
1 / 53 2025 : 1 1

Ortho-Radial Drawing in
Near-Linear Time

Received Apr 16, 2024
Revised Jan 3, 2025
Accepted Feb 27, 2025
Published Apr 8, 2025

Key words and phrases
Graph drawing, ortho-radial
drawing, topology-shape-metric
framework

Yi-Jun Changa � � a National University of Singapore

ABSTRACT. An orthogonal drawing is an embedding of a plane graph into a grid. In a seminal
work of Tamassia (SIAM Journal on Computing 1987), a simple combinatorial characterization
of angle assignments that can be realized as bend-free orthogonal drawings was established,
thereby allowing an orthogonal drawing to be described combinatorially by listing the angles of
all corners. The characterization reduces the need to consider certain geometric aspects, such
as edge lengths and vertex coordinates, and simplifies the task of graph drawing algorithm
design.

Barth, Niedermann, Rutter, and Wolf (SoCG 2017) established an analogous combinatorial
characterization for ortho-radial drawings, which are a generalization of orthogonal drawings to
cylindrical grids. The proof of the characterization is existential and does not result in an efficient
algorithm. Niedermann, Rutter, and Wolf (SoCG 2019) later addressed this issue by developing
quadratic-time algorithms for both testing the realizability of a given angle assignment as an
ortho-radial drawing without bends and constructing such a drawing.

In this paper, we further improve the time complexity of these tasks to near-linear time.
We establish a new characterization for ortho-radial drawings based on the concept of a good
sequence. Using the new characterization, we design a simple greedy algorithm for constructing
ortho-radial drawings.

1. Introduction

A plane graph is a planar graph 𝐺 = (𝑉, 𝐸) with a combinatorial embedding E. The combinatorial
embedding E fixes a circular ordering E(𝑣) of the edges incident to each vertex 𝑣 ∈ 𝑉 , specifying
the counter-clockwise ordering of these edges surrounding 𝑣 in the drawing. An orthogonal
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drawing of a plane graph is a drawing of 𝐺 such that each edge is drawn as a sequence of
horizontal and vertical line segments. For example, see Figure 1 for an orthogonal drawing of
𝐾4 with four bends. Alternatively, an orthogonal drawing of𝐺 can be seen as an embedding of𝐺
into a grid such that the edges of𝐺 correspond to internally disjoint paths in the grid. Orthogonal
drawing is one of the most classical drawing styles studied in the field of graph drawing, and it
has a wide range of applications, including VLSI circuit design [7, 45], architectural floor plan
design [35], and network visualization [5, 24, 28, 32].

The topology-shape-metric framework One of the most fundamental quality measures of
orthogonal drawings is the number of bends. The bend minimization problem, which asks for an
orthogonal drawing with the smallest number of bends, has been extensively studied over the
past 40 years [15, 17, 18, 27, 43, 44]. In a seminal work, Tamassia [44] introduced the topology-
shape-metric framework to tackle the bend minimization problem. Tamassia showed that an
orthogonal drawing can be described combinatorially by an orthogonal representation, which
consists of an assignment of an angle in {90◦, 180◦, 270◦, 360◦} to each corner and a designation
of the outer face. In this paper, a corner is defined as a pair of edges incident to the same vertex
that are consecutive in the given combinatorial embedding. Specifically, Tamassia [44] showed
that an orthogonal representation can be realized as an orthogonal drawing with zero bends if
and only if the following two conditions are satisfied:

(O1) The sum of angles around each vertex is 360◦.
(O2) The sum of angles around each face with 𝑘 corners is (𝑘 + 2) · 180◦ for the outer face

and is (𝑘 − 2) · 180◦ for the other faces.

An orthogonal representation is valid if it satisfies the above conditions (O1) and (O2).
Given a valid orthogonal representation, an orthogonal drawing realizing the orthogonal
representation can be computed in linear time [31, 44]. This result (shape→metric) allows us
to reduce the task of finding a bend-minimized orthogonal drawing (topology→metric) to the
conceptually much simpler task of finding a bend-minimized valid orthogonal representation
(topology→ shape).

By focusing on orthogonal representations, we may neglect certain geometric aspects
of graph drawing such as edge lengths and vertex coordinates, making the task of algorithm
design easier. In particular, given a fixed combinatorial embedding, the task of finding a bend-
minimized orthogonal representation can be easily reduced to the computation of a minimum
cost flow [44]. Such a reduction to a flow computation is not easy to see if one thinks about
orthogonal drawings directly without thinking about orthogonal representations.
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Figure 1. A grid, an orthogonal drawing, a cylindrical grid, and an ortho-radial drawing.

1.1 Ortho-radial drawing

Ortho-radial drawing is a natural generalization of orthogonal drawing to cylindrical grids,
whose grid lines consist of concentric circles and straight lines emanating from the center of
the circles. Formally, an ortho-radial drawing is defined as a planar embedding where each
edge is drawn as a sequence of lines that are either a circular arc of some circle centered on
the origin or a line segment of some straight line passing through the origin. We do not allow a
vertex to be drawn on the origin, and we do not allow an edge to pass through the origin in the
drawing. For example, see Figure 1 for an ortho-radial drawing of 𝐾4 with two bends.

The study of ortho-radial drawing is motivated by its applications in network visualiza-
tion [4, 25, 47], particularly in the context of transit map layout [46]. Ortho-radial drawings are
especially well-suited for visualizing metro systems with radial and circular routes. Examples
of such drawings can be found in [38, 41, 42].

There are three types of faces in an ortho-radial drawing. The face that contains an
unbounded region is called the outer face. The face that contains the origin is called the central
face. The remaining faces are called regular faces. It is possible that the outer face and the
central face are the same face.

Given a plane graph, an ortho-radial representation is defined as an assignment of an
angle to each corner together with a designation of the central face and the outer face. Barth,
Niedermann, Rutter, and Wolf [2] showed that an ortho-radial representation can be realized as
an ortho-radial drawing with zero bends if the following three conditions are satisfied:

(R1) The sum of angles around each vertex is 360◦.
(R2) The sum 𝑠 of angles around each face 𝐹 with 𝑘 corners satisfies the following.

𝑠 = (𝑘 − 2) · 180◦ if 𝐹 is a regular face.
𝑠 = 𝑘 · 180◦ if 𝐹 is either the central face or the outer face, but not both.
𝑠 = (𝑘 + 2) · 180◦ if 𝐹 is both the central face and the outer face.

(R3) There exists a choice of the reference edge 𝑒★ such that the ortho-radial representation
does not contain a strictly monotone cycle.
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Intuitively, this shows that the ortho-radial representations that can be realized as ortho-
radial drawings with zero bends can be characterized similarly by examining the angle sum
around each vertex and each face, with the additional requirement that the representation
does not have a strictly monotone cycle.

The definition of a strictly monotone cycle is technical and depends on the choice of the
reference edge 𝑒★, so we defer its formal definition to a subsequent section. The reference
edge 𝑒★ is an edge in the contour of the outer face and is required to lie on the outermost circular
arc used in an ortho-radial drawing. Informally, a strictly monotone cycle has a structure that is
like a loop of ascending stairs or a loop of descending stairs, so a strictly monotone cycle cannot
be drawn. The necessity of (R1)–(R3) is intuitive to see. The more challenging and interesting
part of the proof in [2] is to show that these three conditions are actually sufficient.

1.2 Previous methods

The journal paper [2] is a combination of two works [3, 37]. In the first work [3], the proof
that conditions (R1)–(R3) are necessary and sufficient is only existential in that it does not yield
efficient algorithms to check the validity of a given ortho-radial representation and to construct
an ortho-radial drawing without bends realizing a given ortho-radial representation.

Checking (R1) and (R2) can be done in linear time in a straightforward manner. The difficult
part is to design an efficient algorithm to check (R3). The most naive approach of examining all
cycles costs exponential time. The second work [37] addressed this gap by showing an 𝑂(𝑛2)-
time algorithm to decide whether a strictly monotone cycle exists for a given reference edge 𝑒★,
where 𝑛 is the number of vertices in the input graph. They also show an 𝑂(𝑛2)-time algorithm
to construct an ortho-radial drawing without bends, for any given ortho-radial representation
with a reference edge 𝑒★ that does not contain a strictly monotone cycle.

Rectangulation The main idea behind the proof in the first work [3] is a reduction to the
easier case where each regular face is rectangular. For this case, they provided a proof that
conditions (R1)–(R3) are necessary and sufficient, and they also provided an efficient drawing
algorithm via a reduction to a flow computation given that (R1)–(R3) are satisfied.

For any given ortho-radial representation with 𝑛 vertices, it is possible to add 𝑂(𝑛) addi-
tional edges to turn it into an ortho-radial representation where each regular face is rectangular.
A major difficulty in the proof of [3] is that they need to ensure that the addition of the edges
preserves not only (R1) and (R2) but also (R3). The lack of an efficient algorithm to check
whether (R3) is satisfied is precisely the reason that the proof of [3] does not immediately lead
to a polynomial-time algorithm.

Quadratic-time algorithms The above issue was addressed in the second work [37]. They
provided an 𝑂(𝑛2)-time algorithm to find a strictly monotone cycle if one exists, given a fixed
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choice of the reference edge 𝑒★. This immediately leads to an 𝑂(𝑛2)-time algorithm to decide
whether a given ortho-radial representation, with a fixed reference edge 𝑒★, admits an ortho-
radial drawing. Moreover, combining this 𝑂(𝑛2)-time algorithm with the proof of [3] discussed
above yields an 𝑂(𝑛4)-time drawing algorithm. The time complexity is due to the fact that 𝑂(𝑛)
edge additions are needed for rectangulation, for each edge addition there are 𝑂(𝑛) candidate
reference edges to consider, and to test the feasibility of each candidate edge they need to run
the 𝑂(𝑛2)-time algorithm to test whether the edge addition creates a strictly monotone cycle.

The key idea behind the 𝑂(𝑛2)-time algorithm for finding a strictly monotone cycle is a
structural theorem that if there is a strictly monotone cycle, then there is a unique outermost one
which can be found by a left-first DFS starting from any edge in the outermost strictly monotone
cycle. The DFS algorithm costs 𝑂(𝑛) time. Guessing an edge in the outermost monotone cycle
adds an 𝑂(𝑛) factor overhead in the time complexity.

Using further structural insights on the augmentation process of [3], the time complexity
of the above 𝑂(𝑛4)-time drawing algorithm can be lowered to 𝑂(𝑛2) [37]. The reason for the
quadratic time complexity is that for each of the 𝑂(𝑛) edge additions, a left-first DFS starting
from the newly added edge is needed to test whether the addition of this edge creates a strictly
monotone cycle.

1.3 Our new method

For both validity testing (checking whether a given angle assignment induces a strictly monotone
cycle) and drawing (finding a geometric embedding realizing a given ortho-radial represen-
tation), the two algorithms in [2] naturally cost 𝑂(𝑛2) time, as they both require performing
left-first DFS 𝑂(𝑛) times.

In this paper, we present a new method for ortho-radial drawing that is not based on
rectangulation and left-first DFS. We design a simple 𝑂(𝑛 log 𝑛)-time greedy algorithm that
simultaneously accomplishes both validity testing and drawing, for the case where the reference
edge 𝑒★ is fixed. If a reference edge 𝑒★ is not fixed, our algorithm costs 𝑂(𝑛 log2 𝑛) time, where
the extra 𝑂(log 𝑛) factor is due to a binary search over the set of candidates for the reference
edge. At a high level, our algorithm tries to construct an ortho-radial drawing in a piece-by-piece
manner. If at some point no progress can be made in that the current partial drawing cannot
be further extended, then the algorithm can identify a strictly monotone cycle to certify the
non-existence of a drawing.

Good sequences The core of our method is the notion of a good sequence, which we briefly
explain below. An ortho-radial representation satisfying (R1) and (R2), with a fixed reference
edge 𝑒★, determines whether an edge 𝑒 is a vertical edge (i.e., 𝑒 is drawn as a segment of a
straight line passing through the origin) or horizontal (i.e., 𝑒 is drawn as a circular arc of some
circle centered on the origin). Let 𝐸h denote the set of horizontal edges, oriented in the clockwise
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direction, and let Sh denote the set of connected components induced by 𝐸h. Note that each
component 𝑆 ∈ Sh is either a path or a cycle.

The exact definition of a good sequence is technical, so we defer it to a subsequent section.
Intuitively, a good sequence is an ordering of Sh = (𝑆1, 𝑆2, . . . , 𝑆𝑘), where 𝑘 = |Sh |, that allows
us to design a simple linear-time greedy algorithm constructing an ortho-radial drawing in such
a way that 𝑆1 is drawn on the circle 𝑟 = 𝑘, 𝑆2 is drawn on the circle 𝑟 = 𝑘 − 1, and so on.

In general, a good sequence might not exist, even if the given ortho-radial representation
admits an ortho-radial drawing. In such a case, we show that we may add virtual edges to
transform the ortho-radial representation into one where a good sequence exists. We will
design a greedy algorithm for adding virtual edges and constructing a good sequence. In each
step, we add virtual vertical edges to the current graph and append a new element 𝑆 ∈ Sh to the
end of our sequence. In case we are unable to find any suitable 𝑆 ∈ Sh to extend the sequence,
we can extract a strictly monotone cycle to certify the non-existence of an ortho-radial drawing.
We emphasize that the cycle belongs to the original graph and does not use any of the virtual
edges.

A major difference between our method and the approach based on rectangulation in [2]
is that the cost for adding a new virtual edge is only 𝑂(log 𝑛) in our algorithm. As we will later
see, in our algorithm, in order to identify new virtual edges to be added, we only need to do
some simple local checks such as calculating the sum of angles, and there is no need to do a full
left-first DFS to test whether a newly added edge creates a strictly monotone cycle.

Open questions While we show a nearly linear-time algorithm for the (shape→metric)-step
(i.e., from ortho-radial representations to ortho-radial drawings), essentially nothing is known
about the (topology→ shape)-step (from planar graphs to ortho-radial representations). While
the task of finding a bend-minimized orthogonal representation of a given plane graph can be
easily reduced to the computation of a minimum cost flow [44], such a reduction does not
apply to ortho-radial representations, as network flows do not work well with the notion of
strictly monotone cycles. It remains an open question whether a bend-minimized ortho-radial
representation of a plane graph can be computed in polynomial time.

1.4 Related work

Orthogonal drawing is a central topic in graph drawing, see [22] for a survey. The bend mini-
mization problem for orthogonal drawings of planar graphs of maximum degree 4 without a
fixed combinatorial embedding is NP-hard [26, 27]. If the combinatorial embedding is fixed, the
topology-shape-metric framework of Tamassia [44] reduces the bend minimization problem to
a min-cost flow computation. The algorithm of Tamassia [44] costs 𝑂(𝑛2 log 𝑛) time. The time
complexity was later improved to 𝑂

(
𝑛7/4√︁log 𝑛

)
[27] and then to 𝑂

(
𝑛3/2 log 𝑛

)
[15]. A recent
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𝑂(𝑛 poly log 𝑛)-time planar min-cost flow algorithm [21] implies that the bend minimization
problem can be solved in 𝑂(𝑛 poly log 𝑛) time if the combinatorial embedding is fixed.

If the combinatorial embedding is not fixed, the NP-hardness result of [26, 27] can be
bypassed if the first bend on each edge does not incur any cost [9] or if we restrict ourselves to
some special class of planar graphs. In particular, for planar graphs with maximum degree 3, it
was shown that the bend-minimization can be solved in polynomial time [17]. After a series
of improvements [13, 18, 19], we now know that a bend-minimized orthogonal drawing of a
planar graph with maximum degree 3 can be computed in 𝑂(𝑛) time [18].

The topology-shape-metric framework [44] is not only useful in bend minimization, but
it is also, implicitly or explicitly, behind the graph drawing algorithms for essentially all com-
putational problems in orthogonal drawing and its variants, such as morphing orthogonal
drawings [8], allowing vertices with degree greater than 4 [16, 34, 39], restricting the direction
of edges [20, 23], drawing cluster graphs [10], and drawing dynamic graphs [11].

The study of ortho-radial drawing by Barth, Niedermann, Rutter, and Wolf [2] extended the
topology-shape-metric framework [44] to accommodate cylindrical grids. Before the work [2],
a combinatorial characterization of drawable ortho-radial representation was only known for
paths, cycles, and theta graphs [30], and for the special case where the graph is 3-regular and
each regular face in the ortho-radial representation is a rectangle [29].

1.5 Organization

In Section 2, we discuss the basic graph terminology used in this paper, review some results in
the previous work [2], and state our main theorems. In Section 3, we introduce the notion of a
good sequence and show that its existence implies a simple ortho-radial drawing algorithm.
In Section 4, we present a greedy algorithm that adds virtual edges to a given ortho-radial
representation with a fixed reference edge so that a good sequence that covers the entire
graph exists and can be computed efficiently. In Section 5, we show that a strictly monotone
cycle, which certifies the non-existence of a drawing, exists and can be computed efficiently
if the greedy algorithm fails. In Section 6, we show that our results can be extended to the
setting where the reference edge is not fixed at the cost of an extra logarithmic factor in the
time complexity. In Section 7, we justify our assumption that the input graph is simple and
biconnected by showing a reduction from any graph to a biconnected simple graph. We conclude
in Section 8 with discussions on possible future directions.

2. Preliminaries

Throughout the paper, let 𝐺 = (𝑉, 𝐸) be a planar graph of maximum degree at most 4 with a
fixed combinatorial embedding E in the sense that, for each vertex 𝑣 ∈ 𝑉 , a circular ordering
E(𝑣) of its incident edges is given to specify the counter-clockwise ordering of these edges
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surrounding 𝑣 in a planar embedding. As we will discuss in Section 7, we may assume that
the input graph 𝐺 is simple and biconnected. In this section, we introduce some basic graph
terminology and review some results from Barth, Niedermann, Rutter, and Wolf [2].

Paths and cycles Unless otherwise stated, all edges, paths, and cycles are assumed to be
directed. We write 𝑒, 𝑃, and 𝐶 to denote the reversal of an edge 𝑒, a path 𝑃, and a cycle 𝐶,
respectively. We allow paths and cycles to have repeated vertices and edges. We say that a path
or a cycle is simple if it does not have repeated vertices. Following [2], we say that a path or a
cycle is crossing-free if it satisfies the following conditions:

The path or the cycle does not contain repeated undirected edges. See Figure 2 for an
illustration: The cycle 𝐶 = (𝑣1, 𝑣5, 𝑣6, 𝑣3, 𝑣4, 𝑣7, 𝑣6, 𝑣5, 𝑣9, 𝑣10, 𝑣2) is not crossing-free as it
traverses the undirected edge {𝑣5, 𝑣6} twice, from opposite directions.
For each vertex 𝑣 that appears multiple times in the path or the cycle, the ordering of the
edges incident to 𝑣 appearing in the path or the cycle matches either the order of these edges
in E(𝑣) or its reversal. See Figure 2 for an illustration: The path (𝑣11, 𝑣9, 𝑣5, 𝑣1, 𝑣2, 𝑣10, 𝑣9, 𝑣8)
is not crossing-free, as it crosses itself at 𝑣9; the path (𝑣8, 𝑣9, 𝑣5, 𝑣1, 𝑣2, 𝑣10, 𝑣9, 𝑣11) is crossing-
free, as the ordering of the edges incident to 𝑣9 appearing in the path matches the order of
these edges in E(𝑣9).

Although a crossing-free path or a crossing-free cycle might touch a vertex multiple times, the
path or the cycle never crosses itself. For any face 𝐹, we define the facial cycle 𝐶𝐹 to be the
clockwise traversal of its contour. In general, a facial cycle might not be a simple cycle as it
can contain repeated edges. For example, the cycle 𝐶 = (𝑣1, 𝑣5, 𝑣6, 𝑣3, 𝑣4, 𝑣7, 𝑣6, 𝑣5, 𝑣9, 𝑣10, 𝑣2) in
Figure 2, which is not simple, is the facial cycle of 𝐹2. If we assume that 𝐺 is biconnected, then
each facial cycle of 𝐺 must be a simple crossing-free cycle.

Ortho-radial representations and drawings A corner is an ordered pair of undirected
edges (𝑒1, 𝑒2) incident to 𝑣 such that 𝑒2 immediately follows 𝑒1 in the counter-clockwise circular
ordering E(𝑣). Given a planar graph 𝐺 = (𝑉, 𝐸) with a fixed combinatorial embedding E, an
ortho-radial representation R = (𝜙, 𝐹c, 𝐹o) of 𝐺 is defined by the following components:

An assignment 𝜙 of an angle 𝑎 ∈ {90◦, 180◦, 270◦} to each corner of 𝐺.
A designation of a face of 𝐺 as the central face 𝐹c.
A designation of a face of 𝐺 as the outer face 𝐹o.

For the special case where 𝑣 has only one incident edge 𝑒, we view (𝑒, 𝑒) as a 360◦ corner. This
case does not occur if we consider biconnected graphs.

An ortho-radial representation R = (𝜙, 𝐹c, 𝐹o) is drawable if the representation can be
realized as an ortho-radial drawing of 𝐺 with zero bends, where the angle of each corner
matches the assignment 𝜙, the central face 𝐹c contains the origin, and the outer face 𝐹o contains
an unbounded region.
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𝑣𝑣5

𝐹𝐹1

𝑣𝑣9

𝑣𝑣8

𝑣𝑣10𝑣𝑣2

𝑣𝑣3 𝑣𝑣6

𝑣𝑣7𝑣𝑣4

𝑣𝑣11𝑣𝑣1

𝐹𝐹2𝐹𝐹3

Figure 2. A non-crossing-free path, a crossing-free path, and a facial cycle.

