
1 / 19 2025 :6

A (3 + 𝜀)-Approximate
Correlation Clustering
Algorithm in Dynamic
Streams

Received Feb 21, 2024
Revised Nov 23, 2024
Accepted Jan 12, 2025
Published Feb 28, 2025

Key words and phrases
semi-streaming, correlation
clustering, dynamic streams,
single pass

Mélanie Cambusa � �

Fabian Kuhnb � �

Etna Lindya �
Shreyas Paic � �

Jara Uittoa � �

a Aalto University, Finland

b University of Freiburg, Germany

c Indian Institute of Technology
Madras, India

ABSTRACT. Grouping together similar elements in datasets is a common task in data mining
and machine learning. In this paper, we study streaming algorithms for correlation clustering,
where each pair of elements is labeled either similar or dissimilar. The task is to partition the
elements and the objective is to minimize disagreements, that is, the number of dissimilar
elements grouped together and similar elements that get separated.

Our main contribution is a semi-streaming algorithm that achieves a (3+𝜀)-approximation
to the minimum number of disagreements using a single pass over the stream. In addition, the
algorithm also works for dynamic streams. Our approach builds on the analysis of the PIVOT
algorithm by Ailon, Charikar, and Newman [JACM’08] that obtains a 3-approximation in the
centralized setting. Our design allows us to sparsify the input graph by ignoring a large portion
of the nodes and edges without a large extra cost as compared to the analysis of PIVOT. This
sparsification makes our technique applicable in models such as semi-streaming, where sparse
graphs can typically be handled much more efficiently.

Our work improves on the approximation ratio of the recent single-pass 5-approximation
algorithm and on the number of passes of the recent𝑂(1/𝜀)-pass (3+𝜀)-approximation algorithm
[Behnezhad, Charikar, Ma, Tan FOCS’22, SODA’23]. Our algorithm is also more robust and can

A preliminary version of this article appeared at SODA 24 [14].

Cite as Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, Jara Uitto. A
(3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams.
TheoretiCS, Volume 4 (2025), Article 6, 1-19.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.6

mailto:melanie.cambus@aalto.fi
https://orcid.org/0000-0002-7635-3924
mailto:kuhn@cs.uni-freiburg.de
https://orcid.org/0000-0002-1025-5037
mailto:etna.lindy@aalto.fi
mailto:shreyas@cse.iitm.ac.in
https://orcid.org/0000-0003-2409-7807
mailto:jara.uitto@aalto.fi
https://orcid.org/0000-0002-5179-5056

2 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

be applied in dynamic streams. Furthermore, it is the first single pass (3 + 𝜀)-approximation
algorithm that uses polynomial post-processing time.

1. Introduction

In this paper, we consider the correlation clustering problem introduced by [10], where the goal
is to group together similar elements and separate dissimilar elements. We model the similarity
as a complete signed graph 𝐺 = (𝑉, 𝐸+ ∪ 𝐸−), where a positive edge {𝑢, 𝑣} = 𝑒 ∈ 𝐸+ indicates that
𝑢 and 𝑣 are similar. In case 𝑒 ∈ 𝐸−, the edge is negative and the nodes are dissimilar. The goal is to
minimize the disagreements, where a disagreement is induced by grouping together dissimilar
nodes or separating similar ones. As pointed out by [19], it is typically the case that the set of
negative edges is much larger than the set of positive edges. Hence, in this paper, we identify the
input graph with the set of positive edges, i.e., 𝐺 = (𝑉, 𝐸+) and the negative edges are defined
implicitly1. Correlation clustering is a natural abstraction for central problems in data mining
and machine learning such as community and duplicate detection [5, 18], link prediction [30],
and image segmentation [27]. A key feature of correlation clustering, as opposed to, for example,
the standard 𝑘-means clustering, is that the number of clusters is not predetermined.

As the volume of data sets is growing fast, there is an increasing demand for sublinear
solutions to clustering problems. Our main contribution is a novel sparsification technique,
where we turn an input graph of 𝑛 nodes and 𝑚 edges into a sparse representation of 𝑂(𝑛) bits2.
We show how to find a (3 + 𝜀)-approximate clustering of the original graph by only processing
the sparsified graph. This approach is appealing for many models of computation tailored for
processing massive data sets such as semi-streaming, where the working space is much smaller
than the size of the input graph. We measure the space as words of 𝑂(log 𝑛) bits, which is just
enough to store an identifier of an edge. We now state our main result and then, introduce the
semi-streaming model and related work.

THEOREM (Main Theorem, informal version). There is a single-pass semi-streaming algorithm
that obtains a (3 + 𝜀)-approximation to correlation clustering. The algorithm works even for
dynamic streams. The approximation guarantee holds in expectation and with high probability3.

State-of-the-Art in Semi-Streaming. In graph streaming, the input graph is given to the
algorithm as an edge stream [25, 26, 28]. In the semi-streaming setting, the algorithm has 𝑂(𝑛)

1 We can instead identify the input graph with 𝐺 = (𝑉, 𝐸+) i.e. the set of negative edges. This does not make a difference
for dynamic semi-streaming as we can modify the stream to first add edges between all vertex pairs, and then the
stream of negative edges can be interpreted as edge deletions.

2 The 𝑂(𝑓 (𝑛))-notation hides polylogarithmic in 𝑛 terms.

3 An event holds with high probability, w.h.p., if it holds with probability at least 1 − 𝑛−𝑐 for a desirably large constant
𝑐 ≥ 1.

3 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

working space to store its state. The goal is to make as few passes over the edge-stream as
possible, ideally just one. It is well known that there is a strong separation between one and
two passes for problems like deterministic coloring [6] and minimum cuts [7]. In the case of
many problems, such as matching approximation or correlation clustering, simply storing the
output might demand Ω(𝑛) words.

For correlation clustering, it has already been observed in [1, 13] that by allowing exp-
onential-time computation, one can first run a streaming algorithm that computes an 𝑂(𝑛)-sized
sketch of the graph that approximately stores the values of all cuts [3] and to then brute-force a
solution by iterating over all possible clusterings. In this way, one obtains a (1+𝜀)-approximation
algorithm that uses 𝑂(𝑛/𝜀2) space and a single pass even for dynamic streams. Note that
since correlation clustering is APX-hard [17], unless P = NP, exponential-time computation is
necessary for obtaining a (1 + 𝜀)-approximation. The focus has therefore been on designing
polynomial-time algorithms that achieve a constant approximation ratio.

Constant approximation ratios have been reached by using the sparse-dense decomposi-
tion [20, 9] in single-pass semi-streaming. On the downside, the approximation ratios, while
being constant, are very high. In the case of [20], they obtain an approximation ratio over 700,
the ratio of [9] is over 6400. An 𝑂(1/𝜀)-pass semi-streaming algorithm was given that obtains a
(3 + 𝜀)-approximation to correlation clustering in [12]. A 5-approximation was given using just
a single pass [13]. Chakrabarty and Makarychev [16] improve the single-pass 5-approximation
algorithm of [13] to obtain a (3 + 𝜀)-approximation. For insertion-only streams, the algorithm of
[16] only requires 𝑂(𝑛) words of space, whereas our algorithm in this case requires 𝑂(𝑛 log2 𝑛)
words of space. However, a downside of the recent works by [12, 13, 16] is that they do not work
in dynamic streams. Our algorithm and its analysis are more robust in the sense that they can
be adapted to dynamic streams by using standard techniques.

REMARK 1.1. Subsequent to our work, the approximation ratio has been improved to 1.876
by [23] using sublinear space in the streaming setting.

1.1 Related Works on Correlation Clustering

In the centralized setting, finding an optimal clustering that minimizes disagreements is known
to be NP-hard [10], which motivates the study of approximation algorithms. We note that there
is another variant of the correlation clustering problem where we are interested in maximizing
agreements. An agreement corresponds to clustering together positive edges and separating
negative edges. This variant is also NP-hard since the optimum solutions are the same for
the maximization and the minimization problems. However for approximate solutions, the
two variants are very different. For maximizing agreements, a trivial algorithm consisting in
forming one single cluster or only single node clusters yields a 1/2-approximation. Furthermore,

4 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

0.7664-approximation and 0.7666-approximation algorithms are known, even for weighted
graphs [29, 17].

