝑚

𝑖=1
Lo𝑘𝑖 (𝑠′𝑘𝑖)

[II]≤ 1
𝑚

∑︁𝑚

𝑖=1
max𝑠∈𝑅𝑖Lo𝑘𝑖 (𝑠)

[IH1]≤ 1
𝑚

∑︁𝑚

𝑖=1
max𝑠∈𝑅𝑖Lot(repe(𝑠))

[III]
=

1
𝑚

∑︁𝑚

𝑖=1
max𝑠∈𝑅𝑚Lot(𝑠)

= max𝑠∈𝑅𝑚Lot(𝑠)
[I]
= max𝑎′∈𝐶𝑚Lot(𝑎′).

This concludes proof of the first part.

62 / 82 T. Brázdil et. al
For the second part, i.e. when a set of states is collapsed by the algorithm, we have that the

collapsed set (𝑅, 𝐵) is an EC by Assumption 9 and 𝐵 are only internal actions. If the collapsed
EC contains target states, the statement trivially holds. Otherwise, we apply the result of the
first part and get that the lower bound assigned to any action in 𝐵 is less or equal to outgoing
actions. Thus, removing the actions in 𝐵 from the set of available actions does not reduce the
value of the obtained representative state. ■

With basic properties about the sampling MDP in place, we can now mimic the previous idea of
defining “converged” state-action pairs and, using those, show that the algorithm eventually
converges with high probability.

DEF IN IT ION 6.18. For every step t during episode e, defineKUp
t ,KLo

t ⊆ 𝐴𝑐𝑡e by

KUp
t B {𝑎 | Upt(𝑎) − Δe(state(𝑎,Me), 𝑎)⟨𝜋t[Upt]⟩ ≤ 3𝜀} and

KLo
t B {𝑎 | Δe(state(𝑎,Me), 𝑎)⟨𝜋t[Lot]⟩ − Lot(𝑎) ≤ 3𝜀}.

Again, an action 𝑎 is Up-converged (Lo-converged) at step t if 𝑎 ∈ KUp
t (𝑎 ∈ KLo

t).

Assumption 10. Suppose an Up-update of the action 𝑎 is attempted at step t. Let 𝑘1 < 𝑘2 <

. . . < 𝑘𝑚 = t be the steps of the 𝑚 most recent visits to 𝑎, and 𝑒1 ≤ 𝑒2 ≤ . . . ≤ 𝑒𝑚 the respective
episodes. Then 1

𝑚

∑𝑚
𝑖=1Ve𝑖 (𝑠′𝑘𝑖) ≥ Ve𝑚 (𝑎) − 𝜀. Analogously, for an attempted Lo-update, we have

1
𝑚

∑𝑚
𝑖=1Ve𝑖 (𝑠′𝑘𝑖) ≤ Ve𝑚 (𝑎) + 𝜀.

Assumption 11. Suppose an update of the upper bound (lower bound) of the action 𝑎 is attempted
at step t. Let 𝑘1 < 𝑘2 < . . . < 𝑘𝑚 = t be the steps of the 𝑚 most recent visits to 𝑎. If 𝑎 is not
Up-converged (Lo-converged) at step 𝑘1, the update at step t is successful.

We replicate most of the statements from the previous DQL algorithm.

LEMMA 6.19. The following properties hold for Algorithm 5.
1. The number of successful updates of Up and Lo is bounded by |𝐴𝑐𝑡 |

𝜀
each.

2. The number of attempted updates of Up and Lo is bounded by 𝜉.
3. Assume that Assumption 9 holds. Then, the probability that Assumption 10 is violated during

the execution of Algorithm 5 is bounded by 𝛿
4 .

4. Assume that Assumptions 9 and 10 hold. Then, we have Lot(𝑎) ≤ Ve(𝑎) ≤ Upt(𝑎) for all
episodes e, steps t ≥ te, and actions 𝑎 ∈ 𝐴𝑐𝑡e.

5. We have for every step t in episode e and state 𝑠 ∈ 𝑆e that

𝜋t[Upt] (𝑠) = Upt(𝑠) and 𝜋t[Lot] (𝑠) ≤ Lot(𝑠).

6. If 𝑎 ∉ KUp
t , then 𝑎 ∉ KUp

t′ for all t′ ≥ t until an Up-update of action 𝑎 succeeds or the upper
bound is set to 0 in Line 23.

63 / 82 Learning Algorithms for Verification of Markov Decision Processes
7. The probability that Assumption 11 is violated during the execution of Algorithm 4 is bounded

by 𝛿
4 .

8. Assume that Assumption 11 holds. If an attempted Up-update of action 𝑎 at step t fails and
learnUp

t+1(𝑎) = false, then 𝑎 ∈ KUp
t+1. Once no more updates of Up succeed, the analogous

statement holds true for the lower bounds.
9. Assume that Assumption 11 holds. Then, there are at most 2𝑚 · |𝐴𝑐𝑡 |

𝜀
visits to state-action

pairs which are not Up-converged. Once the upper bounds are not updated any more, there
are at most 2𝑚 · |𝐴𝑐𝑡 |

𝜀
visits to state-action pairs which are not Lo-converged.

PROOF . Items 1 and 2 follow directly as in Lemmas 5.3 and 5.4. The only additional observation
is that the algorithm never adds new actions and that the changes to the bounds outside of
Line 12 never reset the progress of an action’s bounds.

Item 3 can be proven completely analogous to Lemma 5.5, since this proof only relies on
the Markov property of the successor sampling. We need to adjust the definition of 𝑌𝑖 slightly
to incorporate the modifications of the algorithm. Let thus 𝑠′𝑘𝑖 ∈ 𝑆 denote the states obtained
by the successor oracle in Line 10. By Lemma 6.14 we have thatVe(repe𝑖 (𝑠′𝑘𝑖)) = Ve(𝑠′′𝑘𝑖), and
thus 𝑌𝑖 = Ve(repe𝑖 (𝑠′𝑘𝑖)) are i.i.d.

For Item 4, we first show that all newly introduced updates of Up and Lo are correct. Using
Assumption 9, we prove the two special cases. The algorithm sets Upt(𝑎) ← 0 if an EC (𝑅, 𝐵)
without outgoing transitions and no target state is identified. In this case, we clearly have that
Ve(𝑎) = 0 for all 𝑠 ∈ 𝑅. Similarly, setting Loe(𝑎) ← 1 when any state in the EC (𝑅, 𝐵) is an
accepting state is correct, since clearlyVe(𝑎) = 1 for all 𝑠 ∈ 𝑅, 𝑎 ∈ 𝐴𝑣e ∩ 𝐵. Due to Lemma 6.14,
copying the respective bounds to the representative state 𝑠(𝑅,𝐵) (which happens implicitly in
Line 26) is correct, too. Now, the reasoning of Lemma 5.6 applies.

Items 5 and 6 can be proven as in Lemma 5.8.
Item 7 is proven analogous to Item 3, following the proof of Lemma 5.9. Again, this claim

only depends on the sampled successors. We define 𝑋𝑖 = 𝜋𝑘1 [Up𝑘1
] (repe1

(𝑠′′𝑘𝑖)). Since we do not
modify the underlying transition probabilities, from which 𝑠′′𝑘𝑖 is obtained, these 𝑋𝑖 are i.i.d.
again and we can apply the same reasoning. To conclude the proof as before, we need to employ
Lemma 6.17. Note that since we only speak about the actual computed bounds Up and Lo, we
do not need to employ Lemma 6.14.

Item 8 follows directly as in Lemma 5.10. Similarly, Item 9 follows as in Lemma 5.11, using
Item 1 instead of Lemma 5.3. ■

In the proof of correctness for the no-EC DQL algorithm, we applied Lemma A.5 directly
on the MDP to obtain bounds on the reachability of 𝑠+ based on the values of Up and Lo in
Lemma 5.12. Now, we cannot apply this lemma directly on eitherM orMe since both may
contain ECs. Hence, we apply the lemma on an MDP derived fromMe to obtain a similar result.

64 / 82 T. Brázdil et. al
Let us thus first define the set of all actions in “non-final” ECs as

𝐸e =
⋃
{(𝑅,𝐵)∈EC(Me) |𝑅∩(𝑇e∪Ze)=∅}

𝐵.

LEMMA 6.20. Assume that Assumptions 9 and 10 hold and fix an episode e. Then, we have for
every state 𝑠 ∈ 𝑆e

Upe(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋e
Me,𝑠
[^KUp

e] − Pr𝜋e
Me,𝑠
[^𝐸e] ≤ Pr𝜋e

Me,𝑠
[^𝑇e] .

PROOF . We first want to derive an MDP from Me without any ECs but still capturing its
behaviour. For this, recall that there are two kinds of ECs inMe. Firstly, there are ECs which
correspond to ECs in the originalM. Secondly, we get a self-loop EC for each identified target-
or zero-state, i.e. states in 𝑇e or Ze. We define the derived MDPM′e = (𝑆e ∪ {𝑠+, 𝑠−}, 𝐴𝑐𝑡e ∪
{𝑎+, 𝑎−}, Δ′e, 𝐴𝑣′e), where

Δ′e(𝑠◦, 𝑎◦) = {𝑠◦ ↦→ 1} for ◦ ∈ {+,−}
Δ′e(𝑠, 𝑎) = {𝑠+ ↦→ 1} for all 𝑠 ∈ 𝑇e, 𝑎 ∈ 𝐴𝑣e(𝑠),
Δ′e(𝑠, 𝑎) = {𝑠− ↦→ 1} for all 𝑠 ∈ Ze, 𝑎 ∈ 𝐴𝑣e(𝑠),
Δ′e(𝑠, 𝑎) = {𝑠+ ↦→ 1} for all 𝑎 ∈ 𝐸, 𝑠 = state(𝑎,Me),
Δ′e(𝑠, 𝑎) = Δe(𝑠, 𝑎) for all other 𝑠 ∈ 𝑆e, 𝑎 ∈ 𝐴𝑣e(𝑠),

and 𝐴𝑣′e(𝑠) = 𝐴𝑣e(𝑠) for 𝑠 ∈ 𝑆e and 𝐴𝑣′e(𝑠◦) = {𝑎◦} for ◦ ∈ {+,−}. In essence, M′e equals
Me except that we (i) added the special states 𝑠+ and 𝑠−, (ii) all states in 𝑇e and Ze move to 𝑠+
and 𝑠−, respectively, and (iii) all actions in ECs outside of 𝑇e and Ze move to 𝑠+, in the spirit of
Lemma 6.16.

Clearly,M′e has no ECs except the special states 𝑠+ and 𝑠− and thus satisfies Assumption 1.
Moreover, the probability of reaching 𝑠+ inM′e equals the probability of reaching 𝑇e ∪ 𝐸e inMe

by construction ofM′e [Fact I].
Now, we extend 𝜋e to select action 𝑎◦ in the special state 𝑠◦ to obtain 𝜋′e. Furthermore, we

set 𝑋 (𝑠, 𝑎) = Upe(𝑎) for all states 𝑠 ∈ 𝑆e, 𝑎 ∈ 𝐴𝑣e(𝑠), 𝑋 (𝑠+, 𝑎+) = 1, and 𝑋 (𝑠−, 𝑎−) = 0. We apply
Lemma A.5 withM =M′e, 𝜋 = 𝜋′e, 𝜅𝑙 = −1, and 𝜅𝑢 = 3𝜀. As a result, for each state 𝑠 ∈ 𝑆e we have

𝜋′e[𝑋] (𝑠) − Pr𝜋
′
e
M′,𝑠 [^{𝑠+}] ≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min,

whereM′ is the MDP defined in the lemma. Observe that for 𝑠 ∈ 𝑆e [Fact II]

𝜋′e[𝑋] (𝑠) =
∑︁

𝑎∈𝐴𝑣′e(𝑠)
𝜋′e(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎) =

∑︁
𝑎∈𝐴𝑣e(𝑠)

𝜋e(𝑠, 𝑎) · Upe(𝑎) = 𝜋e[Upe] (𝑠).

To analyse howM′ andM′e are related, we first need to derive the structure of K from the
lemma. Thus, we now prove thatK = KUp

e ∪ {𝑎+, 𝑎−}. Recall that

K = {𝑎 ∈ 𝐴𝑐𝑡e ∪ {𝑎+, 𝑎−} | 𝑋 (𝑠, 𝑎) − Δ′e(𝑠, 𝑎)⟨𝜋′e[𝑋]⟩ ≤ 3𝜀}

65 / 82 Learning Algorithms for Verification of Markov Decision Processes
and

Δ′e(𝑠, 𝑎)⟨𝜋′e[𝑋]⟩ =
∑︁

𝑠′∈𝑆e∪{𝑠+,𝑠−}
Δ′e(𝑠, 𝑎, 𝑠′) ·

∑︁
𝑎′∈𝐴𝑣′e(𝑠′)

𝜋(𝑠′, 𝑎′) · 𝑋 (𝑠′, 𝑎′).