Recall that, by the definition of ortho-radial drawing, in an ortho-radial drawing with zero
bends, each edge is drawn as a line segment of a straight line passing through the origin or
drawn as a circular arc of a circle centered at the origin. We also consider the setting where the
reference edge 𝑒★ is fixed. In this case, there is an additional requirement that the reference
edge 𝑒★ has to lie on the outermost circular arc used in the drawing and follows the clockwise
direction. If such a drawing exists, we say that (R, 𝑒★) is drawable. See Figure 3 for an example
of a drawing of an ortho-radial representation R with the reference edge 𝑒★ = (𝑣14, 𝑣5). In the
figure, we use ◦, ◦ ◦, and ◦ ◦ ◦ to indicate a 90◦, a 180◦, and a 270◦ angle assigned to a corner,
respectively.

It was shown in [2] that (R, 𝑒★) is drawable if and only if the ortho-radial representation R
satisfies (R1) and (R2) with the reference edge 𝑒★ does not contain a strictly monotone cycle.
Since it is straightforward to test whether (R1) and (R2) are satisfied in linear time, from now
on, unless otherwise stated, we assume that (R1) and (R2) are satisfied for the ortho-radial
representation R under consideration.

Combinatorial rotations Consider a length-2 path 𝑃 = (𝑢, 𝑣, 𝑤) that passes through 𝑣 such
that 𝑢 ≠ 𝑤. Given the angle assignment 𝜙, 𝑃 is either a 90◦ left turn, a straight line, or a 90◦ right
turn. We define the combinatorial rotation of 𝑃 as follows.

rotation(𝑃) =


−1, 𝑃 is a 90◦ left turn,

0, 𝑃 is a straight line,

1, 𝑃 is a 90◦ right turn.
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𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣6

𝑣𝑣7

𝑣𝑣8

𝑣𝑣9

𝑣𝑣10 𝑣𝑣11

𝑣𝑣14 𝑣𝑣13

𝑣𝑣12

𝑣𝑣10

𝑣𝑣14

𝑣𝑣13

𝑣𝑣11

𝑣𝑣12

𝑣𝑣1𝑣𝑣2
𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑒𝑒⋆

𝐹𝐹𝑜𝑜

𝐹𝐹𝑐𝑐

𝑒𝑒⋆

𝑒𝑒

𝑃𝑃

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝑢𝑢4

𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒 𝑒𝑒⋆ ∘ 𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒

𝑣𝑣5

𝑒𝑒⋆

Figure 3. A drawing of an ortho-radial representation with a reference edge, where the small blue
circles in the left figure denote the angles in the representation that are realized in the right figure.

More formally, let 𝑆 = (𝑒1, . . . , 𝑒𝑘) be the contiguous subsequence of edges starting from
𝑒1 = {𝑢, 𝑣} and ending at 𝑒𝑘 = {𝑣, 𝑤} in the circular ordering E(𝑣) of the undirected edges
incident to 𝑣. Then

∑𝑘−1
𝑗=1 𝜙(𝑒 𝑗 , 𝑒 𝑗+1) − 180◦ equals the degree of the turn of 𝑃 at the intermediate

vertex 𝑣, so the combinatorial rotation of 𝑃 is rotation(𝑃) =
(∑𝑘−1

𝑗=1 𝜙(𝑒 𝑗 , 𝑒 𝑗+1) − 180◦
)
/ 90◦.

For the special case where 𝑢 = 𝑤, the rotation of 𝑃 = (𝑢, 𝑣, 𝑢) can be a 180◦ left turn, in
which case rotation(𝑃) = −2, or a 180◦ right turn, in which case rotation(𝑃) = 2. For example,
consider the directed edge 𝑒 = (𝑢, 𝑣) where 𝑃 first goes from 𝑢 to 𝑣 along the right side of 𝑒 and
then goes from 𝑣 back to 𝑢 along the left side of 𝑒. Then 𝑃 is considered a 180◦ left turn, and
similarly, 𝑃 is considered a 180◦ right turn. In particular, if 𝑃 = (𝑢, 𝑣, 𝑢) is a subpath of a facial
cycle 𝐶, then 𝑃 is always considered as a 180◦ left turn, and so rotation(𝑃) = −2.

For any single-edge path 𝑃, we define rotation(𝑃) = 0. For any crossing-free path 𝑃 of
length more than 2, we define rotation(𝑃) to be the sum of the combinatorial rotations of all
length-2 subpaths of 𝑃. Similarly, for any cycle 𝐶 of length more than 2, we define rotation(𝐶)
to be the sum of the combinatorial rotations of all length-2 subpaths of 𝐶. Same as [2], based on
this notion, we may restate condition (R2) as follows.

(R2′) For each face 𝐹, the combinatorial rotation of its facial cycle 𝐶𝐹 satisfies the following:

rotation(𝐶𝐹) =


4, 𝐹 is a regular face,

0, 𝐹 is either the central face or the outer face, but not both,

−4, 𝐹 is both the central face and the outer face.

For example, consider the ortho-radial representation shown in Figure 3. The path 𝑃 =

(𝑣10, 𝑣11, 𝑣12, 𝑣13, 𝑣14) has rotation(𝑃) = −1 since it makes two 90◦ left turns and one 90◦ right
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turn. The cycle 𝐶 = (𝑣10, 𝑣11, 𝑣12, 𝑣13, 𝑣14) is the facial cycle of the central face, and it has
rotation(𝐶) = 0.

The equivalence between the new and the old definitions of (R2) stems from the fact that
a 90◦ left turn corresponds to an angle of 270◦. If 𝐹 is a regular face with 𝑘 corners, then in the
original definition of (R2), it is required that the sum 𝑠 of angles around 𝐹 is 𝑠 = (𝑘 − 2) · 180◦.
Since the facial cycle 𝐶𝐹 traverses the contour of 𝐹 in the clockwise direction, the number of 90◦

right turns minus the number of 90◦ left turns must be exactly 4. Therefore, 𝑠 = (𝑘 − 2) · 180◦

is the same as rotation(𝐶𝐹) = 4, as each 90◦ right turn contributes +1 and each 90◦ left turn
contributes −1 in the calculation of rotation(𝐶𝐹).

Interior and exterior regions of a cycle Any cycle 𝐶 partitions the remaining graph into two
parts. If 𝐶 is a facial cycle, then one part is empty. The direction of 𝐶 is clockwise with respect
to one of the two parts. The part with respect to which 𝐶 is clockwise, together with 𝐶 itself, is
called the interior of 𝐶. Similarly, the part with respect to which 𝐶 is counter-clockwise, together
with 𝐶 itself, is called the exterior of 𝐶. In particular, if a vertex 𝑣 lies in the interior of 𝐶, then 𝑣
must be in the exterior of 𝐶.

This above definition is consistent with the notion of facial cycle in that any face 𝐹 is in the
interior of its facial cycle 𝐶𝐹 . Depending on the context, the interior or the exterior of a cycle can
be viewed as a subgraph, a set of vertices, a set of edges, or a set of faces. For example, consider
the cycle 𝐶 = (𝑣1, 𝑣2, 𝑣10, 𝑣9, 𝑣5) of the plane graph shown in Figure 2. The interior of 𝐶 is the
subgraph induced by 𝑣8, 𝑣11, and all vertices in 𝐶. The exterior of 𝐶 is the subgraph induced by
𝑣3, 𝑣4, 𝑣6, 𝑣7, and all vertices in 𝐶. The cycle 𝐶 partitions the faces into two parts: The interior
of 𝐶 contains 𝐹3, and the exterior of 𝐶 contains 𝐹1 and 𝐹2.

Let 𝐶 be a simple cycle oriented in such a way that the outer face 𝐹o lies in its exterior.
Following [2], we say that 𝐶 is essential if the central face 𝐹c is in the interior of 𝐶. Otherwise we
say that 𝐶 is non-essential. The following lemma was proved in [2].

LEMMA 2.1 ([2]). Suppose (R1) and (R2) are satisfied. Let 𝐶 be a simple cycle oriented in such
a way that the outer face 𝐹o lies in its exterior, then the combinatorial rotation of 𝐶 satisfies the
following condition.

rotation(𝐶) =


4, 𝐶 is an essential cycle,

0, 𝐶 is a non-essential cycle.

The intuition behind the lemma is that an essential cycle behaves like the facial cycle of
the outer face or the central face, and a non-essential cycle behaves like the facial cycle of a
regular face.

Subgraphs When taking a subgraph 𝐻 of 𝐺, the combinatorial embedding, angle assignment,
central face, and outer face of 𝐻 are naturally inherited from 𝐺. More precisely, let 𝑒1, 𝑒2, and 𝑒3
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be three edges incident to 𝑣, appearing consecutively in the circular ordering E(𝑣). If 𝑒2 is
removed, then the angle assignment for the new corner (𝑒1, 𝑒3) is determined as 𝜙(𝑒1, 𝑒2) +
𝜙(𝑒2, 𝑒3). For example, suppose E(𝑣) = (𝑒1, 𝑒2, 𝑒3) with 𝜙(𝑒1, 𝑒2) = 90◦, 𝜙(𝑒2, 𝑒3) = 180◦, and
𝜙(𝑒3, 𝑒1) = 90◦ in 𝐺. If 𝑣 is incident only to the edges 𝑒1 and 𝑒3 in 𝐻 , then the angle assignment
𝜙𝐻 for the two corners surrounding 𝑣 in 𝐻 will be 𝜙𝐻 (𝑒1, 𝑒3) = 270◦ and 𝜙𝐻 (𝑒3, 𝑒1) = 90◦.

Each face of 𝐺 is contained in exactly one face of 𝐻 . A face in 𝐻 can contain multiple faces
of 𝐺. A face of 𝐻 is said to be the central face if it contains the central face of 𝐺. Similarly, a face
of 𝐻 is said to be the outer face if it contains the outer face of 𝐺.

For example, consider the subgraph 𝐻 induced by {𝑣2, 𝑣3, . . . , 𝑣9} in the ortho-radial repre-
sentation shown in Figure 3. In 𝐻 , 𝑣9 has only two incident edges 𝑒1 = {𝑣8, 𝑣9} and 𝑒2 = {𝑣2, 𝑣9},
and the angle assignment 𝜙𝐻 for the two corners surrounding 𝑣9 in 𝐻 will be 𝜙𝐻 (𝑒1, 𝑒2) = 90◦

and 𝜙𝐻 (𝑒2, 𝑒1) = 270◦. The outer face and the central face of 𝐻 are the same.

Defining direction via reference paths Following [2], for any two edges 𝑒 = (𝑢, 𝑣) and
𝑒′ = (𝑥, 𝑦), we say that a crossing-free path 𝑃 is a reference path for 𝑒 and 𝑒′ if 𝑃 starts at 𝑢 or 𝑣
and ends at 𝑥 or 𝑦 such that 𝑃 does not contain any of the edges in {𝑒, 𝑒, 𝑒′, 𝑒′}. Given a reference
path 𝑃 for 𝑒 = (𝑢, 𝑣) and 𝑒′ = (𝑥, 𝑦), we define the combinatorial direction of 𝑒′ with respect to 𝑒
and 𝑃 as follows.

direction(𝑒, 𝑃, 𝑒′) =



rotation(𝑒 ◦ 𝑃 ◦ 𝑒′), 𝑃 starts at 𝑣 and ends at 𝑥,

rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) + 2, 𝑃 starts at 𝑢 and ends at 𝑥,

rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) − 2, 𝑃 starts at 𝑣 and ends at 𝑦,

rotation(𝑒 ◦ 𝑃 ◦ 𝑒′), 𝑃 starts at 𝑢 and ends at 𝑦.

Here 𝑃 ◦ 𝑄 denotes the concatenation of the paths 𝑃 and 𝑄. An edge 𝑒 is interpreted as a
length-1 path. In the definition of direction(𝑒, 𝑃, 𝑒′), we allow the possibility that a reference
path 𝑃 consists of a single vertex. If 𝑣 = 𝑥 and𝑢 ≠ 𝑤, then we may choose 𝑃 to be the length-0 path
consisting of a single vertex 𝑣 = 𝑥, in which case direction(𝑒, 𝑃, 𝑒′) is simply the combinatorial
rotation of the length-2 path (𝑢, 𝑣, 𝑦). We do not consider the cases where 𝑒 = 𝑒′ or 𝑒 = 𝑒′.

Consider the reference edge 𝑒 = (𝑣14, 𝑣1) in the ortho-radial representation of Figure 3. We
measure the direction of 𝑒′ = (𝑣8, 𝑣9) from 𝑒 with different choices of the reference path 𝑃. If
𝑃 = (𝑣1, 𝑣2, 𝑣9), then direction(𝑒, 𝑃, 𝑒′) = rotation(𝑒 ◦𝑃 ◦ 𝑒′) −2 = −1. If 𝑃 = (𝑣14, 𝑣10, 𝑣9), then we
also have direction(𝑒, 𝑃, 𝑒′) = rotation(𝑒◦𝑃◦𝑒′) = −1. If we select 𝑃 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8),
then we get a different value of direction(𝑒, 𝑃, 𝑒′) = rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) = 3. As we will discuss
later, direction(𝑒, 𝑃, 𝑒′)mod 4 is invariant under the choice of 𝑃 [2].

In the definition of direction(𝑒, 𝑃, 𝑒′), the additive +2 in rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) + 2 is due to the
fact that the actual path that we intend to consider is 𝑒 ◦ 𝑒 ◦ 𝑃 ◦ 𝑒′, where we make a 180◦ right
turn in 𝑒 ◦ 𝑒, which contributes +2 in the calculation of the combinatorial rotation. Similarly,
the additive −2 in rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) − 2 is due to the fact that the actual path that we intend to
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consider is 𝑒 ◦ 𝑃 ◦ 𝑒′ ◦ 𝑒′, where we make a 180◦ left turn in 𝑒′ ◦ 𝑒′. There is no additive term
in rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) because of the cancellation of the 180◦ right turn 𝑒 ◦ 𝑒 and the 180◦ left
turn 𝑒′ ◦ 𝑒′. The reason why 𝑒 ◦ 𝑒 has to be a right turn and 𝑒′ ◦ 𝑒′ has to be a left turn will be
explained later.

See Figure 4 for an example of the calculation of an edge direction. The direction of
𝑒 = (𝑢1, 𝑢2) with respect to 𝑒★ = (𝑣1, 𝑣2) and the reference path 𝑃 = (𝑣1, 𝑣5, 𝑣4, 𝑢1) can be
calculated by rotation(𝑒★ ◦ 𝑃 ◦ 𝑒′) + 2 = 1 according to the formula above, where the additive
+2 is due to the 180◦ right turn at 𝑒★ ◦ 𝑒★.

Edge directions Imagining that the origin is the south pole, in an ortho-radial drawing with
zero bends, each edge 𝑒 is drawn in one of the following four directions:

𝑒 points towards the north direction if 𝑒 is drawn as a line segment of a straight line passing
through the origin, where 𝑒 is directed away from the origin.
𝑒 points towards the south direction if 𝑒 is drawn as a line segment of a straight line passing
through the origin, where 𝑒 is directed towards the origin.
𝑒 points towards the east direction if 𝑒 is drawn as a circular arc of a circle centered at the
origin in the clockwise direction.
𝑒 points towards the west direction if 𝑒 is drawn as a circular arc of a circle centered at
the origin in the counter-clockwise direction.

We say that 𝑒 is a vertical edge if 𝑒 points towards north or south. Otherwise, we say that 𝑒
is a horizontal edge. We argue that as long as (R1) and (R2) are satisfied, the direction of any
edge 𝑒 is uniquely determined by the ortho-radial representation R and the reference edge 𝑒★.

For the reference edge 𝑒★, it is required that 𝑒★ points east, and so 𝑒★ points west. Con-
sider any edge 𝑒 that is neither 𝑒★ nor 𝑒★. It is clear that the value of direction(𝑒★, 𝑃, 𝑒) deter-
mines the direction of 𝑒 in that the direction of 𝑒 is forced to be east, south, west, or north
if direction(𝑒★, 𝑃, 𝑒)mod 4 equals 0, 1, 2, or 3, respectively. For example, in the ortho-radial
representation of Figure 3, the edge 𝑒′ = (𝑣8, 𝑣9) is a vertical edge in the north direction, as we
have calculated that direction(𝑒★, 𝑃, 𝑒′)mod 4 = 3.

LEMMA 2.2 ([2]). For any two edges 𝑒 and 𝑒′, the value of direction(𝑒, 𝑃, 𝑒′)mod 4 is invariant
under the choice of the reference path 𝑃.

The above lemma shows that direction(𝑒★, 𝑃, 𝑒)mod 4 is invariant under the choice of the
reference path 𝑃, so the direction of each edge in an ortho-radial representation is well-defined,
even for the case that (R, 𝑒★) might not be drawable. Given the reference edge 𝑒★, we let 𝐸h
denote the set of all horizontal edges in the east direction, and let 𝐸v denote the set of all vertical
edges in the north direction.
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Horizontal segments We require that in a drawing of (R, 𝑒★), the reference edge 𝑒★ lies
on the outermost circular arc used in the drawing, so not every edge in 𝐶𝐹o is eligible to be a
reference edge. To determine whether an edge 𝑒 ∈ 𝐶𝐹o is eligible to be a reference edge, we
need to introduce some terminology.

Given the reference edge 𝑒★, the set 𝐸v of vertical edges in the north direction and the
set 𝐸h of horizontal edges in the east direction are fixed. Let Sh denote the set of connected
components induced by 𝐸h. Each component 𝑆 ∈ Sh is either a path or a cycle, and so in any
drawing of R, there is a circle 𝐶 centered at the origin such that 𝑆 must be drawn as 𝐶 or a
circular arc of 𝐶. We call each component 𝑆 ∈ Sh a horizontal segment.

Each horizontal segment 𝑆 ∈ Sh is written as a sequence of vertices 𝑆 = (𝑣1, 𝑣2, . . . , 𝑣𝑠),
where 𝑠 is the number of vertices in 𝑆, such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸h for each 1 ≤ 𝑖 < 𝑠. If 𝑆 is a cycle,
then we additionally have (𝑣𝑠, 𝑣1) ∈ 𝐸h, so 𝑆 = (𝑣1, 𝑣2, . . . , 𝑣𝑠) is a circular order. When 𝑆 is a
cycle, we use modular arithmetic on the indices so that 𝑣𝑠+1 = 𝑣1. We writeNnorth(𝑆) to denote
the set of vertical edges 𝑒 = (𝑥, 𝑦) ∈ 𝐸v such that 𝑥 ∈ 𝑆. Similarly,Nsouth(𝑆) is the set of vertical
edges 𝑒 = (𝑥, 𝑦) ∈ 𝐸v such that 𝑦 ∈ 𝑆. We assume that the edges inNnorth(𝑆) andNsouth(𝑆) are
ordered according to the indices of their endpoints in 𝑆. The ordering is sequential if 𝑆 is a path
and is circular if 𝑆 is a cycle. Consider the ortho-radial representation R given in Figure 3 as
an example. The horizontal segment 𝑆 = (𝑣10, 𝑣9, 𝑣2) hasNsouth(𝑆) = ((𝑣11, 𝑣10), (𝑣8, 𝑣9), (𝑣3, 𝑣2))
andNnorth(𝑆) = ((𝑣10, 𝑣14), (𝑣2, 𝑣1)).

Observe thatNnorth(𝑆) = ∅ for the horizontal segment 𝑆 ∈ Sh that contains 𝑒★ is a necessary
condition that a drawing of R where 𝑒★ lies on the outermost circular arc exists. This condition
can easily be checked in linear time.

Spirality Intuitively, direction(𝑒, 𝑃, 𝑒′) quantifies the degree of spirality of 𝑒′ with respect to
𝑒 and 𝑃. Unfortunately, Lemma 2.2 does not hold if we replace direction(𝑒, 𝑃, 𝑒′)mod 4 with
direction(𝑒, 𝑃, 𝑒′). A crucial observation made in [2] is that such a replacement is possible if we
add some restrictions about the positions of 𝑒, 𝑒′, and 𝑃. See the following lemma.

LEMMA 2.3 ([2]). Let 𝐶 and 𝐶′ be essential cycles such that 𝐶′ lies in the interior of 𝐶. Let 𝑒 be
an edge on 𝐶. Let 𝑒′ be an edge on 𝐶′. The value of direction(𝑒, 𝑃, 𝑒′) is invariant under the choice
of the reference path 𝑃, over all paths 𝑃 in the interior of 𝐶 and in the exterior of 𝐶′.

Recall that we require a reference path to be crossing-free. This requirement is crucial
in the above lemma. If we allow 𝑃 to be a general path that is not crossing-free, then we may
choose 𝑃 in such a way that 𝑃 repeatedly traverses a non-essential cycle many times, so that
direction(𝑒, 𝑃, 𝑒′) can be made arbitrarily large and arbitrarily small.