In this paper, we focus on the minimizing disagreements problem. The first work to
breach the integrality gap of 2 for the standard LP relaxation of the problem was due to [22,
21], it gives an approximation ratio of (1.73 + 𝜀) through rounding a solution to the Sherali-
Adams relaxation. The current state-of-the-art approximation ratio is 1.437 due to [15], which is
obtained by rounding the solution to the cluster LP. The cluster LP is exponentially-sized but
it can be approximately solved in polynomial time and it has the advantage that we can do
rounding without having to deal with correlated rounding errors.

The simple and well-known PIVOT algorithm, yields a 3-approximation [4] and is not based
on solving an LP. The PIVOT algorithm works as follows.

In each sequential step, pick a node 𝑢 uniformly at random.
Create a cluster 𝐶 that contains 𝑢 and all of its neighbors in the current graph.
Remove 𝐶 from the graph and recurse on the remaining graph.

An equivalent formulation is through a randomized greedy Maximal Independent Set (MIS),
where we pick a random permutation of the nodes and iterate over the nodes according to the
permutation. In each step, the current node 𝑣 is selected to the MIS and its neighbors removed
from the graph, unless 𝑣 was removed in an earlier step. Through the randomized greedy MIS,
one can obtain an 𝑂(log log Δ)-pass algorithm for a 3-approximation in semi-streaming [1].

Due to this connection to MIS, implementing the PIVOT algorithm in semi-streaming is
also provably hard. There is an Ω̃(𝑛2) space lower bound for computing an MIS in a single-pass
of a stream of edges [24] and any semi-streaming algorithm using 𝑂(𝑛 · poly log(𝑛)) space for
finding an MIS with constant probability of success requires Ω(log log 𝑛) passes [8]. Nevertheless,
variants of the PIVOT algorithm have been successfully shown to achieve good approximations.
Our algorithm, and the works of [12, 13, 16] discussed earlier are all variants of the PIVOT
algorithm.

Prior Work and Dynamic Streams We now elaborate on the details of [13, 16] and explain
why it does not extend to dynamic streams. To compute the 5-approximation, [13] first picks a
random permutation of the nodes and for each node maintains a pointer to the neighbor with the
smallest rank in the permutation throughout the stream. A partial clustering is obtained based
on these pointers and then unclustered nodes are put into singleton clusters. The algorithm has
a linear space requirement for insertion-only streams. The authors of [16] improve on this work
by implementing a similar scheme but keep track of the 𝑘 smallest rank neighbors for each node.
They show that this extension gives a (3 + 𝑂(1/𝑘))-approximation. Their approach requires
𝑂(𝑘𝑛) words of space in insertion-only streams. However, finding the smallest rank neighbor for
each node seems fundamentally challenging since computing a minimum in dynamic streams

5 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

is provably hard. Our algorithm on the other hand can be implemented in dynamic streams
with only a poly log 𝑛 space overhead, while giving the same (3 + 𝜀)-approximation guarantee.

1.2 A High Level Technical Overview of Our Contributions

Our main contribution is a graph sparsification technique inspired by the approaches that
simulate the greedy MIS to approximate correlation clustering. In the previous aforementioned
works based on directly simulating the greedy MIS, the progress guarantee is given by a double
exponential drop in the maximum degree or the number of nodes in the graph leading to
𝑂(log log Δ) and 𝑂(log log 𝑛) pass algorithms. Moreover, the handle used to obtain this degree
drop is the following: Consider the random permutation over the nodes. After processing the
first 𝑡 nodes, we can guarantee that the maximum degree is at most 𝑂(𝑛 log 𝑛)/𝑡 w.h.p. (see for
example [1]). Furthermore, after the maximum degree is 𝑑, a prefix of length roughly 𝑛/

√
𝑑 of

the random permutation contains 𝑂(𝑛) edges. Then we can iterate over the permutation and
get the guarantee that the maximum degree of the remaining graph is 𝑂(

√
𝑑 log 𝑛).

For a single pass semi-streaming algorithm, this approach seems fundamentally insuffi-
cient, as it relies on the progress related to the maximum degree of the graph. In our approach,
we give a modified process that effectively gives a 3-approximation in expectation (as in the
greedy process), but only for almost all nodes. For this exposition, suppose that we have a 𝑑

regular graph for a sufficiently large 𝑑. After we process the “prefix” containing the first Θ(𝑛/𝑑)
nodes in the permutation, we expect that the degree of each node 𝑢 has dropped by a significant
factor or a neighbor of 𝑢 has joined the MIS.

The key idea is that if a node 𝑢 is not part of this prefix, it is unlikely to join the MIS
after this prefix is processed. We leverage this idea as follows. Prior to the simulation of the
randomized greedy MIS, we “set aside” all nodes whose rank in the permutation is considerably
larger than 𝑛/𝑑. The graph on the nodes with rank at most 𝑛/𝑑 corresponds roughly to a set of
nodes sampled with probability 1/𝑑, which we show to contain 𝑂(𝑛) edges.

We process the prefix graph (i.e. the graph induced by sampled nodes) by running a greedy
MIS algorithm on it. This corresponds to running the PIVOT algorithm on the prefix graph that
does not contain any nodes that are set aside. From prior work [4], we almost immediately get
that we do not lose more than a factor of 3 from the optimum on the nodes clustered by the MIS
on the sampled graph (Lemma 3.6).

For the nodes that are set aside, we need more work. By carefully choosing the prefix
length, we show that the degree of each node in the input graph drops by at least a factor
of (1 − 𝜀), with high probability, due to the greedy MIS (Lemma 3.7). We can charge each
edge 𝑒 between a PIVOT node and a node set aside to the greedy MIS analysis. We then give
a counting argument that shows that only an 𝜀 factor of the edges are between the nodes set
aside (Lemma 3.9). Hence, we can charge those to the PIVOT analysis and pay only an additive
𝜀 factor in the approximation.

6 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

By setting the sampling probability appropriately, this line of attack works also for the
non-regular case. This idea is the basic building block for our results. We note that in this
sampling step, we add a log 𝑛 and an 𝜀 term into the sampling probability in order to obtain a
degree drop large enough for our approximation analysis and to make sure all guarantees hold
with high probability.

1.3 The Semi-Streaming Model.

In the semi-streaming model, the input graph is not stored centrally, but an algorithm has access
to the edges one by one in an input stream. A single-pass semi-streaming algorithm has 𝑂(𝑛)
working space that it can use to store its state and is allowed to go through the stream only once.

In the dynamic setting, the input stream consists of arbitrary edge insertions and deletions.
Formally, the input stream is a sequence 𝑆 = ⟨𝑠1, 𝑠2, ...⟩ where 𝑠𝑖 = (𝑒𝑖 , 𝛿𝑖) where 𝑒𝑖 encodes
an arbitrary undirected edge and 𝛿𝑖 ∈ {−1, 1}. The multiplicity of an edge 𝑒 is defined as
𝑓𝑒 =

∑
𝑖:𝑒𝑖=𝑒 𝛿𝑖 . Since the input graph is simple, we assume that 𝑓𝑒 ∈ {0, 1} throughout the stream

for all 𝑒. At the end of the stream, we have 𝑓𝑒 = 1 if 𝑒 belongs to the input graph and 0 otherwise.
In the insertion-only setting, the input stream consists only of edge insertions, i.e. 𝛿𝑖 = 1 for all 𝑖.

For the sake of clarity, we describe here how the stream of edges is chosen. We assume that
the graph is fixed before the algorithm executes, but the edges updates arrive in an adversarial
order. The edge updates are revealed by the adversary, depending on the choices made by the
algorithm so far. Although it is not explicitly stated, [13, 16] assume this setting for insertion-only
streams. Our algorithm also works in this setting even for dynamic streams.

Organization of the Paper

The paper is organized as follows. In section 2, we introduce the Truncated-Pivot algorithm
(Algorithm 1) for correlation clustering and show how it can be implemented in a single-pass
in the dynamic and insertion-only semi-streaming models. In section 3, we show that the
Truncated-Pivot algorithm returns a (3 + 𝜀)-approximation of an optimum clustering.