Clearly, 𝑎+ and 𝑎− satisfy the requirements due to their self-loop. Furthermore, we have
𝜋′e[𝑋] (𝑠+) = 1, 𝜋′e[𝑋] (𝑠−) = 0 [Fact III]. Now, let 𝑎 ∈ 𝐴𝑐𝑡e and 𝑠 ∈ 𝑆e the corresponding
state. By definition, we have 𝑋 (𝑠, 𝑎) = Upe(𝑎), hence we need to show that Δ′e(𝑠, 𝑎)⟨𝜋′e[𝑋]⟩ =
Δe(𝑠, 𝑎)⟨𝜋e[Upe]⟩. We proceed with a case distinction.

𝑠 ∈ 𝑇e ∪ Ze: By definition of the algorithm, we have Upe(𝑠) = 1 or 0, respectively.
The unique successor under any action 𝑎 ∈ 𝐴𝑣e(𝑠) inMe equals 𝑠 by definition, thus
Δe(𝑠, 𝑎)⟨𝜋e[Upe]⟩ = Upe(𝑠). InM′e, the unique successor equals 𝑠+ or 𝑠−, respectively.
Thus, with [III], we have 𝜋′e[𝑋] (𝑠) = 𝜋e[Upe] (𝑠). The claim follows.
𝑎 ∈ 𝐸: Note that this case implies that 𝑠 ∉ 𝑇e ∪ Ze. Due to Lemma 6.16, we have that
Upe(𝑎) = 1 for all such actions. Recall that 𝜋e follows actions maximizing Upe. Conse-
quently, 𝜋e[Upe] (𝑠′) = 𝜋′e[𝑋] (𝑠′) = Upe(𝑠′) = 1 for all states 𝑠′ inside an non-trivial EC of
Me. Thus, we also have Δe(𝑠, 𝑎)⟨𝜋e[Upe]⟩ = 1. From the definition ofM′e and [III], we
directly get Δ′e(𝑠, 𝑎)⟨𝜋′e[𝑋]⟩ = 1.
𝑠 ∉ 𝑇e ∪ Ze, 𝑎 ∉ 𝐸: By definition, we have Δe(𝑠, 𝑎) = Δ′e(𝑠, 𝑎). Together with [II] and [III],
the statement follows.

Recall thatM′ is defined asM′e except that Δ′(𝑠, 𝑎) = {𝑠+ ↦→ 𝑋 (𝑠, 𝑎), 𝑠− ↦→ 1 − 𝑋 (𝑠, 𝑎)} for
all 𝑎 ∉ K . Hence, as in Lemma 5.12, we get that for all states 𝑠 ∈ 𝑆e

Pr𝜋
′
e
M′,𝑠 [^{𝑠+}] − Pr𝜋

′
e
M′e,𝑠 [^K

Up
e] ≤ Pr𝜋

′
e
M′e,𝑠 [^{𝑠+}],

and thus with [I] we get [Fact IV]

𝜋′e[𝑋] (𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋
′
e
M′e,𝑠 [^K

Up
e] ≤ Pr𝜋e

Me,𝑠
[^(𝑇e ∪ 𝐸e)] .

Further, we have 𝜋′e[𝑋] (𝑠) = 𝜋e[Upe] (𝑠) = Upe(𝑠) by Lemma 6.19, Item 5 [Fact V].
To conclude the proof, we show that Pr𝜋

′
e
M′e,𝑠 [^K

Up
e] ≤ Pr𝜋e

Me,𝑠
[^KUp

e] [Fact VI]. To this end,
observe that (i) for each state 𝑠 ∈ 𝑆e and action 𝑎 ∈ 𝐴𝑣e(𝑠) we either have Δe(𝑠, 𝑎) = Δ′e(𝑠, 𝑎)
or supp Δ′e(𝑠, 𝑎) ⊆ {𝑠+, 𝑠−} and (ii) the added states 𝑠+ and 𝑠− are absorbing. Thus, each run
reachingKUp

e inM′e has a corresponding, equally probable path inMe.
The overall claim follows from the above equations and a union bound.

Upe(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋e
Me,𝑠
[^KUp

e]
[V]
= 𝜋′e[𝑋] (𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋e

Me,𝑠
[^KUp

e]
[VI]≤ 𝜋′e[𝑋] (𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋

′
e
M′e,𝑠 [^K

Up
e]

[IV]≤ Pr𝜋e
Me,𝑠
[^(𝑇e ∪ 𝐸e)] . ■

66 / 82 T. Brázdil et. al
LEMMA 6.21. Assume that Assumptions 9 and 10 hold and fix an episode e. Then, we have for
every state 𝑠 ∈ 𝑆e

Pr𝜋e
Me,𝑠
[^𝑇e] ≤ Loe(𝑠) + 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Pr𝜋e

Me,𝑠
[^KLo

e] + Pr𝜋e
Me,𝑠
[^𝐸e] .

PROOF . As in Lemma 6.20, we construct a second MDP without ECs, but slightly modify the
transition function. In particular, letM′e = (𝑆e ∪ {𝑠+, 𝑠−}, 𝐴𝑐𝑡e ∪ {𝑎+, 𝑎−}, Δ′e, 𝐴𝑣′e) be defined as
before. However, for 𝑎 ∈ 𝐸e and 𝑠 = state(𝑎,Me), we define

Δ′e(𝑠, 𝑎) = {𝑠+ ↦→ Δe(𝑠, 𝑎)⟨𝜋e[Loe]⟩, 𝑠− ↦→ 1 − Δe(𝑠, 𝑎)⟨𝜋e[Loe]⟩}.

Again,M′e has no ECs except in the two special states and thus Lemma A.5 is applicable. We set
𝑋 (𝑠, 𝑎) = Loe(𝑎) for all states 𝑠 ∈ 𝑆e, 𝑋 (𝑠+, 𝑎+) = 1, and 𝑋 (𝑠−, 𝑎−) = 0. As above, we have that
𝜋′e[𝑋] (𝑠) = 𝜋e[Loe] (𝑠) for all 𝑠 ∈ 𝑆e. We apply the lemma withM =M′e, 𝜋 = 𝜋′e, 𝜅𝑙 = −3𝜀, and
𝜅𝑢 = 1. Thus, for each state 𝑠 ∈ 𝑆e

Pr𝜋
′
e
M′,𝑠 [^{𝑠+}] − 𝜋′e[𝑋] (𝑠) ≤ 3𝜀 · |𝑆 |𝑝−|𝑆 |min,

whereM′ is the MDP defined in the lemma. We again show that K = KLo
e ∪ {𝑎+, 𝑎−} by case

distinction as follows:
Trivially, 𝑎+, 𝑎− ∈ K , 𝜋′e[𝑋] (𝑠+) = 1, and 𝜋′e[𝑋] (𝑠−) = 0.
𝑠 ∈ 𝑇e ∪ Ze: The claims follow by an analogous argument. Recall that for these states we
have Upe(𝑎) = Loe(𝑎) for all 𝑎 ∈ 𝐴𝑣e(𝑠).
𝑎 ∈ 𝐸: Inserting the definitions, we get

Δ′e(𝑠, 𝑎)⟨𝜋′e[𝑋]⟩ = Δ′e(𝑠, 𝑎, 𝑠+) · 𝜋′e[𝑋] (𝑠+) + Δ′e(𝑠, 𝑎, 𝑠−) · 𝜋′e[𝑋] (𝑠−)
= Δe(𝑠, 𝑎)⟨𝜋e[Loe]⟩ · 1 + (1 − Δe(𝑠, 𝑎)⟨𝜋e[Loe]⟩) · 0
= Δe(𝑠, 𝑎)⟨𝜋e[Loe]⟩.

𝑠 ∉ 𝑇e ∪ Ze, 𝑎 ∉ 𝐸: Follows analogously.

As in Lemma 5.12, we also get for all states 𝑠 ∈ 𝑆e that

Pr𝜋
′
e
M′e,𝑠 [^{𝑠+}] ≤ Pr𝜋

′
e
M′,𝑠 [^{𝑠+}] + Pr𝜋

′
e
M′e,𝑠 [^K

Lo
e] .

Similar to the above proof, we have 𝜋′e[𝑋] (𝑠) = 𝜋e[Loe] (𝑠) ≤ Loe(𝑠) by Lemma 6.19, Item 5.
With completely analogous reasoning, we can show that Pr𝜋

′
e
M′e,𝑠 [^K

Lo
e] ≤ Pr𝜋e

Me,𝑠
[^KLo

e]. Putting
all equations together, we get that

Pr𝜋
′
e
M′e,𝑠 [^{𝑠+}] ≤ Loe(𝑠) + 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Pr𝜋e

Me,𝑠
[^KLo

e] .

Now, it remains to show that Pr𝜋e
Me,𝑠
[^𝑇e]−Pr𝜋e

Me,𝑠
[^𝐸e] ≤ Pr𝜋

′
e
M′e,𝑠 [^{𝑠+}]. This claim follows with

the same reasoning as before, since we have that Δe(𝑠, 𝑎) = Δ′e(𝑠, 𝑎) for 𝑎 ∉ 𝐸e, 𝑠 = state(𝑎,Me).

67 / 82 Learning Algorithms for Verification of Markov Decision Processes
Thus, every path inMe which does not visit 𝐸 has a corresponding, equally probable path in
M′e. The overall claim follows. ■

THEOREM 6.22. Algorithm 5 terminates and yields a correct result with probability at least
1 − 𝛿 after at most O(POLY(|𝐴𝑐𝑡 |, 𝑝−|𝑆 |min, 𝜀

−1, ln 𝛿)) steps.

PROOF . This proof is largely analogous to the proof of Theorem 5.13, and we shorten some of
its parts. Again, we only consider executions where Assumptions 9 to 11 hold. By Lemmas 6.13
and 6.19, Items 3 and 7 together with the union bound, this happens with probability at least
1 − 𝛿. Correctness of the result upon termination follows from Lemma 6.19, Item 4.

We show by contradiction that the algorithm terminates for almost all considered execu-
tions. Thus, assume that the execution does not halt with non-zero probability. By Lemma 6.8,
all of these executions experience an infinite number of episodes.

Due to Lemma 6.19, Item 2, there are only finitely many attempted updates on all consid-
ered executions and the algorithm eventually does not change Up, since no successful updates
can occur from some step t onwards. Similarly, there are only finitely many EC collapses due
to Lemma 6.7, and eventually the sampling MDPMe stabilizes. This means that all following
samples are obtained by sampling according to the strategy 𝜋t on the MDPMe. Again, we employ
Lemma A.7 to continue the proof and we get Pr𝜋t

Me,𝑠
[^KUp

t] = 0 and Pr𝜋t
Me,𝑠
[^KLo

t] = 0 on almost
all considered executions. By an analogous argument, we can show that Pr𝜋t

Me,𝑠
[^𝐸e] = 0, since

otherwise by Lemma 6.2 (with 𝑇 = 𝑇e ∪ Ze) we have a non-zero probability of detecting a new
EC, contradicting our assumption.

Thus, by applying Lemma 6.20

Pr𝜋e
Me,𝑠
[^𝑇e] ≥ Upe(𝑠) − 3𝜀 · |𝑆 |𝑝−|𝑆 |min − Pr𝜋e

Me,𝑠
[^KUp

e] − Pr𝜋e
Me,𝑠
[^𝐸e] > Upe(𝑠) −

𝜀

2
.

Dually, with Lemma 6.21 we get

Pr𝜋e
Me,𝑠
[^𝑇e] ≤ Loe(𝑠) + 3𝜀 · |𝑆 |𝑝−|𝑆 |min + Pr𝜋e

Me,𝑠
[^KLo

e] + Pr𝜋e
Me,𝑠
[^𝐸e] < Loe(𝑠) + 𝜀2 .

Together, Upe(𝑠) − Loe(𝑠) < 𝜀, contradicting the assumption.
For the step bound, we can mostly replicate the idea of the DQL variant without ECs. In

particular, we can bound the number of paths by the same argument: The probability of reaching
a non-Up- / non-Lo-converged action within |𝑆 | steps is at least 𝑝|𝑆 |min (or 0). By Lemma 6.19, Item 9
we again get that the number of visits to such actions is bounded. Since i ≥ |𝐴𝑐𝑡 | ≥ |𝑆 | and
thus the sampling is not stopped early due to that condition, we again can bound the maximal
number of paths by the same 𝑛. For the length of the paths, observe that they are bounded by
2i3 by construction of the algorithm. From the definition of i in Equation (12), we see that this
bound is polynomial, too, by considering the Taylor expansion of the exponential. ■

REMARK 6.23. To conclude, we briefly outline extensions to other objectives.

