
1 / 44 2025 : 13

A 4/3 Approximation for
2-Vertex-Connectivity

Received Dec 20, 2023
Revised Feb 19, 2025
Accepted Mar 30, 2025
Published Jun 16, 2025

Key words and phrases
Combinatorial optimisation,
approximation algorithms, graph
algorithms, network design

Miguel Bosch-Calvoa � �

Fabrizio Grandonia � �

Afrouz Jabal Amelib � �

a IDSIA, USI-SUPSI, Switzerland

b TU Eindhoven, Netherlands

ABSTRACT. The 2-Vertex-Connected Spanning Subgraph problem (2VCSS) is among the most
basic NP-hard (Survivable) Network Design problems: we are given an (unweighted) undirected
graph 𝐺. Our goal is to find a spanning subgraph 𝑆 of 𝐺 with the minimum number of edges
which is 2-vertex-connected, namely 𝑆 remains connected after the deletion of an arbitrary node.
2VCSS is well-studied in terms of approximation algorithms, and the current best (polynomial-
time) approximation factor is 10/7 by Heeger and Vygen [SIDMA’17] (improving on earlier
results by Khuller and Vishkin [STOC’92] and Garg, Vempala and Singla [SODA’93]).

Here we present an improved 4/3 approximation. Our main technical ingredient is an
approximation preserving reduction to a conveniently structured subset of instances which are
“almost” 3-vertex-connected. The latter reduction might be helpful in future work.

1. Introduction

Real-world networks are prone to failures. For this reason it is important to design them so
that they are still able to support a given amount of traffic despite a few (typically temporary)
failures of nodes or edges. The basic goal of survivable network design is to construct cheap
networks which are resilient to such failures.

Most natural survivable network design problems are NP-hard, and a lot of work was
dedicated to the design of approximation algorithms for them. One of the most basic survivable
network design problems is the 2-Vertex-Connected Spanning Subgraph problem (2VCSS). Recall
that an (undirected) graph 𝐺 = (𝑉, 𝐸) is 𝑘-vertex-connected (kVC) if, after removing any subset

This article was invited from ICALP 2023 [3]. The first 2 authors are partially supported by the SNF Grant 200021_200731 / 1.

Cite as Miguel Bosch-Calvo, Fabrizio Grandoni, Afrouz Jabal Ameli. A 4/3
Approximation for 2-Vertex-Connectivity. TheoretiCS, Volume 4 (2025), Article 13,
1-44.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.13

mailto:miguel.boschcalvo@idsia.ch
https://orcid.org/0000-0002-8647-6928
mailto:fabrizio.grandoni@idsia.ch
https://orcid.org/0000-0002-9676-4931
mailto:a.jabal.ameli@tue.nl
https://orcid.org/0000-0001-5620-9039

2 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

𝑊 of at most 𝑘 − 1 nodes (with all the edges incident to them), the residual graph 𝐺[𝑉 \𝑊] is
connected. In particular, in a 2VC graph 𝐺 we can remove any single node while maintaining
the connectivity of the remaining nodes (intuitively, we can tolerate a single node failure). In
2VCSS we are given a 2VC (unweighted) undirected graph 𝐺 = (𝑉, 𝐸), and our goal is to compute
a minimum cardinality subset 𝑆 ⊆ 𝐸 of edges such that the (spanning) subgraph (𝑉, 𝑆) is 2VC.

2VCSS is NP-hard: indeed an 𝑛-node graph 𝐺 admits a Hamiltonian cycle iff it contains
a 2VC spanning subgraph with 𝑛 edges. Czumaj and Lingas [13] proved that the problem is
APX-hard, hence it does not have a PTAS unless P=NP. A 2-approximation for 2VCSS can be
obtained in different ways. For example one can compute an (open) ear decomposition of the
input graph and remove the trivial ears (containing a single edge). The resulting graph is 2VC
and contains at most 2(𝑛 − 1) edges (while the optimum solution must contain at least 𝑛 edges).
The first non-trivial 5/3 approximation was obtained by Khuller and Vishkin [27]. This was
improved to 3/2 by Garg, Vempala and Singla [20] (see also an alternative 3/2 approximation
by Cheriyan and Thurimella [11]). Finally Heeger and Vygen [24] presented the current-best
10/7 approximation1. Our main result is as follows (please see Section 2 for an overview of our
approach):

THEOREM 1.1. There is a polynomial-time 4
3-approximation algorithm for 2VCSS.

1.1 Related Work

An undirected graph 𝐺 is 𝑘-edge-connected (kEC) if it remains connected after removing up to
𝑘 − 1 edges. The 2-Edge-Connected Spanning Subgraph problem (2ECSS) is the natural edge-
connectivity variant of 2VCSS, where the goal is to compute a 2EC spanning subgraph with the
minimum number of edges. Like 2VCSS, 2ECSS does not admit a PTAS unless 𝑃 = 𝑁𝑃 [13]. It
is not hard to compute a 2 approximation for 2ECSS. For example it is sufficient to compute
a DFS tree and augment it greedily. Khuller and Vishkin [28] found the first non-trivial 3/2-
approximation algorithm. Cheriyan, Sebö and Szigeti [10] improved the approximation factor
to 17/12. This was further improved to 4/3 in two independent and drastically different works
by Hunkenschröder, Vempala and Vetta [25] and Sebö and Vygen [34]. The current best and
very recent 118

89 + 𝜀 < 1.326 approximation is due to Garg, Grandoni and Jabal Ameli [19]. Our
work exploits several ideas from the latter paper. The 𝑘-Edge Connected Spanning Subgraph
problem (kECSS) is the natural generalization of 2ECSS to any connectivity 𝑘 ≥ 2 (see, e.g., [11,
17]).

A major open problem in the area is to find a better than 2 approximation for the weighted
version of 2ECSS. This is known for the special case with 0-1 edge weights, a.k.a. the Forest

1 Before [24] a few other papers claimed even better approximation ratios [23, 26], however they have been shown to
be buggy or incomplete, see the discussion in [24].

3 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

Augmentation problem, by the recent work by Grandoni, Jabal-Ameli and Traub [21] (see also
[2, 6, 7] for the related Matching Augmentation problem).