2. The Truncated-PivotCorrelation Clustering Algorithm

In this section, we give the Truncated-Pivot algorithm for correlation clustering, which forms
the basis for the semi-streaming implementation. The high-level idea of our algorithm is to
compute a randomized greedy MIS with a small twist. Informally, we exclude nodes whose
degree is likely to drop significantly before they are processed in the greedy MIS algorithm,
where the MIS nodes will correspond to the PIVOT nodes, or simply pivots. This then allows us
to effectively ignore a large fraction of the nodes that will never be chosen as pivots.

7 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

Input: Graph 𝐺 = (𝑉, 𝐸+), each node 𝑣 ∈ 𝑉 knows its degree deg(𝑣)
in 𝐺

1: Fix a random permutation 𝜋 over the nodes.
2: Initially, all nodes are unclustered and interesting.
3: A node 𝑢 marks itself uninteresting if 𝜋𝑢 ≥ 𝜏𝑢 where 𝜏𝑢 = 𝑐

𝜀 ·
𝑛 log 𝑛
deg(𝑢)

4: Let 𝐺store be the graph induced by the interesting nodes.
5: Let I be the output of running greedy MIS on 𝐺store with ordering 𝜋.

6: Nodes in I become cluster centers (pivots).
7: Each node 𝑢 ∈ 𝑉 \ I joins the cluster of the smallest rank pivot

neighbor 𝑣, if 𝜋𝑣 < 𝜏𝑢.
8: Each unclustered node forms a singleton cluster.

Algorithm 1. Truncated-Pivot

In Section 3 we will prove the following theorem that gives a guarantee on the cost of the
clustering returned by Algorithm 1.

THEOREM 2.1 (Main Theorem, formal version). For any 𝜀 ∈ (0, 1/4), the Truncated-Pivot
algorithm (Algorithm 1) is a (3+𝜀)-approximation algorithm to the Correlation Clustering problem.
The approximation guarantee is in expectation.

2.1 Implementation in Dynamic Streams

Here we describe and analyze Algorithm 2, which implements Truncated-Pivot in the dynamic
semi-streaming model. We begin with the observation that in order to simulate Algorithm 1,
we only need to store the edges incident to interesting nodes. This is because we run a greedy
MIS on the graph induced by the interesting nodes, and in Line 7, we only cluster vertices that
are neighbors of pivot (i.e. interesting) nodes.

According to Line 3 of Algorithm 1, a node 𝑢 marks itself uninteresting if 𝜋𝑢 ≥ 𝜏𝑢 where
𝜏𝑢 = 𝑐𝑛 log 𝑛/𝜀 deg(𝑢). This is equivalent to saying that 𝑢 marks itself uninteresting if deg(𝑢) ≥
𝜎𝑢 where 𝜎𝑢 = 𝑐𝑛 log 𝑛/𝜀𝜋𝑢. Therefore, if the stream was insertion-only, we could only store the
edges of 𝑢 as long as deg(𝑢) < 𝜎𝑢.

The main challenge with dynamic streams is that we need to keep track of the incident
edges of a node even if deg(𝑢) ≥ 𝜎𝑢, because its degree could go down later in the stream, and
it could become interesting again. To overcome this, we will maintain a 𝑘-sparse recovery data

8 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

structure for the incident edges of each node, that allow us to recover the (< 𝜎𝑢) incident edges
of each interesting node 𝑢 at the end of the stream deterministically. This strategy is described
more formally in Algorithm 2.

The following lemma describes a deterministic 𝑘-sparse recovery data structure, which
follows from Lemma 9 in [11] (by substituting 𝑛 = 𝑘, 𝑢 = 𝑛, and 𝑟 = 1 for our use case).

LEMMA 2.2 (Lemma 9, [11]). There exists a deterministic data structure, 𝑘-sparse recovery
with parameter 𝑘, that that maintains a sketch of stream 𝐼 (involving insertions and deletions of
elements from [𝑛]) and can recover all of 𝐼 ’s elements if 𝐼 contains at most 𝑘 distinct elements. It
uses 𝑂(𝑘 log 𝑛) bits of space and can be updated in 𝑂(log2 𝑘) amortized operations.

Note that Lemma 2.2 does not give any guarantees if the stream contains more than 𝑘

distinct elements. In this case, the output might be something completely meaningless. But in
our use case, this only happens for uninteresting nodes, and we don’t want to recover their
incident edges anyway. Therefore, we are able to deterministically recover all the edges incident
on interesting nodes at the end of the stream.

Input: Graph 𝐺 = (𝑉, 𝐸) as a dynamic stream of edge insertions and
deletions

1: Fix a random permutation 𝜋 over the nodes.
2: Initially, all nodes 𝑢 are unclustered and interesting, deg(𝑢) = 0,

and 𝜎𝑢 = 𝑐
𝜀 ·

𝑛 log 𝑛
𝜋𝑢

.
3: For each node 𝑢, we initialize a 𝜎𝑢-sparse recovery data structure

for the adjacency vector of 𝑢 (the row of the adjacency matrix of 𝐺

that corresponds to 𝑢).
4: Upon receiving the 𝑖𝑡ℎ element of the stream, 𝑠𝑖 = (𝑒𝑖, 𝛿𝑖) where

𝑒𝑖 = {𝑢, 𝑣}, we update deg(𝑢), deg(𝑣), and the sparse recovery data
structures associated with 𝑢 and 𝑣.
At the end of the stream:

5: A node 𝑢 marks itself uninteresting if deg(𝑢) ≥ 𝜎𝑢.
6: We retrieve all incident edges of interesting nodes using the

𝜎𝑢-sparse recovery structures for all 𝑢.
7: Simulate Lines 4 to 8 of Algorithm 1.

Algorithm 2. Dynamic Semi-Streaming Truncated-Pivot

9 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

We now prove a bound on the space requirement of Algorithm 2. Note that for insertion-
only streams we can get the same space guarantee by simply storing the (< 𝜎𝑢) incident edges
of all interesting nodes 𝑢.

LEMMA 2.3. Algorithm 2 requires 𝑂(𝑛 log2(𝑛)/𝜀) words of space.

PROOF . For node 𝑢, 𝜎𝑢-sparse recovery requires 𝑂(𝜎𝑢 · log 𝑛) bits of space, where 𝜎𝑢 =

𝑐𝑛 log 𝑛/𝜀𝜋𝑢. Since, each node requires one single 𝜎𝑢-sparse recovery structure, the total amount
of memory required to store and maintain all 𝜎𝑢-sparse recovery structures throughout the
algorithm is: ∑︁

𝑢∈𝑉
𝜎𝑢 · log 𝑛 =

𝑛∑︁
𝑖=1

𝑐𝑛 log2 𝑛

𝜀 · 𝑖 =
𝑐𝑛

𝜀
log2 𝑛 ·

𝑛∑︁
𝑖=1

1
𝑖
= 𝑂(𝑛 log3 𝑛/𝜀)

because the 𝑛𝑡ℎ harmonic number is 𝐻𝑛 = 𝑂(log 𝑛). For each node, storing the current degree
and the node identifier only requires 𝑂(log 𝑛) bits of memory, which makes the memory nec-
essary for the algorithm 𝑂(𝑛 log3 𝑛/𝜀) bits. Since each word contains 𝑂(log 𝑛) bits, the lemma
follows. ■

THEOREM 2.4. Algorithm 2 computes a (3 + 𝜀)-approximation in expectation of an optimum
clustering in a single pass of the dynamic semi-streaming model, and it requires 𝑂(𝑛 log2(𝑛)/𝜀)
words of space.

PROOF . By Lemma 2.2, in Algorithm 2, all edges with an interesting endpoint can be recovered.
Hence, Algorithm 2 works with the same set of edges as Algorithm 1 when computing the
clustering, thus implying that both algorithms return the same clustering.

