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ABSTRACT. Connectivity (or equivalently, unweighted maximum flow) is an important
measure in graph theory and combinatorial optimization. Given a graph 𝐺 with vertices 𝑠 and
𝑡, the connectivity 𝜆 (𝑠, 𝑡) from 𝑠 to 𝑡 is defined to be the maximum number of edge-disjoint
paths from 𝑠 to 𝑡 in 𝐺. Much research has gone into designing fast algorithms for computing
connectivities in graphs. Previous work showed that it is possible to compute connectivities for
all pairs of vertices in directed graphs with 𝑚 edges in �̃�(𝑚𝜔) time [Chueng, Lau, and Leung,
FOCS 2011], where 𝜔 ∈ [2, 2.3716) is the exponent of matrix multiplication. For the related
problem of computing “small connectivities,” it was recently shown that for any positive integer
𝑘, we can compute min(𝑘, 𝜆 (𝑠, 𝑡)) for all pairs of vertices (𝑠, 𝑡) in a directed graph with 𝑛 nodes
in �̃�((𝑘𝑛)𝜔) time [Akmal and Jin, ICALP 2023].

In this paper, we present an alternate exposition of these �̃�(𝑚𝜔) and �̃�((𝑘𝑛)𝜔) time algo-
rithms, with simpler proofs of correctness. Earlier proofs were somewhat indirect, introducing
an elegant but ad hoc “flow vector framework” for showing correctness of these algorithms. In
contrast, we observe that these algorithms for computing exact and small connectivity values
can be interpreted as testing whether certain generating functions enumerating families of
edge-disjoint paths are nonzero. This new perspective yields more transparent proofs, and ties
the approach for these problems more closely to the literature surrounding algebraic graph
algorithms.
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Lemma 4.4 in a previous version of this paper.
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1. Introduction

Many problems in graph algorithms involve quantifying how “connected” different parts of a
network are. One concept developed to study these questions is that of connectivity: given a
graph 𝐺 with vertices 𝑠 and 𝑡, the connectivity from 𝑠 to 𝑡, denoted by 𝜆 (𝑠, 𝑡), is the maximum
number of edge-disjoint paths from 𝑠 to 𝑡 in 𝐺. Connectivity is an old and well-studied measure
in graph theory, important in computer science because the connectivity 𝜆 (𝑠, 𝑡) is equal to the
maximum flow value from 𝑠 to 𝑡 in the unweighted graph 𝐺. Consequently, significant research
has gone into designing fast algorithms for computing connectivities.

Suppose the graph 𝐺 has 𝑛 vertices and 𝑚 edges. Computing an individual connectivity
value in𝐺 is easy: since the maximum flow between a fixed pair of nodes can be found in almost-
linear time [7], we know that for any fixed pair of vertices (𝑠, 𝑡) in 𝐺, we can compute 𝜆 (𝑠, 𝑡) in
almost-optimal 𝑚1+𝑜(1) time. For many applications however, knowing a single connectivity is
not so useful, and it is instead far more informative to know the values of multiple connectivities
in a graph.

This motivates the All-Pairs Connectivity (APC) problem, where we are tasked with
computing connectivities for all pairs of vertices in a given graph. A long line of work recently
culminated in a near-optimal �̃�(𝑛2) time algorithm for solving APC over undirected graphs [2].
Throughout this paper, we focus on the general case where 𝐺 is directed.

All-Pairs Connectivity (APC)
Given a directed graph 𝐺, compute 𝜆 (𝑠, 𝑡) for all pairs of vertices (𝑠, 𝑡) in 𝐺.

We can of course solveAPC naively in 𝑛2𝑚1+𝑜(1) time, simply by solving a separate instance
of maximum flow for each pair of vertices. In dense graphs, this naive approach is actually
the fastest known algorithm for APC! In slightly sparse graphs however, we can do better and
solve APC in �̃�(𝑚𝜔) time [8], where 𝜔 is the exponent of matrix multiplication (i.e., 𝜔 is the
smallest positive real such that two 𝑎 × 𝑎 matrices can be multiplied using 𝑎𝜔+𝑜(1) arithmetic
operations). The current fastest algorithms for matrix multiplication imply that 𝜔 < 2.3716
[18]. If 𝜔 = 2, then the �̃�(𝑚𝜔) time algorithm is always at least as fast as the naive approach.
The lack of progress in finding faster algorithms for APC has motivated researchers to consider
relaxations of APC, including the 𝑘-Bounded All-Pairs Connectivity (𝑘-APC) problem:

𝑘-Bounded All-Pairs Connectivity Problem (𝑘-APC)
Given a directed graph 𝐺, compute min(𝑘, 𝜆 (𝑠, 𝑡)) for all pairs of vertices (𝑠, 𝑡) in 𝐺.

The 𝑘-APC problem is relevant in contexts where knowing the precise connectivity values
between “well-connected” nodes is not important, and instead we care more about distinguish-
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ing for each pair of vertices whether its connectivity is small or large (where 𝑘 is our cutoff for
what counts as “small” and “large”). Since the connectivity between any pair of nodes in 𝐺 is at
most 𝑛 − 1, the 𝑘-APC problem recovers the general APC problem when 𝑘 = 𝑛 − 1. As 𝑘 gets
smaller, 𝑘-APC intuitively becomes easier. Indeed, it was recently shown that for any positive
integer 𝑘, 𝑘-APC can be solved in �̃�((𝑘𝑛)𝜔) time [6].

In summary, the following results are known for the APC and 𝑘-APC problems.

THEOREM 1.1. There is an algorithm solving APC in �̃�(𝑚𝜔) time.

THEOREM 1.2. There is an algorithm solving 𝑘-APC in �̃�((𝑘𝑛)𝜔) time.

The algorithms establishing Theorems 1.1 and 1.2 are straightforward. However, the proofs
of correctness for these algorithms presented in the literature are not at all obvious, and involve
arguments in a somewhat complicated “flow vector framework.”

In this note, we present simpler proofs of correctness for the APC and 𝑘-APC algorithms
from [8] and [6] respectively.

Comparison With Previous Work

The algorithms for APC and 𝑘-APC from [8] and [6] work in similar ways. Each algorithm first
constructs a certain random matrix 𝑀 whose rows and columns are indexed by edges of 𝐺.
Then, for each pair of vertices (𝑠, 𝑡), the algorithms return the value of

rank 𝑀 [𝐸out(𝑠), 𝐸in(𝑡)]

as the answer for that pair, where 𝐸out(𝑠) is the set of edges exiting 𝑠 and 𝐸in(𝑡) is the set of edges
entering 𝑡. To prove correctness, one simply needs to show that with high probability, for every
pair of vertices (𝑠, 𝑡) the rank expression above equals 𝜆 (𝑠, 𝑡) or min(𝑘, 𝜆 (𝑠, 𝑡)), depending on
whether 𝑀 was designed to solve APC or 𝑘-APC respectively.

Previous proofs of correctness for these algorithms use the flow vector framework. In
this framework, we fix a source node 𝑠, and imagine pumping out random vectors along the
edges exiting 𝑠. Intuitively, we let these vectors propagate throughout the graph and use them
to assign vectors to each edge of 𝐺 in a manner that satisfies certain “flow conservation” rules.
One can then argue that for any vertex 𝑠 and edge 𝑒, the column vector 𝑀 [𝐸out(𝑠), 𝑒] equals
the vector assigned to edge 𝑒 in 𝐺. This interpretation of the entries of 𝑀 then allows one to
establish the connection between ranks of submatrices of 𝑀 and connectivity.

See [6, Section 3] for a more detailed overview of the approach in previous work.
In this work, we present alternate proofs of correctness for these APC and 𝑘-APC algo-

rithms. Our proofs provide a combinatorial interpretation of determinants of submatrices of 𝑀
as generating functions enumerating families of edge-disjoint walks in 𝐺. This approach lets
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us directly connect rank 𝑀 [𝐸out(𝑠), 𝐸in(𝑡)] to 𝜆 (𝑠, 𝑡), without introducing any of the auxiliary
scaffolding of the flow vector framework.

This new perspective yields simpler and more direct proofs of correctness for the APC
and 𝑘-APC algorithms than what was previously presented in the literature. For example,
our proof does not even use Menger’s theorem (the fact that 𝜆 (𝑠, 𝑡) is equal to the minimum
number of edge deletions needed to disconnect 𝑡 from 𝑠), which previous proofs relied on. From
a pedagogical perspective, the new proofs are more transparent, making it clear how and why
matrix rank relates to connectivities, so that the exposition of the APC and 𝑘-APC algorithms
in this paper should be easier to teach and motivate compared to previous work.

Finally, our generating function approach also yields somewhat more expressive results
than the flow vector framework, leading to an easier proof of correctness for the 𝑘-APC
algorithm in particular. Previously in [6, Section 4], to prove correctness of the 𝑘-APC algorithm
the authors had to manually reprove “low-rank” versions of all the flow vector framework
results shown by [8] for the general APC problem. This is not necessary in our approach:
once we establish our generating function for edge-disjoint walks in 𝐺, some small additional
reasoning yields both the APC and 𝑘-APC algorithms.

The only technical wrinkle in our approach is that our combinatorial view of the problem
involves manipulating formal power series. However, as we discuss later in Remark 4.9, even
this ingredient can be removed if one only wishes to establish Theorems 1.1 and 1.2 over directed
acyclic graphs (which is already an interesting result, perhaps more suitable for teaching these
algorithms in a classroom setting).

Organization

In Section 2 we identify notation and assumptions used throughout the paper. In Section 3 we
review standard definitions and properties of formal power series. In Section 4, we construct
a matrix of formal power series whose entries enumerate families of edge-disjoint walks in a
graph. In Sections 5 and 6 we leverage the construction from Section 4 to give simple proofs of
Theorems 1.1 and 1.2 respectively. We conclude in Section 7 by mentioning some connections
between our arguments and classical results in combinatorics and computer science, and
highlighting open problems related to computing connectivities.

2. Preliminaries

General Notation Given a positive integer 𝑎, we let [𝑎] = {1, . . . , 𝑎} denote the set of the first
𝑎 consecutive positive integers.

Graph Assumptions and Notation Throughout, we let 𝐺 denote the input graph, with 𝑛

nodes and 𝑚 edges. We let𝑉 and 𝐸 denote the vertex and edge sets of 𝐺 respectively. We assume
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that 𝐺 is weakly connected (i.e., the underlying undirected graph of 𝐺 is connected), so that
𝑛 − 1 ≤ 𝑚. This is without loss of generality: if 𝐺 is disconnected, we can solve APC and 𝑘-APC
on 𝐺 by solving these problems separately on each weakly connected component of 𝐺. We
assume that 𝐺 is simple (i.e., 𝐺 does not have self-loops or parallel edges between nodes).

