
1 / 93 2024 :25

The Descriptive
Complexity of Graph
Neural Networks

Received Sep 6, 2023
Revised Oct 10, 2024
Accepted Oct 24, 2024
Published Dec 4, 2024

Key words and phrases
Graph neural networks; circuit
complexity; descriptive
complexity; first-order logic with
counting

Martin Grohea � � a RWTH Aachen University,
Germany

ABSTRACT. We analyse the power of graph neural networks (GNNs) in terms of Boolean
circuit complexity and descriptive complexity.

We prove that the graph queries that can be computed by a polynomial-size bounded-
depth family of GNNs are exactly those definable in the guarded fragmentGFO+C of first-order
logic with counting and with built-in relations. This puts GNNs in the circuit complexity class
(non-uniform) TC0. Remarkably, the GNN families may use arbitrary real weights and a wide
class of activation functions that includes the standard ReLU, logistic “sigmoid”, and hyperbolic
tangent functions. If the GNNs are allowed to use random initialisation and global readout (both
standard features of GNNs widely used in practice), they can compute exactly the same queries
as bounded depth Boolean circuits with threshold gates, that is, exactly the queries in TC0.

Moreover, we show that queries computable by a single GNN with piecewise linear activa-
tions and rational weights are definable in GFO+C without built-in relations. Therefore, they
are contained in uniform TC0.

1. Introduction

Graph neural networks (GNNs) [9, 29] are deep learning models for graph data that play a
key role in machine learning on graphs (see, for example, [6]). A GNN describes a distributed
algorithm carrying out local computations at the vertices of the input graph. At any time, each
vertex has a “state”, which is a vector of reals, and in each computation step it sends a message to
all its neighbours. The messages are also vectors of reals, and they only depend on the current

The conference version of this article was published in the Proceedings of the 38th annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2023). The research was funded by the European Union (ERC, SymSim, 101054974). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Cite as Martin Grohe. The Descriptive Complexity of Graph Neural Networks.
TheoretiCS, Volume 3 (2024), Article 25, 1-93.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.25

mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142

2 / 93 M. Grohe

state of the sender and the receiver. Every vertex aggregates the messages it receives and
computes its new state depending on the old state and the aggregated messages. The message
and state-update functions are computed by feedforward neural networks whose parameters
are learned from data.

In this article, we study the expressiveness of GNNs: which functions on graphs or their
vertices can be computed by GNNs? We provide answers in terms of Boolean circuits and logic,
that is, computation models of classical (descriptive) complexity theory. An interesting and
nontrivial aspect of this is that GNNs are “analogue” computation models operating on and
with real numbers. The weights of neural networks may be arbitrary reals, and the activation
functions may even be transcendental functions such as the logistic function 𝑥 ↦ 1

1+𝑒−𝑥 .
We always want functions on graphs to be isomorphism invariant, that is, isomorphic

graphs are mapped to the same value. Similarly, we want functions on vertices to be equivariant,
that is, if 𝑣 is a vertex of a graph 𝐺 and 𝑓 is an isomorphism from 𝐺 to a graph 𝐻 , then 𝑣 and
𝑓 (𝑣) are mapped to the same value. Functions computed by GNNs are always invariant or
equivariant, and so are functions defined in logic (a.k.a. queries).

In a machine learning context, it is usually assumed that the vertices of the input graph
are equipped with additional features in the form of vectors over the reals; we speak of graph
signals in this article. The function values are also vectors over the reals. Thus a function on the
vertices of a graph is an equivariant transformation between graph signals. When comparing
GNNs and logics or Boolean circuits, we focus on Boolean functions, where the input signal is
Boolean, that is, it associates a {0, 1}-vector with every vertex of the input graph, and the output
is just a Boolean value 0 or 1. In the logical context, it is natural to view Boolean signals as vertex
labels. Thus a Boolean signal in {0, 1}𝑘 is described as a sequence of 𝑘 unary relations on the
input graph. Then an invariant Boolean function becomes a Boolean query on labelled graphs,
and an equivariant Boolean function on the vertices becomes a unary query. To streamline
the presentation, in this article we focus on unary queries and equivariant functions on the
vertices. All our results also have versions for Boolean queries and functions on graphs, but we
only discuss these in occasional remarks. While we are mainly interested in queries (that is,
Boolean functions), our results also have versions for functions with arbitrary real input and
output signals. These are needed for the proofs anyway. But since the exact statements become
unwieldy, we keep them out of the introduction. Before discussing further background, let us
state our central result.

THEOREM 1.1. Let Q be a unary query on labelled graphs. Then the following are equivalent.
1. Q is computable by a polynomial-weight bounded-depth family of GNNs with rpl-approxi-

mable activation functions.
2. Q is definable in the guarded fragment GFO+Cnu of first-order logic with counting and with

built-in relations.

3 / 93 The Descriptive Complexity of Graph Neural Networks

The result requires more explanations. First of all, it is a non-uniform result, speaking about
computability by families of GNNs and a logic with built-in relations. A family N = (𝔑(𝑛))𝑛∈N
of GNNs consists of a GNN 𝔑(𝑛) for input graphs of size 𝑛, for each 𝑛 ∈ N. Bounded depth
refers to the number of message passing rounds, or layers, of the GNNs as well as the depth of
the feed-forward neural networks they use for their message and state-update functions. We
would like the GNN 𝔑(𝑛) to be of “size” polynomial in 𝑛, but since we allow arbitrary reals as
parameters of the neural networks, it is not clear what this actually means. We define the weight
of a GNN to be the number of computation nodes of the underlying neural networks plus the
sum of the absolute values of all parameters of these networks. The class of rpl-approximable
functions (see Section 2.1; “rpl” abbreviates rational piecewise linear) contains all functions
that are commonly used as activation functions for neural networks, for example, the rectified
linear unit, the logistic function, the hyperbolic tangent function, the scaled exponential linear
unit (see Section 2.4 for background on neural networks and their activation functions).

On the logical side, first-order logic with counting FO+C is the two-sorted extension of
first-order logic over relational structures that has variables ranging over the non-negative
integers, bounded arithmetic on the integer side, and counting terms that give the number of
assignments satisfying a formula. In the 𝑘-variable fragment FO𝑘+C, only 𝑘 variables ranging
over the vertices of the input graphs are allowed (but arbitrarily many variables for the integer
part). The guarded fragmentGFO+C is a fragment of FO2+Cwhere quantification over vertices
is restricted to the neighbours of the current vertex. Built-in relations are commonly used in
descriptive complexity to introduce non-uniformity to logics and compare them to non-uniform
circuit complexity classes. Formally, they are just arbitrary relations on the non-negative
integers that the logic can access, independently of the input structure. GFO+Cnu denotes the
extension of GFO+C by built-in relations.

It is well-known that over ordered input structures, FO+Cwith built-in relations captures
the circuit complexity class (non-uniform) TC0, consisting of Boolean functions (in our context:
queries) that are computable by families of bounded-depth polynomial-size Boolean circuits
with threshold gates. This implies that, as a corollary to Theorem 1.1, we get the following.

COROLLARY 1.2. Every unary query that is computable by a polynomial-weight bounded-depth
family of GNNs with rpl approximable activation functions is in TC0.

The strength of GNNs can be increased by extending the input signals with a random
component [2, 28]. In [2], it was even proved that such GNNs with random initialisation can
approximate all functions on graphs. The caveat of this result is that it is non-uniform and that
input graphs of size 𝑛 require GNNs of size exponential in 𝑛 and depth linear in 𝑛. We ask which
queries can be computed by polynomial-weight, bounded-depth families of GNNs. Surprisingly,
this gives us a converse of Corollary 1.2 and thus a characterisation of TC0.

THEOREM 1.3. Let Q be a unary query on labelled graphs. Then the following are equivalent.

4 / 93 M. Grohe

1. Q is computable by a polynomial-weight bounded-depth family of GNNs with random initial-
isation, global readout, and with rpl approximable activation functions.

2. Q is computable in TC0.

For a GNN with random initialisation to compute a query, it needs to compute the correct
answer with high probability, taken over the random inputs. (We demand a probability ≥ 3/4,
but the exact value is irrelevant).

Following [2], we allow GNNs with random initialisation to also use a feature known as
global readout, which means that in each message-passing round of a GNN computation, the
vertices not only receive messages from their neighbours, but the aggregated state of all vertices.
There is also a version of Theorem 1.1 for GNNs with global readout. It is an open question what
the exact expressiveness of polynomial-weight bounded-depth families of GNNs with random
initialisation, but without global readout, is.

Related Work

A fundamental result on the expressiveness of GNNs [25, 34] states that two graphs are distin-
guishable by a GNN if and only if they are distinguishable by the 1-dimensional Weisfeiler-Leman
(WL) algorithm, a simple combinatorial algorithm originally introduced as a graph isomorphism
heuristics [23, 33]. This result has had considerable impact on the subsequent development of
GNNs, because it provides a yardstick for the expressiveness of GNN extensions (see [24]). Its
generalisation to higher-order GNNs and higher-dimensional WL algorithms [25] even gives a
hierarchy of increasingly more expressive formalisms against which such extensions can be
compared. However, these results relating GNNs and their extensions to the WL algorithm only
consider a restricted form of expressiveness, the power to distinguish two graphs. Furthermore,
the results are non-uniform, that is, the distinguishing GNNs depend on the input graphs or at
least on their size, and the GNNs may be arbitrarily large and deep. Indeed, the GNNs from the
construction in [34] may be exponentially large in the graphs they distinguish. Those of [25]
are polynomial. Both have recently been improved by [1], mainly showing that the messages
only need to contain logarithmically many bits.

We are not the first to study the logical expressiveness of GNNs (see [11] for a recent
survey). It was proved in [3] that all unary queries definable in the guarded fragmentGC of the
extension C of first-order logic by counting quantifiers ∃≥𝑛𝑥 (“there exist at least 𝑛 vertices 𝑥
satisfying some formula”) are computable by a GNN. The logic GC is weaker than our GFO+C
in that it does not treat the numbers 𝑛 in the quantifiers ∃≥𝑛𝑥 as variables, but as fixed constants.
What is interesting about this result, and what makes it incomparable to ours, is that it is a
uniform result: a query definable in GC is computable by a single GNN across all graph sizes.
There is a partial converse to this result, also from [3]: all unary queries that are definable in

5 / 93 The Descriptive Complexity of Graph Neural Networks

first-order logic and computable by a GNN are actually definable in GC. Note, however, that
there are queries computable by GNNs that are not definable in first-order logic.

A different approach to capturing GNNs by logic has been taken in [8]. There, the authors
introduce a new logicMPLang that operates directly on the reals. The logic, also a guarded (or
modal) logic, is simple and elegant and well-suited to translate GNN computations to logic. The
converse translation is more problematic, though. But to be fair, it is also in our case, where
it requires families of GNNs and hence non-uniformity. However, the purpose of the work
in [8] is quite different from ours. It is our goal to describe GNN computations in terms of
standard descriptive complexity and thus to be able to quantify the computational power of
GNNs in the framework of classical complexity. It is the goal of [8] to expand logical reasoning
to real-number computations in a way that is well-suited to GNN computations. Of course, both
are valid goals.

There is another line of work that is important for us. In the 1990s, researchers studied the
expressiveness of feedforward neural networks (FNNs) and compared it to Boolean computation
models such as Turing machines and circuits (for example, [18, 21, 22, 30]). Like GNNs, FNNs
are analogue computation models operating on the reals, and this work is in the same spirit as
ours. An FNN has fixed numbers 𝑝 of inputs and 𝑞 of outputs, and it thus computes a function
from R𝑝 to R𝑞. Restricted to Boolean inputs, we can use FNNs with 𝑝 inputs to decide subsets
of {0, 1}𝑝, and we can use families of FNNs to decide languages. It was proved in [21] that a
language is decidable by a family of bounded-depth polynomial-weight FNNs using piecewise-
polynomial activation functions if and only if it is in TC0. It may seem that our Corollary 1.2,
at least for GNNs with piecewise-linear (or even piecewise-polynomial) activations, follows
easily from this result. But this is not the case, because when processing graphs, the inputs to
the FNNs computing the message and update functions of the GNN may become large through
the aggregation ranging over all neighbours. Also, the arguments of [21] do not extend to
rpl-approximable activation functions like the logistic function. There has been related work
[18] that extends to a wider class of activation functions including the logistic function, using
arguments based on o-minimality. But the results go into a different direction; they bound the
VC dimension of FNN architectures and do not relate them to circuit complexity.

Techniques

The first step in proving the difficult implication (1)⇒(2) of Theorem 1.1 is to prove a uniform
result for a simpler class of GNNs; this may be of independent interest.

THEOREM 1.4. LetQ be a unary query computable by a GNN with rational weights and piecewise
linear activations. Then Q is definable in GFO+C.

6 / 93 M. Grohe

Compare this with the result of [3]: every query definable in the (weaker) logic GC is
computable by a GNN and in fact a GNN with rational weights and piecewise linear activations.
Thus we may write GC ⊆ GNN ⊆ GFO+C. It is not hard to show that both inclusions are strict.

To prove Theorem 1.4, we need to show that the rational arithmetic involved in GNN
computations, including unbounded linear combinations, can be simulated, at least approxi-
mately, in the logic GFO+C. Establishing this is a substantial part of this article, and it may be
of independent interest.

So how do we prove the forward implication of Theorem 1.1 from Theorem 1.4? It was
our first idea to look at the results for FNNs. In principle, we could use the linear-programming
arguments of [21]. This would probably work, but would be limited to piecewise linear or
piecewise polynomial activations. We could then use o-minimality to extend our results to
wider classes of activation functions. After all, o-minimality was also applied successfully in the
somewhat related setting of constraint databases [19]. Again, this might work, but our analytical
approach seems simpler and more straightforward. Essentially, we use the Lipschitz continuity
of the functions computed by FNNs to show that we can approximate arbitrary GNNs with
rpl-approximable activations by GNNs with rational weights and piecewise linear activations,
and then we apply Theorem 1.4.

Let us close the introduction with a few remarks on Theorem 1.3. The reader may have
noted that assertion (1) of the theorem involves randomness in the computation model, whereas
(2) does not. To prove the implication (1)⇒(2) we use the well-known “Adleman Trick” that
allows us to trade randomness for non-uniformity. To prove the converse implication, the main
insight is that with high probability, random initialisation gives us a linear order on the vertices
of the input graph. Then we can use the known fact that FO+C with built-in relations captures
TC0 on ordered structures.

Structure of This Article

After collecting preliminaries from different areas in Section 2, in Section 3 we develop a
machinery for carrying out the required rational arithmetic in first-order logic with counting
and its guarded fragment. This is a significant part of this article, which is purely logical and
independent of neural networks. We then introduce GNNs (Section 4) and prove the uniform
Theorem 1.4 (Section 5). We prove the forward direction of Theorem 1.1 in Section 6 and the
backward direction in Section 7. Finally, we prove Theorem 1.3 in Section 8.

2. Preliminaries

By Z,N,N>0,Q,Rwe denote the sets of integers, nonnegative integers, positive integers, rational
numbers, and real numbers, respectively. Instead of arbitrary rationals, we will often work
with dyadic rationals, that is, rationals of the form 𝑛

2ℓ for 𝑝 ∈ Z, ℓ ∈ N. These are precisely the

7 / 93 The Descriptive Complexity of Graph Neural Networks

numbers that have a presentation as finite precision binary floating point numbers. We denote
the set of dyadic rationals by Z[1

2].
We denote the binary representation of 𝑛 ∈ N by bin(𝑛). The bitsize of 𝑛 is the length of

the binary representation, that is,

bsize(𝑛) B ∣bin(𝑛)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑛 = 0,

⌈log(𝑛 + 1)⌉ if 𝑛 > 0,

where log denotes the binary logarithm. We denote the 𝑖th bit of the binary representation of
𝑛 ∈ N by Bit(𝑖, 𝑛), where we count bits starting from 0 with the lowest significant bit. It will be
convenient to let Bit(𝑖, 𝑛) B 0 for all 𝑖 ≥ bsize(𝑛). So

𝑛 =
bsize(𝑛)−1

∑
𝑖=0

Bit(𝑖, 𝑛) ⋅ 2𝑖 =∑
𝑖∈N

Bit(𝑖, 𝑛) ⋅ 2𝑖 .

The bitsize of an integer 𝑛 ∈ Z is bsize(𝑛) B 1 + bsize(∣𝑛∣), and the bitsize of a dyadic rational
𝑞 = 𝑛

2ℓ ∈ Z[
1
2] in reduced form is bsize(𝑞) B bsize(𝑛) + ℓ + 1.

We denote tuples (of numbers, variables, vertices, et cetera) using boldface letters. Usually,
a 𝑘-tuple 𝒕 has entries 𝑡1, . . . , 𝑡𝑘. The empty tuple is denoted∅ (just like the empty set, this should
never lead to any confusion), and for every set 𝑆 we have 𝑆0 = {∅}. For tuples 𝒕 = (𝑡1, . . . , 𝑡𝑘) and
𝒖 = (𝑢1, . . . , 𝑢ℓ), we let 𝒕𝒖 = (𝑡1, . . . , 𝑡𝑘, 𝑢1, . . . , 𝑢ℓ). To improve readability, we often write (𝒕,𝒖)
instead of 𝒕𝒖. This does not lead to any confusion, because we never consider nested tuples.

For a vector 𝒙 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘, the ℓ1-norm (a.k.a. Manhattan norm) is ∥𝒙∥1 B ∑𝑘
𝑖=1 ∣𝑥𝑖 ∣,

the ℓ2-norm (a.k.a. Euclidean norm) is ∥𝒙∥2 B
√
∑𝑘

𝑖=1 𝑥
2
𝑖 , and the ℓ∞-norm (a.k.a. maximum

norm) ∥𝒙∥∞ B max𝑖∈[𝑘] ∣𝑥𝑖 ∣. As 1
𝑘∥𝒙∥1 ≤ ∥𝒙∥∞ ≤ ∥𝒙∥2 ≤ ∥𝒙∥1, it does not make much of a difference

which norm we use; most often, it will be convenient for us to use the ℓ∞-norm.

2.1 Functions and Approximations

A function 𝑓 ∶ R𝑝 → R𝑞 is Lipschitz continuous if there is some constant 𝜆, called a Lipschitz
constant for 𝑓 , such that for all 𝒙, 𝒚 ∈ R𝑝 it holds that ∥ 𝑓 (𝒙) − 𝑓 (𝒚)∥∞ ≤ 𝜆 ∥𝒙 − 𝒚∥∞.

A function 𝐿 ∶ R→ R is piecewise linear if there are 𝑛 ∈ N, 𝑎0, . . . , 𝑎𝑛, 𝑏0, . . . , 𝑏𝑛, 𝑡1, . . . , 𝑡𝑛 ∈ R
such that 𝑡1 < 𝑡2 < . . . < 𝑡𝑛 and

𝐿(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎0𝑥 + 𝑏0 if 𝑥 < 𝑡1,

𝑎𝑖𝑥 + 𝑏𝑖 if 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1 for some 𝑖 < 𝑛,

𝑎𝑛𝑥 + 𝑏𝑛 if 𝑥 ≥ 𝑡𝑛

if 𝑛 ≥ 1, or 𝐿(𝑥) = 𝑎0𝑥 + 𝑏0 for all 𝑥 if 𝑛 = 0. Note that there is a unique minimal representation
of 𝐿 with minimal number 𝑛 + 1 of pieces. We call 𝑡1, . . . , 𝑡𝑛 in the minimal representation of 𝐿
the thresholds of 𝐿; these are precisely the points where 𝐿 is non-linear. 𝐿 is rational if all its

8 / 93 M. Grohe

parameters 𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖 in the minimal representation are dyadic rationals.1 If 𝐿 is rational, then
its bitsize of bsize(𝐿) is the sum of the bitsizes of all the parameters 𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖 of the minimal
representation. Oberserve that if 𝐿 is continuous then it is Lipschitz continuous with Lipschitz
constant max0≤𝑖≤𝑛 𝑎𝑖 .

EXAMPLE 2 .1. The most important example of a rational piecewise linear function for us is
the rectified linear unit relu ∶ R→ R defined by relu(𝑥) B max{0, 𝑥}.

In fact, it is not hard to see that every piecewise linear function can be written as a linear
combination of relu-terms. For example, the identity function id(𝑥) = 𝑥 can be written as
relu(𝑥) − relu(−𝑥), and the linearised sigmoid function lsig ∶ R → R, defined by lsig(𝑥) = 0 if
𝑥 < 0, lsig(𝑥) = 𝑥 if 0 ≤ 𝑥 < 1, an lsig(𝑥) = 1 if 𝑥 ≥ 1, can be written as relu(𝑥) − relu(𝑥 − 1). ∎

We need a notion of approximation between functions on the reals. Let 𝑓 , 𝑔 ∶ R→ R and
𝜀 ∈ R>0. Then 𝑔 is an 𝜀-approximation of 𝑓 if for all 𝑥 ∈ R it holds that

∣ 𝑓 (𝑥) − 𝑔(𝑥)∣ ≤ 𝜀∣ 𝑓 (𝑥)∣ + 𝜀.

Note that we allow for both an additive and a multiplicative approximation error. This no-
tion of approximation is not symmetric, but if 𝑔 𝜀-approximates 𝑓 for some 𝜀 < 1 then 𝑓
𝜀

1−𝜀 -approximates 𝑔 . The main reason we need to allow for a multiplicative approximation error
is that we want to approximate linear functions with irrational coefficients by linear functions
with rational coefficients.

We call a function 𝑓 ∶ R → R rpl-approximable if for every 𝜀 > 0 there is a continuous
rational piecewise linear function 𝐿 of bitsize polynomial in 𝜀−1 that 𝜀-approximates 𝑓 .

EXAMPLE 2 .2. The logistic function sig(𝑥) = 1
1+𝑒−𝑥 and the hyperbolic tangent tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

are rpl-approximable. Examples of unbounded rpl-approximable functions are the soft plus
function ln(1 + 𝑒𝑥) and the exponential linear units defined by elu𝛼(𝑐) = 𝑥 if 𝑥 > 0 and 𝛼(𝑒𝑥 − 1)
if 𝑥 ≤ 0, where 𝛼 > 0 is a constant. We omit the straightforward proofs based on simple
calculus. ∎

EXAMPLE 2 .3. Examples of functions that are not rpl approximable are functions that are
not Lipschitz continuous, such as the square function, and periodic functions such as the sine
or cosine functions. ∎

2.2 Graphs and Signals

Graphs play two different roles in this article: they are the basic data structures on which
logics and graph neural networks operate, and they form the skeleton of Boolean circuits and

1 Throughout this article we work with dyadic rationals. For this reason, we are a little sloppy in our terminology. For
example, we call a function “rational piecewise linear” when the more precise term would be “dyadic-rational piecwise
linear”.

9 / 93 The Descriptive Complexity of Graph Neural Networks

neural networks. In the first role, which is the default, we assume graphs to be undirected.
This assumption is not essential for our results, but convenient. In the second role, graphs are
directed acyclic graphs (dags).

We always denote the vertex set of a graph or dag 𝐺 by𝑉(𝐺) and the edge set by 𝐸(𝐺). We
denote edges by 𝑣𝑤 (without parentheses). We assume the vertex set of all graphs in this article
to be finite and nonempty. The order of a graph 𝐺 is ∣𝐺∣ B ∣𝑉(𝐺)∣, and the bitsize bsize(𝐺) of 𝐺
is the size of a representation of 𝐺. (For simplicity, we can just take adjacency matrices, then
bsize(𝐺) = ∣𝐺∣2.) The class of all (undirected) graphs is denoted by G.

For a vertex 𝑣 in an (undirected) graph, we let 𝑁𝐺(𝑣) B {𝑤 ∈ 𝑉(𝐺) ∣ 𝑣𝑤 ∈ 𝐸(𝐺)} be
the neighbourhood of 𝑣 in 𝐺, and we let 𝑁𝐺[𝑣] B {𝑣} ∪ 𝑁𝐺(𝑣) be the closed neighbourhood.
Furthermore, we let deg𝐺(𝑣) B ∣𝑁𝐺(𝑣)∣ be the degree of 𝑣 in 𝐺. For a vertex 𝑣 in a directed graph
𝐺, we let 𝑁+𝐺(𝑣) B {𝑤 ∈ 𝑉(𝐺) ∣ 𝑣𝑤 ∈ 𝐸(𝐺)} be the out-neighbourhood of 𝑣 and 𝑁−𝐺(𝑣) B {𝑢 ∈
𝑉(𝐺) ∣ 𝑢𝑣 ∈ 𝐸(𝐺)} the in-neighbourhood, and we let deg+𝐺(𝑣) B ∣𝑁+𝐺(𝑣)∣ and deg−𝐺(𝑣) B ∣𝑁−𝐺(𝑣)∣
be the out-degree and in-degree. We call nodes of in-degree 0 sources and nodes of out-degree 0
sinks. The depth dp𝐺(𝑣) of node 𝑣 in a dag 𝐺 is the length of the longest path from a source to 𝑣.
The depth dp(𝐺) of a dag 𝐺 is the maximum depth of a sink of 𝐺. In notations such as 𝑁𝐺,deg𝐺
we omit the index 𝐺 if the graph is clear from the context.

When serving as data for graph neural networks, the vertices of graphs usually have real-
valued features, which we call graph signals. An ℓ-dimensional signal on a graph 𝐺 is a function
x ∶ 𝑉(𝐺)→ Rℓ. We denote the class of all ℓ-dimensional signals on 𝐺 by Sℓ(𝐺) and the class of
all pairs (𝐺,x), where x is an ℓ-dimensional signal on 𝐺, by GSℓ. An ℓ-dimensional signal is
Boolean if its range is contained in {0, 1}ℓ. By Sbool

ℓ (𝐺) and GSbool
ℓ we denote the restrictions of

the two classes to Boolean signals.
Isomorphisms between pairs (𝐺,x) ∈GSℓ are required to preserve the signals. We call a

mapping 𝑓 ∶GSℓ →GS𝑚 a signal transformation if for all (𝐺,x) ∈GSℓ we have 𝑓 (𝐺,x) = (𝐺,x′)
for some x′ ∈ S𝑚(𝐺). Such a signal transformation 𝑓 is equivariant if for all isomorphic
(𝐺,x), (𝐻,y) ∈GSℓ, every isomorphism ℎ from (𝐺,x) to (𝐻,y) is also an isomorphism from
𝑓 (𝐺,x) to 𝑓 (𝐻,y).

We can view signals x ∈ Sℓ(𝐺) as matrices in the space R𝑉(𝐺)×ℓ. Flattening them to vectors
of length ∣𝐺∣ℓ, we can apply the usual vector norms to graph signals. In particular, we have
∥x∥∞ = max{ ∥x(𝑣)∥∞ ∣ 𝑣 ∈ 𝑉(𝐺)}. Sometimes, we need to restrict a signal to a subsets of
𝑊 ∈ 𝑉(𝐺). We denote this restriction by x∣𝑊 , which may be viewed as a matrix in R𝑊×ℓ.

2.3 Boolean Circuits

A Boolean circuit ℭ is a dag where all nodes except for the sources are labelled as negation,
disjunction, or conjunction nodes. Negation nodes must have in-degree 1. Sources are input
nodes, and we always denote them by 𝑋1, . . . , 𝑋𝑝. Similarly, sinks are output nodes, and we
denote them by 𝑌1, . . . ,𝑌𝑞. The number 𝑝 of input nodes is the input dimension of ℭ, and the

10 / 93 M. Grohe

number 𝑞 of output nodes the output dimension. Most of the time, we consider circuits that also
have threshold nodes of arbitrary positive in-degree, where a ≥ 𝑡-threshold node evaluates to 1
if at least 𝑡 of its in-neighbours evaluate to 1. To distinguish them from the Boolean circuits over
the standard basis we refer to such circuits as threshold circuits. The depth dp(ℭ) of a circuit ℭ
is the maximum length of a path from an input node to an output node. The order ∣ℭ∣ of ℭ is the
number of nodes, and the size is the number of nodes plus the number of edges.

A circuit ℭ of input dimension 𝑝 and output dimension 𝑞 computes a function 𝑓ℭ ∶ {0, 1}𝑝 →
{0, 1}𝑞 defined in the natural way. To simplify the notation, we simply denote this function by
ℭ, that is, we write ℭ(𝒙) instead of 𝑓ℭ(𝒙) to denote the output of ℭ on input 𝒙 ∈ {0, 1}𝑝.

In complexity theory, we study which languages 𝐿 ⊆ {0, 1}∗ or functions 𝐹 ∶ {0, 1}∗ →
{0, 1}∗ can be computed by families C = (ℭ𝑛)𝑛∈N>0 of circuits, where ℭ𝑛 is a circuit of input
dimension 𝑛. Such a family C computes 𝐹 if for all 𝑛 ∈ N>0, ℭ𝑛 computes the restriction 𝐹𝑛 of 𝐹
to {0, 1}𝑛. We say that C decides 𝐿 if it computes its characteristic function. Non-uniform TC0

is the class of all languages that are decided by a family C = (ℭ𝑛)𝑛∈N>0 of threshold circuits
of bounded depth and polynomial size. There is also a class (dlogtime) uniform TC0 where the
family C itself is required to be easily computable; we refer the reader to [4]. We will never
work directly with uniform circuit families, but instead use a logical characterisation in terms
of first-order logic with counting (Theorem 3.3).

An important fact that we shall use is that standard arithmetic functions on the bit repre-
sentations of natural numbers can be computed by bounded-depth polynomial-size threshold
circuits. We define ADD2𝑛 ∶ {0, 1}2𝑛 → {0, 1}𝑛+1 to be the bitwise addition of two 𝑛-bit numbers
(whose result may be an (𝑛 + 1)-bit number). We let ADD ∶ {0, 1}∗ → {0, 1}∗ be the function
that coincides with ADD2𝑛 on inputs of even size and maps all inputs of odd size to 0. Similarly,
we define SUB2𝑛 ∶ {0, 1}2𝑛 → {0, 1}2𝑛 and SUB ∶ {0, 1}∗ → {0, 1}∗ for the truncated subtraction
𝑚 � 𝑛 B max{0, 𝑚 − 𝑛}, MUL2𝑛 ∶ {0, 1}2𝑛 → {0, 1}2𝑛 and MUL ∶ {0, 1}∗ → {0, 1}∗ for multiplica-
tion. We also introduce a binary integer division function DIV2𝑛 ∶ {0, 1}2𝑛 → {0, 1}𝑛 mapping
𝑛-bit numbers 𝑘, ℓ to ⌊𝑘/ℓ⌋ (with some default value, say 0, if ℓ = 0). The iterated addition
function ITADD𝑛2 ∶ {0, 1}𝑛2 → {0, 1}2𝑛 and the derived ITADD ∶ {0, 1}∗ → {0, 1}∗ add 𝑛 numbers
of 𝑛-bits each. Finally, we need the less-than-or-equal-to predicate LEQ2𝑛 ∶ {0, 1}2𝑛 → {0, 1} and
LEQ ∶ {0, 1}∗ → {0, 1}.

LEMMA 2.4 ([4, 7],[14]). ADD, MUL, DIV, ITADD, and LEQ are computable by dlogtime uniform
families of bounded-depth polynomial-size threshold circuits.

The fact that ADD, MUL, ITADD, and LEQ are computable by families of bounded-depth
polynomial-size threshold circuits goes back to [7] (also see [32]). The arguments given there
are non-uniform, but it is not hard to see that they can be “uniformised” [4]. The situation
for DIV is more complicated. It was known since the mid 1980s that DIV is computable by a

11 / 93 The Descriptive Complexity of Graph Neural Networks

non-uniform (or polynomial-time uniform) family of bounded-depth polynomial-size threshold
circuits, but the uniformity was only established 15 years later in [14, 15].

2.4 Feedforward Neural Networks

It will be convenient for us to formalise feedforward neural networks (a.k.a. multilayer per-
ceptrons, MLPs) in a similar way as Boolean circuits. A more standard “layered” presentation
of FNNs can easily be seen as a special case. A feedforward neural network architecture 𝔄 is a
triple (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉), where (𝑉, 𝐸) is a directed acyclic graph that we call the skeleton of 𝔄 and
for every vertex 𝑣 ∈ 𝑉 , 𝔞𝑣 ∶ R→ R is a continuous function that we call the activation function at
𝑣. A feedforward neural network (FNN) is a tuple 𝔉 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 ,𝒘,𝒃), where (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉)
is an FNN architecture, 𝒘 = (𝑤𝑒)𝑒∈𝐸 ∈ R𝐸 associates a weight 𝑤𝑒 with every edge 𝑒 ∈ 𝐸, and
𝒃 = (𝑏𝑣)𝑣∈𝑉 ∈ R𝑉 associates a bias 𝑏𝑣 with every node 𝑣 ∈ 𝑉 . As for circuits, the sources of the
dag are input nodes, and we denote them by 𝑋1, . . . , 𝑋𝑝. Sinks are output nodes, and we denote
them by 𝑌1, . . . ,𝑌𝑞. We define the order ∣𝔉∣, the depth dp(𝔉), the input dimension, and the output
dimension of 𝔉 in the same way as we did for circuits.

To define the semantics, let 𝔄 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉) be an FNN architecture of input dimension
𝑝 and output dimension 𝑞. For each node 𝑣 ∈ 𝑉 , we define a function 𝑓𝔄,𝑣 ∶ R𝑝 × R𝐸 × R𝑉 → R
inductively as follows. Let 𝒙 = (𝑥1, . . . , 𝑥𝑝) ∈ R𝑝, 𝒘 = (𝑤𝑒)𝑒∈𝐸 ∈ R𝐸, and 𝒃 = (𝑏𝑣)𝑣∈𝑉 ∈ R𝑉 . Then

𝑓𝔄,𝑣(𝒙,𝒘,𝒃) B
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥𝑖 if 𝑣 is the input node 𝑋𝑖 ,

𝔞𝑣 (𝑏𝑣 +∑𝑣′∈𝑁−(𝑣) 𝑓𝔄,𝑣′(𝒙,𝒘,𝒃) ⋅𝑤𝑣′𝑣) if 𝑣 is not an input node.

We define 𝑓𝔄 ∶ R𝑝 ×R𝐸 ×R𝑉 → R𝑞 by

𝑓𝔄(𝒙,𝒘,𝒃) B (𝑓𝔄,𝑌1(𝒙,𝒘,𝒃), . . . , 𝑓𝔄,𝑌𝑞(𝒙,𝒘,𝒃)).

For an FNN 𝔉 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 ,𝒘,𝒃) with architecture 𝔄 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉) we define functions
𝑓𝔉,𝑣 ∶ R𝑝 → R for 𝑣 ∈ 𝑉 and 𝑓𝔉 ∶ R𝑝 → R𝑞 by

𝑓𝔉,𝑣(𝒙) B 𝑓𝔄,𝑣(𝒙,𝒘,𝒃),
𝑓𝔉(𝒙) B 𝑓𝔄(𝒙,𝒘,𝒃).

As for circuits, to simplify the notation we usually denote the functions 𝑓𝔄 and 𝑓𝔉 by 𝔄 and 𝔉,
respectively.

REMARK 2 .5. The reader may have noticed that we never use the activation function 𝔞𝑣 or
the bias 𝑏𝑣 for input nodes 𝑣 = 𝑋𝑖 . We only introduce them for notational convenience. We may
always assume that 𝔞𝑣 ≡ 0 and 𝑏𝑣 = 0 for all input nodes 𝑣. ∎

Typically, the weights 𝑤𝑒 and biases 𝑏𝑒 are learned from data. We are not concerned with
the learning process here, but only with the functions computed by pre-trained models.

12 / 93 M. Grohe

Throughout this article, we assume the activation functions in neural networks to be Lipschitz
continuous. Our theorems can also be proved with weaker assumptions on the activation
functions, but assuming Lipschitz continuity simplifies the proofs, and since all activation
functions typically used in practice are Lipschitz continuous, there is no harm in making this
assumption. Since linear functions are Lipschitz continuous and the composition of Lipschitz
continuous functions is Lipschitz continuous as well, it follows that for all FNNs 𝔉 the function
𝑓𝔉 is Lipschitz continuous. A consequence of the Lipschitz continuity is that the output of an
FNN can be linearly bounded in the input. For later reference, we state these facts as a lemma.

LEMMA 2.6. Let 𝔉 be an FNN of input dimension 𝑝.
1. There is a Lipschitz constant 𝜆 = 𝜆(𝔉) ∈ N>0 for 𝔉 such that for all 𝒙,𝒙′ ∈ R𝑝,

∥𝔉(𝒙) −𝔉(𝒙′)∥∞ ≤ 𝜆 ∥𝒙 − 𝒙′∥∞ .

2. There is a 𝛾 = 𝛾(𝔉) ∈ N>0 such that for all 𝒙 ∈ R𝑝,

∥𝔉(𝒙)∥∞ ≤ 𝛾 ⋅ (∥𝒙∥∞ + 1).

PROOF . Assertion (1) is simply a consequence of the fact that composition of Lipschitz contin-
uous functions is Lipschitz continuous. For (2), note that by (1) we have

∥𝔉(𝒙)∥∞ ≤ 𝜆(𝔉) ∥𝒙∥∞ + ∥𝔉(0)∥∞ .

We let 𝛾 B max{𝜆(𝔉), ∥𝔉(0)∥∞ }. ∎

REMARK 2 .7. The reader may wonder why we take the constants 𝜆, 𝛾 in Lemma 2.6 to be
integers. The reason is that we can easily represent positive integers by closed terms (1+ . . .+1)
in the logic FO+C, and this will be convenient later. ∎

We often make further restrictions on the FNNs we consider. An FNN is piecewise linear if
all its activation functions are piecewise linear. An FNN is rational piecewise linear if all weights
and biases are dyadic rationals and all activation functions are rational piecewise linear. The
relu function and the linearised sigmoid function (see Example 2.1) are typical examples of
rational piecewise linear activation functions. An FNN is rpl approximable if all its activation
functions are rpl approximable. The logistic function and the hyperbolic tangent function (see
Example 2.2) are typical examples of rpl approximable activation functions.

It is a well known fact that FNNs can simulate threshold circuits.

LEMMA 2.8. For every threshold circuitℭ of input dimension 𝑝 there is an FNN𝔉 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 ,
(𝑤𝑒)𝑒∈𝐸, (𝑏𝑣)𝑣∈𝑉) of input dimension 𝑝 such that ∣𝔉∣ = 𝑂(∣ℭ∣), 𝔞𝑣 = relu for all 𝑣, 𝑤𝑒 ∈ {1,−1} for all
𝑒, 𝑏𝑣 ∈ N is bounded by the maximum threshold in ℭ for all 𝑣, and ℭ(𝒙) =𝔉(𝒙) for all 𝒙 ∈ {0, 1}𝑝.

13 / 93 The Descriptive Complexity of Graph Neural Networks

PROOF . We we simulate ℭ gatewise, noting that a Boolean ¬𝑥 negation can be expressed as
relu(1 − 𝑥) and a threshold ∑𝑥𝑖 ≥ 𝑡 can be expressed as relu(∑𝑥𝑖 − 𝑡 + 1) − relu(∑𝑥𝑖 − 𝑡) for
Boolean inputs 𝑥, 𝑥𝑖 . ∎

2.5 Relational Structures

A vocabulary is a finite set 𝜏 of relation symbols. Each relation symbol 𝑅 ∈ 𝜏 has an arity
ar(𝑅) ∈ N. A 𝜏-structure 𝐴 consists of a finite set 𝑉(𝐴), the universe or vertex set, and a relation
𝑅(𝐴) ⊆ 𝑉(𝐴)𝑘 for every relation symbol 𝑅 ∈ 𝜏 of arity ar(𝑅) = 𝑘. For a 𝜏-structure 𝐴 and a subset
𝜏′ ⊆ 𝜏, the restriction of 𝐴 to 𝜏′ is the 𝜏′-structure 𝐴∣𝜏′ with 𝑉(𝐴∣𝜏′) B 𝑉(𝐴) and 𝑅(𝐴∣𝜏′) B 𝑅(𝐴)
for all 𝑅 ∈ 𝜏′. The order of a structure 𝐴 is ∣𝐴∣ B ∣𝑉(𝐴)∣.

For example, a graph may be viewed as an {𝐸}-structure 𝐺, where 𝐸 is a binary symbol,
such that 𝐸(𝐺) is symmetric and irreflexive. A pair (𝐺,b) ∈GSbool

ℓ , that is, a graph with a Boolean
signal b ∶ 𝑉(𝐺)→ {0, 1}ℓ, may be viewed as an {𝐸, 𝑃1, . . . , 𝑃ℓ}-structure 𝐺b with 𝑉(𝐺b) = 𝑉(𝐺),
𝐸(𝐺b) = 𝐸(𝐺), and 𝑃𝑖(𝐺b) = {𝑣 ∈ 𝑉(𝐺) ∣ b(𝑣)𝑖 = 1}. We may think of the 𝑃𝑖 as labels and hence
refer to {𝐸, 𝑃1, . . . , 𝑃ℓ}-structures whose {𝐸}-restrictions are undirected graphs as ℓ-labeled
graphs. In the following, we do not distinguish between graphs with Boolean signals and the
corresponding labeled graphs.

A 𝑘-ary query on a class C of structures is an equivariant mapping Q that associates with
each structure 𝐴 ∈ C a mapping Q(𝐴) ∶ 𝑉(𝐴)𝑘 → {0, 1}. In this article, we are mainly interested
in 0-ary (or Boolean) and unary queries on (labelled) graphs. We observe that a Boolean query
on ℓ-labelled graphs is an invariant mapping from GSbool

ℓ to {0, 1} and a unary query is an
equivariant signal transformations from GSbool

ℓ to GSbool
1 .

3. First-Order Logic with Counting

Throughout this section, we fix a vocabulary 𝜏. We introduce two types of variables, vertex
variables ranging over the vertex set of a structure, and number variables ranging over N. We
typically denote vertex variables by 𝑥 and variants such as 𝑥′, 𝑥1, number variables by 𝑦 and
variants, and we use 𝑧 and variants to refer to either vertex or number variables.

We define the sets of FO+C-formulas and FO+C-terms of vocabulary 𝜏 inductively as
follows:

All number variables and 0, 1 are FO+C-terms.
For all FO+C-terms 𝜃, 𝜃′ the expressions 𝜃 + 𝜃′ and 𝜃 ⋅ 𝜃′ are FO+C-terms.
For all FO+C-terms 𝜃, 𝜃′ the expression 𝜃 ≤ 𝜃′ is an FO+C-formula.
For all vertex variables 𝑥1, . . . , 𝑥𝑘 and all 𝑘-ary𝑅 ∈ 𝜏 the expressions 𝑥1 = 𝑥2 and𝑅(𝑥1, . . . , 𝑥𝑘)
are FO+C-formulas.
For all FO+C-formulas 𝜑,𝜓 the expressions ¬𝜑 and 𝜑 ∧ 𝜓 are FO+C-formulas.

14 / 93 M. Grohe

For all FO+C-formulas 𝜑, all 𝑘, ℓ ∈ N with 𝑘 + ℓ ≥ 1, all vertex variables 𝑥1, . . . , 𝑥𝑘, all
number variables 𝑦1, . . . , 𝑦ℓ, and all FO+C-terms 𝜃1, . . . , 𝜃ℓ,

#(𝑥1, . . . , 𝑥𝑘, 𝑦1 < 𝜃1, . . . , 𝑦ℓ < 𝜃ℓ).𝜑

is an FO+C-term (a counting term).

