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ABSTRACT. A transducer is finite-valued if there exists a bound 𝑘 such that any given input
maps to at most 𝑘 outputs. For classical one-way transducers, it is known since the 1980s that
finite valuedness entails decidability of the equivalence problem. This result is in contrast
with undecidability in the general case, making finite-valued transducers very appealing. For
one-way transducers it is also known that finite valuedness itself is decidable and that any
𝑘-valued finite transducer can be decomposed into a union of 𝑘 single-valued finite transducers.

In this article, we extend the above results to copyless streaming string transducers (SSTs),
addressing open questions raised by Alur and Deshmukh in 2011. SSTs strictly extend the
expressiveness of one-way transducers via additional variables that store partial outputs. We
prove that any 𝑘-valued SST can be effectively decomposed into a union of 𝑘 (single-valued)
deterministic SSTs. As a corollary, we establish the equivalence between SSTs and two-way
transducers in the finite-valued case, even though these models are generally incomparable.
Another corollary provides an elementary upper bound for deciding equivalence of finite-valued
SSTs. The equivalence problem was already known to be decidable, but the proof complexity
relied on Ehrenfeucht’s conjecture. Lastly, our main contribution shows that finite valuedness
of SSTs is decidable, with the complexity being PSpace in general, and PTime when the number
of variables is fixed.

Part of this work was initiated during the Dagstuhl seminar 23202 “Regular Transformations” [5]. A preliminary version of
this article appeared at LICS 2024 [24].
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1. Introduction

Finite-state word transducers are simple devices that allow effective reasoning about data trans-
formations. In their most basic form, they transform words using finite control. For example,
the oldest transducer model, known as generalized sequential machine, extends deterministic
finite state automata by associating each input with a corresponding output that is generated
by appending finite words specified along the transitions. This rather simple model of trans-
ducer is capable of representing basic partial functions between words, e.g. the left rotating
function 𝑎1 𝑎2 . . . 𝑎𝑛 ↦→ 𝑎2 . . . 𝑎𝑛 𝑎1. Like automata, transducers can also be enhanced with non-
determinism, as well as the ability of scanning the input several times (two-wayness). For exam-
ple, the non-deterministic counterpart of generalized sequential machines, called here one-way
transducers, can be used to represent the right rotating function 𝑎1 . . . 𝑎𝑛−1 𝑎𝑛 ↦→ 𝑎𝑛 𝑎1 . . . 𝑎𝑛−1,
but also word relations that are not partial functions, like for instance the relation that associates
an input 𝑎1 . . . 𝑎𝑛 with any output from {𝑎1}∗ . . . {𝑎𝑛}∗. Similarly, deterministic two-way trans-
ducers can compute the mirror function 𝑎1 . . . 𝑎𝑛 ↦→ 𝑎𝑛 . . . 𝑎1, the squaring function 𝑤 ↦→ 𝑤𝑤,
etc.

Inspired by a logic-based approach applicable to arbitrary relational structures [18], MSO-
definable word transductions were considered by Engelfriet and Hoogeboom [23] and shown
to be equivalent to deterministic two-way transducers. Ten years later Alur and Cerný [6]
proposed streaming string transducers (SSTs for short), a one-way model that uses write-only
variables as additional storage. In SSTs, variables store strings and can be updated by appending
or prepending strings, or concatenated together, but not duplicated (they are copyless). Alur
and Cerný also showed that, in the functional case, that is, when restricting to transducers
that represent partial functions, SSTs are equivalent to the model studied in [23], and thus in
particular to two-way transducers. These equivalences between transducer models motivate
nowadays the use of the term “regular” word function, in the spirit of classical results on regular
word languages from automata theory and logics due to Büchi, Elgot, Trakhtenbrot, Rabin, and
others.

While transducers inherit features like non-determinism and two-wayness from automata,
these characteristics have an impact on their expressive power compared to automata. In the
case of automata it is known that adding non-determinism and two-wayness does not affect the
expressive power, as it only makes them more succinct in terms of number of states. It does not
affect decidability of fundamental problems either, though succinctness makes some problems
computationally harder. In contrast, for transducers, non-determinism and/or two-wayness
significantly change the expressive power. For instance, non-deterministic one-way transducers
may capture relations that are not partial functions, and thus not computable by generalized
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sequential machines1. This difference is also apparent at the level of decidability results. For
example, the equivalence problem is in NLogSpace for generalized sequential machines, and
undecidable for one-way transducers [27, 32, 41]. We should also mention that in the functional
case it is possible to convert one transducer model to another (e.g. convert an SST to an equivalent
two-way transducer). In the non-functional case, the picture is less satisfactory. In particular,
non-deterministic SSTs and non-deterministic two-way transducers turn out to be incomparable:
for example, the relation {(𝑢 𝑣, 𝑣 𝑢) : 𝑢, 𝑣 ∈ Σ∗} can be represented in the former model but not
in the latter, while the relation {(𝑤, 𝑤𝑛) : 𝑤 ∈ Σ∗, 𝑛 ∈ N} can be represented in the latter model
but not in the former. However, SSTs can still be converted to equivalent non-deterministic
MSO transductions [9], which extend the original MSO transductions by existentially quantified
monadic parameters.

There is however a class of relations that is close to (regular) word functions in terms of
good behavior: the class of finite-valued relations. These are relations that associate a uniformly
bounded number of outputs with each input. The concept of bounding the number of outputs
associated with each input in a transducer is closely related to the notion of finite ambiguity,
which refers to bounding the number of accepting runs. Ambiguity has been intensively
studied in the context of formal languages, where it is shown, for instance, that equivalence of
unambiguous automata is decidable in PTime [49]. In the context of relations, 𝑘-valuedness
and 𝑘-ambiguity were initially considered in the setting of one-way transducers. For example,
[29] showed that, for fixed 𝑘, one can decide in PTime whether a given one-way transducer is
𝑘-valued. Similarly, 𝑘-valuedness for fixed 𝑘 can be decided in PSpace for two-way transducers
and SSTs [9].

It is also clear that every 𝑘-ambiguous one-way transducer is 𝑘-valued. Conversely, it was
shown that every 𝑘-valued one-way transducer can be converted to an equivalent, 𝑘-ambiguous
one [51, 50, 45]. This result, even if it deals with a rather simple model of transducer, already
uses advanced normalization techniques from automata theory and involves an exponential
blow up in the number of states, as shown in the example below.

EXAMPLE 1.1. Fix 𝑘 ∈ N and consider the relation

𝑅𝑘 =
{
(𝑤1 . . . 𝑤𝑛, 𝑤𝑖) : 𝑛 ∈ N, 1 ≤ 𝑖 ≤ 𝑛, 𝑤1, . . . , 𝑤𝑛 ∈ {0, 1}𝑘

}
.

Examples of pairs in this relation, for 𝑘 = 2, are (00 10 11, 00), (00 10 11, 10), and (00 10 11, 11).
For arbitrary 𝑘, the relation 𝑅𝑘 associates at most 2𝑘 outputs with each input (we say it is
2𝑘-valued). This relation can be realized by one-way transducers that exploit non-determinism
to guess which block from the input becomes the output. For instance, a possible transducer
𝑇𝑘 that realizes 𝑅𝑘 repeatedly consumes blocks of 𝑘 bits from the input, without outputting

1 Even if a non-deterministic one-way transducer computes a partial function, there may be no equivalent deterministic
one-way transducer. However, this question can be decided in PTime [12, 3].
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anything, until it non-deterministically decides to copy the next block, and after that it continues
consuming the remaining blocks without output. Note that this transducer 𝑇𝑘 has O(𝑘) states, it
is finite-valued, but not finite-ambiguous, since the number of accepting runs per input depends
on the number 𝑛 of blocks in the input and it is thus unbounded. A finite-ambiguous transducer
realizing the same relation 𝑅𝑘 can be obtained at the cost of an exponential blow-up in the
number of states, for instance by initially guessing and outputting a 𝑘-bit word 𝑤 (this requires
at least 2𝑘 states), and then verifying that 𝑤 occurs as a block of the input. ■

Since 𝑘-ambiguous automata can be easily decomposed into a union of 𝑘 unambiguous
automata, the possibility of converting a 𝑘-valued one-way transducer to a 𝑘-ambiguous one
entails a decomposition result of the following form: every 𝑘-valued one-way transducer is
equivalent to a finite union of functional one-way transducers. One advantage of this type of
decomposition is that it allows to generalize the decidability of the equivalence problem from
functional to 𝑘-valued one-way transducers, which brings us back to the original motivation
for considering classes of finite-valued relations. Decidability of the equivalence problem for
𝑘-valued one-way transducers was independently established in [33]. The latter work also
states that the same techniques can be adapted to show decidability of equivalence for 𝑘-valued
two-way transducers as well. Inspired by [33], the equivalence problem was later shown to be
decidable also for 𝑘-valued SSTs [40]. However, the decidability results from [33] and [40] rely
on the Ehrenfeucht conjecture [2, 28] and therefore provide no elementary upper bounds on
the complexity.

Decomposing finite-valued SSTs and deciding finite valuedness for SSTs were listed as
open problems in [9], more than 10 years ago, and represent our main contributions. Compared
to one-way transducers, new challenges arise with SSTs, due to the extra power they enjoy to
produce outputs. For example, consider the relation consisting of all pairs of the form (𝑤, 0𝑛01𝑛1)
or (𝑤, 1𝑛10𝑛0), where 𝑤 ∈ {0, 1}∗, and 𝑛𝑏 (𝑏 = 0, 1) is the number of occurrences of 𝑏 in 𝑤. This
relation is 2-valued, and is not realizable by any one-way transducer. On the other hand,
the relation is realized by an SST 𝑇 with a single state and two variables, denoted 𝑋0, 𝑋1 and
both initially empty: whenever 𝑇 reads 𝑏 ∈ {0, 1}, it non-deterministically applies the update
𝑋𝑏 := 𝑏 𝑋𝑏 or 𝑋𝑏 := 𝑋𝑏 𝑏 (while leaving 𝑋1−𝑏 unchanged); at the end of the input, 𝑇 outputs either
𝑋0 𝑋1 or 𝑋1 𝑋0. The ability of SSTs to generate outputs in a non-linear way makes their study
challenging and intriguing. To illustrate this, consider a slight modification of 𝑇 where 𝑋0 is
initialized with 1, instead of the empty word: the new SST is not finite-valued anymore, because
upon reading 0𝑛 it could output any word of the form 0𝑖 1 0 𝑗 , with 𝑖, 𝑗 ∈ N such that 𝑖 + 𝑗 = 𝑛.

Another open problem was to compare the expressive power of SSTs and two-way transduc-
ers in the finite-valued case. It is not hard to see that the standard translation from deterministic
two-way transducers to deterministic SSTs also applies to the finite-valued case (cf. second part
of the proof of Theorem 1.3). The converse translation, however, is far more complicated and
relies on the decomposition theorem for SSTs which we establish in this article.
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Contributions. The results presented in this article draw a rather complete picture about
finite-valued SSTs, answering several open problems from [9]. First, we show that 𝑘-valued
SSTs enjoy the same decomposition property as one-way transducers:

THEOREM 1.2. For all 𝑘 ∈ N, every 𝑘-valued SST can be effectively decomposed into a union of
𝑘 single-valued (or even deterministic) SSTs. The complexity of the construction is elementary.

A first consequence of the above theorem is the equivalence of SSTs and two-way trans-
ducers in the finite-valued setting:

THEOREM 1.3. Let 𝑅 ⊆ Σ∗ × Σ∗ be a finite-valued relation. If 𝑅 can be realized by an SST, then
an equivalent two-way transducer can be effectively constructed, and vice-versa.

PROOF . If 𝑅 is realized by an SST 𝑇 , then we can apply Theorem 1.2 to obtain 𝑘 unambiguous
SSTs 𝑇1, . . . , 𝑇𝑘 whose union is equivalent to 𝑇 . From [6] we know that in the functional case,
SSTs and two-way transducers are equivalent. Thus, every 𝑇𝑖 can be transformed effectively
into an equivalent, even deterministic, two-way transducer. From this we obtain an equivalent
𝑘-ambiguous two-way transducer.

For the converse we start with a 𝑘-valued two-way transducer 𝑇 and first observe that
we can normalise 𝑇 in such a way that the crossing sequences2 of accepting runs of 𝑇 are
bounded by a constant linear in the size of 𝑇 . Once we work with runs with bounded crossing
sequences we can construct an equivalent SST in the same way as we do for deterministic
two-way transducers. The idea is that during the run of the SST the variables record the outputs
generated by the pieces of runs situated to the left of the current input position (see e.g. [38, 20]
for self-contained proofs). ■

A second consequence of Theorem 1.2 is an elementary upper bound for the equivalence
problem of finite-valued SSTs [40]:

THEOREM 1.4. The equivalence problem for 𝑘-valued SSTs can be solved with elementary
complexity.

PROOF . Given two 𝑘-valued SSTs 𝑇,𝑇 ′, we first decompose them into unions of 𝑘 deterministic
SSTs 𝑇1, . . . , 𝑇𝑘 and 𝑇 ′

1, . . . , 𝑇
′
𝑘
, respectively. Finally, [9, Theorem 4.4] shows how to check the

equivalence of
⋃𝑘

𝑖=1𝑇𝑖 and
⋃𝑘

𝑖=1𝑇
′
𝑖

in PSpace. ■

Our last, and main, contribution establishes the decidability of finite valuedness for SSTs:

THEOREM 1.5. Given any SST 𝑇 , we can decide in PSpace if 𝑇 is finite-valued (and if the number
of variables is fixed then the complexity is PTime). Moreover, this problem is at least as hard as
the equivalence problem for deterministic SSTs.

2 A crossing sequence is a standard notion for finite-state two-way machines [48], and it is defined as the sequence of
states in which a given input position is visited by an accepting run of the machine.
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This last result is the most technical one, and requires to reason on particular substructures
(W-patterns) of SSTs. Such substructures have been already used for one-way transducers, but
for SSTs genuine challenges arise. The starting point of our proof is a recent result allowing
to determine if two runs of an SST are far apart [25]. The proof then relies on identifying
suitable patterns and extending techniques from word combinatorics to more involved word
inequalities.

Based on the equivalence between SSTs and two-way transducers in the finite-valued
setting (Theorem 1.3), and the decidability of finite valuedness for SST (Theorem 1.5), we exhibit
an alternative proof for the following (known) result:

COROLLARY 1.6 ([53]). Finite valuedness of two-way transducers is decidable in PSpace.

Observe also that without the results in this paper, the result of [53] could not help to show
Theorem 1.5, because only the conversion from finite-valued two-way transducers to finite-
valued SSTs was known (under the assumption that any input positions is visited a bounded
number of times), but not the other way around. Also note that Theorems 1.2 and 1.3 together
imply a decomposition result for finite-valued two-way transducers.

