
1 / 45 2025 :5

Computing Threshold
Budgets in
Discrete-Bidding Games

Received Jan 4, 2024
Revised Sep 27, 2024
Accepted Nov 23, 2024
Published Jan 22, 2025

Key words and phrases
Discrete bidding games, Richman
games, parity games, reachability
games

Guy Avnia � �

Suman Sadhukhana � �

a University of Haifa, Israel

ABSTRACT. In a two-player zero-sum graph game, the players move a token throughout a
graph to produce an infinite play, which determines the winner of the game. Bidding games are
graph games in which in each turn, an auction (bidding) determines which player moves the
token: the players have budgets, and in each turn, both players simultaneously submit bids
that do not exceed their available budgets, the higher bidder moves the token, and pays the bid
to the lower bidder (called Richman bidding). We focus on discrete-bidding games, in which,
motivated by practical applications, the granularity of the players’ bids is restricted, e.g., bids
must be given in cents.

A central quantity in bidding games is threshold budgets: a necessary and sufficient initial
budget for winning the game. Previously, thresholds were shown to exist in parity games,
but their structure was only understood for reachability games. Moreover, the previously-
known algorithms have a worst-case exponential running time for both reachability and parity
objectives, and output strategies that use exponential memory. We describe two algorithms for
finding threshold budgets in parity discrete-bidding games. The first is a fixed-point algorithm.
It reveals, for the first time, the structure of threshold budgets in parity discrete-bidding games.
Based on this structure, we develop a second algorithm that shows that the problem of finding
threshold budgets is in NP and coNP for both reachability and parity objectives. Moreover, our
algorithm constructs strategies that use only linear memory.

This research was supported in part by ISF grant no. 1679/21. A preliminary version of this article appeared at FSTTCS 22
[14].

Cite as Guy Avni, Suman Sadhukhan. Computing Threshold Budgets in
Discrete-Bidding Games. TheoretiCS, Volume 4 (2025), Article 5, 1-45.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.5

mailto:gavni@cs.haifa.ac.il
https://orcid.org/0000-0001-5588-8287
mailto:suman.sadhukhan00@gmail.com
https://orcid.org/0000-0002-4802-6803

2 / 45 G. Avni, S. Sadhukhan

1. Introduction

Two-player zero-sum graph games are a central class of games. A graph game proceeds as
follows. A token is placed on a vertex and the players move it throughout the graph to produce
an infinite play, which determines the winner of the game. The central algorithmic problem in
graph games is to identify the winner and to construct winning strategies. One key application of
graph games is reactive synthesis [29], in which the goal is to synthesize a reactive system, namely
a policy for interacting with an adversarial environment, that satisfies a given specification no
matter how the environment behaves.

Two orthogonal classifications of graphs games are according to the mode of moving
the token and according to the players’ objectives. For the latter, we focus on two canonical
qualitative objectives. In reachability games, there is a set of target vertices and Player 1 wins if
a target vertex is reached. In parity games, each vertex is labeled with a parity index and an
infinite path is winning for Player 1 iff the highest parity index that is visited infinitely often is
odd. The simplest and most studied mode of moving is turn-based: the players alternate turns
in moving the token. We note that reactive synthesis reduces to solving a turn-based parity
game. Examples of other modes of moving are concurrent and probabilistic moves (see [4]).

We study bidding graph games [25, 24], which apply the following mode of moving: both
players have budgets, and in each turn, an auction (bidding) determines which player moves
the token. Concretely, we focus on Richman bidding (named after David Richman): in each turn,
both players simultaneously submit bids that do not exceed their available budget, the higher
bidder moves the token, and pays his bid to the lower bidder. Note that the sum of budgets
stays constant throughout the game. We distinguish between continuous- and discrete-bidding,
where in the latter, the granularity of the players’ bids is restricted. The central questions in
bidding games revolve around the threshold budgets, namely a necessary and sufficient initial
budget for winning the game.

Continuous-bidding games. This paper focuses on discrete-bidding. We briefly survey the
relevant literature on continuous-bidding games, which have been more extensively studied
that their discrete-bidding counterparts. Bidding games were introduced in [25, 24]. The
objective that was considered is a variant of reachability, which we call double reachability:
each player has a target and a player wins if his target is reached (unlike reachability games in
which Player 2’s goal is to prevent Player 1 from reaching his target). The targets are assumed
to be distinct, thus the game is zero sum. Note that apriori, it is possible that a play results in
a tie if no target is visited. It was shown, however, that in continuous-bidding games, a target
is necessarily reached, thus double-reachability games essentially coincide with reachability
games continuous-bidding games.

3 / 45 Computing Threshold Budgets in Discrete-Bidding Games

Threshold budgets were shown to exist; namely, each vertex 𝑣 has a value Th(𝑣) such that
if Player 1’s budget is strictly greater than Th(𝑣), he wins the game from 𝑣, and if his budget
is strictly less than Th(𝑣), Player 2 wins the game. Moreover, it was shown that the threshold
function Th is the unique function that satisfies the following property, which we call the average
property. Suppose that the sum of budgets is 1, and 𝑡𝑖 is Player 𝑖’s target, for 𝑖 ∈ {1, 2}. Then, Th
assigns a value in [0, 1] to each vertex such that at the “end points”, we have Th(𝑡1) = 0 and
Th(𝑡2) = 1, and the threshold at every other vertex is the average of two of its neighbors.

Uniqueness implies that the problem of finding threshold budgets1 is in NP and coNP.
Moreover, an intriguing equivalence was observed between reachability continuous-bidding
games and a class of stochastic game [19] called random-turn games [28]. Intricate equivalences
between mean-payoff continuous-bidding games and random-turn games have been shown in
[8, 9, 10, 11] (see also [7]).

Parity continuous-bidding games were studied in [8]. The following key property was
identified in games played on strongly-connected graphs. With every positive initial budget, a
player can force visiting all vertices in the graph infinitely often. Consider a strongly-connected
parity continuous-bidding game G. It follows that if the maximal parity index in G is odd, then
Player 1 wins with any positive initial budget, i.e., the thresholds in G are all 0. Dually, if the
maximal parity index in G is even, then the thresholds are all 1. This property gives rise to a
simple reduction from parity bidding games to double-reachability bidding games: roughly, a
player’s goal is to reach a bottom strongly-connected component in which he can win with any
positive initial budget.

Discrete-bidding games. This paper studies discrete-bidding games, which are similar to
continuous-bidding games except that the granularity of the bids is restricted: the sum of the
budgets in the game is fixed to 𝑘 ∈ N and bids are restricted to be integers. A key difference
between continuous- and discrete-bidding games is bidding ties, which now need to be handled
explicitly. We focus on the tie-breaking mechanism that was defined in [20]: one of the players
has the advantage and when a tie occurs, the player with the advantage chooses between (1) use
the advantage to win the bidding and pass it to the other player, or (2) keep the advantage and
let the other player win. Other tie-breaking mechanisms and the properties that they lead to
were studied in [1]. For example, the tie-breaking mechanism “alternate tie breaking” in which
the players alternate turns in winning ties, is not determined, i.e., there is a game with an initial
position such that neither player has a (pure) winning strategy. On the other hand, it was shown
that any tie-breaking mechanism that breaks ties without considering the history of ties, admits
determinacy.

The motivation to study discrete-bidding games is practical: in most applications, the
assumption that bids can have arbitrary granularity is unrealistic. We point out that the results

1 Stated as a decision problem: given a game and a vertex 𝑣, decide whether Th(𝑣) ≥ 0.5.

4 / 45 G. Avni, S. Sadhukhan

in continuous-bidding games, particularly those on infinite-duration games, do in fact develop
strategies that bid arbitrarily small bids. It is highly questionable whether such strategies are
applicable in practical applications.

Bidding games model ongoing and stateful auctions. We list examples of domains in which
such auctions arise. An immediate example is auctions for online advertisements [27]. Bidding
games were applied in [12] as a scheduling mechanism in a “decoupled” synthesis procedure:
given an objective of the form 𝜓1 ∧ 𝜓2, the idea is to find, independently, two bidding strategies
𝑓1 for 𝜓1 and 𝑓2 for 𝜓2 and an initial budget allocation such that the strategies guarantee that
the outcome of playing 𝑓1 against 𝑓2 satisfies 𝜓1 ∧ 𝜓2. For example, the strongest guarantees are
obtained when each strategy 𝑓𝑖 , for 𝑖 = 1, 2, is winning for 𝜓𝑖 , i.e., it guarantees 𝜓𝑖 even against
an adversary. Bidding as a mechanism for scheduling arises in blockchain technology, where
miners accept transaction fees, which can be thought of as bids, and prioritize transactions
based on them. Verification against attacks is a well-studied problem [18, 5]. Attacks based on
manipulations of these fees are hard to detect, can cause significant loses, and thus call for
verification of the protocols [18, 5]. Another example is applying bidding games as a mechanism
for fair allocation of resources. Non-zero-sum Richman-bidding games were studied and applied
to resource allocation in [26] and poorman-bidding games (in which winning bids are paid to
the “bank”) were applied in [15]. Poorman discrete-bidding were studied in [13]. In addition,
researchers have studied training of agents that accept “advice” from a “teacher”, where the
advice is equipped with a “bid” that represents its importance [3]. Finally, recreation bidding
games have been studied, e.g., bidding chess [16], as well as combinatorial games that apply
bidding instead of alternating turns [30].

We reiterate that practical applications of bidding games require some granularity on
the bids. At the same time, we seek a high granularity to enable flexibility. A high granularity
translates to choosing a large sum of budgets 𝑘.

Previous results. For reachability objectives, the theory of continuous bidding games was
largely adapted to discrete-bidding in [20]: threshold budgets were shown to exist and satisfy a
discrete version of the average property and winning strategies are derived from the thresh-
old budgets. However, the only known algorithm to compute thresholds is a value-iteration
algorithm whose worst-case running time is exponential when 𝑘 is given in binary.

For parity discrete-bidding games there were large gaps in our understanding. In [1],
determinacy was shown, namely from each configuration of the game, one of the players has
a (pure) winning strategy. Determinacy is achieved by showing that the game satisfies a local
property, which implies “global” determinacy. Using the observation that an additional budget
will not harm a player, we obtain existence of thresholds. Importantly, this technique does not
show that the thresholds satisfy the average property, and it was left open whether they indeed
satisfy the average property. In terms of complexity, the algorithm to decide the winner from a

5 / 45 Computing Threshold Budgets in Discrete-Bidding Games

configuration is naive: construct and solve the explicit concurrent game that corresponds to
a bidding game. The running time of the algorithm is exponential when 𝑘 is given in binary.
Another disadvantage of the algorithm is that the strategies that it produces use exponential
memory and do not connect between bids and thresholds, as is done in reachability discrete-
bidding games. To make matters worse, it was observed that unlike the properties of thresholds
in reachability discrete-bidding games, which are conceptually similar to those in continuous-
bidding, threshold in parity discrete- and continuous-bidding games are inherently different: a
strongly-connected discrete-bidding game G was shown in which a player cannot force visiting
a vertex 𝑣 infinitely often even if he is initially allocated all of the budget. That is, when G is a
Büchi game and 𝑣 is the only accepting vertex, then under continuous-bidding semantics, the
threshold are 0 whereas under discrete-bidding, the thresholds are 𝑘 + 1 (meaning that even a
budget of 𝑘 does not suffice for winning).

Our results. We develop two complementary algorithms for computing threshold budgets in
parity discrete-bidding games. Our first algorithm is a fixed-point algorithm. It repeatedly solves
(i.e., finds threshold budgets) in frugal-reachability bidding games, which is an objective that
we introduce in which on top of a reachability objective, in order to win, a player must reach
its target with a sufficient budget. Our algorithm is inspired by algorithms to solve turn-based
games such as Zielonka’s [31] and Kupferman and Vardi’s [23] algorithms, whereas continuous-
bidding games reduce to stochastic games. Recently, the fixed-point algorithm was adapted to
bidding games with charging [6]. This algorithm shows, for the first time, that threshold budgets
in parity discrete-bidding games satisfy the average property. Moreover, the strategies that it
produces are derived from the thresholds, as in reachability discrete-bidding games. On the
downside, the algorithm runs in exponential time when 𝑘 is given in binary.

Second, we show that the problem of finding threshold budgets in parity discrete-bidding
games2 is in NP and coNP. The bound applies also to reachability discrete-bidding games for
which only an exponential-time algorithm was known. We briefly describe the idea of our
proof. A first attempt to find thresholds, is to guess thresholds (this is possible since the budgets
are discrete) and verify that the guess satisfies the average property (recall that in continuous-
bidding games, functions that satisfy the average property are unique). We show, however, that
functions that satisfy the discrete average property are not unique. That is, even if a function
satisfies the average property, it might not represent the thresholds in the game. We point out
that this observation holds already in reachability discrete-bidding games, and to the best of
our knowledge, was never made before. We overcome this challenge as follows. Our algorithm
first guesses a function, checks whether it satisfies the average property, then verifies that it
coincides with the thresholds. This last step is done via a reduction to turn-based parity games
and is based on the structure of the thresholds and strategies that our first algorithm establishes.

2 Formally, given a discrete-bidding game G, a vertex 𝑣, and a threshold ℓ, decide whether Th(𝑣) ≥ ℓ.

6 / 45 G. Avni, S. Sadhukhan

Another advantage of this algorithm is that it outputs a strategy that can be implemented using
linear memory (previously, only construction of exponential-size strategies was known).

2. Preliminaries

2.1 Concurrent games

We define the formal semantics of bidding games via two-player concurrent games [2]. Intuitively,
a concurrent game proceeds as follows. A token is placed on a vertex of a graph. In each turn,
both players concurrently select actions, and their joint actions determine the next position of
the token. The outcome of a game is an infinite path. A game is accompanied by an objective,
which specifies which plays are winning for Player 1. In this paper, we will consider reachability
and parity objectives.

Formally, a concurrent game is played on an arena ⟨𝐴, 𝑄, 𝜆, 𝛿⟩, where 𝐴 is a finite non-
empty set of actions, 𝑄 is a finite non-empty set of states (in order to differentiate, we use
“states” or “configurations” in concurrent games and “vertices” in bidding games), the function
𝜆 : 𝑄 × {1, 2} → 2𝐴 \ {∅} specifies the allowed actions for Player 𝑖 in vertex 𝑣, and the transition
function is 𝛿 : 𝑄×𝐴×𝐴 → 𝑄. Suppose that the token is placed on a state 𝑞 ∈ 𝑄 and, for 𝑖 ∈ {1, 2},
Player 𝑖 chooses action 𝑎𝑖 ∈ 𝜆 (𝑞, 𝑖). Then, the token moves to 𝛿(𝑞, 𝑎1, 𝑎2). For 𝑞, 𝑞′ ∈ 𝑄, we call 𝑞′

a neighbor of 𝑞 if there is a pair of actions ⟨𝑎1, 𝑎2⟩ ∈ 𝜆 (𝑞, 1) × 𝜆 (𝑞, 2) with 𝑞′ = 𝛿(𝑞, 𝑎1, 𝑎2). We
denote the neighbors of 𝑞 by 𝑁 (𝑞) ⊆ 𝑄.

A (finite) history is a sequence ⟨𝑞0, 𝑎10, 𝑎20⟩, . . . , ⟨𝑞𝑛−1, 𝑎1𝑛−1, 𝑎2𝑛−1⟩, 𝑞𝑛 ∈ (𝑄 × 𝐴 × 𝐴)∗ · 𝑄 such
that, for each 0 ≤ 𝑖 < 𝑛, we have 𝑞𝑖+1 = 𝛿(𝑞𝑖 , 𝑎1𝑖 , 𝑎2𝑖). A strategy is a “recipe” for playing the
game. Formally it is a function 𝜎 : (𝑄 × 𝐴 × 𝐴)∗ ·𝑄 → 𝐴. We restrict attention to legal strategies;
namely, strategies that for each history 𝜋 ∈ (𝑄 × 𝐴 × 𝐴)∗ ·𝑄 that ends in 𝑞 ∈ 𝑄, choose an action
in 𝜆 (𝑞, 𝑖), for 𝑖 ∈ {1, 2}. A memoryless strategy is a strategy that, for every state 𝑞 ∈ 𝑄, assigns
the same action to every history that ends in 𝑞.

Two strategies 𝜎1 and 𝜎2 for the two players and an initial state 𝑞0, give rise to a unique play,
denoted play(𝑞0, 𝜎1, 𝜎2), which is a sequence in (𝑄×𝐴×𝐴)𝜔 and is defined inductively as follows.
The first element of play(𝑞0, 𝜎1, 𝜎2) is 𝑞0. Suppose that the prefix of length 𝑗 ≥ 1 of play(𝑞0, 𝜎1, 𝜎2)
is defined to be 𝜋 𝑗 ·𝑞 𝑗 , where 𝜋 𝑗 ∈ (𝑄×𝐴×𝐴)∗. Then, at turn 𝑗, for 𝑖 ∈ {1, 2}, Player 𝑖 takes action
𝑎 𝑗
𝑖 = 𝜎𝑖 (𝜋 𝑗 · 𝑞 𝑗), the next state is 𝑞 𝑗+1 = 𝛿(𝑞 𝑗 , 𝑎

𝑗
1, 𝑎

𝑗
2), and we define 𝜋 𝑗+1 = 𝜋 𝑗 · ⟨𝑣 𝑗 , 𝑎 𝑗

1, 𝑎
𝑗
2⟩ · 𝑞 𝑗+1.

The path that corresponds to play(𝑞0, 𝜎1, 𝜎2) is 𝑞0, 𝑞1, . . . ∈ 𝑄𝜔.
For 𝑖 ∈ {1, 2}, we say that Player 𝑖 controls a state 𝑞 ∈ 𝑄 if, intuitively, the next state is

determined solely according to their chosen action. Formally, 𝑞 is controlled by Player 1 if for
every action 𝑎1 ∈ 𝐴, there is a state 𝑞′ such that no matter which action 𝑎2 ∈ 𝐴 Player 2 takes,
we have 𝑞′ = 𝛿(𝑞, 𝑎1, 𝑎2), and the definition is dual for Player 2. Turn-based games are a special
case of concurrent games in which all states are controlled by one of the players. Note that a

7 / 45 Computing Threshold Budgets in Discrete-Bidding Games

concurrent game that is not turn based might still contain some vertices that are controlled by
one of the players.

2.2 Bidding games

A discrete-bidding game is played on an arena 𝐺 = ⟨𝑉, 𝐸, 𝑘⟩, where 𝑉 is a set of vertices,
𝐸 ⊆ 𝑉 ×𝑉 is a set of directed edges, and 𝑘 ∈ N is the sum of the players’ budgets. For a vertex
𝑣 ∈ 𝑉 , we slightly abuse notation and use 𝑁 (𝑣) to denote the neighbors of 𝑣 in 𝐺, namely
𝑁 (𝑣) = {𝑢 : 𝐸(𝑣, 𝑢)}. We will consider decision problems in which 𝐺 is given as input. We then
assume that 𝑘 is encoded in binary, thus the size of 𝐺 is 𝑂(|𝑉 | + |𝐸 | + log(𝑘)).

Intuitively, in each turn, both players simultaneously choose a bid that does not exceed
their available budgets. The higher bidder moves the token and pays the other player. Note
that the sum of budgets is constant throughout the game. Tie-breaking needs to be handled
explicitly in discrete-bidding games as it can affect the properties of the game [1]. In this paper,
we focus on advantage-based tie-breaking mechanism [20]: exactly one of the players holds the
advantage at a turn, and when a tie occurs, the player with the advantage chooses between (1)
win the bidding and pass the advantage to the other player, or (2) let the other player win the
bidding and keep the advantage. We describe the semantics of bidding games formally below.

We will describe the formal semantics of a bidding game by constructing the explicit
concurrent game that it corresponds to. Furthermore, we introduce required notation. Fol-
lowing [20], we denote the advantage with ∗. Let N denote the non-negative integers, N∗

the set {0, 0∗, 1, 1∗, 2, 2∗, . . .}, and [𝑘] the set {0, 0∗, . . . , 𝑘, 𝑘∗}. We define an order < on N∗ by
0 < 0∗ < 1 < 1∗ < Let 𝑚 ∈ N∗. When saying that Player 1 has a budget of 𝑚∗ ∈ [𝑘], we mean
that Player 1 has the advantage, and implicitly, we mean that Player 2’s budget is 𝑘 −𝑚, and she
does not have the advantage. We use |𝑚| to denote the integer part of 𝑚, i.e., if 𝑚 = 𝑥∗ for some
𝑥 ∈ N, we denote |𝑚| = 𝑥. Specifically, for 𝑚 ∈ N, we have |𝑚| = 𝑚. We define operators ⊕ and
⊖ over N∗. Intuitively, we use ⊕ as follows: suppose that Player 1’s budget is 𝑚∗ and Player 2
wins a bidding with a bid of 𝑏2, then Player 1’s budget is updated to 𝑚∗ ⊕ 𝑏2. Similarly, for ℓ ≤ 𝑚,
a bid of 𝑏1 = ℓ∗ means that Player 1 will use the advantage if a tie occurs and 𝑏1 = ℓ means that
he will not use it. Upon winning the bidding, his budget is updated to 𝑚∗ ⊖ 𝑏1.