A 𝜏-interpretation is a pair (𝐴,a), where 𝐴 is a 𝜏-structure and a is an assignment over 𝐴,
that is, a mapping from the set of all variables to 𝑉(𝐴) ∪ N such that a(𝑥) ∈ 𝑉(𝐴) for every
vertex variable 𝑥 and a(𝑦) ∈ N for every number variable 𝑦. For a tuple 𝒛 = (𝑧1, . . . , 𝑧𝑘) of
distinct variables, and a tuple 𝒄 = (𝑐1, . . . , 𝑐𝑘) ∈ (𝑉(𝐴) ∪N)𝑘 such that 𝑐𝑖 ∈ 𝑉(𝐴) if 𝑧𝑖 is a vertex
variable and 𝑐𝑖 ∈ N if 𝑧𝑖 is a number variable, we let a 𝒄

𝒛 be the assignment with a 𝒄
𝒛(𝑧𝑖) = 𝑐𝑖

and a 𝒄
𝒛(𝑧) = a(𝑧) for all 𝑧 /∈ {𝑧1, . . . , 𝑧𝑘}. We inductively define a value ⟦𝜃⟧(𝐴,a) ∈ N for each

FO+C-term 𝜃 and a Boolean value ⟦𝜑⟧(𝐴,a) ∈ {0, 1} for each FO+C-formula 𝜑.
We let ⟦𝑦⟧(𝐴,a) B a(𝑦) and ⟦0⟧(𝐴,a) B 0, ⟦1⟧(𝐴,a) B 1.
We let ⟦𝜃 + 𝜃′⟧(𝐴,a) B ⟦𝜃⟧(𝐴,a) + ⟦𝜃′⟧(𝐴,a) and ⟦𝜃 ⋅ 𝜃′⟧(𝐴,a) B ⟦𝜃⟧(𝐴,a) ⋅ ⟦𝜃′⟧(𝐴,a).
We let ⟦𝜃 ≤ 𝜃′⟧(𝐴,a) = 1 if and only if ⟦𝜃⟧(𝐴,a) ≤ ⟦𝜃′⟧(𝐴,a).
We let ⟦𝑥1 = 𝑥2⟧(𝐴,a) = 1 if and only if a(𝑥1) = a(𝑥2) and ⟦𝑅(𝑥1, . . . , 𝑥𝑘)⟧(𝐴,a) = 1 if and
only if (a(𝑥1), . . . ,a(𝑥𝑘)) ∈ 𝑅(𝐴).
We let ⟦¬𝜑⟧(𝐴,𝑎) B 1 − ⟦𝜑⟧(𝐴,𝑎) and ⟦𝜑 ∧ 𝜓⟧(𝐴,𝑎) B ⟦𝜑⟧(𝐴,𝑎) ⋅ ⟦𝜑⟧(𝐴,𝑎).
We let

⟦#(𝑥1, . . . , 𝑥𝑘, 𝑦1 < 𝜃1, . . . , 𝑦ℓ < 𝜃ℓ).𝜑⟧(𝐴,a)

be the number of tuples (𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏ℓ) ∈ 𝑉(𝐴)𝑘 ×Nℓ such that

𝑏𝑖 < ⟦𝜃𝑖⟧
(𝐴,a (𝑎1,...,𝑎𝑘 ,𝑏1,...,𝑏𝑖−1)

(𝑥1,...,𝑥𝑘 , 𝑦1,..., 𝑦𝑖−1)) for all 𝑖 ∈ [ℓ];
⟦𝜑⟧(𝐴,a

(𝑎1,...,𝑎𝑘 ,𝑏1,...,𝑏ℓ)
(𝑥1,...,𝑥𝑘 , 𝑦1,..., 𝑦ℓ)) = 1.

Note that we allow adaptive bounds: the bound 𝜃𝑖 for the variable 𝑦𝑖 may depend on the
values of all previous variables 𝑥 𝑗 for 𝑗 ∈ [𝑘] and 𝑦 𝑗 for 𝑗 < 𝑖. While it can be shown that
this does not increase the expressive power of the plain logic,2 the adaptive bounds do
add power to an extension of the logic with function variables (see Section 3.4).

For FO+C-formulas 𝜑, instead of ⟦𝜑⟧(𝐴,a) = 1 we also write (𝐴,a) ⊧ 𝜑.
An FO+C-expression is either an FO+C-term or an FO+C-formula. The set free(𝜉) of

free variables of an FO+C-expression 𝜉 is defined inductively in the obvious way, where for a
counting term we let

free (#(𝑥1, . . . , 𝑥𝑘, 𝑦1 < 𝜃1, . . . , 𝑦ℓ < 𝜃ℓ).𝜑) B

(free(𝜑) ∖ {𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦ℓ}) ∪
ℓ

⋃
𝑖=1

free (𝜃𝑖 ∖ {𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑖−1}).

2 This is a consequence of Lemma 3.2, by which we can replace all bounds 𝜃 in counting terms by ord𝑘 for a suitable 𝑘,
where ord B #𝑥.𝑥 = 𝑥 is a term defining the order of the input structure.

15 / 93 The Descriptive Complexity of Graph Neural Networks

A closed expression is an expression without free variables. Depending on the type of expression,
we also speak of closed terms and closed formulas.

For an expression 𝜉, the notation 𝜉(𝑧1, . . . , 𝑧𝑘) stipulates that free(𝜉) ⊆ {𝑧1, . . . , 𝑧𝑘}. It is
easy to see that the value ⟦𝜉⟧(𝐴,a) only depends on the interpretations 𝑐𝑖 B a(𝑧𝑖) of the free
variables. Thus we may avoid explicit reference to the assignment a and write ⟦𝜉⟧𝐴 (𝑐1, . . . , 𝑐𝑘)
instead of ⟦𝜉⟧(𝐴,a). If 𝜉 is a closed expression, we just write ⟦𝜉⟧𝐴. For formulas 𝜑(𝑧1, . . . , 𝑧𝑘), we
also write 𝐴 ⊧ 𝜑(𝑐1, . . . , 𝑐𝑘) instead of ⟦𝜑⟧𝐴 (𝑐1, . . . , 𝑐𝑘) = 1, and for closed formulas 𝜑 we write
𝐴 ⊧ 𝜑.

Observe that every FO+C-formula 𝜑(𝑥1, . . . , 𝑥𝑘) of vocabulary 𝜏 defines a 𝑘-ary query
on the class of 𝜏-structures, mapping a structure 𝐴 to the set of all (𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘 such that
𝐴 ⊧ 𝜑(𝑎1, . . . , 𝑎𝑘).

We defined the logic FO+C with a minimal syntax, avoiding unnecessary operators. How-
ever, we can use other standard arithmetical and logical operators as abbreviations:

For 𝑛 ≥ 2, we can use 𝑛 as an abbreviation for the corresponding sum of 1s.
We use ord as an abbreviation for the term #𝑥.𝑥 = 𝑥. Then ⟦ord⟧𝐴 = ∣𝐴∣ for all structures
𝐴, that is, ord defines the order of a structure.
We can express the relations =,≥,<,> on N using Boolean combinations and ≤.
We can express Boolean connectives like ∨ or→ using ¬ and ∧.
For vertex variables 𝑥, we can express existential quantification ∃𝑥.𝜑 as 1 ≤ #𝑥.𝜑. Then
we can express universal quantification ∀𝑥.𝜑 using ∃𝑥 and ¬ in the usual way.
In particular, this means that we can view first-order logic FO as a fragment of FO+C.
For number variables 𝑦, we can similarly express bounded quantification ∃𝑦 < 𝜃.𝜑 and
∀𝑦 < 𝜃.𝜑.
In counting terms, we do not have to use strict inequalities to bound number variables.
For example, we write #(𝑥, 𝑦 ≤ 𝜃).𝜑 to abbreviate #(𝑥, 𝑦 < 𝜃 + 1).𝜑.
We can express truncated subtraction �, minimum and maximum of two numbers, and
integer division:

𝑦 � 𝑦′ abbreviates #(𝑦′′ < 𝑦).(𝑦′ ≤ 𝑦′′),
min(𝑦, 𝑦′) abbreviates #(𝑦′′ < 𝑦). 𝑦′′ < 𝑦′,

max(𝑦, 𝑦′) abbreviates #(𝑦′′ < 𝑦 + 𝑦′).(𝑦′′ < 𝑦 ∨ 𝑦′′ < 𝑦′),
div(𝑦, 𝑦′) abbreviates #(𝑦′′ ≤ 𝑦).(0 < 𝑦′ ∧ 0 < 𝑦′′ ∧ 𝑦′ ⋅ 𝑦′′ ≤ 𝑦).

Note that for all structures 𝐴 and 𝑏, 𝑏′ ∈ N we have

⟦div⟧𝐴 (𝑏, 𝑏′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌊ 𝑏𝑏′⌋ if 𝑏′ ≠ 0,

0 if 𝑏′ = 0.

16 / 93 M. Grohe

REMARK 3.1. There are quite a few different versions of first-order logic with counting in
the literature. The logics that only involve counting quantifiers ∃≥𝑛 for constant 𝑛 are strictly
weaker than our FO+C, and so are logics with modular counting quantifiers.

Counting logics with quantification over numbers have first been suggested, quite infor-
mally, by Immerman [17]. The 2-sorted framework was later formalised by Grädel and Otto [10].
Essentially, our FO+C corresponds to Kuske and Schweikardt’s [20] FOCN({P≤}), with one
important difference: we allow counting terms also over number variables. This makes no
difference over ordered structures, but it makes the logic stronger over unordered structures
(at least we conjecture that it does; this is something that with current techniques one can
probably only prove modulo some complexity theoretic assumptions). Other differences, such
as that Kuske and Schweikardt use the integers for the numerical part, whereas we use the
non-negative integers, are inessential. Importantly, the two logics and other first-order logics
with counting, such as first-order logic with a majority quantifier, are equivalent over ordered
arithmetic structures and thus all capture the complexity class uniformTC0, as will be discussed
in the next section. ∎

A simple lemma that we will frequently use states that all FO+C-terms are polynomially
bounded. At this point, the reader may safely ignore the reference to function variables in the
assertion of the lemma; we will only introduce them in Section 3.3. We just mention them here
to avoid confusion in later applications of the lemma.

LEMMA 3.2. For every FO+C-term 𝜃(𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘) without function variables there is
a polynomial 𝜋(𝑋,𝑌) such that for all structures 𝐴, all 𝑎1, . . . , 𝑎𝑘 ∈ 𝑉(𝐴), and all 𝑏1, . . . , 𝑏ℓ ∈ N it
holds that

⟦𝜃⟧𝐴 (𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏ℓ) ≤ 𝜋(∣𝐴∣,max{𝑏𝑖 ∣ 𝑖 ∈ [ℓ]}).

PROOF . A straightforward induction on 𝜃. ∎

3.1 Descriptive Complexity

We review some results relating the logic FO+C to the complexity class TC0. In the descriptive
complexity theory of “small” complexity classes (say, within PTIME), we need to expand struc-
tures by a linear order of the vertex set (and possibly additional arithmetical relations). We
introduce a distinguished binary relation symbol ⩽, which we assume to be not contained in
the usual vocabularies 𝜏. Note that ⩽ is distinct from ≤, which we use for the standard linear
order on N. We denote the interpretation of ⩽ in a structure 𝐴 by ⩽𝐴 instead of ⩽(𝐴), and we
use the symbol in infix notation.

An ordered 𝜏-structure is a 𝜏 ∪ {⩽}-structure 𝐴 where ⩽𝐴 is a linear order of the vertex
set 𝑉(𝐴). It will be convenient to have the following notation for ordered structures 𝐴. For
0 ≤ 𝑖 < 𝑛 B ∣𝐴∣, we let ⟨𝑖⟩𝐴 be the (𝑖 + 1)st element of the linear order ⩽𝐴, that is, we have

17 / 93 The Descriptive Complexity of Graph Neural Networks

𝑉(𝐴) = {⟨𝑖⟩𝐴 ∣ 0 ≤ 𝑖 < 𝑛}with ⟨0⟩𝐴 ⩽𝐴 ⟨1⟩𝐴 ⩽𝐴 ⋯ ⩽𝐴 ⟨𝑛 − 1⟩𝐴. We omit the subscript 𝐴 if 𝐴 is clear
from the context. The reason that ordered structures are important in descriptive complexity is
that they have simple canonical representations as bitstrings. To represent ordered graphs, we
can take the adjacency matrix with rows and columns arranged according to the given order
and then concatenate the rows of the matrix to obtain a string representation. This can easily
be generalised to arbitrary structures (see, for example, [16]). Let 𝑠(𝐴) ∈ {0, 1}∗ denote the
string representing an ordered structure 𝐴. Then for every class C of ordered 𝜏-structures, we
let 𝐿(C) B {𝑠(𝐴) ∣ 𝐴 ∈ C}.

THEOREM 3.3 (Barrington, Immerman, and Straubing [4]). Let C be a class of ordered
𝜏-structures. Then 𝐿(C) is in uniform TC0 if and only if there is a closed FO+C-formula 𝜓 of
vocabulary 𝜏 ∪ {⩽} such that for all ordered 𝜏-structures 𝐴 it holds that 𝐴 ∈ C ⇐⇒ 𝐴 ⊧ 𝜓.

We need to rephrase this theorem for queries over unordered structures. For a class C
of 𝜏-structures, we let C⩽ be the class of all ordered 𝜏 structures 𝐴 with 𝐴∣𝜏 ∈ C, and we let
𝐿⩽(C) B 𝐿(C⩽). Since Boolean queries can be identified with classes of structures, this gives
an encoding of Boolean queries by languages. Extending this to queries of higher arity for a
𝑘-ary query Q on a class C of 𝜏-structures, we let

𝐿⩽(Q) B {𝑠(𝐴)# bin(𝑖1)# . . . # bin(𝑖𝑘) ∣ 𝐴 ∈ C⩽,Q(𝐴∣𝜏)(⟨𝑖1⟩ , . . . , ⟨𝑖𝑘⟩) = 1}

We say that a formula 𝜑(𝑥1, . . . , 𝑥𝑘) of vocabulary 𝜏 ∪ {⩽} is order invariant if for all ordered 𝜏-
structures 𝐴, 𝐴′with 𝐴∣𝜏 = 𝐴′∣𝜏 and all 𝑎1, . . . , 𝑎𝑘 ∈ 𝑉(𝐴) it holds that 𝐴 ⊧ 𝜑(𝑎1, . . . , 𝑎𝑘) ⇐⇒ 𝐴′ ⊧
𝜑(𝑎1, . . . , 𝑎𝑘). We say that a 𝑘-ary queryQ on a class of 𝜏-structures is definable in order-invariant
FO+C if there is an order invariant FO+C-formula 𝜑(𝑥1, . . . , 𝑥𝑘) of vocabulary 𝜏∪{⩽} such that
for all 𝐴 ∈ C⩽ and all 𝑎1, . . . , 𝑎𝑘 ∈ 𝑉(𝐴) it holds that 𝐴 ⊧ 𝜑(𝑎1, . . . , 𝑎𝑘) ⇐⇒ Q(𝐴∣𝜏)(𝑎1, . . . , 𝑎𝑘) = 1.

COROLLARY 3.4. Let Q be a query. Then 𝐿⩽(Q) is in uniform TC0 if and only if Q is definable
in order-invariant FO+C.

3.2 Non-Uniformity and Built-in Relations

To capture non-uniformity in descriptive complexity, we add built-in relations. The classical way
of doing this is to only consider structures with universe {0, . . . , 𝑛− 1}, for some 𝑛 ∈ N, and then
add relation symbols 𝑆 to the language that have a fixed interpretation 𝑆(𝑛) ⊆ {0, . . . , 𝑛 − 1}𝑘 in
all structures with universe {0, . . . , 𝑛 − 1}. Slightly more abstractly, we can consider ordered
structures and transfer the definition of 𝑆(𝑛) to all linearly ordered structures of order 𝑛 via the
natural mapping 𝑖 ↦ ⟨𝑖⟩.

We take a different approach to built-in relations here, which allows us to also use them
over structures that are not necessarily ordered. A built-in numerical relation is simply a relation
overN, that is, a subset 𝑁 ⊆ N𝑘 for some 𝑘 ≥ 0, the arity of 𝑁 . We use the same letter 𝑁 to denote

18 / 93 M. Grohe

both the relation 𝑁 ⊆ N𝑘 and a 𝑘-ary relation symbol representing it in the logic. In other words,
the relation symbol 𝑁 will be interpreted by the same relation 𝑁 ⊆ N𝑘 in all structures. We
extend the logic FO+C by new atomic formulas 𝑁(𝑦1, . . . , 𝑦𝑘) for all 𝑘-ary numerical relations
𝑁 and number variables 𝑦1, . . . , 𝑦𝑘, with the obvious semantics. By FO+Cnu we denote the
extension of FO+C to formulas using arbitrary built-in numerical relations.3 We will later use
the same notation Fnu for fragments F of FO+C to denote the extension of F to formulas using
built-in numerical relations.

Then it easily follows from Theorem 3.3 that FO+Cnu captures (non-uniform) TC0. (Or it
can be proved directly, in fact, it is much easier to prove than Theorem 3.3.)

COROLLARY 3.5. Let C be a class of ordered 𝜏-structures. Then 𝐿(C) is in TC0 if and only if
there is a closed FO+Cnu-formula 𝜓 of vocabulary 𝜏 ∪ {⩽} such that for all ordered 𝜏-structures 𝐴
it holds that 𝐴 ∈ C ⇐⇒ 𝐴 ⊧ 𝜓.

We also state the version of this result for queries.

COROLLARY 3.6. Let Q be a query. Then 𝐿⩽(Q) is in TC0 if and only if Q is definable in order-
invariant FO+Cnu.

3.3 Types and Second-Order Variables

The counting extension of first-order logic refers to a 2-sorted extension of relational structures
and adheres to a strict type discipline. For the extension we are going to introduce next, we
need to make this formal. We assign a type to each variable: a vertex variable has type v, and
number variable has type n. A 𝑘-tuple (𝑧1, . . . , 𝑧𝑘) of variables has a type (𝑡1, . . . , 𝑡𝑘) ∈ {v, n}𝑘,
where 𝑡𝑖 is the type of 𝑧𝑖 . We denote the type of a tuple 𝒛 by tp(𝒛). For a structure 𝐴 and a type
𝒕 = (𝑡1, . . . , 𝑡𝑘) ∈ {v, n}𝑘 we let 𝐴𝒕 be the set of all (𝑐1, . . . , 𝑐𝑘) ∈ (𝑉(𝐴)∪N)𝑘 such that 𝑐𝑖 ∈ 𝑉(𝐴) if
𝑡𝑖 = v and 𝑐𝑖 ∈ N if 𝑡𝑖 = n.

Now we extend our logic by relation variables (denoted by uppercase letters 𝑋,𝑌) and
function variables (denoted by 𝑈,𝑉). Each relation variable 𝑋 has a type tp(𝑋) of the form {𝒕},
and each function variable𝑈 has a type tp(𝑈) of the form 𝒕 → n, for some 𝒕 ∈ {v, n}𝑘. We extend
the logic FO+C by allowing additional atomic formulas 𝑋(𝜉1, . . . , 𝜉𝑘) and terms 𝑈(𝜉, . . . , 𝜉𝑘),
where 𝑋 is a relation variable of type {(𝑡1, . . . , 𝑡𝑘)} for some tuple (𝑡1, . . . , 𝑡𝑘) ∈ {v, n}𝑘, 𝑈 a
function variable of type (𝑡1, . . . , 𝑡𝑘)→ n, and for all 𝑖 ∈ [𝑘], if 𝑡𝑖 = v then 𝜉𝑖 is a vertex variable
and if 𝑡𝑖 = n then 𝜉𝑖 is a term.

To define the semantics, let 𝐴 be a structure and a an assignment over 𝐴. Then a maps
each relation variable 𝑋 of type {𝒕} to a subset a(𝑋) ⊆ 𝐴𝒕 and each function variable 𝑈 of type
𝒕 → n to a function a(𝑈) ∶ 𝐴𝒕 → N. Moreover, for a tuple 𝝃 = (𝜉1, . . . , 𝜉𝑘) of vertex variables and

3 Think of the index ’nu’ as an abbreviation of either ’numerical’ or ’non-uniform’.

19 / 93 The Descriptive Complexity of Graph Neural Networks

terms we let ⟦𝝃⟧(𝐴,a) = (𝑐1, . . . , 𝑐𝑘)where 𝑐𝑖 =a(𝜉𝑖) if 𝜉𝑖 is a vertex variables and 𝑐𝑖 = ⟦𝜉𝑖⟧(𝐴,a)

if 𝑐𝑖 is a term. We let

⟦𝑋(𝝃)⟧(𝐴,a) B
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if ⟦𝝃⟧(𝐴,a) ∈a(𝑋),

0 otherwise,

⟦𝑈(𝝃)⟧(𝐴,a) B a(𝑈)(⟦𝝃⟧(𝐴,a)).

Observe that a function variable 𝑈 of type ∅ → n is essentially just a number variable, if we
identify a 0-ary function with the value it takes on the empty tuple ∅. It is still useful sometimes
to use 0-ary function variables. We usually write a(𝑈) instead of a(𝑈)(∅) to denote their
value. We call a relation variable purely numerical if it is of type {n𝑘}, for some 𝑘 ≥ 0. Similarly,
we call a function variable purely numerical if it is of type n𝑘 → n.

To distinguish them from the “second-order” relation and function variables, we refer to
our original “first-order” vertex variables and number variables as individual variables. When
we list variables of an expression in parentheses, as in 𝜉(𝒛), we only list the free individual
variables, but not the free relation or function variables. Thus 𝜉(𝒛) stipulates that all free
individual variables of 𝜉 occur in 𝒛. However, 𝜉 may have free relation variables and free
function variables that are not listed in 𝒛. For a structure 𝐴, an assignment a, and a tuple
𝒄 ∈ 𝐴tp(𝒛), we write ⟦𝜉⟧(𝐴,a) (𝒄) instead of ⟦𝜉⟧(𝐴,a

𝒄
𝒛). If 𝜉 is a formula, we may also write

(𝐴,a) ⊧ 𝜉(𝒄).
The role of relation variables and function variables is twofold. First, we will use them

to specify ”inputs” for formulas, in particular for formulas defining numerical functions. (In
the next sections we will see how to use relation and function variables to specify natural and
rational numbers.) And second, we may just use relation and function variables as placeholders
for formulas and terms that we may later substitute for them.

Note that Lemma 3.2 no longer holds if the term 𝜃 contains function variables, because
these variables may be interpreted by functions of super-polynomial growth.

Let us close this section by emphasising that we do not allow quantification over relation or
function variables. Thus, even in the presence of such variables, our logic remains “first-order”.

3.4 Arithmetic in FO+C

In this section, we will show that arithmetic on bitwise representations of integers is expressible
in FO+C. Almost none of the formulas we shall define make any reference to a structure
𝐴; they receive their input in the form of purely numerical relation variables and function
variables and only refer to the numerical part, which is the same for all structures. We call an
FO+C-expression 𝜉 arithmetical if it contains no vertex variables. It is worth mentioning that
arithmetical FO+C-formulas without relation and function variables are formulas of bounded
arithmetic (see, for example, [13]) augmented by bounded counting terms.

20 / 93 M. Grohe

Note that if 𝜉 is an arithmetical expression, then for all structures 𝐴, 𝐴′ and all assignments
a,a′ over 𝐴, 𝐴′, respectively, such that a(𝑦) =a′(𝑦) for all number variables 𝑦 and a(𝑍) =
a′(𝑍) for all purely numerical relation or function variables 𝑍, we have ⟦𝜉⟧(𝐴,a) = ⟦𝜉⟧(𝐴

′,a′).
Thus there is no need to mention 𝐴 at all; we may write ⟦𝜉⟧a instead of ⟦𝜉⟧(𝐴,a). In fact, we
can even use the notation ⟦𝜉⟧a if a is only a partial assignment that assigns values only to
number variables and purely numerical relation and function variables. We call such a partial
assignment a numerical assignment. As usual, if 𝜉 = 𝜉(𝑦1, . . . , 𝑦𝑘) has all free individual variables

among 𝑦1, . . . , 𝑦𝑘, for 𝑏1, . . . , 𝑏𝑘 ∈ N we may write ⟦𝜉⟧a (𝑏1, . . . , 𝑏𝑘) instead of ⟦𝜉⟧a
𝑏1 ...𝑏𝑘
𝑦1 ..., 𝑦𝑘 . If, in

addition, 𝜉 has no free relation or function variables, we may just write ⟦𝜉⟧ (𝑏1, . . . , 𝑏𝑘).
The following well-known lemma is the foundation for expressing bitwise arithmetic in

FO+C. There is also a (significantly deeper) version of the lemma for first-order logic without
counting, which goes back to Bennett [5] (see [16, Section 1.2.1] for a proof).4

LEMMA 3.7. There is an arithmetical FO+C-formula bit(𝑦, 𝑦′) such that for all 𝑖, 𝑛 ∈ N,

⟦bit⟧ (𝑖, 𝑛) = Bit(𝑖, 𝑛).

PROOF . Clearly, there is a formula pow2(𝑦) expressing that 𝑦 is a power of 2; it simply states
that all divisors of 𝑦 are divisible by 2. Then the formula

exp2(𝑦, 𝑦′) B pow2(𝑦′) ∧ 𝑦 = #𝑦′′ < 𝑦′.pow2(𝑦′′)

expresses that 𝑦′ = 2𝑦.
To express the bit predicate, we define the auxiliary formula

pow2bit(𝑦, 𝑦′) B pow2(𝑦) ∧ ∃𝑦1 < 𝑦′.∃𝑦2 < 𝑦. 𝑦′ = 2𝑦1 𝑦 + 𝑦 + 𝑦2,

expressing that 𝑦 is 2𝑖 for some 𝑖 and the 𝑖th bit of 𝑦′ is 1. We let

bit(𝑦, 𝑦′) B ∃𝑦′′ < 𝑦′.(exp2(𝑦, 𝑦′′) ∧ pow2bit(𝑦′′, 𝑦′)). ∎

COROLLARY 3.8. There is an arithmetical FO+C-term len(𝑦) such that for all 𝑛 ∈ N,

⟦len⟧ (𝑛) = ∣bin(𝑛)∣.

PROOF . Observe that for 𝑛 ≥ 1,

∣bin(𝑛)∣ = 1 +max{𝑖 ∣ Bit(𝑖, 𝑛) = 1}.

Noting that ∣bin(𝑛)∣ ≤ 𝑛 for all 𝑛 ≥ 1, the following term defines the length for all 𝑛 ≥ 1:

1 + #𝑧 < 𝑦.∃𝑦′ ≤ 𝑦.(𝑧 < 𝑦′ ∧ bit(𝑦′, 𝑦) ∧ ∀𝑦′′ ≤ 𝑦(𝑦′ < 𝑦′′ → ¬bit(𝑦′′, 𝑦))).

4 I find it worthwhile to give the simple proof of the lemma for FO+C; I am not aware that this can be found in the
literature.

21 / 93 The Descriptive Complexity of Graph Neural Networks

Note that that this term also gives us the correct result for 𝑛 = 0, simply because the formula
∃𝑦′ ≤ 𝑦.(𝑧 < 𝑦′ ∧ . . .) is false for all 𝑧 if 𝑦 = 0. ∎

In the proof of the previous lemma we used a trick that is worthwhile being made explicit.
Suppose we have a formula 𝜑(𝑦, 𝒛) that defines a function 𝒛 ↦ 𝑦, that is, for all structures 𝐴

and 𝒄 ∈ 𝐴tp(𝒛) there is a unique 𝑏 = 𝑓𝐴(𝒄) ∈ N such that 𝐴 ⊧ 𝜑(𝑏, 𝒄). Often, we want a term
expressing the same function. In general, there is no such term, because the function may grow
too fast. (Recall that all terms are polynomially bounded by Lemma 3.2, but the function 𝑓𝐴

may grow exponentially fast.) Suppose, however, that we have a term 𝜃(𝒛) that yields an upper
bound for this function, that is, 𝑓𝐴(𝒄) < ⟦𝜃⟧𝐴 (𝒄) for all 𝐴 and 𝒄 ∈ 𝐴tp(𝒛). Then we obtain a term
𝜂(𝒛) such that ⟦𝜂⟧𝐴 (𝒄) = 𝑓𝐴(𝒄) as follows: we let

𝜂(𝒛) B #𝑦′ < 𝜃(𝒛).∃𝑦 < 𝜃(𝒛).(𝑦′ < 𝑦 ∧ 𝜑(𝑦, 𝒛)).

It is our goal for the rest of this section to express bitwise arithmetic in FO+C. We will
use relation variables to encode binary representations of natural numbers. Let 𝑌 be a relation
variable of type n, and let a be a numerical interpretation. We think of 𝑌 as representing the
number whose 𝑖th bit is 1 if and only if 𝑖 ∈a(𝑌). But as a(𝑌)may be infinite, this representation
is not yet well defined. We also need to specify a bound on the number of bits we consider,
which we can specify by a function variable𝑈 of type ∅→ n. Then the pair (𝑌,𝑈) represents
the number

⟪𝑌,𝑈⟫a B ∑
𝑖∈a(𝑌),𝑖<a(𝑈)

2𝑖 . (1)

We can also specify numbers by formulas and terms. We let �̂� be a distinguished number
variable (that we fix for the rest of this article). Let 𝜒 be a formula and 𝜃 a term. We usually
assume that �̂� occurs freely in 𝜒 and does not occur in 𝜃, but neither is necessary. Let 𝐴 be a
structure and a an assignment over 𝐴. Recall that a 𝑖

�̂� denotes the assignment that maps �̂� to 𝑖

and coincides with a on all other variables. We let

⟪𝜒, 𝜃⟫(𝐴,a) B ∑
(𝐴,a 𝑖

�̂�)⊧𝜒,
𝑖<⟦𝜃⟧(𝐴,a)

2𝑖 . (2)

If 𝜒 and 𝜃 are arithmetical, we may write ⟪𝜒, 𝜃⟫a instead of ⟪𝜒, 𝜃⟫(𝐴,a).
The following Lemmas 3.9, 3.10, and 3.14 follow easily from the facts that the arithmetic

operations are in uniform TC0 (Lemma 2.4) and FO+C captures uniform TC0 (Theorem 3.3).
However, we find it helpful to sketch at least some of the proofs, in particular the proof of
Lemma 3.10 for iterated addition. Researchers in the circuit-complexity community are well-
aware of the fact that iterated addition is in uniform TC0, and at least implicitly this is shown
in [4]. Nevertheless, I think it is worthwhile to give a proof of this lemma. Our proof is purely
logical, circumventing circuit complexity altogether, so it may be of independent interest.

22 / 93 M. Grohe

LEMMA 3.9. Let 𝑌1,𝑌2 be relation variables of type {n}, and let𝑈1,𝑈2 be function variables of
type ∅→ n.

1. There are arithmetical FO+C-formulas add, sub and arithmetical FO+C-terms bd-add,
bd-sub such that for all structures 𝐴 and assignments a over 𝐴,

⟪add,bd-add⟫a = ⟪𝑌1,𝑈1⟫a + ⟪𝑌2,𝑈2⟫a ,

⟪sub,bd-sub⟫a = ⟪𝑌1,𝑈1⟫a � ⟪𝑌2,𝑈2⟫a .

2. There is an arithmetical FO+C-formula leq such that for all structures 𝐴 and assignments
a over 𝐴,

⟦leq⟧a = 1 ⇐⇒ ⟪𝑌1,𝑈1⟫a ≤ ⟪𝑌2,𝑈2⟫a .

PROOF . The key observation is that we can easily define the carry bits. Suppose that we want
to add numbers 𝑚, 𝑛. Then for 𝑖 ≥ 0, the 𝑖th carry is 1 if any only if there is a 𝑗 ≤ 𝑖 such that
Bit(𝑗, 𝑚) = Bit(𝑗, 𝑛) = 1, and for 𝑗 < 𝑘 ≤ 𝑖, either Bit(𝑘,𝑚) = 1 or Bit(𝑘, 𝑛) = 1.

We can use a similar observation for subtraction.
Less-than-or-equal-to can easily be expressed directly. ∎

To define families of numbers, we use relation and function variables of higher arity,
treating the additional entries as parameters. For a type 𝒕 ∈ {v, n}𝑘, let𝑌 be a relation variable of
type {n𝒕}, and let𝑈 be a number variable of type 𝒕 → n. Then for every structure 𝐴, assignment
a, and tuple 𝒄 ∈ 𝐴𝒕 we let

⟪𝑌,𝑈⟫(𝐴,a) (𝒄) = ∑
(𝑗,𝒄)∈a(𝑌),
𝑗<a(𝑈)(𝒄)

2 𝑗 . (3)

We can slightly extend this definition to a setting where 𝑈 is a function variable of type 𝒕′ → n

for some subtuple 𝒕′ of 𝒕. For example, in the following lemma we have 𝒕 = n and 𝒕′ = ∅.

LEMMA 3.10. Let𝑌 be a relation variable of type {(n, n)}, and let𝑈 be a function variable of type
∅ → n. Then there is an arithmetical FO+C-formula s-itadd and an arithmetical FO+C-term
bd-s-itadd5 such that for all numerical assignments a we have

⟪s-itadd,bd-s-itadd⟫a = ∑
𝑖<a(𝑈)

⟪𝑌,𝑈⟫a (𝑖).

The proof of this lemma requires some preparation. Our first step will be to fix an encoding
of sequences by natural numbers. We first encode a sequence 𝒊 = (𝑖0, . . . , 𝑖𝑘−1) ∈ N∗ by the string

𝜎1(𝒊) B # bin(𝑖0)# bin(𝑖2)# . . . # bin(𝑖𝑘−1)

5 The ’s’ in s-itadd indicates that this is a simple version of iterated addition.

23 / 93 The Descriptive Complexity of Graph Neural Networks

over the alphabet {0, 1, #}. Then we replace every 0 in 𝜎1(𝒊) by 01, every 1 by 10, and every #
by 11 to obtain a string 𝜎2(𝒊) = 𝑠ℓ−1 . . . 𝑠0 over the alphabet {0, 1}. We read 𝜎2(𝒊) as a binary
number and let

2𝒊7 B

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bin−1 (𝜎2(𝒊)) =
ℓ−1
∑
𝑗=0

𝑠 𝑗2 𝑗 if 𝒊 ≠ ∅,

0 if 𝒊 = ∅.

EXAMPLE 3.1 1. Consider the sequence 𝒊 = (2, 5, 0). We have 𝜎1(𝒊) = #10#101#0 and 𝜎2(𝒊) =
111001111001101101. This yields

2𝒊7 = 237 165. ∎

It is easy to see that the mapping 2⋅7 ∶ N∗ → N is injective, but not bijective. Observe that
for 𝒊 = (𝑖0, . . . , 𝑖𝑘−1) ∈ N∗ we have

bsize (2𝒊7) =
𝑘−1
∑
𝑗=0

2(bsize(𝑖 𝑗) + 1) ≤ 4
𝑘−1
∑
𝑗=0

bsize(𝑖 𝑗) (4)

and thus
2𝒊7 < 24∑𝑘−1

𝑗=0 bsize(𝑖 𝑗). (5)

LEMMA 3.12. 1. There is an arithmetical FO+C-formula seq(𝑦) such that for all 𝑛 ∈ N we
have

⟦seq⟧ (𝑛) = 1 ⇐⇒ 𝑛 = 2𝒊7 for some 𝒊 ∈ N.

2. There is an arithmetical FO+C-term seqlen(𝑦) such that for all 𝑛 ∈ N we have

⟦seqlen⟧ (𝑛) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑘 if 𝑛 = 2(𝑖0, . . . , 𝑖𝑘−1)7 for some 𝑘, 𝑖0, . . . , 𝑖𝑘−1 ∈ N,

0 otherwise.

3. There is an arithmetical FO+C-term entry(𝑦, 𝑦′) such that for all 𝑗, 𝑛 ∈ N we have

⟦entry⟧ (𝑗, 𝑛) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑖 if 𝑛 = 2(𝑖0, . . . , 𝑖𝑘−1)7, 𝑗 < 𝑘, 𝑖 = 𝑖 𝑗 for some 𝑘, 𝑖0, . . . , 𝑖𝑘−1 ∈ N,

𝑛 otherwise.

PROOF . Let 𝑆 = {𝜎2(𝒊) ∣ 𝒊 ∈ N∗}. Let bin(𝑛) C 𝒔 = 𝑠ℓ−1 . . . 𝑠0. We want to detect if 𝒔 ∈ 𝑆. As a
special case, we note that if ℓ = 0 and thus 𝒔 = ∅, we have 𝒔 = 𝜎2(∅). In the following, we assume
that ℓ > 0. Then if ℓ is odd, we have 𝒔 /∈ 𝑆. Furthermore, if there is a 𝑝 < ℓ

2 such that 𝑠2𝑝 = 0 and
𝑠2𝑝+1 = 0, again we have 𝒔 /∈ 𝑆, because 𝒔 is not obtained from a string 𝒔′ ∈ {0, 1, #}∗ by replacing
0s by 01, 1s by 10, and #s by 11. Otherwise, we let 𝒔′ = 𝑠′ℓ

2−1
. . . 𝑠′0 ∈ {0, 1, #}∗ be the corresponding

string. Then 𝒔′ = 𝜎1(𝒊) for some 𝒊 ∈ N∗ if and only if 𝒔′ satisfies the following conditions:
𝑠′0 ≠ # and 𝑠′

ℓ/2−1 = #;
for all 𝑝 < ℓ

2 , if 𝑠′𝑝 = # and 𝑠′𝑝−1 = 0 then either 𝑝 = 1 or 𝑠𝑝−2 = #.

24 / 93 M. Grohe

We can easily translate the conditions to conditions on the string 𝒔 and, using the bit predicate,
to conditions on 𝑛. As the bit predicate is definable in FO+C (by Lemma 3.7), we can express
these conditions by an arithmetical FO+C-formula seq(𝑦).

To prove (2), we observe that if 𝑛 = 2𝒊7 for some 𝒊 ∈ N∗, then the length of the sequence 𝒊 is
the number of #s in the string 𝜎1(𝒊), or equivalently, the number of 𝑝 < ℓ

2 such that Bit(2𝑝, 𝑛) = 1
and Bit(2𝑝 + 1, 𝑛) = 1 Using the formula seq(𝑦) and the bit predicate, we can easily express
this by a term seqlen(𝑦).

To prove (3), we first write an arithmetical formula isEntry(𝑦, 𝑦′, 𝑦′′) such that

⟦isEntry⟧ (𝑗, 𝑛, 𝑖) = 1 ⇐⇒ 𝑛 = 2(𝑖0, . . . , 𝑖𝑘−1)7, 𝑗 < 𝑘, 𝑖 = 𝑖 𝑗 for some 𝑘, 𝑖0, . . . , 𝑖𝑘−1 ∈ N.

Once we have this formula, we let

entry(𝑦, 𝑦′) =min(𝑦′, #𝑧 < 𝑦′.∃𝑦′′ < 𝑦′.(isEntry(𝑦, 𝑦′, 𝑦′′) ∧ 𝑧 < 𝑦′′)).

To define isEntry(𝑦, 𝑦′, 𝑦′′), observe that for 𝒊 = (𝑖0, . . . , 𝑖𝑘−1) ∈ N∗, the 𝑗th entry 𝑖 𝑗 is located
between the 𝑗th and (𝑗 + 1)st ’#’ in the string 𝜎1(𝒊) and thus between the 𝑗th and (𝑗 + 1)st
occurrence of ’11’ at positions 2𝑝, 2 + 1 in the string 𝜎2(𝒊) = bin(2𝒊7). Using the bit predicate, we
can thus extract the bit representation of 𝑖 𝑗 from 2𝒊7 in FO+C. ∎

LEMMA 3.13. There are arithmetical FO+C-terms flog(𝑦) and clog(𝑦) such that for all for all
𝑛 ∈ N>0,

⟦flog⟧ (𝑛) = ⌊log𝑛⌋ and ⟦clog⟧ (𝑛) = ⌈log𝑛⌉ .

PROOF . This is straightforward, observing that ⌊log𝑛⌋ is the highest 1-bit in the binary repre-
sentation of 𝑛. ∎

PROOF OF LEMMA 3.10 . For the proof, it will be convenient to fix a numerical assignment
a. Of course the FO+C-expressions we shall define will not depend on a. Let 𝑚 B a(𝑈), and
for 0 ≤ 𝑖 < 𝑚, let 𝑛𝑖 B ⟪𝑌,𝑈⟫a (𝑖). Then 𝑛𝑖 < 2𝑚 and, and for 0 ≤ 𝑗 < 𝑚 we have

Bit(𝑗, 𝑛𝑖) = 1 ⇐⇒ (𝑗, 𝑖) ∈a(𝑌).

It is our goal to compute∑𝑚−1
𝑖=0 𝑛𝑖 in such a way that the computation can be expressed in FO+C.

More precisely, we want to define a formula s-itadd and a term bd-s-itadd, which both may
use the variables 𝑌 and 𝑈 , such that

⟪s-itadd,bd-s-itadd⟫a =
𝑚−1
∑
𝑖=0

𝑛𝑖 .

Since ∑𝑚−1
𝑖=0 𝑛𝑖 < 22𝑚, we can simply let bd-s-itadd B 2𝑈 . Thus we only need to define the

formula s-itadd(�̂�) in such a way that for all 𝑗 < 2𝑚 we have

⟦s-itadd⟧a (𝑗) = Bit(𝑗,
𝑚−1
∑
𝑖=0

𝑛𝑖) . (6)

25 / 93 The Descriptive Complexity of Graph Neural Networks

Without of loss of generality we may assume that 𝑚 is sufficiently large, larger than some
absolute constant that can be extracted from the proof. If 𝑚 is smaller than this constant, we
simply compute the sum by repeatedly applying Lemma 3.9(1).

Our construction will be inductive, repeatedly transforming the initial sequence of num-
bers 𝑛𝑖 into new sequences that have the same sum. It will be convenient to use the index (0) for
the initial family. Thus we let 𝑚(0) B 𝑚, and 𝑛

(0)
𝑖 B 𝑛𝑖 , for all 𝑖 ∈ {0, . . . , 𝑚(0) − 1}. Furthermore,

it will be useful to let ℓ(0) B 𝑚(0), because at later stages 𝑡 of the construction the size 𝑚(𝑡) of
the current family of numbers will no longer be identical with their bitlength ℓ(𝑡).

For 𝑗 < ℓ(0), let 𝑛(0)𝑖, 𝑗 B Bit(𝑗, 𝑛(0)𝑖) and

𝑠
(0)
𝑗 B

𝑚(0)−1
∑
𝑖=0

𝑛
(0)
𝑖, 𝑗 = ∣{𝑖 ∣ 𝑛

(0)
𝑖, 𝑗 = 1}∣. (7)

Then
𝑚(0)−1
∑
𝑖=0

𝑛
(0)
𝑖 =

𝑚(0)−1
∑
𝑖=0

ℓ(0)−1
∑
𝑗=0

2 𝑗𝑛
(0)
𝑖, 𝑗 =

ℓ(0)−1
∑
𝑗=0

2 𝑗
𝑚(0)−1
∑
𝑖=0

𝑛
(0)
𝑖, 𝑗 =

ℓ(0)−1
∑
𝑗=0

2 𝑗𝑠
(0)
𝑗 .

Let 𝑚(1) B ℓ(0) and 𝑛
(1)
𝑖 B 2𝑖𝑠(0)𝑖 for 𝑖 < ℓ(0). Then

𝑚−1
∑
𝑖=0

𝑛𝑖 =
𝑚(0)−1
∑
𝑖=0

𝑛
(0)
𝑖 =

𝑚(1)−1
∑
𝑖=0

𝑛
(1)
𝑖 .

Moreover,
𝑛
(1)
𝑖 ≤ 2ℓ(0)−1𝑠

(0)
𝑖 = 2ℓ(0)−1+log 𝑠(0)𝑖 < 2ℓ(0)+⌊log 𝑠(0)𝑖 ⌋.