Similar results can be derived for non-deterministic MSO transductions. More precisely,
since SSTs and non-deterministic MSO transductions are equivalent [9], Theorem 1.5 entails de-
cidability of finite valuedness for non-deterministic MSO transductions as well. Moreover, since
in the single-valued case, deterministic SSTs and MSO transductions are equivalent [6], Theo-
rem 1.2 implies a decomposition result for MSO transductions: any 𝑘-valued non-deterministic
MSO transduction can be decomposed as a union of 𝑘 (deterministic) MSO transductions. Fi-
nally, from Theorem 1.3, we also obtain that, under the assumption of finite valuedness, non-
deterministic MSO transductions, two-way transducers, and SSTs are equally expressive.

2. Preliminaries

For convenience, technical terms and notations in the electronic version of this manuscript are
hyper-linked to their definitions (cf. https://ctan.org/pkg/knowledge).

Hereafter, N (resp. N+) denotes the set of non-negative (resp. strictly positive) integers,
and Σ denotes a generic alphabet.

Words and relations. We denote by 𝜀 the empty word, by |𝑢| the length of a word 𝑢 ∈ Σ∗, and
by 𝑢[𝑖] its 𝑖-th letter, for 1 ≤ 𝑖 ≤ |𝑢|. We introduce a convolution operation on words, which
is particularly useful to identify robust and well-behaved classes of relations, as it is done for
instance in the theory of automatic structures [13]. For simplicity, we only consider convolutions
of words of the same length. Given 𝑢, 𝑣 ∈ Σ∗, with |𝑢| = |𝑣|, the convolution 𝑢 ⊗ 𝑣 is a word
over (Σ2)∗ of length |𝑢| = |𝑣| such that (𝑢 ⊗ 𝑣) [𝑖] = (𝑢[𝑖], 𝑣[𝑖]) for all 1 ≤ 𝑖 ≤ |𝑢|. For example,

https://ctan.org/pkg/knowledge


7 / 36 Finite-valued Streaming String Transducers

(𝑎𝑏𝑎) ⊗ (𝑏𝑐𝑐) = (𝑎, 𝑏) (𝑏, 𝑐) (𝑎, 𝑐). As ⊗ is associative, we may write 𝑢 ⊗ 𝑣 ⊗ 𝑤 for any words
𝑢, 𝑣, 𝑤.

A relation 𝑅 ⊆ (Σ∗)𝑘 is length-preserving if |𝑢1 | = · · · = |𝑢𝑘 | for all (𝑢1, . . . , 𝑢𝑘) ∈ 𝑅. A length-
preserving relation is automatic if the language {𝑢1 ⊗ . . . ⊗ 𝑢𝑘 | (𝑢1, . . . , 𝑢𝑘) ∈ 𝑅} is recognized
by a finite state automaton. A binary relation 𝑅 ⊆ Σ∗ × Σ∗ (not necessarily length-preserving)
is 𝑘-valued, for 𝑘 ∈ N, if for all 𝑢 ∈ Σ∗, there are at most 𝑘 words 𝑣 such that (𝑢, 𝑣) ∈ 𝑅. It is
finite-valued if it is 𝑘-valued for some 𝑘.

Variable updates. Fix a finite set of variables X = {𝑋1, . . . , 𝑋𝑚}, disjoint from the alphabet Σ. A
(copyless) update is any mapping 𝛼 : X → (Σ ⊎ X)∗ such that each variable 𝑋 ∈ X appears at
most once in the word 𝛼(𝑋1) . . . 𝛼(𝑋𝑚). Such an update can be morphically extended to words
over Σ ⊎X, by simply letting 𝛼(𝑎) = 𝑎 for all 𝑎 ∈ Σ. Using this, we can compose any two updates
𝛼, 𝛽 to form a new update 𝛼 𝛽 : X → (Σ ⊎ X)∗, defined by (𝛼 𝛽) (𝑋) = 𝛽(𝛼(𝑋)) for all 𝑋 ∈ X.
An update is called initial (resp. final) if all variables in X (resp. X \ {𝑋1}) are mapped to the
empty word. The designated variable 𝑋1 is used to store the final output produced by an SST, as
defined in the next paragraph.

Streaming string transducers. A (non-deterministic, copyless) streaming string transducer
(SST for short) is a tuple 𝑇 = (Σ,X, 𝑄, 𝑄init, 𝑄final, 𝑂, Δ), where Σ is an alphabet, X is a finite set
of variables, 𝑄 is a finite set of states, 𝑄init, 𝑄final ⊆ 𝑄 are the sets of initial and final states, 𝑂
is a function from final states to final updates, and Δ is a finite transition relation consisting
of tuples of the form (𝑞, 𝑎, 𝛼, 𝑞′), where 𝑞, 𝑞′ ∈ 𝑄 are the source and target states, 𝑎 ∈ Σ is an
input symbol, and 𝛼 is an update. We often denote a transition (𝑞, 𝑎, 𝛼, 𝑞′) ∈ Δ by the annotated
arrow:

𝑞
𝑎/𝛼
−−−→ 𝑞′.

The size |𝑇 | of an SST 𝑇 is defined as the number of states plus the size of its transition relation.
A run of 𝑇 is a sequence of transitions from Δ of the form

𝜌 = 𝑞0
𝑎1/𝛼1−−−−→ 𝑞1

𝑎2/𝛼2−−−−→ 𝑞2 . . . 𝑞𝑛−1
𝑎𝑛/𝛼𝑛−−−−→ 𝑞𝑛.

The input consumed by 𝜌 is the word in(𝜌) = 𝑎1 . . . 𝑎𝑛. The update induced by 𝜌 is the composition
𝛽 = 𝛼1 . . . 𝛼𝑛. We write 𝜌 : 𝑢/𝛽 to mean that 𝜌 is a run with 𝑢 as consumed input and 𝛽 as
induced update. A run 𝜌 as above is accepting if the first state is initial and the last state is
final, namely, if 𝑞0 ∈ 𝑄init and 𝑞𝑛 ∈ 𝑄final. In this case, the induced update, extended to the left
with the initial update denoted by 𝜄 and to the right with the final update 𝑂(𝑞𝑛), gives rise to
an update 𝜄 𝛽 𝑂(𝑞𝑛) that maps 𝑋1 to a word over Σ and all remaining variables to the empty
word. In particular, the latter update determines the output produced by 𝜌, defined as the word
out(𝜌) = (𝜄 𝛽 𝑂(𝑞𝑛)) (𝑋1).
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The relation realized by an SST 𝑇 is

R (𝑇 ) =
{(

in(𝜌), out(𝜌)
)
∈ Σ∗ × Σ∗ �� 𝜌 accepting run of 𝑇

}
An SST is 𝑘-valued (resp. finite-valued) if its realized relation is so. It is deterministic if it has
a single initial state and the transition relation is a partial function (from pairs of states and
input letters to pairs of updates and states). It is unambiguous if it admits at most one accepting
run on each input. Similarly, it is called 𝑘-ambiguous if it admits at most 𝑘 accepting runs on
each input. Of course, every deterministic SST is unambiguous, and every unambiguous SST is
single-valued (i.e. 1-valued). Two SSTs 𝑇1, 𝑇2 are equivalent if R (𝑇1) = R (𝑇2). The equivalence
problem for SSTs is undecidable in general, and it is so even for one-way transducers [27, 32].
However, decidability is recovered for finite-valued SSTs:

THEOREM 2.1 ([40]). The equivalence problem for finite-valued SSTs is decidable.

Note that checking equivalence is known to be in PSpace for deterministic SSTs. This easily
generalizes to unions of deterministic (hence single-valued) SSTs, because the equivalence
checking algorithm is exponential only in the number of variables:

THEOREM 2.2 ([9]). The following problem is in PSpace: given 𝑛 + 𝑚 deterministic SSTs
𝑇1, . . . , 𝑇𝑛, 𝑇

′
1, . . . , 𝑇

′
𝑚, decide whether

⋃𝑛
𝑖=1 R (𝑇𝑖) =

⋃𝑚
𝑗=1 R (𝑇 ′

𝑗
).

For any fixed 𝑘, the 𝑘-valuedness property is decidable in PSpace:

THEOREM 2.3 ([9]). For any fixed 𝑘 ∈ N, the following problem is in3 PSpace: given an SST 𝑇 ,
decide whether 𝑇 is 𝑘-valued. It is in PTime if one further restricts to SSTs with a fixed number
of variables.

The decidability status of finite valuedness for SSTs, i.e., if 𝑘 is unknown, was an open
problem. Part of our contribution is to show that this problem is decidable, too.

2.1 Pumping and word combinatorics

When reasoning with automata, it is common practice to use pumping arguments. This section
introduces pumping for SSTs, as well as combinatorial results for reasoning about (in)equalities
between pumped outputs of SSTs.

In order to have adequate properties for pumped runs of SSTs, the notion of loop needs to
be defined so as to take into account how the content of variables “flows” into other variables

3 In [9], no complexity result is provided, but the decidability procedure relies on a reduction to the emptiness of a
1-reversal 𝑘(𝑘 + 1)-counter machine, based on the proof for equivalence of deterministic SST [7]. The counter machine
is exponential in the number of variables only. The result follows since the emptiness problem for counter machines
with fixed number of reversals and fixed number of counters is in NLogSpace [30].
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when performing an update. We define the skeleton of an update 𝛼 : X → (Σ ⊎ X)∗ as the
update �̂� : X → X∗ obtained from 𝛼 by removing all the letters of Σ from the right-hand side.
Note that there are only finitely many skeletons, and their composition forms a finite monoid,
called the skeleton monoid (this notion is very similar to the flow monoid from [40], but does
not rely on any normalization).

A loop of a run 𝜌 of an SST is any factor 𝐿 of 𝜌 that starts and ends in the same state and
induces a skeleton-idempotent update, namely, an update 𝛼 such that 𝛼 and 𝛼𝛼 have the same
skeleton. For example, the update 𝛼 : 𝑋1 ↦→ 𝑎 𝑋1 𝑏 𝑋2 𝑐, 𝑋2 ↦→ 𝑎 is skeleton-idempotent and
thus can be part of a loop. A loop in a run will be denoted by an interval [𝑖, 𝑗]. In this case, it
is convenient to assume that the indices 𝑖, 𝑗 represent “positions” in-between the transitions,
thus identifying occurrences of states; in this way, adjacent loops can be denoted by intervals of
the form [𝑖1, 𝑖2], [𝑖2, 𝑖3], etc. In particular, if the run consists of 𝑛 transitions, then the largest
possible interval on it is [0, 𝑛]. For technical reasons, we do allow empty loops, that is, loops of
the form [𝑖, 𝑗], with 𝑖 = 𝑗 and with the induced update being the identity function on X.

The run obtained from 𝜌 by pumping 𝑛 times a loop 𝐿 is denoted pump𝑛
𝐿(𝜌). If we are

given an 𝑚-tuple of pairwise disjoint loops 𝐿 = (𝐿1, . . . , 𝐿𝑚) and an 𝑚-tuple of (positive) numbers
�̄� = (𝑛1, . . . , 𝑛𝑚), then we write pump�̄�

𝐿
(𝜌) for the run obtained by pumping simultaneously 𝑛𝑖

times 𝐿𝑖 , for each 1 ≤ 𝑖 ≤ 𝑚.
The next lemma is a Ramsey-type argument that, based on the number of states of the SST,

the size of the skeleton monoid, and a number 𝑛, derives a minimum length for a run to witness
𝑛 + 1 points and loops between pairs of any of these points. The reader can refer to [35] to get
good estimates of the values of 𝐸, 𝐻 .

LEMMA 2.4. Given an SST, one can compute two numbers 𝐸, 𝐻 such that for every run 𝜌, every
𝑛 ∈ N, and every set 𝐼 ⊆ {0, . . . , |𝜌|} of cardinality 𝐸𝑛𝐻 + 1, there is a subset 𝐼′ ⊆ 𝐼 of cardinality
𝑛 + 1 such that for all 𝑖 < 𝑗 ∈ 𝐼′ the interval [𝑖, 𝑗] is a loop of 𝜌. The values of 𝐸, 𝐻 are elementary
in the size of the SST.

PROOF . The article [35] shows for any given monoid 𝑀 a bound 𝑅𝑀 (𝑛) with the property that
any sequence from 𝑀∗ of length larger than 𝑅𝑀 (𝑛) contains 𝑛 consecutive infixes such that
for some idempotent 𝑒 of 𝑀 (i.e., satisfying 𝑒𝑒 = 𝑒) each such infix multiplies out to 𝑒. In our
case, the monoid 𝑀 is the product of the monoid ((𝑄 × 𝑄) ∪ {0}, ·) with (𝑝, 𝑞) · (𝑞, 𝑟) = (𝑝, 𝑟)
(resp. (𝑝, 𝑞) · (𝑞′, 𝑟) = 0 if 𝑞 ≠ 𝑞′) and the skeleton monoid of the SST. Thus, any infix of the
run that multiplies out to an idempotent (after mapping each transition to the corresponding
monoid element) corresponds to a loop of the SST. The upper bound 𝑅𝑀 (𝑛) is exponential only
in the size of 𝑀 (cf. Theorem 1 in [35]). ■

Below, we describe the effect on the output of pumping loops in a run of an SST. We start
with the following simple combinatorial result:
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LEMMA 2.5. Let 𝛼 be a skeleton-idempotent update. For every variable 𝑋 , there exist two words
𝑢, 𝑣 ∈ Σ∗ such that, for all positive natural numbers 𝑛 ∈ N+, 𝛼𝑛(𝑋) = 𝑢𝑛−1 𝛼(𝑋) 𝑣𝑛−1.

PROOF . Let �̂� be the idempotent skeleton of 𝛼. We first prove the following claim:

CLAIM. For all 𝑋 ∈ X, if �̂�(𝑋) ≠ 𝜀, then 𝑋 occurs in 𝛼(𝑋).

