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ABSTRACT. In the Continuous Steiner Tree problem (CST), we are given as input a set of
points (called terminals) in a metric space and asked for the minimum-cost tree connecting
them. Additional points (called Steiner points) from the metric space can be introduced as nodes
in the solution. In the Discrete Steiner Tree problem (DST), we are given in addition to the
terminals, a set of facilities, and any solution tree connecting the terminals can only contain the
Steiner points from this set of facilities.

Trevisan [SICOMP’00] showed that CST and DST are APX-hard when the input lies in the
ℓ1-metric (and Hamming metric). Chlebı́k and Chlebı́ková [TCS’08] showed that DST is NP-hard
to approximate to factor of 96/95 ≈ 1.01 in the graph metric (and consequently ℓ∞-metric).
Prior to this work, it was unclear if CST and DST are APX-hard in essentially every other popular
metric.

In this work, we prove that DST is APX-hard in every ℓ𝑝-metric. We also prove that CST
is APX-hard in the ℓ∞-metric. Finally, we relate CST and DST, by observing a gap preserving
reduction from CST to DST in ℓ𝑝-metrics.

It is known that the APX-hardness of DST in ℓ0, ℓ1, and ℓ∞-metrics can be obtained from the
APX-hardness of covering problems (with additional structure). Our main conceptual insight
is that for certain ranges of 𝑝 (such as 𝑝 = 2), the soundness guarantees of covering problems
might be insufficient to show thatDST in the ℓ𝑝-metric is APX-hard, but the soundness guarantees
of a packing problem (with requisite additional structure) is enough. Equipped with this insight,
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we are then able to embed set systems into every ℓ𝑝-metric, and, depending on the value of 𝑝,
our soundness analysis of the corresponding DST instance in the ℓ𝑝-metric will use either the
packing property or the covering property (or both) of the set system in the soundness case.

Due to the discrete structure of the Hamming space, the APX-hardness of CST in the ℓ0 and
ℓ1 metrics follow from similar methods. However, these techniques do not extend to CST in
other ℓ𝑝-metrics. To show APX-hardness of CST in the ℓ∞-metric, we instead rely on the robust
hardness guarantees of graph coloring problems. Concretely, we present a reduction from a
graph 𝐺 on 𝑛 vertices to a point-set 𝑃 in the ℓ∞-metric space, where the cost of the optimal
Steiner tree of 𝑃 is exactly 𝑛+𝜒(𝐺)

2 , where 𝜒(𝐺) is the chromatic number of 𝐺.

1. Introduction

Given a set of points (called terminals) in a metric space, a Steiner tree is defined to be a
minimum length tree connecting them, with the tree possibly including additional points (called
Steiner points) as nodes. Computing the Steiner tree is one of the classic and most fundamental
problems in Computer Science, Combinatorial Optimization, and Operations Research, with
both great theoretical and practical relevance and interest [45]. This problem emerges in a
number of contexts, such as network design problems, design of integrated circuits, location
problems [14, 17, 35, 43, 52, 47] and more recently even in machine learning, systems biology,
and bioinformatics [5, 36, 55, 61]. For example, in VLSI circuits, wire routing is carried out by
wires running only in vertical and horizontal directions, due to high computational complexity
of the task. Therefore, the wire length is the sum of the lengths of vertical and horizontal
segments, and the distance between two pins of a net is actually the ℓ1-metric distance between
the corresponding geometric points in the design plane [57].

Formally, the Steiner tree problem can be formulated in two ways: discrete and continuous.
In the Discrete Steiner Tree problem (DST), we are given as input two sets of points in a metric
space, called terminals and facilities respectively. The goal is to find the minimum-cost tree
connecting the terminals, possibly introducing new points (Steiner points) from the set of
facilities as nodes in the solution. This problem is well-defined even in general metric spaces
since the relevant metric space can be fully described as part of the input. In the Continuous
Steiner Tree problem (CST), we are only given a set of terminals as input, and we are allowed to
use any point in the metric space as a Steiner point in the Steiner tree connecting all the terminals.
For CST, we assume knowledge of the ambient metric space structure (e.g., (({0, 1}𝑛, ℓ1) or
(R𝑛, ℓ2)). This is not part of the input.

General Metrics. In general metrics, where the metric space is specified as part of the input (for
example, by specifying all pairwise distances), it does not make sense to discuss the CST problem,
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so we restrict our attention to DST. The Steiner tree problem is one of Karp’s 21 NP-complete
problems, i.e., in his seminal work [41], Karp showed that DST is NP-complete. Therefore,
the attention of the algorithmic community turned towards obtaining good approximation
algorithms forDST in general metrics. It is well-known that a minimum-cost tree only containing
the terminals as nodes is a 2-approximation for DST (and CST) [33, 62].

A sequence of improved approximation algorithms for DST in general metrics appeared in
the literature [64, 42, 49, 53], culminating with the famous ln(4) +𝜀 < 1.39 factor approximation
algorithm by Byrka, Grandoni, Rothvoß, and Sanitá [9] (where 𝜀 > 0 is an arbitrarily small
constant). On the hardness of approximation front, Chlebı́k and Chlebı́ková [16] showed that
DST in general metrics is hard to approximate to a factor of 96

95 > 1.01. Thus, there is still quite a
substantial gap in our understanding of the approximability of DST in general metrics.

OPEN QUEST ION 1. What is the tight inapproximability ratio of DST in general metrics?

Geometric Metrics. Special cases of CST in Euclidean metric were studied by Fermat, Torri-
celli and other mathematicians as early as the 17th century and were also discussed in a letter
from Gauss to Schumacher in 1836 (see [8] for more details on the history of this problem).
On the other hand, phylogeny reconstruction is a long-standing (dating from Darwin’s evolu-
tionary theory) and intensively studied problem in computational biology, and computing the
phylogenetic tree can be modeled as solving CST in the Hamming metric [29]. We have already
discussed the importance of CST in the ℓ1-metric in VLSI design. Therefore, there has been a lot
of interest in understanding the complexity of CST in ℓ𝑝-metrics.

Garey, Graham, and Johnson showed that Euclidean CST is NP-hard, even in the plane [31].
Garey and Johnson also showed NP-hardness of CST in the ℓ1-metric [32] (also in the plane).
Foulds and Graham extended this further, showing NP-hardness CST in the Hamming metric
[29]. These intractability results lead to the search for efficient approximation algorithms.

In a remarkable collection of works, a PTAS was established for CST in ℓ1 and ℓ2-metrics in
constant dimensions (indeed, Arora’s PTAS extends to all ℓ𝑝-metrics) [4, 46, 51]. However, it was
unclear if CST in ℓ1 and ℓ2-metrics in high dimensions admitted a PTAS. Trevisan [60] answered
this question in the negative for the ℓ1-metric, by showing that CST in ℓ1-metric is APX-hard [12,
34, 23, 63]. He left it as an open problem to show a similar hardness for the Euclidean CST in
high dimensions.

OPEN QUEST ION 2. Does Euclidean CST on 𝑛 terminals in Ω(log 𝑛) dimensions admit a PTAS
or is it APX-hard?

If a geometric optimization problem is APX-hard, it is often easiest to establish that hard-
ness in the ℓ∞-metric. Intuitively, this arises due to the existence of the Fréchet embedding,
an isometric embedding of discrete metric spaces into the ℓ∞-metric. However, it remained
unknown whether high-dimensional CST in the ℓ𝑝-metric is APX-hard for any 𝑝 > 1, including
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𝑝 = ∞. Morally, we should not be able to understand hardness of approximation of Euclidean
CST until at least understanding the hardness of approximation of CST in the ℓ∞-metric.

OPEN QUEST ION 3. Does CST in the ℓ∞-metric on 𝑛 terminals in Ω(log 𝑛) dimensions admit a
PTAS or is it APX-hard?

We now shift our focus to DST in ℓ𝑝-metrics. Most approximation algorithms for CST in the
ℓ𝑝-metric work by reducing them to an instance of DST in the ℓ𝑝-metric (including, for example,
Arora’s PTAS [4]). Therefore, from a hardness point-of-view, studying DST in ℓ𝑝-metrics can also
be seen as a stepping stone to understanding CST in ℓ𝑝-metrics. Bartal and Gottlieb [6] showed
that a PTAS exists for DST in spaces of bounded doubling dimension (including, for example,
DST in ℓ𝑝-metrics in constant dimensions) and Euclidean space up to 𝑂(

√︁
log log 𝑛) dimensions,

where 𝑛 is the number of input points. Nonetheless, the inapproximability in higher dimensions
remains open. For example, we can ask the following discrete variant of Open Question 2.

OPEN QUEST ION 4. Does Euclidean DST on 𝑛 terminals in Ω(log 𝑛) dimensions admit a PTAS
or is it APX-hard?

String metrics are another important family of metrics for DST, particularly given applica-
tions of the Steiner tree problem to the study of phylogenetic trees in computational biology and
to computational linguistics. Several works have studied the computational hardness of Steiner
tree in the Hamming metric, establishing APX-hardness in high-dimensions and NP-hardness
for low dimensions with large alphabets [63, 3, 56, 29, 27]. Other popular string metrics less
well understood in the context of the Steiner tree problem include the edit distance metric [44]
and the Ulam metric.

OPEN QUEST ION 5. Does DST in the edit distance metric admit a PTAS or is it APX-hard? What
about the Ulam metric?

We remark that exploring the discrete avenue to better understand the continuous version
has been pursued for another celebrated geometric problem: clustering. The discrete and
continuous versions of minimizing popular clustering objectives such as 𝑘-means and 𝑘-median
has been studied by the algorithmic community extensively [10, 2, 13, 20, 21].

1.1 Our results

Our first contribution is the resolution of Open Question 3.

THEOREM 1.1. There is an efficiently computable function mapping a graph 𝐺 of order 𝑛 to an
instance of CST in the ℓ∞-metric such that the optimal cost of the Steiner tree is (𝑛 + 𝜒(𝐺))/2,
where 𝜒(𝐺) is the chromatic number of 𝐺. Consequently, CST in the ℓ∞-metric is APX-hard.
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Our result also establishes a neat connection between the chromatic number of a graph
and the cost of the optimal Steiner tree of the mapping of the graph. We remark that our
current hardness results are derived from the hardness of graph coloring on graphs with linear
chromatic number. Although the current hardness is only enough to imply APX-hardness of CST
in the ℓ∞-metric, stronger inapproximability results for graph coloring immediately translate to
more robust results for CST. For example, if the best known approximation algorithm for clique
cover on cubic graphs were shown to be optimal, this would yield hardness of approximation
within a factor of 17/16 (they show a 5/4-approximation algorithm in [11]).

Our second contribution is the resolution of Open Question 4. In fact, we prove the APX-
hardness of DST for all ℓ𝑝-metrics.

THEOREM 1.2 (Implied by Theorem 5.3). Let 𝑝 ∈ R≥1 ∪ {∞}. There is some constant 𝜀 > 0
such that DST on 𝑛 terminals is NP-hard to approximate to within a (1 + 𝜀) factor in the ℓ𝑝-metric,
even in 𝑂(log 𝑛) dimensions.

In fact, it is sufficient to prove that DST is APX-hard in the Euclidean metric, and then
simply use the near isometric embedding of ℓ2-metric to other ℓ𝑝-metrics [50] to obtain that
DST is APX-hard in every ℓ𝑝-metric.

That said, our result is stronger than suggested in Theorem 1.2, in the following sense. Our
reduction is from a hybrid variant of the set cover and set packing problems (both restricted to
the case when the input is a collection of sets each of size exactly 3). Although current known
hardness of bounded set cover and set packing yield very small constant factor inapproximabil-
ity bounds for DST in the ℓ𝑝-metric, these problems are expected to be harder than currently
known. We explicitly compute inapproximability factors throughout so that improvements for
those problems will also immediately translate to improved hardness of approximation factors
for DST in ℓ𝑝-metrics.

Elaborating, our reduction is from the (𝜀, 𝛿)-SP3 problem, where given as input a collection
of sets S over universe [𝑛], we would like to distinguish between the completeness case where
there exists 𝑛/3 pairwise disjoint sets in S that cover the whole universe [𝑛], and the soundness
case where every set cover of [𝑛] from S must be of size at least (1 + 𝛿) (𝑛/3) and every
subcollection of pairwise disjoint sets in S can cover at most a (1 − 𝜀) fraction of the universe.
Note that if (𝜀, 𝛿)-SP3 problem is NP-hard then we may assume 𝛿 ∈ [𝜀/2, 2𝜀] (see Remark 2.1 for
an explanation).

We derive the following hardness of approximation factors, in terms of the parameters of
the reduction from SP3 to DST, from our proof of Theorem 5.3.
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THEOREM 1.3. Let 𝑝 ∈ R≥1∪{∞}. Assuming (𝜀, 𝛿)-SP3 isNP-hard, we have thatDST in ℓ𝑝-metric
is NP-hard to approximate to (1 + 𝛾) factor, where

𝛾 :=



𝛿/4 if 𝑝 = ∞
𝜀
2

(
1 − 1

31/𝑝

)
+ 2𝛿

(
1

2·31/𝑝 − 3
8

)
if 𝑝 > 1/log3(4/3)

𝜀/8 if 𝑝 = 1/log3(4/3) ≈ 3.8

𝜀/26 if 𝑝 ∈ [1, 1/log3(4/3))

We have only tried to optimize our reduction for 𝑝 = 2 and 𝑝 > 1/log3(4/3) ≈ 3.8, and,
even then, we only optimize fully in the case of 𝛿 = 𝜀/2. At each of these thresholds, the scaling of
our DST hard instances changes. We optimize in the range 𝑝 > 1/log3(4/3) because the optimal
scaling of our DST hard instance is clear. Indeed, 𝑝 = 1/log3(4/3) is exactly the threshold where
the interactions between the parameters become far more complex. It is possible to obtain a
better relationship between 𝜀, 𝛿, and 𝛾 for 𝑝 ∈ (1, 1/log3(4/3)) \ {2} by carefully analyzing the
constraints mentioned in Theorem 5.3.

In Figure 1, we capture the interplay between 𝜀, 𝛿, and 𝛾. The purple region indicates
that, between the set packing and set cover (actually vertex cover) problems, the reduction
(i.e., embedding) of the set system only goes through by starting from the covering problem
and not from the packing problem. The green region on the other hand is the exact opposite,
and the reduction of the set system to the DST only goes through by starting from the packing
problem and not from the covering problem. In the yellow region, the behavior is unclear, in
part because we did not carefully analyze the dependency between 𝜀 and 𝛿. Finally, in the red
region, we benefit from both the covering and packing hardness. This is elaborated further in
Section 5.2.

1
log3 4 − 1

≈ 3.8191 ∞2

𝜀, 𝛿??

𝛿

𝜀

Figure 1. Color-coded range of ℓ𝑝 hardness of approximation dependency on 𝜀 and 𝛿.

Moreover, we note that we can derive explicit constants for the hardness of approximation
factors, and we do for DST in the Hamming (ℓ0), ℓ1, ℓ2-metrics in Appendix A.

Our third contribution is observing the relative computational hardness of DST with
respect to CST. Although solving DST instances is often used as a subroutine in algorithms for
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CST, prior to this work it was unclear whether solving DST problems was computationally easier
or harder in general. We show that DST is essentially at least as hard as CST.

THEOREM 1.4 (Implied by Theorem 6.1). Let 𝑝 ∈ [1,∞] and 𝛼 > 0. If CST in the ℓ𝑝-metric
is NP-hard to approximate within a factor of (1 + 𝛼), then, for all 𝜀 > 0, DST in the ℓ𝑝-metric is
NP-hard to approximate within a factor of (1 + 𝛼 − 𝜀).

We prove this by showing that we can efficiently compute a collection of candidate Steiner
points for a DST instance such that the optimal tree for the DST instance is near-optimal for
the corresponding CST instance. Hence, efficient approximation algorithms for DST yield
similarly effective approximation algorithms for CST. As an immediate consequence, this
yields a 1.39-approximation polynomial time algorithm for high dimensional CST in ℓ𝑝-metrics
(see Corollary 6.4). The proof heavily relies on structural results about near-optimal Steiner
trees from [24, 7, 6].

String Metrics. By applying the isometric embedding of the Hamming metric to the Ulam
metric (for example see Lemma 4.5 in [1]) we can prove APX-hardness of DST in the Ulam metric.

THEOREM 1.5. There is some constant 𝜀 > 0 such that DST in Ulam metric on 𝑛 terminals is
NP-hard to approximation to within a (1 + 𝜀) factor, even on permutations of length 𝑂(log 𝑛).

Similarly, by applying the near-isometric embedding of the Hamming metric to the edit
distance metric (for example, see Section 4.1 in [54]), we can prove APX-hardness for DST in the
edit distance metric as well.

THEOREM 1.6. There is some constant 𝜀 > 0 such that DST in edit distance metric on 𝑛 ter-
minals is NP-hard to approximation to within a (1 + 𝜀) factor, even on Boolean strings of length
𝑂(log 𝑛 log log 𝑛).

In combination, these results resolve Open Question 5. See Appendix B for details.

Dimensionality Reduction. Our proof of Theorem 1.2 holds when the dimension of the point
set has linear dependency in the size of the point set. However, we can use the dimensionality
reduction technique introduced in [20] and generalized in [21] to obtain the same inapprox-
imability result as in Theorem 1.2, even when the dimension of the point set has logarithmic
dependency on the size of the point set. We discuss these dimensionality reduction details
(for constant 𝑝) in Appendix C.1 Assuming the Exponential Time Hypothesis [37, 38], the di-
mension cannot be reduced much below logarithmic in size of point set as the runtime of the
approximation scheme of [4, 46, 51] would then be subexponential.

1 Alternatively, it is possible to apply the Johnson-Lindenstrauss lemma [40] in the ℓ2-metric and then use a near-
isometric embedding into the ℓ𝑝-metric for 𝑝 ∈ [1,∞] to achieve similar guarantees. We thank the anonymous referee
for this suggestion.
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1.2 Our Techniques

In this subsection, we contextualize our techniques and provide a high level description of
our technical contributions. We emphasize that the conceptual difficulty in the proofs of
Theorems 1.1, 1.2, and 1.3 is devising the appropriate starting problem and a clean embedding.
The main technical challenge is to prove the soundness property of the reduction. This involves
proving several structural properties of optimal Steiner trees in the corresponding metrics.

1.2.1 Proof Overview of Theorem 1.1: Hardness of Approximation of CST in ℓ∞-metric

First, we discuss the context of Open Problems 2 and 3 and describe our techniques for proving
Theorem 1.1 (the resolution of Open Problem 3).

Prior Work on CST and Technical Difficulties. Prior to this work, the only APX-hardness
results for high dimensional CST were in the Hamming (ℓ0) and Rectilinear (ℓ1) metrics [63,
60]. The discrete structure of Hamming CST makes it far more amenable to existing tools, such
as reductions from hard graph problems, than other variants of CST. Indeed, Trevisan’s proof
of APX-hardness of Rectilinear CST is a direct reduction from Hamming CST. While he appeals
to the integrality property of the Min Cut LP relaxation, Hanan showed decades earlier that
instances of Rectilinear CST admit optimal Steiner trees using only Steiner points on the grid
formed by the intersection of axis parallel lines passing through the terminals [34]. This Hanan
grid arises from the “coordinate independence” in the ℓ1-metric, i.e., the fact that a change in
one coordinate changes the ℓ1 distance by the same amount. This property is unique to the
ℓ1-metric among ℓ𝑝-metrics.