68 / 82 T. Brázdil et. al
For safety, i.e. maximizing the probability of remaining inside a given set of states forever

(or, equivalently, minimizing reachability of unsafe states), we only need to change the treatment
of end components slightly. Assume w.l.o.g. that any unsafe state is collapsed into one sink state
𝑠− (e.g. by testing for every encountered state whether it is safe and, if not, replace it by 𝑠−).
Then, whenever we identify an end component, we know that this end component does not
contain a sink state but rather only comprises safe states. However, this actually is exactly what
we are looking for: a possibility of staying safe forever. Thus, we assign a value of 1 to all actions
in such an EC. And indeed, by Lemma 2.8, we know that ECs are the only place that allow us to
stay safe forever. Together, we can derive the desired result.

Extending to total reward has two major hurdles. Firstly, the total reward can be infinite,
and we would first need to identify whether this is the case. To this end, we need to identify all
end components in the system and check for each that it yields zero reward. Here, we would
need to employ graph-based reasoning akin to [10], as we need to ensure that we have not
missed any transition. Once this is established (or guaranteed due to domain knowledge), we
can derive an upper bound on the total reward if we are given an upper bound on the reward
that can be obtained in one step 𝑟max. This bound is in the order O(𝑝−|𝑆 |min · 𝑟max). Using this
bound as initial value for the upper bound then would lead to a correct algorithm. (See also
[115, Appendix B] and [51, Section 4] for related discussions.)

Finally, an extension to mean payoff (aka. long run average reward) or general 𝜔-regular
objectives in a model-free setting seems to be rather unlikely. Both inherently are infinite
horizon objectives, while sampling only ever gives us finite information. As such, we likely
need to use graph-based reasoning to reach meaningful conclusions. In particular, for 𝜔-regular
objectives, we would need to know at least the graph structure of identified end components to
decide whether they are winning or not, and for mean payoff we even would need bounds on
the transition probabilities. As a special case, models where each end component is guaranteed
to only comprise a single state could be tractable.

7. Conclusion and FutureWork

In this work, we improved and extended the ideas of [33], fixing several imprecisions and
issues of the proofs. This results in a framework for verifying MDP, using learning algorithms.
Building upon exiting methods, we thus provide novel techniques to analyse infinite-horizon
reachability properties of arbitrary MDPs, yielding either exact bounds in the white-box sce-
nario or probabilistically correct bounds in the black-box scenario. Moreover, we presented a
generalization of the methods of [33], allowing for further, more sophisticated applications.

We deliberately omit an experimental evaluation. Since the inception of the presented
idea, multiple tools have implemented variants and extensions thereof for several objectives
and model classes. In particular, we want to point to the tool PET [113, 115], which implements

69 / 82 Learning Algorithms for Verification of Markov Decision Processes
and evaluates the general complete information algorithm and presents a detailed evaluation.
Moreover, as already mentioned, for DQL the associated constants are infeasible for practical
application: Already for an MDP with 10 States, 20 actions and 𝑝min = 0.1, we obtain 𝑚 ≈ 1026

for 𝜀 = 0.1 and 𝛿 = 0.01.
Given this framework, an interesting direction for future work would be to extend this

approach with more sophisticated learning algorithms. Another, orthogonal direction is to
explore whether our approach can be combined with symbolic methods.

References
[1] Chaitanya Agarwal, Shibashis Guha, Jan Křet́ınský,

and Pazhamalai Muruganandham. PAC statistical
model checking of mean payoff in discrete- and
continuous-time MDP. Computer Aided Verification
- 34th International Conference, CAV 2022,volume 13372 of Lecture Notes in Computer
Science, pages 3–25. Springer, 2022. DOI (9)

[2] Gul Agha and Karl Palmskog. A survey of statistical
model checking. ACM Transactions on Modeling
and Computer Simulation, 28(1):6:1–6:39, 2018.DOI (7)

[3] Husain Aljazzar and Stefan Leue. Generation of
counterexamples for model checking of Markov
decision processes. QEST 2009, Sixth International
Conference on the Quantitative Evaluation of
Systems, pages 197–206. IEEE Computer Society,2009. DOI (6)

[4] Roman Andriushchenko, Alexander Bork,
Carlos E. Budde, Milan Češka, Kush Grover,
Ernst Moritz Hahn, Arnd Hartmanns,
Bryant Israelsen, Nils Jansen, Joshua Jeppson,
Sebastian Junges, Maximilian A. Köhl,
Bettina Könighofer, Jan Křet́ınský,
Tobias Meggendorfer, David Parker,
Stefan Pranger, Tim Quatmann, Enno Ruijters,
Landon Taylor, Matthias Volk,
Maximilian Weininger, and Zhen Zhang. Tools at
the frontiers of quantitative verification: QComp
2023 competition report, pages 90–146, Berlin,Heidelberg. Springer-Verlag, 2024. DOI (3, 10)

[5] Dana Angluin. Learning with hints. Proceedings of
the First Annual Workshop on Computational
Learning Theory, COLT ’88, pages 167–181.ACM/MIT, 1988. URL (19)

[6] Pranav Ashok, Yuliya Butkova, Holger Hermanns,
and Jan Křet́ınský. Continuous-time Markov
decisions based on partial exploration. Automated
Technology for Verification and Analysis - 16th
International Symposium, ATVA 2018, volume 11138of Lecture Notes in Computer Science,pages 317–334. Springer, 2018. DOI (9)

[7] Pranav Ashok, Krishnendu Chatterjee,
Przemyslaw Daca, Jan Křet́ınský, and
Tobias Meggendorfer. Value iteration for long-run
average reward in Markov decision processes.
Computer Aided Verification - 29th International
Conference, CAV 2017, volume 10426 of Lecture
Notes in Computer Science, pages 201–221.Springer, 2017. DOI (3, 9, 16)

[8] Pranav Ashok, Krishnendu Chatterjee,
Jan Křet́ınský, Maximilian Weininger, and
Tobias Winkler. Approximating values of
generalized-reachability stochastic games. LICS
’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 102–115. ACM, 2020.DOI (6)

[9] Pranav Ashok, Przemyslaw Daca, Jan Křet́ınský,
and Maximilian Weininger. Statistical model
checking: black or white? Leveraging Applications
of Formal Methods, Verification and Validation:
Verification Principles - 9th International
Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, volume 12476 of Lecture
Notes in Computer Science, pages 331–349.Springer, 2020. DOI (9)

[10] Pranav Ashok, Jan Křet́ınský, and
Maximilian Weininger. PAC statistical model
checking for Markov decision processes and
stochastic games. Computer Aided Verification -
31st International Conference, CAV 2019,volume 11561 of Lecture Notes in Computer
Science, pages 497–519. Springer, 2019. DOI (9,37, 41, 68)

[11] Muqsit Azeem, Alexandros Evangelidis,
Jan Křet́ınský, Alexander Slivinskiy, and
Maximilian Weininger. Optimistic and topological
value iteration for simple stochastic games.
Automated Technology for Verification and Analysis
- 20th International Symposium, ATVA 2022,volume 13505 of Lecture Notes in Computer
Science, pages 285–302. Springer, 2022. DOI(7)

[12] Thom S. Badings, Licio Romao, Alessandro Abate,
David Parker, Hasan A. Poonawala,
Mariëlle Stoelinga, and Nils Jansen. Robust control
for dynamical systems with non-gaussian noise via
formal abstractions. Journal of Artificial Intelligence
Research, 76:341–391, 2023. (9)

https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1145/3158668
https://doi.org/10.1145/3158668
https://doi.org/10.1109/QEST.2009.10
https://doi.org/10.1007/978-3-031-67695-6_4
http://dl.acm.org/citation.cfm?id=93075
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1007/978-3-030-61362-4_19
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-031-19992-9_18

70 / 82 T. Brázdil et. al
[13] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona,

Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and
Fabio Somenzi. Algebraic decision diagrams and
their applications. Formal Methods in System
Design, 10(2/3):171–206, 1997. DOI (6)

[14] Christel Baier, Pedro R. D’Argenio, and
Marcus Größer. Partial order reduction for
probabilistic branching time. Electronic Notes in
Theoretical Computer Science, 153(2):97–116,2006. DOI (6)

[15] Christel Baier, Marcus Größer, and Frank Ciesinski.
Partial order reduction for probabilistic systems. 1st
International Conference on Quantitative Evaluation
of Systems (QEST 2004), pages 230–239. IEEEComputer Society, 2004. DOI (6)

[16] Christel Baier and Joost-Pieter Katoen. Principles
of model checking. MIT Press, 2008. (2, 13–15,20)

[17] Christel Baier, Joost-Pieter Katoen, and
Holger Hermanns. Approximate symbolic model
checking of continuous-time Markov chains.
CONCUR ’99: Concurrency Theory, 10th
International Conference, volume 1664 of Lecture
Notes in Computer Science, pages 146–161.Springer, 1999. DOI (6)

[18] Christel Baier, Joachim Klein, Linda Leuschner,
David Parker, and Sascha Wunderlich. Ensuring
the reliability of your model checker: interval
iteration for Markov decision processes. Computer
Aided Verification - 29th International Conference,
CAV 2017, volume 10426 of Lecture Notes in
Computer Science, pages 160–180. Springer, 2017.DOI (3, 6)

[19] Jiri Barnat, Lubos Brim, Ivana Černá, Milan Ceska,
and Jana Tumova. ProbDiVinE-MC: multi-core LTL
model checker for probabilistic systems. Fifth
International Conference on the Quantitative
Evaluaiton of Systems (QEST 2008), pages 77–78.IEEE Computer Society, 2008. DOI (2)

[20] Andrew G. Barto, Steven J. Bradtke, and
Satinder P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence,72(1-2):81–138, 1995. DOI (6, 17)

[21] Nicolas Basset, Marta Z. Kwiatkowska, and
Clemens Wiltsche. Compositional controller
synthesis for stochastic games. CONCUR 2014 -
Concurrency Theory - 25th International
Conference, CONCUR 2014, volume 8704 of
Lecture Notes in Computer Science, pages 173–187.Springer, 2014. DOI (6)

[22] Nicolas Basset, Marta Z. Kwiatkowska, and
Clemens Wiltsche. Compositional strategy
synthesis for stochastic games with multiple
objectives. Information and Computation,261(Part):536–587, 2018. DOI (6)

[23] Richard Bellman. Dynamic programming. Science,153(3731):34–37, 1966. (20)
[24] Dimitri P. Bertsekas. Value and policy iterations in

optimal control and adaptive dynamic
programming. IEEE Transactions on Neural
Networks and Learning Systems, 28(3):500–509,2017. DOI (3)

[25] Patrick Billingsley. Probability and measure. JohnWiley & Sons, 2008. (11)
[26] Jonathan Bogdoll, Luis Maŕıa Ferrer Fioriti,

Arnd Hartmanns, and Holger Hermanns. Partial
order methods for statistical model checking and
simulation. Formal Techniques for Distributed
Systems - Joint 13th IFIP WG 6.1 International
Conference, FMOODS 2011, and 31st IFIP WG 6.1
International Conference, FORTE 2011,volume 6722 of Lecture Notes in Computer Science,pages 59–74. Springer, 2011. DOI (7)

[27] Jonathan Bogdoll, Arnd Hartmanns, and
Holger Hermanns. Simulation and statistical model
checking for modestly nondeterministic models.
Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and Fault
Tolerance - 16th International GI/ITG Conference,
MMB & DFT 2012, volume 7201 of Lecture Notes in
Computer Science, pages 249–252. Springer, 2012.DOI (7)

[28] Dimitri Bohlender, Harold Bruintjes,
Sebastian Junges, Jens Katelaan,
Viet Yen Nguyen, and Thomas Noll. A review of
statistical model checking pitfalls on real-time
stochastic models. Leveraging Applications of
Formal Methods, Verification and Validation.
Specialized Techniques and Applications - 6th
International Symposium, ISoLA 2014, volume 8803of Lecture Notes in Computer Science,pages 177–192. Springer, 2014. DOI (4)

[29] Aaron Bohy, Véronique Bruyère, and
Jean-François Raskin. Symblicit algorithms for
optimal strategy synthesis in monotonic Markov
decision processes. Proceedings 3rd Workshop on
Synthesis, SYNT 2014, volume 157 of EPTCS,pages 51–67, 2014. DOI (6)

[30] Frederik M. Bønneland, Peter Gjøl Jensen,
Kim G. Larsen, Marco Muñiz, and Jiŕı Srba. Partial
order reduction for reachability games. 30th
International Conference on Concurrency Theory,
CONCUR 2019, volume 140 of LIPIcs, 23:1–23:15.Schloss Dagstuhl - Leibniz-Zentrum für Informatik,2019. DOI (6)

[31] Benôıt Boyer, Kevin Corre, Axel Legay, and
Sean Sedwards. PLASMA-lab: A flexible,
distributable statistical model checking library.
Quantitative Evaluation of Systems - 10th
International Conference, QEST 2013, volume 8054of Lecture Notes in Computer Science,pages 160–164. Springer, 2013. DOI (7)

[32] Alper Kamil Bozkurt, Yu Wang,
Michael M. Zavlanos, and Miroslav Pajic. Control
synthesis from linear temporal logic specifications
using model-free reinforcement learning. CoRR,abs/1909.07299, 2019. URL (6)

[33] Tomás Brázdil, Krishnendu Chatterjee,
Martin Chmelik, Vojtech Forejt, Jan Křet́ınský,
Marta Z. Kwiatkowska, David Parker, and
Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. Automated
Technology for Verification and Analysis - 12th
International Symposium, ATVA 2014, volume 8837of Lecture Notes in Computer Science,pages 98–114. Springer, 2014. DOI (1, 3, 5, 6, 8,9, 25, 36, 41, 68)

https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1016/j.entcs.2005.10.034
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1007/3-540-48320-9_12
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1109/QEST.2008.29
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1007/978-3-662-44584-6_13
https://doi.org/10.1016/j.ic.2017.09.010
https://doi.org/10.1109/TNNLS.2015.2503980
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-662-45231-8_13
https://doi.org/10.4204/EPTCS.157.8
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1007/978-3-642-40196-1_12
http://arxiv.org/abs/1909.07299
https://doi.org/10.1007/978-3-319-11936-6_8

71 / 82 Learning Algorithms for Verification of Markov Decision Processes
[34] Tomás Brázdil, Stefan Kiefer, and Antońın Kucera.