A problem related to kECSS is the 𝑘-Connectivity Augmentation problem (kCAP): given a
𝑘-edge-connected undirected graph 𝐺 and a collection of extra edges 𝐿 (links), find a minimum
cardinality subset of links 𝐿′whose addition to𝐺 makes it (𝑘+1)-edge-connected. It is known [14]
that kCAP can be reduced to the case 𝑘 = 1, a.k.a. the Tree Augmentation problem (TAP), for
odd 𝑘 and to the case 𝑘 = 2, a.k.a. the Cactus Augmentation problem (CacAP), for even 𝑘.
Several approximation algorithms better than 2 are known for TAP [1, 8, 9, 15, 16, 22, 30, 29,
31], culminating with the current best 1.393 approximation by Cecchetto, Traub and Zenklusen
[5]. Until recently no better than 2 approximation was known for CacAP (excluding the special
case where the cactus is a single cycle [18]): the first such algorithm was described by Byrka,
Grandoni and Jabal Ameli [4], and later improved to 1.393 in [5]. In a recent breakthrough by
Traub and Zenklusen, a better than 2 (namely 1.694) aproximation for the weighted version
of TAP was achieved [36] (later improved to 1.5 + 𝜀 in [35]). Partial results in this direction
where achieved earlier in [1, 12, 16, 22, 32]. Even more recently, Traub and Zenklusen obtained
a 1.5 + 𝜀 approximation for the weighted version of kCAP [35].

1.2 Preliminaries

We use standard graph notation. For a graph 𝐺 = (𝑉, 𝐸), we let 𝑉 (𝐺) = 𝑉 and 𝐸(𝐺) = 𝐸 denote
its nodes and edges, respectively. For 𝑊 ⊆ 𝑉 and 𝐹 ⊆ 𝐸, we use the shortcuts 𝐺 \ 𝐹 := (𝑉, 𝐸 \ 𝐹)
and 𝐺 \𝑊 := 𝐺[𝑉 \𝑊]. Throughout this paper we sometimes use interchangeably a subset 𝐹
of edges and the corresponding subgraph (𝑊, 𝐹), 𝑊 = {𝑣 ∈ 𝑉 : 𝑣 ∈ 𝑓 ∈ 𝐹}. The meaning will
be clear from the context. For example, we might say that 𝐹 ⊆ 𝐸 is 2VC or that 𝐹 contains a
connected component. In particular, we might say that 𝑆 ⊆ 𝐸 is a 2VC spanning subgraph. Also,
given two subgraphs 𝐺1 and 𝐺2, by 𝐺′ = 𝐺1 ∪ 𝐺2 we mean that 𝐺′ is the subgraph induced by
𝐸(𝐺1) ∪ 𝐸(𝐺2). We sometimes represent paths and cycles as sequence of nodes. A 𝑘-vertex-cut
of 𝐺 is a subset 𝑊 of 𝑘 nodes such that 𝐺[𝑉 \𝑊] has at least 2 connected components. A node
defining a 1-vertex-cut is a cut vertex. By OPT(𝐺) ⊆ 𝐸(𝐺) we denote an optimum solution to
a 2VCSS instance 𝐺, and let opt(𝐺) := |OPT(𝐺) | be its size. All the algorithms described in this
paper are deterministic.

We will use the notion of block-cutpoint graph. The block-cutpoint graph 𝐺∗ of a graph
𝐺 is a bipartite graph that has a node corresponding to every maximal 2VC subgraph of 𝐺, as
well as a node corresponding to every cut vertex of 𝐺. Furthermore, 𝐺∗ has an edge 𝑢𝑏 iff 𝑢 is a
cut vertex and 𝑢 ∈ 𝑉 (𝐵), where 𝐵 is the maximal 2VC subgraph of 𝐺 corresponding to 𝑏 in 𝐺. It
is a well-known fact [37, Chapter 3] that the block-cutpoint graph of a graph 𝐺 is a tree if 𝐺 is
connected.

4 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

2. Overview of Our Approach

In this section we sketch the proof of our 4/3-approximation (Theorem 1.1). The details and
proofs which are omitted here will be given in the following technical sections.

Our result relies on 3 main ingredients. The first one is an approximation-preserving (up
to a small additive term) reduction of 2VCSS to instances of the same problem on properly
structured graphs, which are “almost” 3VC in a sense described later (see Section 2.1).

At this point we compute a minimum-size 2-edge-cover 𝐻 similarly to prior work: this
provides a lower bound on the size of the optimal solution. For technical reasons, we transform
𝐻 into a canonical form, without increasing its size (see Section 2.2).

The final step is to convert 𝐻 into a feasible solution 𝑆. Starting from 𝑆 = 𝐻 , this is done by
iteratively adding edges to and removing edges from 𝑆 in a careful manner. In order to keep the
size of 𝑆 under control, we assign 1/3 credits to each edge of the initial 𝑆, and use these credits
to pay for any increase in the number of edges of 𝑆 (see Section 2.3). We next describe the above
ingredients in more detail.

2.1 A Reduction to Structured Graphs

Our first step is an approximation-preserving (up to a small additive factor) reduction of 2VCSS
to instances of the same problem on properly structured graphs. This is similar in spirit to an
analogous reduction for 2ECSS in [19]. In particular, we exploit the notion of irrelevant edges
and isolating cuts defined in that paper. We believe that our reduction might be helpful also in
future work.

In more detail, we can get rid of the following irrelevant edges.

DEF IN IT ION 2 .1 (Irrelevant edge). Given a graph 𝐺, we say that an edge 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺) is
irrelevant if {𝑢, 𝑣} is a 2-vertex-cut of 𝐺.

LEMMA 2.2. Given a 2VC graph 𝐺, let 𝑒 be an irrelevant edge of 𝐺. Then, every optimal 2VCSS
solution for 𝐺 does not contain 𝑒.

PROOF . Recall that an ear-decomposition of an undirected graph 𝐺 is a sequence of paths or
cycles 𝑃1, . . . , 𝑃𝑘 (ears) spanning 𝐸(𝐺) such that 𝑃1 is a cycle and 𝑃𝑖 , 𝑖 > 1, has its internal nodes
disjoint from 𝑉𝑖−1 := 𝑉 (𝑃1) ∪ . . . ∪𝑉 (𝑃𝑖−1) and its endpoints (or one node if 𝑃𝑖 is a cycle) in 𝑉𝑖−1.
We say that an ear-decomposition is open if 𝑃𝑖 is a path, for 𝑖 > 1. Every 2VC graph admits an
open ear decomposition [33, Chapter 15]. We will need the following observation:

FACT 2 .3. Suppose that a minimal solution 𝑆 to 2VCSS on a graph 𝐺 contains a cycle 𝐶. Then
𝑆 does not contain any chord 𝑓 of 𝐶. Indeed, otherwise consider any open ear decomposition of
𝑆 which uses 𝐶 as a first ear. Then 𝑓 would be a trivial ear (consisting of a single edge) of the
decomposition, and thus 𝑆 \ { 𝑓 } would also be 2VC, contradicting the minimality of 𝑆.