DEF IN IT ION 2 .1 (⊕ and ⊖ operators). For 𝑥, 𝑦 ∈ N, define 𝑥∗ ⊕ 𝑦 = 𝑥 ⊕ 𝑦∗ = (𝑥 + 𝑦)∗,
𝑥 ⊕ 𝑦 = 𝑥 + 𝑦. For 𝑥, 𝑦 ∈ N, define 𝑥 ⊖ 𝑦 = 𝑥 − 𝑦, 𝑥∗ ⊖ 𝑦 = (𝑥 − 𝑦)∗, and in particular
𝑥∗ ⊖ 𝑦∗ = 𝑥 − 𝑦. For notational consistency, for 𝑥, 𝑦 ∈ N, we define 𝑥∗ ⊕ 𝑦∗ = (𝑥 + 𝑦 + 1), and
𝑥 ⊖ 𝑦∗ = (𝑥 − 𝑦 − 1)∗. Recall that ⊖ is intuitively used to deduct the winning bid from the
winner’s budget and ⊕ is intuitively used to add the winning bid to the losing player’s budget,
hence the latter two cases does not hold that intuitive meaning.

Next, we highlight two special cases, which are used frequently throughout the paper.

8 / 45 G. Avni, S. Sadhukhan

DEF IN IT ION 2 .2 (Successor and predecessor). For 𝐵 ∈ N∗, we denote by 𝐵 ⊕ 0∗ and 𝐵 ⊖ 0∗

respectively the successor and predecessor of 𝐵 inN∗ according to <, defined as 𝐵⊕0∗ = min{𝑥 >

𝐵} and 𝐵 ⊖ 0∗ = max{𝑥 < 𝐵}. We note that this notation is convenient since it applies both for
budgets that include the advantage and those that do not. When the status of the advantage
is known we use the following notation. When 𝐵 ∈ N does not include the advantage, we use
𝐵∗ as shorthand for 𝐵 ⊕ 0∗. When 𝐵 = 𝑥∗ for some 𝑥 ∈ N, we use |𝐵| + 1 = 𝑥 + 1 as shorthand
for 𝐵 ⊕ 0∗.

2.3 Bidding games as concurrent games

Consider an arena ⟨𝑉, 𝐸, 𝑘⟩ of a bidding game. The corresponding configurations are C =

{⟨𝑣, 𝐵⟩ ∈ 𝑉 × ([𝑘] ∪ {𝑘 + 1})}, where a configuration 𝑐 = ⟨𝑣, 𝐵⟩ ∈ C means that the token is
placed on vertex 𝑣 ∈ 𝑉 and Player 1’s budget is 𝐵. Implicitly, Player 2’s budget is 𝑘∗⊖𝐵. Note that,
vertices of the form ⟨𝑣, 𝑘 + 1⟩ ∈ C are symbolic, namely they do not represent configurations of
the game since Player 1’s budget cannot exceed 𝑘. The arena of the explicit concurrent game is
⟨𝐴, C, 𝜆, 𝛿⟩, where 𝐴 = [𝑘] × 𝑉 , and we define the allowed actions in each configuration and
transitions next. An action ⟨𝑏, 𝑣⟩ ∈ 𝐴 means that the player bids 𝑏 and proceeds to 𝑣 upon
winning the bidding. We require the player with the advantage to decide prior to the bidding
whether they will use the advantage or not. Thus, when Player 1’s budget is 𝐵∗, Player 1’s
legal bids are [𝐵] and Player 2’s legal bids are {0, . . . , 𝑘 − 𝐵}, and when Player 1’s budget is 𝐵,
Player 1’s legal bids are {0, 1, . . . , 𝐵} and Player 2’s legal bids are [𝑘 ⊖ 𝐵]. Next, we describe the
transitions. Suppose that the token is placed on a configuration 𝑐 = ⟨𝑣, 𝐵⟩ and Player 𝑖 chooses
action ⟨𝑏𝑖 , 𝑢𝑖⟩, for 𝑖 ∈ {1, 2}. If 𝑏1 > 𝑏2, Player 1 wins the bidding and the game proceeds to
⟨𝑢1, 𝐵1 ⊖ 𝑏1⟩. The definition for 𝑏2 > 𝑏1 is dual. The remaining case is a tie, i.e., 𝑏1 = 𝑏2. Since
only one of the players has the advantage, a tie can occur only when the player who has the
advantage does not use it. Suppose that 𝑐 = ⟨𝑣, 𝐵∗⟩, i.e., Player 1 has the advantage, and the
definition when Player 2 has the advantage is dual. Player 2 wins the bidding, Player 1 keeps
the advantage, and we proceed to ⟨𝑢2, 𝐵∗ ⊕ 𝑏2⟩. Note that the size of the arena is 𝑂(|𝑉 | × 𝑘),
which is exponential in the size of G since 𝑘 is given in binary.

Consider two strategies 𝑓 and 𝑔 and an initial configuration 𝑐 = ⟨𝑣, 𝐵⟩ We sometimes abuse
notation treat play(𝑣, 𝑓 , 𝑔) = ⟨𝑣0, 𝐵0⟩, ⟨𝑣1, 𝐵1⟩, . . . as the infinite path 𝑣0, 𝑣1, . . . in the bidding
game.

2.4 Objectives and threshold budgets

A bidding game is G = ⟨𝑉, 𝐸, 𝑘,O⟩, where ⟨𝑉, 𝐸, 𝑘⟩ is an arena and O ⊆ 𝑉𝜔 is an objective, which
specifies the infinite paths that are winning for Player 1.

We introduce notations on paths before defining the objectives that we consider. Consider
a path 𝜋 = 𝑣0, 𝑣1, . . . and consider a subset of vertices 𝐴 ⊆ 𝑉 . We say that 𝜋 visits 𝐴 if there is

9 / 45 Computing Threshold Budgets in Discrete-Bidding Games

𝑗 ≥ 0 such that 𝑣 𝑗 ∈ 𝐴. We denote by 𝑖𝑛 𝑓 (𝜋) ⊆ 𝑉 , the set of vertices that 𝜋 visits infinitely often.
We say that 𝜋 enters 𝐴 at time 𝑗 ≥ 1 if 𝑣 𝑗 ∈ 𝐴 and 𝑣 𝑗−1 ∉ 𝐴, and it is exited at time 𝑗 if 𝑣 𝑗 ∉ 𝐴 and
𝑣 𝑗−1 ∈ 𝐴.

We consider the following two canonical objectives:
Reachability: A reachability bidding game is ⟨𝑉, 𝐸, 𝑘, 𝑆⟩, where 𝑆 ⊆ 𝑉 is a set of sinks.
Player 1, the reachability player, wins an infinite play 𝜋 iff it visits 𝑆, and we then say that
𝜋 ends in 𝑆. Safety objectives are dual to reachability objectives; the safety player wins a
play iff it never visits 𝑆.
Parity: A parity bidding game is ⟨𝑉, 𝐸, 𝑘, 𝑝⟩, where 𝑝 : 𝑉 → {1, . . . , 𝑑} assigns to each
vertex a parity index, for 𝑑 ∈ N. A play 𝜏 is winning for Player 1 iff max𝑣∈𝑖𝑛 𝑓 (𝜏) 𝑝(𝑣) is odd.
The special case in which 𝑝 assigns parities in {2, 3} is called Büchi objective; Player 1 wins
a play iff it visits the set {𝑣 ∈ 𝑉 : 𝑝(𝑣) = 3} infinitely often.

We introduce frugal objectives in bidding games in which, roughly, Player 1 wins by
reaching a target with a sufficient budget.

DEF IN IT ION 2 .3 (Frugal objectives).

A frugal-reachability bidding game is ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩, where 𝑉 , 𝐸, and 𝑘 are as in bidding
games, 𝑆 ⊆ 𝑉 is a set of target vertices, and fr : 𝑆 → [𝑘] assigns a frugal-target budget to
each target. Consider a play 𝜋. Player 1 wins 𝜋 iff 𝜋 reaches 𝑆, i.e., 𝜋 ends in a configuration
⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆, and Player 1’s budget at 𝑆 exceeds the frugal-target budget, i.e., 𝜋 ends
in ⟨𝑠, 𝐵⟩ with 𝐵 ≥ fr(𝑠). Note that a reachability bidding game is a special case of a
frugal-reachability bidding game in which fr . 0.
The frugal-safety objective is dual to frugal-reachability. We describe the winning condition
explicitly. A frugal-safety bidding game is ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩, where𝑉 , 𝐸, and 𝑘 are as in bidding
games, 𝑆 ⊆ 𝑉 is a set of sinks, and fr : 𝑆 → [𝑘] assigns a frugal-target budget to each
sink. Player 1, the safety player, wins a play 𝜋 if: (1) 𝜋 never reaches 𝑆, or (2) 𝜋 reaches a
configuration ⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆 and 𝐵 ≥ fr(𝑠). Note that a safety bidding game is a special
case of a frugal-safety bidding game in which fr . 𝑘 + 1.
A frugal-parity bidding game is ⟨𝑉, 𝐸, 𝑘, 𝑝, 𝑆, fr⟩, where 𝑝 : (𝑉 \ 𝑆) → {0, . . . , 𝑑} and the
other components are as in the above. Player 1 wins a play 𝜋 if (1) 𝜋 does not reach 𝑆 and
satisfies the parity objective, or (2) 𝜋 satisfies a frugal-reachability objective: it ends in a
configuration ⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆 and 𝐵 ≥ fr(𝑠).

REMARK 2 .4. We point out that an 𝜔-regular objective (e.g., reachability and parity) is a
collection of paths in the graph, i.e., a subset of 𝑉𝜔. On the other hand, a frugal objective is
a subset of configurations, i.e., a subset of (𝑉 × [𝑘])𝜔. We do not know of a reduction from
a frugal objective game to a non-frugal objective game that preserves the thresholds. At the

10 / 45 G. Avni, S. Sadhukhan

same time, as we show in the next section, it is not hard to extend algorithms for reachability
bidding games to frugal-reachability games. Moreover, we are not aware of applications of
frugal objectives, and define them as a means to solve parity bidding games.

Next, we define winning strategies.

DEF IN IT ION 2 .5 (Winning strategies). Consider a configuration 𝑐 = ⟨𝑣, 𝐵⟩ and an objective O.
A Player 1 strategy 𝑓 is winning from 𝑐 if for every strategy 𝑔 , play(𝑐, 𝑓 , 𝑔) satisfies O.
A Player 2 strategy 𝑔 is winning from 𝑐 if for every strategy 𝑓 , play(𝑐, 𝑓 , 𝑔) does not satisfy O.

A player wins from 𝑐 if they have a winning strategy from 𝑐.

The central quantity in bidding games is the threshold budget at a vertex, which is the
necessary and sufficient initial budget at that vertex for Player 1 to guarantee winning the game.
It is formally defined as follows.

DEF IN IT ION 2 .6 (Threshold budgets). Consider a bidding game G. The threshold budget at a
vertex 𝑣 in G, denoted ThG (𝑣), is such that

Player 1 wins from every configuration ⟨𝑣, 𝐵⟩ with 𝐵 ≥ ThG (𝑣), and
Player 2 wins from every configuration ⟨𝑣, 𝐵⟩ with 𝐵 < ThG (𝑣).

We refer to the function ThG as the threshold budgets.

REMARK 2 .7. We point out that existence of threshold budgets is not trivial. Indeed, existence
of threshold budgets implies determinacy: from each configuration there is a player who has a
winning strategy. By observing that an additional budget will not harm a player in a bidding
game, we obtain that determinacy implies existence of thresholds. Recall that bidding games
are succinctly-represented concurrent games, and concurrent games are often not determined,
for example, the simple concurrent game “matching pennies” is not determined since neither
player can win the game. Typically, the vertices of a concurrent game can be partitioned into
surely winning vertices from which Player 1 has a winning strategy, surely losing from which
Player 2 has a winning strategy, and in the rest, neither player has a winning strategy. An
optimal strategy from a vertex in the last set is mixed; it assigns a probability distribution over
actions. Interestingly in bidding games, all vertices are either surely winning or surely losing.
Previously, existence of thresholds in reachability games with advantage-based tie-breaking
was shown in [20] by identifying the structure of the thresholds. An alternative technique was
developed in [1] in which bidding games were shown to have a local property (called “local
determinacy”) that implies “global” determinacy, and was used to show that Müller bidding
games with various tie-breaking mechanisms are determined. Other subclasses of concurrent
games (beyond bidding games) where shown to have a local property that implies determinacy
in [17].

11 / 45 Computing Threshold Budgets in Discrete-Bidding Games

3. Frugal-Reachability Discrete-Bidding Games

The study in [20] focuses primarily on reachability discrete-bidding games played on DAGs. We
revisit their results, provide explicit and elaborate proofs for games played on general graphs,
and extend the results to frugal-reachability games. Specifically Theorem 3.7 points to an issue
in bidding games played on general graphs that was not explicitly addressed in [20].

3.1 Background: reachability continuous-bidding games

Many of the techniques used in reachability discrete-bidding games are adaptations of tech-
niques developed for reachability continuous-bidding games [25, 24]. In order to develop
intuition and ease presentation of discrete-bidding games, in this section, we illustrate the ideas
and techniques of continuous-bidding games.

Recall that in continuous-bidding games there is no restriction on the granularity of bids,
i.e., bids can be arbitrarily small. Throughout this section we assume that the sum of the players’
budgets is 1. Note that since winning bids are paid to the opponent, the sum of budgets stays
constant throughout the game.

DEF IN IT ION 3.1 (Continuous threshold budgets). The continuous threshold budget at a vertex
𝑣 is a budget Th(𝑣) ∈ [0, 1] such that for every 𝜖 > 0:

if Player 1’s budget is Th(𝑣) + 𝜖, he wins the game from 𝑣, and
if Player 1’s budget is Th(𝑣) − 𝜖, Player 2 wins the game from 𝑣.

REMARK 3.2. We point out that the issue of tie breaking is avoided in continuous-bidding
games by considering initial budgets that differ from the threshold. That is, the guarantee is
that if a player’s budget is strictly above the threshold, he wins the game no matter which
tie-breaking mechanism is used, e.g., even if the opponent wins all bidding ties.

A double-reachability continuous-bidding game is ⟨𝑉, 𝐸, 𝑡1, 𝑡2⟩, where for 𝑖 ∈ {1, 2}, the
vertex 𝑡𝑖 is the target of Player 𝑖 and every vertex 𝑣 ≠ 𝑡1, 𝑡2 has a path to both. The game ends
once one of the targets is reached, and the player whose target is reached is the winner. The
careful reader might notice that the definition does not define a winner when no target is
reached. We will show below that this case is avoided.

DEF IN IT ION 3.3 (Continuous average property). Consider a double-reachability continuous-
bidding game G = ⟨𝑉, 𝐸, 𝑡1, 𝑡2⟩ and a function 𝑇 : 𝑉 → [0, 1]. For 𝑣 ∈ 𝑉 , denote 𝑣+𝑇 :=
argmax𝑢∈𝑁 (𝑣) 𝑇 (𝑢) and 𝑣−𝑇 := argmin𝑢∈𝑁 (𝑣) 𝑇 (𝑣). We say that 𝑇 has the continuous average

12 / 45 G. Avni, S. Sadhukhan

property if for every vertex 𝑣 ∈ 𝑉 :

𝑇 (𝑣) =

1 if 𝑣 = 𝑡2

0 if 𝑣 = 𝑡1
𝑇 (𝑣−𝑇)+𝑇 (𝑣+𝑇)

2 otherwise

when the function 𝑇 is clear from the context, we simply refer 𝑣+𝑇 and 𝑣−𝑇 as 𝑣+ and 𝑣− respec-
tively. Note that, there could be more than one vertex 𝑢 (similarly, 𝑤) such that 𝑇 (𝑢) = 𝑇 (𝑣−)
(respectively, 𝑇 (𝑤) = 𝑇 (𝑣+)), but for the sake of convenience, we collectively denote any of them
as 𝑣− and 𝑣+ respectively.

The next theorem presents the main results on reachability continuous-bidding games:
a function that satisfies the continuous average property is unique, and it coincides with the
continuous threshold budgets. We illustrate the proof techniques, in particular how to construct
a winning bidding strategy given the thresholds in the game.

THEOREM 3.4. [25, 24] Consider a double-reachability continuous-bidding game ⟨𝑉, 𝐸, 𝑡1, 𝑡2⟩.
Continuous threshold budgets exist, and the threshold budgets Th : 𝑉 → [0, 1] is the unique
function that has the continuous average property. Moreover, the problem of deciding whether
Th(𝑣) ≤ 0.5 is in NP and coNP.

PROOF . (SKETCH) Let𝑇 be a function that satisfies the continuous average property, where we
omit the proof of existence of such a function. We prove that for every vertex 𝑣, the continuous
threshold budget at 𝑣 is 𝑇 (𝑣). Uniqueness follows immediately.

The complexity bound is obtained by guessing, for every vertex 𝑣, two neighbors 𝑣− and
𝑣+, and constructing and solving a linear program based on the constraints in Def. 3.3 (for more
details, see [8], which shows a reduction to stochastic games [19]).

From a function with the continuous-average property to a strategy. Suppose that
Player 1’s budget at 𝑣 is 𝑇 (𝑣) + 𝜀, for 𝜀 > 0. We describe a winning Player 1 strategy. Recall that
𝑣+, 𝑣− ∈ 𝑁 (𝑣) are respectively the neighbors of 𝑣 that attain the maximal and minimal values
according to 𝑇 . Let

𝑏(𝑣) := 𝑇 (𝑣+) − 𝑇 (𝑣−)
2

.

The key observation is that 𝑇 (𝑣) + 𝑏(𝑣) = 𝑇 (𝑣+) and 𝑇 (𝑣) − 𝑏(𝑣) = 𝑇 (𝑣−).
Consider the following Player 1 strategy. At vertex 𝑣 ∈ 𝑉 , bid 𝑏(𝑣) and proceed to 𝑣− upon

winning. We show that the strategy maintains the following invariant:
Invariant: When the game reaches a configuration ⟨𝑢, 𝐵⟩, then 𝐵 > 𝑇 (𝑢).

We list two implications of the invariant. First, it implies that the strategy is legal, namely
Player 1’s budget at 𝑣 suffices to bid 𝑏(𝑣). Second, it implies that Player 1 does not lose, namely
no matter how Player 2 plays, the game will not reach 𝑡2. Indeed, assume towards contradiction

13 / 45 Computing Threshold Budgets in Discrete-Bidding Games

that 𝑡2 is reached. Then, the invariant implies that Player 1’s budget is strictly greater than 1,
which violates the assumption that the sum of budgets is 1.

Note that “not losing” does not suffice for winning, namely that Player 1 forces the game
to 𝑡1. These details, however, are not relevant to this paper. For completeness, we describe the
rough idea. Suppose that the game reaches configuration ⟨𝑢, 𝐵⟩. The invariant implies 𝐵 > 𝑇 (𝑢).
We call 𝐵 − 𝑇 (𝑢) Player 1’s spare change. The idea is to choose Player 1’s bids carefully in a way
that ensures that as the game continues, his spare change strictly increases so that eventually
his budget suffices to win |𝑉 | times in a row. We point out that this idea can be extended to show
that in a strongly-connected game, a player can force infinitely many visits to a vertex with any
positive initial budget, which is at the core of solving parity continuous-bidding games.

We prove that Player 1’s strategy maintains the invariant against any Player 2 strategy.
Note that the invariant holds initially. Suppose that the game reaches configuration ⟨𝑢, 𝐵⟩ with
𝐵 > 𝑇 (𝑢). We claim that the invariant is maintained in the next turn. Indeed, if Player 1 wins the
bidding, the next configuration is ⟨𝑣−, 𝐵− 𝑏(𝑣)⟩, and the claim follows from 𝑇 (𝑣) − 𝑏(𝑣) = 𝑇 (𝑣−).
If Player 2 wins the bidding, she bids at least 𝑏(𝑣), thus Player 1’s updated budget is at least
𝐵 + 𝑏(𝑣), and the worst that Player 2 can do for Player 1 is to move to 𝑣+. The claim follows from
𝑇 (𝑣) + 𝑏(𝑣) = 𝑇 (𝑣+).