Efficient analysis of probabilistic programs with an
unbounded counter. Journal of the ACM,61(6):41:1–41:35, 2014. DOI (77)

[35] Randal E. Bryant. Graph-based algorithms for
boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986. DOI (6)

[36] Carlos E. Budde, Pedro R. D’Argenio, and
Arnd Hartmanns. Better automated importance
splitting for transient rare events. Dependable
Software Engineering. Theories, Tools, and
Applications - Third International Symposium,
SETTA 2017, volume 10606 of Lecture Notes in
Computer Science, pages 42–58. Springer, 2017.DOI (8)

[37] Carlos E. Budde, Pedro R. D’Argenio,
Arnd Hartmanns, and Sean Sedwards. A statistical
model checker for nondeterminism and rare events.
Tools and Algorithms for the Construction and
Analysis of Systems - 24th International
Conference, TACAS 2018, volume 10806 of Lecture
Notes in Computer Science, pages 340–358.Springer, 2018. DOI (8)

[38] Carlos E. Budde, Christian Dehnert,
Ernst Moritz Hahn, Arnd Hartmanns,
Sebastian Junges, and Andrea Turrini. JANI:
quantitative model and tool interaction. Tools and
Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS
2017, volume 10206 of Lecture Notes in Computer
Science, pages 151–168, 2017. DOI (18)

[39] Carlos E. Budde, Arnd Hartmanns,
Michaela Klauck, Jan Křet́ınský, David Parker,
Tim Quatmann, Andrea Turrini, and Zhen Zhang.
On correctness, precision, and performance in
quantitative verification - QComp 2020
competition report. Leveraging Applications of
Formal Methods, Verification and Validation: Tools
and Trends - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA
2020, volume 12479 of Lecture Notes in Computer
Science, pages 216–241. Springer, 2020. DOI(10)

[40] Carlos Esteban Budde, Arnd Hartmanns,
Tobias Meggendorfer, Maximilian Weininger, and
Patrick Wienhöft. Sound statistical model checking
for probabilities and expected rewards. Tools and
Algorithms for the Construction and Analysis of
Systems, 2025. Accepted, to appear. (7)

[41] Peter E. Bulychev, Alexandre David,
Kim Guldstrand Larsen, Marius Mikucionis,
Danny Bøgsted Poulsen, Axel Legay, and
Zheng Wang. UPPAAL-SMC: statistical model
checking for priced timed automata. Proceedings
10th Workshop on Quantitative Aspects of
Programming Languages and Systems, QAPL 2012,volume 85 of EPTCS, pages 1–16, 2012. DOI (7)

[42] Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen,
Axel Legay, Mikkel L. Pedersen, and
Andrzej Wasowski. Compositional design
methodology with constraint Markov chains. QEST
2010, Seventh International Conference on the
Quantitative Evaluation of Systems, pages 123–132.IEEE Computer Society, 2010. DOI (6)

[43] Hyeong Soo Chang, Jiaqiao Hu, Michael C Fu, and
Steven I Marcus. Simulation-based algorithms for
Markov decision processes. Springer Science &Business Media, 2013. (7)

[44] Krishnendu Chatterjee. Robustness of structurally
equivalent concurrent parity games. Foundations
of Software Science and Computational Structures
- 15th International Conference, FOSSACS 2012,volume 7213 of Lecture Notes in Computer Science,pages 270–285. Springer, 2012. DOI (80)

[45] Krishnendu Chatterjee, Martin Chmelik, and
Przemyslaw Daca. CEGAR for compositional
analysis of qualitative properties in Markov
decision processes. Formal Methods in System
Design, 47(2):230–264, 2015. DOI (6)

[46] Krishnendu Chatterjee and Monika Henzinger. An
O(n2) time algorithm for alternating Büchi games.
Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms,pages 1386–1399. SIAM, 2012. DOI (14)

[47] Krishnendu Chatterjee and Monika Henzinger.
Efficient and dynamic algorithms for alternating
Büchi games and maximal end-component
decomposition. Journal of the ACM,61(3):15:1–15:40, 2014. DOI (14)

[48] Krishnendu Chatterjee and Monika Henzinger.
Faster and dynamic algorithms for maximal
end-component decomposition and related graph
problems in probabilistic verification. Proceedings
of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011,pages 1318–1336. SIAM, 2011. DOI (14)

[49] Krishnendu Chatterjee and Thomas A. Henzinger.
Value iteration. 25 Years of Model Checking -
History, Achievements, Perspectives, volume 5000of Lecture Notes in Computer Science,pages 107–138. Springer, 2008. DOI (3)

[50] Krishnendu Chatterjee, Tobias Meggendorfer,
Raimundo Saona, and Jakub Svoboda. Faster
algorithm for turn-based stochastic games with
bounded treewidth. Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, pages 4590–4605. SIAM, 2023. DOI(6)

[51] Taolue Chen, Vojtech Forejt,
Marta Z. Kwiatkowska, David Parker, and
Aistis Simaitis. Automatic verification of
competitive stochastic systems. Formal Methods in
System Design, 43(1):61–92, 2013. DOI (68)

[52] Frank Ciesinski, Christel Baier, Marcus Größer,
and Joachim Klein. Reduction techniques for
model checking Markov decision processes. Fifth
International Conference on the Quantitative
Evaluaiton of Systems (QEST 2008), pages 45–54.IEEE Computer Society, 2008. DOI (6, 26, 27)

[53] Costas Courcoubetis and Mihalis Yannakakis.
Markov decision processes and regular events.
Automata, Languages and Programming,pages 336–349, Berlin, Heidelberg. Springer BerlinHeidelberg, 1990. (2, 16)

[54] Costas Courcoubetis and Mihalis Yannakakis. The
complexity of probabilistic verification. Journal of
the ACM, 42(4):857–907, 1995. DOI (2, 14)

https://doi.org/10.1145/2629599
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1109/QEST.2010.23
https://doi.org/10.1007/978-3-642-28729-9_18
https://doi.org/10.1007/s10703-015-0235-2
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1145/2597631
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1137/1.9781611977554.CH173
https://doi.org/10.1007/S10703-013-0183-7
https://doi.org/10.1109/QEST.2008.45
https://doi.org/10.1145/210332.210339

72 / 82 T. Brázdil et. al
[55] Pedro D’Argenio, Axel Legay, Sean Sedwards, and

Louis-Marie Traonouez. Smart sampling for
lightweight verification of Markov decision
processes. International Journal on Software Tools
for Technology Transfer, 17(4):469–484, 2015. DOI(8)

[56] Pedro R. D’Argenio, Arnd Hartmanns, and
Sean Sedwards. Lightweight statistical model
checking in nondeterministic continuous time.
Leveraging Applications of Formal Methods,
Verification and Validation. Verification - 8th
International Symposium, ISoLA 2018, volume 11245of Lecture Notes in Computer Science,pages 336–353. Springer, 2018. DOI (8)

[57] Pedro R. D’Argenio, Bertrand Jeannet,
Henrik Ejersbo Jensen, and
Kim Guldstrand Larsen. Reduction and refinement
strategies for probabilistic analysis. Process
Algebra and Probabilistic Methods, Performance
Modeling and Verification, Second Joint
International Workshop PAPM-PROBMIV 2002,volume 2399 of Lecture Notes in Computer
Science, pages 57–76. Springer, 2002. DOI (6)

[58] Alexandre David, Peter Gjøl Jensen,
Kim Guldstrand Larsen, Marius Mikucionis, and
Jakob Haahr Taankvist. Uppaal stratego. Tools and
Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS
2015, volume 9035 of Lecture Notes in Computer
Science, pages 206–211. Springer, 2015. DOI (8)

[59] Alexandre David, Kim G. Larsen, Axel Legay,
Marius Mikucionis, Danny Bøgsted Poulsen,
Jonas van Vliet, and Zheng Wang. Statistical
model checking for networks of priced timed
automata. Formal Modeling and Analysis of Timed
Systems - 9th International Conference, FORMATS
2011, volume 6919 of Lecture Notes in Computer
Science, pages 80–96. Springer, 2011. DOI (8)

[60] Alexandre David, Kim G. Larsen, Axel Legay,
Marius Mikucionis, and Zheng Wang. Time for
statistical model checking of real-time systems.
Computer Aided Verification - 23rd International
Conference, CAV 2011, volume 6806 of Lecture
Notes in Computer Science, pages 349–355.Springer, 2011. DOI (7, 8)

[61] Luca de Alfaro. Formal verification of probabilistic
systems. PhD thesis, Stanford University, USA,1997. URL (5, 14, 15, 27, 29)

[62] Christian Dehnert, Sebastian Junges,
Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker.
Computer Aided Verification - 29th International
Conference, CAV 2017, volume 10427 of Lecture
Notes in Computer Science, pages 592–600.Springer, 2017. DOI (3)

[63] Yuxin Deng and Matthew Hennessy.
Compositional reasoning for weighted Markov
decision processes. Science of Computer
Programming, 78(12):2537–2579, 2013. DOI (6)

[64] Álvaro Fernández D́ıaz, Christel Baier,
Clara Benac Earle, and Lars-Åke Fredlund. Static
partial order reduction for probabilistic concurrent
systems. Ninth International Conference on
Quantitative Evaluation of Systems, QEST 2012,pages 104–113. IEEE Computer Society, 2012. DOI(6)

[65] Julia Eisentraut, Edon Kelmendi, Jan Křet́ınský,
and Maximilian Weininger. Value iteration for
simple stochastic games: stopping criterion and
learning algorithm. Information and Computation,285(Part):104886, 2022. DOI (9)

[66] Chuchu Fan, Zhenqi Huang, and Sayan Mitra.
Approximate partial order reduction. Formal
Methods - 22nd International Symposium, FM 2018,volume 10951 of Lecture Notes in Computer
Science, pages 588–607. Springer, 2018. DOI (6)

[67] Jerzy Filar and Koos Vrieze. Competitive Markov
decision processes. Springer-Verlag, Berlin,Heidelberg, 1996. DOI (2)

[68] Vojtech Forejt, Marta Z. Kwiatkowska,
Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems.
Formal Methods for Eternal Networked Software
Systems - 11th International School on Formal
Methods for the Design of Computer,
Communication and Software Systems, SFM 2011,volume 6659 of Lecture Notes in Computer Science,pages 53–113. Springer, 2011. DOI (2, 3, 16, 20)

[69] Jie Fu and Ufuk Topcu. Probably approximately
correct MDP learning and control with temporal
logic constraints. Robotics: Science and Systems X,2014. DOI (8)

[70] Masahiro Fujita, Patrick C. McGeer, and
Jerry Chih-Yuan Yang. Multi-terminal binary
decision diagrams: an efficient data structure for
matrix representation. Formal Methods in System
Design, 10(2/3):149–169, 1997. DOI (6)

[71] Kush Grover, Jan Křet́ınský, Tobias Meggendorfer,
and Maximilian Weininger. Anytime guarantees for
reachability in uncountable Markov decision
processes. 33rd International Conference on
Concurrency Theory, CONCUR 2022, volume 243of LIPIcs, 11:1–11:20. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2022. DOI (9)

[72] Serge Haddad and Benjamin Monmege. Interval
iteration algorithm for MDPs and IMDPs.
Theoretical Computer Science, 735:111–131, 2018.DOI (6)

[73] Serge Haddad and Benjamin Monmege.
Reachability in MDPs: refining convergence of
value iteration. Reachability Problems - 8th
International Workshop, RP 2014, volume 8762 of
Lecture Notes in Computer Science, pages 125–137.Springer, 2014. DOI (3, 5, 6, 9, 16, 20, 27, 36)

https://doi.org/10.1007/s10009-015-0383-0
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1016/j.scico.2013.02.009
https://doi.org/10.1109/QEST.2012.22
https://doi.org/10.1016/J.IC.2022.104886
https://doi.org/10.1007/978-3-319-95582-7_35
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.15607/RSS.2014.X.039
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.4230/LIPICS.CONCUR.2022.11
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-319-11439-2_10