Since Theorem 2.1 implies that Algorithm 1 outputs a clustering with expected cost that
is a (3 + 𝜀)-approximation, then Algorithm 2 does as well. Additionally, Lemma 2.3 states that
Algorithm 2 requires 𝑂(𝑛 log2(𝑛)/𝜀) words of space throughout the stream. ■

REMARK 2 .5. We can run Algorithm 1 independently 𝑂(log 𝑛) times and return the best
solution to get a w.h.p. approximation guarantee using standard probability amplification argu-
ments. This adds an additional log 𝑛 factor to the space requirement. The lowest cost clustering
can be found in the same pass by (approximately) evaluating the cost of each clustering on a
cut-sparsifier [2] (see Appendix A of [13] for more details).

3. Approximation Analysis of Truncated-Pivot

The goal of this section is to prove the approximation guarantee of the Truncated-Pivot algorithm.
For a more comfortable analysis, we prove the approximation guarantee for a sequential version
that produces the same output as Algorithm 1 for each permutation. Following is the main
result of this section.

10 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

THEOREM 3.1. For any 𝜀 ∈ (0, 1/4), Sequential Truncated-Pivot (Algorithm 3) is a (3 + 𝜀)-
approximation algorithm to the correlation clustering problem. The approximation guarantee is
in expectation.

A Sequential Process. Consider the following (sequential) algorithm and refer to Algorithm 3
for a pseudocode representation. Initially, each node is considered active. For each node 𝑢, we
store the degree deg(𝑢) of 𝑢 in the input graph. We pick a random permutation 𝜋 on the nodes
and in each iteration, we pick a node following the permutation. If this node is still active, it
is chosen as a pivot and we create a pivot cluster consisting of the pivot node and its active
neighbors (Line 7 of Algorithm 3). The clustered nodes then become inactive and will not be
chosen as pivots later.

Input: Graph 𝐺 = (𝑉, 𝐸+), each node is active in the beginning. Let
deg(𝑢) = |𝑁(𝑢) | be the initial degree of node 𝑢

1: Pick a random permutation 𝜋 over the nodes.
2: for iteration 𝑖 = 1, 2, . . . ⊲ Iterate over 𝜋

3: do
4: Let ℓ B 𝑐

𝜀 ·
𝑛 log 𝑛

𝑖 ⊲ 𝑐 is a well-chosen constant.

5: Let 𝑢 ∈ 𝑉 be the 𝑖𝑡ℎ node in 𝜋.
6: Each active node 𝑣 with deg(𝑣) ≥ ℓ becomes inactive and creates

a singleton cluster
7: If 𝑢 is active, create a pivot cluster 𝐶 consisting of 𝑢 and

its active neighbors.
8: Each node in 𝐶 becomes inactive.

Algorithm 3. Sequential Truncated-Pivot

Additionally, in iteration 𝑖, we check whether each active node 𝑣 has a degree significantly
larger than (𝑛 log 𝑛)/𝑖. If so, we expect that the previous pivot choices have removed a large
fraction of the neighbors of 𝑣 from the graph. In this case, 𝑣 becomes a singleton cluster (Line 6
in Algorithm 3) and we charge the remaining edges of 𝑣 to the edges incident on neighbors that
joined some pivot clusters in previous iterations. Notice that the edges of 𝑣 that got removed
before iteration 𝑖 can be due to a neighbor joining a pivot cluster or due to creating a singleton
cluster. As a technical challenge, we must show that most of the neighbors joined pivot clusters.
Before the approximation analysis, we show in Lemma 3.2 that Algorithm 1 and Algorithm 3
produce the same clustering if they sample the same random permutation.

11 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

3.1 Equivalence with Truncated-Pivot

LEMMA 3.2. Fix a (random) permutation 𝜋 over the nodes of 𝐺 = (𝑉, 𝐸). Running the Sequential
Truncated-Pivot (Algorithm 3) with 𝜋 outputs the same clustering as running the Truncated-Pivot
(Algorithm 1) with 𝜋.

PROOF . Our goal is to show that both algorithms output the same clustering. First, we show
that in both cases, the singleton clusters are the same. Then, we show that in both cases the
greedy MIS runs on the same subgraph, hence outputting the same pivot clusters.

Consider a node 𝑢 that is active in the beginning of iteration 𝑖 (𝑖 ≤ 𝜋𝑢), and becomes a
singleton cluster due to Line 6 of Algorithm 3. By definition, 𝑖 is the smallest integer such that
deg(𝑢) ≥ 𝑐

𝜀 ·
𝑛
𝑖 and therefore, 𝑖 = ⌈𝜏𝑢⌉. Since 𝑖 ≤ 𝜋𝑢, we have deg(𝑢) ≥ 𝑐

𝜀 ·
𝑛
𝜋𝑢

, which corresponds
to 𝑢 being uninteresting in Algorithm 1. Since 𝑢 is in a singleton cluster, it did not join any pivot
cluster, implying that no neighbor of 𝑢 was picked as a pivot before 𝑢 became a singleton cluster
(i.e. ∀𝑣 ∈ 𝑁 (𝑢), 𝜋𝑣 > 𝑖 or 𝑣 was clustered before iteration 𝜋𝑣). Hence, no neighbor 𝑣 of 𝑢 s.t.
𝜋𝑣 < ⌈𝜏𝑢⌉ becomes a pivot. Since 𝜋𝑣 is an integer, this is equivalent to saying no neighbor 𝑣

of 𝑢 s.t. 𝜋𝑣 < 𝜏𝑢 becomes a pivot, so by Line 7 of Algorithm 1, 𝑢 creates a singleton cluster in
Algorithm 1 as well.

Now consider a node 𝑢 that creates a singleton cluster in Algorithm 1. Node 𝑢 must
have been labeled uninteresting (implying 𝜋𝑢 ≥ 𝜏𝑢), and 𝑢 can neither be a pivot nor have a
neighboring pivot 𝑣 satisfying 𝜋𝑣 < 𝜏𝑢. By definition of 𝜏𝑢, iteration ⌈𝜏𝑢⌉ is the smallest iteration
such that deg(𝑢) ≥ 𝑐

𝜀 ·
𝑛

⌈𝜏𝑢⌉ . This implies that 𝑢 must be active at the beginning of iteration ⌈𝜏𝑢⌉
in Algorithm 3, and forms a singleton cluster in that iteration.

Since the nodes forming singleton clusters in both algorithms are the same, the subgraph
induced by nodes not forming singleton clusters 𝐺

[
𝑉 \𝑉 sin] is the same in both cases. Both

algorithms find a greedy MIS on𝐺
[
𝑉 \𝑉 sin] , which implies that the pivot nodes will be the same

in both cases. Finally, we observe that in both algorithms, a non-pivot node 𝑢 joins the cluster
of the first neighbor 𝑣 s.t. 𝜋𝑣 < 𝜏𝑢. Hence, the pivot clusters are the same for both Algorithm 3
and Algorithm 1. ■

3.2 Analyzing the Pivot Clusters

As the first step of our approximation analysis, we bound the number of disagreements caused
by the pivot nodes and their respective clusters. The analysis is an adaptation of the approach
by [4], where we only focus on a subset of the nodes.

Recall the PIVOT algorithm [4] that computes a greedy MIS. Initially, each node is con-
sidered active. The PIVOT algorithm picks a random permutation of the nodes and iteratively
considers each node in the permutation. For each active node 𝑢 (iterating over the permutation),
PIVOT forms a cluster with the active neighbors of 𝑢. The cluster is then deleted from the graph
by marking the nodes in the new cluster inactive. This is repeated until the graph is empty, i.e.,

12 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

all the nodes are clustered. The PIVOT algorithm gives a solution with the expected cost being a
3-approximation of the optimum solution.