5 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

Let 𝐻 ⊆ 𝐸 be any optimal (hence minimal) solution to 2VCSS on𝐺. Assume by contradiction
that 𝐻 contains an irrelevant edge 𝑒 = 𝑢𝑣. Removing 𝑢 and 𝑣 splits 𝐻 into distinct connected
components 𝐶1, . . . , 𝐶𝑘, with 𝑘 ≥ 2. Each one of those components has edges 𝑢𝑖𝑢, 𝑣𝑖𝑣 in 𝐻 ,
where 𝑢𝑖 , 𝑣𝑖 ∈ 𝐶𝑖 for 𝑖 ∈ {1, . . . , 𝑘}, otherwise 𝐻 would contain a cut vertex. Let 𝑃1 be a
path from 𝑢1 to 𝑣1 in 𝐶1, and 𝑃2 be a path from 𝑣2 to 𝑢2 in 𝐶2. Then 𝑒 is a chord of the cycle
𝑃1 ∪ 𝑃2 ∪ {𝑢𝑢1, 𝑣1𝑣, 𝑣𝑣2, 𝑢2𝑢}, contradicting the minimality of 𝐻 by Fact 2.3. ■

We can enforce (see later) that our graph 𝐺 is “almost” 3VC, in the sense that the only 2-vertex-
cuts of 𝐺 are a very specific type of isolating cuts defined as follows.

DEF IN IT ION 2 .4 (Isolating cut). Given a 2-vertex-cut {𝑢, 𝑣} of a graph 𝐺, we say that this cut
is isolating if 𝐺 \ {𝑢, 𝑣} has exactly two connected components, one of which consists of 1 node.
Otherwise the cut is non-isolating.

Assuming that there are no non-isolating cuts, we can avoid the following local configura-
tion: this will be helpful in the rest of our analysis.

DEF IN IT ION 2 .5 (Removable 5-cycle). We say that a 5-cycle 𝐶 of a 2VC graph 𝐺 is removable
if it has at least two vertices of degree 2 in 𝐺.

LEMMA 2.6. Given a 2VC graph 𝐺 without non-isolating cuts and with at least 6 nodes. Let 𝐶
be a removable 5-cycle of 𝐺. Then in polynomial time one can find an edge 𝑒 of 𝐶 such that there
exists an optimum solution to 2VCSS on 𝐺 not containing 𝑒 (we say that 𝑒 is a removable edge).

PROOF . Assume 𝐶 = 𝑣1𝑣2𝑣3𝑣4𝑣5. If 𝐶 has two vertices of degree 2 that are adjacent in 𝐶, namely
𝑣1 and 𝑣2, then {𝑣3, 𝑣5} is a non-isolating cut of 𝐺, a contradiction. Thus, we can assume that 𝐶
has exactly two non-adjacent vertices of degree 2, say 𝑣1 and 𝑣3 w.l.o.g.

We will show that the edge 𝑒 = 𝑣4𝑣5 is the desired removable edge. Let 𝐻 be an optimal
2VCSS solution for 𝐺 that uses the edge 𝑣4𝑣5. Observe that in this case since 𝑣1 and 𝑣3 have
degree 2, then 𝐻 must contain all the edges of 𝐶.

To complete the argument we show that there exists an edge 𝑓 ∈ 𝐸(𝐺) \ 𝐸(𝐻) such that
𝑣4𝑣5 is a chord of a cycle in 𝐻′ := 𝐻 ∪ { 𝑓 }: hence we can remove 𝑣4𝑣5 from 𝐻′ using Fact 2.3 to
obtain an alternative optimum solution not containing 𝑣4𝑣5.

Let 𝐻′′ = 𝐻 \ {𝑣4𝑣5}. There is no cycle 𝐶′ in 𝐻′′ that contains both 𝑣4 and 𝑣5, otherwise 𝑣4𝑣5

is a chord of 𝐶′ in 𝐻 , contradicting the minimality of 𝐻 by Fact 2.3. Therefore if we remove 𝑣2

from 𝐻′′, there must be no paths from 𝑣4 to 𝑣5. This means that there is a partition of𝑉 (𝐺) \ {𝑣2}
into non-empty sets 𝑉1 and 𝑉2 such that, {𝑣3, 𝑣4} ∈ 𝑉1, {𝑣1, 𝑣5} ∈ 𝑉2 and there is no edge in 𝐻′′

between 𝑉1 and 𝑉2. Since |𝑉 (𝐺) | ≥ 6, then we can assume w.l.o.g that |𝑉1 | ≥ 3.
There must be an edge 𝑓 = 𝑢1𝑢2 ∈ 𝐸(𝐺) such that 𝑢1 ∈ 𝑉1 \ {𝑣3, 𝑣4} and 𝑢2 ∈ 𝑉2, otherwise

{𝑣2, 𝑣4} is a non-isolating cut in 𝐺, a contradiction. Now we show that 𝑓 is the desired edge. We

6 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u

v

Figure 1. The cycle induced by the blue edges is a removable cycle, since it has two vertices of degree
2 in 𝐺. The edge 𝑢𝑣 is removable. The red and orange (resp. gray) pairs of vertices form a non-isolating
(resp. isolating) cut. The green edge is irrelevant.

claim that there exists a path 𝑃1 in 𝐻 [𝑉1 \ {𝑣3}] between 𝑢1 and 𝑣4. Since 𝐻 is 2VC, there exists
a path 𝑃1 between 𝑢1 and 𝑣4 not using 𝑣2. Such path does not use 𝑣3 either since this node is
adjacent only to 𝑣2 and 𝑣4, and 𝑢1 ∉ {𝑣3, 𝑣4}. If 𝑃1 is not contained in 𝐻 [𝑉1], it would need to
use at least two edges between 𝑉1 and 𝑉2 in 𝐻 . However, since there is no edge in 𝐻′′ between
𝑉1 and 𝑉2, the only edge in 𝐻 between 𝑉1 and 𝑉2 is 𝑣4𝑣5, so 𝑃1 cannot use two edges between 𝑉1

and 𝑉2, and thus it must be contained in 𝐻 [𝑉1].
Symmetrically, we claim that there exists a path 𝑃2 in 𝐻 [𝑉2\{𝑣1}] between𝑢2 and 𝑣5. Notice

that 𝑢2 = 𝑣5 is possible, in which case the claim trivially holds. Hence, next assume 𝑢2 ≠ 𝑣5.
Observe that 𝑢2 ≠ 𝑣1 since 𝑢2 is adjacent to 𝑢1 ∉ {𝑣2, 𝑣5}. Thus, the claim about 𝑃2 follows
symmetrically to the case of 𝑃1. Altogether, 𝑣4𝑣5 is a chord of the cycle 𝑃1 ∪ 𝑃2 ∪ { 𝑓 } ∪𝐶 \ {𝑣4𝑣5}
in 𝐻′ = 𝐻 ∪ { 𝑓 }, which implies the lemma. ■

We are now ready to define a structured graph and to state our reduction to such graphs
(see also Figure 1).