73 / 82 Learning Algorithms for Verification of Markov Decision Processes
[74] Ernst Moritz Hahn, Arnd Hartmanns,

Christian Hensel, Michaela Klauck, Joachim Klein,
Jan Křet́ınský, David Parker, Tim Quatmann,
Enno Ruijters, and Marcel Steinmetz. The 2019
comparison of tools for the analysis of quantitative
formal models - (QComp 2019 competition report).
Tools and Algorithms for the Construction and
Analysis of Systems - 25 Years of TACAS:
TOOLympics, volume 11429 of Lecture Notes in
Computer Science, pages 69–92. Springer, 2019.DOI (10)

[75] Ernst Moritz Hahn, Holger Hermanns,
Björn Wachter, and Lijun Zhang. PASS: abstraction
refinement for infinite probabilistic models. Tools
and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS
2010, volume 6015 of Lecture Notes in Computer
Science, pages 353–357. Springer, 2010. DOI (6)

[76] Arnd Hartmanns and Holger Hermanns. The
modest toolset: an integrated environment for
quantitative modelling and verification. Tools and
Algorithms for the Construction and Analysis of
Systems - 20th International Conference, TACAS
2014, volume 8413 of Lecture Notes in Computer
Science, pages 593–598. Springer, 2014. DOI (8)

[77] Arnd Hartmanns, Sebastian Junges,
Tim Quatmann, and Maximilian Weininger. A
practitioner’s guide to MDP model checking
algorithms. Tools and Algorithms for the
Construction and Analysis of Systems - 29th
International Conference, TACAS 2023,volume 13993 of Lecture Notes in Computer
Science, pages 469–488. Springer, 2023. DOI(3, 20)

[78] Arnd Hartmanns, Sebastian Junges,
Tim Quatmann, and Maximilian Weininger. The
revised practitioner’s guide to MDP model checking
algorithms. International Journal on Software Tools
for Technology Transfer, 2025. Accepted, to appear.(3)

[79] Arnd Hartmanns and Benjamin Lucien Kaminski.
Optimistic value iteration. Computer Aided
Verification - 32nd International Conference, CAV
2020, volume 12225 of Lecture Notes in Computer
Science, pages 488–511. Springer, 2020. DOI (3,7)

[80] Ru He, Paul Jennings, Samik Basu, Arka P. Ghosh,
and Huaiqing Wu. A bounded statistical approach
for model checking of unbounded until properties.
ASE 2010, 25th IEEE/ACM International Conference
on Automated Software Engineering,pages 225–234. ACM, 2010. DOI (7, 8)

[81] David Henriques, João G. Martins, Paolo Zuliani,
André Platzer, and Edmund M. Clarke. Statistical
model checking for Markov decision processes.
Ninth International Conference on Quantitative
Evaluation of Systems, QEST 2012, London, United
Kingdom, September 17-20, 2012, pages 84–93.IEEE Computer Society, 2012. DOI (8)

[82] Thomas Hérault, Richard Lassaigne,
Frédéric Magniette, and Sylvain Peyronnet.
Approximate probabilistic model checking.
Verification, Model Checking, and Abstract
Interpretation, 5th International Conference, VMCAI
2004, volume 2937 of Lecture Notes in Computer
Science, pages 73–84. Springer, 2004. DOI (4,8)

[83] Holger Hermanns, Jan Krcál, and Jan Křet́ınský.
Compositional verification and optimization of
interactive Markov chains. CONCUR 2013 -
Concurrency Theory - 24th International
Conference, CONCUR 2013, volume 8052 of
Lecture Notes in Computer Science,pages 364–379. Springer, 2013. DOI (6)

[84] Holger Hermanns, Björn Wachter, and Lijun Zhang.
Probabilistic CEGAR. Computer Aided Verification,
20th International Conference, CAV 2008,volume 5123 of Lecture Notes in Computer Science,pages 162–175. Springer, 2008. DOI (6)

[85] Wassily Hoeffding. Probability inequalities for
sums of bounded random variables, The Collected
Works of Wassily Hoeffding, pages 409–426.Springer, 1994. (43)

[86] Ronald A Howard. Dynamic programming and
Markov processes. 1960. (2, 3, 20)

[87] Cyrille Jégourel, Axel Legay, and Sean Sedwards.
A platform for high performance statistical model
checking - PLASMA. Tools and Algorithms for the
Construction and Analysis of Systems - 18th
International Conference, TACAS 2012,volume 7214 of Lecture Notes in Computer Science,pages 498–503. Springer, 2012. DOI (7, 8)

[88] Cyrille Jégourel, Axel Legay, and Sean Sedwards.
Importance splitting for statistical model checking
rare properties. Computer Aided Verification - 25th
International Conference, CAV 2013, volume 8044of Lecture Notes in Computer Science,pages 576–591. Springer, 2013. DOI (8)

[89] Austin Jones, Derya Aksaray, Zhaodan Kong,
Mac Schwager, and Calin Belta. Robust
satisfaction of temporal logic specifications via
reinforcement learning. CoRR, abs/1510.06460,2015. URL (6)

[90] Lodewijk Kallenberg. Markov decision processes.
Lecture Notes. University of Leiden, 428, 2011.(11)

[91] Narendra Karmarkar. A new polynomial-time
algorithm for linear programming. Combinatorica,4(4):373–396, 1984. DOI (16, 20)

[92] Mark Kattenbelt, Marta Z. Kwiatkowska,
Gethin Norman, and David Parker. A game-based
abstraction-refinement framework for Markov
decision processes. Formal Methods in System
Design, 36(3):246–280, 2010. DOI (6)

[93] Michael J. Kearns, Yishay Mansour, and
Andrew Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision
processes. Machine Learning, 49(2-3):193–208,2002. DOI (6)

https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1145/1858996.1859043
https://doi.org/10.1109/QEST.2012.19
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-642-40184-8_26
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-39799-8_38
http://arxiv.org/abs/1510.06460
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1023/A:1017932429737

74 / 82 T. Brázdil et. al
[94] Michael J. Kearns and Satinder P. Singh.

Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.DOI (76)

[95] Leonid G Khachiyan. A polynomial algorithm in
linear programming. Doklady Academii Nauk SSSR,volume 244, pages 1093–1096, 1979. (16)

[96] Joachim Klein, Christel Baier, Philipp Chrszon,
Marcus Daum, Clemens Dubslaff,
Sascha Klüppelholz, Steffen Märcker, and
David Müller. Advances in symbolic probabilistic
model checking with PRISM. Tools and Algorithms
for the Construction and Analysis of Systems -
22nd International Conference, TACAS 2016,volume 9636 of Lecture Notes in Computer Science,pages 349–366. Springer, 2016. DOI (6)

[97] Andrey Kolobov, Mausam, Daniel S. Weld, and
Hector Geffner. Heuristic search for generalized
stochastic shortest path MDPs. Proceedings of the
21st International Conference on Automated
Planning and Scheduling, ICAPS 2011. AAAI, 2011.URL (6)

[98] Jan Křet́ınský. Survey of statistical verification of
linear unbounded properties: model checking and
distances. ISoLA (1), volume 9952 of Lecture Notes
in Computer Science, pages 27–45, 2016. DOI(7)

[99] Jan Křet́ınský and Tobias Meggendorfer. Efficient
strategy iteration for mean payoff in Markov
decision processes. Automated Technology for
Verification and Analysis - 15th International
Symposium, ATVA 2017, volume 10482 of Lecture
Notes in Computer Science, pages 380–399.Springer, 2017. DOI (3)

[100] Jan Křet́ınský and Tobias Meggendorfer. Of cores:
A partial-exploration framework for Markov
decision processes. Logical Methods in Computer
Science, 16(4), 2020. URL (9)

[101] Jan Křet́ınský, Tobias Meggendorfer, and
Maximilian Weininger. Stopping criteria for value
iteration on stochastic games with quantitative
objectives. 38th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2023, pages 1–14.IEEE, 2023. DOI (9)

[102] Jan Křet́ınský, Emanuel Ramneantu,
Alexander Slivinskiy, and Maximilian Weininger.
Comparison of algorithms for simple stochastic
games. Information and Computation,289(Part):104885, 2022. DOI (3)

[103] Stuart Kurkowski, Tracy Camp, and
Michael Colagrosso. MANET simulation studies:
the incredibles. Mobile Computing and
Communications Review, 9(4):50–61, 2005. DOI(7)

[104] Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. PRISM 4.0: verification of
probabilistic real-time systems. Computer Aided
Verification - 23rd International Conference, CAV
2011, volume 6806 of Lecture Notes in Computer
Science, pages 585–591. Springer, 2011. DOI (2,3, 7, 18)

[105] Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. Probabilistic symbolic model
checking with PRISM: a hybrid approach.
International Journal on Software Tools for
Technology Transfer, 6(2):128–142, 2004. DOI(6)

[106] Tze Leung Lai and Herbert Robbins.
Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.(17)

[107] Kim Guldstrand Larsen. Priced timed automata
and statistical model checking. Integrated Formal
Methods, 10th International Conference, IFM 2013,volume 7940 of Lecture Notes in Computer Science,pages 154–161. Springer, 2013. DOI (8)

[108] Richard Lassaigne and Sylvain Peyronnet.
Approximate planning and verification for large
Markov decision processes. International Journal
on Software Tools for Technology Transfer,17(4):457–467, 2015. DOI (8)

[109] Axel Legay, Anna Lukina, Louis-Marie Traonouez,
Junxing Yang, Scott A. Smolka, and Radu Grosu.
Statistical model checking. Bernhard Steffen and
Gerhard J. Woeginger, editors, Computing and
Software Science - State of the Art and
Perspectives. Volume 10000, Lecture Notes inComputer Science, pages 478–504. Springer, 2019.DOI (7)

[110] Axel Legay, Sean Sedwards, and
Louis-Marie Traonouez. Scalable verification of
Markov decision processes. Software Engineering
and Formal Methods - SEFM 2014 Collocated
Workshops: HOFM, SAFOME, OpenCert, MoKMaSD,
WS-FMDS, volume 8938 of Lecture Notes in
Computer Science, pages 350–362. Springer, 2014.DOI (8)

[111] David A Levin and Yuval Peres. Markov chains and
mixing times, volume 107. American MathematicalSoc., 2017. (40)

[112] H. Brendan McMahan, Maxim Likhachev, and
Geoffrey J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds
and performance guarantees. Machine Learning,
Proceedings of the Twenty-Second International
Conference (ICML 2005), volume 119 of ACM
International Conference Proceeding Series,pages 569–576. ACM, 2005. DOI (3, 6, 17)

[113] Tobias Meggendorfer. PET - A partial exploration
tool for probabilistic verification. Automated
Technology for Verification and Analysis - 20th
International Symposium, ATVA 2022,volume 13505 of Lecture Notes in Computer
Science, pages 320–326. Springer, 2022. DOI(10, 68)

[114] Tobias Meggendorfer. Verification of
Discrete-Time Markov Decision Processes.PhD thesis, Technical University of Munich,Germany, 2021. URL (11)

https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1023/A:1017984413808
https://doi.org/10.1007/978-3-662-49674-9_20
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
https://doi.org/10.1007/978-3-319-47166-2_3
https://doi.org/10.1007/978-3-319-68167-2_25
https://lmcs.episciences.org/6833
https://doi.org/10.1109/LICS56636.2023.10175771
https://doi.org/10.1016/J.IC.2022.104885
https://doi.org/10.1145/1096166.1096174
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10009-004-0140-2
https://doi.org/10.1007/978-3-642-38613-8_11
https://doi.org/10.1007/s10009-014-0344-z
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1007/978-3-031-19992-9_20
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20210226-1550256-1-5

75 / 82 Learning Algorithms for Verification of Markov Decision Processes
[115] Tobias Meggendorfer and Maximilian Weininger.