Let 𝑝(1) B ⌊log𝑚(0)⌋ and ℓ(1) B ℓ(0) + 𝑝(1). Noting that 𝑠(0)𝑖 ≤ 𝑚(0) for all 𝑖, we thus have

𝑛
(1)
𝑖 < 2ℓ(1)

for all 𝑖. Finally, note that
Bit(𝑗, 𝑛(1)𝑖) ≠ 0 Ô⇒ 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑝(1)

This completes the base step of the construction. For the inductive step, suppose that we have
defined 𝑚(𝑘), ℓ(𝑘), 𝑝(𝑘) ∈ N>0 and 𝑛

(𝑘)
𝑖 ∈ N for 𝑖 ∈ {0, . . . , 𝑚(𝑘) − 1} such that

𝑚−1
∑
𝑖=0

𝑛𝑖 =
𝑚(𝑘)−1
∑
𝑖=0

𝑛
(𝑘)
𝑖

and for all 𝑖:
𝑛
(𝑘)
𝑖 < 2ℓ(𝑘) for all 𝑖;

Bit(𝑗, 𝑛(𝑘)𝑖) ≠ 0 Ô⇒ 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑝(𝑘).

For 𝑗 < ℓ(𝑘), let 𝑛(𝑘)𝑖, 𝑗 B Bit(𝑗, 𝑛(𝑘)𝑖) and

𝑠
(𝑘)
𝑗 B

𝑚(𝑘)−1
∑
𝑖=0

𝑛
(𝑘)
𝑖, 𝑗 =

𝑗

∑
𝑖=max{0, 𝑗−𝑝(𝑘)}

𝑛
(𝑘)
𝑖, 𝑗 .

26 / 93 M. Grohe

Then
𝑚(𝑘)−1
∑
𝑖=0

𝑛
(𝑘)
𝑖 =

ℓ(𝑘)−1
∑
𝑗=0

2 𝑗𝑠
(𝑘)
𝑗 .

Let 𝑚(𝑘+1) B ℓ(𝑘) and 𝑛
(𝑘+1)
𝑖 B 2𝑖𝑠(𝑘)𝑖 for 𝑖 < ℓ(𝑘). Then

𝑚−1
∑
𝑖=0

𝑛𝑖 =
𝑚(𝑘)−1
∑
𝑖=0

𝑛
(𝑘)
𝑖 =

𝑚(𝑘+1)−1
∑
𝑖=0

𝑛
(𝑘+1)
𝑖 .

Moreover,
𝑛
(𝑘+1)
𝑖 ≤ 2ℓ(𝑘)−1𝑠

(𝑘)
𝑖 = 2ℓ(𝑘)−1+log 𝑠(𝑘)𝑖 < 2ℓ(𝑘)+⌊log 𝑠(𝑘)𝑖 ⌋.

Note that 𝑠(𝑘)𝑖 ≤ 𝑝(𝑘) + 1. Let 𝑝(𝑘+1) B ⌊log(𝑝(𝑘) + 1)⌋ and ℓ(𝑘+1) B ℓ(𝑘) + 𝑝(𝑘+1). Then

𝑛
(𝑘+1)
𝑖 < 2ℓ(𝑘+1)

and for all 𝑗,
Bit(𝑗, 𝑛(𝑘+1)

𝑖) ≠ 0 Ô⇒ 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑝(𝑘+1).

Observe that if 𝑝(𝑘) = 1 then 𝑝(𝑘
′) = 1 for all 𝑘′ > 𝑘. Let 𝑘∗ be the least 𝑘 such that 𝑝(𝑘) = 1. It is

easy to see that
𝑝(𝑘

∗−1) = 2,
3 ≤ 𝑝(𝑘

∗−2) ≤ 6,
7 ≤ 𝑝(𝑘

∗−3) ≤ 126,
127 ≤ 𝑝(𝑘) for 𝑘 < 𝑘∗ − 3.

(8)

CLAIM 3.13.1. 1.
𝑘∗

∑
𝑖=2

𝑖𝑝(𝑖) ≤ 7 log log𝑚;

2.
𝑘∗

∑
𝑖=1

bsize(𝑝(𝑖)) ≤ 7 log log𝑚.

Proof. By induction on 𝑘 = 𝑘∗, 𝑘∗ − 1, . . . , 2 we prove

𝑘∗

∑
𝑖=𝑘

𝑖 ⋅ 𝑝(𝑖) ≤ 3𝑘𝑝(𝑘) (9)

As base case, we need to check (9) for 𝑘 ∈ {𝑘∗, 𝑘∗−1, 𝑘∗−2, 𝑘∗−3}. Using (8), this is straightforward.
For example, if 𝑘 = 𝑘∗ − 2 and 𝑝(𝑘) = 3 we have

𝑘∗

∑
𝑖=𝑘

𝑖𝑝(𝑖) = 3(𝑘∗ − 2) + 2(𝑘∗ − 1) + 𝑘∗ = 6𝑘∗ − 8 ≤ 9𝑘∗ − 18 = 3𝑘𝑝(𝑘).

The inequality 6𝑘∗ − 8 ≤ 9𝑘∗ − 18 holds because if 2 ≤ 𝑘 ≤ 𝑘∗ − 2 then 𝑘∗ ≥ 4, which implies
3𝑘∗ ≥ 12. Similarly, if 𝑘 = 𝑘∗ − 3 and 𝑝(𝑘) = 15 we have 𝑝(𝑘+1) = ⌊log(𝑝(𝑘) + 1)⌋ = 4 and thus

𝑘∗

∑
𝑖=𝑘

𝑖𝑝(𝑖) = 15(𝑘∗ − 3) + 4(𝑘∗ − 2) + 2(𝑘∗ − 1) + 𝑘∗ = 22𝑘∗ − 55 ≤ 45𝑘∗ − 135 = 3𝑘𝑝(𝑘).

27 / 93 The Descriptive Complexity of Graph Neural Networks

The inequality 22𝑘∗ − 55 ≤ 45𝑘∗ − 135 holds because if 2 ≤ 𝑘 ≤ 𝑘∗ − 3 then 𝑘∗ ≥ 5.
For the inductive step 𝑘 + 1↦ 𝑘, where 2 ≤ 𝑘 < 𝑘∗ − 3, we argue as follows:

𝑘∗

∑
𝑖=𝑘

𝑖 ⋅ 𝑝(𝑖) = 𝑘 ⋅ 𝑝(𝑘) +
𝑘∗

∑
𝑖=𝑘+1

𝑖 ⋅ 𝑝(𝑖)

≤ 𝑘 ⋅ 𝑝(𝑘) + 3(𝑘 + 1)𝑝(𝑘+1) induction hypothesis

≤ 𝑘 ⋅ 𝑝(𝑘) + 3(𝑘 + 1) log(𝑝(𝑘) + 1)
≤ 𝑘 ⋅ 𝑝(𝑘) + 4𝑘 log(𝑝(𝑘) + 1) because 𝑘 ≥ 2.

Since by (8) we have 𝑝(𝑘) ≥ 127 for 𝑘 < 𝑘∗ − 3, we have 𝑝(𝑘) ≥ 4 log(𝑝(𝑘) + 1). Inequality (9)
follows:

𝑘∗

∑
𝑖=𝑘

𝑖 ⋅ 𝑝(𝑖) ≤ 𝑝(𝑘) + 4𝑘 log(𝑝(𝑘) + 1) ≤ 2𝑘𝑝(𝑘).

For 𝑘 = 2, this yields

𝑘∗

∑
𝑖=2

𝑖 ⋅ 𝑝(𝑖) ≤ 6𝑝(2) ≤ 6 log(𝑝(1) + 1) ≤ 6 log(log𝑚 + 1) ≤ 7 log log𝑚.

To prove (2), note that bsize(𝑝(𝑘∗)) = bsize(1) = 1 and bsize(𝑝(𝑘)) = ⌈log(𝑝(𝑘) + 1)⌉ ≤
𝑝(𝑘+1) + 1 for 𝑘 < 𝑘∗. Thus (2) holds if 𝑘∗ = 1. If 𝑘∗ ≥ 2 we have

𝑘∗

∑
𝑖=1

bsize(𝑝(𝑖)) = 1 +
𝑘∗

∑
𝑖=2
(𝑝(𝑖) + 1) = 𝑘∗ +

𝑘∗

∑
𝑖=2

𝑝(𝑖) ≤ 𝑘∗ + 1 +
𝑘∗−1
∑
𝑖=2

𝑝(𝑖) ≤
𝑘∗

∑
𝑖=2

𝑖𝑝(𝑖),

and (2) follows from (1). ∎

CLAIM 3.13.2. There is an arithmetical FO+C-term pseq(𝑦) such that

⟦pseq⟧a (𝑚) = 2(𝑝(1), . . . , 𝑝(𝑘∗))7.

Proof. Let

𝜑(𝑦, 𝑧) B seq(𝑧) ∧ entry(0, 𝑧) = flog(𝑦)
∧ ∀𝑦′ < seqlen(𝑧) − 1.entry(𝑦′ + 1, 𝑧) = flog(entry(𝑦′, 𝑧) + 1)

where the formula seq and the terms entry, seqlen are from Lemma 3.12 and the term flog is
from Lemma 3.13. Then for all 𝑞 ∈ N we have

⟦𝜑⟧a (𝑚, 𝑞) = 1 ⇐⇒ 𝑞 = 2(𝑝(1), . . . , 𝑝(𝑘∗))7.

By Claim 3.13.1(2) and (5) we have 2(𝑝(1), . . . , 𝑝(𝑘∗)7 < 𝑚 (for sufficiently large 𝑚). Thus the term

pseq(𝑦) B #𝑦′ < 𝑦.∃𝑧 < 𝑦.(𝜑(𝑦, 𝑧) ∧ 𝑦′ < 𝑧).

defines 2(𝑝(1), . . . , 𝑝(𝑘∗))7. ∎

28 / 93 M. Grohe

Recall that for 1 ≤ 𝑘 ≤ 𝑘∗ and 0 ≤ 𝑗 < ℓ(𝑘) we have

𝑠
(𝑘)
𝑗 =

𝑗

∑
𝑖=max{0, 𝑗−𝑝(𝑘)}

𝑛
(𝑘)
𝑖, 𝑗 .

To simplify the notation, in the following, we let 𝑛(𝑘)𝑖 = 0 and 𝑠
(𝑘)
𝑖 = 0 for all 𝑘 and 𝑖 < 0. Of course

then the bits 𝑛(𝑘)𝑖, 𝑗 are also 0, and we can write

𝑠
(𝑘)
𝑗 =

𝑗

∑
𝑖= 𝑗−𝑝(𝑘)

𝑛
(𝑘)
𝑖, 𝑗 .

As 𝑛(𝑘)𝑖, 𝑗 = Bit(𝑗, 𝑛(𝑘)𝑖) and 𝑛
(𝑘)
𝑖 = 2𝑖𝑠(𝑘−1)

𝑖 , we thus have

𝑠
(𝑘)
𝑗 =

𝑗

∑
𝑖= 𝑗−𝑝(𝑘)

Bit(𝑗, 2𝑖𝑠(𝑘−1)
𝑖) =

𝑗

∑
𝑖= 𝑗−𝑝(𝑘)

Bit(𝑗 − 𝑖, 𝑠
(𝑘−1)
𝑖)

= ∣{𝑖 ∣ 𝑗 − 𝑝(𝑘) ≤ 𝑖 ≤ 𝑗,Bit(𝑗 − 𝑖, 𝑠
(𝑘−1)
𝑖) = 1}∣. (10)

CLAIM 3.13.3. For every 𝑡 ≥ 0 there is an arithmetical FO+C-terms s(𝑡)(𝑦) such that for all
𝑗 ∈ N we have

⟦s(𝑡)⟧a (𝑗) = 𝑠(𝑡)𝑗 .

Proof. We define the terms inductively, using (7) for the base step and (10) for the inductive
step. ∎

Note that this claim only enables us to define the numbers 𝑠(𝑘
∗)

𝑗 by a formula that depends
on 𝑘∗ and hence on the input, or more formally, the assignment a. Claim 3.13.6 below will show
that we can also define the 𝑠

(𝑘∗)
𝑗 by a formula that is independent of the input. (We will only

use Claim 3.13.3 to define the 𝑠
(2)
𝑗 .)

CLAIM 3.13.4. There is an arithmetical FO+C-formula step(𝑦, 𝑧) such that for all 𝑘 ∈ [𝑘∗],
𝑗 ∈ {0, . . . , ℓ(𝑘) − 1}, and 𝑗, 𝑘, 𝑠, 𝑡 ∈ N, if

𝑡 = 2(𝑠(𝑘−1)
𝑗−𝑝(𝑘) , 𝑠

(𝑘−1)
𝑗−𝑝(𝑘)+1, . . . , 𝑖𝑠 = 𝑠

(𝑘−1)
𝑗)7

then
⟦step⟧a (𝑠, 𝑡) = 1 ⇐⇒ 𝑠 = 𝑠𝑘𝑗 .

Proof. This follows easily from (10). ∎

To compute 𝑠
(𝑘∗)
𝑗 , we need to know 𝑠

(𝑘∗−1)
𝑗 , . . . , 𝑠

(𝑘∗−1)
𝑗−𝑝(𝑘∗) . To compute these numbers, we

need to know 𝑠
(𝑘∗−2)
𝑗 , . . . , 𝑠

(𝑘∗−2)
𝑗−𝑝(𝑘∗)−𝑝(𝑘∗−1) , et cetera. Thus if we want to compute 𝑠

(𝑘∗)
𝑗 starting from

values 𝑠(𝑘)𝑗′ , we need to know 𝑠
(𝑘)
𝑗′ for

𝑗 −
𝑘∗

∑
𝑖=𝑘+1

𝑝(𝑖) ≤ 𝑗′ ≤ 𝑗.

29 / 93 The Descriptive Complexity of Graph Neural Networks

For 2 ≤ 𝑘 < 𝑘∗, we let
𝒔 𝑗𝑘 B (𝑠(𝑘)

𝑗−∑𝑘∗
𝑖=𝑘+1 𝑝

(𝑖) , . . . , 𝑠
(𝑘)
𝑗),

and we let 𝒔 𝑗𝑘∗ B (𝑠(𝑘
∗)

𝑗). Concatenating these sequences, we let

𝒔 𝑗 B 𝒔 𝑗2𝒔 𝑗3 . . . 𝒔 𝑗𝑘∗ .

CLAIM 3.13.5. There is an arithmetical FO+C-formula all-s(𝑦, 𝑧) such that for all 𝑡 ∈ N and
𝑗 ∈ {0, . . . , ℓ(𝑘∗) − 1} we have

⟦all-s⟧a (𝑗, 𝑡) = 1 ⇐⇒ 𝑡 = 2𝒔 𝑗7.

Proof. This follows from Claim 3.13.2 (to get the 𝑝(𝑖) as well as 𝑘∗), Claim 3.13.3 (to get the base
values 𝑠(2)𝑗′), and Claim 3.13.4 (to verify the internal values of the sequence), just requiring a bit
of arithmetic on the indices. ∎

CLAIM 3.13.6. There is an arithmetical FO+C-term skstar(𝑦) such that for all 𝑗 ∈ Nwe have

⟦skstar⟧a (𝑗) = 𝑠(𝑘
∗)

𝑗 .

Proof. We first prove that for all 𝑗 we have

2𝒔 𝑗7 < 𝑚. (11)

The key observation is that the length of the sequence 𝒔 𝑗 is

∣𝒔 𝑗 ∣ =
𝑘∗
∑
𝑘=2
∣𝒔 𝑗𝑘∣ =

𝑘∗
∑
𝑘=2
(1 +

𝑘∗

∑
𝑖=𝑘+1

𝑝(𝑖)) ≤
𝑘∗
∑
𝑘=2

𝑘∗

∑
𝑖=𝑘

𝑝(𝑖) ≤
𝑘∗

∑
𝑘=2

𝑖𝑝(𝑖) ≤ 7 log log𝑚,

where the last inequality holds by Claim 3.13.1. Moreover, for 2 ≤ 𝑘 ≤ 𝑘∗ and 0 ≤ 𝑗 < ℓ(𝑘)

we have 𝑠
(𝑘)
𝑗 ≤ 𝑝(𝑘) + 1 ≤ 𝑝(2) + 1 ≤ log𝑚 + 1 and thus bsize(𝑠(𝑘)𝑗) = 𝑂(log log𝑚). Thus 𝒔 𝑗 is a

sequence of 𝑂(log log𝑚) numbers, each of bitsize 𝑂(log log𝑚). Thus the bitsize of the sequence
is 𝑂((𝑙𝑜𝑔 log𝑚)2), and it follows from (5) that for some constant 𝑐,

2𝒔 𝑗7 ≤ 2𝑐(log log𝑚)2 < 𝑚,

again assuming that 𝑚 is sufficiently large. This proves (11).
We let

skstar(𝑦) ∶= ∃𝑧 <𝑈.(all-s(𝑦, 𝑧) ∧ 𝑦 = entry(seqlen(𝑧) − 1, 𝑧)),

where the formula all-s(𝑦, 𝑧) is from Claim 3.13.5 and the terms entry and seqlen are from
Lemma 3.12. ∎

30 / 93 M. Grohe

It remains to compute ∑𝑚(𝑘
∗)−1

𝑖=0 𝑛
(𝑘∗+1)
𝑖 , where 𝑛

(𝑘∗+1)
𝑖 = 2𝑖𝑠(𝑘

∗)
𝑖 . Since 𝑠

(𝑘∗)
𝑗 ≤ 2, we have

Bit(𝑗, 𝑛(𝑘
∗)

𝑖) = 0 unless 𝑗 ∈ {𝑖 − 1, 𝑖}. We split the sum into the even and the odd entries:

𝑚(𝑘
∗)−1
∑
𝑖=0

𝑛
(𝑘∗+1)
𝑖 =

⌈𝑚(𝑘∗)/2⌉−1

∑
𝑖=0

𝑛
(𝑘∗)
2𝑖

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C𝑛∗1

+
⌊𝑚(𝑘∗)/2⌋−1

∑
𝑖=0

𝑛
(𝑘∗)
2𝑖+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C𝑛∗2

.

Since the entries in the two partial sums have no non-zero bits in common, it is easy to define
the two partial sums (of course, using Claim 3.13.6). Then we can apply Lemma 3.9 to define
𝑛∗1 + 𝑛∗2 . ∎

LEMMA 3.14. Let 𝑌1,𝑌2 be relation variables of type {n}, and let 𝑈1,𝑈2 be function variables
of type ∅→ n. Then there are arithmetical FO+C-formulasmul, div, and FO+C-terms bd-mul,
bd-div such that for all numerical assignments a,

⟪mul,bd-mul⟫a = ⟪𝑌1,𝑈1⟫a ⋅ ⟪𝑌2,𝑈2⟫a ,

⟪div,bd-div⟫a = ⌊⟪𝑌1,𝑈1⟫a

⟪𝑌2,𝑈2⟫a
⌋ if ⟪𝑌2,𝑈2⟫a ≠ 0.

PROOF . The expressibility multiplication follows easily from the expressibility of iterated
addition (Lemma 3.10). Division is significantly more difficult, we refer the reader to [15]. ∎

We need be an extension of Lemma 3.10 where the family of numbers is no longer indexed
by numbers, but by arbitrary tuples of vertices and numbers, and where the bounds on the
bitsize of the numbers in the family are not uniform (in Lemma 3.10 we use the 0-ary function
variable𝑈 to provide a bound on the bitsize of all numbers in our family). Before presenting
this extension, we consider a version of iterated addition as well as taking the maximum and
minimum of a family of numbers given directly as values of a function instead of the binary
representation that we considered in the previous lemmas.

LEMMA 3.15. Let 𝑋 be a relation variable of type {v𝑘nℓ}, and let 𝑈,𝑉 be function variables of
types v𝑘nℓ → n, v𝑘 → n, respectively.

1. There is a FO+C-term u-itadd6 such that for all structures 𝐴 and assignments a over 𝐴,

⟦u-itadd⟧(𝐴,a) = ∑
(𝒂,𝒃)

a(𝑈)(𝒂,𝒃),

where the sum ranges over all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <
a(𝑉)(𝒂) for all 𝑖 ∈ [ℓ].

6 The ’u’ in u-itadd indicates that we use a unary representation here.

31 / 93 The Descriptive Complexity of Graph Neural Networks

2. There are FO+C-terms u-max and u-min such that for all structures 𝐴 and assignments
a over 𝐴,

⟦u-max⟧(𝐴,a) =max
(𝒂,𝒃)

a(𝑈)(𝒂,𝒃),

⟦u-min⟧(𝐴,a) =min
(𝒂,𝒃)

a(𝑈)(𝒂,𝒃),

where max and min range over all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with
𝑏𝑖 <a(𝑉)(𝒂) for all 𝑖 ∈ [ℓ].

Furthermore, if 𝑘 = 0 then the terms u-itadd, u-max, and u-min are arithmetical.

PROOF . To simplify the notation, in the proof we assume ℓ = 1. The generalisation to arbitrary
ℓ is straightforward.

The trick is to use adaptive bounds in our counting terms. Let 𝐴 be a structure and a an
assignment over 𝐴. Let I ⊆ 𝑉(𝐴)𝑘 ×N be the set of all all (𝒂, 𝑏) ∈a(𝑋) with 𝑏 <a(𝑉)(𝒂). We
exploit that for all (𝒂, 𝑏) ∈I, a(𝑈)(𝒂, 𝑏) is the number of 𝑐 ∈ N such that 𝑐 <a(𝑈)(𝒂, 𝑏). This
implies

∑
(𝒂,𝑏)

a(𝑈)(𝒂, 𝑏) = ∣{(𝒂, 𝑏, 𝑐) ∣ (𝒂, 𝑏) ∈I and 𝑐 <a(𝑈)(𝒂, 𝑏)}∣

= ∣{(𝒂, 𝑏, 𝑐) ∣ (𝒂, 𝑏) ∈a(𝑋) with 𝑏 <a(𝑉)(𝒂) and 𝑐 <a(𝑈)(𝒂, 𝑏)}∣.

Thus
u-itadd B #(𝒙, 𝑦 < 𝑉(𝒙), 𝑧 <𝑈(𝒙, 𝑦)).𝑋(𝒙, 𝑦).

satisfies assertion (1).

Once we have this, assertion (2) is easy because maximum and minimum are bounded
from above by the sum. For example, we let

u-max B #𝑧 < u-itadd.∃𝒙.∃𝑦 < 𝑉(𝒙).(𝑋(𝒙) ∧ 𝑧 <𝑈(𝒙, 𝑦)). ∎

The following lemma is the desired generalisation of Lemma 3.10.

LEMMA 3.16. Let 𝑋,𝑌 be relation variables of type {v𝑘nℓ} and {nv𝑘nℓ}, respectively, and let𝑈,𝑉
be function variables of type v𝑘nℓ → n and v𝑘 → n, respectively. Then there is an FO+C-formula
itadd and an FO+C-term bd-itadd such that for all structures 𝐴 and assignments a over 𝐴,

⟪itadd,bd-itadd⟫(𝐴,a) = ∑
(𝒂,𝒃)
⟪𝑌,𝑈⟫(𝐴,a) (𝒂,𝒃),

where the sum ranges over all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 < a(𝑉)(𝒂)
for all 𝑖 ∈ [ℓ].

If 𝑘 = 0, then the formula itadd and the term bd-itadd are arithmetical.

32 / 93 M. Grohe

PROOF . Let 𝐴 be a structure and a an assignment over 𝐴. Let I ⊆ 𝑉(𝐴)𝑘 × Nℓ be the set
of all all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) with 𝑏𝑖 < a(𝑉)(𝒂). Let 𝑚 B ∣I∣ and 𝑝 B

max{a(𝑈)(𝒂,𝒃) ∣ (𝒂,𝒃) ∈I}. Note that 𝑝 = ⟦u-max⟧(𝐴,a) for the term u-max of Lemma 3.15.
We have to add the family of 𝑚 numbers 𝑛𝒄 B ⟪𝑌,𝑈⟫(𝐴,a) (𝒄) for 𝒄 ∈ I. We think of these
numbers as 𝑝-bit numbers, padding them with zeroes if necessary. Note that we cannot directly
apply Lemma 3.10 to add these numbers, because the family, being indexed by vertices, is not
ordered, and Lemma 3.10 only applies to ordered families indexed by numbers. But there is a
simple trick to circumvent this difficulty. (We applied the same trick in the proof of Lemma 3.10).

For all 𝑖 < 𝑝, we let 𝑛𝒄,𝑖 B Bit(𝑖, 𝑛𝒄) be the 𝑖th bit of 𝑛𝒄, and we let

𝑠𝑖 B ∑
𝒄∈I

𝑛𝒄,𝑖 .

We have

∑
𝒄∈I

𝑛𝒄 = ∑
𝒄∈I

𝑝−1

∑
𝑖=0

𝑛𝒄,𝑖 ⋅ 2𝑖 =
𝑝−1

∑
𝑖=0

𝑠𝑖 ⋅ 2𝑖 .

This reduces the problem of adding the unordered family of 𝑚 𝑝-bit numbers 𝑛𝒄 to adding the
ordered family of 𝑝 𝑝 + log𝑚-bit numbers 𝑛′𝑖 B 𝑠𝑖 ⋅ 2𝑖 .

The partial sums 𝑠𝑖 are definable by a counting term in FO+C, because 𝑠𝑖 is the number
of 𝒄 ∈ I such that 𝑛𝒄,𝑖 = 1. As the bit predicate is definable in FO+C, we can obtain the
bit-representation of these numbers and then shift 𝑠𝑖 by 𝑖 to obtain the bit representation of
𝑛′𝑖 = 𝑠𝑖 ⋅ 2𝑖 . Then we can apply Lemma 3.10 to compute the sum. ∎

LEMMA 3.17. Let 𝑋,𝑌 be relation variables of type {v𝑘nℓ} and {nv𝑘nℓ}, respectively, and let
𝑈,𝑉 be function variables of type v𝑘nℓ → n and v𝑘 → n, respectively. Then there are FO+C-
formulas itmax, itmin and FO+C-terms bd-itmax, bd-itmin such that for all structures 𝐴 and
assignments a over 𝐴,

⟪itmax,bd-itmax⟫(𝐴,a) =max
(𝒂,𝒃)
⟪𝑌,𝑈⟫(𝐴,a) (𝒂,𝒃),

⟪itmin,bd-itmin⟫(𝐴,a) =min
(𝒂,𝒃)
⟪𝑌,𝑈⟫(𝐴,a) (𝒂,𝒃),

where max and min range over all (𝒂,𝒃) ∈a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <a(𝑉)(𝒂)
for all 𝑖 ∈ [ℓ].

If 𝑘 = 0, then the formula itmax, itmin and the term bd-itmin, bd-itmin are arithmetical.

PROOF . Again, to reduce the notational overhead we assume ℓ = 1. We only give the proof for
the maximum; the proof for the minimum is completely analogous.

The following formula says that (𝒙, 𝑦) is the index of the maximum number in the family:

maxind(𝒙, 𝑦) B 𝑋(𝒙, 𝑦) ∧ 𝑦 < 𝑉(𝒙) ∧ ∀𝒙′∀𝑦′ < 𝑉(𝒙′).(𝑋(𝒙′, 𝑦)→ leq′(𝒙′, 𝑦′,𝒙, 𝑦)),

33 / 93 The Descriptive Complexity of Graph Neural Networks

where leq′(𝒙′, 𝑦′,𝒙, 𝒚) is the formula obtained from the formula leq of Lemma 3.9(2) by substi-
tuting 𝑌1(𝑧) with 𝑌(𝑧,𝒙′, 𝑦′), 𝑈1() with 𝑈(𝒙′, 𝑦′), 𝑌2(𝑧) with 𝑌(𝑧,𝒙, 𝑦), 𝑈2() with 𝑈(𝒙, 𝑦).

Then we let

itmax(�̂�) B ∃𝒙∃𝑦 < 𝑉(𝒙).(maxind(𝒙, 𝑦) ∧𝑌(�̂�,𝒙, 𝑦)),
bd-itmax B #𝑧 < u-max.∀𝒙∀𝑦 < 𝑉(𝒙)(maxind(𝒙, 𝑦)→ 𝑧 <𝑈(𝒙, 𝑦)),

where u-max is the formula of Lemma 3.15. ∎

3.5 Rational Arithmetic

We need to lift the results of the previous section to arithmetic on rational numbers. However,
we will run into a problem with iterated addition, because the denominator of the sum can get
too large. To avoid this problem, we will work with arithmetic on dyadic rationals. Then we
have a problem with division, because the dyadic rationals are not closed under division, but
division is not as important for us as iterated addition.

Our representation system for dyadic rationals by relation and function variables, or by
formulas and terms, is based on a representations of dyadic rationals by tuples (𝑟, 𝐼, 𝑠, 𝑡) ∈
{0, 1} × 2N ×N ×N: such a tuple represents the number

⟪𝑟, 𝐼, 𝑠, 𝑡⟫ B (−1)𝑟 ⋅ 2−𝑠 ⋅ ∑
𝑖∈𝐼,𝑖<𝑡

2𝑖 .

This representation is not unique: there are distinct tuples (𝑟, 𝐼, 𝑠, 𝑡) and (𝑟′, 𝐼 ′, 𝑠′, 𝑡′) representing
the same number. For example, ⟪𝑟, 𝐼, 𝑠, 𝑡⟫ = ⟪𝑟, 𝐼 ′, 𝑠 + 1, 𝑡 + 1⟫, where 𝐼 ′ = {𝑖 + 1 ∣ 𝑖 ∈ 𝐼, 𝑖 < 𝑡}.
However, each dyadic rational 𝑞 has a unique representation crep(𝑞) = (𝑟, 𝐼, 𝑠, 𝑡) satisfying the
following conditions:

(i) 𝑖 < 𝑡 for all 𝑖 ∈ 𝐼 ;
(ii) 𝑠 = 0 or 0 ∈ 𝐼 (that is, the fraction ∑𝑖∈𝐼,𝑖<𝑡 2𝑖

2𝑠 is reduced);
(iii) if 𝐼 = ∅ (and hence ⟪𝑠, 𝐼, 𝑠, 𝑡⟫ = 0) then 𝑟 = 𝑠 = 𝑡 = 0.

We call crep(𝑞) the canonical representation of 𝑞.
To represent a dyadic rational in our logical framework, we thus need four variables. As

this tends to get a bit unwieldy, we introduce some shortcuts. An r-schema of type 𝒕 → r for
some 𝒕 ∈ {v, n}𝑘 is a tuple 𝒁 = (𝑍sg, 𝑍Ind, 𝑍dn, 𝑍bd), where 𝑍sg is a relation variable of type {𝒕},
𝑍Ind is a relation variable of type {n𝒕}, and 𝑍dn, 𝑍bd are function variables of type 𝒕 → n. For a
structure 𝐴, an interpretation a over 𝐴, and a tuple 𝒄 ∈ 𝐴𝒕 we let

⟪𝒁⟫(𝐴,a) (𝒄) B (−1)𝑟 ⋅ 2−a(𝑍dn)(𝒄) ⋅ ∑
(𝑖,𝒄)∈a(𝑍Ind),
𝑖<a(𝑍bd)(𝒄)

2𝑖 , (12)

34 / 93 M. Grohe

where 𝑟 = 1 if 𝒄 ∈ a(𝑍sg) and 𝑟 = 0 otherwise. Note that with 𝐼 = {𝑖 ∈ N ∣ (𝑖, 𝒄) ∈ a(𝑍Ind)},
𝑠 =a(𝑍dn)(𝒄), and 𝑡 =a(𝑍bd)(𝒄) we have ⟪𝒁⟫(𝐴,a) (𝒄) = ⟪𝑟, 𝐼, 𝑠, 𝑡⟫.

An r-expression is a tuple 𝝆(𝒛) = (𝝆sg(𝒛), 𝝆Ind(�̂�, 𝒛), 𝝆dn(𝒛), 𝝆bd(𝒛)) where 𝒛 is a tuple
of individual variables, 𝝆sg(𝒛), 𝝆Ind(�̂�, 𝒛) are FO+C-formulas, and 𝝆dn(𝒛), 𝝆bd(𝒛) are FO+C-
terms. For a structure 𝐴, an interpretation a over 𝐴, and a tuple 𝒄 ∈ 𝐴tp(𝒛) we let

⟪𝝆⟫(𝐴,a) (𝒄) B ⟪𝑟, 𝐼, 𝑠, 𝑡⟫ , (13)

where 𝑟 = 1 if (𝐴,a) ⊧ 𝝆sg(𝒄) and 𝑟 = 0 otherwise, 𝐼 is the set of all 𝑖 ∈ N such that 𝐴 ⊧ 𝝆Ind(𝑖, 𝒄),
𝑠 = ⟦𝝆dn⟧

(𝐴,a) (𝒄), and 𝑡 = ⟦𝝆bd⟧
(𝐴,a) (𝒄). We sometimes say that 𝝆 defines the representation

(𝑟, 𝐼, 𝑠, 𝑡) of the dyadic rational ⟪𝑟, 𝐼, 𝑠, 𝑡⟫ in (𝐴,a).
For a fragment L of FO+C, such as those introduced in Section 3.7, an r-expression in L

is an r-expression consisting of formulas and terms from L. An arithmetical r-expression is an
r-expression consisting of arithmetical formulas and terms.

For an r-schema 𝒁 of type n𝑘 → r, for some 𝑘 ≥ 0, and a numerical assignment a we may
just write ⟪𝒁⟫a (𝒄) without referring to a structure. Similarly, for an arithmetical r-expression
𝝆(𝒛) we may write ⟪𝝆⟫a (𝒄). We use a similar notation for other objects, in particular the
L,F-schemas and L,F-expressions that will be introduced in Section 3.6.

LEMMA 3.18. Let𝒁 be an r-schema of type∅→ r. Then there is an arithmetical r-expressioncrep
such that for all structures 𝐴 and assignments a over 𝐴, crep defines the canonical representation
of ⟪𝒁⟫(𝐴,a) in (𝐴,a).

PROOF . Straightforward. ∎

Using this lemma, in the following we can always assume that the formulas and terms
defining arithmetical operations, as for example, in Lemma 3.19, 3.20, et cetera, return their
results in canonical representation.

LEMMA 3.19. Let 𝒁1,𝒁2 be r-schemas of type ∅→ r.
1. There are arithmetical r-expressions add, sub, andmul such that for all structures 𝐴 and

assignments a over 𝐴,

⟪add⟫(𝐴,a) = ⟪𝒁1⟫(𝐴,a) + ⟪𝒁2⟫(𝐴,a) ,
⟪sub⟫(𝐴,a) = ⟪𝒁1⟫(𝐴,a) − ⟪𝒁2⟫(𝐴,a) ,
⟪mul⟫(𝐴,a) = ⟪𝒁1⟫(𝐴,a) ⋅ ⟪𝒁2⟫(𝐴,a) .

2. There is an arithmetical FO+C-formula leq such that for all structures 𝐴 and assignments
a over 𝐴,

(𝐴,a) ⊧ leq ⇐⇒ ⟪𝒁1⟫(𝐴,a) ≤ ⟪𝒁2⟫(𝐴,a) .

35 / 93 The Descriptive Complexity of Graph Neural Networks

PROOF . These are straightforward consequences of Lemmas 3.9 and 3.14. ∎

LEMMA 3.20. Let 𝒁 be an r-schema of type v𝑘nℓ → r. Furthermore, let 𝑋 be a relation variable
of type {v𝑘nℓ}, and let 𝑉 be function variable of type v𝑘 → n.

1. There is an r-expression it-add such that for all structures 𝐴 and assignments a over 𝐴,

⟪itadd⟫(𝐴,a) = ∑
(𝒂,𝒃)
⟪𝒁⟫(𝐴,a) (𝒂,𝒃),

where the sum ranges over all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <
a(𝑉)(𝒂) for all 𝑖 ∈ [ℓ].

2. There are r-expressionsmax andmin such that for all structures 𝐴 and assignments a over
𝐴,

⟪max⟫(𝐴,a) =max
(𝒂,𝒃)
⟪𝒁⟫(𝐴,a) (𝒂,𝒃),

⟪min⟫(𝐴,a) =min
(𝒂,𝒃)
⟪𝒁⟫(𝐴,a) (𝒂,𝒃),

where max and min range over all (𝒂,𝒃) ∈ a(𝑋) such that 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with
𝑏𝑖 <a(𝑉)(𝒂) for all 𝑖 ∈ [ℓ].

Furthermore, if 𝑘 = 0, then the r-expressions itadd,max, andmin are arithmetical.

PROOF . To express iterated addition, we first split the family of numbers into the positive and
negative numbers. We take the sums over these two subfamilies separately and then combine
the results using Lemma 3.19. To take the sum over a family of nonnegative dyadic rationals,
we apply Lemma 3.16 for the numerator and Lemma 3.15 for the denominator.

To express maximum and minimum, it clearly suffices to express the maximum and
minimum of a family of nonnegative dyadic rationals (𝑝𝑖 ⋅ 2−𝑠𝑖)𝑖∈I for some definable finite
index set I. Using Lemma 3.15, we can determine 𝑠 B max𝑖∈I 𝑠𝑖 . Then we need to determine
maximum and minimum of the natural numbers 𝑞𝑖 B 𝑝𝑖2𝑠−𝑠𝑖 , which we can do by applying
Lemma 3.17. ∎

For division, the situation is slightly more complicated, because the dyadic rationals are
not closed under division. We only get an approximation. We use a 0-ary function variable to
control the additive approximation error.

LEMMA 3.21. Let 𝒁1,𝒁2 be r-schemas of type ∅→ r, and let 𝑊 be a function variable of type
∅→ n. Then there is an arithmetical r-expressiondiv such that for all structures 𝐴 and assignments
a over 𝐴, if ⟪𝒁2⟫(𝐴,a) ≠ 0 then

RRRRRRRRRRR

⟪𝒁1⟫(𝐴,a)

⟪𝒁2⟫(𝐴,a)
− ⟪div⟫(𝐴,a)

RRRRRRRRRRR
< 2−a(𝑊).

PROOF . This follows easily from Lemma 3.9. ∎

36 / 93 M. Grohe

3.6 Evaluating Feedforward Neural Networks

The most important consequence the results of the previous section have for us is that we can
simulate rational piecewise-linear FNNs.

Let us first see how we deal with the activation functions. To represent a rational piecewise
linear function, we need an integer 𝑘 as well as three families of dyadic rationals: the thresholds
(𝑡𝑖)1≤𝑖≤𝑘, the slopes (𝑎𝑖)0≤𝑖≤𝑘 and the constant terms (𝑏𝑖)0≤𝑖≤𝑘. An L-schema of type 𝒕 → L, for
some 𝒕 ∈ {v, n}𝑘, is a tuple 𝒁 = (𝑍len,𝒁th,𝒁sl,𝒁co), where 𝑍len is a function variable of type
𝒕 → n and 𝒁th,𝒁sl,𝒁co are r-schemas of type n𝒕. Let 𝐴 be a structure, a an assignment over
𝐴, and 𝒄 ∈ 𝐴𝒕. Let 𝑘 B a(𝑍len)(𝒄). For 1 ≤ 𝑖 ≤ 𝑘, let 𝑡𝑖 B ⟪𝒁th⟫(𝐴,a) (𝑖, 𝒄). For 0 ≤ 𝑖 ≤ 𝑘, let
𝑎𝑖 B ⟪𝒁sl⟫(𝐴,a) (𝑖, 𝒄) and 𝑏𝑖 B ⟪𝒁co⟫(𝐴,a) (𝑖, 𝒄). Then if 𝑡1 < . . . < 𝑡𝑘 and for all 𝑖 ∈ [𝑘] we have
𝑎𝑖−1𝑡𝑖 + 𝑏𝑖−1 = 𝑎𝑖𝑡𝑖 + 𝑏𝑖 , we define ⟪𝒁⟫(𝐴,a) ∶ R→ R to be the rational piecewise linear function
with thresholds 𝑡𝑖 , slopes 𝑎𝑖 , and constants 𝑏𝑖 . The condition 𝑎𝑖−1𝑡𝑖 + 𝑏𝑖−1 = 𝑎𝑖𝑡𝑖 + 𝑏𝑖 guarantees
that this function is continuous. Otherwise, we define ⟪𝒁⟫(𝐴,a) ∶ R→ R to be identically 0. We
can also define L-expressions consisting of formulas of the appropriate types.

LEMMA 3.22. Let𝒀 be an L-schema of type ∅→ L, and let 𝒁 be an r-schema of type ∅→ r. Then
there is an arithmetical r-expression apply such that for all numerical assignments a,

⟪apply⟫a = ⟪𝒀⟫a (⟪𝒁⟫a).

PROOF . This follows easily from Lemma 3.19. ∎

To represent an FNN we need to represent the skeleton as well as all activation functions
and parameters. An F-schema of type 𝒕 → F for some 𝒕 ∈ {v, n}𝑘 is a tuple𝒁 = (𝑍V, 𝑍E,𝒁ac,𝒁wt,𝒁bi)
where 𝑍V is a function variable 𝒕 → n, 𝑍E is a relation variable of type {n2𝒕}, 𝒁ac is an L-
schema of type n𝒕 → L, 𝒁wt is an r-schema of type n2𝒕 → r, and 𝒁bi is an r-schema of type n𝒕 → r.
Then for every structure 𝐴, every assignment a over 𝐴, and every tuple 𝒄 ∈ 𝐴𝒕, we define
(𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 , (𝑤𝑒)𝑒∈𝐸, (𝑏𝑣)𝑣∈𝑉) as follows:

𝑉 B {0, . . . ,a(𝑍V)(𝒄)};
𝐸 B {𝑖 𝑗 ∈ 𝑉2 ∣ 𝑖 𝑗𝒄 ∈a(𝑍E)};
𝔞𝑖 = ⟪𝒁ac⟫(𝐴,a) (𝑖, 𝒄) for 𝑖 ∈ 𝑉 ;
𝑤𝑖 𝑗 = ⟪𝒁wt⟫(𝐴,a) (𝑖, 𝑗, 𝒄) for 𝑖 𝑗 ∈ 𝐸;
𝑏𝑖 = ⟪𝒁bi⟫(𝐴,a) (𝑖, 𝒄) for 𝑖 ∈ 𝑉 .

Then if (𝑉, 𝐸) is a dag, ⟪𝒁⟫(𝐴,a) B (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 , (𝑤𝑒)𝑒∈𝐸, (𝑏𝑣)𝑣∈𝑉) is an FNN. The input nodes
𝑋1, . . . , 𝑋𝑝 of this FNN are the sources of the dag (𝑉, 𝐸) in their natural order (as natural numbers).
Similarly, the output nodes 𝑌1, . . . ,𝑌𝑞 of the FNN are the sinks of the dag (𝑉, 𝐸) in their natural
order. If (𝑉, 𝐸) is not a dag, we simply define ⟪𝒁⟫(𝐴,a) to be the trivial FNN with a single node,
which computes the identity function. We can also define F-expressions consisting of formulas
of the appropriate types.

37 / 93 The Descriptive Complexity of Graph Neural Networks

LEMMA 3.23. Let 𝒁 be an F-schema of type ∅→ F, and let 𝑿 be an r-schema of type n→ r. Then
for every 𝑡 ≥ 0 there is an arithmetical r-expression eval𝑡(𝑦) such that the following holds. Let a
be a numerical assignment and 𝔉 B ⟪𝒁⟫a. Suppose that the input dimension of 𝔉 is 𝑝, and let

𝒙 B (⟪𝑿⟫a (0), . . . ,⟪𝑿⟫a (𝑝 − 1)).

