
1 / 75 2025 :8

Regular Languages in the
Sliding Window Model

Received Feb 26, 2024
Revised Nov 11, 2024
Accepted Jan 19, 2025
Published Mar 6, 2025

Key words and phrases
Regular Languages, Streaming
Algorithms, Sliding Window Model

Moses Ganardia � �

Danny Huckeb �
Markus Lohreyb � �

Konstantinos Mamourasc �
Tatiana Starikovskayad �

a Max Planck Institute for
Software Systems (MPI-SWS),
Kaiserslautern, Germany

b Universität Siegen, Germany

c Rice University, Houston, USA

d DI/ENS, PSL Research
University, Paris, France

ABSTRACT. We study the space complexity of the following problem: For a fixed regular
language 𝐿, we receive a stream of symbols and want to test membership of a sliding window
of size 𝑛 in 𝐿. For deterministic streaming algorithms we prove a trichotomy theorem, namely
that the (optimal) space complexity is either constant, logarithmic or linear, measured in the
window size 𝑛. Additionally, we provide natural language-theoretic characterizations of the
space classes. We then extend the results to randomized streaming algorithms and we show
that in this setting, the space complexity of any regular language is either constant, doubly
logarithmic, logarithmic or linear. Finally, we introduce sliding window testers, which can
distinguish whether a sliding window of size 𝑛 belongs to the language 𝐿 or has Hamming
distance> 𝜖𝑛 to 𝐿. We prove that every regular language has a deterministic (resp., randomized)
sliding window tester that requires only logarithmic (resp., constant) space.

1. Introduction

1.1 The sliding window model

Streaming algorithms process a data stream 𝑎1𝑎2𝑎3 · · · of elements 𝑎𝑖 from left to right and have
at time 𝑡 only direct access to the current element 𝑎𝑡. In many streaming applications, elements
are outdated after a certain time, i.e., they are no longer relevant. The sliding window model
is a simple way to model this. A sliding window algorithm computes for each time instant 𝑡 a
value that only depends on the relevant past (the so-called active window) of 𝑎1𝑎2 · · · 𝑎𝑡. There
are several formalizations of the relevant past. One way to do this is to fix a window size 𝑛.

Cite as Moses Ganardi, Danny Hucke, Markus Lohrey, Konstantinos Mamouras,
Tatiana Starikovskaya. Regular Languages in the Sliding Window Model.
TheoretiCS, Volume 4 (2025), Article 8, 1-75.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.8

mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:hucke@eti.uni-siegen.de
mailto:lohrey@eti.uni-siegen.de
https://orcid.org/0000-0002-4680-7198
mailto:mamouras@rice.edu
mailto:tat.starikovskaya@gmail.com

2 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

Then the active window consists at each time instant 𝑡 of the last 𝑛 elements 𝑎𝑡−𝑛+1𝑎𝑡−𝑛+2 · · · 𝑎𝑡
(here we assume that 𝑎𝑖 is a fixed padding symbol if 𝑖 ⩽ 0). In the literature this is also called
the fixed-size model. Another sliding window model that can be found in the literature is the
variable-size model; see e.g. [7]. In this model, the arrival of new elements and the expiration of
old elements can happen independently, which means that the window size can vary.1 This
allows to model for instance time-based windows, where data items arrive at irregular time
instants and the active window contains all data items that arrive in the last 𝑛 seconds for a
fixed 𝑛. The special case of the variable-size model, where old symbols do not expire, is the
classical streaming model.

A general goal in the area of sliding window algorithms is to avoid the explicit storage of
the active window, which would require Ω(𝑛) space for a window size 𝑛, and, instead, to work
in considerably smaller space, e.g. polylogarithmic space with respect to the window size 𝑛. A
detailed introduction into the sliding window model can be found in [1, Chapter 8].

The (fixed-size) sliding window model was introduced in the seminal paper of Datar et
al. [27] where the authors considered the basic counting problem: Given a window size 𝑛 and a
stream of bits, maintain a count of the number of 1’s in the window. One can easily observe that
an exact solution would require Θ(𝑛) bits. Intuitively, the reason is that the algorithm cannot
see the bit which is about to expire (the 𝑛-th most recent bit) without storing it explicitly; this is
in fact the main difficulty in most sliding window algorithms. However, Datar et al. show that
with O(1𝜖 · log2 𝑛) bits one can maintain an approximate count up to a multiplicative factor of
1 ± 𝜖. In Section 1.3.6 below we briefly discuss further work on sliding window algorithms.

A foundational problem that has been surprisingly neglected so far is the language recog-
nition problem over sliding windows: Given a language 𝐿 ⊆ Σ∗ and a stream of symbols over a
finite alphabet Σ, maintain a data structure which allows to query membership of the active
window in 𝐿. In other words, we want to devise a streaming algorithm which, after every input
symbol, either accepts if the current active window belongs to 𝐿, or rejects otherwise. This prob-
lem finds applications in complex event processing, where the goal is to detect patterns in data
streams. These patterns are usually described in some language based on regular expressions;
see e.g. [26, 89] for more details. For the standard streaming model, where input symbols do not
expire, some work on language recognition problems has been done; see Section 1.3.7 below.

EXAMPLE 1.1. Consider the analysis of the price of a stock in order to identify short-term
upward momentum. The original stream is a time series of stock prices, and it is pre-processed
in the following way: over a sliding window of 5 seconds compute the linear regression of the
prices and discretize the slope into the following values: P2 (high positive), P1 (low positive), Z
(zero), N1 (low negative), N2 (high negative). This gives rise to a derived stream of symbols in

1 The reader can also think of a queue data structure, where letters can be added to the right and removed at the left,
the latter without retrieving the identity of the letter.

3 / 75 Regular Languages in the Sliding Window Model

the alphabet Σ = {P2,P1,Z,N1,N2}, over which we describe the upward trend pattern: (i) no
occurrence ofN2, (ii) at most two occurrences ofN1, (iii) and any two occurrences of Z orN1 are
separated by at least three positive symbols. The upward trend pattern can be described as the
intersection of the language defined by the following regular expression 𝑒𝑖𝑖 and the complement
of the language defined by 𝑒𝑖:

𝑒𝑖 = Σ∗ · N1 · Σ∗ · N1 · Σ∗ · N1 · Σ∗

𝑒𝑖𝑖 = (P2 + P1)∗ ·
((Z +N1) · (P2 + P1) [3,∞)

)∗ · (𝜀 + Z +N1) · (P2 + P1)∗

We want to monitor continuously whether the window of the last hour matches the upward
trend pattern, as this is an indicator to buy the stock and ride the upward momentum. Our
results will show that there is a space efficient streaming algorithm for this problem, which can
be synthesized from the regular expressions 𝑒𝑖 and 𝑒𝑖𝑖 . ■

In this paper we focus on querying regular languages over sliding windows. Unfortunately,
there are simple regular languages which require Ω(𝑛) space in the sliding window model,
i.e., one cannot avoid maintaining the entire window explicitly. However, for certain regular
languages, such as for the upward trend pattern from above, we present sublinear space
streaming algorithms. Before we explain our results in more detail, let us give examples of
sliding window algorithms for simple regular languages.

EXAMPLE 1.2. Let Σ = {𝑎, 𝑏} be the alphabet. In the following examples we refer to the
fixed-size sliding window model.

(i) Let 𝐿 = Σ∗𝑎 be the set of all words ending with 𝑎. A streaming algorithm can maintain
the most recent symbol of the stream in a single bit, which is also the most recent
symbol of the active window. Hence, the space complexity of 𝐿 is O(1) in the sliding
window model.

(ii) Let 𝐿 = Σ∗𝑎Σ∗ be the set of all words containing 𝑎. If 𝑛 ∈ N is the window size, then a
streaming algorithm can maintain the position 1 ⩽ 𝑖 ⩽ 𝑛 (from right to left) of the most
recent 𝑎-symbol in the active window or set 𝑖 = ∞ if the active window contains no
𝑎-symbols. Let us assume that the initial window is 𝑏𝑛 and initialize 𝑖 := ∞. On input 𝑎
we set 𝑖 := 1 and on input 𝑏 we increment 𝑖 and then set 𝑖 := ∞ if 𝑖 > 𝑛. The algorithm
accepts if and only if 𝑖 ⩽ 𝑛. Since the position 𝑖 can be stored using O(log 𝑛) bits, we
have shown that 𝐿 has space complexity O(log 𝑛) in the sliding window model.

(iii) Let 𝐿 = 𝑎Σ∗ be the set of all words starting with 𝑎. We claim that any (deterministic)
sliding window algorithm for 𝐿 and window size 𝑛 ∈ N (let us call it P𝑛) must store at
least 𝑛 bits, which matches the complexity of the trivial solution where the window
is stored explicitly. More precisely, the claim is that P𝑛 reaches two distinct memory
states on any two distinct words 𝑥 = 𝑎1 · · · 𝑎𝑛 ∈ Σ𝑛 and 𝑦 = 𝑏1 · · · 𝑏𝑛 ∈ Σ𝑛. Suppose that
𝑎𝑖 ≠ 𝑏𝑖 . Then we simulate P𝑛 on the streams 𝑥𝑏𝑖−1 and 𝑦𝑏𝑖−1, respectively. The suffixes

4 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

(or windows) of length 𝑛 for the two streams are 𝑎𝑖 · · · 𝑎𝑛𝑏𝑖−1 and 𝑏𝑖 · · · 𝑏𝑛𝑏𝑖−1. Since
exactly one of the two windows belongs to 𝐿, the algorithm P𝑛 must accept exactly one
of the streams 𝑥𝑏𝑖−1 and 𝑦𝑏𝑖−1. In particular, P𝑛 must reach two distinct memory states
on the words 𝑥𝑏𝑖−1 and 𝑦𝑏𝑖−1, and therefore P𝑛 must have also reached two distinct
memory states on the prefixes 𝑥 and 𝑦, as claimed above. Therefore, P𝑛 must have at
least |Σ𝑛 | = 2𝑛 memory states, which require 𝑛 bits of memory. ■

1.2 Results

Let us now present the main results of this paper. The precise definitions of all used notions can
be found in the main part of the paper. We denote by F𝐿(𝑛) (resp., V𝐿(𝑛)) the space complexity
(measured in bits) of an optimal sliding window algorithm for the language 𝐿 in the fixed-size
(resp., variable-size) sliding window model. Here, 𝑛 denotes the fixed window size for the
fixed-size model, whereas for the variable-size model 𝑛 denotes that maximal window size
among all time instants when reading an input stream.

Our first result is a trichotomy theorem for the sliding window model, stating that the
deterministic space complexity is always either constant, logarithmic, or linear. This holds for
both the fixed- and the variable-size model. Furthermore, we provide natural characterizations
for the three space classes. For this, we need the following language classes:

Reg is the class of all regular languages.
Len is the class of all regular length languages, i.e., regular languages 𝐿 ⊆ Σ∗ such that for
every 𝑛 ⩾ 0, either Σ𝑛 ⊆ 𝐿 or Σ𝑛 ∩ 𝐿 = ∅.
ST is the class of all suffix testable languages [79, Section 5.3], i.e., finite Boolean com-
binations of languages of the form Σ∗𝑤 where 𝑤 ∈ Σ∗ (note that these languages are
regular).2

LI is the class of all regular left ideals, i.e., languages of the form Σ∗𝐿 for 𝐿 ⊆ Σ∗ regular.

We emphasize that the three defined language properties only make sense with respect to
an underlying alphabet. If L1, . . . ,L𝑛 are classes of languages over some alphabet Σ, then
⟨L1, . . . ,L𝑛⟩ denotes the Boolean closure of the classes L1, . . . ,L𝑛, which is the class of all finite
Boolean combinations of languages 𝐿 ∈ ⋃𝑛

𝑖=1 L𝑖 . We also use the following asymptotic notation
in our results: For functions 𝑓 , 𝑔 : N→ R⩾0, 𝑓 (𝑛) = Ω∞(𝑔 (𝑛)) holds if 𝑓 (𝑛) ⩾ 𝑐 · 𝑔 (𝑛) for some
𝑐 > 0 and infinitely many 𝑛 ∈ N. Furthermore, 𝑓 (𝑛) = Θ∞(𝑔 (𝑛)) holds if 𝑓 (𝑛) = O(𝑔 (𝑛)) and
𝑓 (𝑛) = Ω∞(𝑔 (𝑛)). Now we can state our first main result.

2 For the results presented in this section, one could equivalently define ST as the class of all languages Σ∗𝑤 without
taking the Boolean closure.

5 / 75 Regular Languages in the Sliding Window Model

THEOREM 1.3. Let 𝐿 ⊆ Σ∗ be regular. The space complexity F𝐿(𝑛) is either Θ(1), Θ∞(log 𝑛), or
Θ∞(𝑛). Moreover, we have:

F𝐿(𝑛) = Θ(1) ⇐⇒ 𝐿 ∈ ⟨ST,Len⟩
F𝐿(𝑛) = Θ∞(log 𝑛) ⇐⇒ 𝐿 ∈ ⟨LI,Len⟩ \ ⟨ST,Len⟩
F𝐿(𝑛) = Θ∞(𝑛) ⇐⇒ 𝐿 ∈ Reg \ ⟨LI,Len⟩

The space complexity V𝐿(𝑛) is either Θ(1), Θ(log 𝑛), or Θ(𝑛). Moreover, we have:

V𝐿(𝑛) = Θ(1) ⇐⇒ 𝐿 ∈ {∅, Σ∗}
V𝐿(𝑛) = Θ(log 𝑛) ⇐⇒ 𝐿 ∈ ⟨LI,Len⟩ \ {∅, Σ∗}
V𝐿(𝑛) = Θ(𝑛) ⇐⇒ 𝐿 ∈ Reg \ ⟨LI,Len⟩

Theorem 1.3 describes which regular patterns can be queried over sliding windows in
sublinear space: Regular left ideals over a sliding window express statements of the form
“recently in the stream some regular event happened”. Dually, complements of left ideals over a
sliding window express statements of the form “at all recent times in the stream some regular
event happened”.

Most papers on streaming algorithms make use of randomness. For many problems,
randomized streaming algorithms are more space efficient than deterministic streaming algo-
rithms; see e.g. [3] and the remarks at the beginning of Section 4. So, it is natural to consider
randomized sliding window algorithms for regular languages. Our randomized sliding window
algorithms have a two-sided or one-sided error of 1/3 (any constant error probability below 1/2
would yield the same results). For a one-sided error we obtain exactly the same space trichotomy
for regular languages as for deterministic algorithms (Theorem 4.18). This changes if we allow
a two-sided error. With Fr

𝐿(𝑛) we denote the optimal space complexity of a randomized sliding
window algorithm for 𝐿 in the fixed size model and with two-sided error. Our second main
result says that the functions Fr

𝐿(𝑛) for 𝐿 regular fall into four randomized space complexity
classes: constant, doubly logarithmic, logarithmic, and linear space. A language 𝐿 is suffix-free
if 𝑥 𝑦 ∈ 𝐿 and 𝑥 ≠ 𝜀 implies 𝑦 ∉ 𝐿. We denote by SF the class of all regular suffix-free languages.

THEOREM 1.4. Let 𝐿 ⊆ Σ∗ be regular. The randomized space complexity Fr
𝐿(𝑛) of 𝐿 in the

fixed-size sliding window model is either Θ(1), Θ∞(log log 𝑛), Θ∞(log 𝑛), or Θ∞(𝑛). Furthermore:

Fr
𝐿(𝑛) = Θ(1) ⇐⇒ 𝐿 ∈ ⟨ST,Len⟩

Fr
𝐿(𝑛) = Θ∞(log log 𝑛) ⇐⇒ 𝐿 ∈ ⟨ST, SF,Len⟩ \ ⟨ST,Len⟩

Fr
𝐿(𝑛) = Θ∞(log 𝑛) ⇐⇒ 𝐿 ∈ ⟨LI,Len⟩ \ ⟨ST, SF,Len⟩

Fr
𝐿(𝑛) = Θ∞(𝑛) ⇐⇒ 𝐿 ∈ Reg \ ⟨LI,Len⟩

Figure 1 compares the deterministic and the randomized space complexity in the fixed-size
model (we only show the upper bounds in order to not overload the figure). We also consider

6 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

randomized algorithms in the variable-size model. In this setting we obtain again the same
space trichotomy for regular languages as for the deterministic case; see Lemma 4.21.

By Theorems 1.3 and 1.4, some (simple) regular languages (e.g. 𝑎{𝑎, 𝑏}∗) do not admit
sublinear space (randomized) algorithms. This gives the motivation to seek for alternative
approaches in order to achieve efficient algorithms for all regular languages. We take our
inspiration from the property testing model introduced by Goldreich et al. [61]. In this model,
the task is to decide (with high probability) whether the input has a particular property 𝑃, or
is “far” from any input satisfying 𝑃, while querying as few symbols of the input as possible.
Alon et al. prove that every regular language has a property tester making only O(1) many
queries [2]. The idea of property testing was also combined with the streaming model, yielding
streaming property testers, where the objective is not to minimize the number of queries but
the required memory [34, 38]. We define sliding window testers, which, using as little space as
possible, must accept if the window (of size 𝑛) belongs to the language 𝐿 and must reject if the
window has Hamming distance at least 𝛾(𝑛) from every word in 𝐿. Here 𝛾(𝑛) ⩽ 𝑛 is a function
that is called the Hamming gap of the sliding window testers. We focus on the fixed-size model.

Two of our main results concerning sliding window testers that we show in Section 5 are
the following:

THEOREM 1.5. Let 𝐿 ⊆ Σ∗ be regular.
(i) There exists a deterministic sliding window tester for 𝐿 with constant Hamming gap that

uses space O(log 𝑛).
(ii) For every 𝜖 > 0 there exists a randomized sliding window tester for 𝐿 with two-sided

error and Hamming gap 𝜖𝑛 that uses space O(1/𝜖).

Section 5 contains additional results that give a rather precise tradeoff between space
complexity and the Hamming gap function 𝛾(𝑛). In addition we also study sliding window
testers with a one-sided error and prove optimality for most of our results by providing matching
lower bounds. See Section 5.2 for a complete discussion of our results for sliding window testers.

1.3 Related work

This paper builds on four conference papers [43, 45, 46, 47]. To keep this paper coherent, we
decided to omit some of the results from [43, 45, 46, 47]. In this section, we briefly discuss these
results as well as other related work.

1.3.1 Uniform setting

In all our results we assume a fixed regular language 𝐿. The space complexity is only measured
with respect to the window size. It is a natural question to ask how the space bounds depend
on the size of a finite automaton (deterministic or nondeterministic) for 𝐿. This question is

7 / 75 Regular Languages in the Sliding Window Model

Reg

〈LI,Len〉

〈ST,Len〉

Reg

〈LI,Len〉

〈ST, SF,Len〉

〈ST,Len〉

O(𝑛)

O(log 𝑛)

O(log log 𝑛)

O(1)

space complexity deterministic
one-sided error

two-sided error

Figure 1. The space complexity of regular languages in the fixed-size sliding window model. Reg:
regular languages, LI: regular left ideals, ST: suffix testable languages, SF: regular suffix-free languages,
Len: regular length languages. The angle brackets ⟨·⟩ denote Boolean closure.

considered in [43]. It is shown that, if A is a DFA (resp., NFA) with 𝑚 states for a language
𝐿 ∈ ⟨LI,Len⟩, then V𝐿(𝑛) = O(2𝑚 ·𝑚 · log 𝑛) (resp., V𝐿(𝑛) = O(4𝑚 · log 𝑛)). Furthermore, for every
𝑘 ⩾ 1 there exists a language 𝐿𝑘 ⊆ {0, . . . , 𝑘}∗ recognized by a deterministic automaton with 𝑘+3
states such that 𝐿𝑘 ∈ ⟨LI,Len⟩ and 𝐹𝐿𝑘 (𝑛) ⩾ (2𝑘−1) · (log 𝑛−𝑘). A binary encoding of the words
in 𝐿𝑘 yields a subexponential lower bound over a fixed alphabet [41, Theorem 4.45]. Further
results on the uniform space complexity for languages in ⟨LI,Len⟩ as well as in ⟨ST,Len⟩ can
be found in [41, Section 4.3].

1.3.2 Membership in the space classes

In view of Theorem 1.3 it is natural to ask for the complexity of checking whether a given
(non)deterministic finite automaton accepts a language from ⟨ST,Len⟩ or ⟨LI,Len⟩, respectively.
Both problems are shown in [43] to be NL-complete for deterministic automata and Pspace-
complete for nondeterministic automata. We remark that for the class ⟨ST, SF,Len⟩ from
Theorem 1.4 the complexities of the corresponding membership problems are open.

1.3.3 Other models of randomness

In Section 1.2 we did not specify the underlying model of randomized sliding window algorithms
(that is used in Theorem 1.4) in a precise way. Let us be a bit more specific: we require that a
randomized sliding window algorithm for a language 𝐿 running on an input stream 𝑠 outputs
at every time instant a correct answer on the question whether the current window belongs
to 𝐿 or not with high probability (say at least 2/3). This is not the only model of randomized
sliding window algorithms that can be found in the literature. A stronger model requires that
with high probability the randomized sliding window algorithm outputs at every time instant

8 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

a correct answer. So the difference is between “∀ time instants: Pr[answer correct] ⩾ 2/3”
and “Pr[∀ time instants: answer correct] ⩾ 2/3”. A randomized sliding window algorithm that
fulfills the latter (stronger) correctness criterion is called strictly correct in [44]. This model is
for instance implicitly used in [13, 27]. In [44] it is shown that every strictly correct randomized
sliding window algorithm can be derandomized without increasing the space complexity. This
result is shown in a very general context for arbitrary approximation problems. The proof in [44]
needs input streams of length doubly exponential in the window size for the derandomization.
In contrast, if one restricts to input streams of length polynomial in the window size then strictly
correct randomized sliding window algorithms can be more space efficient than ordinary
randomized sliding window algorithms (as defined in this paper) [44]. The intermediate case of
exponentially long input streams is open.

Finally, we emphasize that our randomized sliding window algorithms are not necessarily
adversarially robust, i.e., an adversary may fool the algorithm by observing the internal memory
state and picking the input symbols adaptively.

1.3.4 Context-free languages

It is natural to ask to which extent our results hold for context-free languages. This question
is considered in [49, 42]. Let us briefly discuss the results. In [49] it is shown that if 𝐿 is a
context-free language with 𝐹𝐿(𝑛) ⩽ log 𝑛 − 𝜔(1) then 𝐿 must be regular and 𝐹𝐿(𝑛) = Θ(1).
Hence, the gap between constant space and logarithmic space for regular languages also exists
for context-free languages. In contrast, the gap between logarithmic space and linear space for
regular languages does not extend to all context-free languages. In [49], the authors construct
examples of context-free languages 𝐿 with 𝐹𝐿(𝑛) = Θ∞(𝑛1/𝑐) and 𝑉𝐿(𝑛) = Θ(𝑛1/𝑐) for every
natural number 𝑐 ⩾ 2. These languages are not deterministic context-free, but [49] also contains
examples of deterministic one-turn one-counter languages 𝐿 and 𝐿′ with 𝐹𝐿(𝑛) = Θ∞(log2 𝑛)
and 𝑉𝐿′ (𝑛) = Θ(log2 𝑛). In [42], the author studies the space complexity of visibly pushdown
languages (a language class strictly in-between the regular and deterministic context-free
languages with good closure and decidability properties [5]). It is shown that for every visibly
pushdown language the space complexity in the variable-size sliding window model is either
constant, logarithmic or linear in the window size. Hence, the space trichotomy that we have
seen for regular languages also holds for visibly pushdown languages in the variable-size model.
Whether the visibly pushdown languages also exhibit the space trichotomy in the fixed-size
model is open.

1.3.5 Update times

In this paper, we only considered the space complexity of sliding window algorithms. Another
important complexity measure is the update time of a sliding window algorithm, i.e., the worst

9 / 75 Regular Languages in the Sliding Window Model

case time that is spent per incoming symbol for updating the internal data structures. In [88], it
is shown that for every regular language 𝐿 there exists a deterministic sliding window algorithm
(for the fixed-size model) with constant update time. The underlying machine model of the
sliding window algorithm is the RAM model, where basic arithmetic operations on registers of
bit length O(log 𝑛) (with 𝑛 the window size) need constant time. In fact, the algorithm in [88] is
formulated in a more general context for any associative aggregation function. The case of a
regular language 𝐿 is obtained by applying the algorithm from [88] for the syntactic monoid
of 𝐿. In [48] the result of [88] is extended to visibly pushdown languages.

1.3.6 Further work on sliding windows

We have already mentioned the seminal work of Datar et al. on the sliding window model [27],
where the authors considered the problem of estimating the number of ones in the sliding
window. In the same paper, Datar et al. extend their result for the basic counting problem
to arbitrary functions which satisfy certain additivity properties, e.g. 𝐿𝑝-norms for 𝑝 ∈ [1, 2].
Braverman and Ostrovsky introduced the smooth histogram framework [17], to compute so-
called smooth functions over sliding windows, which include all 𝐿𝑝-norms and frequency
moments. Further work on computing aggregates, statistics and frequent elements in the
sliding window model can be found in [7, 9, 12, 13, 16, 28, 35, 55, 56]. The problem of sampling
over sliding windows was first studied in [8] and later improved in [18]. As an alternative to
sliding windows, Cohen and Strauss consider the problem of maintaining stream aggregates
where the data items are weighted by a decay function [25].

1.3.7 Language recognition in the classical streaming model

Whereas language recognition in the sliding window model has been neglected prior to our
work, there exists some work on streaming algorithms for formal languages in the standard
setting, where the streaming algorithm reads an input word 𝑤 and at the end has to decide
whether 𝑤 belongs to some language. Clearly, for regular languages, this problem can be solved
in constant space. Streaming algorithms for various subclasses of context-free languages have
been studied in [10, 38, 63, 69, 72]. Related to this is the work on querying XML documents in
the streaming model [11, 67, 85].

1.3.8 Streaming pattern matching

Related to our work is the problem of streaming pattern matching, where the goal is to find
all occurrences of a pattern (possibly with some bounded number of mismatches) in a data
stream; see e.g. [66, 82, 57, 54, 19, 21, 22, 23, 24, 58, 60, 59, 80, 86] and search of repetitions in
streams [33, 32, 31, 53, 52, 73, 74].

10 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

1.3.9 Dynamic membership problems for regular languages

A sliding window algorithm can be viewed as a dynamic data structure that maintains a dynamic
string 𝑤 (the window content) under very restricted update operations. Dynamic membership
problems for more general updates that allow to change the symbol at an arbitrary position
have been studied in [6, 39, 40]. As in our work, a trichotomy for the dynamic membership
problem of regular languages has been obtained in [6] (but the classes appearing the trichotomy
in [6] are different from the classes that appear in our work).

1.4 Outline

The outline of the paper is as follows: In Section 2 we give preliminary definitions and introduce
the fixed-size sliding window model and the variable-size sliding window model. In Section 3
we study deterministic sliding window algorithms for regular languages and prove the space
trichotomy and the characterizations of the space classes (Theorem 1.3). In Section 4 we turn
to randomized sliding window algorithms and prove the space tetrachotomy (Theorem 1.4).
Finally, in Section 5 we present deterministic and randomized sliding window property testers
for regular languages (Theorem 1.5).

2. Preliminaries

2.1 Words and languages

An alphabet Σ is a nonempty finite set of symbols. A word over an alphabet Σ is a finite sequence
𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛 of symbols 𝑎1, . . . , 𝑎𝑛 ∈ Σ. The length of𝑤 is the number |𝑤| = 𝑛. The empty word
is denoted by 𝜀 whereas the lunate epsilon 𝜖 denotes small positive numbers. The concatenation
of two words 𝑢, 𝑣 is denoted by 𝑢 · 𝑣 or 𝑢𝑣. The set of all words over Σ is denoted by Σ∗. A subset
𝐿 ⊆ Σ∗ is called a language over Σ.

Let𝑤 = 𝑎1 · · · 𝑎𝑛 ∈ Σ∗ be a word. Any word of the form 𝑎1 · · · 𝑎𝑖 is a prefix of𝑤, a word of the
form 𝑎𝑖 · · · 𝑎𝑛 is a suffix of 𝑤, and a word of the form 𝑎𝑖 · · · 𝑎 𝑗 is a factor of 𝑤. The concatenation
of two languages 𝐾, 𝐿 is 𝐾𝐿 = {𝑢𝑣 | 𝑢 ∈ 𝐾, 𝑣 ∈ 𝐿}. For a language 𝐿 we define 𝐿𝑛 inductively
by 𝐿0 = {𝜀} and 𝐿𝑛+1 = 𝐿𝑛𝐿 for all 𝑛 ∈ N. The Kleene-star of a language 𝐿 is the language
𝐿∗ =

⋃
𝑛∈N 𝐿𝑛. Furthermore, we define 𝐿⩽𝑛 =

⋃
0⩽𝑘⩽𝑛 𝐿

𝑘 and 𝐿<𝑛 =
⋃

0⩽𝑘<𝑛 𝐿
𝑘.

Let 𝐿 ⊆ Σ∗ be a language. We say that 𝐿 separates two words 𝑥, 𝑦 ∈ Σ∗ with 𝑥 ≠ 𝑦 if
|{𝑥, 𝑦} ∩ 𝐿| = 1. We say that 𝐿 separates two languages 𝐾1, 𝐾2 ⊆ Σ∗ if 𝐾1 ⊆ 𝐿 and 𝐾2 ∩ 𝐿 = ∅, or
𝐾2 ⊆ 𝐿 and 𝐾1 ∩ 𝐿 = ∅.

2.2 Automata and regular languages

For good introductions to the theory of formal languages and automata we refer to [15, 62, 68].

11 / 75 Regular Languages in the Sliding Window Model

The standard description for regular languages are finite automata. Let Σ be a finite
alphabet. A nondeterministic finite automaton (NFA) is a tuple

A = (𝑄, Σ, 𝐼 , Δ, 𝐹),

where 𝑄 is the finite set of states, 𝐼 ⊆ 𝑄 is the set of initial states, Δ ⊆ 𝑄 × Σ × 𝑄 is the set of
transitions, and 𝐹 ⊆ 𝑄 is the set of final states. A run ofA on a word 𝑤 = 𝑎1 · · · 𝑎𝑛 ∈ Σ∗ is a finite
sequence 𝜋 = 𝑞0𝑎1𝑞1𝑎2𝑞2 · · · 𝑞𝑛−1𝑎𝑛𝑞𝑛 ∈ 𝑄(Σ𝑄)∗ such that (𝑞𝑖−1, 𝑎𝑖 , 𝑞𝑖) ∈ Δ for all 1 ⩽ 𝑖 ⩽ 𝑛. We
call 𝜋 successful if 𝑞0 ∈ 𝐼 and 𝑞𝑛 ∈ 𝐹. The language accepted byA is defined as

L(A) = {𝑤 ∈ Σ∗ | there exists a successful run ofA on 𝑤}.

A language 𝐿 ⊆ Σ∗ is regular if it is accepted by some NFA. The size |A| is defined as the number
of states.

A (left-)deterministic finite automaton (DFA) is an NFA A = (𝑄, Σ, 𝐼 , Δ, 𝐹), where 𝐼 = {𝑞0}
has exactly one initial state 𝑞0, and for all 𝑝 ∈ 𝑄 and 𝑎 ∈ Σ there exists exactly one transition
(𝑝, 𝑎, 𝑞) ∈ Δ. We view Δ as a transition function 𝛿 : 𝑄 × Σ → 𝑄 and write A in the format
A = (𝑄, Σ, 𝑞0, 𝛿, 𝐹). The transition function 𝛿 can be extended to a right action · : 𝑄 × Σ∗ → 𝑄 of
the free monoid Σ∗ on the state set𝑄 by setting 𝑞 ·𝜀 = 𝑞 and defining inductively 𝑞 ·𝑢𝑎 = 𝛿(𝑞 ·𝑢, 𝑎)
for all 𝑞 ∈ 𝑄, 𝑢 ∈ Σ∗, and 𝑎 ∈ Σ. We writeA(𝑤) instead of 𝑞0 · 𝑤. It is known that any NFA can
be turned into an equivalent DFA by the power set construction.

We also consider automata with (possibly) infinitely many states as our formal model for
streaming algorithms. A deterministic automatonA has the same formatA = (𝑄, Σ, 𝑞0, 𝛿, 𝐹) as
a DFA but we drop the condition that 𝑄 must be finite. We use the notations from the previous
paragraph for general deterministic automata as well.

It is well-known that for every regular language 𝐿 there exists a minimal DFAA𝐿 for 𝐿,
which is unique up to isomorphism and whose states are the Myhill-Nerode classes of 𝐿. This
construction can be carried out for every language 𝐿 and yields a deterministic automatonA𝐿

for 𝐿 such that for every deterministic automaton B for 𝐿, we have that B(𝑥) = B(𝑦) implies
A𝐿(𝑥) = A𝐿(𝑦) for all 𝑥, 𝑦 ∈ Σ∗ [30, Chapter III, Theorem 5.2]. We call this automaton the
minimal deterministic automaton for 𝐿.

2.3 Streaming algorithms

A stream is a finite sequence of elements 𝑎1 · · · 𝑎𝑚, which arrive element by element from left
to right. So, it is just a finite word over some alphabet. In this paper, the elements 𝑎𝑖 are always
symbols from a finite alphabet Σ. A streaming algorithm reads the symbols of the input stream
from left to right. At time instant 𝑡 the algorithm only has access to the symbol 𝑎𝑡 and the
internal storage, which is encoded by a bit string. The goal of the streaming algorithm is to
compute a function 𝜑 : Σ∗ → 𝑌 , where Σ is a finite alphabet and 𝑌 is a set of output values.
For the remainder of this paper, we only consider the Boolean case, i.e., 𝑌 = {0, 1}; in other

12 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

words, 𝜑 is the characteristic function of a language 𝐿. Furthermore, we abstract away the
actual computation and only analyze the memory requirement.

Formally, a deterministic streaming algorithm is the same as a deterministic automaton P
and we say that P is a streaming algorithm for the language L(P). The letter P stands for
program. If P = (𝑀, Σ, 𝑚0, 𝛿, 𝐹) then the states from 𝑀 are usually called memory states. We
require 𝑀 ≠ ∅ but allow 𝑀 to be infinite. The space of P (or number of bits used by P) is given by
𝑠(P) = log |𝑀 | ∈ R⩾0 ∪ {∞}. Here and in the rest of the paper, we denote with log the logarithm
with base two, i.e., we measure space in bits. If 𝑠(P) = ∞ we will measure the space restricted
to input streams where some parameter is bounded (namely the window size); see Section 2.5.

We remark that many streaming algorithms in the literature only produce a single answer
after completely reading the entire stream. Also, the length of the stream is often known
in advance. However, in the sliding window model we rather assume an input stream of
unbounded and unknown length, and need to compute output values for every window, i.e., at
every time instant.

In the following, we introduce the sliding window model in two different variants: the
fixed-size sliding window model and the variable-size sliding window model.

2.4 Fixed-size sliding window model

We fix an arbitrary padding symbol □ ∈ Σ. Given a stream 𝑥 = 𝑎1𝑎2 · · · 𝑎𝑚 ∈ Σ∗ and a window
size 𝑛 ∈ N, we define last𝑛(𝑥) ∈ Σ𝑛 by

last𝑛(𝑥) =


𝑎𝑚−𝑛+1𝑎𝑚−𝑛+2 · · · 𝑎𝑚, if 𝑛 ⩽ 𝑚,

□𝑛−𝑚𝑎1 · · · 𝑎𝑚, if 𝑛 > 𝑚,

which is called the window of size n, or the active or current window. In other words, last𝑛(𝑥) is
the suffix of length 𝑛, padded with □-symbols on the left. We view □𝑛 as the initial window; its
choice is completely arbitrary.

Let 𝐿 ⊆ Σ∗ be a language. The sliding window problem SW𝑛(𝐿) for 𝐿 and window size 𝑛 ∈ N
is the language

SW𝑛(𝐿) = {𝑥 ∈ Σ∗ | last𝑛(𝑥) ∈ 𝐿}.

Note that for every 𝐿 and every 𝑛, SW𝑛(𝐿) is regular. A sliding window algorithm (SW-algorithm)
for 𝐿 and window size 𝑛 ∈ N is a streaming algorithm for SW𝑛(𝐿). The function F𝐿 : N→ R⩾0 is
defined by

F𝐿(𝑛) = inf{𝑠(P𝑛) | P𝑛 is an SW-algorithm for 𝐿 and window size 𝑛}. (1)

It is called the space complexity of 𝐿 in the fixed-size sliding window model. Note that F𝐿(𝑛) < ∞
since SW𝑛(𝐿) is regular. A subtle point is that the space complexity F𝐿(𝑛) of a language 𝐿 in
general depends on the underlying alphabet. A simple example is 𝐿 = 𝑎∗ which has complexity

13 / 75 Regular Languages in the Sliding Window Model

F𝐿(𝑛) = O(1) over the singleton alphabet {𝑎} whereas it has complexity F𝐿(𝑛) = Θ(log 𝑛)
over the alphabet {𝑎, 𝑏} (the latter follows from our results). Here, it is also important that the
padding symbol□ belongs to the alphabet Σ over which the language 𝐿 is defined. An alternative
definition would be to take a fresh padding symbol □ ∉ Σ and define last𝑛(𝑥) and SW𝑛(𝐿) as
above. For instance, for 𝐿 = 𝑎∗ we would obtain SW𝑛(𝐿) = {𝑎𝑖 | 𝑖 ⩾ 𝑛}, whose minimal DFA
has 𝑛 + 1 states. Thus, the space complexity would be Ω(log 𝑛) instead of O(1). Note that these
differences only concern the space complexity during the first 𝑛 steps (until the window is filled
up). Sliding window algorithms are usually used for streams that are much longer than the
window size. So it might be acceptable, if during a short initial phase the space complexity is
higher than for the rest of the stream.