For a directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 going from 𝑢 to 𝑣, we let tail(𝑒) = 𝑢 and head(𝑒) = 𝑣

denote the vertices that 𝑒 exits and enters respectively.
A walk in 𝐺 is a sequence of edges𝑊 = ⟨𝑒1, . . . , 𝑒ℓ⟩ such that head(𝑒 𝑗) = tail(𝑒 𝑗+1) for each

𝑗 ∈ [ℓ − 1]. We say𝑊 is a walk starting at 𝑒1 and ending at 𝑒ℓ. We say𝑊 is a path if no two of
its edges enter the same vertex, and its starting 𝑠 = tail(𝑒1) and ending 𝑡 = head(𝑒ℓ) vertices
are distinct. Such a path from 𝑠 to 𝑡 is referred to as an 𝑠𝑡-path.

Finite Field Computation Throughout, we work over a finite field F = F2𝑞 of characteristic
two. We set 𝑞 = Θ(log 𝑛) large enough so that the field has size 2𝑞 ≥ 12𝑛6 (looking ahead,
this is to ensure that our algorithms work with high probability). We can perform arithmetic
operations over this field in 𝑞1+𝑜(1) = poly(log 𝑛) time.

Matrix Notation Given a matrix 𝑀 , for any row index 𝑖 and column index 𝑗 we let 𝑀 [𝑖, 𝑗]
be the (𝑖, 𝑗) entry of 𝑀 . Given subsets 𝐼 and 𝐽 of row and column indices respectively, we let
𝑀 [𝐼, 𝐽] be the submatrix of 𝑀 restricted to rows in 𝐼 and columns in 𝐽 . We also let 𝑀 [𝐼, ·]
be the submatrix restricted to rows in 𝐼 and all columns, and 𝑀 [·, 𝐽] be the submatrix on all
rows and restricted to columns in 𝐽 . We let rank 𝑀 denote the rank of 𝑀 , defined to be largest
nonnegative integer 𝑟 such that 𝑀 contains an 𝑟×𝑟 submatrix with nonzero determinant. When
𝑀 is a square matrix, we let det 𝑀 denote the determinant of 𝑀 , adj(𝑀) denote the adjugate of
𝑀 , and 𝑀−1 denote the inverse of 𝑀 (if it exists).

Matrix Computation We recall the following results concerning matrix computation.

PROPOS IT ION 2 .1 (Matrix Inversion). For any positive integer 𝑎, we can compute the inverse
of an 𝑎 × 𝑎 matrix over a field in 𝑂(𝑎𝜔) field operations.

PROPOS IT ION 2 .2 (Matrix Rank). For any positive integers 𝑎 and 𝑏, we can compute the rank
of an 𝑎 × 𝑏 matrix over a field in 𝑂(𝑎𝑏𝜔−1) field operations.

Proofs of Propositions 2.1 and 2.2 can be found in [16] and [13] respectively.

Identity Testing To prove correctness of the APC and 𝑘-APC algorithms, we use the fact
that random evaluations of a low degree polynomial (or more generally, rational function
whose numerator and denominator have low degree) over a large field are nonzero with high
probability.
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PROPOS IT ION 2 .3. Let 𝑃 be a nonzero 𝑟-variate polynomial of degree at most 𝑑. Then a
uniform random evaluation of 𝑃 over F𝑟 is nonzero with probability at least 1 − 𝑑/|F|.

For an accessible proof of Proposition 2.3, see [15, Theorem 7.2].

COROLLARY 2 .4 (Rational Identity Testing). Let 𝑅 = 𝑃/𝑄 be a rational function, represented
as the ratio of two nonzero polynomials 𝑃 and 𝑄. Suppose 𝑃 and 𝑄 each have degree at most 𝑑. If
we assign each variable of 𝑅 an independent, uniform random element of F, then 𝑅 has nonzero
evaluation with probability at least 1 − 2𝑑/|F|.

PROOF . Under random evaluation over F, by Proposition 2.3 and the union bound, 𝑃 and
𝑄 are both nonzero with probability at least 1 − 2𝑑/|F|. So with this probability, the rational
function 𝑅 = 𝑃/𝑄 also has nonzero evaluation, as claimed. ■

3. Power Series Preliminaries

Our algorithms for computing connectivities work by constructing generating functions for
families of edge-disjoint walks. These generating functions involve infinite sums, so in this
section we review properties of formal power series, a generalization of polynomials which
allow for infinite sums. The results we review are simple, and mostly involve observing that
basic facts which hold for polynomials still hold in the infinite case of formal series.

We also note that if one is interested in solving APC and 𝑘-APC only in the special case of
directed acyclic graphs, then it suffices to work with polynomials (no formal power series are
needed) and this section can be skipped. We discuss this simplification for acyclic graphs in
detail later on in Remark 4.9.

Fix a finite set 𝐽 , and consider the set of variables
{
𝑥 𝑗

}
𝑗∈𝐽 indexed by 𝐽 . A polynomial is

a finite linear combination of products of these variables. A formal power series is simply a
generalization of polynomials which allows for infinite sums.

Let N𝐽 be the set of all sequences of nonnegative integers indexed by 𝐽 . Given 𝒅 ∈ N𝐽 , we
let 𝑑 𝑗 denote the 𝑗th element of 𝒅 for each 𝑗 ∈ 𝐽 . Then a formal power series 𝐹 is identified by a
sequence of coefficients 𝑎𝒅 in F, one for each 𝒅 ∈ N𝐽 , and we write

𝐹 =
∑︁
𝒅∈N𝐽

𝑎𝒅
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗
.

We let 0 denote the all-zeros sequence in N𝐽 , and say 𝑎0 is the constant term of 𝐹. In general,
given 𝒅 ∈ N𝐽 , the monomial corresponding to 𝒅 in 𝐹 (if it appears with nonzero coefficient
𝑎𝒅 ≠ 0) is said to have degree ∑︁

𝑗∈𝐽
𝑑 𝑗 .
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Given formal series
𝐹 =

∑︁
𝒅∈N𝐽

𝑎𝒅
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗
and 𝐻 =

∑︁
𝒅∈N𝐽

𝑏𝒅
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗

we define their sum
𝐹 + 𝐻 =

∑︁
𝒅∈N𝐽

(𝑎𝒅 + 𝑏𝒅)
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗

and product

𝐹 · 𝐻 =
∑︁
𝒅∈N𝐽

©­­­«
∑︁

𝒅1,𝒅2∈N𝐽

𝒅1+𝒅2=𝒅

𝑎𝒅1𝑏𝒅2

ª®®®¬
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗
(1)

in the natural way, generalizing arithmetic over polynomials. These operations make the set
of polynomials over F a subring of the ring of formal power series (where the additive and
multiplicative identities are the constant polynomials 0 and 1 respectively).

PROPOS IT ION 3.1 (Power Series Inversion). If 𝐹 is a formal power series with constant term
1, then there is a unique formal series 𝐻 = 𝐹−1 such that 𝐹 · 𝐻 = 1. Moreover, the constant term of
𝐻 equals 1.

PROOF . Suppose
𝐹 =

∑︁
𝒅∈N𝐽

𝑎𝒅
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗
.

We define the sequence 𝑏𝒅 of coefficients in F for all 𝒅 ∈ N𝐽 inductively, by setting 𝑏0 = 1, and
taking

𝑏𝒅 = −
( ∑︁
𝒅′≺ 𝒅

𝑎𝒅−𝒅′𝑏𝒅′

)
(2)

where 𝒅′ ≺ 𝒅 means that 𝒅′ ∈ N𝐽 is componentwise less than or equal to 𝒅, and 𝒅′ ≠ 𝒅.
Then if we set

𝐻 =
∑︁
𝒅∈N𝐽

𝑏𝒅
∏
𝑗∈𝐽

𝑥
𝑑 𝑗

𝑗

it follows from the definition of multiplication in Equation (1), the relationship from Equation (2),
and the fact that 𝑎0 = 𝑏0 = 1, that we have

𝐹 · 𝐻 = 1.

This inverse 𝐻 is unique, because if another formal series 𝐻′ satisfies 𝐹 · 𝐻′ = 1, then the
constant term of 𝐻′ is 1 since the product of the constant terms of 𝐹 and 𝐻′ are 1, and

𝐻′ = 𝐻′ · 1 = 𝐻′ · (𝐹 · 𝐻) = (𝐻′ · 𝐹) · 𝐻 = 1 · 𝐻 = 𝐻.

Thus 𝐹 has a unique multiplicative inverse. ■
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Matrices of Formal Series In this paper, we work with matrices whose entries are formal
power series. Such matrices naturally arise when computing inverses of polynomial matrices.

PROPOS IT ION 3.2 (Geometric Series Formula). Suppose 𝑋 is a square matrix with polynomial
entries such that every entry of 𝑋 has constant term equal to zero. Then

(𝐼 − 𝑋)−1 =

∞∑︁
ℓ=0

𝑋 ℓ. (3)

PROOF . Since every entry of 𝑋 has constant term zero, every nonzero entry of 𝑋 ℓ has degree
at least ℓ. Consequently, the infinite sum from the right-hand side of Equation (3) is well-defined,
because for any 𝒅 ∈ N𝐽 , only finitely many terms contribute to the coefficient of∏

𝑗∈𝐽
𝑥
𝑑 𝑗

𝑗

in each entry of the sum. It suffices to prove that the product

(𝐼 − 𝑋)
( ∞∑︁
ℓ=0

𝑋 ℓ

)
(4)

is equal to the identity matrix.
For any fixed integer 𝑑 ≥ 0, let 𝑀𝑑 be the matrix from Equation (4) with entries restricted

to terms of degree at most 𝑑. Then since nonzero entries of 𝑋 ℓ have degree at least ℓ, we see
that 𝑀𝑑 is equal to the matrix

(𝐼 − 𝑋)
(

𝑑∑︁
ℓ=0

𝑋 ℓ

)
=

𝑑∑︁
ℓ=0

(
𝑋 ℓ − 𝑋 ℓ+1

)
= 𝐼 − 𝑋𝑑+1

with entries restricted to terms of degree at most 𝑑. Since every nonzero entry of 𝑋𝑑+1 has
degree greater than 𝑑, we see that 𝑀𝑑 = 𝐼 is the identity matrix. Since this equation holds for
every fixed 𝑑 ≥ 0, the product in Equation (4) equals the identity matrix as claimed. ■

4. Enumeration with Edge-AdjacencyMatrices

In this section we construct a matrix Γ of formal power series, whose rows and columns are
indexed by edges of 𝐺. The matrix Γ will be designed to have the special property that for any
equal-size subsets of edges 𝑆, 𝑇 ⊆ 𝐸, the determinant

det Γ[𝑆, 𝑇 ]

is nonzero as a formal series if and only if there are edge-disjoint paths connecting the edges
in 𝑆 to the edges in 𝑇 . Since connectivity is defined in terms of edge-disjoint paths, intuitively
our construction of Γ will let us solve the APC and 𝑘-APC problems in Sections 5 and 6 by
performing certain matrix computations.
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For every pair of edges (𝑒, 𝑓 ) in 𝐺 such that head(𝑒) = tail( 𝑓 ) (i.e., edge 𝑒 enters the vertex
that edge 𝑓 exits), we introduce an indeterminate variable 𝑥𝑒 𝑓 . Let 𝑋 be the 𝑚 ×𝑚 matrix with
rows and columns indexed by edges of 𝐺, such that for each pair of edges (𝑒, 𝑓 ) in 𝐺, we have

𝑋 [𝑒, 𝑓 ] =

𝑥𝑒 𝑓 if head(𝑒) = tail( 𝑓 )

0 otherwise.
(5)

We enumerate walks not by counting their number, but by assigning each walk a monomial
weight, that records information about the edges traversed in the walk. Enumeration for our
purposes corresponds to summing the weights of all walks (or collections of walks) in a certain
family of interest.