Playing games with your PET: extending the partial
exploration tool to stochastic games. Computer
Aided Verification - 36th International Conference,
CAV 2024, volume 14683 of Lecture Notes in
Computer Science, pages 359–372. Springer, 2024.DOI (10, 68)

[116] Tobias Meggendorfer, Maximilian Weininger, and
Patrick Wienhöft.What are the odds? improving
the foundations of statistical model checking.
CoRR, abs/2404.05424, 2024. DOI (36, 37)

[117] Joelle Pineau, Geoffrey J. Gordon, and
Sebastian Thrun. Point-based value iteration: an
anytime algorithm for POMDPs. IJCAI-03,
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence,pages 1025–1032. Morgan Kaufmann, 2003. URL(6)

[118] Martin L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. WileySeries in Probability and Statistics. Wiley, 1994.DOI (2, 3, 11, 13, 16, 18, 20, 25, 40)

[119] Tim Quatmann and Joost-Pieter Katoen. Sound
value iteration. Computer Aided Verification - 30th
International Conference, CAV 2018, volume 10981of Lecture Notes in Computer Science,pages 643–661. Springer, 2018. DOI (3, 7)

[120] Diana El Rabih and Nihal Pekergin. Statistical
model checking using perfect simulation.
Automated Technology for Verification and Analysis,
7th International Symposium, ATVA 2009,volume 5799 of Lecture Notes in Computer Science,pages 120–134. Springer, 2009. DOI (7)

[121] Nima Roohi, Yu Wang, Matthew West,
Geir E. Dullerud, and Mahesh Viswanathan.
Statistical verification of the Toyota powertrain
control verification benchmark. Proceedings of the
20th International Conference on Hybrid Systems:
Computation and Control, HSCC 2017, pages 65–70.ACM, 2017. DOI (7)

[122] Alexander Schrijver. Theory of linear and integer
programming. Wiley-Interscience series in discretemathematics and optimization. Wiley, 1999. (16)

[123] Roberto Segala. Modeling and verification of
randomized distributed real-time systems, 1996.(2)

[124] Koushik Sen, Mahesh Viswanathan, and Gul Agha.
On statistical model checking of stochastic
systems. Computer Aided Verification, 17th
International Conference, CAV 2005, volume 3576of Lecture Notes in Computer Science,pages 266–280. Springer, 2005. DOI (7)

[125] Koushik Sen, Mahesh Viswanathan, and Gul Agha.
Statistical model checking of black-box
probabilistic systems. Computer Aided Verification,
16th International Conference, CAV 2004,volume 3114 of Lecture Notes in Computer Science,pages 202–215. Springer, 2004. DOI (8)

[126] Koushik Sen, Mahesh Viswanathan, and
Gul A. Agha. VESTA: A statistical model-checker
and analyzer for probabilistic systems. Second
International Conference on the Quantitative
Evaluaiton of Systems (QEST 2005), pages 251–252.IEEE Computer Society, 2005. DOI (4, 7)

[127] Alexander L. Strehl. Probably approximately
correct (PAC) exploration in reinforcement learning.
International Symposium on Artificial Intelligence
and Mathematics, ISAIM 2008, 2008. URL (19)

[128] Alexander L. Strehl, Lihong Li, and
Michael L. Littman. Reinforcement learning in finite
MDPs: PAC analysis. Journal of Machine Learning
Research, 10:2413–2444, 2009. URL (7)

[129] Alexander L. Strehl, Lihong Li, Eric Wiewiora,
John Langford, and Michael L. Littman. PAC
model-free reinforcement learning. Machine
Learning, Proceedings of the Twenty-Third
International Conference (ICML 2006), volume 148of ACM International Conference Proceeding Series,pages 881–888. ACM, 2006. DOI (4, 8, 9, 19, 37,41, 51)

[130] Marnix Suilen, Thiago D. Simão, David Parker, and
Nils Jansen. Robust anytime learning of Markov
decision processes. Advances in Neural
Information Processing Systems 35: Annual
Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, 2022. URL (9)

[131] Richard S. Sutton and Andrew G. Barto.
Reinforcement learning - an introduction. Adaptivecomputation and machine learning. MIT Press, 1998.URL (16)

[132] Csaba Szepesvári. Algorithms for Reinforcement
Learning. Synthesis Lectures on ArtificialIntelligence and Machine Learning. Morgan &Claypool Publishers, 2010. DOI (17)

[133] Robert Endre Tarjan. Depth-first search and linear
graph algorithms. SIAM Journal on Computing,1(2):146–160, 1972. DOI (14)

[134] Leslie G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142,1984. DOI (19)

[135] Christopher JCH Watkins and Peter Dayan.
Q-learning. Machine learning, 8(3-4):279–292,1992. (17)

[136] Maximilian Weininger. Solving Stochastic Games
Reliably. PhD thesis, Technical University of Munich,Germany, 2022. URL (7)

[137] Maximilian Weininger, Kush Grover, Shruti Misra,
and Jan Křet́ınský. Guaranteed trade-offs in
dynamic information flow tracking games. 2021
60th IEEE Conference on Decision and Control
(CDC), pages 3786–3793. IEEE, 2021. DOI (9)

[138] Douglas J White. A survey of applications of
Markov decision processes. Journal of the
operational research society, 44(11):1073–1096,1993. (2)

[139] Douglas J White. Further real applications of
Markov decision processes. Interfaces,18(5):55–61, 1988. (2)

https://doi.org/10.1007/978-3-031-65633-0_16
https://doi.org/10.48550/ARXIV.2404.05424
http://ijcai.org/Proceedings/03/Papers/147.pdf
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1145/3049797.3049804
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1109/QEST.2005.42
http://isaim2008.unl.edu/PAPERS/SS3-ActiveLearning/isaim08-alex-strehl.pdf
https://dl.acm.org/citation.cfm?id=1755867
https://doi.org/10.1145/1143844.1143955
http://papers.nips.cc/paper_files/paper/2022/hash/b931c44c35ce09e942edab7003eb3daa-Abstract-Conference.html
http://www.worldcat.org/oclc/37293240
https://doi.org/10.2200/S00268ED1V01Y201005AIM009
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1968.1972
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20221118-1661588-1-0
https://doi.org/10.1109/CDC45484.2021.9683447

76 / 82 T. Brázdil et. al
[140] Douglas J White. Real applications of Markov

decision processes. Interfaces, 15(6):73–83, 1985.(2)
[141] Ralf Wimmer, Bettina Braitling, Bernd Becker,

Ernst Moritz Hahn, Pepijn Crouzen,
Holger Hermanns, Abhishek Dhama, and
Oliver E. Theel. Symblicit calculation of long-run
averages for concurrent probabilistic systems.
QEST 2010, Seventh International Conference on
the Quantitative Evaluation of Systems,pages 27–36. IEEE Computer Society, 2010. DOI(6)

[142] Håkan L. S. Younes. Ymer: A statistical model
checker. Computer Aided Verification, 17th
International Conference, CAV 2005, volume 3576of Lecture Notes in Computer Science,pages 429–433. Springer, 2005. DOI (4, 7)

[143] Håkan L. S. Younes, Edmund M. Clarke, and
Paolo Zuliani. Statistical verification of probabilistic
properties with unbounded until. Formal Methods:
Foundations and Applications - 13th Brazilian
Symposium on Formal Methods, SBMF 2010,volume 6527 of Lecture Notes in Computer Science,pages 144–160. Springer, 2010. DOI (7)

[144] Håkan L. S. Younes and Reid G. Simmons.
Probabilistic verification of discrete event systems
using acceptance sampling. Computer Aided
Verification, 14th International Conference, CAV
2002, volume 2404 of Lecture Notes in Computer
Science, pages 223–235. Springer, 2002. DOI(4, 8)

[145] Zahra Zamani, Scott Sanner, and Cheng Fang.
Symbolic dynamic programming for continuous
state and action MDPs. Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence. AAAI Press, 2012. URL (6)

A. Auxiliary Statements

In this chapter we provide some general statements about Markov chains and decision processes
which are used in various proofs for the DQL algorithms.

From Reachability to Step-bounded Reachability

In this section we prove several statements relating the infinite-horizon reachability with the
reachability after a sufficiently large number of steps.

LEMMA A.1. For any Markov chain M = (𝑆, 𝛿), state 𝑠, and target set 𝑇 , we have that either
PrM,𝑠 [^𝑇] = 0 or PrM,𝑠 [^≤|𝑆 |𝑇] ≥ 𝛿|𝑆 |min, where 𝛿min is the minimal transition probability, i.e.
𝛿min = min{𝛿(𝑠, 𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ supp 𝛿(𝑠)}.

PROOF . Fix the Markov chain M, state 𝑠, and target set 𝑇 as in the lemma. In the first case
there is nothing to prove, thus assume that PrM,𝑠 [^𝑇] > 0. This means that there exists a finite
path 𝜚 from 𝑠 to some state in 𝑇 . By the pigeon-hole principle, we can assume this path has
length at most |𝑆 |. Clearly, the probability of any single transition on this path is at least 𝛿min

and thus the overall probability of this path is at least 𝛿|𝑆 |min. ■

COROLLARY A.2. For any MDPM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ), memoryless strategy 𝜋 ∈ ΠMD
M , state

𝑠, and target set 𝑇 , we have that either Pr𝜋M,𝑠 [^𝑇] = 0 or Pr𝜋M,𝑠 [^≤|𝑆 |𝑇] ≥ 𝛿min(𝜋) |𝑆 |, where
𝛿min(𝜋) = min{𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎, 𝑠′) | 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑣(𝑠), 𝜋(𝑠, 𝑎) > 0, 𝑠′ ∈ supp Δ(𝑠, 𝑎, 𝑠′)}.

PROOF . Follows directly from the above lemma by applying it toM𝜋. ■

The following lemma shows that on a large enough horizon, step-bounded and unbounded
reachability values coincide up to a small error, similar in spirit to [94, Lemma 2].

https://doi.org/10.1109/QEST.2010.12
https://doi.org/10.1007/11513988_43
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-45657-0_17
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5186

77 / 82 Learning Algorithms for Verification of Markov Decision Processes
LEMMA A.3. Given a Markov chain M = (𝑆, 𝛿), a state 𝑠 ∈ 𝑆, a constant 𝜏 ∈ (0, 1], and a target
set 𝑇 , for 𝑁 ≥ ln(2𝜏) · |𝑆 |𝛿

−|𝑆 |
min we have

PrM,𝑠 [^𝑇] − PrM,𝑠 [^≤𝑁𝑇] ≤ 𝜏.

PROOF . We can express PrM,𝑠 [^𝑇] as a sum of PrM,𝑠 [^≤𝑁𝑇] and PrM,𝑠 [^>𝑁𝑇], where ^>𝑁𝑇 =

^𝑇 \ ^≤𝑁𝑇 are all paths which reach the set 𝑇 but only after at least 𝑁 + 1 steps. Clearly,

PrM,𝑠 [^𝑇] − PrM,𝑠 [^≤𝑁𝑇] = PrM,𝑠 [^>𝑁𝑇] .

By [34, Lemma 5.1] we have that PrM,𝑠 [^>𝑁𝑇] ≤ 2 · 𝑐𝑁 , where 𝑐 = exp(−|𝑆 |−1𝛿|𝑆 |min).

2 · 𝑐𝑁 ≤ 𝜏 ⇔ 𝑁 · ln 𝑐 ≥ ln
𝜏

2
⇔ 𝑁 ≥ ln

𝜏

2
· (ln 𝑐)−1

⇔ 𝑁 ≥ ln
𝜏

2
· −|𝑆 |𝛿−|𝑆 |min ⇔ 𝑁 ≥ ln

2
𝜏
· |𝑆 |𝛿−|𝑆 |min ■

Unique Solution of Bellman Equations

Now, we prove that a particular class of Bellman equations has a unique solution by proving
that the associated functor is a contraction.

LEMMA A.4. LetM be an MDP, 𝐴𝑣? : 𝑆 → 𝐴𝑐𝑡 a function mapping a state 𝑠 to a subset of its
available actions 𝐴𝑣?(𝑠) ⊆ 𝐴𝑣(𝑠), 𝑐 : 𝑆 → R a cost function, and 𝜋 a memoryless strategy onM.
Define 𝑆= = {𝑠 | 𝐴𝑣?(𝑠) = ∅}.

If Pr𝜋M,𝑠 [^𝑆=] > 0 for all states 𝑠 ∈ 𝑆, then the system of Bellman equations

𝑓 (𝑠) = 𝑐(𝑠) +
∑︁

𝑎∈𝐴𝑣?(𝑠)
𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎)⟨ 𝑓 ⟩

has a unique solution 𝑓 .

PROOF . Define the iteration operator 𝐹 as

𝐹 (𝑓) (𝑠) = 𝑐(𝑠) +
∑︁

𝑎∈𝐴𝑣?(𝑠)
𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎)⟨ 𝑓 ⟩.

Trivially, a function 𝑓 : 𝑆 → R is a solution to the equation system if and only if it is a fixed
point of 𝐹, i.e. 𝐹 (𝑓) (𝑠) = 𝑓 (𝑠) for all states 𝑠 ∈ 𝑆.