Reasoning about the flipped game. Finally, we show that Player 2 wins when Player 1’s
budget is 𝑇 (𝑣) − 𝜀. We intuitively “flip” the game and associate Player 1 with Player 2. More
formally, let G′ be the same as G except that Player 1’s goal is to reach 𝑡2 and Player 2’s goal is to
reach 𝑡1. For every 𝑢 ∈ 𝑉 , define 𝑇 ′ by 𝑇 ′(𝑢) = 1 − 𝑇 (𝑢). A key observation is that 𝑇 ′ satisfies the
continuous average property in G′. In particular, note that 𝑇 ′(𝑡1) = 1 and 𝑇 ′(𝑡2) = 0. Now, in
order to win from 𝑣 in G when Player 1’s budget is 𝑇 (𝑣) − 𝜀, Player 2 follows a winning Player 1
strategy in G′ with an initial budget of 1 − 𝑇 (𝑣) + 𝜀. ■

3.2 Frugal-Reachability discrete-bidding games

We turn to study discrete-bidding games.

3.2.1 The discrete average property

In this section, we adapt the definition of the continuous average property (Def. 3.3) to the
discrete setting and analyze its properties.

DEF IN IT ION 3.5 (Average property). Consider a frugal-reachability discrete-bidding game
G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩. We say that a function 𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1} has the average property if for

14 / 45 G. Avni, S. Sadhukhan

𝑣0 𝑣1 𝑣2 𝑡

4 3* 3
2

5 4* 3*

Figure 1. A discrete-bidding reachability game with two functions that satisfy the average property.

every 𝑠 ∈ 𝑆, we have 𝑇 (𝑠) = fr(𝑠), and for every 𝑣 ∈ 𝑉 \ 𝑆,

𝑇 (𝑣) =
⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋
+ 𝜀 where 𝜀 =

0 if |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even and 𝑇 (𝑣−) ∈ N
1 if |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and 𝑇 (𝑣−) ∈ N∗ \ N
∗ otherwise

where 𝑣+ := argmax𝑢∈𝑁 (𝑣) 𝑇 (𝑢) and 𝑣− := argmin𝑢∈𝑁 (𝑣) 𝑇 (𝑣)

REMARK 3.6 (Convention). Note that, 𝑇 can assign 𝑘 + 1. When 𝑇 (𝑣) = 𝑘 + 1, Player 2 can win
from 𝑣 even with a budget 0.

The following theorem shows, somewhat surprisingly and for the first time that functions
that satisfy the discrete average property are not unique. That is, there are functions satisfying
the discrete average property but not coinciding with the threshold budgets. This is in stark
difference to the continuous-bidding games in which there is a unique function that satisfies
the average property.

THEOREM 3.7. The reachability discrete-bidding game G1 that is depicted in Fig. 1 with target 𝑡
for Player 1 has more than one function that satisfies the average property.

PROOF . Assume a total budget of 𝑘 = 5. We represent a function 𝑇 : 𝑉 → [𝑘] as a vector
⟨𝑇 (𝑣0), 𝑇 (𝑣1), 𝑇 (𝑣2), 𝑇 (𝑡)⟩. It is not hard to verify that both ⟨4, 3∗, 3, 2⟩ and ⟨5, 4∗, 3∗, 2⟩ satisfy
the average property. (The latter represents the threshold budgets). ■

The following lemma intuitively shows that the “complement” of 𝑇 , denoted below 𝑇 ′,
satisfies the average property. For a vertex 𝑣, the value 𝑇 ′(𝑣) should be thought of as Player 2’s
budget when Player 1’s budget is strictly less than 𝑇 (𝑣). We will later show that since 𝑇 ′

satisfies the average property, Player 2 can win with a budget of 𝑇 ′(𝑣). A similar idea is used in
continuous-bidding in the last point in the proof of Theorem 3.4. It follows that a function 𝑇 that
satisfies the average property satisfies 𝑇 ≤ ThG . Indeed, on the one hand, if Player 1’s budget is
less than 𝑇 (𝑣), then Player 2, the safety player, wins by avoiding Player 1’s targets. However, it
could be the case that 𝑇 < ThG; namely, Player 1 cannot win (force a visit to a target) with a
budget of 𝑇 (𝑣).

15 / 45 Computing Threshold Budgets in Discrete-Bidding Games

DEF IN IT ION 3.8 (Compliment of 𝑇). Let G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩ be a discrete-bidding game with a
frugal objective. Let 𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1} be a function. We define “complement” of 𝑇 , denoted
by 𝑇 ′ : 𝑉 → [𝑘] ∪ 𝑘 + 1 as: 𝑇 ′(𝑣) = (𝑘 + 1) ⊖ 𝑇 (𝑣) for all 𝑣 ∈ 𝑉 .

OBSERVAT ION 3.9 (Relation between 𝑇 value and 𝑇 ′ value of a vertex). We make the
following observations about such a function 𝑇 and its complememt 𝑇 ′, which can be directly
derived using the definition of ⊖, in the following.

I. For every 𝑣 ∈ 𝑉 , we have that 𝑇 (𝑣) and 𝑇 ′(𝑣) agree on which player has the advantage,
formally 𝑇 (𝑣) ∈ N iff 𝑇 ′(𝑣) ∈ N.

II. For 𝑣 ∈ 𝑉 , a neighbouring vertex with maximum 𝑇 -value is the neighbouring vertex with
minimum 𝑇 ′-value, and vice-versa. Notationally, 𝑣+𝑇 = 𝑣−𝑇 ′ and 𝑣−𝑇 = 𝑣+𝑇 ′

III For any 𝑣 ∈ 𝑉 , if𝑇 (𝑣) ∈ N then𝑇 ′(𝑣) = |𝑇 ′(𝑣) | = (𝑘+1)−|𝑇 (𝑣) |, otherwise |𝑇 ′(𝑣) | = 𝑘−|𝑇 (𝑣) |.

LEMMA 3.10. Let G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩ be a discrete-bidding game with a frugal objective. Let
𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1} be a function that satisfies the average property. Then, complememt of 𝑇 ,
denoted by 𝑇 ′ : 𝑉 → [𝑘] ∪ {𝑘 + 1}, also satisfies the average property.

PROOF . Let us first fix the notation for 𝑣− and 𝑣+ as to denote the neighbouring vertices of
𝑣 with minimum and maximum 𝑇 -value, respectively for this proof. We need to show that
𝑇 ′(𝑣) =

⌊
|𝑇 ′ (𝑣−) |+|𝑇 ′ (𝑣+) |

2

⌋
+ 𝜀′, where 𝜀′ comes from the definition of the average property. We

already have 𝑇 (𝑣) =
⌊
|𝑇 (𝑣+) |+|𝑇 (𝑣−) |

2

⌋
+ 𝜀. Note that, 𝑇 ′(𝑣−) = 𝑇 ′(𝑣+𝑇 ′) and 𝑇 ′(𝑣+) = 𝑇 ′(𝑣−𝑇 ′), as per

Observation 3.9.
We proceed to prove the lemma.
First, we consider the scenario when 𝑇 (𝑣) = 0. This necessarily means 𝜀 = 0, 𝑇 (𝑣−) = 0,

|𝑇 (𝑣+) | = 0, and 𝑇 ′(𝑣) = (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑘 + 1. This implies 𝑇 ′(𝑣+𝑇 ′) = 𝑇 ′(𝑣−) = 𝑘 + 1 and
𝑇 ′(𝑣−𝑇 ′) = 𝑇 ′(𝑣+) ∈ {𝑘∗, 𝑘 + 1}. If 𝑇 ′(𝑣−𝑇 ′) is 𝑘∗, we have |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) | = 2𝑘 + 1 and 𝜀′ = 1. On
the other hand, if 𝑇 ′(𝑣−𝑇 ′) = 𝑘 + 1, then we have |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) | = 2(𝑘 + 1), and 𝜀′ = 0. Thus,

we have 𝑇 ′(𝑣) = 𝑘 + 1 =
⌊ |𝑇 ′(𝑣−) |+|𝑇 ′(𝑣+) |

2

⌋
+ 𝜀′

Now, we assume that 𝑇 (𝑣) > 0. We divide the analysis in four exhaustive cases in the
following. Before delving into the case analysis, for better reading comprehension, we explain
the structure that each of these analyzes follow. We divide the analysis into four exhaustive
cases according to the advantage statuses of 𝑇 (𝑣+) and 𝑇 (𝑣−), the first being where both of them
are in N, in the second one, both of them are in N∗ \ N, and the final two cases are when one of
them is in N and the other one is in N∗ \ N.

Then, in each case, we look into the relation between the parity of |𝑇 (𝑣+) | + |𝑇 (𝑣−) | and
|𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |, and what the 𝜀, 𝜀′ values are. Once those are settled, we start with the
corresponding expression of

⌊ |𝑇 ′ (𝑣+) |+|𝑇 ′ (𝑣−) |
2

⌋
+ 𝜀′, and show that it is indeed 𝑇 ′(𝑣).

16 / 45 G. Avni, S. Sadhukhan

We now delve into the technical part of this analysis below:
𝑇 (𝑣+), 𝑇 (𝑣−) ∈ N.
First, from Observation 3.9, we have 𝑇 ′(𝑣−), 𝑇 ′(𝑣+) ∈ N as well.
Thus, it is enough to discuss the two cases corresponding to when the sum is even or odd,
respectively. Note that |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even iff |𝑇 ′(𝑣−) | + |𝑇 ′(𝑣+) | is even, simply because
in this case𝑇 ′(𝑣+) = (𝑘 +1) −𝑇 (𝑣+) and𝑇 ′(𝑣−) = (𝑘 +1) −𝑇 (𝑣−). It follows that irrespective
of whether |𝑇 (𝑣−) | + |𝑇 (𝑣+) | is odd or even, we have 𝜀′ = 𝜀.

When 𝜀 = 𝜀′ = 0 (i.e., the sum is even), we have

|𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |
2

=
(𝑘 + 1 − |𝑇 (𝑣−) |) + (𝑘 + 1 − |𝑇 (𝑣+) |)

2

= 𝑘 + 1 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

= (𝑘 + 1) − 𝑇 (𝑣) = 𝑇 ′(𝑣)

When 𝜀 = 𝜀′ = 0∗ (i.e., the sum is odd), we have(⌊ |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |
2

⌋)∗
=

(⌊
𝑘 + 1 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋)∗
=

(
𝑘 + 1 −

⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋
− 1

)∗
= (𝑘 + 1) ⊖

(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋)∗
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

𝑇 (𝑣+), 𝑇 (𝑣−) ∈ N∗ \ N.
In this case too, |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even iff |𝑇 ′(𝑣−) | + |𝑇 ′(𝑣+) | is even. Therefore, we have
𝜀′ = 𝜀.
When 𝜀 = 𝜀′ = ∗ (i.e., the sum is even and the minimum is in N∗ \ N), we have(|𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |

2

)∗
=

((𝑘 − |𝑇 (𝑣−) |) + (𝑘 − |𝑇 (𝑣+) |)
2

)∗
=

(
𝑘 − |𝑇 (𝑣−) | + |𝑇 (𝑣+) |

2

)∗
=

(
(𝑘 + 1) − |𝑇 (𝑣−) | + |𝑇 (𝑣+) |

2
− 1

)∗
= (𝑘 + 1) ⊖

(|𝑇 (𝑣−) | + |𝑇 (𝑣+) |
2

)∗
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

17 / 45 Computing Threshold Budgets in Discrete-Bidding Games

When 𝜀 = 𝜀′ = 1 (i.e., the sum is odd and the minimum is in N∗ \ N), we have⌊ |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |
2

⌋
+ 1 =

⌊ (𝑘 − |𝑇 (𝑣+) |) + (𝑘 − |𝑇 (𝑣−) |)
2

⌋
+ 1

=

⌊
𝑘 − |𝑇 (𝑣−) | + |𝑇 (𝑣+) |

2

⌋
+ 1

= 𝑘 −
⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋
− 1 + 1

= (𝑘 + 1) −
(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋
+ 1

)
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

𝑇 (𝑣+) ∈ N and 𝑇 (𝑣−) ∈ N∗ \ N
Note that, in this case, |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even iff |𝑇 ′(𝑣−) | + |𝑇 ′(𝑣+) | is odd.
We can also see that when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even, we have 𝜀 = 𝜀′ = 0∗. Therefore, we
have (⌊ |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |

2

⌋)∗
=

(⌊ (𝑘 + 1) − |𝑇 (𝑣+) | + 𝑘 − |𝑇 (𝑣−) |
2

⌋)∗
=

(⌊
2𝑘 + 1 − (|𝑇 (𝑣+) | + |𝑇 (𝑣−) |)

2

⌋)∗
=

(
𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

)∗
=

(
𝑘 + 1 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
− 1

)∗
= (𝑘 + 1) ⊖

(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

)∗
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

On the other hand, when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd, we have 𝜀 = 1, 𝜀′ = 0. In this case, we
proceed as follows:

|𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |
2

=
𝑘 − |𝑇 (𝑣+) | + (𝑘 + 1) − |𝑇 (𝑣−) |

2

=
2𝑘 + 1 − (|𝑇 (𝑣+) | + |𝑇 (𝑣−) |)

2

= 𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) | − 1
2

= 𝑘 −
⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋
= (𝑘 + 1) −

(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋
+ 1

)
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

𝑇 (𝑣+) ∈ N∗ and 𝑇 (𝑣−) ∈ N

18 / 45 G. Avni, S. Sadhukhan

In this case, like the earlier one, |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even iff |𝑇 ′(𝑣−) | + |𝑇 ′(𝑣+) | is odd. But
unlike the earlier case, here when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even, we have 𝜀 = 0 and 𝜀′ = 1. On
the other hand, when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd, then we have 𝜀 = 𝜀′ = ∗.
We first consider the case when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even, in the following:⌊ |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |

2

⌋
+ 1 =

⌊
𝑘 − |𝑇 (𝑣+) | + (𝑘 + 1) − |𝑇 (𝑣−) |

2

⌋
=

⌊
2𝑘 + 1 − (|𝑇 (𝑣+) | + |𝑇 (𝑣−) |)

2

⌋
=

⌊
𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) | − 1

2

⌋
= 𝑘 −

⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) | − 1
2

⌋
− 1

= 𝑘 −
(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
− 1

)
− 1

= (𝑘 + 1) −
(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
+ 1

)
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

On the other hand, when |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd, we have:(⌊ |𝑇 ′(𝑣+) | + |𝑇 ′(𝑣−) |
2

⌋)∗
=

(⌊
𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) | − 1

2

⌋)∗
=

(
𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) | − 1

2

)∗
=

(
𝑘 −

⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋)∗
=

(
(𝑘 + 1) −

⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋
− 1

)∗
= (𝑘 + 1) ⊖

(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋)∗
= (𝑘 + 1) ⊖ 𝑇 (𝑣) = 𝑇 ′(𝑣)

As we establish exhaustively that
⌊ |𝑇 ′ (𝑣+) |+|𝑇 ′ (𝑣−) |

2

⌋
is indeed 𝑇 ′(𝑣), we conclude with the

fact that 𝑇 ′ satisfies the average property when 𝑇 does. ■

3.2.2 From a function that satisfies the average to a bidding strategy

Throughout this section, fix a function 𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1} that satisfies the average property.
We show how to construct a bidding strategy from 𝑇 . We will use this construction also for
parity games.

19 / 45 Computing Threshold Budgets in Discrete-Bidding Games

DEF IN IT ION 3.1 1 (Partial strategy). A partial strategy based on 𝑇 is a function 𝑓𝑇 : C →
[𝑘] × 2𝑉 that chooses, at each configuration, a bid and a set of allowed vertices.

Note that 𝑓𝑇 is not a strategy since it does not assign a unique vertex to proceed to upon
winning the bidding.

DEF IN IT ION 3.12 (𝑓 ′ agrees with 𝑓𝑇). Consider a strategy 𝑓 ′ and a partial strategy 𝑓𝑇 : C →
[𝑘] × 2𝑉 . Consider a configuration 𝑐. Let ⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐) and ⟨𝑏′, 𝑢′⟩ = 𝑓 ′(𝑐). We say that 𝑓 ′

agrees with 𝑓𝑇 at 𝑐 if 𝑏 = 𝑏′ and 𝑢′ ∈ 𝐴. We say that 𝑓 ′ agrees with 𝑓𝑇 if 𝑓 ′ agrees with 𝑓𝑇 in all
configurations.

We describe the intuition behind the construction of 𝑓𝑇 . We construct 𝑓𝑇 so that every
strategy 𝑓 ′ that agrees with 𝑓𝑇 maintains the following invariant. Suppose that the game
starts from configuration ⟨𝑣, 𝐵⟩ with 𝐵 ≥ 𝑇 (𝑣). Then, against any opponent strategy, when the
game reaches a configuration ⟨𝑢, 𝐵′⟩, we have 𝐵′ ≥ 𝑇 (𝑢). Since for every sink 𝑠 ∈ 𝑆, we have
𝑇 (𝑠) ≥ fr(𝑠), the invariant implies that 𝑓 ′ guarantees that the frugal objective is not violated.
Technically, the construction of 𝑓𝑇 is similar in spirit to the construction in continuous bidding
(Theorem 3.4). There, a non-losing strategy maintains the invariant that Player 1’s budget
exceeds Th(𝑣) by bidding 𝑏 = Th(𝑣+)−Th(𝑣−)

2 at a vertex 𝑣, and proceeding to 𝑣− upon winning the
bidding. Recall that the invariant is maintained since Th(𝑣) − 𝑏 = Th(𝑣−) and Th(𝑣) + 𝑏 = Th(𝑣+).

We describe 𝑓𝑇 formally. Consider 𝑣 ∈ 𝑉 and a budget 𝐵 ∈ [𝑘] with 𝐵 ≥ 𝑇 (𝑣). Let
𝑣+ = argmax𝑢∈𝑁 (𝑣) 𝑇 (𝑢) and 𝑣− = argmin𝑢∈𝑁 (𝑣) 𝑇 (𝑢). We define 𝑓𝑇 (⟨𝑣, 𝐵⟩) = ⟨𝑏𝑇 (𝑣, 𝐵), 𝐴(𝑣)⟩ as
follows. First, we define the allowed vertices

𝐴(𝑣) =

{𝑢 ∈ 𝑁 (𝑣) : 𝑇 (𝑢) = 𝑇 (𝑣−)} if 𝑇 (𝑣−) ∈ N
{𝑢 ∈ 𝑁 (𝑣) : 𝑇 (𝑢) ≤ 𝑇 (𝑣−) ⊕ 0∗} if 𝑇 (𝑣−) ∈ N∗ \ N

(1)

Second, the definition of the bid 𝑏𝑇 (𝑣, 𝐵) is based on 𝑏𝑇𝑣 , defined as follows:

𝑏𝑇𝑣 =

𝑇 (𝑣) ⊖ 𝑇 (𝑣−) if 𝑇 (𝑣−) ∈ N
𝑇 (𝑣) ⊖ (|𝑇 (𝑣−) | + 1) otherwise

(2)

We define the bid chosen by 𝑓𝑇 at a configuration 𝑐 = ⟨𝑣, 𝐵⟩. Intuitively, Player 1 “attempts”
to bid 𝑏𝑇𝑣 . This is not possible when 𝑏𝑇𝑣 requires the advantage but Player 1 does not have it in
𝑐, i.e., 𝑏𝑇𝑣 ∈ N∗ \ N and 𝐵 ∈ N. In such a case, Player 1 bids |𝑏𝑇𝑣 | + 1 ∈ N. Formally, we define
𝑏𝑇 (𝑣, 𝐵) = 𝑏𝑇𝑣 when both 𝑏𝑇𝑣 and 𝐵 belong to either N or N∗ \ N, and 𝑏𝑇𝑣 ⊕ 0∗ otherwise.

3.2.3 Strategies that agree with 𝑓𝑇 are not losing

Suppose that the game starts from a configuration ⟨𝑣, 𝐵⟩ with 𝐵 ≥ 𝑇 (𝑣) and Player 1 follows 𝑓 ′

that agrees with 𝑓𝑇 . In this section, we will show that 𝑓 ′ maintains the invariant that whenever
the play reaches a configuration ⟨𝑢, 𝐵′⟩, we have 𝐵′ ≥ 𝑇 (𝑢). This implies that 𝑓 ′ is “not losing”

20 / 45 G. Avni, S. Sadhukhan

since if the play reaches a sink 𝑠 ∈ 𝑆, Player 1’s budget exceeds the frugal target budget. Note
that “not losing” is not sufficient for winning; indeed, we require a winning strategy to draw
the game to a sink. We will show in the next section that there is a winning strategy that agrees
with 𝑓𝑇 .

We start with the following technical observation.

OBSERVAT ION 3.13. For every vertex 𝑣, we have 𝑇 (𝑣) is in N iff 𝑏𝑇𝑣 is in N.