DEF IN IT ION 2 .7 (Structured graph). A 2VC graph 𝐺 is structured if it does not contain: (1)
Irrelevant edges; (2) Non-isolating cuts, and (3) Removable 5-cycles.

LEMMA 2.8. Given a constant 1 < 𝛼 ≤ 3
2 , if there exists a polynomial-time algorithm for 2VCSS

on a structured graph 𝐺 that returns a solution of cost at most max{opt(𝐺), 𝛼 · opt(𝐺) − 2}, then
there exists a polynomial-time 𝛼-approximation algorithm for 2VCSS.

We remark that any 𝛼 − 𝜀 approximation of 2VCSS on structured graphs, for an arbitrarily
small constant 𝜀 > 0, immediately implies an algorithm of the type needed in the claim of
Lemma 2.8: indeed, instances with opt(𝐺) ≤ max{2

𝜀 ,
2

𝛼−1} can be solved exactly in constant time
by brute force.

The algorithm at the heart of Lemma 2.8 is algorithm RED given in Figure 1. Lines 1-2
solve instances with few new nodes by brute force. Lines 3-4, 5-10, and 11-12 get rid recursively

7 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

Input: A 2-vertex-connected graph 𝐺

Output: A subgraph 𝐻 of 𝐺

1: if |𝑉(𝐺) | < max{6, 2
𝛼−1} then

2: Compute OPT(𝐺) by brute force (in constant time) and return
OPT(𝐺)

3: if 𝐺 contains an irrelevant edge then
4: return RED(𝐺 \ {𝑒})
5: if 𝐺 contains a non-isolating vertex cut {𝑢, 𝑣} then
6: Let (𝑉1, 𝑉2), 2 ≤ |𝑉1 | ≤ |𝑉2 |, be a partition of 𝑉(𝐺) \ {𝑢, 𝑣} such that

there are no edges between 𝑉1 and 𝑉2 in 𝐺 \ {𝑢, 𝑣}
7: Let 𝐺1 be the graph resulting from 𝐺 by contracting 𝑉2 into

one node 𝑣2 and 𝐺2 by contracting 𝑉1 into one node 𝑣1 (keeping
one copy of parallel edges in both cases)

8: Let 𝐻1 = RED(𝐺1) and 𝐻2 = RED(𝐺2)
9: Let 𝐸1 (resp. 𝐸2) be the two edges of 𝐻1 (resp., 𝐻2) with

endpoints in 𝑣2 (resp., 𝑣1)
10: return 𝐻 := (𝐻1 \ 𝐸1) ∪ (𝐻2 \ 𝐸2)
11: if 𝐺 contains a removable 5-cycle then
12: Let 𝑒 be the removable edge (found via Lemma 2.6) in that

cycle and return RED(𝐺 \ {𝑒})
13: return ALG(𝐺)

Algorithm 1. Algorithm RED that reduces from arbitrary to structured instances of 2VCSS. Here 𝐺 is
2VC and ALG is an algorithm for structured instances that returns a solution of cost at most
max{opt(𝐺), 𝛼 · opt(𝐺) − 2} for some 1 < 𝛼 ≤ 3

2 .

of irrelevant edges, non-isolating vertex cuts and removable 5-cycles, resp. When Line 13 is
reached, the graph is structured and therefore we can apply a black-box algorithm ALG for
structured instances of 2VCSS.

It is easy to see that the algorithm runs in polynomial time.

LEMMA 2.9. RED(𝐺) runs in polynomial time in |𝑉 (𝐺) | if ALG does so.

PROOF . Let 𝑛 = |𝑉 (𝐺) |. First observe that each recursive call, excluding the corresponding
subcalls, can be executed in polynomial time. In particular, we can find one irrelevant edge, if
any, in polynomial time by enumerating all the possible 2-vertex-cuts. Furthermore, we can
find some removable 5-cycle, if any, in polynomial time by enumerating all 5-cycles. Then,

8 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

by Lemma 2.6, we can indentify a removable edge in such cycle. We also remark that in
Lines 4 and 12 we remove one edge, and we never increase the number of edges. Hence
the corresponding recursive calls increase the overall running time by a polynomial factor
altogether.

It is then sufficient to bound the number 𝑓 (𝑛) of recursive calls where we execute Lines 5-
10 starting from a graph with 𝑛 nodes. Consider one recursive call on a graph 𝐺 with 𝑛 nodes,
where the corresponding graph 𝐺1 has 5 ≤ 𝑘 ≤ 𝑛/2 + 2 nodes. Notice that 𝐺2 has 𝑛− 𝑘 + 4 nodes.
Thus, one has 𝑓 (𝑛) ≤ max5≤𝑘≤𝑛/2+2{ 𝑓 (𝑘) + 𝑓 (𝑛−𝑘 +4)}, which implies that 𝑓 (𝑛) is polynomially
bounded. ■

Let us next show that RED produces a feasible solution.

LEMMA 2.10. Given a 2VC graph 𝐺, RED(𝐺) returns a feasible 2VCSS solution for 𝐺.

PROOF . Let us prove the claim by induction on |𝐸(𝐺) |. The base cases are given when RED(𝐺)
executes Lines 2 or 13: in these cases RED clearly returns a feasible solution. Consider an
instance 𝐺 where RED(𝐺) does not execute those lines (in the root call), and assume the claim
holds for any instance 𝐺′ where |𝐸(𝐺′) | < |𝐸(𝐺) |. By Lemma 2.2, when RED recurses at Line 4,
the graph 𝐺 \ {𝑒} is 2VC, hence the recursive call returns a 2VC spanning subgraph by inductive
hypothesis. A similar argument holds when Line 12 is executed, this time exploiting Lemma 2.6.

It remains to consider the case when Lines 5-10 are executed. Let us first prove that 𝐺1 and
𝐺2 are 2VC. We prove it for 𝐺1, the proof for 𝐺2 being symmetric. Assume to get a contradiction
that 𝐺1 has a cut vertex 𝑤. There must be a path in 𝐺[𝑉1 ∪ {𝑢, 𝑣}] between 𝑢 and 𝑣, otherwise 𝐺

is not 2VC, so 𝑤 ≠ 𝑣2. If 𝑤 ∈ {𝑢, 𝑣}, then 𝑤 is also a cut vertex in 𝐺, a contradiction. Therefore
𝑤 ∈ 𝑉1. If one of the components resulting from removing 𝑤 from 𝐺1 contains neither 𝑢 nor 𝑣
then 𝑤 is also a cut vertex in 𝐺, a contradiction. Thus, removing 𝑤 from 𝐺1 yields two connected
components 𝐶𝑢, 𝐶𝑣, with 𝑢 ∈ 𝐶𝑢, 𝑣 ∈ 𝐶𝑣. But the path 𝑢𝑣2𝑣 is still present in𝐺1\{𝑤}, contradicting
the fact that 𝑤 is a cut vertex in 𝐺1.