Then for every node 𝑣 of 𝔉 of depth 𝑡 it holds that

𝑓𝔉,𝑣(𝒙) = ⟪eval𝑡⟫a (𝑣).

PROOF . Using the formulas for multiplication and iterated addition, it easy to construct eval𝑡
by induction on 𝑡. ∎

COROLLARY 3.24. Let 𝒁 be an F-schema of type ∅→ F, and let 𝑿 be r-schemas of type n→ r.
Then for every 𝑑 > 0 there is an arithmetical r-expression eval𝑑(𝑦) such that the following holds.
Let 𝐴 be a structure, a an assignment, and 𝔉 B ⟪𝒁⟫(𝐴,a). Suppose that the depth of (𝑉, 𝐸) is at
most 𝑑, and let 𝑝 be the input dimension and 𝑞 the output dimension. Let

𝒙 B (⟪𝑿⟫(𝐴,a) (0), . . . ,⟪𝑿⟫(𝐴,a) (𝑝 − 1)).

Then
𝔉(𝒙) = (⟪eval𝑑⟫(𝐴,a) (0), . . . ,⟪eval𝑑⟫(𝐴,a) (𝑞 − 1)).

COROLLARY 3.25. Let 𝔉 be a rational piecewise linear FNN of input dimension 𝑝 and output
dimension 𝑞, and let 𝑿1, . . . ,𝑿 𝑝 be r-schemas of type ∅→ r. Then for all 𝑖 ∈ [𝑞] there is an
arithmetical r-expression eval𝔉,𝑖 such that for all structures 𝐴 and assignments a over 𝐴,

𝔉(⟪𝑿1⟫(𝐴,a) , . . . ,⟪𝑿 𝑝⟫
(𝐴,a)) = (⟪eval𝔉,1⟫

(𝐴,a)
, . . . ,⟪eval𝔉,𝑞⟫

(𝐴,a)).

3.7 Fragments of FO+C

To describe the expressiveness of graph neural networks, we need to consider various fragments
of FO+C. For 𝑘 ≥ 1, the 𝑘-variable fragment FO𝑘+C of FO+C consists of all formulas with at
most 𝑘 vertex variables. Importantly, the number of number variables is unrestricted. We call
an FO𝑘+C-formula decomposable if it contains no relation variables or function variables and
every subformula with exactly 𝑘 free vertex variables is a Boolean combination of relational
atoms and formulas with at most 𝑘 − 1 free vertex variables. Equivalently, an FO𝑘+C-formula
is decomposable if it contains no relation variables or function variables and every subformula
of the form 𝜃 ≤ 𝜃′, for terms 𝜃, 𝜃′, has at most 𝑘 − 1 free vertex variables. Note that this implies
that a decomposable FO𝑘+C-formula contains no terms with 𝑘 free vertex variables.

EXAMPLE 3.26. The FO2+C-formula

𝜑(𝑧) B ∃𝑥1.∃𝑥2.(𝐸(𝑥1, 𝑥2) ∧ 𝑧 = #𝑥2.𝐸(𝑥2, 𝑥1) ∧ 𝑧 = #𝑥1.𝐸(𝑥2, 𝑥1))

38 / 93 M. Grohe

is decomposable, whereas the FO2+C-formula

𝜓(𝑧) B ∃𝑥1.∃𝑥2.(𝐸(𝑥1, 𝑥2) ∧ 𝑧 = (#𝑥2.𝐸(𝑥2, 𝑥1)) ⋅ (#𝑥1.𝐸(𝑥2, 𝑥1)))

is not. However, 𝜓(𝑧) is decomposable if viewed as an FO3+C-formula. ∎

LEMMA 3.27. Let 𝜑 be an FO+C-formula of vocabulary 𝜏 ∪ {⩽} with at most one free vertex
variable and no relation or function variables. Then there is a decomposable FO2+C-formula 𝜑′

such that for all ordered 𝜏-structures 𝐴 and all assignments a over 𝐴 it holds that 𝐴 ⊧ 𝜑 ⇐⇒
𝐴 ⊧ 𝜑′.

PROOF . We first define a bijection between the vertices of the structure 𝐴 and an initial
segment of N. We simply let bij(𝑥, 𝑦) B #𝑥′.𝑥′ ⩽ 𝑥 = #(𝑦′ ≤ ord). 𝑦′ ≤ 𝑦. We introduce a
distinguished number variable 𝑦𝑥 for every vertex variable 𝑥.

To obtain 𝜑′ from 𝜑, we first replace quantification over 𝑥 in counting terms by quantifica-
tion over 𝑦𝑥 , that is, we replace #(𝑥, . . .) by #(𝑦𝑥 < ord, . . .). Furthermore, we replace atomic
formulas 𝑥 = 𝑥′ by 𝑦𝑥 = 𝑦𝑥′ (or, more formally, 𝑦𝑥 ≤ 𝑦𝑥′ ∧ 𝑦𝑥′ ≤ 𝑦𝑥) and atomic formulas 𝑅(𝑥, 𝑥′)
by ∃𝑥1.∃𝑥2.(bij(𝑥1, 𝑦𝑥) ∧ bij(𝑥2, 𝑦𝑥′) ∧ 𝑅(𝑥1, 𝑥2)). Let 𝜓 be the resulting formula. If 𝜑 has no free
variables, we let 𝜑′ B 𝜓. If 𝜑 has one free variable 𝑥, we let

𝜑′ B ∃𝑦𝑥 < ord.(bij(𝑥, 𝑦𝑥) ∧ 𝜓).

Then 𝜑′ is equivalent to 𝜑, and it only contains the vertex variables 𝑥1, 𝑥2 and hence is in FO2+C.
It is easy to check that the formula is decomposable. ∎

REMARK 3.28. Note that Lemma 3.27 implies that on ordered structures, every FO2+C-
formula with at most one free variable is equivalent to a decomposable formula. It is an open
problem whether this holds on arbitrary structures.

The definition of decomposable FO𝑘+C is not particularly intuitive, at least at first glance.
However, we wonder if “decomposable FO𝑘+C” is what we actually want as the 𝑘-variable
fragment of FO+C. This view is not only supported by Lemma 3.27, but also by the observation
that the logic C𝑘 (the 𝑘-variable fragment of the extension of first-order logic by counting
quantifiers ∃≥𝑛𝑥) is contained in decomposable FO𝑘+C. Furthermore, characterisations of
𝑘-variable logics in terms of pebble games or the WL-algorithm only take atomic properties of
𝑘-tuples into account. ∎

The guarded fragmentGFO+C is a fragment of FO2+Cwhere quantification and counting
is restricted to range over neighbours of a free variable. We fix two variables 𝑥1, 𝑥2. A guard is
an atomic formula of the form 𝑅(𝑥𝑖 , 𝑥3−𝑖) for some binary relation symbol 𝑅. We inductively
define the sets of GFO+C-terms and GFO+C-formulas as follows.

All number variables and 0, 1,ord are GFO+C-terms.
For all GFO+C-terms 𝜃, 𝜃′, the expressions 𝜃 + 𝜃′ and 𝜃 ⋅ 𝜃′ are GFO+C-terms.

39 / 93 The Descriptive Complexity of Graph Neural Networks

For all function variables 𝑈 of type (𝑡1, . . . , 𝑡𝑘)→ n and all tuples (𝜉1, . . . , 𝜉𝑘), where 𝜉𝑖 is a
vertex variable if 𝑡𝑖 = v and 𝜉𝑖 is a GFO+C-term if 𝑡𝑖 = n, the expression 𝑈(𝜉1, . . . , 𝜉𝑘) is a
GFO+C-term.
For all GFO+C-terms 𝜃, 𝜃′, the expression 𝜃 ≤ 𝜃′ is a GFO+C-formula.
All relational atoms whose variables are among 𝑥1, 𝑥2 are GFO+C-formulas.
For all relation variables 𝑋 of type {(𝑡1, . . . , 𝑡𝑘)} and all tuples (𝜉1, . . . , 𝜉𝑘), where 𝜉𝑖 is a
vertex variable if 𝑡𝑖 = v and 𝜉𝑖 is a GFO+C-term if 𝑡𝑖 = n, the expression 𝑋(𝜉1, . . . , 𝜉𝑘) is a
GFO+C-formula.
For all GFO+C-formulas 𝜑,𝜓 the expressions ¬𝜑 and 𝜑 ∧ 𝜓 are GFO+C-formulas.
For all GFO+C-formulas 𝜑, guards 𝛾, number variables 𝑦1, . . . , 𝑦𝑘, all GFO+C-terms
𝜃1, . . . , 𝜃𝑘, and 𝑖 = 1, 2,

#(𝑥3−𝑖 , 𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).(𝛾 ∧ 𝜑), (14)

is a GFO+C-term.
For all GFO+C-formulas 𝜑, number variables 𝑦1, . . . , 𝑦𝑘, and GFO+C-terms 𝜃1, . . . , 𝜃𝑘,

#(𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).𝜑, (15)

is a GFO+C-term.

Observe that a GFO+C-term or GFO+C-formula either has at least one free vertex variable or
contains no vertex variable at all. Note that we add ord as a “built-in” constant that is always
interpreted by the order of the input structure. We need access to the order of a structure to
bound quantification on numbers, and the closed FO2+C-term ord = #𝑥.𝑥 = 𝑥 defining the
order is not in GFO+C.

An r-expression is guarded if all its formulas and terms are in GFO+C.

REMARK 3.29. Our definition of the guarded fragment is relatively liberal in terms of which
kind of formulas 𝜑 we allow inside the guarded counting operators in (14). In particular, we
allow both 𝑥𝑖 and 𝑥3−𝑖 to occur freely in 𝜑. A more restrictive alternative definition, more in the
spirit of a modal logic, would be to stipulate that the variable 𝑥𝑖 must not occur freely in 𝜑 and
the bounding terms 𝜃𝑖 . Let us call the restriction of GFO+Cwhere terms of the form (14) are
only allowed for formulas 𝜑 and terms 𝜃1, . . . , 𝜃𝑘 in which 𝑥𝑖 does not occur freely the modal
fragment of FO+C, denoted byMFO+C.

While our main focus will be onGFO+C, we will explain how to adapt our main results to
MFO+C in a sequence of remarks. The distinction between the modal and guarded fragments
is closely related to a similar distinction for graph neural networks (see Remark 4.1).

It is proved in the subsequent article [12] thatGFO+C andMFO+C have the same expres-
sive power. The characterisation theorems of this article will be used there to transfer this to
graph neural networks. ∎

40 / 93 M. Grohe

By definition,GFO+C is contained in FO2+C. The converse does not hold. Let us introduce
an intermediate fragment GFO+Cgc which extends GFO+C and is still in FO2+C. We call
GFO+Cgc the guarded fragment with global counting. In addition to the guarded counting terms
in (14), in GFO+Cgc formulas we also allow a restricted form of unguarded counting in the
form

#(𝑥3−𝑖 , 𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).𝜑, (16)

where the variable 𝑥𝑖 must not occur freely in 𝜑. Intuitively, such a term makes a “global”
calculation that is unrelated to the “local” properties of the free variable 𝑥𝑖 .

Let us call a GFO+C-formula or a GFO+Cgc-formula decomposable if it is decomposable
as an FO2+C-formula.

LEMMA 3.30. For every decomposable FO2+C-formula 𝜑 there is a decomposable GFO+Cgc-
formula 𝜑′ such that for all graphs 𝐺, possibly labelled, and all assignments a over 𝐺 we have

(𝐺,a) ⊧ 𝜑 ⇐⇒ (𝐺,a) ⊧ 𝜑′.

PROOF . Throughout this proof, formulas are without relation or function variables. We write
𝑥 and 𝑥′ to refer to the variables 𝑥1, 𝑥2, with the understanding that if 𝑥 refers to 𝑥𝑖 then 𝑥′ refers
to 𝑥3−𝑖 . We need to replace unguarded terms by combinations of terms of the form (14), (15),
and (16).

CLAIM 3.30.1. Every term 𝜂 B #(𝑥′, 𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).𝜓, where 𝜓 is a GFO+Cgc-formula
and the 𝜃𝑖 are GFO+Cgc-terms, is equivalent to a GFO+Cgc-term.

Proof. By Lemma 3.2, we may assume without loss of generality that the terms 𝜃𝑖 do not contain
the variables 𝑥, 𝑥′, 𝑦1, . . . , 𝑦𝑘 (and therefore the counting operator is nonadaptive). Indeed, by
the lemma we can find a term 𝜃 built from ord and the free number variables of 𝜂 such that 𝜃
bounds all 𝜃𝑖 . Then 𝜂 is equivalent to #(𝑥′, 𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝜓 ∧ 𝑦1 < 𝜃1 ∧ . . . ∧ 𝑦𝑘 < 𝜃𝑘).

Also without loss of generality we may assume that 𝑘 ≥ 1, because we can always append
𝑦 < 1 for a fresh variable 𝑦 in the counting operator without changing the result. To simplify
the notation, let us assume that 𝑘 = 1. The generalisation to larger 𝑘 is straightforward. Hence

𝜂 = #(𝑥′, 𝑦 < 𝜃).𝜓 (17)

and 𝜃 is a term in which neither 𝑥 nor 𝑥′ is free.
Since 𝜓 is decomposable, we can re-write 𝜓 as

(𝐸(𝑥, 𝑥′) ∧ 𝜓1) ∨ (¬𝐸(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓2) ∨ 𝜓3,

where 𝜓1 and 𝜓2 are Boolean combinations of formulas with at most one free vertex variable
(either 𝑥 or 𝑥′), and 𝑥′ does not occur freely in 𝜓3. To see this, note that in graphs all vertices

41 / 93 The Descriptive Complexity of Graph Neural Networks

𝑥, 𝑥′ satisfy exactly one of 𝐸(𝑥, 𝑥′), ¬𝐸(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′, and 𝑥 = 𝑥′. Thus 𝜓 is equivalent to the
disjunction

(𝐸(𝑥, 𝑥′) ∧ 𝜓) ∨ (¬𝐸(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓) ∨ (𝑥 = 𝑥′ ∧ 𝜓).

Then to obtain 𝜓1 and 𝜓2, we eliminate all atomic formulas 𝐸(𝑥, 𝑥′), 𝑥 = 𝑥′ in both free variables
from 𝜓, and to obtain 𝜓3 we substitute 𝑥 for all free occurrence of 𝑥′. Thus 𝜂 is equivalent to the
term

#(𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓1)
+ #(𝑥′, 𝑦 < 𝜃).(¬𝐸′(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓2) (18)

+ #(𝑦 < 𝜃).𝜓3.

The first and the third term in this sum are already GFO+Cgc-terms of the forms (14) and (15),
respectively. We only need to worry about the second,

𝜂2 B #(𝑥′, 𝑦 < 𝜃).(¬𝐸′(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓2).

We can equivalently re-write 𝜂2 as

#(𝑥′, 𝑦 < 𝜃).𝜓2

� #(𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓2)
� #(𝑦 < 𝜃).𝜓2

𝑥
𝑥′ ,

where 𝜓2
𝑥
𝑥′ denotes the formula obtained from 𝜓2 by replacing all free occurrences of 𝑥′ by 𝑥.

The second and the third term are already GFO+C-terms. We only need to worry about the
first,

𝜂′2 B #(𝑥′, 𝑦 < 𝜃).𝜓2

Recall that 𝜓2 is a Boolean combination of formulas with only one free vertex variable. Bringing
this Boolean combination into disjunctive normal form, we obtain an equivalent formula
⋁𝑖∈𝐼(𝜒𝑖∧𝜒′𝑖), where 𝑥 does not occur freely in 𝜒′𝑖 and 𝑥′ does not occur freely in 𝜒𝑖 . We can further
ensure that the disjuncts are mutually exclusive, that is, for every pair 𝑥, 𝑥′ there is at most one
𝑖 such that that it satisfies (𝜒𝑖 ∧ 𝜒′𝑖). For example, if 𝐼 = {1, 2}, we note that (𝜒1 ∧ 𝜒′1) ∨ (𝜒2 ∧ 𝜒′2) is
equivalent to

((𝜒1 ∧ 𝜒2) ∧ (𝜒′1 ∧ 𝜒′2))
∨((𝜒1 ∧ ¬𝜒2) ∧ (𝜒′1 ∧ 𝜒′2))
∨((𝜒1 ∧ 𝜒2) ∧ (𝜒′1 ∧ ¬𝜒′2))
∨((𝜒1 ∧ ¬𝜒2) ∧ (𝜒′1 ∧ ¬𝜒′2))
∨((¬𝜒1 ∧ 𝜒2) ∧ (𝜒′1 ∧ 𝜒′2))
∨((𝜒1 ∧ 𝜒2) ∧ (¬𝜒′1 ∧ 𝜒′2))

42 / 93 M. Grohe

∨((¬𝜒1 ∧ 𝜒2) ∧ (¬𝜒′1 ∧ 𝜒′2)).

Then 𝜂′2 is equivalent to the term

∑
𝑖∈𝐼

#(𝑥′, 𝑦 < 𝜃).(𝜒𝑖 ∧ 𝜒′𝑖).

Consider a summand 𝜂2,𝑖 B #(𝑥′, 𝑦 < 𝜃).(𝜒𝑖 ∧ 𝜒′𝑖). Let 𝜁 B #𝑥′.(𝜒𝑖 ∧ 𝜒′𝑖) and note that for all
graphs 𝐺 and assignments a we have

⟦𝜂2,𝑖⟧(𝐺,a) = ∑
𝑏<⟦𝜃⟧(𝐺,a)

⟦𝜁 ⟧(𝐺,a
𝑏
𝑦) = ∣{(𝑏, 𝑐) ∣ 𝑏 < ⟦𝜃⟧(𝐺,a) , 𝑐 < ⟦𝜁 ⟧(𝐺,a

𝑏
𝑦) }∣.

Let 𝜂′2,𝑖 B #(𝑦 < 𝜃, 𝑧 < ord).𝑧 < 𝜁 . Since we always have ⟦𝜁 ⟧(𝐺,a) ≤ ∣𝐺∣, the terms 𝜂2,𝑖 and 𝜂′2,𝑖 are
equivalent.

The final step is to turn 𝜁 into a GFO+Cgc-term. Recall that 𝜁 = #𝑥′.(𝜒𝑖 ∧ 𝜒′𝑖) and that 𝑥′ is
not free in 𝜒𝑖 . If 𝑥 does not satisfy 𝜒𝑖 , then the term 𝜁 evaluates to 0, and otherwise it has the
same value as the term #𝑥′.𝜒′𝑖 , which is of the form (16). Note that the term #(𝑦′ < 1).𝜒𝑖 , where
𝑦′ is a fresh number variable not occurring in 𝜒𝑖 , is of the form (15) and evaluates to 1 if 𝜒𝑖 is
satisfied and to 0 otherwise. Thus the term

#(𝑦′ < 1).𝜒𝑖 ⋅ #𝑥′.𝜒′𝑖

is a GFO+Cgc-term equivalent to 𝜁 . This completes the proof of the claim. ∎

CLAIM 3.30.2. Every term 𝜂 B #(𝑥, 𝑥′, 𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).𝜓, where 𝜓 is aGFO+Cgc-formula
and the 𝜃𝑖 are GFO+Cgc-terms, is equivalent to a GFO+Cgc-term.

Proof. Arguing as in the proof of Claim 3.30.1, we may assume that

𝜂 = #(𝑥, 𝑥′, 𝑦 < 𝜃).𝜓, (19)

where 𝜃 is a term in which the variables 𝑥, 𝑥′ are not free.
We proceed very similarly to the proof of Claim 3.30.1. The first step is to rewrite the term

as the sum

#(𝑥, 𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓1)
+ #(𝑥, 𝑥′, 𝑦 < 𝜃).(¬𝐸′(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓2) (20)

+ #(𝑥, 𝑦 < 𝜃).𝜓3,

where 𝜓1 and 𝜓2 are Boolean combinations of formulas with at most one free vertex variable
and 𝑥′ is not free in 𝜓3. Then the third term is already of the form (16), and we only have to
deal with the first two.

43 / 93 The Descriptive Complexity of Graph Neural Networks

Let us look at the term 𝜂1 B #(𝑥, 𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓1). Let 𝜁1 B #(𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧
𝜓1). Then 𝜁1 is a term of the form (14). Moreover, for every graph 𝐺 and assignment a we have

⟦𝜂1⟧(𝐺,a) = ∑
𝑎∈𝑉(𝐺)

⟦𝜁1⟧(𝐺,a
𝑎
𝑥) = ∣{(𝑎, 𝑐) ∣ 𝑎 ∈ 𝑉(𝐺), 𝑐 < ⟦𝜁1⟧(𝐺,a

𝑎
𝑥) }∣.

We let
𝜂′1 B #(𝑥, 𝑧 < ord).𝑧 < 𝜁1.

Then 𝜂′1 is a term of the form (16) that is equivalent to 𝜂1.
It remains to deal with the second summand in (20), the term

𝜂2 B #(𝑥, 𝑥′, 𝑦 < 𝜃).(¬𝐸′(𝑥, 𝑥′) ∧ ¬𝑥 = 𝑥′ ∧ 𝜓2).

We rewrite this term as

#(𝑥, 𝑥′, 𝑦 < 𝜃).𝜓2 (21)

� #(𝑥, 𝑥′, 𝑦 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓2) (22)

� #(𝑥, 𝑦 < 𝜃).𝜓2
𝑥
𝑥′ . (23)

The term (23) is of the form (16), and we have just seen how to deal with a term of the form (22).
Thus it remains to deal with the first term 𝜂′2 B #(𝑥, 𝑥′, 𝑦 < 𝜃).𝜓2. As in the proof of Claim 3.30.1,
we can find an equivalent formula ⋁𝑖∈𝐼(𝜒𝑖 ∧ 𝜒′𝑖), where 𝑥 does not occur freely in 𝜒′𝑖 and 𝑥′ does
not occur freely in 𝜒𝑖 , and the disjuncts are mutually exclusive. Then 𝜂′2 is equivalent to the sum

∑
𝑖∈𝐼

#(𝑥, 𝑥′, 𝑦 < 𝜃).(𝜒𝑖 ∧ 𝜒′𝑖).

Consider one of the terms in the sum, 𝜂′2,𝑖 B #(𝑥, 𝑥′, 𝑦 < 𝜃).(𝜒𝑖 ∧ 𝜒′𝑖). We let 𝜁 B #(𝑥, 𝑥′).(𝜒𝑖 ∧ 𝜒′𝑖)
As in the proof of Claim 3.30.1, for all graphs 𝐺 and assignments a we have

⟦𝜂′2,𝑖⟧
(𝐺,a) = ∑

𝑏<⟦𝜃⟧(𝐺,a)
⟦𝜁 ⟧(𝐺,a

𝑏
𝑦) = ∣{(𝑏, 𝑐) ∣ 𝑏 < ⟦𝜃⟧(𝐺,a) , 𝑐 < ⟦𝜁 ⟧(𝐺,a) }∣.

Let 𝜂′′2,𝑖 B #(𝑦 < 𝜃, 𝑧 < ord ⋅ ord).𝑧 < 𝜁 . Since we always have ⟦𝜁 ⟧(𝐺,a) ≤ ∣𝐺∣2, the terms 𝜂′2,𝑖 and
𝜂′′2,𝑖 are equivalent.

To turn 𝜁 into a GFO+Cgc-term 𝜁 ′, we observe that for all graphs 𝐺 and assignments a
we have

⟦𝜁 ⟧(𝐺,a) = ∣{𝑎 ∈ 𝑉(𝐺) ∣ (𝐺,a𝑎
𝑥) ⊧ 𝜒𝑖}∣ ⋅ ∣{𝑎′ ∈ 𝑉(𝐺) ∣ (𝐺,a𝑎′

𝑥′) ⊧ 𝜒′𝑖}∣.

We let 𝜁 ′ B #𝑥.𝜒𝑖 ⋅ #𝑥′.𝜒′𝑖 . ∎

With these two claims, it is easy to inductively translate a decomposable FO2+C-formula
into an GFO+Cgc-formula. ∎

Combining Lemmas 3.30 and 3.27 with Corollary 3.6, we obtain the following.

44 / 93 M. Grohe

COROLLARY 3.31. Let Q be a unary query. Then 𝐿⩽(Q) is in TC0 if and only if Q is definable in
order-invariant GFO+Cgc

nu.

3.8 Arithmetic in GFO+C

Since all arithmetical FO+C-formulas and terms are inGFO+C, most results of Sections 3.4–3.6
apply to GFO+C. Exceptions are Lemmas 3.15, 3.16, and 3.20 on iterated addition, which may
involve vertex variables. Here we prove variants of these lemmas for the guarded fragment.

LEMMA 3.32. Let 𝑋 be a relation variable of type {v2nℓ}, and let 𝑈,𝑉 be function variables of
types v2nℓ → n, v2 → n, respectively. Furthermore, let 𝛾(𝑥, 𝑥′) be a guard.

1. There is a GFO+C-term u-itadd(𝑥) such that for all structures 𝐴, assignments a over 𝐴,
and 𝑎 ∈ 𝑉(𝐴),

⟦u-itadd⟧(𝐴,a) (𝑎) = ∑
(𝑎′,𝒃)

a(𝑈)(𝑎, 𝑎′,𝒃),

where the sum ranges over all (𝑎′,𝒃) ∈ 𝑉(𝐴)×Nℓ such that 𝐴 ⊧ 𝛾(𝑎, 𝑎′) and (𝑎, 𝑎′,𝒃) ∈a(𝑋)
and 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <a(𝑉)(𝑎, 𝑎′) for all 𝑖 ∈ [ℓ].

2. There are GFO+C-terms u-max(𝑥) and u-min(𝑥) such that for all structures 𝐴, assign-
ments a over 𝐴, and 𝑎 ∈ 𝑉(𝐴),

⟦u-max⟧(𝐴,a) (𝑎) =max
(𝑎′,𝒃)

a(𝑈)(𝑎, 𝑎′,𝒃),

⟦u-min⟧(𝐴,a) (𝑎) = min
(𝑎′,𝒃)

a(𝑈)(𝑎, 𝑎′,𝒃),

where max and min range over all (𝑎′,𝒃) ∈ 𝑉(𝐴)×Nℓ such that 𝐴 ⊧ 𝛾(𝑎, 𝑎′) and (𝑎, 𝑎′,𝒃) ∈
a(𝑋) and 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <a(𝑉)(𝑎, 𝑎′) for all 𝑖 ∈ [ℓ].

PROOF . The proof is very similar to the proof of Lemma 3.15, we just have to make sure that
the terms we define are guarded. Again, we assume for simplicity that ℓ = 1.

We let

u-itadd(𝑥) B #(𝑥′, 𝑦 < 𝑉(𝑥, 𝑥′), 𝑧 <𝑈(𝑥, 𝑥′, 𝑦)).(𝛾(𝑥, 𝑥′) ∧ 𝑋(𝑥, 𝑥′, 𝑦))

and

u-max(𝑥) B #𝑧 < u-itadd(𝑥).∃(𝑥′, 𝑦 < 𝑉(𝑥, 𝑥′)).(𝛾(𝑥, 𝑥′) ∧ 𝑋(𝑥, 𝑥′, 𝑦) ∧ 𝑧 <𝑈(𝑥, 𝑥′)),
u-min(𝑥) B #𝑧 < u-itadd(𝑥).∀(𝑥′, 𝑦 < 𝑉(𝑥, 𝑥′)).(𝛾(𝑥, 𝑥′) ∧ 𝑋(𝑥, 𝑥′, 𝑦)→ 𝑧 <𝑈(𝑥, 𝑥′)).

∎

LEMMA 3.33. Let 𝒁 be an r-schema of type v2nℓ → r. Let 𝑋 be a relation variable of type {v2nℓ},
and let 𝑉 be a function variable of type v2 → n. Furthermore, let 𝛾(𝑥, 𝑥′) be a guard.

45 / 93 The Descriptive Complexity of Graph Neural Networks

1. There is a guarded r-expression itadd(𝑥) such that for all structures 𝐴, assignments a over
𝐴, and 𝑎 ∈ 𝑉(𝐴) we have

⟪itadd⟫(𝐴,a) (𝑎) = ∑
(𝑎′,𝒃)
⟪𝒁⟫(𝐴,a) (𝑎, 𝑎′,𝒃),

where the sum ranges over all (𝑎′,𝒃) ∈ 𝑉(𝐴)×Nℓ such that 𝐴 ⊧ 𝛾(𝑎, 𝑎′) and (𝑎, 𝑎′,𝒃) ∈a(𝑋)
and 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <a(𝑉)(𝑎, 𝑎′) for all 𝑖 ∈ [ℓ].

2. There are guarded r-expressionsmax(𝑥) andmin(𝑥) such that for all structures 𝐴, assign-
ments a over 𝐴, and 𝑎 ∈ 𝑉(𝐴) we have

⟪max⟫(𝐴,a) (𝑎) =max
(𝑎′,𝒃)

⟪𝒁⟫(𝐴,a) (𝑎, 𝑎′,𝒃),

⟪min⟫(𝐴,a) (𝑎) = min
(𝑎′,𝒃)
⟪𝒁⟫(𝐴,a) (𝑎, 𝑎′,𝒃),

where max and min range over all (𝑎′,𝒃) ∈ 𝑉(𝐴)×Nℓ such that 𝐴 ⊧ 𝛾(𝑎, 𝑎′) and (𝑎, 𝑎′,𝒃) ∈
a(𝑋) and 𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 <a(𝑉)(𝑎, 𝑎′) for all 𝑖 ∈ [ℓ].

PROOF . The proof is an easy adaptation of the proof of Lemma 3.20, arguing as in the proof of
Lemma 3.32 to make sure that we obtains guarded formulas and terms. ∎

REMARK 3.34. Lemmas 3.32 and 3.33 have analogues for the modal fragmentMFO+C. For
Lemma 3.32, we let 𝑋 be a relation variable of type {vnℓ} and 𝑈,𝑉 function variables of types
vnℓ → n, v→ n, respectively. Then in the assertions, we always omit 𝑎 from the argument lists.
For example, statement (1) becomes: There is an MFO+C-term u-itadd(𝑥) such that for all
structures 𝐴, assignments a over 𝐴, and 𝑎 ∈ 𝑉(𝐴),

⟦u-itadd⟧(𝐴,a) (𝑎) = ∑
(𝑎′,𝒃)

a(𝑈)(𝑎′,𝒃),

where the sum ranges over all (𝑎′,𝒃) ∈ 𝑉(𝐴) ×Nℓ such that 𝐴 ⊧ 𝛾(𝑎, 𝑎′) and (𝑎′,𝒃) ∈a(𝑋) and
𝒃 = (𝑏1, . . . , 𝑏ℓ) ∈ Nℓ with 𝑏𝑖 < a(𝑉)(𝑎′) for all 𝑖 ∈ [ℓ]. The modeification for assertion (2) is
similar.

For Lemma 3.33, we let 𝒁 be an r-schema of type vnℓ → r, 𝑋 a relation variable of type
{vnℓ}, and 𝑉 be a function variable of type v→ n. The modification of the assertions is similar
to the previous lemma.

For both lemmas, the adaptation of the proof is straightforward. ∎

4. Graph Neural Networks

We will work with standard message passing graph neural networks (GNNs7) [9]. A GNN consists
of a finite sequence of layers. A GNN layer of input dimension 𝑝 and output dimension 𝑞 is a

7 We use the abbreviation GNN, but MPNN is also very common.

46 / 93 M. Grohe

triple 𝔏 = (msg,agg,comb) of functions: a message functionmsg ∶ R2𝑝 → R𝑝′ , an aggregation
function agg mapping finite multisets of vectors in R𝑝′ to vectors in R𝑝′′ , and a combination
function comb ∶ R𝑝+𝑝′′ → R𝑞. A GNN is a tuple 𝔑 = (𝔏(1), . . . ,𝔏(𝑑)) of GNN layers, where the
output dimension 𝑞(𝑖) of 𝔏(𝑖) matches the input dimension 𝑝(𝑖+1) of 𝔏(𝑖+1). We call 𝑞(0) B 𝑝(1)

the input dimension of 𝔑 and 𝑞(𝑑) the output dimension.
To define the semantics, let 𝔏 = (msg,agg,comb) be a GNN layer of input dimension 𝑝

and output dimension 𝑞. It computes a function 𝔏∶GS𝑝 →GS𝑞 (as for circuits and feedforward
neural networks, we use the same letter to denote the network and the function it computes)
defined by 𝔏(𝐺,x) B (𝐺,y), where y ∶ 𝑉(𝐺)→ R𝑞 is defined by

y(𝑣) B comb
⎛
⎝
x(𝑣),agg({{msg(x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}})

⎞
⎠
. (24)

A GNN 𝔑 = (𝔏(1), . . . ,𝔏(𝑑)) composes the transformations computed by its layers 𝔏(𝑖), that is, it
computes the function 𝔑∶GS𝑞(0) →GS𝑞(𝑑) defined by

𝔑(𝐺,x) B 𝔏(𝑑) ○𝔏(𝑑−1) ○ . . . ○𝔏(1).

It will be convenient to also define �̃� as the function mapping (𝐺,x) to the signal x′ ∈ S𝑞(𝑑)(𝐺)
such that 𝔑(𝐺,x) = (𝐺,x′), so 𝔑(𝐺,x) = (𝐺, �̃�(𝐺,x)), and similarly �̃� for a single layer 𝔏.

REMARK 4.1. Our version of GNNs corresponds to the message passing neural networks due
to [9]. In [12], these GNNs are called 2-GNNs, to distinguish them from another common version
of message passing graph neural networks, cleanly formalised as the aggregate-combine GNNs
in [3], and called 1-GNNs in [12]. In these 1-GNNs, messages only depend on the vertex they are
sent from, so the update rule (24) becomes

y(𝑣) B comb
⎛
⎝
x(𝑣),agg({{msg(x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}})

⎞
⎠
. (25)

Whenever we want to make the distinction between the two versions explicit, we use the 1-GNN
/ 2-GNN terminology, but most of the time we will just work with 2-GNNs and simply call them
GNNs. The reason I decided to focus on (2-)GNNs is that in practical work we also found it
beneficial to use them.

However, we will explain how to adapt our results to 1-GNNs in a series of remarks leading
to Theorem 7.6. On the logical side, 2-GNNs correspond to the guarded fragment GFO+C and
1-GNNs to the modal fragementMFO+C of first-order logic with counting (see Remark 3.29).

The relation between 1-GNNs and 2-GNNs is more complicated than one might think; we
refer the reader to [12]. ∎

So far, we have defined GNNs as an abstract computation model computing transformations
between graph signals. To turn them into deep learning models, we represent the functions that
specify the layers by feedforward neural networks. More precisely, we assume that the message

47 / 93 The Descriptive Complexity of Graph Neural Networks

functionsmsg and the combination functions comb of all GNN layers are specified by FNNs
𝔉msg and 𝔉comb. Furthermore, we assume that the aggregation function agg is summation
SUM, arithmetic meanMEAN, or maximumMAX. Note that this means that the aggregation
function does not change the dimension, that is, we always have 𝑝′ = 𝑝′′ (referring to the
description of GNN layers above). To be able to deal with isolated nodes as well, we define
SUM(∅) B MEAN(∅) B MAX(∅) B 0.

If the FNNs 𝔉msg and 𝔉comb on all layers are (rational) piecewise linear, we call the
GNN (rational) piecewise linear. Similarly, if they are rpl-approximable, we call the GNN rpl-
approximable.

We mention a few extensions of the basic GNN model. Most importantly, in a GNN with
global readout [3] (or, equivalently, a GNN with a virtual node [9]) in each round the nodes also
obtain the aggregation of the states of all nodes in addition to the messages they receive from
their neighbours. So the state update rule (24) becomes

y(𝑣) B comb(x(𝑣),agg({{msg(x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}}),

agg′({{x(𝑤) ∣ 𝑤 ∈ 𝑉(𝐺)}})).

We could also apply some functionmsg′ to the x(𝑤) before aggregating, but this would not
change the expressiveness, because we can integrate this into the combination function.

To adapt GNNs to directed graphs, it is easiest to use separate message functions for in-
neighbours and out-neighbours and to aggregate them separately and then combine both in
the combination function. In graphs with edge labels, or edge signals y∶𝐸(𝐺)→ R𝑘 for some 𝑘,
we can give these signals as a third argument to the message function, so the message function
becomes msg(x(𝑣),x(𝑤),y(𝑣,𝑤)). We can also adapt this to directed edge-labeled graphs
and hence to arbitrary binary relational structures. Often, we want to use GNNs to compute
graph-level functions GS𝑝 → R𝑞 rather than node-level functions GS𝑝 → GS𝑞. For this, we
aggregate the values of the output signal at the nodes to a single value. A graph-level GNN is a
triple𝔊 = (𝔑,agg, ro) consisting of a GNN 𝔑, say with input dimension 𝑝 and output dimension
𝑝′, an aggregate function agg, which we assume to be either SUM orMEAN orMAX, and a
readout function ro ∶ R𝑝′ → R𝑞, which we assume to be computed by an FNN 𝔉ro.

All of our results have straightforward extensions to all these variants of the basic model.
Since the article is lengthy and technical as it is, I decided to focus just on the basic model here.
Occasionally, I comment on some of the extensions, pointing out which modifications on the
logical side need to be made.

48 / 93 M. Grohe

4.1 Useful Bounds

LEMMA 4.2. Let 𝔏 be a GNN layer of input dimension 𝑝. Then there is a 𝛾 ∈ N>0 such that for all
graphs 𝐺, all signals x ∈ S𝑝(𝐺), and all vertices 𝑣 ∈ 𝑉(𝐺) we have

∥�̃�(𝐺,x)(𝑣)∥∞ ≤ 𝛾 ⋅ (∥x∣𝑁[𝑣]∥∞ + 1)max{deg(𝑣), 1} (26)

≤ 𝛾 ⋅ (∥x∥∞ + 1)∣𝐺∣. (27)

Recall that x∣𝑁[𝑣] denotes the restriction of a signal x to the closed neighbourhood 𝑁[𝑣]
of 𝑣, and we have ∥x∣𝑁[𝑣]∥∞ =max𝑤∈𝑁[𝑣] ∥x(𝑤)∥∞. The bound (26) is local, it only depends on
the neighbourhood of 𝑣. The global bound (27) is simpler, but a bit weaker.

PROOF . Clearly, (26) implies (27), so we only have to prove the local bound (26). Letmsg, agg,
comb be the message, aggregation, and combination functions of 𝔏. Let 𝔉msg and 𝔉comb be
FNNs computingmsg and comb, respectively, and let 𝛾msg B 𝛾(𝔉msg) and 𝛾comb B 𝛾(𝔉comb)
be the constants of Lemma 2.6(2).

Let 𝐺 be a graph, x ∈ S𝑝(𝐺), and 𝑣 ∈ 𝑉(𝐺). Then for all 𝑤 ∈ 𝑁𝐺(𝑣) we have

∥msg(x(𝑣),x(𝑤))∥∞ ≤ 𝛾msg ⋅ (∥(x(𝑣),x(𝑤))∥∞ + 1) ≤ 𝛾msg ⋅ (∥x∣𝑁[𝑣]∥∞ + 1).

Since for every multiset 𝑀 we have agg(𝑀) ≤ ∣𝑀 ∣ ⋅𝑚, where 𝑚 is the the maximum absolute
value of the entries of 𝑀 , it follows that

z(𝑣) B agg({{msg ⋅ (x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}}) ≤ 𝛾msg(∥x∣𝑁[𝑣]∥∞ + 1)deg(𝑣).

Since 𝛾msg ≥ 1, this implies

∥(x(𝑣),z(𝑣))∥∞ ≤ 𝛾msg ⋅ (∥x∣𝑁[𝑣]∥∞ + 1)max{deg(𝑣), 1}.

Hence

∥�̃�(𝐺,x)(𝑣)∥∞ = ∥comb((x(𝑣),z(𝑣)))∥∞
≤ 𝛾comb ⋅ (∥(x(𝑣),z(𝑣))∥∞ + 1)
≤ 𝛾comb ⋅ (𝛾msg(∥x∣𝑁[𝑣]∥∞ + 1)max{deg(𝑣), 1} + 1)
≤ 2𝛾comb𝛾msg ⋅ (∥x∣𝑁[𝑣]∥∞ + 1)max{deg(𝑣), 1}.

We let 𝛾 B 2𝛾comb𝛾msg. ∎

LEMMA 4.3. Let 𝔏 be a GNN layer of input dimension 𝑝. Then there is a 𝜆 ∈ N>0 such that for all
graphs 𝐺, all signals x,x′ ∈ S𝑝(𝐺), and all vertices 𝑣 ∈ 𝑉(𝐺) we have

∥�̃�(𝐺,x)(𝑣) − �̃�(𝐺,x′)(𝑣)∥∞ ≤ 𝜆 ∥x∣𝑁[𝑣] −x′∣𝑁[𝑣]∥∞max{deg(𝑣), 1} (28)

≤ 𝜆 ∥x −x′∥∞ ∣𝐺∣. (29)

49 / 93 The Descriptive Complexity of Graph Neural Networks

PROOF . Again, the local bound (28) implies the global bound (29). So we only need to prove
(28). Let msg,agg,comb be the message, aggregation, and combination functions of 𝔏. Let
𝔉msg and 𝔉comb be FNNs computingmsg and comb, respectively, and let 𝜆msg B 𝜆(𝔉msg) and
𝜆comb ∶= 𝜆(𝔉comb) be their Lipschitz constants (from Lemma 2.6(1)).

Let 𝐺 be a graph, x,x′ ∈ S𝑝(𝐺), and y B �̃�(𝐺,x), y′ B �̃�(𝐺,x′). Let 𝑣 ∈ 𝑉(𝐺). For all
𝑤 ∈ 𝑁(𝑣) we have

∥msg(x(𝑣),x(𝑤)) −msg(x′(𝑣),x′(𝑤))∥∞ ≤ 𝜆msg ∥(x(𝑣),x(𝑤)) − (x′(𝑣),x′(𝑤))∥∞ .

Thus for

z(𝑣) B agg({{msg(x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}}),

z′(𝑣) B agg({{msg(x′(𝑣),x′(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}})

we have
∥z(𝑣) −z′(𝑣)∥∞ ≤ 𝜆msg ∥x∣𝑁[𝑣] −x′∣𝑁[𝑣]∥∞ deg(𝑣). (30)

It follows that

∥y(𝑣) −y′(𝑣)∥∞ = ∥comb(x(𝑣),z(𝑣)) − comb(x(𝑣),z′(𝑣)∥∞
≤ 𝜆comb ∥(x(𝑣),z(𝑣)) − (x′(𝑣),z′(𝑣))∥∞
≤ 𝜆combmax{ ∥x(𝑣) −x′(𝑣)∥∞ , ∥z(𝑣) −z′(𝑣)∥∞ }

≤ 𝜆comb𝜆msg ∥x∣𝑁[𝑣] −x′∣𝑁[𝑣]∥∞max{deg(𝑣), 1}. (31)

This implies the assertion of the lemma for 𝜆 B 𝜆comb𝜆msg. ∎

5. The UniformCase: GNNswith RationalWeights

In this section, we study the descriptive complexity of rational piecewise linear GNNs. The
following theorem, which is the main result of this section, states that the signal transformations
computed by rational piecewise linear GNNs can be approximated arbitrarily closely byGFO+C-
formulas and terms.