The 3-approximation given by the PIVOT algorithm is due to the nature of the mistakes
that can be made through the clustering process. Consider 𝑢, 𝑣, 𝑤 ∈ 𝑉 : if 𝑒1 B {𝑢, 𝑣} and
𝑒2 B {𝑣, 𝑤} are in 𝐸+ but 𝑒3 B {𝑤, 𝑢} ∈ 𝐸−, then clustering those nodes has to produce at least
one mistake. The triplet (𝑒1, 𝑒2, 𝑒3) is called a bad triangle. Because a bad triangle induces at
least one mistake in any clustering, even an optimum one, the number of disjoint bad triangles
gives a lower bound on the disagreement produced by an optimum clustering. In the case of the
pivot algorithm, since only direct neighbors of a pivot are added to a cluster, then the following
mistakes can happen. Either two neighbors are included in the same cluster being dissimilar,
which includes a negative edge in the cluster (the pivot was the endpoint of two positive edges
in a bad triangle), or the pivot was an endpoint of the negative edge in a bad triangle which
implies that only one positive edge of this bad triangle is included in the cluster and the second
positive edge is cut. The authors of [4] show that the expected number of mistakes produced by
the PIVOT algorithm is the sum of the probability that we make a mistake on every single bad
triangle (not necessarily disjoint) in the graph. The 3-approximation is obtained by comparing
this expected cost to the cost of a packing LP which is a lower bound on the cost of an optimum
clustering. Our analysis for the mistakes caused by the pivot clusters (Lemmas 3.5 and 3.6) is
almost the same as in the previous work [4]. Our analysis of the singleton clusters requires us
to have an explicit handle on the positive disagreements between the pivot clusters and the
singleton clusters, provided by the analysis of the pivot clusters.

The Cost of Pivot Clusters in Sequential Truncated-Pivot. Let us phrase the expected cost
of pivot clusters of Sequential Truncated-Pivot (Line 7 of Algorithm 3). Recall that a bad triangle
refers to a 3-cycle with two positive and one negative edge.

DEF IN IT ION 3.3. Consider the set of all bad triangles 𝑇 , and let 𝑡 ∈ 𝑇 be a bad triangle on
nodes 𝑢, 𝑣 and 𝑤. Define 𝐴𝑡 to be the event that, in some iteration, all three nodes are active
and one of {𝑢, 𝑣, 𝑤} is chosen as a pivot (Line 7 in Algorithm 3). Let 𝑝𝑡 = Pr[𝐴𝑡].

DEF IN IT ION 3.4. Let 𝐶pivot be the cost, i.e., the number of disagreements induced by the pivot
clusters (Line 7 in Algorithm 3). For a pivot cluster 𝐶 created in iteration 𝑖, the disagreements
include (1) the negative edges inside 𝐶 and (2) the positive edges from nodes in 𝐶 to nodes
that are active in iteration 𝑖 and not contained in 𝐶. The edges that correspond to positive
disagreements caused by the pivot clusters are said to be cut by the pivot clusters.

LEMMA 3.5. Let 𝑇 be the set of bad triangles in the input graph. Then, E[𝐶pivot] ≤ ∑
𝑡∈𝑇 𝑝𝑡.

PROOF . Consider a bad triangle 𝑡 ∈ 𝑇 and suppose that in some iteration 𝑖 all nodes in 𝑡 are
active and one of them is chosen as a pivot node (Line 7 in Algorithm 3), i.e. the event 𝐴𝑡 happens

13 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

at iteration 𝑖. Then, our algorithm creates one disagreement on this triangle on one of its edges
𝑒 ∈ 𝑡. We charge this disagreement on edge 𝑒.

We observe that each triangle 𝑡 can be charged at most once: An edge 𝑒 ∈ 𝑡 is charged only
if it is not incident on the pivot node and hence, cannot be charged twice in the same iteration.
Hence, at most one edge of 𝑡 can be charged in one iteration. Furthermore, if 𝑒 ∈ 𝑡 gets charged
in iteration 𝑖, its endpoints will not be both active in any later iteration 𝑗 > 𝑖. This implies that 𝑡
cannot be charged again in another iteration.

Also, creating clusters with neighbors can only create disagreements on bad triangles. Since
dropping certain nodes of the graph cannot create bad triangles, the number of disagreements
created on a subgraph by this process cannot be higher than the number of disagreements
created on the whole graph. Therefore, E[𝐶pivot] ≤ ∑

𝑡∈𝑇 𝑝𝑡. ■

Bounding OPT. In order to give an approximation guarantee to the clustered nodes, we first
define the following fractional LP. It was argued by [4] that the cost of the optimal solution LP𝑂𝑃𝑇

to this LP is a lower bound for the cost OPT of the optimal solution for correlation clustering.
Following are the primal and dual forms of this LP, respectively:

min
∑︁

𝑒∈𝐸−∪𝐸+
𝑥𝑒, s.t.

∑︁
𝑒∈𝑡

𝑥𝑒 ≥ 1,∀𝑡 ∈ 𝑇 max
∑︁
𝑡∈𝑇

𝑦𝑡, s.t.
∑︁
𝑡∋𝑒

𝑦𝑡 ≤ 1,∀𝑒 ∈ 𝐸− ∪ 𝐸+, (1)

where 𝑇 is the set of all bad triangles (non-necessarily disjoint) of the graph. By weak
duality we have,

∑
𝑡∈𝑇 𝑦𝑡 ≤ LP𝑂𝑃𝑇 ≤ 𝑂𝑃𝑇 for all dual feasible solutions { 𝑦𝑡}𝑡∈𝑇 . Therefore, in

order to get an approximation guarantee, it suffices to compare the cost 𝐶pivot with a carefully
constructed dual feasible solution.

LEMMA 3.6. Let 𝐶pivot be the number of disagreements incurred by the pivot clusters (Defini-
tion 3.4). We have that E[𝐶pivot] ≤ 3 · OPT.

PROOF . Let 𝑇 be the set of bad triangles. Recall the event 𝐴𝑡 that all nodes in 𝑡 ∈ 𝑇 are active
and one of the nodes in 𝑡 is chosen as a pivot (Line 7 of Algorithm 3) and let Pr[𝐴𝑡] = 𝑝𝑡. Our
goal is to use the probabilities 𝑝𝑡 to find a feasible solution to the packing LP defined above.

Let 𝐷𝑒 be the event that Algorithm 3 creates a disagreement on 𝑒 and notice that 𝐷𝑒 ∧ 𝐴𝑡

denotes the event that the disagreement caused by 𝐴𝑡 was charged on 𝑒. By the definition of 𝐴𝑡,
this disagreement cannot be due to creating singleton clusters in Line 6 of Algorithm 3. Consider
now the event 𝐴𝑡 and observe that, as we are iterating over a random permutation of the nodes,
each node in 𝑡 has the same probability to be chosen as the pivot (recall that the nodes of 𝑡 are all
active by definition of 𝐴𝑡). Furthermore, exactly one choice of pivot can cause 𝐷𝑒 for each 𝑒 ∈ 𝑡.
Hence, we have that Pr[𝐷𝑒 | 𝐴𝑡] = 1/3 and therefore, Pr[𝐷𝑒 ∧ 𝐴𝑡] = Pr[𝐷𝑒 | 𝐴𝑡] · Pr[𝐴𝑡] = 𝑝𝑡/3.

Consider the assignment 𝑦𝑡 = 𝑝𝑡/3. We now show that this is a feasible solution for the
dual LP in equation (1). This is because for all edges 𝑒 ∈ 𝐸+ ∪ 𝐸− the events {𝐷𝑒 ∧ 𝐴𝑡}𝑡∋𝑒 are

14 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

disjoint from each other, and hence we have∑︁
𝑡∋𝑒

𝑦𝑡 =
∑︁
𝑡∋𝑒

𝑝𝑡
3

=
∑︁
𝑡∋𝑒

Pr[𝐷𝑒 ∧ 𝐴𝑡] = Pr[∪𝑡∋𝑒𝐷𝑒 ∧ 𝐴𝑡] ≤ 1 .

As this is a feasible packing, we have that
∑

𝑡∋𝑒 𝑝𝑡/3 ≤ OPT. Finally, by Lemma 3.5

E[𝐶pivot] ≤
∑︁
𝑡

𝑝𝑡 = 3 ·
∑︁
𝑡∈𝑇

𝑝𝑡
3

≤ 3 · OPT . ■

3.3 Analyzing the Singleton Clusters

The goal of this section is to bound the number of disagreements caused by the singleton clusters
created in Line 6 of Algorithm 3. The high-level idea is to show that for a node 𝑢 of degree
deg(𝑢), either 𝑢 is clustered by some pivot node after 𝑂(𝑛/deg(𝑢)) iterations or most of its edges
have been cut by pivot clusters. In the latter case, we relate the cost of the remaining edges
of 𝑢 to the ones cut by the pivot clusters, and show that the remaining edges do not incur a
large additional cost. We also need to account for singleton clusters where most of the edges
are incident on other singleton clusters. For this, we will do a counting argument that shows
that there cannot be many singleton clusters that have many edges to other singleton clusters.