Notice that |𝐸(𝐺1) |, |𝐸(𝐺2) | < |𝐸(𝐺) |. Since 𝐺1 and 𝐺2 are 2VC, we can assume by inductive
hypothesis that both 𝐻1 and 𝐻2 are 2VC. It is left to show that 𝐻 is 2VC.

Assume to get a contradiction that 𝐻 has a cut vertex 𝑤. If 𝑤 ∈ {𝑢, 𝑣}, then 𝑤 is also a
cut vertex in either 𝐻1 or 𝐻2. Thus we can assume w.l.o.g. 𝑤 ∈ 𝑉1. Consider the components
resulting from removing the vertex 𝑤 from 𝐻 . If one of these components contains neither 𝑢 nor
𝑣 then 𝑤 is also a cut vertex in 𝐻1. Thus removing 𝑤 from 𝐻 yields two connected components
𝐶𝑢, 𝐶𝑣, with 𝑢 ∈ 𝐶𝑢, 𝑣 ∈ 𝐶𝑣. But since 𝑤 ∈ 𝑉1, no edge from 𝐻2 present in 𝐻 is removed by
deleting 𝑤. In particular, there is a path from 𝑢 to 𝑣 in 𝐻 , contradicting the fact that 𝑤 is a cut
vertex. ■

It remains to analyze the approximation factor of RED.

9 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

LEMMA 2.11. |RED(𝐺) | ≤


opt(𝐺), if |𝑉 (𝐺) | < max{6, 2
𝛼−1};

𝛼 · opt(𝐺) − 2, if |𝑉 (𝐺) | ≥ max{6, 2
𝛼−1}.

PROOF . We prove the claim by induction on |𝐸(𝐺) |. The base cases correspond to the execution
of Lines 2 and 13. Here the claim trivially holds. The claim holds by inductive hypothesis and
by Lemmas 2.2 and 2.6 when Lines 4 and 12, resp., are executed. Notice that the 6 that appears
in the max in the claim of the lemma is meant to guarantee that the conditions of Lemma 2.6
are satisfied.

It remains to consider the case when Lines 5-10 are executed. Let OPT be a minimum 2VC
spanning subgraph of 𝐺, and OPT𝑖 be an optimal 2VCSS solution for 𝐺𝑖 , 𝑖 ∈ {1, 2}. We will later
show:2

|OPT| ≥ |OPT1 | + |OPT2 | − 4 (1)

Notice that, since 𝐺 contains no irrelevant edges, 𝐻1 \ 𝐸1 and 𝐻2 \ 𝐸2 are edge-disjoint.
Moreover, |𝐻𝑖 ∩ 𝐸𝑖 | = 2 for 𝑖 ∈ {1, 2}, so we have |𝐻 | = |𝐻1 | + |𝐻2 | − 4. Also, for |𝑉𝑖 | ≥ 2

𝛼−1 , one
has |OPT𝑖 | ≤ 𝛼|OPT𝑖 | − 2, by the induction hypothesis. We now distinguish a few cases.

If |𝑉2 | < max{6, 2
𝛼−1}, then |𝐻 | = |𝐻1 | + |𝐻2 | − 4 = |OPT1 | + |OPT2 | − 4 ≤ |OPT|.

If |𝑉1 | ≥ max{6, 2
𝛼−1}, then |𝐻 | = |𝐻1 | + |𝐻2 | − 4 ≤ 𝛼|OPT1 | − 2 + 𝛼|OPT2 | − 2 − 4 =

𝛼(|OPT1 | + |OPT2 |) − 8 ≤ 𝛼|OPT| + 4𝛼 − 8 ≤ 𝛼|OPT| − 2. The last inequality uses the assumption
𝛼 ≤ 3/2.

Finally, if |𝑉1 | < max{6, 2
𝛼−1} and |𝑉2 | ≥ max{6, 2

𝛼−1}, we have |𝐻 | = |𝐻1 | + |𝐻2 | − 4 ≤
|OPT1 | +𝛼|OPT2 | −2−4 = (1−𝛼) |OPT1 | +𝛼(|OPT1 | + |OPT2 |) −6 ≤ (1−𝛼) |OPT1 | +4𝛼+𝛼|OPT| −6 ≤
𝛼|OPT| − 2. The last inequality holds since |OPT1 | ≥ |𝑉 (𝐺1) | ≥ 5 and 𝛼 > 1.

It remains to prove (1). Assume by contradiction that |OPT| < |OPT1 |+|OPT2 |−4. Notice that,
since 𝐺 contains no irrelevant edges, 𝐸(𝐺) = (𝐸(𝐺1) \𝐸1) ¤∪(𝐸(𝐺2) \𝐸2) and thus OPT = ((𝐸(𝐺1) \
𝐸1) ∩OPT) ¤∪((𝐸(𝐺2) \ 𝐸2) ∩OPT). Thus we have that either | (𝐸(𝐺1) \ 𝐸1) ∩OPT| < |OPT1 | − 2 or
| (𝐸(𝐺2) \ 𝐸2) ∩ OPT| < |OPT2 | − 2. Assume w.l.o.g. that | (𝐸(𝐺1) \ 𝐸1) ∩ OPT| < |OPT1 | − 2. Then
((𝐸(𝐺1) \ 𝐸1) ∩OPT) ∪ {𝑢𝑣2, 𝑣𝑣2} is a 2VC spanning subgraph of 𝐺1 of cardinality less than OPT1,
a contradiction. (1) follows. ■

2.2 A Canonical 2-Edge-Cover

It remains to give a good enough approximation algorithm for structured graphs. The first
step in our algorithm (similarly to prior work on related problems [6, 19, 25]) is to compute (in
polynomial time [33, Chapter 30]) a minimum-cardinality 2-edge-cover3 𝐻 of 𝐺. It is worth to

2 In fact, it is not difficult to show that (1) holds with equality, but it is not needed for our purposes and therefore we
omit it.

3 A 2-edge-cover 𝐻 of a graph 𝐺 is a subset of edges such that each node 𝑣 of 𝐺 has at least 2 edges of 𝐻 incident to it.