THEOREM 5.1. Let 𝔑 be a rational piecewise linear GNN of input dimension 𝑝 and output
dimension 𝑞. Let 𝑿1, . . . ,𝑿 𝑝 be r-schemas of type v→ r, and let 𝑊 be a function variable of type
v → n. Then there are guarded r-expressions gnn-eval1(𝑥), . . . ,gnn-eval𝑞(𝑥) such that the
following holds for all graphs 𝐺 and assignments a over 𝐺. Let x ∈ S𝑝(𝐺) be the signal defined by

x(𝑣) B (⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣)), (32)

50 / 93 M. Grohe

and let y = �̃�(𝐺,x). Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪gnn-eval1⟫
(𝐺,a) (𝑣), . . . ,⟪gnn-eval𝑞⟫

(𝐺,a) (𝑣))∥
∞
≤ 2−a(𝑊)(𝑣). (33)

The main step in the proof of the theorem is the following lemma, which is the analogue
of the theorem for a single GNN layer.

LEMMA 5.2. Let 𝔏 be a rational piecewise linear GNN layer of input dimension 𝑝 and output
dimension 𝑞. Let 𝑿1, . . . ,𝑿 𝑝 be r-schemas of type v→ r, and let 𝑊 be a function variable of type
v → n. Then there are guarded r-expressions l-eval1(𝑥), . . . , l-eval𝑞(𝑥) such that the following
holds for all graphs 𝐺 and assignments a over 𝐺. Let x ∈ S𝑝(𝐺) be the signal defined by

x(𝑣) B (⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣)) (34)

and let y B �̃�(𝐺,x). Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪l-eval1⟫(𝐺,a) (𝑣), . . . ,⟪l-eval𝑞⟫
(𝐺,a) (𝑣))∥

∞
≤ 2−a(𝑊)(𝑣) (35)

PROOF . For the presentation of the proof it will be easiest to fix a graph 𝐺 and an assignment
a over 𝐺, though of course the formulas and terms we shall define will not depend on this
graph and assignment. Let x ∈ S𝑝(𝐺) be the signal defined in (34), and let y B �̃�(𝐺,x). Let
msg ∶ R2𝑝 → R𝑟, agg, and comb ∶ R𝑝+𝑟 → R𝑞 be the message, aggregation, and combination
functions of 𝔏. Let 𝔉msg and 𝔉comb be rational piecewise linear FNNs computingmsg,comb,
respectively, and recall that agg is either SUM,MEAN, orMAX defined on finite multisets of
vectors in R𝑟. Let 𝜆 ∈ N>0 be a Lipschitz constant for comb.

CLAIM 5.2 .1. There are guarded r-expressions 𝝁1(𝑥, 𝑥′), . . . , 𝝁𝑟(𝑥, 𝑥′) such that for all 𝑣, 𝑣′ ∈
𝑉(𝐺)

msg(⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣),⟪𝑿1⟫(𝐺,a) (𝑣′), . . . ,⟪𝑿 𝑝⟫

(𝐺,a) (𝑣′))

= (⟪𝝁1⟫
(𝐺,a) (𝑣, 𝑣′), . . . ,⟪𝝁𝑟⟫

(𝐺,a) (𝑣, 𝑣′))

Proof. This follows from Corollary 3.25 applied to𝔉msg. The expressions we obtain are guarded,
because we just substitute atoms containing the variables 𝑥 or 𝑥′ in the arithmetical formulas
we obtain from Corollary 3.25, but never quantify over vertex variables. ∎

CLAIM 5.2 .2. Let 𝒁1, . . . ,𝒁𝑟 be r-schemas of type v→ r. Then there are guarded r-expressions
𝜸1(𝑥), . . . , 𝜸𝑞(𝑥) such that for all assignments a′ over 𝐺,

comb(⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣),⟪𝒁1⟫(𝐺,a) (𝑣), . . . ,⟪𝒁𝑟⟫(𝐺,a) (𝑣))

= (⟪𝜸1⟫
(𝐺,a) (𝑣), . . . ,⟪𝜸𝑞⟫

(𝐺,a) (𝑣))

Proof. Again, this follows from Corollary 3.25. ∎

51 / 93 The Descriptive Complexity of Graph Neural Networks

To complete the proof, we need to distinguish between the different aggregation functions.
MEAN-aggregation is most problematic, because it involves a division, which we can only
approximate in our logic.

Case 1: agg = SUM.
We substitute the r-expressions 𝝁𝑖(𝑥, 𝑥′) of Claim 5.2.1 for the r-schema 𝒁 in the r-expression
itadd of Lemma 3.33 to obtain guarded r-expressions 𝝈𝑖 , for 𝑖 ∈ [𝑟], such that for all 𝑣 ∈ 𝑉(𝐺)
we have

⟪𝝈𝑖⟫(𝐺,a) (𝑣) = ∑
𝑣′∈𝑁(𝑣)

⟪𝝁𝑖⟫
(𝐺,a) (𝑣, 𝑣′). (36)

Then we substitute the r-expressions 𝝈𝑖(𝑥) for the variables 𝒁𝑖 in the formulas 𝜸 𝑗 of Claim 5.2.2
and obtain the desired r-expressions l-eval 𝑗(𝑥) such that

(⟪l-eval1⟫(𝐺,a) (𝑣), . . . ,⟪l-eval𝑞⟫
(𝐺,a) (𝑣))

= comb(⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣),⟪𝝈1⟫(𝐺,a) (𝑣), . . . ,⟪𝝈𝑟⟫(𝐺,a) (𝑣))

= y(𝑣).

Thus in this case, the r-expressions l-eval 𝑗(𝑥) even define y exactly. Of course this implies that
they satisfy (35).
Case 2: agg =MAX.
We can argue as in Case 1, using the r-expressionmax of Lemma 3.33 instead of itadd. Again,
we obtain r-expressions l-eval 𝑗(𝑥) that define y exactly.
Case 3: agg =MEAN.
The proof is similar to Case 1 and Case 2, but we need to be careful. We cannot define the mean
of a family of numbers exactly, but only approximately, because of the division it involves.
Exactly as in Case 1 we define r-expressions 𝝈𝑖(𝑥) satisfying (36). Recall that 𝜆 is a Lipschitz
constant for comb. Let 𝜹(𝑥) B #𝑥′.𝐸(𝑥, 𝑥′) be a term defining the degree of a vertex. Using
Lemma 3.21 we can construct an r-expression 𝝂𝑖 such that

RRRRRRRRRRR

⟪𝝈𝑖⟫(𝐺,a) (𝑣)
⟪𝜹⟫(𝐺,a) (𝑣)

− ⟪𝝂𝑖⟫(𝐺,a) (𝑣)
RRRRRRRRRRR
< 2−a(𝑊)−𝜆 ≤ 𝜆−12−a(𝑊)

if ⟪𝜹⟫(𝐺,a) (𝑣) = deg(𝑣) ≠ 0 and ⟪𝝂𝑖⟫(𝐺,a) (𝑣) = 0 otherwise. Thus, letting

z(𝑣) B MEAN({{msg(x(𝑣),x(𝑣′)) ∣ 𝑣′ ∈ 𝑁(𝑣)}})

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if deg(𝑣) = 0,

(⟪𝝈1⟫(𝐺,a)(𝑣)
⟪𝜹⟫(𝐺,a)(𝑣)

, . . . ,
⟪𝝈𝑟⟫(𝐺,a)(𝑣)
⟪𝜹⟫(𝐺,a)(𝑣)

) otherwise

we have
∥z(𝑣) − (⟪𝝂1⟫(𝐺,a) (𝑣), . . . ,⟪𝝂𝑟⟫(𝐺,a) (𝑣))∥

∞
≤ 𝜆−12−a(𝑊)

52 / 93 M. Grohe

for all 𝑣 ∈ 𝑉(𝐺). By the Lipschitz continuity of comb, this implies

∥comb(x(𝑣),z(𝑣)) − comb(x(𝑣),⟪𝝂1⟫(𝐺,a) (𝑣), . . . ,⟪𝝂𝑟⟫(𝐺,a) (𝑣))∥
∞
≤ 2−a(𝑊). (37)

We substitute the r-expressions 𝝂𝑖(𝑥) for the variables 𝒁𝑖 in the formulas 𝜸 𝑗 of Claim 5.2.2 and
obtain r-expressions l-eval 𝑗(𝑥) such that

(⟪l-eval1⟫(𝐺,a) (𝑣), . . . ,⟪l-eval𝑞⟫
(𝐺,a) (𝑣))

= comb(⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣),⟪𝝂1⟫(𝐺,a) (𝑣), . . . ,⟪𝝂𝑟⟫(𝐺,a) (𝑣))

= comb(x(𝑣),⟪𝝂1⟫(𝐺,a) (𝑣), . . . ,⟪𝝂𝑟⟫(𝐺,a) (𝑣)).

Since y(𝑣) = comb(x(𝑣),z(𝑣)), the assertion (35) follows from (37). ∎

PROOF OF THEOREM 5.1 . We fix a graph 𝐺 and assignment a over 𝐺 for the presentation of
the proof; as usual the formulas we shall define will not depend on this graph and assignment.
Let x ∈ S𝑝(𝐺) be the signal defined in (32).

Suppose that 𝔑 = (𝔏(1), . . . ,𝔏(𝑑)). Let 𝑝(𝑖−1) be the input dimension of 𝔏(𝑖), and let 𝑝(𝑖)

be the output dimension. Then 𝑝 = 𝑝(0) and 𝑞 = 𝑝(𝑑). Moreover, let x(0) B x and x(𝑖) B

�̃�(𝑖)(𝐺,x(𝑖−1)) for 𝑖 ∈ [𝑑]. Note that x(𝑑) = y.
For every 𝑖 ∈ [𝑑], let 𝜆(𝑖) B 𝜆(𝔏(𝑖)) be the constant of Lemma 4.3. We inductively define

a sequence of GFO+C-terms err(𝑖)(𝑥), which will give us the desired error bounds. We let
err(𝑑)(𝑥) B𝑊(𝑥). To define err(𝑖)(𝑥) for 0 ≤ 𝑖 < 𝑑, we first note that by Lemma 3.32, for every
GFO+C-term 𝜃(𝑥) there is a GFO+C-termmaxN𝜃(𝑥) such that for every 𝑣 ∈ 𝑉(𝐺) we have

⟦maxN𝜃⟧(𝐺,a) (𝑣) =max{ ⟦𝜃⟧(𝐺,a) (𝑤) ∣ 𝑤 ∈ 𝑁𝐺[𝑣]}.

We let dg(𝑥) B (#𝑥′.𝐸(𝑥, 𝑥′)) + 1 and

err(𝑖)(𝑥) B maxNerr(𝑖+1)(𝑥) + 𝜆(𝑖+1) ⋅maxNdg(𝑥) + 1.

Letting
𝑘(𝑖)(𝑣) B ⟦err(𝑖)⟧(𝐺,a) (𝑣),

for every 𝑣 ∈ 𝑉(𝐺) and 0 ≤ 𝑖 < 𝑑, we have

𝑘(𝑖)(𝑣) =max{𝑘(𝑖+1)(𝑤) ∣ 𝑤 ∈ 𝑁𝐺[𝑣]} + 𝜆(𝑖+1)max{deg𝐺(𝑤) + 1 ∣ 𝑤 ∈ 𝑁𝐺[𝑣]} + 1. (38)

Furthermore, 𝑘(𝑑)(𝑣) =a(𝑊)(𝑣).

Now for 𝑖 ∈ [𝑑] and 𝑗 ∈ [𝑝(𝑖)]we shall define guarded r-expressions 𝝆(𝑖)𝑗 (𝑥) such that for
all 𝑣 ∈ 𝑉(𝐺), with

z(𝑖)(𝑣) B (⟪𝝆(𝑖)1 ⟫(𝑣), . . . ,⟪𝝆
(𝑖)
𝑝(𝑖)⟫(𝑣))

53 / 93 The Descriptive Complexity of Graph Neural Networks

we have
∥x(𝑖)(𝑣) −z(𝑖)(𝑣)∥∞ ≤ 2−𝑘

(𝑖)(𝑣). (39)

For 𝑖 = 𝑑 and with gnn-eval 𝑗 B 𝝆(𝑑)𝑗 , this implies (33) and hence the assertion of the theorem.

To define 𝝆(1)𝑗 (𝑥), we apply Lemma 5.2 to the first layer 𝔏(1) and substitute err(0) for 𝑊 in
the resulting-expression. Then (39) for 𝑖 = 1 follows directly from Lemma 5.2 and the fact that
𝑘(0)(𝑣) ≥ 𝑘(1)(𝑣) for all 𝑣.

For the inductive step, let 2 ≤ 𝑖 ≤ 𝑑 and suppose that we have defined 𝝆(𝑖−1)
𝑗 (𝑥) for

all 𝑗 ∈ [𝑝(𝑖−1)]. To define 𝝆(𝑖)𝑗 (𝑥), we apply Lemma 5.2 to the 𝑖th layer 𝔏(𝑖) and substitute

𝝆(𝑖−1)
1 , . . . , 𝝆(𝑖−1)

𝑝(𝑖−1) for 𝑿1, . . . ,𝑿 𝑝(𝑖−1) and err(𝑖−1) for 𝑊 in the resulting r-expression. Then by
Lemma 5.2, for all 𝑣 ∈ 𝑉(𝐺) we have

∥�̂�(𝑖)(𝐺,z(𝑖−1))(𝑣) −z(𝑖)(𝑣)∥∞ ≤ 2−𝑘
(𝑖−1)(𝑣). (40)

Moreover, by Lemma 4.3 applied to 𝔏(𝑖) and x B x(𝑖−1), x′ B z(𝑖−1) we have

∥x(𝑖)(𝑣) − �̂�(𝑖)(𝐺,z(𝑖−1))(𝑣)∥∞
≤ 𝜆(𝑖)max{∥x(𝑖−1)(𝑤) −z(𝑖−1)(𝑤)∥∞ ∣ 𝑤 ∈ 𝑁𝐺[𝑣]} (deg𝐺(𝑣) + 1)

≤ 𝜆(𝑖)max{2−𝑘(𝑖−1)(𝑤) ∣ 𝑤 ∈ 𝑁𝐺[𝑣]}(deg𝐺(𝑣) + 1)

≤ max{2−𝑘(𝑖−1)(𝑤)+𝜆(𝑖)⋅(deg𝐺(𝑣)+1) ∣ 𝑤 ∈ 𝑁𝐺[𝑣]}.

We choose a 𝑤 ∈ 𝑁𝐺[𝑣]minimising 𝑘(𝑖−1)(𝑤). Then

∥x(𝑖)(𝑣) − �̂�(𝑖)(𝐺,z(𝑖−1))(𝑣)∥ ≤ 2−(𝑘
(𝑖−1)(𝑤)−𝜆(𝑖)⋅(deg𝐺(𝑣)+1)). (41)

Combining (40) and (41) by the triangle inequality, we get

∥x(𝑖)(𝑣) −z(𝑖)(𝑣)∥ ≤ 2−𝑘
(𝑖−1)(𝑣) + 2−(𝑘

(𝑖−1)(𝑤)−𝜆(𝑖)⋅(deg𝐺(𝑣)+1)).

Observe that 𝑘(𝑖−1)(𝑣) ≥ 𝑘(𝑖)(𝑣) + 1 and

𝑘(𝑖−1)(𝑤) − 𝜆(𝑖) ⋅ (deg𝐺(𝑣) + 1)
=max{𝑘(𝑖)(𝑣′) ∣ 𝑣′ ∈ 𝑁𝐺[𝑤]} + 𝜆(𝑖)max{deg𝐺(𝑣′) + 1 ∣ 𝑣′ ∈ 𝑁𝐺[𝑤]} + 1

− 𝜆(𝑖) ⋅ (deg𝐺(𝑣) + 1)
≥ 𝑘(𝑖)(𝑣) + 𝜆(𝑖)(deg𝐺(𝑣) + 1) + 1 − 𝜆(𝑖) ⋅ (deg𝐺(𝑣) + 1) since 𝑣 ∈ 𝑁𝐺[𝑤]
= 𝑘(𝑖)(𝑣) + 1.

Thus
∥y(𝑖)(𝑣) −z(𝑖)(𝑣)∥ ≤ 2−𝑘

(𝑖)(𝑣)−1 + 2−𝑘
(𝑖)(𝑣)−1 = 2−𝑘

(𝑖)(𝑣),

which proves (39) and hence the theorem. ∎

54 / 93 M. Grohe

REMARK 5.3. It is worth mentioning that the approximation error in Theorem 5.1 is due to
the division involved in MEAN aggregations. If we only consider rational piecewise linear GNNs
with SUM and MAX aggregation, we obtain an exact simulation by GFO+C-formulas, that is,
we can replace inequality (33) by the equality

y(𝑣) = (⟪gnn-eval1⟫
(𝐺,a) (𝑣), . . . ,⟪gnn-eval𝑞⟫

(𝐺,a) (𝑣)).

This follows easily from the proof.
However, for MEAN aggregation, we cannot achieve such an exact result, at least not if we

work with dyadic rationals. If we try to use arbitrary rationals, we run into other difficulties,
because the denominators of the fractions we obtain can get very large. ∎

Since logics define queries, when comparing the expressiveness of graph neural networks
with that of logics, it is best to focus on queries. Recall from Section 2.5 that we identified
ℓ-labelled graphs with graphs carrying an ℓ-dimensional Boolean signal. A unary query on the
class GSbool

ℓ is an equivariant signal transformations from GSbool
ℓ to GSbool

1 .
We say that a GNN 𝔑 computes a unary query Q ∶GSbool

ℓ →GSbool
1 if for all (𝐺,b) ∈GSbool

ℓ

and all 𝑣 ∈ 𝑉(𝐺) it holds that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̃�(𝐺,b)(𝑣) ≥ 3
4 if Q(𝐺,b)(𝑣) = 1,

�̃�(𝐺,b)(𝑣) ≤ 1
4 if Q(𝐺,b)(𝑣) = 0.

(42)

Observe that if we allow lsig or relu activations, we can replace the ≥ 3
4 and ≤ 1

4 in (42) by
= 1 and = 0 and thus require �̃�(𝐺,b)(𝑣) = Q(𝐺,b)(𝑣). We simply apply the transformation
lsig(2𝑥 − 1

2) to the output. It maps the interval (−∞, 1
4] to 0 and the interval [3

4 ,∞) to 1. With
other activations such as the logistic function, this is not possible, which is why we chose our
more flexible definition.

COROLLARY 5.4. Every unary query on GSℓ that is computable by a rational piecewise linear
GNN is definable in GFO+C.

Note that this Corollary is Theorem 1.4 stated in the introduction.
The reader may wonder if the converse of the previous corollary holds, that is, if every

query definable in GFO+C is computable by a rational piecewise linear GNN. It is not; we refer
the reader to Remark 7.7.

As mentioned earlier, there are versions of the theorem for all the extensions of basic
GNNs that we discussed in Section 4. For later reference, we state the version for GNNs with
global readout.

THEOREM 5.5. Let 𝔑 be a rational piecewise linear GNN with global readout of input dimension
𝑝 and output dimension 𝑞. Let 𝑿1, . . . ,𝑿 𝑝 be r-schemas of type v→ r, and let 𝑊 be a function
variable of type v→ n. Then there are r-expressionsgnn-eval1(𝑥), . . ., gnn-eval𝑞(𝑥) inGFO+Cgc

55 / 93 The Descriptive Complexity of Graph Neural Networks

such that the following holds for all graphs 𝐺 and assignments a over 𝐺. Let x ∈ S𝑝(𝐺) be the
signal defined by

x(𝑣) B (⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣)), (43)

and let y = �̃�(𝐺,x). Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪gnn-eval1⟫
(𝐺,a) (𝑣), . . . ,⟪gnn-eval𝑞⟫

(𝐺,a) (𝑣))∥
∞
≤ 2−a(𝑊)(𝑣). (44)

The proof of the this theorem is completely analogous to the proof of Theorem 5.1. However,
when expressing the global aggregations (as in (36)), we need to use unguarded counting terms
of the shape (16) and hence end up with GFO+Cgc-expressions.

REMARK 5.6. Theorem 5.1 and Corollary 5.4 also have versions for 1-GNNs and the modal frag-
mentMFO+C. In Theorem 5.1, if𝔑 is a 1-GNN, we can obtain modal r-expressionsgnn-eval𝑖(𝑥).
To prove this, we need a corresponding version of Lemma 5.2. In the proof of this lemma, in
Claim 5.2.1 we have to only need to simulate a message function

msg(⟪𝑿1⟫(𝐺,a) (𝑣′), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣′)),

dropping the arguments depending on 𝑣, and hence we only need to construct r-expressions
𝜇𝑖(𝑥′). Then in the aggregations, we can apply the modal version of Lemma 3.33 to obtain modal
r-expressions 𝝈𝑖 satisfying (36) (in Case 1, and the corresponding equalities in Cases 2 and 3).

The rest of the proofs of Lemma 5.2 and Theorem 5.1 go through without any changes.
The modal version of Corollary 5.4 then follows; it reads as: Every unary query on GSℓ that is
computable by a rational piecewise linear 1-GNN is definable inMFO+C. ∎

6. The Non-UniformCase: GNNswith ArbitraryWeights and Fami-
lies of GNNs

Now we consider the general case where the weights in the neural networks are arbitrary real
numbers. We also drop the assumption that the activation functions be piecewise linear, only
requiring rpl approximability. The price we pay is a non-uniformity on the side of the logic and
a slightly weaker approximation guarantee as well as a boundedness assumption on the input
signal.

THEOREM 6.1. Let 𝔑 be an rpl-approximable GNN of input dimension 𝑝 and output dimension
𝑞. Let 𝑿1, . . . ,𝑿 𝑝 be r-schemas of type v→ r, and let 𝑊,𝑊 ′ be function variables of type ∅→ n.

Then there are r-expressions gnn-eval1(𝑥), . . ., gnn-eval𝑞(𝑥) in GFO+Cnu such that the
following holds for all graphs 𝐺 and assignments a over 𝐺. Let x ∈ S𝑝(𝐺) be the signal defined by

x(𝑣) B (⟪𝑿1⟫(𝐺,a) (𝑣), . . . ,⟪𝑿 𝑝⟫
(𝐺,a) (𝑣)), (45)

56 / 93 M. Grohe

and let y = �̃�(𝐺,x). Assume that ∥x∥∞ ≤a(𝑊) and that a(𝑊 ′) ≠ 0. Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪gnn-eval1⟫
(𝐺,a) (𝑣), . . . ,⟪gnn-eval𝑞⟫

(𝐺,a) (𝑣))∥
∞
≤ 1
a(𝑊 ′) . (46)

Let us comment on the role of the two 0-ary functions (that is, constants) 𝑊,𝑊 ′. We
introduce them to add flexibility in the bounds. Their values depend on the assignment a,
which means that we can freely choose them. For example, we can let a(𝑊) =a(𝑊 ′) = 𝑛 B ∣𝐺∣.
Then we get an approximation error of 1/𝑛 for input signals bounded by 𝑛. Or we could let
a(𝑊) = 1 and a(𝑊 ′) = 100. Then we get an approximation error of 1% for Boolean input
signals.

Since we move to a non-uniform regime anyway, to obtain the most general results we
may as well go all the way to a non-uniform GNN model where we have different GNNs for
every size of the input graphs.

We need additional terminology. We define the bitsize bsize(𝔉) of a rational piecewise
linear FNN 𝔉 to be the sum of the bitsizes of its skeleton, all its weights and biases, and all its
activations. We define the weight of an arbitrary FNN 𝔉 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 ,𝒘,𝒃) to be

wt(𝔉) B ∣𝑉 ∣ + [𝐸∣ + ∥𝒘∥∞ + ∥𝒃∥∞ +max
𝑣∈𝑉
(𝜆(𝔞𝑣) + 𝔞𝑣(0))

Here 𝜆(𝔞𝑣) denotes the least integer that is a Lipschitz constant for 𝔞𝑣. The size size(𝔉) of a
rational piecewise linear FNN 𝔉 is the maximum of its bitsize and its weight. The depth dp(𝔉)
of an FNN 𝔉 is the depth of its skeleton, that is, the length of a longest path from an input node
to an output node of 𝔉.

The weight wt(𝔑) of a GNN 𝔑 is the sum of the weights of the FNNs for the message and
combination functions of all layers of 𝔑. The bitsize bsize(𝔑) and the size size(𝔑) of a rational
piecewise linear GNN 𝔑 is the sum of the (bit)sizes of all its FNNs. The skeleton of a GNN 𝔑

consists of the directed acyclic graphs underlying the FNNs for the message and combination
functions of all layers of 𝔑. Thus if two GNNs have the same skeleton they have the same
number of layers and the same input and output dimensions on all layers, but they may have
different activation functions and different weights. The depth dp(𝔑) of a GNN 𝔑 is the number
of layers of 𝔑 times the maximum depth of all its FNNs.

Let N = (𝔑(𝑛))𝑛∈N be a family of GNNs. Suppose that the input dimension of 𝔑(𝑛) is 𝑝(𝑛)

and the output dimension is 𝑞(𝑛). It will be convenient to call (𝑝(𝑛))𝑛∈N the input dimension of N
and (𝑞(𝑛))𝑛∈N the output dimension. Then for every graph 𝐺 of order 𝑛 and every x ∈ S𝑝(𝑛)(𝐺)
we let N(𝐺,x) B 𝔑(𝑛)(𝐺,x) and Ñ(𝐺,x) B �̃�(𝑛)(𝐺,x). Thus N computes a generalised form
of signal transformation where the input and output dimension depend on the order of the
input graph.

We say that N is of polynomial weight if there is a polynomial 𝜋(𝑋) such that wt(𝔑(𝑛)) ≤
𝜋(𝑛) for all 𝑛. Polynomial (bit)size is defined similarly. The family N is of bounded depth if
there is a 𝑑 ∈ N such that dp(𝔑(𝑛)) ≤ 𝑑 for all 𝑛. The family N is rpl approximable if there is a

57 / 93 The Descriptive Complexity of Graph Neural Networks

polynomial 𝜋′(𝑋,𝑌) such that for all 𝑛 ∈ N>0 and all 𝜀 > 0, every activation function of 𝔑(𝑛) is
𝜀-approximable by a rational piecewise linear function of bitsize at most 𝜋′(𝜀−1, 𝑛).

THEOREM 6.2. Let N be an rpl-approximable polynomial-weight, bounded-depth family of
GNNs of input dimension (𝑝(𝑛))𝑛∈N and output dimension (𝑞(𝑛))𝑛∈N. Let 𝑿 be an r-schema of type
vn→ r, and let 𝑊,𝑊 ′ be function variables of type ∅→ n.

Then there is an r-expression gnn-eval(𝑥, 𝑦) in GFO+Cnu such that the following holds for
all graphs 𝐺 and assignments a over 𝐺. Let 𝑛 B ∣𝐺∣, and let x ∈ S𝑝(𝑛)(𝐺) be the signal defined by

x(𝑣) B (⟪𝑿⟫(𝐺,a) (𝑣, 0), . . . ,⟪𝑿⟫(𝐺,a) (𝑣, 𝑝(𝑛) − 1)). (47)

Assume that ∥x∥∞ ≤ a(𝑊) and that a(𝑊 ′) ≠ 0. Let y = Ñ(𝐺,x) ∈ S𝑞(𝑛)(𝐺). Then for all
𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪gnn-eval⟫(𝐺,a) (𝑣, 0), . . . ,⟪gnn-eval⟫(𝐺,a) (𝑣, 𝑞(𝑛) − 1))∥
∞
≤ 1
a(𝑊 ′) . (48)

Observe that Theorem 6.2 implies Theorem 6.1, because we can simply let N be the family
consisting of the same GNN for every 𝑛. So we only need to prove Theorem 6.2. The basic idea
of the proof is simple. We exploit the continuity of the functions computed by FNNs and GNNs
not only in terms of the input signals but also in terms of the weights and the biases. This
allows us to approximate the functions computed by GNNs with arbitrary real weights by GNNs
with rational weights. However, the bitsize of the rationals we need to get a sufficiently precise
approximation depends on the size of the input graph, and this leads to the non-uniformity.

Before we delve into the proof, let us state one important corollary. Extending the definition
for single GNNs in the obvious way, we say that a family N = (𝔑(𝑛))𝑛∈N of GNNs computes a
unary query Q ∶ GSbool

𝑝 → GSbool
1 on 𝑝-labelled graphs if for all 𝑛 ∈ N, all (𝐺,b) ∈ GSbool

𝑝 with
𝑛 = ∣𝐺∣, and all 𝑣 ∈ 𝑉(𝐺) it holds that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̃�(𝑛)(𝐺,b)(𝑣) ≥ 3
4 if Q(𝐺,b)(𝑣) = 1,

�̃�(𝑛)(𝐺,b)(𝑣) ≤ 1
4 if Q(𝐺,b)(𝑣) = 0.

COROLLARY 6.3. Every unary query on GSbool
𝑝 that is computable by an rpl-approximable

polynomial-weight bounded-depth family of GNNs is definable in GFO+Cnu.

The exact analogues of Theorems 6.1 and 6.2 hold for GNNs with global readout and the
logic GFO+Cgc, with only small modifications of the proof. For later reference, we state the
analogue of Theorem 6.2.

THEOREM 6.4. Let N be an rpl-approximable polynomial-weight, bounded-depth family of
GNNs with global readout of input dimension (𝑝(𝑛))𝑛∈N and output dimension (𝑞(𝑛))𝑛∈N. Let 𝑿 be
an r-schema of type vn→ r, and let 𝑊,𝑊 ′ be function variables of type ∅→ n.

58 / 93 M. Grohe

Then there is an r-expression gnn-eval(𝑥, 𝑦) in GFO+Cgc
nu such that the following holds for

all graphs 𝐺 and assignments a over 𝐺. Let 𝑛 B ∣𝐺∣, and let x ∈ S𝑝(𝑛)(𝐺) be the signal defined by

x(𝑣) B (⟪𝑿⟫(𝐺,a) (𝑣, 0), . . . ,⟪𝑿⟫(𝐺,a) (𝑣, 𝑝(𝑛) − 1)). (49)

Assume that ∥x∥∞ ≤ a(𝑊) and that a(𝑊 ′) ≠ 0. Let y = Ñ(𝐺,x) ∈ S𝑞(𝑛)(𝐺). Then for all
𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪gnn-eval⟫(𝐺,a) (𝑣, 0), . . . ,⟪gnn-eval⟫(𝐺,a) (𝑣, 𝑞(𝑛) − 1))∥
∞
≤ 1
a(𝑊 ′) . (50)

REMARK 6.5. As the uniform simulation results, the nonuniform Theorems 6.1 and 6.2 as well
as Corollary 6.3 have versions for 1-GNNs and the modal fragmentMFO+C. In Theorem 6.1,
if 𝔑 is a 1-GNN then we obtain r-expressions gnn-eval𝑖(𝑥) inMFO+Cnu, the modal fragment
with built-in numerical relations. Similarly, in Theorem 6.2, if N is a family of 1-GNN then we
obtain an r-expression gnn-eval(𝑥, 𝑦) inMFO+Cnu. And the modified version of Corollary 6.3
states that queries computable by rpl-approximable polynomial-weight bounded-depth families
of 1-GNNs are definable inMFO+Cnu.

As the modified versions of both Theorem 6.1 and Corollary 6.3 follow easily from the
modified version of Theorem 6.2, we only need to adapt the proof of Theorem 6.2. Within this
long proof, the only place where the exact messaging mechanism plays a role is in the proof of
Claim 6.16.3 (on page 72). The changes we need to make there are analogous to the changes we
needed to make in the proof of the modified version of Lemma 5.2 (see Remark 5.6). ∎

6.1 Bounds and Approximations for FNNs

In this section, we shall prove that we can approximate rpl approximable FNNs by rational
piecewise linear FNNs whose size is bounded in terms of the approximation ratio. For this, we
first need to establish bounds on the Lipschitz constant and growth of an FNN in terms of its
structure, its activation functions, and its parameters.

Throughout this section, we let 𝔄 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉) be an FNN architecture of input dimen-
sion 𝑝 and output dimension 𝑞. We let 𝑑 be the depth and Δ the maximum in-degree of the
directed graph (𝑉, 𝐸). Without loss of generality, we assume Δ ≥ 1 and thus 𝑑 ≥ 1. If Δ = 0, we
simply add a dummy edge of weight 0 to the network. Moreover, we let 𝜆 ∈ N>0 be a Lipschitz
constant for all activation function 𝔞𝑣 for 𝑣 ∈ 𝑉 , and we let

𝜇 B max{ ⌈∣𝔞𝑣(0)∣⌉ ∣ 𝑣 ∈ 𝑉}.

For vectors 𝒙 ∈ R𝑝, 𝒘 ∈ R𝐸, 𝒃 ∈ R𝑉 , we assume that 𝒙 = (𝑥1, . . . , 𝑥𝑝), 𝒘 = (𝑤𝑒)𝑒∈𝐸, and 𝒃 = (𝑏𝑣)𝑣∈𝑉 .
In the first two lemmas we analyse the dependence of the growth and variation of the

functions 𝑓𝔄,𝑣(𝒙,𝒘,𝒃) and 𝔄(𝒙,𝒘,𝒃) on the constants 𝑑,Δ, 𝜆, 𝜇 and ∥𝒙∥∞ , ∥𝒘∥∞ , ∥𝒃∥∞ (more
precisely than in Lemma 2.6).

59 / 93 The Descriptive Complexity of Graph Neural Networks

LEMMA 6.6. Let 𝛾 B 2Δ𝜆 max{𝜆, 𝜇}. Then for all 𝒙 ∈ R𝑝, 𝒃 ∈ R𝑉 , and 𝒘 ∈ R𝐸, and all 𝑣 ∈ 𝑉 of
depth 𝑡 we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣ ≤ 𝛾𝑡(∥𝒘∥∞ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1). (51)

PROOF . Note that for all 𝑥 ∈ R we have

∣𝔞𝑣(𝑥)∣ ≤ 𝜆∣𝑥∣ + 𝜇. (52)

For all input nodes 𝑋𝑖 we have

∣ 𝑓𝔄,𝑋𝑖
(𝒙,𝒃,𝒘)∣ = ∣𝑥𝑖 ∣ ≤ ∥𝒙∥∞ . (53)

This implies (51) for 𝑡 = 0.

CLAIM 6.6.1. For all nodes 𝑣 ∈ 𝑉 of depth 𝑡 ≥ 1 we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣ ≤ (Δ𝜆 ∥𝒘∥∞)𝑡 ∥𝒙∥∞ +
𝑡−1
∑
𝑠=0
(Δ𝜆 ∥𝒘∥∞)𝑠(𝜆 ∥𝒃∥∞ + 𝜇). (54)

Proof. We prove (54) by induction on 𝑡 ≥ 1. Suppose that 𝑣 ∈ 𝑉 is a node of depth 𝑡, and
let 𝑣1, . . . , 𝑣𝑘 be its in-neighbours. Let 𝑏 B 𝑏𝑣 and 𝑤𝑖 B 𝑤𝑣𝑖𝑣 for 𝑖 ∈ [𝑘]. Moreover, let 𝑦𝑖 B

𝑓𝔄,𝑣𝑖(𝒙,𝒃,𝒘) and 𝒚 = (𝑦1, . . . , 𝑦𝑘). If 𝑡 = 1, by (53) we have

∥𝒚∥∞ ≤ ∥𝒙∥∞ (55)

If 𝑡 > 1, by the induction hypothesis we have

∥𝒚∥∞ ≤ (Δ𝜆 ∥𝒘∥∞)𝑡−1 ∥𝒙∥∞ +
𝑡−2
∑
𝑠=0
(Δ𝜆 ∥𝒘∥∞)𝑠(𝜆 ∥𝒃∥∞ + 𝜇). (56)

Thus

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣ = ∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖)∣

≤
RRRRRRRRRRR
𝜆∣𝑏 +

𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖∣ + 𝜇

RRRRRRRRRRR
by (52)

≤ 𝜆
𝑘

∑
𝑖=1
∣𝑤𝑖 ∣ ⋅ ∣𝑦𝑖 ∣ + 𝜆∣𝑏∣ + 𝜇

≤ 𝜆Δ ∥𝒘∥∞ ∥𝒚∥∞ + 𝜆 ∥𝒃∥∞ + 𝜇.

Now if 𝑡 = 1, assertion (54) follows immediately from (55). If 𝑡 > 1, by (56) we obtain

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣
≤ Δ𝜆 ∥𝒘∥∞ ∥𝒚∥∞ + 𝜆 ∥𝒃∥∞ + 𝜇

≤ Δ𝜆 ∥𝒘∥∞ ((Δ𝜆 ∥𝒘∥∞)𝑡−1 ∥𝒙∥∞ +
𝑡−2
∑
𝑠=0
(Δ𝜆 ∥𝒘∥∞)𝑠(𝜆 ∥𝒃∥∞ + 𝜇)) + 𝜆 ∥𝒃∥∞ + 𝜇

60 / 93 M. Grohe

= (Δ𝜆 ∥𝒘∥∞)𝑡 ∥𝒙∥∞ +
𝑡−1
∑
𝑠=0
(Δ𝜆 ∥𝒘∥∞)𝑠(𝜆 ∥𝒃∥∞ + 𝜇).

This proves the claim. ∎

It remains to prove that the claim yields (51) for 𝑡 ≥ 1. Since Δ𝜆 ≥ 1, we have
𝑡−1
∑
𝑠=0
(Δ𝜆 ∥𝒘∥∞)𝑠 ≤ (2Δ𝜆(∥𝒘∥∞ + 1))𝑡 .

Thus by Claim 6.6.1 we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣ ≤ (2Δ𝜆(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + 𝜆 ∥𝒃∥∞ + 𝜇)
≤ (2Δ𝜆(∥𝒘∥∞ + 1))𝑡 max{𝜆, 𝜇}(∥𝒙∥∞ + ∥𝒃∥∞ + 1)
≤ 𝛾𝑡(∥𝒘∥∞ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1). ∎

LEMMA 6.7. For all 𝒙,𝒙′ ∈ R𝑝, 𝒃 ∈ R𝑉 , and 𝒘 ∈ R𝐸 it holds that

∥𝔄(𝒙,𝒘,𝒃) −𝔄(𝒙′,𝒘,𝒃)∥∞ ≤ (𝜆Δ)𝑑 ∥𝒘∥𝑑∞ ∥𝒙 − 𝒙′∥∞

PROOF . Let 𝒙,𝒙′ ∈ R𝑝, 𝒃 ∈ R𝑉 , and 𝒘 ∈ R𝐸. We shall prove by induction on 𝑡 that for all nodes
𝑣 ∈ 𝑉 of depth 𝑡 we have

∥ 𝑓𝔄,𝑣(𝒙,𝒘,𝒃) − 𝑓𝔄,𝑣(𝒙′,𝒘,𝒃)∥∞ ≤ (𝜆Δ ∥𝒘∥∞)𝑡 ∥𝒙 − 𝒙′∥∞ . (57)

Nodes of depth 𝑡 = 0 are input nodes, and we have

∣ 𝑓𝔄,𝑋𝑖
(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑋𝑖

(𝒙′,𝒃,𝒘)∣ = ∣𝑥𝑖 − 𝑥′𝑖 ∣ ≤ ∥𝒙 − 𝒙′∥∞ .

For the inductive step, let 𝑣 ∈ 𝑉 be a node of depth 𝑡 > 0, and let 𝑣1, . . . , 𝑣𝑘 be its in-neighbours.
Let 𝑏 B 𝑏𝑣, 𝑏′ B 𝑏′𝑣 and 𝑤𝑖 B 𝑤𝑣𝑖𝑣, 𝑤

′
𝑖 B 𝑤′𝑣𝑖𝑣 for 𝑖 ∈ [𝑘]. Moreover, let 𝒚 = (𝑦1, . . . , 𝑦𝑘) and

𝒚′ = (𝑦′1, . . . , 𝑦′𝑘) with 𝑦𝑖 B 𝑓𝔄,𝑣𝑖(𝒙,𝒃,𝒘) and 𝑦′𝑖 B 𝑓𝔄,𝑣𝑖(𝒙′,𝒃,𝒘). Then

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ = ∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦
′
𝑖)∣

≤ 𝜆(
𝑘

∑
𝑖=1

𝑤𝑖 ∣𝑦𝑖 − 𝑦′𝑖 ∣)

≤ 𝜆Δ ∥𝒘∥∞ ∥𝒚 − 𝒚′∥∞ .

Since by the induction hypothesis we have ∥𝒚 − 𝒚′∥∞ ≤ (𝜆Δ ∥𝒘∥∞)𝑡−1 ∥𝒙 − 𝒙′∥∞, the assertion
(57) follows. ∎

LEMMA 6.8. Let 𝜈 B (4Δ𝜆𝛾)𝑑 , where 𝛾 is the constant of Lemma 6.6. Then for all 𝜀 ∈ R, 𝒙 ∈ R𝑝,
𝒃,𝒃′ ∈ R𝑉 , and 𝒘,𝒘′ ∈ R𝐸 with

0 ≤max{∥𝒃 − 𝒃′∥∞, ∥𝒘 −𝒘′∥∞} ≤ 𝜀 ≤ 1 (58)

61 / 93 The Descriptive Complexity of Graph Neural Networks

we have
∥𝔄(𝒙,𝒃,𝒘) −𝔄(𝒙,𝒃′,𝒘′)∥∞ ≤ 𝜈(∥𝒘∥∞ + 1)𝑑(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀.

PROOF . Let 𝒙 ∈ R𝑝 and 𝜀 ∈ [0, 1], 𝒃,𝒃′ ∈ R𝑉 , 𝒘,𝒘′ ∈ R𝐸 such that (58) holds.
We shall prove by induction on 𝑡 that for all nodes 𝑣 ∈ 𝑉 of depth 𝑡 we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ ≤ (4Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀. (59)

Applied to the output nodes 𝑣 = 𝑌𝑖 of depth ≤ 𝑑, this yields the assertion of the lemma.
Nodes of depth 𝑡 = 0 are input nodes, and we have

∣ 𝑓𝔄,𝑋𝑖
(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑋𝑖

(𝒙,𝒃′,𝒘′)∣ = ∣𝑥𝑖 − 𝑥𝑖 ∣ = 0. (60)

For the inductive step, let 𝑣 ∈ 𝑉 be a node of depth 𝑡 > 0, and let 𝑣1, . . . , 𝑣𝑘 be its in-neighbours.
Let 𝑏 B 𝑏𝑣, 𝑏′ B 𝑏′𝑣 and 𝑤𝑖 B 𝑤𝑣𝑖𝑣, 𝑤

′
𝑖 B 𝑤′𝑣𝑖𝑣 for 𝑖 ∈ [𝑘]. Moreover, let 𝒚 = (𝑦1, . . . , 𝑦𝑘) and

𝒚′ = (𝑦′1, . . . , 𝑦′𝑘) with 𝑦𝑖 B 𝑓𝔄,𝑣𝑖(𝒙,𝒃,𝒘) and 𝑦′𝑖 B 𝑓𝔄,𝑣𝑖(𝒙,𝒃′,𝒘′).

CLAIM 6.8.1.

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ ≤ Δ𝜆 ∥𝒚 − 𝒚′∥∞ ∥𝒘∥∞ + Δ𝜆(∥𝒚∥∞ + ∥𝒚 − 𝒚′∥∞ + 1)𝜀

Proof. By the definition of 𝑓𝔄,𝑣 and the Lipschitz continuity of the activation functions we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ = ∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞𝑣(𝑏′ +
𝑘

∑
𝑖=1

𝑤′𝑖 𝑦
′
𝑖)∣

≤ 𝜆 ⋅ (∣𝑏 − 𝑏′∣ +
𝑘

∑
𝑖=1
∣𝑤𝑖 𝑦𝑖 −𝑤′𝑖 𝑦

′
𝑖 ∣)

Observe that ∣𝑏 − 𝑏′∣ ≤ ∥𝒃 − 𝒃′∥∞ ≤ 𝜀 and

𝑦𝑖𝑤𝑖 − 𝑦′𝑖𝑤
′
𝑖 = (𝑦𝑖 − 𝑦′𝑖)𝑤𝑖 + 𝑦′𝑖(𝑤𝑖 −𝑤′𝑖)
= (𝑦𝑖 − 𝑦′𝑖)𝑤𝑖 + (𝑦′𝑖 − 𝑦𝑖)(𝑤𝑖 −𝑤′𝑖) + 𝑦𝑖(𝑤𝑖 −𝑤′𝑖)
≤ ∥𝒚 − 𝒚′∥∞ ∥𝒘∥∞ + 𝜀∥𝒚 − 𝒚′∥∞ + 𝜀∥𝒚∥∞.