We draw similarities to circuit complexity, where a language 𝐿 ⊆ {0, 1}∗ is recognized
by a family of circuits (C𝑛)𝑛∈N in the sense that C𝑛 recognizes the slice 𝐿 ∩ {0, 1}𝑛. Similarly,
the sliding window problem SW𝑛(𝐿) is solely defined by the slice 𝐿 ∩ Σ𝑛. If we speak of an
SW-algorithm for 𝐿 and omit the window size 𝑛, then this parameter is implicitly universally
quantified, meaning that there exists a family of streaming algorithms (P𝑛)𝑛∈N such that every
P𝑛 is an SW-algorithm for 𝐿 and window size 𝑛.

LEMMA 2.1. For any language 𝐿 we have F𝐿(𝑛) = O(𝑛).

PROOF . A trivial SW-algorithm P𝑛 for 𝐿 explicitly stores the active window of size 𝑛 in a queue
so that the algorithm can always test whether the window belongs to 𝐿. Formally, the state
set of P𝑛 is Σ𝑛 and it has transitions of the form (𝑏𝑢, 𝑎, 𝑢𝑎) for 𝑎, 𝑏 ∈ Σ, 𝑢 ∈ Σ𝑛−1. Viewed as an
edge-labeled graph this automaton is also known under the name de Bruijn graph [20]. Since
every word 𝑤 ∈ Σ𝑛 can be encoded with O(log |Σ| · 𝑛) bits and |Σ| is a constant, the algorithm
uses O(𝑛) bits. ■

Depending on the language 𝐿 there are more space efficient solutions. Usually, sliding
window algorithms are devised in the following way:

Specify some information or property 𝐼 (𝑤) of the active window 𝑤 and show that it can
be maintained by a streaming algorithm. This means that given 𝐼 (𝑏𝑢) and 𝑎 ∈ Σ one can
compute 𝐼 (𝑢𝑎).
Show that one can decide 𝑤 ∈ 𝐿 from the information 𝐼 (𝑤).

Notice that the complexity function F𝐿(𝑛) is not necessarily monotonic. For instance, let 𝐿 be
the intersection of 𝑎Σ∗ and the set of words with even length. By Example 1.2(iii), we have
F𝐿(2𝑛) = Θ(𝑛) but clearly we have F𝐿(2𝑛 + 1) = O(1) since for odd window sizes the algorithm
can always reject. Therefore, we can only show F𝐿(𝑛) = Θ∞(𝑛) (instead of F𝐿(𝑛) = Θ(𝑛) which is
false here), where Θ∞(𝑔 (𝑛)) was defined in the introduction.

Note that the fixed-size sliding window model is a nonuniform model: for every window
size we have a separate streaming algorithm and these algorithms do not have to follow a

14 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

common pattern. Working with a nonuniform model makes lower bounds stronger. In contrast,
the variable-size sliding window model that we discuss next is a uniform model in the sense
that there is a single streaming algorithm that works for every window size. Let us remark
that all presented upper bounds for the fixed-size model will be realized by uniform families of
algorithms.

2.5 Variable-size sliding window model

For an alphabet Σ we define the extended alphabet Σ↓ = Σ ∪ {↓}. In the variable-size model the
active window wnd(𝑢) ∈ Σ∗ for a stream 𝑢 ∈ Σ∗↓ is defined as follows, where 𝑎 ∈ Σ:

wnd(𝜀) = 𝜀 wnd(𝑢↓) = 𝜀, if wnd(𝑢) = 𝜀
wnd(𝑢𝑎) = wnd(𝑢)𝑎 wnd(𝑢↓) = 𝑣, if wnd(𝑢) = 𝑎𝑣

The symbol ↓ represents the pop operation. We emphasize that a pop operation on an empty
window leaves the window empty. The variable-size sliding window problem SW(𝐿) of a language
𝐿 ⊆ Σ∗ is the language

SW(𝐿) = {𝑢 ∈ Σ∗↓ | wnd(𝑢) ∈ 𝐿}. (2)

Note that in general, SW(𝐿) is not a regular language (even if 𝐿 is regular). A variable-size sliding
window algorithm (variable-size SW-algorithm) P for 𝐿 is a streaming algorithm for SW(𝐿).

There are various possible definitions for the space complexity of a variable-size SW-
algorithm. Here, we measure the space complexity as a function in the maximum window
size over all read prefixes. This definition enjoys the property that every language 𝐿 has a
variable-size SW-algorithm with smallest complexity among all variable-size SW-algorithms
for 𝐿. If one would measure the space complexity in the current window size instead, this does
not hold anymore, since the memory state encodings of any SW-algorithm can be permuted to
yield an algorithm whose complexity is incomparable to the original one.

To be more formal, for a stream 𝑢 = 𝑎1 · · · 𝑎𝑚 ∈ Σ∗↓ let

mwl(𝑢) = max{|wnd(𝑎1 · · · 𝑎𝑖) | | 0 ⩽ 𝑖 ⩽ 𝑚}

be the maximum window size of all prefixes of 𝑢. If P = (𝑀, Σ, 𝑚0, 𝛿, 𝐹) is a streaming algorithm
over Σ↓ we define

𝑀𝑛 = {P(𝑤) | 𝑤 ∈ Σ∗↓, mwl(𝑤) = 𝑛}. (3)

and 𝑀⩽𝑛 =
⋃

0⩽𝑘⩽𝑛𝑀𝑘. The space complexity of P in the variable-size sliding window model is

𝑣(P, 𝑛) = log |𝑀⩽𝑛 | ∈ R⩾0 ∪ {∞}.

In other words: when we say that the space complexity of a variable-size SW-algorithm is
bounded by 𝑓 (𝑛), we mean that the algorithm never has to store more than 𝑓 (𝑛) bits when it

15 / 75 Regular Languages in the Sliding Window Model

processes a stream 𝑢 ∈ Σ∗↓ such that for every prefix of 𝑢 the size of the active window never
exceeds 𝑛.

Notice that 𝑣(P, 𝑛) is a monotonic function. To prove upper bounds above log 𝑛 for the
space complexity of P it suffices to bound log |𝑀𝑛 | as shown in the following.

LEMMA 2.2. If 𝑠(𝑛) ⩾ log 𝑛 is a monotonic function and log |𝑀𝑛 | = O(𝑠(𝑛)) then 𝑣(P, 𝑛) =
O(𝑠(𝑛)).

PROOF . Since 𝑀⩽𝑛 = 𝑀0 ∪𝑀1 ∪ · · · ∪𝑀𝑛, we have

log |𝑀⩽𝑛 | = log
𝑛∑︁
𝑖=0
|𝑀𝑖 |

⩽ log
(
(𝑛 + 1) · max

0⩽𝑖⩽𝑛
|𝑀𝑖 |

)

= log(𝑛 + 1) + max
0⩽𝑖⩽𝑛

log |𝑀𝑖 |

⩽ log(𝑛 + 1) + max
0⩽𝑖⩽𝑛

O(𝑠(𝑖))

⩽ log(𝑛 + 1) + O(𝑠(𝑛)) = O(𝑠(𝑛)),

which proves the statement. ■

LEMMA 2.3. For every language 𝐿 ⊆ Σ∗ there exists a space-optimal variable-size SW-algorithm
P, i.e., 𝑣(P, 𝑛) ⩽ 𝑣(Q, 𝑛) for every variable-size SW-algorithm Q for 𝐿 and every 𝑛 ∈ N.

PROOF . Let P be the minimal deterministic automatonASW(𝐿) for SW(𝐿). If Q is any deter-
ministic automaton for SW(𝐿) then Q(𝑥) = Q(𝑦) implies P(𝑥) = P(𝑦). Then, we obtain

𝑣(P, 𝑛) = log |{P(𝑤) | 𝑤 ∈ Σ∗↓, mwl(𝑤) ⩽ 𝑛}|
⩽ log |{Q(𝑤) | 𝑤 ∈ Σ∗↓, mwl(𝑤) ⩽ 𝑛}| = 𝑣(Q, 𝑛),

which proves the statement. ■

One could also define the space complexity 𝑣(P, 𝑛) as the number of bits required to encode a
state of P where the current window size is 𝑛. It is not difficult to see that Lemma 2.3 fails for
this definition.

We define the space complexity of 𝐿 in the variable-size sliding window model by V𝐿(𝑛) =
𝑣(P, 𝑛) where P is a space-optimal variable-size SW-algorithm for SW(𝐿) from Lemma 2.3. It is
a monotonic function.

LEMMA 2.4. For any language 𝐿 ⊆ Σ∗ and 𝑛 ∈ N we have F𝐿(𝑛) ⩽ V𝐿(𝑛).

PROOF . If P is a space-optimal variable-size SW-algorithm for 𝐿 then one obtains an SW-
algorithm P𝑛 for window size 𝑛 ∈ N as follows. Let us assume 𝑛 ⩾ 1 (for 𝑛 = 0 we use the trivial

16 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

SW-algorithm). First one simulates P on the initial window □𝑛. For every incoming symbol
𝑎 ∈ Σ we perform a pop operation ↓ in P, followed by inserting 𝑎. Since the maximum window
size is bounded by 𝑛 on any stream, the space complexity is bounded by 𝑣(P, 𝑛) = V𝐿(𝑛). ■

The following lemma states that in the variable-size model one must at least maintain
the current window size if the language is neither empty nor universal. The issue at hand is
performing a pop operation on an empty window.

LEMMA 2.5. Let P be a variable-size SW-algorithm for a language ∅ ⊊ 𝐿 ⊊ Σ∗. Then, P(𝑥)
determines3 |wnd(𝑥) | for all 𝑥 ∈ Σ∗↓ and therefore V𝐿(𝑛) ⩾ log(𝑛 + 1).

PROOF . Let 𝑦 ∈ Σ+ be a length-minimal nonempty word such that |{𝜀, 𝑦} ∩ 𝐿| = 1. Consider
streams 𝑥1, 𝑥2 ∈ Σ∗↓ with |wnd(𝑥1) | < |wnd(𝑥2) | = 𝑚 and assume P(𝑥1) = P(𝑥2). Then, we also
have P(𝑥1 𝑦↓𝑚) = P(𝑥2 𝑦↓𝑚). But wnd(𝑥2 𝑦↓𝑚) = 𝑦 whereas wnd(𝑥1 𝑦↓𝑚) is a proper suffix of 𝑦.
Now, by the choice of 𝑦 one these two words belongs to 𝐿 whereas the other does not, which
contradicts P(𝑥1 𝑦↓𝑚) = P(𝑥2 𝑦↓𝑚).

For the second statement: if the algorithm reads any stream 𝑎1 · · · 𝑎𝑛 ∈ Σ𝑛 it must visit
𝑛 + 1 pairwise distinct memory states and hence 𝑣(P, 𝑛) ⩾ log(𝑛 + 1). ■

Alternative definitions of the variable-size model are conceivable, e.g. one could neglect
streams where the popping of an empty window occurs, or assume that the window size is
always known to the algorithm. Then the statement of Lemma 2.5 no longer holds.

LEMMA 2.6. Let Σ be a finite alphabet. For any function 𝑠(𝑛) and X ∈ {F, V}, the class {𝐿 ⊆ Σ∗ |
X𝐿(𝑛) = O(𝑠(𝑛))} forms a Boolean algebra.

PROOF . Let 𝐿 ⊆ Σ∗ be a language. Given a SW-algorithm for 𝐿 for some fixed window size 𝑛
or in the variable-size model, we can turn it into an algorithm for the complement Σ∗ \ 𝐿 by
negating its output. Clearly, it has the same space complexity as the original algorithm.

Let 𝐿1, 𝐿2 ⊆ Σ∗ be two languages. Let P1,P2 be SW-algorithms for 𝐿1, 𝐿2, respectively,
either for some fixed window size 𝑛 or in the variable-size model. Define P to be the product
automaton of P1 and P2 which outputs the disjunction of the outputs of the P𝑖 .

In the case of a fixed window size 𝑛, P has 2𝑠(P1) · 2𝑠(P2) = 2𝑠(P1)+𝑠(P2) many states and
hence 𝑠(P) = 𝑠(P1) +𝑠(P2). This implies F𝐿1∪𝐿2 (𝑛) ⩽ F𝐿1 (𝑛) +F𝐿2 (𝑛). For the variable-size model,
notice that 2𝑣(P,𝑛) ⩽ 2𝑣(P1,𝑛) · 2𝑣(P2,𝑛) = 2𝑣(P1,𝑛)+𝑣(P2,𝑛) . Therefore, V𝐿1∪𝐿2 (𝑛) ⩽ V𝐿1 (𝑛) + V𝐿2 (𝑛). ■

REMARK 2 .7. Before we start our investigation of the space complexity of regular languages
in the sliding window model, we would like to discuss an aspect of our definition of the space
complexities F𝐿(𝑛) and V𝐿(𝑛). Both complexity measures do not include the space needed

3 In other words, for all 𝑥1, 𝑥2 ∈ Σ∗↓, if P(𝑥1) = P(𝑥2) then |wnd(𝑥1) | = |wnd(𝑥2) |.

17 / 75 Regular Languages in the Sliding Window Model

for internal computations, i.e., the space needed for computing the memory updates of the
streaming algorithm. Let us explain this in more detail for the variable-size model (the same
arguments apply to the fixed-size model). Take the space-optimal variable-size SW-algorithm P
for a language 𝐿; see Lemma 2.3. The function V𝐿(𝑛) measures the number of bits needed to
encode the states in the set 𝑀⩽𝑛 (see the line after (3)). But the transition function of P may be
difficult to compute. In other words: if we have two memory states 𝑝, 𝑞 ∈ 𝑀⩽𝑛 (both encoded by
bit strings of length V𝐿(𝑛)) and an 𝑎-labelled transition from 𝑝 to 𝑞 in P then additional memory
is needed in general in order to compute 𝑞 from 𝑝 and 𝑎. This memory is what we mean by the
space needed for internal computations. Our definition of V𝐿(𝑛) does not include this space.
One reason for this is that if we would include the space needed for internal computations in the
total space bound, then it would be difficult to obtain lower bounds that match the upper bounds.
In particular, techniques based on communication complexity that we use in the randomized
setting (see Section 4) are not able to take space for internal calculations into account. In our
setting, these techniques only allow to prove lower bounds on the number of memory states of
a (randomized) streaming algorithm and therefore are not sensitive with respect to the space
needed to go from one memory state to the next memory state.

3. Deterministic sliding window algorithms

In this section, we will show that the space complexity of every regular language in both sliding
window models is either constant, logarithmic or linear. In Example 1.2 we have already
seen prototypical languages with these three space complexities, namely Σ∗𝑎 (constant), Σ∗𝑎Σ∗

(logarithmic) and 𝑎Σ∗ (linear) for Σ = {𝑎, 𝑏}. Intuitively, for languages of logarithmic space
complexity it suffices to maintain a constant number of positions in the window. For languages
of constant space complexity it suffices to maintain a constant-length suffix of the window.
Moreover, we describe the languages with logarithmic and constant space complexity as finite
Boolean combinations of simple atomic languages.

3.1 Right-deterministic finite automata

It turns out that the appropriate representation of a regular language for the analysis in the
sliding window model are deterministic finite automata which read the input word, i.e., the
window, from right to left. Such automata are called right-deterministic finite automata (rDFA)
in this paper. The reason why we use rDFAs instead of DFAs can be explained intuitively for the
variable-size sliding window model as follows. The variable-size model contains operations in
both “directions”: On the one hand a variable-size window can be extended on the right, and
on the other hand the window can be shortened to an arbitrary suffix. For regular languages
the extension to longer windows is “tame” because the Myhill–Nerode right congruences have

18 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

finite index. Hence, it remains to control the structure of all suffixes with respect to the regular
language, which is best captured by an rDFA for the language.

Formally, a right-deterministic finite automaton (rDFA)B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) consists of a finite
state set 𝑄, a finite alphabet Σ, a set of final states 𝐹 ⊆ 𝑄, a transition function 𝛿 : Σ × 𝑄 → 𝑄,
and an initial state 𝑞0 ∈ 𝑄. The transition function 𝛿 extends to a left action · : Σ∗ × 𝑄→ 𝑄 by
𝜀 · 𝑞 = 𝑞 and (𝑎𝑤) · 𝑞 = 𝛿(𝑎, 𝑤 · 𝑞) for all 𝑎 ∈ Σ, 𝑤 ∈ Σ∗, 𝑞 ∈ 𝑄. The language accepted by B is
L(B) = {𝑤 ∈ Σ∗ | 𝑤 · 𝑞0 ∈ 𝐹}.

A run of B on a word 𝑤 = 𝑎1 · · · 𝑎𝑛 ∈ Σ∗ from 𝑝𝑛 to 𝑝0 is a finite sequence

𝜋 = 𝑝0𝑎1𝑝1𝑎2𝑝2 · · · 𝑝𝑛−1𝑎𝑛𝑝𝑛 ∈ 𝑄(Σ𝑄)∗

such that 𝑝𝑖−1 = 𝑎𝑖 · 𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛. Quite often we write such a run in the following way

𝜋 : 𝑝0
𝑎1←− 𝑝1

𝑎2←− 𝑝2 · · · 𝑝𝑛−1
𝑎𝑛←−− 𝑝𝑛.

If the intermediate states 𝑝1, . . . , 𝑝𝑛−1 are not important we write this run also as

𝜋 : 𝑝0
𝑎1𝑎2···𝑎𝑛←−−−−−− 𝑝𝑛.

The state 𝑝𝑛 is also called the starting state of the above run 𝜋. The run 𝜋 is accepting if 𝑝0 ∈ 𝐹
(note that we do not require 𝑝𝑛 = 𝑞0) and otherwise rejecting. Its length |𝜌| is the length |𝑤| of
𝑤. A run of length zero is called empty; note that it consists of a single state. A run of length
one is also called a transition. If 𝜋 = 𝑝0𝑎1𝑝1 · · · 𝑎𝑛𝑝𝑛 and 𝜌 = 𝑟0𝑏1𝑟1 · · · 𝑏ℓ𝑟ℓ are runs such that
𝑝𝑛 = 𝑟0 then their composition 𝜋𝜌 is defined as 𝜋𝜌 = 𝑝0𝑎1𝑝1 · · · 𝑎𝑛𝑟0𝑏1𝑟1 · · · 𝑏ℓ𝑟ℓ; it is a run on
𝑎1 · · · 𝑎𝑛𝑏1 · · · 𝑏ℓ. This definition allows us to factorize runs in Section 3.3. We call a run 𝜋 a
𝑃-run for a subset 𝑃 ⊆ 𝑄 if all states occurring in 𝜋 are contained in 𝑃.

A state 𝑞 ∈ 𝑄 is reachable from 𝑝 ∈ 𝑄 if there exists a run from 𝑝 to 𝑞, in which case we
write 𝑞 ⪯B 𝑝. We say that 𝑞 is reachable if it is reachable from the initial state 𝑞0. A set of states
𝑃 ⊆ 𝑄 is reachable if all 𝑝 ∈ 𝑃 are reachable. The reachability relation ⪯B is a preorder on
𝑄, i.e., it is reflexive and transitive. Two states 𝑝, 𝑞 ∈ 𝑄 are strongly connected if 𝑝 ⪯B 𝑞 ⪯B 𝑝.
This yields an equivalence relation on 𝑄 whose equivalence classes are the strongly connected
components (SCCs) of B. A subset 𝑃 ⊆ 𝑄 is strongly connected if it is contained in a single SCC,
i.e., all 𝑝, 𝑞 ∈ 𝑃 are strongly connected.

3.2 Space trichotomy

In this section, we state two technical results which directly imply Theorem 1.3. Let B =

(𝑄, Σ, 𝐹, 𝛿, 𝑞0) be an rDFA. A set of states 𝑃 ⊆ 𝑄 is well-behaved if for any two 𝑃-runs 𝜋1, 𝜋2 which
start in the same state and have equal length, either both 𝜋1 and 𝜋2 are accepting or both are
rejecting. If every reachable SCC in B is well-behaved then B is called well-behaved. A state
𝑞 ∈ 𝑄 is transient if 𝑥 · 𝑞 ≠ 𝑞 for all 𝑥 ∈ Σ+. Every transient state in B forms an SCC of size
one (a transient SCC); however, not every SCC of size one is transient (there can be a loop at

19 / 75 Regular Languages in the Sliding Window Model

𝑝𝑞𝑟𝑠𝑡

𝑎

𝑎, 𝑏𝑏
𝑎, 𝑏𝑏

𝑎, 𝑏 𝑎

Figure 2. A well-behaved rDFA consisting of three SCCs.

the unique state of the SCC). Let 𝑈 (B) ⊆ 𝑄 be the set of states 𝑞 ∈ 𝑄 for which there exists a
nontransient state 𝑝 ∈ 𝑄 such that 𝑞 is reachable from 𝑝 and 𝑝 is reachable from the initial state
𝑞0. Notice that 𝑞 ∈ 𝑈 (B) if and only if there exist runs of unbounded length from 𝑞0 to 𝑞 (hence
the symbol𝑈 for unbounded). Moreover, if𝑈 (B) is well-behaved then B must be well-behaved.
This follows directly from the above definition and it is also a consequence of Theorem 3.2
below.

EXAMPLE 3.1. Consider the rDFAA in Figure 2. It consists of three SCCs, namely the green
SCC {𝑝}, the blue SCC {𝑞} and the red SCC {𝑟, 𝑠, 𝑡}. The red SCC is well-behaved since any run
starting in 𝑟 ends in a final state if and only if its length is even. The other SCCs are also well-
behaved and therefore, the entire automaton is well-behaved. State 𝑝 is a transient state and
𝑈 (A) = {𝑞, 𝑟, 𝑠, 𝑡}. ■

THEOREM 3.2. Let 𝐿 ⊆ Σ∗ be regular and B be any rDFA for 𝐿.
(1) If B is well-behaved then V𝐿(𝑛) = O(log 𝑛) and F𝐿(𝑛) = O(log 𝑛).
(2) If B is not well-behaved then V𝐿(𝑛) = Ω(𝑛) and F𝐿(𝑛) = Ω∞(𝑛).
(3) If𝑈 (B) is well-behaved then F𝐿(𝑛) = O(1).
(4) If𝑈 (B) is not well-behaved then F𝐿(𝑛) = Ω∞(log 𝑛).
(5) If 𝐿 ∈ {∅, Σ∗} then V𝐿(𝑛) = O(1).
(6) If 𝐿 ∉ {∅, Σ∗} then V𝐿(𝑛) = Ω(log 𝑛).

Theorem 3.2 implies that F𝐿(𝑛) is either Θ(1), Θ∞(log 𝑛), or Θ∞(𝑛), and V𝐿(𝑛) is either Θ(1),
Θ(log 𝑛), or Θ(𝑛). For the characterizations in Theorem 1.3 it remains to prove:

THEOREM 3.3. Let 𝐿 ⊆ Σ∗ be regular.
(i) F𝐿(𝑛) = O(1) ⇐⇒ 𝐿 ∈ ⟨ST,Len⟩.

(ii) F𝐿(𝑛) = O(log 𝑛) ⇐⇒ 𝐿 ∈ ⟨LI,Len⟩.

In the rest of Section 3 we prove Theorem 3.2 and Theorem 3.3. We start with the path
summary algorithm, which is our main deterministic SW-algorithm for the variable-size model.

20 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑝𝑞𝑟

𝑎
𝑏

𝑏

𝑎

𝑎, 𝑏

Figure 3. Another rDFA
partitioned into two SCCs.

3.3 The path summary algorithm

In the following, let B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) be a right-deterministic finite automaton. We call a run 𝜋
internal if 𝜋 is a 𝑃-run for some SCC 𝑃. The SCC-factorization of 𝜋 is the unique factorization
𝜋 = 𝜋𝑘𝜏𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1, where every 𝜋𝑖 is an internal (possibly empty) run but cannot be
extended to an internal run. The 𝜏𝑖 are single transitions (i.e., runs from 𝑄Σ𝑄) connecting
distinct SCCs. Let 𝑝𝑘, . . . , 𝑝1 ∈ 𝑄 be the starting states of the runs 𝜋𝑘, . . . , 𝜋1. Then, the path
summary of 𝜋 is defined as

ps(𝜋) = (|𝜋𝑘 |, 𝑝𝑘) (|𝜏𝑘−1𝜋𝑘−1 |, 𝑝𝑘−1) · · · (|𝜏2𝜋2 |, 𝑝2) (|𝜏1𝜋1 |, 𝑝1),

which is a sequence of pairs fromN×𝑄. It specifies the first state that is visited in an SCC, and the
length of the run until reaching the next SCC or the end of the word, respectively. The leftmost
length |𝜋𝑘 | can be zero but all other lengths |𝜏𝑖𝜋𝑖 | = 1 + |𝜋𝑖 | are strictly positive. We define 𝜋𝑤,𝑞
to be the unique run of B on a word 𝑤 ∈ Σ∗ starting from 𝑞, and PSB (𝑤) = {ps(𝜋𝑤,𝑞) | 𝑞 ∈ 𝑄}.

EXAMPLE 3.4. Consider the rDFAB in Figure 3. For the moment, the final states are irrelevant.
It consists of two SCCs, namely the blue SCC {𝑝, 𝑞} and the red SCC {𝑟}. All its runs on the word
𝑤 = 𝑎𝑎𝑏𝑎𝑏𝑏 are listed here:

𝑟
𝑎←− 𝑟 𝑎←− 𝑞 𝑏←− 𝑝 𝑎←− 𝑝 𝑏←− 𝑞 𝑏←− 𝑝

𝑟
𝑎←− 𝑟 𝑎←− 𝑟 𝑏←− 𝑟 𝑎←− 𝑞 𝑏←− 𝑝 𝑏←− 𝑞

𝑟
𝑎←− 𝑟 𝑎←− 𝑟 𝑏←− 𝑟 𝑎←− 𝑟 𝑏←− 𝑟 𝑏←− 𝑟

Then, PSB (𝑤) contains the path summaries (1, 𝑟) (5, 𝑝), (3, 𝑟) (3, 𝑞) and (6, 𝑟). ■

The path summary algorithm for B is a streaming algorithm over Σ↓ described in Algo-
rithm 1. The data structure at time instant 𝑡 is denoted by 𝑆𝑡. The acceptance condition will be
defined later.

LEMMA 3.5. Algorithm 1 correctly maintains PSB (𝑤) for the active window 𝑤 ∈ Σ∗.

PROOF . Initially PSB (𝜀) contains the path summary of every empty run from every state,
which is formally {0} × 𝑄.

Assume 𝑆𝑡−1 = PSB (𝑤) for some window𝑤 ∈ Σ∗ and that 𝑎 ∈ Σ is the incoming symbol. The
claim is that the algorithm computes 𝑆𝑡 = PSB (𝑤𝑎) from 𝑆𝑡−1. Suppose that 𝜋′ is a run inB on𝑤𝑎.

21 / 75 Regular Languages in the Sliding Window Model

Input: sequence of operations 𝑎1𝑎2𝑎3 · · · ∈ Σ𝜔
↓

1: 𝑆0 = {0} ×𝑄
2: foreach 𝑡 ⩾ 1 do
3: 𝑆𝑡 = ∅
4: if 𝑎𝑡 ∈ Σ then
5: for 𝑝0 ∈ 𝑄 do
6: let 𝑝1 = 𝑎𝑡 · 𝑝0 and (ℓ𝑘, 𝑝𝑘) · · · (ℓ1, 𝑝1) ∈ 𝑆𝑡−1

7: if 𝑝0 and 𝑝1 are strongly connected then
8: add (ℓ𝑘, 𝑝𝑘) · · · (ℓ2, 𝑝2) (ℓ1 + 1, 𝑝0) to 𝑆𝑡

9: else
10: add (ℓ𝑘, 𝑝𝑘) · · · (ℓ1, 𝑝1) (1, 𝑝0) to 𝑆𝑡

11: if 𝑎𝑡 = ↓ then
12: if 𝑆𝑡−1 = {0} ×𝑄 then
13: 𝑆𝑡 = 𝑆𝑡−1

14: else
15: for (ℓ𝑘, 𝑝𝑘) · · · (ℓ1, 𝑝1) ∈ 𝑆𝑡−1 do
16: if ℓ𝑘 ⩾ 1 then
17: add (ℓ𝑘 − 1, 𝑝𝑘) (ℓ𝑘−1, 𝑝𝑘−1) · · · (ℓ1, 𝑝1) to 𝑆𝑡

18: else
19: add (ℓ𝑘−1 − 1, 𝑝𝑘−1) (ℓ𝑘−2, 𝑝𝑘−2) · · · (ℓ1, 𝑝1) to 𝑆𝑡

Algorithm 1. The path summary algorithm

It can be factorized as 𝜋′ = 𝜋 𝑝1𝑎 𝑝0 with ps(𝜋) ∈ 𝑆𝑡−1. Let 𝜋 = 𝜋𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 be the
SCC-factorization of 𝜋. If 𝑝0 and 𝑝1 are strongly connected then the SCC-factorization of 𝜋′ is 𝜋′ =
𝜋𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋′1 where 𝜋′1 = 𝜋1 𝑝1𝑎 𝑝0, and otherwise 𝜋′ = 𝜋𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 𝑝1𝑎 𝑝0.
In this way the algorithm computes ps(𝜋′) from ps(𝜋).

Now, consider the case 𝑎 = ↓. We have 𝑤 = 𝜀 if and only if PSB (𝑤) = {0} × 𝑄, and in this
case the set of path summaries is unchanged, i.e., we set 𝑆𝑡 = 𝑆𝑡−1. Otherwise assume 𝑤 = 𝑏𝑣

for some 𝑏 ∈ Σ. We claim that the algorithm computes 𝑆𝑡 = PSB (𝑣) from 𝑆𝑡−1. Suppose that
𝜋′ is a run in B on 𝑣 which ends in state 𝑝 ∈ 𝑄. If 𝑞 = 𝛿(𝑏, 𝑝) in B then let 𝜋 = 𝑞 𝑏 𝑝 𝜋′. We
have ps(𝜋) ∈ 𝑆𝑡−1. Let 𝜋 = 𝜋𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 be the SCC-factorization of 𝜋. If |𝜋𝑘 | ⩾ 1 then
𝜋′ = 𝜋′𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 is the SCC-factorization of 𝜋′ where 𝜋𝑘 = 𝑞 𝑏 𝑝 𝜋′𝑘. Otherwise 𝜋𝑘 is
empty and 𝜏𝑘−1 = 𝑞 𝑏 𝑝. Therefore, 𝜋′ = 𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 is the SCC-factorization of 𝜋′. In this
way the algorithm computes ps(𝜋′) from ps(𝜋). ■

22 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

Observe that Algorithm 1 cannot be directly adapted to work for (left-)DFA: For a pop
operation, one would need to remove the first transition from each path summary, which is
generally not possible since a path summary does not store its second state.

3.4 Proof of Theorem 3.2(1)

Using the path summary algorithm we can prove Theorem 3.2(1):

PROPOS IT ION 3.6. If B is well-behaved then the regular language 𝐿 = L(B) has space com-
plexity V𝐿(𝑛) = O(|B|2 · log 𝑛), which is O(log 𝑛) for a fixed B.

PROOF . Let B be well-behaved. Call a path summary accepting if it is the path summary of
some accepting run. The variable-size sliding window algorithm for 𝐿 is the path summary
algorithm for B where the algorithm accepts if the path summary starting in 𝑞0 is accepting.

For the correctness of the algorithm it suffices to show that any run 𝜋 starting in 𝑞0 is
accepting if and only if ps(𝜋) is accepting. The direction from left to right is immediate by
definition. For the other direction, consider the path summary ps(𝜋) = (ℓ𝑘, 𝑝𝑘) · · · (ℓ1, 𝑝1) and
the SCC-factorization 𝜋 = 𝜋𝑘𝜏𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1. Since ps(𝜋) is accepting, there is an accepting run
𝜋′𝑘 that starts in 𝑝𝑘 and has length ℓ𝑘. Since B is well-behaved, the SCC of 𝑝𝑘 is well-behaved.
Therefore, since 𝜋′𝑘 is accepting and |𝜋𝑘 | = |𝜋′𝑘 | = ℓ𝑘, 𝜋𝑘 must also be accepting and thus 𝜋 is
accepting.

We claim that the space complexity of the path summary algorithm is bounded by O(|B|2 ·
(log 𝑛+ log |B|)). Observe that PSB (𝑤) contains |B| path summaries, and a single path summary
ps(𝜋) consists of a sequence of at most |B| states and a sequence (ℓ𝑘, . . . , ℓ1) of 𝑘 ⩽ |B| numbers
up to |𝜋 |. Hence, the path summary ps(𝜋) can be encoded using O(|B| · (log |B| + log |𝜋 |)) bits,
which yields the total space complexity O(|B|2 · (log 𝑛 + log |B|)).

To reduce the space complexity to O(|B|2 · log 𝑛) we need to make a case distinction.
The algorithm maintains the window size 𝑛 ∈ N and the maximal suffix of the window of
length up to |B| (explicitly) using O(log 𝑛 + |B|) bits. If 𝑛 ⩽ |B| then this information suffices
to test membership of the window to 𝐿. As soon as 𝑛 exceeds |B| we initialize PSB (𝑤) and
use the path summary algorithm as described above. If 𝑛 > |B| then its space complexity is
O(|B|2 · (log 𝑛 + log |B|)) ⊆ O(|B|2 · log 𝑛). ■

Observe that the path summary algorithm only stores O(log 𝑛) bits where 𝑛 is the current
(not the maximum) window size.

Before we continue with the proof of the other points from Theorem 3.2, we discuss some
implementation details for our logspace SW-algorithm.4 To implement the path summary
algorithm on a realistic computation model, we have to be able to efficiently determine whether

4 These details are not needed for the proof of Proposition 3.6 since we abstract from internal computations in our
sliding window model; see Remark 2.7.

23 / 75 Regular Languages in the Sliding Window Model

a path summary is accepting. Given a number 𝑑 ⩾ 1, a set of natural numbers 𝑋 ⊆ N is
𝑑-periodic if we have 𝑥 ∈ 𝑋 if and only if 𝑥 + 𝑑 ∈ 𝑋 .

LEMMA 3.7. Let 𝑃 ⊆ 𝑄 be a well-behaved subset in B and 𝑝0 ∈ 𝑃 be nontransient. Then
Acc(𝑃, 𝑝0) := {|𝜋 | : 𝜋 is an accepting 𝑃-run starting in 𝑝0 } is 𝑑-periodic for some 𝑑 ⩽ |𝑄|.

PROOF . Let 𝜋0 be any nonempty run from 𝑝0 to 𝑝0, which exists because 𝑝0 is nontransient.
Furthermore, we can choose 𝜋0 such that its length 𝑑 := |𝜋0 | is at most |𝑄|.

If ℓ ∈ Acc(𝑃, 𝑝0), then there exists an accepting 𝑃-run 𝜋 starting in 𝑝0 of length ℓ. Then
𝜋𝜋0 is also an accepting 𝑃-run and we conclude |𝜋𝜋0 | = ℓ + 𝑑 ∈ Acc(𝑃, 𝑝0).

Now we need to show that ℓ ∉ Acc(𝑃, 𝑝0) implies ℓ+𝑑 ∉ Acc(𝑃, 𝑝0). Towards a contradiction
assume that ℓ ∉ Acc(𝑃, 𝑝0) and ℓ + 𝑑 ∈ Acc(𝑃, 𝑝0), i.e., there exists an accepting 𝑃-run 𝜋 starting
in 𝑝0 of length ℓ + 𝑑. Factorize 𝜋 = 𝜋1𝜋2 where |𝜋2 | = ℓ. Now 𝜋2 must be rejecting since
ℓ ∉ Acc(𝑃, 𝑝0). But then 𝜋2𝜋0 is a rejecting 𝑃-run of length ℓ + 𝑑, which contradicts the well-
behavedness of 𝑃 since ℓ + 𝑑 ∈ Acc(𝑃, 𝑝0). ■

In the following we describe how to implement the algorithm from Proposition 3.6. We do
the following preprocessing on the well-behaved rDFA B. Using depth-first search we compute
all SCCs in B. For every SCC 𝑃 we pick a state 𝑝 ∈ 𝑃 and compute the distance dist(𝑝, 𝑞) from 𝑝

to all states 𝑞 ∈ 𝑃 using any shortest path algorithm. Furthermore let 𝑑 be the minimal length
of a nonempty run from 𝑝 to 𝑝 itself, which is the period 𝑑 from Lemma 3.7. If no such run
exists then we store the information that 𝑝 is transient. Otherwise we assign to each state 𝑞 ∈ 𝑃
the distance from 𝑝 modulo 𝑑. By traversing an arbitrary 𝑃-run of length 𝑑 from 𝑝 we can
compute a bit vector of length 𝑑 which represents Acc(𝑃, 𝑝0). Using this information we can
easily answer whether a path summary (ℓ𝑘, 𝑝𝑘) · · · (ℓ1, 𝑝1) is accepting: it is accepting if and
only if either 𝑝𝑘 is transient, ℓ𝑘 = 0 and 𝑝𝑘 ∈ 𝐹, or dist(𝑝0, 𝑝𝑘) + ℓ𝑘 mod 𝑑 belongs to Acc(𝑃, 𝑝0)
where 𝑃 is the SCC of 𝑝𝑘 and 𝑝0 is the picked state in 𝑃.