Setting 𝑒 = 𝑒★ and 𝐶 = 𝐶𝐹o in the above lemma, we infer that direction(𝑒★, 𝑃, 𝑒′) is deter-
mined once we fix an essential cycle 𝐶′ that contains 𝑒′ and only consider reference paths 𝑃 that
lie in the exterior of 𝐶′. The condition for the lemma is satisfied because 𝐶𝐹o is the outermost
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Figure 4. The calculation of direction(𝑒★, 𝑃, 𝑒).

essential cycle in that all other essential cycles are in the interior of 𝐶𝐹o . The reason why we set
𝐶 = 𝐶𝐹o and not 𝐶 = 𝐶𝐹o is that 𝐹o has to be in the exterior of 𝐶. Note that the assumption that 𝐺
is biconnected ensures that each facial cycle is simple.

Let 𝐶 be an essential cycle and let 𝑒 be an edge in 𝐶. In view of the above, following [2],
we define the edge label ℓ𝐶 (𝑒) of 𝑒 with respect to 𝐶 to be the value of direction(𝑒★, 𝑃, 𝑒), for any
choice of reference path 𝑃 in the exterior of 𝐶. For the special case that 𝑒 = 𝑒★ and 𝐶 = 𝐶𝐹o ,
we let ℓ𝐶 (𝑒) = 0. Intuitively, the value ℓ𝐶 (𝑒) quantifies the degree of spirality of 𝑒 from 𝑒★ if
we restrict ourselves to the exterior of 𝐶. Consider the edge 𝑒 = (𝑢1, 𝑢2) in the essential cycle
𝐶 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) in Figure 4 as an example. We have ℓ𝐶 (𝑒) = direction(𝑒★, 𝑃, 𝑒) = 1, since the
reference path 𝑃 = (𝑣1, 𝑣5, 𝑣4, 𝑢1) lies in exterior of 𝐶.

We briefly explain the formula of direction(𝑒, 𝑃, 𝑒′): As discussed earlier, in the definition
of direction(𝑒, 𝑃, 𝑒′), the additive +2 in rotation(𝑒 ◦ 𝑃 ◦ 𝑒′) + 2 is due to the fact that the actual
path that we want to consider is 𝑒 ◦ 𝑒 ◦ 𝑃 ◦ 𝑒′, where we make a 180◦ right turn in 𝑒 ◦ 𝑒. The
reason why 𝑒 ◦ 𝑒 has to be a right turn is because of the scenario considered in Lemma 2.3,
where 𝑒 is an edge in 𝐶. To ensure that we stay in the interior of 𝐶 in the traversal from 𝑒 to 𝑒′

via the path 𝑒 ◦ 𝑒 ◦ 𝑃 ◦ 𝑒′, the 180◦ turn of 𝑒 ◦ 𝑒 has to be a right turn. The remaining part of the
formula of direction(𝑒, 𝑃, 𝑒′) can be explained similarly.

Monotone cycles We are now ready to define the notion of strictly monotone cycles used in
(R3). We say that an essential cycle 𝐶 is monotone if all its edge labels ℓ𝐶 (𝑒) are non-negative
or all its edge labels ℓ𝐶 (𝑒) are non-positive. Let 𝐶 be an essential cycle that is monotone. If 𝐶
contains at least one positive edge label, then we say that 𝐶 is increasing. If 𝐶 contains at least
one negative edge label, then we say that 𝐶 is decreasing. Decreasing cycles and increasing
cycles are collectively called strictly monotone.

Intuitively, an increasing cycle is like a loop of descending stairs, and a decreasing cycle
is like a loop of ascending stairs, so they are not drawable. It was proved in [2] that (R, 𝑒★) is
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Figure 5. Changing the reference edge to 𝑒 leads to a strictly monotone cycle.

drawable if and only if it does not contain a strictly monotone cycle. Recall again that, throughout
the paper, unless otherwise stated, we assume that the given ortho-radial representation already
satisfies (R1) and (R2).

LEMMA 2.4 ([2]). An ortho-radial representation R, with a fixed reference edge 𝑒★ such that
Nnorth(𝑆) = ∅ for the horizontal segment 𝑆 ∈ Sh that contains 𝑒★, is drawable if and only if it does
not contain a strictly monotone cycle.

In general, whether (R, 𝑒★) is drawable depends on the choice of the reference edge 𝑒★.
For instance, in Figure 5, while (R, 𝑒★) is drawable, (R, 𝑒) is not, as the essential cycle 𝐶 =

(𝑣1, 𝑣2, . . . , 𝑣10) is increasing. With 𝑒 as the reference edge, all the edge labels on the cycle 𝐶 are
non-negative, with at least one being positive.

We are ready to state our main results.

THEOREM 2.5. There is an𝑂(𝑛 log 𝑛)-time algorithmA that outputs either a drawing of (R, 𝑒★)
or a strictly monotone cycle of (R, 𝑒★), for any given ortho-radial representation R of an 𝑛-vertex
biconnected simple graph, with a fixed reference edge 𝑒★ such thatNnorth(𝑆) = ∅ for the horizontal
segment 𝑆 ∈ Sh that contains 𝑒★.

The above theorem improves the previous algorithm of [2] which costs 𝑂(𝑛2) time. If the
output ofA is a strictly monotone cycle, then the cycle certifies the non-existence of a drawing,
by Lemma 2.4. We also extend the above theorem to the case where the reference edge is not
fixed.

THEOREM 2.6. There is an 𝑂(𝑛 log2 𝑛)-time algorithmA that decides whether an ortho-radial
representation R of an 𝑛-vertex biconnected simple graph is drawable. If R is drawable, thenA
also computes a drawing of R.

The proof of Theorem 2.5 is in Section 5, and the proof of Theorem 2.6 is in Section 6.
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3. Ortho-radial drawings via good sequences

In this section, we introduce the notion of a good sequence, whose existence enables us to
construct an ortho-radial drawing through a simple greedy algorithm. Intuitively, a good
sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) is a sequence of horizontal segments that allows us to safely place
the horizontal segments one by one: 𝑆1 is drawn on the circle 𝑟 = 𝑘, 𝑆2 is drawn on the circle
𝑟 = 𝑘 − 1, and so on.

Sequences of horizontal segments Let 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) be any sequence of 𝑘 horizontal
segments. In general, we do not require 𝐴 to cover the set of all horizontal segments in Sh. We
consider the following terminology for each 1 ≤ 𝑖 ≤ 𝑘, where 𝑘 is the length of the sequence 𝐴.

Let 𝐺𝑖 be the subgraph of 𝐺 induced by the horizontal edges in 𝑆1, 𝑆2, . . . , 𝑆𝑖 and the set of
all vertical edges whose both endpoints are in 𝑆1, 𝑆2, . . . , 𝑆𝑖 . Let 𝐹𝑖 be the central face of 𝐺𝑖 ,
and let 𝐶𝑖 be the facial cycle of 𝐹𝑖 .
We extend the notion Nsouth(𝑆) to a sequence of horizontal segments, as follows. Let
Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖) be the set of vertical edges 𝑒 = (𝑥, 𝑦) ∈ 𝐸v such that 𝑦 ∈ 𝐶𝑖 and 𝑥 ∉ 𝐶𝑖 .
Let 𝐺+

𝑖
be the subgraph of 𝐺 induced by all the edges in 𝐺𝑖 together with the edge set

Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖). Let 𝐹+
𝑖

be the central face of 𝐺+
𝑖
, and let 𝐶+

𝑖
be the facial cycle of 𝐹+

𝑖
.

Observe that for each vertical edge 𝑒 = (𝑥, 𝑦) ∈ Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖), the south endpoint 𝑥
appears exactly once in 𝐶+

𝑖
. We circularly order the edges 𝑒 = (𝑥, 𝑦) ∈ Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖)

according to the position of the south endpoint 𝑥 in the circular ordering of 𝐶+
𝑖

. Take the graph
𝐺 = 𝐺6 in Figure 6 as an example. In this graph, there are 6 horizontal segments, shaded in
Figure 6:

𝑆1 = (𝑣1,1, 𝑣1,2, 𝑣1,3, 𝑣1,4), 𝑆2 = (𝑣2,1, 𝑣2,2, 𝑣2,3), 𝑆3 = (𝑣3,1, 𝑣3,2, 𝑣3,3, 𝑣3,4, 𝑣3,5),
𝑆4 = (𝑣4,1, 𝑣4,2, 𝑣4,3), 𝑆5 = (𝑣5,1, 𝑣5,2, 𝑣5,3, 𝑣5,4, 𝑣5,5), 𝑆6 = (𝑣6,1, 𝑣6,2).

With respect to the sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆6), Figure 6 shows the graphs 𝐺𝑖 and 𝐺+
𝑖
, for all

1 ≤ 𝑖 ≤ 6. For example, for 𝑖 = 2, we have:

Nsouth(𝑆1, 𝑆2) = ((𝑣3,1, 𝑣1,1) (𝑣3,2, 𝑣2,1), (𝑣3,4, 𝑣2,3), (𝑣3,5, 𝑣1,4)),
Nnorth(𝑆2) = ((𝑣2,1, 𝑣1,2), (𝑣2,2, 𝑣1,3))

𝐶2 = (𝑣1,1, 𝑣1,2, 𝑣2,1, 𝑣2,2, 𝑣2,3, 𝑣2,2, 𝑣1,3, 𝑣1,4),
𝐶+2 = (𝑣1,1, 𝑣3,1, 𝑣1,1, 𝑣1,2, 𝑣2,1, 𝑣3,2, 𝑣2,1, 𝑣2,2, 𝑣2,3, 𝑣3,4, 𝑣2,3, 𝑣2,2, 𝑣1,3, 𝑣1,4, 𝑣3,5, 𝑣1,4).

HereNsouth(𝑆1, 𝑆2), 𝐶2, and 𝐶+2 are circular orderings, andNnorth(𝑆2) is a sequential ordering, as
𝑆2 is a path.
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𝑣𝑣1,1

𝑣𝑣1,3

𝑣𝑣1,2𝑣𝑣1,4

𝑣𝑣2,1

𝑣𝑣2,2
𝑣𝑣2,3

𝑣𝑣3,1

𝑣𝑣3,2

𝑣𝑣3,3𝑣𝑣3,4

𝑣𝑣3,5

𝑣𝑣4,1

𝑣𝑣4,2

𝑣𝑣4,3

𝑣𝑣5,1
𝑣𝑣5,2

𝑣𝑣5,3
𝑣𝑣5,4

𝑣𝑣6,1𝑣𝑣6,2

𝐺𝐺1 𝐺𝐺1+

𝐺𝐺2

𝐺𝐺3

𝐺𝐺2+

𝐺𝐺3+

𝐺𝐺4 𝐺𝐺4+

𝐺𝐺5

𝐺𝐺6

𝐺𝐺5+

𝐺𝐺6+

Figure 6. Constructing a good drawing for a good sequence.

Good sequences We say that a sequence of horizontal segments 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) is good if
𝐴 satisfies the following conditions.

(S1) 𝑆1 is the reversal of the facial cycle of the outer face 𝐹o, i.e., 𝑆1 = 𝐶𝐹o .
(S2) For each 1 < 𝑖 ≤ 𝑘,Nnorth(𝑆𝑖) satisfies the following requirements.

Nnorth(𝑆𝑖) ≠ ∅.
If 𝑆𝑖 is a path, thenNnorth(𝑆𝑖) is a contiguous subsequence ofNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖−1).
If 𝑆𝑖 is a cycle, thenNnorth(𝑆𝑖) = Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑖−1).

Clearly, if 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) is good, then (𝑆1, 𝑆2, . . . , 𝑆𝑖) is also good for each 1 ≤ 𝑖 < 𝑘. In
general, a good sequence might not exist for a given (R, 𝑒★). In particular, in order to satisfy
(S1), it is necessary that the cycle 𝐶𝐹o is a horizontal segment. The sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆6)
shown in Figure 6 is a good sequence.
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Good drawings Throughout the paper, we use the polar coordinate system, where (𝑟, 𝜃) is
the point given by 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃 in the Cartesian coordinate system. We always
have 𝑟 ≥ 0. Let 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) be a good sequence of 𝑘 horizontal segments. For notational
simplicity, we may also writeNsouth(𝐴) = Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘). Let (𝑒1, 𝑒2, . . . , 𝑒𝑠) be the circular
ordering ofNsouth(𝐴), and let 𝑒 𝑗 = (𝑥 𝑗 , 𝑦 𝑗), for each 1 ≤ 𝑗 ≤ 𝑠, where 𝑠 is the size ofNsouth(𝐴).
We say that an ortho-radial drawing of 𝐺𝑘 with zero bends is good if the drawing satisfies the
following property.

(D1) For each 1 ≤ 𝑗 ≤ 𝑠, the drawing does not use any point in {(𝑟, 𝜃) | 0 ≤ 𝑟 < 𝑟 𝑗 and 𝜃 = 𝜃 𝑗},
where we let (𝑟 𝑗 , 𝜃 𝑗) denote the position of vertex 𝑦 𝑗 in the drawing.

It is implicitly required that a good drawing must be planar and preserve the combinatorial
embedding of the plane graph 𝐺𝑘. In Figure 6, the drawing of the graph 𝐺𝑖 , for each 1 ≤ 𝑖 ≤ 6, is
a good drawing for the good sequence (𝑆1, 𝑆2, . . . , 𝑆𝑖). In the following lemma, we show that any
good drawing has the following favorable property.

(D2) The clockwise circular ordering of 𝑒1, 𝑒2, . . . , 𝑒𝑠 given by 𝜃1, 𝜃2, . . . , 𝜃𝑠 in the drawing is
the same as the circular ordering given byNsouth(𝐴).

LEMMA 3.1. If an ortho-radial drawing of 𝐺𝑘 for a good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) satisfies
(D1), then the drawing also satisfies (D2).

PROOF . See Figure 7 for an illustration of the proof. Suppose (D2) is not satisfied, then we
can find three indices 𝑎, 𝑏, and 𝑐 such that the clockwise ordering (𝑒𝑐, 𝑒𝑏, 𝑒𝑎) given by their
𝜃-coordinates is in the opposite direction of their circular ordering (𝑒𝑎, 𝑒𝑏, 𝑒𝑐) in Nsouth(𝐴) =
(𝑒1, 𝑒2, . . . , 𝑒𝑠).

Let 𝐺∗
𝑘

be the graph resulting from identifying the south endpoints of all the edges in
Nsouth(𝐴) = (𝑒1, 𝑒2, . . . , 𝑒𝑠) into a vertex 𝑣∗. A planar drawing of 𝐺∗

𝑘
can be found by extending

the given ortho-radial drawing of 𝐺𝑘 by placing 𝑣∗ at the origin and drawing all the edges in
Nsouth(𝐴) = (𝑒1, 𝑒2, . . . , 𝑒𝑠) as straight lines. By (D1), the drawing of𝐺∗

𝑘
is crossing-free. Assuming

that (D2) is not satisfied, we will derive a contradiction by showing that this drawing cannot be
crossing-free, so (D2) must be satisfied.

For any 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑠, we write 𝑃𝑖, 𝑗 to denote the subpath of 𝐶+
𝑘

starting at 𝑒𝑖 and
ending at 𝑒 𝑗 . Any such a path in 𝐺∗

𝑘
is a cycle, as it starts and ends at the same vertex 𝑣∗.

Consider the cycle 𝑃𝑎,𝑏 in 𝐺∗
𝑘
. Our assumption on the 𝜃-coordinates for {𝑒𝑎, 𝑒𝑏, 𝑒𝑐} implies

that 𝑒𝑐 lies in the interior of the cycle 𝑃𝑎,𝑏 in the above drawing of𝐺∗
𝑘
. Now consider the path 𝑃𝑐,𝑎,

which starts at 𝑒𝑐 and ends at 𝑒𝑎. Let 𝑣 be the first vertex of 𝑃𝑎,𝑏 − {𝑣∗} that 𝑃𝑐,𝑎 visits. Since 𝑃𝑐,𝑎
ends at 𝑒𝑎, such a vertex exists. Let 𝑒 be the edge incident to 𝑣 from which 𝑃𝑐,𝑎 enters 𝑣. Since
𝐶+
𝑘

is a facial cycle of 𝐺+
𝑘

, the circular ordering of the incident edges of 𝑣 in 𝐶+
𝑘

must respect the
counter-clockwise ordering given by E(𝑣), so 𝑒 must be an edge in the exterior of the cycle 𝑃𝑎,𝑏.
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𝑃𝑃𝑎𝑎,𝑏𝑏

𝑃𝑃𝑐𝑐,𝑎𝑎

Figure 7. Illustration for the proof of Lemma 3.1.

Therefore, there exist an edge of 𝑃𝑐,𝑎 and an edge of 𝑃𝑎,𝑏 crossing each other, since otherwise
𝑃𝑐,𝑎 cannot go from the interior of 𝑃𝑎,𝑏 to the exterior of 𝑃𝑎,𝑏. ■

We show an efficient algorithm that computes a good drawing of 𝐺𝑘 for a given good
sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘). The time complexity of the algorithm is linear in the size of 𝐺𝑘.
For the special case that𝐺𝑘 = 𝐺, this gives a linear-time algorithm for computing an ortho-radial
drawing realizing the given (R, 𝑒★).

LEMMA 3.2. A good drawing of 𝐺𝑘 for a given good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) can be con-
structed in time 𝑂

(∑𝑘
𝑖=1 |𝑆𝑖 |

)
.

PROOF . The lemma is proved by an induction on the length 𝑘 of the sequence 𝐴. Refer to
Figure 6 for an illustration of the algorithm described in the proof.

Base case For the base case of 𝑘 = 1, a good drawing of 𝐺1 = 𝑆1 can be constructed, as follows.
By (S1), 𝑆1 = 𝐶𝐹o , which is the outermost essential cycle. Let 𝑆1 = (𝑣1, 𝑣2, . . . , 𝑣𝑡), where 𝑡 = |𝑆1 | is
the number of vertices in the cycle 𝑆1. Then we may draw𝐺1 = 𝑆1 on the unit circle by putting 𝑣 𝑗
on the point

(
1,− 𝑗𝑡 · 2𝜋

)
, for each 1 ≤ 𝑗 ≤ 𝑡. The minus sign is due to the fact that 𝑆1 is oriented

in the clockwise direction. The construction of the drawing takes 𝑂 ( |𝑆1 |) time as we need to
compute these coordinates. Condition (D1) is satisfied because the drawing does not use any
point (𝑟, 𝜃) with 0 ≤ 𝑟 < 1.

Inductive step For the inductive step, given that we have a good drawing of 𝐺𝑘−1, we will
extend this drawing to a good drawing of 𝐺𝑘 by spending 𝑂 ( |𝑆𝑘 |) time to properly assign the
coordinates to the vertices in 𝑆𝑘. We select 𝑟∗ > 0 to be any number that is smaller than the
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𝑟-coordinates of the positions of all vertices in 𝐺𝑘−1 in the given drawing, so the circle 𝑟 = 𝑟∗ is
strictly contained in the central face 𝐹𝑘−1 of 𝐺𝑘−1 in the given drawing. Let 𝑆𝑘 = (𝑣1, 𝑣2, . . . , 𝑣𝑡),
where 𝑡 = |𝑆𝑘 | is the number of vertices in 𝑆𝑘. We will draw 𝑆𝑘 on the circle 𝑟 = 𝑟∗.

Step 1: vertices with neighbors in the given drawing Let (𝑒1, 𝑒2, . . . , 𝑒𝑠) be the circular
ordering ofNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1), and let 𝑒 𝑗 = (𝑥 𝑗 , 𝑦 𝑗), for each 1 ≤ 𝑗 ≤ 𝑠, where 𝑠 is the size of
Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1). We let (𝑟 𝑗 , 𝜃 𝑗) denote the position of vertex 𝑦 𝑗 in the given drawing.

By (S2),Nnorth(𝑆𝑘) is a subset ofNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1). For each vertical edge 𝑒 𝑗 = (𝑥 𝑗 , 𝑦 𝑗) ∈
Nnorth(𝑆𝑘), We assign the coordinates (𝑟∗, 𝜃 𝑗) to 𝑥 𝑗 . By (D1), the given drawing does not use any
point in {(𝑟, 𝜃) | 0 ≤ 𝑟 < 𝑟 𝑗 and 𝜃 = 𝜃 𝑗}, so we may draw 𝑒 𝑗 as a straight line connecting 𝑥 𝑗
and 𝑦 𝑗 .

By Lemma 3.1, (D2) follows from (D1). By (D2), for the vertices in 𝑆𝑘 that we have drawn,
that is, the set of vertices in 𝑆𝑘 that have incident edges inNnorth(𝑆𝑘), the clockwise ordering of
their 𝜃-coordinates respect the ordering of the horizontal segment 𝑆𝑘 = (𝑣1, 𝑣2, . . . , 𝑣𝑡). If 𝑆𝑘 is a
cycle, then (𝑣1, 𝑣2, . . . , 𝑣𝑡) is seen as a circular ordering.

Step 2: the two endpoints For the case 𝑆𝑘 is a path, we draw the two endpoints 𝑣1 and 𝑣𝑡 of
𝑆𝑘 = (𝑣1, 𝑣2, . . . , 𝑣𝑡), as follows. By (S2), in this case,Nnorth(𝑆𝑘) is a contiguous subsequence of
Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1). Let 𝑗1 and 𝑗2 be the indices such that the subsequence starts at 𝑒 𝑗1 and
ends at 𝑒 𝑗2 . Let 𝜖 = min1≤ 𝑗≤𝑠(𝜃 𝑗 −𝜃 𝑗−1)/3. If 𝑣1 does not have an incident edge inNnorth(𝑆𝑘), then
we assign the coordinates

(
𝑟∗, 𝜃 𝑗1 + 𝜖

)
to 𝑣1. Similarly, if 𝑣𝑡 does not have an incident edge in

Nnorth(𝑆𝑘), then we assign the coordinates
(
𝑟∗, 𝜃 𝑗2 − 𝜖

)
to 𝑣𝑡. Our choice of 𝜖 ensures that the range

[𝜃 𝑗2−𝜖, 𝜃 𝑗1+𝜖] of radians does not overlap with 𝜃 𝑗 , for any 𝑒 𝑗 ∈ Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1)\Nnorth(𝑆𝑘).