In other ℓ𝑝-metrics, we know much less. From [31], we know that Euclidean CST is NP-hard.
The proof is shown in the plane, making heavy use of the fact that optimal Euclidean Steiner trees
have non-intersecting edges and those edges meet at at least 120 degree angles [33]. However,
the non-intersecting edge property is not especially useful for point configurations outside of
the plane. Without this property, we have very few strong tools for restricting the structure of
optimal Steiner trees. Indeed, we do not know a proof of NP-hardness of Euclidean CST which
does not involve directly appealing to hardness in the plane. This poses a major barrier to
showing APX-hardness of Euclidean CST. In low dimensions, we know a PTAS exists [4], so we
cannot appeal to NP-hardness techniques. Hence, showing APX-hardness in high-dimensions
will ultimately require a brand new NP-hardness argument.

Euclidean CST has also been heavily studied from the perspective of discrete geometry.
The central quantity of interest in that setting is the Steiner ratio of a point configuration: the
ratio of the cost of an optimal Steiner tree and a minimum spanning tree. For example, the
Steiner ratio of the three vertices of a unit equilateral triangle is

√
3/2 with the optimal Steiner

tree achieved by adding the center of the triangle as a Steiner point and connecting it to the



9 / 53 On Approximability of Steiner Tree in ℓ𝑝-metrics

vertices. Perhaps the most basic question about the Steiner ratio is the following: what is the
minimum Steiner ratio over point configurations in the Euclidean plane? Gilbert and Pollak
conjectured that it is exactly

√
3/2 ≈ 0.866, coming from the equilateral triangle [33]. This

conjecture, the Gilbert-Pollak Steiner ratio conjecture, remains open after more than half a
century [39]. The best known lower bound on this quantity is ≈ 0.824, leaving a major gap,
even in the plane [18].

Predictably, in higher dimensions we know even less about the Steiner ratio and the
construction of Steiner trees. Although extrapolating from the plane one might guess that the
vertices of a regular simplex might admit the minimum Steiner ratio in higher dimensions (the
Generalized Gilbert-Pollak Steiner ratio conjecture), Du and Smith disproved this conjecture
without providing a satisfying new candidate point configuration [25]. Moreover, we do not
know how to construct optimal Steiner trees of high-dimensional point configurations, not even
of the vertices of regular simplices (although [19] gives a candidate optimal Steiner tree for
some dimensions). As in the plane, we also have a considerable gap in the bounds on the Steiner
ratio: the minimum lies somewhere between 0.669 and 0.62 [19, 25, 26].

Given our weak bounds, we cannot appeal to the Steiner ratio in analyzing delicate inap-
proximability arguments. The fact that we cannot even construct high-dimensional optimal
Steiner trees compounds this difficulty further. The state of affairs is similar in other ℓ𝑝-metrics.
New results about the inapproximability of high-dimensional CST require novel structural
insights.

Reduction from Graph Coloring to CST in the ℓ∞-metric. In this work, we show APX-
hardness for CST in the ℓ∞-metric. Our proof is unlike the results in [63, 60]. Unable to reduce the
problem from a discrete metric space (e.g., Hamming space), we rely instead on the observation
that the distance between any two points in the ℓ∞-metric is determined by a single coordinate.
We use this observation to introduce structural guarantees on Steiner trees we construct in the
ℓ∞-metric.

Given a graph, we arbitrarily orient its edges to form the digraph 𝐺(𝑉, 𝐴). We construct an
instance of CST in the ℓ∞-metric in R|𝐴| as follows. Each coordinate of the terminals corresponds
to an edge in 𝐴. The terminals themselves correspond to vertices, along with the usual addition
of a root terminal 0, the all-zeroes vector. Given 𝑣 ∈ 𝑉 and 𝑎 ∈ 𝐴, the terminal 𝑡 corresponding
to 𝑣 is 1 in the coordinate corresponding to 𝑎 if 𝑎 is an outgoing edge from 𝑣, −1 if 𝑎 is an
incoming edge to 𝑣, and 0 otherwise. This ensures that for each coordinate, there are exactly
two terminals that are nonzero in that coordinate. The terminals corresponding to adjacent
vertices are at distance 2, and the terminals corresponding to non-neighboring vertices are at
distance 1.

Then, a minimum proper vertex coloring 𝜋 : 𝐺 → [𝜒(𝐺)] induces a low-cost Steiner tree
of these terminals. For each color class of vertices, there is a Steiner point 𝑠 at distance 1/2
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from the set of corresponding terminals of that color class. Among those terminals, for each
coordinate 𝑖, there is at most one terminal nonzero in that coordinate (using that each color
class is an independent set). Setting 𝑠𝑖 to be 0 or half of that nonzero coordinate yields the
desired Steiner point (thus, we have ∥𝑠∥∞ = 1/2). The tree is then constructed by connecting
the terminals corresponding to each color class to the Steiner point described above and then
connecting each of those Steiner points to 0. Each edge in the tree is of cost exactly 1/2 and
there are 𝑛 + 𝜒(𝐺) + 1 total vertices, yielding a total cost of (𝑛 + 𝜒(𝐺))/2.

It turns out that this simple tree is actually the optimal Steiner tree for this configuration!
We prove this in Theorem 1.1. Upon showing this fact, the hardness of graph coloring (even in
graphs with linear chromatic number) yields APX-hardness of CST in the ℓ∞-metric.

To do this, we show that there exists an optimal Steiner tree exhibiting many complemen-
tary properties and then prove that this tree is precisely the tree described above. At a high
level, the objective is to prove two main claims: nonzero terminals are leaf nodes in the Steiner
tree, and no Steiner point is adjacent to another Steiner point. Upon showing these two claims,
it is easy to check that the Steiner points in the optimal tree are of the desired form.

Underlying the arguments required for each of these claims is an important observation
about the structure of optimal Steiner trees of this CST instance. Let 𝑇 be an optimal Steiner
tree of this CST instance, and let 𝑡, 𝑡′ be terminals such that 𝑡𝑖 = 1 and 𝑡′𝑖 = −1. Observe that 𝑡
and 𝑡′ are the only terminals in 𝑇 with nonzero 𝑖th coordinates. We can show that there exists
an optimal Steiner tree such that the 𝑖th coordinate of Steiner points on the path between 𝑡 and
𝑡′ decreases maximally away from 𝑡 until the coordinate reaches 0 (in the sense of determining
the distance between adjacent points). Likewise, the 𝑖th coordinate increases maximally toward
0 along edges away from 𝑡′. Throughout, the coordinates reduce in magnitude maximally away
from the path linking 𝑡 and 𝑡′. If, for example, the path between 𝑡 and some Steiner point 𝑠
passes through 0, then 𝑠 cannot have any coordinates of the same sign as 𝑡. Adopting this view
of the points in 𝑇 being projected onto the 𝑖th coordinate is valuable intuition for the proofs.

For example, we use this intuition in proving that we may assume nonzero terminals
are leaf nodes. It is easy to show that in some optimal Steiner tree, the nonzero terminals are
non-adjacent, but, a priori, it is unclear whether they may be adjacent to many Steiner points.
Suppose that 𝑡 is a nonzero terminal adjacent to multiple Steiner points. Consider removing the
edges from 𝑡 to Steiner points such that their resultant connected components do not contain 0.
The idea is that, in these new connected components, coordinates of Steiner points with the
same sign as coordinates of 𝑡 are no longer useful, so we can set them all to zero. Upon doing so,
connecting the Steiner points originally adjacent to 𝑡 to 0 reconnects the tree without increasing
the cost. This amounts to ensuring that 0 is included in the path between these Steiner points
and 𝑡.

Showing that the Steiner points in the tree are non-adjacent is the most technical part of
the proof. To do so, we first consider Steiner leaves, the Steiner points in the Steiner tree that
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become leaf nodes upon removing all nonzero terminals in the tree. One important property of
these Steiner points is that they are necessarily adjacent to more terminals than Steiner points
(it is easy to show that Steiner points must be degree at least 3 by the triangle inequality). It is
straightforward to show that terminals adjacent to the same Steiner point cannot overlap in
nonzero coordinates. Then, to minimize the total cost of the edges incident to the Steiner leaf,
its coordinates must have magnitude at most 1/2, with magnitude 1/2 in each of the nonzero
coordinates of the adjacent terminals (with the same sign as that nonzero coordinate). Using
this fact we can show that the terminals adjacent to adjacent Steiner leaves cannot overlap
on nonzero coordinates either (by removing the edge between the Steiner leaves and adding
a new edge to 0). Indeed, an even stronger fact is true: if two Steiner leaves are adjacent to
a common Steiner point, then the terminals adjacent to the Steiner leaves cannot overlap on
nonzero coordinates. This follows from the usual trick of dropping an edge and connecting one
of the Steiner leaves directly to 0.

By leveraging these facts and the coordinate-wise view of the Steiner tree, we can show
that each non-leaf Steiner point in the tree is adjacent to at least one other non-leaf Steiner
point. To do this, consider 𝑠 and 𝑠′, two Steiner leaves adjacent to a common Steiner point 𝑠′′.
We can remove all edges from 𝑠′ to its adjacent terminals and connect them instead to 𝑠. We
can then modify 𝑠 to ensure that all neighboring terminals are at distance 1/2 away and then
remove 𝑠′ entirely since it is a Steiner leaf. Repeating this process will result in one of two
things. Either 𝑠′′ will become degree 2 and can be removed via the triangle inequality or 𝑠′′

is adjacent to another non-leaf Steiner point. After repeating for all Steiner points adjacent
to Steiner leaves, all remaining non-leaf Steiner points will be adjacent to at least one other
non-leaf Steiner point.

Finally, consider removing all nonzero terminals and Steiner leaves. The resulting tree
has at most vertex of degree 1, 0, and, hence, is only a tree if all Steiner points were Steiner
leaves. That is, all Steiner points in the tree must have only been adjacent to terminals.

1.2.2 Proof Overview of Theorems 1.2 and 1.3: Hardness of Approximation of DST in
ℓ𝑝-metrics

We present below the techniques needed to prove Theorems 1.2 and 1.3, first establishing the
appropriate technical context.

Known Reductions from Set Cover and Vertex Cover. The following is a gap-preserving
reduction from Set Cover to DST in general metrics due to Karp [41]. Given a set system ( [𝑛],S),
where S is a collection of 𝑚 subsets of [𝑛], we construct a DST instance as follows. Our terminals
will be [𝑛] ∪ {𝑟} (a special root vertex is introduced). Our facilities will be the subsets in S. We
connect each subset to 𝑟 and also have edges between subsets/facilities and terminals/universe
elements based on their membership. See Figure 2. The metric is simply the shortest path metric
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on the graph. In the completeness case2 there is a set cover of size 𝑘, and that corresponds to a
Steiner tree of cost 𝑛 + 𝑘. In the soundness case, if every set cover of [𝑛] must be of size (1 + 𝛿)𝑘,
(for some 𝛿 > 0), then one can show that the Steiner tree cost is at least 𝑛 + 𝑘(1 + 𝛿). By then
considering set systems where each set contains exactly 3 elements and in which the set cover
is a partition in the completeness case, we obtain 𝑘 = 𝑛/3, and thus DST is hard to approximate
to within a (1 + 𝛿/4) factor.3

...𝑟

Sets from S Elements in [𝑛]

Root

1

2
3

𝑛

{1, 2, 3}

...

Figure 2. Instance of DST in general metrics from Karp’s reduction from Set Cover

To obtain APX-hardness for DST in the Hamming (or ℓ1) metric, we can simply start from
a special set system, namely the vertex cover problem on cubic graphs, and then embed the
graphs into the Hamming space as follows. Given a vertex cover instance, 𝐺(𝑉, 𝐸), our facilities
are e1, . . . , e|𝑉 |, and for every edge (𝑢, 𝑣) we have the terminal e𝑢 + e𝑣 (where e𝑖 is a standard
basis vector). We have a special additional terminal (much like the reduction from Set Cover in
the previous paragraph) which is the all-zeroes vector. The completeness and soundness case go
through like in the set cover instance, although some care needs to be taken in the completeness
case. In particular, we cannot assume that the minimum vertex cover forms an independent set
in the completeness case as the problem of deciding whether that is the case is in P.

We can then try to similarly reduce from vertex cover to DST in the Euclidean metric, but
the reduction fails in a suggestive manner. Consider using the same choice of facilities and
terminals as in the Hamming case. Given a vertex cover of size 𝑘, there is a Steiner tree of cost
𝑚 + 𝑘 where we choose the facilities corresponding to the vertices in the vertex cover. Each

2 Here we use terminology from the hardness of approximation literature to refer to the two cases of our decision
problems. The completeness case is the case of our transformed problem corresponding to the “yes” case of our
original instance. The soundness case corresponds to the “no” case.

3 Although better hardness of approximation results are known for set cover for sets of size 𝐵 ≥ 4, reductions based
on these set systems translate to hardness of approximation factors of roughly 𝐵+1+𝛿

𝐵+1 , where we have hardness of
approximation within a factor of (1 + 𝛿). The value of 𝛿 here grows much more slowly than 𝐵 [59], so it is generally
better to consider sets of size 3, the minimum size where we can achieve hardness.
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non-root terminal is a leaf node connected either to a facility at distance 1 or directly to the
all-zeroes vector. Each facility is then connected to the all-zeroes vector.

However, unlike in the Hamming metric, such a Steiner tree might be far from optimal.
Crucially, if a facility is adjacent to two non-root terminals, it is also more efficient to connect
each of those adjacent terminals directly to the all-zeroes vector, incurring a saving of 3 − 2

√
2

in the Steiner tree cost.
It is relatively straightforward to show that there are minimal cost Steiner trees in which

all non-root terminals are leaf nodes and either adjacent to a facility of maximum degree or the
all-zeroes vector. This is notably the same as the construction outlined above upon removing
facilities adjacent to two non-root terminals. However, the minimum cost of a Steiner tree on
these facilities and terminals no longer only depends on the minimum size of a vertex cover in
𝐺. Instead, the cost of the Steiner tree is minimized by finding a maximum independent set,
then taking the corresponding Steiner points, and connecting all terminals corresponding to
edges not incident to the independent set directly to the all-zeroes vector. Our reduction from
minimum vertex cover naturally transformed into a reduction from maximum independent
set!

Importantly, when we consider this reduction for even larger 𝑝, larger than around
𝑝 ≈ 2.409, the Steiner points lose all of their utility and even facilities adjacent to three non-root
terminals do not help reduce the cost. By using a more robust reduction from set packing, the
analog of maximum independent set on graphs, we manage to avoid this issue.

Reduction from Set Packing to Euclidean DST. Our main insight is that while we cannot
reduce from the vertex cover problem to Euclidean DST, we can however reduce from the
independent set problem on cubic graphs to Euclidean DST.

As such, we work with set packing problem, a generalization of the independent set
problem. In particular, we work with SP3, the set packing problem where each set has cardinality
3, and it becomes much easier to limit the adjacencies of Steiner points when they depend on
fewer coordinates. We also assume that there is a set partition in the completeness case. Given
a set system ( [𝑛],S) where S is a collection of subsets of [𝑛] of cardinality 3, we construct an
instance of Euclidean DST as follows. The terminals are {ei : 𝑖 ∈ [𝑛]} ∪ {0} and correspond
exactly to the elements of the universe [𝑛], besides the addition of a special root terminal 0. The
facilities are {1

6 (ei + ej + ek) : {𝑖, 𝑗, 𝑘} ∈ S}. Each facility corresponds exactly to a set in S; it is
a scaling of the characteristic vector of the set.

In the completeness case, there is a set packing. Choosing the facilities corresponding to
the sets in the packing yields a Steiner tree of cost (√3/2 + 1/√108)𝑛. Each universe element
is connected to the facility such that the corresponding universe element is contained in the
corresponding set in the packing. All facilities are connected to the root terminal 0. In the
soundness case, suppose that every set packing of ( [𝑛],S) can cover at most (1 − 𝜀)𝑛 elements.
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One can show that there exists a minimum cost tree such that: (1) the choice of facilities
correspond to a maximal set packing S′ ⊆ S, (2) each facility is adjacent exactly to 0 and the
three terminals corresponding to universe elements contained in the facility’s set, and (3) each
non-root terminal is a leaf node and is either adjacent to a Steiner point or the root terminal
0. Given this structure, the cost of the tree is at least ((1 − 𝜀) (√3/2 + 1/√108) + 𝜀)𝑛, yielding
hardness of approximation within a factor of 1 + 𝜀/26. The scale factor of 1/6 in the contruction
of the facilities is chosen carefully to ensure (1), (2), and (3) and optimize this hardness of
approximation factor (See Section 5 for details.).

This reduction is natural when the terminals are universe elements and the Steiner points
are sets. By having our facilities depend on multiple coordinates, we keep the terminals far
apart and also keep Steiner points relatively far apart (at least relative to our root) so that
we can limit their adjacencies. Thus, upon removing the zeroes vector (special terminal), the
Steiner tree splits into many connected components which can be interpreted as a choice of
sets for our set packing.

Reduction from Set Packing to DST in ℓ𝒑-metric Spaces. It turns out that the reduction
from SP3 to Euclidean DST generalizes to a reduction from SP3 to DST in ℓ𝑝-metric spaces. There
are two main differences.

First, we modify our hard instance of SP3 slightly to become (𝜀, 𝛿)-SP3. The completeness
case is identical to that outlined in the Euclidean DST case above. In the soundness case, in
addition to each set packing of ( [𝑛],S) covering at most (1−𝜀)𝑛 elements, we also have that, for
any set cover S′ ⊆ S such that [𝑛] ⊆ ∪𝑆∈S′𝑆, |S′| ≥ (1 + 𝛿) (𝑛/3). We add this restriction on the
size of minimum set covers since we observe that, for certain 𝑝, the hardness of approximation
of DST in ℓ𝑝-metric spaces resultant from this reduction depends on both 𝜀 and 𝛿 (or even only
𝛿). See Figure 1 and the surrounding discussion.

Additionally, in the reduction toDST in the ℓ𝑝-metric, the scale factor of 1/6 in the Euclidean
setting becomes some constant depending on 𝑝. In part, this is to sufficiently restrict the
structure of optimal Steiner trees in the soundness case. Different choices of scale factor also
yield improved hardness of approximation ratios. For example, it is optimal to use a scale factor
close to 1/2 for very large 𝑝.

1.2.3 Proof Overview of Theorem 1.4: Reduction from CST to DST

Finally, we discuss the techniques needed to prove Theorem 1.4. CST and DST have each
independently garnered considerable interest, but, prior to this work, the relative computational
hardness of the problems was unclear.4 On the one hand, searching over a possibly uncountable
collection of candidate Steiner points in CST appears daunting. On the other hand, perhaps

4 In fact, to the best of our knowledge, the distinction between the discrete and continuous variants was never formalized
and systematically studied in the literature.
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it is possible to select collections of candidate Steiner points for DST that more effectively
emulate other computationally hard problems. However, as the other side of the same coin, the
continuous version allows the algorithm designer the freedom to pick Steiner points anywhere
in space, whereas the discrete variant restricts the use of the geometry of the space by only
allowing Steiner points from the set of facilities.5

In this paper we show that, up to an arbitrarily small factor, DST is at least as hard to
approximate as CST (see Theorem 1.4 above). The proof uses an important structural result
of optimal Steiner trees proved in a recent work of Bartal and Gottlieb [6]. (Similar structural
results were proved in the context of 𝑘-restricted Steiner trees by Du, Zhang, and Feng, and Du
and Borchers [24, 7] in the past and these results would suffice for our purpose as well). Namely,
there exist near-optimal Steiner trees composed of optimal Steiner trees of constant size, linked
by edges between terminals. By embedding all small subsets of terminals in low dimensional
spaces and computing optimal Steiner trees using existing PTAS’s, we can then construct a set
of candidate Steiner points for DST (by unioning all of the Steiner points in the optimal Steiner
trees of these small subsets). Then, the optimal Steiner tree on the DST instance approximates
the cost of the Steiner tree on the CST instance arbitrarily well. As a consequence, this yields
the best known approximation algorithm for high-dimensional CST (Corollary 6.4).