10 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

C1 C2 C3 C4

C5

Figure 2. Gray regions represent blocks of 𝐻. 𝐶1, 𝐶2 and 𝐶3 are small components of 𝐻, and 𝐶4 and 𝐶5

are large components. Also, 𝐶5 is a complex component. The non-bold edges are bridges of 𝐶5. The
dashed lines encompass the leaf-blocks of 𝐶5. Notice that 𝐶4 contains a single block, while 𝐶5 contains
many of them.

remark that |𝐻 | ≤ opt(𝐺): indeed the degree of each node in any 2VC spanning subgraph of 𝐺
must be at least 2.

For technical reasons, we transform 𝐻 , without increasing its size, into another 2-edge-
cover which is canonical in the following sense. We need some notation first. If a connected
component of 𝐻 has at least 6 edges we call it a large component, and otherwise a small com-
ponent. Let 𝐶 be a large component of 𝐻 . We call every maximal 2VC subgraph of 𝐶 with at
least 3 nodes a block, and every edge of 𝐶 such that its removal splits that component into two
connected components a bridge. Notice that every edge of 𝐶 is either a bridge or belongs to
some block in that component. Also, every edge of 𝐶 belongs to at most one block, thus there is
a unique partition of the edges of 𝐶 into blocks and bridges (but a node of 𝐶 might belong to
multiple blocks and to multiple bridges). Observe that 𝐶 is 2VC iff it has exactly one block. If
𝐶 is large but not 2VC we call it a complex component. If a block 𝐵 of a complex component 𝐶
contains only one cut vertex of 𝐶, we say that 𝐵 is a leaf-block of 𝐶. An example showcasing the
notation we use can be found in Figure 2.

Since 𝐻 is a 2-edge-cover, every complex component 𝐶 must have at least 2 leaf-blocks.
Indeed, take the block-cutpoint graph 𝐶∗ of 𝐶. Since 𝐶 is connected, 𝐶∗ is a tree, and since 𝐶 is
not 2VC, 𝐶∗ has at least two leafs. Those leafs cannot correspond to a bridge on 𝐶 because 𝐻 is a
2-edge-cover, so they must correspond to leaf-blocks.

DEF IN IT ION 2 .12 (Canonical 2-Edge-Cover). A 2-edge-cover 𝑆 of a graph 𝐺 is canonical if: (1)
Every small component of 𝑆 is a cycle; (2) For any complex component 𝐶 of 𝑆, each leaf-block 𝐵

of 𝐶 has at least 5 nodes.

11 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

LEMMA 2.13. Given a minimum 2-edge-cover 𝐻 of a structured graph 𝐺, in polynomial time one
can compute a canonical 2-edge-cover 𝑆 of 𝐺 with |𝑆 | = |𝐻 |.

PROOF . We start with 𝑆 := 𝐻 . At each step if there are edges 𝑒 ∈ 𝐸(𝐺) \ 𝐸(𝑆) and 𝑒′ ∈ 𝐸(𝑆),
such that 𝑆′ := 𝑆 ∪ {𝑒} \ {𝑒′} is a 2-edge-cover that has fewer connected components than 𝑆, or
it has the same number of connected components as 𝑆 but has fewer bridges and blocks in total
than 𝑆, then we replace 𝑆 by 𝑆′. This process clearly terminates within a polynomial number of
steps, returning a 2-edge-cover 𝑆 of the same size as the initial 𝐻 (hence in particular 𝑆 must be
minimal).

Let us show that the final 𝑆 satisfies the remaining properties. Assume by contradiction
that 𝑆 has a connected component 𝐶 with at most 5 edges that is not a cycle. By a simple case
analysis 𝐶 must be a 4-cycle plus one chord 𝑓 . However, this contradicts the minimality of 𝑆.

Finally assume by contradiction that 𝑆 has a complex component 𝐶, with a leaf-block 𝐵

such that 𝐵 has at most 4 nodes. By the minimality of 𝑆, 𝐵 must be a 3-cycle or a 4-cycle. Let
𝐵 = 𝑣1 . . . 𝑣𝑘, 𝑘 ∈ {3, 4}, and assume w.l.o.g. that 𝑣1 is the only cut-vertex of 𝐶 that belongs to
𝐵. In this case we show that there must exist an edge 𝑒 = 𝑢𝑧 ∈ 𝐸(𝐺) such that 𝑢 ∈ {𝑣2, 𝑣𝑘}
and 𝑧 ∉ 𝐵. If this is not true then for 𝑘 = 3, 𝑣1 is a cut-vertex in 𝐺, and for 𝑘 = 4, {𝑣1, 𝑣3} form
a non-isolating cut, leading to a contradiction in both cases. Consider 𝑆′ := 𝑆 ∪ {𝑒} \ {𝑢𝑣1}.
Note that 𝑆′ is a 2-edge-cover of the same size as 𝑆. Since 𝑢𝑣1 belongs to a cycle of 𝑆, then the
number of connected components in 𝑆′ is not more than in 𝑆. If 𝑧 ∉ 𝐶 the number of connected
components of 𝑆′ is less than in 𝑆, which is a contradiction. Otherwise, the number of connected
components of 𝑆 and 𝑆′ is the same. Now in 𝑆′ all the bridges and the blocks of 𝑆 that shared
an edge with any path from 𝑢 to 𝑧 in 𝑆 \ {𝑢𝑣1} become part of the same block and all the other
bridges and blocks remain the same. This is a contradiction as the total number of bridges and
blocks of 𝑆′ is less than in 𝑆. ■

2.3 A Credit-Based Argument

Next assume that we are given a minimum-cardinality canonical 2-edge-cover 𝐻 of a structured
graph 𝐺. Observe that, for |𝐻 | ≤ 5, 𝐻 is necessarily a cycle of length |𝐻 | by the definition of
canonical 2-edge-cover. In particular 𝐻 is already a feasible (and optimal) solution. Therefore,
we next assume |𝐻 | ≥ 6. Starting from 𝑆 = 𝐻 , we will gradually add edges to (and sometimes
remove edges from) 𝑆, until 𝑆 becomes 2VC (see Section 3). In order to keep the size of 𝑆 under
control, we use a credit-based argument similarly to prior work [6, 19, 21]. At high level, the idea
is to assign a certain number of credits cr(𝑆) to 𝑆. Let us define the cost of 𝑆 as cost(𝑆) = |𝑆 |+cr(𝑆).
We guarantee that for the initial value of 𝑆, namely 𝑆 = 𝐻 , cost(𝑆) ≤ 4

3 |𝐻 |. Furthermore, during
the process cost(𝑆) does not increase.