3.5 Proof of Theorem 3.2(2)

We continue with proving a linear lower bound for rDFA which are not well-behaved.

LEMMA 3.8. If B is not well-behaved then there exist words 𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑧 ∈ Σ∗ where |𝑢𝑖 | = |𝑣𝑖 |
for 𝑖 ∈ {1, 2} such that 𝐿 = L(B) separates 𝑢2{𝑢1𝑢2, 𝑣1𝑣2}∗𝑧 and 𝑣2{𝑢1𝑢2, 𝑣1𝑣2}∗𝑧.

PROOF . The automaton structure is illustrated in Figure 4. Since B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) is not
well-behaved, there is a reachable SCC 𝑆 that is not well-behaved. Take a state 𝑝 ∈ 𝑆 and a word
𝑧 ∈ Σ∗ with

𝑝
𝑧←− 𝑞0.

24 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑞0𝑝

𝑞

𝑟

𝑧

𝑢2

𝑢1

𝑣2

𝑣1

Figure 4. Forbidden pattern
for well-behaved rDFAs
where |𝑢1 | = |𝑣1 | and
|𝑢2 | = |𝑣2 |.

Moreover, since 𝑆 is strongly connected and not well-behaved there are states 𝑞 ∈ 𝑆∩𝐹, 𝑟 ∈ 𝑆 \𝐹
and nonempty words 𝑢2, 𝑣2 ∈ Σ∗ such that |𝑢2 | = |𝑣2 | and

𝑞
𝑢2←− 𝑝 𝑧←− 𝑞0 and 𝑟

𝑣2←− 𝑝 𝑧←− 𝑞0.

Finally, since 𝑆 is strongly connected, there are words 𝑢1, 𝑣1 ∈ Σ∗ such that

𝑝
𝑢1←− 𝑞 𝑢2←− 𝑝 𝑧←− 𝑞0 and 𝑝

𝑣1←− 𝑟 𝑣2←− 𝑝 𝑧←− 𝑞0.

We can ensure that |𝑢1 | = |𝑣1 | and hence also |𝑢| = |𝑣| for 𝑢 = 𝑢1𝑢2, 𝑣 = 𝑣1𝑣2. If 𝑘 = |𝑢| and ℓ = |𝑣|
we replace 𝑢1 by 𝑢ℓ−1𝑢1 and 𝑣1 by 𝑣𝑘−1𝑣1 (note that 𝑘 > 0 and ℓ > 0 since 𝑢 and 𝑣 are nonempty),
which preserves all properties above. Then, 𝑢2{𝑢, 𝑣}∗𝑧 and 𝑣2{𝑢, 𝑣}∗𝑧 are separated by 𝐿. ■

We can now show Theorem 3.2(2):

PROPOS IT ION 3.9. IfB is not well-behaved then the language 𝐿 = L(B) satisfies F𝐿(𝑛) = Ω∞(𝑛)
and V𝐿(𝑛) = Ω(𝑛).

PROOF . Let 𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑧 ∈ Σ∗ be the words from Lemma 3.8 and let 𝑢 = 𝑢1𝑢2 and 𝑣 = 𝑣1𝑣2.
Now, consider an SW-algorithm P𝑛 for 𝐿 and window size 𝑛 = |𝑢2 | + |𝑢| · (𝑚 − 1) + |𝑧 | for some
𝑚 ⩾ 1. We prove that P𝑛 has at least 2𝑚 many states by showing that P𝑛(𝑥) ≠ P𝑛(𝑦) for any
𝑥, 𝑦 ∈ {𝑢, 𝑣}𝑚 with 𝑥 ≠ 𝑦. Notice that |{𝑢, 𝑣}𝑚 | = 2𝑚 since 𝑢 ≠ 𝑣 and |𝑢| = |𝑣|.

Read two distinct words 𝑥, 𝑦 ∈ {𝑢, 𝑣}𝑚 into two instances of P𝑛. Consider the right most
{𝑢, 𝑣}-block where 𝑥 and 𝑦 differ. Without loss of generality assume 𝑥 = 𝑥′𝑢𝑠 and 𝑦 = 𝑦′𝑣𝑠

for some 𝑥′, 𝑦′, 𝑠 ∈ {𝑢, 𝑣}∗ with |𝑥′| = | 𝑦′|. By reading 𝑥′𝑧 into both instances the window
of the 𝑥-instance becomes last𝑛(𝑥𝑥′𝑧) = 𝑢2𝑠𝑥′𝑧 and the window of the 𝑦-instance becomes
last𝑛(𝑦𝑥′𝑧) = 𝑣2𝑠𝑥′𝑧. By Lemma 3.8 the two windows are separated by 𝐿, and therefore the
algorithm P𝑛 must accept one of the streams 𝑥𝑥′𝑧 and 𝑦𝑥′𝑧, and reject the other. In conclusion
P𝑛(𝑥) ≠ P𝑛(𝑦) and hence P𝑛 must use at least 𝑚 = Ω(𝑛) bits. This holds for infinitely many 𝑛,
namely all 𝑛 of the form |𝑢2 | + |𝑧 | + |𝑢| · (𝑚 − 1) for some 𝑚 ⩾ 1.

The argument above shows that there exist numbers 𝑐, 𝑑 ∈ N such that for all 𝑚 ⩾ 1 we
have V𝐿(𝑐𝑚+𝑑) ⩾ F𝐿(𝑐𝑚+𝑑) = Ω(𝑚). If 𝑛 ⩾ 𝑑 then𝑚 = ⌊(𝑛−𝑑)/𝑐⌋ = Ω(𝑛) satisfies 𝑐𝑚+𝑑 ⩽ 𝑛.
Therefore, V𝐿(𝑛) ⩾ V𝐿(𝑐𝑚 + 𝑑) = Ω(𝑚) by monotonicity of V𝐿 and hence V𝐿(𝑛) = Ω(𝑛). ■

From Proposition 3.6 and Proposition 3.9 we obtain:

25 / 75 Regular Languages in the Sliding Window Model

COROLLARY 3.10. Let X ∈ {F, V}. A regular language 𝐿 ⊆ Σ∗ satisfies X𝐿(𝑛) = O(log 𝑛) if and
only if 𝐿 is recognized by a well-behaved rDFA.

3.6 Proof of Theorem 3.2(3)–(6)

Next, we study which regular languages have sublogarithmic complexity. Recall that in the
variable-size model any such language must be empty or universal because the algorithm must
at least maintain the current window size by Lemma 2.5.

COROLLARY 3.1 1. The empty language 𝐿 = ∅ and the universal language 𝐿 = Σ∗ satisfy
V𝐿(𝑛) = O(1). All other languages satisfy V𝐿(𝑛) = Ω(log 𝑛).

This proves points (5) and (6) in Theorem 3.2. Now, we can turn to the fixed-size model
and prove the points (3) and (4). Point (3) follows from:

PROPOS IT ION 3.12. If 𝑈 (B) is well-behaved then 𝐿 = L(B) has space complexity F𝐿(𝑛) =
O(|B|), which is O(1) when B is fixed.

PROOF . Let 𝑘 = |B|. The SW-algorithm P𝑛 for SW𝑛(𝐿) maintains last𝑘 (𝑥) for an input stream
𝑥 ∈ Σ∗ using O(𝑘) bits. If 𝑛 ⩽ 𝑘 then last𝑛(𝑥) is a suffix of last𝑘 (𝑥) and hence P𝑛 can determine
whether last𝑛(𝑥) ∈ 𝐿. If 𝑛 > 𝑘 then last𝑘 (𝑥) is a suffix of last𝑛(𝑥), say last𝑛(𝑥) = 𝑠 last𝑘 (𝑥). We
can decide if last𝑛(𝑥) ∈ 𝐿 as follows: Consider the run of B on last𝑛(𝑥) starting from the initial
state:

𝑟
𝑠←− 𝑞 last𝑘 (𝑥)←−−−−−− 𝑞0.

By the choice of 𝑘 some state 𝑝 ∈ 𝑄 must occur twice in the run 𝑞
last𝑘 (𝑥)←−−−−−− 𝑞0. Therefore, 𝑝 is

nontransient and all states in the run 𝑟
𝑠←− 𝑞 belong to𝑈 (B). Since𝑈 (B) is well-behaved, 𝑟 is

final if and only if some run of length |𝑠| = 𝑛 − 𝑘 starting in 𝑞 is accepting. This information can
be precomputed for each state 𝑞 in the fixed-size model. ■

For the lower bound in Theorem 3.2(4) we need the following lemma:

LEMMA 3.13. If 𝑈 (B) is not well-behaved then there exist words 𝑥, 𝑦, 𝑧 ∈ Σ∗ where |𝑥 | = | 𝑦 |
such that 𝐿 = L(B) separates 𝑥 𝑦∗𝑧 and 𝑦∗𝑧.

PROOF . Since𝑈 (B) is not well-behaved, there are𝑈 (B)-runs 𝜋 and 𝜌 from the same starting
state 𝑞 ∈ 𝑈 (B) such that |𝜋 | = |𝜌| and exactly one of the runs 𝜋 and 𝜌 is accepting. By definition
of 𝑈 (B) the state 𝑞 is reachable from a nontransient state 𝑝 via some run 𝜎 such that 𝑝 is
reachable from the initial state 𝑞0, say 𝑝

𝑧0←− 𝑞0. We can replace 𝜋 by 𝜋𝜎 and 𝜌 by 𝜌𝜎 preserving
the properties of being 𝑈 (B)-runs and |𝜋 | = |𝜌|. Assume that 𝜋 and 𝜌 are runs on words
𝑣 ∈ Σ∗ and 𝑤 ∈ Σ∗, respectively. Since 𝑝 is nontransient, we can construct runs from 𝑝 to 𝑝 of
unbounded lengths. Consider such a run 𝑝

𝑢←− 𝑝 of length |𝑢| ⩾ |𝑣| = |𝑤|. Then, 𝐿 separates

26 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑣𝑢∗𝑧0 and 𝑤𝑢∗𝑧0. Factorize 𝑢 = 𝑢1𝑢2 so that |𝑢2 | = |𝑣| = |𝑤|. Notice that all words in 𝑢2𝑢∗𝑧0

reach the same state in B and hence 𝑢2𝑢∗𝑧0 is either contained in 𝐿 or disjoint from 𝐿. Then,
𝐿 separates either 𝑢2𝑢∗𝑧0 and 𝑣𝑢∗𝑧0, or 𝑢2𝑢∗𝑧0 and 𝑤𝑢∗𝑧0. Hence, 𝐿 also separates (𝑢2𝑢1)∗𝑢2𝑧0

from either 𝑣𝑢1(𝑢2𝑢1)∗𝑢2𝑧0 or from 𝑤𝑢1(𝑢2𝑢1)∗𝑢2𝑧0. This yields the words 𝑧 = 𝑢2𝑧0, 𝑦 = 𝑢2𝑢1

and 𝑥 = 𝑣𝑢1 or 𝑥 = 𝑤𝑢1 with the claimed properties. ■

PROPOS IT ION 3.14. If𝑈 (B) is not well-behaved then 𝐿 = L(B) satisfies F𝐿(𝑛) ⩾ log 𝑛 − O(1)
for infinitely many 𝑛. In particular, F𝐿(𝑛) = Ω∞(log 𝑛).

PROOF . Let 𝑥, 𝑦, 𝑧 ∈ Σ∗ be the words from Lemma 3.13. Consider an SW-algorithm P𝑛 for 𝐿
and window size 𝑛 = |𝑥 | + | 𝑦 | · 𝑚 + |𝑧 | for some 𝑚 ⩾ 1. We prove that P𝑛 has at least 𝑚 many
states by showing that P𝑛(𝑥 𝑦𝑖) ≠ P𝑛(𝑥 𝑦 𝑗) for any 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑚. Let 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑚. Then, we
have

last𝑛(𝑥 𝑦𝑖 𝑦𝑚−𝑖𝑧) = last𝑛(𝑥 𝑦𝑚𝑧) = 𝑥 𝑦𝑚𝑧

and
last𝑛(𝑥 𝑦 𝑗 𝑦𝑚−𝑖𝑧) = last𝑛(𝑥 𝑦𝑚+ 𝑗−𝑖𝑧) = 𝑦𝑚+1𝑧.

Since exactly one of the words 𝑥 𝑦𝑚𝑧 and 𝑦𝑚+1𝑧 belongs to 𝐿, it also holds that exactly one of
the streams 𝑥 𝑦𝑖 𝑦𝑚−𝑖𝑧 and 𝑥 𝑦 𝑗 𝑦𝑚−𝑖𝑧 is accepted by P𝑛. This proves that P𝑛 must reach different
memory states on inputs 𝑥 𝑦𝑖 and 𝑥 𝑦 𝑗 . In conclusion P𝑛 must use log𝑚 ⩾ log 𝑛 − O(1) bits, and
this holds for infinitely many 𝑛. ■

3.7 Characterization of constant space

Next, we prove that a regular language 𝐿 has constant space complexity F𝐿(𝑛) if and only if it is a
Boolean combination of suffix testable languages and regular length languages (Theorem 3.3(i)).

The language 𝐿 is called 𝑘-suffix testable if for all 𝑥, 𝑦 ∈ Σ∗ and 𝑧 ∈ Σ𝑘 we have 𝑥𝑧 ∈ 𝐿 if and
only if 𝑦𝑧 ∈ 𝐿. Equivalently, 𝐿 is a Boolean combination of languages of the form Σ∗𝑤 where
𝑤 ∈ Σ⩽𝑘. Clearly, a language is suffix testable if and only if it is 𝑘-suffix testable for some 𝑘 ∈ N.
Let us remark that the class of suffix testable languages corresponds to the variety D of definite
monoids [87]. Clearly, every finite language is suffix testable: If 𝑘 is the maximum length of a
word in 𝐿 ⊆ Σ∗ then 𝐿 is (𝑘 + 1)-suffix testable since 𝐿 =

⋃
𝑤∈𝐿{𝑤} and {𝑤} = Σ∗𝑤 \⋃𝑎∈Σ Σ∗𝑎𝑤.

We will utilize a distance notion between states in a DFA, which is also studied in [51]. The
symmetric difference of two sets 𝐴 and 𝐵 is 𝐴 △ 𝐵 = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵). We define the distance
𝑑 (𝐾, 𝐿) of two languages 𝐾, 𝐿 ⊆ Σ∗ by

𝑑 (𝐾, 𝐿) =



sup𝑢∈𝐾 △ 𝐿 |𝑢| + 1, if 𝐾 ≠ 𝐿,

0, if 𝐾 = 𝐿.

Notice that 𝑑 (𝐾, 𝐿) < ∞ if and only if 𝐾 △ 𝐿 is finite. For a DFAA = (𝑄, Σ, 𝑞0, 𝛿, 𝐹) and a state
𝑝 ∈ 𝑄, we defineA𝑝 = (𝑄, Σ, 𝑝, 𝛿, 𝐹). Moreover, for two states 𝑝, 𝑞 ∈ 𝑄, we define the distance

27 / 75 Regular Languages in the Sliding Window Model

𝑑 (𝑝, 𝑞) = 𝑑 (L(A𝑝), L(A𝑞)). If we have two runs 𝑝
𝑢−→ 𝑝′ and 𝑞

𝑢−→ 𝑞′ where 𝑝′ ∈ 𝐹, 𝑞′ ∉ 𝐹 and
|𝑢| ⩾ |𝑄|2 then some state pair occurs twice in the runs and we can pump the runs to unbounded
lengths. Therefore, 𝑑 (𝑝, 𝑞) < ∞ implies 𝑑 (𝑝, 𝑞) ⩽ |𝑄|2. In fact 𝑑 (𝑝, 𝑞) < ∞ implies 𝑑 (𝑝, 𝑞) ⩽ |𝑄|
by [51, Lemma 1].

LEMMA 3.15. Let 𝐿 ⊆ Σ∗ be regular andA = (𝑄, Σ, 𝑞0, 𝛿, 𝐹) be its minimal DFA. We have:
(i) for all 𝑝, 𝑞 ∈ 𝑄, 𝑑 (𝑝, 𝑞) ⩽ 𝑘 if and only if ∀𝑧 ∈ Σ𝑘 : 𝑝 · 𝑧 = 𝑞 · 𝑧,

(ii) 𝐿 is 𝑘-suffix testable if and only if 𝑑 (𝑝, 𝑞) ⩽ 𝑘 for all 𝑝, 𝑞 ∈ 𝑄,
(iii) if there exists 𝑘 ⩾ 0 such that 𝐿 is 𝑘-suffix testable, then 𝐿 is |𝑄|-suffix testable.

PROOF . The proof of (i) is an easy induction. If 𝑘 = 0, the statement is 𝑑 (𝑝, 𝑞) = 0 if and only if
𝑝 = 𝑞, which is true becauseA is minimal. For the induction step, we have 𝑑 (𝑝, 𝑞) ⩽ 𝑘 + 1 if
and only if 𝑑 (𝛿(𝑝, 𝑎), 𝛿(𝑞, 𝑎)) ⩽ 𝑘 for all 𝑎 ∈ Σ if and only if 𝛿(𝑝, 𝑎) · 𝑧 = 𝛿(𝑞, 𝑎) · 𝑧 for all 𝑧 ∈ Σ𝑘

if and only if 𝑝 · 𝑧 = 𝑞 · 𝑧 for all 𝑧 ∈ Σ𝑘+1.
For (ii), assume that 𝐿 is 𝑘-suffix testable and consider two states 𝑝 = A(𝑥) and 𝑞 = A(𝑦).

If 𝑧 ∈ L(A𝑝)△L(A𝑞), then |𝑧 | < 𝑘 because 𝑥𝑧 ∈ 𝐿 if and only if 𝑦𝑧 ∉ 𝐿 and 𝐿 is 𝑘-suffix testable.
Now, assume that 𝑑 (𝑝, 𝑞) ⩽ 𝑘 for all 𝑝, 𝑞 ∈ 𝑄 and consider 𝑥, 𝑦 ∈ Σ∗, 𝑧 ∈ Σ𝑘. Since we have

𝑑 (A(𝑥),A(𝑦)) ⩽ 𝑘, (i) impliesA(𝑥𝑧) = A(𝑦𝑧), and in particular 𝑥𝑧 ∈ 𝐿 if and only if 𝑦𝑧 ∈ 𝐿.
Therefore, 𝐿 is 𝑘-suffix testable.

Point (iii) follows from (ii) and from the above cited [51, Lemma 1]. ■

LEMMA 3.16. For any 𝐿 ⊆ Σ∗ and 𝑛 ⩾ 0, the language SW𝑛(𝐿) is 2F𝐿(𝑛)-suffix testable.

PROOF . Let P𝑛 be an SW-algorithm for 𝐿 and window size 𝑛 with space complexity F𝐿(𝑛).
Therefore, P𝑛 has at most 2F𝐿(𝑛) states. The definition of SW𝑛(𝐿) directly implies that SW𝑛(𝐿) is
𝑛-suffix testable. By Lemma 3.15(iii) SW𝑛(𝐿) is 2F𝐿(𝑛)-suffix testable. ■

Note that Lemma 3.16 holds for arbitrary languages and not only for regular languages.

PROOF OF THEOREM 3.3(i) . First, let 𝐿 ⊆ Σ∗ be a regular language with F𝐿(𝑛) = O(1) and
let 𝑘 = max𝑛∈N 2F𝐿(𝑛) . By Lemma 3.16 the language SW𝑛(𝐿) is 𝑘-suffix testable for all 𝑛 ⩾ 0. We
can express 𝐿 as the Boolean combination

𝐿 = (𝐿 ∩ Σ⩽𝑘−1) ∪
⋃
𝑧∈Σ𝑘
(𝐿𝑧−1) 𝑧 = (𝐿 ∩ Σ⩽𝑘−1) ∪

⋃
𝑧∈Σ𝑘
((𝐿𝑧−1) Σ𝑘 ∩ Σ∗𝑧)

where the right quotient 𝐿𝑧−1 = {𝑥 ∈ Σ∗ | 𝑥𝑧 ∈ 𝐿} is regular [15, Chapter 3, Example 5.7]. The
set 𝐿 ∩ Σ⩽𝑘−1 is finite and hence suffix testable. It remains to show that each 𝐿𝑧−1 for 𝑧 ∈ Σ𝑘

is a length language. Consider two words 𝑥, 𝑦 ∈ Σ∗ of the same length |𝑥 | = | 𝑦 | = 𝑛. Since
|𝑥𝑧 | = | 𝑦𝑧 | = 𝑛 + 𝑘 and SW𝑛+𝑘 (𝐿) is 𝑘-suffix testable, we have 𝑥𝑧 ∈ 𝐿 if and only if 𝑦𝑧 ∈ 𝐿, and
hence 𝑥 ∈ 𝐿𝑧−1 if and only if 𝑦 ∈ 𝐿𝑧−1.

28 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

For the other direction note that (i) if 𝐿 is a length language or a suffix testable language
then clearly F𝐿(𝑛) = O(1), and (ii) {𝐿 ⊆ Σ∗ | F𝐿(𝑛) = O(1)} is closed under Boolean operations
by Lemma 2.6. This proves the theorem. ■

3.8 Characterization of logarithmic space

Recall from Theorem 3.2 that well-behaved rDFAs precisely define those regular languages
with logarithmic space complexity F𝐿(𝑛) or equivalently V𝐿(𝑛). In the following, we will show
that well-behaved rDFAs recognize precisely the finite Boolean combinations of regular left
ideals and regular length languages, which therefore are precisely the regular languages with
logarithmic space complexity (Theorem 3.3(ii)). Let us start with the easy direction:

PROPOS IT ION 3.17. Every language 𝐿 ∈ ⟨LI,Len⟩ is recognized by a well-behaved rDFA.

PROOF . Let B be an rDFA for 𝐿. If 𝐿 is a length language then for all reachable states 𝑞 and all
runs 𝜋, 𝜋′ starting from 𝑞 with |𝜋 | = |𝜋′| we have: 𝜋 is accepting if and only if 𝜋′ is accepting. If
𝐿 is a left ideal, then whenever a final state 𝑝 is reachable, and 𝑞 is reachable from 𝑝, then 𝑞 is
also final. Hence, for every reachable SCC 𝑃 in B either all states of 𝑃 are final or all states of 𝑃
are nonfinal. In particular, B is well-behaved.

It remains to show that the class of languages 𝐿 ⊆ Σ∗ recognized by well-behaved rDFAs
is closed under Boolean operations. If B is well-behaved then the complement automaton
B is also well-behaved. Given two well-behaved rDFAs B1,B2, we claim that the product
automaton B1 × B2 recognizing the intersection language is also well-behaved. Suppose that
B𝑖 = (𝑄𝑖 , Σ, 𝐹𝑖 , 𝛿𝑖 , 𝑞0,𝑖) for 𝑖 ∈ {1, 2}. The product automaton for the intersection language is
defined by

B1 × B2 = (𝑄1 × 𝑄2, Σ, 𝐹1 × 𝐹2, 𝛿, (𝑞0,1, 𝑞0,2))

where 𝛿(𝑎, (𝑞1, 𝑞2)) = (𝛿1(𝑎, 𝑞1), 𝛿2(𝑎, 𝑞2)) for all 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2 and 𝑎 ∈ Σ. Consider an SCC 𝑆
of B1 ×B2 which is reachable from the initial state and let (𝑝1, 𝑝2), (𝑞1, 𝑞2), (𝑟1, 𝑟2) ∈ 𝑆 such that

(𝑞1, 𝑞2) 𝑢←− (𝑝1, 𝑝2) and (𝑟1, 𝑟2) 𝑣←− (𝑝1, 𝑝2)

for some words 𝑢, 𝑣 ∈ Σ∗ with |𝑢| = |𝑣|. Since for 𝑖 ∈ {1, 2} we have 𝑞𝑖
𝑢←− 𝑝𝑖 and 𝑟𝑖

𝑣←− 𝑝𝑖 , and
{𝑝𝑖 , 𝑟𝑖 , 𝑞𝑖} is contained in an SCC of B𝑖 (which is also reachable from the initial state 𝑞0,𝑖), we
have

(𝑞1, 𝑞2) is final ⇐⇒ 𝑞1 and 𝑞2 are final

⇐⇒ 𝑟1 and 𝑟2 are final

⇐⇒ (𝑟1, 𝑟2) is final,

and therefore B1 × B2 is well-behaved. ■

29 / 75 Regular Languages in the Sliding Window Model

It remains to prove that every well-behaved rDFA recognizes a finite Boolean combination
of regular left ideals and regular length languages. With a right-deterministic finite automaton
B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) we associate the directed graph (𝑄, 𝐸) with edge set 𝐸 = {(𝑝, 𝑎 · 𝑝) | 𝑝 ∈
𝑄, 𝑎 ∈ Σ}. The period 𝑔 (𝐺) of a directed graph 𝐺 is the greatest common divisor of all cycle
lengths in 𝐺. If 𝐺 is acyclic we define the period to be∞. We will apply the following lemma
from Alon et al. [2] to the nontransient SCCs of B.

LEMMA 3.18 ([2]). Let 𝐺 = (𝑉, 𝐸) be a strongly connected directed graph with 𝐸 ≠ ∅ and finite
period 𝑔 . Then there exist a partition𝑉 =

⋃𝑔−1
𝑖=0 𝑉𝑖 and a constant 𝑚(𝐺) ⩽ 3|𝑉 |2 with the following

properties:
For every 0 ⩽ 𝑖, 𝑗 ⩽ 𝑔 − 1 and for every 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉 𝑗 the length of every directed path from
𝑢 to 𝑣 in 𝐺 is congruent to 𝑗 − 𝑖 modulo 𝑔 .
For every 0 ⩽ 𝑖, 𝑗 ⩽ 𝑔 − 1, for every 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉 𝑗 and every integer 𝑟 ⩾ 𝑚(𝐺), if 𝑟 is
congruent to 𝑗 − 𝑖 modulo 𝑔 , then there exists a directed path from 𝑢 to 𝑣 in 𝐺 of length 𝑟.

LEMMA 3.19 (uniform period). For every regular language there exists an rDFA B recognizing
𝐿 and a number 𝑔 such that every nontransient SCC 𝐶 in B has period 𝑔 (𝐶) = 𝑔 .

PROOF . Let B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) be any rDFA for 𝐿. Let 𝑔 be the product of all periods 𝑔 (𝐶)
over all nontransient SCCs 𝐶 in B. In the following, we compute in the additive group Z𝑔 =

{0, . . . , 𝑔 − 1}. We define

B × Z𝑔 = (𝑄 × Z𝑔 , Σ, 𝐹 × Z𝑔 , 𝛿′, (𝑞0, 0)),

where for all (𝑝, 𝑖) ∈ 𝑄 × Z𝑔 and 𝑎 ∈ Σ we set

𝛿′(𝑎, (𝑝, 𝑖)) =


(𝛿(𝑎, 𝑝), 𝑖 + 1), if 𝑝 and 𝛿(𝑎, 𝑝) are strongly connected,

(𝛿(𝑎, 𝑝), 0), otherwise.

Clearly, L(B × Z𝑔) = L(B). We show that every nontransient SCC of B × Z𝑔 has period 𝑔 . Let 𝐷
be a nontransient SCC of B×Z𝑔 . Clearly, every cycle length in 𝐷 is a multiple of 𝑔 . Take any state
(𝑞, 𝑖) ∈ 𝐷 and let 𝐶 be the SCC of 𝑞 in B. Since 𝐷 is nontransient, there exists a cycle in B × Z𝑔
containing (𝑞, 𝑖), which induces a cycle in B containing 𝑞. This implies that 𝐶 is nontransient.
Hence, we can apply Lemma 3.18 and obtain a cycle of length 𝑘 · 𝑔 (𝐶) in 𝐶 for every sufficiently
large 𝑘 ∈ N (𝑘 ⩾ 𝑚(𝐶) suffices). Since 𝑔 is a multiple of 𝑔 (𝐶), 𝐶 also contains a cycle of length
𝑘 · 𝑔 for every sufficiently large 𝑘. But every such cycle induces a cycle of the same length 𝑘 · 𝑔
in 𝐷. Hence, there exists 𝑘 ∈ N such that 𝐷 contains cycles of length 𝑘 · 𝑔 and (𝑘 + 1) · 𝑔. It
follows that the period of 𝐷 divides gcd(𝑘 · 𝑔, (𝑘 + 1) · 𝑔) = 𝑔 . This proves that the period of 𝐷 is
exactly 𝑔 . ■

PROOF OF THEOREM 3.3(i i) . It remains to show the direction from left to right. Consider
a well-behaved rDFA B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) for a regular language 𝐿 ⊆ Σ∗. We prove that 𝐿 is a finite

30 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

Boolean combination of regular left ideals and regular length languages. By Lemma 3.19 we can
ensure that all nontransient SCCs in B have the same period 𝑔 . This new rDFA B is also well-
behaved since in fact any rDFA for 𝐿 must be well-behaved; this follows from Proposition 3.9
and Corollary 3.10. Alternatively, one can verify that the transformation from Lemma 3.19
preserves the well-behavedness of B.

A path description 𝑃 is a sequence

𝐶𝑘, (𝑞𝑘, 𝑎𝑘−1, 𝑝𝑘−1), 𝐶𝑘−1, . . . , (𝑞3, 𝑎2, 𝑝2), 𝐶2, (𝑞2, 𝑎1, 𝑝1), 𝐶1, 𝑞1 (4)

where 𝐶𝑘, . . . , 𝐶1 are pairwise distinct SCCs of B, 𝑞1 = 𝑞0, (𝑞𝑖+1, 𝑎𝑖 , 𝑝𝑖) is a transition in B for
all 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 𝑝𝑖 , 𝑞𝑖 ∈ 𝐶𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘 − 1, and 𝑞𝑘 ∈ 𝐶𝑘. A run 𝜋 in B respects the path
description 𝑃 if the SCC-factorization of 𝜋 is 𝜋 = 𝜋𝑘𝜏𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1, 𝜋𝑖 is a 𝐶𝑖-internal run from
𝑞𝑖 to 𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘 − 1, 𝜏𝑖 = 𝑞𝑖+1𝑎𝑖𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘 − 1, and 𝜋𝑘 is a 𝐶𝑘-internal run starting
in 𝑞𝑘. Let 𝐿𝑃 be the set of words𝑤 ∈ Σ∗ such that the unique run ofB on𝑤 starting in 𝑞0 respects
the path description 𝑃. We can write 𝐿 =

⋃
𝑃 (𝐿𝑃 ∩ 𝐿) where 𝑃 ranges over all path descriptions.

Notice that the number of path descriptions is finite.
Let us fix a path description 𝑃 as in (4). We prove that 𝐿𝑃∩𝐿 is a finite Boolean combination

of regular left ideals and regular length languages. First, we claim that 𝐿𝑃 is a finite Boolean
combination of regular left ideals. Let Δ = {(𝑎 · 𝑝, 𝑎, 𝑝) | 𝑝 ∈ 𝑄, 𝑎 ∈ Σ} be the set of all transition
triples and let Δ𝑃 ⊆ Δ be the set of transition triples contained in any of the SCCs 𝐶𝑘, . . . , 𝐶1

together with the transition triples (𝑞𝑖+1, 𝑎𝑖 , 𝑝𝑖) for 1 ⩽ 𝑖 ⩽ 𝑘 − 1. A word 𝑤 ∈ Σ∗ then belongs
to 𝐿𝑃 if and only if 𝑤 belongs to the regular left ideal Σ∗𝐿𝑃 and the run of B on 𝑤 starting in
𝑞0 does not use any transitions from Δ \ Δ𝑃. It is easy to construct for every 𝜏 ∈ Δ \ Δ𝑃 an rDFA
D𝜏 which accepts all words 𝑤 such that the run of B on 𝑤 starting in 𝑞0 uses the transition 𝜏.
Clearly, this language is a left ideal. In total we have 𝐿𝑃 = Σ∗𝐿𝑃 \

⋃
𝜏∈Δ\Δ𝑃 L(D𝜏), which proves

the claim.
If 𝐶𝑘 is a transient SCC then 𝐿𝑃∩𝐿 is either empty or 𝐿𝑃, and we are done. For the rest of the

proof we assume that 𝐶𝑘 is nontransient. Recall that all nontransient SCCs in B have period 𝑔 .
Furthermore, 𝐶𝑘 is well-behaved since it is reachable from 𝑞0 according to the path description
𝑃. Let 𝐶𝑘 =

⋃𝑔−1
𝑖=0 𝑉𝑖 be the partition from Lemma 3.18. We claim that 𝐹 ∩ 𝐶𝑘 is a union of some

of the 𝑉𝑖 ’s. Towards a contradiction assume that there exist states 𝑝, 𝑞 ∈ 𝑉𝑖 where 𝑝 ∈ 𝐹 and
𝑞 ∉ 𝐹. Let 𝑟 ⩾ 𝑚(𝐶) be any number divisible by 𝑔 . Then, by Lemma 3.18 there exist runs from 𝑝

to 𝑝 and from 𝑝 to 𝑞, both of length 𝑟. This contradicts the fact that 𝐶𝑘 is well-behaved.
Let 𝜋, 𝜋′ be two runs of B starting from 𝑞0 which respect 𝑃. We claim that |𝜋 | ≡ |𝜋′|

(mod 𝑔) if and only if 𝜋 and 𝜋′ end in the same part 𝑉𝑖 of 𝐶𝑘. Consider the SCC-factorizations
𝜋 = 𝜋𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 and 𝜋′ = 𝜋′𝑘𝜏𝑘−1𝜋′𝑘−1 · · · 𝜏2𝜋′2𝜏1𝜋′1. For all 1 ⩽ 𝑖 ⩽ 𝑘 − 1 the subruns 𝜋𝑖
and 𝜋′𝑖 start in 𝑞𝑖 and end in 𝑝𝑖 . If 𝐶𝑖 is nontransient then |𝜋𝑖 | ≡ |𝜋′𝑖 | (mod 𝑔) by Lemma 3.18, and
otherwise |𝜋𝑖 | = |𝜋′𝑖 | = 0. This implies |𝜏𝑘−1𝜋𝑘−1 · · · 𝜏2𝜋2𝜏1𝜋1 | ≡ |𝜏𝑘−1𝜋′𝑘−1 · · · 𝜏2𝜋′2𝜏1𝜋′1 | (mod 𝑔).

31 / 75 Regular Languages in the Sliding Window Model

Also by Lemma 3.18 we know that |𝜋𝑘 | ≡ |𝜋′𝑘 | (mod 𝑔) if and only if 𝜋 and 𝜋′ end in the same
part 𝑉𝑖 . This proves the claim.

It follows that we can write 𝐿𝑃 ∩ 𝐿 = 𝐿𝑃 ∩ 𝐾 where

𝐾 = {𝑤 ∈ Σ∗ | ∃𝑟 ∈ 𝑅 : |𝑤| ≡ 𝑟 (mod 𝑔)}

for some 𝑅 ⊆ {0, . . . , 𝑔 − 1}. Since 𝐾 is a regular length language, we have proved the claim that
𝐿 is a Boolean combination of regular left ideals and regular length languages. This concludes
the proof of Theorem 3.3(ii). ■

4. Randomized sliding window algorithms

Most of the work in the context of streaming uses randomness and/or approximation to design
space- and time-efficient algorithms. For example, the AMS-algorithm [3] approximates the
number of distinct elements in a stream with high probability in O(log𝑚) space where 𝑚
is the size of the universe. Furthermore, it is proved that any deterministic approximation
algorithm and any randomized exact algorithm must use Ω(𝑛) space [3]. On the other hand, the
exponential histogram algorithm by Datar et al. [27] for approximating the number of 1’s in a
sliding window is a deterministic sliding window approximation algorithm that uses O(1𝜖 log2 𝑛)
bits. It is proven in [27] that Ω(1𝜖 log2 𝑛) bits are necessary even for randomized (Monte Carlo or
Las Vegas) sliding window algorithms.

In this section, we will study if and how randomness helps for testing membership to
regular languages over sliding windows. The main result of this section is a space tetrachotomy
in the fixed-size sliding window model, stating that every regular language has optimal space
complexity Θ(1), Θ∞(log log 𝑛), Θ∞(log 𝑛) or Θ∞(𝑛) if the streaming algorithms are randomized
with two-sided error.

4.1 Randomized streaming algorithms

In the following, we will introduce probabilistic automata [78, 81] as a model of randomized
streaming algorithms. With [0, 1] we denote the set of all real numbers 𝑟 with 0 ⩽ 𝑟 ⩽ 1. A
probabilistic automaton P = (𝑄, Σ, 𝜄, 𝜌, 𝐹) consists of a nonempty countable set of states 𝑄, a
finite alphabet Σ, an initial state distribution 𝜄 : 𝑄 → [0, 1], a transition probability function
𝜌 : 𝑄 × Σ × 𝑄→ [0, 1], and a set of final states 𝐹 ⊆ 𝑄, such that

(i)
∑
𝑞∈𝑄 𝜄(𝑞) = 1,

(ii)
∑
𝑞∈𝑄 𝜌(𝑝, 𝑎, 𝑞) = 1 for all 𝑝 ∈ 𝑄, 𝑎 ∈ Σ.

If 𝑄 is infinite then this means of course that the above infinite sums converge to 1. This implies
that these sums are absolutely convergent (all 𝜄(𝑞) and 𝜌(𝑝, 𝑎, 𝑞) are non-negative) and therefore
the order of summation is not relevant.

32 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

If 𝜄 and 𝜌 map into {0, 1}, then P can be viewed as a deterministic automaton. We will
refer to probabilistic automata also as randomized streaming algorithms.