Charging the Edges Incident on the Singleton Clusters. Now, our goal is to bound the
number of edges cut by the singleton clusters created in Line 6 of Algorithm 3. For intuition,
consider a node 𝑢 and its neighbors with a smaller degree, and suppose that 𝑢 will not be
included in a pivot cluster. Furthermore, suppose that roughly half of its neighbors have a
smaller degree. If any smaller degree neighbor 𝑣 is chosen according to the random permutation
in the first (roughly) 𝑛/deg(𝑢) iterations, then 𝑣 will be chosen as a pivot. As we will show,
this implies that, in expectation, almost all (roughly a (1 − 𝜀)-fraction) of the smaller degree
neighbors either join a pivot cluster or at least one of them will be chosen as a pivot which would
include 𝑢 in a pivot cluster (Lemma 3.7). Once we have this, we can spread the disagreements on
the remaining 𝜀-fraction of the edges to smaller degree nodes to the edges cut by pivot clusters.
As a technical challenge, we also need to account for nodes who have a few smaller degree
neighbors to begin with. We use a counting argument (Lemma 3.9) to show that a large fraction
of nodes must have many neighbors in pivot clusters, which allows us to also spread the cost of
the nodes with few smaller degree neighbors.

Consider a node 𝑢 and let 𝑁𝑖 (𝑢) be the set of nodes at the beginning of iteration 𝑖 such
that for each 𝑣 ∈ 𝑁𝑖 (𝑢), we have that deg(𝑣) ≤ deg(𝑢) and 𝑣 is not in a pivot cluster. Let
deg𝑖 (𝑢) = |𝑁𝑖 (𝑢) |.

LEMMA 3.7. For each node 𝑢, at the beginning of iteration 𝑖 = ⌈𝜏𝑢⌉ (recall, 𝜏𝑢 = 𝑐
𝜀 ·

𝑛 log 𝑛
deg(𝑢) from

Algorithm 1), the probability that 𝑢 is active and deg𝑖 (𝑢) > 𝜀 · deg(𝑢) is upper bounded by 1/𝑛𝑐/2.

15 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

PROOF . We define 𝐴𝑘 the events that 𝑢 is active at the beginning of iteration 𝑘, and the events
𝐵𝑘 B {{deg𝑘 (𝑢) > 𝜀 deg(𝑢)} ∩ 𝐴𝑘}, ∀ 1 ≤ 𝑘 ≤ 𝑖. We want to show that Pr[𝐵𝑖] ≤ 1/𝑛𝑐/2. A useful
property of these events is that 𝐵𝑘 ⊆ 𝐵𝑘−1, ∀ 1 < 𝑘 ≤ 𝑖.

Using conditional probabilities we get that,

Pr[𝐵𝑖] = Pr[𝐵𝑖 ∩ 𝐵𝑖−1] = Pr[𝐵𝑖 | 𝐵𝑖−1] · Pr[𝐵𝑖−1] =
(

𝑖∏
𝑘=2

Pr[𝐵𝑘 | 𝐵𝑘−1]
)
· Pr[𝐵1] .

In the following, we use the fact that if two events E1 and E2 are such that E1 ⊆ E2, then
Pr[E1] ≤ Pr[E2]. We also use the fact that, conditioning on 𝐵𝑘−1 implies that at the beginning
of iteration 𝑘 − 1, there are at least 𝜀 · deg(𝑢) nodes in 𝑁𝑘−1(𝑢).

Pr[𝐵𝑐
𝑘 | 𝐵𝑘−1] = Pr

[{
deg𝑘 (𝑢) ≤ 𝜀 · deg(𝑢)

}
∪ 𝐴𝑐

𝑘 | 𝐵𝑘−1

]
≥ Pr

[
𝑢 becomes inactive during iteration 𝑘 − 1 | 𝐵𝑘−1

]
≥ Pr

[
a node in 𝑁𝑘−1(𝑢) becomes a pivot during iteration 𝑘 − 1 | 𝐵𝑘−1

]
≥ 𝜀 · deg(𝑢)

𝑛 − 𝑘 + 1
≥ 𝜀 · deg(𝑢)

𝑛
.

Hence, Pr[𝐵𝑘 |𝐵𝑘−1] ≤ 1 − 𝜀 deg(𝑢)/𝑛. We finally get that

Pr[𝐵𝑖] ≤
(
1 − 𝜀 deg(𝑢)

𝑛

) 𝑖−1

≤
(
1 − 𝜀 deg(𝑢)

𝑛

) 𝑖/2

≤ exp
(
−𝜀 deg(𝑢)

2𝑛
· 𝑐
𝜀
· 𝑛 log 𝑛

deg(𝑢)

)
≤ 1

𝑛𝑐/2 . ■

LEMMA 3.8. In all iterations 𝑖, all nodes 𝑢 that are put into singleton clusters in iteration 𝑖 (Line 6
of Algorithm 3) satisfy deg𝑖 (𝑢) ≤ 𝜀 · deg(𝑢) with probability 1 − 1/𝑛𝛼 where 𝛼 B 𝑐/2 − 1 ≫ 2.

PROOF . By Lemma 3.7 and union bound over all nodes, we can say that with probability at
most 1/𝑛𝛼, there exists a node 𝑢 such that at the beginning of iteration 𝑖 = ⌈𝜏𝑢⌉, 𝑢 is active
and deg𝑖 (𝑢) > 𝜀 · deg(𝑢). Therefore, with high probability, for all nodes 𝑢, at the beginning of
iteration 𝑖 = ⌈𝜏𝑢⌉, either 𝑢 is already inactive or deg𝑖 (𝑢) ≤ 𝜀 · deg(𝑢). This implies that, with
high probability, if 𝑢 is put in a singleton cluster (Line 6 of Algorithm 3), which can happen only
in iteration 𝑖 = ⌈𝜏𝑢⌉, we have deg𝑖 (𝑢) ≤ 𝜀 · deg(𝑢). ■

Good Edges and Counting. Consider a positive edge incident on a singleton cluster that
contains a node 𝑢. Suppose that the singleton cluster was created in iteration 𝑖. We define an
edge 𝑒 = {𝑢, 𝑣} to be good if the other endpoint, node 𝑣, was included in a pivot cluster (Line 7
of Algorithm 3) in some iteration 𝑗 < 𝑖. Otherwise, edge 𝑒 is bad. The sets 𝐸good and 𝐸bad give a
partition of 𝐸sin, the set of edges incident to singleton clusters. Intuitively, if an edge is good, we
can charge it to the set 𝐶pivot which we know how to bound through Lemma 3.6. Furthermore,
if we can show that most edges incident on singleton clusters are good, we can bound the cost
of the bad edges.

LEMMA 3.9. Conditioned on the high probability event of Lemma 3.8, |𝐸bad | ≤ 2𝜀 · |𝐸sin |.

16 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

PROOF . For every node 𝑢, we define deg𝑖 (𝑢) = |𝑁𝑖 (𝑢) | where 𝑁𝑖 (𝑢) is the set of neighbors of 𝑢
such that for 𝑣 ∈ 𝑁𝑖 (𝑢), deg(𝑣) ≤ deg(𝑢) and 𝑣 is not in a pivot cluster.

For the analysis, let us consider the following orientation on the bad edges. Consider an
iteration 𝑖, where a node 𝑢 is put into a singleton cluster in Line 6 of Algorithm 3. Notice that
this implies that 𝑖 = ⌈𝜏𝑢⌉. Then, we orient each unoriented edge from 𝑢 to 𝑣 for each neighbor
𝑣 such that deg(𝑣) ≤ deg(𝑢) and 𝑣 is not in a pivot cluster, i.e. we orient all edges between
𝑢 and 𝑁𝑖 (𝑢) from 𝑢 to 𝑁𝑖 (𝑢). Denote the out-degree of a node 𝑢 by degout(𝑢), and notice that
degout(𝑢) = deg𝑖 (𝑢). Notice that degout(𝑢) is a random variable.