Next, assuming that Player 1 bids 𝑏𝑇𝑣 from configuration ⟨𝑣, 𝑇 (𝑣)⟩ (i.e., Player 1’s budget is
𝑇 (𝑣)), we establish a lower bound on his budget in the next round. The following observation
takes care of the case that Player 1 wins the bidding at 𝑣.

OBSERVAT ION 3.14. If 𝑇 (𝑣−) ∈ N, then 𝑇 (𝑣) ⊖ 𝑏𝑇𝑣 = 𝑇 (𝑣−), and if 𝑇 (𝑣−) ∈ N∗ \ N, then
𝑇 (𝑣) ⊖ 𝑏𝑇𝑣 = |𝑇 (𝑣−) | + 1

The following lemma takes care of the case that Player 1 loses the bidding at 𝑣.

LEMMA 3.15. Let 𝑇 be a function that satisfies the average property and a vertex 𝑣 ∈ 𝑉 . Then
𝑇 (𝑣) ⊕ (𝑏𝑇𝑣 ⊕ 0∗) = |𝑇 (𝑣+) |∗

PROOF . We establish this result by analysing four cases in the following, where each case
corresponds to a parity of |𝑇 (𝑣+) | + |𝑇 (𝑣−) | and an advantage status of 𝑇 (𝑣−):

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even, and 𝑇 (𝑣−) ∈ N.
In this case, 𝑏𝑇𝑣 = 𝑇 (𝑣) ⊖ 𝑇 (𝑣−) = |𝑇 (𝑣+) |+|𝑇 (𝑣−) |

2 ⊖ 𝑇 (𝑣−) = |𝑇 (𝑣+) |−|𝑇 (𝑣−) |
2 . Therefore, we have

𝑇 (𝑣) ⊕ (𝑏𝑇𝑣 ⊕ 0∗) = |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

+
(|𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

)∗
= |𝑇 (𝑣+) |∗

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and 𝑇 (𝑣−) ∈ N∗ \ N.
In this case, 𝑏𝑇𝑣 = 𝑇 (𝑣) ⊖ (|𝑇 (𝑣−) | +1) =

(⌊ |𝑇 (𝑣+) |+|𝑇 (𝑣−) |
2

⌋
+ 1

)
− (|𝑇 (𝑣−) | +1) =

⌊ |𝑇 (𝑣+) |−|𝑇 (𝑣−) |
2

⌋
.

Therefore, we have

𝑇 (𝑣) ⊕ (𝑏𝑇𝑣 ⊕ 0∗) =
(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋
+ 1

)
+
(⌊ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

⌋)∗
= |𝑇 (𝑣+) |∗

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even and 𝑇 (𝑣−) ∈ N∗ \ N.
In this case, 𝑏𝑇𝑣 = 𝑇 (𝑣) ⊖ (|𝑇 (𝑣−) | + 1) =

(|𝑇 (𝑣+) |+|𝑇 (𝑣−) |
2

)∗
⊖ (|𝑇 (𝑣−) | + 1)

=
(|𝑇 (𝑣+) |+|𝑇 (𝑣−) |

2 − |𝑇 (𝑣−) | − 1
)∗

=
(|𝑇 (𝑣+) |−|𝑇 (𝑣−) |

2 − 1
)∗

. Therefore, we have

𝑇 (𝑣) ⊕ (𝑏𝑇𝑣 ⊕ 0∗) =
(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

)∗
⊕ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
= |𝑇 (𝑣+) |∗

Finally, |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and 𝑇 (𝑣−) ∈ N.

21 / 45 Computing Threshold Budgets in Discrete-Bidding Games

In this case, 𝑏𝑇𝑣 = 𝑇 (𝑣) ⊖ 𝑇 (𝑣−) =
(⌊ |𝑇 (𝑣+) |+|𝑇 (𝑣−) |

2

⌋)∗
⊖ 𝑇 (𝑣−) =

(⌊ |𝑇 (𝑣+) |−|𝑇 (𝑣−) |
2

⌋)∗
. Therefore,

we have

𝑇 (𝑣) ⊕ (𝑏𝑇𝑣 ⊕ 0∗) =
(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

⌋)∗
⊕
(⌊ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

⌋
+ 1

)
=

(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

− 1
2
+ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
− 1
2
+ 1

)∗
= |𝑇 (𝑣+) |∗

■

Furthermore, we also make the following observation which intuitively enlists at least how
much Player 1’s new budget would be after a bidding at 𝑣 where he has a budget of 𝑇 (𝑣) ⊕ 0∗

and he bids 𝑏𝑇𝑣 ⊕ 0∗.

OBSERVAT ION 3.16. Let 𝑇 be a function that satisfies the average property and a vertex 𝑣 ∈ 𝑉 ,
then

(𝑇 (𝑣) ⊕ 0∗) ⊖ (𝑏𝑇𝑣 ⊕ 0∗) = 𝑇 (𝑣) ⊖ 𝑏𝑇𝑣 , and
(𝑇 (𝑣) ⊕ 0∗) ⊕ (𝑏𝑇𝑣 ⊕ 1) = |𝑇 (𝑣+) |∗ + 1.

We proceed to prove that strategies that agree with 𝑓𝑇 maintain an invariant on Player 1’s
budget.

LEMMA 3.17. Suppose that Player 1 plays according to a strategy 𝑓 ′ that agrees with 𝑓𝑇 starting
from configuration ⟨𝑣, 𝐵⟩ satisfying 𝐵 ≥ 𝑇 (𝑣). Then, against any Player 2 strategy, when the game
reaches 𝑢 ∈ 𝑉 , Player 1’s budget is at least 𝑇 (𝑢).

PROOF . The invariant holds initially by the assumption. Consider a history that ends in a
configuration ⟨𝑣, 𝐵⟩. Assume that 𝐵 ≥ 𝑇 (𝑣). We claim that the invariant is maintained no matter
the outcome of the bidding, namely 𝐵 ⊖ 𝑏𝑇 (𝑣, 𝐵) ≥ 𝑇 (𝑣−) and 𝐵 ⊕ (𝑏𝑇 (𝑣, 𝐵) ⊕ 0∗) ≥ 𝑇 (𝑣+).

We distinguish between two cases. First, when either both 𝐵 and 𝑏𝑇𝑣 are in N or both 𝐵

and 𝑏𝑇𝑣 are in N∗ \N. In either case, Player 1 bids 𝑏𝑇 (𝑣, 𝐵) = 𝑏𝑇𝑣 . It follows from Observation 3.14
and Lemma 3.15 that

𝐵 ⊖ 𝑏𝑇 (𝑣, 𝐵) = 𝐵 ⊖ 𝑏𝑇𝑣 ≥ 𝑇 (𝑣) ⊖ 𝑏𝑇𝑣 ≥ 𝑇 (𝑣−), and

𝐵 ⊕ 𝑏𝑇 (𝑣, 𝐵) ⊕ 0∗ = 𝐵 ⊕ 𝑏𝑇𝑣 ⊕ 0∗ ≥ 𝑇 (𝑣) ⊕ 𝑏𝑇𝑣 ⊕ 0∗ = |𝑇 (𝑣+) |∗.

In the second case, Player 1 bids 𝑏𝑇 (𝑣, 𝐵) = 𝑏𝑇𝑣 ⊕ 0∗. Note that 𝐵 ≥ 𝑇 (𝑣) ⊕ 0∗ because 𝑇 (𝑣)
and 𝑏𝑇𝑣 have the same advantage status (Observation 3.13). It follows from Observation. 3.16
that

𝐵 ⊖ 𝑏𝑇 (𝑣, 𝐵) = 𝐵 ⊖ (𝑏𝑇𝑣 ⊕ 0∗) ≥ (𝑇 (𝑣) ⊕ 0∗) ⊖ (𝑏𝑇𝑣 ⊕ 0∗) = 𝑇 (𝑣) ⊖ 𝑏𝑇𝑣 ≥ 𝑇 (𝑣−), and

22 / 45 G. Avni, S. Sadhukhan

𝐵 ⊕ (𝑏𝑇 (𝑣, 𝐵) ⊕ 0∗) ≥ (𝑇 (𝑣) ⊕ 0∗) ⊕ (𝑏𝑇𝑣 ⊕ 1) = |𝑇 (𝑣+) |∗ + 1 > |𝑇 (𝑣+) |.

This concludes the proof. ■

The following proposition follows from Lemma 3.17.

PROPOS IT ION 3.18. Suppose that Player 1 plays according to a strategy 𝑓 ′ that agrees with 𝑓𝑇

starting from configuration ⟨𝑣, 𝐵⟩ satisfying 𝐵 ≥ 𝑇 (𝑣), then:
𝑓 ′ is a legal strategy: the bid 𝑏 prescribed by 𝑓𝑇 does not exceed the available budget.
𝑓 ′ does not underestimate the frugal-budget: if 𝑠 ∈ 𝑆 is reached, Player 1’s budget is at
least fr(𝑠).

3.2.4 Existence of thresholds in frugal-reachability discrete-bidding games

We close this section by showing existence of threshold budgets in frugal-reachability discrete-
bidding games. Recall that Theorem 3.7 shows that functions that satisfy the discrete average
property are not unique. Let 𝑇 be such a function. The following lemma shows that 𝑇 ≤ ThG.
That is, if in a vertex 𝑣, Player 1 has a budget less than 𝑇 (𝑣), then Player 2 has a winning strategy.
This proves that the threshold budgets for Player 1 cannot be less than𝑇 (𝑣), when𝑇 is a function
that satisfies the average property.

LEMMA 3.19. Consider a frugal-reachability discrete-bidding game G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩. If 𝑇 :
𝑉 → [𝑘] ∪ {𝑘 + 1} is a function that satisfies the average property, then 𝑇 (𝑣) ≤ ThG (𝑣) for
every 𝑣 ∈ 𝑉 .

PROOF . Given 𝑇 that satisfies the average property, we construct 𝑇 ′ as in Definition 3.8. Let
⟨𝑣, 𝐵1⟩ be a configuration, where 𝑣 ∈ 𝑉 , Player 1’s budget is 𝐵1, and implicitly, Player 2’s budget
is 𝐵2 = 𝑘∗ ⊖ 𝐵1. Note that 𝐵1 < 𝑇 (𝑣) iff 𝐵2 ≥ 𝑇 ′(𝑣). Moreover, for every 𝑠 ∈ 𝑆, we have
𝑇 ′(𝑠) = (𝑘 + 1) ⊖ fr(𝑠). We consider the “flipped” game; namely, we associate Player 2 with
Player 1 (of Proposition 3.18), and construct a partial strategy 𝑓𝑇 ′ for Player 2. We construct a
Player 2 strategy 𝑓 ′ that agrees with 𝑓𝑇 ′: for each 𝑣 ∈ 𝑉 , we arbitrarily choose a neighbor 𝑢 from
the allowed vertices. By Lemma 3.17, no matter how Player 1 responds, whenever the game
reaches ⟨𝑢, 𝐵1⟩, we have 𝐵2 ≥ 𝑇 ′(𝑢). The invariant implies that 𝑓 ′ is a winning strategy. Indeed,
if the game does not reach a sink, Player 2 wins, and if it does, Player 1’s frugal objective is not
satisfied. ■

The following lemma shows the existence of a function that satisfies the average property
and that coincides with threshold budgets.

LEMMA 3.20. Consider a frugal-reachability discrete-bidding game G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩. There is
a function 𝑇 that satisfies the average property with 𝑇 (𝑣) ≥ ThG (𝑣), for every 𝑣 ∈ 𝑉 .

23 / 45 Computing Threshold Budgets in Discrete-Bidding Games

PROOF . The proof is similar to the one in [20]. We illustrate the main ideas. For 𝑛 ∈ N, we
consider the truncated game G[𝑛], which is the same as G except that Player 1 wins iff he wins
in at most 𝑛 steps. We find a sufficient budget for Player 1 to win in the vertices in G[𝑛] in
a backwards-inductive manner. For the base case, for every vertex 𝑢 ∈ 𝑉 \ 𝑆, since Player 1
cannot win from 𝑢 in 0 steps, we have 𝑇0(𝑢) = 𝑘 + 1. For 𝑠 ∈ 𝑆, we have 𝑇0(𝑠) = fr(𝑠). Clearly,
𝑇0 . ThG[0] . For the inductive step, suppose that 𝑇𝑛−1 is computed. For each vertex 𝑣, we define
𝑇𝑛(𝑣) =

⌊
|𝑇𝑛−1(𝑣+) |+|𝑇𝑛−1(𝑣−) |

2

⌋
+ 𝜀 as in Def. 3.5. Following a similar argument to Theorem 3.4, it

can be shown that if Player 1’s budget is 𝑇𝑛(𝑣), he can bid a 𝑏 so that if he wins the bidding, his
budget is at least𝑇𝑛−1(𝑣−) and if he loses the bidding, his budget is at least𝑇𝑛−1(𝑣+). By induction
we get ThG[𝑛] (𝑣) = 𝑇𝑛(𝑣), for every 𝑣 ∈ 𝑉 , which also implies that 𝑇𝑛 is a monotonically non-
increasing function. Thus, for every vertex 𝑣, we let 𝑇 (𝑣) = lim𝑛→∞𝑇𝑛(𝑣), which is well-defined
because of the monotonicity of 𝑇𝑛 (which is coming from monotonicity of ThG[𝑛] and the fact
that ThG[𝑛] = 𝑇𝑛), and the fact that it only takes finitely many values, namely ranging over
[𝑘] ∪ {𝑘 + 1}. It is not hard to show that 𝑇 satisfies the average property and that 𝑇 (𝑣) ≥ ThG (𝑣),
for every 𝑣 ∈ 𝑉 . ■

Let 𝑇 be a function that results from the fixed-point computation from the proof of
Lemma 3.20. Since it satisfies the average property, we apply Lemma 3.19 to show that Player 2
wins from 𝑣 when Player 1’s budget is 𝑇 (𝑣) ⊖ 0∗. Since the values observed in a vertex during
an execution of the fixed-point algorithm are monotonically decreasing and since the number
of values that a vertex can obtain is 2𝑘 + 1, the running time is 𝑂(|𝑉 | · 𝑘). We thus conclude the
following.

THEOREM 3.21. Consider a frugal-reachability discrete-bidding game G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩.
Threshold budgets exist and satisfy the average property. Namely, there exists a function Th : 𝑉 →
[𝑘] ∪ {𝑘 + 1} such that for every vertex 𝑣 ∈ 𝑉

if Player 1’s budget is 𝐵 ≥ Th(𝑣), then Player 1 wins the game, and
if Player 1’s budget is 𝐵 < Th(𝑣), then Player 2 wins the game

Moreover, there is an algorithm to compute Th that runs in time 𝑂(|𝑉 | · 𝑘), which is exponential in
the size of the input when 𝑘 is given in binary.

A frugal-safety objective is dual to a frugal-reachability objective. Thus, if Th : 𝑉 →
[𝑘] ∪ {𝑘 + 1} is the function providing the threshold budgets for the reachability player, then
complememt of Th (Definition 3.8), denoted by Th′, provides the threshold budget for the safety
player. Therefore, we conclude the following

COROLLARY 3.22. Consider a frugal-safety discrete-bidding game G = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩. Thresh-
old budgets exist and satisfy the average property. Namely, there exists a function Th : 𝑉 →
[𝑘] ∪ {𝑘 + 1} such that for every vertex 𝑣 ∈ 𝑉

if Player 1’s budget is 𝐵 ≥ Th(𝑣), then Player 1 wins the game, and

24 / 45 G. Avni, S. Sadhukhan

if Player 1’s budget is 𝐵 < Th(𝑣), then Player 2 wins the game

Moreover, there is an algorithm to compute Th that runs in time 𝑂(|𝑉 | · 𝑘), which is exponential in
the size of the input when 𝑘 is given in binary.

REMARK 3.23. We point to a conceptual similarity with concurrent stochastic games [21], in
which in each turn, both players concurrently choose actions, and the joint action gives rise to
a probability distribution over next states. There, the value of the game is given by the least
fixed point of what is referred to as a value mapping function [21, 22]. One can adapt their
operator to our setting, thereby obtaining a operator that maps functions from states to budgets.
Intuitively, each such function would be a candidate for the thresholds, and functions that
satisfy the average property are the fixed points. As we show above, the maximal fixed point is
the function that coincides with the thresholds.

4. A Fixed-Point Algorithm for Finding Threshold Budgets

In this section, we develop a fixed-point algorithm for finding threshold budgets in frugal-parity
discrete-bidding games. While its worst-case running time is exponential in the input, the
algorithm shows, for the first time, that threshold budgets in parity discrete-bidding games
satisfy the average property. This property is key in the development of the NP and coNP
algorithm (Sec. 5).

4.1 Warm up: a fixed-point algorithm for Büchi bidding games

In this section, we illustrate the ideas of the fixed-point algorithm on the special case of Büchi
games. The transition from Büchi to parity games involves an induction on the parity indices. A
Büchi game is ⟨𝑉, 𝐸, 𝑘, 𝐹⟩, where 𝐹 ⊆ 𝑉 is a set of accepting states. Formally, Büchi games are a
special case of parity games in which the vertices are labeled by {0, 1}. We stress that, for ease
of presentation, we focus on games without a frugal objective.

Throughout this section we will take the perspective of Player 1, the co-Büchi player, whose
objective is to visit 𝐹 only finitely often. We present an algorithm that takes as input a Büchi
game G and outputs Player 1’s thresholds, which we denote by coBü-Th. That is, for an initial
configuration ⟨𝑣, 𝐵⟩, we have:

if 𝐵 ≥ coBü-Th(𝑣), Player 1 can guarantee that 𝐹 is visited only finitely often, and
if 𝐵 < coBü-Th(𝑣), Player 2 can guarantee that 𝐹 is visited infinitely often.

The fixed-point algorithm repeatedly finds thresholds in a sequence of increasingly easier
objectives (from Player 1’s perspective) whose limit is the co-Büchi objective. Roughly, recall
that the co-Büchi objective requires that 𝐹 is eventually not visited without specifying a bound
on the number of visits to 𝐹. The objective Safe𝑖 , for 𝑖 ≥ 0, introduces a restriction: 𝐹 can be
visited at most 𝑖 times. In particular, Safe0 is a safety game. Formally,

25 / 45 Computing Threshold Budgets in Discrete-Bidding Games

DEF IN IT ION 4.1 (Bounded-eventual safety objectives). For 𝑖 ≥ 0, the objective Safe𝑖 contains
infinite paths that

start in 𝑉 \ 𝐹 and enter 𝐹 at most 𝑖 times before exiting 𝐹 eventually, or
start in 𝐹, exit 𝐹 for the first time at some point, and then enter 𝐹 at most 𝑖 − 1 more times
before eventually exiting 𝐹

The formal definition of when a path enters 𝐹 can be found in Sec. 2.4. Note that we define
Safe0 so that every path that starts in 𝐹 violates Safe0.

For 𝑖 ≥ 0, we denote by Th𝑖 : 𝑉 → [𝑘] ∪ {𝑘 + 1} the threshold for the objective Safe𝑖 . We
make two observations.

OBSERVAT ION 4.2. For 𝑖 ≥ 0 and 𝑣 ∈ 𝑉 \ 𝐹, we have:
Th𝑖 (𝑣) ≥ coBü-Th(𝑣), and
Th𝑖 (𝑣) ≥ Th𝑖+1(𝑣).

PROOF . First, ensuring the co-Büchi objective (i.e., entering 𝐹 only finitely often) is easier than
ensuring Safe𝑖 (i.e., entering 𝐹 at most 𝑖 times), meaning that more budget is necessary for Safe𝑖
than for co-Büchi, thus Th𝑖 (𝑣) ≥ coBü-Th(𝑣). Second, similarly, since the restriction imposed by
Safe𝑖 is harder than the restriction imposed by Safe𝑖+1, more budget is required for the latter,
thus Th𝑖 (𝑣) ≥ Th𝑖+1(𝑣). ■

It follows that the sequence Th0, Th1, . . . of thresholds reaches a fixed point. We will show
that the fixed-point coincides with coBü-Th.

4.1.1 A recursive algorithm to compute thresholds for Safe𝑖

We describe a recursive algorithm to compute Th𝑖 , for 𝑖 ≥ 0. The idea is to characterize Th𝑖 as
thresholds in two bidding games: a frugal-reachability game R𝑖 and a frugal-safety game S𝑖 .
Throughout this section, we follow the convention of using 𝑣 to denote a vertex in 𝑉 \ 𝐹 and 𝑢

to denote a vertex in 𝐹.

Base case. Recall that Safe0 is a safety objective: Player 1 wins by ensuring that 𝐹 is not visited
at all. In particular, paths that start from 𝐹 are losing for Player 1, we thus have the following.

LEMMA 4.3. For 𝑢 ∈ 𝐹, we have Th0(𝑢) = 𝑘 + 1.