For a word 𝑤 ∈ Σ∗ and a state 𝑞 we define the probability P(𝑤, 𝑞) that P after reading the
word 𝑤 arrives in state 𝑞 inductively over the length of 𝑤 as follows, where 𝑞 ∈ 𝑄, 𝑣 ∈ Σ∗ and
𝑎 ∈ Σ:

P(𝜀, 𝑞) = 𝜄(𝑞) and
P(𝑣𝑎, 𝑞) = ∑

𝑝∈𝑄 P(𝑣, 𝑝) · 𝜌(𝑝, 𝑎, 𝑞).
Then the probability that P accepts the word 𝑤 is

Pr[P accepts 𝑤] =
∑︁
𝑞∈𝐹
P(𝑤, 𝑞).

and the probability that P rejects the word 𝑤 is

Pr[P rejects 𝑤] =
∑︁
𝑞∈𝑄\𝐹

P(𝑤, 𝑞).

The space of P (or number of bits used by P) is given by 𝑠(P) = log |𝑄| ∈ R⩾0 ∪ {∞}. We say that
P is a randomized streaming algorithm for 𝐿 ⊆ Σ∗ with error probability 0 ⩽ 𝜆 ⩽ 1 if

Pr[P accepts 𝑤] ⩾ 1 − 𝜆 for all 𝑤 ∈ 𝐿,
Pr[P rejects 𝑤] ⩾ 1 − 𝜆 for all 𝑤 ∉ 𝐿.

The error probability 𝜆 is also called a two-sided error. If we omit 𝜆 we choose 𝜆 = 1/3.
For a randomized streaming algorithm P = (𝑄, Σ, 𝜄, 𝜌, 𝐹) and a number 𝑘 ⩾ 1 let P (𝑘)

be the randomized streaming algorithm which simulates 𝑘 instances of P in parallel with
independent random choices and outputs the majority vote. Formally the states of P (𝑘) are
multisets of size 𝑘 over 𝑄 (using multisets instead of ordered tuples will yield a better space
bound in Section 4.3). Therefore, 𝑠(P (𝑘)) ⩽ 𝑘 · 𝑠(P).

LEMMA 4.1 (probability amplification). For all 0 < 𝜆′ < 𝜆 < 1/2 there exists a number
𝑘 = O(log

(1
𝜆′
) · (1

2 − 𝜆
)−2) such that for all randomized streaming algorithms P and all 𝑤 ∈ Σ∗

we have:
(i) If Pr[P accepts 𝑤] ⩾ 1 − 𝜆 then Pr[P (𝑘) accepts 𝑤] ⩾ 1 − 𝜆′.

(ii) If Pr[P rejects 𝑤] ⩾ 1 − 𝜆 then Pr[P (𝑘) rejects 𝑤] ⩽ 1 − 𝜆′.

PROOF . We will choose 𝑘 later. Let 𝑋1, . . . , 𝑋𝑘 be independent Bernoulli random variables with
Pr[𝑋𝑖 = 0] = 𝜆 and Pr[𝑋𝑖 = 1] = 1 − 𝜆. Let 𝑋 =

∑𝑘
𝑖=1 𝑋𝑖 with expectation 𝜇 = 𝑘(1 − 𝜆). Suppose

that P accepts 𝑤with probability ⩾ 1− 𝜆, i.e., P rejects 𝑤with probability at most 𝜆. Then, P (𝑘)
rejects 𝑤 with probability at most Pr[𝑋 ⩽ 𝑘/2]. By the Chernoff bound [75, Theorem 4.5], for
any 0 < 𝛿 < 1 we have

Pr[𝑋 ⩽ (1 − 𝛿)𝜇] ⩽ exp
(
−𝜇𝛿

2

2

)
. (5)

33 / 75 Regular Languages in the Sliding Window Model

By choosing 𝛿 = 1 − 1
2(1−𝜆) we get (1 − 𝛿)𝜇 = 𝑘/2. Then, (5) gives the following estimate:

Pr[𝑋 ⩽ 𝑘/2] ⩽ exp

(
−
𝑘(1 − 𝜆) (1 − 1

2(1−𝜆))2
2

)

= exp

(
−𝑘

2
· (

1
2 − 𝜆)2
1 − 𝜆

)

⩽ exp

(
−𝑘

2
·
(

1
2
− 𝜆

)2
)
.

By choosing

𝑘 ⩾ 2 · ln
(

1
𝜆′

)
·
(

1
2
− 𝜆

)−2

we can bound the probability that P (𝑘) rejects 𝑤 by 𝜆′. Statement (ii) can be shown analogously.
■

4.2 Space tetrachotomy

A randomized sliding window algorithm for a language 𝐿 and window size 𝑛 is a randomized
streaming algorithm for SW𝑛(𝐿). The randomized space complexity Fr

𝐿(𝑛) of 𝐿 in the fixed-size
sliding window model is the minimal space complexity 𝑠(P𝑛) of a randomized sliding window
algorithm P𝑛 for 𝐿 and window size 𝑛. For this to be well-defined it is important that we require
the error probability to be at most 1/3.

Before we investigate randomized streaming algorithms in more detail, let us first com-
ment on the fact that in our definition of randomized SW-algorithms we allow arbitrary (even
irrational) probabilities in the state transitions. On the other hand, in all correctness proofs for
our randomized SW-algorithms we only need the fact that the probabilities are from a certain
interval 𝐼 ⊆ [0, 1]. Therefore, if 𝑑 is the length of the interval 𝐼 , we can always choose a proba-
bility 𝑝 ∈ 𝐼 with O(log2(1/𝑑)) bits such that the algorithm still achieves an error probability
of at most 1/3. However, the size of the interval 𝐼 may depend on the window size 𝑛; more
precisely it may shrink when 𝑛 grows. In particular, the number of bits needed to write down
the probabilities used in P𝑛 (the algorithm for window size 𝑛) may grow with 𝑛. One might
argue that these bits should also enter the definition of the space used by the algorithm. The
reason why we do not take these bits into account is the same as why we do not consider the
space for internal calculations; see Remark 2.7. Assume for instance that we need to implement
a randomized branching with probabilities 𝑝 and 1− 𝑝 and let 𝑚 be the number of bits of 𝑝. Let
us moreover assume that we have a randomized machine model that apart from deterministic
commands can only toss fair coins. It is not difficult to see that one can implement a biased coin
with probabilities 𝑝 and 1 − 𝑝 using 𝑚 many fair coins. For this, one also needs some additional
control structure for which O(log𝑚) bits are needed (basically to store the program counter).

34 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

But this is internal space that we do not take into account in our definition of space (as justified
in Remark 2.7).5

Clearly we have Fr
𝐿(𝑛) ⩽ F𝐿(𝑛). Furthermore, we prove that randomness can reduce the

space complexity at most exponentially:

LEMMA 4.2. For any language 𝐿 we have F𝐿(𝑛) = 2O(𝐹r
𝐿(𝑛)) .

PROOF . Rabin proved that any probabilistic finite automaton with a so-called isolated cut-
point can be made deterministic with an exponential size increase [81]. Let P = (𝑄, Σ, 𝜄, 𝜌, 𝐹)
be a probabilistic finite automaton with 𝑚 states. Suppose that 𝜆 ∈ [0, 1] is an isolated cut-
point with radius 𝛿 > 0, i.e., |Pr[P accepts 𝑤] − 𝜆 | ⩾ 𝛿 for all 𝑤 ∈ Σ∗. Then, 𝐿 = {𝑤 ∈ Σ∗ |
Pr[P accepts 𝑤] ⩾ 𝜆} is recognized by a DFAA with at most (1 +𝑚/𝛿)𝑚−1 = 2O(𝑚 log𝑚) states
[81, Theorem 3].

Now, let P𝑛 be a minimal probabilistic finite automaton for SW𝑛(𝐿) with 𝑚 states and
error probability ⩽ 1/3. Since P𝑛 has 1/2 as an isolated cutpoint with radius 1/2 − 1/3 = 1/6,
there exists an equivalent DFA Q𝑛 with |Q𝑛 | ⩽ 2O(𝑚 log𝑚) states. The statement follows from
F𝐿(𝑛) ⩽ log |Q𝑛 | = O(𝑚 log𝑚) = O(2Fr

𝐿(𝑛) · Fr
𝐿(𝑛)), which is bounded by 2O(Fr

𝐿(𝑛)) . ■

In this section, we will prove Theorem 1.4, which is a tetrachotomy for the randomized
space complexity of regular languages in the fixed-size sliding window model. Let us rephrase
Theorem 1.4 and split it into three upper bounds and three lower bounds.

THEOREM 4.3. Let 𝐿 ⊆ Σ∗ be a regular language.
(1) If 𝐿 ∈ ⟨ST,Len⟩ then Fr

𝐿(𝑛) = O(1).
(2) If 𝐿 ∉ ⟨ST,Len⟩ then Fr

𝐿(𝑛) = Ω∞(log log 𝑛).
(3) If 𝐿 ∈ ⟨ST, SF,Len⟩ then Fr

𝐿(𝑛) = O(log log 𝑛).
(4) If 𝐿 ∉ ⟨ST, SF,Len⟩ then Fr

𝐿(𝑛) = Ω∞(log 𝑛).
(5) If 𝐿 ∈ ⟨LI,Len⟩ then Fr

𝐿(𝑛) = O(log 𝑛).
(6) If 𝐿 ∉ ⟨LI,Len⟩ then Fr

𝐿(𝑛) = Ω∞(𝑛).

Points (1) and (5) already hold in the deterministic setting, see Theorem 3.3. In the next
sections we prove points (2), (3), (4), and (6).

We first transfer Lemma 2.6 to the fixed-size model in the randomized setting:

LEMMA 4.4. Let Σ be a finite alphabet. For any function 𝑠(𝑛), the class {𝐿 ⊆ Σ∗ | Fr
𝐿(𝑛) =

O(𝑠(𝑛))} forms a Boolean algebra.

PROOF . Let 𝐿 ⊆ Σ∗ be a language and 𝑛 ∈ N a window size. IfP𝑛 is a randomized SW-algorithm
for 𝐿 and window size 𝑛 then P𝑛 is a randomized SW-algorithm for Σ∗ \ 𝐿 and window size

5 The reader may view this control structure as additional 𝜀-transitions in a probabilistic automaton that are taken with
probability 1/2.

35 / 75 Regular Languages in the Sliding Window Model

𝑛, where P𝑛 simulates P𝑛 and returns the negated output. Let P𝑛 and Q𝑛 be randomized SW-
algorithms for 𝐾 and 𝐿, respectively, and window size 𝑛. By Lemma 4.1 we can reduce their
error probabilities to 1/6 with a constant space increase. Then, the algorithm which simulates
P𝑛 and Q𝑛 in parallel and returns the disjunction of the outputs is a randomized SW-algorithm
for 𝐾 ∪ 𝐿 and window size 𝑛. Its error probability is at most 1/3 by the union bound. ■

4.3 The Bernoulli counter

The crucial algorithmic tool for the proof of Theorem 4.3(3) is a simple probabilistic counter. It
is inspired by the approximate counter by Morris [36, 76], which uses O(log log 𝑛) bits. For our
purposes, it suffices to detect whether the counter has exceeded a certain threshold, which can
be accomplished using only O(1) bits.

Formally, a probabilistic counter is a probabilistic automaton

Z = (𝐶, {inc}, 𝜄, 𝜌, 𝐹)

over the unary alphabet {inc}. States in 𝐹 are called high and states in 𝐶 \ 𝐹 are called low.
We make the restriction that there is a low state 𝑐0 ∈ 𝐶 such that 𝜄(𝑐0) = 1 (and hence 𝜄(𝑐) = 0
for all 𝑐 ∈ 𝐶 \ {𝑐0}); thus Z has a unique initial state 𝑐0 (which must be low) and we write
Z = (𝐶, {inc}, 𝑐0, 𝜌, 𝐹). This restriction is not really important (and can in fact be achieved for
every probabilistic automaton by adding a new state), but it will simplify our constructions.

In the following we writeZ(𝑘, 𝑐) forZ(inc𝑘, 𝑐) (𝑘 ⩾ 0, 𝑐 ∈ 𝐶), which is the probability
thatZ arrives in state 𝑐 after 𝑘 increments. Moreover,Zhi(𝑘) is the probability thatZ is in a
high state after 𝑘 increments (this is the same as Pr[Z accepts inc𝑘]). Given numbers 0 ⩽ ℓ < ℎ

we say thatZ is an (ℎ, ℓ)-counter with error probability 𝜆 < 1
2 if for all 𝑘 ∈ N we have:

If 𝑘 ⩽ ℓ, thenZhi(𝑘) ⩽ 𝜆.
If 𝑘 ⩾ ℎ, thenZhi(𝑘) ⩾ 1 − 𝜆.

In other words, a probabilistic counter can distinguish with high probability between values
below ℓ and values above ℎ but does not give any guarantees for counter values strictly between
ℓ and ℎ. A Bernoulli counter is a probabilistic counterZ𝑝 that is parameterized by a probability
0 < 𝑝 < 1 and that has the state set {0, 1}, where 0 is a low state and 1 is a high state. Initially
the counter is in the state 𝑥 = 0. On every increment we set 𝑥 = 1 with probability 𝑝; the state
remains unchanged with probability 1 − 𝑝. We have

Zhi
𝑝 (𝑘) = Z𝑝(𝑘, 1) = 1 − (1 − 𝑝)𝑘 .

Let us first show the following claim.

LEMMA 4.5. For all ℎ > 0, 0 < 𝜉 < 1 and 0 < ℓ ⩽ (1 − 𝜉)ℎ there exists 0 < 𝑝 < 1 such thatZ𝑝

is an (ℎ, ℓ)-counter with error probability 1/2 − 𝜉/8.

36 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

PROOF . We need to choose 0 < 𝑝 < 1 such that
(i) 1 − (1 − 𝑝) (1−𝜉)ℎ ⩽ 1/2 − 𝜉/8, or equivalently, 1/2 + 𝜉/8 ⩽ (1 − 𝑝) (1−𝜉)ℎ, and

(ii) (1 − 𝑝)ℎ ⩽ 1/2 − 𝜉/8, or equivalently, (1 − 𝑝) (1−𝜉)ℎ ⩽ (1/2 − 𝜉/8)1−𝜉.
It suffices to show

1
2
+ 𝜉

8
⩽

(
1
2
− 𝜉

8

)1−𝜉
. (6)

Then one can take for instance 𝑝 = 1 − (1/2 − 𝜉/8)1/ℎ ∈ (0, 1), which satisfies (ii). Moreover, (i)
is satisfied due to (6).

Taking logarithms shows that (6) is equivalent to

ln(4 + 𝜉) − ln 8 ⩽ (1 − 𝜉) · (ln(4 − 𝜉) − ln 8),

which can be rearranged to ln(4 + 𝜉) ⩽ ln(4 − 𝜉) + 𝜉(ln 8 − ln(4 − 𝜉)). Since ln 8 − ln(4 − 𝜉) ⩾
ln 8 − ln 4 = ln 2, it suffices to prove

ln(4 + 𝜉) ⩽ ln(4 − 𝜉) + 𝜉 ln 2. (7)

One can verify 3 ln 2 ≈ 2.0794 ⩾ 2. We have

4 + 𝜉 ⩽ 4 + (3 ln 2 − 1)𝜉
= 4 + (4 ln 2 − 1)𝜉 − 𝜉 ln 2

⩽ 4 + (4 ln 2 − 1)𝜉 − 𝜉2 ln 2

= (4 − 𝜉) (𝜉 ln 2 + 1).

By taking logarithms and plugging in ln 𝑥 ⩽ 𝑥 − 1 for all 𝑥 > 0, we obtain

ln(4 + 𝜉) ⩽ ln(4 − 𝜉) + ln(𝜉 ln 2 + 1) ⩽ ln(4 − 𝜉) + 𝜉 ln 2.

This proves (7) and hence (6), and thus the lemma. ■

PROPOS IT ION 4.6. For all ℎ > 0, 0 < 𝜉 < 1, 0 < ℓ ⩽ (1 − 𝜉)ℎ and 0 < 𝜆′ < 1/2 there exists an
(ℎ, ℓ)-counterZ with error probability 𝜆′ which uses O(log log(1/𝜆′) + log(1/𝜉)) bits.

PROOF . Take the (ℎ, ℓ)-counterZ𝑝 from Lemma 4.5, whose error probability is 𝜆 := 1/2 − 𝜉/8.
ToZ𝑝 we apply Lemma 4.1, which states that we need to run 𝑘 = O(log(1

𝜆′) · 1
𝜉2) independent

copies to reduce the error probability to 𝜆′. The states ofZ (𝑘)𝑝 are multisets over {0, 1} of size
𝑘, which can be encoded with O(log 𝑘) = O(log log 1

𝜆′ + log 1
𝜉) bits by specifying the number of

1-bits in the multiset. Note that the unique initial state ofZ (𝑘)𝑝 is the multiset with 𝑘 occurrences
of 0. ■

37 / 75 Regular Languages in the Sliding Window Model

4.4 Suffix-free languages

In this section, we prove Theorem 4.3(3). Since languages in ST ∪ Len have constant space
(deterministic) SW-algorithms it suffices by Lemma 4.4 to show:

THEOREM 4.7. If 𝐿 is regular and suffix-free then Fr
𝐿(𝑛) = O(log log 𝑛).

Fix a regular suffix-free language 𝐿 ⊆ Σ∗ and let B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) be an rDFA for 𝐿 where
all states are reachable. Excluding the trivial case 𝐿 = ∅, we assume that B contains at least
one final state. Furthermore, since 𝐿 is suffix-free, any run in B contains at most one final state.
Therefore, we can assume that 𝐹 contains exactly one final state 𝑞𝐹 , and all outgoing transitions
from 𝑞𝐹 lead to a sink state. For a stream 𝑤 ∈ Σ∗ define the function ℓ𝑤 : 𝑄→ N ∪ {∞} by

ℓ𝑤(𝑞) = inf{𝑘 ∈ N | last𝑘 (𝑤) · 𝑞 = 𝑞𝐹}, (8)

where we set inf (∅) = ∞ (note that {𝑘 ∈ N | last𝑘 (𝑤) · 𝑞 = 𝑞𝐹} is either empty or a singleton set).
Notice that last𝑛(𝑤) ∈ 𝐿 if and only if ℓ𝑤(𝑞0) = 𝑛. Also, it holds ℓ𝑤(𝑞𝐹) = 0 for every 𝑤 ∈ Σ∗. A
deterministic streaming algorithm can maintain the function ℓ𝑤 where 𝑤 ∈ Σ∗ is the stream
prefix read so far: If a symbol 𝑎 ∈ Σ is read, we can determine

ℓ𝑤𝑎(𝑞) =



0, if 𝑞 = 𝑞𝐹 ,

1 + ℓ𝑤(𝑎 · 𝑞), otherwise,
(9)

where 1+∞ = ∞. Storing ℓ𝑤(𝑞) may require up to log |𝑤| bits. Therefore, if an SW-algorithm for
window size 𝑛 wants to store all ℓ𝑤(𝑞) for 𝑞 ∈ 𝑄 (𝑤 is the input stream and not just the sliding
window), then the space is not bounded in the window size. The solution is to use probabilistic
counters with suitable threshold values ℓ and ℎ.

Let 𝑛 ∈ N be a window size. The randomized sliding window algorithm P𝑛 for 𝐿 consists
of two parts: a constant-space threshold algorithm T𝑛, which rejects with high probability
whenever ℓ𝑤(𝑞0) ⩾ 2𝑛, and a modulo counting algorithmM𝑛, which maintains ℓ𝑤 modulo a
random prime number with O(log log 𝑛) bits.

LEMMA 4.8 (threshold counting). There exists a randomized streaming algorithm T𝑛 with
O(1) bits such that for all 𝑤 ∈ Σ∗ we have:

Pr[T𝑛 accepts 𝑤] ⩾ 2/3, if ℓ𝑤(𝑞0) ⩽ 𝑛, and
Pr[T𝑛 rejects 𝑤] ⩾ 2/3, if ℓ𝑤(𝑞0) ⩾ 2𝑛.

PROOF . By Proposition 4.6 there is a (2𝑛, 𝑛)-counterZ = (𝐶, {inc}, 𝑐0, 𝜌, 𝐹) with error prob-
ability 1/3 which uses O(1) space. Let 𝑐∞ ∈ 𝐹 be an arbitrary high state. The algorithm T𝑛
maintains for every 𝑞 ∈ 𝑄 an instanceZ𝑞 of the (2𝑛, 𝑛)-counterZ. The input alphabet ofZ𝑞
is Σ (instead of {inc}) and the probabilityZ𝑞(𝑤, 𝑐) of reaching 𝑐 ∈ 𝐶 after reading the word

38 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑤 ∈ Σ∗ will satisfy
Z𝑞(𝑤, 𝑐) = Z(ℓ𝑤(𝑞), 𝑐), (10)

where we set Z(∞, 𝑐∞) = 1 (and Z(∞, 𝑐) = 0 for all states 𝑐 ≠ 𝑐∞) We initialize Z𝑞 in order
to get (10) for 𝑤 = 𝜀. To this end, we distinguish whether state 𝑞 has finite or infinite value
ℓ𝜀(𝑞). Notice that ℓ𝜀(𝑞) is finite if and only if the final state 𝑞𝐹 can be reached from state 𝑞 by
only reading the padding symbol □. If ℓ𝜀(𝑞) < ∞, then we initialize Z𝑞 in its initial state 𝑐0

and then execute ℓ𝜀(𝑞) increments. If ℓ𝜀(𝑞) = ∞, we setZ𝑞 to state 𝑐∞ (with probability one).
Given an input symbol 𝑎 ∈ Σ, we compute the new states of the countersZ𝑞 as follows: Assume
that 𝑐𝑞 is the current state ofZ𝑞. First we setZ𝑞𝐹 to the initial state 𝑐0. This ensures (10) for 𝑞𝐹
since ℓ𝑤𝑎(𝑞𝐹) = 0 andZ(0, 𝑐0) = 1. For 𝑞 ∈ 𝑄 \ {𝑞𝐹} we set the new state ofZ𝑞 with probability
𝜌(𝑐𝑎·𝑞, inc, 𝑐) to 𝑐. This ensures again (10):

Z𝑞(𝑤𝑎, 𝑐) =
∑︁
𝑐′∈𝐶
Z𝑎·𝑞(𝑤, 𝑐′) · 𝜌(𝑐′, inc, 𝑐)

=
∑︁
𝑐′∈𝐶
Z(ℓ𝑤(𝑎 · 𝑞), 𝑐′) · 𝜌(𝑐′, inc, 𝑐)

= Z(ℓ𝑤(𝑎 · 𝑞) + 1, 𝑐) = Z(ℓ𝑤𝑎(𝑞), 𝑐).

The algorithm T𝑛 accepts the word𝑤 if and only ifZ𝑞0 is in a low state after reading𝑤. Note that
this happens with probability 1 −Zhi

𝑞0
(𝑤) = 1 −Zhi(ℓ𝑤(𝑞0)) (Zhi(𝑘) is the probability thatZ is

in a high state after 𝑘 increments). Correctness follows from the fact thatZ is a (2𝑛, 𝑛)-counter
with error probability 1/3:

Pr[T𝑛 accepts 𝑤] = 1 −Zhi(ℓ𝑤(𝑞0))


⩾ 2/3 if ℓ𝑤(𝑞0) ⩽ 𝑛,
⩽ 1/3 if ℓ𝑤(𝑞0) ⩾ 2𝑛.

This proves the lemma. ■

Also note that the randomized SW-algorithm from the previous proof uses several probabilistic
countersZ𝑞 (one for each state 𝑞 ∈ 𝑄) and they all have the same parameters ℓ = 𝑛 and ℎ = 2𝑛.
For each new input symbol, a subset of these counters have to be incremented. These increments
are not needed to be independent. Hence, in each step, only the random bits for incrementing
a single (2𝑛, 𝑛)-counter are needed. These random bits can be used for allZ𝑞 that have to be
incremented.

We now come to the modulo counting algorithm, for which we use the following simple
fact on prime numbers.

LEMMA 4.9. There is a constant 𝑐 such that for every large enough 𝑚 ∈ N and all 0 ⩽ 𝑎, 𝑏 ⩽ 𝑚
with 𝑎 ≠ 𝑏 the following holds: If the prime number 𝑝 is picked uniformly at random among all
prime numbers that are no greater than 𝑐 log𝑚 log log𝑚, then Pr[𝑎 ≡ 𝑏 (mod 𝑝)] ⩽ 1/3.

39 / 75 Regular Languages in the Sliding Window Model

PROOF . Let 𝑝𝑖 be the 𝑖-th prime number. It is known that 𝑝𝑖 < 𝑖 · (ln 𝑖 + ln ln 𝑖) for 𝑖 ⩾ 6 [83,

page 3.13]. Fix an 𝑚 and let 𝑘 be the first natural number such that
∏𝑘

𝑖=1 𝑝𝑖 ⩾ 𝑚. Since
∏𝑘

𝑖=1 𝑝𝑖 ⩾

2𝑘, we have 𝑘 ⩽ log𝑚 and hence 𝑝3𝑘 ⩽ 3 log𝑚 · (ln(3 log𝑚) + ln ln(3 log𝑚)) ⩽ 𝑐 log𝑚 log log𝑚
for some constant 𝑐 and all large enough 𝑚.

Since −𝑚 ⩽ 𝑎 − 𝑏 ⩽ 𝑚 and any product of at least 𝑘 + 1 pairwise distinct primes exceeds
𝑚, the integer 𝑎 − 𝑏 ≠ 0 has at most 𝑘 prime factors. Hence, for a randomly chosen prime
𝑝 ∈ {𝑝1, . . . , 𝑝3𝑘} we have Pr[𝑎 ≡ 𝑏 (mod 𝑝)] ⩽ 1/3. ■

LEMMA 4.10 (modulo counting). There exists a randomized streaming algorithmM𝑛 with
O(log log 𝑛) bits such that for all 𝑤 ∈ Σ∗ we have:

Pr[M𝑛 accepts 𝑤] = 1, if ℓ𝑤(𝑞0) = 𝑛, and
Pr[M𝑛 rejects 𝑤] ⩾ 2/3, if ℓ𝑤(𝑞0) < 2𝑛 and ℓ𝑤(𝑞0) ≠ 𝑛.

PROOF . Let 𝑐 be the constant from Lemma 4.9 which is applied with 𝑚 = 2𝑛. The algorithm
M𝑛 initially picks a random prime 𝑝 ⩽ 𝑐 log(2𝑛) log log(2𝑛) which is stored throughout the
run using O(log log 𝑛) bits. Then, after reading 𝑤 ∈ Σ∗,M𝑛 stores for every 𝑞 ∈ 𝑄 a bit telling
whether ℓ𝑤(𝑞) < ∞ and, if the latter holds, the value ℓ𝑤(𝑞) mod 𝑝 using in total O(|𝑄| · log log 𝑛)
bits. These numbers can be maintained according to (9). The algorithm accepts if and only if
ℓ𝑤(𝑞0) ≡ 𝑛 (mod 𝑝).

If ℓ𝑤(𝑞0) = 𝑛 then the algorithm always accepts. Now, assume ℓ𝑤(𝑞0) < 2𝑛 and ℓ𝑤(𝑞0) ≠ 𝑛.
Then Lemma 4.9 with 𝑎 = ℓ𝑤(𝑞0) and 𝑏 = 𝑛 yields Pr[ℓ𝑤(𝑞0) ≡ 𝑛 (mod 𝑝)] ⩽ 1/3. Therefore,
M𝑛 rejects with probability at least 2/3. ■

It is worth mentioning that in the above modulo counting algorithm the errors after reading
different prefixes of an input stream 𝑤 are not independent. If for instance 𝑤 = 𝑢𝑢 with |𝑢| the
window size, then the algorithm will make an error after reading 𝑢 if and only if it makes an
error after reading 𝑢𝑢. This is of course due to the fact that the only random choice is made at
the very beginning. After this random choice, the algorithm proceeds deterministically.

By combining the algorithms from Lemma 4.8 and Lemma 4.10 we can prove Theorem 4.7.
The algorithm P𝑛 is the conjunction of the threshold algorithm T𝑛 and the modulo counting
algorithmM𝑛. Recall that last𝑛(𝑤) ∈ 𝐿 if and only if ℓ𝑤(𝑞0) = 𝑛. If ℓ𝑤(𝑞0) = 𝑛 then T𝑛 accepts
with probability at least 2/3 andM𝑛 accepts with probability 1; hence P𝑛 accepts with proba-
bility at least 2/3. If ℓ𝑤(𝑞0) ≠ 𝑛 thenM𝑛 or T𝑛 rejects with probability at least 2/3. Hence, P𝑛
rejects with probability at least 2/3.

4.5 Lower bounds

In this section, we prove the lower bounds from Theorem 4.3. Point (2) from Theorem 4.3 follows
easily from the relation F𝐿(𝑛) = 2O(Fr

𝐿(𝑛)) (Lemma 4.2). Since every language 𝐿 ∈ Reg \ ⟨ST,Len⟩
satisfies F𝐿(𝑛) = Ω∞(log 𝑛) (Theorem 3.2 and 3.3), it also satisfies Fr

𝐿(𝑛) = Ω∞(log log 𝑛).

40 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

For (4) and (6) we apply known lower bounds from communication complexity by deriving
a randomized communication protocol from a randomized SW-algorithm. This is in fact a
standard technique for obtaining lower bounds for streaming algorithms; see e.g. [84].

We present the necessary background from communication complexity; see [71] for a
detailed introduction. We only need the one-way setting where Alice sends a single message
to Bob. Consider a function 𝑓 : 𝑋 × 𝑌 → {0, 1} for some finite sets 𝑋 and 𝑌 . A randomized
one-way (communication) protocol 𝑃 = (𝑎, 𝑏) consists of functions 𝑎 : 𝑋 × 𝑅𝑎 → {0, 1}∗ and
𝑏 : {0, 1}∗ ×𝑌 × 𝑅𝑏 → {0, 1}, where 𝑅𝑎 and 𝑅𝑏 are finite sets of random choices of Alice and Bob,
respectively. The cost of 𝑃 is the maximum number of bits transmitted by Alice, i.e.

cost(𝑃) = max
𝑥∈𝑋,𝑟𝑎∈𝑅𝑎

|𝑎(𝑥, 𝑟𝑎) |.

Moreover, probability distributions are given on 𝑅𝑎 and 𝑅𝑏. Alice computes from her input
𝑥 ∈ 𝑋 and a random choice 𝑟𝑎 ∈ 𝑅𝑎 the value 𝑎(𝑥, 𝑟𝑎) and sends it to Bob. Using this value,
his input 𝑦 ∈ 𝑌 and a random choice 𝑟𝑏 ∈ 𝑅𝑏 he outputs 𝑏(𝑎(𝑥, 𝑟𝑎), 𝑦, 𝑟𝑏). The random choices
𝑟𝑎 ∈ 𝑅𝑎, 𝑟𝑏 ∈ 𝑅𝑏 are chosen independently of each other. The protocol 𝑃 computes 𝑓 if for all
(𝑥, 𝑦) ∈ 𝑋 × 𝑌 we have

Pr
𝑟𝑎∈𝑅𝑎,𝑟𝑏∈𝑅𝑏

[𝑃(𝑥, 𝑦) ≠ 𝑓 (𝑥, 𝑦)] ⩽ 1
3
, (11)

where 𝑃(𝑥, 𝑦) is the random variable 𝑏(𝑎(𝑥, 𝑟𝑎), 𝑦, 𝑟𝑏). The randomized one-way communication
complexity of 𝑓 is the minimal cost among all one-way randomized protocols that compute 𝑓

(with an arbitrary number of random bits). The choice of the constant 1/3 in (11) is arbitrary in
the sense that changing the constant to any 𝜆 < 1/2 only changes the communication complexity
by a constant (depending on 𝜆), see [71, p. 30]. We will use established lower bounds on the
randomized one-way communication complexity of some functions.

THEOREM 4.11 ([70, Theorem 3.7 and 3.8]). Let 𝑛 ∈ N.
The index function

IDX𝑛 : {0, 1}𝑛 × {1, . . . , 𝑛} → {0, 1}

with IDX𝑛(𝑎1 · · · 𝑎𝑛, 𝑖) = 𝑎𝑖 has randomized one-way communication complexity Θ(𝑛).
The greater-than function

GT𝑛 : {1, . . . , 𝑛} × {1, . . . , 𝑛} → {0, 1}

with GT𝑛(𝑖, 𝑗) = 1 if and only if 𝑖 > 𝑗 has randomized one-way communication complexity
Θ(log 𝑛).

The upper bounds from these statements also hold for the deterministic one-way com-
munication complexity as witnessed by the trivial deterministic protocols. We also define the
equality function

EQ𝑛 : {1, . . . , 𝑛} × {1, . . . , 𝑛} → {0, 1}

41 / 75 Regular Languages in the Sliding Window Model

by EQ𝑛(𝑖, 𝑗) = 1 if and only if 𝑖 = 𝑗. Its randomized one-way communication complexity is
Θ(log log 𝑛) whereas its deterministic one-way communication complexity is Θ(log 𝑛) [71].

We start with the proof of (6) from Theorem 4.3, which extends our linear space lower
bound from the deterministic setting to the randomized setting.

PROPOS IT ION 4.12. If 𝐿 ∈ Reg \ ⟨LI,Len⟩ then Fr
𝐿(𝑛) = Ω∞(𝑛).

PROOF . By Theorem 3.3(ii) any rDFA for 𝐿 is not well-behaved and by Lemma 3.8 there exist
words 𝑢 = 𝑢1𝑢2, 𝑣 = 𝑣1𝑣2, 𝑧 ∈ Σ∗ such that |𝑢1 | = |𝑣1 |, |𝑢2 | = |𝑣2 | and 𝐿 separates 𝑢2{𝑢, 𝑣}∗𝑧 and
𝑣2{𝑢, 𝑣}∗𝑧. Let 𝜂 : {0, 1}∗ → {𝑢, 𝑣}∗ be the injective homomorphism defined by 𝜂(0) = 𝑢 and
𝜂(1) = 𝑣.

Now, consider a randomized SW-algorithm P𝑛 for 𝐿 and window size 𝑛 = |𝑢2 | + |𝑢| ·𝑚 + |𝑧 |
for some 𝑚 ⩾ 1. We describe a randomized one-way communication protocol for IDX𝑚.

Let 𝛼 = 𝛼1 · · ·𝛼𝑚 ∈ {0, 1}𝑚 be Alice’s input and 𝑖 ∈ {1, . . . , 𝑚} be Bob’s input. Alice reads
𝜂(𝛼) into P𝑛 (using here random choices in order to select the outgoing transitions in P𝑛) and
sends the memory state using O(𝑠(P𝑛)) bits to Bob. Continuing from the received state, Bob
reads 𝑢𝑖𝑧 into P𝑛. Then, the active window is

last𝑛(𝜂(𝛼)𝑢𝑖𝑧) = 𝑠 𝜂(𝛼𝑖+1 · · ·𝛼𝑚)𝑢𝑖𝑧 ∈ {𝑢2, 𝑣2}{𝑢, 𝑣}∗𝑧

where 𝑠 = 𝑢2 if 𝛼𝑖 = 0 and 𝑠 = 𝑣2 if 𝛼𝑖 = 1. Hence, from the output of P𝑛 Bob can determine
whether 𝛼𝑖 = 1. The cost of the protocol is bounded by O(𝑠(P𝑛)) and must be at least Ω(𝑚) =
Ω(𝑛) by Theorem 4.11. We conclude that 𝑠(P𝑛) = Ω(𝑛) for infinitely many 𝑛 and therefore
Fr
𝐿(𝑛) = Ω∞(𝑛). ■

Next, we prove point (4) from Theorem 4.3. For that, we need the following automaton
property, where B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) is an rDFA.

A pair (𝑝, 𝑞) ∈ 𝑄 × 𝑄 of states is called synchronized if there exist words 𝑥, 𝑦, 𝑧 ∈ Σ∗ with
|𝑥 | = | 𝑦 | = |𝑧 | ⩾ 1 such that

𝑞
𝑥←− 𝑞 𝑦←− 𝑝 𝑧←− 𝑝.

A pair (𝑝, 𝑞) ∈ 𝑄 × 𝑄 is called reachable if 𝑝 and 𝑞 are reachable from 𝑞0 and (𝑝, 𝑞) is called
𝐹-consistent if either {𝑝, 𝑞} ∩ 𝐹 = ∅ or {𝑝, 𝑞} ⊆ 𝐹. We remark that synchronized state pairs have
no connection to the notion of synchronizing words.

Our main technical result for synchronized pairs is the following:

LEMMA 4.13. Assume that every reachable synchronized pair in B is 𝐹-consistent. Then, L(B)
belongs to ⟨ST, SF,Len⟩.

For the proof of Lemma 4.13 we need two lemmas.

LEMMA 4.14. A state pair (𝑝, 𝑞) is synchronized if and only if 𝑝 and 𝑞 are nontransient and
there exists a nonempty run from 𝑝 to 𝑞 whose length is a multiple of |𝑄|!.