Step 3: remaining vertices We draw the remaining vertices of 𝑆𝑘 as follows. Let (𝑣𝑎, . . . , 𝑣𝑏)
be any maximal-length contiguous subsequence of 𝑆𝑘 consisting of vertices that have not been
drawn yet. We may simply draw them by placing them between 𝑣𝑎−1 and 𝑣𝑏+1 on the circle 𝑟 = 𝑟∗.
Formally, let 𝜃west be the 𝜃-coordinate of the position of 𝑣𝑎−1, and let 𝜃east be the 𝜃-coordinate of
the position of 𝑣𝑏+1. For each 𝑎 ≤ 𝑗 ≤ 𝑏, the coordinates of 𝑣 𝑗 are assigned to be(

𝑟∗, 𝜃west − ( 𝑗 − 𝑎 + 1) · 𝜃east − 𝜃west
𝑏 − 𝑎 + 2

)
.

In general, it is possible to have 𝑣𝑎−1 = 𝑣𝑏+1 when 𝑆𝑘 is a cycle and |Nnorth(𝑆𝑘) | = 1, in which
case 𝑣𝑎−1 = 𝑣𝑏+1 is the vertex in 𝑆𝑘 incident to the only edge in Nnorth(𝑆𝑘). Note that this case
cannot occur when the underlying graph 𝐺 is biconnected. For this case, we should let the
𝜃-coordinate of the position of 𝑣𝑏+1 to be the 𝜃-coordinate of the position of 𝑣𝑎−1 minus 2𝜋 in the
above calculation.
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Validity of the drawing For the drawing of 𝐺𝑘 that we construct, we verify that condition
(D1) is satisfied. Consider any vertex 𝑣 in 𝐺𝑘 that has an incident edge inNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘).
Suppose that its coordinates in our drawing are (𝑟𝑣, 𝜃𝑣). To prove that (D1) is satisfied, we just
need to verify that our drawing does not use any point (𝑟, 𝜃) with 0 ≤ 𝑟 < 𝑟𝑣 and 𝜃 = 𝜃𝑣. For the
case 𝑣 is in 𝑆𝑘, we have 𝑟𝑣 = 𝑟∗, and our choice of 𝑟∗ implies that our drawing does not use any
point whose 𝑟-value is smaller than 𝑟∗.

Now suppose that 𝑣 is not in 𝑆𝑘. Then 𝑣 = 𝑦 𝑗 for some 𝑒 𝑗 = (𝑥 𝑗 , 𝑦 𝑗) ∈ Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1)\
Nnorth(𝑆𝑘). Note that this case is possible only when 𝑆𝑘 is a path. By the induction hypothesis,
the given drawing of 𝐺𝑘−1 does not use any point (𝑟, 𝜃) with 0 ≤ 𝑟 < 𝑟𝑣 and 𝜃 = 𝜃𝑣, so we just
need to verify that when we draw the horizontal segment 𝑆𝑘, the circular arc used to draw 𝑆𝑘

does not cross the line {(𝑟, 𝜃) | 0 ≤ 𝑟 < 𝑟𝑣 and 𝜃 = 𝜃𝑣}. Indeed, the 𝜃-coordinates of this circular
arc are confined to the range [𝜃 𝑗2 −𝜖, 𝜃 𝑗1 +𝜖], and our choice of 𝜖 in Step 2 ensures that this range
does not overlap with 𝜃 𝑗 , for any 𝑒 𝑗 ∈ Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘−1) \ Nnorth(𝑆𝑘), so such a crossing is
impossible.

Runtime analysis A good drawing of 𝐺1 can be constructed in 𝑂 ( |𝑆1 |) time. Given a good
drawing of 𝐺𝑖−1, a good drawing of 𝐺𝑖 can be constructed in 𝑂 ( |𝑆𝑖 |) time. Therefore, given good
sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘), a good drawing of 𝐺𝑘 can be constructed in 𝑂

(∑𝑘
𝑖=1 |𝑆𝑖 |

)
time. ■

Remark The drawing computed by the algorithm of Lemma 3.2 uses 𝑘 layers (i.e., concentric
circles). It is possible to modify the algorithm so that the output is a drawing with the smallest
number of layers. The idea is simply that when we process a new horizontal segment 𝑆𝑖 in the
inductive step, instead of always creating a new layer, we draw 𝑆𝑖 in the outermost possible layer.
More formally, we define the layer number ℓ𝑖 for 𝑆𝑖 as follows. For the base case, we let ℓ𝑖 = 0.
For the inductive step, we let ℓ𝑖 = ℓ 𝑗 + 1, where 𝑗 is the index maximizing ℓ 𝑗 such that there
exists a vertical edge whose south endpoint is in 𝑆𝑖 and whose north endpoint is in 𝑆 𝑗 . By the
definition of the layer numbers, any ortho-radial drawing requires at least ℓ∗ = 1 +max𝑖∈[𝑘] ℓ𝑖
layers. An ortho-radial drawing with ℓ∗ layers can be constructed by modifying the algorithm
of Lemma 3.2 in such a way that 𝑆𝑖 is drawn on the circle 𝑟 = 1 − ℓ𝑖/ℓ∗, which is the outermost
possible layer where 𝑆𝑖 can be drawn.

4. Constructing a good sequence

Given an ortho-radial representation R of 𝐺 with a reference edge 𝑒★ such that the horizontal
segment 𝑆★ ∈ Sh with 𝑒★ ∈ 𝑆★ satisfiesNnorth(𝑆★) = ∅, in this section we describe an algorithm
that achieves the following. If (R, 𝑒★) is drawable, then the algorithm adds virtual edges to R so
that a good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) such that𝐺𝑘 = 𝐺 exists and can be computed efficiently,
and then a drawing of (R, 𝑒★) can be constructed using the drawing algorithm in the previous
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𝑒𝑒𝑓𝑓

𝑒𝑒⋆

Figure 8. The preprocessing steps.

section. If (R, 𝑒★) is not drawable, then the algorithm returns a strictly monotone cycle in 𝐺
to certify that (R, 𝑒★) is not drawable. Recall that we require 𝑒★ to be placed on the outermost
circular arc in the drawing of (R, 𝑒★). A necessary condition for such a drawing to exist is
Nnorth(𝑆★) = ∅.

Preprocessing step 1: the outer face To ensure that a non-empty good sequence exists, by
(S1), it is required that 𝑆 = 𝐶𝐹o is a horizontal segment in Sh. If this requirement is not met, then
we will add virtual edges to R to satisfy this requirement. Let 𝑆★ ∈ Sh be the horizontal segment
that contains the reference edge 𝑒★, and we haveNnorth(𝑆★) = ∅. We add a virtual horizontal
edge 𝑒 𝑓 that connects the two endpoints of 𝑆★, so 𝑆★ together with 𝑒 𝑓 becomes the new contour
of the outer face and is a horizontal segment in Sh. See Figure 8 for an illustration.

Observe that the addition of a virtual edge, in general, does not change the value of edge
label ℓ𝐶 (𝑒) of any edge 𝑒 in any essential cycle 𝐶 that already exists in the original graph, as
long as the addition of the virtual edge does not destroy (R1) or (R2). The reason is that the
calculation of ℓ𝐶 (𝑒) is invariant under the choice of the reference path 𝑃 in the calculation of
ℓ𝐶 (𝑒), and there is always a reference path 𝑃 that already exists in the original graph and does
not involve any virtual edge.

Preprocessing step 2: smoothing As our goal is to find a good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘)
such that 𝐺𝑘 = 𝐺, it is necessary that 𝐴 contains all the horizontal segments in Sh and each
vertex 𝑣 ∈ 𝑉 is incident to a horizontal segment in Sh. As we assume that the underlying graph
is biconnected, the only possibility that a vertex 𝑣 ∈ 𝑉 is not incident to any horizontal segment
is that deg(𝑣) = 2 and 𝑣 is incident to two vertical edges (𝑢, 𝑣) and (𝑣, 𝑤). We may get rid of
any such vertex 𝑣 by smoothing it, that is, we replace (𝑢, 𝑣) and (𝑣, 𝑤) with a single vertical
edge (𝑢, 𝑤). See Figure 8 for an illustration. It is straightforward to see that smoothing does
not affect the drawability of (R, 𝑒★), and a drawing of the graph after smoothing can be easily
transformed into a drawing of the graph before smoothing. From now on, we assume that each
vertex 𝑣 ∈ 𝑉 is incident to a horizontal segment in Sh, and so all we need to do is to find a good
sequence that covers all the horizontal segments.
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Figure 9. Adding a virtual vertical edge in a regular face.

Eligibility for adding virtual edges Let 𝑆 ∈ Sh such thatNnorth(𝑆) = ∅ and 𝑆 ≠ 𝐶𝐹o . Such a
horizontal segment 𝑆 can never be added to a good sequence as (S2) requiresNnorth(𝑆) to be
non-empty. To deal with this issue, we consider the following eligibility criterion for adding a
virtual vertical edge incident to such a horizontal segment 𝑆.

Let 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) be a good sequence. Let 𝑆 ∉ 𝐴 be a horizontal segment such that
Nnorth(𝑆) = ∅. Let 𝐹 be the face such that 𝑆 is a subpath of 𝐶𝐹 . We say that 𝑆 is eligible for adding
a virtual edge if there exists an edge 𝑒′ ∈ 𝐶𝐹 with 𝑒′ ∈ 𝑆𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 such that either
rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 or rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 along the cycle 𝐶𝐹 . Intuitively, the condition
Nnorth(𝑆) = ∅ ensures that immediately after adding the virtual edge, we may append 𝑆 to the
end of the sequence 𝐴.

For the case that 𝐹 is a regular face, rotation(𝐶𝐹) = 4, so rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 if and
only if rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2. We also allow 𝐹 to be the central face, in which case at most
one of rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 and rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 can be true.

We argue that if 𝑆 is eligible for adding a virtual edge with respect to the current good
sequence 𝐴, then we may add a virtual vertical edge 𝑒 𝑓 = (𝑧, 𝑤) connecting a middle point 𝑧 of
a horizontal edge (𝑥, 𝑦) in 𝑆 and a middle point 𝑤 of the horizontal edge 𝑒′ = (𝑢, 𝑣). See Figure 9
for an illustration. In the figure, 𝐹 is a regular face, and there are two horizontal segments along
the contour of 𝐹 that are eligible for adding a virtual edge due to 𝑒′ ∈ 𝑆𝑖 .

We argue that the addition of 𝑒 𝑓 = (𝑧, 𝑤) does not destroy (R1) and (R2). The verification
of (R1) is straightforward. We verify (R2) for the case rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2, as the other
case rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 is similar. The addition of 𝑒 𝑓 decomposes 𝐹 into two new faces 𝐹1

and 𝐹2. Let 𝐹1 be the one whose facial cycle contains (𝑢, 𝑤, 𝑧, 𝑥) as a subpath, and let 𝐹2 be the
one whose facial cycle contains ( 𝑦, 𝑧, 𝑤, 𝑣) as a subpath.

We first consider 𝐹1. The rotation of the facial cycle of 𝐹1 equals rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2
plus the rotation of the path (𝑢, 𝑤, 𝑧, 𝑥), which is also 2, as (𝑢, 𝑤, 𝑧, 𝑥) consists of two right turns.
Therefore, the rotation of this facial cycle is 4, meaning that 𝐹1 is a regular face. Now consider
the other face 𝐹2. The rotation of the facial cycle of 𝐹2 is identical to rotation(𝐶𝐹) before the
addition of 𝑒 𝑓 . The reason is that the rotation of the subpath from 𝑦 to 𝑣 is both 2 in 𝐶𝐹 and
in 𝐶𝐹2 , as we assume that rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2. If 𝐹 is a regular face, then the sum of rotations
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is 4 for both 𝐹 and 𝐹2, so 𝐹2 is also a regular face. If 𝐹 is a central face, then the sum of rotations
is 0 for both 𝐹 and 𝐹2, so 𝐹2 is also a central face.

Consider Figure 10 as an example: There are four horizontal segments in the contour of the
central face 𝐹 that are eligible for adding a virtual vertical edge due to 𝑒′ ∈ 𝑆𝑖 . The two horizontal
segments highlighted in the left part of the figure are eligible due to rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2
along the cycle 𝐶𝐹 . The two horizontal segments highlighted in the right part of the figure are
eligible due to rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 along the cycle 𝐶𝐹 .

A greedy algorithm Assuming that 𝐶𝐹o ∈ Sh and each 𝑣 ∈ 𝑉 is incident to a horizontal
segment, our algorithm for constructing a good sequence is as follows. We start with the trivial
good sequence 𝐴 = (𝑆1), where 𝑆 = 𝐶𝐹o , and then we repeatedly do the following two operations
until no further such operations can be done.

Find a horizontal segment 𝑆 ∈ Sh such that appending 𝑆 to the end of the current sequence
𝐴 results in a good sequence, and then extend 𝐴 by adding 𝑆 to the end of 𝐴.
Find a horizontal segment 𝑆 ∈ Sh that is eligible for adding a virtual edge with respect to
the current good sequence 𝐴, and then add a virtual vertical edge incident to 𝑆 as discussed
above.

There are two possible outcomes of the algorithm. If we obtain a good sequence that
covers all horizontal segments Sh, then we may use Lemma 3.2 to compute a drawing of (R, 𝑒★).
Otherwise, the algorithm stops with a good sequence that does not cover all horizontal segments
Sh, and no more progress can be made, in which case in the next section we will show that a
strictly monotone cycle in the original graph 𝐺 can be found.

A straightforward implementation of the greedy algorithm, which checks all horizontal
segments in each step, takes 𝑂(𝑛2) time. In the following lemma, we present a more efficient
implementation that requires only 𝑂(𝑛 log 𝑛) time.

LEMMA 4.1. The greedy algorithm can be implemented to run in 𝑂(𝑛 log 𝑛) time.

PROOF . Let 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) denote the current good sequence, which is initialized to an
empty set ∅. During the algorithm, we maintain the circular orderingNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘) as a
circular doubly linked list. Whenever a path 𝑆 ∈ Sh is inserted to 𝐴, this circular doubly linked
list is updated by replacing the contiguous subsequenceNnorth(𝑆) ofNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘) with
Nsouth(𝑆). Whenever a cycle 𝑆 ∈ Sh is inserted to 𝐴, we haveNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘) = Nnorth(𝑆),
so the circular doubly linked list is updated to the circular ordering ofNsouth(𝑆).

Horizontal segments Throughout the algorithm, we maintain a set𝑊 containing all horizon-
tal segments 𝑆 ∈ Sh such that adding 𝑆 to 𝐴 results in a good sequence. If 𝑆 is a path, then 𝑆 can
be added to 𝐴 onceNnorth(𝑆) is a contiguous subsequence ofNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘). If 𝑆 is a cycle,
then 𝑆 can be added to 𝐴 onceNnorth(𝑆) = Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘). Our goal is to design a suitable
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Figure 10. Eligible horizontal segments in the contour of the central face.

data structure and an algorithm to efficiently detect a horizontal segment 𝑆 that can be added
to 𝐴, if such a segment exists.

The set 𝑊 is initialized as 𝑊 = {𝐶𝐹o} and is maintained as follows. First, consider any
𝑆 ∈ Sh with |Nnorth(𝑆) | = 1. LetNnorth(𝑆) = {𝑒}. If 𝑆 is a path, then we add 𝑆 to𝑊 once 𝑒 appears
inNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘). If 𝑆 is a cycle, then we add 𝑆 to𝑊 onceNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘) = {𝑒}. Note
that the case 𝑆 is a cycle with |Nnorth(𝑆) | = 1 is not possible when 𝐺 is biconnected.

Next, consider any 𝑆 ∈ Sh with |Nnorth(𝑆) | ≥ 2. For any two vertical edges 𝑒 and 𝑒′ such
that 𝑒′ immediately follows 𝑒 in the orderingNnorth(𝑆), we maintain an indicator 𝑋𝑒,𝑒′ ∈ {0, 1}
such that 𝑋𝑒,𝑒′ = 1 if 𝑒′ also immediately follows 𝑒 in Nsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘). Initially, all 𝑋𝑒,𝑒′
are set to 0. For each update toNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘), we check and update 𝑋𝑒,𝑒′ for all edges 𝑒
and 𝑒′ that could be affected. For example, if an edge 𝑒 is removed fromNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘), we
check if the two edges immediately preceding and following 𝑒 inNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘) belong to
Nnorth(𝑆) for the same horizontal segment 𝑆. If the answer is yes, then we set the corresponding
indicator 𝑋𝑒,𝑒′ = 1 for 𝑆. By (S2), 𝑆 can be inserted to 𝐴 if and only if the value of each of its
indicators is 1. Therefore, we can decide whether 𝑆 should join𝑊 by checking the sum 𝑋𝑆 of all
its indicators 𝑋𝑒,𝑒′ . This sum 𝑋𝑆 is updated and checked whenever we update the value of an
indicator 𝑋𝑒,𝑒′ for 𝑆.

The data structure and algorithm described above cost 𝑂(𝑛) time. Each insertion of a
horizontal segment 𝑆 to the good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) incurs a number of insertions
and deletions to the circular doubly linked listNsouth(𝑆1, 𝑆2, . . . , 𝑆𝑘), and each of these updates
gives rise to 𝑂(1) operations. The total time complexity is 𝑂(𝑛), as the number of updates is
linear in |𝐸v | = 𝑂(𝑛).
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Virtual edges Next, we consider the task of adding virtual vertical edges. Whenever a hori-
zontal segment 𝑆′ ∈ Sh is inserted to the good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘), we check each edge
𝑒′ ∈ 𝑆′ to see if 𝑒′ causes some horizontal segment 𝑆 ∈ Sh to become eligible for adding virtual
edges with respect to (𝑆1, 𝑆2, . . . , 𝑆𝑘, 𝑆

′). For all such 𝑆, we add a virtual edge 𝑒 𝑓 incident to 𝑆 and
then add 𝑆 to𝑊 , as the addition of 𝑒 𝑓 causes the insertion of 𝑆 to result in a good sequence.

In the subsequent discussion, we fix an edge 𝑒′ ∈ 𝑆′ and consider the task of finding a hori-
zontal segment 𝑆 ∈ Sh that is eligible for adding a virtual edge with respect to (𝑆1, 𝑆2, . . . , 𝑆𝑘, 𝑆

′)
due to 𝑒′, if such a horizontal segment 𝑆 exists. Let 𝐹 be the face where 𝑒′ ∈ 𝐶𝐹 . We only need to
check the set of all 𝑆 ∈ Sh such that 𝑆 is a subpath of 𝐶𝐹 andNnorth(𝑆) = ∅. After finding such
an 𝑆 and adding a virtual edge 𝑒 𝑓 incident to 𝑆, the face 𝐹 is divided into two faces 𝐹1 and 𝐹2,
and the edge 𝑒′ is also divided into two edges 𝑒′1 and 𝑒′2, where 𝑒′1 ∈ 𝐶𝐹1 and 𝑒′2 ∈ 𝐶𝐹2 . We will
recursively apply the algorithm for both 𝑒′1 and 𝑒′2. By applying the algorithm for all 𝑒′ ∈ 𝑆′, we
can ensure that, at the end of this recursive process, no more virtual edges can be added.

A straightforward algorithm for the above task involves examining all 𝑆 ∈ Sh such that
𝑆 is a subpath of 𝐶𝐹 andNnorth(𝑆) = ∅. This approach requires 𝑂(𝑛) time in the worst case to
identify a single horizontal segment 𝑆 ∈ Sh eligible for adding a virtual edge, which is costly. In
the following, we present a more efficient algorithm and data structure.

Regular faces We first focus on the case where the face 𝐹 with 𝑒′ ∈ 𝐶𝐹 is a regular face. As
discussed earlier, our task is to find a horizontal segment 𝑆 ∈ Sh withNnorth(𝑆) = ∅ such that
𝑆 is a subpath of 𝐶𝐹 and either rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 or rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 along the
cycle 𝐶𝐹 , if such an 𝑆 exists. As 𝐹 is a regular face, rotation(𝐶𝐹) = 4, so rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2
and rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 are equivalent.

We maintain the following data structure for face 𝐹, which has two components:
The first part of the data structure is a circular doubly linked list of the edges 𝐶𝐹 =

(𝑒1, 𝑒2, . . . , 𝑒𝑠), where 𝑠 is the number of edges of 𝐶𝐹 . To facilitate the calculation of rotation
of a subpath of 𝐶𝐹 , we calculate and store the value of 𝑟𝑖 = rotation(𝑒1 ◦ · · · ◦ 𝑒𝑖) for each
1 ≤ 𝑖 ≤ 𝑠.
In the part of the data structure, we organize the set of all 𝑆 ∈ Sh such that 𝑆 is a subpath
of 𝐶𝐹 andNnorth(𝑆) = ∅ into an array of buckets 𝐵min𝑖 𝑟𝑖 , . . . , 𝐵max𝑖 𝑟𝑖 such that 𝑆 is added to
bucket 𝐵 𝑗 if the rotation from 𝑒1 to the first edge 𝑒𝑆 of 𝑆 is 𝑗. The horizontal segments in
each bucket are organized as a doubly linked list, sorted according to the indices of 𝑒𝑆 in
𝐶𝐹 = (𝑒1, 𝑒2, . . . , 𝑒𝑠).