Our conditioning on the high probability event of Lemma 3.8 gives deg𝑖 (𝑢) ≤ 𝜀 · deg(𝑢).
Hence, the out-degree of each singleton node 𝑢 verifies degout(𝑢) ≤ 𝜀 · deg(𝑢). Also, by

definition, the out-degree of each non-singleton node is 0.
Let 𝑉 sin be the set of nodes that are put in singleton clusters in Line 6 of Algorithm 3, and

let 1𝑢∈𝑉 sin be the corresponding indicator random variable. Notice that |𝑉 sin | = ∑
𝑢∈𝑉 1𝑢∈𝑉 sin ,

|𝐸bad | and |𝐸sin | are random variables. By definition of the orientation,

|𝐸bad | =
∑︁
𝑢∈𝑉

degout(𝑢) =
∑︁
𝑢∈𝑉

1𝑢∈𝑉 sin · degout(𝑢),

since 1𝑢∈𝑉 sin = 0 implies degout(𝑢) = 0. By using Lemma 3.7, we have that

|𝐸bad | =
∑︁
𝑢∈𝑉

1𝑢∈𝑉 sin · degout(𝑢) ≤
∑︁
𝑢∈𝑉

1𝑢∈𝑉 sin · 𝜀 · deg(𝑢).

By using the handshake lemma, we have that∑︁
𝑢∈𝑉

1𝑢∈𝑉 sin · 𝜀 · deg(𝑢) ≤ 2𝜀 · |𝐸sin | . ■

We now have in hand all the necessary results to be able to prove our main theorem,
which was the following.

THEOREM 3.1. (Restated) For any 𝜀 ∈ (0, 1/4), Sequential Truncated-Pivot (Algorithm 3) is
a (3 + 𝜀)-approximation algorithm to the correlation clustering problem. The approximation
guarantee is in expectation.

PROOF . Recall the following definitions.
We denote the cost of the pivot clusters by 𝐶pivot (see Definition 3.4). This cost also covers
the cost of the positive edges between pivot clusters and singleton clusters that were cut
by the pivot clusters. These edges are called good, and the set of those edges is denoted by
𝐸good.
Bad edges are the positive edges incident on singleton clusters that were not cut by the
pivot cluster. Either they are between singletons or the singleton was created before the
pivot cluster. Denote those edges by 𝐸bad.
𝐸sin = 𝐸good ∪ 𝐸bad

17 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

We can split the cost of Algorithm 3 into two parts. By Lemma 3.6, we have that E[𝐶pivot] ≤
3 · OPT. Let us define 𝐷 to be the event that, for all iterations 𝑖, all nodes 𝑢 that are put in
singleton clusters in iteration 𝑖 satisfy deg𝑖 (𝑢) < 𝜀 ·deg(𝑢). By Lemma 3.8, 𝐷 is a high probability
event. Then, by Lemma 3.9, we have that, conditioning on the high probability event 𝐷,

|𝐸bad | ≤ 2𝜀 · |𝐸sin | ≤ 2𝜀
1 − 2𝜀

· |𝐸good | ≤ 4𝜀 · 𝐶pivot ,

where the last inequality holds because 𝜀 < 1/4. This inequality implies that E[|𝐸bad | | 𝐷] ≤
4𝜀 · E[𝐶pivot | 𝐷]. And therefore,

E[|𝐸bad |] = E[|𝐸bad | | 𝐷] Pr[𝐷] + E[|𝐸bad | | �̄�] · Pr[�̄�]

≤ 4𝜀 · E[𝐶pivot | 𝐷] ·
(
1 − 1

𝑛𝑐

)
+ 𝑛2 · 1

𝑛𝛼

≤ 4𝜀 · E[𝐶pivot | 𝐷] + 1
𝑛𝛼−2 .

Also, notice that,

E
[
𝐶pivot] = E [

𝐶pivot | 𝐷
]
· Pr[𝐷] + E

[
𝐶pivot | �̄�

]
· Pr[�̄�]

≥ E
[
𝐶pivot | 𝐷

]
· Pr[𝐷]

≥ E
[
𝐶pivot | 𝐷

]
·
(
1 − 1

𝑛𝛼

)
≥ E

[
𝐶pivot | 𝐷

]
− 1
𝑛𝛼−2 , since E

[
𝐶pivot | 𝐷

]
≤ 𝑛2.

Which implies that

E
[
𝐶pivot | 𝐷

]
≤ E

[
𝐶pivot] + 1

𝑛𝛼−2 .

By combining the above observations, we have that the expected cost of Algorithm 3 is at
most

E
[
𝐶pivot + |𝐸bad |

]
= E

[
𝐶pivot] + E [

|𝐸bad |
]

≤ E
[
𝐶pivot] + 4𝜀 · E[𝐶pivot | 𝐷] + 1

𝑛𝛼−2

≤ (1 + 4𝜀) · E
[
𝐶pivot] + 1 + 4𝜀

𝑛𝛼−2

≤ (3 + 12𝜀) · OPT + 1 + 4𝜀
𝑛𝛼−2 .

We can substitute 𝜀′ B 12𝜀, where 𝜀 can be arbitrarily small. Notice that if OPT ≥ 1, then
we have that E

[
𝐶pivot + |𝐸bad |

]
≤ (3 + 12𝜀) · OPT, which gives us a (3 + 𝜀′)-approximation in

expectation. ■

REMARK 3.10. If OPT = 0, then the expected cost of our solution is 1/poly(𝑛) according to the
proof above, or equivalently, the expected cost of our solution is 0 with high probability.

18 / 19 M. Cambus, F. Kuhn, E. Lindy, S. Pai, J. Uitto

PROOF OF THEOREM 2.1 . Theorem 2.1 follows from Theorem 3.1 and Lemma 3.2. ■

Acknowledgements

We would like to thank Moses Charikar, Soheil Behnezhad, Weiyun Ma, and Li-Yang Tan for
pointing out an error in an earlier analysis of our correlation clustering algorithm. We would
also like to thank Vihan Shah and Sepehr Assadi for pointing out that our algorithm works
even in dynamic streaming. Finally, we thank Dennis Olivetti and Alkida Balliu for fruitful
discussions.

Mélanie Cambus is supported by Research Council of Finland Grant 334238. Part of this
work was done when Shreyas Pai was a postdoctoral fellow at Aalto University, supported by
Research Council of Finland Grant 334238 and Helsinki Institute for Information Technology
HIIT.

References
[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha,

Andrew McGregor, and Anthony Wirth. Correlation
clustering in data streams. Algorithmica,
83(7):1980–2017, 2021. DOI (3–5)

[2] Kook Jin Ahn and Sudipto Guha. Graph
sparsification in the semi-streaming model.Automata, Languages and Programming, 36thInternatilonal Colloquium, ICALP 2009,
pages 328–338, Berlin, Heidelberg. Springer Berlin
Heidelberg, 2009. DOI (9)

[3] Kook Jin Ahn, Sudipto Guha, and
Andrew McGregor. Analyzing graph structure via
linear measurements. Proceedings of the 2012Annual ACM-SIAM Symposium on DiscreteAlgorithms (SODA), pages 459–467, 2012. DOI
(3)

[4] Nir Ailon, Moses Charikar, and Alantha Newman.
Aggregating Inconsistent Information: Ranking and
Clustering. Journal of the ACM (JACM), 55(5):1–27,
2008. DOI (4, 5, 11–13)

[5] Arvind Arasu, Christopher Ré, and Dan Suciu.
Large-Scale Deduplication with Constraints Using
Dedupalog. Proceedings of the 25th InternationalConference on Data Engineering, ICDE 2009,
pages 952–963, 2009. DOI (2)

[6] Sepehr Assadi, Andrew Chen, and Glenn Sun.
Deterministic graph coloring in the streaming
model. STOC ’22: 54th Annual ACM SIGACTSymposium on Theory of Computing,
pages 261–274, 2022. DOI (3)