Recursive step. Note that, in the base case, we have only computed Th0(𝑢) for 𝑢 ∈ 𝐹, and not
Th0(𝑣) for 𝑣 ∈ 𝑉 \ 𝐹. Therefore, in the general recursive step, we assume Th𝑖 (𝑢) have already
been computed for every 𝑢 ∈ 𝐹 (recursive step hypothesis) and here we first compute Th𝑖 (𝑣) for
𝑣 ∈ 𝑉 \ 𝐹, which is followed by the computation of Th𝑖+1(𝑢) for 𝑢 ∈ 𝐹.

26 / 45 G. Avni, S. Sadhukhan

We first characterize the thresholds in vertices in 𝑉 \ 𝐹 as thresholds in a frugal-safety
game. Let 𝑖 ≥ 0 and suppose that Th𝑖 has been computed for vertices in 𝐹. Recall that for 𝑢 ∈ 𝐹,
a budget of Th𝑖 (𝑢) is the threshold to ensure the objective of exiting 𝐹 and visiting 𝐹 at most
𝑖 − 1 more times. Suppose that the game starts in 𝑣 ∈ 𝑉 \ 𝐹. Player 1 wins by either not visiting
𝐹 at all, or if 𝑢 ∈ 𝐹 is reached, Player 1’s budget should exceed Th𝑖−1(𝑢) since he can continue
with a strategy that ensures Safe𝑖−1. Formally, we characterize Th𝑖 in 𝑉 \ 𝐹 as thresholds in a
frugal-safety game played on the same arena as G.

LEMMA 4.4. Consider the frugal-safety game S𝑖 = ⟨𝑉, 𝐸, 𝑘, 𝐹, fr𝑖⟩, where every vertex in 𝐹

are sinks, and for each 𝑢 ∈ 𝐹, we have fr𝑖 (𝑢) = Th𝑖 (𝑢). Then, for every 𝑣 ∈ 𝑉 \ 𝐹, we have
Th𝑖 (𝑣) = ThS𝑖 (𝑣).

REMARK 4.5. Note that, in S𝑖 , each vertex 𝑢 ∈ 𝐹 are sinks. Thus, Player 1’s threshold budget at
those vertices in that game would be the same as the frugal budget. That is, for 𝑢 ∈ 𝐹, ThS𝑖 (𝑢) =
fr𝑖 (𝑢) = Th𝑖 (𝑢). Therefore, we indeed have for every vertex 𝑤 ∈ 𝑉 of S𝑖 , Th𝑖 (𝑤) = Th𝑆𝑖 (𝑤).
Because Th𝑆𝑖 satisfies the average property (Corollary 3.22), so does Th𝑖 .

Next, we characterize the thresholds in vertices in 𝐹 as thresholds in a frugal-reachability
game. We now assume that Th𝑖 has been computed for vertices in 𝑉 \ 𝐹. Recall that for a vertex
𝑣 ∈ 𝑉 \ 𝐹, a budget of Th𝑖 (𝑣) is the threshold to ensure the objective of visiting 𝐹 at most 𝑖
times. Suppose that the game starts in 𝑢 ∈ 𝐹. In order to ensure Safe𝑖+1, Player 1 must first force
the game out of 𝐹 and then ensure that 𝐹 is visited at most 𝑖 more times. This is achieved by
ensuring that some 𝑣 ∈ 𝑉 \ 𝐹 is reached with a budget of Th𝑖 (𝑣). Formally, we characterize Th𝑖+1
in 𝐹 as thresholds in a frugal-reachability game played on the same arena as G.

LEMMA 4.6. Consider the frugal-reachability game R𝑖+1 = ⟨𝑉, 𝐸, 𝑘,𝑉 \ 𝐹, fr𝑖+1⟩, where every
vertex in𝑉 \ 𝐹 are sinks and for each 𝑣 ∈ 𝑉 \ 𝐹, we define fr𝑖+1(𝑣) = Th𝑖 (𝑣). Then, for every 𝑢 ∈ 𝐹,
we have Th𝑖+1(𝑢) = ThR𝑖+1 (𝑢).

Pseudocode We conclude this section with a pseudocode of the fixed-point algorithm. See
Fig. 2 for a depiction of its operation. The algorithm calls two sub-routines Frugal-Reachability
and Frugal-Safety, which return the thresholds for all vertices that are not targets, respectively,
in a frugal-reachability and frugal-safety game, e.g., by running the fixed-point algorithm
described in Lemma 3.20.

4.1.2 The fixed point coincides with coBü-Th

As mentioned above, the sequence Th0, Th1, . . . of thresholds reaches a fixed point. We show
that the fixed-point threshold coincides with the co-Büchi thresholds.

THEOREM 4.7. Consider a Büchi bidding game G. For 𝑖 ≥ 0, let Th𝑖 be the threshold for satisfying
the objective Safe𝑖 , and 𝑛 ∈ N be such that Th𝑛 = Th𝑛+1. Then, Th𝑛 coincides with the thresholds

27 / 45 Computing Threshold Budgets in Discrete-Bidding Games

𝑣0 𝑣1 𝑣2 𝑡

𝑘 + 1 = 62∗ 3∗ 4∗ 3∗
S0 R1

0 0∗ 1∗ 0∗
S1 R2

0 0 0 0
S2 R3

0 0 0
S3

Figure 2. A depiction of the fixed-point algorithm for the co-Büchi game on top of the figure. The goal
of Player 1 (the co-Büchi player), is to visit 𝑡 only finitely often. Set the total budget to 𝑘 = 5. The lower
part of the figure depicts the progress of thresholds, depicted in orange. For example, the game S1 is a
frugal-safety game in which the safety player wins either if the game never reaches 𝑡 or if it reaches 𝑡,
his budget is at least 3∗. The frugal-reachability games have a trivial state space. The threshold in 𝑡 in R𝑖

coincides with 𝑣1 in S𝑖−1 since the reachability player guarantees reaching the target 𝑣1 with a sufficient
budget by bidding 0. The algorithm terminates once a fixed-point is reached. In this example, we see
that the thresholds in G are 0 in all vertices.

28 / 45 G. Avni, S. Sadhukhan

Algorithm co-Büchi-Thresholds(G)

1: 𝑖 := 0
2: Define the frugal-safety game S0 = ⟨𝑉, 𝐸, 𝑘, 𝐹, fr0⟩, with fr0 ≡ 𝑘 + 1.
3: ThS0 = Frugal-Safety(S0)
4: Define Th0(𝑣) = ThS0 (𝑣), for 𝑣 ∈ 𝑉 \ 𝐹, and Th0(𝑢) = 𝑘 + 1, for 𝑢 ∈ 𝐹.
5: do
6: 𝑖 := 𝑖 + 1
7: Define R𝑖 = ⟨𝑉, 𝐸, 𝑘,𝑉 \ 𝐹, ThS𝑖−1⟩.
8: ThR𝑖 := Frugal-Reachability(R𝑖) Thresholds for vertices in 𝐹.

9: Define S𝑖 = ⟨𝑉, 𝐸, 𝑘, 𝐹, ThR𝑖⟩
10: ThS𝑖

:= Frugal-Safety(S𝑖) Thresholds for vertices in 𝑉 \ 𝐹.

11: Define Th𝑖 (𝑣) = ThS𝑖
(𝑣), for 𝑣 ∈ 𝑉 \ 𝐹, and Th𝑖 (𝑢) = ThR𝑖 (𝑢), for

𝑢 ∈ 𝐹.
12: while Th𝑖−1 ≠ Th𝑖

Algorithm 1. A fixed-point algorithm to find threshold budgets in co-Büchi games.

for the co-Büchi player, namely Th𝑛 = coBü-Th. Moreover, coBü-Th satisfies the average property
and computing it can be done in time 𝑂

((|𝑉 | · 𝑘)2) .
PROOF . We show that Th𝑛 = coBü-Th. First, Th𝑛 ≥ coBü-Th follows immediately from Obser-
vation 4.2; recall that Th𝑛 is the threshold for the objective Safe𝑛, which is harder for Player 1 to
ensure than the co-Büchi objective.

Second, we show that Th𝑛 ≤ coBü-Th. Consider a vertex 𝑣 ∈ 𝑉 \ 𝐹. We show that Player 2,
the Büchi player, wins from a configuration ⟨𝑣, 𝐵⟩ with 𝐵 < Th𝑛(𝑣) = Th𝑛+1(𝑣). The case of an
initial vertex in 𝐹 is also captured in the following proof. Player 2 plays as follows from ⟨𝑣, 𝐵⟩.
Recall that Th𝑛+1(𝑣) = ThS𝑛+1 (𝑣). Thus, a budget of 𝐵 < ThS𝑛+1 (𝑣) means that the reachability
player wins the frugal-safety game S𝑖 . Player 2 follows the reachability player’s strategy to
ensure that 𝐹 is eventually reached with a budget below the frugal-target budget. Formally,
a configuration ⟨𝑢, 𝐵′⟩ is reached with 𝑢 ∈ 𝐹 and 𝐵′ < ThR𝑛 (𝑢). Next, a budget of 𝐵′ suffices
for the safety player to win the frugal-reachability game R𝑖 and ensures that either: (1) 𝐹 is
never exited, or (2) 𝑉 \ 𝐹 is visited with a budget that violates the frugal-target budget. Player 2
follows such a winning strategy to ensure either (1) 𝐹 is never exited thus is clearly visited
infinitely often or (2) a configuration ⟨𝑣′, 𝐵′′⟩ is reached with 𝑣′ ∈ 𝑉 \ 𝐹 and 𝐵′′ < ThS𝑛 (𝑣′).

29 / 45 Computing Threshold Budgets in Discrete-Bidding Games

Since ThS𝑛 (𝑣′) = ThS𝑛+1 (𝑣′), Player 2 restarts her strategy from 𝑣′. Thus, in both cases Player 2
guarantees infinitely many visits to 𝐹, and we are done.

Finally, the thresholds satisfy the average property since so does each Th𝑖 (see Remark 4.5).
Regarding running time, note that the thresholds observed in a vertex are monotonically
decreasing (Observation 4.2), thus the number of iterations until a fixed-point is reached is
𝑂(|𝑉 | · 𝑘). Each iteration includes two solutions of frugal-reachability games, each of running
time 𝑂(|𝑉 | · 𝑘) (Theorem 3.21). ■

4.2 A fixed-point algorithm for frugal-parity bidding games

In this section, we extend the fixed-point algorithm developed in Sec. 4.1 to parity bidding games.
The algorithm involves a recursion over the parity indices, which we carry out by strengthening
the induction hypothesis and developing an algorithm for frugal-parity objectives instead of
the special case of parity objectives.

For the remainder of this section, fix a frugal-parity game G = ⟨𝑉, 𝐸, 𝑘, 𝑝, 𝑆, fr⟩. Denote
the maximal parity index by 𝑑 ∈ N. Recall that 𝑆 is a set of sinks where the parity indices are
not defined and fr(𝑠) denotes Player 1’s frugal target budget at 𝑠 ∈ 𝑆. Thus, Player 1 wins a play
𝜋 if

𝜋 is infinite and satisfies the parity condition, or
𝜋 is finite and ends in a configuration ⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆 and 𝐵 ≥ fr(𝑠).
We characterize the thresholds in G by reasoning about games with a lower parity index.

This characterization gives rise to a recursive algorithm to compute the thresholds.

LEMMA 4.8 (Base case). Let G = ⟨𝑉, 𝐸, 𝑝, 𝑆, fr⟩ with only one parity index, i.e., 𝑝(𝑣) = 𝑑, for all
𝑣 ∈ 𝑉 and 𝑆 is the set of sinks for which frugal-budgets are given by fr.

Assume that 𝑑 is odd. Let S = ⟨𝑉, 𝐸, 𝑆, fr⟩ be a frugal-safety game. Then, ThG ≡ ThS .
Assume that 𝑑 is even. Let R = ⟨𝑉, 𝐸, 𝑆, fr⟩ be a frugal-reachability game. Then, ThG ≡ ThR .

PROOF . Clearly, in both cases, a finite play that ends in a sink is winning in G iff it is winning
in S, and similarly for R. When 𝑑 is odd, any infinite play in G is winning for Player 1, thus
G is a frugal-safety game. On the other hand, when 𝑑 is even, any infinite play in G is losing
for Player 1, and the only way to win is by satisfying the frugal objective in a sink, thus G is a
frugal-reachability game. ■

COROLLARY 4.9. When G contains only one parity index, computing ThG can be done by
calling a sub-routine that finds the thresholds in a frugal-reachability (or a frugal-safety) bidding
game. Moreover, by Theorem 3.21, ThG satisfies the average property in this case.

Recursive step Suppose that more than one parity index is used. Let 𝑑 ∈ N denote the
maximal parity index in G. We assume access to a sub-routine that computes thresholds in

30 / 45 G. Avni, S. Sadhukhan

frugal-parity games with a maximal parity index of 𝑑 − 1, and we describe how to use it in order
to compute thresholds in G. We assume that 𝑑 is even, and we describe the algorithm from
Player 1’s perspective. The definition for an odd 𝑑 is dual from Player 2’s perspective.

Let 𝐹𝑑 = {𝑣 : 𝑝(𝑣) = 𝑑}. Since 𝑑 is even, a play that visits 𝐹𝑑 infinitely often is losing
for Player 1. Thus, a necessary (but not sufficient) requirement to win is to ensure that 𝐹𝑑 is
visited only finitely often. For example, a Büchi game can be modeled as follows: Player 1 is
the co-Büchi player, the parity indices are 1 or 2, and the set 𝐹2 denotes the accepting vertices,
which Player 1 needs to visit only finitely often.

We define a bounded variant of the frugal-parity objective, similar to the definition of
Safe𝑖 in Sec. 4.1:

DEF IN IT ION 4.10. For 𝑖 ≥ 0, a play 𝜋 is in Fr-Parity𝑖 if:
𝜋 is finite and satisfies the frugal objective: ends in ⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆 and 𝐵 ≥ fr(𝑠), or
𝜋 is infinite, satisfies the parity objective, and

starts from 𝑉 \ 𝐹𝑑 and enters 𝐹𝑑 at most 𝑖 times before eventually exiting, or
starts from 𝐹𝑑 , exits 𝐹𝑑 for the first time at some point, and then enters 𝐹𝑑 at most
𝑖 − 1 more times before exiting eventually.

In particular, every path that starts from 𝐹𝑑 violates Fr-Parity0.
For 𝑖 ≥ 0, we denote by Th𝑖 the thresholds for objective Fr-Parity𝑖 . As in Observation 4.2,

since the restriction monotonically decreases as 𝑖 grows, the thresholds are monotonically
non-increasing and they all lower-bound the thresholds in G.

OBSERVAT ION 4.1 1. For 𝑖 ≥ 0, we have Th𝑖+1 ≤ Th𝑖 and ThG ≤ Th𝑖 .

It follows that the sequence of thresholds reaches a fixed-point, and we will show that the
thresholds at the fixed point coincide with ThG .

We iteratively define and solve two sequences of games: a sequence of frugal-parity games
G0,G1, . . . each with maximal parity index 𝑑 − 1 and a sequence of frugal-reachability games
R0,R1, For 𝑖 ≥ 0, recall that ThG𝑖 and ThR𝑖 respectively denote the thresholds in G𝑖 and R𝑖 .
We will show that Th𝑖 can be characterized by ThG𝑖 and ThR𝑖 : we will show that for 𝑣 ∈ 𝐹𝑑 we
have Th𝑖 (𝑣) = ThG𝑖 (𝑣) and for 𝑢 ∈ 𝑉 \ 𝐹𝑑 , we have Th𝑖 (𝑢) = ThR𝑖 (𝑢).

We start with the frugal-parity games. The games share the same arena, which is obtained
from G by setting the vertices in 𝐹𝑑 to be sinks. The games differ in the frugal target budgets.
Formally, for 𝑖 ≥ 0, we define G𝑖 = ⟨𝑉, 𝐸′, 𝑝′, 𝑆′, frG𝑖⟩, where the sinks are 𝑆′ = 𝑆 ∪ 𝐹𝑑 , the edges
are restricted accordingly 𝐸′ = {⟨𝑣, 𝑣′⟩ ∈ 𝐸 : 𝑣 ∈ 𝑉 \ 𝐹𝑑}, the parity function 𝑝′ coincides with 𝑝

but is not defined over 𝐹𝑑 , i.e., 𝑝′(𝑣) = 𝑝(𝑣) for all 𝑣 ∈ 𝑉 \ 𝐹𝑑 , and frG𝑖 is the only component
that changes as 𝑖 changes and it is defined below based on a solution to R𝑖 . Note that 𝑝′ assigns
at most 𝑑 − 1 parity indices.

31 / 45 Computing Threshold Budgets in Discrete-Bidding Games

We construct the frugal-reachability games. Let 𝑖 ≥ 0. Intuitively, the game R𝑖 starts
from 𝐹𝑑 and Player 1’s goal is to either satisfy the frugal objective in 𝑆 or reach 𝑉 \ 𝐹𝑑 with a
budget that suffices to ensure that 𝐹𝑑 is entered at most 𝑖 more times. Formally, we construct
the frugal-reachability game R𝑖 = ⟨𝑉, 𝐸′′, 𝑉 \ 𝐹𝑑 ∪ 𝑆, frR𝑖⟩, where 𝐸′′ = {⟨𝑢, 𝑢′⟩ ∈ 𝐸 : 𝑢 ∈ 𝐹𝑑} and

frR𝑖 (𝑣) =

fr(𝑣) if 𝑣 ∈ 𝑆

ThG𝑖 (𝑣) if 𝑣 ∈ 𝑉 \ 𝐹𝑑 .

LEMMA 4.12. Let 𝑖 ≥ 0. Assume that for every 𝑣 ∈ 𝑉 \ 𝐹𝑑 , we have ThG𝑖 (𝑣) = Th𝑖 (𝑣). Then, for
every 𝑢 ∈ 𝐹𝑑 , we have Th𝑖 (𝑢) = ThR𝑖 (𝑢).

PROOF . Suppose that G starts from ⟨𝑢, 𝐵⟩ with 𝑢 ∈ 𝐹𝑑 . We first show that when 𝐵 ≥ ThR𝑖 (𝑢),
Player 1 can ensure the objective Fr-Parity𝑖 . Indeed, by following a winning strategy in R𝑖 ,
Player 1 guarantees that either (1) the frugal objective is satisfied in 𝑆, in which case the play
is clearly winning in G, or (2) the game reaches a configuration ⟨𝑣, 𝐵′⟩ with 𝑣 ∈ 𝑉 \ 𝐹𝑑 and
𝐵′ ≥ ThG𝑖 (𝑣), from which, by the assumption that ThG𝑖 (𝑣) = Th𝑖 (𝑣), he can proceed with a
winning strategy for Fr-Parity𝑖 .

On the other hand, when 𝐵 < ThR𝑖 (𝑢), Player 2 violates Fr-Parity𝑖 as follows. She first
follows a winning strategy in R𝑖 , which ensures that no matter how Player 1 plays, the resulting
play either (1) violates the frugal objective in 𝑆, (2) stays in 𝐹𝑑 , or (3) it reaches a configuration
⟨𝑣, 𝐵′⟩ with 𝑣 ∈ 𝑉 \ 𝐹𝑑 and 𝐵′ < ThG𝑖 (𝑣) = Th𝑖 (𝑣). In Cases (1) and (2), the play is clearly winning
for Player 2 for violating the objective Fr-Parity𝑖 in G, and in Case (3), the assumption on Th𝑖 (𝑣)
implies that Player 2 can continue with a strategy that violates Fr-Parity𝑖 . ■

REMARK 4.13. Similar to Remark 4.5, here too, we obtain that Th𝑖 satisfies the average property
because it coincides with Th𝑅𝑖 which is a function providing threshold budgets in a frugal-
reachability game (Theorem 3.21).

We define the frugal target budgets frG𝑖 of the frugal-parity game G𝑖 . Recall that we
obtain G𝑖 from G by setting 𝐹𝑑 to be sinks. Thus, the sinks in G𝑖 consist of “old” sinks 𝑆 and
“new” sinks 𝐹𝑑 . The frugal target budgets of G and G𝑖 agree on 𝑆, thus for 𝑠 ∈ 𝑆 and 𝑖 ≥ 0,
we have frG𝑖 (𝑠) = fr(𝑠). For 𝑢 ∈ 𝐹𝑑 , we define frG0 (𝑢) = 𝑘 + 1 and for 𝑖 > 0, we define
frG𝑖 (𝑢) = ThR𝑖−1 (𝑢).

LEMMA 4.14. For 𝑖 ≥ 0 and 𝑢 ∈ 𝐹𝑑 , assume that a budget of frG𝑖 (𝑢) is the threshold to satisfy
Fr-Parity𝑖 . Then, for 𝑣 ∈ 𝑉 \ 𝐹𝑑 , we have Th𝑖 (𝑣) = ThG𝑖 (𝑣).