We show that 𝐹 |𝑆 |, i.e. 𝐹 applied |𝑆 | times, is a contraction and thus has a unique fixed
point, obtainable by iterating 𝐹. This means that there exists a contraction factor 0 ≤ 𝛾 < 1
such that for two arbitrary 𝑓 , 𝑔 : 𝑆 → R, we have

max
𝑠∈𝑆

���𝐹 |𝑆 | (𝑓) (𝑠) − 𝐹 |𝑆 | (𝑔) (𝑠)��� ≤ 𝛾 ·max
𝑠∈𝑆
| 𝑓 (𝑠) − 𝑔 (𝑠) |. (13)

Let 𝑃(𝑠, 𝑠′, 𝑘) be the probability of reaching state 𝑠′ starting from 𝑠 in exactly 𝑘 steps using the
strategy 𝜋 by using only actions from 𝐴𝑣?. Note that for 𝑠 ∈ 𝑆= this implies 𝑃(𝑠, 𝑠′, 𝑘) = 0 for any

78 / 82 T. Brázdil et. al
𝑠′ ∈ 𝑆 and any number 𝑘. For 𝑠 ∈ 𝑆? B 𝑆 \ 𝑆=, we have that

𝐹 |𝑆 | (𝑓) (𝑠) =
∑︁

𝑠′∈𝑆

(∑︁|𝑆 |−1

𝑖=0
𝑃(𝑠, 𝑠′, 𝑖) · 𝑐(𝑠′)

)
+

∑︁
𝑠′∈𝑆?

𝑃(𝑠, 𝑠′, |𝑆 |) · 𝑓 (𝑠′)

Observe that the first term is independent of 𝑓 , hence for 𝑠 ∈ 𝑆? we have���𝐹 |𝑆 | (𝑓) (𝑠) − 𝐹 |𝑆 | (𝑔) (𝑠)���
=

���∑︁
𝑠′∈𝑆?

𝑃(𝑠, 𝑠′, |𝑆 |) · 𝑓 (𝑠′) −
∑︁

𝑠′∈𝑆?
𝑃(𝑠, 𝑠′, |𝑆 |) · 𝑔 (𝑠′)

���
≤

∑︁
𝑠′∈𝑆?

𝑃(𝑠, 𝑠′, |𝑆 |) · | 𝑓 (𝑠′) − 𝑔 (𝑠′) |

≤
(∑︁

𝑠′∈𝑆?
𝑃(𝑠, 𝑠′, |𝑆 |)

)
·max
𝑠′∈𝑆
| 𝑓 (𝑠′) − 𝑔 (𝑠′) |.

By assumption, we have that Pr𝜋M,𝑠 [^𝑆=] > 0. This implies that Pr𝜋M,𝑠 [^≤|𝑆 |𝑆=] ≥ 𝛿min(𝜋) > 0
by Corollary A.2. For 𝑠 ∈ 𝑆=, observe that 𝐹 |𝑆 | (𝑓) (𝑠) = 𝑓 (𝑠) = 𝑐(𝑠) and hence���𝐹 |𝑆 | (𝑓) (𝑠) − 𝐹 |𝑆 | (𝑔) (𝑠)��� = | 𝑓 (𝑠) − 𝑔 (𝑠) | = |𝑐(𝑠) − 𝑐(𝑠) | = 0.

Consequently, 𝛾 = max𝑠∈𝑆?

∑
𝑠′∈𝑆? 𝑃(𝑠, 𝑠′, |𝑆 |) ≤ 𝛿min(𝜋) < 1 satisfies Inequality (13) and we have

that 𝐹 |𝑆 | is a contraction. By the Banach fixed point theorem we get that 𝐹 |𝑆 | has a unique fixed
point and thus the equation system has a unique solution. ■

From Local to Global Error Bounds

The next lemma bounds the overall error of an approximation in an MDP given that the
approximation is “close” locally. By definition

Δ(𝑠, 𝑎)⟨𝜋[𝑋]⟩ =
∑︁

𝑠′∈𝑆Δ(𝑠, 𝑎, 𝑠′) ·
∑︁

𝑎′∈𝐴𝑣(𝑠′)𝜋(𝑠
′, 𝑎′) · 𝑓 (𝑠′, 𝑎′).

Thus, the term 𝑋 (𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋[𝑋]⟩ in the lemma essentially denotes the difference between
the state-action value 𝑋 (𝑠, 𝑎) and the expected value obtained from 𝑋 in the successors of (𝑠, 𝑎)
following 𝜋. Consequently,K contains those state-action pairs for which the value under 𝑋 is
consistent with the value of its successors up to some error.

LEMMA A.5. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be an MDP satisfying Assumption 1, 𝑋 : 𝑆 × 𝐴𝑣→ [0, 1] a
function assigning a value between 0 and 1 to each state-action pair, 𝜋 a memoryless strategy on
M, and 𝜅𝑙 ≤ 𝜅𝑢 two error bounds. Set

K B {(𝑠, 𝑎) | 𝜅𝑙 ≤ 𝑋 (𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋[𝑋]⟩ ≤ 𝜅𝑢}.

Define a new MDPM′ = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ′) where

Δ′(𝑠, 𝑎) =
{

Δ(𝑠, 𝑎) if (𝑠, 𝑎) ∈ K , and

{𝑠+ ↦→ 𝑋 (𝑠, 𝑎), 𝑠− ↦→ 1 − 𝑋 (𝑠, 𝑎)} otherwise.

79 / 82 Learning Algorithms for Verification of Markov Decision Processes
Then, for each state 𝑠 ∈ 𝑆 we have

𝜅𝑙 ≤ 𝛿min(𝜋) |𝑆 |
|𝑆 |

(
𝜋[𝑋] (𝑠) − Pr𝜋M′,𝑠 [^{𝑠+}]

)
≤ 𝜅𝑢,

where 𝛿min(𝜋) = min{𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎, 𝑠′) | 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑣(𝑠), 𝜋(𝑠, 𝑎) > 0, 𝑠′ ∈ supp(Δ(𝑠, 𝑎))} is the
smallest transition probability in the Markov chainM𝜋.

PROOF . Define 𝑣′(𝑠) = Pr𝜋M′,𝑠 [^{𝑠+}]. Furthermore, let K(𝑠) = {𝑎 ∈ 𝐴𝑣(𝑠) | (𝑠, 𝑎) ∈ K} and
¬K(𝑠) = K(𝑠) ∩ 𝐴𝑣(𝑠) the sets of all actions 𝑎 ∈ 𝐴𝑣(𝑠) such that (𝑠, 𝑎) ∈ K and (𝑠, 𝑎) ∉ K ,
respectively. Observe that 𝑣′ is a solution to the following system of equations:

𝑣′(𝑠+) = 1

𝑣′(𝑠−) = 0

𝑣′(𝑠) =
∑︁

𝑎∈K(𝑠)𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎)⟨𝑣
′⟩ +

∑︁
𝑎∈¬K(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎)

We apply Lemma A.4 to show that 𝑣′ is the unique solution. Let 𝜀(𝑠+) = 1, 𝜀(𝑠−) = 0, and
𝜀(𝑠) = ∑

𝑎∈¬K(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎) for all other 𝑠 ∈ 𝑆. Further, set 𝐴𝑣?(𝑠+) = 𝐴𝑣?(𝑠−) = ∅ and
𝐴𝑣?(𝑠) = K(𝑠) for all other 𝑠 ∈ 𝑆. Then, {𝑠+, 𝑠−} ⊆ 𝑆=. The MDPM′ also satisfies Assumption 1,
since no new ECs are introduced, and thus Pr𝜋M,𝑠 [^𝑆=] = 1 > 0 for all 𝑠 ∈ 𝑆 by Lemma 2.8.
Consequently, Lemma A.4 is applicable and 𝑣′ is the unique solution of the above equations.

𝜋[𝑋] satisfies a similar set of equations:

𝜋[𝑋] (𝑠+) = 1

𝜋[𝑋] (𝑠−) = 0

𝜋[𝑋] (𝑠) =
∑︁

𝑎∈𝐴𝑣(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎)
=

∑︁
𝑎∈K(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎) +

∑︁
𝑎∈¬K(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎)

= 𝜅(𝑠) +
∑︁

𝑎∈K(𝑠)𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎)⟨𝜋[𝑋]⟩ +
∑︁

𝑎∈¬K(𝑠)𝜋(𝑠, 𝑎) · 𝑋 (𝑠, 𝑎)

where 𝜅(𝑠) = ∑
𝑎∈K(𝑠) 𝜋(𝑠, 𝑎) · (𝑋 (𝑠, 𝑎) − Δ(𝑠, 𝑎)⟨𝜋[𝑋]⟩) is bounded by 𝜅𝑙 ≤ 𝜅(𝑠) ≤ 𝜅𝑢. Again, by

Lemma A.4, these equations then have a unique fixed point, setting 𝜀(𝑠) = 𝜅(𝑠)+∑𝑎∈¬K(𝑠)𝜋(𝑠, 𝑎) ·
𝑋 (𝑠, 𝑎).

Now, we prove a bound for the difference between 𝑋 and 𝑣′ using the above characteriza-
tions. Observe that the above equation systems only differ structurally by the error term 𝜅(𝑠).
Let thus 𝑓 (𝑠) = 𝜋[𝑋] (𝑠) − 𝑣′(𝑠). This 𝑓 is a fixed point of the following equation system:

𝑓 (𝑠+) = 𝑓 (𝑠−) = 0

𝑓 (𝑠) = 𝜅(𝑠) +
∑︁

𝑎∈K(𝑠)𝜋(𝑠, 𝑎) · Δ(𝑠, 𝑎)⟨ 𝑓 ⟩

Clearly, 𝑓 again is unique by Lemma A.4.
Given a state 𝑠, the probability to reach the terminal states 𝑠+ and 𝑠− in |𝑆 | steps following

strategy 𝜋 is bounded from below by 𝛿min(𝜋) |𝑆 | due to Corollary A.2. Consequently, the probabil-

80 / 82 T. Brázdil et. al
ity of not reaching these states in |𝑆 | steps is bounded from above by 1 − 𝛿min(𝜋) |𝑆 | < 1. Hence,
we can bound the difference between 𝜋[𝑋] and 𝑣′ by

𝜅(𝑠) ·
∑︁∞

𝑛=0
|𝑆 |

(
1 − 𝛿min(𝜋) |𝑆 |

)𝑛
= 𝜅(𝑠) · |𝑆 |𝛿min(𝜋)−|𝑆 | . ■

Bounding Reachability on Similar MDP

In this lemma, we show that MDP which are sufficiently “similar” also have similar reachability
values. In particular, we are concerned with MDP that agree on a subset of states. For another
notion of similarity (same transition structure but different transition probabilities) see [44].

LEMMA A.6. LetM = (𝑆, 𝐴𝑐𝑡, 𝐴𝑣, Δ) be an MDP, 𝑇 ⊆ 𝑆 a set of target states,K ⊆ 𝑆 × 𝐴𝑣 a set of
state-action pairs, andM′ = (𝑆′, 𝐴𝑐𝑡′, 𝐴𝑣′, Δ′) an arbitrary MDP withK ⊆ 𝑆′ × 𝐴𝑣′ that coincides
withM on K and 𝑇 , i.e. (i) 𝐴𝑣(𝑠) = 𝐴𝑣′(𝑠) for all 𝑠 ∈ K , (ii) Δ(𝑠, 𝑎) = Δ′(𝑠, 𝑎) for all (𝑠, 𝑎) ∈ K ,
and (iii) 𝑇 ⊆ 𝑆′. Moreover, let 𝜋 be a strategy inM, 𝑠 ∈ 𝑆 ∩ 𝑆′ an arbitrary state in both MDP, and
𝑁 ∈ N a natural number. Then,

Pr𝜋M,𝑠 [^≤𝑁𝑇] ≥ Pr𝜋
′
M′,𝑠 [^≤𝑁𝑇] − Pr𝜋M,𝑠 [^≤𝑁K],

where 𝜋′ is an arbitrary strategy equal to 𝜋 on all finite paths over K , i.e. 𝜋(𝜚) = 𝜋′(𝜚) for all
𝜚 ∈ K★ × 𝑆 ∩ FPathsM .