42 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

PROOF . First assume that (𝑝, 𝑞) is synchronized. Let 𝑥, 𝑦, 𝑧 ∈ Σ+ with |𝑥 | = | 𝑦 | = |𝑧 | = 𝑘 such
that 𝑞

𝑥←− 𝑞 𝑦←− 𝑝 𝑧←− 𝑝. Then, 𝑝 and 𝑞 are nontransient and we have

𝑞
𝑥 |𝑄 |!−1 𝑦←−−−−−− 𝑝,

where 𝑥 |𝑄|!−1 𝑦 has length (|𝑄|! − 1) · 𝑘 + 𝑘 = |𝑄|! · 𝑘.
Conversely, assume that 𝑝 and 𝑞 are nontransient and there exists a nonempty run 𝑞

𝑦←− 𝑝
whose length is divided by |𝑄|!. Since the states 𝑝 and 𝑞 are nontransient, there are words 𝑥 and
𝑧 of length at most |𝑄| with 𝑞

𝑥←− 𝑞 and 𝑝
𝑧←− 𝑝. These words can be pumped up to have length

| 𝑦 |. ■

Let 𝑄 = 𝑇 ∪ 𝑁 be the partition of the state set into the set 𝑇 of transient states and the set
𝑁 of nontransient states. A function 𝛽 : N→ {0, 1} is 𝑘-periodic if 𝛽(𝑖) = 𝛽(𝑖 + 𝑘) for all 𝑖 ∈ N.

LEMMA 4.15. Assume that every reachable synchronized pair in B is 𝐹-consistent. Then, for
every word 𝑣 ∈ Σ∗ of length at least |𝑄|!· (|𝑇 |+1) there exists a |𝑄|!-periodic function 𝛽𝑣 : N→ {0, 1}
such that the following holds: If 𝑤 ∈ Σ∗𝑣 and 𝑤 · 𝑞0 ∈ 𝑁 , then we have 𝑤 ∈ L(B) if and only if
𝛽(|𝑤|) = 1.

PROOF . Let 𝑣 = 𝑎𝑘 · · · 𝑎2𝑎1 with 𝑘 ⩾ |𝑄|! · (|𝑇 | + 1), and consider the run

𝑞𝑘
𝑎𝑘←−− · · · 𝑎2←− 𝑞1

𝑎1←− 𝑞0 (12)

of B on 𝑣. Clearly, each transient state can occur at most once in the run. First notice that for
each 0 ⩽ 𝑖 ⩽ |𝑄|! − 1 at least one of the states in

𝑄𝑖 = {𝑞𝑖+ 𝑗 |𝑄|! | 0 ⩽ 𝑗 ⩽ |𝑇 |}

is nontransient because otherwise the set would contain |𝑇 | +1 pairwise distinct transient states.
Furthermore, we claim that the nontransient states in 𝑄𝑖 are either all final or all nonfinal:
Take two nontransient states 𝑞𝑖+ 𝑗1 |𝑄|! and 𝑞𝑖+ 𝑗2 |𝑄|! with 𝑗1 < 𝑗2. Since we have a run of length
(𝑗2 − 𝑗1) |𝑄|! from 𝑞𝑖+ 𝑗1 |𝑄|! to 𝑞𝑖+ 𝑗2 |𝑄|!, these two states form a synchronized pair by Lemma 4.14,
which by assumption must be 𝐹-consistent.

Now, define 𝛽𝑣 : N→ {0, 1} by

𝛽𝑣(𝑚) =



1, if the states in 𝑄𝑚 mod |𝑄|! ∩ 𝑁 are final,

0, if the states in 𝑄𝑚 mod |𝑄|! ∩ 𝑁 are nonfinal,

which is well-defined by the remarks above. Clearly 𝛽𝑣 is |𝑄|!-periodic.
Let 𝑤 = 𝑎𝑚 · · · 𝑎2𝑎1 ∈ Σ∗𝑣 be a word of length 𝑚 ⩾ 𝑘. The run of B on 𝑤 starting from the

initial state prolongs the run in (12):

𝑞𝑚
𝑎𝑚←−− · · · 𝑎𝑘+2←−−− 𝑞𝑘+1

𝑎𝑘+1←−−− 𝑞𝑘
𝑎𝑘←−− · · · 𝑎2←− 𝑞1

𝑎1←− 𝑞0

43 / 75 Regular Languages in the Sliding Window Model

Assume that 𝑞𝑚 ∈ 𝑁 . As argued above, there is a position 0 ⩽ 𝑖 < 𝑘 such that 𝑖 ≡ 𝑚 (mod |𝑄|!)
and 𝑞𝑖 ∈ 𝑁 . Therefore, there exists a nonempty run from 𝑞𝑖 to 𝑞𝑚 whose length is a multiple of
|𝑄|!. Hence, (𝑞𝑖 , 𝑞𝑚) is a synchronized pair by Lemma 4.14, which is 𝐹-consistent by assumption.
Therefore, 𝑤 ∈ 𝐿 if and only if 𝑞𝑚 ∈ 𝐹 if and only if 𝑞𝑖 ∈ 𝐹 if and only if 𝛽𝑣(|𝑤|) = 1. ■

We can now prove Lemma 4.13.

PROOF OF LEMMA 4.13 . Given a subset 𝑃 ⊆ 𝑄 let L(B, 𝑃) := L(𝑄, Σ, 𝑃, 𝛿, 𝑞0). Let 𝐹𝑁 = 𝑁 ∩ 𝐹
and 𝐹𝑇 = 𝑇 ∩ 𝐹. We disjointly decompose 𝐿 into

𝐿 = L(B, 𝐹𝑁) ∪
⋃
𝑞∈𝐹𝑇

L(B, {𝑞}).

First observe that L(B, {𝑞}) ∈ SF for all 𝑞 ∈ 𝐹𝑇 because a transient state 𝑞 can occur at most
once in a run of B.

It remains to show that L(B, 𝐹𝑁) belongs to ⟨ST, SF,Len⟩. Using the threshold 𝑘 = |𝑄|! ·
(|𝑇 | + 1), we distinguish between words of length at most 𝑘 − 1 and words of length at least 𝑘,
and group the latter set by their suffixes of length 𝑘:

L(B, 𝐹𝑁) = (L(B, 𝐹𝑁) ∩ Σ⩽𝑘−1) ∪
⋃
𝑣∈Σ𝑘
(L(B, 𝐹𝑁) ∩ Σ∗𝑣).

The first part L(B, 𝐹𝑁) ∩ Σ⩽𝑘−1 is finite and thus suffix testable. To finish the proof, we will show
that L(B, 𝐹𝑁) ∩ Σ∗𝑣 ∈ ⟨ST, SF,Len⟩ for each 𝑣 ∈ Σ𝑘. Let 𝑣 ∈ Σ𝑘 and let 𝛽𝑣 : N → {0, 1} be the
|𝑄|!-periodic function from Lemma 4.15. The lemma implies that

L(B, 𝐹𝑁) ∩ Σ∗𝑣 = (Σ∗𝑣 ∩ {𝑤 ∈ Σ∗ | 𝛽(|𝑤|) = 1}) \ L(B, 𝑇).

The language {𝑤 ∈ Σ∗ | 𝛽(|𝑤|) = 1} is a regular length language, Σ∗𝑣 is suffix testable and
L(B, 𝑇) is a finite union of regular suffix-free languages. ■

The following lemma is an immediate consequence of Lemma 4.13.

LEMMA 4.16. If 𝐿 ∈ Reg \ ⟨ST, SF,Len⟩ then there exist 𝑢, 𝑥, 𝑦, 𝑧 ∈ Σ∗ with |𝑥 | = | 𝑦 | = |𝑧 | ⩾ 1
such that 𝐿 separates 𝑥∗ 𝑦𝑧∗𝑢 and 𝑧∗𝑢.

Now, we can finally prove point (4) from Theorem 4.3.

PROPOS IT ION 4.17. If 𝐿 ∈ Reg \ ⟨ST, SF,Len⟩ then Fr
𝐿(𝑛) = Ω∞(log 𝑛).

PROOF . Consider the words 𝑢, 𝑥, 𝑦, 𝑧 ∈ Σ∗ described in Lemma 4.16. Let 𝑛 = |𝑧 | · 𝑚 + |𝑢| for
some𝑚 ⩾ 1 and let P𝑛 be a randomized SW-algorithm for 𝐿. We describe a randomized one-way
protocol for GT𝑚: Let 1 ⩽ 𝑖 ⩽ 𝑚 be the input of Alice and 1 ⩽ 𝑗 ⩽ 𝑚 be the input of Bob. Alice
starts with reading 𝑥𝑚 𝑦𝑧𝑚−𝑖 into P𝑛. Then she sends the reached state to Bob using O(𝑠(P𝑛))

44 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

bits. Bob then continues the run of P𝑛 from the transmitted state with the word 𝑧 𝑗𝑢. Hence, P𝑛
is simulated on the word 𝑤 := 𝑥𝑚 𝑦𝑧𝑚−𝑖𝑧 𝑗𝑢 = 𝑥𝑚 𝑦𝑧𝑚−𝑖+ 𝑗𝑢. We have

last𝑛(𝑤) =


𝑥𝑖−1− 𝑗 𝑦𝑧𝑚−𝑖+ 𝑗𝑢, if 𝑖 > 𝑗,

𝑧𝑚𝑢, if 𝑖 ⩽ 𝑗.

By Lemma 4.16, last𝑛(𝑤) belongs to 𝐿 in exactly one of the two cases 𝑖 > 𝑗 and 𝑖 ⩽ 𝑗. Hence,
Bob can distinguish these two cases with probability at least 2/3. It follows that the protocol
computes GT𝑚 and its cost is bounded by 𝑠(P𝑛). By Theorem 4.11 we can conclude that 𝑠(P𝑛) =
Ω(log𝑚) = Ω(log 𝑛), and therefore Fr

𝐿(𝑛) = Ω∞(log 𝑛). ■

4.6 Sliding window algorithms with one-sided error

So far, we have only considered randomized SW-algorithms with two-sided error (analogously
to the complexity class BPP). Randomized SW-algorithms with one-sided error (analogously to
the classes RP and coRP) can be motivated by applications where all “yes”-outputs or all “no”-
outputs, respectively, have to be correct. We distinguish between true-biased and false-biased
algorithms. A true-biased (randomized) streaming algorithm P for a language 𝐿 satisfies the
following properties:

If 𝑤 ∈ 𝐿 then Pr[P accepts 𝑤] ⩾ 2/3.
If 𝑤 ∉ 𝐿 then Pr[P rejects 𝑤] = 1.

A false-biased (randomized) streaming algorithm P for a language 𝐿 satisfies the following
properties:

If 𝑤 ∈ 𝐿 then Pr[P accepts 𝑤] = 1.
If 𝑤 ∉ 𝐿 then Pr[P rejects 𝑤] ⩾ 2/3.

Let 𝐹0
𝐿(𝑛) (resp., 𝐹1

𝐿(𝑛)) be the minimal space complexity 𝑠(P𝑛) of any true-biased (resp., false-
biased) SW-algorithm P𝑛 for 𝐿 and window size 𝑛. We have the relations 𝐹r

𝐿(𝑛) ⩽ 𝐹 𝑖𝐿(𝑛) ⩽ 𝐹𝐿(𝑛)
for 𝑖 ∈ {0, 1}, and 𝐹0

𝐿(𝑛) = 𝐹1
Σ∗\𝐿(𝑛).

For 𝐹0
𝐿(𝑛) and 𝐹1

𝐿(𝑛) a statement analogous to Lemma 4.4 does not hold, i.e., the classes
{𝐿 ⊆ Σ∗ | Fi

𝐿(𝑛) = O(𝑠(𝑛))} for i ∈ {0, 1} and a function 𝑠(𝑛) do not form a Boolean algebra.
To see this, consider the language 𝐿 = {$𝑤#𝑤 : 𝑤 ∈ {0, 1}∗}. It is easy to see that 𝐹1

𝐿(𝑛) =
O(log 𝑛). On the other hand, every true-biased randomized (in fact, every nondeterministic)
communication protocol for EQ𝑛 (over the domain {1, . . . , 𝑛}) has cost Ω(log 𝑛) [84, Chapter 5].
This implies 𝐹1

Σ∗\𝐿(𝑛) = 𝐹0
𝐿(𝑛) = Ω∞(𝑛), where Σ = {0, 1, $, #}.

We show that for all regular languages SW-algorithms with one-sided error have no
advantage over their deterministic counterparts:

THEOREM 4.18 (one-sided error). Let 𝐿 be regular.
(i) If 𝐿 ∈ ⟨ST,Len⟩ then 𝐹0

𝐿(𝑛) and 𝐹1
𝐿(𝑛) are O(1).

45 / 75 Regular Languages in the Sliding Window Model

(ii) If 𝐿 ∉ ⟨ST,Len⟩ then 𝐹0
𝐿(𝑛) and 𝐹1

𝐿(𝑛) are Ω∞(log 𝑛).
(iii) If 𝐿 ∈ ⟨LI,Len⟩ then 𝐹0

𝐿(𝑛) and 𝐹1
𝐿(𝑛) are O(log 𝑛).

(iv) If 𝐿 ∉ ⟨LI,Len⟩ then 𝐹0
𝐿(𝑛) and 𝐹1

𝐿(𝑛) are Ω∞(𝑛).

The upper bounds in (i) and (iii) already hold for deterministic SW-algorithms (Theo-
rem 1.3). Moreover, the lower bound in (iv) already holds for SW-algorithms with two-sided
error (Theorem 4.3(6)). It remains to prove point (ii) of the theorem.6 In fact we show that any
nondeterministic SW-algorithm for a regular language 𝐿 ∉ ⟨ST,Len⟩ requires space Ω∞(log 𝑛)
(this generalizes the lower bound in the second equivalence of Theorem 1.3). A nondeterministic
SW-algorithm for a language 𝐿 and window size 𝑛 is an NFA P𝑛 with L(P𝑛) = SW𝑛(𝐿), and its
space complexity is 𝑠(P𝑛) = log |P𝑛 |. If we have a true-biased randomized SW-algorithm for
𝐿 we can turn it into a nondeterministic SW-algorithm by keeping only those transitions with
nonzero probabilities and making all states 𝑞 initial which have a positive initial probability
𝜄(𝑞) > 0. Therefore, it suffices to show the following statement:

PROPOS IT ION 4.19. Let 𝐿 ∈ Reg\⟨ST,Len⟩. Then, for infinitely many 𝑛 every nondeterministic
SW-algorithm P𝑛 for 𝐿 has Ω(√𝑛) many states.

For the proof of Proposition 4.19 we need the following lemma.

LEMMA 4.20. Let 𝐿 ⊆ 𝑎∗ and 𝑛 ∈ N such that 𝐿 separates {𝑎𝑛} and {𝑎𝑘 | 𝑘 > 𝑛}. Then, every
NFA for 𝐿 has at least

√
𝑛 many states.

PROOF . The easy case is 𝑎𝑛 ∈ 𝐿 and 𝑎𝑘 ∉ 𝐿 for all 𝑘 > 𝑛. If an NFA for 𝐿 has at most 𝑛 states
then any successful run on 𝑎𝑛 must have a state repetition. By pumping one can construct a
successful run on 𝑎𝑘 for some 𝑘 > 𝑛, which is a contradiction.

Now, assume 𝑎𝑛 ∉ 𝐿 and 𝑎𝑘 ∈ 𝐿 for all 𝑘 > 𝑛. The proof is essentially the same as for
[64, Lemma 6], where the statement of the lemma is shown for 𝐿 = 𝑎∗ \ {𝑎𝑛}. Let us give the
proof for completeness. It is known that every unary NFA has an equivalent NFA in so-called
Chrobak normal form. A unary NFA in Chrobak normal form consists of a simple path (called
the initial path in the following) whose starting state is the unique initial state of the NFA. From
the last state of the initial path, edges go to a collection of disjoint cycles. In [50] it is shown
that an 𝑚-state unary NFA has an equivalent NFA in Chrobak normal form whose initial path
consists of 𝑚2 − 𝑚 states. Now, assume that 𝐿 is accepted by an NFA with 𝑚 states and letA
be the equivalent NFA in Chrobak normal form, whose initial path consists of 𝑚2 −𝑚 states.
If 𝑛 ⩾ 𝑚2 − 𝑚 then all states that are reached in A from the initial state via 𝑎𝑛 belong to a
cycle and every cycle contains such a state. Since 𝑎𝑛 ∉ 𝐿, all these states are rejecting. Hence,

6 Note that Theorem 4.18((ii)) generalizes the lower bound 𝐹𝐿 (𝑛) = Ω∞ (log 𝑛) for languages 𝐿 ∈ Reg \ ⟨ST,Len⟩; see
Theorem 1.3.

46 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑎𝑛+𝑥·𝑑 ∉ 𝐿 for all 𝑥 ⩾ 0, where 𝑑 is the product of all cycle lengths. This contradicts the fact that
𝑎𝑘 ∈ 𝐿 for all 𝑘 > 𝑛. Hence, we must have 𝑛 < 𝑚2 −𝑚 and therefore 𝑚 >

√
𝑛. ■

PROOF OF PROPOS IT ION 4.19 . Let 𝐿 ∈ Reg \ ⟨ST,Len⟩. By Lemma 3.13 and the results
from Section 3.7 there are words 𝑥, 𝑦, 𝑧 ∈ Σ∗ such that |𝑥 | = | 𝑦 | and 𝐿 separates 𝑥 𝑦∗𝑧 and 𝑦∗𝑧.
Note that we must have 𝑥 ≠ 𝑦.

Fix 𝑚 ⩾ 0 and consider the window size 𝑛 = |𝑥 | + 𝑚| 𝑦 | + |𝑧 |. Let P𝑛 = (𝑄, Σ, 𝐼 , Δ, 𝐹) be a
nondeterministic SW-algorithm for 𝐿 and window size 𝑛, i.e., it is an NFA for SW𝑛(𝐿). Notice
that P𝑛 separates {𝑥 𝑦𝑚𝑧} and {𝑥 𝑦𝑘𝑧 | 𝑘 > 𝑚}. We define an NFAA over the unary alphabet
{𝑎} as follows:

The state set ofA is 𝑄.
The set of initial states ofA is {𝑞 ∈ 𝑄 | ∃𝑝 ∈ 𝐼 : 𝑝

𝑥−→ 𝑞 in P𝑛}.
The set of final states ofA is {𝑝 ∈ 𝑄 | ∃𝑞 ∈ 𝐹 : 𝑝

𝑧−→ 𝑞 in P𝑛}.
The set of transitions ofA is {(𝑝, 𝑎, 𝑞) | 𝑝 𝑦−→ 𝑞 in P𝑛}.

It recognizes the language L(A) = {𝑎𝑘 | 𝑥 𝑦𝑘𝑧 ∈ SW𝑛(𝐿)}, and therefore L(A) separates {𝑎𝑚}
and {𝑎𝑘 | 𝑘 > 𝑚}. By Lemma 4.20,A has at least

√
𝑚 = Ω(√𝑛) states. Hence, also the number

of states of P𝑛 is in Ω(√𝑛). ■

Proposition 4.19 implies 𝐹0
𝐿(𝑛) ⩾ 1/2 log 𝑛 − O(1) on infinitely many 𝑛 for all 𝐿 ∈ Reg \

⟨ST,Len⟩. Since Reg \ ⟨ST,Len⟩ is closed under complement, this implies 𝐹1
𝐿(𝑛) = 𝐹0

Σ∗\𝐿(𝑛) ⩾
1/2 log 𝑛 − O(1) on infinitely many 𝑛 for all 𝐿 ∈ Reg \ ⟨ST,Len⟩.

4.7 Randomized variable-size model

In this section, we briefly look at randomized algorithms in the variable-size model. First we
transfer the definitions from Section 2.5 in a straightforward way. A randomized variable-size
sliding window algorithm P for 𝐿 ⊆ Σ∗ is a randomized streaming algorithm for SW(𝐿) (defined
in (2) on page 14). Its space complexity is 𝑣(P, 𝑛) = log |𝑀⩽𝑛 | ∈ N ∪ {∞} where 𝑀⩽𝑛 contains all
memory states in P which are reachable with nonzero probability in P on inputs 𝑤 ∈ Σ∗↓ with
mwl(𝑤) ⩽ 𝑛. Since the variable-size sliding window model subsumes the fixed-size model, we
have Fr

𝐿(𝑛) ⩽ 𝑣(P, 𝑛) for every randomized variable-size sliding window algorithm P for 𝐿.
Again we raise the question if randomness can improve the space complexity in the

variable-size model. We claim that, in contrast to the fixed-size model, randomness does not
allow more space efficient algorithms in the variable-size setting. Clearly, all upper bounds
for the deterministic variable-size setting transfer to the randomized variable-size setting,
i.e., languages in ⟨LI,Len⟩ have O(log 𝑛) space complexity, and empty and universal languages
have O(1) space complexity. For every regular language 𝐿 which is not contained in ⟨LI,Len⟩
we proved a linear lower bound on Fr

𝐿(𝑛) (Proposition 4.12), which is also a lower bound on the
space complexity of any randomized variable-size sliding window algorithm for 𝐿. It remains

47 / 75 Regular Languages in the Sliding Window Model

to look at languages ∅ ⊊ 𝐿 ⊊ Σ∗, for which we have proved a logarithmic lower bound in the
deterministic setting (Lemma 2.5).

LEMMA 4.21. If P is a randomized variable-size SW-algorithm for a language ∅ ⊊ 𝐿 ⊊ Σ∗ then
𝑣(P, 𝑛) = Ω(log 𝑛).

PROOF . Let ∅ ⊊ 𝐿 ⊊ Σ∗ be a language. There must be a length-minimal nonempty word
𝑎1 · · · 𝑎𝑘 ∈ Σ+ such that |{𝜀, 𝑎1 · · · 𝑎𝑘} ∩ 𝐿| = 1 and we fix such a word 𝑎1 · · · 𝑎𝑘. By minimality we
also have |{𝑎1 · · · 𝑎𝑘, 𝑎2 · · · 𝑎𝑘} ∩ 𝐿| = 1. Let P be a randomized variable-size SW-algorithm for
𝐿. By Lemma 4.1 we can assume that the error probability of P is at most 1/6, which increases
its space complexity 𝑣(P, 𝑛) by a constant factor.

For every 𝑛 ∈ N we construct a protocol for GT𝑛 with cost O(𝑣(P, 𝑛)). With Theorem 4.11
this implies that 𝑣(P, 𝑛) = Ω(log 𝑛). Let 1 ⩽ 𝑖 ⩽ 𝑛 be the input of Alice and 1 ⩽ 𝑗 ⩽ 𝑛 be the
input of Bob. Alice starts two instances of P (using independent random bits) and reads 𝑎𝑖1
into both of them. She sends the memory states to Bob using O(𝑣(P, 𝑖)) ⩽ O(𝑣(P, 𝑛)) bits. Bob
then continues from both states, and reads ↓ 𝑗 𝑎2 · · · 𝑎𝑘 into the first instance and ↓ 𝑗+1 𝑎1𝑎2 · · · 𝑎𝑘
into the second instance. Let 𝑦1, 𝑦2 ∈ {0, 1} be the outputs of the two instances of P. With high
probability, namely (1 − 1/6)2 ⩾ 2/3, both answers are correct, i.e.

𝑦1 = 1 ⇐⇒ wnd(𝑎𝑖1 ↓ 𝑗 𝑎2 · · · 𝑎𝑘) ∈ 𝐿

and

𝑦2 = 1 ⇐⇒ wnd(𝑎𝑖1 ↓ 𝑗+1 𝑎1𝑎2 · · · 𝑎𝑘) ∈ 𝐿.

Bob returns true, i.e., he claims 𝑖 > 𝑗, if and only if 𝑦1 = 𝑦2.
Let us prove the correctness. If 𝑖 > 𝑗 then

wnd(𝑎𝑖1 ↓ 𝑗 𝑎2 · · · 𝑎𝑘) = 𝑎𝑖− 𝑗1 𝑎2 · · · 𝑎𝑘 = wnd(𝑎𝑖1 ↓ 𝑗+1 𝑎1𝑎2 · · · 𝑎𝑘)

and hence Bob returns true with probability at least 2/3. If 𝑖 ⩽ 𝑗 then

wnd(𝑎𝑖1 ↓ 𝑗 𝑎2 · · · 𝑎𝑘) = 𝑎2 · · · 𝑎𝑘

and
wnd(𝑎𝑖1 ↓ 𝑗+1 𝑎1𝑎2 · · · 𝑎𝑘) = 𝑎1𝑎2 · · · 𝑎𝑘 .

By assumption, exactly one of the words 𝑎1 · · · 𝑎𝑘, 𝑎2 · · · 𝑎𝑘 belongs to 𝐿, and therefore Bob
returns false with probability at least 2/3. ■

The lower bound from Lemma 4.21 also holds for variable-size SW-algorithms with one-
sided error since they are more restricted than algorithms with two-sided error. In fact,
Lemma 4.21 also holds for nondeterministic and co-nondeterministic SW-algorithms since
the (co-)nondeterministic communication complexity of GT𝑛 is Θ(log 𝑛) [84, Chapter 5].

48 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

5. Property testing in the slidingwindowmodel

In all settings discussed so far, there are some regular languages for which testing membership
in the sliding window model requires linear space. To be more specific, for any language
𝐿 ∈ Reg \ ⟨LI,Len⟩ it requires linear space to test membership even for randomized sliding
window algorithms with two-sided error. In order to achieve space-efficient sliding window
algorithms for all regular languages, we have to allow randomized sliding window algorithms
that are allowed to err with unbounded probability on some specific inputs. We formalize this
in the context of the property testing framework. More precisely, we introduce in this section
sliding window (property) testers, which must accept if the active window belongs to a language
𝐿 and reject if it has large Hamming distance from 𝐿.

For words that are not in 𝐿 but that have small Hamming distance from 𝐿 the algorithm is
allowed to give any answer. We consider deterministic sliding window property testers and
randomized sliding window property testers.

While at first sight the only connection between property testers and sliding window
property testers is that we must accept the input if it satisfies a property 𝑃 and reject if it is far
from satisfying 𝑃, there is, in fact, a deeper link. In particular, the property tester for regular
languages due to Alon et al. [2] combined with an optimal sampling algorithm for sliding win-
dows [18] immediately yields O(log 𝑛)-space, two-sided error sliding window property testers
with Hamming gap 𝛾(𝑛) = 𝜖𝑛 for all regular languages. We will improve on this observation.

5.1 Sliding window testers

The Hamming distance between two words 𝑢 = 𝑎1 · · · 𝑎𝑛 and 𝑣 = 𝑏1 · · · 𝑏𝑛 of equal length is
the number of positions where 𝑢 and 𝑣 differ, i.e., dist(𝑢, 𝑣) = |{𝑖 | 𝑎𝑖 ≠ 𝑏𝑖}|. If |𝑢| ≠ |𝑣| we set
dist(𝑢, 𝑣) = ∞. The distance of a word 𝑢 to a language 𝐿 is defined as

dist(𝑢, 𝐿) = inf{dist(𝑢, 𝑣) | 𝑣 ∈ 𝐿} ∈ N ∪ {∞}.

Additionally, we define the prefix distance between equal-length words 𝑢 = 𝑎1 · · · 𝑎𝑛 and 𝑣 =

𝑏1 · · · 𝑏𝑛 by pdist(𝑢, 𝑣) = min{𝑖 ∈ {0, . . . , 𝑛} | 𝑎𝑖+1 · · · 𝑎𝑛 = 𝑏𝑖+1 · · · 𝑏𝑛}. For instance, we have
pdist(𝑎𝑏𝑏𝑎𝑐𝑎, 𝑎𝑏𝑐𝑎𝑐𝑎) = 3 and pdist(𝑎𝑏𝑐𝑐𝑐𝑎, 𝑎𝑏𝑐𝑎𝑐𝑎) = 4 (whereas the Hamming distance in
both cases is 1). Clearly, we have dist(𝑢, 𝑣) ⩽ pdist(𝑢, 𝑣). The algorithms presented in this
section satisfy the stronger property that windows whose prefix distance to the language 𝐿 is
large are rejected by the algorithm.

In this section, 𝛾 is always a function 𝛾 : N → R⩾0 such that 𝛾(𝑛) < 𝑛 for all 𝑛. A deter-
ministic sliding window (property) tester with Hamming gap 𝛾(𝑛) for a language 𝐿 ⊆ Σ∗ and
window size 𝑛 is a deterministic streaming algorithm P𝑛 over the alphabet Σ with the following
properties:

If last𝑛(𝑤) ∈ 𝐿, then 𝑤 ∈ L(P𝑛).

49 / 75 Regular Languages in the Sliding Window Model

If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then 𝑤 ∉ L(P𝑛).
If neither of the two cases hold, the behavior of P𝑛 can be arbitrary. Recall that 𝑠(P𝑛) is the
space used by P𝑛 (see Section 2.3). A randomized sliding window tester with Hamming gap 𝛾(𝑛)
for a language 𝐿 ⊆ Σ∗ and window size 𝑛 is a randomized streaming algorithm P𝑛 over the
alphabet Σ with the following properties. It has two-sided error if for all 𝑤 ∈ Σ∗ we have:

If last𝑛(𝑤) ∈ 𝐿, then Pr[P𝑛 accepts 𝑤] ⩾ 2/3.
If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then Pr[P𝑛 rejects 𝑤] ⩾ 2/3.

It is true-biased if for all 𝑤 ∈ Σ∗ we have:
If last𝑛(𝑤) ∈ 𝐿, then Pr[P𝑛 accepts 𝑤] ⩾ 2/3.
If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then Pr[P𝑛 rejects 𝑤] = 1.

It is false-biased if for all 𝑤 ∈ Σ∗ we have:
If last𝑛(𝑤) ∈ 𝐿, then Pr[P𝑛 accepts 𝑤] = 1.
If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then Pr[P𝑛 rejects 𝑤] ⩾ 2/3.

True-biased and false-biased algorithms are algorithms with one-sided error. Again, the success
probability 2/3 is an arbitrary choice in light of Lemma 4.1.

Intuitively, the Hamming gap function 𝛾 should be a small function. Typical choices
for 𝛾(𝑛) are 𝜖𝑛 for some constant 𝜖 (0 < 𝜖 < 1) or 𝛾(𝑛) = 𝑐 for a constant 𝑐. We will also
consider Hamming gap functions that are between these two cases. The case 𝛾(𝑛) = 0 for all 𝑛
corresponds to exact membership testing to 𝐿, which was studied in the previous sections.

Let us also remark that we only consider the fixed-size sliding window model in this
section. One might also consider variable-size sliding window testers, where the size of the
window can grow and shrink. We leave this for future work. Moreover, we only consider the
Hamming distance in this paper. One might also consider other distances on words, like for
instance edit distance. We believe that Hamming distance is the most basic distance measure
on strings. The upper bounds stated below also apply to edit distance (since the edit distance is
always bounded by the Hamming distance). Whether our lower bounds can be extended to edit
distance remains open.

5.2 Main results of this section

Let us now state and discuss the main results of this section. We start with our upper bounds:

THEOREM 5.1. For every regular language 𝐿 and window size 𝑛 there exists a deterministic
sliding window tester P𝑛 with Hamming gap O(1) and 𝑠(P𝑛) = O(log 𝑛).

We will later see that allowing a larger (but not too large) Hamming gap in Theorem 5.1
does not allow a better space bound. This changes if we allow randomized sliding window
testers with a two-sided error:

50 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

THEOREM 5.2. For every regular language 𝐿 there is a constant 𝑐 such that the following
holds: If the function 𝛾(𝑛) and the window size 𝑛 satisfy 𝛾(𝑛) ⩾ 𝑐 then there is a randomized
sliding window tester P𝑛 for 𝐿 and window size 𝑛 with a two-sided error, Hamming gap 𝛾(𝑛), and
𝑠(P𝑛) = O(log(𝑛/𝛾(𝑛))).

From Theorem 5.2 we will easily obtain the following corollary:

COROLLARY 5.3. For every regular language 𝐿, every window size 𝑛 and every 0 < 𝜖 < 1
there exists a randomized sliding window tester P𝑛 with two-sided error, Hamming gap 𝜖𝑛 and
𝑠(P𝑛) = O(1/𝜖).

The upper bounds in Theorem 5.1 and Theorem 5.2 hold for all regular languages. We will
also identify subclasses for which these upper bounds can be improved. Recall the definition
of suffix-free languages from Section 1.2. Another important language class in the context of
sliding-window testers is the class of trivial languages. A language 𝐿 ⊆ Σ∗ is 𝛾(𝑛)-trivial (for a
function 𝛾(𝑛) < 𝑛) if for all 𝑛 ∈ Nwith 𝐿 ∩ Σ𝑛 ≠ ∅ and all 𝑤 ∈ Σ𝑛 we have dist(𝑤, 𝐿) ⩽ 𝛾(𝑛). If 𝐿
is O(1)-trivial we say that 𝐿 is trivial. Examples of trivial languages include all length languages,
all suffix (resp., prefix) testable languages (in particular, 𝐿 = 𝑎{𝑎, 𝑏}∗ for which F𝐿(𝑛) = Θ(𝑛)
holds), and also the set of all words over {𝑎, 𝑏} which contain an even number of 𝑎’s. Note that
Alon et al. [2] call a language 𝐿 trivial if 𝐿 is 𝑜(𝑛)-trivial according to our definition, i.e., 𝛾(𝑛)-
trivial for some function 𝛾(𝑛) = 𝑜(𝑛). In fact, we will prove that both definitions coincide for
regular languages (Theorem 5.24). With Triv we denote the set of all regular trivial languages.

We can achieve a Hamming gap of 𝛾(𝑛) simply with a deterministic sliding window tester
that accepts or rejects all input words depending on the input length. Moreover, the tester has
only one state and hence uses space log(1) = 0. It turns out that for finite unions of regular
trivial languages and regular suffix-free languages, we can obtain a doubly logarithmic space
bound if we allow false-biased randomized sliding window testers. Let us write

⋃(Triv, SF) for
the class of all finite unions of regular trivial languages and regular suffix-free languages.

THEOREM 5.4. For every 𝐿 ∈ ⋃(Triv, SF) and window size 𝑛 there exists a false-biased ran-
domized sliding window tester P𝑛 with Hamming gap O(1) and 𝑠(P𝑛) = O(log log 𝑛).

Let us now discuss our lower bounds. It turns out that the above upper bounds are sharp
in most cases. First of all, the logarithmic space bound in Theorem 5.1 cannot be improved
whenever 𝐿 is a regular nontrivial language. This holds even for randomized true-biased
algorithms and a Hamming gap 𝜖𝑛 (assuming 𝜖 < 1 is not too big). Similarly, the doubly
logarithmic space bound in Theorem 5.4 cannot be improved.

THEOREM 5.5. For every language 𝐿 ∈ Reg \Triv there exist 𝜖 > 0 and infinitely many window
sizes 𝑛 ∈ N for which every true-biased (resp., false-biased) randomized sliding window tester for
𝐿 with Hamming gap 𝜖𝑛 uses space at least log 𝑛 − O(1) (resp. log log 𝑛 − O(1)).

51 / 75 Regular Languages in the Sliding Window Model

Reg

Triv

Reg

⋃(Triv, SF)

Triv

O(log 𝑛)

O(log log 𝑛)

O(1)

space complexity deterministic
true-biased

false-biased

Figure 5. The space complexity of regular languages with respect to deterministic, true-biased and
false-biased sliding window testers. As in Figure 1, only upper bounds are shown, and they hold for
every Hamming gap function 𝛾(𝑛) provided that 𝛾(𝑛) ⩾ 𝑐 for a constant 𝑐 that depends on the language.
All upper bounds can be matched with lower bounds that hold for every 𝛾(𝑛) ⩽ 𝜖𝑛 for a constant 𝜖 that
depends on the language.

Moreover, also for false-biased randomized sliding window testers the logarithmic space
bound from Theorem 5.1 cannot be improved whenever 𝐿 ∈ Reg \⋃(Triv, SF):
THEOREM 5.6. If 𝐿 ∈ Reg \ ⋃(Triv, SF) then there exist 𝜖 > 0 and infinitely many window
sizes 𝑛 ∈ N for which every false-biased randomized sliding window tester for 𝐿 with Hamming
gap 𝜖𝑛 uses at least log 𝑛 − O(1) space.

The above results provide matching upper and lower space bounds for deterministic,
true-biased and false-biased sliding window testers; see also Figure 5. Moreover, the upper
bounds hold for a constant Hamming gap (Theorems 5.1 and 5.4) whereas the lower bounds hold
for Hamming gap 𝜖𝑛 as long as 𝜖 is larger than a language-dependent constant (Theorems 5.5
and 5.6). Thus, in the deterministic, true-biased and false-biased settings, the space complexity
is quite insensitive to the choice of the Hamming gap function 𝛾(𝑛).

For randomized sliding window testers with a two-sided error, the situation is different.
We have already discussed Theorem 5.2, where the Hamming gap 𝛾(𝑛) is reflected in the space
bound. It turns out that the upper bound in Theorem 5.2 is tight whenever 𝐿 is not a finite union
of regular trivial languages and regular suffix-free languages:

THEOREM 5.7. If 𝐿 ∈ Reg \⋃(Triv, SF) then there exist 𝜖 > 0 and infinitely many window sizes
𝑛 ∈ N for which every randomized sliding window tester with two-sided error for 𝐿 and Hamming
gap 𝛾(𝑛) ⩽ 𝜖𝑛 needs space Ω(log(𝑛/𝛾(𝑛))).

If 𝐿 ∈ ⋃(Triv, SF) then the lower bound from Theorem 5.7 does not hold in general, since
we have an upper bound of O(log log 𝑛) from Theorem 5.4.7 We do not know whether there is

7 Note that if 𝛾(𝑛) = O(𝑛/log 𝑛) then the lower bound Ω∞ (log(𝑛/𝛾(𝑛))) becomes Ω∞ (log log 𝑛).

52 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

a matching lower bound of Ω∞(log log 𝑛) for nontrivial languages. Currently, we can only show
a slightly weaker lower bound in this case:

THEOREM 5.8. If 𝐿 ∈ Reg \ Triv then there exist 𝜖 > 0 and infinitely many window sizes 𝑛 ∈ N
for which every randomized sliding window tester with two-sided error for 𝐿 and Hamming gap
𝛾(𝑛) ⩽ 𝜖𝑛 needs space Ω(log log(𝑛/𝛾(𝑛))).