PROOF . Recall that each G𝑖 agrees with G on the parity indices in 𝑉 \ 𝐹𝑑 , thus an infinite path
that satisfies the parity condition in G𝑖 satisfies it in G, and that G𝑖 and G agree on the frugal
target budgets in 𝑆.

32 / 45 G. Avni, S. Sadhukhan

Under the assumption in the statement, we prove that Th𝑖 (𝑣) = ThG𝑖 (𝑣), for 𝑣 ∈ 𝑉 \ 𝐹𝑑 .
Suppose that G starts from ⟨𝑣, 𝐵⟩ with 𝑣 ∈ 𝑉 \ 𝐹𝑑 . First, when 𝐵 ≥ ThG𝑖 (𝑣), Player 1 ensures
Fr-Parity𝑖 by following a winning strategy in G𝑖 . Let 𝜋 be the play that is obtained when Player 2
follows some strategy. Note that 𝜋 is winning for Player 1 in G𝑖 , thus it satisfies one of the
following:

1. 𝜋 is finite and ends in ⟨𝑠, 𝐵⟩ with 𝑠 ∈ 𝑆 and 𝐵 ≥ frG𝑖 (𝑠) = fr(𝑠),
2. 𝜋 is infinite (i.e., a sink is never reached) and satisfies the parity condition, or
3. 𝜋 is finite and ends in ⟨𝑢, 𝐵⟩ with 𝑢 ∈ 𝐹𝑑 and 𝐵 ≥ frG𝑖 (𝑢).

Case (1) clearly satisfies the frugal objective of Fr-Parity𝑖 , in Case (2) the parity condition is
satisfied without visiting 𝐹𝑑 once, thus again, Fr-Parity𝑖 is satisfied. Finally, in Case (3), once the
game reaches ⟨𝑢, 𝐵⟩, the assumption on frG𝑖 (𝑢) implies that Player 1 can follow a strategy that
ensures Fr-Parity𝑖 . Second, if 𝐵 < ThG𝑖 (𝑣), Player 2 violates Fr-Parity𝑖 by following a winning
strategy in G𝑖 . The argument is dual to the above. ■

Note that since every path that starts from 𝐹𝑑 violates Fr-Parity0, the threshold budget at
every 𝑢 ∈ 𝐹𝑑 is 𝑘 + 1. This constitutes the proof of the base case of the following lemma, and the
inductive step is obtained by combining Lemma 4.12 with Lemma 4.14.

LEMMA 4.15. For 𝑖 ≥ 0, for 𝑣 ∈ 𝑉 we have Th𝑖 (𝑣) = ThG𝑖 (𝑣) and for 𝑢 ∈ 𝑉 \ 𝐹𝑑 , we have
Th𝑖 (𝑢) = ThR𝑖 (𝑢).

It follows from Observation 4.11 that the sequence Th0, Th1, . . . reaches a fixed point. We
show that at the fixed point, the threshold coincides with ThG .

LEMMA 4.16. Let 𝑛 ∈ N such that Th𝑛 = Th𝑛+1. Then, ThG = Th𝑛.

PROOF . Lemma 4.15 and Observation 4.11 show that ThG ≤ Th𝑛. To show equality, we show
that Player 2 wins G starting from a configuration ⟨𝑣, 𝐵⟩ with 𝑣 ∈ 𝑉 \𝐹𝑑 and 𝐵 < Th𝑛(𝑣). Player 2
proceeds by following a winning strategy in G𝑛+1. Let 𝜋 be a play that results from some Player 1
strategy. Since 𝜋 is winning for Player 2 in G𝑛+1, there are three cases:

1. 𝜋 is finite and ends in ⟨𝑠, 𝐵′⟩ with 𝑠 ∈ 𝑆 and 𝐵′ < fr(𝑠), thus it is winning also in G,
2. 𝜋 is infinite and violates the parity objective, thus since G and G𝑛+1 agree on the parity

indices, 𝜋 is winning for Player 2 in G, or
3. 𝜋 ends in ⟨𝑢, 𝐵′⟩ with 𝐵′ < fr𝑛+1(𝑢).

In Case (3), since fr𝑛+1(𝑢) = ThR𝑛 (𝑢), Player 2 continues by following a winning strategy for
the safety player in R𝑛. This guarantees that no matter how Player 1 plays, the play either
stays within 𝐹𝑑 , thus it necessarily violates the parity objective of G, or it reaches ⟨𝑣, 𝐵′′⟩ with
𝑣 ∈ 𝑉 \ 𝐹𝑑 and 𝐵′′ < frR𝑛 (𝑣). In the latter case, since frR𝑛 (𝑣) = Th𝑛(𝑣) = Th𝑛+1(𝑣), Player 2 can
restart her strategy. Note that Player 2’s strategy guarantees that either 𝐹𝑑 is eventually never
reached, then she wins, or it is reached infinitely often, in which case she also wins since the
play visits parity index 𝑑 infinitely often. ■

33 / 45 Computing Threshold Budgets in Discrete-Bidding Games

Pseudocode The algorithm is described Alg. 2 for an even 𝑑 and from Player 1’s perspective.

Algorithm Frugal-Parity-Threshold(G = ⟨𝑉, 𝐸, 𝑘, 𝑝, 𝑆, fr⟩)
1: if G uses one parity index 𝑑 then
2: if 𝑑 is odd then
3: Return Frugal-Safety(S = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩)
4: else
5: Return Frugal-Reachability(R = ⟨𝑉, 𝐸, 𝑘, 𝑆, fr⟩)
6: Define 𝐸′ = {⟨𝑣, 𝑣′⟩ ∈ 𝐸 : 𝑣 ∈ 𝑉 \ 𝐹𝑑} and 𝐸′′ = {⟨𝑢, 𝑢′⟩ ∈ 𝐸 : 𝑢 ∈ 𝐹𝑑}.

7: Define G0 = ⟨𝑉, 𝐸′, 𝑘, 𝑝|𝑉\𝐹𝑑, 𝑆 ∪ 𝐹𝑑, frG0⟩ with frG0 (𝑢) =
{
fr(𝑢) if 𝑢 ∈ 𝑆

𝑘 + 1 if 𝑢 ∈ 𝐹𝑑
.

8: ThG0 = Frugal-Parity-Threshold(G0)
9: Define R0 = ⟨𝑉, 𝐸′′, 𝑘, (𝑉 \ 𝐹𝑑) ∪ 𝑆, frR𝑖⟩.

10: ThR0 = Frugal-Reachability-Threshold(R0)
11: for 𝑖 = 1, . . . do
12: ThG𝑖 = Frugal-Parity-Threshold(G𝑖 = ⟨𝑉, 𝐸′, 𝑘, 𝑝′, 𝑆∪𝐹𝑑, frG𝑖 = fr∪ThR𝑖−1⟩)
13: ThR𝑖 = Frugal-Reachability-Threshold(R𝑖 = ⟨𝑉, 𝐸′′, 𝑘,𝑉 \ 𝐹𝑑, ThG𝑖⟩)
14: For each 𝑣 ∈ 𝐹𝑑, define fr𝑖+1(𝑣) = ThR𝑖 (𝑣)
15: if fr𝑖 (𝑣) = fr𝑖+1(𝑣), for all 𝑣 ∈ 𝐹𝑑 then
16: Define ThG (𝑣) = fr𝑖 (𝑣) for 𝑣 ∈ 𝐹𝑑.
17: Define ThG (𝑢) = ThG𝑖 (𝑢) for 𝑢 ∈ 𝑉 \ 𝐹𝑑.
18: Return ThG

Algorithm 2. A fixed-point algorithm to find threshold budgets in frugal parity games.

Note that since in a frugal-reachability game both the thresholds for the reachability and
safety player satisfy the average property (Theorem 3.21) and the algorithm boils down to
repeated calls to a solution of a frugal-reachability game, it outputs a function that satisfies the
average property.

THEOREM 4.17. Given a frugal-parity bidding game G with maximal index 𝑑, Alg. 2 outputs the
thresholds ThG . Moreover, ThG satisfies the average property and Alg. 2 runs in time 𝑂

((|𝑉 | · 𝑘)𝑑) .
REMARK 4.18. We point out that while we develop Alg. 2 for discrete-bidding games, it can
be seen as a general “recipe” for extending a solution for frugal-reachability games to parity
bidding games. While the algorithm that arises from this recipe might not be optimal complexity

34 / 45 G. Avni, S. Sadhukhan

wise, it does provide a first upper bound and importantly, it extends a proof that thresholds in
frugal-reachability games have the average property to parity bidding games.

5. Finding threshold budgets is in NP and coNP

We formalize the problem of finding threshold budgets as a decision problem:

Problem1. (FindingThresholdBudgets). Given a frugal-parity bidding gameG = ⟨𝑉, 𝐸, 𝑘, 𝑝, 𝑆, fr⟩,
a vertex 𝑣 ∈ 𝑉 , and ℓ ∈ [𝑘], decide whether ThG (𝑣) ≥ ℓ.

We will show that Prob. 1 is in NP and coNP. Note that a function 𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1}
can be represented using 𝑂(|𝑉 | · log(𝑘)) bits, thus it is polynomial in the size of the input to
Prob. 1. We describe a first attempt to show membership in NP and coNP. Guess 𝑇 , verify that it
satisfies the average property, and accept ⟨𝐺, 𝑣, ℓ⟩ iff 𝑇 (𝑣) ≥ ℓ. Unfortunately, such an attempt
fails. Even though by Theorem 4.17, the thresholds satisfy the average property, Theorem 3.7
shows that there can be other functions that satisfy it. That is, it could also be the case that 𝑇
satisfies the average property and 𝑇 . ThG . We point out that in continuous-bidding games, if
guessing such 𝑇 would be possible, this scheme would have succeeded since there is a unique
function that satisfies the continuous average property (Theorem 3.4).

In the remainder of this section, we will show that the following problem is in NP and
coNP by reducing it to solving a turn-based parity game of size linear in the size of the graph
(and not in the size of the encoding of 𝑘). Then an algorithm for Prob. 1 guesses both 𝑇 and
winning-strategies in the turn-based game.

Problem 2. (Verifying a guess of 𝑇). Given a frugal-parity discrete-bidding game G with vertices
𝑉 and a function𝑇 : 𝑉 → [𝑘] ∪ {𝑘+1} that satisfies the average property, decide whether𝑇 . ThG .

We describe the high-level idea. We find it instrumental to first recall an NP algorithm to
decide whether Player 1 wins a turn-based parity game from an initial vertex 𝑣0. The algorithm
first guesses a memoryless strategy 𝑓 , which is a function that maps each vertex 𝑣 that is
controlled by Player 1 to an outgoing edge from 𝑣. The algorithm then verifies that 𝑓 is winning
for Player 1. The verification proceeds as follows. We solve the following problem: given a
Player 1 strategy 𝑓 , check whether Player 2 has a counter strategy 𝑔 such that play(𝑣0, 𝑓 , 𝑔)
violates Player 1’s objective. If we find that Player 2 has a counter strategy 𝑔 to 𝑓 , then 𝑓 is not
winning, and we reject the guess. On the other hand, if Player 2 cannot counter 𝑓 , then 𝑓 is
winning, and we accept the guess. Deciding whether Player 2 can counter 𝑓 is done as follows.
We trim every edge in the game that does not comply with 𝑓 . This leaves a graph with only
Player 2 choices, and we check if in every reachable SCC the highest priority index is odd. There
exists a reachable SCC where the highest priority is even iff Player 2 can counter 𝑓 iff 𝑓 is not
winning.3

35 / 45 Computing Threshold Budgets in Discrete-Bidding Games

Our algorithm for frugal-parity games follows conceptually similar steps. Let 𝑇 : 𝑉 →
[𝑘] ∪ {𝑘 + 1} that satisfies the average property. We verify whether 𝑇 . ThG as follows. We
construct a partial strategy 𝑓𝑇 based on 𝑇 . Recall that a partial strategy proposes a bid and a set
of allowed vertices in each configuration. That is, guessing 𝑇 is not quite like guessing a strategy
as in the algorithm above, rather 𝑇 gives rise to a partial strategy. We seek a Player 1 strategy
that agrees with 𝑓𝑇 and wins when the game starts from every configuration ⟨𝑣, 𝑇 (𝑣)⟩. Note that
if 𝑇 ≡ ThG , then such a strategy exists. Given 𝑓𝑇 , we describe an algorithm that decides whether
Player 2 can counter every Player 1 strategy that agrees with 𝑓𝑇 . Our algorithm constructs and
solves a turn-based parity game.

5.1 From bidding games to turn-based games

Let 𝑇 be a function that satisfies the average property. Recall that the partial strategy 𝑓𝑇 that is
constructed in Sec. 3.2.2 is a function that, given a configuration ⟨𝑣, 𝐵⟩, outputs ⟨𝑏, 𝐴⟩, where
𝑏 ≤ 𝐵 is a bid and 𝐴 ⊆ 𝑉 is a subset of neighbors of 𝑣 that are called allowed vertices. A strategy
𝑓 ′ agrees with 𝑓𝑇 if from each configuration, it bids the same as 𝑓𝑇 and chooses an allowed
vertex upon winning the bidding.

We construct a parity turn-based game 𝐺𝑇,G such that if Player 1 wins in every vertex in
𝐺𝑇,G, then Player 1 has a strategy 𝑓 ′ that agrees with 𝑓𝑇 and wins from every configuration
⟨𝑣, 𝑇 (𝑣)⟩ in G, thus 𝑇 ≥ ThG .

We describe the intuition behind the construction of 𝐺𝑇,G. Consider the following first
attempt to construct 𝐺𝑇,G. Recall the construction in Sec. 2.3 of the explicit concurrent game
that corresponds to G, and denote it by G′. The vertices of G′ are the configurations C of G.
We construct a game G′′ on the configuration graph C. Recall that our goal is to check whether
Player 2 can counter Player 1’s strategy, which can be thought of as Player 2 responds to Player 1’s
actions in each turn. Thus, G′′ is turn-based: when the game is in configuration 𝑐, Player 1
first chooses ⟨𝑏1, 𝑣1⟩, and only then, Player 2 responds by choosing an action ⟨𝑏2, 𝑣2⟩. The next
configuration is determined by these two actions in the same manner as the concurrent game.
Next, we trim Player 1 actions in G′ that do not comply with 𝑓𝑇 : in a configuration 𝑐 = ⟨𝑣, 𝐵⟩ in
G′′ with ⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐), Player 1 must bid 𝑏 and choose a vertex in 𝐴. That is, an action ⟨𝑏′, 𝑣′⟩ is
not allowed if 𝑏′ ≠ 𝑏 or if 𝑣′ ∉ 𝐴. Finally, we omit Player 2 actions that are dominated: observing
a Player 1 bid of 𝑏, she chooses between bidding 0 and letting Player 1win the bidding or bidding
𝑏 ⊕ 0∗ and winning the bidding. It is not hard to see that Player 1 wins G′′ from configuration
⟨𝑣, 𝐵⟩ iff there is a strategy 𝑓 ′ that agrees with 𝑓𝑇 and wins G from ⟨𝑣, 𝐵⟩.

The first attempt fails since the size of G′′ is proportional to the number of configuration,
which is exponential in G. We overcome this key challenge as follows. Lemma 3.17 shows

3 An alternative description of the verification algorithm is the following. View the trimmed graph as an automaton
with a singleton alphabet whose acceptance condition is Player 2’s objective, and check whether the language of the
automaton is empty. The language is empty iff Player 2 cannot counter 𝑓 .

36 / 45 G. Avni, S. Sadhukhan

that when G starts from configuration ⟨𝑣, 𝐵⟩ with 𝐵 ≥ 𝑇 (𝑣) a strategy 𝑓 ′ that agrees with 𝑓𝑇

maintains an invariant on Player 1’s budget: the game only reaches configurations of the form
⟨𝑣′, 𝐵′⟩ with 𝐵′ ≥ 𝑇 (𝑣′). We shrink the size of the game by grouping all configurations in which
Player 1’s budget is greater than 𝑇 (𝑣) ⊕ 0∗ into a vertex denoted ⟨𝑣,⊤⟩.

We describe the idea that allows keeping only three copies of each vertex. We will show
in Lemma 5.2 that if Player 1 wins in all vertices of 𝐺𝑇,G, then he wins in G. We refer to the
distance from the invariant 𝐵 − 𝑇 (𝑣) as spare change. Recall from Sec. 3.2.2 that 𝑓𝑇 chooses one
of two bids in a vertex 𝑣 ∈ 𝑉 , and the choice depends on the advantage status and does not
depend on the spare change. Thus, our winning strategy in G emulates a winning strategy in
𝐺𝑇,G: both bid according to 𝑓𝑇 and the latter prescribes a vertex to move to upon winning a
bidding. For a Player 2 strategy, the resulting play in G is simulated by a play in 𝐺𝑇,G . There can
be three outcomes: (1) the play in 𝐺𝑇,G is infinite, (2) it ends in a sink 𝑆, or (3) it ends in a sink
⟨𝑣,⊤⟩. The first two cases are winning in G. When Case (3) occurs and 𝐺𝑇,G reaches ⟨𝑣,⊤⟩, then
G reaches ⟨𝑣, 𝐵⟩ with 𝐵 > 𝑇 (𝑣) ⊕ 0∗, and we restart 𝐺𝑇,G from either ⟨𝑣, 𝑇 (𝑣)⟩ or ⟨𝑣, 𝑇 (𝑣) ⊕ 0∗⟩
depending on the advantage status. That is, after restarting the game, Player 1 plays the same
except that his spare change increased. A key idea is that whenever Case (3) occurs, Player 1’s
spare change strictly increases, thus this can happen only finitely often since the spare change
cannot exceed the total budget 𝑘.

Formally, we define the turn-based parity game 𝐺𝑇,G = ⟨𝑉1, 𝑉2, 𝐸, 𝑝⟩. The vertices that are
controlled by Player 𝑖 are 𝑉𝑖 , for 𝑖 ∈ {1, 2}, where

𝑉1 = {⟨𝑣, 𝑇 (𝑣)⟩, ⟨𝑣, 𝑇 (𝑣) ⊕ 0∗⟩, ⟨𝑣,⊤⟩ : 𝑣 ∈ (𝑉 ∪ 𝑆)} and
𝑉2 = {⟨𝑣, 𝑐⟩ : 𝑣 ∈ 𝑉, 𝑐 ∈ C}.

We define the edges. A vertex ⟨𝑣, 𝐵⟩ is a sink if 𝑣 ∈ 𝑆 or if 𝐵 = ⊤. Consider 𝑐 = ⟨𝑣, 𝐵⟩ ∈ 𝑉1 and let
⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐). The neighbors of 𝑐 are {⟨𝑣′, 𝑐⟩ : 𝑣′ ∈ 𝐴}. Intuitively, ⟨𝑣′, 𝑐⟩ means that Player 1
chooses the action ⟨𝑏, 𝑣′⟩ at configuration 𝑐; the bid 𝑏 is determined by 𝑓𝑇 and 𝑣′ is an allowed
vertex. A vertex ⟨𝑣′, 𝑐⟩ is a Player 2 vertex. Intuitively, Player 2 makes two choices: who wins
the bidding and where the token moves upon winning. Thus, a vertex ⟨𝑣′, 𝑐⟩ has two types of
neighbors, depending on who wins the bidding at 𝑐:

First, ⟨𝑣′, 𝐵 ⊖ 𝑏⟩ is a neighbor of ⟨𝑣′, 𝑐⟩, meaning Player 2 lets Player 1 win the bidding by
bidding 0.
Second, suppose that 𝑘∗ ⊖ 𝐵 ≥ 𝑏 ⊕ 0∗, i.e., Player 2 has sufficient budget to win the bidding.
Let 𝐵′ = 𝐵 ⊕ (𝑏 ⊕ 0∗) be Player 1’s updated budget and 𝑤 ∈ 𝑁 (𝑣). If 𝑐′ = ⟨𝑤, 𝐵′⟩ ∈ 𝑉1, then
𝑐′ is a neighbor of ⟨𝑣′, 𝑐⟩. We note that 𝑐′ ∉ 𝑉1 when 𝐵′ exceeds 𝑇 (𝑤) ⊕ 0∗, then we trim
the budget and set ⟨𝑤,⊤⟩ as a neighbor of ⟨𝑣′, 𝑐⟩.

For ease of presentation, we define parity indices only in Player 1 vertices. A non-sink vertex
in 𝐺𝑇,G “inherits” its parity index from the vertex in G; namely, for 𝑐 = ⟨𝑣, 𝐵⟩ ∈ 𝑉1, we define
𝑝′(𝑐) = 𝑝(𝑣). The parity index of a sink is odd so that Player 1 wins in sinks.