Queries We show that, given the data structure, in𝑂(1) time, we can find a horizontal segment
𝑆 ∈ Sh that is eligible for adding a virtual edge, if such a horizontal segment exists.

The rotation from 𝑒𝑖 to 𝑒 𝑗 is 𝑟 𝑗 − 𝑟𝑖 if 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑠 and is 𝑟 𝑗 − 𝑟𝑖 + 4 if 1 ≤ 𝑗 < 𝑖 ≤ 𝑠.
Let 𝑖 be the index such that 𝑒′ = 𝑒𝑖 . Our goal is to search for a horizontal segment 𝑆 such that
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rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2, so we may limit our search space to 𝑒 𝑗 such that 𝑟 𝑗 = 𝑟𝑖 + 2 or 𝑟 𝑗 = 𝑟𝑖 − 2,
meaning that we only need to check the two buckets 𝐵𝑟𝑖−2 and 𝐵𝑟𝑖+2.

The bucket 𝐵𝑟𝑖−2 is considered because for the case 1 ≤ 𝑗 < 𝑖 ≤ 𝑠, the rotation from 𝑒𝑖 to 𝑒 𝑗
is 2 if and only if 𝑟 𝑗 − 𝑟𝑖 + 4 = 2, which is equivalent to 𝑟 𝑗 = 𝑟𝑖 − 2. Therefore, the search
space for this bucket will be any indices within the range [1, 𝑖 − 1], so all we need to do is
to check the first element of the linked list 𝐵𝑟𝑖−2 to see if its index lies in the range [1, 𝑖 − 1].
Similarly, for the bucket 𝐵𝑟𝑖+2, we just need to check the last element of the linked list to
see if the index lies in the range [𝑖 + 1, 𝑠].

The search can be done in 𝑂(1) time.

Updates In case a desired horizontal segment 𝑆 is found, as discussed earlier, the face 𝐹 will
be split into two faces 𝐹1 and 𝐹2. If we rebuild the above data structure for both faces from
scratch, then the reconstruction costs 𝑂(𝑛) time in the worst case, which we cannot afford. A
key observation here is that both 𝐹1 and 𝐹2 can be seen as the result of replacing a subpath of 𝐹
of rotation 2 with a new path of rotation 2, meaning that we can still reuse the same rotation
values {𝑟𝑖} in 𝐹1 and 𝐹2. For any two edges 𝑒𝑖′ and 𝑒 𝑗′ that still belong to the same face after
splitting, the rotation from 𝑒𝑖′ to 𝑒 𝑗′ in the new face can still be computed using the same formula
from 𝑟𝑖′ and 𝑟 𝑗′ defined with respect to the old face 𝐹. As there is no need to recompute the
rotation values, the two circular doubly linked lists 𝐶𝐹1 and 𝐶𝐹2 can be computed from the given
circular doubly linked list 𝐶𝐹 = (𝑒1, 𝑒2, . . . , 𝑒𝑠) in 𝑂(1) time.

Next, we consider the second part of the data structure. We show that the two arrays of
buckets for 𝐹1 and 𝐹2 can be computed in 𝑂(min{|𝐶𝐹1 |, |𝐶𝐹2 |}) time, so we can charge the cost
to the edges in the smaller face, where each edge is charged a cost of 𝑂(1). Since each edge
is charged 𝑂(log 𝑛) times in total, the total time spent on updating the data structures can be
upper bounded by 𝑂(𝑛 log 𝑛), as desired.

In𝑂(min{|𝐶𝐹1 |, |𝐶𝐹2 |}) time, we can decide whether |𝐶𝐹1 | ≥ |𝐶𝐹2 |. Without loss of generality,
we assume |𝐶𝐹1 | ≥ |𝐶𝐹2 |. In 𝑂( |𝐶𝐹2 |) = 𝑂(min{|𝐶𝐹1 |, |𝐶𝐹2 |}) time, we can build the array of
buckets for 𝐹2 from scratch. The array of buckets for 𝐹1 can be obtained from the given array
of buckets for 𝐹 by removing the horizontal segments in 𝐹2 from the linked lists one by one in
𝑂( |𝐶𝐹2 |) = 𝑂(min{|𝐶𝐹1 |, |𝐶𝐹2 |}) time.

The central face Now consider the remaining case where the face 𝐹 with 𝑒′ ∈ 𝐶𝐹 is the central
face. In this case, the two conditions rotation(𝑒′ ◦ · · · ◦𝑆) = 2 and rotation(𝑆 ◦ · · · ◦ 𝑒′) = 2 are not
equivalent, as rotation(𝐶𝐹) = 0. However, we can still search for an eligible horizontal segment
based on the same approach by considering both two conditions.

Specifically, here we want to find 𝑆 such that either rotation(𝑒′ ◦ · · · ◦ 𝑆) = 2 or rotation(𝑆 ◦
· · · ◦ 𝑒′) = 2, from the set of all 𝑆 ∈ Sh with Nnorth(𝑆) = ∅ and 𝑆 is a subpath of 𝐶𝐹 . Again, we
write 𝐶𝐹 = (𝑒1, 𝑒2, . . . , 𝑒𝑠), let 𝑒𝑖 = 𝑒′, and let 𝑒 𝑗 be an edge in 𝑆. Then the rotation from 𝑒𝑖 to 𝑒 𝑗
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is 𝑟 𝑗 − 𝑟𝑖 for all 𝑖 and 𝑗, so we only need to consider 𝑒 𝑗 such that 𝑟 𝑗 = 𝑟𝑖 + 2 or 𝑟 𝑗 = 𝑟𝑖 − 2. Any
horizontal segment in the two buckets 𝐵𝑟𝑖−2 and 𝐵𝑟𝑖+2 are eligible, so the search can still be done
in 𝑂(1) time.

When a virtual edge is inserted, the face 𝐹 will be divided into two faces 𝐹1 and 𝐹2. Unlike
the case of regular faces, we cannot reuse the 𝑟-values for both 𝐹1 and 𝐹2. Here, only one
𝐹∗ ∈ {𝐹1, 𝐹2} of the two new faces can be seen as the result of replacing a subpath of 𝐹 of
rotation 2 with a new path of rotation 2, so the rotation of the facial cycle of 𝐹∗ is still 0, 𝐹∗ will
be the new central face, and the old 𝑟-values computed for 𝐹 can still be used for 𝐹∗. For the
other new face 𝐹′ ∈ {𝐹1, 𝐹2} \ {𝐹∗}, it is the result of replacing a subpath of 𝐹 of rotation −2 with
a new path of rotation 2, so the rotation of the facial cycle of 𝐹′ will be 4, 𝐹′ will be a regular
face, and the old 𝑟-values computed for 𝐹 cannot be used for 𝐹′.

To deal with the above issue, we simply construct the data structure of 𝐹′ from scratch,
where the time spent is linear in the number of edges in the facial cycle of 𝐹′. The total cost for
the reconstruction throughout the algorithm is upper bounded by 𝑂(𝑠) = 𝑂(𝑛), where 𝑠 is the
number of edges in 𝐶𝐹c in the original graph 𝐺. ■

5. Extracting a strictly monotone cycle

In this section, we consider the scenario where the greedy algorithm in the previous section
stops with a good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) that does not cover the set of all horizontal
segments Sh, and our goal is to show that in this case a strictly monotone cycle of the original
graph 𝐺 can be computed in 𝑂(𝑛) time.

We introduce the terminology that will be used throughout the section. Given a good
sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) of size 𝑘, let (𝑒1, 𝑒2, . . . , 𝑒𝑠) be the circular ordering of Nsouth(𝐴),
and let 𝑒 𝑗 = (𝑥 𝑗 , 𝑦 𝑗), for each 1 ≤ 𝑗 ≤ 𝑠, where 𝑠 is the size ofNsouth(𝐴). We write �̃� to denote
the graph resulting from running the greedy algorithm. That is, �̃� is the original graph 𝐺 plus all
the virtual edges added during the greedy algorithm. Both 𝐺𝑘 and 𝐺+

𝑘
are seen as subgraphs of �̃�.

For each 1 ≤ 𝑖 ≤ 𝑠, we write 𝐹𝑖,𝑖+1 to denote the unique face 𝐹 of �̃� such that 𝐶𝐹 contains both 𝑒𝑖
and 𝑒𝑖+1. Note that 𝑣𝑠+1 = 𝑣1 because (𝑒1, 𝑒2, . . . , 𝑒𝑠) is a circular ordering. Since we assume that
𝐺 is biconnected, we cannot have 𝑠 = |Nsouth(𝐴) | = 1. We assume that 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) and �̃�
are the end results of our greedy algorithm in that 𝐴 cannot be further extended to a longer
good sequence and no more virtual edges can be added to �̃�.

Face types Consider the face 𝐹𝑖,𝑖+1, for some 1 ≤ 𝑖 ≤ 𝑠. We define 𝑃𝑖←𝑖+1 to be the subpath of
𝐶𝐹𝑖,𝑖+1 starting at 𝑒𝑖+1 and ending at 𝑒𝑖 . We write 𝑃𝑖→𝑖+1 = 𝑃𝑖←𝑖+1. We write 𝑍𝑖←𝑖+1 = (𝑧1, 𝑧2, . . .)
to denote the string of numbers such that 𝑧𝑙 is the rotation of the subpath of 𝑃𝑖←𝑖+1 consisting
of the first 𝑙 edges. Similarly, we let 𝑍𝑖→𝑖+1 = (𝑧1, 𝑧2, . . .) be the string of numbers such that
𝑧𝑙 is the rotation of the subpath of 𝑃𝑖→𝑖+1 consisting of the first 𝑙 edges. Recall that we define
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Figure 11. Face types (∗,⊔), (⊔, ∗), (⊔,⊔), and (−).

rotation(𝑃) = 0 for any single-edge path 𝑃. We define the types (∗,⊔), (⊔, ∗), (⊔,⊔), and (−), as
follows.

𝐹𝑖,𝑖+1 is of type (∗,⊔) if 0 ◦ 1𝑐 ◦ 2, for some 𝑐 ≥ 1, is a strict prefix of 𝑍𝑖←𝑖+1.
𝐹𝑖,𝑖+1 is of type (⊔, ∗) if 0 ◦ (−1)𝑐 ◦ (−2), for some 𝑐 ≥ 1, is a strict prefix of 𝑍𝑖→𝑖+1.
𝐹𝑖,𝑖+1 is of type (⊔,⊔) if 𝐹𝑖,𝑖+1 is both of type (⊔, ∗) and of type (∗,⊔).
𝐹𝑖,𝑖+1 is of type (−) if 𝑍𝑖←𝑖+1 = 0 ◦ 1𝑐 ◦ 2 for some 𝑐 ≥ 1.

We emphasize that, due to the strict prefix requirement, any face of type (−) is not of types
(∗,⊔), (⊔, ∗), and (⊔,⊔). Faces of type (−) can alternatively be defined as follows: 𝐹𝑖,𝑖+1 is of type
(−) if the subpath (𝑥𝑖+1, . . . , 𝑥𝑖) of the facial cycle of 𝐹𝑖,𝑖+1 is a horizontal straight line in the west
direction. Considering 𝑃𝑖→𝑖+1 = 𝑃𝑖←𝑖+1, equivalently, 𝐹𝑖,𝑖+1 is of type (−) if 𝑍𝑖→𝑖+1 = 0◦(−1)𝑐◦(−2)
for some 𝑐 ≥ 1.

Intuitively, the face 𝐹𝑖,𝑖+1 is of type (⊔, ∗) if 𝑃𝑖→𝑖+1 makes two 90◦ left turns before making
any right turns, and the first 90◦ left turn is made at 𝑥𝑖 . These two 90◦ left turns form a ⊔-shape.
Similarly, the face 𝐹𝑖,𝑖+1 is of type (∗,⊔) if 𝑃𝑖←𝑖+1 makes two 90◦ right turns before making any
left turns, and the first 90◦ right turn is made at 𝑥𝑖+1. These two 90◦ right turns form a ⊔-shape.

See Figure 11 for illustrations of the four face types:
Upper-left: 𝑍𝑖←𝑖+1 = (0, 1, 1, 1, 2, 1, 2, 1, 2), so 𝐹𝑖,𝑖+1 is of type (∗,⊔).
Upper-right: 𝑍𝑖→𝑖+1 = (0,−1,−1,−2,−3,−3,−2,−1,−2), so 𝐹𝑖,𝑖+1 is of type (⊔, ∗).
Lower-left: 𝑍𝑖←𝑖+1 = (0, 1, 2, 1, 0,−1,−1, 0, 1, 1, 2) and 𝑍𝑖→𝑖+1 = (0, −1, −1, −2, −3, −3, −2,
−1, 0, −1, −2), so 𝐹𝑖,𝑖+1 is of type (⊔,⊔).
Lower-right: 𝑍𝑖←𝑖+1 = (0, 1, 1, 1, 2), so 𝐹𝑖,𝑖+1 is of type (−).

We aim to extract a strictly monotone cycle by analyzing the face types. For example, if
we can show that all faces 𝐹𝑖,𝑖+1 are of types (−) and (∗,⊔), with at least one face of type (∗,⊔),
then intuitively an increasing cycle can be found.
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Structural properties We analyze the structural properties of the edges (𝑒1, 𝑒2, . . . , 𝑒𝑠) and
their incident faces 𝐹𝑖,𝑖+1. The following lemma proves the intuitive fact that the rotation from
the reference edge 𝑒★ to any 𝑒𝑖 must be 90◦ via any crossing-free path 𝑃 in 𝐺+

𝑘
. Note that such a

path 𝑃 must exist.

LEMMA 5.1. Let 𝑃 be any crossing-free path in 𝐺+
𝑘

starting at the reference edge 𝑒★ and ending
at 𝑒𝑖 , for some 1 ≤ 𝑖 ≤ 𝑠. Then rotation(𝑃) = 1.

PROOF . See the left drawing of Figure 12 for an illustration of the proof. Consider the ortho-
radial representationR′ resulting from connecting the south endpoints 𝑥1, 𝑥2, . . . , 𝑥𝑠 of the edges
𝑒1, 𝑒2, . . . , 𝑒𝑠 in 𝐺+

𝑘
into a cycle 𝐶 = (𝑥1, 𝑥2, . . . , 𝑥𝑠) in such a way that the rotation from 𝑒𝑖 to the

new edge (𝑥𝑖 , 𝑥𝑖+1) is a 90◦ left turn, the rotation from 𝑒𝑖 to the new edge (𝑥𝑖 , 𝑥𝑖−1) is a 90◦ right
turn, and any subpath of 𝐶 is a straight line. Observe that 𝐶 is a horizontal segment and is the
facial cycle of the central face of R′. By (D1) and (D2), it is straightforward to convert a good
drawing of 𝐺𝑘 into an ortho-radial drawing of R′, so R′ is drawable. Since 𝐶 is a horizontal
segment, the edge label ℓ𝐶 (𝑒) of all edges 𝑒 ∈ 𝐶 must be the same. Since 𝐶 cannot be a strictly
monotone cycle, the only possibility is that 𝐶 is a monotone cycle, meaning that ℓ𝐶 (𝑒) = 0 for all
edges 𝑒 ∈ 𝐶. Now consider the path 𝑃 in the lemma statement and the edge 𝑒 = (𝑥𝑖 , 𝑥𝑖+1) in 𝐶.
Since ℓ𝐶 (𝑒) = 0, we have rotation(𝑃 ◦ 𝑒) = 0. Since 𝑃 ◦ 𝑒 makes a 90◦ left turn at 𝑥𝑖 , we have
rotation(𝑃) = 1. ■

In the subsequent discussion, we let 𝑃out
𝑖→ 𝑗

denote the subpath of 𝐶+
𝑘

starting at 𝑒𝑖 and ending
at 𝑒 𝑗 , for any 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑠. For the special case that 𝑗 = 𝑖 + 1, 𝑃out

𝑖→ 𝑗
is a subpath of the

facial cycle of 𝐹𝑖,𝑖+1. The following lemma proves the intuitive fact that the rotation of 𝑃out
𝑖→ 𝑗

is 2.

LEMMA 5.2. For any 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑠 with 𝑖 ≠ 𝑗, we have rotation(𝑃out
𝑖→ 𝑗
) = 2.

PROOF . See the middle drawing of Figure 12 for an illustration of the proof. Consider the
ortho-radial representation R′ resulting from connecting the south endpoints 𝑥𝑖 and 𝑥 𝑗 of the
edges 𝑒𝑖 and 𝑒 𝑗 in 𝐺+

𝑘
into a horizontal edge 𝑒′ = (𝑥 𝑗 , 𝑥𝑖) in such a way that the path 𝑒 𝑗 ◦ 𝑒′ ◦ 𝑒𝑖

makes two 90◦ right turns. Similar to the proof of Lemma 5.1, R′ is drawable by extending a
good drawing of 𝐺𝑘. The path 𝑃out

𝑖→ 𝑗
together with the path 𝑒 𝑗 ◦ 𝑒′ ◦ 𝑒𝑖 forms a facial cycle of a

regular face. By (R2), we must have rotation(𝑃out
𝑖→ 𝑗
) = 2, as the sum of rotations for a regular

face has to be 4. ■

The following lemma considers the rotation of a simple path traversing from 𝑒 𝑗 to 𝑒𝑖 that
does not use any edges in 𝐺𝑘. The lemma shows that the rotation is either −2 or 2, depending
on whether the path, together with 𝑃out

𝑖→ 𝑗
, encloses the central face of �̃�.

LEMMA 5.3. Let 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑠 with 𝑖 ≠ 𝑗. Let 𝑃 be any simple path in �̃� starting at 𝑒 𝑗
and ending at 𝑒𝑖 satisfying the following conditions.
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Figure 12. Illustration for the proof of Lemmas 5.1 to 5.3.

𝑃 lies in the interior of 𝐶+
𝑘

.
𝑃 does not contain any vertex in 𝑃out

𝑖→ 𝑗
\ {𝑥𝑖 , 𝑦𝑖 , 𝑥 𝑗 , 𝑦 𝑗}.

Let 𝐶 be the cycle resulting from combining 𝑃 with 𝑃out
𝑖→ 𝑗

. If the central face lies in the interior of 𝐶,
then rotation(𝑃) = −2. Otherwise, rotation(𝑃) = 2.

PROOF . See the right drawing of Figure 12 for an illustration of the proof. Consider the
subgraph 𝐻 of �̃� induced by 𝐺+

𝑘
and all edges in 𝑃. Observe that 𝐶 is a facial cycle of 𝐻 . If the

central face of �̃� lies in the interior of 𝐶, then 𝐶 is the facial cycle of the central face of 𝐻 , so
rotation(𝐶) = 0 by (R2). By Lemma 5.2, rotation(𝑃out

𝑖→ 𝑗
) = 2, so we must have rotation(𝑃) = −2. If

the central face of �̃� lies in the exterior of 𝐶, then 𝐶 is the facial cycle of a regular face of 𝐻 , so
rotation(𝐶) = 4 by (R2). Therefore, Lemma 5.2 implies that rotation(𝑃) = 2. ■

The above lemma with 𝑗 = 𝑖+1 and 𝑃 = 𝑃𝑖←𝑖+1 implies that the last element in the sequence
of numbers 𝑍𝑖←𝑖+1 = (𝑧1, 𝑧2, . . .) is either −2 or 2, depending on whether 𝐹𝑖,𝑖+1 is the central face
or a regular face. We will later show that 𝐹𝑖,𝑖+1 must be a regular face.

LEMMA 5.4. Consider the face 𝐹𝑖,𝑖+1 for any 1 ≤ 𝑖 ≤ 𝑠. The facial cycle 𝐶 of 𝐹𝑖,𝑖+1 must contain an
edge 𝑒′ from some horizontal segment 𝑆𝑙 in 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) such that rotation(𝑒𝑖 ◦ · · · ◦ 𝑒′) = 1
and rotation(𝑒′ ◦ · · · ◦ 𝑒𝑖+1) = 1 along the cycle 𝐶.

PROOF . See the left drawing of Figure 13 for an illustration of the proof. Consider the path
𝑃out
𝑖→𝑖+1, which is a subpath of 𝐶 starting at 𝑒𝑖 and ending at 𝑒𝑖+1. By Lemma 5.2, rotation(𝑃out

𝑖→𝑖+1) =
2, so there exists an edge 𝑒′ in 𝑃out

𝑖→𝑖+1 such that rotation(𝑒𝑖◦· · ·◦𝑒′) = 1 and rotation(𝑒′◦· · ·◦𝑒𝑖+1) =
1 along the path 𝑃out

𝑖→𝑖+1, or equivalently along the cycle 𝐶. Since 𝑒𝑖 and 𝑒𝑖+1 are vertical, such
an edge 𝑒′ must be horizontal. Since 𝑒′ is in 𝐺𝑘, 𝑒′ belongs to some horizontal segment 𝑆𝑙 in
𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘). ■

Combining the above lemma with the assumption that no more virtual edges can be added,
we show that the strings 𝑍𝑖←𝑖+1 and 𝑍𝑖→𝑖+1 must satisfy some structural properties.
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LEMMA 5.5. Consider any 1 ≤ 𝑖 ≤ 𝑠. If 𝐹𝑖,𝑖+1 is of type (∗,⊔), then, except for the first number of
the string, all numbers in the string 𝑍𝑖←𝑖+1 are at least 1. If 𝐹𝑖,𝑖+1 is of type (⊔, ∗), then, except for
the first number of the string, all numbers in the string 𝑍𝑖→𝑖+1 are at most −1.