Hence

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ ≤ 𝜆(𝜀 + Δ(∥𝒚 − 𝒚′∥∞ ∥𝒘∥∞ + ∥𝒚 − 𝒚′∥∞𝜀 + ∥𝒚∥∞𝜀))

≤ Δ𝜆 ∥𝒚 − 𝒚′∥∞ ∥𝒘∥∞ + Δ𝜆(∥𝒚∥∞ + ∥𝒚 − 𝒚′∥∞ + 1)𝜀.

This proves the claim. ∎

By the inductive hypothesis (59), we have

∥𝒚 − 𝒚′∥∞ ≤ (4Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡−1(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀. (61)

Thus
Δ𝜆 ∥𝒚 − 𝒚′∥∞ ∥𝒘∥∞ ≤ 4𝑡−1(Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀 (62)

62 / 93 M. Grohe

and

Δ𝜆∥𝒚 − 𝒚′∥∞𝜀 ≤ Δ𝜆(4Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡−1(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀2

≤ 4𝑡−1(Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀 because 𝜀 ≤ 1. (63)

By Lemma 6.6 we have ∥𝒚∥∞ ≤ 𝛾𝑡−1(∥𝒘∥∞ + 1)𝑡−1(∥𝒙∥∞ + ∥𝒃∥∞ + 1) and thus

Δ𝜆 ∥𝒚∥∞ 𝜀 ≤ Δ𝜆𝛾𝑡−1(∥𝒘∥∞ + 1)𝑡−1(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
≤ (Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀 (64)

Plugging (62), (63), and (64) into Claim 6.8.1, we get

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄,𝑣(𝒙,𝒃′,𝒘′)∣ ≤ 4𝑡−1(Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
+ (Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
+ 4𝑡−1(Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
+ Δ𝜆𝜀

≤ 4𝑡(Δ𝜆𝛾(∥𝒘∥∞ + 1))𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀.

This proves (59) and thus completes the proof of the lemma. ∎

LEMMA 6.9. Let 𝛽 B (4Δ𝜆𝛾)𝑑 , where 𝛾 is the constant of Lemma 6.6. Let 𝜀 > 0. For all 𝑣 ∈ 𝑉 ,
let 𝔞′𝑣 ∶ R→ R be an 𝜀-approximation of 𝔞𝑣 that is Lipschitz continuous with constant 2𝜆, and let
𝔄′ B (𝑉, 𝐸, (𝔞′𝑣)𝑣∈𝑉). Then for all 𝒙 ∈ R𝑝, 𝒃 ∈ R𝑉 , and 𝒘 ∈ R𝐸,

∥𝔄(𝒙,𝒃,𝒘) −𝔄′(𝒙,𝒃,𝒘)∥∞ ≤ 𝛽(∥𝒘∥∞ + 1)𝑑(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀.

PROOF . We shall prove by induction on 𝑡 that for all nodes 𝑣 ∈ 𝑉 of depth 𝑡 we have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄′,𝑣(𝒙,𝒃,𝒘)∣ ≤ (4Δ𝜆𝛾)𝑡(∥𝒘∥∞ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀. (65)

This yields the assertion of the lemma.
Nodes of depth 𝑡 = 0 are input nodes, and we have

∣ 𝑓𝔄,𝑋𝑖
(𝒙,𝒃,𝒘) − 𝑓𝔄′,𝑋𝑖

(𝒙,𝒃,𝒘)∣ = ∣𝑥𝑖 − 𝑥𝑖 ∣ = 0.

For the inductive step, let 𝑣 ∈ 𝑉 be a node of depth 𝑡 > 0, and let 𝑣1, . . . , 𝑣𝑘 be its in-neighbours.
Let 𝑏 B 𝑏𝑣 and 𝑤𝑖 B 𝑤𝑣𝑖𝑣 for 𝑖 ∈ [𝑘]. Moreover, let 𝒚 = (𝑦1, . . . , 𝑦𝑘) and 𝒚′ = (𝑦′1, . . . , 𝑦′𝑘) with
𝑦𝑖 B 𝑓𝔄,𝑣𝑖(𝒙,𝒃,𝒘) and 𝑦′𝑖 B 𝑓𝔄′,𝑣𝑖(𝒙,𝒃,𝒘).

CLAIM 6.9.1.

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄′,𝑣(𝒙,𝒃,𝒘)∣ ≤ 2𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀 + 2Δ𝜆 ∥𝒘∥∞ ∥𝒚 − 𝒚′∥∞
Proof. We have

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄′,𝑣(𝒙,𝒃,𝒘)∣ = ∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦
′
𝑖)∣

63 / 93 The Descriptive Complexity of Graph Neural Networks

≤ ∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖)∣ (66)

+ ∣𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦
′
𝑖)∣

By Lemma 6.6 we have

∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖)∣ = ∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘)∣ ≤ 𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1). (67)

Since 𝔞′𝑣 𝜀-approximates 𝔞𝑣, this implies

∣𝔞𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖)∣ ≤ 𝜀𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1) + 𝜀

≤ 2𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀. (68)

Furthermore, by the Lipschitz continuity of 𝔞′𝑣 we have

∣𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦𝑖) − 𝔞′𝑣(𝑏 +
𝑘

∑
𝑖=1

𝑤𝑖 𝑦
′
𝑖)∣ ≤ 2𝜆

𝑘

∑
𝑖=1
∣𝑤𝑖 ∣ ⋅ ∣𝑦𝑖 − 𝑦′𝑖 ∣ ≤ 2Δ𝜆 ∥𝒘∥∞ ∥𝒚 − 𝒚′∥∞ . (69)

The assertion of the claim from (66), (68), and (69). ∎

By the inductive hypothesis (65), we have

∥𝒚 − 𝒚′∥∞ ≤ (4Δ𝜆𝛾)𝑡−1(∥𝒘∥∞ + 1)𝑡−1(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀.

Thus by the claim,

∣ 𝑓𝔄,𝑣(𝒙,𝒃,𝒘) − 𝑓𝔄′,𝑣(𝒙,𝒃,𝒘)∣ ≤ 2𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀 + 2Δ𝜆 ∥𝒘∥∞ ∥𝒚 − 𝒚′∥∞
≤ 2𝛾𝑡(∥𝒘∥ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
+ 2 ⋅ 4𝑡−1(Δ𝜆𝛾)𝑡(∥𝒘∥∞ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀
≤ (4𝛾Δ𝜆)𝑡(∥𝒘∥∞ + 1)𝑡(∥𝒙∥∞ + ∥𝒃∥∞ + 1)𝜀.

This proves (65) and hence the lemma. ∎

LEMMA 6.10. Let 𝑓 ∶ R → R be Lipschitz continuous with constant 𝜆 > 0 such that 𝑓 is rpl
approximable. Then for every 𝜀 > 0 there is a rational piecewise linear function 𝐿 of bitsize
polynomial in 𝜀−1 such that 𝐿 is an 𝜀-approximation of 𝑓 and 𝐿 is Lipschitz continuous with
constant (1 + 𝜀)𝜆.

PROOF . Let 0 < 𝜀 ≤ 1 and 𝜀′ B 𝜀
10 . Let 𝐿′ be a piecewise linear 𝜀′-approximation of 𝑓 of bitsize

polynomial in 𝜀−1. Let 𝑡1 < . . . < 𝑡𝑛 be the thresholds of 𝐿′, and let 𝑎0, . . . , 𝑎𝑛 and 𝑏0, . . . , 𝑏𝑛 be its
slopes and constants. Then ∣𝑎0∣ ≤ (1 + 𝜀)𝜆; otherwise the slope of the linear function 𝑎0𝑥 + 𝑏0

would be too large (in absolute value) to approximate the function 𝑓 whose slope is bounded by
𝜆. For the same reason, ∣𝑎′𝑛∣ ≤ (1 + 𝜀)𝜆.

64 / 93 M. Grohe

Let 𝑠 B 𝑡1 and 𝑠′ B 𝑡𝑛. We subdivide the interval [𝑠, 𝑠′] into sufficiently small subintervals
(of length at most 𝜀′ ⋅ 𝜆−1). Within each such interval, 𝑓 does not change much, because it is
Lipschitz continuous, and we can approximate it sufficiently closely by a linear function with
parameters whose bitsize is polynomially bounded in 𝜀−1. The slope of theses linear functions
will not be significantly larger than 𝜆, because the slope of 𝑓 is bounded by 𝜆. We can combine
all these linear pieces with the linear functions 𝑎0𝑥 + 𝑏0 for the interval (−∞, 𝑠] and 𝑎𝑛𝑥 + 𝑏𝑛 for
the interval [𝑠′,∞) to obtain the desired piecewise linear approximation of 𝑓 . ∎

Now we are ready to prove the main result of this subsection.

LEMMA 6.11. For every 𝑑 ∈ N>0 there is a polynomial 𝜋′(𝑋,𝑌) such that the following holds. Let
𝔉 = (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉 ,𝒘,𝒃) be an rpl-approximable FNN architecture of depth 𝑑. Let 𝜀 > 0. Then there
exists a rational piecewise-linear FNN 𝔉′ = (𝑉, 𝐸, (𝔞′𝑣)𝑣∈𝑉 ,𝒘′,𝒃′) of size at most 𝜋′(𝜀−1,wt(𝔉))
such that for all 𝑣 ∈ 𝑉 it holds that 𝜆(𝔞′𝑣) ≤ 2𝜆(𝔞𝑣) and for all 𝒙 ∈ R𝑝 it holds that

∥𝔉(𝒙) −𝔉′(𝒙)∥∞ ≤ (∥𝒙∥∞ + 1)𝜀.

Note that 𝔉′ has the same skeleton as 𝔉.

PROOF . Without loss of generality we assume 𝜀 ≤ 1. Let 𝔄 B (𝑉, 𝐸, (𝔞𝑣)𝑣∈𝑉). Define the
parameters Δ, 𝜆, 𝜇 with respect to 𝔄 as before. Note that Δ, 𝜆, 𝜇 ≤ wt(𝔉). Choose the constants 𝛾
according to Lemma 6.6, 𝜈 according to Lemma 6.8, and 𝛽 according to Lemma 6.9 and note
that for fixed 𝑑 they depend polynomially on Δ, 𝜆, 𝜇 and hence on wt(𝔉).

Let 𝛼 B 2𝜈(∥𝒘∥∞ + 1)𝑑(∥𝒃∥∞ + 1). Let 𝒘′ ∈ Z[1
2]

𝐸, 𝒃′ ∈ Z[1
2]

𝑉 such that ∥𝒘 −𝒘′∥∞ ≤ 𝜀
𝛼 and

∥𝒃−𝒃′∥∞ ≤ 𝜀
𝛼 . Clearly, we can choose such 𝒘′ = (𝑤′𝑒)𝑒∈𝐸 and 𝒃′ = (𝑏′𝑣)𝑣∈𝑉 such that all their entries

have bitsize polynomial in 𝛼
𝜀 , which is polynomial in 𝜀−1 and in wt(𝔉). Then by Lemma 6.8, for

all 𝒙 ∈ R𝑝 we have

∥𝔄(𝒙,𝒃,𝒘) −𝔄(𝒙,𝒃′,𝒘′)∥∞ ≤ 𝜈(∥𝒘∥∞ + 1)𝑑(∥𝒙∥∞ + ∥𝒃∥∞ + 1) 𝜀
𝛼
≤ (∥𝒙∥∞ + 1)𝜀

2
,

Let 𝛼′ B 2𝛽(∥𝒘′∥∞ + 1)𝑑(∥𝒃′∥∞ + 1). For every 𝑣 ∈ 𝑉 , we let 𝔞′𝑣 be a rational piecwise-linear
function of bitsize polynomial in in 𝜀−1 that is an 𝜀

𝛼′ -approximation of𝔞𝑣 and Lipschitz continuous
with constant 2𝜆. Such an 𝔞′𝑣 exists by Lemma 6.10, because 𝔞𝑣 is rpl-approximable and Lipschitz
continuous with constant 𝜆. Let 𝔄′ B (𝑉, 𝐸, (𝔞′𝑣)𝑣∈𝑉). By Lemma 6.9, for all 𝒙 ∈ R𝑝 we have

∥𝔄(𝒙,𝒃′,𝒘′) −𝔄′(𝒙,𝒃′,𝒘′)∥∞ ≤ 𝛽(∥𝒘′∥∞ + 1)𝑑(∥𝒙∥∞ + ∥𝒃′∥∞ + 1) 𝜀
𝛼′
≤ (∥𝒙∥∞ + 1)𝜀

2
.

Overall,

∥𝔉(𝒙) −𝔉′(𝒙)∥∞ = ∥𝔄(𝒙,𝒃,𝒘) −𝔄′(𝒙,𝒃′,𝒘′)∥∞
≤ ∥𝔄(𝒙,𝒃,𝒘) −𝔄(𝒙,𝒃′,𝒘′)∥∞ + ∥𝔄(𝒙,𝒃′,𝒘′) −𝔄′(𝒙,𝒃′,𝒘′)∥∞
≤ (∥𝒙∥∞ + 1)𝜀.

65 / 93 The Descriptive Complexity of Graph Neural Networks

∎

6.2 Bounds and Approximations for GNNs

We start with a more explicit version of Lemmas 4.2 and 4.3, the growth bounds for GNN
layers. Recall that the depth of a GNN layer is the maximum of the depths of the FNNs for the
combination and the message function.

LEMMA 6.12. For every 𝑑 ∈ N>0 there is a polynomial 𝜋(𝑋) such that the following holds. Let 𝔏
be a GNN layer of depth 𝑑, and let 𝑝 be the input dimension of 𝔏. Then for all graphs 𝐺 and all
signals x ∈ S𝑝(𝐺) we have

∥�̃�(𝐺,x)∥∞ ≤ 𝜋(wt(𝔏))(∥x∥∞ + 1)∣𝐺∣. (70)

PROOF . The proof of Lemma 4.2 yields

∥�̃�(𝐺,x)(𝑣)∥∞ ≤ 2𝛾msg𝛾comb(∥x∥∞ + 1)∣𝐺∣,

where 𝛾msg, 𝛾comb are growth bounds for the message and combination functions of 𝔏. It
follows from Lemma 6.6 that 𝛾msg, 𝛾comb can be chosen polynomial in the weight of 𝔏. ∎

LEMMA 6.13. For every 𝑑 ∈ N>0 there is a polynomial 𝜋(𝑋) such that the following holds. Let 𝔏
be a GNN layer of depth 𝑑, and let 𝑝 be the input dimension of 𝔏. Then for all graphs 𝐺 and all
signals x,x′ ∈ S𝑝(𝐺) we have

∥�̃�(𝐺,x) − �̃�(𝐺,x′)∥∞ ≤ 𝜋(wt(𝔏)) ∥x −x′∥∞ ∣𝐺∣. (71)

PROOF . The proof of Lemma 4.3 yields

∥�̃�(𝐺,x)(𝑣) − �̃�(𝐺,x′)(𝑣)∥∞ ≤ 𝜆msg𝜆comb ∥x −x′∥∞ ∣𝐺∣,

where 𝜆msg, 𝜆comb are Lipschitz constants for the message and combination functions of 𝔏. It
follows from Lemma 6.7 that 𝜆msg, 𝜆comb can be chosen polynomial in the weight of 𝔏. ∎

COROLLARY 6.14. For every 𝑑 ∈ N>0 there is a polynomial 𝜋(𝑋) such that the following holds.
Let 𝔑 be a GNN of depth 𝑑, and let 𝑝 be the input dimension of 𝔑. Then for all graphs 𝐺 and all
signals x,x′ ∈ S𝑝(𝐺) we have

∥�̃�(𝐺,x) − �̃�(𝐺,x′)∥∞ ≤ 𝜋(wt(𝔏)) ∥x −x′∥∞ ∣𝐺∣𝑑 .

LEMMA 6.15. For every 𝑑 ∈ N>0 there exist polynomials 𝜋(𝑋) and 𝜋′(𝑋,𝑌) such that the follow-
ing holds. Let 𝔏 be an rpl-approximable GNN layer of depth 𝑑, and let 𝑝 be the input dimension
of 𝔏. Then for all 𝜀 > 0 there exists a rational piecewise-linear GNN layer 𝔏′ of size at most
𝜋′(𝜀−1,wt(𝔏)) with the same skeleton as 𝔏 such that the Lipschitz constants of the activation

66 / 93 M. Grohe

functions of 𝔏′ are at most twice the Lipschitz constants of the corresponding activation functions
in 𝔏 and for all graphs 𝐺, all signals x,x′ ∈ S𝑝(𝐺), and all vertices 𝑣 ∈ 𝑉(𝐺) it holds that

∥�̃�(𝐺,x) − �̃�′(𝐺,x′)∥∞ ≤ 𝜋(wt(𝔏))∣𝐺∣(∥x −x′∥∞ + (∥x∥∞ + 1)𝜀).

PROOF . Letmsg ∶ R2𝑝 → R𝑟 and comb ∶ R𝑝+𝑟 → R𝑞 be the message and combination functions
of 𝔏, and let 𝔉msg and 𝔉comb be the FNNs for these functions. By Lemma 6.11 there are rational
piecewise linear FNNs 𝔉′msg and 𝔉′comb of size polynomial in wt(𝔉msg),wt(𝔉comb) ≤ wt(𝔏)
with activation functions of Lipschitz constants at most twice the Lipschitz constants of the
corresponding activation functions in𝔉msg,𝔉comb such that for all 𝒙,𝒙′ ∈ R𝑝 and 𝒛 ∈ R𝑟 we have

∥msg(𝒙,𝒙′) −msg′(𝒙,𝒙′)∥∞ ≤ (∥(𝒙,𝒙′)∥∞ + 1)𝜀, (72)

∥comb(𝒙, 𝒛) − comb′(𝒙, 𝒛)∥∞ ≤ (∥(𝒙, 𝒛)∥∞ + 1)𝜀. (73)

Let 𝔏′ be the GNN layer with message functionmsg′, combination function comb′, and the
same aggregation function agg as 𝔏. By Lemma 6.6 there is an 𝛼 ∈ N>0 that is polynomial in
wt(𝔉msg) and hence polynomial in wt(𝔏) such that for all 𝒙,𝒙′ ∈ R𝑝 it holds that

∥msg(𝒙,𝒙′)∥∞ ≤ 𝛼(max{ ∥𝒙∥∞ , ∥𝒙′∥∞ } + 1). (74)

By Lemma 6.7 there is an 𝛼′ ∈ N>0 polynomial in wt(𝔉′comb) and hence polynomial in wt(𝔏)
such that for all 𝒙,𝒙′ ∈ R𝑝, 𝒛, 𝒛′ ∈ R𝑟 it holds that

∥comb′(𝒙, 𝒛) − comb′(𝒙′, 𝒛′)∥∞ ≤ 𝛼
′max{ ∥𝒙 − 𝒙′∥∞ , ∥𝒛 − 𝒛′∥∞ }. (75)

By Lemma 6.13 there is an 𝛼′′ ∈ N>0 polynomial in wt(𝔏′) and thus polynomial in wt(𝔏) such
that for all 𝐺 and x ∈ S𝑝(𝐺),

∥�̃�′(𝐺,𝒙) − �̃�′(𝐺,𝒙′)∥∞ ≤ 𝛼
′′ ∥x −x′∥∞ ∣𝐺∣. (76)

Let 𝐺 be a graph of order 𝑛 B ∣𝐺∣ and 𝑣 ∈ 𝑉(𝐺). Furthermore, let x,x′ ∈ S𝑝(𝐺) and
y B �̃�(𝐺,x), y′ B �̃�′(𝐺,x), y′′ B �̃�′(𝐺,x′). Then

∥�̃�(𝐺,x)(𝑣) − �̃�′(𝐺,x′)(𝑣)∥∞ ≤ ∥y(𝑣) −y′(𝑣)∥∞ + ∥y′(𝑣) −y′′(𝑣)∥∞ .

By (76) we have
∥y′(𝑣) −y′′(𝑣)∥∞ ≤ 𝛼′′𝑛 ∥x −x′∥∞ . (77)

Thus we need to bound ∥y(𝑣) −y′(𝑣)∥∞. Let

z(𝑣) B agg({{msg(x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}}),

z′(𝑣) B agg({{msg′(x(𝑣),x(𝑤)) ∣ 𝑤 ∈ 𝑁𝐺(𝑣)}}).

Then by (72), we have
∥z(𝑣) −z′(𝑣)∥∞ ≤ 𝑛 (∥x∥∞ + 1) 𝜀. (78)

67 / 93 The Descriptive Complexity of Graph Neural Networks

Furthermore, by (74), for all 𝑤 ∈ 𝑁(𝑣) we have

∥msg(x(𝑣),x(𝑤))∥∞ ≤ 𝛼(∥x∥∞ + 1)

Thus, since 𝛼 ≥ 1 and 𝑛 ≥ 1,

∥(x(𝑣),z(𝑣))∥∞ =max{ ∥x(𝑣)∥∞ , ∥z(𝑣)∥∞ } ≤ 𝛼𝑛(∥x∥∞ + 1). (79)

Putting things together, we get

∥y(𝑣) −y′(𝑣)∥∞ = ∥comb(x(𝑣),z(𝑣)) − comb
′(x(𝑣),z′(𝑣))∥∞

≤ ∥comb(x(𝑣),z(𝑣)) − comb′(x(𝑣),z(𝑣))∥∞
+ ∥comb′(x(𝑣),z(𝑣)) − comb′(x(𝑣),z′(𝑣))∥∞
≤ (∥(x(𝑣),z(𝑣))∥∞ + 1)𝜀 by (73)

+ 𝛼′ ∥z(𝑣) −z′(𝑣)∥∞ by (75)

≤ 2𝛼𝑛(∥x∥∞ + 1)𝜀 + 𝛼′𝑛(∥x∥∞ + 1)𝜀 by (79) and (78)

≤ (2𝛼 + 𝛼′)𝑛(∥x∥∞ + 1)𝜀

Combined with (77), this yields the assertion of the lemma. ∎

Now we are ready to prove the main lemma of this section.

LEMMA 6.16. For every 𝑑 ∈ N>0 there exist a polynomial 𝜋(𝑋,𝑌) such that the following holds.
Let 𝔑 be an rpl-approximable GNN of depth 𝑑, and let 𝑝 be the input dimension of 𝔑. Then for all
𝜀 > 0 there exists a rational piecewise-linear GNN 𝔑′ of size at most 𝜋(𝜀−1,wt(𝔑)) with the same
skeleton as 𝔑 such that the Lipschitz constants of the activation functions of 𝔑′ are at most twice
the Lipschitz constants of the corresponding activation functions in 𝔑 and for all graphs 𝐺 and all
signals x ∈ S𝑝(𝐺) it holds that

∥�̃�(𝐺,x) − �̃�′(𝐺,x)∥∞ ≤ ∣𝐺∣
𝑑(∥x∥∞ + 1)𝜀.

PROOF . Suppose that 𝔑 = (𝔏1, . . . ,𝔏𝑑). For every 𝑡 ∈ [𝑑], let 𝑝𝑡−1 be the input dimension of 𝔏𝑡.
Then 𝑝 = 𝑝0. By Lemma 6.12 there is an 𝛼 polynomial in wt(𝔑) such that for all 𝑡 ∈ [𝑑], 𝐺, and
x ∈ S𝑝𝑡−1(𝐺) we have

∥�̃�𝑡(𝐺,x)∥∞ ≤ 𝛼∣𝐺∣(∥x∥∞ + 1). (80)

Let 𝜋′(𝑋) be the polynomial of Lemma 6.15,

𝛼′ B max
𝑡∈[𝑑]

𝜋′(wt(𝔏𝑡)),

and

𝛽 B 3 max{𝛼, 𝛼′},

68 / 93 M. Grohe

𝜀′ B
𝜀

𝛽𝑑
.

Note that 𝜀′ is polynomial in wt(𝔑). For every 𝑡 ∈ [𝑑], we apply Lemma 6.15 to 𝔏𝑡 and 𝜀′

and obtain a rational piecewise linear GNN layer 𝔏′𝑡 such that for all graphs 𝐺 and all signals
x,x′ ∈ S𝑝𝑡−1(𝐺) we have

∥�̃�𝑡(𝐺,x) − �̃�′𝑡(𝐺,x′)∥∞ ≤ 𝛼
′∣𝐺∣(∥x −x′∥∞ + (∥x∥∞ + 1)𝜀′). (81)

Let 𝐺 be a graph of order 𝑛 B ∣𝐺∣, and x ∈ S𝑝(𝐺). Let x0 B x′0 B x, and for 𝑡 ∈ [𝑑], let
x𝑡 B �̃�𝑡(𝐺,x𝑡−1) and x′𝑡 B �̃�′𝑖(𝐺,x′𝑡−1). We shall prove that for all 𝑡 ∈ {0, . . . , 𝑑} we have

∥x𝑡∥∞ ≤ 𝛽𝑡𝑛𝑡(∥x∥∞ + 1), (82)

∥x𝑡 −x′𝑡∥∞ ≤ 𝛽𝑡𝑛𝑡(∥x∥∞ + 1)𝜀′. (83)

Since 𝛽𝑑𝜀′ = 𝜀 and x𝑑 = �̃�(𝐺,x), x′𝑑 B �̃�′(𝐺,x), (83) implies the assertion of the lemma.
We prove (82) and (83) by induction on 𝑡. The base step 𝑡 = 0 is trivial, because x0 = x and

x0 = x′. For the inductive step, let 𝑡 ≥ 1. By (80) and the induction hypothesis we have

∥x𝑡∥∞ ≤ 𝛼𝑛(∥x𝑡−1∥∞ + 1)

≤ 𝛼𝑛(𝛽𝑡−1𝑛𝑡−1(∥x∥∞ + 1) + 1)

≤ 𝛽𝑡𝑛𝑡(∥x∥∞ + 1),

where the last inequality holds because 2𝛼 ≤ 𝛽. This proves (82).
By (81) we have

∥x𝑡 −x′𝑡∥∞ ≤ 𝛼′𝑛(∥x𝑡−1 −x′𝑡−1∥∞ + (∥x𝑡−1∥∞ + 1)𝜀′). (84)

By induction hypothesis (83),

𝛼′𝑛 ∥x𝑡−1 −x′𝑡−1∥∞ ≤ 𝛼′𝑛𝛽𝑡−1𝑛𝑡−1(∥x∥∞ + 1)𝜀′

≤ 1
3
𝛽𝑡𝑛𝑡(∥x∥∞ + 1)𝜀′. (85)

By induction hypothesis (82),

𝛼′𝑛(∥x𝑡−1∥∞ + 1)𝜀′ ≤ 𝛼′𝑛(𝛽𝑡−1𝑛𝑡−1(∥x∥∞ + 1) + 1)𝜀′

≤ 2
3
𝛽𝑡𝑛𝑡(∥x∥∞ + 1)𝜀′ (86)

Plugging (85) and (86) into (84), we obtain the desired inequality (83). ∎

6.3 Proof of Theorem 6.2

Let us first remark that we cannot directly apply Theorem 5.1 (the “uniform theorem”) to a
family of rational piecewise linear GNN approximating the GNNs in our family N. The reason is

69 / 93 The Descriptive Complexity of Graph Neural Networks

that in Theorem 5.1 the GNN is “hardwired” in the formula, whereas in our non-uniform setting
we obtain a different GNN for every input size. Instead, we encode the sequence of rational
piecewise linear GNNs approximating the GNNs in the original family into the numerical built-
in relations. Then our formula evaluates these GNNs directly on the numerical side of the
structures.

PROOF OF THEOREM 6.2 . Let N = (𝔑(𝑛))𝑛∈N. Furthermore, let 𝑑 be an upper bound on
the depth of all the 𝔑(𝑛). Without loss of generality we assume that every 𝔑(𝑛) has exactly 𝑑

layers 𝔏(𝑛)1 , . . . ,𝔏
(𝑛)
𝑑 . For 𝑡 ∈ [𝑑], let 𝑝(𝑛)𝑡−1 and 𝑝

(𝑛)
𝑡 be the input and output dimension of 𝔏(𝑛)𝑡 .

Then 𝑝(𝑛) B 𝑝
(𝑛)
0 is the input dimension of 𝔑(𝑛) and 𝑞(𝑛) B 𝑝

(𝑛)
𝑑 is the output dimension. By

the definition of the weight of a GNN, the 𝑝
(𝑛)
𝑡 are polynomially bounded in 𝑛. Let 𝜆(𝑛) ∈ N be a

Lipschitz constant for all activation functions in 𝔑(𝑛). By the definition of the weight of an FNN
and GNN we may choose 𝜆(𝑛) polynomial in wt(𝔑(𝑛)) and thus in 𝑛.

For all 𝑘, 𝑛 ∈ N>0, we let 𝔑(𝑛,𝑘) be a rational piecewise linear GNN with the same skeleton
as 𝔑(𝑛) of size polynomial in wt(𝔑(𝑛)), hence also polynomial in 𝑛, and 𝑘 such that all activation
functions of 𝔑(𝑛,𝑘) have Lipschitz constant at most 2𝜆(𝑛), and for all graphs 𝐺 of order 𝑛 and all
signals x ∈ S𝑝(𝐺) it holds that

∥�̃�(𝑛)(𝐺,x) − �̃�(𝑛,𝑘)(𝐺,x)∥∞ ≤
𝑛𝑑

𝑘
(∥x∥∞ + 1). (87)

Such an 𝔑(𝑛,𝑘) exists by Lemma 6.16. Let 𝔏(𝑛,𝑘)1 , . . . ,𝔏
(𝑛,𝑘)
𝑑 be the layers of 𝔑(𝑛,𝑘).

We want to describe the GNNs 𝔑(𝑛,𝑘) with built-in relations, using an encoding similar to
F-schemes. We cannot just use the same encoding as for the F-schemes because the non-uniform
logic FO+C𝑛𝑢 does not allow for built-in numerical functions.8

Let 𝑡 ∈ [𝑑]. In the following, we define the built-in relations that describe the 𝑡th layer𝔏(𝑛,𝑘)𝑡

of all the 𝔑(𝑛,𝑘). We need to describe FNNs 𝔉(𝑛,𝑘)msg and 𝔉
(𝑛,𝑘)
comb for the message and combination

functions of the layers, and in addition we need to describe the aggregation function. For the
aggregation functions we use three relations 𝐴SUM𝑡 , 𝐴MEAN𝑡 , 𝐴MAX𝑡 ⊆ N2, where

𝐴SUM𝑡 B {(𝑛, 𝑘) ∈ N2 ∣ 𝔞(𝑛,𝑘)𝑡 = SUM},

and 𝐴MEAN𝑡 and 𝐴MAX𝑡 are defined similarly. For each of the two FNNs 𝔉(𝑛,𝑘)msg and 𝔉
(𝑛,𝑘)
comb we use

18 relations. We only describe the encoding of 𝔉(𝑛,𝑘)msg using relations 𝑀1
𝑡 , . . . , 𝑀

18
𝑡 . The encoding

of 𝔉(𝑛,𝑘)comb is analogous using a fresh set of 18 relations 𝐶1
𝑡 , . . . , 𝐶

18
𝑡 .

Say,
𝔉
(𝑛,𝑘)
msg = (𝑉 (𝑛,𝑘), 𝐸(𝑛,𝑘), (𝔞

(𝑛,𝑘)
𝑣)𝑣∈𝑉(𝑛,𝑘) , (𝑤

(𝑛,𝑘)
𝑒)𝑒∈𝐸(𝑛,𝑘) , (𝑏

(𝑛,𝑘)
𝑣)𝑣∈𝑉(𝑛,𝑘)),

8 The reader may wonder why we do not simply allow for built-in functions to avoid this difficulty. The reason is that
then we could built terms whose growth is no longer polynomially bounded in the size of the input structure, which
would make the logic too powerful. In particular, the logic would no longer be contained in TC0.

70 / 93 M. Grohe

where without loss of generality we assume that𝑉 (𝑛,𝑘) is an initial segment ofN. We use relation
𝑀1

𝑡 ⊆ N3 and 𝑀2
𝑡 ⊆ N4 to describe the vertex set 𝑉 and the edge set 𝐸, letting

𝑀1
𝑡 B {(𝑛, 𝑘, 𝑣) ∣ 𝑣 ∈ 𝑉 (𝑛,𝑘)},

𝑀2
𝑡 B {(𝑛, 𝑘, 𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝐸(𝑛,𝑘)}.

As the bitsize of the skeleton of 𝔑(𝑛) and hence ∣𝑉 (𝑛,𝑘)∣ is polynomially bounded in 𝑛, there is an
arithmetical term 𝜃𝑉(𝑦, 𝑦′) such that for all graphs 𝐺 and all assignments a we have

⟦𝜃𝑉⟧(𝐺,a) (𝑛, 𝑘) = ∣𝑉 (𝑛,𝑘)∣

This term uses the constant ord as well as the built-in relation 𝑀1
𝑡 . It does not depend on the

graph 𝐺 or the assignment a.
For the weights, we use the relations 𝑀3

𝑡 , 𝑀
4
𝑡 , 𝑀

5
𝑡 ⊆ N5, letting

𝑀3
𝑡 B {(𝑛, 𝑘, 𝑢, 𝑣, 𝑟) ∣ 𝑒 B (𝑢, 𝑣) ∈ 𝐸(𝑛,𝑘) with 𝑤

(𝑛,𝑘)
𝑒 = (−1)𝑟2−𝑠𝑚},

𝑀4
𝑡 B {(𝑛, 𝑘, 𝑢, 𝑣, 𝑠) ∣ 𝑒 B (𝑢, 𝑣) ∈ 𝐸(𝑛,𝑘) with 𝑤

(𝑛,𝑘)
𝑒 = (−1)𝑟2−𝑠𝑚},

𝑀5
𝑡 B {(𝑛, 𝑘, 𝑢, 𝑣, 𝑖) ∣ 𝑒 B (𝑢, 𝑣) ∈ 𝐸(𝑛,𝑘) with 𝑤

(𝑛,𝑘)
𝑒 = (−1)𝑟2−𝑠𝑚 and Bit(𝑖, 𝑚) = 1}.

We always assume that 𝑤(𝑛,𝑘)𝑒 = (−1)𝑟2−𝑠𝑚 is the canonical representation of 𝑤(𝑛,𝑘)𝑒 with 𝑟 =
0, 𝑚 = 0, 𝑠 = 0 or 𝑟 ∈ {0, 1} and 𝑠 = 0 and 𝑚 ≠ 0 or 𝑟 ∈ {0, 1} and 𝑠 ≠ 0 and 𝑚 ≠ 0 odd. As
the bitsize of the numbers 𝑤(𝑛,𝑘)𝑒 is polynomial in 𝑘, we can easily construct an arithmetical
r-expression 𝝆𝑤(𝑦, 𝑦′, 𝑧, 𝑧′) such that for all graphs 𝐺 and assignments a and 𝑛, 𝑘, 𝑢, 𝑣 ∈ N such
that 𝑒 B (𝑢, 𝑣) ∈ 𝐸(𝑛,𝑘),

⟪𝝆𝑤⟫
(𝐺,a) (𝑛, 𝑘, 𝑢, 𝑣) = 𝑤(𝑛,𝑘)𝑒 .

This r-expression depends on the built-in relations 𝑀 𝑖
𝑡 , but not on 𝐺 or a.

Similarly, we define the relations 𝑀6
𝑡 , 𝑀

7
𝑡 , 𝑀

8
𝑡 ⊆ N4 for the biases and an r-expression

𝝆𝑏(𝑦, 𝑦′, 𝑧) such that for all graphs 𝐺 and assignments a and 𝑛, 𝑘, 𝑣 ∈ N with 𝑣 ∈ 𝑉 (𝑛,𝑘),

⟪𝝆𝑏⟫
(𝐺,a) (𝑛, 𝑘, 𝑣) = 𝑏(𝑛,𝑘)𝑣 .

To store the activation functions𝔞(𝑛,𝑘)𝑣 we use the remaining ten relations𝑀9
𝑡 ⊆ N4, 𝑀10

𝑡 , . . . , 𝑀18
𝑡 ⊆

N5. The relation 𝑀9
𝑡 is used to store the number 𝑚(𝑛,𝑘)𝑣 of thresholds of 𝔞(𝑛,𝑘)𝑣 :

𝑀9
𝑡 B {(𝑛, 𝑘, 𝑣,𝑚

(𝑛,𝑘)
𝑣) ∣ 𝑣 ∈ 𝑉 (𝑛,𝑘)}.

As the bitsize of 𝔞(𝑛,𝑘)𝑣 is polynomial in 𝑘, the number 𝑚(𝑛,𝑘)𝑣 is bounded by a polynomial in 𝑘.
Thus we can construct an arithmetical term 𝜃𝔞(𝑦, 𝑦′, 𝑧) such that for all graphs𝐺, all assignments
a, all 𝑛, 𝑘 ∈ N, and all 𝑣 ∈ 𝑉 (𝑛,𝑘) we have

⟦𝜃𝔞⟧(𝐺,a) (𝑛, 𝑘, 𝑣) = 𝑚(𝑛,𝑘)𝑣

71 / 93 The Descriptive Complexity of Graph Neural Networks

Of course this term needs to use the built-in relation 𝑀9
𝑡 . It does not depend on the graph 𝐺 or

the assignment a.
The relations 𝑀10

𝑡 , 𝑁11
𝑡 , 𝑁12

𝑡 are used to store thresholds. Say, the thresholds of 𝔞(𝑛,𝑘)𝑣 are
𝑡
(𝑛,𝑘)
𝑣,1 < . . . < 𝑡(𝑛,𝑘)𝑣,𝑚 , where 𝑚 = 𝑚(𝑛,𝑘)𝑣 . We let

𝑁10
𝑡 B {(𝑛, 𝑘, 𝑣, 𝑖, 𝑟) ∣ 𝑣 ∈ 𝑉 (𝑛,𝑘), 1 ≤ 𝑖 ≤ 𝑚

(𝑛,𝑘)
𝑣 with 𝑡

(𝑛,𝑘)
𝑣,𝑖 = (−1)𝑟2−𝑠𝑚},

𝑁11
𝑡 B {(𝑛, 𝑘, 𝑣, 𝑖, 𝑠) ∣ 𝑣 ∈ 𝑉 (𝑛,𝑘), 1 ≤ 𝑖 ≤ 𝑚

(𝑛,𝑘)
𝑣 with 𝑡

(𝑛,𝑘)
𝑣,𝑖 = (−1)𝑟2−𝑠𝑚},

𝑁12
𝑡 B {(𝑛, 𝑘, 𝑣, 𝑖, 𝑗) ∣ 𝑣 ∈ 𝑉 (𝑛,𝑘), 1 ≤ 𝑖 ≤ 𝑚

(𝑛,𝑘)
𝑣 with 𝑡

(𝑛,𝑘)
𝑣,𝑖 = (−1)𝑟2−𝑠𝑚 and Bit(𝑗, 𝑚) = 1}.

We always assume that 𝑡(𝑛,𝑘)𝑣,𝑖 = (−1)𝑟2−𝑠𝑚 is the canonical representation of 𝑡(𝑛,𝑘)𝑣,𝑖 . As the bitsize
of 𝔞(𝑛,𝑘)𝑣 is polynomial in 𝑘, we can construct an arithmetical r-expression 𝝆𝑡(𝑦, 𝑦′, 𝑧, 𝑧′) such
that for all graphs 𝐺 and assignments a and 𝑛, 𝑘, 𝑣, 𝑖 ∈ N with 𝑣 ∈ 𝑉 (𝑛,𝑘), 𝑖 ∈ [𝑚(𝑛,𝑘)𝑣],

⟪𝝆𝑡⟫
(𝐺,a) (𝑛, 𝑘, 𝑣, 𝑖) = 𝑡(𝑛,𝑘)𝑣,𝑖 .

Similarly, we use the relations 𝑁13
𝑡 , 𝑁14

𝑡 , 𝑁15
𝑡 to represent the slopes of 𝔞(𝑛,𝑘)𝑣 and the relations

𝑁16
𝑡 , 𝑁17

𝑡 , 𝑁18
𝑡 to represent the constants. Furthermore, we construct arithmetical r-expressions

𝝆𝑠(𝑦, 𝑦′, 𝑧, 𝑧′) and 𝝆𝑐(𝑦, 𝑦′, 𝑧, 𝑧′) to access them. We can combine the term 𝜃𝔞 and the r-expressions
𝝆𝑡(𝑦, 𝑦′, 𝑧, 𝑧′), 𝝆𝑠(𝑦, 𝑦′, 𝑧, 𝑧′), 𝝆𝑐(𝑦, 𝑦′, 𝑧, 𝑧′) to an L-expression 𝝌(𝑦, 𝑦′, 𝑧) such that for all graphs
𝐺, all assignments a, all 𝑛, 𝑘 ∈ N, and all 𝑣 ∈ 𝑉 (𝑛,𝑘) we have

⟪𝝌⟫(𝐺,a) (𝑛, 𝑘, 𝑣) = 𝔞(𝑛,𝑘)𝑣 .

Then we can combine the term 𝜃𝑉 , the relation 𝑁𝐸
𝑡 , the r-expressions 𝝆𝑤, 𝝆𝑏, and the L-expression

𝝌 to an F-expression 𝝋msg𝑡 (𝑦, 𝑦′) such that for all graphs 𝐺, all assignments a, and all 𝑛, 𝑘 ∈ N
we have

⟪𝝋msg𝑡 ⟫(𝐺,a) (𝑛, 𝑘) =𝔉(𝑛,𝑘)msg .

Similarly, we obtain an F-expression 𝝋comb𝑡 (𝑦, 𝑦′) for the combination function which uses the
relation 𝐶1

𝑡 , . . . , 𝐶
18
𝑡 that represent 𝔉(𝑛,𝑘)comb.

In addition to the 𝔑(𝑛,𝑘), we also need access to the Lipschitz constants 𝜆(𝑛). We use one
more built-in relation

𝐿 B {(𝑛, 𝜆(𝑛)) ∣ 𝑛 ∈ N} ⊆ N2.

As 𝜆(𝑛) is polynomially bounded in 𝑛, there is a term 𝜃𝜆(𝑦) using the built-in relation 𝐿 such
that for all 𝐺, a and all 𝑛,

⟦𝜃𝜆⟧(𝐺,a) (𝑛) = 𝜆(𝑛).

CLAIM 6.16.1. For all 𝑡 ∈ [𝑑], there is an arithmetical term 𝜂𝑡(𝑦, 𝑦′) such that for all 𝑛, 𝑘 ∈ N
and all 𝐺, a, the value ⟦𝜂𝑡⟧(𝐺,𝑎) (𝑛, 𝑘) is a Lipschitz constant for the combination function
comb(𝑛,𝑘)𝑡 of 𝔏(𝑛,𝑘)𝑡 .