Given a walk 𝑊 = ⟨𝑒1, . . . , 𝑒ℓ⟩, viewed as a sequence of edges 𝑒 𝑗 , we let the weight

𝜉(𝑊) =
ℓ−1∏
𝑗=1

𝑥𝑒 𝑗𝑒 𝑗+1

of 𝑊 be the monomial 𝜉(𝑊) recording all pairs of consecutive edges traversed by 𝑊 . By
convention, we assign a walk 𝑊 of length one (i.e., a single edge) weight 𝜉(𝑊) = 1. More
generally, given a collection of walks C = ⟨𝑊1, . . . ,𝑊𝑟⟩ we let the weight

𝜉(C) =
𝑟∏
𝑗=1

𝜉(𝑊 𝑗)

of C be the product of the weights of the individual walks.

Enumerating Walks

Given edges 𝑒, 𝑓 ∈ 𝐸 and an integer ℓ ≥ 1, let Wℓ (𝑒, 𝑓 ) denote the set of all walks beginning at 𝑒
and ending at 𝑓 of length ℓ. One way of interpreting the definition of 𝑋 from Equation (5) is that
the (𝑒, 𝑓 ) entry of 𝑋 enumerates all walks of length two from 𝑒 to 𝑓 in 𝐺. These are precisely
the walks in W2(𝑒, 𝑓 ). The next result observes that higher powers of 𝑋 enumerate walks of
longer lengths in 𝐺.

PROPOS IT ION 4.1. For any edges 𝑒, 𝑓 ∈ 𝐸 and integer ℓ ≥ 0, we have

𝑋 ℓ [𝑒, 𝑓 ] =
∑︁

𝑊∈Wℓ+1(𝑒, 𝑓 )
𝜉(𝑊).

PROOF . By expanding out the definition of matrix multiplication, we see that

𝑋 ℓ [𝑒, 𝑓 ] =
∑︁

𝑒0,...,𝑒ℓ∈𝐸
𝑒0=𝑒
𝑒ℓ= 𝑓

ℓ−1∏
𝑗=0

𝑋 [𝑒 𝑗 , 𝑒 𝑗+1] .
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By definition, 𝑋 [𝑒 𝑗 , 𝑒 𝑗+1] = 𝑥𝑒 𝑗𝑒 𝑗+1 if we can step from 𝑒 𝑗 to 𝑒 𝑗+1 in 𝐺, and is zero otherwise. Thus,
the product

ℓ−1∏
𝑗=0

𝑋 [𝑒 𝑗 , 𝑒 𝑗+1]

is nonzero if and only if 𝑊 = ⟨𝑒0, . . . , 𝑒ℓ⟩ is a walk of length (ℓ + 1) in 𝐺. In this case,

ℓ−1∏
𝑗=0

𝑋 [𝑒 𝑗 , 𝑒 𝑗+1] =
ℓ−1∏
𝑗=0

𝑥𝑒 𝑗𝑒 𝑗+1 = 𝜉(𝑊)

so we have
𝑋 ℓ [𝑒, 𝑓 ] =

∑︁
𝑊∈Wℓ+1(𝑒, 𝑓 )

𝜉(𝑊)

as claimed. ■

COROLLARY 4.2 (Enumerating Walks). For any edges 𝑒, 𝑓 ∈ 𝐸, we have

(𝐼 − 𝑋)−1[𝑒, 𝑓 ] =
∞∑︁
ℓ=0

©­«
∑︁

𝑊∈Wℓ+1(𝑒, 𝑓 )
𝜉(𝑊)ª®¬ .

PROOF . This result follows by combining the geometric series formula from Proposition 3.2
with the enumerative property of powers of 𝑋 from Proposition 4.1. ■

Enumerating Edge-Disjoint Walks

Given subsets of edges 𝑆, 𝑇 ⊆ 𝐸 of equal size |𝑆 | = |𝑇 | = 𝑟 ≥ 1 and an integer ℓ ≥ 1, we define
Fℓ (𝑆,𝑇 ) to be the family of collections of 𝑟 walks of total length ℓ, beginning at different edges of
𝑆 and ending at different edges of 𝑇 . If we fix some ordering 𝑒1, . . . , 𝑒𝑟 of the edges in 𝑆, then we
can view each element of Fℓ (𝑆,𝑇 ) as a sequence of walks ⟨𝑊1, . . . ,𝑊𝑟⟩ satisfying the properties
that each 𝑊𝑖 begins at 𝑒𝑖 and ends at some edge of 𝑇 , the 𝑊𝑖 walks all end at distinct edges of 𝑇 ,
and the sum of the lengths of the 𝑊𝑖 walks is ℓ.

Furthermore, let Dℓ (𝑆,𝑇 ) ⊆ Fℓ (𝑆, 𝑇 ) be the family of collections of 𝑟 edge-disjoint walks
from 𝑆 to 𝑇 of total length ℓ.

Corollary 4.2 shows that entries of Γ = (𝐼 − 𝑋)−1 enumerate walks in 𝐺. The following
result uses this fact to show that determinants of submatrices of Γ enumerate collections of
walks in 𝐺, beginning and ending at different edges. This is a simple observation, following
immediately from the definition of the determinant. The proof appears somewhat long only
because we spell out the details of each step in the calculation.

LEMMA 4.3 (Arbitrary Walks). For any equal-size subsets of edges 𝑆,𝑇 ⊆ 𝐸, we have

det (𝐼 − 𝑋)−1[𝑆,𝑇 ] =
∞∑︁
ℓ=1

©­«
∑︁

C∈Fℓ (𝑆,𝑇 )
𝜉(C)ª®¬
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PROOF . For convenience, write Γ = (𝐼 − 𝑋)−1.
Let 𝔖(𝑆, 𝑇 ) be the set of all bijections from 𝑆 to 𝑇 .
By the definition of the determinant, we have

det Γ[𝑆, 𝑇 ] =
∑︁

𝜋∈𝔖(𝑆,𝑇 )

∏
𝑒∈𝑆

Γ[𝑒, 𝜋(𝑒)] . (6)

Note that we do not include a factor for the sign of 𝜋 in the above equation, because we are
working over a field of characteristic two.

By Corollary 4.2, for each 𝑒 ∈ 𝑆 we have

Γ[𝑒, 𝜋(𝑒)] =
∞∑︁
ℓ=0

©­«
∑︁

𝑊∈Wℓ+1(𝑒,𝜋(𝑒))
𝜉(𝑊)ª®¬ . (7)

Write 𝑆 = {𝑒1, . . . , 𝑒𝑟}, where 𝑟 = |𝑆 | = |𝑇 |.
By multiplying the above equation over all choices of 𝑒 ∈ 𝑆, we have∏

𝑒∈𝑆
Γ[𝑒, 𝜋(𝑒)] =

𝑟∏
𝑖=1

©­«
∞∑︁
ℓ=0

©­«
∑︁

𝑊∈Wℓ+1(𝑒𝑖 ,𝜋(𝑒𝑖))
𝜉(𝑊)ª®¬ª®¬ . (8)

Now, let L be the set of all 𝑟-tuples (ℓ1, . . . , ℓ𝑟) of positive integers summing to

ℓ1 + · · · + ℓ𝑟 = ℓ.

If we expand out the product on the right-hand side of Equation (8) and group terms according
to the total length of the walks they come from, we obtain

𝑟∏
𝑖=1

©­«
∞∑︁
ℓ=0

©­«
∑︁

𝑊∈Wℓ+1(𝑒𝑖 ,𝜋(𝑒𝑖))
𝜉(𝑊)ª®¬ª®¬ =

∞∑︁
ℓ=1

©­­­­«
∑︁

(ℓ1,...,ℓ𝑟)∈L
𝑊𝑖∈Wℓ𝑖

(𝑒𝑖 ,𝜋(𝑒𝑖))

𝑟∏
𝑖=1

𝜉(𝑊𝑖)
ª®®®®¬
.

To clarify the expression above: in the right-hand side of the above equation, the first inner
summation is over all choices of positive integers ℓ1, . . . , ℓ𝑟 which sum to ℓ, and choices of
walks 𝑊1, . . . ,𝑊𝑟 where 𝑊𝑖 is a walk of length ℓ𝑖 from 𝑒𝑖 to 𝜋(𝑒𝑖). This is simply the result of
distributing the product over 𝑖 ∈ [𝑟] on the left-hand side of the equation over the sum of walks
of all possible lengths from 𝑒𝑖 to 𝜋(𝑒𝑖).

By chaining the above equation together with Equations (6) to (8), and interchanging
summation, we get that

det Γ[𝑆,𝑇 ] =
∞∑︁
ℓ=1

©­­­­«
∑︁

𝜋∈𝔖(𝑆,𝑇 )

∑︁
(ℓ1,...,ℓ𝑟)∈L

𝑊𝑖∈Wℓ𝑖
(𝑒𝑖 ,𝜋(𝑒𝑖))

𝑟∏
𝑖=1

𝜉(𝑊𝑖)
ª®®®®¬
. (9)
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To simplify Equation (9), observe that for any choice of bijection 𝜋 ∈ 𝔖(𝑆, 𝑇 ), lengths
(ℓ1, . . . , ℓ𝑟) ∈ L, and walks 𝑊𝑖 ∈ Wℓ𝑖 (𝑒𝑖 , 𝜋(𝑒𝑖)), the collection ⟨𝑊1, . . . ,𝑊𝑟⟩ is a sequence of
walks from 𝑆 to 𝑇 of total length ℓ. Conversely, any collection C ∈ Fℓ (𝑆, 𝑇 ) has walks whose
lengths sum up to ℓ, and corresponds to a unique bijection 𝜋 ∈ 𝔖(𝑆,𝑇 ), obtained by checking
which starting edges in 𝑆 are connected to which ending edges in 𝑇 by walks in C.