PROOF . See the right drawing of Figure 13 for an illustration of the proof. The assumption
that no more virtual edges can be added, together with Lemma 5.4, implies that we cannot have
a horizontal segment 𝑆 ∈ Sh withNnorth(𝑆) = ∅ satisfying the following conditions:

𝑆 is a subpath of 𝐶𝐹𝑖,𝑖+1 .
For each edge 𝑒 ∈ 𝑆, we have rotation(𝑒𝑖+1 ◦ · · · ◦ 𝑒) = 1 or rotation(𝑒 ◦ · · · ◦ 𝑒𝑖) = 1 along
the cycle 𝐶𝐹𝑖,𝑖+1 .

If such a horizontal segment 𝑆 with rotation(𝑒𝑖+1 ◦ · · · ◦𝑒) = 1 for all 𝑒 ∈ 𝑆 exists, then 𝑆 is eligible
for adding a virtual edge, due to the edge 𝑒′ in Lemma 5.4, as

rotation(𝑒′ ◦ · · · ◦ 𝑒) = rotation(𝑒′ ◦ · · · ◦ 𝑒𝑖+1) + rotation(𝑒𝑖+1 ◦ · · · ◦ 𝑒) = 1 + 1 = 2

along the cycle 𝐶𝐹𝑖,𝑖+1 . For the remaining case that rotation(𝑒 ◦ · · · ◦ 𝑒𝑖) = 1 for all 𝑒 ∈ 𝑆, for a
similar reason, 𝑆 is also eligible for adding a virtual edge, due to the edge 𝑒′ in Lemma 5.4.

Now suppose that 𝐹𝑖,𝑖+1 is of type (∗,⊔) and some number 𝑧𝑙 in the string 𝑍𝑖←𝑖+1 is 0 and
𝑙 ≠ 1. The type (∗,⊔) guarantees that the string 𝑍𝑖←𝑖+1 starts with 0 ◦ 1𝑐′ ◦ 2, for some 𝑐′ ≥ 1.
Between this number 2 and the above number 𝑧𝑙 = 0, there must exist a substring 2 ◦ 1𝑐 ◦ 0
in 𝑍𝑖←𝑖+1, for some 𝑐 ≥ 1. The reversal of the subpath of 𝑃𝑖←𝑖+1 corresponding to the substring
1𝑐 is a horizontal segment 𝑆 such thatNnorth(𝑆) = ∅ and rotation(𝑒𝑖+1 ◦ · · · ◦ 𝑒) = 1 for all 𝑒 ∈ 𝑆.
Such a horizontal segment 𝑆 cannot exist, due to the above discussion. Therefore, all numbers
in the string 𝑍𝑖←𝑖+1 must be at least 1, except for the first number, which is always 0.

The proof for the second statement of the lemma is similar. Suppose that 𝐹𝑖,𝑖+1 is of type
(⊔, ∗) and some number 𝑧𝑙 in the string 𝑍𝑖→𝑖+1 is at least 0 and 𝑙 ≠ 1. Then we can find a substring
(−2) ◦ (−1)𝑐 ◦ 0, for some 𝑐 ≥ 1, of 𝑍𝑖→𝑖+1, and then we obtain a contradiction, as the horizontal
segment corresponding to the substring (−1)𝑐 cannot exist. ■

Intuitively, if a face 𝐹𝑖,𝑖+1 is of type (⊔,⊔), then a ⊓-shape must exist in the middle of 𝑃𝑖←𝑖+1,
and the horizontal segment corresponding to the middle part of the ⊓-shape must be eligible
for adding a virtual edge, so 𝐹𝑖,𝑖+1 cannot be of type (⊔,⊔). In the following lemma, we prove
this intuitive observation formally, by combining Lemmas 5.3 and 5.5.

LEMMA 5.6. Consider any 1 ≤ 𝑖 ≤ 𝑠. Suppose that 𝐹𝑖,𝑖+1 is of type (⊔, ∗) or (∗,⊔). Then 𝐹𝑖,𝑖+1

must be a regular face and 𝐹𝑖,𝑖+1 cannot be of type (⊔,⊔).

PROOF . By Lemma 5.3, the rotation of the path 𝑃𝑖←𝑖+1 is −2 if 𝐹𝑖,𝑖+1 is the central face, and it
is 2 if 𝐹𝑖,𝑖+1 is a regular face. Suppose that 𝐹𝑖,𝑖+1 is of type (∗,⊔). Then Lemma 5.5 implies that
the rotation of 𝑃𝑖←𝑖+1 is at least 1, so 𝐹𝑖,𝑖+1 must be a regular face and the rotation of 𝑃𝑖←𝑖+1 is
exactly 2, meaning that the string 𝑍𝑖←𝑖+1 ends with the number 2. As a result, if 𝐹𝑖,𝑖+1 is also of
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Figure 13. Illustration for the proof of Lemmas 5.4 and 5.5.

type (⊔, ∗), then 0 ◦ 1𝑐 ◦ 2, for some 𝑐 ≥ 1 will be a strict suffix of 𝑍𝑖←𝑖+1, violating Lemma 5.5.
Therefore, 𝐹𝑖,𝑖+1 cannot be of type (⊔,⊔).

To finish the proof, we just need to show that when 𝐹𝑖,𝑖+1 is of type (⊔, ∗), 𝐹𝑖,𝑖+1 also has to
be a regular face. Again, Lemma 5.3 implies that if 𝐹𝑖,𝑖+1 is the central face, then the rotation of
the path 𝑃𝑖→𝑖+1 = 𝑃𝑖←𝑖+1 is 2. This contradicts Lemma 5.5, since it requires the rotation of 𝑃𝑖→𝑖+1

to be at most −1. Therefore, 𝐹𝑖,𝑖+1 is a regular face. ■

As discussed in the previous section, we may assume that each vertex in �̃� is incident to
a horizontal segment. Consider the horizontal segment 𝑆 incident to the south endpoint 𝑥𝑖 of
some 𝑒𝑖 ∈ Nsouth(𝐴). In view of (S2), there are two possible reasons for why adding 𝑆 to the
current good sequence 𝐴 does not result in a good sequence. The first possible reason is that
Nnorth(𝑆) contains an edge that is not in Nsouth(𝐴). The second possible reason is that there
exist two edges 𝑒 and 𝑒′ such that 𝑒′ immediately follows 𝑒 in the ordering ofNnorth(𝑆) and 𝑒′

does not immediately follow 𝑒 in the ordering ofNsouth(𝐴). We show that the second reason is
not possible.

LEMMA 5.7. Let 𝑆 be any horizontal segment in �̃�, and let 𝑒 and 𝑒′ be any two edges such that 𝑒′

immediately follows 𝑒 in the ordering ofNnorth(𝑆). If both 𝑒 and 𝑒′ are inNsouth(𝐴), then 𝑒′ also
immediately follows 𝑒 in the circular ordering ofNsouth(𝐴).

PROOF . See the left drawing of Figure 14 for an illustration of the proof. Suppose that the
lemma statement does not hold. Then there exist two edges 𝑒𝑖 and 𝑒 𝑗 inNsouth(𝐴) with 𝑗 ≠ 𝑖 + 1
and a horizontal segment 𝑆 ∈ Sh such that 𝑒 𝑗 immediately follows 𝑒𝑖 in the ordering ofNnorth(𝑆)
and all the edges 𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1 are not in Nnorth(𝑆). Suppose such 𝑒𝑖 , 𝑒 𝑗 , and 𝑆 exist. We
select such 𝑒𝑖 , 𝑒 𝑗 , and 𝑆 to minimize the number of edges after 𝑒𝑖 and before 𝑒 𝑗 in the circular
orderingNsouth(𝐴).
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Our choice of 𝑒𝑖 , 𝑒 𝑗 , and 𝑆 implies that for each horizontal segment 𝑆′ such thatNnorth(𝑆′)
contains an edge in (𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1), the intersection of Nnorth(𝑆′) and Nsouth(𝐴) must be
a contiguous subsequence of (𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1), since otherwise we should select 𝑆′ and not
select 𝑆. We partition (𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1) into groups according to the horizontal segment 𝑆′

incident to the south endpoint 𝑥𝑙 of each edge 𝑒𝑙 = (𝑥𝑙, 𝑦𝑙). In other words, if the south endpoints
of two edges of (𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1) are both incident to the same horizontal segment 𝑆′, then
these two edges are in the same group corresponding to 𝑆′. Note that each group corresponds
to a contiguous subsequence of (𝑒𝑖+1, 𝑒𝑖+2, . . . , 𝑒 𝑗−1).

Consider a group (𝑒𝑎, 𝑒𝑎+1, . . . , 𝑒𝑏), and let 𝑆′ be its corresponding horizontal segment, so
the intersection ofNnorth(𝑆′) andNsouth(𝐴) is precisely the set of edges in the group. Since we
assume that adding 𝑆′ to 𝐴 does not lead to a good sequence,Nnorth(𝑆′) must contain some edges
that are not inNsouth(𝐴), so at least one of the following holds:

𝑒𝑎 is not the first element ofNnorth(𝑆′), in which case the face 𝐹𝑎−1,𝑎 is of type (∗,⊔) because
𝑒𝑎, 𝑆′, and the vertical edge 𝑒′ right before 𝑒𝑎 inNnorth(𝑆′) form a ⊔-shape that is a strict
prefix of 𝑍𝑎−1←𝑎, as 𝑒′ ≠ 𝑒𝑎−1.
𝑒𝑏 is not the last element ofNnorth(𝑆′), in which case the face 𝐹𝑏,𝑏+1 is of type (⊔, ∗).

We let 𝑖 = 𝑐1 < 𝑐2 < · · · < 𝑐𝑡 = 𝑗 − 1 be the sequence of all indices 𝑎 such that 𝑒𝑎 is the last
edge of a group or 𝑒𝑎+1 is the first edge of a group (𝑡 = 4 in Figure 14). Our choice of 𝑒𝑖 , 𝑒 𝑗 , and 𝑆
implies that 𝐹𝑖,𝑖+1 = 𝐹𝑐1,𝑐1+1 must be of type (⊔, ∗), because the path 𝑃𝑖→𝑖+1 will first make a 90◦

left turn at 𝑥𝑖 , go straight along 𝑆, and then make another 90◦ left turn at 𝑥 𝑗 to enter 𝑒 𝑗 .
By Lemma 5.6, 𝐹𝑖,𝑖+1 = 𝐹𝑐1,𝑐1+1 cannot be also of type (∗,⊔), as this forces the face to be of

type (⊔,⊔). In view of the discussion above, the fact that 𝐹𝑐1,𝑐1+1 cannot be of type (∗,⊔) forces
the type of 𝐹𝑐2,𝑐2+1 to be (⊔, ∗). Similarly, we can argue that the types of 𝐹𝑐3,𝑐3+1, 𝐹𝑐4,𝑐4+1, . . . must
be (⊔, ∗), implying that the type of 𝐹𝑐𝑡 ,𝑐𝑡+1 = 𝐹 𝑗−1, 𝑗 is also (⊔, ∗). The same argument for showing
that 𝐹𝑖,𝑖+1 is of type (⊔, ∗) can also be used to show that 𝐹 𝑗−1, 𝑗 must be of type (∗,⊔). Therefore,
𝐹 𝑗−1, 𝑗 is of type (⊔,⊔), which is impossible due to Lemma 5.6, so the lemma statement holds. ■

By Lemma 5.7, for each horizontal segment 𝑆 that is incident to the south endpoint 𝑥𝑖 of
some 𝑒𝑖 , 𝑆 must be a path, andNnorth(𝑆) must contain an edge 𝑒 that is not inNsouth(𝐴). In the
following lemma, we use Lemma 5.7 to prove that we cannot simultaneously have a face of
type (⊔, ∗) and another face of type (∗,⊔).

LEMMA 5.8. One of the following holds.
All faces 𝐹𝑖,𝑖+1 are of types (−) and (⊔, ∗), and at least one face 𝐹𝑖,𝑖+1 is of type (⊔, ∗).
All faces 𝐹𝑖,𝑖+1 are of types (−) and (∗,⊔), and at least one face 𝐹𝑖,𝑖+1 is of type (∗,⊔).

PROOF . We partitionNsouth(𝐴) = (𝑒1, 𝑒2, . . . , 𝑒𝑠) into contiguous subsequences according to
the following rule: 𝑒𝑖 and 𝑒𝑖+1 belong to the same group if there exists a horizontal segment 𝑆′



36 / 53 Y. Chang

1𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

𝐶𝐶

+1 𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

+1 2
11

0

𝑆𝑆

𝑃𝑃𝑖𝑖←𝑖𝑖+1

𝑆𝑆

𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑐𝑐1 𝑒𝑒𝑗𝑗 = 𝑒𝑒𝑐𝑐4+1

𝑒𝑒𝑐𝑐2

𝑒𝑒𝑐𝑐3

𝑒𝑒𝑐𝑐4
𝑒𝑒𝑐𝑐1+1

𝑒𝑒𝑐𝑐2+1

𝑒𝑒𝑐𝑐3+1
𝑒𝑒𝑎𝑎2−1

𝑒𝑒𝑎𝑎3−1

𝑒𝑒𝑎𝑎1−1
𝑒𝑒𝑎𝑎1

𝑒𝑒𝑎𝑎2

𝑒𝑒𝑎𝑎3
𝐵𝐵1

𝐵𝐵2

𝐵𝐵3

Figure 14. Illustration for the proof of Lemmas 5.7 and 5.8.

such that 𝑒𝑖+1 immediately follows 𝑒𝑖 in Nnorth(𝑆′). Each contiguous subsequence is called a
group.

Let 𝑡 be the number of groups, and let 𝐵1, 𝐵2, . . . , 𝐵𝑡 denote these 𝑡 groups, circularly
ordered according to their positions in the circular ordering (𝑒1, 𝑒2, . . . , 𝑒𝑠). Let 𝑎𝑖 denote the
index such that the first edge of 𝐵𝑖 is 𝑒𝑎𝑖 , so the last edge of 𝐵𝑖−1 is 𝑒𝑎𝑖−1. See the right drawing of
Figure 14 for an illustration with 𝑡 = 3.

Let 𝑆′ be the horizontal segment corresponding to the group 𝐵𝑖 (i.e., 𝐵𝑖 is a contiguous
subsequence of Nnorth(𝑆′)). As discussed earlier, due to Lemma 5.7, 𝑆′ must be a path, and
Nnorth(𝑆′) must contain an edge that is not in 𝐵𝑖 . Therefore, we cannot have 𝐵𝑖 = Nnorth(𝑆′), so
at least one of the following holds:

There is an edge 𝑒 right before the first edge 𝑒𝑎𝑖 of 𝐵𝑖 in the sequential ordering ofNnorth(𝑆′).
Since 𝑒 is not inNsouth(𝐴), 𝐹𝑎𝑖−1,𝑎𝑖 is of type (∗,⊔), as 𝑒𝑎𝑖 , 𝑆′, and 𝑒 form a ⊔-shape.
There is an edge 𝑒 right after the last edge 𝑒𝑎𝑖+1−1 of 𝐵𝑖 in the sequential ordering of
Nnorth(𝑆′). Since 𝑒 is not inNsouth(𝐴), 𝐹𝑎𝑖+1−1,𝑎𝑖+1 is of type (⊔, ∗).

By Lemma 5.6, for each 1 ≤ 𝑖 ≤ 𝑡, the face 𝐹𝑎𝑖−1,𝑎𝑖 cannot be of type (⊔,⊔). Therefore, the
only possibility is that they are all of type (∗,⊔) or all of type (⊔, ∗).

Now consider any face 𝐹𝑙,𝑙+1 that is not of the form 𝐹𝑎𝑖−1,𝑎𝑖 for some 1 ≤ 𝑖 ≤ 𝑡. That is, 𝑒𝑙 and
𝑒𝑙+1 are in the same group, meaning that their south endpoints are both incident to the same
horizontal segment 𝑆′, and 𝑒𝑙+1 immediately follows 𝑒𝑙 in the sequential orderingNnorth(𝑆′), so
the face 𝐹𝑙,𝑙+1 must be of type (−). ■
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Figure 15. Illustration for the proof of Lemma 5.10.

Informally, the above lemma, together with Lemma 5.5, implies that either all of 𝑃𝑖→𝑖+1

are monotonically ascending or all of 𝑃𝑖←𝑖+1 are monotonically ascending, so we should be able
to extract a strictly monotone cycle by considering the edges in these paths. Before we do that,
we first show that all faces 𝐹𝑖,𝑖+1 are distinct regular faces.

LEMMA 5.9. For each 1 ≤ 𝑖 ≤ 𝑠, 𝐹𝑖,𝑖+1 is a regular face.

PROOF . If 𝐹𝑖,𝑖+1 is of type (⊔, ∗) or (⊔, ∗), then Lemma 5.6 implies that 𝐹𝑖,𝑖+1 is a regular face.
By Lemma 5.7, the only remaining case is when 𝐹𝑖,𝑖+1 is of type (−). Suppose that 𝐹𝑖,𝑖+1 is of type
(−), and let 𝐶 be the facial cycle of 𝐹𝑖,𝑖+1. Then rotation(𝐶) equals the sum of rotation(𝑃out

𝑖→𝑖+1)
and rotation(𝑃𝑖←𝑖+1). By the definition of the type (−), we know that rotation(𝑃𝑖←𝑖+1) = 2. By
Lemma 5.2, we know that rotation(𝑃out

𝑖→𝑖+1) = 2. Therefore, rotation(𝐶) = 4, so 𝐶 is a regular face
in view of (R2). ■

LEMMA 5.10. Any two faces 𝐹𝑖,𝑖+1 and 𝐹𝑖′,𝑖′+1 with 𝑖 ≠ 𝑖′ are distinct.

PROOF . Suppose that 𝐹𝑖,𝑖+1 and 𝐹𝑖′,𝑖′+1 are the same face 𝐹. Let 𝐶 be the facial cycle of 𝐹. We
know that both 𝑃out

𝑖→𝑖+1, which starts at 𝑒𝑖 and ends at 𝑒𝑖+1, and 𝑃out
𝑖′→𝑖′+1, which starts at 𝑒𝑖′ and

ends at 𝑒𝑖′+1, are subpaths of 𝐶. We may assume that 𝑒𝑖+1 ≠ 𝑒𝑖′ and 𝑒𝑖′+1 ≠ 𝑒𝑖 , since otherwise 𝐶
is not a simple cycle, implying that the underlying graph is not biconnected.

We define 𝑃1 to be the subpath of 𝐶 starting at 𝑒𝑖′+1 and ending at 𝑒𝑖 and define 𝑃2 to be the
subpath of 𝐶 starting at 𝑒𝑖+1 and ending at 𝑒𝑖′ . Therefore, rotation(𝐶) is the sum of the rotation
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of the four paths 𝑃out
𝑖→𝑖+1, 𝑃out

𝑖′→𝑖′+1, 𝑃1, and 𝑃2. By Lemma 5.9, 𝐹 is a regular face, so rotation(𝐶) = 4
due to (R2).

The two paths 𝑃1 and 𝑃out
𝑖′+1→𝑖 form a cycle. The two paths 𝑃2 and 𝑃out

𝑖+1→𝑖′ form another cycle.
Observe that the central face of �̃� lies in the interior of one of these two cycles. By symmetry,
we may assume the central face lies in the interior of the cycle formed by 𝑃1 and 𝑃out

𝑖′+1→𝑖 . In
case the central face lies in the interior of the other cycle, we swap 𝑖 and 𝑖′. See Figure 15 for an
illustration.

By Lemma 5.3 with 𝑃 = 𝑃2 and 𝑃out
𝑖+1→𝑖′ , we obtain that rotation(𝑃2) = 2. Similarly, by

Lemma 5.3 with 𝑃 = 𝑃1 and 𝑃out
𝑖′+1→𝑖 , we obtain that rotation(𝑃1) = −2. Therefore, we have

rotation(𝑃1) = 2 and rotation(𝑃2) = −2. There is one subtle issue in applying Lemma 5.3: 𝑃2

might contain vertices in 𝑃out
𝑖+1→𝑖′ \ {𝑥𝑖+1, 𝑦𝑖+1, 𝑥𝑖′ , 𝑦𝑖′} and 𝑃1 might contain vertices in 𝑃out

𝑖′+1→𝑖 \
{𝑥𝑖′+1, 𝑦𝑖′+1, 𝑥𝑖 , 𝑦𝑖}, so the condition for applying Lemma 5.3 is not met. This issue can be over-
come by choosing 𝑖 and 𝑖′ with 𝐹𝑖,𝑖+1 = 𝐹𝑖′,𝑖′+1 in such a way that the number of edges after 𝑒𝑖+1

and before 𝑒𝑖′ in the circular ordering (𝑒1, 𝑒2, . . . , 𝑒𝑠) is minimized. This forces 𝑃2 to not contain
any edges in (𝑒𝑖+2, . . . , 𝑒𝑖′−1) and their reversal, meaning that 𝑃2 cannot contain any vertex
in 𝑃out

𝑖+1→𝑖′ \ {𝑥𝑖+1, 𝑦𝑖+1, 𝑥𝑖′ , 𝑦𝑖′}. Being able to apply Lemma 5.3 to one of 𝑃1 and 𝑃2 is enough,
since we already know that rotation(𝐶) = 4, rotation(𝑃out

𝑖→𝑖+1) = 2 and rotation(𝑃out
𝑖′→𝑖′+1) = 2 by

Lemma 5.2. These rotation numbers force rotation(𝑃2) = −rotation(𝑃1).
By Lemma 5.3, the rotation of 𝑃𝑖′→𝑖′+1 is −2, so the last number of the string 𝑍𝑖′→𝑖′+1 is −2.