1.3 Organization of the Paper

In Section 2 we define the problems of interest to this paper. In Section 3 we prove APX-
hardness of CST in the ℓ∞-metric via a reduction from graph coloring. In Section 4, we provide
our generic framework of moving from a set system to an abstract and yet parameterized
metric space to obtain hardness of DST. In Section 5, we detail our ℓ𝑝-metric embedding of
the abstract metric space described in the previous section. In Section 6, we relate CST to
DST, describing the reduction between the two problems. In Appendix A, we prove explicit
factors of inapproximability for DST in ℓ0, ℓ1, and ℓ2-metrics. In Appendix B, we explain how to
derive inapproximability of DST in string metrics using known results from the literature. In
Appendix C, we show that our hardness results for DST hold even in 𝑂(log 𝑛)-dimensions using
a specialized near-isometric embedding.

2. Preliminaries

In this section, we detail some notations and definitions related to ℓ𝑝-metric spaces, the Steiner
tree problem, the graph coloring problem, the set packing problem, and the vertex cover
problem.

5 These remarks also hold (in spirit) for other geometric optimization problems. For a useful comparison, consider
clustering. Rather surprisingly, in [22], the authors showed that, in the ℓ∞-metric space, the continuous version of
clustering is possibly harder than the discrete version.
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ℓ𝒑-metrics. Let 𝑝 ∈ R≥1 ∪ {0,∞}. For any two points 𝑎, 𝑏 ∈ R𝑑 we denote the distance between
them in the ℓ𝑝-metric by

∥𝑎 − 𝑏∥𝑝 :=



|{𝑖 ∈ [𝑑] |𝑎𝑖 ≠ 𝑏𝑖}| if 𝑝 = 0,( ∑
𝑖∈[𝑑]

|𝑎𝑖 − 𝑏𝑖 |𝑝
)1/𝑝

if 𝑝 ∈ R≥1,

max
𝑖∈[𝑑]

|𝑎𝑖 − 𝑏𝑖 | if 𝑝 = ∞.

Steiner tree problem. Let (X, Δ) be a metric space on set X and distance function Δ. Given a
set 𝑃 of points in (X, Δ), a Steiner tree of those points is a minimal spanning tree of 𝑃 ∪ 𝑆 for
some 𝑆 ⊆ X. The initial points in 𝑃 are called terminals and the points in 𝑆 are called Steiner
points.

Given a tree 𝑇 with vertices as points in X and edge weights induced by the distance
function Δ, the cost of the tree 𝑇 = (𝑃 ∪ 𝑆, 𝐸), denoted by costΔ(𝑇 ) is

costΔ(𝑇 ) :=
∑︁

𝑒=(𝑢,𝑣)∈𝐸
Δ(𝑢, 𝑣).

In the continuous Steiner tree problem (CST) in the metric space (X, Δ), we are given as
input 𝑃 ⊆ X, and the goal is to find a minimum cost Steiner tree of 𝑃. In the discrete Steiner
tree problem (DST) in the metric space (X, Δ), we are given a pair (𝑃, 𝑋) as input, with 𝑃 ⊆ X
the set of 𝑛 terminals and 𝑋 ⊆ X with |𝑋 | = 𝑂(poly(𝑛)) as the set of facilities. The goal is then
to find a minimum cost of a Steiner tree 𝑇 = (𝑃 ∪ 𝑆, 𝐸) of 𝑃 with 𝑆 ⊆ 𝑋 .

DST can also be considered as a graph problem. In this setting it is called the metric
Steiner Tree problem on graphs. Given a complete graph 𝐺 = (𝑃 ∪ 𝑋, 𝐸) with weight function
𝑤 : 𝐸 → R+ satisfying the triangle inequality, the metric Steiner tree problem is to find the
minimum cost of a Steiner tree of 𝑃 using Steiner points from the set 𝑋 .

Graph coloring problem. In the 𝑘-coloring problem, we are given a graph 𝐺(𝑉, 𝐸) and a
positive integer 𝑘, and the goal is to determine whether there is a proper coloring 𝜋 : 𝑉 → [𝑘]
such that, for each 𝑖 ∈ [𝑘], 𝜋−1(𝑖) forms an independent set in 𝐺. That is, the vertices in 𝐺 can
be partitioned into at most 𝑘 independent sets. The minimum 𝑘 such that 𝐺 admits a proper
𝑘-coloring is the chromatic number of 𝐺 and is denoted 𝜒(𝐺).

In the (𝑎, 𝑏)-coloring, the question is to instead decide which of the following two cases
hold:

Completeness: 𝐺 admits a proper 𝑎-coloring (𝜒(𝐺) ≤ 𝑎).
Soundness: Every proper coloring of 𝐺 uses at least 𝑏 colors (𝜒(𝐺) ≥ 𝑏).
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Set packing problem. We say that (U,S) is a set system if S is a collection of subsets of U.
An instance of the Set Packing problem (SP) is given by the triple ( [𝑛],S, 𝑘), where ( [𝑛],S) is
a set system with |S| = 𝑚 and 𝑘 ∈ N, and the goal is to determine if there exists some S′ ⊆ S
such that for all distinct 𝑆, 𝑆′ ∈ S′, we have 𝑆 ∩ 𝑆′ = ∅ and | ∪𝑆∈S′ 𝑆 | ≥ 𝑘? When all of the sets in
S are fixed to be of size 𝐵, we abbreviate the problem as SPB.

We define (𝜀, 𝛿)-SP3 to be the related decision problem in which we have as input ( [𝑛],S)
as above and decide which of the following two cases hold.

Completeness: [𝑛] may be partitioned into 𝑛/3 sets all of which are in S.
Soundness: Any collection of disjoint sets in S covers at most (1 − 𝜀)𝑛 elements in [𝑛], and
for any collection S′ ⊂ S (sets in S′ need not be pairwise disjoint) such that [𝑛] ⊆ ∪𝑆∈S′𝑆

satisfies |S′| ≥ (1 + 𝛿) (𝑛/3).

REMARK 2 .1. In the soundness case, the parameters 𝜀 and 𝛿 characterize the maximum
coverage of a set packing and the minimum size of a set cover, respectively. These parameters
are related. Indeed, given 𝜀, we should have 𝛿 ∈ [𝜀/2, 2𝜀]. If any collection of disjoint sets
in S covers at most (1 − 𝜀)𝑛 elements in [𝑛], then the smallest possible size of a set cover is
(1 + 𝜀/2) (𝑛/3) (if every additional set covers 2 elements). Assuming a set packing covering
(1 − 𝜀)𝑛 elements is possible, the largest possible minimum set cover is (1 + 2𝜀) (𝑛/3) (covering
the remaining elements one at a time).

Our reduction will use the following NP-hardness of (𝜀, 𝛿)-SP3.

THEOREM 2.2 (Theorem 4.4, [48]). There is some 𝜀 > 0 such that (𝜀, 𝜀/2)-SP3 is NP-hard.

In [48], they actually prove Theorem 2.2 for the Max 3-Dimensional Matching problem,
but Max 3-Dimensional Matching is a special case of SP3. This correspondence is apparent by
viewing each edge of a 3-uniform hypergraph as a subset of [𝑛].

Vertex cover problem. In the minimum Vertex Cover problem (VC), we are given a graph
𝐺(𝑉, 𝐸) and a positive integer 𝑘, and the goal is to determine if there exists 𝐶 ⊆ 𝑉 with |𝐶 | ≤ 𝑘

such that, for all 𝑒 ∈ 𝐸, at least one endpoint of 𝑒 is in 𝐶. Such a 𝐶, containing an endpoint of
each edge, is called a vertex cover of 𝐺.

In (𝑎, 𝑏)-VC, we are given a graph 𝐺(𝑉, 𝐸), and the goal is to decide whether there exists a
vertex cover of 𝐺 of size at most 𝑎 · |𝑉 | or if every vertex cover of 𝐺 has size at least 𝑏 · |𝑉 |.

3. APX-hardness of CST in ℓ∞-metric

In this section we prove Theorem 1.1. First, we recall some inapproximability results on graph
coloring.
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In [11], they study the problem of partitioning a cubic graph into the minimum number of
independent cliques. The minimum size of such a partition is the minimum size of a partition of
the complement graph into independent sets, the chromatic number of the complement graph.
In particular, they show the following.

THEOREM 3.1 ([11], Theorem 7). There exist constants 𝜀1 < 𝜀2 such that (𝜀1𝑛, 𝜀2𝑛)-coloring is
NP-hard.

Below we provide an efficiently computable function mapping a graph 𝐺 of order 𝑛 to an
instance of CST in the ℓ∞-metric such that the optimal cost of the Steiner tree is (𝑛 + 𝜒(𝐺))/2.
Then the APX-hardness of CST in the ℓ∞-metric follows as a corollary by applying Theorem 3.1.6

Given an undirected simple graph, we arbitrarily direct/orient the edges in the graph to
form a digraph 𝐺(𝑉, 𝐴). Define the function Γ : 𝑉 → R|𝐴| such that, for all 𝑖 ∈ 𝑉 ,

Γ(𝑖) = ©­«
∑︁

𝑗 : (𝑖, 𝑗)∈𝐴
e(i,j)

ª®¬ − ©­«
∑︁

𝑗 : ( 𝑗,𝑖)∈𝐴
e(j,i)

ª®¬ ,
where e(i,j) is the standard basis vector in R|𝐴| with 1 in the coordinate corresponding to the
directed edge (𝑖, 𝑗) and 0 elsewhere. Let 𝑃 = {Γ(𝑖) | 𝑖 ∈ 𝑉 }. Our corresponding instance of CST
in the ℓ∞-metric is on the set of terminals 𝑃 = 𝑃 ∪ {0}. We will refer to 0 as the root terminal.

In the spirit of the language of gap-preserving reductions, we refer to the case of showing
that the optimal cost of a Steiner tree of 𝑃 is at most (𝑛 + 𝜒(𝐺))/2 as the completeness case.
Similarly, the case of showing that the optimal cost of a Steiner tree of 𝑃 is at least (𝑛 + 𝜒(𝐺))/2
is the soundness case.

3.1 Completeness

Let 𝜋 : 𝑉 → [𝑎] be a proper 𝑎-coloring of the vertices in 𝐺. Let 𝐴+ and 𝐴− be two distinct
partitions of 𝐴 where for every 𝑘 ∈ [𝑎], the 𝑘th part of 𝐴+ is 𝐴+(𝑘) := {(𝑖, 𝑗) ∈ 𝐴 | 𝜋(𝑖) = 𝑘}
and the 𝑘th part of 𝐴− is 𝐴−(𝑘) = {( 𝑗, 𝑖) ∈ 𝐴 | 𝜋(𝑖) = 𝑘}. Define 𝜎 : [𝑎] → R|𝐴| as follows. The
function 𝜎 will map each color class to a Steiner point. We have

∀𝑘 ∈ [𝑎], 𝜎(𝑘) = ©­«
∑︁

𝑓 ∈𝐴+(𝑘)

1
2
· efª®¬ − ©­«

∑︁
𝑓 ∈𝐴− (𝑘)

1
2
· efª®¬ .

Now, our set of Steiner points will be exactly the set {𝜎(𝑘) | 𝑘 ∈ [𝑎]}. Note that, since 𝜋 is a
proper coloring, for all 𝑘 ∈ [𝑎], 𝐴+(𝑘) ∩ 𝐴−(𝑘) = ∅. We create our Steiner tree as follows. Add
an edge from each Steiner point 𝜎(𝑘) to the root terminal 0. Additionally, add an edge from
each non-root terminal 𝑡 ∈ 𝑃 to the Steiner point 𝜎(𝜋(Γ−1(𝑡))). Note that 𝜎(𝜋(Γ−1(𝑡))) is the

6 Theorem 3.1 is stated without explicit values of 𝜀1 and 𝜀2 since the current derivable parameters come from a line
of works proving APX-hardness without trying to optimize the hardness of approximation factor. If the best known
approximation algorithm for partitioning cubic graphs into cliques were shown to be optimal, that would immediately
imply CST in the ℓ∞-metric is NP-hard to approximate within a factor of 17/16.
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Steiner point corresponding to the color class corresponding to the vertex mapped to terminal
𝑡. See Figure 3.

Note that the resultant Steiner tree is connected and every edge has length 1/2. This length
is clear for the edges from Steiner points to the root terminal. Now fix some 𝑡 ∈ 𝑃. In particular,
if 𝑡 𝑓 = 1, then 𝑓 ∈ 𝐴+(𝜋(Γ−1(𝑡))). That is, in this case, 𝜎(𝜋(Γ−1(𝑡))) 𝑓 = 1/2 since 𝜋 is a proper
coloring. Similarly, if 𝑡 𝑓 = −1, then 𝑓 ∈ 𝐴−(𝜋(Γ−1(𝑡))). Hence, in this case, 𝜎(𝜋(Γ−1(𝑡))) 𝑓 = −1/2.
Note that



𝜎(𝜋(Γ−1(𝑡)))



∞ = 1/2 by definition, so, namely, if 𝑡 𝑓 = 0, |𝜎(𝜋(Γ−1(𝑡))) 𝑓 | ≤ 1/2.

Altogether, this implies that


𝜎(𝜋(Γ−1(𝑡))) − 𝑡




∞ = 1/2.

Hence, this constructed tree has total cost (𝑛 + 𝑎)/2. In particular, the optimal cost of a
Steiner tree in this instance of CST in the ℓ∞-metric is at most (𝑛 + 𝜒(𝐺))/2.

Non-root Terminals

Steiner Points

Root Terminal

Figure 3. Steiner tree of 𝑃 constructed from an 𝑎-coloring of 𝐺

3.2 Soundness

It remains to show that the optimal cost of a Steiner tree of 𝑃 in the ℓ∞-metric is at least
(𝑛 + 𝜒(𝐺))/2. To do so, we prove a series of lemmas which in tandem show that the Steiner tree
constructed in the completeness case is in fact optimal. We emphasize that the function of these
lemmas is to prove increasingly rigid structural guarantees about the optimal Steiner trees in
the soundness case, building off of weaker guarantees proved in previous lemmas.

LEMMA 3.2. Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree of 𝑃. Then, for all (𝑢, 𝑣) ∈ 𝐸, we have
∥𝑢 − 𝑣∥∞ ≤ 1.

PROOF . Suppose 𝑇 has some edge of length greater than 1. Remove the edge from 𝑇 . Now,
the resultant graph 𝑇 ′ is split into two connected components. This yields a partition of the
terminals in 𝑃 into two parts. If one part contains no terminals, dropping that part yields a
lower cost tree.
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Otherwise, consider the minimum spanning tree of the terminals in 𝑃. All edges have
length 1. Namely, since it is a spanning tree, it has some edge crossing the cut induced by the
partition of terminals in 𝑇 ′. Adding that edge to 𝑇 ′ forms a new Steiner tree of cost less than 𝑇 ,
contradicting minimality of 𝑇 and proving the claim. ■

For ease of notation, in the remainder of this section we will make use of the following
function sgn : R→ {−1, 0, 1}, where

sgn(𝑥) =


−1, if 𝑥 < 0;

0, if 𝑥 = 0;

1, if 𝑥 > 0.

With Lemma 3.3, we begin by showing that there are optimal Steiner trees which are
highly structured.

LEMMA 3.3. There exists an optimal Steiner tree 𝑇 (𝑃 ∪ 𝑋, 𝐸) with the following two properties.
(P1) Rapid decay: For all edges (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑃 ∪ 𝑋 and 𝑣 ∈ 𝑋 , if 𝑢𝑖 ≠ 0, 𝑣𝑖 ≠ 0, and

sgn(𝑢𝑖) = sgn(𝑣𝑖), then |𝑢𝑖 − 𝑣𝑖 | = ∥𝑢 − 𝑣∥∞.
(P2) Short edges: Each edge (𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑃 ∪ 𝑋 satisfies ∥𝑢 − 𝑣∥∞ < 1.

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree of 𝑃. Consider the 𝑖th coordinate (corre-
sponding to some arc in 𝐺(𝑉, 𝐴)). First, note that there are exactly two terminals in 𝑃 with
nonzero 𝑖th coordinate. Let 𝑡 be the terminal such that 𝑡𝑖 = 1. Root𝑇 at 𝑡𝑖 in the sense of directing
each edge in 𝑇 away from 𝑡𝑖 . Suppose that (𝑢, 𝑣) is a directed edge in 𝑇 such that 𝑢𝑖 , 𝑣𝑖 > 0, and
∥𝑢 − 𝑣∥∞ ≠ 𝑢𝑖 − 𝑣𝑖 . Note that this is only possible for 𝑢 ∈ 𝑃 ∪ 𝑋 and 𝑣 ∈ 𝑋 .

We construct a new Steiner tree 𝑇 ′ with cost∞(𝑇 ′) ≤ cost∞(𝑇 ). The tree 𝑇 ′ will be the same
as 𝑇 except for the following modifications. Set 𝑣′𝑖 := max(0, 𝑢𝑖 − ∥𝑢 − 𝑣∥∞). Since 𝑣𝑖 > 𝑣′𝑖 ≥ 0,
and, for all terminals other than 𝑡 we have 𝑡𝑖 ≤ 0, this cannot increase the length of edges to
terminals (compared to 𝑇 ). This is because, by Lemma 3.2, since 𝑣𝑖 > 0, 𝑣 cannot be adjacent to
terminals other than 𝑡.

Now, if for all directed edges (𝑣, 𝑤) in 𝑇 with 𝑤 ∈ 𝑋 we have 𝑣′𝑖 ≥ 𝑤𝑖 , then we have
cost∞(𝑇 ′) ≤ cost∞(𝑇 ) (since 𝑣𝑖 ≥ 𝑣′𝑖). Otherwise, suppose there exists some 𝑤 such that 𝑣′𝑖 < 𝑤𝑖 .
Then, set 𝑤′

𝑖 := 𝑣′𝑖 . Then, if for all (𝑤, 𝑥) we have 𝑤′
𝑖 = 𝑣′𝑖 ≥ 𝑥𝑖 , we have cost∞(𝑇 ′) ≤ cost∞(𝑇 ).

Otherwise, repeat this process, setting 𝑥′𝑖 := 𝑣′𝑖 , checking the 𝑖th coordinate of the out-neighbors
of 𝑥′ in 𝑇 ′ and setting their 𝑖th coordinates to 𝑣′𝑖 if they are greater. Since 𝑇 ′ is acyclic and finite,
this process will eventually terminate.

Repeat this process for all other directed edges (𝑢, 𝑣) with 𝑢𝑖 , 𝑣𝑖 > 0, and ∥𝑢− 𝑣∥∞ ≠ 𝑢𝑖 − 𝑣𝑖 ,
treating the newly created optimal Steiner tree 𝑇 ′ as 𝑇 and the resultant tree as 𝑇 ′. Then,
further repeat this process for all other coordinates 𝑖. Afterward, repeat this process for all
coordinates 𝑖, except this time for all edges (𝑢, 𝑣) with 𝑢𝑖 , 𝑣𝑖 < 0 and ∥𝑢 − 𝑣∥∞ ≠ 𝑣𝑖 − 𝑢𝑖 . For



21 / 53 On Approximability of Steiner Tree in ℓ𝑝-metrics

negative coordinates and a directed edge (𝑢, 𝑣) such that 𝑢𝑖 , 𝑣𝑖 < 0 and ∥𝑢 − 𝑣∥∞ ≠ 𝑣𝑖 − 𝑢𝑖 , we
will set 𝑣∗𝑖 := min(0, 𝑢𝑖 + ∥𝑢 − 𝑣∥∞). Since each round of modifying the tree only affects a single
coordinate (and only Steiner points which are nonzero and of a given sign in those coordinates),
this yields (P1).