Thus, the inner nested summation above is equivalent to a single sum over all collections
of walks in Fℓ (𝑆, 𝑇 ). Since the weight of a collection C = ⟨𝑊1, . . . ,𝑊𝑟⟩ is precisely

𝜉(C) =
𝑟∏
𝑖=1

𝜉(𝑊𝑖),

the discussion from the previous paragraph together with Equation (9) implies that

det Γ[𝑆,𝑇 ] =
∞∑︁
ℓ=1

©­«
∑︁

C∈Fℓ (𝑆,𝑇 )
𝜉(C)ª®¬

which proves the desired result. ■

We now observe that the determinant sieves out collections of intersecting walks, so that
only edge-disjoint families of walks are included in its enumeration.

LEMMA 4.4 (Intersecting Walks Cancel). For any equal-size subsets of edges 𝑆, 𝑇 ⊆ 𝐸 and
integer ℓ ≥ 1, we have ∑︁

C∈Fℓ (𝑆,𝑇 )
𝜉(C) =

∑︁
C∈Dℓ (𝑆,𝑇 )

𝜉(C).

PROOF . Fix 𝑆,𝑇 ⊆ 𝐸 and integer ℓ ≥ 1. Let 𝑟 = |𝑆 | = |𝑇 |.
For convenience, abbreviate F = Fℓ (𝑆, 𝑇 ) and D = Dℓ (𝑆,𝑇 ). Let S = F \ D be the family

of all collections of 𝑟 walks beginning at different edges of 𝑆 and ending at different edges of 𝑇 ,
such that at least two walks in the collection intersect at an edge. By definition we have∑︁

C∈F
𝜉(C) =

∑︁
C∈D

𝜉(C) +
∑︁
C∈S

𝜉(C).

So to prove the claim, it suffices to show that∑︁
C∈S

𝜉(C)

is the zero polynomial. We prove this by pairing up collections C in S of equal weight 𝜉(C), and
observing that contributions from such collections vanish modulo two.

Fix an ordering 𝑒1, . . . , 𝑒𝑟 of the edges in 𝑆. Take any C = ⟨𝑊1, . . . ,𝑊𝑟⟩ ∈ S, with the walks
ordered so that 𝑊𝑖 begins at edge 𝑒𝑖 . By assumption, at least two walks in C overlap at an edge.
Let 𝑖 ∈ [𝑟] be the smallest index such that𝑊𝑖 intersects some other walk in C at an edge. Let
𝑒 be the first edge in 𝑊𝑖 which is contained in another walk of C. Let 𝑗 ∈ [𝑟] be the smallest
index 𝑗 > 𝑖 such that 𝑊 𝑗 overlaps with 𝑊𝑖 at edge 𝑒.
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𝑒1
𝑒2

𝑔
𝑒3

𝑒4

𝑓1 𝑓2 𝑓3 𝑓4

𝑒1
𝑒2

𝑔

𝑓3 𝑓4𝑓1 𝑓2

𝑒3

𝑒4

Figure 1. Given walks𝑊𝑖 = ⟨𝑒1, 𝑒2, 𝑔, 𝑒3, 𝑒4⟩ and𝑊𝑗 = ⟨ 𝑓1, 𝑓2, 𝑔, 𝑓3, 𝑓4⟩ overlapping at 𝑔, we can swap their
suffixes to produce walks𝑊′

𝑖 = ⟨𝑒1, 𝑒2, 𝑔, 𝑓3, 𝑓4⟩ and𝑊′
𝑗 = ⟨ 𝑓1, 𝑓2, 𝑔, 𝑒3, 𝑒4⟩ which still overlap at 𝑔. The

weight 𝜉(𝑊𝑖 ,𝑊𝑗) = (𝑥𝑒1𝑒2𝑥𝑒2𝑔𝑥𝑔𝑒3𝑥𝑒3𝑒4) · (𝑥 𝑓1 𝑓2𝑥 𝑓2𝑔𝑥𝑔 𝑓3𝑥 𝑓3 𝑓4) of the first pair (𝑊𝑖 ,𝑊𝑗) is precisely equal to the
weight 𝜉(𝑊′

𝑖 ,𝑊
′
𝑗) = (𝑥𝑒1𝑒2𝑥𝑒2𝑔𝑥𝑔 𝑓3𝑥 𝑓3 𝑓4) · (𝑥 𝑓1 𝑓2𝑥 𝑓2𝑔𝑥𝑔𝑒3𝑥𝑒3𝑒4) of the second pair (𝑊′

𝑖 ,𝑊
′
𝑗), because each pair

traverses the same multiset of consecutive pairs of edges.

We can split the walk 𝑊𝑖 uniquely

𝑊𝑖 = 𝐴𝑖 ⋄ 𝐵𝑖

as the concatenation of a prefix walk 𝐴𝑖 not including edge 𝑒, and a suffix walk 𝐵𝑖 beginning
with edge 𝑒. We can similarly split 𝑊 𝑗 uniquely

𝑊 𝑗 = 𝐴 𝑗 ⋄ 𝐵 𝑗

as the concatenation of a prefix 𝐴 𝑗 not including 𝑒, and a suffix 𝐵 𝑗 beginning with 𝑒.
Now, define walks

𝑊 ′
𝑖 = 𝐴𝑖 ⋄ 𝐵 𝑗 and 𝑊 ′

𝑗 = 𝐴 𝑗 ⋄ 𝐵𝑖

by swapping the suffixes of𝑊𝑖 and𝑊 𝑗 . An example of this operation is depicted in Figure 1. For
all 𝑙 ∈ [𝑟] with 𝑙 ∉ {𝑖, 𝑗}, set 𝑊 ′

𝑙
=𝑊𝑙. Define a new collection of walks

C′ = ⟨𝑊 ′
1, . . . ,𝑊

′
𝑟⟩

by replacing 𝑊𝑖 and 𝑊 𝑗 in C with 𝑊 ′
𝑖

and 𝑊 ′
𝑗

respectively.
Since 𝑊𝑖 and 𝑊 𝑗 end at different edges of 𝑇 , we know that 𝑊 ′

𝑖
≠ 𝑊𝑖 and 𝑊 ′

𝑗
≠ 𝑊 𝑗 . This

shows that C′ ≠ C. Since the walks in C′ still begin at different edges of 𝑆 and end at different
edges of 𝑇 , C′ ∈ F . Moreover, since 𝑊 ′

𝑖
,𝑊 ′

𝑗
overlap at an edge, we have C′ ∉ D.

Thus C′ ∈ S.
Additionally, we claim that if we apply the above suffix swapping procedure (which we

used to go from C to C′) to the collection C′, we recover C.
Indeed, for all 𝑙 ∈ [𝑟] with 𝑙 < 𝑖, the walk 𝑊 ′

𝑙
= 𝑊𝑙 does not intersect any other walk in

C at an edge, by the definition of 𝑖. Since the multiset of edges traversed by walks in C \ {𝑊𝑙}
and C \

{
𝑊 ′

𝑙

}
are the same, this means that 𝑊 ′

𝑙
does not intersect any other walk in C′ at an

edge either. So 𝑖 is the smallest index in [𝑟] such that 𝑊 ′
𝑖

intersects some other walk in C′ at an
edge. Since the prefixes of 𝑊 ′

𝑖
and 𝑊𝑖 before edge 𝑒 are the same, we see that 𝑒 is also the first

edge in 𝑊 ′
𝑖

which is contained in another walk of C′. Then because 𝑊 ′
𝑗

traverses edge 𝑒, and
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𝑊 ′
𝑙
=𝑊𝑙 for all 𝑙 ∉ {𝑖, 𝑗}, we get that 𝑗 > 𝑖 is the smallest index such that𝑊 ′

𝑗
overlaps with𝑊 ′

𝑖
at

edge 𝑒. Then, when we swap the suffixes of 𝑊 ′
𝑖

and 𝑊 ′
𝑗

after the first appearance of 𝑒 on these
walks, we recover 𝑊𝑖 and 𝑊 𝑗 respectively, and so applying the suffix swapping procedure to C′

produces the original collection C as claimed.
So, the suffix swapping routine described above partitions S into distinct pairs.
Suppose C and C′ are paired up by the suffix swapping argument. Then C and C′ traverse

the same multiset of consecutive pairs of edges. Thus these collections

𝜉(C) = 𝜉(C′)

have the same weight. Since we work over a field of characteristic two, the above equation
implies that each pair (C, C′) of collections mapped to each other by suffix swapping satisfies

𝜉(C) + 𝜉(C′) = 0.

Since S is partitioned into such pairs, we have∑︁
C∈S

𝜉(C) = 0.

Together with the discussion from the beginning of the proof, this proves the claim. ■

REMARK 4.5 (Characteristic Two is Unnecessary). In the proof of Lemma 4.4, our argument
used the fact that we work over a field of characteristic two. This restriction on the characteristic
is only included for the sake of simplicity, and is not necessary to enumerate families of edge-
disjoint walks. If we instead worked over a field of odd characteristic, then all that changes is
that terms in the expansion of the determinant from Lemma 4.3 come with a sign, and we can
now pair up and cancel terms with opposite signs to prove a signed variant of Lemma 4.4.

COROLLARY 4.6 (Edge-Disjoint Walks). For any equal-size subsets of edges 𝑆, 𝑇 ⊆ 𝐸, we have

det (𝐼 − 𝑋)−1[𝑆, 𝑇 ] =
∞∑︁
ℓ=1

©­«
∑︁

C∈Dℓ (𝑆,𝑇 )
𝜉(C)ª®¬ .

PROOF . This follows by combining Lemmas 4.3 and 4.4. ■

LEMMA 4.7 (Edge-Disjoint Walks ⇒ Edge-Disjoint Paths). Let 𝑆,𝑇 ⊆ 𝐸 be subsets of edges of
size |𝑆 | = |𝑇 | = 𝑟. If the graph 𝐺 contains 𝑟 edge-disjoint walks from 𝑆 to 𝑇 , then 𝐺 also contains 𝑟
edge-disjoint paths from 𝑆 to 𝑇 .