PROOF OF THE CLA IM. The proof is by induction on the number of variables 𝑋 such that
�̂�(𝑋) ≠ 𝜀. The base case holds vacuously. As for the induction step, fix a variable 𝑋0 such that
�̂�(𝑋0) ≠ 𝜀. We distinguish two cases:

If 𝑋0 occurs in 𝛼(𝑋0), then the claim clearly holds for 𝑋0 and it remains to prove it for
all other variables 𝑌 ∈ X \ {𝑋0}. Since 𝛼 is copyless, 𝑋0 does not occur in 𝛼(𝑌 ), for all
𝑌 ∈ X \ {𝑋0}. Therefore, the restricted update 𝛼|X\{𝑋0} has an idempotent skeleton, and by
the inductive hypothesis it satisfies the claim. From this we immediately derive that the
claim also holds for the original update 𝛼.
If 𝑋0 does not occur in 𝛼(𝑋0), then 𝛼(𝑋0) still contains at least one occurrence of another
variable, since �̂�(𝑋0) ≠ 𝜀. So, suppose that 𝛼(𝑋0) = ℎ𝑌 𝑡 for some ℎ, 𝑡 ∈ (X ∪Σ)∗ and𝑌 ∈ X.
Since 𝛼 is skeleton-idempotent, we have (𝛼𝛼) (𝑋0) = 𝛼(ℎ) 𝛼(𝑌 ) 𝛼(𝑡) = ℎ′𝑌 𝑡′ for some
ℎ′, 𝑡′ ∈ (X ∪ Σ∗). Now, if 𝑌 occurs in 𝛼(𝑌 ), then we can apply the inductive hypothesis on
the restriction 𝛼|X\{𝑌 }, as in the previous case, reaching a contradiction for 𝑋0. Otherwise,
if 𝑌 does not occur in 𝛼(𝑌 ), we also reach a contradiction by arguing as follows. Since 𝑌
occurs in 𝛼(ℎ) 𝛼(𝑌 ) 𝛼(𝑡) but not in 𝛼(𝑌 ), then it occurs in 𝛼(ℎ) 𝛼(𝑡). Since 𝑋0 is the unique
variable such that 𝑌 occurs in 𝛼(𝑋0) (because 𝛼 is copyless), necessarily 𝑋0 occurs in ℎ 𝑡

and hence in 𝛼(𝑋0) as well, which contradicts the initial assumption. ■

We conclude the proof of the lemma. Let 𝑋 ∈ X. If 𝛼(𝑋) does not contain any variable,
then we immediately get the result, as 𝛼𝑛(𝑋) = 𝛼(𝑋) for all 𝑛 ≥ 1. Otherwise, if 𝛼(𝑋) contains
some variable, then we know that �̂�(𝑋) ≠ 𝜀, so by the above claim, 𝑋 occurs in 𝛼(𝑋). Hence,
𝛼(𝑋) = ℎ 𝑋 𝑡 for some ℎ, 𝑡 ∈ (X ∪ Σ)∗. We now prove that 𝛼(ℎ) 𝛼(𝑡) ∈ Σ∗. Indeed, let 𝑌 be
any variable in ℎ 𝑡 (if there is no such variable then clearly 𝛼(ℎ) 𝛼(𝑡) contains no variable
either). Since 𝛼 is copyless, 𝑌 does not occur in 𝛼(𝑌 ), hence by the above claim (contrapositive),
�̂�(𝑌 ) = 𝜀, hence 𝛼(𝑌 ) ∈ Σ∗. We then derive (𝛼𝛼) (𝑋) = 𝛼(ℎ) 𝛼(𝑋) 𝛼(𝑡), where 𝛼(ℎ), 𝛼(𝑡) ∈ Σ∗,
and so we can take 𝑢 = 𝛼(ℎ) and 𝑣 = 𝛼(𝑡). To conclude, we have 𝛼2(𝑋) = 𝑢𝛼(𝑋) 𝑣, so for 𝑛 > 2,
𝛼𝑛(𝑋) = 𝛼𝑛−2(𝛼2(𝑋)) = 𝛼𝑛−2(𝑢𝛼(𝑋) 𝑣) = 𝑢𝛼𝑛−1(𝑋) 𝑣, as claimed. ■

It follows that pumping loops in a run corresponds to introducing repeated copies of
factors in the output. Similar results can be found in [40] for SSTs and in [42, 22] for two-way
transducers:

COROLLARY 2 .6. Let 𝜌 be an accepting run of an SST and let 𝐿 = (𝐿1, . . . , 𝐿𝑚) be a tuple of
pairwise disjoint loops in 𝜌. Then, for some 𝑟 ≤ 2𝑚|X| there exist words 𝑤0, . . . , 𝑤𝑟, 𝑢1, . . . , 𝑢𝑟 and
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indices 1 ≤ 𝑖1, . . . , 𝑖𝑟 ≤ 𝑚, not necessarily distinct, such that for every tuple �̄� = (𝑛1, . . . , 𝑛𝑚) ∈ N𝑚
+

of positive natural numbers,

out(pump�̄�
𝐿
(𝜌)) = 𝑤0 𝑢

𝑛𝑖1−1
1 𝑤1 . . . 𝑢

𝑛𝑖𝑟−1
𝑟 𝑤𝑟 .

PROOF . This follows immediately from Lemma 2.5. Note that the content of any variable 𝑋

just after pumping a loop either appears as infix of the final output, or is erased by some later
update. In both cases, each pumped loop 𝐿𝑖 induces in the output (𝑛𝑖 − 1)-folded repetitions
of 2𝑘 (possibly empty) factors, where 𝑘 is the number of variables of the SST. Since the loops
are pairwise disjoint, they contribute such factors without any interference. The final output
out(pump�̄�

𝐿
(𝜌)) thus features repetitions of 𝑟 = 2𝑘𝑚 (possibly empty) factors. ■

The rest of the section analyses properties of words with repeated factors like the one in
Corollary 2.6.

DEF IN IT ION 2 .7. A word inequality with repetitions parametrized in X is a pair 𝑒 = (𝑤,𝑤′) of
terms of the form

𝑤 = 𝑠0 𝑡
x1
1 𝑠1 . . . 𝑡x𝑚𝑚 𝑠𝑚

𝑤′ = 𝑠′0 𝑡
′
1
y1 𝑠′1 . . . 𝑡′𝑛

y𝑛 𝑠′𝑛

where 𝑠𝑖 , 𝑡𝑖 , 𝑠
′
𝑗
, 𝑡′

𝑗
∈ Σ∗ and x𝑖 , y 𝑗 ∈ X for all 𝑖, 𝑗. The set of solutions of 𝑒 = (𝑤,𝑤′), denoted Sols(𝑒),

consists of the mappings 𝑓 : X → N such that 𝑓 (𝑤) ≠ 𝑓 (𝑤′), where 𝑓 (𝑤) is the word obtained
from 𝑤 by substituting every formal parameter x ∈ X by 𝑓 (x), and similarly for 𝑓 (𝑤′). A system
of word inequalities is a non-empty finite set 𝐸 of inequalities as above, and its set of solutions is
given by Sols(𝐸) = ⋂

𝑒∈𝐸 Sols(𝑒).

The next theorem states that if there exists a solution to a system of inequalities parame-
terized by a single variable x, then the set of solutions is co-finite.

THEOREM 2.8 ([43, Theorem 4.3]). Given a word inequality 𝑒 with repetitions parameterized
by single variable x, Sols(𝑒) is either empty or co-finite; more precisely, if the left (resp. right)
hand-side of 𝑒 contains 𝑚 (resp. 𝑛) repeating patterns (as in Definition 2.7), then either Sols(𝑒) = ∅
or |N \ Sols(𝑒) | ≤ 𝑚 + 𝑛.

Finally, we present two corollaries of the above theorem, that will be used later. The
first corollary concerns satisfiability of a system of inequalities. Formally, we say that a word
inequality 𝑒 (resp. a system of inequalities 𝐸) is satisfiable if its set of solutions is non-empty.

COROLLARY 2 .9. Let 𝐸 be a finite system of word inequalities. If every inequality 𝑒 ∈ 𝐸 is
satisfiable, then so is the system 𝐸.
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y

𝑔′∅

𝑔′′∅

𝑔′{x}

𝑔′′{x}

𝑔′{x,y} = 𝑔′′{x,y}

Th. 2.8

Th. 2.8

Th
.2

.8

Th.2.8

Figure 1. Illustration of an argument for the proof of Corollary 2.9

PROOF . All inequalities considered hereafter have parameters in X = {x1, . . . , x𝑘}. We are
going to compare functions from X to N based on suitable partial orders, each parametrized by
a variable. Formally, given two functions 𝑓 , 𝑔 : X → N and a variable x ∈ X, we write 𝑓 ≤x 𝑔 iff
𝑓 (x) ≤ 𝑔 (x) and 𝑓 (y) = 𝑔 (y) for all y ∈ X \ {x}. We prove the following two properties (the first
property is equivalent to the claim of the lemma):∧

𝑒∈𝐸
∃ 𝑓 ∈ Sols(𝑒) → ∃𝑔 ∈ Sols(𝐸) (1)

∀ 𝑓 ∈ Sols(𝐸) ∀x ∈ X ∃𝑔 ≥x 𝑓 ∀ℎ ≥x 𝑔 : ℎ ∈ Sols(𝐸) (2)

The proof goes by double induction on the cardinality of 𝐸 and the number 𝑘 of parameters.
The base case is when 𝐸 has cardinality 1. In this case Property (1) holds trivially. We

see how Property (2) follows from Theorem 2.8. Let 𝐸 = {𝑒}, 𝑓 ∈ Sols(𝑒), and fix an arbitrary
variable x ∈ X. We construct the inequality 𝑒′ with x as single formal parameter, by instantiating
in 𝑒 every other parameter y ∈ X \ {x} with the value 𝑓 (y). By construction, 𝑓 restricted to {x} is
a solution of 𝑒′, and thus, by Theorem 2.8, Sols(𝑒′) is co-finite. This means that there is a number
𝑥0 ∈ N such that 𝑥0 ≥ 𝑓 (x) and, for all 𝑥1 ≥ 𝑥0, the mapping x ↦→ 𝑥1 is a solution to 𝑒′ as well.
This property can be transferred to the original inequality 𝑒, as follows. We define 𝑔 = 𝑓 [x/𝑥1]
as the function obtained from 𝑓 by replacing the image of x with 𝑥1. Note that 𝑔 ≥x 𝑓 and, for
all ℎ ≥x 𝑔 , ℎ ∈ Sols(𝑒). This proves Property (2).

As for the inductive step, suppose that 𝐸 is a system with at least two inequalities, and
divide 𝐸 into two sub-systems, 𝐸′ and 𝐸′′, with cardinalities strictly smaller than that of 𝐸.
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Let us first prove Property (1) for 𝐸. Suppose that every inequality in 𝐸 is satisfiable. By
the inductive hypothesis, 𝐸′ and 𝐸′′ are also satisfiable; in particular, there exist solutions 𝑔′

and 𝑔′′ of 𝐸′ and 𝐸′′, respectively. We proceed with a second induction to prove that, for larger
and larger sets of variables Y ⊆ X, there are solutions of 𝐸′ and 𝐸′′ that agree on all the variables
from Y, namely:

∃𝑔′Y ∈ Sols(𝐸′) ∃𝑔′′Y ∈ Sols(𝐸′′) ∀y ∈ Y 𝑔′Y(y) = 𝑔′′Y (y) . (★)

Of course, for Y = X, the above property will imply the existence of a solution of 𝐸. The reader
can refer to Figure 1 as an illustration of the arguments that follow (axes correspond to variables,
and red and blue dots represent solutions of the systems 𝐸′ and 𝐸′′, respectively).

For Y = ∅, the claim (★) is trivial, since we can simply let 𝑔′∅ = 𝑔′ and 𝑔′′∅ = 𝑔′′. For the
inductive step, suppose that (★) holds for Y and let us prove it also holds for Y′ = Y ⊎ {x}.
By inductive hypothesis, 𝐸′ and 𝐸′′ satisfy Property (2). In particular, by instantiating 𝑓 with
𝑔′Y (resp. 𝑔′′Y ) in Property (2), we obtain the existence of 𝑔′ ≥x 𝑔′Y such that, for all ℎ′ ≥x 𝑔′,
ℎ′ ∈ Sols(𝐸′) (resp. 𝑔′′ ≥x 𝑔′′Y such that, for all ℎ′′ ≥x 𝑔′′, ℎ′′ ∈ Sols(𝐸′′)). Note that the functions
𝑔′Y, 𝑔′′Y , 𝑔′, 𝑔′′ all agree on the variables from Y. Moreover, without loss of generality, we can
assume that 𝑔′ and 𝑔′′ also agree on the variable x: indeed, if this were not the case, we could
simply replace the x-images of 𝑔′ and 𝑔′′ with max{𝑔′(x), 𝑔′′(x)}, without affecting the previous
properties. Property (★) now follows from letting 𝑔′Y′ = 𝑔′ and 𝑔′′Y′ = 𝑔′′. This concludes the proof
of the inductive step for Property (1).

Let us now prove the inductive step for Property (2). Let 𝑓 be a solution of 𝐸 and let x ∈ X.
Since both 𝐸′ and 𝐸′′ satisfy Property (2) and since 𝑓 ∈ Sols(𝐸′) ∩ Sols(𝐸′′), there are 𝑔′, 𝑔′′ ≥x 𝑓

such that, for all ℎ′ ≥x 𝑔′ and ℎ′′ ≥x 𝑔′′, ℎ′ ∈ Sols(𝐸′) and ℎ′′ ∈ Sols(𝐸′′). Since 𝑔′, 𝑔′′ ≥x 𝑓 , 𝑔′

and 𝑔′′ agree on all variables, except possibly x. Without loss of generality, we can also assume
that 𝑔′ and 𝑔′′ agree on x: as before, if this were not the case, we could replace the x-images of
𝑔′ and 𝑔′′ with max{𝑔′(x), 𝑔′′(x)}, while preserving the previous properties. Now that we have
𝑔′ = 𝑔′′, we can use this function to witness Property (2), since, for all ℎ ≥x 𝑔′ (= 𝑔′′), we have
ℎ ∈ Sols(𝐸′) ∩ Sols(𝐸′′) = Sols(𝐸). ■

The second corollary is related to the existence of large sets of solutions for a satisfiable
word inequality that avoid any correlation between variables. To formalize the statement, it
is convenient to fix a total order on the variables of the inequality, say x1, . . . , x𝑘, and then
identify every function 𝑓 : X → Nwith the 𝑘-tuple of values 𝑥 = (𝑥1, . . . , 𝑥𝑘), where 𝑥𝑖 = 𝑓 (x𝑖)
for all 𝑖 = 1, . . . , 𝑘. According to this correspondence, the corollary states the existence of sets of
solutions that look like Cartesian products of finite intervals of values, each with arbitrarily
large cardinality. The statement of the corollary is in fact slightly more complicated than this,
as it discloses dependencies between the intervals. We also observe that the order in which we
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x1

x2

{𝑥1} × {𝑥2}

∃ℓ1 ∀ℎ1

[ℓ1, ℎ1] × {𝑥2}

∃ℓ2

∀ℎ2 [ℓ1, ℎ1] × [ℓ2, ℎ2]

Th. 2.8

Th.2.8

Th.2.8

Th.2.8

Th.2.8

Figure 2. Illustration of an argument for the proof of Corollary 2.10

list the variables is arbitrary, but different orders will induce different dependencies between
intervals.