Observe that 𝑃1 is a suffix of the path 𝑃𝑖′→𝑖′+1 and 𝑃1 ≠ 𝑃𝑖′→𝑖′+1, so rotation(𝑃1) = −2 implies
that 𝑍𝑖′←𝑖′+1 contains a number 0 that is not the first number of the string. Consequently, 𝐹𝑖′,𝑖′+1

cannot be of type (−). Also, 𝐹𝑖′,𝑖′+1 cannot be of type (⊔, ∗), since a requirement for type (⊔, ∗)
due to Lemma 5.5 is that all numbers in the string 𝑍𝑖′→𝑖′+1 are at most −1, except for the first
number of the string. Lemma 5.8 forces 𝐹𝑖′,𝑖′+1 to be of type (∗,⊔).

By a similar argument that considers the suffix 𝑃1 of the path 𝑃𝑖←𝑖+1, we may also force
𝐹𝑖,𝑖+1 to be of type (⊔, ∗). The fact that both types (∗,⊔) and (⊔, ∗) exist is a contradiction to
Lemma 5.8, so 𝐹𝑖,𝑖+1 and 𝐹𝑖′,𝑖′+1 cannot be the same face. ■

Strictly monotone cycles As a consequence of the above lemma, all paths 𝑃𝑖→𝑖+1 cannot use
any edge that is in 𝐺𝑘. Although the starting and the ending edges of 𝑃𝑖→𝑖+1 might be virtual
edges, the remaining edges of 𝑃𝑖→𝑖+1 must appear in the original graph 𝐺. We let 𝐻 denote the
subgraph of 𝐺 induced by the set of the undirected version of all edges of 𝑃𝑖→𝑖+1, except for the
first edge 𝑒𝑖 and the last edge 𝑒𝑖+1, for all 1 ≤ 𝑖 ≤ 𝑠. We now show that a strictly monotone cycle
of 𝐺 can be found by considering the central face of 𝐻 .

LEMMA 5.11. The facial cycle 𝐶 of the central face of 𝐻 is a strictly monotone cycle of 𝐺.

PROOF . By Lemmas 5.9 and 5.10, the cycle formed by concatenating the paths 𝑃𝑖→𝑖+1, excluding
the first edge 𝑒𝑖 and the last edges 𝑒𝑖+1, over all 1 ≤ 𝑖 ≤ 𝑠, separate the central face of �̃� from the
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𝑒𝑒𝑓𝑓

𝑒𝑒⋆

𝐶𝐶
𝑒𝑒

𝑒𝑒𝑖𝑖

𝑒𝑒𝑖𝑖−1
𝑒𝑒𝑒 𝑃𝑃

𝑃𝑃𝑒

Figure 16. Showing that 𝐶
is strictly monotone.

outer face of �̃� and all faces 𝐹𝑖,𝑖+1, for all 1 ≤ 𝑖 ≤ 𝑠. Therefore, the central face and the outer
face of 𝐻 are distinct, where the central face of 𝐻 contains the central face of �̃�, and the outer
face of 𝐻 contains the outer face of �̃� and also the faces 𝐹𝑖,𝑖+1, for all 1 ≤ 𝑖 ≤ 𝑠.

Let 𝐶 be the facial cycle of the central face of 𝐻 . We claim that 𝐶 must be a simple cycle,
so the above discussion implies that 𝐶 is an essential cycle of �̃�. To see this, consider any edge
𝑒 ∈ 𝐶. Since the undirected version of 𝑒 is in 𝐻 , at least one of 𝑒 and 𝑒 is an edge in a path 𝑃𝑖→𝑖+1,
for some 1 ≤ 𝑖 ≤ 𝑠. We cannot have 𝑒 ∈ 𝑃𝑖′→𝑖′+1 for any 1 ≤ 𝑖′ ≤ 𝑠, since otherwise the face
𝐹𝑖′,𝑖′+1 is incident to 𝑒 from the right, meaning that 𝐹𝑖′,𝑖′+1 is contained in the central face of 𝐻 ,
which is impossible. Therefore, for each 𝑒 ∈ 𝐶, we have 𝑒 ∈ 𝑃𝑖→𝑖+1 for some 1 ≤ 𝑖 ≤ 𝑠. From this
discussion, we infer that we cannot simultaneously have 𝑒 ∈ 𝐶 and 𝑒 ∈ 𝐶, and this forces 𝐶 to a
simple cycle, as 𝐶 is a facial cycle.

Edge labels Next, consider any 𝑒 ∈ 𝐶. We calculate ℓ𝐶 (𝑒) with respect to the reference edge 𝑒★

in �̃�. By Lemma 5.8, either all faces 𝐹𝑖,𝑖+1 are of the type (−) and (⊔, ∗) or all faces 𝐹𝑖,𝑖+1 are of
the type (−) and (∗,⊔). We claim that ℓ𝐶 (𝑒) ≤ 0 for all 𝑒 ∈ 𝐶 in the first case, and ℓ𝐶 (𝑒) ≥ 0 for
all 𝑒 ∈ 𝐶 in the second case.

Suppose all faces 𝐹𝑖,𝑖+1 are of the type (−) and (⊔, ∗). Fix an 𝑒 ∈ 𝐶, and let 𝑒𝑖 ∈ Nsouth(𝐴)
be chosen such that 𝑒 ∈ 𝑃𝑖→𝑖+1. We calculate ℓ𝐶 (𝑒) by considering any crossing-free path
𝑃 = (𝑒★, . . . , 𝑒𝑖) of 𝐺𝑘 from 𝑒★ to 𝑒𝑖 and considering the subpath 𝑃′ = 𝑒𝑖 ◦ · · · ◦ 𝑒 of 𝑃𝑖→𝑖+1. Then
ℓ𝐶 (𝑒) = rotation(𝑃) + rotation(𝑃′). By Lemma 5.1, we have rotation(𝑃) = 1. By Lemma 5.5, we
have rotation(𝑃′) ≤ −1, as we cannot have 𝑒 = 𝑒𝑖 . Therefore, ℓ𝐶 (𝑒) ≤ 0.

Suppose all faces 𝐹𝑖,𝑖+1 are of the type (−) and (∗,⊔). Similarly, by combining Lemma 5.5
with the fact that 𝐹𝑖,𝑖+1 is a regular face, we obtain that the rotation from 𝑒𝑖 to any intermediate
edge 𝑒 of 𝑃𝑖→𝑖+1 along the path 𝑃𝑖→𝑖+1 is at least −1. Therefore, by the same argument as above,
we obtain that ℓ𝐶 (𝑒) ≥ 0 for all 𝑒 ∈ 𝐶.

Strict monotonicity To finish the proof, we still need to show that 𝐶 is strictly monotone. That
is, we need to show that we cannot have ℓ𝐶 (𝑒) = 0 for all 𝑒 ∈ 𝐶. Now suppose that ℓ𝐶 (𝑒) = 0 for
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all 𝑒 ∈ 𝐶. We aim to show that this assumption implies that all faces 𝐹𝑖,𝑖+1 are of the type (−),
contradicting Lemma 5.8. See Figure 16 for an illustration of this part of the proof.

Again, here we assume that all faces 𝐹𝑖,𝑖+1 are of the type (−) and (⊔, ∗). The proof for the
other case where all faces 𝐹𝑖,𝑖+1 are of the type (−) and (∗,⊔) is similar. Consider any 𝑒 ∈ 𝐶.
We know that 𝑒 ∈ 𝑃𝑖→𝑖+1 for some 1 ≤ 𝑖 ≤ 𝑠. We extend 𝑒 into a subpath 𝑃 of 𝐶 such that 𝑃
is a subpath of 𝑃𝑖→𝑖+1, and both the edge immediately preceding 𝑃 and the edge immediately
following 𝑃 in 𝐶 are not in 𝑃𝑖→𝑖+1. Since the edge labels ℓ𝐶 (𝑒) of all edges 𝑒 of 𝑃 are 0, the
rotation from 𝑒𝑖 to any edge 𝑒 of 𝑃 along the path 𝑃𝑖→𝑖+1 must be −1. By also considering the
two edges of 𝑃𝑖→𝑖+1 immediately before and after 𝑃, we obtain a sequence of rotation numbers
0 ◦ (−1)𝑐 ◦ (−2) that is a substring of 𝑍𝑖→𝑖+1. Such a substring corresponds to a ⊔-shape in the
drawing.

There are two cases. If 𝐹𝑖,𝑖+1 is of type (−), then the above string 0 ◦ (−1)𝑐 ◦ (−2) must be
the entire string 𝑍𝑖→𝑖+1. If 𝐹𝑖,𝑖+1 is of type (⊔, ∗), then in view of Lemma 5.5, the above string
0◦ (−1)𝑐 ◦ (−2)must be a prefix of 𝑍𝑖→𝑖+1. In either case, the edge in 𝑃𝑖→𝑖+1 immediately before 𝑃
must be 𝑒𝑖 .

Now consider the edge 𝑒′ in 𝐶 immediately before 𝑃. This edge 𝑒′ must be the second last
edge in 𝑃𝑖−1→𝑖 , that is, 𝑒′ is immediately before the last edge 𝑒𝑖 of 𝑃𝑖−1→𝑖 . By repeating the above
analysis with 𝑒′ instead of 𝑒, we obtain a path 𝑃′ that contains 𝑒′. Because here 𝑒′ is the second
last edge in 𝑃𝑖−1→𝑖 , the path 𝑃′ must cover all intermediate edges of 𝑃𝑖−1→𝑖 . In other words,
𝑃𝑖−1→𝑖 must have the following structure: After the first edge 𝑒𝑖−1, make a 90◦ left turn to enter 𝐶,
go straight along 𝐶, and then make another 90◦ left turn from 𝑒′ to 𝑒𝑖 , so 𝐹𝑖−1,𝑖 is of type (−).

We may repeat the same analysis for 𝐹𝑖−2,𝑖−1, 𝐹𝑖−3,𝑖−2, and so on, to infer that all of them
are of type (−), contradicting Lemma 5.8, so we cannot have ℓ𝐶 (𝑒) = 0 for all 𝑒 ∈ 𝐶. Therefore,
𝐶 is strictly monotone. ■

Consider Figure 17 for an example of extracting a strictly monotone cycle. In the figure,
𝐻 is the subgraph induced by the vertices in the shaded area. The cycle 𝐶 = (𝑣1, 𝑣2, . . . , 𝑣5) is
the facial cycle of the central face of 𝐻 . In this example,Nsouth(𝐴) = (𝑒1, 𝑒2, . . . , 𝑒5). The faces
𝐹5,1, 𝐹1,2, and 𝐹2,3 are of type (∗,⊔). The faces 𝐹3,4 and 𝐹4,5 are of type (−). The cycle 𝐶 is strictly
monotone, as it is increasing. We can calculate that ℓ𝐶 ((𝑣1, 𝑣2)) = 1 by first going from 𝑒★ to 𝑒2

via a crossing-free path 𝑃 and then going from 𝑒2 to (𝑣1, 𝑣2) along the path 𝑃2→3, as (𝑣1, 𝑣2) is
an intermediate edge of 𝑃2→3. The first part has rotation 1 and the second part has rotation 0,
so the overall rotation is 1. Similarly, we can calculate that ℓ𝐶 (𝑒) = 0 for each remaining edge 𝑒
in 𝐶. We summarize the discussion of this section as a lemma.

LEMMA 5.12. Suppose the greedy algorithm outputs a good sequence 𝐴 = (𝑆1, 𝑆2, . . . , 𝑆𝑘) that
does not cover the set of all horizontal segments Sh. Then a strictly monotone cycle of the original
graph 𝐺 can be computed in 𝑂(𝑛) time.
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Figure 17. Extracting a strictly monotone cycle 𝐶 = (𝑣1, 𝑣2, . . . , 𝑣5).

PROOF . By Lemma 5.11, the facial cycle 𝐶 of the central face of 𝐻 is a strictly monotone cycle
of 𝐺. The computation of 𝐻 and 𝐶 can be done in 𝑂(𝑛) time. ■

We are now ready to prove Theorem 2.5.

THEOREM 2.5. (Restated) There is an 𝑂(𝑛 log 𝑛)-time algorithmA that outputs either a draw-
ing of (R, 𝑒★) or a strictly monotone cycle of (R, 𝑒★), for any given ortho-radial representation R
of an 𝑛-vertex biconnected simple graph, with a fixed reference edge 𝑒★ such thatNnorth(𝑆) = ∅ for
the horizontal segment 𝑆 ∈ Sh that contains 𝑒★.

PROOF . We run the 𝑂(𝑛 log 𝑛)-time greedy algorithm of Lemma 4.1 for the given input (R, 𝑒★)
such that Nnorth(𝑆) = ∅ for the horizontal segment 𝑆 ∈ Sh that contains 𝑒★. There are two
possible outcomes of the algorithm. If we obtain a good sequence that covers all horizontal
segments Sh, then we may use Lemma 3.2 to compute a drawing of (R, 𝑒★). Otherwise, the
algorithm stops with a good sequence that does not cover all horizontal segments Sh, and no
more progress can be made, in which case a strictly monotone cycle can be computed in 𝑂(𝑛)
time by Lemma 5.12. ■
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6. Searching for the reference edge

In this section, we demonstrate how the drawing algorithm of Theorem 2.5, designed for an
ortho-radial representationR with a fixed reference edge 𝑒★, can be extended to handle an ortho-
radial representation R without a fixed reference edge. This extension incurs an additional
𝑂(log 𝑛) factor in time complexity. The core idea is to use a binary search to find a reference
edge 𝑒★ for which (R, 𝑒★) is drawable, provided such an edge exists.

Throughout this section, we write ℓ𝑒★𝐶 (𝑒) to denote the edge label of 𝑒 with respect to 𝐶
using 𝑒★ as the reference edge. We first show the following lemma, which is essentially the
same as [2, Lemma 4.2]. We still include a proof for the sake of completeness.

LEMMA 6.1. For any two choices of the edges 𝑒★1 and 𝑒★2 in 𝐶𝐹o , for any essential cycle 𝐶 and any

edge 𝑒 in 𝐶, we have ℓ𝑒
★
2
𝐶 (𝑒) = ℓ

𝑒★1
𝐶 (𝑒) + ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ).

PROOF . In the proof, we may assume that the three edges 𝑒, 𝑒★1 , and 𝑒★2 are distinct. If 𝑒★1 = 𝑒★2 ,

then the equality is trivial as ℓ𝑒
★
2
𝐶 (𝑒) = ℓ

𝑒★1
𝐶 (𝑒) and ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ) = 0. If 𝑒 = 𝑒★1 , then the equality is

trivial as ℓ𝑒
★
1
𝐶 (𝑒) = 0 and ℓ𝑒

★
2
𝐶 (𝑒) = ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ), as the reference path 𝑃 used to calculate ℓ𝑒

★
2

𝐶𝐹o
(𝑒★1 ) can

also be used to calculate ℓ𝑒
★
2
𝐶 (𝑒). If 𝑒 = 𝑒★2 , then ℓ

𝑒★2
𝐶 (𝑒) = 0 and ℓ

𝑒★1
𝐶 (𝑒) + ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ) = 0, because

ℓ
𝑒★1
𝐶 (𝑒) = ℓ

𝑒★1
𝐶𝐹o
(𝑒★2 ) implies ℓ𝑒

★
1
𝐶 (𝑒) = −ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ). We also observe that 𝑒 cannot be 𝑒★1 and 𝑒★2 , as

there is no essential cycle that contains 𝑒★1 or 𝑒★2 .

Finding a suitable reference path We pick a path 𝑃 satisfying the following conditions.
1. 𝑃 is a simple path residing in the exterior of 𝐶, starting at 𝑒★1 or 𝑒★1 and ending at 𝑒 or 𝑒.
2. Once 𝑃 leaves 𝐶𝐹o it never visit any vertex of 𝐶𝐹o again. More formally, if we write 𝑃 =

𝑒1 ◦ 𝑒2 ◦ · · · ◦ 𝑒𝑠, then the requirement is that there exists an index 𝑖 such that 𝑒1 ◦ 𝑒2 ◦ · · · ◦ 𝑒𝑖
is a subpath of 𝐶𝐹o and the only vertex of 𝑒𝑖+1 ◦ 𝑒𝑖+2 ◦ · · · ◦ 𝑒𝑠 that belongs to 𝐶𝐹o is its first
endpoint.

3. 𝑃 does contain 𝑒★2 and 𝑒★2 .

Such a path 𝑃 can be found as follows (see Figure 18 for an illustration of the process). First,
we select 𝑃 as any path satisfying the first condition. To make it satisfy the remaining two
conditions, we let 𝑣 be the last vertex of 𝐶𝐹o used in 𝑃, and we decompose 𝑃 in such a way that
𝑃 = 𝑃𝑠 ◦ 𝑃𝑡, where 𝑃𝑠 ends at 𝑣 and 𝑃𝑡 starts at 𝑣.

For the case 𝑃𝑡 = ∅, we know that 𝑒 or 𝑒 is on 𝐶𝐹o , so naturally there are two choices of
subpaths of 𝐶𝐹o connecting 𝑒★1 or 𝑒★1 to 𝑒 or 𝑒, and one of them does not contain 𝑒★2 and 𝑒★2 , so
this gives us a desired path 𝑃.

For the case 𝑃𝑡 ≠ ∅, we may replace 𝑃𝑠 with the path from 𝑒★1 to 𝑣 in 𝐶𝐹o or the path from
𝑒★1 to 𝑣 in 𝐶𝐹o to satisfy the second condition, and one of these two choices satisfies the third
condition.
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Figure 18. Finding a suitable reference path in the proof of Lemma 6.1.

Let 𝑃 = 𝑒★1 ◦ · · · ◦ 𝑒 be a path satisfying the above conditions. Here 𝑒★1 is either 𝑒★1 or 𝑒★1 ,
and 𝑒 is either 𝑒 or 𝑒. We let 𝑃+ = 𝑒★2 ◦ · · · ◦ 𝑒★1 ◦ · · · ◦ 𝑒 be a simple path that extending 𝑃 in such
a way that 𝑒★2 is either 𝑒★2 or 𝑒★2 , and the part 𝑒★2 ◦ · · · ◦ 𝑒★1 lies on 𝐶𝐹o (see Figure 18). Such an
extension is possible due to the requirements of 𝑃 specified above.

Edge label calculation We may use 𝑃+ = 𝑒★2 ◦ · · · ◦ 𝑒★1 ◦ · · · ◦ 𝑒, excluding the two endpoints,

as a reference path for the calculation of ℓ𝑒
★
2
𝐶 (𝑒). By the formula of direction, we may write

ℓ
𝑒★2
𝐶 (𝑒) = rotation(𝑃+) + 2𝑏2 − 2𝑏,

where 𝑏2 ∈ {0, 1} is the indicator of whether 𝑒★2 = 𝑒★2 , and similarly 𝑏 ∈ {0, 1} is the indicator of
whether 𝑒 = 𝑒. We break the calculation of rotation(𝑃+) into two parts:

rotation(𝑃+) = rotation(𝑒★2 ◦ · · · ◦ 𝑒★1 ) + rotation(𝑒★1 ◦ · · · ◦ 𝑒).
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Similarly, 𝑒★2 ◦ · · · ◦ 𝑒★1 , excluding the two endpoints, can be used as a reference path for the

calculation of ℓ𝑒
★
2

𝐶𝐹o
(𝑒★1 ), so we can infer that

ℓ
𝑒★2
𝐶𝐹o
(𝑒★1 ) = rotation(𝑒★2 ◦ · · · ◦ 𝑒★1 ) + 2𝑏2 − 2𝑏1,

where 𝑏1 ∈ {0, 1} is the indicator of whether 𝑒★1 = 𝑒★1 . We may also write ℓ𝑒
★
1
𝐶 (𝑒) in terms of

rotation(𝑒★1 ◦ · · · ◦ 𝑒), as follows:

ℓ
𝑒★1
𝐶 (𝑒) = rotation(𝑒★1 ◦ · · · ◦ 𝑒) + 2𝑏1 − 2𝑏.

Combining these formulas, we obtain the desired equality

ℓ
𝑒★2
𝐶 (𝑒) = ℓ

𝑒★1
𝐶 (𝑒) + ℓ

𝑒★2
𝐶𝐹o
(𝑒★1 ),

as all ±2𝑏, ±2𝑏1, and ±2𝑏2 cancel out. ■

In particular, if ℓ𝑒
★
2

𝐶𝐹o
(𝑒★1 ) = 0, then the above lemma implies that the edge label ℓ𝐶 (𝑒) is the

same regardless of 𝑒★ = 𝑒★1 or 𝑒★ = 𝑒★2 .
In the following discussion, we fix an edge 𝑒′ in 𝐶𝐹o , and let 𝐼 be the range of possible

values of ℓ𝑒′
𝐶𝐹o
(𝑒) over all 𝑒 in 𝐶𝐹o , then 𝐼 is a contiguous sequence of integers with 0 ∈ 𝐼 . For

each essential cycle 𝐶, let 𝐼𝐶 be the range of possible values of ℓ𝑒′𝐶 (𝑒) over all 𝑒 in 𝐶, then 𝐼𝐶 is
also a contiguous sequence of integers.