Note that whenever 𝛾(𝑛) = O(𝑛𝑐) for some 𝑐 < 1 then the lower bound Ω∞(log log(𝑛/𝛾(𝑛)))
from Theorem 5.8 becomes Ω∞(log log 𝑛), which matches the upper bound from Theorem 5.4. It
is left open to classify the space complexity for languages in

⋃(Triv, SF) \ Triv, e.g. 𝐿 = 𝑎𝑏∗, for
sublinear Hamming gaps 𝛾(𝑛) which are Ω(𝑛𝑐) for all 𝑐 < 1, e.g. 𝛾(𝑛) = 𝑛/log 𝑛.

Let us also remark that Lemma 4.2 does not generalize to sliding window testers (with
the obvious generalization of the space complexities F𝐿(𝑛) and F𝑟𝐿(𝑛) to sliding window testers).
In the proof of Lemma 4.2 we used the fact that a randomized sliding window algorithm for a
language 𝐿 and a window size 𝑛 is a probabilistic finite automaton with the isolated cut-point
1/2. This is not necessarily true for randomized sliding window testers. If 𝑤 is a word such
that neither last𝑛(𝑤) ∈ 𝐿 nor dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛) holds then Pr[P𝑛 accepts 𝑤] = 1/2 is
possible. Indeed, the generalization of Lemma 4.2 to sliding window testers would contradict
Corollary 5.3 together with Theorem 5.5.

5.3 Upper bounds

In this section we prove Theorems 5.1, 5.2 and 5.4.

5.3.1 Deterministic sliding window testers

In this section, we prove Theorem 5.1: every regular language has a deterministic sliding
window tester with constant Hamming gap which uses O(log 𝑛) space. It is based on the path
summary algorithm from Section 3.3. In the following, we fix a regular language 𝐿 and an rDFA
B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) for 𝐿. By Lemma 3.19 we can assume that every nontransient SCC of B has
the same period 𝑔 ⩾ 1.

For a state 𝑞 ∈ 𝑄 we define Acc(𝑞) = {𝑛 ∈ N | ∃𝑤 ∈ Σ𝑛 : 𝑤 · 𝑞 ∈ 𝐹}. The following lemma
is the main tool to prove correctness of our sliding window testers. It states that if a word of
length 𝑛 is accepted from state 𝑝 and 𝜌 is any internal run (see Section 3.3 and page 20) of length
at most 𝑛 starting from state 𝑝, then after removing a bounded length run at the end of 𝜌, 𝜌 can
be extended to an accepting run of length 𝑛. Formally, a run 𝜋 𝑡-simulates a run 𝜌 if one can
factorize 𝜌 = 𝜌1𝜌2 and 𝜋 = 𝜋′𝜌2 where |𝜌1 | ⩽ 𝑡 for runs 𝜌1, 𝜌2, and 𝜋′; see also Figure 6. Note
that this implies that 𝜌 and 𝜋 start in the same state. Also note that runs go from right to left
(we work with an rDFA), so 𝜌1 (resp., 𝜋′) is the final part of 𝜌 (resp., 𝜋).

53 / 75 Regular Languages in the Sliding Window Model

𝜌2
𝜋′

𝜌1

Figure 6. The run 𝜋 = 𝜋′𝜌2 𝑡-simulates the run 𝜌 = 𝜌1𝜌2. We have |𝜌1 | ⩽ 𝑡.

LEMMA 5.9. There exists a number 𝑡 ∈ N (which only depends on B) such that for every internal
run 𝜌 starting from a state 𝑝 and every 𝑛 ∈ Acc(𝑝) with 𝑛 ⩾ |𝜌|, there exists an accepting run 𝜋 of
length 𝑛 which 𝑡-simulates 𝜌.

Note that the run 𝜋 in this lemma is not necessarily internal.
Based on Lemma 5.9 we can prove Theorem 5.1. Afterwards we prove Lemma 5.9.

PROOF OF THEOREM 5.1 . Let 𝑡 be the constant from Lemma 5.9. We present a deterministic
sliding window tester with constant Hamming gap 𝑡 which uses O(log 𝑛) space. Let 𝑛 ∈ N be the
window size. By Lemma 3.5 we can maintain the set of all path summaries PSB (𝑤) = {ps(𝜋𝑤,𝑞) |
𝑞 ∈ 𝑄} for the active window 𝑤 ∈ Σ𝑛, using O(log 𝑛) bits. In fact, the path summary algorithm
works for variable-size windows but we do not need this here.

It remains to define the acceptance condition. Consider the SCC-factorization of 𝜋𝑤,𝑞0 , say

𝜋𝑤,𝑞0 = 𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏1𝜋1

and its path summary (ℓ𝑚, 𝑞𝑚) · · · (ℓ1, 𝑞1). The algorithm accepts if and only if this path summary
is accepting, i.e., ℓ𝑚 = |𝜋𝑚 | ∈ Acc(𝑞𝑚). If 𝑤 ∈ 𝐿 then clearly |𝜋𝑚 | ∈ Acc(𝑞𝑚). On the other
hand, if |𝜋𝑚 | ∈ Acc(𝑞𝑚) then the internal run 𝜋𝑚 can be 𝑡-simulated by an accepting run 𝜋′𝑚
of equal length by Lemma 5.9. The run 𝜋′𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏1𝜋1 is accepting and witnesses that
pdist(𝑤, 𝐿) ⩽ 𝑡. We get dist(𝑤, 𝐿) ⩽ pdist(𝑤, 𝐿) ⩽ 𝑡. ■

To prove Lemma 5.9 we need to analyze the sets Acc(𝑞) first. For 𝑎 ∈ N and 𝑋 ⊆ N we use
the standard notation 𝑋 + 𝑎 = {𝑎 + 𝑥 | 𝑥 ∈ 𝑋}. A set 𝑋 ⊆ N is eventually 𝑑-periodic, where 𝑑 ⩾ 1
is an integer, if there exists a threshold 𝑡 ∈ N such that for all 𝑥 ⩾ 𝑡 we have 𝑥 ∈ 𝑋 if and only if
𝑥 + 𝑑 ∈ 𝑋 . If 𝑋 is eventually 𝑑-periodic for some 𝑑 ⩾ 1, then 𝑋 is eventually periodic.

LEMMA 5.10. For every 𝑞 ∈ 𝑄 the set Acc(𝑞) is eventually 𝑔-periodic.

PROOF . It suffices to show that for all 0 ⩽ 𝑟 ⩽ 𝑔 − 1 the set 𝑆𝑟 = {𝑖 ∈ N | 𝑟 + 𝑖 · 𝑔 ∈ Acc(𝑞)} is
either finite or co-finite. Consider a remainder 0 ⩽ 𝑟 ⩽ 𝑔 − 1 where 𝑆𝑟 is infinite. We need to
show that 𝑆𝑟 is indeed co-finite. Let 𝑖 ∈ 𝑆𝑟 with 𝑖 ⩾ |𝑄|, i.e., there exists an accepting run 𝜋 from 𝑞

of length 𝑟 + 𝑖 · 𝑔 . Since 𝜋 has length at least |𝑄|, it must traverse a state 𝑝 in a nontransient SCC 𝐶.
Choose 𝑗0 such that 𝑗0 · 𝑔 ⩾ 𝑚(𝐶) where 𝑚(𝐶) is the reachability constant from Lemma 3.18.
By Lemma 3.18 for all 𝑗 ⩾ 𝑗0 there exists a cycle from 𝑝 to 𝑝 of length 𝑗 · 𝑔 . Therefore, we can

54 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

extend 𝜋 to a longer accepting run by 𝑗 · 𝑔 symbols for any 𝑗 ⩾ 𝑗0. This proves that 𝑥 ∈ 𝑆𝑟 for
every 𝑥 ⩾ 𝑖 + 𝑗0 and that 𝑆𝑟 is co-finite. ■

Two sets 𝑋,𝑌 ⊆ N are equal up to a threshold 𝑡 ∈ N, in symbol 𝑋 =𝑡 𝑌 , if for all 𝑥 ⩾ 𝑡: 𝑥 ∈ 𝑋
if and only if 𝑥 ∈ 𝑌 . Two sets 𝑋,𝑌 ⊆ N are almost equal if they are equal up to some threshold
𝑡 ∈ N.

LEMMA 5.11. A set 𝑋 ⊆ N is eventually 𝑑-periodic if and only if 𝑋 and 𝑋 + 𝑑 are almost equal.

PROOF . Let 𝑡 ∈ N be such that for all 𝑥 ⩾ 𝑡 we have 𝑥 ∈ 𝑋 if and only if 𝑥 + 𝑑 ∈ 𝑋 . Then, 𝑋
and 𝑋 + 𝑑 are equal up to threshold 𝑡 + 𝑑. Conversely, if 𝑋 =𝑡 𝑋 + 𝑑, then for all 𝑥 ⩾ 𝑡 we have
𝑥 + 𝑑 ∈ 𝑋 if and only if 𝑥 + 𝑑 ∈ 𝑋 + 𝑑, which is true if and only if 𝑥 ∈ 𝑋 . ■

If the graph𝐺 = (𝑉, 𝐸) is strongly connected with 𝐸 ≠ ∅ and finite period 𝑔 , and𝑉0, . . . , 𝑉𝑔−1

satisfy the properties from Lemma 3.18, then we define the shift from 𝑢 ∈ 𝑉𝑖 to 𝑣 ∈ 𝑉 𝑗 by

shift(𝑢, 𝑣) = (𝑗 − 𝑖) mod 𝑔 ∈ {0, . . . , 𝑔 − 1}. (13)

Notice that shift(𝑢, 𝑣) could be defined without referring to the partition
⋃𝑔−1
𝑖=0 𝑉𝑖 since the length

of any path from 𝑢 to 𝑣 is congruent to shift(𝑢, 𝑣) modulo 𝑔 by Lemma 3.18. Also, note that
shift(𝑢, 𝑣) + shift(𝑣, 𝑢) ≡ 0 (mod 𝑔).

LEMMA 5.12. Let 𝐶 be a nontransient SCC in B, 𝑝, 𝑞 ∈ 𝐶 and 𝑠 = shift(𝑝, 𝑞). Then, Acc(𝑝) and
Acc(𝑞) + 𝑠 are almost equal.

PROOF . Let 𝑘 ∈ N such that 𝑘 · 𝑔 ⩾ 𝑚(𝐶) where 𝑚(𝐶) is the constant from Lemma 3.18. By
Lemma 3.18 there exists a run from 𝑝 to 𝑞 of length 𝑠 + 𝑘 · 𝑔, and a run from 𝑞 to 𝑝 of length
(𝑘 + 1) · 𝑔 − 𝑠 (the latter number is congruent to shift(𝑞, 𝑝) modulo 𝑔). By prolonging accepting
runs we obtain

Acc(𝑞) + 𝑠 + 𝑘 · 𝑔 ⊆ Acc(𝑝) and Acc(𝑝) + (𝑘 + 1) · 𝑔 − 𝑠 ⊆ Acc(𝑞).

Adding 𝑠 + 𝑘 · 𝑔 to both sides of the last inclusion yields

Acc(𝑝) + (2𝑘 + 1) · 𝑔 ⊆ Acc(𝑞) + 𝑠 + 𝑘 · 𝑔 ⊆ Acc(𝑝).

By Lemma 5.10 and Lemma 5.11 the three sets above are almost equal. Also, Acc(𝑞) + 𝑠 + 𝑘 · 𝑔 is
almost equal to Acc(𝑞) + 𝑠 by Lemma 5.10 and Lemma 5.11. Since almost equality is a transitive
relation, this proves the statement. ■

COROLLARY 5.13. There exists a threshold 𝑡 ∈ N such that
(i) Acc(𝑞) =𝑡 Acc(𝑞) + 𝑔 for all 𝑞 ∈ 𝑄, and

(ii) Acc(𝑝) =𝑡 Acc(𝑞) + shift(𝑝, 𝑞) for all nontransient SCCs 𝐶 and all 𝑝, 𝑞 ∈ 𝐶.

55 / 75 Regular Languages in the Sliding Window Model

Let us fix the threshold 𝑡 from Corollary 5.13 in the following. We can now prove Lemma 5.9.

PROOF OF LEMMA 5.9 . Let 𝜌 be an internal run starting from 𝑝 with |𝜌| ⩽ 𝑛 ∈ Acc(𝑝). We
have to find an accepting run 𝜋 of length 𝑛 starting from 𝑝 and factorizations 𝜌 = 𝜌1𝜌2 and
𝜋 = 𝜋′𝜌2 with |𝜌1 | ⩽ 𝑡.

If |𝜌| ⩽ 𝑡, then we can choose for 𝜋 any accepting run from 𝑝 of length 𝑛 ∈ Acc(𝑝).
Otherwise, if |𝜌| > 𝑡, then the internal run 𝜌 is nonempty, which implies that the SCC 𝐶

containing 𝑝 is nontransient. Moreover, writing 𝜌 = 𝜌1𝜌2 where |𝜌1 | = 𝑡, it is the case that 𝜌2

leads from 𝑝 to some state 𝑞 of the same SCC. Set 𝑠 := shift(𝑞, 𝑝), which satisfies 𝑠 + |𝜌2 | ≡ 0
(mod 𝑔) by the properties in Lemma 3.18 (see also the discussion before Lemma 5.12). Since
Acc(𝑞) =𝑡 Acc(𝑝) + 𝑠 by Corollary 5.13(ii), 𝑛 > 𝑡 and 𝑛 ∈ Acc(𝑝), we have 𝑛 + 𝑠 ∈ Acc(𝑞). Finally,
since 𝑛 + 𝑠 ≡ 𝑛 − |𝜌2 | (mod 𝑔) and 𝑛 − |𝜌2 | = 𝑛 − |𝜌| + 𝑡 ⩾ 𝑡, we know 𝑛 − |𝜌2 | ∈ Acc(𝑞) by
Corollary 5.13(i). This yields an accepting run 𝜋′ from 𝑞 of length 𝑛 − |𝜌2 |. Then, 𝜌 is 𝑡-simulated
by 𝜋 = 𝜋′𝜌2. ■

5.3.2 Sliding window testers with two-sided error

In this section, we will prove Theorem 5.2. We will construct for every regular language
a randomized sliding window tester with two-sided error and Hamming gap 𝛾(𝑛) that uses
O(log(𝑛/𝛾(𝑛))) bits assuming the window size 𝑛 satisfies 𝛾(𝑛) ⩾ 𝑐 for a suitably chosen constant.
We still assume that the regular language 𝐿 is recognized by an rDFA B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) whose
nontransient SCCs have uniform period 𝑔 ⩾ 1. Furthermore, we again use the constant 𝑡 from
Corollary 5.13.

We will set the constant 𝑐 from Theorem 5.2 to 𝑐 = 4(𝑡 + 1). Let us fix a window size 𝑛 such
that 𝛾(𝑛) ⩾ 4(𝑡 + 1). We define the parameters ℎ = 𝑛 − 𝑡 and ℓ = 𝑛 − 𝛾(𝑛) + 𝑡 + 1, which satisfy

ℓ

ℎ
=
𝑛 − 𝛾(𝑛) + 𝑡 + 1

𝑛 − 𝑡 ⩽
𝑛 − 𝛾(𝑛) + 1

4𝛾(𝑛)
𝑛 − 1

4𝛾(𝑛)

=
𝑛 − 1

4𝛾(𝑛) − 1
2𝛾(𝑛)

𝑛 − 1
4𝛾(𝑛)

⩽ 1 − 𝛾(𝑛)
2𝑛

.

(14)

LetZ = (𝐶, {inc}, 𝑐0, 𝜌, 𝐹) be the (ℎ, ℓ)-counter with error probability 1/(3|𝑄|) from Proposi-
tion 4.6, which uses O(log log |𝑄| + log(𝑛/𝛾(𝑛))) = O(log(𝑛/𝛾(𝑛))) space by (14) (as usual, we
consider |𝑄| as a constant). The counterZ is used to define so-called compact summaries of
runs.

A compact summary 𝜅 = (𝑞𝑚, 𝑟𝑚, 𝑐𝑚) · · · (𝑞2, 𝑟2, 𝑐2) (𝑞1, 𝑟1, 𝑐1) is a sequence of triples, where
each triple (𝑞𝑖 , 𝑟𝑖 , 𝑐𝑖) consists of a state 𝑞𝑖 ∈ 𝑄, a remainder 0 ⩽ 𝑟𝑖 ⩽ 𝑔 − 1, and a state 𝑐𝑖 ∈ 𝐶 of
the counterZ. The state 𝑐1 of the counter is always its initial state 𝑐0 (and hence low) and 𝑟1 = 0.
We say that 𝜅 represents a run 𝜋 if the SCC-factorization of 𝜋 has the form 𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏1𝜋1,
and the following properties hold for all 1 ⩽ 𝑖 ⩽ 𝑚:

(C1) 𝜋𝑖 starts in 𝑞𝑖;

56 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑞𝑖−1𝑞𝑖𝑞𝑖+1 𝑞1𝑞𝑚

𝜋𝑖−1𝜏𝑖−1𝜋𝑖𝜏𝑖

𝑐𝑖 and 𝑟𝑖 (mod 𝑔)

Figure 7. A compact summary of a run 𝜋.

(C2) 𝑟𝑖 = |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | mod 𝑔;
(C3) if |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | ⩽ 𝑛 − 𝛾(𝑛) + 𝑡 + 1 then 𝑐𝑖 is a low state;
(C4) if |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | ⩾ 𝑛 − 𝑡 then 𝑐𝑖 is a high state.

Note that 𝜅 does not restrict 𝜋𝑚 except that the latter must be an internal run starting in 𝑞𝑚.
The idea of a compact summary is visualized in Figure 7. If𝑚 > |𝑄| then the above compact

summary cannot represent a run. Therefore, we can assume that 𝑚 ⩽ |𝑄|. For every triple
(𝑞𝑖 , 𝑟𝑖 , 𝑐𝑖), the entries 𝑞𝑖 and 𝑟𝑖 only depend on the rDFA B, and hence can be stored with O(1)
bits. Each state 𝑐𝑖 of the probabilistic counterZ needs O(log(𝑛/𝛾(𝑛))) bits. Hence, a compact
summary can be stored in O(log(𝑛/𝛾(𝑛))) bits. In contrast to the deterministic sliding window
tester, we maintain a set of compact summaries which represent all runs of B on the complete
stream read so far (not only on the active window) with high probability.8

PROPOS IT ION 5.14. For a given input stream 𝑤 ∈ Σ∗, we can maintain a set of compact
summaries 𝑆 = {𝜅𝑤(𝑞) | 𝑞 ∈ 𝑄} such that for all 𝑞 ∈ 𝑄,

𝜅𝑤(𝑞) starts in 𝑞, and
Pr[run 𝜋𝑤,𝑞 is represented by 𝜅𝑤(𝑞)] ⩾ 2/3.

PROOF . We maintain for the input word 𝑤 ∈ Σ∗ a set of random compact summaries 𝑆 =

{𝜅𝑤(𝑞) | 𝑞 ∈ 𝑄} as follows.
For 𝑤 = 𝜀, we initialize 𝑆 = {𝜅𝜀(𝑞) | 𝑞 ∈ 𝑄} where 𝜅𝜀(𝑞) = (𝑞, 0, 𝑐0) for 𝑞 ∈ 𝑄. If 𝑎 ∈ Σ is the

next input symbol in the stream, then 𝑆 is updated to the new set 𝑆′ of compact summaries by
iterating over all transitions 𝑞

𝑎←− 𝑝 in B and prolonging the compact summary starting in 𝑞 by
that transition. To prolong a compact summary

𝜅𝑤(𝑞) = (𝑞𝑚, 𝑟𝑚, 𝑐𝑚) · · · (𝑞1, 𝑟1, 𝑐1) (15)

we proceed similarly to Algorithm 1.
If 𝑝 and 𝑞 = 𝑞1 are not in the same SCC then the new compact summary 𝜅𝑤𝑎(𝑝) is

(𝑞𝑚, (𝑟𝑚 + 1) mod 𝑔, 𝑐′𝑚) · · · (𝑞1, (𝑟1 + 1) mod 𝑔, 𝑐′1) (𝑝, 0, 𝑐0),

where every counter state 𝑐′𝑖 is chosen with probability 𝜌(𝑐𝑖 , inc, 𝑐′𝑖).

8 This is similar to the randomized SW-algorithm from Lemma 4.8 that stores in the probabilistic countersZ𝑞 information
about the complete input stream.

57 / 75 Regular Languages in the Sliding Window Model

If 𝑝 and 𝑞 = 𝑞1 belong to the same SCC, then 𝜅𝑤𝑎(𝑝) is

(𝑞𝑚, (𝑟𝑚 + 1) mod 𝑔, 𝑐′𝑚) · · · (𝑞2, (𝑟2 + 1) mod 𝑔, 𝑐′2) (𝑝, 𝑟1, 𝑐1),

where every counter state 𝑐′𝑖 with 2 ⩽ 𝑖 ⩽ 𝑚 is chosen with probability 𝜌(𝑐𝑖 , inc, 𝑐′𝑖).
Note that the right-most triple of 𝜅𝑤(𝑞) will be (𝑞, 0, 𝑐0) with probability 1.
Finally we claim that for every 𝑞 ∈ 𝑄, the compact summary 𝜅𝑤(𝑞) from (15) computed

by the algorithm represents 𝜋𝑤,𝑞 with probability 2/3. Properties (C1) and (C2) are satisfied by
construction. Furthermore, since the length of 𝜅𝑤(𝑞) is bounded by |𝑄| and each instance ofZ
has error probability 1/(3|𝑄|) the probability that property (C3) or (C4) is violated for some 𝑖 is
at most 1/3 by the union bound. ■

For the randomized algorithm from the proof of Proposition 5.14 the same comment applies
that was made after the proof of Lemma 4.8: the increments of the probabilistic counters do
not have to be independent. Hence, in each step, only the random bits for incrementing a single
(ℓ, ℎ)-counter (with the above parameters ℓ and ℎ) are needed. These random bits can be used
for all counters that have to be incremented.

It remains to define an acceptance condition on compact summaries. For every 𝑞 ∈ 𝑄 we
define

Accmod(𝑞) = {ℓ mod 𝑔 | ℓ ∈ Acc(𝑞) and ℓ ⩾ 𝑡}.

Let 𝜅 = (𝑞𝑚, 𝑟𝑚, 𝑐𝑚) · · · (𝑞1, 𝑟1, 𝑐1) be a compact summary. Since 𝑐1 is the low initial state of the
probabilistic counter, there exists a maximal index 𝑖 ∈ {1, . . . , 𝑚} such that 𝑐𝑖 is low. We say
that 𝜅 is accepting if (𝑛 − 𝑟𝑖) mod 𝑔 ∈ Accmod(𝑞𝑖).

PROPOS IT ION 5.15. Let𝑤 ∈ Σ∗ with |𝑤| ⩾ 𝑛 and let 𝜅 be a compact summary which represents
𝜋𝑤,𝑞0 .

(i) If last𝑛(𝑤) ∈ 𝐿, then 𝜅 is accepting.
(ii) If 𝜅 is accepting, then pdist(last𝑛(𝑤), 𝐿) ⩽ 𝛾(𝑛).

PROOF . Consider the SCC-factorization of 𝜋 = 𝜋𝑤,𝑞0 = 𝜋𝑚𝜏𝑚−1 · · · 𝜏1𝜋1 and a compact summary
𝜅 = (𝑞𝑚, 𝑟𝑚, 𝑐𝑚) · · · (𝑞1, 𝑟1, 𝑐1) representing 𝜋. Thus, 𝑞1 = 𝑞0 and 𝑐1 = 𝑐0. Consider the maximal
index 1 ⩽ 𝑖 ⩽ 𝑚 where 𝑐𝑖 is low, which means that |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | < 𝑛 − 𝑡 by (C4). The run
of B on last𝑛(𝑤) has the form 𝜋′𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏1𝜋1 for some suffix 𝜋′𝑘 of 𝜋𝑘 and 𝑘 ⩾ 𝑖. We have
|𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | = 𝑛 − |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | > 𝑡. By (C2) we know that

𝑟𝑖 = |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | mod 𝑔 = 𝑛 − |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | mod 𝑔.

For (i) assume that last𝑛(𝑤) ∈ 𝐿. Thus, 𝜋′𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏1𝜋1 is an accepting run starting in 𝑞0. By
(C1) the run 𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 starts in 𝑞𝑖 . Hence, 𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 is an accepting run from 𝑞𝑖 of length at

58 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

least 𝑡. By definition of Accmod(𝑞𝑖) we have

𝑛 − 𝑟𝑖 mod 𝑔 = |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | mod 𝑔 ∈ Accmod(𝑞𝑖),

and therefore 𝜅 is accepting.
For (ii) assume that 𝜅 is accepting, i.e.

(𝑛 − 𝑟𝑖) mod 𝑔 = |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | mod 𝑔 ∈ Accmod(𝑞𝑖).

Recall that |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | > 𝑡. By definition of Accmod(𝑞𝑖) there exists an accepting run from 𝑞𝑖

whose length is congruent to |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | mod 𝑔 and at least 𝑡. By point (i) from Corollary 5.13
we derive that |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | ∈ Acc(𝑞𝑖). We show that |𝜋𝑖𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | ⩾ 𝑛 − 𝛾(𝑛) + 𝑡 by a
case distinction. If 𝑖 = 𝑚, then clearly |𝜋𝑖𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | = |𝑤| ⩾ 𝑛 ⩾ 𝑛 − 𝛾(𝑛) + 𝑡. The latter
inequality follows from our assumption 𝑡 + 1 ⩽ 𝛾(𝑛)/4. If 𝑖 < 𝑚, then 𝑐𝑖+1 is high by maximality
of 𝑖, which implies |𝜏𝑖𝜋𝑖 · · · 𝜏1𝜋1 | > 𝑛 − 𝛾(𝑛) + 𝑡 + 1 by (C3). Since 𝜏𝑖 has length one, we have
|𝜋𝑖𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | > 𝑛 − 𝛾(𝑛) + 𝑡.

Since |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | ∈ Acc(𝑞𝑖), we can apply Lemma 5.9 and obtain an accepting run 𝜌 of
length |𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 | ∈ Acc(𝑞𝑖) starting in 𝑞𝑖 which 𝑡-simulates the internal run 𝜋𝑖 . The prefix
distance between 𝜌 and 𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖 (which we define as the prefix distance between the words
read along the two runs) is at most

|𝜋′𝑘𝜏𝑘−1 · · · 𝜋𝑖+1𝜏𝑖 | + 𝑡 = 𝑛 − |𝜋𝑖𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 | + 𝑡 ⩽ 𝑛 − 𝑛 + 𝛾(𝑛) = 𝛾(𝑛).

Hence, the prefix distance from the accepting run 𝜌𝜏𝑖−1𝜋𝑖−1 · · · 𝜏1𝜋1 to the run 𝜋′𝑘𝜏𝑘−1𝜋𝑘−1 · · · 𝜏1𝜋1

is also at most 𝛾(𝑛). This implies pdist(last𝑛(𝑤), 𝐿) ⩽ 𝛾(𝑛). ■

We are now ready to prove Theorem 5.2.

PROOF OF THEOREM 5.2 . Assume that the window size is such that 𝛾(𝑛) ⩾ 4(𝑡 + 1) (recall
that 4(𝑡 + 1) is our constant 𝑐 from Theorem 5.2). We use the algorithm from Proposition 5.14,
which is initialized by reading the initial window □𝑛. It maintains a compact summary which
represents 𝜋𝑤,𝑞0 with probability at least 2/3 for the read stream prefix𝑤. The algorithm accepts
if that compact summary is accepting. From Proposition 5.15 we get:

If last𝑛(𝑤) ∈ 𝐿, then the algorithm accepts with probability at least 2/3.
If pdist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then the algorithm rejects with probability at least 2/3.

This concludes the proof of Theorem 5.2. ■

From Theorem 5.2 we can easily deduce Corollary 5.3: Let 𝛾(𝑛) = 𝜖𝑛 for some 0 < 𝜖 < 1 and let
𝑐 be the constant from Theorem 5.2. Then the condition 𝛾(𝑛) ⩾ 𝑐 becomes 𝑛 ⩾ 𝑐/𝜖. Hence, for a
window size 𝑛 ⩾ 𝑐/𝜖, Theorem 5.2 yields a randomized sliding window tester with two-sided
error that uses space O(log(𝑛/𝛾(𝑛)) = O(log(1/𝜖)). For 𝑛 < 𝑐/𝜖 we can use a trivial sliding
window tester that stores the window content explicitly using O(1/𝜖) bits.

59 / 75 Regular Languages in the Sliding Window Model

5.3.3 Sliding window testers with one-sided error

In the following, we turn to sliding window testers with one-sided error and prove Theorem 5.4,
i.e., we present a false-biased sliding window tester for languages in

⋃(Triv, SF) with constant
Hamming gap using O(log log 𝑛) space. By the following lemma, it suffices to consider the cases
𝐿 ∈ Triv and 𝐿 ∈ SF.

LEMMA 5.16. Let P1 and P2 be randomized false-biased sliding window testers for 𝐿1 and
𝐿2, respectively, for window size 𝑛 with Hamming gap 𝛾(𝑛). Then, there exists a randomized
false-biased sliding window tester for 𝐿1 ∪ 𝐿2 for window size 𝑛 with Hamming gap 𝛾(𝑛) using
space O(𝑠(P1) + 𝑠(P2)).

PROOF . First we reduce the error probability of P𝑖 (𝑖 ∈ {1, 2}) from 1/3 to 1/9 by running 2
independent and parallel copies of P𝑖 and reject if and only if one of the copies rejects. Then,
we run both algorithms in parallel and accept if and only if one of them accepts. If the window
belongs to 𝐿1 ∪ 𝐿2 then either P1 or P2 accepts with probability 1. If the window 𝑤 satisfies
dist(𝑤, 𝐿1∪𝐿2) = min(dist(𝑤, 𝐿1), dist(𝑤, 𝐿2)) > 𝛾(𝑛) then dist(𝑤, 𝐿𝑖) > 𝛾(𝑛) for both 𝑖 ∈ {1, 2}.
Hence, both algorithms falsely accept with probability at most 1/9 and the combined algorithm
falsely accepts with probability at most 1/9 + 1/9 ⩽ 1/3. ■

The case of a regular trivial language is covered by the following result:

THEOREM 5.17. Let 𝐿 be a language and 𝛾(𝑛) be a function. The following statements are
equivalent:

𝐿 is (𝛾(𝑛) + 𝑐)-trivial for some number 𝑐 ∈ N.
There is a deterministic sliding window tester with Hamming gap 𝛾(𝑛) + 𝑐′ for 𝐿 which uses
constant space for some number 𝑐′ ∈ N.

PROOF . Assume first that 𝐿 is (𝛾(𝑛) + 𝑐)-trivial. Let 𝑛 ∈ N be a window size. If 𝐿∩ Σ𝑛 = ∅, then
the algorithm always rejects, which is obviously correct since any active window of size 𝑛 has
infinite Hamming distance to 𝐿. On the other hand, if 𝐿 ∩ Σ𝑛 ≠ ∅ then the Hamming distance
between an arbitrary active window of size 𝑛 and 𝐿 is at most 𝛾(𝑛) + 𝑐. Hence, the algorithm
that always accepts achieves a Hamming gap of 𝛾(𝑛) + 𝑐.

We now show the converse statement.9 For each window size 𝑛 ∈ N let P𝑛 be a deter-
ministic sliding window tester for 𝐿 with Hamming gap 𝛾(𝑛) + 𝑐′ such that the number of
states of P𝑛 is constant. Assume that P𝑛 has at most 𝑠 states for every 𝑛. Let 𝑁 ⊆ N be the set
of all 𝑛 such that 𝐿 ∩ Σ𝑛 ≠ ∅. Note that every P𝑛 with 𝑛 ∈ 𝑁 accepts a nonempty language.
Every P𝑛 is a DFA with a most 𝑠 states over the fixed alphabet Σ. The number of pairwise
nonisomorphic DFAs with at most 𝑠 states over the input alphabet Σ is bounded by a fixed

9 The converse statement is not needed for the proof of Theorem 5.4 but we think it is of independent interest.

60 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

constant 𝑑. Hence, at most 𝑑 nonisomorphic DFAs can appear in the list (P𝑛)𝑛∈𝑁 . We therefore
can choose numbers 𝑛1 < 𝑛2 < · · · < 𝑛𝑒 from 𝑁 with 𝑒 ⩽ 𝑑 such that for every 𝑛 ∈ 𝑁 there
exists a unique 𝑖 ∈ {1, 2, . . . , 𝑒} with 𝑛𝑖 ⩽ 𝑛 and P𝑛 = P𝑛𝑖 (here and in the following we do
not distinguish between isomorphic DFAs). Let us choose for every 1 ⩽ 𝑖 ⩽ 𝑒 some word
𝑢𝑖 ∈ 𝐿 of length 𝑛𝑖 . Now, take any 𝑛 ∈ 𝑁 and assume that P𝑛 = P𝑛𝑖 where 𝑛𝑖 ⩽ 𝑛. Consider
any word 𝑢 ∈ Σ∗𝑢𝑖 . Since last𝑛𝑖 (𝑢) = 𝑢𝑖 ∈ 𝐿, P𝑛𝑖 has to accept 𝑢. Hence, P𝑛 accepts all words
from Σ∗𝑢𝑖 . In particular, for every word 𝑥 of length 𝑛 − 𝑛𝑖 , P𝑛 accepts 𝑥𝑢𝑖 . This implies that
dist(𝑥𝑢𝑖 , 𝐿) ⩽ 𝛾(𝑛) + 𝑐′ for all 𝑥 ∈ Σ𝑛−𝑛𝑖 . Recall that this holds for all 𝑛 ∈ 𝑁 and that 𝑁 is the
set of all lengths realized by 𝐿. Hence, if we define 𝑐′′ := max{𝑛1, . . . , 𝑛𝑒}, then every word 𝑤
of length 𝑛 ∈ 𝑁 has Hamming distance at most 𝛾(𝑛) + 𝑐′ + 𝑐′′ from a word in 𝐿. Therefore, 𝐿 is
(𝛾(𝑛) + 𝑐)-trivial with 𝑐 = 𝑐′ + 𝑐′′. ■

Let us now turn to the case of a regular suffix-free language 𝐿. We again consider an rDFA
B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) for 𝐿 whose nontransient SCCs have uniform period 𝑔 ⩾ 1. Since 𝐿 is suffix-
free, B has the property that no final state can be reached from a final state by a nonempty
run.

We adapt the definition of a path description from Section 3.8. In the following, a path
description is a sequence

𝑃 = (𝑞𝑘, 𝑎𝑘, 𝑝𝑘−1), 𝐶𝑘−1, . . . , (𝑞2, 𝑎2, 𝑝1), 𝐶1, (𝑞1, 𝑎1, 𝑝0), 𝐶0, 𝑞0. (16)

where 𝐶𝑘−1, . . . , 𝐶0 is a chain (from right to left) in the SCC-ordering of B, 𝑝𝑖 , 𝑞𝑖 ∈ 𝐶𝑖 , 𝑞𝑖+1
𝑎𝑖+1←−−− 𝑝𝑖

is a transition in B for all 0 ⩽ 𝑖 ⩽ 𝑘 − 1, and 𝑞𝑘 ∈ 𝐹. Each path description defines a partial
rDFA B𝑃 = (𝑄𝑃, Σ, {𝑞𝑘}, 𝛿𝑃, 𝑞0) by restricting B to the state set 𝑄𝑃 =

⋃𝑘−1
𝑖=0 𝐶𝑖 ∪ {𝑞𝑘}, restricting

the transitions of B to internal transitions from the SCCs 𝐶𝑖 and the transitions 𝑞𝑖+1
𝑎𝑖+1←−−− 𝑝𝑖 ,

and declaring 𝑞𝑘 to be the only final state. This rDFA is partial since for every state 𝑝 and
every symbol 𝑎 ∈ Σ there exists at most one transition 𝑞

𝑎←− 𝑝 in B𝑃. Since the number of path
descriptions 𝑃 is finite and L(B) = ⋃

𝑃 L(B𝑃), we can fix a single path description 𝑃 and provide
a sliding window tester for L(B𝑃) (we again use Lemma 5.16 here).

From now on, we fix a path description 𝑃 as in (16). The acceptance sets Acc𝑃 (𝑞) are
defined with respect to the restricted automaton B𝑃. If all 𝐶𝑖 are transient, then L(B𝑃) is a
singleton and we can use a trivial sliding window tester with space complexity O(1). Now,
assume the contrary and let 0 ⩽ 𝑒 ⩽ 𝑘 − 1 be maximal such that 𝐶𝑒 is nontransient.

LEMMA 5.18. There exist numbers 𝑟0, . . . , 𝑟𝑘−1, 𝑠0, . . . , 𝑠𝑒 ∈ N such that the following holds:
(i) For all 𝑒 + 1 ⩽ 𝑖 ⩽ 𝑘, the set Acc𝑃 (𝑞𝑖) is a singleton.