Before we modify the tree further to ensure (P2), we observe that (P1) implies a useful
property of the Steiner points in the Steiner tree.

CLAIM 3.4. Let 𝑇 (𝑃∪𝑋, 𝐸) be an optimal Steiner tree satisfying (P1). Then, for all Steiner points
𝑠 ∈ 𝑋 , ∥𝑠∥∞ < 1.

Proof. Let 𝑡 ∈ 𝑃 be the unique terminal with 𝑡𝑖 = 1. Then, suppose that 𝑠 ∈ 𝑋 is a Steiner point
adjacent to 𝑡. From Lemma 3.2, 𝑠𝑖 ≥ 0. Since the distance between any two points in 𝑇 is greater
than 0 (assuming no degenerate Steiner points), from (P1), 𝑠𝑖 < 1. Then, consider rooting 𝑇 at 𝑡.
(P1) immediately implies that the 𝑖th coordinate of any Steiner point not adjacent to 𝑡 is at most
the maximum 𝑖th coordinate of the Steiner points adjacent to 𝑡. This observation holds for any
coordinate 𝑖 and holds similarly for negatively signed coordinates, yielding the claim. ■

Now, suppose that 𝑇 ′ is the optimal Steiner tree resultant from the modifications for
ensuring (P1). Let (𝑢, 𝑣) be an edge with 𝑢, 𝑣 ∈ 𝑃 ∪ 𝑋 . By Lemma 3.2, ∥𝑢 − 𝑣∥∞ ≤ 1. If
∥𝑢 − 𝑣∥∞ = 1, consider removing the edge (𝑢, 𝑣), thereby disconnecting the tree. One of 𝑢 or 𝑣
will be in the same resultant connected component as 0. Connect the other to 0, reconnecting
the tree with an edge of cost at most 1. Repeating this process yields (P2) since all edges added
in each iteration of this process involve 0 and each iteration removes an edge in violation of
(P2). Since this process only removes edges and adds edges adjacent to 0, the resultant tree still
satisfies (P1). ■

Optimal Steiner trees with the properties of Lemma 3.3 have some other useful properties.

COROLLARY 3.5. Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree satisfying the properties of Lemma
3.3. Then, for all 𝑡, 𝑡′ ∈ 𝑃, (𝑡, 𝑡′) ∉ 𝐸.

PROOF . Note that for all 𝑡, 𝑡′ ∈ 𝑃 distinct, ∥𝑡− 𝑡′∥∞ ≥ 1. (P2) then implies the desired result. ■

COROLLARY 3.6. Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree satisfying the properties of Lemma
3.3. Then, for all coordinates 𝑖 and 𝑡, 𝑡′ ∈ 𝑃 such that 𝑡𝑖 = 1 and 𝑡′𝑖 = −1, there does not exist Steiner
point 𝑠 ∈ 𝑋 such that (𝑡𝑖 , 𝑠), (𝑡′𝑖 , 𝑠) ∈ 𝐸. That is, 𝑡 and 𝑡′ do not share a common neighboring Steiner
point.

PROOF . Suppose otherwise. Then, consider 𝑠𝑖 . (P2) implies that 𝑠𝑖 > 0 and 𝑠𝑖 < 0, a contradic-
tion. ■

We now proceed by a series of lemmas extending the structural constraints established in
Lemma 3.3.
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LEMMA 3.7. There exists an optimal Steiner tree 𝑇 (𝑃 ∪ 𝑋, 𝐸) satisfying (P1), (P2), and the
following additional property:

(P3) Terminal connectivity: For all 𝑡 ∈ 𝑃, 𝑡 is a leaf node.

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree satisfying (P1) and (P2) (such a tree exists
from Lemma 3.3). We modify 𝑇 without increasing the cost to yield the desired Steiner tree.

First, by Corollary 3.5, there are no edges between non-root terminals in 𝑇 . Now, suppose
that 𝑡 ∈ 𝑃 is adjacent to 0 and some Steiner point 𝑠. Note that 𝑡 may be adjacent to other Steiner
points. Drop the edge from 𝑡 to 0 and replace it with an edge from 0 to 𝑠. From Claim 3.4, this
decreases the cost of 𝑇 , contradicting minimality.

Finally, suppose that 𝑡 is adjacent to at least two Steiner points and is not adjacent to 0.
Consider the subtrees of 𝑇 that would contain these Steiner points if we removed 𝑡 from the
tree. In particular, one of the subtrees must contain 0 and the others cannot contain 0. Let 𝑠 be a
Steiner point adjacent to 𝑡 whose resultant subtree does not contain 0. Call the subtree 𝑇𝑠. Now,
drop the edge from 𝑠 to 𝑡. For each coordinate 𝑖 such that 𝑡𝑖 ≠ 0, for all Steiner points 𝑠′ in 𝑇𝑠, if
sgn(𝑠′𝑖) = sgn(𝑡𝑖), set 𝑠′𝑖 = 0. This cannot increase the cost of 𝑇𝑠—the length of edges between
Steiner points cannot increase, the length of edges between Steiner points and terminals with
𝑖th coordinate 0 cannot increase, and, by (P2), any Steiner points adjacent to the terminal with
opposite sign 𝑖th coordinate are unaffected. Now add an edge from 𝑠 to 0, reconnecting the tree.
In particular, we now have 𝑠 𝑗 ≠ 0 only if 𝑡 𝑗 = 0, so ∥𝑠∥∞ is at most the former distance between
𝑠 and 𝑡. Hence, these modifications did not increase the cost of the tree and removed a neighbor
of 𝑡 without adding any neighbors to a nonzero terminal. Repeating this process—for other
Steiner points 𝑠 adjacent to 𝑡 such that their subtrees resultant from removing 𝑡 do not contain
0—yields (P3). Crucially, these modifications are consistent with (P1) and (P2). After making
these modifications, the tree remains optimal and we can re-apply the modifications detailed in
the proof of Lemma 3.3 to ensure (P1) and (P2) since those modifications do not add edges to
any terminals in 𝑃. ■

Optimal Steiner trees with properties (P1), (P2), and (P3) reflect some the structure of the
Steiner trees constructed in the completeness case. In particular, Corollary 3.6 combined with
(P3) shows that these optimal Steiner trees induce a proper coloring of 𝑉 . The color classes
are defined by the (unique) Steiner points adjacent to non-root terminals, and each non-root
terminal adjacent to 0 has its own color class. Given some optimal Steiner tree with properties
(P1), (P2), and (P3), the induced coloring of 𝑉 is given by the function 𝜋𝑇 . Denote the set of
non-root terminals adjacent to a Steiner point 𝑠 by 𝑃(𝑠) (note that Γ−1(𝑃(𝑠)) is a color class
defined by 𝜋𝑇 ).

Equipped with these structural observations, additional completeness structure emerges
in the following lemma. In the statement of the lemma, 𝜎 is defined exactly as in Section 3.1,
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induced by the coloring 𝜋𝑇 . In other words, for all Steiner points 𝑠 only adjacent to non-root
terminals and 0, if 𝑠 is adjacent to some terminal 𝑡 with 𝑡𝑖 ≠ 0, then 𝑠𝑖 = 𝑡𝑖/2.

LEMMA 3.8. There exists an optimal Steiner tree 𝑇 (𝑃 ∪ 𝑋, 𝐸) satisfying (P1), (P2), and (P3), and
the following additional property.

(P4) Completeness structure: For all Steiner points 𝑠 only adjacent to non-root terminals and
0, we have 𝑠 = 𝜎(𝜋𝑇 (Γ−1(𝑃(𝑠)))).

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be a Steiner tree satisfying (P1), (P2), and (P3). Consider some such
Steiner point 𝑠 in 𝑇 adjacent to only non-root terminals and 0. Note that, by (P3), since nonzero
terminals are leaf nodes, 𝑠 must be adjacent to 0 so that 𝑇 is connected.

First, we may assume that if 𝑠𝑖 ≠ 0, then there exists 𝑡 ∈ 𝑃(𝑠) such that 𝑡𝑖 ≠ 0. Otherwise
setting 𝑠𝑖 = 0 does not increase the cost of the tree.

Next, if there exists 𝑡 ∈ 𝑃(𝑠) with 𝑡𝑖 = 1, then, by Corollary 3.6, 𝑡′ such that 𝑡′𝑖 = −1 is not an
element of 𝑃(𝑠). Moreover, (P2) then implies that 𝑠𝑖 > 0. The analogous facts are true if there
exists 𝑡 ∈ 𝑃(𝑠) with 𝑡𝑖 = −1.

Now suppose that ∥𝑠∥∞ = 1/2 + 𝜀 for some 𝜀 > 0. Then, for each 𝑖 such that 𝑠𝑖 > 0, set
𝑠𝑖 = min(𝑠𝑖 , 1/2), and, for each 𝑗 such that 𝑠 𝑗 < 0, set 𝑠 𝑗 = max(𝑠 𝑗 ,−1/2). Note that, for at most
one 𝑡 ∈ 𝑃(𝑠), ∥𝑠 − 𝑡∥∞ will increase as a result of this operation (and it will increase by at most
𝜀). However, ∥𝑠∥∞ will decrease by 𝜀, implying that the overall cost of the tree does not increase
as a result of this operation (due to the edge to 0).

Finally, suppose that there is some 𝑖 such that 0 < |𝑠𝑖 | < 1/2. Let

min
{𝑖 : 0< |𝑠𝑖 |<1/2}

|𝑠𝑖 | = 1/2 − 𝜀

for some 𝜀 > 0 and let
𝑖0 = arg min

{𝑖 : 0< |𝑠𝑖 |<1/2}
|𝑠𝑖 |.

Let 𝑡̃ be a terminal in 𝑃(𝑠) such that |𝑠𝑖0 | = 1/2 − 𝜀 and 𝑡̃𝑖0 ≠ 0. Then, for each 𝑖 such that 𝑠𝑖 > 0,
set 𝑠𝑖 = 1/2 and for each 𝑗 such that 𝑠 𝑗 < 0, set 𝑠 𝑗 = −1/2. Now, this modification decreases the
distance from 𝑠 to 𝑡̃ by 𝜀 while increasing the distance from 0 to 𝑠 by at most 𝜀. Moreover, for all
𝑡 ∈ 𝑃(𝑠), this does not increase ∥𝑡 − 𝑠∥∞ since, from the previous modification, ∥𝑡 − 𝑠∥∞ ≥ 1/2.
Hence, this does not increase the cost of 𝑇 and yields (P4). Note that (P1), (P2), and (P3) are all
preserved under these operations. ■

Lemma 3.8 shows that when Steiner points are not adjacent to other Steiner points, they
appear exactly like Steiner points in the completeness case. Our next objective is then to show
that we may assume there are no edges between Steiner points. To do so, we will first consider
the most “extremal” Steiner points which are not accounted for by Property (P4). Let𝑇 (𝑃∪𝑋, 𝐸)
be an optimal Steiner tree satisfying (P1), (P2), (P3), and (P4). Then, removing all terminals in 𝑃
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will result in a smaller (connected) tree since all such terminals are leaf nodes by (P3). Call the
non-terminal leaf nodes in the resultant tree Steiner leaves. We show that Steiner leaves are
highly structured in Lemma 3.9.

LEMMA 3.9. There exists an optimal Steiner tree 𝑇 (𝑃 ∪ 𝑋, 𝐸) satisfying (P1), (P2), (P3), (P4), and
the following additional property.

(P5) Steiner leaf structure: For all Steiner leaves 𝑠 ∈ 𝑋 , ∥𝑠∥∞ = 1/2 . Moreover, for each
coordinate 𝑖 such that there exists 𝑡 ∈ 𝑃(𝑠) with 𝑡𝑖 ≠ 0, |𝑠𝑖 | = 1/2.

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be a Steiner tree satisfying (P1), (P2), (P3), and (P4). Suppose that 𝑠 is a
Steiner leaf in 𝑇 not satisfying (P5). Using the triangle inequality, we may assume that 𝑠 has
degree at least 3 (otherwise, the Steiner point may be replaced by an edge directly between
its two neighbors without increasing the cost of the tree). Such an application of the triangle
inequality is consistent with (P1), (P3), and (P4). The argument in Lemma 3.3 to achieve (P2) can
be reapplied if this results in an edge of length 1. Then, the fact that 𝑠 is a Steiner leaf implies
that |𝑃(𝑠) | ≥ 2. If 𝑠 is only adjacent to terminals, we may apply (P4).

Otherwise, 𝑠 must be adjacent to one Steiner point 𝑠′ and at least two nonzero terminals.
Suppose that ∥𝑠∥∞ = 1/2 + 𝜀 for some 𝜀 > 0. There are two cases to consider.

First, suppose that for all 𝑖 such that |𝑠𝑖 | = 1/2 + 𝜀, there exists 𝑡 ∈ 𝑃(𝑠) such that sgn(𝑡𝑖) =
sgn(𝑠𝑖). Let 𝛾 = max({|𝑠𝑖 | : ∀𝑡 ∈ 𝑃(𝑠), 𝑡𝑖 = 0} ∪ {1/2}). That is, 𝛾 is a maximum magnitude
of a coordinate of 𝑠 not corresponding to a coordinate of a terminal in 𝑃(𝑠) (or 1/2 if no such
coordinates are greater than 1/2). Now, for all coordinates 𝑖 such that 𝑡𝑖 = 1/2 + 𝜀, set 𝑡𝑖 = 𝛾.
Likewise, for all coordinates 𝑗 such that 𝑡 𝑗 = −1/2 − 𝜀, set 𝑡 𝑗 = −𝛾. This increases ∥𝑠 − 𝑡∥∞ for
at most one 𝑡 ∈ 𝑁 (𝑠) by at most 1/2 + 𝜀 − 𝛾, but for all other 𝑡′ ∈ 𝑁 (𝑠), ∥𝑠 − 𝑡′∥∞ decreases by
1/2 + 𝜀 − 𝛾. Hence, this can only increase the cost of tree if the tree if ∥𝑠 − 𝑠′∥∞ increases. But,
we may propagate this reduction in magnitude of coordinates through 𝑠′ as in Lemma 3.3 in
order to reestablish (P1) and ensure that this change does not increase ∥𝑠 − 𝑠′∥∞, thereby not
increasing the cost of the tree. Note that this relies on our assumption that, for all 𝑖 such that
|𝑠𝑖 | = 1/2 + 𝜀, there exists 𝑡 ∈ 𝑃(𝑠) such that sgn(𝑡𝑖) = sgn(𝑠𝑖). Afterward, we may apply the
modifications outlined in Lemma 3.3 to re-establish (P1) and (P2) since they will not increase
the magnitude of coordinates of Steiner leaves.

Now, if we still have ∥𝑠∥∞ = 1/2 + 𝜀′ > 1/2, there exists some coordinate 𝑖 such that
|𝑠𝑖 | = ∥𝑠∥∞ and for all 𝑡 ∈ 𝑃(𝑠), 𝑡𝑖 = 0. Now, for coordinates 𝑗 such that 𝑠 𝑗 > 1/2, set 𝑠 𝑗 = 1/2
and, likewise, if 𝑠 𝑗 < −1/2, set 𝑠 𝑗 = −1/2. Then, for all 𝑡 ∈ 𝑃(𝑠), ∥𝑠 − 𝑡∥∞ decreases by 𝜀′ and
∥𝑠 − 𝑠′∥∞ increases by at most 𝜀′. Since |𝑃(𝑠) | ≥ 2, this actually decreases the cost of the tree,
contradicting minimality. Hence, this case cannot occur.

It remains to show that, for each coordinate 𝑖 such that there exists 𝑡 ∈ 𝑃(𝑠) with 𝑡𝑖 ≠

0, |𝑠𝑖 | = 1/2. Call such coordinates corresponding coordinates of 𝑠 (with the terminal 𝑡 ∈
𝑃(𝑠) corresponding to such a coordinate referred to as a corresponding terminal). Let 𝑖 be a
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corresponding coordinate of 𝑠 such that |𝑠𝑖 | is minimal; say |𝑠𝑖 | = 1/2−𝜀. By (P2), sgn(𝑠𝑖) = sgn(𝑡𝑖)
for corresponding terminal 𝑡. By the above, ∥𝑠∥∞ ≤ 1/2. Now, increasing the magnitude of all
corresponding coordinates of 𝑠 (while retaining their sign) will decrease the distance to 𝑡 by 𝜀

and increase the distance from 𝑠 to 𝑠′ by at most 𝜀. Hence, repeating this operation does not
increase the cost of the Steiner tree while ensuring Property (P5). If (P1) or (P2) are ever violated,
they be restored by the processes described in Lemma 3.3 without violating (P5). Properties
(P3) and (P4) are unaffected by the modifications outlined above. ■

The language introduced in Lemma 3.9 will be useful in the following lemmas. For 𝑠 a
Steiner point, call 𝐶(𝑠) = {𝑖 : 𝑡 ∈ 𝑃(𝑠), 𝑡𝑖 ≠ 0} the set of corresponding coordinates of 𝑠. We
observe an implication of Lemma 3.9.

LEMMA 3.10. There exists a optimal Steiner 𝑇 (𝑃 ∪ 𝑋, 𝐸) satisfying (P1), (P2), (P3), (P4), (P5),
and the following additional property:

(P6) Steiner leaf independence: Let 𝑠 be a Steiner leaf. Then, if 𝑠′′ is a Steiner point adjacent
to 𝑠, then 𝐶(𝑠) ∩ 𝐶(𝑠′′) = ∅. Moreover, for all other Steiner leaves 𝑠′ adjacent to 𝑠′′,
𝐶(𝑠) ∩ 𝐶(𝑠′) = ∅.

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be a Steiner tree satisfying (P1), (P2), (P3), (P4), and (P5). Let 𝑠 be a
Steiner leaf and 𝑠′′ be a Steiner point neighboring 𝑠. First, suppose that 𝑖 ∈ 𝐶(𝑠) ∩ 𝐶(𝑠′′). Then,
𝑠𝑖 = 1/2 (using (P5)). Note that 𝑠′′𝑖 < 0 by (P2). Then, dropping the edge (𝑠, 𝑠′′) and adding
the edge (𝑠, 0) maintains the connectivity of the tree while decreasing its cost, contradicting
optimality of 𝑇 .

Now, let 𝑠′ be a second Steiner leaf neighboring 𝑠′′ and let 𝑖 ∈ 𝐶(𝑠) ∩ 𝐶(𝑠′). Without
loss of generality assume 𝑠𝑖 = 1/2 and 𝑠′𝑖 = −1/2. Then, clearly either ∥𝑠′′ − 𝑠∥∞ ≥ 1/2 or
∥𝑠′′ − 𝑠′∥∞ ≥ 1/2. Assume that ∥𝑠′′ − 𝑠∥∞ ≥ 1/2. Removing edge (𝑠, 𝑠′′) and adding edge (𝑠, 0)
then removes this pair of Steiner points violating (P6) while keeping the tree connected and not
increasing its cost. The fact that the cost does not increase follows from (P5). This modification
may affect (P1), (P4), (P5), but following the algorithms described in Lemmas 3.3, and 3.8 and
3.9 can re-establish these properties without increasing the number of pairs of Steiner leaves
violating (P6). Repeating this process then yields the result. ■

We are now ready to prove the final and most important structural property of optimal
Steiner trees: there exist optimal Steiner trees with no edges between Steiner points.

LEMMA 3.11. There exists a optimal Steiner 𝑇 (𝑃 ∪ 𝑋, 𝐸) satisfying (P1), (P2), (P3), (P4), (P5),
(P6), and the following additional property:

(P7) Steiner adjacency: There are no edges between Steiner points in 𝑇 .

PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree satisfying (P1), (P2), (P3), (P4), (P5), and (P6).
To prove this result, we begin with an important claim.
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CLAIM 3.12. We may assume that, for all non-leaf 𝑠 ∈ 𝑋 , 𝑠 is adjacent (in 𝑇 ) to 0 and at least
one other non-leaf Steiner point or at least two non-leaf Steiner points.

Proof. Suppose some non-leaf Steiner point 𝑠 in 𝑇 does not have this property. Since 𝑠 is not a
Steiner leaf, it must be adjacent to at least two points that are not nonzero terminals. Hence,
it is adjacent to at least one Steiner leaf 𝑠′. By (P6), we have 𝐶(𝑠) ∩ 𝐶(𝑠′) = ∅ and, for any two
Steiner leaves 𝑠′ and 𝑠′′ adjacent to 𝑠, 𝑠′ and 𝑠′′, 𝐶(𝑠′) ∩ 𝐶(𝑠′′) = ∅.

Note that by (P1), all coordinates in 𝐶(𝑠′) behave the same in the following sense. Upon
rooting the tree at 𝑠′ and directing all edges away from 𝑠′, these coordinates decrease maximally
in magnitude until reaching 0. So, until they reach 0, they all have the same magnitude. Now,
fix a Steiner leaf 𝑠′ adjacent to 𝑠. Remove all edges from 𝑠 to its neighboring nonzero terminals,
add edges from those nonzero terminals to 𝑠′, and treat each coordinate previously in 𝐶(𝑠) like
the coordinates previously in 𝐶(𝑠′) (setting them to have the same magnitudes and appropriate
signs), propagating through the tree until the coordinates reach 0. This does not increase the cost
of the tree since 𝑠′ is a Steiner leaf, the tree satisfies property (P1), and we had 𝐶(𝑠) ∩ 𝐶(𝑠′) = ∅.

Do the same process outlined above for all other Steiner leaves adjacent to 𝑠 (replace their
edges to nonzero terminals with edges from those terminals to 𝑠′ and have their corresponding
coordinates emulate the coordinates of other nonzero terminals adjacent to 𝑠′). Also drop those
Steiner leaf Steiner points.

After this process, 𝑠 has degree 2, so, by the triangle inequality, it can be removed and an
edge can be added directly between its two neighbors. We can repeat this process until 𝑠′ is
either adjacent to 0 or a non-leaf Steiner point satisfying the desired property. At some points,
we may need to restore (P6), but we can do so by following the algorithm described in Lemma
3.10.

Repeating for all non-leaf Steiner points without this property then ensures the property
holds in the resultant tree. After each step, we can restore properties (P1) and (P2) by applying the
algorithm described in Lemma 3.3. The other properties are unaffected by these modifications.

■

Given the claim, consider removing non-root terminals and Steiner leaf nodes from 𝑇 . By the
claim, all remaining Steiner points are degree at least two. But then, by (P3), the only possible
leaf node in the resultant graph is 0. The only tree with only one leaf node is a singleton vertex,
implying all Steiner points in 𝑇 are Steiner leaves. Hence, we have (P7). ■

Lemma 3.8 in fact show that there exist optimal Steiner trees with exactly the structure of
the completeness case. This is formalized in Lemma 3.13.

LEMMA 3.13. There exists an optimal Steiner tree in which the length of each edge is 1/2 and
the number of Steiner points is exactly 𝜒(𝐺).
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PROOF . Let 𝑇 (𝑃 ∪ 𝑋, 𝐸) be an optimal Steiner tree satisfying properties (P1), (P2), (P3), (P4),
(P5), (P6), and (P7).

By (P3), (P7), (P2), and (P4), each terminal is either connected to a Steiner point by an edge
of length 1/2 or connected to 0 by an edge of length 1. Each edge from a Steiner point to 0 is
length 1/2.

For each edge of length 1 from a terminal, we can add an intermediate Steiner point
halfway along that edge (corresponding to the terminal) such that the edge is split into two
edges of length 1/2. Then, the cost is fixed and each edge is of length 1/2.

Now, by Corollary 3.6, for each Steiner point 𝑠, 𝑃(𝑠) corresponds to an independent set
in 𝐺. Since each edge in the graph is length 1/2, the cost of the tree is (𝑛 + |𝑋 |)/2, where 𝑋

is the set of Steiner points in the tree. Since each nonzero terminal is adjacent to a Steiner
point, by Corollary 3.6, 𝑇 must have at least 𝜒(𝐺) Steiner points. But, the construction in the
completeness case shows a tree with 𝜒(𝐺) Steiner points and this structure is possible (adding
the intermediate Steiner points for edges directly to 0), implying the result. ■

This completes the proof of the soundness case of Theorem 1.1.

4. TheMetric Steiner Problem on Graphs

In this section, we show a gap preserving reduction from SP3 to DST in general metrics. In
Section 4.1 we describe how we associate a metric space to a set system. The resultant metric
spaces will be called set system spaces. When the distances in these metric spaces satisfy an
additional collection of constraints (see Definition 4.4), these set system spaces will be sufficient
to yield a gap preserving reduction from SP3 to DST. The details of this reduction are provided
in Subsection 4.2.

4.1 From Set Systems to Metric Spaces

In this subsection, we describe how to associate a metric space to a set system7. We also
introduce more restricted metric spaces that facilitate gap preserving reductions from SP3 to
DST.

DEF IN IT ION 4.1 (Set System Space). Let ( [𝑛],S) be a set system such that for all 𝑆 ∈ S,
we have |𝑆 | = 3, and |S| := 𝑚. Let 𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏 ∈ R+. Then, we define the
(𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space corresponding to ( [𝑛],S) to be the space (𝑃∪𝑋, Δ)
containing 𝑛 +𝑚 + 1 points and a distance function Δ. We define 𝑃 := {𝑡𝑖 : 𝑖 ∈ [𝑛]}, 𝑃 = 𝑃 ∪ {𝑟},
and 𝑋 := {𝑠 𝑗 : 𝑆 𝑗 ∈ S}. We refer to the points in 𝑃 as universe elements, 𝑟 as the root, and the
points in 𝑋 as facilities. For convenience, for 𝑠 𝑗 ∈ 𝑋 , we define Γ(𝑠 𝑗) = 𝑆 𝑗 .

7 For the purposes of our application to DST, we specify this association to metric spaces only for set systems where
each set in the collection is of size exactly 3.
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Interpreting the points of the space as vertices in a graph, we define the weight function Δ
by defining every pairwise edge weight as follows (the weight of the edge between each point
and itself is 0).

Δ(𝑟, 𝑠) = 𝛼X for all 𝑠 ∈ 𝑋 .
Δ(𝑟, 𝑡) = 𝛼P for all 𝑡 ∈ 𝑃.
Δ(𝑡𝑖 , 𝑠) = 𝛽in for all 𝑖 ∈ [𝑛] such that 𝑖 ∈ Γ(𝑠).
Δ(𝑡𝑖 , 𝑠) = 𝛽out for all 𝑖 ∈ [𝑛] such that 𝑖 ∉ Γ(𝑠).
Δ(𝑠, 𝑠′) = 𝛾𝑖 for all 𝑠, 𝑠′ ∈ 𝑋 such that |Γ(𝑠) ∩ Γ(𝑠′) | = 𝑖, for 𝑖 = 0, 1, and 2.
Δ(𝑡, 𝑡′) = 𝜏 for all distinct 𝑡, 𝑡′ ∈ 𝑃.

To elucidate our choice of notation, we also provide intuitive definitions of each parameter.
𝛼X is the distance from the root terminal to a Steiner point in 𝑋 .
𝛼P is the distance from the root terminal to a terminal in 𝑃.
𝛽in is the distance between a Steiner point 𝑠 and non-root terminal 𝑡𝑖 such that the set
corresponding to 𝑠 contains the universe element corresponding to 𝑡𝑖 .
𝛽out is the distance between a Steiner point 𝑠 and non-root terminal 𝑡𝑖 such that the set
corresponding to 𝑠 does not contain the universe element corresponding to 𝑡𝑖 .
𝛾𝑖 is the distance between Steiner points 𝑠 and 𝑠′ such that their corresponding sets have
an intersection of size 𝑖.
𝜏 is the distance between non-root terminals.

Note that, although we say “distance” in the above intuitive descriptions, the weight
function Δ may not define a metric, so set system spaces may not be metric spaces. The following
definition resolves this issue.

DEF IN IT ION 4.2 (Metric Compatibility). Suppose that we have 𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏 ∈
R+, such that all of the following inequalities hold.

1. 𝛼X ≤ min(𝛼P + 𝛽in, 𝛼P + 𝛽out).
2. 𝛼P ≤ min(𝛼X + 𝛽in, 𝛼X + 𝛽out).
3. 𝛽in ≤ min(𝛼X + 𝛼P, 𝛽out + 𝜏, 𝛾𝑖 + 𝛽out : 𝑖 ∈ {0, 1, 2}).
4. 𝛽out ≤ min(𝛼X + 𝛼P, 𝛽in + 𝜏, 𝛾𝑖 + 𝛽in : 𝑖 ∈ {0, 1, 2}).
5. 𝛾𝑖 ≤ min(2𝛼X, 𝛾 𝑗 + 𝛾𝑘, 2𝛽in, 2𝛽out : 𝑖, 𝑗, 𝑘 ∈ {0, 1, 2}).
6. 𝜏 ≤ min(2𝛼P, 2𝛽in, 2𝛽out).

In this case, we call the tuple (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) metric compatible. Note that the
constraints 𝛾𝑖 ≤ 𝛽in + 𝛽out and 𝜏 ≤ 𝛽in + 𝛽out are implied by 𝛾𝑖 ≤ 2𝛽in, 2𝛽out and 𝜏 ≤ 2𝛽in, 2𝛽out.

A general diagram of an (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space is given in Figure 4.
Note that not all pairwise distances in the diagram are labeled.
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...

𝑟

Facilities (𝑠𝑖) Universe Elements (𝑡𝑖)

𝛼X

𝛼X

𝛼P

...

𝛼P

𝛾2

𝛾1

𝛾0

𝜏

𝜏

𝛽in

𝛽out

Root

Figure 4. A general (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space with edges between different groups
of nodes color-coded

PROPOS IT ION 4.3. If (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) is metric compatible, then any
(𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space is a metric space.

PROOF . Inequalities 1–6 in Definition 4.2 are precisely those necessary for the triangle in-
equality to hold with distance function Δ. The other metric constraints follow trivially from
Definition 4.1. ■

Hence, if (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) is metric compatible, associated set system space
weight functions Δ are distance functions. Now we introduce the notion of Steiner embeddability,
a further restriction on metric compatible tuples. Tuples with these restrictions induce a notion
of distance on metric spaces related to set systems that facilitates the construction of a gap
preserving reduction from SP3 to DST.

DEF IN IT ION 4.4 (Steiner embeddability and Steiner spaces). We call a metric compatible
tuple
(𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) Steiner embeddable if

(P1) Steiner proximity: 𝛼X ≤ 3𝛾2/2, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝜏.
(P2) Root proximity: 𝛼P ≤ 𝛽out.

(P3) Steiner utility: 𝛽in + 𝛼X
3 < min(𝛼P, 𝜏).
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(P4) Steiner diameter: min(𝛼P, 𝜏) ≤ 𝛽in + 𝛾2.

We call any (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space with (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)
Steiner embeddable a Steiner space. The constraints in Definition 4.2 ensure that the parameters
can be realized as distances in a metric space, and the constraints in Definition 4.4 ensure
sufficient properties for proving hardness of approximation of DST via a reduction from (𝜀, 𝛿)-
SP3.

4.2 Hardness of DST from Set Packing

In this subsection we describe a general reduction from (𝜀, 𝛿)-SP3 to DST using the language of
Steiner spaces.

THEOREM 4.5. Let (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) be a Steiner embeddable tuple. For an instance
( [𝑛],S) of (𝜀, 𝛿)-SP3 where |S| = 𝑚, let (𝑃∪𝑋, Δ) be the Steiner space guaranteed by Definitions 4.2
and 4.4. Then, we have the following guarantees on an instance (𝑃 ∪ 𝑋) of DST over (𝑃 ∪ 𝑋, Δ):

Completeness: If ( [𝑛],S) admits a set packing of size 𝑛/3, then there is a Steiner tree for 𝑃 of
cost

𝑛(𝛼X/3 + 𝛽in).

Soundness: Every Steiner tree of 𝑃 must be of cost at least

𝑛(𝛼X/3 + 𝛽in) ·
(
1 − 𝜀 + (4𝜀 − 2𝛿)

3
· min(𝛼P, 𝜏, 𝛽in + 𝛼X/2)

𝛼X/3 + 𝛽in
+ (2𝛿 − 𝜀)

3
· min(𝛼P, 𝜏)
𝛼X/3 + 𝛽in

)
.

Run Time: Given 𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏 and ( [𝑛],S), the above instance of DST can be
constructed in poly(𝑛 +𝑚) time.

REMARK 4.6. The completeness case bound comes from Steiner trees of the form shown in
Figure 5. In the soundness case, we prove that the optimal structure of the Steiner tree involves
packing as many terminals as possible into a tree structure analogous to the completeness
case: groups of three terminals each at distance 𝛽in from a Steiner point connected to the root
𝑟 (we conclude this by Lemma 4.17). This is the (1 − 𝜀) term. Then, whether its better to try
and group the remaining terminals into pairs connected to common Steiner points and handle
them individually depends precisely on which term minimizes min(𝛼P, 𝜏, 𝛽in + 𝛼X/2). The first
term is the per-terminal cost of connecting the remaining terminals each indvidually to the
root, the second term is the per-terminal cost of connecting the remaining terminals each to
some terminal already connected (via a Steiner point) to the root, and the final term in the
per-terminal cost of connecting paired up terminals to the root via a common Steiner point. If
𝛽in +𝛼X/2 minimizes this expression, then it is optimal to pair up as many terminals as possible.
However, the number of achievable pairs is limited by the minimum size set cover restriction
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in the soundness case of SP3 (this is where the (4𝜀 − 2𝛿)/3 comes from). Then, the remaining
terminals are connected to the root either directly or via edges to already connected terminals.

Nonetheless, the expression for the inapproximability factor in the soundness case is quite
intricate. One may wonder if this theorem implies a stronger inapproximability result than the
simple reduction from Set Cover mentioned in Section 1.2 for DST in general metrics.

COROLLARY 4.7. Suppose (𝜀, 𝛿)-SP3 is NP-hard and there exists a Steiner embeddable tuple
(𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) that also satisfies

1. 𝛼X = 𝛽in,
2. min(𝛼P, 𝜏, 𝛽in + 𝛼X/2) = 3𝛼X/2, and
3. min(𝛼P, 𝜏) = 2𝛼X.

Then, it is NP-hard to approximate DST in general metric spaces within a factor of 1 + 𝛿/4.

PROOF . The hardness of approximation factor is achieved by dividing the costs in the sound-
ness and completeness cases of Theorem 4.5. Then, we wish to maximize both

min(𝛼P, 𝜏, 𝛽in + 𝛼X/2)
𝛼X/3 + 𝛽in

and
min(𝛼P, 𝜏)
𝛼X/3 + 𝛽in

.

The numerator of the first fraction is at most 𝛽in + 𝛼X/2. The numerator of the second fraction
is at most 𝛼P ≤ 𝛼X + 𝛽in by the triangle inequality. Supposing that both inequalities were in fact
tight, our problem would reduce to maximizing 𝛼X/2+𝛽in

𝛼X/3+𝛽in
and 𝛼X+𝛽in

𝛼X/3+𝛽in
. Both are maximized for

minimum 𝛽in and, since 𝛼X ≤ 𝛽in by (P1), the best possible is 𝛽in = 𝛼X. Assuming there is some
tuple (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏) that both satisfies these additional constraints and is Steiner
embeddable, we would then have that DST is NP-hard to approximate within a factor of

1 − 𝜀 + (4𝜀 − 2𝛿)
3

· 9
8
+ (2𝛿 − 𝜀)

3
· 3

2
= 1 + 𝛿/4. ■

In fact, DST in the ℓ∞-metric can satisfy these constraints and achieve this hardness of approxi-
mation factor. See Theorem 5.5.

REMARK 4.8. Interestingly, as shown in Section 1.2, there exists a simple reduction from
Set Cover with sets of size 3 to DST which yields this same hardness in general metric spaces.
Nonetheless, 𝜀, the set packing parameter in (𝜀, 𝛿)-SP3 is highly relevant in certain other metric
spaces. See, for example Theorem 5.3 and Corollary 5.7 for applications to ℓ𝑝 metric spaces.

We now prove Theorem 4.5. Given any hard instance of SP3, using the language of Sub-
section 4.1, we can consider the corresponding (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)-set system space
((𝑃∪{𝑟})∪𝑋, Δ). This space may be interpreted as an instance ofDSTwith terminals 𝑃 = 𝑃∪{𝑟},
candidate Steiner points 𝑋 , and pairwise distances given by Δ determining edge weights.
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Completeness. In the completeness case, the SP3 instance has a solution that partitions [𝑛]
into sets from S. Let 𝐶 be such a partition. For each {𝑖, 𝑗, 𝑘} ∈ 𝐶, connect 𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 to
𝑠 = Γ−1({𝑖, 𝑗, 𝑘}). Then, connect each such 𝑠 to 𝑟. This results in a Steiner tree of total cost
𝑛(𝛼X/3 + 𝛽in). See Figure 5.

𝑟

Γ−1 ( {𝑖1, 𝑖2, 𝑖3 })

𝑡𝑖1 𝑡𝑖2 𝑡𝑖3

Γ−1 ( {𝑖4, 𝑖5, 𝑖6 }) Γ−1 ( {𝑖𝑛−2, 𝑖𝑛−1, 𝑖𝑛 })

Universe elements (𝑡𝑖)
𝑡𝑖4 𝑡𝑖5 𝑡𝑖6 𝑡𝑖𝑛−2 𝑡𝑖𝑛−1 𝑡𝑖𝑛

Facilities (𝑠 𝑗)

Root terminal

· · ·

Figure 5. Steiner tree construction in the completeness case of Theorem 4.5.

Soundness. In the soundness case, we prove a series of consistent claims about the adjacencies
of universe elements (non-𝑟 terminals) and Steiner points. The claims rely intimately on the
properties of Steiner embeddable tuples. Ultimately, the claims will show that there is some
minimum length Steiner tree mirroring much of the structure of the completeness case. This
then yields insight into the size of a set packing in the SP3 instance, thereby lower-bounding the
length of a minimum Steiner tree.

We want 𝑟 to serve as a root for the Steiner tree with its subtrees inducing groups of
related Steiner points. To achieve this goal, we need to restrict the adjacencies of both universe
elements and Steiner points. In Proposition 4.9 we show that there exists a minimum length
Steiner tree such that, for each universe element 𝑡𝑖 , 𝑡𝑖 is adjacent to only Steiner points 𝑠 such
that 𝑖 ∈ Γ(𝑠). We hope to interpret the Steiner points in the Steiner tree as a choice of sets from
S. This property is important since it means the adjacency of a universe element to a Steiner
point can be interpreted as the set corresponding to the Steiner point covering the universe
element.

Lemma 4.10 further restricts the adjacencies of universe elements. It shows that we
may assume that edges between universe elements cannot connect substantial portions of the
tree—one of the endpoints of such edges must be a leaf node. Indeed, the leaf node endpoint will
ultimately become a universe element not covered by the set packing induced by the Steiner tree.
Notably, Lemma 4.10 leaves open the option that a universe element could serve as a connecting
hub for the tree, avoiding the need for Steiner points and limiting the role of 𝑟. Lemma 4.12,
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proved using Lemma 4.11, discounts that possibility, enforcing that non-leaf node universe
elements must be connected to Steiner points. However, even with Lemma 4.10, terminals could
conceivably connect to many Steiner points adjacent to other terminals. Lemma 4.13 shows
that we may assume that this is not the case. Proposition 4.14, combined with Lemma 4.12,
shows that we may assume that universe elements of degree greater than 1 are not adjacent to
𝑟. This yields some insight into how groups of terminals connected to common Steiner points
are connected to 𝑟.