During the process we maintain the invariant that 𝑆 is canonical. Hence, the following
credit assignment scheme is valid for any intermediate 𝑆:

12 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

1 1 1

1
11

1
1

1
1

1

1
4

1
4

1
4

1
4

1
4

1
4

4
3

5
3

Figure 3. An example of a valid credit assignment. Gray regions represent blocks of 𝑆. The dashed
lines encompass the objects that receive credit (other than bridges). We remark that a large 2VC
component receives 2 credits, one credit in the role of a component, and one additional credit in the
role of a block of that component.

1. To every small component 𝐶 of 𝑆 we assign cr(𝐶) = |𝐸(𝐶) |/3 credits.
2. Each large component 𝐶 receives cr(𝐶) = 1 credits.
3. Each block 𝐵 receives cr(𝐵) = 1 credits.
4. Each bridge 𝑏 receives cr(𝑏) = 1/4 credits.

An example of such assignment can be seen in Figure 3. We remark that each large connected
component 𝐶 of 𝑆 which is 2VC receives one credit in the role of a component, and one additional
credit in the role of a block of that component. Let cr(𝑆) ≥ 0 the total number of credits assigned
to the subgraphs of 𝑆. It is not hard to show that the initial cost of 𝑆 is small enough.

LEMMA 2.14. cost(𝐻) ≤ 4
3 |𝐻 |.

PROOF . Let us initially assign 1
4 credits to the bridges of 𝐻 and 1

3 credits to the remaining
edges. Hence, we assign at most |𝐻 |3 credits in total. We next redistribute these credits to satisfy
the credit assignment scheme.

Each small component 𝐶 retains the credits of its edges. If 𝐶 is large and 2VC then it has
exactly one block 𝐵. Since |𝐸(𝐶) | ≥ 6, its edges have at least 2 credits, so we can assign 1 credit
to 𝐶 and 1 to 𝐵.

Now consider a complex component 𝐶 of 𝐻 . The bridges keep their own credits. Since 𝐻

is a 2-edge-cover and 𝐶 is complex, then 𝐶 has at least 2 leaf-blocks 𝐵1 and 𝐵2. By the definition
of canonical, 𝐵1 and 𝐵2 have at least 5 nodes (hence edges) each. Therefore, together they have
at least 10

3 > 3 credits, which is sufficient to assign one credit to 𝐶, 𝐵1 and 𝐵2. Any other block 𝐵

of 𝐶 (which has at least 3 edges) keeps the credits of its edges, hence at least 1 credit. Observe
that cost(𝐻) = |𝐻 | + cr(𝐻) ≤ 4

3 |𝐻 | as desired. ■

As mentioned before, starting from 𝑆 = 𝐻 , we will transform 𝑆 without increasing its cost
cost(𝑆) until it becomes a single large component 𝐶 that is 2VC (and thus it has exactly one

13 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

block 𝐵) and therefore a 2VC spanning subgraph of 𝐺. Notice that at the end of the process
cr(𝑆) = cr(𝐶) + cr(𝐵) = 2, hence |𝑆 | = cost(𝑆) − 2 ≤ 4

3 |𝐻 | − 2. Combining this with the trivial
case for |𝐻 | ≤ 5, we obtain the following lemma.

LEMMA 2.15. Given a canonical minimum 2-edge-cover 𝐻 of a structured graph 𝐺, one can
compute in polynomial time a 2VCSS solution 𝑆 for 𝐺 with |𝑆 | ≤ max{|𝐻 |, 4

3 |𝐻 | − 2}.

Given the above results, it is easy to prove Theorem 1.1.

PROOF OF THEOREM 1.1 . By Lemma 2.8 it is sufficient to compute a solution of cost at most
max{opt(𝐺), 4

3 ·opt(𝐺) −2} on a structured graph 𝐺. We initially compute a canonical minimum
2-edge-cover 𝐻 of 𝐺 via Lemma 2.13. Then we apply Lemma 2.15 to obtain a 2VCSS solution 𝑆

with |𝑆 | ≤ max{|𝐻 |, 4
3 |𝐻 | − 2} ≤ max{opt(𝐺), 4

3opt(𝐺) − 2}. Clearly all steps can be performed
in polynomial time. ■

It remains to discuss the proof of Lemma 2.15 (assuming |𝐻 | ≥ 6), which is the most
technical part of our paper. The construction at the heart of the proof consists of a few stages.
Recall that we start with a 2-edge-cover𝑆 = 𝐻 , and then gradually transform𝑆 without increasing
cost(𝑆). We now define a specific type of 4-cycles that need special care.

DEF IN IT ION 2 .16 (pendant 4-cycle). Let 𝑆 be a 2-edge-cover of a graph 𝐺 and 𝐶′ be a large
component of 𝑆. We say that a connected component 𝐶 of 𝑆 is a pendant 4-cycle (of 𝐶′) if 𝐶 is
a 4-cycle and all the edges of 𝐺 with exactly one endpoint in 𝑉 (𝐶) have the other endpoint in
𝑉 (𝐶′).

In the initial phase of our construction (see Section 3.1), we eliminate all small components
from 𝑆, except for pendant 4-cycles. Pendant 4-cycles are harder to remove, and thus they
require separate arguments. They will be dealt with in later stages of the algorithm.

LEMMA 2.17. Let 𝐺 be a structured graph and 𝐻 be a canonical minimum 2-edge cover of 𝐺,
with |𝐻 | ≥ 6. In polynomial time one can compute a canonical 2-edge-cover 𝑆 of 𝐺 such that the
only small components of 𝑆 are pendant 4-cycles and cost(𝑆) ≤ cost(𝐻).

In the second stage of our construction (see Section 3.2) we reduce to the case where 𝑆

consists of large 2VC components only.

LEMMA 2.18. Let 𝐺 be a structured graph and 𝑆 be a canonical 2-edge-cover of 𝐺 such that
the only small components of 𝑆 are pendant 4-cycles. In polynomial time one can compute a
canonical 2-edge-cover 𝑆′ of 𝐺 such that all the connected components of 𝑆′ are 2VC and large,
and cost(𝑆′) ≤ cost(𝑆).

At this point we can exploit the following definition and lemma from [19] (see Figure 4) to
construct the desired 2VC spanning subgraph.

14 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

Figure 4. An example of nice cycles w.r.t. the partition Π (induced by the dashed lines). In the figure
two distinct nice cycles are shown, given by the red and blue edges, respectively.

DEF IN IT ION 2 .19 (Nice Cycle). Let Π = (𝑉1, . . . , 𝑉𝑘), 𝑘 ≥ 2, be a partition of the node-set of a
graph 𝐺. A nice cycle 𝑁 of 𝐺 w.r.t. Π is a subset of edges with endpoints in distinct subsets of Π
such that: (1) 𝑁 induces one cycle of length at least 2 in the graph obtained from 𝐺 by collapsing
each 𝑉𝑖 into a single node; (2) given the two edges of 𝑁 incident to some 𝑉𝑖 , these edges are
incident to distinct nodes of 𝑉𝑖 unless |𝑉𝑖 | = 1.