PROOF . Let ⟨𝑊1, . . . ,𝑊𝑟⟩ be a collection of edge-disjoint walks from 𝑆 to 𝑇 in 𝐺. For each
index 𝑖 ∈ [𝑟], let 𝑒𝑖 and 𝑓𝑖 be the first and last edges of 𝑊𝑖 respectively. Note that under these
definitions, we have 𝑆 = {𝑒1, . . . , 𝑒𝑟} and 𝑇 = { 𝑓1, . . . , 𝑓𝑟}.

For each 𝑖 ∈ [𝑟], let 𝐺𝑖 be the subgraph of 𝐺 including only the edges traversed by 𝑊𝑖 .
Let 𝑃𝑖 be a shortest path from 𝑒𝑖 to 𝑓𝑖 in 𝐺𝑖 . These paths are edge-disjoint, since they live in
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subgraphs on disjoint sets of edges. Thus ⟨𝑃1, . . . , 𝑃𝑟⟩ is a collection of 𝑟 edge-disjoint paths from
𝑆 to 𝑇 in 𝐺, as desired. ■

COROLLARY 4.8. Let 𝑆,𝑇 ⊆ 𝐸 be subsets of edges of size |𝑆 | = |𝑇 | = 𝑟. Then

det (𝐼 − 𝑋)−1[𝑆,𝑇 ]

is a nonzero formal power series if and only if 𝐺 contains 𝑟 edge-disjoint paths from 𝑆 to 𝑇 .

PROOF . Suppose C = ⟨𝑃1, . . . , 𝑃𝑟⟩ is a collection of 𝑟 edge-disjoint paths from 𝑆 to 𝑇 in 𝐺. Then
the term 𝜉(C) occurs in the expansion of

det (𝐼 − 𝑋)−1[𝑆,𝑇 ] (10)

given by Corollary 4.6. Moreover, any collection of walks C′ ≠ C from 𝑆 to 𝑇 has weight
𝜉(C′) ≠ 𝜉(C), because C consists of edge-disjoint paths (so looking at the variables appearing in
𝜉(C), we can recover C uniquely). Hence, no other term from the summation in Corollary 4.6
produces the same monomial 𝜉(C). So 𝜉(C) appears in Equation (10) with nonzero coefficient,
which implies that the determinant from Equation (10) is a nonzero formal power series.

Suppose now that 𝐺 does not contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 . The contrapositive
of Lemma 4.7 implies that 𝐺 does not contain 𝑟 edge-disjoint walks from 𝑆 to 𝑇 either. Then
Corollary 4.6 implies that Equation (10) is the zero polynomial. This proves the claim. ■

REMARK 4.9 (Directed Acyclic Graphs). The arguments in this section work with formal
power series because when designing a generating function for edge-disjoint walks, we naturally
run into infinite sums. From a pedagogical perspective, dealing with these infinite objects may
make teaching these algorithms appear somewhat difficult (say, in an undergraduate course).
One way to avoid this issue is to focus on the APC and 𝑘-APC problems in the special case of
directed acyclic graphs (DAGs).

DAGs are an interesting case for APC and 𝑘-APC, since we do not know of algorithms
solving these problems on DAGs faster than the case of general directed graphs, and the best
conditional lower bounds we have for these problems hold in the case of DAGs [1].

Focusing on the setting of DAGs leads to two simplifications. First, any walk in a DAG has
length at most 𝑛 − 1. Hence over DAGs, 𝑋 ℓ is the all-zeros matrix for ℓ ≥ 𝑛, so Proposition 3.2
shows that Γ = (𝐼 − 𝑋)−1 is a matrix whose entries are polynomials. Thus, determinants of
submatrices of Γ are just polynomials, instead of formal power series involving infinite sums.
Second, any walk in a DAG is a path. Thus we can skip the step in Lemma 4.7 of going from
edge-disjoint walks to edge-disjoint paths.
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5. Connectivity

5.1 Random Evaluation

Let 𝑋 be the symbolic edge-adjacency matrix defined in Section 4.
For all pairs of edges (𝑒, 𝑓 ) in 𝐺, we introduce independent, uniform random values 𝑎𝑒 𝑓

over F. Let 𝐴 be the matrix obtained from 𝑋 by evaluating each variable 𝑥𝑒 𝑓 at 𝑎𝑒 𝑓 . That is, 𝐴 is
the random 𝑚 ×𝑚 edge-adjacency matrix of 𝐺, defined by taking

𝐴 =


𝑎𝑒 𝑓 if head(𝑒) = tail( 𝑓 )

0 otherwise.

LEMMA 5.1. Let 𝑆,𝑇 ⊆ 𝐸 be subsets of edges of size |𝑆 | = |𝑇 | = 𝑟 ≤ 𝑛 − 1. Then

det (𝐼 − 𝐴)−1[𝑆,𝑇 ]

is nonzero with probability at least 1 − 1/𝑛3 if and only if 𝐺 contains 𝑟 edge-disjoint paths from 𝑆

to 𝑇 .

PROOF . By Corollary 4.8, the determinant

det (𝐼 − 𝑋)−1[𝑆,𝑇 ] (11)

is a nonzero formal power series if and only if 𝐺 contains 𝑟 edge-disjoint paths from 𝑆 to 𝑇 .
So suppose 𝐺 does not contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 . Then Equation (11) is the

zero polynomial, so its random evaluation

det (𝐼 − 𝐴)−1[𝑆,𝑇 ]

must vanish as claimed.
Otherwise, suppose 𝐺 does contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 . Then Equation (11) is

a nonzero formal power series.
By the formula for the inverse of a matrix, we know that

(𝐼 − 𝑋)−1[𝑆,𝑇 ] = (adj(𝐼 − 𝑋)) [𝑆,𝑇 ]
det (𝐼 − 𝑋) . (12)

Since (𝐼 − 𝑋) has ones along the diagonal and its other entries have constant term zero, we
know that det(𝐼−𝑋) is a polynomial with constant term 1, so by Proposition 3.1 the multiplicative
inverse of det(𝐼 − 𝑋) is a well-defined formal power series. Thus, Equation (12) can be viewed
as an equality between two matrices of formal power series.

For convenience, write 𝑄 = det(𝐼 − 𝑋). Since 𝑆 and 𝑇 are sets of size 𝑟, by linearity of the
determinant we have

det (𝐼 − 𝑋)−1[𝑆,𝑇 ] = det (adj(𝐼 − 𝑋)) [𝑆,𝑇 ]
𝑄𝑟

. (13)
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By assumption, the left-hand side of Equation (13) is nonzero. Consequently, the numerator

det (adj(𝐼 − 𝑋)) [𝑆, 𝑇 ]

on the right-hand side of Equation (13) must be a nonzero polynomial. Moreover, since each
entry of 𝑋 has degree at most 1, each entry of adj(𝐼−𝑋) has degree less than 𝑚, so this numerator
polynomial has overall degree less than 𝑟𝑚. Similarly, in the previous discussion we observed
that 𝑄 is a polynomial with constant term 1, so the denominator

𝑄𝑟 = (det (𝐼 − 𝑋))𝑟

has constant term 1 and is thus a nonzero polynomial as well. Since each entry of 𝑋 has degree
at most 1, this denominator polynomial has degree at most 𝑟𝑚.

The previous paragraph shows that the expression from Equation (13) is the ratio of two
nonzero polynomials, each with degree at most 𝑟𝑚 < 𝑛𝑚.

Then by rational identity testing (Corollary 2.4), the random evaluation

det (𝐼 − 𝐴)−1[𝑆,𝑇 ]

of Equation (11) over F is nonzero with probability at least 1 − 2𝑛𝑚/2𝑞.
Since we picked 𝑞 such that 2𝑞 ≥ 12𝑛6 > 𝑛3 · (2𝑛𝑚), the desired result follows. ■

LEMMA 5.2 (Connectivity via Rank). With high probability, for all 𝑠, 𝑡 ∈ 𝑉 we have

𝜆 (𝑠, 𝑡) = rank (𝐼 − 𝐴)−1[𝐸out(𝑠), 𝐸in(𝑡)] .

PROOF . Fix a pair of vertices (𝑠, 𝑡). Abbreviate 𝜆 = 𝜆 (𝑠, 𝑡).
By Lemma 5.1 and the definition of connectivity, with probability at least 1 − 1/𝑛3, 𝜆 is the

largest nonnegative integer such that there exist subsets 𝑆 ⊆ 𝐸out(𝑠) and 𝑇 ⊆ 𝐸in(𝑡) of size 𝜆

with the property that
det (𝐼 − 𝐴)−1[𝑆,𝑇 ] (14)

is nonzero. By definition, this is the rank of (𝐼 − 𝐴)−1[𝐸out(𝑠), 𝐸in(𝑡)], so

𝜆 = rank (𝐼 − 𝐴)−1[𝐸out(𝑠), 𝐸in(𝑡)]

with probability at least 1 − 1/𝑛3 for our fixed pair of vertices (𝑠, 𝑡).
Then by the union bound, with probability at least 1 − 1/𝑛 we have

𝜆 (𝑠, 𝑡) = rank (𝐼 − 𝐴)−1[𝐸out(𝑠), 𝐸in(𝑡)]

for all pairs of vertices (𝑠, 𝑡) in 𝐺, as desired. ■
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1: Compute the matrix 𝑀 = (𝐼 − 𝐴)−1.
2: For each pair of vertices (𝑠, 𝑡), return

rank𝑀[𝐸out(𝑠), 𝐸in(𝑡)]

as the value of 𝜆(𝑠, 𝑡).

Algorithm 1. The algorithm solving APC from [8].

5.2 The Algorithm

THEOREM 1.1. (Restated) There is an algorithm solving APC in �̃�(𝑚𝜔) time.

PROOF . By Lemma 5.2, Algorithm 1 solves APC correctly with high probability. It remains to
bound the runtime of the algorithm.

In step 1 of Algorithm 1, we compute 𝑀 by inverting an 𝑚 ×𝑚 matrix. By Proposition 2.1,
this matrix inversion can be performed in �̃�(𝑚𝜔) time.

In step 2 of Algorithm 1, we compute 𝜆 (𝑠, 𝑡) for each pair of vertices (𝑠, 𝑡) by computing
the rank of a degout(𝑠) × degin(𝑡) matrix. By Proposition 2.2, this takes∑︁

𝑠,𝑡∈𝑉
degout(𝑠) (degin(𝑡))𝜔−1 (15)

time asymptotically. For each pair of vertices (𝑠, 𝑡), we have

degout(𝑠) (degin(𝑡))𝜔−1 = (degin(𝑡))𝜔−2 · degout(𝑠) degin(𝑡) ≤ 𝑛𝜔−2 · degout(𝑠) degin(𝑡).