COROLLARY 2 .10. Let 𝑒 be a word inequality with repetitions parametrized in X = {x1, . . . , x𝑘}.
If 𝑒 is satisfiable, then

∃ℓ1 ∀ℎ1 . . . ∃ℓ𝑘 ∀ℎ𝑘
[ℓ1, ℎ1]︸  ︷︷  ︸

values for x1

× . . . × [ℓ𝑘, ℎ𝑘]︸  ︷︷  ︸
values for x𝑘

⊆ Sols(𝑒).

PROOF . Let 𝑒 be a satisfiable word inequality parametrized in X and let 𝑥 = (𝑥1, . . . , 𝑥𝑘) be any
solution of 𝑒. We will prove the following claim by induction on 𝑖 = 0, . . . , 𝑘:

∃ℓ1 ∀ℎ1 . . . ∃ ℓ𝑖 ∀ℎ𝑖
[ℓ1, ℎ1] × · · · × [ℓ𝑖 , ℎ𝑖] × {𝑥𝑖+1} × · · · × {𝑥𝑘} ⊆ Sols(𝑒) (★)

Note that for 𝑖 = 𝑘 the above claim coincides with the statement of the corollary. The reader
can also refer to Figure 2 as an illustration of the arguments that follow (axes correspond
to variables x1 and x2, dots represent generic solutions of 𝑒, clusters of black dots represent
solutions in the form of Cartesian products, like those that appear in (★).

For the base case 𝑖 = 0, the claim (★) is vacuously true, as 𝑥 = (𝑥1, . . . , 𝑥𝑘) is a solution of 𝑒.
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For the inductive step, we need to show that if (★) holds for 𝑖 < 𝑘, then it also holds for
𝑖 + 1. It is in fact sufficient to prove that, for 𝑖 < 𝑘,

[ℓ1, ℎ1] × · · · × [ℓ𝑖 , ℎ𝑖] × {𝑥𝑖+1} × · · · × {𝑥𝑘} ⊆ Sols(𝑒)

implies

∃ℓ𝑖+1 ∀ℎ𝑖+1

[ℓ1, ℎ1] × · · · × [ℓ𝑖+1, ℎ𝑖+1] × {𝑥𝑖+2} × · · · × {𝑥𝑘} ⊆ Sols(𝑒).

For brevity, we let 𝑆 = [ℓ1, ℎ1] × · · · × [ℓ𝑖 , ℎ𝑖] × {𝑥𝑖+1} × · · · × {𝑥𝑘}, and we assume that 𝑆 ⊆ Sols(𝑒).
For every tuple 𝑠 ∈ 𝑆, we consider the word inequality 𝑒𝑠 over a single variable x𝑖+1 that is
obtained from 𝑒 by instantiating every other variable x 𝑗 ( 𝑗 ≠ 𝑖) with 𝑠[ 𝑗]. Since 𝑆 ⊆ Sols(𝑒), we
know that 𝑒 �̄� is satisfiable, and hence by Theorem 2.8, 𝑒𝑠 has co-finitely many solutions. This
means that there is ℓ𝑠 such that, for all 𝑥′ ≥ ℓ𝑠, 𝑥′ is also a solution of 𝑒𝑠. This property can be
transferred to our original inequality 𝑒:

CLAIM. For every 𝑠 ∈ 𝑆, there is ℓ𝑠 such that, for every 𝑥′ ≥ ℓ𝑠, the tuple 𝑠[𝑖 + 1 ↦→ 𝑥′], obtained
from 𝑠 by replacing the (𝑖 + 1)-th value with 𝑥′, is a solution of 𝑒.

Now, the existentially quantified value ℓ𝑖+1 can be set to the maximum of the ℓ𝑠’s, for all
𝑠 ∈ 𝑆 (for this definition to make sense, it is crucial that the set 𝑆 is finite). In this way, thanks
to the previous claim, the containment [ℓ1, ℎ1] × · · · × [ℓ𝑖+1, ℎ𝑖+1] × {𝑥𝑖+2} × · · · × {𝑥𝑘} ⊆ Sols(𝑒)
holds for all choices of the universally quantified value ℎ𝑖+1. This proves the inductive step for
(★) from 𝑖 to 𝑖 + 1. ■

2.2 Delay between accepting runs

We briefly recall the definitions from [25], that introduces a measure of similarity (called delay)
between accepting runs of an SST that have the same input and the same output.

We first give some intuition, followed by definitions and an example. Naturally, the
difference between the amount of output symbols produced during a run should be an indicator
of (dis)similarity. However, as SSTs do not necessarily build their output from left to right,
one must also take into account the position where an output symbol is placed. For example,
compare two runs 𝜌 and 𝜌′ on the same input that produce the same output 𝑎𝑎𝑎𝑏𝑏𝑏. After
consuming a prefix of the input, 𝜌 may have produced 𝑎𝑎𝑎 and 𝜌′ may have produced

𝑏𝑏𝑏. The amount of produced output symbols is the same, but the runs are delayed because
𝜌 built the output from the left, whereas 𝜌′ did it from the right. This idea of delay comes with
an important caveat. As another example, consider two runs 𝜌 and 𝜌′ on the same input that
produce the same output 𝑎𝑎𝑎𝑎𝑎𝑎, and assume that, after consuming the same prefix of the
input, 𝜌 and 𝜌′ produced 𝑎𝑎𝑎 and 𝑎𝑎𝑎, respectively. Note that the output 𝑎𝑎𝑎𝑎𝑎𝑎 is a
periodic word. Hence, it does not matter if 𝑎𝑎𝑎 is appended or prepended to a word with period
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𝑎. In general, one copes with this phenomenon by dividing the output into periodic parts, where
all periods are bounded by a well-chosen parameter 𝐶. So, intuitively, the delay measures the
difference between the numbers of output symbols that have been produced by the two runs,
up to the end of each of periodic factor. The number of produced output symbols is formally
captured by a weight function, defined below, and the delay aggregates the weight differences.

For an accepting run 𝜌, a position 𝑡 of 𝜌, and a position 𝑗 in the output out(𝜌), we denote
by weight𝑡𝑗 (𝜌) the number of output positions 𝑗′ ≤ 𝑗 that are produced by the prefix of 𝜌 up to
position 𝑡. We use the above notation when 𝑗 witnesses a change in a repeating pattern of the
output. These changes in repeating patterns are called cuts, as formalized below.

Let 𝑤 be any non-empty word (e.g. the output of 𝜌 or a factor of it). The primitive root of 𝑤,
denoted root(𝑤), is the shortest word 𝑟 such that 𝑤 ∈ {𝑟}∗. For a fixed integer 𝐶 > 0 we define
a factorization 𝑤[1, 𝑗1], 𝑤[ 𝑗1 + 1, 𝑗2], . . . , 𝑤[ 𝑗𝑛 + 1, 𝑗𝑛+1] of 𝑤 in which every 𝑗𝑖 is chosen as the
rightmost position for which 𝑤[ 𝑗𝑖−1 + 1, 𝑗𝑖] has primitive root of length not exceeding 𝐶. These
positions 𝑗1, . . . , 𝑗𝑛 are called 𝐶-cuts. More precisely:

the first 𝐶-cut of 𝑤 is the largest position 𝑗 ≤ |𝑤|, such that |root(𝑤[1, 𝑗]) | ≤ 𝐶;
if 𝑗 is the 𝑖-th 𝐶-cut of 𝑤, then the (𝑖 + 1)-th 𝐶-cut of 𝑤 is the largest position 𝑗′ > 𝑗 such
that |root(𝑤[ 𝑗 + 1, 𝑗′]) | ≤ 𝐶.

We denote by 𝐶-cuts(𝑤) the set of all 𝐶-cuts of 𝑤.
We are now ready to define the notion of delay. Consider two accepting runs 𝜌, 𝜌′ of an SST

with the same input 𝑢 = in(𝜌) = in(𝜌′) and the same output 𝑤 = out(𝜌) = out(𝜌′), and define:

𝐶-delay(𝜌, 𝜌′) = max
𝑡≤|𝑢|,

𝑗 ∈ 𝐶-cuts(𝑤)

��weight𝑡𝑗 (𝜌) − weight𝑡𝑗 (𝜌
′)
��

In other words, the delay between two such runs 𝜌 and 𝜌′ measures over all input positions the
maximal difference between the amount of generated output, but only up to 𝐶-cuts of the output.
Note that the delay is only defined for accepting runs with same input and output. So whenever
we write 𝐶-delay(𝜌, 𝜌′), we implicitly mean that 𝜌, 𝜌′ have same input and same output.

EXAMPLE 2 .1 1. Let 𝑤 = 𝑎𝑏𝑐𝑐𝑐𝑏𝑏 be the output of runs 𝜌, 𝜌′ on the same input of length 2.
Assume 𝜌 produces 𝑎𝑏𝑐 𝑏𝑏 and then 𝑎𝑏𝑐𝑐𝑐𝑏𝑏, whereas 𝜌′ produces 𝑐 𝑏𝑏 and then 𝑎𝑏𝑐𝑐𝑐𝑏𝑏.
For 𝐶 = 2, we obtain 2-cuts(𝑤) = {2, 5, 7}, i.e., 𝑤 is divided into 𝑎𝑏|𝑐𝑐𝑐|𝑏𝑏. To compute the
2-delay(𝜌, 𝜌′), we need to calculate weights at cuts. For 𝑡 = 0, weight0

𝑗 (𝜌) = weight0
𝑗 (𝜌′) = 0 for

all 𝑗 ∈ 2-cuts(𝑤) because nothing has been produced. For 𝑡 = 2, weight2
𝑗 (𝜌) = weight2

𝑗 (𝜌′) = 𝑗

for all 𝑗 ∈ 2-cuts(𝑤) because the whole output has been produced. Only the case 𝑡 = 1 has an
impact on the delay. We have weight1

2(𝜌) = 2, weight1
5(𝜌) = 3, and weight1

7(𝜌) = 5. Also, we have
weight1

2(𝜌′) = 0, weight1
5(𝜌) = 1, and weight1

7(𝜌) = 3. Hence, we obtain 2-delay(𝜌, 𝜌′) = 2. ■

We recall below some crucial results obtained in [25]. A first result shows that the relation
of pairs of runs having bounded delay (for a fixed bound) is automatic — for this to make sense,
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we view a run of an SST as a finite word, with letters representing transitions, and we recall
that a relation is automatic if its convolution language is regular.

LEMMA 2.12 ([25, Theorem 5]). Given an SST and some numbers 𝐶, 𝐷, the relation consisting of
pairs of accepting runs (𝜌, 𝜌′) such that 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 is automatic.

PROOF . The statement in [25, Theorem 5] is not for runs of SSTs, but for sequences of updates.
One can easily build an automaton that checks if two sequences of transitions, encoded by
their convolution, form accepting runs 𝜌, 𝜌′ of the given SST on the same input. The remaining
condition 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 only depends on the underlying sequences of updates determined
by 𝜌 and 𝜌′, and can be checked using [25, Theorem 5]. ■

A second result shows that given two runs with large delay, one can find a set of positions
on the input (the cardinality of which depends on how large the delay is) in such a way that
any interval starting just before any of these positions and ending just after any other of these
positions is a loop on both runs such that, when pumped, produces different outputs. Roughly,
the reason for obtaining different outputs is that pumping creates a misalignment between
𝐶-cuts that were properly aligned before pumping, and different periods cannot overlap. By
this last result, large delay intuitively means “potentially different outputs”.

LEMMA 2.13 ([25, Lemma 6]). Given an SST, one can compute4 some numbers 𝐶, 𝐷 such that,
for all 𝑚 ≥ 1 and all runs 𝜌, 𝜌′: if 𝐶𝑚-delay(𝜌, 𝜌′) > 𝐷𝑚2, then there exist 𝑚 positions 0 ≤ ℓ1 <

· · · < ℓ𝑚 ≤ |𝜌| such that, for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, the interval 𝐿𝑖, 𝑗 = [ℓ𝑖 , ℓ 𝑗] is a loop on both 𝜌

and 𝜌′ and satisfies
out(pump2

𝐿𝑖, 𝑗
(𝜌)) ≠ out(pump2

𝐿𝑖, 𝑗
(𝜌′)).

To reason about finite valuedness we will need to consider several accepting runs on the
same input, with pairwise large delays. By Lemma 2.13, every two such runs can be pumped so
as to witness different outputs. The crux however is to show that these runs can be pumped
simultaneously so as to get pairwise different outputs. This is indeed possible thanks to:

LEMMA 2.14. Let 𝐶, 𝐷 be computed as in Lemma 2.13, and 𝑘 be an arbitrary number. Then
one can compute a number 𝑚 such that, for all runs 𝜌0, . . . , 𝜌𝑘 on the same input and with∧

0≤𝑖< 𝑗≤𝑘

(
out(𝜌𝑖) ≠ out(𝜌 𝑗) ∨ 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2) , there is a tuple 𝐿 = (𝐿𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 of

disjoint intervals that are loops on all runs 𝜌0, . . . , 𝜌𝑘, and there is a tuple �̄� = (𝑛𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 of
positive numbers such that

for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , out(pump�̄�
𝐿
(𝜌𝑖)) ≠ out(pump�̄�

𝐿
(𝜌 𝑗)) .

4 We remark that the notation and the actual bounds here differ from the original presentation of [25], mainly due to
the fact that here we manipulate runs with explicit states and loops with idempotent skeletons. In particular, the
parameters 𝐶, 𝐷, 𝑚 here correspond respectively to the values 𝑘𝐸2, ℓ𝐸4, 𝐶𝐸2 with 𝑘, ℓ, 𝐶 as in [25, Lemma 6], and 𝐸 as in
our Lemma 2.4.
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PROOF . We first define 𝑚. Let 𝐸, 𝐻 be as in Lemma 2.4, and set 𝑚 := 𝑚0 + 1 for the sequence
𝑚0, . . . , 𝑚𝑘−1 defined inductively by 𝑚𝑘−1 := 𝑘(𝑘 + 1), and 𝑚ℎ := 𝐸𝑚𝐻

ℎ+1.
We show how to pump the runs in such a way that all pairs of indices 𝑖 < 𝑗 witnessing

𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2 before pumping, will witness different outputs after pumping. Consider
one such pair (𝑖, 𝑗), with 𝑖 < 𝑗, such that 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2, so in particular, out(𝜌𝑖) =
out(𝜌 𝑗) (if there is no such pair, then all runs have pairwise different outputs, and so we are

already done). We apply Lemma 2.13 and obtain a set 𝐼𝑖, 𝑗,0 of 𝑚 = 𝑚0 + 1 positions such that
each interval 𝐿 = [ℓ, ℓ′] with ℓ, ℓ′ ∈ 𝐼𝑖, 𝑗,0 is a loop on both 𝜌𝑖 and 𝜌 𝑗 , and:

out(pump2
𝐿(𝜌𝑖)) ≠ out(pump2

𝐿(𝜌 𝑗)). (3)

Then, by repeatedly using Lemma 2.4, we derive the existence of sets 𝐼𝑖, 𝑗,𝑘−1 ⊆ · · · ⊆ 𝐼𝑖, 𝑗,1 ⊆ 𝐼𝑖, 𝑗,0

with |𝐼𝑖, 𝑗,ℎ | = 𝑚ℎ + 1 such that each interval 𝐿 = [ℓ, ℓ′] with ℓ, ℓ′ ∈ 𝐼𝑖, 𝑗,ℎ is a loop on 𝜌𝑖 , 𝜌 𝑗 , and ℎ

further runs from 𝜌0, . . . , 𝜌𝑘 (our definition of 𝑚 from the beginning of the proof is tailored to
this repeated application of Lemma 2.4, because |𝐼𝑖, 𝑗,ℎ | = 𝑚ℎ + 1 = 𝐸𝑚𝐻

ℎ+1 + 1). In particular, all
intervals with endpoints in 𝐼𝑖, 𝑗,𝑘−1 are loops on all the 𝜌0, . . . , 𝜌𝑘.