(ii) For all 0 ⩽ 𝑖 ⩽ 𝑘 − 1, every run from 𝑞𝑖 to 𝑞𝑖+1 has length 𝑟𝑖 (mod 𝑔).
(iii) For all 0 ⩽ 𝑖 ⩽ 𝑒, Acc𝑃 (𝑞𝑖) =𝑠𝑖

∑𝑘−1
𝑗=𝑖 𝑟 𝑗 + 𝑔N.

61 / 75 Regular Languages in the Sliding Window Model

PROOF . Point (i) follows immediately from the definition of transient SCCs. Let us now show
(ii) and (iii). Let 0 ⩽ 𝑖 ⩽ 𝑘−1 and let 𝑁𝑖 be the set of lengths of runs of the form 𝑞𝑖+1

𝑎𝑖+1←−−− 𝑝𝑖 𝑤←− 𝑞𝑖
in B𝑃. If 𝐶𝑖 is transient, then 𝑁𝑖 = {1}. Otherwise, by Lemma 3.18 there exist a number 𝑟𝑖 ∈ N
and a cofinite set 𝐷𝑖 ⊆ N such that 𝑁𝑖 = 𝑟𝑖 + 𝑔𝐷𝑖 . We can summarize both cases by saying that
there exist a number 𝑟𝑖 ∈ N and a set 𝐷𝑖 ⊆ N which is either cofinite or 𝐷𝑖 = {0} such that
𝑁𝑖 = 𝑟𝑖 + 𝑔𝐷𝑖 . This implies point (ii). Moreover, the acceptance sets in B𝑃 satisfy

Acc𝑃 (𝑞𝑖) =
𝑘−1∑︁
𝑗=𝑖

𝑁 𝑗 =

𝑘−1∑︁
𝑗=𝑖

(𝑟 𝑗 + 𝑔𝐷 𝑗) =
𝑘−1∑︁
𝑗=𝑖

𝑟 𝑗 + 𝑔
𝑘−1∑︁
𝑗=𝑖

𝐷 𝑗 .

For all 0 ⩽ 𝑖 ⩽ 𝑒 we get Acc𝑃 (𝑞𝑖) =𝑠𝑖
∑𝑘−1
𝑗=𝑖 𝑟 𝑗 + 𝑔N for some threshold 𝑠𝑖 ∈ N (note that a

nonempty sum of cofinite subsets of N is again cofinite). ■

Let us fix the numbers 𝑟𝑖 and 𝑠𝑖 from Lemma 5.18. Let 𝑝be a random prime with Θ(log log 𝑛)
bits. By choosing the Θ-constant large enough and using Lemma 4.9 (where we set 𝑚 = 𝑛, 𝑎 = ℓ

and 𝑏 = 𝑛) we obtain for every 0 ⩽ ℓ < 𝑛 the inequality Pr[ℓ ≡ 𝑛 (mod 𝑝)] ⩽ 1/3. Define the
threshold

𝑠 = max{𝑘,
𝑘−1∑︁
𝑗=0

𝑟 𝑗 , 𝑠0, . . . , 𝑠𝑒}

and for a word 𝑤 ∈ Σ∗ define the function ℓ𝑤 : 𝑄→ N ∪ {∞} where

ℓ𝑤(𝑞) = inf{ℓ ∈ N | 𝛿𝑃 (lastℓ (𝑤), 𝑞) = 𝑞𝑘}

(we set inf ∅ = ∞). We now define an acceptance condition on ℓ𝑤(𝑞). If 𝑛 ∉ Acc𝑃 (𝑞0), we always
reject. Otherwise, we accept 𝑤 if and only if ℓ𝑤(𝑞0) ≡ 𝑛 (mod 𝑝).

LEMMA 5.19. Let 𝑛 ∈ Acc𝑃 (𝑞0) be a window size with 𝑛 ⩾ 𝑠 + |𝑄𝑃 | and 𝑤 ∈ Σ∗ with |𝑤| ⩾ 𝑛.
There exists a constant 𝑐 > 0 such that:

(i) if last𝑛(𝑤) ∈ L(B𝑃), then 𝑤 is accepted (in the above sense) with probability 1, and
(ii) if pdist(last𝑛(𝑤), L(B𝑃)) > 𝑐, then 𝑤 is rejected with probability at least 2/3.

PROOF . Consider a word 𝑤 ∈ Σ∗ with |𝑤| ⩾ 𝑛. We consider several cases.

Case 1: last𝑛(𝑤) ∈ L(B𝑃). Since L(B𝑃) ⊆ 𝐿 is suffix-free, we have ℓ𝑤(𝑞0) ≡ 𝑛 (mod 𝑝) and 𝑤 is
accepted with probability 1, which shows statement (i) from the lemma.

Case 2: last𝑛(𝑤) ∉ L(B𝑃). We then have ℓ𝑤(𝑞0) ≠ 𝑛, which yields the following two subcases.

Case 2.1: ℓ𝑤(𝑞0) < 𝑛. Then, by the choice of 𝑝 we have ℓ𝑤(𝑞0) . 𝑛 (mod 𝑝) with probability at
least 2/3. Hence, 𝑤 is rejected with probability at least 2/3.

Case 2.2: ℓ𝑤(𝑞0) > 𝑛. We will show that this implies pdist(last𝑛(𝑤), L(B𝑃)) ⩽ 𝑐 for a constant
𝑐. For this 𝑐, statement (ii) from the lemma then holds: if pdist(last𝑛(𝑤), L(B𝑃)) > 𝑐, we must
have ℓ𝑤(𝑞0) < 𝑛, which by Case 2.1 implies that 𝑤 is rejected with probability at least 2/3.

62 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

Let 𝜋 be the run ofB𝑃 on last𝑛(𝑤) starting from the initial state, and let its SCC-factorization
be𝜋 = 𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏0𝜋0. We have |𝜋 | = 𝑛. Since ℓ𝑤(𝑞0) > 𝑛, the run𝜋 can be strictly extended
to a run to 𝑞𝑘 and hence we must have 𝑚 < 𝑘. For all 0 ⩽ 𝑖 ⩽ 𝑚, the run 𝜋𝑖 is an internal run in
the SCC 𝐶𝑖 from 𝑞𝑖 to 𝑝𝑖 . For all 0 ⩽ 𝑖 ⩽ 𝑚 − 1 we have 𝜏𝑖 = 𝑞𝑖+1 𝑎𝑖+1 𝑝𝑖 and |𝜏𝑖𝜋𝑖 | ≡ 𝑟𝑖 (mod 𝑔)
by point (ii) from Lemma 5.18. We claim that there exists an index 0 ⩽ 𝑖0 ⩽ 𝑚 such that the
following three properties hold:

1. 𝑞𝑖0 is nontransient,
2. |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 | ⩾ 𝑠,
3. |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 | ⩽ 𝑠 +𝑚

(note that |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 | = 0 is possible).

Indeed, let 0 ⩽ 𝑖 ⩽ 𝑚 be the smallest integer such that 𝑞𝑖 is nontransient (recall that 𝑛 ⩾ |𝑄𝑃 | and
hence 𝜋 must traverse a nontransient SCC). Then, the run 𝜏𝑖−1𝜋𝑖−1 · · · 𝜏0𝜋0 only passes transient
states except for its last state 𝑞𝑖 and hence its length is bounded by |𝑄𝑃 |. Therefore, we have

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖𝜋𝑖 | = 𝑛 − |𝜏𝑖−1𝜋𝑖−1 · · · 𝜏0𝜋0 | ⩾ 𝑛 − |𝑄𝑃 | ⩾ 𝑠.

Hence, there exists 𝑖 satisfying properties (1) and (2) (with 𝑖0 replaced by 𝑖). Let 0 ⩽ 𝑖0 ⩽ 𝑚 be
the largest integer satisfying properties (1) and (2). We show that property (3) holds for 𝑖0.

If the run 𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 only passes transient states, then its length is bounded
by𝑚−𝑖0 ⩽ 𝑠+𝑚, and we are done. Otherwise, let 𝑖0+1 ⩽ 𝑗 ⩽ 𝑚 be the smallest integer such that 𝑞 𝑗
is nontransient. The run 𝜏 𝑗−1𝜋 𝑗−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 only passes transient states except for its last state
𝑞 𝑗 and therefore it has length 𝑗 − 𝑖0 − 1. By maximality of 𝑖0, we have |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏 𝑗𝜋 𝑗 | < 𝑠

and hence property (3) holds:

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 | = |𝜋𝑚 · · · 𝜏 𝑗𝜋 𝑗 | + |𝜏 𝑗−1𝜋 𝑗−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 |
< 𝑠 + 𝑗 − 𝑖0 ⩽ 𝑠 +𝑚.

In the rest of the proof let 0 ⩽ 𝑖0 ⩽ 𝑚 be the above index satisfying properties (1)-(3). Since 𝑞𝑖0 is
nontransient, we have 𝑖0 ⩽ 𝑒 and therefore

Acc𝑃 (𝑞𝑖0) =𝑠
𝑘−1∑︁
𝑗=𝑖0

𝑟 𝑗 + 𝑔N (17)

by Lemma 5.18(iii) and 𝑠 ⩾ 𝑠𝑖0 . We claim that

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 | ∈ Acc𝑃 (𝑞𝑖0). (18)

Since 𝑛 ⩾ 𝑠 and 𝑛 ∈ Acc𝑃 (𝑞0) =𝑠
∑𝑘−1
𝑗=0 𝑟 𝑗 + 𝑔N we have 𝑛 ∈ ∑𝑘−1

𝑗=0 𝑟 𝑗 + 𝑔N. This implies

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 | = 𝑛 − |𝜏𝑖0−1𝜋𝑖0−1 · · · 𝜏0𝜋0 | ≡ 𝑛 −
𝑖0−1∑︁
𝑗=0

𝑟 𝑗 ≡
𝑘−1∑︁
𝑗=𝑖0

𝑟 𝑗 (mod 𝑔).

63 / 75 Regular Languages in the Sliding Window Model

In addition, we have |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 | ⩾ 𝑠 by property (2). Since 𝑠 ⩾
∑𝑘−1
𝑗=𝑖0

𝑟 𝑗 , we get

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 | ∈
𝑘−1∑︁
𝑗=𝑖0

𝑟 𝑗 + 𝑔N.

Finally, we obtain (18) from (17).
By Lemma 5.9 and (18), there is an accepting run 𝜋′ from 𝑞𝑖0 which 𝑡-simulates the internal

run 𝜋𝑖0 and has length |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0𝜋𝑖0 |. Here, 𝑡 is a constant only depending on B. The
prefix distance between the runs 𝜋 = 𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏0𝜋0 and 𝜋′𝜏𝑖0−1𝜋𝑖0−1 · · · 𝜏0𝜋0 is at most 𝑡 in
case 𝑖0 = 𝑚, and at most

|𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0 | + 𝑡 = |𝜋𝑚𝜏𝑚−1𝜋𝑚−1 · · · 𝜏𝑖0+1𝜋𝑖0+1 | + 1 + 𝑡
⩽ 1 + 𝑠 +𝑚 + 𝑡 =: 𝑐

in case 𝑖0 < 𝑚 due to property (3): Hence, the prefix distance between last𝑛(𝑤) and L(B𝑃) is
bounded by the constant 𝑐. As explained before, statement (ii) of the lemma then holds. ■

PROOF OF THEOREM 5.4 . Let 𝑛 ∈ N be the window size. By the previous discussion, it
suffices to give a randomized sliding window tester (with the properties stated in Theorem 5.4)
for a fixed partial automaton B𝑃. Assume 𝑛 ⩾ 𝑠 + |𝑄|, otherwise a trivial tester can be used.
If 𝑛 ∉ Acc𝑃 (𝑞0), the tester always rejects. Otherwise, the tester picks a random prime 𝑝 with
Θ(log log 𝑛) bits and maintains ℓ𝑤(𝑞) mod 𝑝 for all 𝑞 ∈ 𝑄𝑃, where 𝑤 is the stream read so far,
which requires O(log log 𝑛) bits. When a symbol 𝑎 ∈ Σ is read, we can update ℓ𝑤𝑎 using ℓ𝑤: If
𝑞 = 𝑞𝑘, then ℓ𝑤𝑎(𝑞) = 0, otherwise ℓ𝑤𝑎(𝑞) = 1 + ℓ𝑤(𝛿𝑃 (𝑎, 𝑞)) mod 𝑝 where 1 +∞ = ∞. The tester
accepts if ℓ𝑤(𝑞0) ≡ 𝑛 (mod 𝑝). Lemma 5.19 guarantees that the tester is false-biased. ■

Note that in contrast to the randomized sliding window algorithm from Section 4.4, the random-
ized sliding window tester from this section only uses the modulo counting technique; Bernoulli
counters are not needed. As a consequence, the tester only has to make a random choice at the
beginning (where the prime 𝑝 is chosen) before the first input symbol arrives. Then it continues
deterministically.

5.4 Lower bounds

In this section we prove our lower bounds. In Section 5.4.1 we will prove Theorem 5.5 and
Theorem 5.8. Theorem 5.6 and Theorem 5.7 will be shown in Section 5.4.2.

5.4.1 Regular nontrivial languages

In this section, we prove Theorem 5.5 and Theorem 5.8. For this, we first have to study regular
trivial languages in more detail. We will also show a result of independent interest: every
regular 𝑜(𝑛)-trivial language 𝐿 is already trivial (i.e., O(1)-trivial); see Theorem 5.24.

64 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

Given 𝑖, 𝑗 ⩾ 0 and a word𝑤 of length at least 𝑖+ 𝑗 we define cut𝑖, 𝑗 (𝑤) = 𝑦 such that𝑤 = 𝑥 𝑦𝑧,
|𝑥 | = 𝑖 and |𝑧 | = 𝑗. If |𝑤| < 𝑖 + 𝑗, then cut𝑖, 𝑗 (𝑤) is undefined. For a language 𝐿 we define the
cut-language cut𝑖, 𝑗 (𝐿) = {cut𝑖, 𝑗 (𝑤) | 𝑤 ∈ 𝐿, |𝑤| ⩾ 𝑖 + 𝑗}.

LEMMA 5.20. If 𝐿 is regular, then there are finitely many languages cut𝑖, 𝑗 (𝐿).

PROOF . LetA = (𝑄, Σ, 𝑞0, 𝛿, 𝐹) be a DFA for 𝐿. Given 𝑖, 𝑗 ⩾ 0, let 𝐼 be the set of states reachable
from 𝑞0 via 𝑖 symbols and let 𝐹′ be the set of states from which 𝐹 can be reached via 𝑗 symbols.
Then, the NFAA𝑖, 𝑗 = (𝑄, Σ, 𝐼 , 𝛿, 𝐹′) recognizes cut𝑖, 𝑗 (𝐿). Since there are at most 22|𝑄| such choices
for 𝐼 and 𝐹′, the number of languages of the form cut𝑖, 𝑗 (𝐿) must be finite. ■

LEMMA 5.21. If cut𝑖, 𝑗 (𝐿) is a length language for some 𝑖, 𝑗 ⩾ 0, then 𝐿 is trivial.

PROOF . Assume that cut𝑖, 𝑗 (𝐿) is a length language. Let 𝑛 ∈ N such that 𝐿 ∩ Σ𝑛 ≠ ∅. We claim
that dist(𝑤, 𝐿) ⩽ 𝑖 + 𝑗 for all 𝑤 ∈ Σ𝑛. If 𝑛 < 𝑖 + 𝑗 this is clear. So, assume that 𝑛 ⩾ 𝑖 + 𝑗. Let 𝑤 ∈ Σ𝑛

and 𝑤′ ∈ 𝐿 ∩ Σ𝑛. Then, cut𝑖, 𝑗 (𝑤′) ∈ cut𝑖, 𝑗 (𝐿) and hence also cut𝑖, 𝑗 (𝑤) ∈ cut𝑖, 𝑗 (𝐿). Therefore,
there exist 𝑥 ∈ Σ𝑖 and 𝑧 ∈ Σ 𝑗 such that 𝑥 cut𝑖, 𝑗 (𝑤) 𝑧 ∈ 𝐿 satisfies dist(𝑤, 𝑥 cut𝑖, 𝑗 (𝑤) 𝑧) ⩽ 𝑖 + 𝑗. ■

The restriction of a language 𝐿 to a set of lengths 𝑁 ⊆ N is 𝐿|𝑁 = {𝑤 ∈ 𝐿 | |𝑤| ∈ 𝑁}. A
language 𝐿 excludes a word 𝑤 as a factor if 𝑤 is not a factor of any word in 𝐿. A simple but
important observation is that if 𝐿 excludes 𝑤 as a factor and 𝑣 contains 𝑘 disjoint occurrences
of 𝑤, then dist(𝑣, 𝐿) ⩾ 𝑘: If we change at most 𝑘 − 1 many symbols in 𝑣, then the resulting word
𝑣′ must still contain 𝑤 as a factor and hence 𝑣′ ∉ 𝐿.

LEMMA 5.22. Let 𝐿 be regular. If for all 𝑖, 𝑗 ⩾ 0, cut𝑖, 𝑗 (𝐿) is not a length language, then there
exists an arithmetic progression 𝑁 = 𝑑 + 𝑒N such that the restriction 𝐿|𝑁 is infinite and excludes
a factor.

PROOF . First notice that cut𝑖, 𝑗 (𝐿) determines cut𝑖+1, 𝑗 (𝐿) and cut𝑖, 𝑗+1(𝐿): we have cut𝑖+1, 𝑗 (𝐿) =
cut1,0(cut𝑖, 𝑗 (𝐿)) and similarly for cut𝑖, 𝑗+1(𝐿). Since the number of cut-languages cut𝑖, 𝑗 (𝐿) is
finite by Lemma 5.20, there exist numbers 𝑖 ⩾ 0 and 𝑑 > 0 such that cut𝑖,0(𝐿) = cut𝑖+𝑑,0(𝐿).
Hence, we have cut𝑖, 𝑗 (𝐿) = cut𝑖+𝑑, 𝑗 (𝐿) for all 𝑗 ⩾ 0. By the same argument, there exist numbers
𝑗 ⩾ 0 and 𝑒 > 0 such that cut𝑖, 𝑗 (𝐿) = cut𝑖, 𝑗+𝑒(𝐿) = cut𝑖+𝑑, 𝑗 (𝐿) = cut𝑖+𝑑, 𝑗+𝑒(𝐿), which implies
cut𝑖, 𝑗 (𝐿) = cut𝑖, 𝑗+ℎ(𝐿) = cut𝑖+ℎ, 𝑗 (𝐿) = cut𝑖+ℎ, 𝑗+ℎ(𝐿) for some ℎ > 0 (we can take ℎ = 𝑒𝑑). This
implies that cut𝑖, 𝑗 (𝐿) is closed under removing prefixes and suffixes of length ℎ.

By assumption cut𝑖, 𝑗 (𝐿) is not a length language, i.e., there exist words 𝑦′ ∈ cut𝑖, 𝑗 (𝐿) and
𝑦 ∉ cut𝑖, 𝑗 (𝐿) of the same length 𝑘. Let 𝑁 = {𝑘 + 𝑖 + 𝑗 + ℎ𝑛 | 𝑛 ∈ N}. For any 𝑛 ∈ N the restriction
𝐿|𝑁 contains a word of length 𝑘 + 𝑖 + 𝑗 +ℎ𝑛 because 𝑦′ ∈ cut𝑖, 𝑗 (𝐿) = cut𝑖+ℎ𝑛, 𝑗 (𝐿). This proves that
𝐿|𝑁 is infinite.

Let 𝑢 be an arbitrary word which contains for every remainder 0 ⩽ 𝑟 ⩽ ℎ−1 an occurrence
of 𝑦 as a factor starting at a position which is congruent to 𝑟 mod ℎ (these occurrences do not

65 / 75 Regular Languages in the Sliding Window Model

have to be disjoint). We claim that 𝐿|𝑁 excludes 𝑎𝑖𝑢𝑎 𝑗 as a factor where 𝑎 is an arbitrary symbol.
Assume that there exists a word 𝑤 ∈ 𝐿|𝑁 which contains 𝑎𝑖𝑢𝑎 𝑗 as a factor. Then, cut𝑖, 𝑗 (𝑤)
contains 𝑢 as a factor, has length 𝑘 + ℎ𝑛 for some 𝑛 ⩾ 0, and belongs to cut𝑖, 𝑗 (𝐿). Therefore,
cut𝑖, 𝑗 (𝑤) also contains ℎ many occurrences of 𝑦, one per remainder 0 ⩽ 𝑟 ⩽ ℎ − 1. Consider the
occurrence of 𝑦 in cut𝑖, 𝑗 (𝑤) which starts at a position that is divisible by ℎ, i.e., we can factorize
cut𝑖, 𝑗 (𝑤) = 𝑥 𝑦𝑧 such that |𝑥 | is a multiple of ℎ. Since | cut𝑖, 𝑗 (𝑤) | = 𝑘 + ℎ𝑛 and | 𝑦 | = 𝑘, then |𝑧 | is
also a multiple of ℎ. Therefore, 𝑦 ∈ cut𝑖+|𝑥 |, 𝑗+|𝑧 | (𝐿) = cut𝑖, 𝑗 (𝐿), which is a contradiction. ■

LEMMA 5.23. If 𝐿 ∈ Reg \ Triv then there are a restriction 𝐿|𝑁 that excludes some factor 𝑤 𝑓

and words 𝑥, 𝑦, 𝑧 such that | 𝑦 | > 0 and 𝑥 𝑦∗𝑧 ⊆ 𝐿|𝑁 .

PROOF . By Lemma 5.21, cut𝑖, 𝑗 (𝐿) is not a length language for all 𝑖, 𝑗 ⩾ 0. Let 𝑁 be the set of
lengths from Lemma 5.22 such that 𝐿|𝑁 is infinite and excludes some factor 𝑤 𝑓 . Since 𝑁 is an
arithmetic progression, 𝐿|𝑁 is regular. Let A = (𝑄, Σ, 𝑞0, 𝛿, 𝐹) be a DFA for 𝐿|𝑁 . Since L(A) is
infinite, there must exist words 𝑥, 𝑦, 𝑧 such that 𝑦 ≠ 𝜀 and for 𝛿(𝑞0, 𝑥) = 𝑞 we have 𝛿(𝑞, 𝑦) = 𝑞
and 𝛿(𝑞, 𝑧) ∈ 𝐹. ■

Before we prove Theorem 5.5 let us first show the following result of independent interest:

THEOREM 5.24. For every regular language 𝐿, the following statements are equivalent:
(i) 𝐿 is trivial.

(ii) 𝐿 is 𝑜(𝑛)-trivial.
(iii) cut𝑖, 𝑗 (𝐿) is a length language for some 𝑖, 𝑗 ⩾ 0.

PROOF . If cut𝑖, 𝑗 (𝐿) is a length language then 𝐿 is trivial by Lemma 5.21, and thus also 𝑜(𝑛)-
trivial. It remains to show the direction (ii) to (iii). Assume that 𝐿 is 𝑜(𝑛)-trivial. If (iii) would not
hold then some infinite restriction 𝐿|𝑁 of 𝐿 excludes a factor𝑤 𝑓 by Lemma 5.22. Hence, if 𝑛 ∈ 𝑁
is a length with 𝐿|𝑁 ∩ Σ𝑛 ≠ ∅, then any word 𝑣 of length 𝑛 which contains at least ⌊𝑛/|𝑤 𝑓 |⌋ many
disjoint occurrences of 𝑤 𝑓 , has distance dist(𝑣, 𝐿) ⩾ ⌊𝑛/|𝑤 𝑓 |⌋ to 𝐿. Then, 𝐿 is not 𝑜(𝑛)-trivial,
which is a contradiction. ■

PROOF OF THEOREM 5.5 . We will prove the two lower bounds in Theorem 5.5 for the
more general class of nondeterministic and co-nondeterministic sliding window testers. A
nondeterministic sliding window tester for a language 𝐿 and window size 𝑛 ∈ N with Hamming
gap 𝛾(𝑛) is a nondeterministic finite automaton P𝑛 such that for all input words 𝑤 ∈ Σ∗ we
have the following (recall from Section 2.2 that a successful run is a run from an initial state to
a final state):

If last𝑛(𝑤) ∈ 𝐿, then there is at least one successful run of P𝑛 on 𝑤.
If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then there is no successful run of P𝑛 on 𝑤.

In contrast, P𝑛 is co-nondeterministic if for all 𝑤 ∈ Σ∗ we have:

66 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

If last𝑛(𝑤) ∈ 𝐿, then all runs of P𝑛 on 𝑤 that start in an initial state are successful.
If dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛), then there is a nonsuccessful run of P𝑛 on 𝑤 that starts in an
initial state.

The space complexity of P𝑛 is log |P𝑛 |. Clearly, every true-biased (resp., false-biased) sliding
window tester is a nondeterministic (resp., co-nondeterministic) one.

Assume that 𝐿 ∈ Reg\Triv. We will prove an log 𝑛−O(1) lower bound for nondeterministic
sliding window testers, and hence also for true-biased and deterministic sliding window testers.
By the power set construction one can transform a co-nondeterministic sliding window tester
with 𝑚 memory states into an equivalent nondeterministic (and in fact, even deterministic)
sliding window tester with 2𝑚 memory states. Hence, an log 𝑛 − O(1) lower bound for nonde-
terministic sliding window testers immediately yields an log(log 𝑛 − O(1)) ⩾ log log 𝑛 − O(1)
lower bound for co-nondeterministic sliding window testers, and hence also for false-biased
sliding window testers.

By Lemma 5.23 there are a restriction 𝐿|𝑁 that excludes some factor 𝑤 𝑓 and words 𝑥, 𝑦, 𝑧
such that | 𝑦 | > 0 and 𝑥 𝑦∗𝑧 ⊆ 𝐿|𝑁 . Let 𝑐 = |𝑤 𝑓 | > 0 and choose 0 < 𝜖 < 1/𝑐. Moreover, let
𝑑 = |𝑥𝑧 | and 𝑒 = | 𝑦 | > 0, which satisfy 𝑑 + 𝑒N ⊆ 𝑁 . Recall that every word 𝑣 that contains 𝑘
disjoint occurrences of 𝑤 𝑓 has Hamming distance at least 𝑘 from any word in 𝐿|𝑁 .

Fix a window size 𝑛 ∈ 𝑁 and consider a nondeterministic sliding window tester P𝑛 for 𝐿
and window size 𝑛 with Hamming gap 𝜖𝑛. Define for 𝑘 ⩾ 0 the input stream

𝑣𝑘 = 𝑤
𝑛
𝑓 𝑥 𝑦

𝑘𝑧.

Let 𝛼 = 𝑐𝜖 < 1. If 0 ⩽ 𝑘 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋, then the suffix of 𝑣𝑘 of length 𝑛 contains at least⌊
𝑛 − 𝑑 − 𝑒𝑘

𝑐

⌋
⩾

⌊
𝑛 − 𝑑 − (1 − 𝛼)𝑛 + 𝑐 + 𝑑

𝑐

⌋
=

⌊
𝛼𝑛 + 𝑐
𝑐

⌋
= ⌊𝜖𝑛 + 1⌋ > 𝜖𝑛

many disjoint occurrences of 𝑤 𝑓 . Hence, P𝑛 has no successful run on an input stream 𝑣𝑘 with
0 ⩽ 𝑘 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋.

Assume now that the window size 𝑛 satisfies 𝑛 ⩾ 𝑑 and 𝑛 ≡ 𝑑 (mod 𝑒). Write 𝑛 = 𝑑 + 𝑙𝑒 for
some 𝑙 ⩾ 0. We have 𝑙 = 𝑛−𝑑

𝑒 > ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋. The suffix of 𝑣𝑙 = 𝑤𝑛
𝑓 𝑥 𝑦

𝑙𝑧 of length 𝑛 is 𝑥 𝑦𝑙𝑧 ∈ 𝐿|𝑁 .
Therefore, there exists a successful run 𝜋 of P𝑛 on 𝑣𝑙. Let 𝑚 be the number of states of P𝑛. For
0 ⩽ 𝑖 ⩽ 𝑙 let 𝑝𝑖 be the state on the run 𝜋 that is reached after the prefix 𝑤𝑛

𝑓 𝑥 𝑦
𝑖 of 𝑣𝑙.

In order to deduce a contradiction, let us assume that 𝑚 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋. Then, there must
exist numbers 𝑖 and 𝑗 with 0 ⩽ 𝑖 < 𝑗 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋ such that 𝑝𝑖 = 𝑝 𝑗 =: 𝑝. By cutting off
cycles at 𝑝 from the run 𝜋 and repeating this, we finally obtain a run of P𝑛 on an input stream
𝑣𝑘 = 𝑤𝑛

𝑓 𝑥 𝑦
𝑘𝑧 with 𝑘 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋. This run is still successful. But this contradicts our previous

observation that P𝑛 has no successful run on an input stream 𝑣𝑘 with 0 ⩽ 𝑘 ⩽ ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋. We

67 / 75 Regular Languages in the Sliding Window Model

conclude that P𝑛 must have more than ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋ states. This implies

𝑠(P𝑛) ⩾ log
((1 − 𝛼)𝑛 − 𝑐 − 𝑑

𝑒

)
⩾ log 𝑛 − O(1),

which proves the theorem. ■

For the proof of Theorem 5.8 we need a promise variant of the communication problem
EQ𝑚 (see Section 4.5). With EQ⩾𝑚 we denote the following promise communication problem:
Alice’s (resp., Bob’s) input is a number 𝑖 ∈ {1, . . . , 𝑚} (resp., 𝑗 ∈ {1, . . . , 𝑚}) and the promise
is that 𝑖 ⩾ 𝑗 (i.e., we do not care about the output of the protocol in case 𝑖 < 𝑗). If 𝑖 = 𝑗 then
Bob’s final output must be 1 and if 𝑖 > 𝑗 then Bob’s final output must be 0. We claim that the
randomized one-way communication complexity of EQ⩾𝑚 is Ω(log log𝑚).

Since the randomized one-way communication complexity of EQ𝑚 is Ω(log log𝑚) by Theo-
rem 4.11, it suffices to show that a randomized one-way protocol for EQ⩾𝑚 with cost 𝑐(𝑚) and
error probability 𝜆 yields a randomized one-way protocol for EQ𝑚 with cost 2𝑐(𝑚) and error
probability 2𝜆. This is easy to see: Assume that 𝑃𝑚 is a randomized one-way protocol for EQ⩾𝑚
with cost 𝑐(𝑚). To get a randomized one-way protocol for EQ𝑚, Alice and Bob run two copies of
𝑃𝑚, one on inputs 𝑖, 𝑗 and the other one on inputs 𝑚 − 𝑖, 𝑚 − 𝑗 in parallel and with independent
random bits. If both copies of 𝑃𝑚 yield output 1 then Bob returns 1. In all other cases, Bob
returns 0. If 𝑖 = 𝑗 then this combined protocol returns 1 with probability at least 1 − 2𝜆. On the
other hand if 𝑖 > 𝑗 or 𝑖 < 𝑗 then the protocol returns 0 with probability at least 1 − 𝜆.

PROOF OF LEMMA 5.8 . Let 𝐿 be a language in 𝐿 ∈ Reg \ Triv. By Lemma 5.23 there are a
restriction 𝐿|𝑁 that excludes some factor 𝑤 𝑓 and words 𝑥, 𝑦, 𝑧 such that | 𝑦 | > 0 and 𝑥 𝑦∗𝑧 ⊆ 𝐿|𝑁 .

Let 𝑏 = | 𝑦 | and 𝑐 = |𝑥𝑧 |. Note in the following that 𝑏, 𝑐, and |𝑤 𝑓 | are constants. Fix a
window size 𝑛 ∈ 𝑁 such that that 𝑛 − 𝑐 is a multiple of 𝑏. Since 𝑥 𝑦∗𝑧 ⊆ 𝐿|𝑁 , we have 𝑛 ∈ 𝑁 .
Define the word 𝑣 = 𝑢𝑤𝑘

𝑓 where 𝑘 = ⌊𝛾(𝑛)⌋ + 1 > 𝛾(𝑛) and 𝑢 is a word of length at most 𝑏 − 1
such that |𝑣| is a multiple of 𝑏. Let 𝑙 ∈ N be such that |𝑣| = 𝑏 · 𝑙. Since 𝑏 divides 𝑛 − 𝑐 we can
write 𝑛 − 𝑐 = (𝑚 · 𝑙 + 𝑟) · 𝑏 for 𝑚 ∈ N and 0 ⩽ 𝑟 ⩽ 𝑙 − 1. Choose the constant 𝜖 from the theorem
statement such that 0 < 𝜖 < 1

|𝑤 𝑓 | and hence 𝛾(𝑛) ⩽ 𝜖𝑛. Assuming 𝑛 is large enough, we obtain
𝑘 = ⌊𝛾(𝑛)⌋ + 1 ⩽ 1

|𝑤 𝑓 | (𝑛 − 𝑏 − 𝑐), i.e., 𝑏 · 𝑙 = |𝑣| ⩽ 𝑏 + 𝑘 · |𝑤 𝑓 | ⩽ 𝑛 − 𝑐 and hence 𝑚 ⩾ 1. Moreover,
we have 𝑙 = |𝑣|/𝑏 = Θ(𝛾(𝑛)) and therefore

𝑚 =
𝑛 − 𝑐
𝑏 · 𝑙 −

𝑟

𝑙
= Θ(𝑛/𝛾(𝑛)).

Consider now a randomized sliding window tester P𝑛 with two-sided error for 𝐿 and window
size 𝑛 with Hamming gap 𝛾(𝑛). We show that from P𝑛 we can obtain a randomized one-way
protocol for EQ⩾𝑚.

Alice produces from her input 𝑖 ∈ {1, . . . , 𝑚} the word 𝑣𝑥 𝑦𝑟+(𝑚−𝑖)𝑙. She then runs P𝑛 on
this word and sends the memory state to Bob. Bob continues the run of the randomized sliding
window tester, starting from the transferred memory state, with the input stream 𝑦 𝑗𝑙𝑧, where

68 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

𝑗 ∈ {1, . . . , 𝑚} is his input. He obtains the memory state reached after the input 𝑣𝑥 𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧.
Finally, Bob outputs the answer given by the randomized sliding window tester. If 𝑖 = 𝑗, then
last𝑛(𝑣𝑥 𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧) = 𝑥 𝑦𝑚·𝑙+𝑟𝑧 ∈ 𝐿 and Bob accepts with high probability. On the other hand, if
𝑖 > 𝑗, then last𝑛(𝑣𝑥 𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧) contains 𝑣 (recall that |𝑣| = 𝑏·𝑙 and hence |𝑥 𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧 | ⩽ 𝑛−|𝑣|).
Since 𝑣 contains strictly more than 𝛾(𝑛) disjoint occurrences of 𝑤 𝑓 (an excluded factor of 𝐿|𝑁),
we have dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛) (here it is important that 𝑛 ∈ 𝑁). Thus, Bob rejects with high
probability. We therefore have a correct protocol for EQ⩾𝑚.

Since the randomized one-way communication complexity of EQ⩾𝑚 is Ω(log log𝑚) we
finally obtain 𝑠(P𝑛) = Ω(log log𝑚) = Ω(log log(𝑛/𝛾(𝑛))). ■

5.4.2 Regular languages that are not finite unions of suffix-free and trivial languages

In this section, we show the lower bounds from Theorem 5.6 and Theorem 5.7. We start with
the following observation.

LEMMA 5.25. Every suffix-free language excludes a factor.

PROOF . Let B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) be an rDFA for 𝐿. Since 𝐿 is suffix-free, we can assume that
there exists a unique sink state 𝑞fail ∉ 𝐹, i.e., 𝛿(𝑎, 𝑞fail) = 𝑞fail for all 𝑎 ∈ Σ, which is reachable
from all states. We construct a word 𝑤 𝑓 ∈ Σ∗ such that 𝛿(𝑝, 𝑤 𝑓) = 𝑞fail for all 𝑝 ∈ 𝑄. Let
𝑝1, . . . , 𝑝𝑚 be an enumeration of all states in 𝑄 \ {𝑞fail}. We then construct inductively words
𝑤0, 𝑤1, . . . , 𝑤𝑚 ∈ Σ∗ such that for all 0 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑖: 𝛿(𝑤𝑖 , 𝑝 𝑗) = 𝑞fail. We start with
𝑤0 = 𝜀. Assume that 𝑤𝑖 has been constructed for some 𝑖 < 𝑚. There is a word 𝑥 such that
that 𝛿(𝑥, 𝛿(𝑤𝑖 , 𝑝𝑖+1)) = 𝑞fail. We set 𝑤𝑖+1 = 𝑥𝑤𝑖 . Then, 𝛿(𝑤𝑖+1, 𝑝𝑖+1) = 𝛿(𝑥𝑤𝑖 , 𝑝𝑖+1) = 𝑞fail and
𝛿(𝑤𝑖+1, 𝑝 𝑗) = 𝛿(𝑥𝑤𝑖 , 𝑝 𝑗) = 𝛿(𝑥, 𝑞fail) = 𝑞fail for 1 ⩽ 𝑗 ⩽ 𝑖. Finally, we define 𝑤 𝑓 = 𝑤𝑚. ■

LEMMA 5.26. Every regular language 𝐿 satisfies one of the following properties:10

𝐿 ∈ ⋃(Triv, SF)
𝐿 has a restriction 𝐿|𝑁 which excludes some factor and contains 𝑦∗𝑧 for some 𝑦, 𝑧 ∈ Σ∗,
| 𝑦 | > 0.