By substituting this inequality into Equation (15), and observing that the sum of in-degrees and
sum of out-degrees are each equal to the number of edges 𝑚 in 𝐺, we have∑︁

𝑠,𝑡∈𝑉
degout(𝑠) (degin(𝑡))𝜔−1 ≤

∑︁
𝑠,𝑡∈𝑉

𝑛𝜔−2 · degout(𝑠) degin(𝑡) = 𝑛𝜔−2𝑚2.

Since 𝑛 − 1 ≤ 𝑚, the runtime of this step is also upper bounded by �̃�(𝑚𝜔).
So we can solve APC in �̃�(𝑚𝜔) time as claimed. ■

6. Bounded Connectivity

The APC algorithm from Algorithm 1 first
1. inverts an 𝑚 ×𝑚 matrix, and then
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2. computes ranks of submatrices, whose dimensions depend on degrees of nodes in 𝐺.

Even reading the matrix entries in these steps takes Ω(𝑚2) time. To obtain a faster algorithm
for the 𝑘-APC problem, we modify these steps to work with much smaller matrices.

The first idea is to reduce degrees in𝐺 while preserving the values of small connectivities. In
Section 6.1, we present a simple transformation (from [6, Section 5]) which decreases the degrees
of nodes in 𝐺 to 𝑘, while preserving the min(𝑘, 𝜆 (𝑠, 𝑡)) values. Following this modification, we
only need to compute ranks of 𝑘 × 𝑘 submatrices in step 2 above.

The second idea is to simplify Γ = (𝐼 −𝑋)−1 using a variable substitution which still ensures
that determinants of submatrices of Γ can detect up to 𝑘 edge-disjoint paths in 𝐺. We present
this substitution in Section 6.2. This modification turns Γ into a rank 𝑘𝑛 matrix, which lets us
replace the inversion of an 𝑚 ×𝑚 matrix in step 1 above with the easier inversion of a 𝑘𝑛 × 𝑘𝑛

matrix instead.
These two speed-ups combined then let us solve 𝑘-APC in �̃�((𝑘𝑛)𝜔) time.

6.1 Degree Reduction

Let 𝐺 be the input graph on 𝑛 nodes and 𝑚 edges. We modify 𝐺 to create a new graph.
For each vertex 𝑣 ∈ 𝑉 , we introduce two new nodes 𝑣in and 𝑣out. Then we replace each

edge (𝑢, 𝑣) ∈ 𝐸 with an edge (𝑢out, 𝑣in). For each 𝑣 ∈ 𝑉 , we also include 𝑘 parallel edges from 𝑣

to 𝑣out, and 𝑘 parallel edges from 𝑣in to 𝑣. Let 𝐺new be the new graph constructed in this way,
and let𝑉new and 𝐸new be its vertex and edge sets respectively. We refer to the nodes in𝑉 ⊆ 𝑉new

which were originally in 𝐺 as the original vertices. For 𝑠, 𝑡 ∈ 𝑉 , we still let 𝜆 (𝑠, 𝑡) denote the
connectivity from 𝑠 to 𝑡 in the original graph 𝐺. In the rest of this section, we let 𝐸out(𝑠) and
𝐸in(𝑡) denote the sets of edges exiting 𝑠 and entering 𝑡 in 𝐺new.

We write 𝑛new = |𝑉new | = 3𝑛 and 𝑚new = |𝐸new | = 𝑚 + 2𝑘𝑛.

LEMMA 6.1 (Preserving Small Connectivities). For any 𝑠, 𝑡 ∈ 𝑉 , the connectivity from 𝑠 to 𝑡 in
𝐺new is min(𝑘, 𝜆 (𝑠, 𝑡)).

PROOF . Fix 𝑠, 𝑡 ∈ 𝑉 . Given an 𝑠𝑡-path 𝑃′ in 𝐺new, we recover a unique 𝑠𝑡-path 𝑃 in 𝐺 by looking
at the sequence of original vertices visited by 𝑃′. Using this construction, any collection of 𝑟
edge-disjoint paths from 𝑠 to 𝑡 in 𝐺new recovers a collection of 𝑟 edge-disjoint paths from 𝑠 to 𝑡

in 𝐺. So the connectivity from 𝑠 to 𝑡 in 𝐺new is at most 𝜆 (𝑠, 𝑡).
Since 𝑠 has outdegree 𝑘 in 𝐺new, the connectivity from 𝑠 to 𝑡 in 𝐺new is also at most 𝑘.
Thus the connectivity from 𝑠 to 𝑡 in 𝐺new is at most min(𝑘, 𝜆 (𝑠, 𝑡)). Set 𝜆 = min(𝑘, 𝜆 (𝑠, 𝑡)).
By definition, there are edge-disjoint paths 𝑃1, . . . , 𝑃𝜆 in 𝐺 from 𝑠 to 𝑡.
For each 𝑖 ∈ [𝜆], let 𝑃′

𝑖
be the 𝑠𝑡-path in 𝐺new which passes through the same sequence of

original vertices as 𝑃𝑖 , and includes, for each edge (𝑢, 𝑣) in 𝑃𝑖 , the 𝑖th parallel edge from 𝑢out to
𝑣in (we assume there is some fixed ordering among all such parallel edges). This is possible
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𝑒 𝑓

𝑋 [𝑒, 𝑓 ] = 𝑥𝑒 𝑓

𝑒 𝑓

(𝑌𝑍) [𝑒, 𝑓 ] = 𝑦𝑒1𝑧1 𝑓 + 𝑦𝑒2𝑧2 𝑓 + 𝑦𝑒3𝑧3 𝑓

Figure 2. When we substitute 𝑥𝑒 𝑓 = 𝑦𝑒1𝑧1 𝑓 + · · · + 𝑦𝑒𝑘𝑧𝑘 𝑓 (pictured here for 𝑘 = 3) into 𝑋, we get the
“simpler” matrix 𝑌𝑍. While powers of 𝑋 enumerate walks in 𝐺, powers of 𝑌𝑍 intuitively enumerate walks in
a modified graph where after traversing an edge 𝑒 = (𝑢, 𝑣), we have 𝑘 different versions of 𝑣 we can
choose to go to. The 𝑦𝑒𝑗 and 𝑧 𝑗 𝑓 variables in this enumeration only keep track of the individual edges
traversed and versions of vertices we pick, instead of recording all pairs of consecutive edges
traversed like the 𝑥𝑒 𝑓 variables. This simpler enumeration suffices to solve 𝑘-APC.

since 𝜆 ≤ 𝑘. Since the 𝑃𝑖 are edge-disjoint, the 𝑃′
𝑖

are edge-disjoint as well. So the connectivity
from 𝑠 to 𝑡 in 𝐺new is at least 𝜆 = min(𝑘, 𝜆 (𝑠, 𝑡)).

Thus the connectivity from 𝑠 to 𝑡 in 𝐺new is equal to min(𝑘, 𝜆 (𝑠, 𝑡)), as claimed. ■

6.2 Low-Rank Edge-Adjacency

Recall the definitions from Section 6.1. We define the matrix 𝑋 from Section 4 with respect to
the new graph 𝐺new (so now rows and columns of 𝑋 are indexed by edges in 𝐸new).

For each pair (𝑒, 𝑗) ∈ 𝐸new × [𝑘] we introduce an indeterminate 𝑦𝑒 𝑗 .
Similarly, for each pair ( 𝑗, 𝑓 ) ∈ [𝑘] × 𝐸new we introduce an indeterminate 𝑧 𝑗 𝑓 .
We define the 𝑚new × 𝑘𝑛new matrix 𝑌 by setting

𝑌 [𝑒, (𝑣, 𝑗)] =

𝑦𝑒 𝑗 if head(𝑒) = 𝑣

0 otherwise.

Similarly, we define the 𝑘𝑛new ×𝑚new matrix 𝑍 by setting

𝑍 [(𝑣, 𝑗), 𝑓 ] =

𝑧 𝑗 𝑓 if tail( 𝑓 ) = 𝑣

0 otherwise.

These matrices are defined so that under the variable substitution

𝑥𝑒 𝑓 =
𝑘∑︁
𝑗=1

𝑦𝑒 𝑗𝑧 𝑗 𝑓

the matrix 𝑋 simplifies to the low-rank matrix 𝑌𝑍, as depicted in Figure 2.
Previously in Corollary 4.8, we characterized the existence of edge-disjoint paths in 𝐺,

based off whether determinants of submatrices of (𝐼 − 𝑋)−1 were nonzero. The following result
shows that a similar characterization holds when we replace 𝑋 with 𝑌𝑍, provided we only care
about routing up to 𝑘 edge-disjoint paths.
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LEMMA 6.2. Let 𝑆,𝑇 ⊆ 𝐸new be subsets of edges with size |𝑆 | = |𝑇 | = 𝑟 ≤ 𝑘. Then

det (𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ]

is a nonzero formal power series if and only if 𝐺new has 𝑟 edge-disjoint paths from 𝑆 to 𝑇 .

PROOF . Suppose 𝐺 does not contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 . Then by Corollary 4.8,
the determinant

det (𝐼 − 𝑋)−1[𝑆,𝑇 ]

is identically zero as a power series. Consequently, the above expression remains zero even if
we make the variable substitution

𝑥𝑒 𝑓 =
𝑘∑︁
𝑗=1

𝑦𝑒 𝑗𝑧 𝑗 𝑓 . (16)

Under this substitution, the matrix 𝑋 simplifies to 𝑌𝑍. Thus in this case

det (𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ]

is the zero polynomial, as claimed.
Suppose now that 𝐺 does not contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 .
By Corollary 4.6, we have

det (𝐼 − 𝑋)−1[𝑆, 𝑇 ] =
∞∑︁
ℓ=1

©­«
∑︁

C∈Dℓ (𝑆,𝑇 )
𝜉(C)ª®¬ . (17)

For each collection of walks C, let 𝜉(C) be the monomial resulting from substituting Equation (16)
into the weight 𝜉(C). Then we have

det (𝐼 − 𝑌𝑍)−1[𝑆, 𝑇 ] =
∞∑︁
ℓ=1

©­«
∑︁

C∈Dℓ (𝑆,𝑇 )
𝜉(C)ª®¬ . (18)

Let P = ⟨𝑃1, . . . , 𝑃𝑟⟩ be a collection of edge-disjoint paths from 𝑆 to 𝑇 in 𝐺.
For each 𝑖 ∈ [𝑟], let E𝑖 be the set of consecutive pairs of edges (𝑒, 𝑓 ) traversed by 𝑃𝑖 .
Then we have

𝜉(P) =
𝑟∏
𝑖=1

∏
(𝑒, 𝑓 )∈E𝑖

©­«
𝑘∑︁
𝑗=1

𝑦𝑒 𝑗𝑧 𝑗 𝑓
ª®¬ .