In this way, for each pair 𝑖 < 𝑗 such that 𝜌𝑖 and 𝜌 𝑗 have large delay, we obtain 𝑘(𝑘 + 1)
adjacent intervals that are loops on all runs and that satisfy the pumping property (3) from
above.

As there are at most 𝑘(𝑘 + 1) pairs of runs, we can now choose from the sets of intervals
that we have prepared one interval 𝐿𝑖, 𝑗 for each pair 𝑖 < 𝑗 with 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2, in
such a way that all the chosen intervals are pairwise disjoint (for example, we could do so by
always picking among the remaining intervals the one with the left-most right border, and then
removing all intervals that intersect this one). The selected intervals 𝐿𝑖, 𝑗 thus have the following
properties:

1. 𝐿𝑖, 𝑗 is a loop on all runs 𝜌0, . . . , 𝜌𝑘,
2. 𝐿𝑖, 𝑗 is disjoint from every other interval 𝐿𝑖′, 𝑗′ ,
3. out(pump2

𝐿𝑖, 𝑗
(𝜌𝑖)) ≠ out(pump2

𝐿𝑖, 𝑗
(𝜌 𝑗)).

If a pair 𝑖 < 𝑗 of runs is such that out(𝜌𝑖) ≠ out(𝜌 𝑗), then we set 𝐿𝑖, 𝑗 as an empty loop.
Now, let 𝐿 = (𝐿𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 be the tuple of chosen intervals, and consider the following

system of word inequalities with formal parameters (x𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘 =: x̄:

for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , out(pumpx̄
𝐿
(𝜌𝑖)) ≠ out(pumpx̄

𝐿
(𝜌 𝑗)) .

Here, the value of the formal parameter x𝑖, 𝑗 determines how often the loop 𝐿𝑖, 𝑗 is pumped. By
Corollary 2.6, this corresponds to a word inequality in the parameters x𝑖, 𝑗 .

Note that there is one such inequality for each pair of runs 𝜌𝑖 , 𝜌 𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 𝑘. By
the choice of the intervals in 𝐿, each of the inequalities is satisfiable: indeed, the inequality for
𝜌𝑖 , 𝜌 𝑗 is satisfied by letting x𝑖′, 𝑗′ = 1 if 𝑖′ ≠ 𝑖 or 𝑗′ ≠ 𝑗, and x𝑖, 𝑗 = 2 otherwise.
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By Corollary 2.9, the system of inequalities is also satisfiable with a tuple �̄� = (𝑛𝑖, 𝑗)0≤𝑖< 𝑗≤𝑘

of numbers, as claimed in the lemma. ■

3. The Decomposition Theorem

This section is devoted to the proof of the Decomposition Theorem:

THEOREM 1.2. (Restated) For all 𝑘 ∈ N, every 𝑘-valued SST can be effectively decomposed
into a union of 𝑘 single-valued (or even deterministic) SSTs. The complexity of the construction is
elementary.

Our proof relies on the notion of cover of an SST, which is reminiscent of the so-called
“lag-separation covering” construction [21, 46]. Intuitively, given an SST 𝑇 and two integers
𝐶, 𝐷 ∈ N, we construct an SST Cover𝐶,𝐷(𝑇 ) that is equivalent to 𝑇 , yet for each input 𝑢 it only
admits pairs of accepting runs with different outputs or 𝐶-delay larger than 𝐷. The crucial point
will be that Cover𝐶,𝐷(𝑇 ) is 𝑘-ambiguous when 𝑇 is 𝑘-valued.

PROPOS IT ION 3.1. Given an SST 𝑇 and two numbers 𝐶, 𝐷, one can compute an SST called
Cover𝐶,𝐷(𝑇 ) such that

1. Cover𝐶,𝐷(𝑇 ) is equivalent to 𝑇 ;
2. for every two accepting runs 𝜌 ≠ 𝜌′ of Cover𝐶,𝐷(𝑇 ) having the same input, either out(𝜌) ≠

out(𝜌′) or 𝐶-delay(𝜌, 𝜌′) > 𝐷;
3. every accepting run of Cover𝐶,𝐷(𝑇 ) can be projected onto an accepting run of 𝑇 .

PROOF . We order the set of accepting runs of 𝑇 lexicographically, and we get rid of all the runs
for which there exists a lexicographically smaller run with the same input, the same output,
and small delay. Since all these conditions are encoded by regular languages, the remaining set
of runs is also regular, and this can be used to construct an SST Cover𝐶,𝐷(𝑇 ) that satisfies the
required properties.

We now give more details about this construction. Let 𝑅 denote the set of all accepting
runs of 𝑇 . Remark that 𝑅 is a language over the alphabet consisting of transitions of 𝑇 , and it is
recognized by the underlying automaton of 𝑇 , so it is regular. Let

Sep𝐶,𝐷(𝑅) =
{
𝜌 ∈ 𝑅

�� �𝜌′ ∈ 𝑅 . 𝜌′<𝜌 ∧ 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷
}
.

Recall that the delay is only defined for accepting runs with same input and same output, so
𝐶-delay(𝜌, 𝜌′) ≤ 𝐷 implies that in(𝜌) = in(𝜌′) and out(𝜌) = out(𝜌′). We show that

a) Sep𝐶,𝐷(𝑅) is a regular subset of 𝑅;
b) {(in(𝜌), out(𝜌)) | 𝜌 ∈ Sep𝐶,𝐷(𝑅)} = {(in(𝜌), out(𝜌)) | 𝜌 ∈ 𝑅};
c) for every pair of runs 𝜌, 𝜌′ ∈ Sep𝐶,𝐷(𝑅) over the same input, either out(𝜌) ≠ out(𝜌′) or

𝐶-delay(𝜌, 𝜌′) > 𝐷.
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Before proving these properties, let us show how to use them to conclude the proof of the
proposition:

We start with a DFA 𝐴 recognizing Sep𝐶,𝐷(𝑅), whose existence is guaranteed by Property a).
Note that the transitions of 𝐴 are of the form

(
𝑞, (𝑠, 𝑎, 𝛼, 𝑠′), 𝑞′

)
, where (𝑠, 𝑎, 𝛼, 𝑠′) is a transition

of 𝑇 . Without loss of generality, we assume that the source state 𝑞 of an 𝐴-transition determines
the source state 𝑠 of the corresponding 𝑇 -transition, and similarly for the target states 𝑞′ and
𝑠′. Thanks to this, we can turn 𝐴 into the desired SST Cover𝐶,𝐷(𝑇 ) by simply projecting away
the 𝑇 -states from the 𝑇 -transitions, namely, by replacing every transition

(
𝑞, (𝑠, 𝑎, 𝛼, 𝑠′), 𝑞′

)
with

(𝑞, 𝑎, 𝛼, 𝑞′). To complete the construction, we observe that if the state 𝑞′ is final in 𝐴, then the
corresponding state 𝑠′ is also final in 𝑇 (this is because 𝐴 recognizes only accepting runs of
𝑇 ). Accordingly, we can define the final update of Cover𝐶,𝐷(𝑇 ) so that it maps any final state 𝑞′

of 𝐴 to the final update 𝑂(𝑠′), as determined by the corresponding final state 𝑠′ in 𝑇 . Finally,
thanks to Properties b) and c), the SST Cover𝐶,𝐷(𝑇 ) constructed in this way clearly satisfies the
properties claimed in the proposition.

Let us now prove Properties a)–c).

Proof of Property a). Note that the set Sep𝐶,𝐷(𝑅) is obtained by combining the relations
𝑅, {(𝜌, 𝜌′) | 𝜌′ < 𝜌}, and {(𝜌, 𝜌′) | 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷} using the operations of intersection,
projection, and complement. Also recall that 𝑅 can be regarded a regular language, and that
{(𝜌, 𝜌′) | 𝜌′ < 𝜌} and {(𝜌, 𝜌′) | 𝐶-delay(𝜌, 𝜌′) ≤ 𝐷} are automatic relations (for the latter one
uses Lemma 2.12). It is also a standard result (cf. [31, 37, 13]) that automatic relations are closed
under intersection, projection, and complement. From this it follows that Sep𝐶,𝐷(𝑅) is a regular
language.

Proof of Property b). As Sep𝐶,𝐷(𝑅) ⊆ 𝑅, the left-to-right inclusion is immediate. To prove the
converse inclusion, consider an input-output pair (𝑢, 𝑣) in the right hand-side of the equation,
namely, (𝑢, 𝑣) is a pair in the relation realized by𝑇 . Let 𝜌 be the lexicographically least accepting
run of 𝑇 such that in(𝜌) = 𝑢 and out(𝜌) = 𝑣. By construction, 𝜌 ∈ Sep𝐶,𝐷(𝑅) and hence (𝑢, 𝑣)
also belongs to the left hand-side of the equation.

Proof of Property c). This holds trivially by the definition of Sep𝐶,𝐷(𝑅). ■

We can now present the missing ingredients of the decomposition result. Proposition
3.2 below shows that, for suitable choices of 𝐶 and 𝐷 that depend on the valuedness of 𝑇 ,
Cover𝐶,𝐷(𝑇 ) turns out to be 𝑘-ambiguous.

This will enable the decomposition result via a classical technique that decomposes any
𝑘-ambiguous automaton/transducer into a union of 𝑘 unambiguous ones (see Proposition 3.3
further below).

PROPOS IT ION 3.2. Let 𝑇 be a 𝑘-valued SST and let 𝐶, 𝐷, 𝑚 be as in Lemma 2.14 (note that 𝑚
depends on 𝑘). The SST Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) is 𝑘-ambiguous.
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PROOF . We prove the contrapositive of the statement. Assume that Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) is not
𝑘-ambiguous, that is, it admits 𝑘 + 1 accepting runs 𝜌0, . . . , 𝜌𝑘 on the same input. Recall from
Proposition 3.1 that for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘, either out(𝜌𝑖) ≠ out(𝜌 𝑗) or 𝐶𝑚-delay(𝜌𝑖 , 𝜌 𝑗) > 𝐷𝑚2.
By Lemma 2.14 we can find pumped versions of the runs 𝜌0, . . . , 𝜌𝑘 that have all the same input
but have pairwise different outputs, and thus 𝑇 is not 𝑘-valued. ■

PROPOS IT ION 3.3. For all 𝑘 ∈ N, every 𝑘-ambiguous SST can be decomposed into a union of 𝑘
unambiguous SSTs.

PROOF . The decomposition is done via a classical technique applicable to 𝑘-ambiguous NFA
and, by extension, to all variants of automata and transducers (see [36, 44]). More precisely,
decomposing a 𝑘-ambiguous NFA into a union of 𝑘 unambiguous NFA is done by ordering runs
lexicographically and by letting the 𝑖-th NFA in the decomposition guess the 𝑖-th accepting run
on a given input (if it exists). Since the lexicographic order is a regular property of pairs of runs,
it is easy to track all smaller runs. ■

Proof of Theorem 1.2. We now have all the ingredients to prove Theorem 1.2, which di-
rectly follows from Propositions 3.2 and 3.3, and the fact that unambiguous SSTs can be deter-
minized [6]. ■

4. Finite valuedness

We characterize finite valuedness of SSTs by excluding certain types of substructures. Our
characterization has strong analogies with the characterization of finite valuedness for one-way
transducers, where the excluded substructures have the shape of a “W” and are therefore called
W-patterns (cf. [21]).5

DEF IN IT ION 4.1. A W-pattern is a substructure of an SST consisting of states 𝑞1, 𝑞2, 𝑟1, 𝑟2, 𝑟3,
and some initial and final states, that are connected by runs as in the diagram of Figure 3.

In that diagram a notation like 𝜌 : 𝑢′/𝜇 describes a run named 𝜌 that consumes an input 𝑢′

and produces an update 𝜇. Moreover, the cyclic runs 𝜌′′1 , 𝜌′′2 , 𝜌′′3 , 𝜌′1𝜌
′′
1𝜌

′′′
1 , 𝜌′2𝜌

′′
2𝜌

′′′
2 , and 𝜌′3𝜌

′′
3𝜌

′′′
3

are required to be loops, namely, their updates must have idempotent skeletons.

An important feature of the above definition is that the small loops at states 𝑟1, 𝑟2, 𝑟3

consume the same input, i.e. 𝑣′′, and, similarly, the big loops at 𝑞1 and 𝑞2, as well as the runs
from 𝑞1 to 𝑞2, consume the same set of inputs, i.e. 𝑣′ (𝑣′′)∗ 𝑣′′′.

5 [21] used also other excluded substructures, but they can be seen as degenerate cases of W-patterns.
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𝑞1 𝑞2

𝑟1 𝑟2 𝑟3

initial
state

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌 ′1 :
𝑣 ′/𝛽 ′

𝜌′′1 : 𝑣′′/𝛽′′

𝜌 ′′′1 :
𝑣 ′′′/𝛽 ′′′

𝜌
′ 2
: 𝑣

′ /𝛾
′

𝜌′′2 : 𝑣′′/𝛾′′

𝜌 ′′′2 :
𝑣 ′′′/𝛾 ′′′ 𝜌

′ 3
: 𝑣

′ /𝜂
′

𝜌′′3 : 𝑣′′/𝜂′′

𝜌
′′′ 3

: 𝑣
′′′ /
𝜂
′′′

Figure 3. A W-pattern.

Given a W-pattern 𝑃 and a number 𝑥 ∈ N+, we construct the following runs by pumping
the small loops in the diagram of Figure 3 𝑥 times:

lft𝑥𝑃 = 𝜌′1(𝜌′′1 )𝑥 𝜌′′′1

mid𝑥
𝑃 = 𝜌′2 (𝜌′′2 )𝑥 𝜌′′′2

rgt𝑥𝑃 = 𝜌′3 (𝜌′′3 )𝑥 𝜌′′′3 .