PROOF . For a finite path 𝜚 = 𝑠1𝑎1 . . . 𝑎𝑛−1𝑠𝑛 ∈ FPathsM , let Pr𝜋M,𝑠 [𝜚] denote the probability
of path 𝜚 occurring when following strategy 𝜋 from state 𝑠. Let K𝑁 denote the (finite) set of
all finite paths 𝜚 of length 𝑁 starting in 𝑠 such that all state-action pairs (𝑠𝑖 , 𝑎𝑖) in 𝜚 are in K .
Similarly, let ¬K𝑁 denote the set of all such paths containing at least one state-action pair not in
K . Let R(𝜚) be a function which returns 1 if some target state of 𝑇 is in path 𝜚 and 0 otherwise.
Then, we have the following:

Pr𝜋
′
M′,𝑠 [^≤𝑁𝑇] − Pr𝜋M,𝑠 [^≤𝑁𝑇] (14)

=

∑︁
𝜚∈K𝑁

(
Pr𝜋

′
M′,𝑠 [𝜚] · R(𝜚) − Pr𝜋M,𝑠 [𝜚] · R(𝜚)

)
+∑︁

𝜚∈¬K𝑁

(
Pr𝜋

′
M′,𝑠 [𝜚] · R(𝜚) − Pr𝜋M,𝑠 [𝜚] · R(𝜚)

) (15)

=
∑︁

𝜚∈¬K𝑁

(
Pr𝜋

′
M′,𝑠 [𝜚] · R(𝜚) − Pr𝜋M,𝑠 [𝜚] · R(𝜚)

)
(16)

≤
∑︁

𝜚∈¬K𝑁
Pr𝜋

′
M′,𝑠 [𝜚] · R(𝜚) (17)

≤
∑︁

𝜚∈¬K𝑁
Pr𝜋

′
M′,𝑠 [𝜚] (18)

= Pr𝜋M,𝑠 [^≤𝑁K] (19)

81 / 82 Learning Algorithms for Verification of Markov Decision Processes
In Equation (15), we simply split the set of all paths of length 𝑁 into K𝑁 and ¬K𝑁 . For Equa-
tions (16) and (19), note that Pr𝜋′M′,𝑠 and Pr𝜋M,𝑠 agree onK𝑁 by choice ofM′ and 𝜋′. ■

Repeating Events in Markov Processes

Finally, we prove a general statement of Markov processes. The statement itself seems to be
quite obvious, yet surprisingly tricky to prove. In essence, we want to show the following.
Suppose that we are given a Markov process 𝑋𝑡 on some probability space Ω together with a
sequence of events 𝐴𝑡. Moreover, assume that for a significant set of atoms 𝜔 ∈ Ω there is an
infinite set of times 𝑇 such that the conditional probability of 𝐴𝑡 occurring is at least 𝜀 > 0, i.e.
P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1(𝜔)] > 𝜀. Then, the set of atoms for which infinitely many 𝐴𝑡 actually occur is
also significant. The subtle difficulty of this statement arises from the fact that (i) conditional
probabilities are considered, and (ii) the set 𝑇 depends on the particular atom 𝜔.

LEMMA A.7. Fix some probability space (Ω, F , P) and a measure space (𝑆,S). Let 𝑋𝑡 : Ω→ 𝑆

be a Markov process on Ω and 𝐴𝑡 ∈ S measurable events in 𝑆. Assume that the set Ω′ = {𝜔 ∈ Ω |
∃𝑇 . |𝑇 | = ∞ ∧ ∀𝑡 ∈ 𝑇 . P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1] (𝜔) > 𝜀} has positive measure, i.e. P[Ω′] > 0, and that
Ω′𝑡 = {𝜔 ∈ Ω | P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1] (𝜔) > 𝜀} is measurable for all 𝑡 ∈ N. Then, P[{𝜔 ∈ Ω | ∃𝑇 . |𝑇 | =
∞∧ ∀𝑡 ∈ 𝑇 . 𝑋t(𝜔) ∈ 𝐴𝑡}] = P[Ω′].

PROOF . Let 𝜔 ∈ Ω′. By assumption, for each such 𝜔, there exists an infinite set of time-points
Tries(𝜔) = {𝑡1, 𝑡2, · · · } with 1 ≤ 𝑡1 < 𝑡2 < · · · where P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1] (𝜔) > 𝜀. We call such
an event a try of 𝜔. Denote Try𝑖 (𝜔) = 𝑡𝑖 or ∞ if no such 𝑡𝑖 exists, e.g. for 𝜔 ∉ Ω′. Informally,
Try𝑖 is the time of the 𝑖-th try of some outcome 𝜔. Try𝑖 is measurable by assumption, since its
pre-images can be constructed using Ω′𝑡. Moreover, let Succs(𝜔) = {𝑠1, 𝑠2, · · · } ⊆ Tries(𝜔) be
the times where 𝑋𝑠 𝑗 (𝜔) ∈ 𝐴𝑠 𝑗 , called 𝑗-th success(ful try). Note that Succs(𝜔) possibly is finite or
even empty for some outcomes 𝜔, even for 𝜔 ∈ Ω′, since infinitely many tries may fail. Now, let
Succ 𝑗 (𝜔) = 𝑠 𝑗 ∈ Succs(𝜔) the time of the 𝑗-th success or∞ if no such 𝑠 𝑗 exists, i.e. 𝑗 > |Succs(𝜔) |.
Succ 𝑗 is measurable since Try𝑖 , 𝑋𝑡 and 𝐴𝑡 are measurable. To succinctly capture corner-cases,
we further define Succ0 = 0. The successes Succs(𝜔) naturally partition the set Tries(𝜔) into
TriesJ 𝑗 (𝜔) = {𝑡 ∈ Tries(𝜔) | Succ 𝑗 (𝜔) < 𝑡 ≤ Succ 𝑗+1(𝜔)}. We use TryJ𝑖, 𝑗 (𝜔) to refer to the 𝑖-th
element of TriesJ 𝑗 (𝜔), or∞ if no such element exists. TryJ𝑖, 𝑗 is measurable due to Succ 𝑗 being
measurable. Informally, TryJ𝑖, 𝑗 (𝜔) denotes the time of the 𝑖-th try since the 𝑗-th success.

We show that after a sufficient number of tries, there is a success with high probability.
Repeating this argument inductively, we then show that there are infinitely many successes for
almost all outcomes 𝜔 in Ω′.

Let thus TryAtTJ𝑡𝑖, 𝑗 denote the set of runs which at time 𝑡 have succeeded 𝑗 times and since
the 𝑗-th success experienced 𝑖-th tries, where this 𝑖-th try happens exactly at time 𝑡. Formally,

TryAtTJ𝑡𝑖, 𝑗 B {𝜔 ∈ Ω′ | TryJ𝑖, 𝑗 (𝜔) = 𝑡}.

82 / 82 T. Brázdil et. al
Note that this definition implicitly includes the condition Succ 𝑗 (𝜔) ≤ 𝑡 < Succ 𝑗+1(𝜔) by defini-
tion of TryJ𝑖, 𝑗 . Thus, TryAtTJ𝑡𝑖, 𝑗 are disjoint for fixed 𝑖 and 𝑗.

We furthermore define TriesJ𝑖, 𝑗 =
⋃∞
𝑡=1 TryAtTJ𝑡𝑖, 𝑗 = {𝜔 ∈ Ω′ | TryJ𝑖, 𝑗 (𝜔) < ∞} as the set of

outcomes which after their 𝑗-th success experienced at least 𝑖 − 111 unsuccessful tries. We have
TriesJ𝑖, 𝑗 = TriesJ𝑖+1, 𝑗 ∪ TriesJ1, 𝑗+1, since the 𝑖-th try either fails and the 𝑖 + 1-th try is experienced
later (since TriesJ𝑖, 𝑗 ⊆ Ω′, implying infinitely many tries) or the try succeeds. Observe that
TriesJ𝑖+1, 𝑗 and TriesJ1, 𝑗+1 are not disjoint, since, for example, the runs succeeding at the 𝑖 + 1-th
try also are an element of TriesJ1, 𝑗+1. On the contrary, we show that P[TriesJ𝑖, 𝑗 \ TriesJ1, 𝑗+1] = 0,
i.e. almost all runs in TriesJ𝑖, 𝑗 will eventually succeed again.

To this end, we argue that for any fixed 𝑗 we have that lim𝑖→∞ P[TriesJ𝑖, 𝑗] = 0. Fix some 𝑗

and 𝑖 with P[TriesJ𝑖, 𝑗] > 0 (otherwise there is nothing to prove, since TriesJ𝑖, 𝑗 is monotonically
decreasing in 𝑖). Let TryTimesJ𝑖, 𝑗 = {𝑡 | P[TryAtTJ𝑡𝑖, 𝑗] > 0} which is non-empty by the previous
condition. Clearly, P[TriesJ𝑖, 𝑗] =

∑∞
𝑡=1 P[TryAtTJ𝑡𝑖, 𝑗] =

∑
𝑡∈TryTimesJ𝑖, 𝑗 P[TryAtTJ𝑡𝑖, 𝑗], as TryAtTJ𝑡𝑖, 𝑗 are

disjoint. Observe that TryAtTJ𝑡𝑖, 𝑗 is the intersection of several conditions on 𝑋𝑡′ for 𝑡′ < 𝑡 and
requiring that P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1] > 𝜀. Hence, by the Markov property

P[𝑋𝑡 ∉ 𝐴𝑡 | TryAtTJ𝑡𝑖, 𝑗] = 1 − P[𝑋𝑡 ∈ 𝐴𝑡 | TryAtTJ𝑡𝑖, 𝑗] = 1 − P[𝑋𝑡 ∈ 𝐴𝑡 | 𝑋𝑡−1] < 1 − 𝜀.

Intuitively, this means that the probability of a try at time 𝑡 succeeding does not depend on
the number of previous tries and successes. Thus, for all 𝑡 ∈ TryTimesJ𝑖, 𝑗 , we have P[𝑋𝑡 ∉

𝐴𝑡 ∩ TryAtTJ𝑡𝑖, 𝑗] < (1 − 𝜀) · P[TryAtTJ𝑡𝑖, 𝑗]. Observe that
⋃∞
𝑡=1(𝑋𝑡 ∉ 𝐴𝑡 ∩ TryAtTJ𝑡𝑖, 𝑗) = TriesJ𝑖+1, 𝑗 since

the intersection implies that the 𝑖-th try at time 𝑡 was unsuccessful. Together,

P[TriesJ𝑖+1, 𝑗] = P[
⋃∞

𝑡=1
𝑋𝑡 ∉ 𝐴𝑡 ∩ TryAtTJ𝑡𝑖, 𝑗] =

∑︁∞
𝑡=1
P[𝑋𝑡 ∉ 𝐴𝑡 ∩ TryAtTJ𝑡𝑖, 𝑗]

=
∑︁

𝑡∈TryTimesJ𝑖, 𝑗
P[𝑋𝑡 ∉ 𝐴𝑡 ∩ TryAtTJ𝑡𝑖, 𝑗]

<
∑︁∞

𝑡=1
(1 − 𝜀) · P[TryAtTJ𝑡𝑖, 𝑗] = (1 − 𝜀) · P[

⋃∞
𝑡=1

TryAtTJ𝑡𝑖, 𝑗]
= (1 − 𝜀) · P[TriesJ𝑖, 𝑗] .

Consequently, lim𝑖→∞ P[TriesJ𝑖, 𝑗] = 0 for any fixed 𝑗.
As argued before, we have TriesJ𝑖, 𝑗 = TriesJ𝑖+1, 𝑗 ∪ TriesJ1, 𝑗+1. Iterating this equation yields

TriesJ𝑖, 𝑗 = TriesJ𝑖+𝑘, 𝑗∪TriesJ1, 𝑗+1 for any 𝑘 ≥ 1 and consequently TriesJ1, 𝑗 =
⋂∞
𝑖=1 TriesJ𝑖, 𝑗∪TriesJ1, 𝑗+1.

Informally, this equation can be read as “all outcomes which succeed at least 𝑗 times either try
infinitely often or succeed at least 𝑗+1 times.” Let TriesJ∞, 𝑗 =

⋂∞
𝑖=1 TriesJ𝑖, 𝑗 = {𝜔 ∈ Ω′ | Succ 𝑗 (𝜔) <

∞ = Succ 𝑗+1(𝜔)}. Clearly, TriesJ∞, 𝑗 ∩ TriesJ1, 𝑗+1 = ∅, thus we have P[TriesJ1, 𝑗+1 \ TriesJ1, 𝑗] =

P[TriesJ∞, 𝑗]. Additionally, we have P[TriesJ∞, 𝑗] = inf 𝑖∈N P[TriesJ𝑖, 𝑗] = 0 by the above reasoning.
Hence P[TriesJ1, 𝑗+1 \ TriesJ1, 𝑗] = 0. This implies that almost all runs in Ω′ succeed infinitely often,
concluding the proof. ■

11 TryJ𝑖, 𝑗 (𝜔) = 𝑡 does not exclude that the try at time t is successful.
2025 : 10
This work is licensed under the Creative CommonsAttribution 4.0 International License.http://creativecommons.org/licenses/by/4.0/

© Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, VojtěchForejt, Jan Křet́ınský, Marta Kwiatkowska, Tobias Meggendorfer,David Parker, Mateusz Ujma.

	Introduction
	Related Work
	Differences to the Published Article
	Impact of the Presented Work
	Contributions and Structure

	Preliminaries
	Markov Systems
	Reachability
	Probabilistic Learning Algorithms

	Complete Information – MDP without End Components
	The Ideas of Value Iteration
	The No-EC BRTDP Algorithm
	Proof of Correctness

	Complete Information – General Case
	Collapsing End Components
	The General BRTDP Algorithm
	Proof of Correctness
	Relation to Interval Iteration

	Limited Information – MDP without End Components
	Definition of Limited Information
	The No-EC DQL Algorithm
	Proof of Correctness

	Limited Information – General Case
	Collapsing End Components with Limited Information
	The General DQL Algorithm
	Proof of Correctness

	Conclusion and Future Work
	References
	Auxiliary Statements