If we expand the product on the right-hand side of the above equation, we see that one of the
monomials produced is of the form

𝑟∏
𝑖=1

∏
(𝑒, 𝑓 )∈E𝑖

𝑦𝑒𝑖𝑧𝑖 𝑓 . (19)

Note that in this step, we are using the fact that 𝑟 ≤ 𝑘.
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𝑒1 𝑓1

𝑒2 𝑓2

𝑒1

𝑒2

𝑓1

𝑓2

Figure 3. Given edge-disjoint paths 𝑃1 = ⟨𝑒1, 𝑓1⟩ and 𝑃2 = ⟨𝑒2, 𝑓2⟩ in 𝐺, the determinant of the matrix
(𝐼 − 𝑋)−1 [{𝑒1, 𝑒2} , { 𝑓1, 𝑓2}] enumerates this pair via the monomial 𝜉(𝑃1, 𝑃2) = 𝑥𝑒1 𝑓1 · 𝑥𝑒2 𝑓2 . The variables in
this monomial provide enough information to uniquely recover 𝑃1 and 𝑃2. In contrast, for 𝑘 = 2, the
determinant of (𝐼 − 𝑌𝑍)−1 [{𝑒1, 𝑒2} , { 𝑓1, 𝑓2}] assigns this pair weight

𝜉(𝑃1, 𝑃2) = ( 𝑦𝑒11𝑧1 𝑓1 + 𝑦𝑒12𝑧2 𝑓1) ( 𝑦𝑒21𝑧1 𝑓2 + 𝑦𝑒22𝑧2 𝑓2).

One of the terms in the expansion of the above product is 𝑦𝑒11𝑧1 𝑓1 · 𝑦𝑒22𝑧2 𝑓2 . We can read this term as
saying “the first path 𝑃1 traverses 𝑒1 and 𝑓1, and the second path 𝑃2 traverses 𝑒2 and 𝑓2.” So this
monomial provides enough information to recover the pair of paths ⟨𝑃1, 𝑃2⟩ as well.

Because P is a collection of edge-disjoint paths, the variables appearing in the monomial
from Equation (19) allow us to uniquely recover P. In detail: for each index 𝑖, the edges 𝑒 for
which the 𝑦𝑒𝑖 variable appears recovers all edges in 𝑃𝑖 , and because 𝑃𝑖 is a simple path we can
recover the order of these edges as well. See Figure 3 for an example of this unique recovery
property in the case of 𝑘 = 2.

Thus the monomial from Equation (19) appears with coefficient 1. Hence

det (𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ]

is a nonzero formal power series as claimed. ■

We also use the following lemma that simplifies computation of (𝐼 − 𝑌𝑍)−1.

LEMMA 6.3 (Geometric Series Identity). We have

(𝐼 − 𝑌𝑍)−1 = 𝐼 + 𝑌 (𝐼 − 𝑍𝑌 )−1𝑍.

PROOF . Since every entry of𝑌 and 𝑍 have zero constant term, the same is true for the matrices
𝑌𝑍 and 𝑍𝑌 . Then by the geometric series formula of Proposition 3.2, we have

(𝐼 − 𝑌𝑍)−1 = 𝐼 + (𝑌𝑍) + (𝑌𝑍)2 + · · · = 𝐼 + 𝑌
( ∞∑︁
ℓ=0

(𝑍𝑌 )ℓ
)
𝑍. (20)

Applying Proposition 3.2 again, we have
∞∑︁
ℓ=0

(𝑍𝑌 )ℓ = (𝐼 − 𝑍𝑌 )−1.
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Substituting the above equation into the rightmost side of Equation (20) yields

(𝐼 − 𝑌𝑍)−1 = 𝐼 + 𝑌 (𝐼 − 𝑍𝑌 )−1𝑍

as desired. ■

6.3 Random Evaluation

We begin by defining random evaluations of the polynomial matrices 𝑌 and 𝑍.
For all pairs (𝑒, 𝑗) ∈ 𝐸new × [𝑘] and ( 𝑗, 𝑓 ) ∈ [𝑘] × 𝐸new we introduce independent, uniform

random values 𝑏𝑒 𝑗 and 𝑑 𝑗 𝑓 respectively over F. Let 𝐵 and 𝐶 be the matrices obtained from
matrices 𝑌 and 𝑍 under the evaluations 𝑦𝑒 𝑗 = 𝑏𝑒 𝑗 and 𝑧 𝑗 𝑓 = 𝑐 𝑗 𝑓 respectively.

That is, 𝐵 is the 𝑚new × 𝑘𝑛new matrix defined by setting

𝐵[𝑒, (𝑣, 𝑗)] =

𝑏𝑒 𝑗 if head(𝑒) = 𝑣

0 otherwise

and 𝐶 is the 𝑘𝑛new ×𝑚new matrix defined by setting

𝐶 [(𝑣, 𝑗), 𝑓 ] =

𝑐 𝑗 𝑓 if tail( 𝑓 ) = 𝑣

0 otherwise.

We also define subsets of edges

𝐸out =
⋃
𝑠∈𝑉

𝐸out(𝑠) and 𝐸in =
⋃
𝑡∈𝑉

𝐸in(𝑡)

and let �̃� = 𝐵[𝐸out, ·] and 𝐶 = 𝐶 [·, 𝐸in] be submatrices of 𝐵 and 𝐶 restricted to edges exiting and
entering original vertices respectively.

LEMMA 6.4. Let 𝑆, 𝑇 ⊆ 𝐸new be subsets of edges of size |𝑆 | = |𝑇 | = 𝑟 ≤ 𝑘. Then

det (𝐼 − 𝐵𝐶)−1[𝑆, 𝑇 ]

is nonzero with probability at least 1 − 1/𝑛3 if and only if 𝐺new contains 𝑟 edge-disjoint paths from
𝑆 to 𝑇 .

PROOF . By Lemma 6.2, the formal power series

det (𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ] (21)

is nonzero if and only if 𝐺new contains 𝑟 edge-disjoint paths from 𝑆 to 𝑇 .
If 𝐺new does not have 𝑟 edge-disjoint paths from 𝑆 to 𝑇 , then Equation (21) is the zero

polynomial, so its random evaluation

det (𝐼 − 𝐵𝐶)−1[𝑆, 𝑇 ]
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vanishes as well.
Suppose instead 𝐺new does contain 𝑟 edge-disjoint paths from 𝑆 to 𝑇 . We can write

(𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ] = (adj(𝐼 − 𝑌𝑍)) [𝑆,𝑇 ]
det (𝐼 − 𝑌𝑍) .

The matrix (𝐼 − 𝑌𝑍) has ones along its diagonal, and all its other entries have zero constant
term. Hence det(𝐼 − 𝑌𝑍) is a polynomial with constant term 1, so by Proposition 3.1 it has a
multiplicative inverse over the ring of formal series. In particular, the above equation holds
both for matrices of rational functions and formal power series.

Write 𝑄 = det(𝐼 − 𝑌𝑍). By the above discussion, 𝑄 is a nonzero polynomial. By linearity of
the determinant, we have

det (𝐼 − 𝑌𝑍)−1[𝑆,𝑇 ] = det (adj(𝐼 − 𝑌𝑍)) [𝑆,𝑇 ]
𝑄𝑟

. (22)

Since 𝑄 is nonzero and 𝑌𝑍 is an 𝑚new ×𝑚new matrix where each entry has degree at most
two, 𝑄𝑟 has degree at most 2𝑟 · 𝑚new ≤ 2𝑘(𝑚 + 2𝑘𝑛) < 6𝑛3.

Since 𝑟 edge-disjoint paths from 𝑆 to 𝑇 exist, Equation (18) is nonzero as a formal power
series, so by Equation (22) the numerator det(adj(𝐼 − 𝑌𝑍) [𝑆, 𝑇 ]) is a nonzero polynomial. Each
entry of 𝐼 −𝑌𝑍 has degree at most two, so each entry of adj(𝐼 −𝑌𝑍) has degree less than 2𝑚new,
which implies that det(adj(𝐼 − 𝑌𝑍) [𝑆, 𝑇 ]) has degree at most

2𝑚new𝑟 ≤ 2(𝑚 + 2𝑘𝑛)𝑛 ≤ 6𝑛3.

So by Corollary 2.4, the expression

det (𝐼 − 𝐵𝐶)−1[𝑆, 𝑇 ]

is nonzero in this case with probability at least 1 − 12𝑛3/(2𝑞). Since we picked 𝑞 large enough to
satisfy 2𝑞 ≥ 12𝑛6 = 𝑛3 · (12𝑛3), the desired result follows. ■

LEMMA 6.5 (Small Connectivities via Rank). With high probability, for all 𝑠, 𝑡 ∈ 𝑉 , we have

rank (�̃�(𝐼 − 𝐶𝐵)−1𝐶) [𝐸out(𝑠), 𝐸in(𝑡)] = min(𝑘, 𝜆 (𝑠, 𝑡)).

PROOF . Fix 𝑠, 𝑡 ∈ 𝑉 . Let 𝜆 be the connectivity from 𝑠 to 𝑡 in 𝐺new.
By Lemma 6.1, 𝜆 ≤ 𝑘. Thus by Lemma 6.4 and the definition of connectivity, with probabil-

ity at least 1− 1/𝑛3, 𝜆 is the largest nonnegative integer for which there exist subsets 𝑆 ⊆ 𝐸out(𝑠)
and 𝑇 ⊆ 𝐸in(𝑡) of size 𝜆 such that

det (𝐼 − 𝐵𝐶)−1[𝑆, 𝑇 ]

is nonzero. In other words, 𝜆 is equal to the rank of (𝐼 − 𝐵𝐶)−1[𝐸out(𝑠), 𝐸in(𝑡)].
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1: Compute the matrix 𝑀 = �̃�(𝐼 − 𝐶𝐵)−1𝐶.
2: For each pair (𝑠, 𝑡) of original vertices, return

rank𝑀[𝐸out(𝑠), 𝐸in(𝑡)]

as the value for min(𝑘, 𝜆(𝑠, 𝑡)).

Algorithm 2. The algorithm solving 𝑘-APC from [6].

By applying Lemma 6.3 with the random evaluation sending𝑌 and 𝑍 to 𝐵 and𝐶 respectively,
we have

(𝐼 − 𝐵𝐶)−1 = 𝐼 + 𝐵(𝐼 − 𝐶𝐵)−1𝐶.