Similarly, given a sequence 𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) of positive numbers with exactly
one element underlined (we call such a sequence a marked sequence), we define the accepting
run

run𝑃 (𝑠) = 𝜌0 lft𝑥1
𝑃 lft𝑥2

𝑃 . . . lft𝑥𝑖−1
𝑃︸                  ︷︷                  ︸

loops at 𝑞1

mid𝑥𝑖
𝑃 rgt𝑥𝑖+1

𝑃 rgt𝑥𝑖+2
𝑃 . . . rgt𝑥𝑛𝑃︸                       ︷︷                       ︸

loops at 𝑞2

𝜌4.

For each marked sequence 𝑠 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛), run𝑃 (𝑠) consumes the input

𝑢 𝑣′(𝑣′′)𝑥1𝑣′′′ . . . 𝑣′(𝑣′′)𝑥𝑛𝑣′′′𝑤

and produces an output of the form

out(run𝑃 (𝑠)) =
(
𝜄 𝛼 𝛽′(𝛽′′)𝑥1𝛽′′′ . . . 𝛽′(𝛽′′)𝑥𝑖−1𝛽′′′

𝛾′(𝛾′′)𝑥𝑖𝛾′′′

𝜂′(𝜂′′)𝑥𝑖+1𝜂′′′ . . . 𝜂′(𝜂′′)𝑥𝑛𝜂′′′ 𝜔𝜔′) (𝑋1)

where 𝜄 is the initial update and 𝜔′ is the final update determined by the final state of run𝑃 (𝑠).
Note that, differently from the output, the input only depends on the unmarked sequence, and
thus a W-pattern can have accepting runs that consume the same input and produce arbitrarily
many different outputs. As an example, consider a W-pattern as in Definition 4.1, where 𝛾′′
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is the only update that produces output symbols – say 𝛾′′ appends letter 𝑐 to the right of the
unique variable. Further suppose that 𝑢 = 𝑤 = 𝜀, 𝑣′ = 𝑣′′′ = 𝑎, and 𝑣′′ = 𝑏. So, on input
(𝑎𝑏𝑎) (𝑎𝑏2𝑎) . . . (𝑎𝑏𝑛𝑎), this W-pattern produces 𝑛 different outputs: 𝑐, 𝑐2, . . . , 𝑐𝑛. The definition
and the lemma below generalize this example.

DEF IN IT ION 4.2. A W-pattern 𝑃 is divergent if there is a 5-tuple of numbers 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈
N+ for which the two runs run𝑃 ((𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) and run𝑃 ((𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) produce differ-
ent outputs (recall that the runs consume the same input). It is called simply divergent if in
addition 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ {1, 2}.

THEOREM 4.3. An SST is finite-valued iff it does not admit a simply divergent W-pattern.

The two implications of the theorem are shown in Sections 4.2 and 4.3; effectiveness of the
characterization is shown in the next section.

4.1 Effectiveness of finite valuedness

We show in this section a PSpace decision procedure for the characterization of finite valuedness
in terms of absence of simply divergent W-patterns (Theorem 4.3). We also prove that the
equivalence problem for deterministic SSTs, known to be in PSpace, is polynomially reducible
to the finite valuedness problem. Despite recent efforts by the community to better understand
the complexity of the equivalence problem, it is unknown whether the PSpace upper bound for
equivalence (and hence for finite valuedness) can be improved, as no non-trivial lower bound
is known. On the other hand, equivalence (as well as finite valuedness) turns out to be in PTime
when the number of variables is fixed [9].

Our effectiveness procedure uses the following complexity result on the composition of
deterministic SSTs, which is of independent interest. It is known that deterministic SSTs are
closed under composition because of their equivalence to MSO transductions [6]. An automata-
based construction for composition is given in [10]. We show next an exponential construction
based on reversible transducers [19].

PROPOS IT ION 4.4. Let 𝑇1 and 𝑇2 be two deterministic SSTs realizing the functions 𝑓1 : Σ∗
1 → Σ∗

2

and 𝑓2 : Σ∗
2 → Σ∗

3, respectively Let 𝑛𝑖 (resp. 𝑚𝑖) be the number of states (resp. variables) of 𝑇𝑖 , and
𝑀 = 𝑛1+𝑛2+𝑚1+𝑚2. One can construct in time exponential in 𝑀 and polynomial in |Σ1 |+|Σ2 |+|Σ3 | a
deterministic SST realizing 𝑓1◦ 𝑓2, with exponentially many states and polynomially many variables
in 𝑀 .

PROOF . Each 𝑇𝑖 can be converted in polynomial time into an equivalent two-way transducer
that is reversible, i.e., both deterministic and co-deterministic [19]. Reversible two-way trans-
ducers can be easily seen to be composable in polynomial time [19], so we obtain a reversible
two-way transducer 𝑆 realizing 𝑓1 ◦ 𝑓2, with state space polynomial in 𝑀 . Finally, it suffices to
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convert 𝑆 back to a deterministic SST, which can be done in time exponential in the number
of states of 𝑆 and polynomial in the size of the alphabets. This yields a deterministic SST with
exponentially many states and polynomially many variables in 𝑀 (see e.g. [38, 20]). ■

THEOREM 1.5. (Restated) Given any SST 𝑇 , we can decide in PSpace if 𝑇 is finite-valued (and if
the number of variables is fixed then the complexity is PTime). Moreover, this problem is at least
as hard as the equivalence problem for deterministic SSTs.

PROOF . We start with an overview of the proof. By Theorem 4.3, it suffices to decide whether a
given SST 𝑇 admits a simply divergent W-pattern. Let us fix some tuple 𝑥 = (𝑥1, . . . , 𝑥5) ∈ {1, 2}5.
We construct an SST𝑇𝑥 which is not single-valued iff𝑇 has a W-pattern which is simply divergent
for 𝑥. Since checking single-valuedness of SST is decidable [9], we can decide finite valuedness
of𝑇 by solving single-valuedness problems for all SST𝑇𝑥 , for all tuples 𝑥 ∈ {1, 2}5. Intuitively, we
exhibit an encoding of W-patterns 𝑃 as words 𝑢𝑃, and show that the set of these encodings forms
a regular language. The encoding 𝑢𝑃 informally consists of the runs that form the W-pattern
𝑃, and some of these runs are overlapped to be able to check that they are on the same input.
Accordingly, the SST 𝑇𝑥 will take as input such an encoding 𝑢𝑃 and produce as outputs the two
words out(run𝑃 (𝑠)) and out(run𝑃 (𝑠′)), where 𝑠 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) and 𝑠′ = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5).
To achieve this, 𝑇𝑥 can consume the input 𝑢𝑃 while iterating the encoded runs as prescribed by
𝑠 or 𝑠′ and simulating the transitions to construct the appropriate outputs. Finally, an analysis
of the size of 𝑇𝑥 and of the algorithm from [9] for checking single-valuedness gives the PSpace
upper bound.

Detailed reduction We now explain in detail the reduction to the single-valuedness problem.
We will then show how to derive the PSpace upper bound by inspecting the decidability proof
for single-valuedness.

Let𝑇 = (Σ,X, 𝑄, 𝑄init, 𝑄final, 𝑂, Δ) be the given SST and let P be the set of all W-patterns of𝑇 .
We first show that P is a regular set, modulo some well-chosen encodings of W-patterns as words.
Recall that a W-pattern consists of a tuple of runs 𝑃 = (𝜌0, 𝜌

′
1, 𝜌

′′
1 , 𝜌

′′′
1 , 𝜌′2, 𝜌

′′
2 , 𝜌

′′′
2 , 𝜌′3, 𝜌

′′
3 , 𝜌

′′′
3 , 𝜌4),

connected as in the diagram of Definition 4.1. Note that some of those runs share a common
input (e.g. 𝜌′′1 , 𝜌

′′
2 , 𝜌

′′
3 share the input 𝑣′′). Therefore, we cannot simply encode 𝑃 as a sequence

of runs 𝜌0, 𝜌
′
1, . . . , as otherwise regularity would be lost. Instead, in the encoding we overlap

groups of runs over the same input, precisely, the group {𝜌′1, 𝜌′2, 𝜌′3} on input 𝑣′, the group
{𝜌′′1 , 𝜌′′2 , 𝜌′′3 } on input 𝑣′′, and the group {𝜌′′′1 , 𝜌′′′2 , 𝜌′′′3 } on input 𝑣′′′. Formally, this is done by
taking the convolution of the runs in each group, which results in a word over the alphabet Δ3.
Accordingly, 𝑃 is encoded as the word

𝑢𝑃 = 𝜌0 # (𝜌′1 ⊗ 𝜌′2 ⊗ 𝜌′3) # (𝜌′′1 ⊗ 𝜌′′2 ⊗ 𝜌′′3 ) # (𝜌′′′1 ⊗ 𝜌′′′2 ⊗ 𝜌′′′3 ) # 𝜌4
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where # is a fresh separator. The language 𝐿P = {𝑢𝑃 | 𝑃 ∈ P}, consisting of all encodings of
W-patterns, is easily seen to be regular, recognizable by some automaton 𝐴P which checks that
runs forming each convolution share the same input and verify skeleton idempotency (recall
that skeletons form a finite monoid). The number of states of the automaton 𝐴P turns out to be
polynomial in the number of states of 𝑇 and in the size of the skeleton monoid, which in turn is
exponential in the number of variables.

Next, we construct the SST 𝑇𝑥 as the disjoint union of two deterministic SSTs 𝑇𝑠 and 𝑇𝑠′ ,
where 𝑠 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) and 𝑠′ = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). We only describe 𝑇𝑠, as the construction
of 𝑇𝑠′ is similar. The SST 𝑇𝑠 is obtained as a suitable restriction of the composition of two
deterministic SSTs 𝑇 𝑠

iter and 𝑇exec, which respectively iterate the runs as prescribed by 𝑠 and
execute the transitions read as input. When fed with the encoding 𝑢𝑃 of a W-pattern, 𝑇 𝑠

iter needs
to output run𝑃 (𝑠) ∈ Δ∗. More precisely, it takes as input a word of the form 𝜌0 # (𝜌′1 ⊗ 𝜌′2 ⊗
𝜌′3) # (𝜌′′1 ⊗ 𝜌′′2 ⊗ 𝜌′′3 ) # (𝜌′′′1 ⊗ 𝜌′′′2 ⊗ 𝜌′′′3 ) # 𝜌4 and produces as output

𝜌0 𝜌′1 (𝜌′′1 )𝑥1 𝜌′′′1 𝜌′1 (𝜌′′1 )𝑥2 𝜌′′′1 𝜌′1 (𝜌′′1 )𝑥3 𝜌′′′1

𝜌′2 (𝜌′′2 )𝑥4 𝜌′′′2

𝜌′3 (𝜌′′3 )𝑥5 𝜌′′′3 𝜌4.

The SST 𝑇 𝑠
iter uses one variable for each non-iterated run (e.g. for 𝜌0 and 𝜌′1), 𝑥1 + 𝑥2 + 𝑥3

variables to store copies of 𝜌′′1 , 𝑥4 variables to store copies of 𝜌′′2 , and 𝑥5 variables to store copies
of 𝜌′′3 , and eventually outputs the concatenation of all these variables to obtain run𝑃 (𝑠). Note
that 𝑇 𝑠

iter does not need to check that the input is a well-formed encoding (this is done later
when constructing 𝑇𝑠), so the number of its states and variables is bounded by a constant; on
the other hand, the input alphabet, consisting of transitions of 𝑇 , is polynomial in the size of 𝑇 .

The construction of 𝑇exec is straightforward: it just executes the transitions it reads along
the input, thus simulating a run of 𝑇 . Hence 𝑇exec has a single state and the same number of
variables as 𝑇 . Its alphabet is linear in the size of 𝑇 .

Now, 𝑇𝑠 is obtained from the composition 𝑇exec ◦ 𝑇 𝑠
iter by restricting the input domain to

P. It is well-known that deterministic SST are closed under composition and regular domain
restriction [6]. By the above constructions, we have

𝑇𝑥 (𝑢𝑃) = 𝑇𝑠(𝑢𝑃) ∪ 𝑇𝑠′ (𝑢𝑃) = {out(run𝑃 (𝑠)), out(run𝑃 (𝑠′))}

and hence 𝑇 contains a W-pattern that is simply divergent for 𝑥 iff 𝑇𝑥 is not single-valued. This
already implies the decidability of the existence of a simply divergent W-pattern in𝑇 , and hence
by Theorem 4.3, of finite valuedness.

Complexity analysis Let us now analyse the complexity in detail. This requires first estimating
the size of 𝑇𝑥 . Let 𝑛𝑇 resp. 𝑚𝑇 be the number of states of 𝑇 , resp. its number of variables. From
the previous bounds on the sizes of𝑇exec and𝑇 𝑠

iter and Proposition 4.4, we derive that the number
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of states and variables of 𝑇exec ◦ 𝑇 𝑠
iter is polynomial in both 𝑛𝑇 and 𝑚𝑇 . Further, restricting the

domain to P is done via a product with the automaton 𝐴P , whose size is polynomial in 𝑛𝑇 and
exponential in 𝑚𝑇 . Summing up, the number of states of𝑇𝑠 is exponential in 𝑚𝑇 , and polynomial
in 𝑛𝑇 . Its number of variables is polynomial in both 𝑛𝑇 and 𝑚𝑇 . And so do 𝑇𝑠′ and 𝑇𝑥 .

As explained in [9], checking single-valuedness of SST reduces to checking non-emptiness
of a 1-reversal 2-counter machine of size exponential in the number of variables and polynomial
in the number of states. This is fortunate, since it allows us to conclude that checking single-
valuedness of 𝑇𝑥 reduces to checking non-emptiness of a 1-reversal 2-counter machine of size
just exponential in the number of variables of 𝑇 . The PSpace upper bound (and the PTime upper
bound for a fixed number of variables) now follow by recalling that non-emptiness of counter
machines with fixed numbers of reversals and counters is in NLogSpace [30].

Lower bound For the lower bound, consider two deterministic SST 𝑇1, 𝑇2 over some alphabet Σ
with same domain 𝐷. Domain equivalence can be tested in PTime because𝑇1, 𝑇2 are deterministic.
Consider a fresh symbol # ∉ Σ, and the relation

𝑅 =

{(
𝑢1# . . . #𝑢𝑛, 𝑇𝑖1 (𝑢1)# . . . #𝑇𝑖𝑛 (𝑢𝑛)

) ��� 𝑢𝑖∈𝐷, 𝑛∈N,
𝑖1,...,𝑖𝑛∈{1,2}

}
It is easily seen that 𝑅 is realizable by a (non-deterministic) SST. We claim that 𝑅 is finite-valued
iff it is single-valued, iff𝑇1 and𝑇2 are equivalent. If𝑇1 and𝑇2 are equivalent, then𝑇1(𝑢 𝑗) = 𝑇2(𝑢 𝑗)
for all 1 ≤ 𝑗 ≤ 𝑛, hence 𝑅 is single-valued, and so finite-valued. Conversely, if 𝑇1 and 𝑇2 are not
equivalent, then 𝑇1(𝑢) ≠ 𝑇2(𝑢) for some 𝑢 ∈ 𝐷, and the family of inputs (𝑢#)𝑛 𝑢, with 𝑛 ∈ N,
witnesses the fact that 𝑅 is not finite-valued. ■

REMARK 4.5. The proof of the previous theorem can be adapted to show that the equivalence
problem for deterministic SSTs and the finite valuedness problem for SSTs are equivalent
(modulo polynomial many-one reductions).