37 / 45 Computing Threshold Budgets in Discrete-Bidding Games

〈𝑣0, 4〉

〈𝑣1, 4〉 〈𝑣0, 4∗〉

〈𝑣2, 3〉
〈𝑣0,>〉

〈𝑡, 2〉

(0,
0)

(1,
0)

(1, 1 ∗)

(0, 0 ∗)

(1, 1
∗)

(0∗, 0)

(0∗ ,
1)

(1, 0)

(a) The turn-based game 𝐺𝑇1,G1 . Player 1 loses
from some vertices, thus 𝑇1 . ThG1

〈𝑣0, 5〉

〈𝑣1, 5〉 〈𝑣0, 5∗〉

〈𝑣2, 4〉
〈𝑣1, 4∗〉

〈𝑣2, 3∗〉
〈𝑡, 2〉

(0,
0) (0, 0 ∗)

(1,
0)

(0∗, 0)

(2, 0)
(0∗ , 0)

(0∗ ,
1) (1 ∗, 2)

(1∗ , 0)

(b) The turn-based game 𝐺𝑇2,G1 . Player 1 wins
from all vertices, thus 𝑇2 ≡ ThG1

Figure 3. Turn-based reachability games that correspond to G1 from Fig. 1 for two functions that
satisfy the average property. Player 1 vertices are omitted; that is, all depicted vertices are Player 2

vertices. The edge labeling depict bidding outcomes and are meant to ease presentation.

EXAMPLE 5.1. Fig. 1 depicts a frugal-reachability bidding game G1 with two functions that
satisfy the average property: 𝑇1 = ⟨4, 3∗, 3, 2⟩ and 𝑇2 = ⟨5, 4∗, 3∗, 2⟩. Fig. 3 depicts the games
𝐺𝑇1,G1 and 𝐺𝑇2,G1 . For ease of presentation, Fig. 3 is slightly inconsistent with the construction
of the games. The reason is that both 𝑓𝑇1 and 𝑓𝑇2 prescribe a singleton set of allowed vertices
from all configurations, thus Player 1 makes no choices in the game. We thus skip his vertices
and simplify Player 2’s vertices: each vertex in Fig. 3 corresponds to a configuration, and all
vertices are controlled by Player 2. Player 1’s goal in both games is to reach a sink. An outgoing
edge from vertex 𝑐 labeled by ⟨𝑏1, 𝑏2⟩ represents the outcome of a bidding at configuration 𝑐

in which Player 𝑖 bids 𝑏𝑖 , for 𝑖 ∈ {1, 2}. Thus, each vertex 𝑐 has two outgoing edges labeled by
⟨𝑏1, 0⟩ and ⟨𝑏1, 𝑏1 ⊕ 0∗⟩, where 𝑏1 is the bid that 𝑓𝑇1 or 𝑓𝑇2 prescribes at 𝑐. Note that some edges
are disallowed. For example, in the configuration ⟨𝑣1, 5⟩ in 𝐺𝑇2,G1 , the bid prescribed by 𝑓𝑇2 is
𝑏1 = 1 and Player 2 cannot bid 𝑏1 ⊕ 0∗ = 1∗ since it exceeds her available budget (indeed, 𝑘 = 5,
thus Player 2’s budget in 𝑐 is 𝑘∗ ⊖ 5 = 0∗).

Note that 𝐺𝑇1,G1 has a cycle. Thus, Player 1 does not win from every vertex and 𝑇1 does not
coincide with the threshold budgets. On the other hand, 𝐺𝑇2,G1 is a DAG. Thus, no matter how
Player 2 plays, Player 1 wins from all vertices, and indeed 𝑇2 . ThG1 . ■

5.2 Correctness

In this section, we prove soundness and completeness of the approach. We start with soundness.

LEMMA 5.2. If Player 1 wins from every vertex in 𝐺𝑇,G , then 𝑇 ≥ ThG .

38 / 45 G. Avni, S. Sadhukhan

PROOF . Suppose that Player 1 wins from every vertex of 𝐺𝑇,G and let 𝑓 be a Player 1 memory-
less winning strategy. We construct a strategy 𝑓 in G based on 𝑓 and show that it is winning
from every configuration ⟨𝑣, 𝐵⟩ where 𝐵 ≥ 𝑇 (𝑣). This implies that 𝑇 ≥ ThG since 𝑓 witnesses
that Player 1 can win with a budget of 𝑇 (𝑣) from 𝑣. Note that we do not yet rule out that a
different strategy wins with a lower budget, this will come later.

We introduce notation. Consider a configuration 𝑐 = ⟨𝑣, 𝐵⟩ in G with 𝐵 ≥ 𝑇 (𝑣). The vertex
in 𝐺𝑇,G that agrees with 𝑐, denoted by 𝑐, is the vertex in {⟨𝑣, 𝑇 (𝑣)⟩ ⟨𝑣, 𝑇 (𝑣) ⊕ 0∗⟩} that matches
with 𝑐 on the status of the advantage (and of course on the vertex of G). Note the convention of
calling 𝑐 a configuration in G and a vertex in 𝐺𝑇,G. For example if 𝑇 (𝑣) = 5∗ for some vertex 𝑣

and 𝑐 = ⟨𝑣, 9⟩ is a configuration in G, then the vertex of 𝐺𝑇,G that agrees with 𝑐, denoted by 𝑐, is
⟨𝑣, 6⟩. Recall that even though the budget in 𝑐 may be higher than that of 𝑐, the partial strategy
𝑓𝑇 acts the same in both, i.e., 𝑓𝑇 (𝑐) = 𝑓𝑇 (𝑐). The spare change that is associated with 𝑐, denoted
by Spare(𝑐) is |𝐵| − |𝑇 (𝑣) |.

In the following, we construct 𝑓 based on 𝑓𝑇 and 𝑓 . Specifically, we define 𝑓 to agree with
𝑓𝑇 on the bid and choose the successor vertex according to 𝑓 . Let ⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐). Recall that 𝑐
is a Player 1 vertex in 𝐺𝑇,G and its neighbours are of the form ⟨𝑣′, 𝑐⟩ such that 𝑣′ is an allowed
vertex, i.e, 𝑣′ ∈ 𝐴. Intuitively, proceeding to vertex ⟨𝑣′, 𝑐⟩ in 𝐺𝑇,G is associated with moving to 𝑣′

upon winning the bidding at 𝑐. Let ⟨𝑣′, 𝑐⟩ = 𝑓 (𝑐). Then, we define 𝑓 (𝑐) = ⟨𝑏, 𝑣′⟩.
We claim that 𝑓 is winning from an initial configuration 𝑐0 = ⟨𝑣, 𝐵⟩ in G where 𝐵 ≥ 𝑇 (𝑣).

Let 𝑔 be a Player 2 strategy in G. The initial vertex 𝑐0 in 𝐺𝑇,G is the vertex that agrees with 𝑐0.
We construct a Player 2 strategy 𝑔 in 𝐺𝑇,G so that play(𝑐0, 𝑓 , 𝑔) in 𝐺𝑇,G simulates play(𝑐0, 𝑓 , 𝑔)
in G: when play(𝑐0, 𝑓 , 𝑔) is in a configuration 𝑐, play(𝑐0, 𝑓 , 𝑔) is in a vertex 𝑐 that agrees with 𝑐.

We define 𝑔 inductively. Initially the invariant holds due to our choice of 𝑐0 in𝐺𝑇,G . Suppose
that G is at configuration 𝑐 = ⟨𝑣, 𝐵⟩, then the play(𝑐0, 𝑓 , 𝑔) in 𝐺𝑇,G is at the vertex 𝑐∗ that agrees
with 𝑐. Denote by �̂� (𝑣) ∈ {𝑇 (𝑣), 𝑇 (𝑣) ⊕ 0∗} such that 𝑐∗ = ⟨𝑣, �̂� (𝑣)⟩. Let ⟨𝑏1, 𝑣1⟩ = 𝑓 (𝑐) as defined
above, let ⟨𝑏2, 𝑣2⟩ = 𝑔 (𝑐) be Player 2’s choice, and let 𝑑 be the next configuration in G. We
extend the play in 𝐺𝑇,G as follows. We first register Player 1’s move in 𝐺𝑇,G by proceeding to
the Player 2 vertex ⟨𝑣1, 𝑐∗⟩. We distinguish between two cases. First, Player 1 wins the bidding
in G. We define 𝑔 to choose ⟨𝑣1, �̂� (𝑣) ⊖ 𝑏1⟩ as the successor vertex from ⟨𝑣1, 𝑐∗⟩. Note that, in
this case, the configuration 𝑑 is 𝑑∗ = ⟨𝑣1, 𝐵 ⊖ 𝑏1⟩. Since 𝑐∗ agrees with 𝑐, then 𝑑∗ agrees with
𝑑. Second, Player 2 wins the bidding in G. We define 𝑔 to proceed to 𝑑∗ = ⟨𝑣2, �̂� (𝑣) ⊕ 𝑏2⟩, if
it exists in 𝐺𝑇,G. If 𝑑∗ is in the graph, then again, 𝑑∗ agrees with 𝑑. On the other hand, if 𝑑∗ is
not a vertex in 𝐺𝑇,G , it intuitively means �̂� (𝑣) ⊕ 𝑏2 > 𝑇 (𝑣2) ⊕ 0∗, and we define 𝑔 to proceed to
⟨𝑣2,⊤⟩. Let us denote 𝑑∗ be the vertex in 𝐺𝑇,G that agrees with 𝑑. We apply the same definition
above starting from vertex 𝑑∗ in 𝐺𝑇,G . That is, in the next turn, assuming that Player 1 proceeds
in 𝐺𝑇,G to ⟨𝑣2, 𝑑∗⟩, we define 𝑔 according to 𝑔 (⟨𝑣2, 𝐵 ⊕ 𝑏2⟩), as discussed above. We call this a
restart in the simulation. Note that if the simulation is not a restart, then Spare(𝑐) = Spare(𝑑),
and if it is a restart, then Spare(𝑐) < Spare(𝑑).

39 / 45 Computing Threshold Budgets in Discrete-Bidding Games

We claim that play(𝑐0, 𝑓 , 𝑔) = 𝑐0, 𝑐1, . . . is winning for Player 1 in G. We slightly abuse
notation and denote by play(𝑐0, 𝑓 , 𝑔) = 𝑐0, 𝑐∗1, . . . the sequence of Player 1 vertices that are
traversed in 𝐺𝑇,G , that is we skip Player 2 vertices. Since 𝑓 is winning in 𝐺𝑇,G , then play(𝑐0, 𝑓 , 𝑔)
is winning for Player 1. We distinguish between three cases. First, play(𝑐0, 𝑓 , 𝑔) is infinite. Since
for every 𝑖 ≥ 0, the vertex 𝑐∗𝑖 agrees with 𝑐𝑖 , the two plays agree on the parity indices that are
visited, thus play(𝑐0, 𝑓 , 𝑔) satisfies the parity objective. Second, play(𝑐0, 𝑓 , 𝑔) is finite and ends
in a sink configuration 𝑐𝑘 = ⟨𝑠, 𝐵⟩. Note that 𝐵 ≥ 𝑇 (𝑠), and the definition of 𝑇 requires that
𝑇 (𝑠) = fr(𝑠). Since 𝑐∗𝑘 agrees with 𝑐𝑘, it follows that 𝑐𝑘 satisfies the frugal objective. Third,
play(𝑐0, 𝑓 , 𝑔) is finite and ends in 𝑐∗𝑘 = ⟨𝑣,⊤⟩. Let 𝑐∗𝑘 denote the vertex that agrees with 𝑐𝑘. We
apply the reasoning above to play(𝑐∗𝑘, 𝑓 , 𝑔).

Note that the third case can occur only finitely many times, since a restart causes the
spare change to strictly increase, and the spare change is bounded by 𝑘. Thus, eventually, the
play in 𝐺𝑇,G falls into one of the first two cases, which implies that play(𝑐0, 𝑓 , 𝑔) is winning for
Player 1. ■

REMARK 5.3. The proof of Lemma 5.2 constructs a Player 1 winning strategy 𝑓 in G. Note
that in order to implement 𝑓 , we only need to keep track of a vertex in 𝐺𝑇,G . Thus, its memory
size equals the size of 𝐺𝑇,G, which is linear in the size of G. This is significantly smaller than
previously known constructions in parity and reachability discrete-bidding games, where the
strategy size is polynomial in 𝑘, and is thus exponential when 𝑘 is given in binary.

The following lemma shows completeness; namely, that a correct guess of 𝑇 implies that
Player 1 wins from every vertex in 𝐺𝑇,G .

LEMMA 5.4. If 𝑇 . ThG , then Player 1 wins from every vertex in 𝐺𝑇,G .

PROOF . Assume towards a contradiction that𝑇 ≡ ThG and there is a Player 1 vertex 𝑐0 = ⟨𝑣, 𝐵⟩
in 𝐺𝑇,G that is losing for Player 1. Let 𝑔 be a Player 2 memoryless strategy that wins from vertex
𝑐0 in 𝐺𝑇,G. Recall that 𝐵 ∈ {𝑇 (𝑣), 𝑇 (𝑣) ⊕ 0∗}. Note that 𝐵 ≥ 𝑇 (𝑣). Since we assume 𝑇 ≡ ThG,
Player 1 wins from configuration 𝑐0 = ⟨𝑣, 𝐵⟩ in G. Let 𝑓 be a Player 1 winning strategy from
𝑐0 in G. Note that we follow the convention of referring to 𝑐 in G as a configuration and 𝑐 in
𝐺𝑇,G as a vertex, even though both are ⟨𝑣, 𝐵⟩. We will reach a contradiction by constructing
a Player 2 strategy 𝑔 in G that counters 𝑓 , thus showing that 𝑓 is not winning. Recall that a
winning Player 1 strategy can be thought of as a strategy that, in each turn, reveals Player 1’s
action first, and allows Player 2 to respond to Player 1’s action.

We construct a Player 1 strategy 𝑓 in 𝐺𝑇,G based on 𝑓 as long as 𝑓 agrees with 𝑓𝑇 and
a Player 2 strategy 𝑔 in G based on 𝑔. Both constructions are straightforward. First, for 𝑓 ,
consider a Player 1 vertex 𝑐 in 𝐺𝑇,G . Recall that 𝑐 is a configuration in G, which we denote by 𝑐

to avoid confusion. Suppose that 𝑓 (𝑐) agrees with 𝑓𝑇 (𝑐), that is denoting ⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐), we have
⟨𝑏, 𝑣⟩ = 𝑓 (𝑐) with 𝑣 ∈ 𝐴. Then, in 𝐺𝑇,G , from vertex 𝑐, the strategy 𝑓 proceeds to ⟨𝑣, 𝑐⟩. We stress

40 / 45 G. Avni, S. Sadhukhan

that 𝑓 is only defined when 𝑓 agrees with 𝑓𝑇 . Second, for 𝑔 , recall that Player 2 vertices in 𝐺𝑇,G
are of the form ⟨𝑣, 𝑐⟩, and Player 2 chooses between, intuitively letting Player 1 win the bidding
or bidding 𝑏 ⊕ 0∗, winning the bidding, and choosing the next vertex. Assume ⟨𝑏, 𝑣⟩ = 𝑓 (𝑐) that
agrees with 𝑓𝑇 , then 𝑔 responds by following 𝑔: if 𝑔 lets Player 1 win from ⟨𝑣, 𝑐⟩, then 𝑔 bids 0
in 𝑐 and lets Player 1 win the bidding, and if it wins the bidding by proceeding to vertex ⟨𝑣′, 𝐵′⟩,
then 𝑔 chooses ⟨𝑏 ⊕ 0∗, 𝑣′⟩, i.e., it too wins the bidding in 𝑐 and proceeds to vertex 𝑣′.

Let �̃� and 𝜋 respectively denote the longest histories of 𝐺𝑇,G and G that start from 𝑐0 and
𝑐0 that arise from applying 𝑓 against 𝑔 in 𝐺𝑇,G and 𝑓 against 𝑔 in G, as long as 𝑓 agrees with
𝑓𝑇 . Note that, skipping Player 2 vertices in 𝐺𝑇,G , the plays �̃� and 𝜋 traverse the same sequence
of configurations. We claim that the two plays cannot be infinite. Indeed, assume otherwise,
then since we assume 𝑓 is winning, 𝜋 is satisfies Player 1’s objective, and since we assume 𝑔 is
winning, �̃� violates Player 1’s objective, but both cannot hold at the same time. Also, �̃� cannot
end in a sink since sinks are winning for Player 1 and �̃� results from a Player 2 winning strategy.
We conclude that 𝜋 and �̃� are finite and end in a configuration in which 𝑓 does not agree with 𝑓𝑇 .

Let 𝑐 = ⟨𝑣, 𝐵⟩, where 𝐵 ∈ {𝑇 (𝑣), 𝑇 (𝑣) ⊕ 0∗}, be the last configuration in 𝜋. That is, 𝑐 is the
first configuration in which 𝑓 chooses an action that does not agree with 𝑓𝑇 . Let ⟨𝑏, 𝐴⟩ = 𝑓𝑇 (𝑐)
and ⟨𝑏1, 𝑣1⟩ = 𝑓 (𝜋). In the remainder of the proof, we consider the three ways in which 𝑓 can
disagree with 𝑓𝑇 . In each of these cases, we subsequently define Player 2 response 𝑔 , and show
that she can win from the resulting configuration.

In particular, we show that in all but one subcases of these three cases, we have a “suitable”
Player 2 response by 𝑔 which results in a configuration of the form 𝑐 = ⟨𝑣′, 𝐵′⟩, where 𝐵′ < 𝑇 (𝑣′).
Thus the standard argument follows (in all but one subcase) from there as: because the budget
“falls” below the threshold budget (by hypothesis, 𝑇 ≡ Th), by definition, Player 2 has a winning
strategy in G from there onwards, and 𝑔 simply follows that. In the remaining subcase(Case 2.
(ii), in particular), we will see that even though this is also a way how 𝑓 differs from 𝑓𝑇 , it does
not necessarily result Player 1’s budget falling below 𝑇 (𝑣′) (assuming the resulting vertex is 𝑣)
for any Player 2 response. But in this case, we argue that 𝑓 eventually differs from 𝑓𝑇 by other
means. Hence, even though we may not have the desired “suitability” in Player 2’s response 𝑔

in this case, we will eventually encounter it when 𝑓 eventually differs from 𝑓𝑇 by other means.
We recall Observation 3.13, which intuitively states that when Player 1 has the advantage

and the bids of 𝑓 and 𝑓𝑇 agree, then Player 1 uses the advantage.
We finally proceed to analyze the three ways in which 𝑓 disagrees with 𝑓𝑇 :

Case 1: 𝑓 underbids; 𝑏1 < 𝑏. Player 2 responds by bidding 𝑏 ⊖ 0∗. We show that she wins the
bidding, but before that we show Player 2 can indeed bid 𝑏 ⊖ 0∗ at vertex 𝑣 from her budget
𝑘∗ ⊖ 𝐵. Note that, here 𝑏 = 𝑏𝑇𝑣 if 𝐵 = 𝑇 (𝑣), and 𝑏 = 𝑏𝑇𝑣 ⊕ 0∗, if 𝐵 = 𝑇 (𝑣) ⊕ 0∗.

CLAIM. When Player 1 has a budget 𝑇 (𝑣) (alternatively, 𝑇 (𝑣) ⊕ 0∗), Player 2 can bid 𝑏𝑇𝑣 ⊖ 0∗ (𝑏𝑇𝑣
respectively).

41 / 45 Computing Threshold Budgets in Discrete-Bidding Games

Proof.We analyze the case when 𝐵 = 𝑇 (𝑣), as the other case is exactly similar. So, when
Player 1’s budget is 𝐵 = 𝑇 (𝑣), Player 2’s budget is 𝑘∗ ⊖ 𝑇 (𝑣). In order to establish that Player 2
can indeed bid 𝑏 ⊖ 0∗, we show the following:

(𝑘∗ ⊖ 𝑇 (𝑣)) ⊖ (𝑏𝑇𝑣 ⊖ 0∗) ≥ 0

We prove this by a case analysis akin to the proof of Lemma 3.15, i.e, we analyze four cases,
each of which correspond to a parity of |𝑇 (𝑣+) | + |𝑇 (𝑣−) | and an advantage status of 𝑇 (𝑣−).