Since 𝑠, 𝑡 ∈ 𝑉 are original vertices, we know that 𝐸out(𝑠) ∩ 𝐸in(𝑡) = ∅. Thus

(𝐼 − 𝐵𝐶)−1[𝐸out(𝑠), 𝐸in(𝑡)] = (𝐵(𝐼 − 𝐶𝐵)−1𝐶) [𝐸out(𝑠), 𝐸in(𝑡)] .

Of course we also have

(𝐵(𝐼 − 𝐶𝐵)−1𝐶) [𝐸out(𝑠), 𝐸in(𝑡)] = (�̃�(𝐼 − 𝐶𝐵)−1𝐶) [𝐸out(𝑠), 𝐸in(𝑡)] .

So with probability at least 1 − 1/𝑛3,

rank (�̃�(𝐼 − 𝐶𝐵)−1𝐶) [𝐸out(𝑠), 𝐸in(𝑡)] = min(𝑘, 𝜆 (𝑠, 𝑡))

where we are using the fact from Lemma 6.1 that 𝜆 = min(𝑘, 𝜆 (𝑠, 𝑡)). The claim follows by a
union bound over all 𝑛2 pairs of original vertices (𝑠, 𝑡). ■

6.4 The Algorithm

THEOREM 1.2. (Restated) There is an algorithm solving 𝑘-APC in �̃�((𝑘𝑛)𝜔) time.

PROOF . By Lemma 6.5, Algorithm 2 correctly solves 𝑘-APC with high probability. It remains
to bound the runtime of the algorithm.

In step 1 of Algorithm 2, we compute �̃�(𝐼 − 𝐶𝐵)−1𝐶. The matrix 𝐶𝐵 has rows and columns
indexed by pairs (𝑣, 𝑖) ∈ 𝑉new × [𝑘]. For any (𝑢, 𝑖) and (𝑣, 𝑗) in 𝑉new × [𝑘], we have

𝐶𝐵[(𝑢, 𝑖), (𝑣, 𝑗)] =
∑︁

𝑒∈𝐸out(𝑢)∩𝐸in(𝑣)
𝑐𝑖𝑒𝑏𝑒 𝑗 .
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If 𝑣 ∈ 𝑉 , then the summation in the right-hand side of the above equation is empty unless
𝑢 = 𝑣in, in which case the sum has exactly 𝑘 terms (one for each parallel edge from 𝑣in to 𝑣). So
computing the entries of 𝐶𝐵 corresponding to this case takes 𝑛𝑘2 · 𝑘 = 𝑛𝑘3 operations.

Similarly, if 𝑢 ∈ 𝑉 , the sum in the above equation is empty unless 𝑣 = 𝑢out, in which case
the sum consists of exactly 𝑘 terms. Computing the entries of 𝐶𝐵 corresponding to this case
takes 𝑛𝑘3 operations as well.

For all other cases where 𝑢, 𝑣 ∈ 𝑉new \𝑉 , the sum consists of at most a single term. So we
can compute the remaining entries of 𝐶𝐵 with ((𝑛new − 𝑛)𝑘)2 = 4𝑛2𝑘2 operations.

Since 𝑘 < 𝑛 we have 𝑛𝑘3 < (𝑛𝑘)2, and we can compute 𝐶𝐵 in �̃�((𝑘𝑛)2) time. Having
computed 𝐶𝐵, we can compute (𝐼 − 𝐶𝐵)−1 in �̃�((𝑘𝑛)𝜔) time by Proposition 2.1. So step 1 of
Algorithm 2 takes �̃�((𝑘𝑛)𝜔) time overall.

Step 2 of Algorithm 2 involves computing ranks of 𝑛2 separate 𝑘 × 𝑘 matrices, which by
Proposition 2.2 takes �̃�(𝑘𝜔𝑛2) time.

So overall, the algorithm for 𝑘-APC takes �̃�((𝑘𝑛)𝜔) time as claimed. ■

7. Conclusion

In this paper, we presented alternate derivations of the �̃�(𝑚𝜔) time algorithm for APC of [8],
and the �̃�((𝑘𝑛)𝜔) time algorithm for 𝑘-APC of [6]. Our approach works by testing, via random
evaluation, whether certain generating functions enumerating edge-disjoint families of paths
are nonzero or not. We conclude this paper by pointing out some connections between this per-
spective and other classical arguments in mathematics and computer science, and highlighting
the current main open problems concerning the complexity of computing connectivities.

Combinatorics Our proof for Lemma 4.4 obtains a generating function for edge-disjoint walks
by pairing up monomials corresponding to intersecting walks, and arguing their contributions
cancel. This reasoning is essentially identical to the proof of the classic Lindström-Gessel-
Viennot lemma from combinatorics, which is often used in mathematics to enumerate families
of disjoint lattice paths. We refer the reader to [3, Chapter 29] for an accessible exposition of
this theorem and some of its applications. For additional examples of this technique of pairing
up and cancelling extraneous terms in matrix algebra, see [19].

Algebraic Algorithms Our exposition of the APC and 𝑘-APC algorithms works by interpret-
ing certain determinants combinatorially, as generating functions for families of edge-disjoint
walks. Previous work has also leveraged combinatorial interpretations of the determinant
(as polynomials instead of formal power series however) to construct interesting arithmetic
circuits [14, 9]. In particular, the sign-reversing involution designed in [14, Proof of Theorem 1] is
very similar to the suffix swapping argument we use in the proof of Lemma 4.4.
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The general approach of solving graph problems by testing whether certain enumerating
polynomials are nonzero is now a common technique in graph algorithms: we refer the reader
to [10] and the citations therein for previous examples of this paradigm in the literature.

Open Problems

Faster Algorithms The main open question in this area is: can we solve APC faster? In particu-
lar, does there exist some constant 𝜀 > 0 such that APC can be solved in general directed
graphs in 𝑂(𝑛4−𝜀) time? Even obtaining such an algorithm in the special case of directed
acyclic graphs would be a major breakthrough.

For constant 𝑘, it is conjectured that 𝑘-APC requires 𝑛𝜔−𝑜(1) time to solve, because algo-
rithms for 𝑘-APC can be used to solve a problem known as Boolean Matrix Multiplication,
which researchers currently do not know how to solve faster than integer matrix multiplica-
tion. Under this conjecture, the �̃�((𝑘𝑛)𝜔) algorithm for 𝑘-APC is near-optimal for constant
𝑘. However, this does not rule out the possibility of algorithms with better dependence on 𝑘.

Can we obtain faster algorithms for 𝑘-APC when 𝑘 = 𝑛𝛿 for some small constant 𝛿 > 0?

Better Lower Bounds In the4-Clique problem, we are given an undirected graph𝐺 on 𝑛 nodes,
and are tasked with determining if 𝐺 contains four vertices which are mutually adjacent.
The best conditional lower bounds for APC come from observing that 4-Clique reduces to
APC [1, Section 4]. Using the current best algorithms for rectangular matrix multiplication
[18, Table 1], the fastest known algorithm for 4-Clique takes 𝑂(𝑛3.251) time [11, Theorem 1].
Even if we conjecture this runtime time is optimal, the resulting lower bound for APC is a
far cry from the 𝑛4+𝑜(1) runtime we have for APC in dense graphs. Moreover, if 𝜔 = 2 this
lower bound for APC weakens to 𝑛3−𝑜(1) .

Can we show better lower bounds for APC, which are supercubic even if 𝜔 = 2?

Faster Verification Instead of solving APC directly, it would also be interesting to obtain better
deterministic and randomized verifiers for APC. A verifier for APC is given the input to the
problem, and additionally receives claims for the values of 𝜆 (𝑠, 𝑡) for all pairs of vertices
(𝑠, 𝑡), as well as some small proof string which can be thought of as “evidence” that the
claimed values are correct. The verifier reads all of these inputs, and then must determine
if the claimed values are correct or not. The goal is to get a verifier which is correct (with
high probability) and runs as quickly as possible.
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The fastest known deterministic verifier for APC runs in 𝑂(𝑛3.251 + 𝑛2.5√𝑚) time [17].
It would be interesting to improve this runtime to 𝑂(𝑛3.251) to match the fastest known
algorithm (and deterministic verifier runtime) for 4-Clique.

It would also be interesting to obtain faster randomized verifiers for APC. Currently, no
randomized verifiers running faster than the deterministic verifier discussed above are
known for APC. This is surprising, since the best lower bound for APC comes from the
4-Clique problem, and the 4-Clique problem admits a randomized verifier running in
near-optimal �̃�(𝑛2) time [5, Section 4].

Does APC admit a faster randomized verifier? Alternatively, can we explain the lack of
fast randomized verifiers for APC by obtaining an efficient reduction to APC from some
problem which we do not believe admits fast randomized verifiers?

Vertex-Connectivity Variants Given vertices 𝑠 and 𝑡 in graph 𝐺, the vertex connectivity from 𝑠

to 𝑡, denoted by 𝜈(𝑠, 𝑡), is the maximum number of internally vertex-disjoint paths from 𝑠 to
𝑡 in𝐺. One can study theAll-Pairs Vertex Connectivity (APVC) and 𝑘-Bounded All-Pairs
Vertex Connectivity (𝑘-APVC) problems as variants of APC and 𝑘-APVC where we are
tasked with computing 𝜈(𝑠, 𝑡) and min(𝑘, 𝜈(𝑠, 𝑡)) respectively, for all pairs (𝑠, 𝑡).

In directed graphs, APVC and 𝑘-APVC reduce to APC and 𝑘-APVC respectively, so it might
be easier to design faster algorithms for the former problems instead of the latter problems.
For example, it is known that 𝑘-APVC can be solved in �̃�(𝑘2𝑛𝜔) time [6, Theorem 5], which
is faster than the �̃�((𝑘𝑛)𝜔) runtime for 𝑘-APC if 𝜔 > 2.

In undirected graphs, although APC can be solved in �̃�(𝑛2) time, APVC is not known to
admit a near-quadratic time algorithm. In fact, the best known lower bounds for APC in
directed graphs also hold for APVC in undirected graphs [12].

So again, it might be easier to find faster algorithms for APVC in undirected graphs instead
of tackling the general problem of APC in directed graphs. For example,APVC in undirected
graphs can be solved in �̃�(𝑚2) time [17, Section 3], which is faster than the �̃�(𝑚𝜔) runtime
for APC if 𝜔 > 2, and admits a deterministic 𝑂(𝑛3.251) time verifier [17, Lemma 2.2], which
is faster than the known 𝑂(𝑛3.521 + 𝑛2.5√𝑚) time deterministic verifier for APC.
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Derandomization The algorithms we presented for APC and 𝑘-APC in this work are ran-
domized. Can we solve these problems with respective �̃�(𝑚𝜔) and �̃�((𝑘𝑛)𝜔) runtimes
deterministically?
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