Suppose the reference edge in use is 𝑒★. Recall that an essential cycle 𝐶 is increasing if the
edge labels ℓ𝑒★𝐶 (𝑒), for all 𝑒 ∈ 𝐶, are non-negative, and there exists 𝑒 ∈ 𝐶 such that ℓ𝑒★𝐶 (𝑒) ≥ 1.
Then Lemma 6.1 implies that 𝐶 is an increasing cycle (with 𝑒★ as the reference edge) if and only
if the following condition is met:

ℓ𝑒
★

𝐶𝐹o
(𝑒′) +min 𝐼𝐶 ≥ 0, if |𝐼𝐶 | ≥ 2,

ℓ𝑒
★

𝐶𝐹o
(𝑒′) +min 𝐼𝐶 ≥ 1, if |𝐼𝐶 | = 1.

Similarly, by Lemma 6.1, 𝐶 is a decreasing cycle (with 𝑒★ as the reference edge) if and only if
the following condition is met:

ℓ𝑒
★

𝐶𝐹o
(𝑒′) +max 𝐼𝐶 ≤ 0, if |𝐼𝐶 | ≥ 2,

ℓ𝑒
★

𝐶𝐹o
(𝑒′) +max 𝐼𝐶 ≤ −1, if |𝐼𝐶 | = 1.

In view of the above, there exist two integers 𝐿𝐶 and 𝑈𝐶 , depending only on 𝐼𝐶 , such that 𝐶
is an increasing cycle if and only if ℓ𝑒★

𝐶𝐹o
(𝑒′) > 𝑈𝐶 , and 𝐶 is a decreasing cycle if and only if

ℓ𝑒
★

𝐶𝐹o
(𝑒′) < 𝐿𝐶 . Therefore, 𝐶 is not a strictly monotone cycle (with 𝑒★ as the reference edge) if

and only if
ℓ𝑒

★

𝐶𝐹o
(𝑒′) ∈ [𝐿𝐶 ,𝑈𝐶] .
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In particular, (R3) is satisfied if and only if the intersection of [𝐿𝐶 ,𝑈𝐶] over all essential cycles 𝐶 is
non-empty. In other words, (R3) is satisfied if and only if 𝐿∗ ≤ 𝑈∗, where we define 𝐿∗ = max 𝐿𝐶
and min𝑈𝐶 = 𝑈∗, where the range of minimum and maximum is the set of all essential cycles 𝐶.

Binary search Given that (R1)–(R3) are satisfied for the given ortho-radial representation R,
we may use a binary search to find a reference edge 𝑒★ such that (R, 𝑒★) is drawable, as follows.
We fix any edge 𝑒′ in 𝐶𝐹o and compute the interval 𝐼 defined above. We start the binary search
with the interval 𝐼 . In each step of the binary search, we let 𝑥 be a median of the current interval,
and then we run the algorithm of Theorem 2.5 with a choice of the reference edge 𝑒★ such that
ℓ𝑒

★

𝐶𝐹o
(𝑒′) = 𝑥.

If 𝑥 > 𝑈∗, then there exists an increasing cycle, and the algorithm must return an increasing
cycle, as there is no decreasing cycle, because 𝑥 > 𝑈∗ ≥ 𝐿∗. In this case, we update the upper
bound of the current interval to 𝑥 − 1 as we learn that 𝑥 > 𝑈∗. If 𝑥 < 𝐿∗, then there exists a
decreasing cycle, and the algorithm must return a decreasing cycle, as there is no increasing
cycle because 𝑥 < 𝐿∗ ≤ 𝑈∗. In this case, we update the lower bound of the current interval
to 𝑥 + 1 as we learn that 𝑥 < 𝐿∗. If 𝑥 ∈ [𝐿∗,𝑈∗], then there are no increasing cycles and no
decreasing cycles, so the algorithm will return a drawing of (R, 𝑒★).

Finding a suitable reference edge There is still one remaining issue in implementing the
above approach: The algorithm of Theorem 2.5 requires that the reference edge 𝑒★ lies on a
horizontal segment 𝑆 ∈ Sh with Nnorth(𝑆) = ∅. Equivalently, a choice of the reference edge
𝑒★ ∈ 𝐶𝐹o satisfies this requirement if and only if 𝑒★ ∈ 𝑆 such that 𝑆 meets one of the following
requirements.

𝑆 = 𝐶𝐹o and ℓ𝐶𝐹o (𝑒) = 0 for all edges 𝑒 in 𝑆.
𝑆 is a subpath of 𝐶𝐹o such that the following holds.

ℓ𝐶𝐹o
(𝑒) =


−1, for the edge 𝑒 immediately preceding 𝑆 in 𝐶𝐹o .

0, for all edges 𝑒 in 𝑆,

1, for the edge 𝑒 immediately following 𝑆 in 𝐶𝐹o .

We claim that for any 𝑥 ∈
[
𝐿𝐶𝐹o

,𝑈𝐶𝐹o

]
, we may find an edge 𝑒★ with ℓ𝑒

★

𝐶 (𝑒′) = 𝑥 and
satisfying the above requirement, so we may use this edge 𝑒★ as the reference edge when we
run the algorithm of Theorem 2.5 during the binary search. Note that if 𝑥 ∉

[
𝐿𝐶𝐹o

,𝑈𝐶𝐹o

]
, then

the cycle 𝐶𝐹o is already a strictly monotone cycle under any choice of 𝑒★ with ℓ𝑒
★

𝐶 (𝑒′) = 𝑥, so
there is no need to run the algorithm of Theorem 2.5.

LEMMA 6.2. For each 𝑥 ∈
[
𝐿𝐶𝐹o

,𝑈𝐶𝐹o

]
there exists an edge 𝑒★ ∈ 𝐶𝐹o with ℓ𝑒★

𝐶𝐹o
(𝑒′) = 𝑥 such that if

𝑒★ is used as the reference edge, then 𝑒★ belongs to a horizontal segment 𝑆 ∈ Sh withNnorth(𝑆) = ∅.
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PROOF . For notational simplicity, in this proof, we write 𝐶 = 𝐶𝐹o . We first start with any choice
of 𝑒★ ∈ 𝐶 with ℓ𝑒★𝐶 (𝑒′) = 𝑥 and use 𝑒★ as the reference edge. Since 𝑥 ∈ [𝐿𝐶 ,𝑈𝐶], 𝐶 is not a strictly
monotone cycle. If ℓ𝐶 (𝑒) = 0 for all 𝑒 ∈ 𝐶, then 𝑆 = 𝐶 itself is already a horizontal segment
𝑆 ∈ Sh withNnorth(𝑆) = ∅, so we are done. Otherwise, 𝐶 contains edges with labels −1 and 1. We
select two edges 𝑒− ∈ 𝐶 and 𝑒+ ∈ 𝐶 in such a way that ℓ𝐶 (𝑒−) = −1, ℓ𝐶 (𝑒+) = 1, and the length
of the subpath 𝑃 of 𝐶 starting at 𝑒− and ending at 𝑒+ is minimized. Our choice of 𝑃 implies
that all intermediate edges 𝑒 in 𝑃 have ℓ𝐶 (𝑒) = 0, so they form a desired horizontal segment 𝑆.
If 𝑒★ ∈ 𝑆, then we are done. Otherwise, since ℓ𝑒★

𝐶𝐹o
(𝑒) = ℓ𝐶 (𝑒) = 0 for any 𝑒 ∈ 𝑆, Lemma 6.1

implies that all edge labels remain unchanged even if we change the reference edge from 𝑒★

to 𝑒. Therefore, 𝑆 is still a horizontal segment 𝑆 ∈ Sh withNnorth(𝑆) = ∅ even if the underlying
reference edge is any 𝑒 ∈ 𝑆. Any such an edge 𝑒 satisfies the requirement of the lemma, as
ℓ𝑒𝐶 (𝑒′) = ℓ𝑒

★

𝐶 (𝑒′) − ℓ𝑒
★

𝐶 (𝑒) = 𝑥 − 0 = 𝑥 by Lemma 6.1 with 𝑒 = 𝑒′, 𝑒★1 = 𝑒, and 𝑒★2 = 𝑒★. ■

We are now ready to prove Theorem 2.6.

THEOREM 2.6. (Restated) There is an 𝑂(𝑛 log2 𝑛)-time algorithm A that decides whether
an ortho-radial representation R of an 𝑛-vertex biconnected simple graph is drawable. If R is
drawable, thenA also computes a drawing of R.

PROOF . We just need to show that for the case where the given ortho-radial representationR is
drawable, an ortho-radial drawing realizing R can be computed in 𝑂(𝑛 log2 𝑛) time. In this case,
using Lemma 6.2, the binary search algorithm discussed above finds a reference edge 𝑒★ such
that the 𝑂(𝑛 log 𝑛)-time algorithm of Theorem 2.5 outputs an ortho-radial drawing realizing
(R, 𝑒★). This drawing is also an ortho-radial drawing realizing R. The number of iterations of
the binary search is 𝑂 (log |𝐼 |) = 𝑂(log 𝑛), so the overall time complexity is 𝑂(𝑛 log2 𝑛), as the
cost per iteration is 𝑂(𝑛 log 𝑛), due to Theorem 2.5. ■

7. A reduction to biconnected simple graphs

In this section, we show that, without loss of generality, we may assume that the input graph
is simple and biconnected. Specifically, given a planar graph 𝐺 = (𝑉, 𝐸), a combinatorial
embedding E of 𝐺, and an ortho-radial representation R of (𝐺, E) satisfying (R1) and (R2), we
will construct a biconnected simple planar graph 𝐺′ = (𝑉 ′, 𝐸′), a combinatorial embedding
E′ of 𝐺′, and an ortho-radial representation R′ of (𝐺′, E′) satisfying (R1) and (R2) such that R
is drawable if and only if R′ is drawable. See Figure 19 for an illustration of the reduction.
Moreover, the reduction costs only linear time in the following sense:

The construction of 𝐺′, E′, and R′ takes linear time.
Given an ortho-radial drawing of R′, an ortho-radial drawing of R can be found in linear
time.
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Figure 19. Reduction to biconnected simple graphs by thickening.

The reduction Throughout this section, all edges are undirected, and we allow the graph 𝐺
to have multi-edges and self-loops. The idea of the reduction is to improve the connectivity
by thickening the graph. For each vertex 𝑣 ∈ 𝑉 , we replace it with a grid consisting of three
horizontal lines and three vertical lines. Specifically, let

𝑋𝑣 =
{
𝑣𝑖, 𝑗 | 𝑖 ∈ {−1, 0, 1} and 𝑗 ∈ {−1, 0, 1}

}
and 𝑉 ′ =

⋃
𝑣∈𝑉

𝑋𝑣.

For the construction of the edge set 𝐸′, we first add an edge between 𝑣𝑖, 𝑗 and 𝑣𝑖′, 𝑗′ if
|𝑖 − 𝑖′| + | 𝑗 − 𝑗′| = 1, so 𝑋𝑣 becomes a grid graph, see Figure 20.
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Figure 20. The grid graph
𝑋𝑣.

The interior angles in the four 4-cycles in the grid graph, highlighted by★ in Figure 20, are
all set to 90◦ in R′ to ensure that 𝑋𝑣 must be drawn as a grid. We write the four boundary paths
of the grid as follows.

𝑃𝑣1,0 = (𝑣1,1, 𝑣1,0, 𝑣1,−1), 𝑃𝑣0,−1 = (𝑣1,−1, 𝑣0,−1, 𝑣−1,−1),
𝑃𝑣−1,0 = (𝑣−1,−1, 𝑣−1,0, 𝑣−1,1), 𝑃𝑣0,1 = (𝑣−1,1, 𝑣0,1, 𝑣1,1).

The concatenation of these four paths traverses the boundary of the grid in the clockwise
direction.
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We associate each edge incident to 𝑣 with a distinct neighbor of 𝑣0,0 in such a way that is
consistent with the given counter-clockwise circular ordering E(𝑣) and the angle assignment 𝜙
to the corners surrounding 𝑣 in the given ortho-radial representation R. See Figure 21. By
symmetry, there are five cases. In the first case, 𝑣 is incident only to one edge 𝑒1, and we associate
𝑒1 with 𝑣1,0. In the second case, 𝑣 has two incident edges 𝑒1 and 𝑒2 such that 𝜙(𝑒1, 𝑒2) = 90◦ in R,
and we associate 𝑒1 with 𝑣1,0 and associate 𝑒2 with 𝑣0,1. The remaining cases are similar.
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Figure 21. Associating each edge incident to 𝑣 with a distinct neighbor of 𝑣0,0.

For each 𝑒 = {𝑢, 𝑣} ∈ 𝐸, we add edges to 𝐸′ to connect 𝑋𝑢 and 𝑋𝑣, as follows. Suppose
that 𝑒 ← 𝑢𝑖, 𝑗 and 𝑒 ← 𝑣𝑘,𝑙 in the above assignment. Then we connect 𝑋𝑢 and 𝑋𝑣 by adding
the three edges 𝑒1 = {𝑥1, 𝑦1}, 𝑒2 = {𝑥2, 𝑦2}, and 𝑒3 = {𝑥3, 𝑦3} to connect 𝑃𝑢

𝑖, 𝑗
= (𝑥1, 𝑥2, 𝑥3) and

𝑃𝑣
𝑘,𝑙

= ( 𝑦1, 𝑦2, 𝑦3). See Figure 22 for an illustration of the case where 𝑒← 𝑢1,0 and 𝑒← 𝑣0,1.
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Figure 22. Adding edges to 𝐸′ to connect 𝑋𝑢 and 𝑋𝑣.
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The addition of the three edges 𝑒1, 𝑒2, and 𝑒3 create two 4-cycles, highlighted by ★ in
Figure 22. Similarly, the interior angles in these two 4-cycles are all set to 90◦ in R′ to ensure
that they must be drawn as rectangles.

This finishes the construction of (𝐺′, E′), which is a biconnected simple plane graph. All
remaining angles in R′ are set in such a way that the sum of angles surrounding each vertex is
360◦.

Validity of the reduction To prove that the reduction is valid, we need to show that R is
drawable if and only ifR′ is drawable. We start with the directionR → R′. Suppose we are given
an ortho-radial drawing realizing R. Our goal is to find an ortho-radial drawing realizing R′.
For each vertex 𝑣 ∈ 𝑉 , let (𝑟𝑣, 𝜃𝑣) denote its coordinates in the given ortho-radial drawing. We
define

𝐵𝜖(𝑣) = {(𝑟, 𝜃) | 𝑟 ∈ [𝑟𝑣 − 𝜖, 𝑟𝑣 + 𝜖] and 𝜃 ∈ [𝜃𝑣 − 𝜖, 𝜃𝑣 + 𝜖]} .

For each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, it is drawn as a horizontal line (a circular arc of some circle
centered at the origin) or a vertical line (a line segment of some straight line passing through
the origin). That is, the drawing of 𝑒 is can be described by one of the following two functions,
for some choices of the parameters (𝑟𝑒, 𝜃𝑒,1, 𝜃𝑒,2) or (𝑟𝑒,1, 𝑟𝑒,2, 𝜃𝑒):{

(𝑟, 𝜃) | 𝑟 = 𝑟𝑒 and 𝜃 ∈ [𝜃𝑒,1, 𝜃𝑒,2]
}
, if 𝑒 is drawn as a horizontal line,{

(𝑟, 𝜃) | 𝑟 ∈ [𝑟𝑒,1, 𝑟𝑒,2] and 𝜃 = 𝜃𝑒
}
, if 𝑒 is drawn as a vertical line.

We define 𝐵𝜖(𝑒) as follows:

𝐵𝜖(𝑒) =

{
(𝑟, 𝜃) | 𝑟 ∈ [𝑟𝑒 − 𝜖, 𝑟𝑒 + 𝜖] and 𝜃 ∈ (𝜃𝑒,1 + 𝜖, 𝜃𝑒,2 − 𝜖)

}
if 𝑒 is drawn horizontally,{

(𝑟, 𝜃) | 𝑟 ∈ (𝑟𝑒,1 + 𝜖, 𝑟𝑒,2 − 𝜖) and 𝜃 ∈ [𝜃𝑒 − 𝜖, 𝜃𝑒 + 𝜖]
}

if 𝑒 is drawn vertically.

By choosing 𝜖 > 0 to be small enough, we can make sure that the sets 𝐵𝜖(𝑣) and 𝐵𝜖(𝑒) are
non-empty and pairwise disjoint, over all 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸. For each vertex 𝑣 ∈ 𝑉 , we draw the
grid 𝑋𝑣 in 𝐵𝜖(𝑣) by drawing the following grid-lines:

{(𝑟, 𝜃) | 𝑟 = 𝑟𝑣 + 𝑠 · 𝜖 and 𝜃 ∈ [𝜃𝑣 − 𝜖, 𝜃𝑣 + 𝜖]} , for 𝑠 ∈ {−1, 0, 1},
{(𝑟, 𝜃) | 𝑟 ∈ [𝑟𝑣 − 𝜖, 𝑟𝑣 + 𝜖] and 𝜃 = 𝜃𝑣 + 𝑠 · 𝜖} , for 𝑠 ∈ {−1, 0, 1}.

For each 𝑒 = {𝑢, 𝑣} ∈ 𝐸, we draw the three edges connecting 𝑋𝑢 and 𝑋𝑣 by drawing the following
three lines in 𝐵𝜖(𝑒):{
(𝑟, 𝜃) | 𝑟 = 𝑟𝑒 + 𝑠 · 𝜖 and 𝜃 ∈ (𝜃𝑒,1 + 𝜖, 𝜃𝑒,2 − 𝜖)

}
, for 𝑠 ∈ {−1, 0, 1}, if 𝑒 is drawn horizontally,{

(𝑟, 𝜃) | 𝑟 ∈ (𝑟𝑒,1 + 𝜖, 𝑟𝑒,2 − 𝜖) and 𝜃 = 𝜃𝑒 + 𝑠 · 𝜖
}
, for 𝑠 ∈ {−1, 0, 1}, if 𝑒 is drawn vertically.

The validity of this drawing of R′ follows from the disjointness of the sets 𝐵𝜖(𝑣) and 𝐵𝜖(𝑒), over
all 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸.
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Next, we consider the other direction R → R′. Suppose we are given an ortho-radial
drawing realizing R′. Our goal is to find an ortho-radial drawing realizing R. For each vertex
𝑣 ∈ 𝑉 , we put 𝑣 at the position of 𝑣0,0 in the given drawing of R′. To draw each edge 𝑒 =

{𝑢, 𝑣} ∈ 𝐸, consider the assignment 𝑒 ← 𝑢𝑖, 𝑗 and 𝑒 ← 𝑣𝑘,𝑙 described in the reduction. The
path 𝑃 = (𝑢0,0, 𝑢𝑖, 𝑗 , 𝑣𝑘,𝑙, 𝑣0,0) must be drawn as a straight line, due to the angle assignment of R′

described in our reduction. That is, in the given drawing of R′, 𝑃 is drawn as either a circular
arc of some circle centered at the origin or a line segment of some straight line passing through
the origin. Therefore, we may use the drawing of 𝑃 to embed 𝑒, and this gives us a desired
drawing of R.

8. Conclusions

In this paper, we presented a near-linear time algorithm to decide whether a given ortho-radial
representation is drawable, improving upon the previous quadratic-time algorithm [2]. If
the representation is drawable, then our algorithm outputs an ortho-radial drawing realizing
the representation. Otherwise, our algorithm outputs a strictly monotone cycle to certify the
non-existence of such a drawing. Given the broad applications of the topology-shape-metric
framework in orthogonal drawing, we anticipate that our new ortho-radial drawing algorithm
will be relevant and useful in future research in this field.

While there has been extensive research in orthogonal drawing, much remains unknown
about the computational complexity of basic optimization problems in ortho-radial drawing. In
particular, the problem of finding an ortho-radial representation that minimizes the number of
bends has only been addressed by a practical algorithm [36] that has no provable guarantees.
It remains an intriguing open question to determine to what extent bend minimization is
polynomial-time solvable for ortho-radial drawing.1 To the best of our knowledge, even deciding
whether a given plane graph admits an ortho-radial drawing without bends is not known to be
polynomial-time solvable.

Given an ortho-radial representation, can we find an ortho-radial drawing with the smallest
number of layers (i.e., the number of concentric circles) in polynomial time? As discussed in
Section 3, if a good sequence is given, then our algorithm can output a layer-minimized drawing.
For the general case where a good sequence might not exist, our algorithm does not have the
layer-minimization guarantee, as there is some flexibility in the choice of virtual edges to add,
and selecting different virtual edges results in different good sequences.

1 The paper [2] also lists the computation of a bend-minimized ortho-radial representation for a given plane graph as
an open question. In the preliminary version (arXiv:2106.05734v1) of the same paper [2], the authors claimed this
problem to be NP-hard (Theorem 7), seemingly resolving the problem. However, the result was removed in the journal
version, indicating a potential issue with their reduction, so the problem remains open.

https://arxiv.org/abs/2106.05734v1
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There was a series of work in finding compact orthogonal drawings according to various
complexity measures [6, 12, 1, 33, 40]. To what extent can the ideas developed in these works
be applied to ortho-radial drawings?
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