As a corollary, we obtain an alternative proof of the following known result:

COROLLARY 1.6 ([53]). (Restated) Finite valuedness of two-way transducers is decidable in
PSpace.

PROOF . Observe that a necessary condition for a two-way transducer to be finite-valued is
that crossing sequences are bounded. More precisely, if a crossing sequence has a loop then the
output of the loop must be empty, otherwise the transducer is not finite valued. Given a bound
on the length of crossing sequences the standard conversion into an equivalent SST applies, see
e.g. [38, 20]. This yields an SST with an exponential number of states and a linear number of
variables, both in the number of states of the initial two-way transducer. Finally, we apply the
algorithm of Theorem 1.5, and we observe that it amounts to checking emptiness of a 1-reversal
2-counter machine whose number of states is exponential in the number of states of the initial
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two-way transducer. We conclude again by applying the NLogSpace algorithm for checking
emptiness of such counter machines [30]. ■

4.2 A necessary condition for finite valuedness

Here we prove the contrapositive of the left-to-right implication of Theorem 4.3: we show that a
divergent W-pattern can generate arbitrarily many outputs on the same input.

LEMMA 4.6. Every SST that contains some divergent W-pattern is not finite-valued.

PROOF . Let us fix an SST with a divergent W-pattern 𝑃. In order to prove that the SST is not
finite-valued, we show that we can construct arbitrary many accepting runs of 𝑃 that consume
the same input and produce pairwise different outputs. To do this we will consider for some
suitable 𝑀 ∈ N inequalities in the formal parameters s1, . . . , s𝑀 ∈ N+ (where 1 ≤ 𝑖 < 𝑗 ≤ 𝑀),
and look for arbitrary large, satisfiable, sets of inequalities of the form:

𝑒𝑀,𝑖, 𝑗 [s1, s2, . . . , s𝑀] :
out(run𝑃 (s1, s2, . . . , s𝑖−1, s𝑖 , s𝑖+1, . . . , s𝑀))

≠

out(run𝑃 (s1, s2, . . . , s 𝑗−1, s 𝑗 , s 𝑗+1, . . . , s𝑀)).

Recall that, according to the diagram of Definition 4.1, the number of variable occurrences before
(resp. after) the underlined parameter represents the number of loops at state 𝑞1 (resp. 𝑞2) in a
run of the W-pattern. Moreover, each variable s𝑖 before (resp. after) the underlined parameter
represents the number of repetitions of the small loops at 𝑟1 (resp. 𝑟3) within occurrences
of bigger loops at 𝑞1 (resp. 𝑞2); similarly, the underlined variable represents the number of
repetitions of the loop at 𝑟2 within the run that connects 𝑞1 to 𝑞2. In view of this, by Corollary 2.6,
the outputs of the runs considered in the above inequality have the format required for a word
inequality with repetitions parametrized by s1, . . . , s𝑀 .

The fact that the W-pattern 𝑃 is divergent will help to find sets of satisfiable inequalities
𝑒𝑀,𝑖, 𝑗 of arbitrary large cardinality. This, in turn, will produce (combined with our word combi-
natorics results) arbitrary many accepting runs over the same input, having pairwise different
outputs.

CLAIM. For every 𝑚 ∈ N, there exist 𝑀 ∈ N and a set 𝐼 ⊆ {1, 2, . . . , 𝑀} of cardinality 𝑚 + 1 such
that, for all 𝑖 < 𝑗 ∈ 𝐼 , 𝑒𝑀,𝑖, 𝑗 is satisfiable.

PROOF OF THE CLA IM. Since 𝑃 is a divergent W-pattern, there exist 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ N+

such that
out(run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)) ≠ out(run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)).
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We fix such numbers 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 ∈ N+. Consider now the following inequality over the
formal parameters x, y, z:

𝑒[x, y, z] :

out(run𝑃 (
x times︷          ︸︸          ︷

𝑛1, 𝑛1, . . . , 𝑛1, 𝑛2,

y times︷     ︸︸     ︷
𝑛3, . . . , 𝑛3, 𝑛4,

z times︷     ︸︸     ︷
𝑛5, . . . , 𝑛5))

≠

out(run𝑃 (𝑛1, 𝑛1, . . . , 𝑛1︸          ︷︷          ︸
x times

, 𝑛2, 𝑛3, . . . , 𝑛3︸     ︷︷     ︸
y times

, 𝑛4, 𝑛5, . . . , 𝑛5︸     ︷︷     ︸
z times

)).

Note that every instance of 𝑒[x, y, z] with concrete values 𝑥, 𝑦, 𝑧 is also an instance of 𝑒𝑀,𝑖, 𝑗 ,
where 𝑀 = 𝑥 + 𝑦 + 𝑧 + 2, 𝑖 = 𝑥 + 1, 𝑗 = 𝑥 + 𝑦 + 2, and all parameters s1, . . . , s𝑀 are instantiated
with values from {𝑛1, . . . , 𝑛5}. Moreover, as the parameters in 𝑒[x, y, z] determine the number
of repetitions of 𝑛1, 𝑛3, 𝑛5, which in their turn correspond to pumping loops at 𝑞1 and 𝑞2, by
Corollary 2.6, the outputs of the considered runs have the format required for a word inequality
with repetitions parametrized by x, y, z.

Since 𝑒[x, y, z] is satisfiable (e.g. with x = y = z = 1), Corollary 2.10 implies that

∃ℓy ∀ℎy ∃ℓx ∀ℎx ∃ℓz ∀ℎz
[ℓx, ℎx]︸  ︷︷  ︸

values for x

× [ℓy, ℎy]︸  ︷︷  ︸
values for y

× [ℓz, ℎz]︸  ︷︷  ︸
values for z

⊆ Sols(𝑒).

Note that we start by quantifying over ℓ𝑦 and not ℓ𝑥 (Corollary 2.10 is invariant with respect to
the parameter order). exist three integers ℓ𝑦, ℓ𝑥 , ℓ𝑧 > 0 such that

[ℓx, ℓx + 2𝑚ℓy] × [ℓy, 2𝑚ℓy] × [ℓz, ℓz + 2𝑚ℓy] ⊆ Sols(𝑒). (4)

Note that ℎ𝑦 = 2𝑚ℓ𝑦 depends only on ℓ𝑦, while ℎ𝑥 = ℓ𝑥 + 2𝑚ℓ𝑦 depends on both ℓ𝑥 and ℓ𝑦.
We can now prove the claim by letting 𝑀 = ℓx + 2𝑚ℓy + ℓz + 1 and 𝐼 = {ℓx + 2𝜆ℓy + 1 | 0 ≤

𝜆 ≤ 𝑚}. The gap between two consecutive values of 𝐼 equals 2ℓ𝑦, and for every 𝑖 < 𝑗 ∈ 𝐼 we get

𝑖 − 1 ∈ [ℓx, ℓx + 2(𝑚 − 1)ℓy] ⊆ [ℓx, ℓx + 2𝑚ℓy]
𝑗 − 𝑖 − 1 ∈ [2ℓy − 1, 2𝑚ℓy − 1] ⊆ [ℓy, 2𝑚ℓy]
𝑀 − 𝑗 ∈ [ℓz, ℓz + 2(𝑚 − 1)ℓy] ⊆ [ℓz, ℓz + 2𝑚ℓy] .

Thus, by Equation (4), (𝑖 − 1, 𝑗 − 𝑖 − 1, 𝑀 − 𝑗) ∈ Sols(𝑒). This solution of 𝑒 corresponds to
the instance of 𝑒𝑀,𝑖, 𝑗 with the values for the formal parameters s1, . . . , s𝑀 defined by

sℎ =



𝑛1 for every 1 ≤ ℎ ≤ 𝑖 − 1,
𝑛2 for ℎ = 𝑖,

𝑛3 for every 𝑖 + 1 ≤ ℎ ≤ 𝑗 − 1,
𝑛4 for ℎ = 𝑗,

𝑛5 for every 𝑗 + 1 ≤ 𝑀.
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Hence, 𝑒𝑀,𝑖, 𝑗 is satisfiable for all 𝑖 < 𝑗 ∈ 𝐼 , as claimed. ■

We can now conclude the proof of the lemma using the above claim: Corollary 2.9 tells us
that any system of word inequalities is satisfiable when every word inequality in it is so. Using
this and the above claim, we derive that for every 𝑚 there exist 𝑡1, 𝑡2, . . . , 𝑡𝑀 ∈ N+ such that, for
all 𝑖 < 𝑗 ∈ 𝐼 (with 𝐼 as in the claim), 𝑒𝑀,𝑖, 𝑗 [𝑡1, 𝑡2, . . . , 𝑡𝑀] holds. For every ℎ ∈ 𝐼 , let

𝜌ℎ = run𝑃 (𝑡1, 𝑡2, . . . , 𝑡ℎ−1, 𝑡ℎ, 𝑡ℎ+1, . . . , 𝑡𝑀).

Note that all runs 𝜌ℎ, for ℎ ∈ 𝐼 , consume the same input, since they all correspond to the same
unmarked sequence (𝑡1, 𝑡2, . . . , 𝑡𝑀). However, they produce pairwise different outputs, because
for every 𝑖 < 𝑗 ∈ 𝐼 , the tuple (𝑡1, 𝑡2, . . . , 𝑡𝑀) is a solution of 𝑒𝑀,𝑖, 𝑗 . Since |𝐼 | = 𝑚 can be chosen
arbitrarily, the transducer is not finite-valued. ■

4.3 A sufficient condition for finite valuedness

We finally prove that any SST that exhibits no simply divergent W-pattern is finite-valued. The
proof relies on two crucial results. The first one is a characterization of finite ambiguity for SSTs,
which is easily derived from the characterization of finite ambiguity for finite state automata
[39, 34, 52, 4]:

DEF IN IT ION 4.7. A dumbbell is a substructure of an SST consisting of states 𝑞1, 𝑞2 connected
by runs as in the diagram

𝑞1 𝑞2

initial
state

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌1 : 𝑣/𝛽 𝜌2 : 𝑣/𝛾
𝜌3 : 𝑣/𝜂

where the runs 𝜌1 and 𝜌3 are loops (in particular, they produce updates with idempotent
skeletons) and at least two among the runs 𝜌1, 𝜌2, 𝜌3 are distinct.

LEMMA 4.8. An SST is finite-ambiguous iff it does not contain any dumbbell.

PROOF . Let𝑇 = (Σ,X, 𝑄, 𝑄init, 𝑄final, 𝑂, Δ) be an SST. By projecting away the updates on the tran-
sitions we obtain from 𝑇 a multiset finite-state automaton 𝐴. Formally, 𝐴 = (Σ, 𝑄, 𝑄init, 𝑄final, Δ′),
where Δ′ is the multiset containing one occurrence of a triple (𝑞, 𝑎, 𝑞′) for each transition of the
form (𝑞, 𝑎, 𝛼, 𝑞′) in Δ. Note that a multiset automaton can admit several occurrences of the same
(accepting) run. Accordingly, the notion of finite ambiguity for 𝐴 requires the existence of a
uniform bound on the number of occurrences of accepting runs of 𝐴 on the same input. We
also remark that multiset automata are essentially the same as weighted automata over the
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semiring of natural numbers (the weight of a transition being its number of occurrences), with
only a difference in terminology where finite ambiguity in multiset automata corresponds to
finite valuedness in weighted automata.

Given the above construction of 𝐴 from 𝑇 , one can verify by induction on |𝑢| that the
number of occurrences of accepting runs of 𝐴 on 𝑢 coincides with the number of accepting
runs of 𝑇 on 𝑢. This means that 𝐴 is finite-ambiguous iff 𝑇 is finite-ambiguous.

Finally, we recall the characterizations of finite ambiguity from [39, 34, 52] (see in particu-
lar Theorem 1.1 and Lemma 2.6 from [39]). In short, their results directly imply that a multiset
automaton is finite-ambiguous iff it does not contain a plain dumbbell, namely, a substructure
of the form

𝑞1 𝑞2

initial
state

final
state

𝜌′0 : 𝑢 𝜌′4 : 𝑤

𝜌′1 : 𝑣
𝜌′2 : 𝑣

𝜌′3 : 𝑣

where at least two among 𝜌′1, 𝜌
′
2, 𝜌

′
3 are distinct runs.

This almost concludes the proof of the lemma, since any dumbbell of𝑇 can be projected into
a plain dumbbell of 𝐴. The converse implication, however, is not completely straightforward.
The reason is that the cyclic runs of a plain dumbbell in 𝐴 do not necessarily correspond to loops
in the SST 𝑇 , as the runs need not produce updates with idempotent skeletons. Nonetheless,
we can reason as follows. Suppose that 𝐴 contains a plain dumbbell, with occurrences of runs
𝜌′0, 𝜌

′
1, 𝜌

′
2, 𝜌

′
3, 𝜌

′
4 as depicted above. Let 𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4 be some corresponding runs in 𝑇 (with

𝜌𝑖 projecting to 𝜌′
𝑖
) and let 𝛼, 𝛽, 𝛾, 𝜂, 𝜔 be their induced updates. Further let 𝑛 be a large enough

number such that 𝛽𝑛 and 𝜂𝑛 have idempotent skeletons (such an 𝑛 always exists since the
skeleton monoid is finite). Now consider the substructure in 𝑇 given by the runs 𝜌0, (𝜌1)𝑛,
(𝜌1)𝑛−1 𝜌2, (𝜌3)𝑛, and 𝜌4. This substructure satisfies precisely the definition of dumbbell for the
SST 𝑇 . ■

The second ingredient for the proof of the right-to-left implication of Theorem 4.3 uses
once more the cover construction described in Proposition 3.1. More precisely, in Lemma 4.9
below we show that if an SST 𝑇 has no simply divergent W-pattern, then, for some well chosen
values 𝐶, 𝐷, 𝑚, the SST Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) contains no dumbbell. Before proving the lemma, let us
show how it can be used to establish the right-to-left implication of Theorem 4.3.

Proof of Theorem 4.3 By Lemma 4.8, if Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) has no dumbbell, then it is finite-
ambiguous, hence finite-valued. Since Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) and 𝑇 are equivalent, 𝑇 is finite-valued,
too. ■
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LEMMA 4.9. Given an SST 𝑇 , one can compute numbers 𝐶, 𝐷, 𝑚 such that if Cover𝐶𝑚,𝐷𝑚2 (𝑇 )
contains a dumbbell, then 𝑇 contains a simply divergent W-pattern.