72 / 93 M. Grohe

Proof. Using Lemma 6.7 we can easily obtain such a Lipschitz constant using the fact that 2𝜆(𝑛)

is a Lipschitz constant for all activation functions of comb(𝑛,𝑘)𝑡 , and using the term 𝜃𝜆(𝑦) to
access 𝜆(𝑛) and the F-expression 𝝋comb𝑡 (𝑦, 𝑦′) to access the FNN for comb(𝑛,𝑘)𝑡 . ∎

CLAIM 6.16.2. For all 𝑡 ∈ [𝑑], there is an arithmetical term 𝜁𝑡(𝑦, 𝑦′) such that for all 𝑛, 𝑘 ∈ N,
all 𝐺, a, and all x,x′ ∈ S𝑝𝑡−1(𝐺),

∥�̃�(𝑛,𝑘)𝑡 (𝐺,𝒙) − �̃�(𝑛,𝑘)𝑡 (𝐺,𝒙)∥
∞
≤ ⟦𝜁𝑡⟧(𝐺,a) (𝑛, 𝑘)𝑛 ∥x −x′∥∞

Proof. To construct this term we use Lemma 6.13. ∎

Note that the bound ⟦𝜁𝑡⟧(𝐺,a) (𝑛, 𝑘) is independent of the graph 𝐺 and the assignment a
and only depends on �̃�

(𝑛,𝑘)
𝑡 and 𝜆(𝑛).

The following claim is an analogue of Lemma 5.2.

CLAIM 6.16.3. Let 𝑡 ∈ [𝑑]. Let 𝑿 be an r-schema of type vn→ r, and let 𝑊 be a function
variable of type ∅→ n. Then there is a guarded r-expression l-eval𝑡(𝑦, 𝑦′, 𝑥, 𝑦′′) such that the
following holds for all 𝑛, 𝑘 ∈ N, all graphs 𝐺, and all assignments a over 𝐺. Let x ∈ S

𝑝
(𝑛)
𝑡−1
(𝐺) be

the signal defined by

x(𝑣) B (⟪𝑿⟫(𝐺,a) (𝑣, 0), . . . ,⟪𝑿⟫(𝐺,a) (𝑣, 𝑝(𝑛)𝑡−1 − 1))

and let y B �̃�
(𝑛,𝑘)
𝑡 (𝐺,x) ∈ S

𝑝
(𝑛)
𝑡
(𝐺). Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪l-eval⟫(𝐺,a) (𝑛, 𝑘, 𝑣, 0), . . . ,⟪l-eval⟫(𝐺,a) (𝑛, 𝑘, 𝑣, 𝑝(𝑛)𝑡 − 1))∥
∞
≤ 2−a(𝑊)

Proof. The proof is completely analogous to the proof of Lemma 5.2, except that in the proof of
the analogues of Claims 5.2.1 and 5.2.2 we use Lemma 3.23 instead of Corollary 3.25 to evaluate
the FNNs computing the message function and combination function. We substitute suitable
instantiations of the r-expression 𝝌(𝑦, 𝑦′) and the L-expression 𝝍(𝑦, 𝑦′) for the r-schemas
𝒁𝑣,𝒁𝑒 representing the parameters of the FNN and the L-schemas𝒀 𝑣 representing the activation
functions in Lemma 3.23.

Furthermore, in Case 3 of the proof of Lemma 5.2 (handlingMEAN-aggregation) we need
a term that defines a Lipschitz constant for the combination function of 𝔏(𝑛,𝑘)𝑡 . (In the proof of
Lemma 5.2, this is the constant 𝜆.) We can use the term 𝜂𝑡(𝑦, 𝑦′) of Claim 6.16.1. ∎

The next claim is the analogue of Theorem 5.1 for our setting with built-in relations.

CLAIM 6.16.4. Let 𝑿 be an r-schema of type vn→ r, and let 𝑊 be a function variable of type
∅→ n. Then there is a guarded r-expression n-eval(𝑦, 𝑦′, 𝑥, 𝑦′′) such that the following holds
for all 𝑛, 𝑘 ∈ N, all graphs 𝐺, and all assignments a over 𝐺. Let x ∈ S𝑝(𝑛)(𝐺) be the signal defined
by

x(𝑣) B (⟪𝑿⟫(𝐺,a) (𝑣, 0), . . . ,⟪𝑿⟫(𝐺,a) (𝑣, 𝑝(𝑛) − 1)),

73 / 93 The Descriptive Complexity of Graph Neural Networks

and let y B �̃�(𝑛,𝑘)(𝐺,x) ∈ S𝑞(𝑛)(𝐺). Then for all 𝑣 ∈ 𝑉(𝐺),

∥y(𝑣) − (⟪n-eval⟫(𝐺,a) (𝑛, 𝑘, 𝑣, 0), . . . ,⟪n-eval⟫(𝐺,a) (𝑛, 𝑘, 𝑣, 𝑞(𝑛) − 1))∥
∞
≤ 2−a(𝑊) (88)

Proof. The proof is completely analogous to the proof of Theorem 5.1, using Claim 6.16.3 instead
of Lemma 5.2. In the proof of Theorem 5.1 we need access to a term that defines a constant 𝜆(𝑡)

that bounds the growth of the 𝑡th layer of 𝔑(𝑛,𝑘). We use the term 𝜁𝑡(𝑦, 𝑦′) of Claim 6.16.2. ∎

What remains to be done is choose the right 𝑘 to achieve the desired approximation error
in (48). We will define 𝑘 using a closed term err that depends on 𝑊,𝑊 ′ as well as the order of
the input graph. We let

err B 2ord ⋅ (𝑊 + 1) ⋅𝑊 ′.

In the following, let us assume that 𝐺 is a graph of order 𝑛 and a is an assignment over 𝐺

satisfying the two assumptions a(𝑊 ′) ≠ 0 and ∥x∥∞ ≤a(𝑊) for the signal x ∈ S𝑝(𝑛)(𝐺) defined
by 𝑿 as in (47). Let

𝑘 B ⟦err⟧(𝐺,a) = 2𝑛(a(𝑊) + 1)a(𝑊 ′) ≥ 2𝑛(∥x∥∞ + 1)a(𝑊 ′)

and thus
𝑛(∥x∥∞ + 1)1

𝑘
≤ 1

2a(𝑊 ′) .

Thus by (87),
∥�̃�(𝑛)(𝐺,x) − �̃�(𝑛,𝑘)(𝐺,x)∥∞ ≤

1
2a(𝑊 ′) . (89)

Now we let gnn-eval(𝑥, 𝑦) be the formula obtained from the formula gnn-eval(𝑦, 𝑦′, 𝑥, 𝑦′′) of
Claim 6.16.4 by substituting ord for 𝑦, err for 𝑦′, 𝑦 for 𝑦′′, and 𝑊 ′ for 𝑊 . Then by (88), we have

∥�̃�(𝑛,𝑘)(𝐺,x)(𝑣) − (⟪gnn-eval⟫(𝐺,a) (𝑣, 0), . . . ,⟪gnn-eval⟫(𝐺,a) (𝑣, 𝑞(𝑛) − 1))∥
∞

≤ 2−a(𝑊
′) ≤ 1

2a(𝑊 ′)
Combined with (89), this yields

∥�̃�(𝐺,x)(𝑣) − (⟪gnn-eval⟫(𝐺,a) (𝑣, 0), . . . ,⟪gnn-eval⟫(𝐺,a) (𝑣, 𝑞(𝑛) − 1))∥
∞
≤ 1
a(𝑊 ′) ,

that is, the desired inequality (48). ∎

7. A Converse

The main result of this section is a converse of Corollary 6.3. For later reference, we prove
a slightly more general lemma that not only applies to queries over labelled graphs, that is,
graphs with Boolean signals, but actually to queries over graphs with integer signals within
some range.

74 / 93 M. Grohe

LEMMA 7.1. Let 𝑈1, . . . ,𝑈𝑝 be function variables of type v → n, and let 𝜑(𝑥) be a GFO+Cnu-
formula that contains no relation or function variables except possibly the 𝑈𝑖 . Then there is a
polynomial-size bounded-depth family N of rational piecewise-linear GNNs of input dimension
𝑝 such that for all graphs 𝐺 of order 𝑛 and all assignments a over 𝐺 the following holds. Let
u ∈ S𝑝(𝐺) be the signal defined by

u(𝑣) B (a(𝑈1)(𝑣), . . . ,a(𝑈𝑝)(𝑣)). (90)

Assume that a(𝑈𝑖)(𝑣) < 𝑛 for all 𝑖 ∈ [𝑝] and 𝑣 ∈ 𝑉(𝐺). Then for all 𝑣 ∈ 𝑉(𝐺), Ñ(𝐺,u) ∈ {0, 1} and

Ñ(𝐺,u)(𝑣) = 1 ⇐⇒ (𝐺,a) ⊧ 𝜑(𝑣).

Furthermore, all GNNs in N only use lsig-activations and SUM-aggregation.

In the following, we will use the following more suggestive notation for the setting of the
lemma: for a signal u ∶ 𝑉(𝐺)→ {0, . . . , 𝑛 − 1}𝑝, we write

(𝐺,u) ⊧ 𝜑(𝑣)

if (𝐺,a) ⊧ 𝜑(𝑣) for some assignments a with a(𝑈𝑖)(𝑣) = u(𝑣)𝑖 for all 𝑖 ∈ [𝑝] and 𝑣 ∈ 𝑉(𝐺). This
is reasonable because 𝜑 only depends on the assignment to𝑈𝑖 and to 𝑥. Thus if (𝐺,u) ⊧ 𝜑(𝑣)
then (𝐺,a) ⊧ 𝜑 for all assignments a with with a(𝑈𝑖)(𝑣) = u(𝑣)𝑖 and a(𝑥) = 𝑣.

To prove Lemma 7.1, we need to construct an FNN that transforms a tuple of nonnegative
integers into a “one-hot encoding” of these integers mapping 𝑖 to the {0, 1}-vector with a 1 in
the 𝑖th position and 0s everywhere else.

LEMMA 7.2. Let 𝑚, 𝑛 ∈ N. Then there is an FNN 𝔉 of input dimension 𝑚 and output dimension
𝑚 ⋅ 𝑛 such that for all 𝒙 = (𝑥0, . . . , 𝑥𝑚−1) ∈ {0, . . . , 𝑛 − 1}𝑚 the following holds. Suppose that
𝔉(𝒙) = 𝒚 = (𝑦0, . . . , 𝑦𝑚𝑛−1). Then for 𝑘 = 𝑖𝑛 + 𝑗, 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑛,

𝑦𝑘 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑗 = 𝑥𝑖 ,

0 otherwise.

Furthermore, 𝔉 has size 𝑂(𝑚𝑛), depth 2, and it only uses lsig activations.

EXAMPLE 7.3. Suppose that 𝑚 = 3, 𝑛 = 4, and 𝒙 = (1, 3, 0). Then we want 𝔉(𝒙) to be

(0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0).

∎

PROOF OF LEMMA 7.2 . Observe that the function 𝑓 (𝑥) B lsig(𝑥+1)− lsig(𝑥) satisfies 𝑓 (0) =
1 and 𝑓 (𝑘) = 0 for all integers 𝑘 ≠ 0. We design the network such that

𝑦𝑖𝑚+ 𝑗 = 𝑓 (𝑥𝑖 − 𝑗) = lsig(𝑥𝑖 − 𝑗 + 1) − lsig(𝑥𝑖 − 𝑗).

75 / 93 The Descriptive Complexity of Graph Neural Networks

On the middle layer we compute the values lsig(𝑥𝑖 − 𝑗 + 1) and lsig(𝑥𝑖 − 𝑗) for all 𝑖, 𝑗. ∎

PROOF OF LEMMA 7.1 . Let us fix an 𝑛 ∈ N. We need to define a GNN 𝔑 of size polynomial in
𝑛 and of depth only depending on 𝜑, but not on 𝑛, such that for every graph 𝐺 of order 𝑛, every
signal u ∶ 𝑉(𝐺)→ {0, . . . , 𝑛 − 1}𝑝, and every 𝑣 ∈ 𝑉(𝐺) it holds that �̃�(𝐺,u)(𝑣) ∈ {0, 1} and

(𝐺,u) ⊧ 𝜑(𝑣) ⇐⇒ 𝔑(𝐺,u)(𝑣) = 1. (91)

We will prove (91) by induction on the formula 𝜑(𝑥). Let us understand the structure of this
formula. The formula uses two vertex variables 𝑥1, 𝑥2. We usually refer to them as 𝑥, 𝑥′, with the
understanding that if 𝑥 = 𝑥𝑖 then 𝑥′ = 𝑥3−𝑖 . In addition, the formula uses an arbitrary finite set
of number variables, say, {𝑦1, . . . , 𝑦ℓ}. When we want to refer to any of these variables without
specifying a particular 𝑦𝑖 , we use the notations like 𝑦, 𝑦′, 𝑦 𝑗 .

By a slight extension of Lemma 3.2 to a setting where we allow function variables, but
require them to take values smaller than the order of the input structure, all subterms of 𝜑(𝑥)
are polynomially bounded in the order 𝑛 of the input graph. Thus in every counting subterm
#(𝑥′, 𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).(𝐸(𝑥, 𝑥′) ∧ 𝜓) or #(𝑦1 < 𝜃1, . . . , 𝑦𝑘 < 𝜃𝑘).𝜓, we may replace the 𝜃𝑖 by a
fixed closed term 𝜃 B (ord + 1)𝑟 for some constant 𝑟 ∈ N and rewrite the counting terms as
#(𝑥′, 𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝑦1 < 𝜃1 ∧ . . . ∧ 𝑦𝑘 < 𝜃𝑘 ∧ 𝜓) and #(𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝑦1 <
𝜃1 ∧ . . . ∧ 𝑦𝑘 < 𝜃𝑘 ∧ 𝜓), respectively. We fix 𝜃 for the rest of the proof and assume that it is used
as the bound in all counting terms appearing in 𝜑.

Arguably the most important building blocks of the formula 𝜑 are subterms of the form

#(𝑥′, 𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓). (92)

Let us call these the neighbourhood terms of 𝜑. Note that the only guards available in our
vocabulary of graphs are 𝐸(𝑥, 𝑥′) and 𝐸(𝑥′, 𝑥), and since we are dealing with undirected graphs
these two are equivalent. This is why we always assume that the guards 𝛾 of subterms #(𝑥′, 𝑦1 <
𝜃, . . . , 𝑦𝑘 < 𝜃).(𝛾∧ . . .) are of the form 𝐸(𝑥, 𝑥′). Furthermore, we may assume that atoms 𝐸(𝑥, 𝑥′)
only appear as guards of neighbourhood terms. This assumption is justified by the observation
that atoms 𝐸(𝑥, 𝑥′)must always occur within some neighbourhood term (otherwise both 𝑥 and
𝑥′ would occur freely in 𝜑), and it would make no sense to have either 𝐸(𝑥, 𝑥′) or its negation
in the subformula 𝜓 in (92) unless it appeared within a neighbourhood term of 𝜓. We may also
assume that 𝜑 has no atomic subformulas 𝐸(𝑥, 𝑥), because they always evaluate to false (in the
undirected simple graphs we consider), or 𝑥 = 𝑥, because they always evaluate to true.

In the following, we will use the term “expression” to refer to subformulas and subterms
of 𝜑, and we denote expressions by 𝜉. An vertex-free expression is an expression with no free
vertex variables. A vertex expression is an expression with exactly one free vertex variable 𝑥

(so 𝜑 = 𝜑(𝑥) itself is a vertex expression), and an edge expression is an expression with two free
vertex variables. This terminology is justified by the observation that edge expressions must be

76 / 93 M. Grohe

guarded, so the two free variables must be interpreted by the endpoints of an edge. The most
important edge formulas are the formulas 𝐸(𝑥, 𝑥′) ∧ 𝜓 appearing within the neighbourhood
terms.

To simplify the presentation, let us a fix a graph 𝐺 of order 𝑛 and a signal u ∶ 𝑉(𝐺) →
{0, . . . , 𝑛 − 1}𝑝 in the following. Of course the GNN we shall define will not depend on 𝐺 or u; it
will only depend on 𝑛 and 𝜑.

Recall that all subterms of 𝜑 take values polynomially bounded in 𝑛. Let 𝑚 ∈ N be polyno-
mial in 𝑛 such that all subterms of 𝜓 take values strictly smaller than 𝑚. Let 𝑀 B {0, . . . , 𝑚 − 1}.
When evaluating 𝜑, we only need to consider assignments that map number variables 𝑦1, . . . , 𝑦ℓ

appearing in 𝜑 to values in 𝑀 . Then every vertex-free formula 𝜓 defines a relation 𝑆𝜓 ⊆ 𝑀ℓ+1

consisting of all tuples (𝑏, 𝑎1, . . . , 𝑎ℓ) ∈ 𝑀ℓ+1 such that (𝐺,a) ⊧ 𝜓 for all assignments a over 𝐺
with a(𝑦 𝑗) = 𝑎 𝑗 for all 𝑗 ∈ [ℓ]. (The first coordinate 𝑏 is just a dummy coordinate that will allow
us to work with ℓ + 1-ary relations throughout.) Every vertex-free term 𝜃 defines a relation
𝑆𝜃 ⊆ 𝑀ℓ+1 consisting of all tuples (𝑏, 𝑎1, . . . , 𝑎ℓ) ∈ 𝑀ℓ+1 such that ⟦𝜃⟧(𝐺,a) = 𝑏 for all assignments
a over 𝐺 with a(𝑦 𝑗) = 𝑎 𝑗 for all 𝑗 ∈ [ℓ]. Similarly, every vertex expression 𝜉 defines a relation
𝑆𝜉(𝑣) ⊆ 𝑀ℓ+1 for every 𝑣 ∈ 𝑉(𝐺) and every edge expression 𝜉 defines a relation 𝑆𝜉(𝑣, 𝑣′) ⊆ 𝑀ℓ+1

for every pair (𝑣, 𝑣′) ∈ 𝑉(𝐺)2.
Let �̃� B 𝑚ℓ+1 and �̃� B {0, . . . , �̃� − 1}. Let ⟨⋅⟩ ∶ 𝑀ℓ+1 → �̃� be the bijection defined by

⟨(𝑎0, . . . , 𝑎ℓ)⟩ = ∑ℓ
𝑖=0 𝑎𝑖𝑚

𝑖 . Note that ⟨⋅⟩maps relations 𝑅 ⊆ 𝑀ℓ+1 to subsets ⟨𝑅⟩ ⊆ �̃� , which we
may also view as vectors in {0, 1}�̃�: for 𝑖 ∈ �̃� we let ⟨𝑅⟩𝑖 = 1 if 𝑖 ∈ ⟨𝑅⟩ and ⟨𝑅⟩𝑖 = 0 otherwise.

Thus every vertex-free expression 𝜉 defines a vector 𝒙𝜉 B ⟨𝑆𝜉⟩ ∈ {0, 1}�̃�. Every vertex
expression defines an �̃�-ary Boolean signal x𝜉 defined by

x𝜉(𝑣) B ⟨𝑆𝜉(𝑣)⟩ .

Every edge expression 𝜉 defines an “edge signal” y𝜉 defined by

y𝜉(𝑣, 𝑣′) B ⟨𝑆𝜉(𝑣, 𝑣′)⟩ .

Note that, formally, y𝜉(𝑣, 𝑣′) is defined for all pairs 𝑣, 𝑣′ and not only for the pairs of endpoints
of edges.

Assume that the vertex expressions are 𝜉(1), . . . , 𝜉(𝑑), ordered in such a way that if 𝜉(𝑖) is a
subexpression of 𝜉(𝑗) then 𝑖 < 𝑗. Then 𝜉(𝑑) = 𝜑. Our GNN 𝔑 will have 𝑑 + 1 layers 𝔏(1), . . . ,𝔏(𝑑+1).
For 𝑡 ∈ [𝑑], the layer 𝔏(𝑡) will have input dimension 𝑝𝑡−1 B 𝑝 + (𝑡 − 1)�̃� and output dimension
𝑝𝑡 B 𝑝 + 𝑡�̃�. Layer 𝔏(𝑑+1) will have input dimension 𝑝𝑑 and output dimension 𝑝𝑑+1 B 1. Note
that 𝑝0 = 𝑝. So our GNN𝔑 = (𝔏(1), . . . ,𝔏(𝑑+1))will have input dimension 𝑝 and output dimension
1, which is exactly what we need.

77 / 93 The Descriptive Complexity of Graph Neural Networks

Let 𝒙(0) B u be the input signal, and for every 𝑡 ∈ [𝑑 + 1], let x(𝑡) B �̃�(𝑡)(𝐺,x(𝑡−1)). We
shall define the layers in such a way that for all 𝑡 ∈ [𝑑], all 𝑣 ∈ 𝑉(𝐺) we have

x(𝑡)(𝑣) = u(𝑣)x𝜉(1)(𝑣) . . .x𝜉(𝑡)(𝑣). (93)

Furthermore,

x(𝑑+1)(𝑣) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝐺 ⊧ 𝜑(𝑣),

0 otherwise.
(94)

So the GNN will take care of the vertex expressions. We also need to take care of the vertex-free
expressions and the edge expressions. For vertex-free expressions, this is easy. Observe that
a vertex-free expression contains no vertex variables at all, free or bound, because once we
introduce a vertex variable the only way to bind it is by a neighbourhood term, and such a
term always leaves one vertex variable free. Thus the value of a vertex-free expression does
not depend on the input graph 𝐺, but only on its order 𝑛, the built-in numerical relations, and
the integer arithmetic that is part of the logic. This means that for a vertex-free expression 𝜉

the relation 𝑆𝜉 is “constant” and can be treated like a built-in numerical relation that can be
hardwired into the GNN. Dealing with edge expressions is more difficult. We will handle them
when dealing with the neighbourhood terms.

Let us turn to the vertex expressions. Let 𝑡 ∈ [𝑑], and let 𝜉 B 𝜉(𝑡). We distinguish between
several cases depending on the shape of 𝜉.

Case 1: 𝜉 =𝑈𝑖(𝑥) for some 𝑖 ∈ [𝑝].
Observe that for 𝑣 ∈ 𝑉(𝐺) we have

𝑆𝜉(𝑣) = {u(𝑣)𝑖} ×𝑀ℓ.

Thus x𝜉(𝑣)𝑘 = 1 if 𝑘 = u(𝑣)𝑖 +∑ℓ
𝑗=1 𝑎 𝑗𝑚 𝑗 for some (𝑎1, . . . , 𝑎ℓ) ∈ 𝑀ℓ and x𝜉(𝑣)𝑘 = 0 otherwise.

Using Lemma 7.2 in the special case 𝑚 = 1, we can design an FNN 𝔉1 of input dimension 1 and
output dimension 𝑚 that maps u(𝑣)𝑖 to (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}𝑚 with a 1 at index u(𝑣)𝑖 .
We put another layer of �̃� output nodes on top of this and connect the node 𝑘 = ∑ℓ

𝑗=0 𝑎 𝑗𝑚 𝑗 on
this layer to the output node of 𝔉1 with index 𝑎0 by an edge of weight 1. All nodes have bias
0 and use lsig activations. The resulting FNN 𝔉2 has input dimension 1 and output dimension
�̃�, and it maps an input 𝑥 to the vector ⟨{𝑥} ×𝑀ℓ⟩ ∈ {0, 1}�̃�. Thus in particular, it maps u(𝑣)𝑖
to ⟨𝑆𝜉(𝑣)⟩. Padding this FNN with additional input and output nodes, we obtain an FNN 𝔉3

of input dimension 𝑝𝑡−1 + 1 and output dimension 𝑝𝑡 = 𝑝𝑡−1 + �̃� that map (𝑥1, . . . , 𝑥𝑝𝑡−1+1) to
(𝑥1, . . . , 𝑥𝑝𝑡−1 ,𝔉2(𝑥𝑖)).
We use 𝔉3 to define the combination functions comb(𝑡) ∶ R𝑝𝑡−1+1 → R𝑝𝑡 of the layer 𝔏(𝑡). We
define the message function bymsg(𝑡) ∶ R2𝑝𝑡−1 → R bymsg(𝑡)(𝒙) B 0 for all 𝒙, and we use sum
aggregation. Then clearly, 𝔏(𝑡) computes the transformation (𝐺,x(𝑡−1))↦ (𝐺,x(𝑡)) satisfying
(93).

78 / 93 M. Grohe

Case 2: 𝜉 = 𝜉′ ∗ 𝜉′′, where 𝜉′, 𝜉′′ are vertex expressions and either ∗ ∈ {+, ⋅,≤} and 𝜉, 𝜉′, 𝜉′ are
terms or ∗ = ∧ and 𝜉, 𝜉′, 𝜉′′ are formulas.
We could easily (though tediously) handle this case by explicitly constructing the appropriate
FNNs, as we did in Case 1. However, we will give a general argument that will help us through
the following cases as well.
As the encoding 𝑅 ⊆ 𝑀ℓ+1 ↦ ⟨𝑅⟩ ⊆ �̃� and the decoding ⟨𝑅⟩ ⊆ �̃� ↦ 𝑅 ⊆ 𝑀ℓ+1 are definable by
arithmetical FO+C-formulas, the transformation

(⟨𝑆𝜉′(𝑣)⟩, ⟨𝑆𝜉′′(𝑣)⟩)↦ ⟨𝑆𝜉′∗𝜉′′(𝑣)⟩,

which can be decomposed as

(⟨𝑆𝜉′(𝑣)⟩, ⟨𝑆𝜉′′(𝑣)⟩)↦ (𝑆𝜉′(𝑣), 𝑆𝜉′(𝑣))↦ 𝑆𝜉∗𝜉′′(𝑣)↦ ⟨𝑆𝜉′∗𝜉′′(𝑣)⟩,

is also definable by an arithmetical FO+C-formula, using Lemmas 3.9 and 3.14 for the main
step (𝑆𝜉′(𝑣), 𝑆𝜉′(𝑣))↦ 𝑆𝜉∗𝜉′′(𝑣). Hence by Corollary 3.5, it is computable by a threshold circuit
ℭ∗ of bounded depth (only depending on ∗) and polynomial size. Hence by Lemma 2.8 it is
computable by an FNN 𝔉∗ of bounded depth and polynomial size. Note that for every vertex 𝑣,
this FNN 𝔉∗ maps (x𝜉′(𝑣),x𝜉′(𝑣)) to x𝜉(𝑣).
We have 𝜉′ = 𝜉(𝑡′) and 𝜉′′ = 𝜉(𝑡′′) for some 𝑡′, 𝑡′′ < 𝑡. Based on 𝔉∗ we construct an FNN 𝔉 of input
dimension 𝑝𝑡−1 + 1 and output dimension 𝑝𝑡 = 𝑝𝑡−1 + �̃� such that for 𝒖 ∈ {0, . . . , 𝑛 − 1}𝑝 and
𝒙1, . . . ,𝒙𝑡−1 ∈ R�̃�, 𝑥 ∈ R

𝔉(𝒖𝒙1 . . .𝒙𝑡−1𝑥) = 𝒖𝒙1 . . .𝒙𝑡−1𝔉
∗(𝒙𝑡′ ,𝒙𝑡′′).

Continuing as in Case 1, we use 𝔉 to define the combination functions comb(𝑡) of the layer 𝔏(𝑡),
and again we use a trivial message function.
Case 3: 𝜉 = ¬𝜉′, where 𝜉′ is vertex formula.
This case can be handled as Case 2.
Case 4: 𝜉 = 𝜉′ ∗ 𝜉′′, where 𝜉′ is a vertex expression, 𝜉′′ is a vertex-free expression, and either
∗ ∈ {+, ⋅,=,≤} and 𝜉, 𝜉′, 𝜉′′ are terms or ∗ ∈ ∧ and 𝜉, 𝜉′, 𝜉′′ are formulas.
As in Case 2, we construct a threshold circuit ℭ∗ of bounded depth and polynomial size that
computes the mapping (⟨𝑆𝜉′(𝑣)⟩, ⟨𝑆𝜉′′⟩) ↦ ⟨𝑆𝜉′∗𝜉′′(𝑣)⟩. As we argued above, the relation 𝑆′′𝜉 for
the vertex-free expression 𝜉′′ and hence the vector ⟨𝑆𝜉′′⟩ do not depend on the input graph.
Hence we can simply hardwire the ⟨𝑆𝜉′′⟩ into ℭ∗, which gives us a circuit that computes the
mapping ⟨𝑆𝜉′(𝑣)⟩↦ ⟨𝑆𝜉′∗𝜉′′(𝑣)⟩. From this circuit we obtain an FNN 𝔉∗ that computes the same
mapping, and we can continue as in Case 2.
Case 5: 𝜉 = #(𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).𝜓, where 𝜓 is a vertex formula.
We argue as in Cases 2-4. We construct a threshold circuit that computes the mapping

⟨𝑆𝜓(𝑣)⟩↦ ⟨𝑆𝜉(𝑣)⟩.

79 / 93 The Descriptive Complexity of Graph Neural Networks

Turning this circuit into an FNN 𝔉∗ that computes the same mapping, we can continue as in
Case 2.
Case 6: 𝜉 = #(𝑥′, 𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓), where 𝜓 is an edge formula or a vertex
formula.
Without loss of generality, we assume that 𝜓 is an edge formula. If it is not, instead of 𝜓 we take
the conjunction of 𝜓 with 𝑈1(𝑥) +𝑈1(𝑥′) ≥ 0, which is always true, instead. Moreover, we may
assume that 𝜓 contains no equality atoms 𝑥 = 𝑥′, because the guard 𝐸(𝑥, 𝑥′) forces 𝑥 and 𝑥′ to be
distinct. Thus 𝜓 is constructed from vertex expressions and vertex-free expressions using +, ⋅,≤
to combine terms, ¬,∧ to combine formulas, and counting terms #((𝑦′)1 < 𝜃, . . . , (𝑦′)𝑘′ < 𝜃).𝜓′.
Let 𝜉(𝑡1), . . . , 𝜉(𝑡𝑠) be the maximal (with respect to the inclusion order on expressions) vertex
expressions occurring in 𝜓. Assume that 𝑥 is the free vertex variable of 𝜉(𝑡1), . . . , 𝜉(𝑡𝑟) and 𝑥′ is
the free vertex variable of 𝜉(𝑡𝑟+1), . . . , 𝜉(𝑡𝑠). Arguing as in Case 2 and Case 5, we can construct a
threshold circuit ℭ of bounded depth and polynomial size that computes the mapping

(⟨𝑆𝜉(𝑡1)(𝑣)⟩, . . . , ⟨𝑆𝜉(𝑡𝑟)(𝑣)⟩, ⟨𝑆𝜉(𝑡𝑟+1)(𝑣′)⟩, . . . , ⟨𝑆𝜉𝑖𝑠(𝑣
′)⟩)↦ ⟨𝑆𝜓(𝑣, 𝑣′)⟩

To simplify the notation, let us assume that 𝑦𝑖 = 𝑦𝑖 . Thus the free variables of 𝜉 are among
𝑥, 𝑦𝑘+1, . . . , 𝑦ℓ, and we may write 𝜉(𝑥, 𝑦𝑘+1, . . . , 𝑦ℓ). Let

𝜁 (𝑥, 𝑥′, 𝑦𝑘+1, . . . , 𝑦ℓ) B #(𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).𝜓

and observe that for all 𝑣 ∈ 𝑉(𝐺) and 𝑎𝑘+1, . . . , 𝑎ℓ ∈ 𝑀 we have

⟦𝜉⟧𝐺 (𝑣, 𝑎𝑘+1, . . . , 𝑎ℓ) = ∑
𝑣′∈𝑁(𝑣)

⟦𝜁 ⟧𝐺 (𝑣, 𝑣′, 𝑎𝑘+1, . . . , 𝑎ℓ).

For 𝑣, 𝑣′ ∈ 𝑉(𝐺), let

𝑅𝜁 (𝑣, 𝑣′) B {(𝑎0, . . . , 𝑎ℓ−𝑘−1, 𝑏) ∣ 𝑏 < ⟦𝜁 ⟧𝐺 (𝑣, 𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1)} ⊆ 𝑀ℓ−𝑘+1,

and slightly abusing notation, let

⟨𝑅𝜁 (𝑣, 𝑣)⟩ = {
ℓ−𝑘
∑
𝑖=0

𝑎𝑖𝑚
𝑖 ∣ (𝑎0, . . . , 𝑎ℓ−𝑘) ∈ 𝑅𝜁 (𝑣)} ⊆ {0, . . . , 𝑚ℓ−𝑘+1 − 1}

which we may also view as a vector in {0, 1}𝑚ℓ−𝑘+1 . Again arguing via FO+C, we can construct a
threshold circuit ℭ′ that computes the transformation

(⟨𝑆𝜉(𝑡1)(𝑣)⟩, . . . , ⟨𝑆𝜉(𝑡𝑟)(𝑣)⟩, ⟨𝑆𝜉(𝑡𝑟+1)(𝑣′)⟩, . . . , ⟨𝑆𝜉𝑖𝑠(𝑣
′)⟩)↦ ⟨𝑅𝜁 (𝑣, 𝑣′)⟩.

Using Lemma 2.8, we can turn ℭ′ into an FNN 𝔉′ that computes the same Boolean function. Let
𝒄(𝑣, 𝑣′) = (𝑐0, . . . , 𝑐𝑚ℓ−𝑘−1) ∈ 𝑀𝑚ℓ−𝑘 be the vector defined by as follows: for (𝑎0, . . . , 𝑎ℓ−𝑘−1) ∈ 𝑀ℓ−𝑘

and 𝑗 = ∑ℓ−𝑘−1
𝑖=0 𝑎𝑖𝑚𝑖 we let

𝑐 𝑗 B ⟦𝜁 ⟧𝐺 (𝑣, 𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1).

80 / 93 M. Grohe

Then

𝑐 𝑗 = ∣{𝑏 ∣ 𝑏 < ⟦𝜁 ⟧𝐺 (𝑣, 𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1)}∣
= ∣{𝑏 ∣ (𝑎0, . . . , 𝑎ℓ−𝑘−1, 𝑏) ∈ 𝑅𝜁 (𝑣, 𝑣′)}∣
= ∑

𝑏∈𝑀
⟨𝑅𝜁 (𝑣, 𝑣′)⟩ 𝑗+𝑏𝑚ℓ−𝑘 .

Thus an FNN of depth 1 with input dimension 𝑚ℓ−𝑘+1 and output dimension 𝑚ℓ−𝑘 can transform
⟨𝑅𝜃(𝑣, 𝑣′)⟩ into 1

𝑚𝒄(𝑣, 𝑣′). We take the factor 1
𝑚 because 0 ≤ 𝑐 𝑗 < 𝑚 and thus 1

𝑚𝒄(𝑣, 𝑣′) ∈ [0, 1]𝑚
ℓ−𝑘 ,

and we can safely use lsig-activation. We add this FNN on top of the 𝔉′ and obtain an FNN 𝔉′′

that computes the transformation

(⟨𝑆𝜉(𝑡1)(𝑣)⟩, . . . , ⟨𝑆𝜉(𝑡𝑟)(𝑣)⟩, ⟨𝑆𝜉(𝑡𝑟+1)(𝑣′)⟩, . . . , ⟨𝑆𝜉𝑖𝑠(𝑣
′)⟩)↦ 1

𝑚
𝒄(𝑣, 𝑣′).

The message functionmsg(𝑡) of the GNN layer 𝔏(𝑡) computes the function

(x(𝑡−1)(𝑣),x(𝑡−1)(𝑣′))→ 1
𝑚
𝒄(𝑣, 𝑣′)

which we can implement by an FNN based on𝔉′′. Aggregating, we obtain the signal z such that

z(𝑣) = ∑
𝑣′∈𝑁(𝑣)

msg(𝑡)(𝑣, 𝑣′) = 1
𝑚
∑

𝑣′∈𝑁(𝑣)
𝒄(𝑣, 𝑣′)

Thus for (𝑎0, . . . , 𝑎ℓ−𝑘−1) ∈ 𝑀ℓ−𝑘 and 𝑗 = ∑ℓ−𝑘−1
𝑖=0 𝑎𝑖𝑚𝑖 we have

z(𝑣) 𝑗 =
1
𝑚
∑

𝑣′∈𝑁(𝑣)
𝒄(𝑣, 𝑣′)

= 1
𝑚
∑

𝑣′∈𝑁(𝑣)
⟦𝜁 ⟧𝐺 (𝑣, 𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1)

= 1
𝑚
⟦𝜉⟧𝐺 (𝑣, 𝑎0, . . . , 𝑎ℓ−𝑘−1).

Our final task will be to transform the vector z(𝑣) ∈ [0, 1]𝑚ℓ−𝑘 to the vector ⟨𝑆𝜉⟩ ∈ {0, 1}�̃�. In a
first step, we transform z(𝑣) into a vector z′(𝑣) ∈ 𝑀𝑚ℓ with entries

z′(𝑣) 𝑗 = ⟦𝜉⟧𝐺 (𝑣, 𝑎𝑘+1, . . . , 𝑎ℓ)

for (𝑎1, . . . , 𝑎ℓ) ∈ 𝑀ℓ and 𝑗 = ∑ℓ−1
𝑖=0 𝑎𝑖+1𝑚𝑖 . We need to transform z′(𝑣) into ⟨𝑆𝜉(𝑣)⟩ ∈ {0, 1}�̃�,

which for every (𝑎1, . . . , 𝑎ℓ) ∈ 𝑀ℓ has a single 1-entry in position 𝑗 = ∑ℓ
𝑖=0 𝑎𝑖𝑚

𝑖 for 𝑎0 =
⟦𝜉⟧𝐺 (𝑣, 𝑎𝑘+1, . . . , 𝑎ℓ) and 0-entries in all positions 𝑗′ = ∑ℓ

𝑖=0 𝑎𝑖𝑚
𝑖 for 𝑎0 ≠ ⟦𝜉⟧𝐺 (𝑣, 𝑎𝑘+1, . . . , 𝑎ℓ).

We can use Lemma 7.2 for this transformation.
Thus we can construct an FNN𝔉′′ that transforms the output 𝒛(𝑣) of the aggregation into ⟨𝑆𝜉(𝑣)⟩.
We define the combination function comb(𝑡) ∶ R𝑝𝑡−1+𝑚ℓ−𝑘 → R𝑝𝑡 by comb(𝑡)(𝒙, 𝒛) ∶= (𝒙,𝔉′′(𝒛)).
Then

comb(𝑡)(x(𝑣),z(𝑣)) ∶= (𝒙,x𝜉(𝑣)).

81 / 93 The Descriptive Complexity of Graph Neural Networks

Thus the layer 𝔏(𝑡) with message functionmsg(𝑡) and combination function comb(𝑡) satisfies
(93).

All that remains is to define the last layer 𝔏(𝑑+1) satisfying (94). Since 𝜉(𝑑) = 𝜑, by (93) with 𝑡 = 𝑑,
the vector x𝜑(𝑣) = ⟨𝑆𝜑(𝑣)⟩ is the projection of x(𝑑)(𝑣) on the last �̃� entries. As 𝜑 has no free
number variables, we have

⟨𝑆𝜑(𝑣)⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝐺 ⊧ 𝜑(𝑣),

0 if 𝐺 /⊧ 𝜑(𝑣).

In particular, the last entry of ⟨𝑆𝜑(𝑣)⟩ and hence of x(𝑑)(𝑣) is 1 if 𝐺 ⊧ 𝜑(𝑣) and 0 otherwise.
Thus all we need to do on the last layer is project the output on the last entry.

This completes the construction. ∎

The following theorem directly implies Theorem 1.1 stated in the introduction.

THEOREM 7.4. Let Q be a unary query on GSbool
𝑝 . Then the following are equivalent:

1. Q is definable in GFO+Cnu.
2. There is a polynomial-size bounded-depth family of rational piecewise-linear GNNs using

only lsig-activations and SUM-aggregation that computes Q.
3. There is a rpl-approximable polynomial weight bounded-depth family of GNNs that computes

Q.

PROOF . The implication (1)Ô⇒ (2) follows from Lemma 7.1 in the special case that the 𝑈𝑖 are
Boolean, that is, only take values in {0, 1}. We can then replace them by the unary relations 𝑃𝑖
that we usually use to represent Boolean signals.

The implication (2)Ô⇒ (3) is trivial.
The implication (3)Ô⇒ (1) is Corollary 6.3. ∎

Again, we have a version of our theorem for GNNs with global readout. The proofs can
easily be adapted.

THEOREM 7.5. Let Q be a unary query on GSbool
𝑝 . Then the following are equivalent:

1. Q is definable in GFO+Cgc
nu.

2. There is a polynomial-size bounded-depth family of rational piecewise-linear GNNs with
global readount using only lsig-activations and SUM-aggregation that computes Q.

3. There is a rpl-approximable polynomial weight bounded-depth family of GNNs with global
readout that computes Q.

We also have a version Theorem 7.4 for 1-GNNs and the modal fragment. For once, let us
state the theorem explicitly.

82 / 93 M. Grohe

THEOREM 7.6. Let Q be a unary query on GSbool
𝑝 . Then the following are equivalent:

1. Q is definable inMFO+Cnu.
2. There is a polynomial-size bounded-depth family of rational piecewise-linear 1-GNNs using

only lsig-activations and SUM-aggregation that computes Q.
3. There is a rpl-approximable polynomial weight bounded-depth family of 1-GNNs that com-

putes Q.

PROOF . The implication (2) Ô⇒ (3) is trivial, and the implication (3) Ô⇒ (1) is the modal
version of Corollary 6.3 (see Remark 6.5).

The implication (1)Ô⇒ (2) follows from a modal version of Lemma 7.1 where 𝜑(𝑥) is a
MFO+Cnu-formula and we obtain a family N of 1-GNNs. We need to adapt the proof of the
lemma. Actually, the proof becomes simpler in this case. Let us first understand the structure of
theMFO+C-formula 𝜑(𝑥). Recall the definition ofMFO+C: inMFO+C-formulas, the counting
terms of the form (14) are are only permitted if 𝑥𝑖 does not occur freely in 𝜑 or any of the
𝜃 𝑗 . Since counting terms of the form (15) do not affect the vertex variables, it follows that an
MFO+C-formula with only one free vertex variable cannot contain a subformula or subterm
with two free vertex variables, unless it is an atomic subformula that occurs as a guard in a
term of the form (14).

With this initial observation, let us turn to the proof of modal version of Lemma 7.1. We
follow the proof of the original lemma. In a counting term of the form (92), the subformula 𝜓

can only have 𝑥′ as a free vertex variable. Moreover, we do not have any edge expressions (in
the terminology of the original proof) except for the guards 𝐸(𝑥, 𝑥′) in terms (92). We proceed
inductively exactly as in the proof of the original lemma. The only adaptations necessary are in
Case 6, where we consider a counting term

𝜉 = #(𝑥′, 𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).(𝐸(𝑥, 𝑥′) ∧ 𝜓)

This case becomes easier now, because we can assume that 𝜓 is a vertex formula with free
variable 𝑥′. By induction, we have already computed the �̃�-ary signal x𝜓 with x𝜓(𝑣) = ⟨𝑆𝜓(𝑣)⟩
as part of the output of the previous layer of the 1-GNN we construct.

As in the original proof, we assume 𝑦𝑖 = 𝑦𝑖 and hence that the free variables of 𝜉 =
𝜉(𝑥, 𝑦𝑘+1, . . . , 𝑦ℓ) are among 𝑥, 𝑦𝑘+1, . . . , 𝑦ℓ. We let

𝜁 (𝑥′, 𝑦𝑘+1, . . . , 𝑦ℓ) B #(𝑦1 < 𝜃, . . . , 𝑦𝑘 < 𝜃).𝜓.

Then for all 𝑣 ∈ 𝑉(𝐺) and 𝑎𝑘+1, . . . , 𝑎ℓ ∈ 𝑀 we have

⟦𝜉⟧𝐺 (𝑣, 𝑎𝑘+1, . . . , 𝑎ℓ) = ∑
𝑣′∈𝑁(𝑣)

⟦𝜁 ⟧𝐺 (𝑣′, 𝑎𝑘+1, . . . , 𝑎ℓ).