The combination of these results severely limits the adjacency of universe elements. They
are either adjacent to the root 𝑟, adjacent to some other universe element connected to a
Steiner point, or are connected to some Steiner point whose corresponding set contains their
corresponding element of [𝑛]. In the former two cases, the universe element is a leaf node in 𝑇 .
In the latter case, while the universe element may not be a leaf node, if it is not, its only other
neighbors are leaf node terminals. Treating those leaf node terminals as “uncovered” universe
elements allows us to treat all terminals as leaf nodes.

The most important and most technical part of the proof is Lemma 4.15. Lemma 4.15
shows that we may assume that there are no edges between Steiner points in the Steiner tree. In
combination with the severely limited adjacencies of universe elements, this shows that we may
assume that removing 𝑟 from the tree (and ignoring terminals not adjacent to Steiner points)
divides the tree into groups of universe elements connected to Steiner points. By Proposition
4.9, these universe elements correspond to elements of [𝑛] contained in the sets corresponding
to the Steiner points. So, the Steiner points adjacent to three terminals actually correspond
precisely to a packing of sets from S.

We want this induced packing to be large to yield insight into the size of maximum packing
in the SP3 instance. Indeed, the induced packing corresponds to a maximum packing, as shown
in Lemma 4.17. Lemma 4.16 merely facilitates the proof of Lemma 4.17. The rest of the proof
follows from this correspondence.

Now we proceed with the proof. Let 𝑇 = (𝑇𝑉 , 𝑇𝐸) be a minimum Steiner tree of 𝑃. We wish
to show that we may assume a nearly identical structure to the completeness case, particularly
in that it is optimal to pack as many terminals into sets as possible. As we will show, these
packings arise in the Steiner tree as groups of three terminals 𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 connected to a single
Steiner point 𝑠 = Γ−1({𝑖, 𝑗, 𝑘}) which is in turn connected to 𝑟. In each successive claim, we
assume that the properties of the previous claims initially hold.

PROPOS IT ION 4.9. We may assume that (𝑡𝑖 , 𝑠) ∈ 𝑇𝐸 for 𝑡𝑖 ∈ 𝑃 and 𝑠 ∈ 𝑋 only if 𝑖 ∈ Γ(𝑠).

PROOF . Suppose (𝑡𝑖 , 𝑠) ∈ 𝑇𝐸 for 𝑡𝑖 ∈ 𝑃, 𝑠 ∈ 𝑋 , and 𝑖 ∉ Γ(𝑠). Then, Δ(𝑡𝑖 , 𝑠) = 𝛽out ≥ 𝛼P, 𝛼X from
(P1) and (P2) of Definition 4.4. Remove (𝑡𝑖 , 𝑠) from 𝑇𝐸. Then, one of the resulting connecting
components contains 𝑟 so we may add edge (𝑟, 𝑠) or (𝑟, 𝑡𝑖) to reconnect the graph. The change
in cost is then either 𝛼X − 𝛽out or 𝛼P − 𝛽out which, in either case, is at most 0. This operation
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reduces the number of edges of the form (𝑡𝑖 , 𝑠) ∈ 𝑇𝐸 for 𝑡𝑖 ∈ 𝑃, 𝑠 ∈ 𝑋 , and 𝑖 ∉ Γ(𝑠), so repeating
this process completes the proof since it yields a minimum cost 𝑇 satisfying the claim. ■

LEMMA 4.10. We may assume that if (𝑡, 𝑡′) ∈ 𝑇𝐸 for some 𝑡, 𝑡′ ∈ 𝑃, then deg(𝑡) = 1 or deg(𝑡′) = 1
in 𝑇 .

PROOF . Suppose otherwise. Let (𝑡, 𝑡′) ∈ 𝑇𝐸 with 𝑡, 𝑡′ ∈ 𝑃 and deg(𝑡), deg(𝑡′) > 1. Remove (𝑡, 𝑡′).
If the resultant connected component not containing 𝑟 contains a Steiner point 𝑠, we may add
an edge (𝑟, 𝑠) to reconnect the tree. Since 𝛼X ≤ 𝜏 by (P1), the cost of the tree does not increase.

Otherwise, without loss of generality assume that the connected component containing 𝑡′

does not contain a Steiner point and does not contain 𝑟. Hence it merely contains terminals
{𝑡𝑖1 , 𝑡𝑖2 , . . . , 𝑡𝑖𝑘} ⊆ 𝑃. Remove all (𝑘 − 1) edges in this connected component. Each was of length
𝜏. Now, add an edge (𝑡, 𝑡𝑖 𝑗) for 1 ≤ 𝑗 ≤ 𝑙. This reconnects the tree and fixes its original cost.

Note that in either case, the degree of each terminal is non-increasing. Hence, we reduced
the number of edges between terminals with both terminals having degree > 1, so repeating this
process yields the desired result. Also note that we do not add any edges of the form considered
in Proposition 4.9, so the two claims are consistent. ■

LEMMA 4.11. 𝑇 includes some 𝑠 ∈ 𝑋 . In particular, there exists (𝑠, 𝑡) ∈ 𝑇𝐸 such that 𝑠 ∈ 𝑋

and 𝑡 ∈ 𝑃.

PROOF . If there are no Steiner points in 𝑇 , then we may assume that either every 𝑡 ∈ 𝑃 is a
leaf node connected to 𝑟 (in the case of 𝛼P < 𝜏) or there exists 𝑡̃ ∈ 𝑃 such that 𝑡̃ is connected to 𝑟

and every other terminal is a leaf node with an edge to 𝑡̃. This is because, since 𝑇 is a tree, it
has a fixed number of edges. Additionally, each edge is of length 𝛼P or 𝜏. Then, in the former
case, since 𝛼P < 𝜏, there is a unique tree with all edges of length 𝛼P (namely connecting every
universe element to 𝑟), and the tree is minimum, that must be the tree. In the latter case, the
minimum possible length of the tree is having one edge of length 𝛼P (to connect some universe
element to 𝑟) and the rest of length 𝜏. The described tree is such a tree.

Now, let 𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 ∈ 𝑃 and 𝑠 ∈ 𝑋 such that Γ(𝑠) = {𝑖, 𝑗, 𝑘}. We may assume w.l.o.g. that
none of the terminals are 𝑡̃ in the latter case (using 𝑚 > 3). Then, remove the edges incident to
𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘, disconnecting the graph into four connected components. We may reconnect the graph
by introducing 𝑠 as a Steiner point, adding edges from 𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 to 𝑠 and then adding an edge
from 𝑠 to 𝑟. The change in cost is 3𝛽in + 𝛼X − 3 min(𝛼P, 𝜏). In either case the change in cost is
negative, using (P3), contradicting minimality of 𝑇 . ■

LEMMA 4.12. We may assume that 𝑡 ∈ 𝑃 has deg(𝑡) > 1 in 𝑇 only if 𝑡 is adjacent to a Steiner
point.

PROOF . Suppose that 𝑡 ∈ 𝑃 has degree greater than 1 but is not adjacent to any Steiner points.
By Lemma 4.10, then all of the neighbors of 𝑡 are either 𝑟 or 𝑡′ ∈ 𝑃 with deg(𝑡′) = 1.
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Now, if 𝜏 > 𝛼P, removing all of 𝑡’s incident edges and connecting 𝑡 and all of its neighbors
𝑡′ ∈ 𝑃 to 𝑟 reduces the cost of the tree, preserves connectivity, and decreases the degree of 𝑡 to
1. Note that the number of edges removed equals the number of edges added. This is because
𝑡 must be adjacent to 𝑟 since all of its neighbors are leaf nodes from Lemma 4.10 and 𝑇 is
connected.

If 𝜏 ≤ 𝛼P, since there must be some 𝑡̃ ∈ 𝑃 connected to a Steiner point 𝑠 by Lemma 4.11, we
can drop all of the edges incident to 𝑡 and add edges from 𝑡 and all its previously neighboring
terminals to 𝑡̃. This does not increase the cost of the tree since 𝜏 ≤ 𝛼P in this case. It also
preserves connectivity of the tree.

Repeating this process then yields the claim. Note that this process is consistent with
Proposition 4.9 since it does not add any edges from Steiner points to terminals. This process is
also consistent with Lemma 4.10 since one endpoint of every edge added between elements of
𝑃 in the second case is a leaf node. ■

LEMMA 4.13. We may assume that each 𝑡 ∈ 𝑃 is adjacent to at most one Steiner point.

PROOF . Suppose otherwise, let 𝑡𝑖 ∈ 𝑃 be adjacent to more than one Steiner point. From
Proposition 4.9, 𝑡𝑖 is adjacent only to 𝑠 ∈ 𝑆 such that 𝑖 ∈ Γ(𝑠). Drop edges from 𝑡𝑖 to Steiner
points such that 𝑡𝑖 remains in the connected component with 𝑟. Then, add the same number of
edges from 𝑟 to a Steiner point in each other connected component. This does not increase the
cost of 𝑇 since 𝛼X ≤ 𝛽in from (P1). Additionally, this process reduces the number of elements of
𝑃 adjacent to more than one Steiner point, so repeating this completes the claim.

This process is consistent with Proposition 4.9 since none of the edges considered in that
claim are added. It is consistent with Lemmas 4.10 and 4.12 since the degree of non root
terminals only decreases in this process. ■

PROPOS IT ION 4.14. We may assume that if 𝑡 ∈ 𝑃 such that 𝑡 is adjacent to a Steiner point 𝑠,
then 𝑡 is not adjacent to 𝑟.

PROOF . Suppose that (𝑡, 𝑟) ∈ 𝑇𝐸. Drop (𝑡, 𝑟) and add edge (𝑠, 𝑟). This reconnects the tree and
does not increase its cost since 𝛼X ≤ 𝛼P by (P1). As usual, repeating this process yields the
desired claim. Moreover, this process is consistent with the above claims. We do not add an
edges of the form to violate Proposition 4.9 or Lemma 4.13, and we only decrease the degree of
terminals so this process is consistent with Lemmas 4.10 and 4.12. ■

LEMMA 4.15. We may assume that (𝑠, 𝑠′) ∉ 𝑇𝐸 for 𝑠, 𝑠′ ∈ 𝑋 .

PROOF . First, if 𝛾0, 𝛾1, 𝛾2 ≥ 𝛼X, then the result follows easily. Suppose (𝑠, 𝑠′) ∈ 𝑇𝐸 for 𝑠, 𝑠′ ∈ 𝑋 .
Then, remove the edge between them. Assume w.l.o.g. that 𝑠 is in the resultant connected
component with 𝑟. Then, add edge (𝑠′, 𝑟) to reconnect the graph. Since 𝛾𝑖 = Δ(𝑠, 𝑠′) ≥ Δ(𝑠′, 𝑟) =
𝛼X, the cost of the tree does not increase under this operation.
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If instead 𝛾0, 𝛾1 ≥ 𝛼X but 𝛾2 < 𝛼X (the only other case by (P1)), we proceed carefully. By
applying the procedure above we may assume that (𝑠, 𝑠′) ∈ 𝑇𝐸 only if |Γ(𝑠) ∩ Γ(𝑠′) | = 2. Fix
𝑠 ∈ 𝑋 with edges to other Steiner points. We may assume that 𝑠 has at most 3 neighboring
Steiner points. This is because each of 𝑠’s neighbors overlap Γ(𝑠) = {𝑖, 𝑗, 𝑘} on two elements by
Proposition 4.9, and there are three choices of pairs of elements to overlap on ({𝑖, 𝑗}, {𝑖, 𝑘}, or
{ 𝑗, 𝑘}). Hence, for all but one neighbor per pair of overlapping set elements, the edges to 𝑠 can
be adjusted to be edges to one another. For example, if 𝑠′ and 𝑠′′ are Steiner points adjacent to 𝑠

such that {𝑖, 𝑗} ⊂ Γ(𝑠′), Γ(𝑠′′), then Δ(𝑠′, 𝑠′′) = Δ(𝑠, 𝑠′) = Δ(𝑠, 𝑠′′) = 𝛽in so the edge (𝑠, 𝑠′′) may be
replaced by the edge (𝑠′, 𝑠′′) without changing the cost or connectivity of the tree.

Similarly, we may assume that 𝑠 is not adjacent to 𝑟 by moving an edge from 𝑠 to 𝑟 to be
an edge from 𝑟 to one of 𝑠’s neighboring Steiner points. Now we consider two cases based on
the number of neighboring Steiner points to 𝑠.

Case 1: 𝒔 is adjacent to two or three Steiner points. If 𝑠 is adjacent to at least two Steiner
points 𝑠′ and 𝑠′′, then Γ(𝑠) ⊆ Γ(𝑠′) ∪ Γ(𝑠′′) since |Γ(𝑠) ∩ Γ(𝑠′) | = 2, |Γ(𝑠) ∩ Γ(𝑠′′) | = 2, and
Γ(𝑠), Γ(𝑠′), Γ(𝑠′′) are distinct sets of size 3. Hence, using Proposition 4.9, for each non-root
terminal adjacent to 𝑠, we may remove its edge to 𝑠 and add a new edge to 𝑠′ or 𝑠′′ (depending
on which induces less cost) without changing the connectivity or cost of 𝑇 .

At this point, 𝑠 has degree 2 or 3. If 𝑠 has degree 2, 𝑠’s only neighbors are two Steiner points
𝑠′ and 𝑠′′ such that |Γ(𝑠′) ∩ Γ(𝑠′′) | = 1. Drop 𝑠 and its incident edges. Add an edge from one of
𝑠’s former neighbors to 𝑟 to reconnect 𝑇 . This induces an additive cost of 𝛼X − 2𝛾2 ≤ 0. This
inequality holds since 2𝛾2 ≥ 𝛾1 by the triangle inequality and 𝛼X ≤ 𝛾1 by (P1).

So, we may assume that 𝑠 has degree exactly 3. But consider removing 𝑠 and its incident
edges. This reduces the cost of 𝑇 by 3𝛾2. To reconnect 𝑇 , we add edges from 𝑟 to a Steiner point
in each of the connected components of 𝑇 not containing 𝑟. Both components may be clearly
contain Steiner points. This costs 2𝛼X. Hence, since 3𝛾2/2 ≥ 𝛼X by (P1), this does not increase
the cost of the tree.

Case 2: 𝒔 is adjacent to exactly one Steiner point. Suppose 𝑠 is only adjacent to one other
Steiner point, 𝑠′. Then, since |Γ(𝑠) ∩ Γ(𝑠′) | = 2, we can remove edges from 𝑠 to all but one of its
neighboring universe elements and replace those with edges from the terminals to 𝑠′ without
changing the connectivity or cost of 𝑇 . Now, we have that 𝑠 is not adjacent to 𝑟, 𝑠 is adjacent to
at most one Steiner point (our present case), and 𝑠 is adjacent to at most one universe element.
Then, remove 𝑠 and its incident edges from 𝑇 . If 𝑠 was not adjacent to any terminals, the tree
remains connected and its cost decreases (and note that 𝑠 is not adjacent to 𝑟).

Otherwise, suppose that 𝑠 was adjacent to a universe element 𝑡. If 𝑡 had degree greater
than 1, then, by Lemmas 4.12 and 4.13 and Proposition 4.14, 𝑡’s other neighbors are exactly
leaf node universe elements. Remove the edges from those terminals to 𝑡 and replace those
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edges with edges to some other terminal adjacent to a Steiner point (for example, some terminal
adjacent to 𝑠′). This fixes the cost of the tree.

Now, add an edge from 𝑡 to either a terminal adjacent to a Steiner point or 𝑟 (whichever
edge is cheaper). This changes the cost of the tree by an additive factor of

min(𝛼P, 𝜏) − 𝛾2 − 𝛽in ≤ 0

and reconnects the tree. The inequality holds by (P4).
Repeating this process removes all edges between Steiner points since it reduces the

number of edges between Steiner points by at least one in each iteration.
Now we check that this process is consistent with the above claims. We do not add any

edges to violate Proposition 4.9. This process is consistent with Lemmas 4.10 and 4.12 since
the only time we add an edge between non-𝑟 terminals in this process is in Case 2 and all such
added edges are between a leaf node and a terminal adjacent to a Steiner point. This process is
consistent with Lemma 4.13 since we only replace edges from non-𝑟 terminals to Steiner points
with different Steiner point endpoints than adding additional edges to Steiner points. Finally,
the only time we add an edge from a non-𝑟 terminal to 𝑟 is in Case 2, and we only do this when
the non-𝑟 terminal is a leaf node. Hence, this process is consistent with Proposition 4.14. ■

One important consequence of the above claims is that any path between two Steiner
points in𝑇 must pass through 𝑟. That facilitates computing the cost of the tree. Before completing
the proof, we prove a lemma that facilitates our analysis.

LEMMA 4.16. We may assume that each Steiner point has degree at least 3 in 𝑇 .

PROOF . If there is a Steiner point of degree 1, dropping the Steiner point and its incident edge
yields a lower cost tree, violating minimality of 𝑇 . Now suppose that 𝑠 is a Steiner point of
degree 2 in 𝑇 . By Lemma 4.15 and Proposition 4.9, 𝑠’s only possible neighbors are 𝑟 and 𝑡𝑖 ∈ 𝑃

such that 𝑖 ∈ Γ(𝑡𝑖). One of the two neighbors must be 𝑟 since 𝑇 is connected and, by Lemma 4.12
and Proposition 4.14, none of 𝑠’s neighboring universe elements nor their neighboring universe
elements may be adjacent to 𝑟. Then, 𝑠’s neighbors are precisely 𝑟 and some universe element.

If 𝛼P ≤ 𝜏, then we may assume that 𝑠’s neighboring universe element is a leaf node. In
that case, drop 𝑠 and its incident edges and connect 𝑠’s neighboring universe element to 𝑟. This
does not increase the cost of the tree by the triangle inequality and maintains connectivity.

If 𝜏 < 𝛼P, let 𝑡 be 𝑠’s universe element neighbor. Remove 𝑠 and its incident edges and add
an edge from 𝑟 to 𝑡. As above, this retains connectivity and does not increase the cost of the
tree by the triangle inequality. Now, the tree must have an additional Steiner point by Lemma
4.11 (otherwise we contradict minimality). That Steiner point must be adjacent to a universe
element 𝑡̃ since otherwise it is degree 1. But replacing the edge (𝑡, 𝑟) with an edge (𝑡, 𝑡̃) then
reduces the cost of the tree while preserving connectivity, contradicting minimality of the tree.
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Hence, degree 2 Steiner points are only even possible when 𝛼P ≤ 𝜏. In that case, this simple
modification is evidently consistent with all of the above claims. ■

LEMMA 4.17. The Steiner points in 𝑇 adjacent to 3 terminals correspond exactly to a maximum
packing of sets in S.

PROOF . By Proposition 4.9 and Lemma 4.13, we know that a given terminal 𝑡𝑖 is adjacent to 𝑠

only if 𝑖 ∈ Γ(𝑠) and is adjacent to at most one such 𝑠. Then, since every 𝑆 ∈ S has |𝑆 | = 3, the
Steiner points adjacent to 3 terminals correspond exactly to a disjoint choice of sets from S.

It remains to prove that this choice of sets is of maximum size. To show this, we need to
understand the cost of 𝑇 .

Partition the edges of 𝑇 into three sets 𝐸1, 𝐸2, and 𝐸3 defined as follows: edges incident to
universe elements not adjacent to Steiner points, edges incident to Steiner points adjacent to
two universe elements, and edges incident to Steiner points adjacent to three universe elements.
Lemma 4.10 and Proposition 4.14 imply that every edge without a leaf universe element involves
a Steiner point. Then, Proposition 4.9, Lemma 4.16, and the fact that the sets in S are each
cardinality 3 shows that this accounts for all for all edges in 𝑇 .