PROOF . Let B = (𝑄, Σ, 𝐹, 𝛿, 𝑞0) be an rDFA for 𝐿. Let B𝑟 = (𝑄, Σ, 𝐹𝑟, 𝛿, 𝑞0) where 𝐹𝑟 is the set of
nontransient final states and B𝑞 = (𝑄, Σ, {𝑞}, 𝛿, 𝑞0) for 𝑞 ∈ 𝑄. We can decompose 𝐿 as a union of
𝐿𝑟 = L(B𝑟) and all languages L(B𝑞) over all transient states 𝑞 ∈ 𝐹. Notice that L(B𝑞) is suffix-free
for all transient 𝑞 ∈ 𝐹 since any run to 𝑞 cannot be prolonged to another run to 𝑞. If 𝐿𝑟 is trivial,
then 𝐿 satisfies the first property. If 𝐿𝑟 is nontrivial, then by Lemma 5.21 and Lemma 5.22 there
exists an arithmetic progression 𝑁 = 𝑎 + 𝑏N such that 𝐿𝑟 |𝑁 is infinite and excludes some word
𝑤 ∈ Σ∗ as a factor. Let 𝑧 ∈ 𝐿𝑟 |𝑁 be any word. Since some nontransient final state 𝑝 is reached in

10 It is not hard to see that the two properties exclude each other, but this is not needed for our further consideration.

69 / 75 Regular Languages in the Sliding Window Model

B𝑟 on input 𝑧, there exists a word 𝑦 which leads from 𝑝 back to 𝑝. We can ensure that | 𝑦 | is a
multiple of 𝑏 by replacing 𝑦 by 𝑦𝑏. Then, 𝑦∗𝑧 ⊆ 𝐿𝑟 |𝑁 ⊆ 𝐿|𝑁 . Furthermore, since each language
L(B𝑞) excludes some factor 𝑤𝑞 by Lemma 5.25, the language 𝐿|𝑁 ⊆ 𝐿𝑟 |𝑁 ∪

⋃
𝑞 L(B𝑞) excludes

any concatenation of 𝑤 and all words 𝑤𝑞 as a factor. ■

PROOF OF THEOREM 5.6 . Let 𝐿 ∈ Reg\⋃(Triv, SF). By Lemma 5.26, 𝐿 has a restriction 𝐿|𝑁
which excludes some factor 𝑤 𝑓 and contains 𝑦∗𝑧 for some 𝑦, 𝑧 ∈ Σ∗, | 𝑦 | > 0. Let 𝑐 = |𝑤 𝑓 | ⩾ 1.
We choose 0 < 𝜖 < 1/𝑐. Let 𝑑 = |𝑧 | and 𝑒 = | 𝑦 |. Fix a window size 𝑛 ∈ 𝑁 and define for 𝑘 ⩾ 0
the input stream 𝑣𝑘 = 𝑤𝑛

𝑓 𝑦
𝑘𝑧.

We show the lower bound of log 𝑛 − O(1) for co-nondeterministic sliding window testers.
Consider a co-nondeterministic sliding window testerP𝑛 for 𝐿 and window size 𝑛with Hamming
gap 𝜖𝑛. Let 𝛼 = 𝑐𝜖 < 1 and 𝑟 = ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋. If 0 ⩽ 𝑘 ⩽ 𝑟, then the suffix of 𝑣𝑘 of length 𝑛

contains at least⌊
𝑛 − 𝑑 − 𝑒𝑘

𝑐

⌋
⩾

⌊
𝑛 − 𝑑 − (1 − 𝛼)𝑛 + 𝑐 + 𝑑

𝑐

⌋
=

⌊
𝛼𝑛 + 𝑐
𝑐

⌋
= ⌊𝜖𝑛 + 1⌋ > 𝜖𝑛

many disjoint occurrences of 𝑤 𝑓 . Hence, P𝑛 must reject the input stream 𝑣𝑘 for 0 ⩽ 𝑘 ⩽ 𝑟,
i.e., there is a run of P𝑛 on 𝑣𝑘 that starts in an initial state and ends in a nonfinal state. Consider
such a run 𝜋 for 𝑣𝑟. For 0 ⩽ 𝑖 ⩽ 𝑟 let 𝑝𝑖 be the state in 𝜋 that is reached after the prefix 𝑤𝑛

𝑓 𝑦
𝑖 of

𝑣𝑟. Let now 𝑚 be the number of states of P𝑛 and assume 𝑚 ⩽ 𝑟. There must exist numbers 𝑖 and
𝑗 with 0 ⩽ 𝑖 < 𝑗 ⩽ 𝑟 such that 𝑝𝑖 = 𝑝 𝑗 =: 𝑝. It follows that there is a P𝑛-run on 𝑦 𝑗−𝑖 that starts
and ends in state 𝑝. Using that cycle we can now prolong the run 𝜋, i.e., for all 𝑡 ⩾ 0 there is a
run of P𝑛 on 𝑣𝑟+(𝑗−𝑖)·𝑡 = 𝑤𝑛

𝑓 𝑦
𝑟+(𝑗−𝑖)·𝑡𝑧 that starts in an initial state and ends in a nonfinal state.

Assume now that the window size satisfies 𝑛 ⩾ 𝑑 and 𝑛 ≡ 𝑑 (mod 𝑒). Write 𝑛 = 𝑑 + 𝑙𝑒 for
some 𝑙 ⩾ 0. Each 𝑛 with this property satisfies 𝑛 ∈ 𝑁 since the word 𝑦𝑙𝑧 belongs to 𝐿|𝑁 . We
have 𝑙 = 𝑛−𝑑

𝑒 > ⌊ (1−𝛼)𝑛−𝑐−𝑑𝑒 ⌋ = 𝑟. For every 𝑘 ⩾ 𝑙, the suffix of 𝑣𝑘 = 𝑤𝑛
𝑓 𝑦

𝑘𝑧 of length 𝑛 is 𝑦𝑙𝑧 ∈ 𝐿.
Therefore, P𝑛 accepts 𝑣𝑘, i.e., for all 𝑘 ⩾ 𝑙, every run of P𝑛 on 𝑣𝑘 that starts in an initial state has
to end in a final state. This contradicts our observation that for all 𝑡 ⩾ 0 there is a run of P𝑛
on 𝑣𝑟+(𝑗−𝑖)·𝑡 that goes from an initial state to a nonfinal state. We conclude that P𝑛 has at least
𝑟 + 1 ⩾ (1−𝛼)𝑛−𝑐−𝑑𝑒 states. It follows that

𝑠(P𝑛) ⩾ log
((1 − 𝛼)𝑛 − 𝑐 − 𝑑

𝑒

)
⩾ log 𝑛 − O(1).

This proves the theorem. ■

Finally, we prove Theorem 5.7.

PROOF OF LEMMA 5.7 . Let 𝐿 be a language in Reg \⋃(Triv, SF). By Lemma 5.26, 𝐿 has a
restriction 𝐿|𝑁 which excludes some factor 𝑤 𝑓 and contains 𝑦∗𝑧 for some 𝑦, 𝑧 ∈ Σ∗, | 𝑦 | > 0. Let
𝑏 = | 𝑦 | and 𝑐 = |𝑧 |. Note in the following that 𝑏, 𝑐, and |𝑤 𝑓 | are constants. Choose a window
size 𝑛 ⩾ 𝑐 such that 𝑛 − 𝑐 is a multiple of 𝑏. Since 𝑦∗𝑧 ⊆ 𝐿|𝑁 , we have 𝑛 ∈ 𝑁 . Define the

70 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

word 𝑣 = 𝑢𝑤𝑘
𝑓 where 𝑘 = ⌊𝛾(𝑛)⌋ + 1 > 𝛾(𝑛) and 𝑢 is any word of length at most 𝑏 − 1 such

that |𝑣| is a multiple of 𝑏. Let 𝑙 ∈ N be such that |𝑣| = 𝑏 · 𝑙. Since 𝑏 divides 𝑛 − 𝑐 we can write
𝑛 − 𝑐 = (𝑚 · 𝑙 + 𝑟) · 𝑏 for 𝑚 ∈ N and 0 ⩽ 𝑟 ⩽ 𝑙 − 1. Choose the constant 𝜖 from the theorem
statement such that 0 < 𝜖 < 1

|𝑤 𝑓 | and hence 𝛾(𝑛) ⩽ 𝜖𝑛. Assuming 𝑛 is large enough, we obtain
𝑘 = ⌊𝛾(𝑛)⌋ + 1 ⩽ 1

|𝑤 𝑓 | (𝑛 − 𝑏 − 𝑐), i.e., 𝑏 · 𝑙 = |𝑣| ⩽ 𝑏 + 𝑘 · |𝑤 𝑓 | ⩽ 𝑛 − 𝑐 and hence 𝑚 ⩾ 1. Moreover,
𝑙 = |𝑣|/𝑏 = Θ(𝛾(𝑛)) (𝑏 and |𝑤 𝑓 | are constants) and therefore

𝑚 =
𝑛 − 𝑐
𝑏 · 𝑙 −

𝑟

𝑙
= Θ(𝑛/𝛾(𝑛)).

Consider now a randomized sliding window tester P𝑛 with two-sided error for 𝐿 and window
size 𝑛 with Hamming gap 𝛾(𝑛). We show that from P𝑛 we can obtain a randomized one-way
protocol for GT𝑚 (the greater-than-function on the interval {1, . . . , 𝑚}). Recall that 𝑚 ⩾ 1.

Alice produces from her input 𝑖 ∈ {1, . . . , 𝑚} the word 𝑣𝑦𝑟+(𝑚−𝑖)𝑙. She then runs P𝑛 on this
word and sends the memory state to Bob. Bob continues the run of the randomized sliding
window tester, starting from the transferred memory state, with the input stream 𝑦 𝑗𝑙𝑧, where
𝑗 ∈ {1, . . . , 𝑚} is his input. He obtains the memory state reached after the input 𝑣𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧.
Finally, Bob outputs the negated answer given by the randomized sliding window tester. If 𝑖 ⩽ 𝑗,
then last𝑛(𝑣𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧) = 𝑦𝑚·𝑙+𝑟𝑧 ∈ 𝐿 and Bob rejects with high probability. On the other hand,
if 𝑖 > 𝑗, then last𝑛(𝑣𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧) contains 𝑣 (recall that |𝑣| = 𝑏·𝑙 and hence | 𝑦𝑟+(𝑚−𝑖+ 𝑗)𝑙𝑧 | ⩽ 𝑛−|𝑣|).
Since 𝑣 contains strictly more than 𝛾(𝑛) disjoint occurrences of 𝑤 𝑓 (an excluded factor of 𝐿|𝑁),
we have dist(last𝑛(𝑤), 𝐿) > 𝛾(𝑛) (here it is important that 𝑛 ∈ 𝑁). Thus, Bob accepts with high
probability. We therefore have a correct protocol for GT𝑚.

Since the randomized one-way communication complexity of GT𝑚 is Ω(log𝑚) (Theo-
rem 4.11) we finally obtain 𝑠(P𝑛) = Ω(log𝑚) = Ω(log(𝑛/𝛾(𝑛))). ■

For example, if 𝛾(𝑛) ⩽ 𝑛𝑐 for some 0 < 𝑐 < 1 then the lower bound in Theorem 5.7 is Ω(log 𝑛).
Note that if 𝐿 ∈ ⋃(Triv, SF) then the lower bound of Theorem 5.7 does not hold anymore; this
follows from Theorem 5.4.

Note the similarity between the proofs of Theorem 5.7 and Theorem 5.8. The difference
is that the word 𝑥 in the proof of Theorem 5.8 is not present in the proof of Theorem 5.7. The
possibly non-empty 𝑥 in the proof of Theorem 5.8 only allows a reduction from EQ⩾𝑚, whereas
the empty 𝑥 in the proof of Theorem 5.7 allows a reduction from GT𝑚, which yields a larger
lower bound.

6. Conclusion and future work

In this paper we precisely determined the space complexity of regular languages in the sliding
window model in the following settings: deterministic, randomized, deterministic property

71 / 75 Regular Languages in the Sliding Window Model

testing, and randomized property testing. Two important restrictions that made our results
possible but that also limit their applicability are the following:

Our sliding window algorithms only answer Boolean queries (does the window content
belong to a language or not?). In many applications one wants to compute a certain non-
Boolean value, e.g. the number of 1’s in the window. This leads to the question whether
our automata theoretic framework for sliding window problems can be extended to
non-Boolean queries. Weighted automata [29] or cost register automata [4] could be a
suitable framework for such an endeavor. Another interesting problem in this context is
to maintain the distance (e.g. the Hamming distance or edit distance) between the sliding
window and a fixed language 𝐿.
The incoming data values in our model are from a fixed finite alphabet. In many practical
situations the incoming data values are from an infinite domain (at least on an abstract
level) like the natural numbers or real numbers. Again, the question arises, whether
our automata theoretic approach can be extended to such a setting. A popular automata
model for words over an infinite alphabet (which are known as data words in this context)
are register automata, which are also known as finite memory automata [65, 77]. In the
context of sliding window streaming, deterministic register automata (DRA for short) [37]
might be a good starting point. Benedikt, Ley, and Puppis [14] proved a Myhill-Nerode-like
theorem that characterizes the class of data languages recognized by DRA for the case
that the underlying relational structure A on the data values is either (𝐷,=) (where =

denotes the equality relation) or (𝐷, <) for a strict linear order <. As a byproduct of this
characterization, they obtain a minimal DRA for any DRA-recognizable language. This DRA
is minimal in a very strong sense: at the same time it has the minimal number of states
and the minimal number of registers among all equivalent DRA. Using these minimal
DRA, one can define space-optimal streaming algorithms for data languages analogously
to the case of words over a finite alphabet. This yields a starting point for studying space
complexity classes for streaming algorithms over infinite domains.

Acknowledgement.

We thank the two referees for their helpful comments. The first and third author were partly
supported by the DFG project LO 748/13-1/2 (Streaming Automata Theory).

72 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

References
[1] Charu C. Aggarwal, editor. Data Streams - Models
and Algorithms, volume 31 of Advances in
Database Systems. Springer, 2007. DOI (2)

[2] Noga Alon, Michael Krivelevich, Ilan Newman, and
Mario Szegedy. Regular languages are testable
with a constant number of queries. SIAM J. Comput.
30(6):1842–1862, 2000. DOI (6, 29, 48, 50)

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The
space complexity of approximating the frequency
moments. J. Comput. Syst. Sci. 58(1):137–147, 1999.
DOI (5, 31)

[4] Rajeev Alur, Loris D’Antoni,
Jyotirmoy V. Deshmukh, Mukund Raghothaman,
and Yifei Yuan. Regular functions and cost register
automata. Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, pages 13–22. IEEE Computer
Society, 2013. DOI (71)

[5] Rajeev Alur and P. Madhusudan. Adding nesting
structure to words. J. ACM, 56(3):16:1–16:43, 2009.
DOI (8)

[6] Antoine Amarilli, Louis Jachiet, and
Charles Paperman. Dynamic membership for
regular languages. Proceedings of the 48th
International Colloquium on Automata, Languages,
and Programming, ICALP 2021, volume 198 of
LIPIcs, 116:1–116:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. DOI (10)

[7] Arvind Arasu and Gurmeet Singh Manku.
Approximate counts and quantiles over sliding
windows. Proceedings of the 23rd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS 2004, pages 286–296.
ACM, 2004. DOI (2, 9)

[8] Brian Babcock, Mayur Datar, and Rajeev Motwani.
Sampling from a moving window over streaming
data. Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2002,
pages 633–634. ACM/SIAM, 2002. URL (9)

[9] Brian Babcock, Mayur Datar, Rajeev Motwani, and
Liadan O’Callaghan. Maintaining variance and
k-medians over data stream windows. Proceedings
of the 22nd ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
PODS 2003, pages 234–243. ACM, 2003. DOI
(9)

[10] Ajesh Babu, Nutan Limaye,
Jaikumar Radhakrishnan, and Girish Varma.
Streaming algorithms for language recognition
problems. Theor. Comput. Sci. 494:13–23, 2013.
DOI (9)

[11] Corentin Barloy, Filip Murlak, and
Charles Paperman. Stackless processing of
streamed trees. Proceedings of the 40th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS’21, pages 109–125. ACM,
2021. DOI (9)

[12] Ran Ben Basat, Gil Einziger, and Roy Friedman.
Give me some slack: efficient network
measurements. Theor. Comput. Sci. 791:87–108,
2019. DOI (9)

[13] Ran Ben-Basat, Gil Einziger, Roy Friedman, and
Yaron Kassner. Efficient summing over sliding
windows. Proceedings of the 15th Scandinavian
Symposium and Workshops on Algorithm Theory,
SWAT 2016, volume 53 of LIPIcs, 11:1–11:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
DOI (8, 9)

[14] Michael Benedikt, Clemens Ley, and
Gabriele Puppis.What you must remember when
processing data words. Proceedings of the 4th
Alberto Mendelzon International Workshop on
Foundations of Data Management, volume 619 of
CEUR Workshop Proceedings. CEUR-WS.org, 2010.
(71)

[15] Jean Berstel. Transductions and context-free
languages, volume 38 of Teubner Studienbücher :
Informatik. Teubner, 1979. URL (10, 27)

[16] Vladimir Braverman, Elena Grigorescu, Harry Lang,
David P. Woodruff, and Samson Zhou. Nearly
optimal distinct elements and heavy hitters on
sliding windows. Proceedings of the 21st
International Conference on Approximation
Algorithms for Combinatorial Optimization
Problems, and the 22nd International Conference
on Randomization and Computation,
APPROX/RANDOM 2018, volume 116 of LIPIcs,
7:1–7:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. DOI (9)

[17] Vladimir Braverman and Rafail Ostrovsky. Smooth
histograms for sliding windows. Proceedings of the
48th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2007, pages 283–293.
IEEE Computer Society, 2007. DOI (9)

[18] Vladimir Braverman, Rafail Ostrovsky, and
Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci. 78(1):260–272, 2012.
DOI (9, 48)

[19] Dany Breslauer and Zvi Galil. Real-time streaming
string-matching. ACM Trans. Algorithms,
10(4):22:1–22:12, 2014. DOI (9)

[20] Nicolaas G. de Bruijn. A combinatorial problem.
English. Nederl. Akad. Wetensch. Proc.
49(7):758–764, 1946. (13)

[21] Raphaël Clifford, Allyx Fontaine, Ely Porat,
Benjamin Sach, and Tatiana Starikovskaya.
Dictionary matching in a stream. Proceedings of
the 23rd Annual European Symposium, ESA 2015,
volume 9294 of Lecture Notes in Computer
Science, pages 361–372. Springer, 2015. DOI (9)

[22] Raphaël Clifford, Allyx Fontaine, Ely Porat,
Benjamin Sach, and Tatiana Starikovskaya. The
k-mismatch problem revisited. Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, pages 2039–2052. SIAM,
2016. DOI (9)

https://doi.org/10.1007/978-0-387-47534-9
https://doi.org/10.1137/S0097539700366528
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1109/LICS.2013.65
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.4230/LIPICS.ICALP.2021.116
https://doi.org/10.1145/1055558.1055598
http://dl.acm.org/citation.cfm?id=545381.545465
https://doi.org/10.1145/773153.773176
https://doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1016/j.tcs.2012.12.028
https://doi.org/10.1145/3452021.3458320
https://doi.org/10.1016/J.TCS.2019.05.012
https://doi.org/10.4230/LIPIcs.SWAT.2016.11
https://doi.org/10.4230/LIPIcs.SWAT.2016.11
http://www.worldcat.org/oclc/06364613
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.7
https://doi.org/10.1109/FOCS.2007.55
https://doi.org/10.1016/j.jcss.2011.04.004
https://doi.org/10.1145/2635814
https://doi.org/10.1007/978-3-662-48350-3_31
https://doi.org/10.1137/1.9781611974331.ch142

73 / 75 Regular Languages in the Sliding Window Model

[23] Raphaël Clifford, Tomasz Kociumaka, and
Ely Porat. The streaming k-mismatch problem.
Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019,
pages 1106–1125. SIAM, 2019. DOI (9)

[24] Raphaël Clifford and Tatiana Starikovskaya.
Approximate Hamming distance in a stream.
Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming, ICALP
2016, volume 55 of LIPIcs, 20:1–20:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
DOI (9)

[25] Edith Cohen and Martin J. Strauss. Maintaining
time-decaying stream aggregates. J. Algorithms,
59(1):19–36, 2006. DOI (9)

[26] Gianpaolo Cugola and Alessandro Margara.
Processing flows of information: from data stream
to complex event processing. ACM Computing
Surveys, 44(3), 2012. DOI (2)

[27] Mayur Datar, Aristides Gionis, Piotr Indyk, and
Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput. 31(6):1794–1813,
2002. DOI (2, 8, 9, 31)

[28] Mayur Datar and Shan Muthukrishnan. Estimating
rarity and similarity over data stream windows.
Proceedings of the 10th European Symposium on
Algorithms, ESA 2002, volume 2461 of Lecture
Notes in Computer Science, pages 323–334.
Springer, 2002. DOI (9)

[29] Manfred Droste,Werner Kuich, and Heiko Vogler.
Handbook of Weighted Automata. Springer, 2009.
(71)

[30] Samuel Eilenberg. Automata, languages, and
machines, volume A of Pure and applied
mathematics. Academic Press, 1974. (11)

[31] Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer,
and Samson Zhou. Periodicity in data streams with
wildcards. Proceedings of the 13th International
Computer Science Symposium in Russia, CSR 2018,
volume 10846 of Lecture Notes in Computer
Science, pages 90–105. Springer, 2018. DOI (9)

[32] Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer,
and Samson Zhou. Streaming periodicity with
mismatches. Proceedings of Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM
2017, volume 81 of LIPIcs, 42:1–42:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
DOI (9)

[33] Funda Ergün, Hossein Jowhari, and Mert Saglam.
Periodicity in streams. Proceeding of the 14th
International Workshop on Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX-RANDOM
2010, volume 6302 of Lecture Notes in Computer
Science, pages 545–559. Springer, 2010. DOI (9)

[34] Joan Feigenbaum, Sampath Kannan,
Martin Strauss, and Mahesh Viswanathan. Testing
and spot-checking of data streams. Algorithmica,
34(1):67–80, 2002. DOI (6)

[35] Joan Feigenbaum, Sampath Kannan, and
Jian Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica,
41(1):25–41, 2005. DOI (9)

[36] Philippe Flajolet. Approximate counting: A detailed
analysis. BIT, 25(1):113–134, 1985. (35)

[37] Nissim Francez and Michael Kaminski. An
algebraic characterization of deterministic regular
languages over infinite alphabets. Theor. Comput.
Sci. 306(1-3):155–175, 2003. (71)

[38] Nathanaël François, Frédéric Magniez,
Michel de Rougemont, and Olivier Serre. Streaming
property testing of visibly pushdown languages.
Proceedings of the 24th Annual European
Symposium on Algorithms, ESA 2016, volume 57 of
LIPIcs, 43:1–43:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. DOI (6, 9)

[39] Gudmund Skovbjerg Frandsen, Thore Husfeldt,
Peter Bro Miltersen, Theis Rauhe, and
Søren Skyum. Dynamic algorithms for the Dyck
languages. Proceedings of the 4th International
Workshop on Algorithms and Data Structures,
WADS ’95, volume 955 of Lecture Notes in
Computer Science, pages 98–108. Springer, 1995.
DOI (10)

[40] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen,
and Sven Skyum. Dynamic word problems. J. ACM,
44(2):257–271, 1997. DOI (10)

[41] Moses Ganardi. Language recognition in the sliding
window model. PhD thesis, University of Siegen,
Germany, 2019. URL (7)

[42] Moses Ganardi. Visibly pushdown languages over
sliding windows. Proceedings of the 36th
International Symposium on Theoretical Aspects of
Computer Science, STACS 2019, volume 126 of
LIPIcs, 29:1–29:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. DOI (8)

[43] Moses Ganardi, Danny Hucke, Daniel König,
Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. Proceedings
of the 35th Symposium on Theoretical Aspects of
Computer Science, STACS 2018, volume 96 of
LIPIcs, 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. DOI (6, 7)

[44] Moses Ganardi, Danny Hucke, and Markus Lohrey.
Derandomization for sliding window algorithms
with strict correctness∗. Theory Comput. Syst.
65(3):1–18, 2021. DOI (8)

[45] Moses Ganardi, Danny Hucke, and Markus Lohrey.
Querying regular languages over sliding windows.
Proceedings of the 36th IARCS Annual Conference
on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2016,
volume 65 of LIPIcs, 18:1–18:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. DOI (6)

[46] Moses Ganardi, Danny Hucke, and Markus Lohrey.
Randomized sliding window algorithms for regular
languages. Proceedings of the 45th International
Colloquium on Automata, Languages, and
Programming, ICALP 2018, volume 107 of LIPIcs,
127:1–127:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. DOI (6)

https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.1016/j.jalgor.2005.01.006
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1007/3-540-45749-6_31
https://doi.org/10.1007/978-3-319-90530-3_9
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.42
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.42
https://doi.org/10.1007/978-3-642-15369-3_41
https://doi.org/10.1007/s00453-002-0959-4
https://doi.org/10.1007/s00453-004-1105-2
https://doi.org/10.4230/LIPIcs.ESA.2016.43
https://doi.org/10.1007/3-540-60220-8_54
https://doi.org/10.1007/3-540-60220-8_54
https://doi.org/10.1145/256303.256309
https://dspace.ub.uni-siegen.de/handle/ubsi/1523
https://doi.org/10.4230/LIPIcs.STACS.2019.29
https://doi.org/10.4230/LIPIcs.STACS.2018.31
https://doi.org/10.1007/S00224-020-10000-1
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.18
https://doi.org/10.4230/LIPIcs.ICALP.2018.127

74 / 75 M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, T. Starikovskaya

[47] Moses Ganardi, Danny Hucke, Markus Lohrey, and
Tatiana Starikovskaya. Sliding window property
testing for regular languages. Proceedings of the
30th International Symposium on Algorithms and
Computation, ISAAC 2019, volume 149 of LIPIcs,
6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. DOI (6)

[48] Moses Ganardi, Louis Jachiet, Markus Lohrey, and
Thomas Schwentick. Low-latency sliding window
algorithms for formal languages. Proceedings of
the 42nd IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer
Science, FSTTCS 2022, volume 250 of LIPIcs,
38:1–38:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. DOI (9)

[49] Moses Ganardi, Artur Jeż, and Markus Lohrey.
Sliding windows over context-free languages.
Proceedings of the 43rd International Symposium
on Mathematical Foundations of Computer Science,
MFCS 2018, volume 117 of LIPIcs, 15:1–15:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. DOI (8)

[50] Pawel Gawrychowski. Chrobak normal form
revisited, with applications. Proceedings of the
16th International Conference on Implementation
and Application of Automata, CIAA 2011,
volume 6807 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2011. DOI (45)

[51] Pawel Gawrychowski and Artur Jeż.
Hyper-minimisation made efficient. Proceedings of
the 34th International Symposium on Mathematical
Foundations of Computer Science 2009, MFCS
2009, volume 5734 of Lecture Notes in Computer
Science, pages 356–368. Springer, 2009. DOI
(26, 27)

[52] Paweł Gawrychowski, Oleg Merkurev,
Arseny M. Shur, and Przemyslaw Uznański. Tight
tradeoffs for real-time approximation of longest
palindromes in streams. Algorithmica,
81(9):3630–3654, 2019. DOI (9)

[53] Paweł Gawrychowski, Jakub Radoszewski, and
Tatiana Starikovskaya. Quasi-periodicity in
streams. Proceedings of the 30th Annual
Symposium on Combinatorial Pattern Matching,
CPM 2019, volume 128 of LIPIcs, 22:1–22:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. DOI (9)

[54] Pawel Gawrychowski and Tatiana Starikovskaya.
Streaming dictionary matching with mismatches.
Algorithmica, 84(4):896–916, 2022. DOI (9)

[55] Phillip B. Gibbons and Srikanta Tirthapura.
Distributed streams algorithms for sliding windows.
Theory Comput. Syst. 37(3):457–478, 2004. DOI
(9)

[56] Lukasz Golab, David DeHaan, Erik D. Demaine,
Alejandro López-Ortiz, and J. Ian Munro.
Identifying frequent items in sliding windows over
on-line packet streams. Proceedings of the 3rd
ACM SIGCOMM Internet Measurement Conference,
IMC 2003, pages 173–178. ACM, 2003. DOI (9)

[57] Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz,
and Ely Porat. The streaming k-mismatch problem:
tradeoffs between space and total time.
Proceedings of the 31st Annual Symposium on
Combinatorial Pattern Matching, CPM 2020,
volume 161 of LIPIcs, 15:1–15:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. DOI (9)

[58] Shay Golan, Tsvi Kopelowitz, and Ely Porat.
Streaming pattern matching with d wildcards.
Algorithmica, 81(5):1988–2015, 2019. DOI (9)

[59] Shay Golan, Tsvi Kopelowitz, and Ely Porat.
Towards optimal approximate streaming pattern
matching by matching multiple patterns in multiple
streams. Proceedings of the 45th International
Colloquium on Automata, Languages, and
Programming, ICALP 2018, volume 107 of LIPIcs,
65:1–65:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. DOI (9)

[60] Shay Golan and Ely Porat. Real-time streaming
multi-pattern search for constant alphabet.
Proceedings of the 25th Annual European
Symposium on Algorithms, ESA 2017, volume 87 of
LIPIcs, 41:1–41:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. DOI (9)

[61] Oded Goldreich, Shafi Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998. DOI
(6)

[62] John E. Hopcroft and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979. (10)

[63] Rahul Jain and Ashwin Nayak. The space
complexity of recognizing well-parenthesized
expressions in the streaming model: the index
function revisited. IEEE Transactions on Information
Theory, 60(10):6646–6668, October 2014. DOI
(9)

[64] Galina Jirásková and Peter Mlynárcik. Complement
on prefix-free, suffix-free, and non-returning NFA
languages. Proceedings of the 16th International
Workshop on Descriptional Complexity of Formal
Systems, DCFS 2014, volume 8614 of Lecture
Notes in Computer Science, pages 222–233.
Springer, 2014. DOI (45)

[65] Michael Kaminski and Nissim Francez.
Finite-memory automata. Theor. Comput. Sci.
134(2):329–363, 1994. DOI (71)

[66] Tomasz Kociumaka, Ely Porat, and
Tatiana Starikovskaya. Small-space and streaming
pattern matching with k edits. Proceedings of the
62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, pages 885–896.
IEEE, 2021. DOI (9)

[67] Christian Konrad and Frédéric Magniez. Validating
XML documents in the streaming model with
external memory. ACM Trans. Database Syst.
38(4):27:1–27:36, 2013. DOI (9)

[68] Dexter Kozen. Automata and computability.
Undergraduate texts in computer science. Springer,
1997. (10)

https://doi.org/10.4230/LIPIcs.ISAAC.2019.6
https://doi.org/10.4230/LIPICS.FSTTCS.2022.38
https://doi.org/10.4230/LIPIcs.MFCS.2018.15
https://doi.org/10.1007/978-3-642-22256-6_14
https://doi.org/10.1007/978-3-642-03816-7_31
https://doi.org/10.1007/s00453-019-00591-8
https://doi.org/10.4230/LIPIcs.CPM.2019.22
https://doi.org/10.1007/s00453-021-00876-x
https://doi.org/10.1007/s00224-004-1156-4
https://doi.org/10.1145/948205.948227
https://doi.org/10.4230/LIPIcs.CPM.2020.15
https://doi.org/10.1007/S00453-018-0521-7
https://doi.org/10.4230/LIPIcs.ICALP.2018.65
https://doi.org/10.4230/LIPIcs.ESA.2017.41
https://doi.org/10.1145/285055.285060
https://doi.org/10.1109/TIT.2014.2339859
https://doi.org/10.1007/978-3-319-09704-6_20
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1145/2504590

75 / 75 Regular Languages in the Sliding Window Model

[69] Andreas Krebs, Nutan Limaye, and
Srikanth Srinivasan. Streaming algorithms for
recognizing nearly well-parenthesized expressions.
Proceedings of the 36th International Symposium
on Mathematical Foundations of Computer Science,
MFCS 2011, volume 6907 of Lecture Notes in
Computer Science, pages 412–423. Springer, 2011.
DOI (9)

[70] Ilan Kremer, Noam Nisan, and Dana Ron. On
randomized one-round communication complexity.
Comput. Complex. 8(1):21–49, 1999. DOI (40)

[71] Eyal Kushilevitz and Noam Nisan. Communication
complexity. Cambridge University Press, 1997.
(40, 41)

[72] Frédéric Magniez, Claire Mathieu, and
Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. SIAM J.
Comput. 43(6):1880–1905, 2014. DOI (9)

[73] Oleg Merkurev and Arseny M. Shur. Searching long
repeats in streams. Proceedings of the 30th Annual
Symposium on Combinatorial Pattern Matching,
CPM 2019, volume 128 of LIPIcs, 31:1–31:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. (9)

[74] Oleg Merkurev and Arseny M. Shur. Searching runs
in streams. Proceedings of the 26th International
Symposium on String Processing and Information
Retrieval, SPIRE 2019, volume 11811 of Lecture
Notes in Computer Science, pages 203–220.
Springer, 2019. DOI (9)

[75] Michael Mitzenmacher and Eli Upfal. Probability
and Computing: Randomization and Probabilistic
Techniques in Algorithms and Data Analysis.
Cambridge University Press, New York, NY, USA,
2nd edition, 2017. (32)

[76] Robert H. Morris Sr. Counting large numbers of
events in small registers. Commun. ACM,
21(10):840–842, 1978. DOI (35)

[77] Frank Neven, Thomas Schwentick, and
Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log.
5(3):403–435, 2004. DOI (71)

[78] Azaria Paz. Introduction to Probabilistic Automata
(Computer Science and Applied Mathematics).
Academic Press, Inc., Orlando, FL, USA, 1971. (31)

[79] Jean-Eric Pin. Syntactic semigroups.
Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, Volume 1: Word,
Language, Grammar, pages 679–746. Springer,
1997. DOI (4)

[80] Benny Porat and Ely Porat. Exact and approximate
pattern matching in the streaming model.
Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009,
pages 315–323. IEEE Computer Society, 2009. DOI
(9)

[81] Michael O. Rabin. Probabilistic automata. Inform.
Control, 6(3):230–245, 1963. DOI (31, 34)

[82] Jakub Radoszewski and Tatiana Starikovskaya.
Streaming k-mismatch with error correcting and
applications. Information and Computation,
271:104513, 2020. DOI (9)

[83] J. Barkley Rosser and Lowell Schoenfeld.
Approximate formulas for some functions of prime
numbers. Illinois J. Math. 6(1):64–94, 1962. (39)

[84] Tim Roughgarden. Communication complexity (for
algorithm designers). Found. Trends Theor.
Comput. Sci. 11(3-4):217–404, 2016. DOI (40, 44,
47)

[85] Luc Segoufin and Victor Vianu. Validating
streaming XML documents. Proceedings of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS 2002,
pages 53–64. ACM, 2002. DOI (9)

[86] Tatiana Starikovskaya. Communication and
streaming complexity of approximate pattern
matching. Proceedings of the 28th Annual
Symposium on Combinatorial Pattern Matching,
CPM 2017, volume 78 of LIPIcs, 13:1–13:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
DOI (9)

[87] Howard Straubing. Finite semigroup varieties of
the form 𝑉 ∗ 𝐷. J. Pure Appl. Algebra, 36:53–94,
1985. DOI (26)

[88] Kanat Tangwongsan, Martin Hirzel, and
Scott Schneider. Low-latency sliding-window
aggregation in worst-case constant time.
Proceedings of the 11th ACM International
Conference on Distributed and Event-based
Systems, DEBS 2017, pages 66–77. ACM, 2017.
DOI (9)

[89] Haopeng Zhang, Yanlei Diao, and Neil Immerman.
On complexity and optimization of expensive
queries in complex event processing. Proceedings
of the International Conference on Management of
Data, SIGMOD 2014, pages 217–228. ACM, 2014.
DOI (2)

2025 :8
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Moses Ganardi, Danny Hucke, Markus Lohrey, Konstantinos Mamouras, Tatiana Starikovskaya.

https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1007/s000370050018
https://doi.org/10.1137/130926122
https://doi.org/10.1007/978-3-030-32686-9_15
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1016/j.ic.2019.104513
https://doi.org/10.1561/0400000076
https://doi.org/10.1145/543613.543622
https://doi.org/10.4230/LIPIcs.CPM.2017.13
https://doi.org/10.4230/LIPIcs.CPM.2017.13
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

	Introduction
	The sliding window model
	Results
	Related work
	Uniform setting
	Membership in the space classes
	Other models of randomness
	Context-free languages
	Update times
	Further work on sliding windows
	Language recognition in the classical streaming model
	Streaming pattern matching
	Dynamic membership problems for regular languages

	Outline

	Preliminaries
	Words and languages
	Automata and regular languages
	Streaming algorithms
	Fixed-size sliding window model
	Variable-size sliding window model

	Deterministic sliding window algorithms
	Right-deterministic finite automata
	Space trichotomy
	The path summary algorithm
	Proof of Theorem 3.2(1)
	Proof of Theorem 3.2(2)
	Proof of Theorem 3.2(3)–(6)
	Characterization of constant space
	Characterization of logarithmic space

	Randomized sliding window algorithms
	Randomized streaming algorithms
	Space tetrachotomy
	The Bernoulli counter
	Suffix-free languages
	Lower bounds
	Sliding window algorithms with one-sided error
	Randomized variable-size model

	Property testing in the sliding window model
	Sliding window testers
	Main results of this section
	Upper bounds
	Deterministic sliding window testers
	Sliding window testers with two-sided error
	Sliding window testers with one-sided error

	Lower bounds
	Regular nontrivial languages
	Regular languages that are not finite unions of suffix-free and trivial languages

	Conclusion and future work
	References