83 / 93 The Descriptive Complexity of Graph Neural Networks

Now we let

𝑅𝜁 (𝑣′) B {(𝑎0, . . . , 𝑎ℓ−𝑘−1, 𝑏) ∣ 𝑏 < ⟦𝜁 ⟧𝐺 (𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1)} ⊆ 𝑀ℓ−𝑘+1,

define ⟨𝑅𝜁 (𝑣′)⟩ accordingly. We construct a threshold circuit and from this an FNN 𝔉′ that
computes the transformation

⟨𝑆𝜓(𝑣′)⟩↦ ⟨𝑅𝜁 (𝑣′)⟩ .

We let 𝒄(𝑣′) = (𝑐0, . . . , 𝑐𝑚ℓ−𝑘−1) ∈ 𝑀𝑚ℓ−𝑘 be the vector defined by as follows: for (𝑎0, . . . , 𝑎ℓ−𝑘−1) ∈
𝑀ℓ−𝑘 and 𝑗 = ∑ℓ−𝑘−1

𝑖=0 𝑎𝑖𝑚𝑖 we let

𝑐 𝑗 B ⟦𝜁 ⟧𝐺 (𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1) = ∑
𝑏∈𝑀
⟨𝑅𝜁 (𝑣′)⟩ 𝑗+𝑏𝑚ℓ−𝑘 .

Since we can compute the sum by a single FNN-layer, we can modify 𝔉′ to obtain an FNN 𝔉′′

that computes the tranformation
⟨𝑆𝜓(𝑣′)⟩↦

1
𝑚
𝒄(𝑣′).

Then the message function of the 1-GNN-layer 𝔏(𝑡) we are constructing computes the transfor-
mation

x(𝑡−1)(𝑣′)↦ 1
𝑚
𝒄(𝑣′) C msg(𝑡)(𝑣′).

We aggregate and obtain the signal z(𝑣) defined by

z(𝑣) = ∑
𝑣′∈𝑁(𝑣)

msg(𝑡)(𝑣′) = 1
𝑚
∑

𝑣′∈𝑁(𝑣)
𝒄(𝑣′)

with
z(𝑣) 𝑗 =

1
𝑚
∑

𝑣′∈𝑁(𝑣)
⟦𝜁 ⟧𝐺 (𝑣′, 𝑎0, . . . , 𝑎ℓ−𝑘−1) =

1
𝑚
⟦𝜉⟧𝐺 (𝑣, 𝑎0, . . . , 𝑎ℓ−𝑘−1).

From now on, the proof continues exactly as the proof of the original lemma. ∎

REMARK 7.7. Let us finally address a question which we we already raised at the end of
Section 5. Is every unary query definable in GFO+C computable by single rational piecewise
linear or at least by an rpl approximable GNN? In other words: do we really need families of
GNNs in Theorem 7.4, or could we just use a single GNN?

It has been observed in [27] that the answer to this question is “no”. Intuitively, the reason
is that GNNs cannot express “alternating” queries like nodes having an even degree. To prove
this, we analyse the behaviour of GNNs on stars 𝑆𝑛 with 𝑛 leaves, for increasing 𝑛. The signal at
the root node that the GNN computes is approximately piecewise polynomial as a function of 𝑛.
However, a function that is 1 for all even natural numbers 𝑛 and 0 for all odd numbers is very
far from polynomial. ∎

84 / 93 M. Grohe

8. Random Initialisation

A GNN with random initialisation receives finitely many random features together with its
𝑝-dimensional input signal. We assume that the random features are chosen independently
uniformly from the interval [0, 1]. We could consider other distributions, like the normal dis-
tribution 𝑁(0, 1), but in terms of expressiveness this makes no difference, and the uniform
distribution is easiest to analyse. The random features at different vertices are chosen in-
dependently. As in [2], we always assume that GNNs with random initialisation have global
readout.9

We denote the uniform distribution on [0, 1] by U[0,1], and for a graph 𝐺 we write r ∼
U

𝑟×𝑉(𝐺)
[0,1] to denote that r ∈ S𝑟(𝐺) is obtained by picking the features r(𝑣)𝑖 independently from

U[0,1]. Moreover, for a signal x ∈ S𝑝(𝐺), by xr we denote the (𝑝 + 𝑟)-dimensional signal with
xr(𝑣) = x(𝑣)r(𝑣). Formally, a (𝑝, 𝑞, 𝑟)-dimensional GNN with ri is a GNN 𝔑 with global readout
of input dimension 𝑝 + 𝑟 and output dimension 𝑞. It computes a random variable mapping
pairs (𝐺,x) ∈GS𝑝 to the space S𝑞(𝐺), which we view as a product measurable space R𝑞×𝑉(𝐺)

equipped with a Borel 𝜎-algebra (or Lebesgue 𝜎-algebra, this does not matter here). Abusing
(but hopefully also simplifying) notation, we use ℜ to denote a GNN that we interpret as a
GNN with random initialisation, and we use ℜ̃ to denote the random variable. Sometimes it
is also convenient to write ℜ(𝐺,x) B (𝐺, ℜ̃(𝑥)). It is not hard to show that the mapping ℜ̃ is
measurable with respect to the Borel 𝜎-algebras on the product spaces S𝑝(𝐺) = R(𝑝+𝑟)×𝑉(𝐺) and
S𝑞(𝐺) = R𝑞×𝑉(𝐺). Here we use that the activation functions of ℜ are continuous. To define the
probability distribution of the random variable ℜ̃, for all (𝐺,x) ∈GS𝑝 and all events (that is,
measurable sets) Y ⊆ S𝑞(𝐺) we let

Pr (ℜ̃(𝐺,x) ∈Y) B Pr
r∼U𝑟×𝑉(𝐺)

[0,1]

(ℜ̃(𝐺,xr) ∈Y), (95)

where on the left-hand side we interpret ℜ as a (𝑝, 𝑞, 𝑟)-dimensional GNN with ri and on the
right-hand side just as an ordinary GNN of input dimension (𝑝 + 𝑟) and output dimension 𝑞.

For a (𝑝, 𝑞, 𝑟)-dimensional GNN with ri we call 𝑝 the input dimension, 𝑞 the output dimension,
and 𝑟 the randomness dimension.

Let Q be a unary query on GSbool
𝑝 . We say that a GNN with ri ℜ of input dimension 𝑝 and

output dimension 1 computes Q if for all (𝐺,b) ∈GSbool
𝑝 and all 𝑣 ∈ 𝑉(𝐺) it holds that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr (ℜ̃(𝐺,b) ≥ 3
4) ≥ 3

4 if Q(𝐺,b) = 1,

Pr (ℜ̃(𝐺,b) ≤ 1
4) ≥ 3

4 if Q(𝐺,b) = 0.

It is straightforward to extend this definition to families R = (ℜ(𝑛))𝑛∈N of GNNs with ri.

9 There is no deeper reason for this choice, it is just that the results get cleaner this way. This is the same reason as in
[2].

85 / 93 The Descriptive Complexity of Graph Neural Networks

By a fairly standard probability amplification result, we can make the error probabilities
exponentially small.

LEMMA 8.1. Let Q be a unary query over GS𝑝 that is computable by family R = (ℜ(𝑛))𝑛∈N of
GNNs with ri, and let 𝜋(𝑋) be a polynomial. Then there is a family R′ = (ℜ′)(𝑛))𝑛∈N of GNNs with
ri such that the following holds.

(i) R′ computes Q, and for every 𝑛, every (𝐺,b) ∈GSbool
𝑝 of order 𝑛, and every 𝑣 ∈ 𝑉(𝐺),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr (R̃′(𝐺,b) = 1) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 1,

Pr (R̃′(𝐺,b) = 0) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 0.
(96)

(ii) The weight of (ℜ′)(𝑛) is polynomially bounded in the weight of ℜ(𝑛) and 𝑛.
(iii) The depth of (ℜ′)(𝑛) is at most the depth of ℜ(𝑛) plus 2.
(iv) The randomness dimension of (ℜ′)(𝑛) is polynomially bounded in 𝑛 and the randomness

dimension of ℜ(𝑛).

PROOF . We just run sufficiently many copies of R in parallel (polynomially many suffice) and
then take a majority vote in the end, which is responsible for one of the additional layers. This
way we obtain a family R′′ that achieves

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr (R̃′′(𝐺,b) ≥ 3
4) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 1,

Pr (R̃′(𝐺,b) ≤ 1
4) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 0.

To get the desired 0, 1-outputs, we apply the transformation lsig(2𝑥 − 1
2) to the output on an

additional layer. ∎

LEMMA 8.2. Let Q be a unary query over GS𝑝 that is computable by an rpl-approximable
polynomial-weight, bounded-depth family R of GNNs with ri. Then there is an order-invariant
GFO+Cgc

nu-formula that defines Q.

PROOF . Suppose that R = (ℜ(𝑛))𝑛∈N, and for every 𝑛, let 𝑟(𝑛) be the randomness dimension of
ℜ(𝑛). Viewed as a standard GNN, ℜ(𝑛) has input dimension 𝑝 + 𝑟(𝑛) and output dimension 1. By
the previous lemma, we may assume that our family satisfies (96) for 𝜋(𝑋) = 3𝑝𝑋3.

Our first step is to observe that we can safely truncate the random numbers, which we
assume to be randomly chosen from [0, 1], to 𝑂(𝑛) bits. This follows from Corollary 6.14:
truncating the numbers to 𝑐𝑛 bits means that we replace the random signal r by a r′ such
that ∥r − r′∥∞ ≤ 2−𝑐𝑛, and the corollary implies that if we choose 𝑐 sufficiently large, we will
approximate the original GNN up to an additive error of 1

10 . Thus for some constant 𝑐 we may
assume that the random strings are not drawn uniformly from [0, 1], but from the set

𝑈𝑛 B {
𝑐𝑛−1
∑
𝑖=0

𝑎𝑖2−𝑖−1 ∣ 𝑎0, . . . , 𝑎𝑐𝑛−1 ∈ {0, 1}} .

86 / 93 M. Grohe

Let us denote the uniform distribution on this set by U𝑛 Hence for for every 𝑛, every (𝐺,b) ∈
GSbool

𝑝 of order 𝑛, and every 𝑣 ∈ 𝑉(𝐺),
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pr
r∼U𝑟(𝑛)×𝑉(𝐺)

𝑛

(R̃(𝐺,br) ≥ 9
10) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 1,

Pr
r∼U𝑟(𝑛)×𝑉(𝐺)

𝑛

(R̃(𝐺,br) ≤ 1
10) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 0.

(97)

Next, we want to apply Theorem 6.2 in the version for GNNs with global readout and the logic
GFO+Cgc

nu. Let 𝑿𝑟 be an r-schema of type vn→ r. Suppose that (𝐺,b) ∈ GSbool
𝑝 , and let a be

an assignment over 𝐺. We view (𝐺,b) as a 𝑝-labelled graph here, that is, as an {𝐸, 𝑃1, . . . , 𝑃𝑝}-
structure. So ((𝐺,b),a) is the pair consisting of this structure together with the assignment a.
Let

r(𝑣) B (⟪𝑿𝑟⟫((𝐺,b),a) (𝑣, 0), . . . ,⟪𝑿𝑟⟫((𝐺,b),a) (𝑣, 𝑟(𝑛) − 1)). (98)

In the following we will write (𝐺,b,r) instead of ((𝐺,b),a) if r is obtained from some as-
signment a via (98), always assuming that ⟪𝑿𝑟⟫((𝐺,b),a) (𝑣, 𝑘) = 0 for 𝑘 ≥ 𝑟(𝑛). Then if 𝜑(𝑥)
is a formula whose only free variables are among 𝑥 and the relation and function variables
appearing in 𝑿𝑟, the value ⟦𝜑⟧((𝐺,b),a) only depends on (𝐺,b), r and 𝑣 B a(𝑥), and we may
ignore the rest of a. In particular, we may write (𝐺,b,r) ⊧ 𝜑(𝑣) instead of ⟦𝜑⟧(𝐺,b,a) = 1.

With is notation at hand, let us apply Theorem 6.4. Replacing 𝑊 by the constant 1 and 𝑊 ′

by 10, we obtain an r-expression 𝝆 in GFO+Cgc such that for all (𝐺,b) ∈ GS𝑝 of order 𝑛 and
r ∈ S𝑟(𝑛)(𝐺) defined as in (98), if ∥r∥∞ ≤ 1, then for all 𝑣 ∈ 𝑉(𝐺) we have

∣R̃(𝐺,b,r)(𝑣) − ⟪𝝆⟫(𝐺,b,r) (𝑣)∣ ≤ 1
10

.

Note that if r(𝑣)𝑖 ∈𝑈𝑛 for 0 ≤ 𝑖 < 𝑟(𝑛), then we have ∥r∥∞ ≤ 1. Hence,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pr
r∼U𝑟(𝑛)×𝑉(𝐺)

𝑛

(⟪𝝆⟫(𝐺,b,r) (𝑣) ≥ 8
10) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 1,

Pr
r∼U𝑟(𝑛)×𝑉(𝐺)

𝑛

(⟪𝝆⟫(𝐺,b,r) (𝑣) ≤ 2
10) ≥ 1 − 2−𝜋(𝑛) if Q(𝐺,b) = 0.

From 𝝆 we obtain a formula 𝜑(𝑥), just saying 𝝆 ≥ 1
2 , such that

Pr
r∼U𝑟(𝑛)×𝑉(𝐺)

𝑛

(⟦𝜑⟧(𝐺,b,r) (𝑣) = Q(𝐺,b)(𝑣)) ≥ 1 − 2−𝜋(𝑛). (99)

Our next step will be to simplify the representation of the random features in the signal r ∈
𝑈

𝑟(𝑛)×𝑉(𝐺)
𝑛 . Each number in𝑈𝑛 can be described by a subset of {0, . . . , 𝑐𝑛−1}: the set 𝑆 represents

the number∑𝑠∈𝑆 2−𝑠−1. Thus we can represent r ∈𝑈𝑟(𝑛)×𝑉(𝐺)
𝑛 by a relation 𝑅 ⊆ 𝑉(𝐺)×{0, . . . , 𝑟(𝑛)−

1}×{0, . . . , 𝑐𝑛−1}, and we can transform 𝜑(𝑥) into a formula 𝜑′(𝑥) that uses a relation variable
𝑋𝑟 of type {vnn} instead of the r-schema 𝑿𝑟 such that

Pr
𝑅
(⟦𝜑′⟧(𝐺,b,𝑅) (𝑣) = Q(𝐺,b)(𝑣)) ≥ 1 − 2−𝜋(𝑛), (100)

87 / 93 The Descriptive Complexity of Graph Neural Networks

where the probability is over all 𝑅 chosen uniformly at random from 𝑉(𝐺) × {0, . . . , 𝑟(𝑛) − 1} ×
{0, . . . , 𝑐𝑛 − 1} and (𝐺,b, 𝑅) is ((𝐺,b),a) for some assignment a with a(𝑋𝑟) = 𝑅.

The next step is to introduce a linear order and move towards an order invariant formula.
We replace the relation variable 𝑋𝑟 of type {vnn} by a relation variable 𝑌𝑟 of type {nnn}, and
we introduce a linear order ⩽ on 𝑉(𝐺). Then we replace atomic subformulas 𝑋𝑟(𝑥′, 𝑦, 𝑦′) of
𝜑′(𝑥) by

∃𝑦′′ ≤ ord(#𝑥.𝑥 ⩽ 𝑥′ = #𝑦′′′ ≤ ord. 𝑦′′′ ≤ 𝑦′′ ∧𝑌𝑟(𝑦′′, 𝑦, 𝑦′))

The equation #𝑥.𝑥 ⩽ 𝑥′ = #𝑦′′′ ≤ ord. 𝑦′′′ ≤ 𝑦′′ just says that 𝑥′ has the same position in the linear
order ⩽ on 𝑉(𝐺) as 𝑦′′ has in the natural linear order ≤. So basically, we store the random
features for the 𝑖th vertex in the linear order ⩽ in the 𝑖-entry of 𝑌𝑟. We obtain a new formula
𝜑′′(𝑥) satisfying

Pr
𝑅
(⟦𝜑′′⟧(𝐺,b,⩽,𝑅) (𝑣) = Q(𝐺,b)(𝑣)) ≥ 1 − 2−𝜋(𝑛), (101)

where the probability is over all 𝑅 chosen uniformly at random from {0, . . . , 𝑛−1}×{0, . . . , 𝑟(𝑛)−
1}×{0, . . . , 𝑐𝑛−1}. Importantly, this holds for all linear orders ⩽ on𝑉(𝐺). Thus in some sense, the
formula is order invariant, becauseQ(𝐺,b)(𝑣) does not depend on the order. However, the set of
𝑅 ⊆ {0, . . . , 𝑛−1}×{0, . . . , 𝑟(𝑛)−1}×{0, . . . , 𝑐𝑛−1} for which we have ⟦𝜑′′⟧(𝐺,b,⩽,𝑅) (𝑣) = Q(𝐺,b)(𝑣)
may depend on ⩽; (101) just says that this set contains all 𝑅 except for an exponentially small
fraction.

In the final step, we apply a standard construction to turn randomness into non-uniformity,
which is known as the “Adleman trick”. It will be convenient to let

Ω B 2{0,...,𝑛−1}×{0,...,𝑟(𝑛)−1}×{0,...,𝑐𝑛−1}.

This is the sample space from which we draw the relations 𝑅 uniformly at random. By (101),
for each triple (𝐺,b,⩽) consisting of a graph 𝐺 of order 𝑛, a signal b ∈ Sbool

𝑝 (𝐺), and a linear
order ⩽ on 𝑉(𝐺) there is a “bad” set 𝐵(𝐺,b,⩽) ⊆ Ω such that

∀𝑅 /∈ 𝐵(𝐺,b,⩽) ∶ ⟦𝜑′′⟧(𝐺,b,⩽,𝑅) (𝑣) = Q(𝐺,b)(𝑣) (102)

and
∣𝐵(𝐺,b,⩽)∣
∣Ω∣ ≤ 2−𝜋(𝑛). (103)

Observe that the number of triples (𝐺,b,⩽) is bounded from above by 2𝑛2+𝑝𝑛+𝑛 log𝑛 and that
𝑛2 + 𝑝𝑛 + 𝑛 log𝑛 < 𝜋(𝑛). Thus we have

∣⋃(𝐺,b,⩽) 𝐵(𝐺,b,⩽)∣
∣Ω∣ ≤ ∑

(𝐺,b,⩽)

∣𝐵(𝐺,b,⩽)∣
∣Ω∣ ≤ 2𝑛

2+𝑝𝑛+𝑛 log𝑛 ⋅ 2−𝜋(𝑛) < 1.

88 / 93 M. Grohe

This means that there is a 𝑅(𝑛) ∈ Ω ∖⋃(𝐺,b,⩽) 𝐵(𝐺,b,⩽), and by (102) we have

⟦𝜑′′⟧(𝐺,b,⩽,𝑅
(𝑛)) (𝑣) = Q(𝐺,b)(𝑣) (104)

for all graphs𝐺 of order 𝑛, signals b ∈ Sbool
𝑝 (𝐺), and linear orders ⩽ on𝑉(𝐺). Let 𝑅∗ B ⋃𝑛∈N{𝑛}×

𝑅(𝑛) ⊆ N4. We use 𝑅∗ as built-in numerical relation (in addition to the numerical relations
already in 𝜑′′). In 𝜑′′(𝑥)we replace atomic subformulas𝑌𝑟(𝑦, 𝑦′, 𝑦′′) by 𝑅∗(ord, 𝑦, 𝑦′, 𝑦′′). Then
it follows from (104) that the resulting formula is order-invariant and defines Q. ∎

Before we prove the converse of the previous lemma, we need another small technical
lemma about FNNs.

LEMMA 8.3. Let 𝑘, 𝑛 ∈ N>0. There is a rational piecewise linear FNN 𝔉 of input and output
dimension 1, size polynomial in 𝑛 and 𝑘 such that

Pr
𝑟∼U
(𝔉(𝑟) ∈ {0, . . . , 𝑛 − 1}) ≥ 1 − 2−𝑘,

and for all 𝑖 ∈ {0, . . . , 𝑛 − 1},
1 − 2−𝑘

𝑛
≤ Pr

𝑟∼U
(𝔉(𝑟) = 𝑖) ≤ 1

𝑛
.

Furthermore, 𝔉 only uses relu-activations.

PROOF . For all 𝑎 ∈ R and 𝜀 > 0, let 𝑓𝜀,𝑎 ∶ R→ R be defined by 𝑓𝜀,𝑎(𝑥) B lsig (1
𝜀𝑥 − 𝑎

𝜀). Then

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑓𝜀,𝑎(𝑥) = 0 if 𝑥 ≤ 𝑎,

0 ≤ 𝑓𝜀,𝑎(𝑥) ≤ 1 if 𝑎 ≤ 𝑥 ≤ 𝑎 + 𝜀,

𝑓𝜀,𝑎(𝑥) = 1 if 𝑎 + 𝜀 ≤ 𝑥.

Furthermore, for 𝑎, 𝑏 ∈ R with 𝑎 + 2𝜀 ≤ 𝑏 and 𝑔𝜀,𝑎,𝑏 B 𝑓𝜀,𝑎 − 𝑓𝜀,𝑏−𝜀 we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝜀,𝑎,𝑏(𝑥) = 0 if 𝑥 ≤ 𝑎,

0 ≤ 𝑔𝜀,𝑎,𝑏(𝑥) = 1 if 𝑎 ≤ 𝑥 ≤ 𝑎 + 𝜀,

𝑔𝜀,𝑎,𝑏(𝑥) = 1 if 𝑎 + 𝜀 ≤ 𝑥 ≤ 𝑏 − 𝜀,

0 ≤ 𝑔𝜀,𝑎,𝑏(𝑥) = 1 if 𝑏 − 𝜀 ≤ 𝑥 ≤ 𝑏,

𝑔𝜀,𝑎,𝑏(𝑥) = 0 if 𝑏 ≤ 𝑥.

Let ℓ B ⌈log𝑛⌉ and 𝜀 B 2−𝑘−ℓ. In the following, let For 0 ≤ 𝑖 ≤ 𝑛, let 𝑎𝑖 B
𝑖
𝑛 . Let 𝑎−𝑖 B

⌊2𝑘+ℓ+2 𝑖
𝑛⌋2−𝑘−ℓ−2 and 𝑎+𝑖 B ⌈2𝑘+ℓ+2 𝑖

𝑛⌉2−𝑘−ℓ−2. Then 𝑎−𝑖 ≤ 𝑎𝑖 ≤ 𝑎+𝑖 and 𝑎𝑖 − 𝑎−𝑖 ≤
𝜀
4 , 𝑎+𝑖 − 𝑎𝑖 ≤ 𝜀

4 .
Moreover, 𝑎−𝑖 −𝑎+𝑖−1 ≥

1
𝑛 −𝜀2 ≥ 𝜀

2 . Let 𝑎++𝑖 B 𝑎+𝑖 +
𝜀
4 and 𝑎−−𝑖 B 𝑎−𝑖 −

𝜀
4 . Then 𝑎−−𝑖 ≤ 𝑎−𝑖 ≤ 𝑎𝑖 ≤ 𝑎+𝑖 ≤ 𝑎++𝑖

and 𝑎𝑖 − 𝑎−−𝑖 ≤
𝜀
2 , 𝑎++𝑖 − 𝑎𝑖 ≤ 𝜀

2 .
For 1 ≤ 𝑖 ≤ 𝑛, let 𝐼𝑖 B [𝑎𝑖−1, 𝑎𝑖] and 𝐽𝑖 B [𝑎++𝑖−1, 𝑎

−−
𝑖]. Then 𝐽𝑖 ⊆ 𝐼𝑖 . The length of 𝐼𝑖 is 1

𝑛 , and the
length of 𝐽𝑖 is at least 1

𝑛 − 𝜀 ≥ 1
𝑛(1 − 2−𝑘). Thus the probability that a randomly chosen 𝑟 ∈ [0, 1]

89 / 93 The Descriptive Complexity of Graph Neural Networks

ends up in one of the intervals 𝐽𝑖 is at least 1 − 2−𝑘. Moreover, for every 𝑖 we have

1 − 2−𝑘

𝑛
≤ 1
𝑛
− 𝜀 ≤ Pr

𝑟∼U
(𝑟 ∈ 𝐽𝑖) ≤

1
𝑛
.

Let 𝑔𝑖 B 𝑔 𝜀
4 ,𝑎
+
𝑖−1,𝑎

−
𝑖
. Then 𝑔(𝑟) = 1 for 𝑟 ∈ 𝐽𝑖 , 𝑔𝑖(𝑟) = 0 for 𝑟 /∈ 𝐼𝑖 , and 0 ≤ 𝑔𝑖(𝑟) ≤ 1 for 𝑟 ∈ 𝐼𝑖 ∖ 𝐽𝑖 .

We use the first two layers of our FNN 𝔉 to compute 𝑔𝑖 of the input for all 𝑖. That is, on
the second level, 𝔉 has 𝑛 nodes 𝑣1, . . . , 𝑣𝑛, and 𝑓𝔉,𝑣𝑖(𝑟) = 𝑔𝑖(𝑟). As the intervals 𝐼𝑖 are disjoint, at
most one 𝑣𝑖 computes a nonzero value, and with probability at least 2 − 2−𝑘, at least one of the
nodes takes value 1. On the last level, for each 𝑖 there is an edge of weight 𝑖 − 1 from 𝑣𝑖 to the
output node. Then if 𝑟 ∈ 𝐽𝑖 the output is 𝑖 − 1, and the assertion follows. ∎

For the following lemma, recall that GFO+Cgc
nu denotes the extension of GFO+C with

global counting and built-in numerical relations.

LEMMA 8.4. LetQ be a unary query overGSbool
𝑝 that is definable by an order-invariantGFO+Cgc

nu-
formula. Then there is a polynomial-size bounded-depth family R of rational piecewise-linear
GNNs with ri that computes Q.

Furthermore, the GNNs in R only use relu-activations and SUM-aggregation.

PROOF . Let 𝜑(𝑥) be an order-invariant GFO+Cgc
nu-formula that defines Q. This means that

for all 𝑝-labelled graphs (𝐺,b) ∈GSbool
𝑝 , all linear orders ⩽ on 𝑉(𝐺), and all 𝑣 ∈ 𝑉(𝐺), we have

(𝐺,b,⩽) ⊧ 𝜑(𝑣) ⇐⇒ Q(𝐺,b)(𝑣) = 1.

We want to exploit that if we choose the random features for each vertex, independently for all
vertices, then with high probability, they are all distinct and thus they give us a linear order on
the vertices.

However, in order to be able to apply Lemma 7.1, we need to carefully limit the randomness.
Let 𝑈1,𝑈2,𝑈3 be function variables of type v→ n. We let 𝜑′(𝑥) be the formula obtained from 𝜑

by replacing each atomic subformula 𝑥 ⩽ 𝑥′ by the formula

𝑈1(𝑥) <𝑈1(𝑥′) ∨ (𝑈1(𝑥) =𝑈1(𝑥′) ∧𝑈2(𝑥) <𝑈2(𝑥′))
∨(𝑈1(𝑥) =𝑈1(𝑥′) ∧𝑈2(𝑥) =𝑈2(𝑥′) ∧𝑈3(𝑥) ≤𝑈3(𝑥′)).

That is, we order the vertices lexicographically by their 𝑈𝑖-values. If no two vertices have
identical 𝑈𝑖-values for 𝑖 = 1, 2, 3, then this yields a linear order.

Let (𝐺,b) ∈ GSbool
𝑝 of order 𝑛 B ∣𝐺∣. For functions 𝐹1, 𝐹2, 𝐹3 ∶ 𝑉(𝐺) → {0, . . . , 𝑛 − 1} and

𝑣 ∈ 𝑉(𝐺), we write (𝐺,b, 𝐹1, 𝐹2, 𝐹) ⊧ 𝜑′(𝑣) instead of ((𝐺,b),a) ⊧ 𝜑′ for some and hence every
assignment a with a(𝑈𝑖) = 𝐹𝑖 and a(𝑥) = 𝑣. Let us call 𝐹1, 𝐹2, 𝐹3 ∶ 𝑉(𝐺) → {0, . . . , 𝑛 − 1} bad if
there are distinct 𝑣,𝑤 ∈ 𝑉(𝐺) such that 𝐹𝑖(𝑣) = 𝐹𝑖(𝑤) for 𝑖 = 1, 2, 3, and call them good otherwise.
Observe that for randomly chosen 𝐹1, 𝐹2, 𝐹3, the probability that they are bad is at most 1

𝑛 .

90 / 93 M. Grohe

By the construction of 𝜑′ from 𝜑, if 𝐹1, 𝐹2, 𝐹3 are good then for all 𝑣 ∈ 𝑉(𝐺) we have

(𝐺,b, 𝐹1, 𝐹2, 𝐹3) ⊧ 𝜑′(𝑣) ⇐⇒ Q(𝐺,b)(𝑣) = 1.

By Lemma 7.1 in its version for GNNs with global readout and the logic FO2+Cnu, there is a
polynomial-size bounded-depth family N = (𝔑(𝑛))𝑛∈N of rational piecewise-linear GNNs of
input dimension 𝑝 + 3 such that for all (𝐺,b) ∈ GS𝑝 of order 𝑛 and all functions 𝐹1, 𝐹2, 𝐹3 ∶
𝑉(𝐺) → {0, . . . , 𝑛 − 1} the following holds. Let u ∈ S3(𝐺) be the signal defined by u(𝑣) =
(𝐹1(𝑣), 𝐹2(𝑣), 𝐹3(𝑣)). Then for all 𝑣 ∈ 𝑉(𝐺) we have Ñ(𝐺,bu) ∈ {0, 1} and

Ñ(𝐺,bu) = 1 ⇐⇒ (𝐺,b, 𝐹1, 𝐹2, 𝐹3) ⊧ 𝜑′(𝑣).

Thus if 𝐹1, 𝐹2, 𝐹3 are good,
Ñ(𝐺,bu) = Q(𝐺,b).

Thus all we need to do is use the random features to generate three random functions from
𝑉(𝐺) → {0, . . . , 𝑛 − 1}. At first sight this seems easy, because the random features from [0, 1]
contain “more randomness” than the functions. However, in fact it is not possible, essentially
because we cannot map the interval [0, 1] to a discrete subset of the reals of more than one
element by a continuous function. But it is good enough to do this approximately, and for this
we can use Lemma 8.3. We use this lemma to create a GNN layer 𝔏(𝑛) that takes a random
random signal r ∈ S3(𝐺) and computes a signal u ∈ S3(𝐺) such that with high probability,
u(𝑣)𝑖 ∈ {0, . . . , 𝑛− 1}, and u(𝑣)𝑖 is almost uniformly distributed in {0, . . . , 𝑛− 1}, for all 𝑖, 𝑣. This
is good enough to guarantee that with high probability the functions 𝐹1, 𝐹2, 𝐹3 defined by u are
good. Thus if we combined 𝔏(𝑛) with 𝔑(𝑛) for all 𝑛, we obtain a family of GNNs with ri that
computes Q. ∎

REMARK 8.5. With a little additional technical work, we could also prove a version of the
lemma where the GNNs only use lsig-activations. But it is not clear that this is worth the effort,
because actually relu activations are more important (in practice) anyway. Recall that lsig can
be simulated with relu, but not the other way around. ∎

Finally, we can prove the following theorem, which implies Theorem 1.3 stated in the
introduction.

THEOREM 8.6. Let Q be a unary query on GSbool
𝑝 . Then the following are equivalent:

1. Q is definable in order-invariant GFO+Cgc
nu.

2. There is a polynomial-size bounded-depth family of rational piecewise-linear GNNs with ri,
using only relu-activations and SUM-aggregation, that computes Q.

3. There is a rpl-approximable polynomial-weight bounded-depth family of GNNs with ri that
computes Q.

4. Q is in TC0.

91 / 93 The Descriptive Complexity of Graph Neural Networks

PROOF . The implication (1)Ô⇒ (2) is Lemma 8.4. The implication (2)Ô⇒ (3) is trivial. The
implication (3)Ô⇒ (1) is Lemma 8.2. And finally, the equivalence (1)⇐⇒ (4) is Corollary 3.31.

∎

9. Conclusions

We characterise the expressiveness of graph neural networks in terms of logic and Boolean
circuit complexity. While this forces us to develop substantial technical machinery with many
tedious details, the final results, as stated in the introduction, are surprisingly simple and clean:
GNNs correspond to the guarded fragment of first-order logic with counting, and with random
initialisation they exactly characterise TC0. One reason I find this surprising is that GNNs carry
out real number computations, whereas the logics and circuits are discrete Boolean models of
computation.

We make some advances on the logical side that may be of independent interest. This in-
cludes our treatment of rational arithmetic, non-uniformity and built-in relations on unordered
structures, and unbounded aggregation (both sum and max). The latter may also shed new
light on the relation between first-order logic with counting and the recently introduced weight
aggregation logics [31] that deserves further study.

Our results are also interesting from a (theoretical) machine-learning-on-graphs perspec-
tive. Most importantly, we are the first to show limitations of GNNs with random initialisation.
Previously, it was only known that exponentially large GNNs with ri can approximate all func-
tions on graphs of order 𝑛 [2], but no upper bounds were known for the more realistic model
with a polynomial-size restriction. Another interesting consequence of our results (Theorems 7.4
and 8.6) is that arbitrary GNNs can be simulated by GNNs using only SUM-aggregation and
relu-activations with only a polynomial overhead in size. This was partially known [34] for
GNNs distinguishing two graphs, but even for this weaker result the proof of [34] requires
exponentially large GNNs because it is based on the universal approximation theorem for feed-
forward neural networks [34]. It has recently been shown that such a simulation of arbitrary
GNNs by GNNs with SUM-aggregation is not possible in a uniform setting [27].

We leave it open to extend our results to higher-order GNNs [25] and the bounded-variable
fragments of FO+C. It might also be possible to extend the results to larger classes of activation
functions, for example, those approximable by piecewise-polynomial functions (which are no
longer Lipschitz continuous). Another question that remains open is whether the “Uniform
Theorem”, Theorem 5.1, or Corollary 5.4 have a converse in terms of some form of uniform
families of GNNs. It is not even clear, however, what a suitable uniformity notion for families of
GNNs would be. We only consider random initialisation in combination with global readout.
The exact expressiveness of polynomial-weight bounded-depth families of GNNs with random
initialisation, but without global readout, remains unclear.

92 / 93 M. Grohe

The most interesting extensions of our results would be to GNNs of unbounded depth.
Does the correspondence between circuits and GNNs still hold if we drop or relax the depth
restriction? And, thinking about uniform models, is there a descriptive complexity theoretic
characterisation of recurrent GNNs? As a first step in this direction, the logical expressiveness
of recurrent GNNs has recently been studied in [26].

References
[1] Anders Aamand, Justin Chen, Piotr Indyk,

Shyam Narayanan, Ronitt Rubinfeld,
Nicholas Schiefer, Sandeep Silwal, and Tal Wagner.
Exponentially improving the complexity of
simulating the weisfeiler-lehman test with graph
neural networks. Advances in Neural Information
Processing Systems (NeurIPS 2022),
35:27333–27346, 2022. URL (4)

[2] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe,
and Thomas Lukasiewicz. The surprising power of
graph neural networks with random node
initialization. Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI
2021), pages 2112–2118, 2021. DOI (3, 4, 84, 91)

[3] Pablo Barceló, Egor V. Kostylev, Mikaël Monet,
Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural
networks. 8th International Conference on Learning
Representations (ICLR 2020). OpenReview.net,
2020. URL (4, 6, 46, 47)

[4] David A. Mix Barrington, Neil Immerman, and
Howard Straubing. On uniformity within nc1. J.
Comput. Syst. Sci. 41(3):274–306, 1990. DOI (10,
17, 21)

[5] James H. Bennett. On Spectra. PhD thesis,
Princeton University, 1962. (20)

[6] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi,
Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive
taxonomy. Journal of Machine Learning Research,
23(89):1–64, 2022. URL (1)

[7] Ashok K. Chandra, Larry J. Stockmeyer, and
Uzi Vishkin. Constant depth reducibility. SIAM J.
Comput. 13(2):423–439, 1984. DOI (10)

[8] Floris Geerts, Jasper Steegmans, and
Jan Van den Bussche. On the expressive power of
message-passing neural networks as global
feature map transformers. International Symposium
on Foundations of Information and Knowledge
Systems (FoIKS 2022), pages 20–34. Springer,
2022. DOI (5)

[9] Justin Gilmer, Samuel S. Schoenholz,
Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry.
Proceedings of the 34th International Conference
on Machine Learning (ICML 2017), volume 70 of
Proceedings of Machine Learning Research,
pages 1263–1272. PMLR, 2017. URL (1, 45–47)

[10] Erich Grädel and Martin Otto. Inductive definability
with counting on finite structures. Proceedings of
the 6th Workshop on Computer Science Logic (CSL
1992), Selected Papers, volume 702 of Lecture
Notes in Computer Science, pages 231–247.
Springer Verlag, 1993. DOI (16)

[11] Martin Grohe. The logic of graph neural networks.
Proceedings of the 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS
2021), pages 1–17. IEEE, 2021. DOI (4)

[12] Martin Grohe and Eran Rosenbluth. Are targeted
messages more effective? Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2024), 40:1–40:14, 2024. DOI (39,
46)

[13] Petr Hájek and Pavel Pudlak. Metamathematics of
First-Order Arithmetic. Perspectives in
Mathematical Logic. Springer, 1993. (19)

[14] William Hesse. Division is in uniform TC0.
Proceedings of the 28th International Colloquium
on Automata, Languages and Programming (ICALP
2001), volume 2076 of Lecture Notes in Computer
Science, pages 104–114. Springer, 2001. DOI (10,
11)

[15] William Hesse, Eric Allender, and
David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated
multiplication. J. Comput. Syst. Sci. 65(4):695–716,
2002. DOI (11, 30)

[16] Neil Immerman. Descriptive complexity. Graduate
texts in computer science. Springer, 1999. DOI
(17, 20)

[17] Neil Immerman. Expressibility as a complexity
measure: results and directions. Proceedings of the
2nd IEEE Symposium on Structure in Complexity
Theory (SCT 1987), pages 194–202, 1987. (16)

[18] Marek Karpinski and Angus Macintyre. Polynomial
bounds for VC dimension of sigmoidal and general
pfaffian neural networks. J. Comput. Syst. Sci.
54(1):169–176, 1997. DOI (5)

[19] Gabriel M. Kuper, Leonid Libkin, and
Jan Paredaens, editors. Constraint Databases.
Springer, 2000. (6)

[20] Dietrich Kuske and Nicole Schweikardt. First-order
logic with counting. 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS
2017), pages 1–12. IEEE Computer Society, 2017.
DOI (16)

https://proceedings.neurips.cc/paper_files/paper/2022/hash/af0ad514b9cda46bd49e14ee11e2672f-Abstract-Conference.html
https://doi.org/10.24963/ijcai.2021/291
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.1016/0022-0000(90)90022-D
https://jmlr.org/papers/v23/20-852.html
https://doi.org/10.1137/0213028
https://doi.org/10.1007/978-3-031-11321-5_2
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1007/3-540-56992-8_15
https://doi.org/10.1109/LICS52264.2021.9470677
https://doi.org/10.1145/3661814.3662093
https://doi.org/10.1007/3-540-48224-5_9
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1006/jcss.1997.1477
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1109/LICS.2017.8005133

93 / 93 The Descriptive Complexity of Graph Neural Networks

[21] Wolfgang Maass. Bounds for the computational
power and learning complexity of analog neural
nets. SIAM J. Comput. 26(3):708–732, 1997. DOI
(5, 6)

[22] Wolfgang Maass, Georg Schnitger, and
Eduardo D. Sontag. On the computational power of
sigmoid versus boolean threshold circuits. 32nd
Annual Symposium on Foundations of Computer
Science (FOCS 1991), pages 767–776. IEEE
Computer Society, 1991. DOI (5)

[23] H.L. Morgan. The generation of a unique machine
description for chemical structures – a technique
developed at chemical abstracts service. Journal of
Chemical Documentation, 5(2):107–113, 1965. (4)

[24] Christopher Morris, Yaron Lipman, Haggai Maron,
Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten M. Borgwardt.
Weisfeiler and Leman go machine learning: the
story so far. Journal of Machine Learning Research,
24(333):1–59, 2023. URL (4)

[25] Christopher Morris, Martin Ritzert, Matthias Fey,
William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe.Weisfeiler and
Leman go neural: higher-order graph neural
networks. Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI 2019),
volume 4602-4609. AAAI Press, 2019. DOI (4,
91)

[26] Maximilian Pflueger, David Tena Cucala, and
Egor V. Kostylev. Recurrent graph neural networks
and their connections to bisimulation and logic.
Proceedings of the 38th AAAI Conference on
Artificial Intelligence (AAAI 2024),
pages 14608–14616. AAAI Press, 2024. DOI (92)

[27] Eran Rosenbluth, Jan Toenshoff, and Martin Grohe.
Some might say all you need is sum. Proceedings
of the 32nd International Joint Conference on
Artificial Intelligence (IJCAI 2023),
pages 4172–4179, 2023. DOI (83, 91)

[28] Ryoma Sato, Makoto Yamada, and
Hisashi Kashima. Random features strengthen
graph neural networks. Proceedings of the 2021
SIAM International Conference on Data Mining
(SDM 2021), pages 333–341. SIAM, 2021. DOI
(3)

[29] Franco Scarselli, Marco Gori, Ah Chung Tsoi,
Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009. DOI (1)

[30] Hava T. Siegelmann and Eduardo D. Sontag. On the
computational power of neural nets. J. Comput.
Syst. Sci. 50(1):132–150, 1995. DOI (5)

[31] Steffen van Bergerem and Nicole Schweikardt.
Learning concepts described by weight
aggregation logic. Proceedings of the 29th EACSL
Annual Conference on Computer Science Logic
(CSL 2021), volume 183 of LIPIcs, 10:1–10:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. DOI (91)

[32] Heribert Vollmer. Introduction to Circuit
Complexity - A Uniform Approach. Texts in
Theoretical Computer Science. An EATCS Series.
Springer, 1999. DOI (10)

[33] B.Y. Weisfeiler and A.A. Leman. The reduction of a
graph to canonical form and the algebra which
appears therein. NTI, Series 2, 1968. English
translation by G. Ryabov. URL (4)

[34] Keyulu Xu,Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural
networks? 7th International Conference on
Learning Representations (ICLR 2019).
OpenReview.net, 2019. URL (4, 91)

2024 :25
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Martin Grohe.

https://doi.org/10.1137/S0097539793256041
https://doi.org/10.1109/SFCS.1991.185447
https://jmlr.org/papers/v24/22-0240.html
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/AAAI.V38I13.29377
https://doi.org/10.24963/ijcai.2023/464
https://doi.org/10.1137/1.9781611976700.38
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://doi.org/10.1007/978-3-662-03927-4
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://openreview.net/forum?id=ryGs6iA5Km

	Introduction
	Preliminaries
	Functions and Approximations
	Graphs and Signals
	Boolean Circuits
	Feedforward Neural Networks
	Relational Structures

	First-Order Logic with Counting
	Descriptive Complexity
	Non-Uniformity and Built-in Relations
	Types and Second-Order Variables
	Arithmetic in FO+C
	Rational Arithmetic
	Evaluating Feedforward Neural Networks
	Fragments of FO+C
	Arithmetic in GFO+C

	Graph Neural Networks
	Useful Bounds

	The Uniform Case: GNNs with Rational Weights
	The Non-Uniform Case: GNNs with Arbitrary Weights and Families of GNNs
	Bounds and Approximations for FNNs
	Bounds and Approximations for GNNs
	Proof of Theorem 6.2

	A Converse
	Random Initialisation
	Conclusions
	References