Now, let 𝑥1 be the number of universe elements not adjacent to Steiner points, 𝑥2 the
number of universe elements adjacent to Steiner points adjacent to two universe elements,
and 𝑥3 the number of universe elements adjacent to Steiner points adjacent to three universe
elements. By Lemma 4.10 and Proposition 4.14 combined with the restrictions on the adjacency
of Steiner points from Proposition 4.9 and Lemma 4.15, every Steiner point must be adjacent to 𝑟

since𝑇 is connected. Then, the total cost contributed by edges in 𝐸1 is min(𝛼P, 𝜏)𝑥1, (𝛼X/2+𝛽in)𝑥2

for 𝐸2, and (𝛼X/3 + 𝛽in)𝑥3 for 𝐸3.
Then, the cost of 𝑇 is precisely

min(𝛼P, 𝜏)𝑥1 + (𝛽in + 𝛼X/2)𝑥2 + (𝛽in + 𝛼X/3)𝑥3.

But, since 𝛽in + 𝛼X/3 < min(𝛼P, 𝜏) by (P3) and 𝛽in + 𝛼X/3 < 𝛽in + 𝛼X/2, this cost is minimized
for maximizing 𝑥3. This means that the set of Steiner points in 𝑇 adjacent to 3 terminals must
correspond to a maximum packing of sets in S (by minimality of the cost of 𝑇 ). ■

As a result of Lemma 4.17, we have the following.

COROLLARY 4.18. In the soundness case we have

costΔ(𝑇 ) ≥ 𝑛(𝛼X/3 + 𝛽in) ·
(
1 − 𝜀 + (4𝜀 − 2𝛿)

3
· min(𝛼P, 𝜏, 𝛽in + 𝛼X/2)

𝛼X/3 + 𝛽in
+ (2𝛿 − 𝜀)

3
· min(𝛼P, 𝜏)
𝛼X/3 + 𝛽in

)
.

PROOF . Define 𝑥1, 𝑥2, and 𝑥3 as in the proof of Lemma 4.17 and let 𝑃1, 𝑃2, and 𝑃3 partition 𝑃

into the universe elements counted by 𝑥1, 𝑥2, and 𝑥3. From the proof of Lemma 4.17, we have
that the cost of the 𝑇 is given by

costΔ(𝑇 ) = min(𝛼P, 𝜏)𝑥1 + (𝛽in + 𝛼X/2)𝑥2 + (𝛽in + 𝛼X/3)𝑥3.
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From Lemma 4.17, this is minimized for maximum 𝑥3. Now, as stated in Lemma 4.17, the sets
in S corresponding to each Steiner point adjacent to three universe elements correspond to a
packing of sets. Since we are in the soundness case, we then have 𝑥3 ≤ (1 − 𝜀)𝑛. Since we are
lower bounding the cost of 𝑇 and maximizing 𝑥3 minimizes the cost of 𝑇 , suppose 𝑥3 = (1 − 𝜀)𝑛.

Now we make use of 𝛿, describing how to construct a set cover S′ from 𝑇 . For each Steiner
point 𝑠 ∈ 𝑇 , add Δ(𝑠) to S′. For each remaining uncovered universe element, add some set
covering that element. This yields a set cover of size at most 𝑥1 + 𝑥2/2 + 𝑥3/3. Since we are in
the soundness case (and using 𝑥3 = (1 − 𝜖)𝑛) we have that

𝑥1 + 𝑥2/2 + (1 − 𝜖) (𝑛/3) ≥ (1 + 𝛿) (𝑛/3)

and
𝑥1 + 𝑥2 + (1 − 𝜖)𝑛 = 𝑛.

Then, this implies (4𝜀 − 2𝛿)/3 · 𝑛 ≥ 𝑥2. Our bound on costΔ(𝑇 ) then follows by maximizing 𝑥2

when 𝛽in + 𝛼X/2 < min(𝛼P, 𝜏). ■

5. APX-hardness of DST in ℓ𝒑-metrics

In this section, we describe the embedding of the metric Steiner tree instances (described in the
previous section), into R𝑛 equipped with the ℓ𝑝-metric for 𝑝 ∈ (1,∞]. The APX-hardness when
𝑝 = 1 follows easily from the known APX-hardness of CST in ℓ1-metric or ℓ0-metric given in [60]
(or see Theorem A.6 for a simplified reduction).

5.1 An Embedding into ℓ𝒑-metric Spaces

For a given 𝑝, our corresponding instance of DST in ℓ𝑝-metric will be as follows. For an instance
( [𝑛],S) of (𝜀, 𝛿)-SP3 where |S| = 𝑚, let 𝑃 = {ei : 𝑖 ∈ [𝑛]}. Then, the set of terminals are defined
to be 𝑃 = 𝑃 ∪ {0} (with 𝑟 = 0 the distinguished “root” terminal). Let 𝜃𝑝 be a scalar defined for
each 𝑝. Then, the set of facilities is defined to be

𝑋 = {𝜃𝑝 · (ei + ej + ek) : {𝑖, 𝑗, 𝑘} ∈ S}.

We choose 𝜃𝑝 such that the following properties hold:
1. 0 < 𝜃𝑝 ≤ 1/2 and
2. 3((1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝)1/𝑝 + (3𝜃𝑝𝑝)1/𝑝 < 3.

Note that this is possible since, for

𝑓𝑝(𝑥) = 3((1 − 𝑥)𝑝 + 2𝑥𝑝)1/𝑝 + (3𝑥𝑝)1/𝑝 − 3

we have 𝑓𝑝(0) = 0 and 𝑑 𝑓𝑝(0)
𝑑𝑥 = −3 + 31/𝑝 < 0 for 𝑝 > 1. This point configuration induces a

complete graph 𝐺 = (𝑃 ∪ 𝑋, 𝐸) with edge costs given by distances in the ℓ𝑝-metric.
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Now, we check that the conditions of Theorem 4.5 hold. Clearly our choices of distances
are metric compatible since they arise from a metric space.

REMARK 5.1. Note that, for 𝑝 ∈ (1,∞),

𝛼X = 31/𝑝𝜃𝑝,
𝛼P = 1,
𝛽in = ((1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝)

1
𝑝 ,

𝛽out = (1 + 3𝜃𝑝𝑝)
1
𝑝 ,

𝛾0 = 61/𝑝𝜃𝑝,
𝛾1 = 41/𝑝𝜃𝑝,
𝛾2 = 21/𝑝𝜃𝑝, and
𝜏 = 21/𝑝.

When 𝑝 = ∞, we instead have
𝛼X = 𝛾0 = 𝛾1 = 𝛾2 = 𝜃𝑝,
𝛼P = 𝛽out = 𝜏 = 1, and
𝛽in = 1 − 𝜃𝑝.

PROPOS IT ION 5.2. For each 𝑝 ∈ (1,∞], the corresponding tuple (𝛼X, 𝛼P, 𝛽in, 𝛽out, 𝛾0, 𝛾1, 𝛾2, 𝜏)
from the above is Steiner embeddable.

PROOF . For all 𝑝, the tuple is clearly metric compatible since it arises from a metric space. It
clear that (P1), (P2), (P3), and (P4) hold when 𝑝 = ∞. Now we prove that these constraints hold
when 𝑝 is finite. Note first that

31/𝑝𝜃𝑝 ≤ ((1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝)1/𝑝

< ((1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝)1/𝑝 + 31/𝑝𝜃𝑝/3 < 1 ≤ 21/𝑝.

The first inequality follows from 0 < 𝜃𝑝 ≤ 1/2 and the last inequality follows from 3((1 − 𝜃𝑝)𝑝 +
2𝜃𝑝𝑝)1/𝑝 + (3𝜃𝑝𝑝)1/𝑝 < 3. This immediately implies 𝛼X ≤ 𝛼P, 𝛽in, 𝜏. Since 0 < 𝜃𝑝 ≤ 1/2, 𝛽in < 𝛽out,
and 𝛼X ≤ 𝛾1, 𝛾2 is clear. Also observe that 𝑠𝑡 ≤ 3𝛾2/2 if and only if (3/2) 1

𝑝 ≤ 3/2 which holds
for all 𝑝 ≥ 1. This proves (P1) holds. The inequality 𝛼P ≤ 𝛽out is immediate (showing (P2)) and
𝛽in + 𝛼X

3 < min(𝛼P, 𝜏) holds by our choice of 𝜃𝑝 (showing (P3)).
It then remains to show min(𝛼P, 𝜏) ≤ 𝛽in + 𝛾2, (P4). But note that

1 = (1 − 𝜃𝑝) + 𝜃𝑝 ≤ 𝛽in + 𝛾2,

completing the proof. ■

Then, applying Theorem 4.5 to Proposition 5.2, we have the following.

THEOREM 5.3. Let 𝑝 ∈ (1,∞). Suppose that
1. 0 < 𝜃𝑝 ≤ 1/2,
2. 3[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]

1
𝑝 + 3

1
𝑝𝜃𝑝 < 3,

3. (𝜀, 𝛿)-SP3 is NP-hard.
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Then, DST in the ℓ𝑝-metric is NP-hard to approximate within a factor of

(1−𝜀)+ (4𝜀 − 2𝛿)
3

·
min(1, [(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]

1
𝑝 + 31/𝑝

2 𝜃𝑝)
[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]

1
𝑝 + 3

1−𝑝
𝑝 𝜃𝑝

+ (2𝛿 − 𝜀)
3

· 1

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝 + 3

1−𝑝
𝑝 𝜃𝑝

> 1.

In particular, for all 𝑝 ∈ (1,∞), there exists 𝜃𝑝 such that the first two conditions above hold and
Theorem 2.2 implies (𝜀0, 𝜀0/2)-SP3 is NP-hard for some 𝜀0 > 0.

REMARK 5.4. Curiously, we observe that the importance of 𝜀 and 𝛿 depends dramatically on
𝑝. For 𝑝 ∈ (1, 1/log3(4/3)), 𝛿 is sometimes irrelevant. This occurs when 𝜃𝑝 is chosen such that
1 < [(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]

1
𝑝 . Intuitively, this means that in the soundness case, the optimal Steiner

tree not only corresponds to a maximal set packing (as proved in Lemma 4.17), but also that the
terminals (universe elements) that are not yet covered by the packing, would like to connect
by an edge directly with the root in the optimal Steiner tree, instead of having two terminals
(universe elements) connecting to a common Steiner point (which is then connected to the root).
This happens for 𝜃2 = 1/6, for example. See Figure 1.

By applying the Fréchet embedding to the hard instance in Theorem 4.5, we have that
only 𝛿 is relevant to the hardness of DST in ℓ∞-metric (and not 𝜀). In many other settings, it
appears that both 𝜀 and 𝛿 play a role with larger 𝛿 permitting better hardness of approximation.
Below we prove the non-dependency of 𝜀 for DST in ℓ∞-metric, without invoking the Fréchet
embedding.

THEOREM 5.5. If (𝜀, 𝛿)-SP3 is NP-hard, then DST in ℓ∞-metric is NP-hard to approximate within
a factor of 1 + 𝛿/4.

PROOF . Note that 𝜃∞ = 1/2 satisfies the required properties for Proposition 5.2. Then, from
Corollary 4.7, it suffices to simply check that, for 𝑝 = ∞, 𝛽in + 𝛼X/2 = min(𝛼P, 𝜏, 𝛽in + 𝛼X/2),
min(𝛼P, 𝜏) = 𝛼X + 𝛽in, and 𝛽in = 𝛼X. This is clear from observing the distances in Remark 5.1. ■

COROLLARY 5.6. For all 𝑝 ∈ [1,∞], DST in ℓ𝑝-metric is APX-hard.

PROOF . The case of DST in ℓ1-metric follows from the known APX-hardness of CST in ℓ1-metric
or ℓ0-metric given in [60] (or see Theorem A.6). The cases of 𝑝 ∈ (1,∞) and 𝑝 = ∞ follow from
Theorems 5.3 and 5.5, respectively. ■

5.2 Hardness of Approximating DST in ℓ𝒑-metrics

Optimizing for the choice of 𝜃𝑝 in the construction from Proposition 5.2, we have the following.

COROLLARY 5.7. If (𝜀, 𝛿)-SP3 isNP-hard, then for 𝑝 ∈ [ 1
log3(4/3) ,∞], DST in ℓ𝑝-metric isNP-hard

to approximate within a factor

1 + 𝜀

(
1
2
− 1

2 · 31/𝑝

)
+ 2𝛿

(
1

2 · 31/𝑝 − 3
8

)
.
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In particular, we have DST in ℓ𝑝-metric is NP-hard to approximate within a factor of 1 + 𝜀/8.

PROOF . The second part of the claim occurs when 𝛿 = 𝜀/2. In this case, the second fractional
term in Theorem 5.3 is nullfied. Then, observe that, for a fixed 𝑝, while

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝 + 31/𝑝

2
𝜃𝑝 ≤ 1,

the hardness of approximation factor is maximized for maximal 𝜃𝑝. By our constraints on 𝜃𝑝,
𝜃𝑝 ≤ 1/2. When 𝜃𝑝 = 1/2 is valid we have

3[(1 − 1/2)𝑝 + 2(1/2)𝑝] 1
𝑝 + 3

1
𝑝 (1/2) = 2 · 31/𝑝 < 3.

This then holds for 1
log3(3/2) < 𝑝. Additionally,

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝 + 31/𝑝

2
𝜃𝑝 ≤ 1,

holds for 𝜃𝑝 = 1/2 if and only if 31/𝑝 · 3
4 ≤ 1 so 𝑝 ≥ 1

log3(4/3) . Hence, for 𝑝 ∈ [ 1
log3(4/3) ,∞], the

embedding with 𝜃𝑝 = 1/2 yields that DST in ℓ𝑝-metric is hard to approximate within a factor of
1 + 𝜀/8.

If (𝜀, 𝛿)-SP3 is NP-hard for 𝛿 > 𝜀/2, we get improved hardness for 𝑝 ∈ [ 1
log3(4/3) ,∞] by

using 𝜃𝑝 = 1/2. Computing yields the claimed expression. ■

When 𝛿 > 𝜀/2, optimizing the hardness exactly is more challenging. This is because, for 𝑝

finite, the maximum value of
1

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝

arises for 𝜃𝑝 < 1/2, so the optimal value depends intimately on 𝛿. Likewise, when 𝑝 ∈
(1, 1

log3(4/3) ), we need 𝜃𝑝 < 1/2. At that point even finding a permissible choice of 𝜃𝑝 requires an
explicit computation.

We summarize the dependence of the hardness of DST in ℓ𝑝-metric on 𝜀 and 𝛿 (and there-
fore the dependence on the hardness of Set Packing and Set Cover) in Figure 1. The purple
region, 𝑝 ∈ {1,∞}, is the range where there is no dependency on 𝜀, and hence the reduction
only uses the hardness of set packing (see Corollary 4.7 and Theorem A.6). In the red range,
[1/(log3(4/3),∞), we show in Corollary 5.7 a dependency on both 𝜀 and 𝛿.

The behavior in the yellow range is less clear. For 𝑝 such that the optimal choice of 𝜃𝑝
satisfies

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝 + 31/𝑝

2
𝜃𝑝 < 1,

the hardness depends both on 𝛿 and 𝜀; larger 𝛿 will yield increased hardness of approximation.
This is, however, not the case for all values of 𝑝 in the yellow region. The choice of 𝑝 = 2 is a
notable exception (see Corollary A.2). In the green region there is no dependence on 𝛿. This is
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because the optimal choice of 𝜃𝑝 satisfies

[(1 − 𝜃𝑝)𝑝 + 2𝜃𝑝𝑝]
1
𝑝 + 31/𝑝

2
𝜃𝑝 ≥ 1.

6. Reduction from CST to DST

In this section, we link CST to DST, proving that DST is computationally harder than CST. The
sense in which this holds is formalized in Theorem 6.1.

THEOREM 6.1. Let (X, 𝑑) be a metric space such that there exists an algorithm for CST in (X, 𝑑)
that runs in 𝑂( 𝑓 (𝑛)) time for some computable function 𝑓 and 𝑛 the number of input terminals.
Let 𝑃 be an instance of CST in (X, 𝑑), and let 𝑇∗ be an optimal Steiner tree of 𝑃. Then, for any 𝜀 > 0,
there exists a poly(𝑛, 𝜀)-time algorithm outputting 𝑋 ⊂ X with the following properties.

1. |𝑋 | = poly(𝑛, 𝜀).
2. If 𝑇 is the optimal Steiner tree on DST instance (𝑃, 𝑋), then

cost(𝑇∗) ≤ cost(𝑇 ) ≤ (1 + 𝜀) cost(𝑇∗).

To prove this, we appeal to a powerful structural result about optimal Steiner trees.

THEOREM 6.2 ([24, 7, 6]). Let 𝑃 be an instance of CST in metric space (X, 𝑑) and let 𝑇∗ be an
optimal Steiner tree of 𝑃. For any 𝜀 > 0, there exists constant 𝐶𝜀 and Steiner tree 𝑇 ′ of 𝑃 with the
following properties.

1. cost(𝑇∗) ≤ cost(𝑇 ′) ≤ (1 + 𝜀) cost(𝑇∗).
2. 𝑇 ′ is formed by partitioning 𝑃 into parts of size at most 𝐶𝜀, finding optimal Steiner trees of

each part, and connecting those Steiner trees via edges between their respective terminals.

This follows from Theorem 3.1 of [24] with 𝐶𝜀 ≤ 21+𝜀−1 . The best possible 𝐶𝜀 can be derived
from Theorem 3.2 of [7]. This result can also be derived from the proof of Theorem 3.2 of [6]
(with somewhat weaker 𝐶𝜀 ≤ 232/𝜀 ln(8/𝜀)).

PROOF OF THEOREM 6.1 . Consider every subset of 𝑃 of size at most 𝐶𝜀/2 as an instance of
CST in (X, 𝑑). There are poly(𝑛, 𝜀) such instances and optimal Steiner trees (optimal up to an
arbitrarily small factor 1 + 𝜀′ due to numerical precision) can be computed in constant time
(in 𝜀 and 𝜀′). Let 𝑋 be the union of the Steiner points used in the Steiner tree solutions for
these instances. Note that |𝑋 | = poly(𝑛) since Steiner trees on 𝑛 terminals may be assumed to
use at most 𝑛 − 2 Steiner points (this follows by the triangle inequality and a degree counting
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argument—see Section 3.4 of [33], for example). Let 𝑇 ′ be the near-optimal Steiner tree from
Theorem 6.2. Let 𝑄 be some set of terminals in the partition of terminals induced by 𝑇 ′. Then,
the optimal Steiner tree of DST instance (𝑄, 𝑋) costs at most a (1 + 𝜀′) factor more than the
cost of the optimal Steiner tree for CST instance 𝑄. Then, since this holds for each part in the
partition of terminals induced by 𝑇 ′ from Theorem 6.2, if 𝑇 is the optimal Steiner tree on DST
instance (𝑃, 𝑋), then cost(𝑇 ) ≤ (1+ 𝜀′) cost(𝑇 ′) ≤ (1+ 𝜀′) (1+ 𝜀/2) cost(𝑇∗). Since 𝜀′ can be made
arbitrarily small, this implies the desired result. ■

In particular, Theorem 6.1 holds for all ℓ𝑝-metric spaces and in any dimension. This shows
that CST is essentially no harder than DST in those spaces.

COROLLARY 6.3. For all 𝜀 > 0 and 𝑝 ∈ [1,∞], if there exists a polynomial time (1 + 𝛼)-
approximation algorithm for DST in the ℓ𝑝-metric, then there exists a polynomial time (1 + 𝛼 + 𝜀)-
approximation algorithm for CST in the ℓ𝑝-metric.