[7] Sepehr Assadi and Aditi Dudeja. A simple
semi-streaming algorithm for global minimum cuts.2021 Symposium on Simplicity in Algorithms(SOSA). Society for Industrial and Applied
Mathematics, 2021., pages 172–180. DOI (3)

[8] Sepehr Assadi, Christian Konrad,
Kheeran K. Naidu, and Janani Sundaresan. O(log
log n) passes is optimal for semi-streaming
maximal independent set. Proceedings of the 56thAnnual ACM Symposium on Theory of Computing,
STOC 2024, pages 847–858, Vancouver, BC,
Canada. Association for Computing Machinery,
2024. DOI (4)

[9] Sepehr Assadi and Chen Wang. Sublinear Time
and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions. the Proceedings ofthe Innovations in Theoretical Computer ScienceConference (ITCS), 10:1–10:20, 2022. DOI (3)

[10] Nikhil Bansal, Avrim Blum, and Shuchi Chawla.
Correlation Clustering. Machine learning,
56(1):89–113, 2004. DOI (2, 3)

[11] Neta Barkay, Ely Porat, and Bar Shalem. Efficient
sampling of non-strict turnstile data streams.Theor. Comput. Sci. 590:106–117, 2015. DOI (8)

[12] Soheil Behnezhad, Moses Charikar, Weiyun Ma,
and Li-Yang Tan. Almost 3-Approximate
Correlation Clustering in Constant Rounds. theProceeding of the Symp. on Foundations ofComputer Science (FOCS), pages 720–731, 2022.
DOI (3, 4)

[13] Soheil Behnezhad, Moses Charikar, Weiyun Ma,
and Li-Yang Tan. Single-pass streaming algorithms
for correlation clustering. Proceedings of the 2023Annual ACM-SIAM Symposium on DiscreteAlgorithms (SODA), pages 819–849. SIAM, 2023.
DOI (3, 4, 6, 9)

https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.48550/arXiv.2305.13560
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1109/ICDE.2009.43
https://doi.org/10.48550/arXiv.2109.14891
https://doi.org/10.1137/1.9781611976496.19
https://doi.org/10.1145/3618260.3649763
https://doi.org/10.4230/LIPIcs.ITCS.2022.10
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1016/J.TCS.2015.01.026
https://doi.org/10.48550/arXiv.2205.03710
https://doi.org/10.48550/arXiv.2205.03710
https://doi.org/10.1137/1.9781611977554.ch33
https://doi.org/10.1137/1.9781611977554.ch33

19 / 19 A (3 + 𝜀)-Approximate Correlation Clustering Algorithm in Dynamic Streams

[14] Mélanie Cambus, Fabian Kuhn, Etna Lindy,
Shreyas Pai, and Jara Uitto. A (3 + 𝜀)-approximate
correlation clustering algorithm in dynamic
streams. Proceedings of the 2024 ACM-SIAMSymposium on Discrete Algorithms, SODA 2024,
pages 2861–2880. SIAM, 2024. DOI (1)

[15] Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee,
Shi Li, Alantha Newman, and Lukas Vogl.
Understanding the cluster linear program for
correlation clustering. Proceedings of the 56thAnnual ACM Symposium on Theory of Computing,STOC, pages 1605–1616. ACM, 2024. DOI (4)

[16] Sayak Chakrabarty and Konstantin Makarychev.
Single-pass pivot algorithm for correlation
clustering. keep it simple! Advances in NeuralInformation Processing Systems 36: AnnualConference on Neural Information ProcessingSystems, NeurIPS, 2023. DOI (3, 4, 6)

[17] Moses Charikar, Venkatesan Guruswami, and
Anthony Wirth. Clustering with Qualitative
Information. Journal of Computer and SystemSciences, 71(3):360–383, 2005. DOI (3, 4)

[18] Yudong Chen, Sujay Sanghavi, and Huan Xu.
Improved graph clustering. IEEE Trans. Inf. Theory,
60(10):6440–6455, 2014. DOI (2)

[19] Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar.
Correlation Clustering in Mapreduce. theProceedings of the ACM SIGKDD InternationalConference on Knowledge Discovery and DataMining, pages 641–650, 2014. DOI (2)

[20] Vincent Cohen-Addad, Silvio Lattanzi,
Slobodan Mitrović, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub Tarnawski. Correlation
Clustering in Constant Many Parallel Rounds.International Conference on Machine Learning(ICML), pages 2069–2078, 2021. DOI (3)

[21] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and
Alantha Newman. Handling Correlated Rounding
Error via Preclustering: A 1.73-approximation for
Correlation Clustering. 2023 IEEE 64th AnnualSymposium on Foundations of Computer Science(FOCS), pages 1082–1104, Los Alamitos, CA, USA.
IEEE Computer Society, November 2023. DOI (4)

[22] Vincent Cohen-Addad, Euiwoong Lee, and
Alantha Newman. Correlation clustering with
sherali-adams. 2022 IEEE 63rd Annual Symposiumon Foundations of Computer Science (FOCS),
pages 651–661. IEEE, 2022. DOI (4)

[23] Vincent Cohen-Addad, David Rasmussen Lolck,
Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan, and
Hanwen Zhang. Combinatorial correlation
clustering. Proceedings of the 56th Annual ACMSymposium on Theory of Computing, STOC,
pages 1617–1628, 2024. DOI (3)

[24] Graham Cormode, Jacques Dark, and
Christian Konrad. Independent Sets in
Vertex-Arrival Streams. 46th InternationalColloquium on Automata, Languages, andProgramming (ICALP 2019), volume 132 of LeibnizInternational Proceedings in Informatics (LIPIcs),
45:1–45:14, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.
DOI (4)

[25] Joan Feigenbaum, Sampath Kannan,
Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM J.Comput. 38(5):1709–1727, 2008. DOI (2)

[26] Joan Feigenbaum, Sampath Kannan,
Andrew McGregor, Siddharth Suri, and Jian Zhang.
On Graph Problems in a Semi-Streaming Model.Theor. Comput. Sci. 348(2):207–216, 2005. DOI
(2)

[27] Sungwoong Kim, Sebastian Nowozin,
Pushmeet Kohli, and Chang Yoo. Image
Segmentation Using Higher-Order Correlation
Clustering. IEEE Transactions on Pattern Analysisand Machine Intelligence, 36, 2011. DOI (2)

[28] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends® inTheoretical Computer Science, 1(2):117–236, 2005.
DOI (2)

[29] Chaitanya Swamy. Correlation Clustering:
Maximizing Agreements via Semidefinite
Programming. the Proceedings of the ACM-SIAMSymposium on Discrete Algorithms (SODA),
pages 526–527, 2004. DOI (4)

[30] Grigory Yaroslavtsev and Adithya Vadapalli.
Massively Parallel Algorithms and Hardness for
Single-linkage Clustering under ℓ𝑝-distances. theProceedings of the International Conference onMachine Learning (ICML), pages 5596–5605, 2018.
DOI (2)

2025 :6
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, Jara Uitto.

https://doi.org/10.1137/1.9781611977912.101
https://doi.org/10.1145/3618260.3649749
https://doi.org/10.48550/arXiv.2305.13560
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1109/TIT.2014.2346205
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.48550/arXiv.2106.08448
https://doi.org/10.1109/FOCS57990.2023.00065
https://doi.org/10.48550/arXiv.2207.10889
https://doi.org/10.1145/3618260.3649712
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.1137/070683155
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1109/TPAMI.2014.2303095
https://doi.org/10.1561/0400000002
https://doi.org/10.1561/0400000002
https://doi.org/10.5555/982792.982866
https://doi.org/10.48550/arXiv.1710.01431
https://doi.org/10.48550/arXiv.1710.01431

	Introduction
	Related Works on Correlation Clustering
	A High Level Technical Overview of Our Contributions
	The Semi-Streaming Model.

	The Truncated-Pivot Correlation Clustering Algorithm
	Implementation in Dynamic Streams

	Approximation Analysis of Truncated-Pivot
	Equivalence with Truncated-Pivot
	Analyzing the Pivot Clusters
	Analyzing the Singleton Clusters

	References