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even and 𝑇 (𝑣−) ∈ N.
In this case,

(𝑘∗ ⊖ 𝑇 (𝑣)) ⊖ (
𝑏𝑇𝑣 ⊖ 0∗

)
=

(
𝑘∗ ⊖ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

)
⊖
(|𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
− 1

)∗
=

(
𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2

)∗
⊖
(|𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
− 1

)∗
= 𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
− |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
+ 1

= (𝑘 + 1) − |𝑇 (𝑣+) | ≥ 0

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and 𝑇 (𝑣−) ∈ N∗ \ N.
In this case, we have

(𝑘∗ ⊖ 𝑇 (𝑣)) ⊖ (𝑏𝑇𝑣 ⊖ 0∗) =
(
𝑘∗ ⊖

(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋
+ 1

))
⊖
(⌊ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

⌋
− 1

)∗
= 𝑘 −

⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋
− 1 −

⌊ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |
2

⌋
+ 1

= 𝑘 + 1 −
(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
+ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

)
= (𝑘 + 1) − |𝑇 (𝑣+) | ≥ 0

|𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even and 𝑇 (𝑣−) ∈ N∗ \ N.
In this case, it goes as following:

(𝑘∗ ⊖ 𝑇 (𝑣)) ⊖ (𝑏𝑇𝑣 ⊖ 0∗) =
(
𝑘∗ ⊖

(|𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

)∗)
⊖
(|𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
− 1

)
= (𝑘 + 1) − 𝑇 (𝑣+) ≥ 0

Finally, |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and 𝑇 (𝑣−) ∈ N.
Here, we have

(𝑘∗ ⊖ 𝑇 (𝑣)) ⊖ (𝑏𝑇𝑣 ⊖ 0∗) =
(
𝑘∗ ⊖

(⌊ |𝑇 (𝑣+) | + |𝑇 (𝑣−) |
2

⌋)∗)
⊖
⌊ |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2

⌋
= 𝑘 − |𝑇 (𝑣+) | + |𝑇 (𝑣−) |

2
+ 1
2
− |𝑇 (𝑣+) | − |𝑇 (𝑣−) |

2
+ 1
2

= (𝑘 + 1) − 𝑇 (𝑣+) ≥ 0

42 / 45 G. Avni, S. Sadhukhan

Therefore, we conclude that when Player 1 has a budget of 𝑇 (𝑣), Player 2 does have the enough
budget to bid 𝑏𝑇𝑣 ⊖ 0∗. ■

She then proceeds to a neighbour 𝑣′ with𝑇 -value𝑇 (𝑣+). Let 𝑐′ = ⟨𝑣′, 𝐵′⟩ denote the resulting
configuration. Intuitively, Player 2 pays less than she should for winning the bidding. Formally,
we will show that 𝐵′ < 𝑇 (𝑣′). This will conclude the proof. Indeed, since we assume 𝑇 ≡ ThG,
Player 2 has a winning strategy from 𝑐′, which she uses to counter 𝑓 from 𝑐′ onwards. We
distinguish between two cases depending on whether Player 1 holds the advantage:

(a) Player 1 holds the advantage, i.e, 𝐵 ∈ N∗ \ N. By Observation 3.13, he uses it according
to 𝑓𝑇 , thus 𝑏 ∈ N∗ \ N. Player 2 bids 𝑏2 = 𝑏 ⊖ 0∗. First, note that the bid is legal. Indeed,
since 𝑏 contains the advantage, 𝑏2 does not. Second, note that Player 2 wins the bidding.
Indeed, if Player 1 bids less than 𝑏2, clearly Player 2 wins, and if he bids 𝑏2, then a tie
occurs, and since he has the advantage and does not use it, Player 2 wins the bidding. As
a result, Player 1’s budget is updated to 𝐵 ⊕ (𝑏 ⊖ 0∗) < 𝐵 ⊕ 𝑏 < 𝐵 ⊕ (𝑏 ⊕ 0∗) = |𝑇 (𝑣+) |∗,
in particular, 𝐵 ⊕ (𝑏 ⊖ 0∗) < 𝑇 (𝑣+).

(b) Player 1 does not hold the advantage, i.e, 𝐵 ∈ N. Again, by Observation 3.13, 𝑏 does
not include the advantage and bidding 𝑏1 < 𝑏 necessarily implies 𝑏1 < 𝑏 ⊖ 0∗, simply
because he does not hold the advantage. Player 2 bids 𝑏 ⊖ 0∗ ∈ N∗ \ N. It is not hard to
see that she wins the bidding and showing that 𝐵′ < 𝑇 (𝑣′) is done as in the previous
case.

Case 2: 𝑓 oversbids; 𝑏1 > 𝑏. We assume 𝐵 = 𝑇 (𝑣) and the case of 𝐵 = 𝑇 (𝑣) ⊕ 0∗ is similar. Note
that Observation 3.13 implies that 𝑓𝑇 proposes a bid of 𝑏⊕ 0∗ when Player 1’s budget is 𝑇 (𝑣) ⊕ 0∗.
Intuitively, if Player 1 wins the bidding with his bid of 𝑏1, he will pay “too much”, and Player 2
indeed lets him win by bidding 0 (except for one case that we will explain later). The resulting
configuration is 𝑐′ = ⟨𝑣1, 𝐵 ⊖ 𝑏1⟩, and we will show that 𝐵 ⊖ 𝑏1 < 𝑇 (𝑣1) (barring one case). As in
the underbidding case, this concludes the proof: since we assume 𝑇 ≡ ThG , Player 2 wins from
𝑐′.

We first consider the easier case when 𝑏1 > 𝑏 ⊕ 0∗. Then, 𝐵 ⊖ 𝑏1 < 𝐵 ⊖ (𝑏 ⊕ 0∗) ≤ 𝑇 (𝑣−) ≤
𝑇 (𝑣1), thus 𝐵 ⊖ 𝑏1 < 𝑇 (𝑣1), as required. We proceed to the harder case of 𝑏1 = 𝑏 ⊕ 0∗. Note that
this case necessarily implicates that Player 1 has the advantage, i.e, 𝐵 ∈ N∗ \N. Indeed otherwise
when he does not have the advantage, i.e, 𝐵 ∈ N then 𝑏 ∈ N too (from Observation 3.13), thus
he cannot bid 𝑏 ⊕ 0∗, which is in N∗ \N, from his budget 𝐵. Recall from Definition 3.5 that when
Player 1’s budget 𝐵 = 𝑇 (𝑣) ∈ N∗ \ N, there are two possibilities: (i) |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is odd and
𝑇 (𝑣−) ∈ N, and (ii) |𝑇 (𝑣+) | + |𝑇 (𝑣−) | is even and 𝑇 (𝑣−) ∈ N∗ \ N. In Case (i), 𝑇 (𝑣) − 𝑏 = 𝑇 (𝑣−),
hence when Player 1 bids 𝑏 ⊕ 0∗, Player 2’s response is 0, and Player 1’s budget in the next
configuration is strictly lower than the threshold.

43 / 45 Computing Threshold Budgets in Discrete-Bidding Games

We conclude with Case (ii). Recall that in this case 𝑏 = ⌊ |𝑇 (𝑣+) |−|𝑇 (𝑣−) |2 ⌋ ⊖ 0∗. This case
requires a different approach since Player 1 can bid 𝑏 ⊕ 0∗ and even if he wins the bidding,
his budget in the next configuration does not fall below the threshold. We define 𝑔 to follow
𝑔 . Consider the move of 𝑔 from ⟨𝑣1, 𝑐⟩. If it lets Player 1 win by proceeding to ⟨𝑣1, 𝐵 ⊖ 𝑏⟩, then
𝑔 responds to 𝑓 in G by bidding 0. Recall that Player 2’s other action in 𝐺𝑇,G corresponds to
a bid of 𝑏 ⊕ 0∗, and is represented by proceeding to vertex ⟨𝑣′, 𝐵 ⊖ (𝑏 ⊕ 0∗)⟩. Then, in G, we
define 𝑔 to bid 𝑏 ⊕ 0∗, thus both players bid 𝑏 ⊕ 0∗ and Player 2 wins the tie since Player 1 has
the advantage and does not use it. Player 2 proceeds to 𝑣′ following 𝑔. The key idea is that in
both cases, we reach the same configuration in G and 𝐺𝑇,G. That is, even though 𝑓 disagrees
with 𝑓𝑇 , we extend the two plays 𝜋 and �̃� and restart the proof. As discussed in the beginning of
the proof, the plays cannot be infinite, thus eventually 𝑓 disagrees with 𝑓𝑇 in one of the other
manners.
Case 3: 𝑓 does not choose an allowed vertex; 𝑏1 = 𝑏 and 𝑣1 ∉ 𝐴. Recall that, by definition,
the set 𝐴 of allowed vertices consists of all vertices 𝑣′ that satisfy 𝑇 (𝑣) ⊖ 𝑏 ≥ 𝑇 (𝑣′). Therefore,
Player 2 responses to 𝑓 by letting Player 1 win by bidding 0. In the resulting configuration,
Player 1’s budget is strictly less than 𝑇 , which coincides with the threshold budget, and, as in
the above, Player 2 proceeds with a winning strategy. ■

Finally, we verify that 𝑇 ≤ ThG . We define a function 𝑇 ′ : 𝑉 → [𝑘] ∪ {𝑘 + 1} as follows. For
𝑣 ∈ 𝑉 , when 𝑇 (𝑣) > 0 we define 𝑇 (𝑣) = (𝑘 + 1) ⊖ 𝑇 (𝑣), and 𝑇 ′(𝑣) = 𝑘 + 1 otherwise. Lemma 3.10
shows that 𝑇 ′ satisfies the average property. We proceed as in the previous construction only
from Player 2’s perspective. We construct a partial strategy 𝑓𝑇 ′ for Player 2 from 𝑇 ′ just as 𝑓𝑇 is
constructed from 𝑇 , and construct a turn-based parity game 𝐺𝑇 ′,G. Let Th2G denote Player 2’s
threshold function in G. That is, at a vertex 𝑣 ∈ 𝑉 , Player 2 wins when her budget is at least
Th2G (𝑣) and she loses when her budget is at most Th2G (𝑣) ⊖ 0∗. Applying Lemmas 5.2 and 5.4 to
Player 2, we obtain the following.

LEMMA 5.5. If Player 2 wins from every vertex in 𝐺𝑇 ′,G , then𝑇 ′ ≥ Th2G . If𝑇 ′ ≡ Th2G , then Player 2
wins from every vertex of 𝐺𝑇 ′,G .

Given a frugal-parity discrete-bidding game G = ⟨𝑉, 𝐸, 𝑘, 𝑝, 𝑆, fr⟩, a vertex 𝑣 ∈ 𝑉 , and
ℓ ∈ [𝑘], we guess 𝑇 : 𝑉 → [𝑘] ∪ {𝑘 + 1} and verify that it satisfies the average property. Note
that the size of 𝑇 is polynomial in G since it consists of |𝑉 | numbers each of size 𝑂(log 𝑘). We
construct 𝐺𝑇,G and 𝐺𝑇 ′,G, guess memoryless strategies for Player 1 and Player 2, respectively,
and verify in polynomial time that they are indeed winning. Finally, we check whether𝑇 (𝑣) ≥ ℓ,
and answer accordingly. Correctness follows from Lemmas 5.2, 5.4, and 5.5. We thus obtain our
main result.

THEOREM 5.6. The problem of finding threshold budgets in frugal-parity discrete-bidding games
is in NP and coNP.

44 / 45 G. Avni, S. Sadhukhan

6. Discussion

We develop two algorithms to find threshold budgets in discrete-bidding games. Our first
algorithm shows, for the first time, that thresholds in parity discrete-bidding games satisfy
the average property. Previously, only thresholds in reachability discrete-bidding games were
known to have this property. We study, for the first time, the problem of computing threshold
budgets in discrete-bidding games in which the budgets are given in binary, and establish
membership in NP and coNP for reachability and parity objectives. Previous algorithms for
reachability and parity discrete-bidding games have exponential running time in this setting.
We develop novel building blocks as part of our algorithms, which can be of independent
interest. First, we define and study, for the first frugal objectives, which are reachability
objectives accompanied by an enforcement on a player’s budget when reaching the target.
Second, our fixed-point algorithm provides a recipe for extending a proof on the structure of
thresholds in reachability bidding games to parity bidding games. Third, we develop, for the
first time, strategies that can be implemented with linear memory in reachability and parity
discrete-bidding games, whereas previous constructions used exponential memory.

We point to the intriguing state of affairs in parity discrete-bidding games. Deciding the
winner in a turn-based parity game is a long-standing open problem, which is known to be in
NP and coNP but not known to be in P. A very simple reduction from turn-based parity games
reduce to parity discrete-bidding games was shown in [1]. Moreover, the reduction outputs a
bidding game with a total budget of 0; that is, a discrete bidding game with constant sum of
budgets. Our results show that parity discrete-bidding games are in NP and coNP even when
the sum of budgets is given in binary. One might expect that such games would be at least
exponentially harder than bidding games with constant sum of budgets. But all of these classes
of games actually lie in NP and coNP.

References
[1] M. Aghajohari, G. Avni, and T. A. Henzinger.
Determinacy in discrete-bidding infinite-duration
games. Log. Methods Comput. Sci. 17(1), 2021.
DOI (3, 4, 7, 10, 44)

[2] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002. DOI (6)

[3] O. Amir, E. Kamar, A. Kolobov, and B. J. Grosz.
Interactive teaching strategies for agent training.
Proceedings of the Twenty-Fifth International Joint
Conference on Artifical Intelligence (IJCAI),
pages 804–811. IJCAI/AAAI Press, 2016. DOI (4)

[4] K.R. Apt and E. Grädel. Lectures in Game Theory
for Computer Scientists. Cambridge University
Press, 2011. DOI (2)

[5] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of
attacks on ethereum smart contracts. IACR
Cryptology ePrint Archive, 2016:1007, 2016. DOI
(4)

[6] G. Avni, E. Goharshady, T. A. Henzinger, and
K. Mallik. Bidding games with charging.
Proceedings of the 35th International Conference
on Concurrency Theory (CONCUR), 2024. DOI
(5)

[7] G. Avni and T. A. Henzinger. A survey of bidding
games on graphs. Proceedings of the 31st
International Conference on Concurrency Theory
(CONCUR), volume 171 of LIPIcs, 2:1–2:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
(3)

https://doi.org/10.23638/LMCS-17(1:10)2021
https://doi.org/10.23638/LMCS-17(1:10)2021
https://doi.org/10.1109/SFCS.1997.646098
https://doi.org/10.5555/3060621.3060733
https://doi.org/10.1017/CBO9780511973468
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.48550/arXiv.2407.06288

45 / 45 Computing Threshold Budgets in Discrete-Bidding Games

[8] G. Avni, T. A. Henzinger, and V. Chonev.
Infinite-duration bidding games. J. ACM,
66(4):31:1–31:29, 2019. DOI (3, 12)

[9] G. Avni, T. A. Henzinger, and R. Ibsen-Jensen.
Infinite-duration poorman-bidding games.
Proceedings of the 14th Conference on Web and
Internet Economics (WINE), volume 11316 of LNCS,
pages 21–36. Springer, 2018. DOI (3)

[10] G. Avni, T. A. Henzinger, and D. Zikelic. Bidding
mechanisms in graph games. J. Comput. Syst. Sci.
119:133–144, 2021. (3)

[11] G. Avni, I. Jecker, and Ð. Žikelić. Infinite-duration
all-pay bidding games. Proceedings of the 32nd
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 617–636, 2021. DOI (3)

[12] G. Avni, K. Mallik, and S. Sadhukhan.
Auction-based scheduling. Proceedings of the
30th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), volume 14572 of Lecture Notes
in Computer Science, pages 153–172. Springer,
2024. DOI (4)

[13] G. Avni, T. Meggendorfer, S. Sadhukhan,
J. Tkadlec, and Ð. Zikelic. Reachability poorman
discrete-bidding games. Proceedings of the 26th
European Conference on Artificial Intelligence
(ECAI), volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 141–148. IOS
Press, 2023. DOI (4)

[14] Guy Avni and Suman Sadhukhan. Computing
threshold budgets in discrete-bidding games.
42nd IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer
Science, FSTTCS 2022, December 18-20, 2022, IIT
Madras, Chennai, India, volume 250 of LIPIcs,
30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. DOI (1)

[15] M. Babaioff, T. Ezra, and U. Feige. Fair-share
allocations for agents with arbitrary entitlements.
Proceedings of the Twenty-Second ACM
Conference on Economics and Computation (EC),
page 127. ACM, 2021. DOI (4)

[16] J. Bhatt and S. Payne. Bidding chess. Math.
Intelligencer, 31:37–39, 2009. DOI (4)

[17] B. Bordais, P. Bouyer, and S. Le Roux. From local to
global determinacy in concurrent graph games.
Proceedings of the 41st Conference on Foundations
of Software Technology and Theoretical Computer
Science (FSTTCS), volume 213 of LIPIcs, 41:1–41:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. DOI (10)

[18] K. Chatterjee, A. K. Goharshady, and Y. Velner.
Quantitative analysis of smart contracts.
Proceedings of the 27th European Symposium on
Programming (ESOP), pages 739–767, 2018. DOI
(4)

[19] A. Condon. The complexity of stochastic games.
Inf. Comput. 96(2):203–224, 1992. DOI (3, 12)

[20] M. Develin and S. Payne. Discrete bidding games.
The Electronic Journal of Combinatorics, 17(1):R85,
2010. DOI (3, 4, 7, 10, 11, 23)

[21] Hugh Everett. Recursive Games. Princeton
University Press, 1957. DOI (24)

[22] Koos Vriez Jerzy Filar. Competitive Markov
Decision Process. Springer New York, 2012. DOI
(24)

[23] O. Kupferman and M. Y. Vardi.Weak alternating
automata and tree automata emptiness.
Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (STOC),
pages 224–233. ACM, 1998. DOI (5)

[24] A. J. Lazarus, D. E. Loeb, J. G. Propp,
W. R. Stromquist, and D. H. Ullman. Combinatorial
games under auction play. Games and Economic
Behavior, 27(2):229–264, 1999. DOI (2, 11, 12)

[25] A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman.
Richman games. Games of No Chance,
29:439–449, 1996. DOI (2, 11, 12)

[26] R. Meir, G. Kalai, and M. Tennenholtz. Bidding
games and efficient allocations. Games and
Economic Behavior, 112:166–193, 2018. DOI (4)

[27] S. Muthukrishnan. Ad exchanges: research issues.
Proceedings of the Fifth Workshop on Internet and
Network Economics (WINE), pages 1–12, 2009.
DOI (4)

[28] Y. Peres, O. Schramm, S. Sheffield, and
D. B. Wilson. Tug-of-war and the infinity laplacian.
J. Amer. Math. Soc. 22:167–210, 2009. DOI (3)

[29] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. Proc. 16th POPL, pages 179–190,
1989. DOI (2)

[30] R. Kant Rai, U. Larsson, and N. Patel. Discrete
richman-bidding scoring games. Int. J. Game
Theory, 50(3):695–728, 2021. DOI (4)

[31] W. Zielonka. Infinite games on finitely coloured
graphs with applications to automata on infinite
trees. Theor. Comput. Sci. 200(1-2):135–183, 1998.
DOI (5)

2025 :5
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Guy Avni, Suman Sadhukhan.

https://doi.org/10.1145/3340295
https://doi.org/10.1007/978-3-030-04612-5_2
https://doi.org/10.1145/3340295
https://doi.org/10.1007/978-3-031-57256-2_8
https://doi.org/10.3233/FAIA230264
https://doi.org/10.4230/LIPICS.FSTTCS.2022.30
https://doi.org/10.1145/3465456.3467559
https://doi.org/10.1007/s00283-009-9057-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.41
https://doi.org/10.1007/978-3-319-89884-1_26
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.37236/357
https://doi.org/10.2307/j.ctv173f1fh.14
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1145/276698.276748
https://doi.org/10.1006/game.1998.0676
https://doi.org/https://doi.org/10.48550/arXiv.math/9502222
https://doi.org/10.1016/j.geb.2018.08.005
https://doi.org/10.1007/978-3-642-10841-9_1
https://doi.org/10.1007/978-3-642-10841-9_1
https://doi.org/10.1007/978-1-4419-9675-6_18
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/s00182-020-00753-x
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

	Introduction
	Preliminaries
	Concurrent games
	Bidding games
	Bidding games as concurrent games
	Objectives and threshold budgets

	Frugal-Reachability Discrete-Bidding Games
	Background: reachability continuous-bidding games
	Frugal-Reachability discrete-bidding games
	The discrete average property
	From a function that satisfies the average to a bidding strategy
	Strategies that agree with fT are not losing
	Existence of thresholds in frugal-reachability discrete-bidding games

	A Fixed-Point Algorithm for Finding Threshold Budgets
	Warm up: a fixed-point algorithm for Büchi bidding games
	A recursive algorithm to compute thresholds for Safei
	The fixed point coincides with coBü-Th

	A fixed-point algorithm for frugal-parity bidding games

	Finding threshold budgets is in NP and coNP
	From bidding games to turn-based games
	Correctness

	Discussion
	References