PROOF . From Theorem 6.1, it suffices to show that CST in the ℓ𝑝-metric admits an algorithm
that runs in 𝑂( 𝑓 (𝑛)) time for some computable function 𝑓 and 𝑛 the number of input terminals.
Given a set of terminals 𝑃 with |𝑃 | = 𝑛, consider the subspace of dimension at most 𝑛 formed by
those points. Then, the approximation scheme of Arora (see 1.1.1 of [4]) runs in 𝑂( 𝑓 (𝑛)) time
for a computable function 𝑓 , yielding the result. ■

Theorem 6.1 and Corollary 6.3 give a construction for efficient approximation algorithms
of CST using the literature on DST.

COROLLARY 6.4. For all 𝜀 > 0 and 𝑝 ∈ [1,∞], CST in the ℓ𝑝-metric admits a polynomial time
(ln(4) + 𝜀)−approximation algorithm.

PROOF . Run the algorithm implicit in 6.1 and Corollary 6.3 to compute aDST instance. Then, ap-
ply the (ln(4) +𝜀′)−approximation algorithm forDST from [10] and choose 𝜀′ to be appropriately
small. ■
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A. Explicit Gaps for DST in Specific ℓ𝒑-metrics

In this section, we compute explicit hardness of approximation constants by plugging in the
best inapproximability results known for SP3 and VC in literature.

A.1 Hardness of Approximation Bounds for Euclidean DST

As the Euclidean metric is of particular importance, we explicitly state our resultant hardness
factor for 𝑝 = 2. In this special case, we can make do with a somewhat weaker completeness
case for SP3 than that in (𝜀, 𝛿)-SP3. Instead we consider the decision problem (𝑎, 𝑏)-Gap SP3

DEF IN IT ION A.1 ((𝑎, 𝑏)-Gap SP3). Given a set system ( [𝑛],S) where for all 𝑆 ∈ S, we have
|𝑆 | = 3, and |S| = 𝑚, the (𝑎, 𝑏)-Gap SP3 is the problem of deciding which of the following cases
hold.

Completeness: There exists a subcollection of S which are pairwise disjoint and cover at
least (1 − 𝑎)𝑛 elements in [𝑛].
Soundness: Any subcollection of pairwise disjoint sets of S cover at most (1− 𝑏)𝑛 elements
in [𝑛].

Observe that (𝜀, 𝜀/2)-SP3 is actually (1, 1 − 𝜀)-Gap SP3 since 𝛿 is unnecessary in this formu-
lation. Then, we have the following.

COROLLARY A.2. Let 𝜀 > 0. If (1, 1 − 𝜀)-Gap SP3 is NP-hard then Euclidean DST is NP-hard to
approximate within a factor of

1 + 𝜀(9√3 − 15)
15

≥ 1 + 0.039𝜀.

More generally, if (𝑎, 𝑏)-Gap SP3 is NP-hard, then Euclidean DST is NP-hard to approximate within
a factor of

𝑏(5√3/9 − 1) + 1
𝑎(5√3/9 − 1) + 1

.

PROOF . For 𝑝 = 2, setting 𝜃2 = 1/6 turns out to yield the maximum hardness of approximation
for embeddings of this kind (this can be verified graphically). Note that 𝜃2 = 1/6 satisfies
the requirements of Theorem 5.3: the first requirement is clear and the second follows from
3
√

3/2 + √
3/6 =

√
3(5/3) < 3. Then, substitute into Theorem 5.3 and observe that

1 < 𝛽in + 𝛼X/2 =
√

3/2 +
√

3/12 = 7
√

3/12,

as noted in Remark 5.4. This yields hardness of approximation within a factor of

1 − 𝜀 + 𝜀√
3/2 + √

3/18
= 1 + 9

√
3 − 15
15

· 𝜀,



49 / 53 On Approximability of Steiner Tree in ℓ𝑝-metrics

proving the first part of the result.
The second part of the proof follows almost identically. We repeat almost the same reduc-

tion as in Theorem 4.5: The soundness case is exactly identical and the resultant Steiner tree
then has cost at least

𝑏(
√

3/2 +
√

3/18) + 1 − 𝑏 = 𝑏(5
√

3/9 − 1) + 1.

In the completeness case, we no longer have that the sets partition the universe. Let 𝐶 be
a maximum packing of sets. For each {𝑖, 𝑗, 𝑘} ∈ 𝐶, connect ei, ej, and ek to 𝑠 = Γ−1({𝑖, 𝑗, 𝑘})
(following the notation of Section 4). Then connect 𝑠 to 0. For the terminals corresponding to
universe elements that are not covered by the sets in 𝐶, we connect those terminals directly to
0. This incurs costs 𝑎(5√3/9 − 1) + 1. Taking the ratio in the two cases then yields the desired
result. ■

The below hardness of (𝑎, 𝑏)-SP3 is known.

THEOREM A.3 ([15]). We have (0.979, 0.969)-Gap SP3 is NP-hard.

In [15], they prove the hardness of the Max Independent Set problem on 3-regular graphs,
a special case of SP3. The fact that this is a special case is clear by considering the set of incident
edges to each vertex as a set in the set-system and the set of all edges in the graph as the universe
of elements.8 Applying this to Corollary A.2 we have the following.

COROLLARY A.4. Euclidean DST is NP-hard to approximate within a factor of 1.00039.

A.2 Hardness of Approximation Bounds for Hamming and Rectilinear DST

The general embedding described in Section 5.1 notably fails for 𝑝 = 1. However, a simple
reduction from VC yields reasonable hardness of approximation bounds. We simultaneously
get the same hardness for Hamming (ℓ0) DST.

We will make use of the following theorem.

THEOREM A.5 ([15]). (0.52025, 0.53036)-VC is NP-hard on 4-regular graphs.

We show the following.

THEOREM A.6. Suppose that (𝑎, 𝑏)-VC is NP-hard on max degree Δ graphs. Then DST in both
the ℓ0 and ℓ1 metrics is NP-hard to approximate within a factor of Δ/2+𝑏

Δ/2+𝑎 .

8 The explicit bounds here comes from a combination of places in [15]: we use Theorem 16 for the bound on 𝜇3,𝑘, the
assumption at the beginning of Theorem 17 for bounding𝑀 (𝐻)/𝑘 by 𝜇3,𝑘+𝑜(1), theNP-hard decision problem formulation
of Max Independent Set stated in the proof of Theorem 17 for our two cases, and the property |𝑉 (𝐻) | = 2𝑀 (𝐻) used
to prove Corollary 18 to apply the bound on 𝑀 (𝐻)/𝑘 .
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PROOF . The proof is exactly the same as the reduction from Set Cover to DST given in Section
1.2. Interpret the instance of VC as an instance of Set Cover with universe elements being
edges and sets being the sets of incident edges to vertices. We can embed the graph used in the
reduction in R𝑛 under the ℓ0 and ℓ1 metrics by mapping the “additional vertex” to 0, the edges
to their characteristic vectors (of Hamming weight 2), and each set of edges incident to a vertex
to the characteristic vector of that vertex (of Hamming weight 1). ■

Then, using Theorem A.5, we have the following result.

THEOREM A.7. We have that DST in both the ℓ0 and ℓ1 metrics is NP-hard to approximate within
a factor of 1.004.

B. StringMetrics

In this section, we show how APX-hardness of DST in the Hamming metric implies APX-hardness
of DST in the Ulam and edit distance metrics, using known near-isometric embeddings. This is
Theorems 1.5 and 1.6, respectively. Let Σ be an alphabet and Σ∗ be the set of strings over the
alphabet Σ. Then let ED : Σ∗ × Σ∗ → R, the edit distance between strings. That is, the minimum
number of single character deletions, insertions, and substitutions required to modify one
string into the other. The Ulam metric UD is the same edit distance except with input strings
restricted to those without repeated characters.

B.1 Ulam Metric

In [1], they show that there exists an embedding of 𝑛-dimensional Hamming space into the set of
permutations of [2𝑛] under the Ulam metric such that all pairwise distances are exactly scaled
by a factor of 2.

LEMMA B.1 (Lemma 4.5 of [1]). Let Π2𝑛 denote the set of permutations of [2𝑛]. There is a
function 𝜂 : {0, 1}𝑛 → Π2𝑛, such that, for all 𝑥, 𝑦 ∈ {0, 1}𝑛, we have

ed(𝜂(𝑥), 𝜂( 𝑦)) = 2 ∥𝑥 − 𝑦∥0 .

Moreover, for all 𝑥 ∈ {0, 1}𝑛, 𝜂(𝑥) can be computed in 𝑂(𝑛) time.

Then, given a hard instance (𝑃, 𝑋) of Hamming DST, consider (𝜂(𝑃), 𝜂(𝑋)) as an instance
of DST in the Ulam metric. In particular, there is a one-to-one correspondence between Steiner
trees in the two instances and their costs are exactly scaled by 2. So, hardness is exactly scaled
by 2 (using that 𝜂(𝑥) can be computed in 𝑂(𝑛) time). This completes the prove of Theorem 1.5.
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B.2 Edit Distance Metric

In [54], Rubinstein shows a near-isometric embedding of Hamming space into the space of
binary strings under the edit distance metric. We use an explicit formulation given in Lemma
A.1 of [20].

LEMMA B.2 ([54]). For large enough 𝑑, there exists a function 𝜂 : {0, 1}𝑑 → {0, 1}𝑑′ , where
𝑑′ = 𝑂(𝑑 log 𝑑) such that for all 𝑎, 𝑏 ∈ {0, 1}𝑑 , we have

| ED(𝜂(𝑎), 𝜂(𝑏)) − 𝑐 · log 𝑑 · ∥𝑎 − 𝑏∥0 | = 𝑜(𝑑′),

for some constant 𝑐. Moreover, for any 𝑎 ∈ {0, 1}𝑑 , 𝜂(𝑎) can be computed in 2𝑜(𝑑) time.

First, we use the fact that Hamming DST is APX-hard in 𝑂(log 𝑛) dimensions. This follows
from Theorem C.1 in Section C. Then, given an instance (𝑃, 𝑋) of Hamming DST in 𝑂(log 𝑛)
dimensions, for 𝑛 large enough, consider instance (𝜂(𝑃), 𝜂(𝑋)) of ED DST (with 𝜂 the function
from Lemma B.2). This is computable in poly(𝑛) time by Lemma B.2.

Now, observe that the cost of optimal Steiner trees must be Ω(𝑛) in both the completeness
and soundness cases of Hamming DST (since the minimum distance between any two points
is 1). Now, let 𝑇 be a Steiner tree of (𝑃, 𝑋). By Lemma B.2, the corresponding Steiner tree
of (𝜂(𝑃), 𝜂(𝑋)) costs at most 𝑐 · log log 𝑛 · cost0(𝑇 ) + 𝑜(log 𝑛 log log 𝑛) and at least 𝑐 · log log 𝑛 ·
cost0(𝑇 ) − 𝑜(log 𝑛 log log 𝑛). Then, since cost0(𝑇 ) = Ω(𝑛) the ratio of the bounds on the costs
of optimal trees in the soundness and completeness cases of the ED DST are preserved for
sufficiently large 𝑛 since the Ω(𝑛) term dominates the 𝑜(log 𝑛 log log 𝑛) term. Hence, since there
is a constant gap for Hamming DST, there is a constant gap for ED DST. This completes the proof
of Theorem 1.6.

C. Inapproximability in LowDimensions

In Section 5.1, we describe gap-preserving reduction from (𝜀, 𝛿)-SP3 to DST in 𝑛-dimensional
ℓ𝑝-metric spaces. In this section, we show that this reduction can be extended to a configuration
of 𝑛 points in an 𝑂(log 𝑛)-dimensional ℓ𝑝-metric space (for constant 𝑝) via a near-isometric
embedding from [20, 21]. For the dimensionality reduction for 𝑝 = ∞, refer to [20]. This will
show thatDST in the ℓ𝑝-metric isAPX-hard even in𝑂(log 𝑛)-dimensions (and essentially preserve
the hardness of approximation). In the below, let supp(𝑥) be the set of nonzero coordinates of
𝑥 (the support of 𝑥).

THEOREM C.1 (Implicit in [20, 21]). Let 𝜀 > 0, 𝐵, 𝐶 ∈ Z+, and 𝑝 ∈ R≥1. Let 𝑃 ⊂ R𝑛 such that
|𝑃 | = 𝑛 and, for all 𝑥 ∈ 𝑃, supp(𝑥) ⊆ [𝑛] with | supp(𝑥) | ≤ 𝐶 and ∥𝑥∥∞ ≤ 𝐵. Then, there exists
𝛼 = 𝑂𝐶,𝐵,𝜀(1/log 𝑛) and 𝜎 : R𝑛 → R𝑂𝐶,𝐵,𝜀(log 𝑛) such that, for all 𝑥, 𝑦 ∈ 𝑃,

(1 − 𝜀) ∥𝑥 − 𝑦∥𝑝𝑝 ≤ 𝛼 ∥𝜎(𝑥) − 𝜎( 𝑦)∥𝑝𝑝 ≤ (1 + 𝜀) ∥𝑥 − 𝑦∥𝑝𝑝 .
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Additionally, for all 𝑥 ∈ 𝑃, 𝜎(𝑥) is computable in poly(𝑛) time.

Note that all points in instances of DST in Section 5.1 have support of size at most 3. Hence,
Theorem C.1 applies. Hence, for a fixed 𝑝 and any 𝜀 > 0, there exists an instance of DST in the
ℓ𝑝-metric in 𝑂(log 𝑛) dimensions with all pairwise distances within an arbitrarily small factor
of the original distances in 𝑛 dimensions (after scaling the configuration by 𝛼1/𝑝). Therefore,
the cost of the trees in the completeness and soundness cases change by at most that factor and
we get hardness of approximation within an arbitrarily small factor of the original hardness.

To prove Theorem C.1, we use the existence of codes from algebraic geometry.

THEOREM C.2 (Existence of AG codes, [30, 58]). Let 𝑞 be a prime squared at least 49. Then,
there exists a linear map C : F

log𝑞 𝑛
𝑞 → F𝑐 log𝑞 𝑛

𝑞 for some constant 𝑐, such that for all 𝑥, 𝑦 ∈ Flog𝑞 𝑛
𝑞

we have
∥C(𝑥) − C( 𝑦)∥0 ≥ (1 − 3/√𝑞) (𝑐 log𝑞 𝑛).

To define the map 𝜎 : R𝑛 → R𝑂(log 𝑛) for Theorem C.1, we first describe the map on
{0, 1}𝑛1 ⊂ R𝑛, the set of vectors of Hamming weight 1 (the standard basis vectors). Let 𝑞 be a
squared prime at least 49 (we will specify 𝑞 appropriately later). Given 𝑖 ∈ 𝑛, map it bijectively
to an element 𝑥 ∈ Flog𝑞 𝑛

𝑞 (by enumerating the elements of F
log𝑞 𝑛
𝑞 ). Call this map 𝑓1. Let C be the

linear map existing from Theorem C.2. Then, apply C to 𝑥 to yield an element of F
𝑐 log𝑞 𝑛
𝑞 . Finally,

enumerate the elements of F𝑞 from 1 to 𝑞 and map C( 𝑓1(𝑥)) to {0, 1}𝑞𝑐 log𝑞 𝑛 by interpreting
C( 𝑓1(𝑥)) as 𝑐 log𝑞 𝑛 blocks of 𝑞 zeroes and ones, 𝑞 − 1 of which being 0 and the 1 indicating the
number of the element from F𝑞. Call this map 𝑓2. For example, (3, 1, 2) ∈ F3

5 would be mapped to
the bitstring 000100100000100 ∈ {0, 1}15. We interpret this bitstring in {0, 1}𝑞𝑐 log𝑞 𝑛 as a vector
in R𝑞𝑐 log𝑞 𝑛 by the natural inclusion map. Call this map 𝑓3. Formally, 𝜎 = 𝑓3 ◦ 𝑓2 ◦ C ◦ 𝑓1 for inputs
in {0, 1}𝑛1 . To extend 𝜎 to the rest of R𝑛, we define

𝜎

(
𝑛∑︁
𝑖=1

𝑎𝑖e𝑖

)
=

𝑞𝑐 log𝑞 𝑛∑︁
𝑗=1


𝑎𝑖 · e 𝑗 if |{𝑖 ∈ [𝑛] : 𝑎𝑖𝜎(e𝑖) 𝑗 ≠ 0}| = 1,

0 otherwise.

Intuitively, given the large minimum distance between codewords from Theorem C.2 and the
bounded support of point configurations in Theorem C.1, for most 𝑗 ∈ [𝑞𝑐 log𝑞 𝑛], |{𝑖 ∈ [𝑛] :
𝜎(e𝑖) 𝑗 = 1}| ∈ {0, 1}.

Now, let 𝜀, 𝐶, 𝐵, 𝑝, and 𝑃 be as in Theorem C.1. Fix 𝑥, 𝑦 ∈ 𝑃. Let 𝑥 =
∑

𝑖∈𝐼1 𝑥𝑖e𝑖 and
𝑦 =

∑
𝑖∈𝐼2 𝑦𝑖e𝑖 , where |𝐼1 |, |𝐼2 | ≤ 𝐶. Fix 𝑖 ∈ 𝐼1. Consider the set of nonzero coordinates on which

𝜎(e𝑖) does not overlap with 𝜎(e 𝑗) for 𝑖 ≠ 𝑗 ∈ 𝐼1 ∪ 𝐼2. The contribution of each such coordinate 𝑘

to ∥𝜎(𝑥) − 𝜎( 𝑦)∥𝑝𝑝 is exactly |𝑥𝑖 − 𝑦𝑖 |𝑝.
By Theorem C.2,



C( 𝑓1(e𝑖)) − C( 𝑓1(e 𝑗))




0 ≥ (1 − 3/√𝑞)𝑐 log𝑞 𝑛 for each 𝑖 ≠ 𝑗 ∈ [𝑛]. Then,
since the map 𝑓2 exactly doubles Hamming distance and 𝑓3 preserves Hamming distance,

𝜎(e𝑖) − 𝜎(e 𝑗)




0 ≥ (1−3/√𝑞)2𝑐 log𝑞 𝑛. In particular, since ∥𝜎(e𝑖)∥0 is exactly 𝑐 log𝑞 𝑛, this implies
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that 𝜎(e𝑖) and 𝜎(e 𝑗) can overlap on at most (3/√𝑞)𝑐 log𝑞 𝑛 nonzero coordinates. Moreover, 𝜎(e𝑖)
can overlap on at most (6𝐶/√𝑞)𝑐 log𝑞 𝑛 total nonzero coordinates with 𝜎(e 𝑗) for 𝑖 ≠ 𝑗 ∈ 𝐼 . The
maximum contribution of these overlapping coordinates is 𝐵𝑝 (if, for example, 𝜎(𝑒𝑖) overlaps
with 𝜎(𝑒𝑖′) for 𝑖′ ∈ 𝐼1 but doesn’t overlap with any mapped standard basis vector from 𝐼2 and
𝑎𝑖 = 𝐵). The minimum contribution is 0. Then, we have

(1 − 6𝐶/√𝑞)𝑐 log𝑞 𝑛 ∥𝑥 − 𝑦∥𝑝𝑝 ≤ ∥𝜎(𝑥) − 𝜎( 𝑦)∥𝑝𝑝 ≤ 𝑐 log𝑞 𝑛 ∥𝑥 − 𝑦∥𝑝𝑝 + (6𝐶/√𝑞)𝐵𝑝𝑐 log𝑞 𝑛.

Setting 𝑞 sufficiently large then yields Theorem C.1.
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