PROOF . We first provide some intuition. If Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) contains a dumbbell for suitable
values of 𝐶, 𝐷, 𝑚, then we show that this dumbbell admits two distinct runs 𝜋, 𝜋′ that have either
different outputs or large delay. In both cases we will be able to transform the dumbbell into a
simply divergent W-pattern in Cover𝐶𝑚,𝐷𝑚2 (𝑇 ), hence 𝑇 will have one as well.

Formally, let 𝑇 be an SST. Let 𝐶, 𝐷 be defined as in Lemma 2.13, and 𝑚 = 7𝐸𝐻2+𝐻+1 + 1,
where 𝐸, 𝐻 are defined as in Lemma 2.4. Next, suppose that Cover𝐶𝑚,𝐷𝑚2 (𝑇 ) contains a dumbbell
as in Definition 4.7, with runs 𝜌0, 𝜌1, 𝜌2, 𝜌3, 𝜌4 that produce respectively the updates 𝛼, 𝛽, 𝛾, 𝜂, 𝜔.

Consider the following accepting runs, which are obtained by composing the copies of the
original runs of the dumbbell. The runs 𝜋, 𝜋′ are different because at least two of 𝜌1, 𝜌2, 𝜌3 are
different:

𝜋 = 𝜌0 𝜌1 𝜌2 𝜌3 𝜌3 𝜌3 𝜌4

𝜋′ = 𝜌0 𝜌1 𝜌1 𝜌1 𝜌2 𝜌3 𝜌4.
(5)

By the properties of Cover𝐶𝑚,𝐷𝑚2 (𝑇 ), since 𝜋 and 𝜋′ consume the same input, they either produce
different outputs or have 𝐶𝑚-delay larger than 𝐷𝑚2.

We first consider the case where the outputs are different. In this case, we can immediately
witness a simply divergent W-pattern 𝑃 by adding empty runs to the dumbbell; formally, for
every 𝑖 = 1, 2, 3, we let 𝜌′

𝑖
= 𝜌𝑖 and 𝜌′′

𝑖
= 𝜌′′′

𝑖
= 𝜀, so as to form a W-pattern like the one in

Figure 3, with 𝑟1 = 𝑞1 and 𝑟2 = 𝑟3 = 𝑞2. Using the notation introduced at the beginning of Section
4, we observe that 𝜋 = run𝑃 (1, 1, 1, 1, 1) and 𝜋′ = run𝑃 (1, 1, 1, 1, 1) — recall that the underlined
number represents how many times the small loop at 𝑟2, which is empty here, is repeated along
the run from 𝑞1 to 𝑞2, and the other numbers represent how many times the small loops at 𝑟1

and 𝑟3, which are also empty here, are repeated within the occurrences of big loops at 𝑞1 and
𝑞2. Since, by assumption, the runs 𝜋 and 𝜋′ produce different outputs, the W-pattern 𝑃 is simply
divergent, as required.

We now consider the case where 𝜋 and 𝜋′ have large delay, namely, 𝐶𝑚-delay(𝜋, 𝜋′) > 𝐷𝑚2.
In this case Lemma 2.13 guarantees the existence of a set 𝐼 ⊆ {0, 1, . . . , |𝜋 |} containing 𝑚

positions in between the input letters such that, for all pairs 𝑖 < 𝑗 in 𝐼 , the interval [𝑖, 𝑗] is a
loop on both 𝜋 and 𝜋′ and satisfies

out(pump2
[𝑖, 𝑗] (𝜋)) ≠ out(pump2

[𝑖, 𝑗] (𝜋
′)). (6)

Next, recall from Equation (5) that 𝜋, and similarly 𝜋′, consists of seven parts, representing
copies of the original runs of the dumbbell and consuming the inputs 𝑢, 𝑣, 𝑣, 𝑣, 𝑣, 𝑣, 𝑤. We identify
these parts with the numbers 1, . . . , 7. Since we defined 𝑚 as 7𝐸𝐻2+𝐻+1 + 1, there is one of these
parts in which at least 𝐸𝐻2+𝐻+1+1 of the aforementioned positions of 𝐼 occur. Let 𝑝 ∈ {1, 2, . . . , 7}
denote the number of this part, and let 𝐼𝑝 be a set of 𝐸𝐻2+𝐻+1 + 1 positions from 𝐼 that occur
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entirely inside the 𝑝-th part. We conclude the proof by a further case distinction, depending on
whether 𝑝 ∈ {1, 7} or 𝑝 ∈ {2, . . . , 6}.

Parts 1 and 7 Let us suppose that 𝑝 ∈ {1, 7}, and let 𝑖 and 𝑗 be two distinct positions in 𝐼𝑝. We
let 𝑃 be the W-pattern obtained by transforming the dumbbell as follows:

1. First, we pump either 𝜌0 or 𝜌4 depending on 𝑝:
If 𝑝 = 1, we set 𝜌′0 = pump2

[𝑖, 𝑗] (𝜌0) and 𝜌′4 = 𝜌4.
If 𝑝 = 7, we set 𝜌′4 = pump2

[𝑖−|𝑢 𝑣5 |, 𝑗−|𝑢 𝑣5 |] (𝜌4) and 𝜌′0 = 𝜌0.
2. Then, we add empty runs to 𝜌1, 𝜌2, and 𝜌3; formally, for each ℎ ∈ {1, 2, 3}, we set 𝜌′

ℎ
= 𝜌ℎ

and 𝜌′′
ℎ
= 𝜌′′′

ℎ
= 𝜀.

Now that we identified a W-pattern 𝑃 in Cover𝐶,𝐷(𝑇 ), we note that

pump2
[𝑖, 𝑗] (𝜋) = run𝑃 (1, 1, 1, 1, 1)

pump2
[𝑖, 𝑗] (𝜋

′) = run𝑃 (1, 1, 1, 1, 1).

We also recall Equation 6, which states that these runs produce different outputs. This means
that the W-pattern 𝑃 is simply divergent. Finally, since the runs of Cover𝐶,𝐷(𝑇 ) can be projected
into runs of 𝑇 , we conclude that 𝑇 contains a simply divergent W-pattern.

Parts 2 − 6 Let us suppose that 𝑝 ∈ {2, . . . , 6}. Note that, in this case, the elements of 𝐼𝑝 denote
positions inside the 𝑝-th factor of the input 𝑢 𝑣 𝑣 𝑣 𝑣 𝑣𝑤, which is a 𝑣. To refer directly to the
positions of 𝑣, we define 𝐼′𝑝 as the set obtained by subtracting |𝑢 𝑣𝑝−1 | from each element of
𝐼𝑝. Since the set |𝐼′𝑝 | has cardinality 𝐸𝐻2+𝐻+1 + 1, we claim that we can find an interval with
endpoints from 𝐼′𝑝 that is a loop of 𝜌1, 𝜌2, and 𝜌3, at the same time. Specifically, we can do so via
three consecutive applications of Lemma 2.4:

1. As |𝐼′𝑝 | = 𝐸𝐻2+𝐻+1 + 1 = 𝐸 · (𝐸𝐻+1)𝐻 + 1, there exists a set 𝐼′′𝑝 ⊆ 𝐼′𝑝 of cardinality 𝐸𝐻+1 + 1
such that for every pair 𝑖 < 𝑗 in 𝐼′′𝑝 , the interval [𝑖, 𝑗] is a loop of 𝜌1;

2. As |𝐼′′𝑝 | = 𝐸𝐻+1 + 1 = 𝐸 · 𝐸𝐻 + 1, there exists 𝐼′′′𝑝 ⊆ 𝐼′′𝑝 of cardinality 𝐸 + 1 s.t. for every pair
𝑖 < 𝑗 in 𝐼′′′𝑝 , the interval [𝑖, 𝑗] is a loop of 𝜌2 (and also of 𝜌1, since 𝑖, 𝑗 ∈ 𝐼′′′𝑝 ⊆ 𝐼′′𝑝 );

3. As |𝐼′′′𝑝 | = 𝐸 + 1 = 𝐸 · 1𝐻 + 1, there are two positions 𝑖 < 𝑗 in 𝐼′′′𝑝 such that the interval [𝑖, 𝑗]
is a loop of 𝜌3 (and also of 𝜌1 and 𝜌2 since 𝑖, 𝑗 ∈ 𝐼′′′𝑝 ⊆ 𝐼′′𝑝 ).

The diagram below summarizes the current situation: we have just managed to find an interval
[𝑖, 𝑗] that is a loop on all 𝑣-labelled runs 𝜌1, 𝜌2, 𝜌3 of the dumbbell (the occurrences of this
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interval inside 𝜌1, 𝜌2, 𝜌3 are highlighted by thick segments):

initial
state

𝑞1 𝑞2

final
state

𝜌0 : 𝑢/𝛼 𝜌4 : 𝑤/𝜔

𝜌1 : 𝑣/𝛽 𝜌3 : 𝑣/𝜂
𝜌2 : 𝑣/𝛾

We can now expose a W-pattern 𝑃 by merging the positions 𝑖 and 𝑗 inside each 𝑣-labelled
run 𝜌1, 𝜌2, and 𝜌3 of the dumbbell. Formally, we let 𝜌′0 = 𝜌0, 𝜌′4 = 𝜌4, and for every ℎ ∈ {1, 2, 3},
we define 𝜌′

ℎ
, 𝜌′′

ℎ
, and 𝜌′′′

ℎ
, respectively, as the intervals [0, 𝑖], [𝑖, 𝑗], and [ 𝑗, |𝑣|] of 𝜌ℎ. Now that

we have identified a W-pattern 𝑃 inside Cover𝐶,𝐷(𝑇 ), we remark that 𝜋 = run𝑃 (1, 1, 1, 1, 1) and
𝜋′ = run𝑃 (1, 1, 1, 1, 1). Additionally, if we transpose 𝑖 and 𝑗 from 𝐼′𝑝 back to 𝐼 , that is, if we
set 𝑖′ = 𝑖 + |𝑢 𝑣𝑝−1 | and 𝑗′ = 𝑗 + |𝑢 𝑣𝑝−1 |, since both 𝑖′ and 𝑗′ occur in the 𝑝-th part of 𝜋 and 𝜋′,
pumping the interval [𝑖′, 𝑗′] in 𝜋 (resp. 𝜋′) amounts to incrementing the (𝑝 − 1)-th parameter in
the notation run𝑃 (1, 1, 1, 1, 1) (resp. run𝑃 (1, 1, 1, 1, 1)). More precisely:

pump2
[𝑖′, 𝑗′] (𝜋) = run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)

pump2
[𝑖′, 𝑗′] (𝜋

′) = run𝑃 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5)

where each 𝑛𝑝′ is either 2 or 1 depending on whether 𝑝′ = 𝑝 − 1 or not. Since Equation 6 states
that these two runs produce different outputs, the W-pattern 𝑃 is simply divergent. Finally,
since the runs of Cover𝐶,𝐷(𝑇 ) can be projected into runs of 𝑇 , we conclude that, also in this case,
𝑇 contains a simply divergent W-pattern. ■

5. Conclusion

We have drawn a rather complete picture of finite-valued SSTs and answered several open
questions of [9]. Regarding expressiveness, finite-valued SSTs can be decomposed as unions of
deterministic SSTs (Theorem 1.2). They are equivalent to finite-valued two-way transducers
(Theorem 1.3), and to finite-valued non-deterministic MSO transductions (see Section 1). On
the algorithmic side, their equivalence problem is decidable in elementary time (Theorem 1.4)
and finite valuedness of SSTs is decidable in PSpace (PTime for fixed number of variables),
see Theorem 1.5. As an alternative proof to the result of [53], our results imply that finite
valuedness of two-way transducers can be decided in PSpace (Corollary 1.6). Because of the
effective expressiveness equivalence between SSTs and non-deterministic MSO transductions,
our result also entails decidability of finite valuedness for the latter class.
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Further questions. A first natural question is how big the valuedness of an SST can be. In the
classical case of one-way transducers the valuedness has been shown to be at most exponential
(if finite) [51]. We can obtain a bound from Lemma 4.9, but the value is likely to be sub-optimal.

Our equivalence procedure relies on the decomposition of a 𝑘-valued SST into a union
of 𝑘 deterministic SSTs each of elementary size. The latter construction is likely to be sub-
optimal, too, and so is our complexity for checking equivalence. On the other hand, only a
PSpace lower bound is known, which follows easily from a reduction of NFA equivalence [1].
A better understanding of the complexity of the equivalence problem for (sub)classes of SSTs
is a challenging question. Already for deterministic SSTs, the complexity of the equivalence
problem is only known to lie between NLogSpace and PSpace [7].

However, beyond the finite-valued setting there is little hope to find a natural restriction
on valuedness which would preserve the decidability of the equivalence problem. Already for
one-way transducers of linear valuedness (i.e. where the number of outputs is linear in the
input length), equivalence is undecidable, as shown through a small modification of the proof
of [32].

Deterministic SSTs have been extended, while preserving decidability of the equivalence
problem, in several ways: to copyful SSTs [15, 26], which allow to copy the content of variables
several times, to infinite strings [11], and to trees [8]. Generalizations of these results to the
finite-valued setting yield interesting questions. On trees, similar questions (effective finite
valuedness, decomposition and equivalence) have been answered positively for bottom-up tree
transducers [47].

Finally, SSTs have linear input-to-output growth (in the length of the strings). There is a
recent trend in extending transducer models to allow polynomial growth [17, 16, 14, 22]. Finite
valuedness has not been studied in this context yet.
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transducers for algorithmic verification of
single-pass list-processing programs. Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011,
pages 599–610. ACM, 2011. DOI (8, 34)

[8] Rajeev Alur and Loris D’Antoni. Streaming tree
transducers. J. ACM, 64(5):31:1–31:55, 2017. DOI
(34)

[9] Rajeev Alur and Jyotirmoy V. Deshmukh.
Nondeterministic streaming string transducers.
Automata, Languages and Programming - 38th
International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II,
volume 6756 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2011. DOI (3–6, 8, 23, 24,
26, 33)

[10] Rajeev Alur, Taylor Dohmen, and Ashutosh Trivedi.
Composing copyless streaming string transducers.
CoRR, abs/2209.05448:1–21, 2022. DOI (23)

[11] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi.
Regular transformations of infinite strings.
Proceedings of the 27th Annual IEEE Symposium on
Logic in Computer Science, LICS 2012, Dubrovnik,
Croatia, June 25-28, 2012, pages 65–74. IEEE
Computer Society, 2012. DOI (34)
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France, 2023. URL (10, 34)

[23] Joost Engelfriet and Hendrik Jan Hoogeboom.
MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log.
2(2):216–254, 2001. DOI (2)

[24] Emmanuel Filiot, Ismaël Jecker, Christof Löding,
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