LEMMA 2.20. [19] Let Π = (𝑉1, . . . , 𝑉𝑘), 𝑘 ≥ 2, be a partition of the node-set of a 2VC graph 𝐺.
In polynomial time one can compute a nice cycle 𝑁 of 𝐺 w.r.t. Π.

LEMMA 2.21. Let𝐺 be a structured graph and 𝑆 be a 2-edge-cover of𝐺 such that all the connected
components of 𝑆 are 2VC and large. In polynomial time one can compute a 2VCSS solution 𝑆′ for 𝐺
with cost(𝑆′) ≤ cost(𝑆).

PROOF . Initially set 𝑆′ = 𝑆. Consider the partition Π = (𝑉1, . . . , 𝑉𝑘) of 𝑉 (𝐺) where 𝑉𝑖 is the set
of vertices of the 2VC component 𝐶𝑖 of 𝑆′. If 𝑘 = 1, 𝑆′ already satisfies the claim. Otherwise, using
Lemma 2.20 we can compute a nice cycle 𝑁 of 𝐺 w.r.t. Π. Let us replace 𝑆′ with 𝑆′′ := 𝑆′ ∪ 𝑁 .
W.l.o.g assume 𝑁 is incident to 𝑉1, ..., 𝑉𝑟 for some 2 ≤ 𝑟 ≤ 𝑘. Then in 𝑆′′ the nodes 𝑉1 ∪ . . . ∪𝑉𝑟
belong to a unique (large) 2VC connected component 𝐶′. Furthermore cost(𝑆′) − cost(𝑆′′) =∑𝑟

𝑖=1(cr(𝐶𝑖) + cr(𝐵𝑖)) − cr(𝐶′) − cr(𝐵′) − 𝑟 = 2𝑟 − 2 − 𝑟 ≥ 0, where 𝐵𝑖 is the only block of the
component 𝐶𝑖 and 𝐵′ the only block of 𝐶′. By iterating the process for a polynomial number of
times one obtains a single 2VC component, hence the claim. ■

The proof of Lemma 2.15 follows by chaining Lemmas 2.17, 2.18, and 2.21, and by the
previous simple observations.

3. From a Canonical 2-Edge-Cover to a 2VC Spanning Subgraph

In the following two subsections we provide the proof of Lemmas 2.17 and 2.18, hence complet-
ing the proof of Lemma 2.15. Throughout this section, we say that two connected components
𝐶1 and 𝐶2 of 𝑆 are adjacent if there are nodes 𝑢1 ∈ 𝐶1, 𝑢2 ∈ 𝐶2 such that 𝑢1𝑢2 ∈ 𝐸(𝐺).

We will use following lemma from [19] multiple times, whose proof is duplicated here for
the sake of completeness.

15 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

LEMMA 3.1 (3-Matching Lemma). Let 𝐺 = (𝑉, 𝐸) be a 2VC graph without irrelevant edges
and without non-isolating 2-vertex-cuts. Consider any partition (𝑉1, 𝑉2) of 𝑉 such that for each
𝑖 ∈ {1, 2}, |𝑉𝑖 | ≥ 3 and if |𝑉𝑖 | = 3, then 𝐺[𝑉𝑖] is a triangle. Then, there exists a matching of size 3
between 𝑉1 and 𝑉2.

PROOF . Consider the bipartite graph 𝐹 induced by the edges with exactly one endpoint in
𝑉1. Let 𝑀 be a maximum (cardinality) matching of 𝐹. Assume by contradiction that |𝑀 | ≤ 2.
By König-Egeváry theorem4 there exists a vertex cover 𝑈 of 𝐹 of size |𝑀 |. We distinguish 3
subcases:

(1)𝑼 = {𝒖}. Assume w.l.o.g. 𝑢 ∈ 𝑉1. Since𝑈 is a vertex cover of 𝐹, there are no edges in 𝐹 (hence
in 𝐺) between the non-empty sets 𝑉1 \ {𝑢} and 𝑉2. Hence 𝑈 is a 1-vertex-cut, a contradiction.

(2)𝑼 = {𝒖, 𝒗}, where𝑼 is contained in one side of 𝑭. Assume w.l.o.g. 𝑈 ⊆ 𝑉1. Since |𝑉1 | ≥ 3 and
𝑈 is a vertex cover of 𝐹,𝑈 is a 2-vertex-cut separating𝑉1 \𝑈 from𝑉2. This implies that 𝑢𝑣 ∉ 𝐸(𝐺)
(otherwise 𝑢𝑣 would be an irrelevant edge), and in particular that 𝐺[𝑉1] is not a triangle. Since
𝐺[𝑉1] is not a triangle, |𝑉1 \𝑈 | ≥ 2. This implies that 𝑈 is a non-isolating 2-vertex-cut of 𝐺, a
contradiction.

(3) 𝑼 = {𝒖, 𝒗}, where 𝒖 and 𝒗 belong to different sides of 𝑭. Assume w.l.o.g. 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2.
Consider the sets𝑉 ′1 := 𝑉1 \ {𝑢} and𝑉 ′2 := 𝑉2 \ {𝑣}, both of size at least 2. Notice that there are no
edges in 𝐹 (hence in 𝐺) between 𝑉 ′1 and 𝑉 ′2 (otherwise 𝑈 would not be a vertex cover of 𝐹). This
implies that 𝑈 is a non-isolating 2-vertex-cut of 𝐺, a contradiction. ■

3.1 Removing almost all small components

In this section we will prove Lemma 2.17, namely we will show how to get rid of small com-
ponents other than pendant 4-cycles. Recall that a connected component is large if it contains
at least 6 edges and small otherwise. In our construction we will maintain that 𝑆 is canonical,
hence in particular small components of the considered partial solution 𝑆 are cycles (of size 3, 4
or 5).

We distinguish two types of small components that we deal with separately: small compo-
nents that are adjacent to at least 2 connected components of 𝑆, and small components adjacent
only to a single connected component of 𝑆 (excluding pendant 4-cycles). Let us start by handling
the former type of small components. This is done via the following lemma.

LEMMA 3.2. Let 𝑆 be a canonical 2-edge-cover of a structured graph 𝐺. If 𝑆 contains a small
component adjacent to at least two other connected components of 𝑆, then one can compute in
polynomial time a canonical 2-edge-cover 𝑆′ of 𝐺, with strictly fewer components than 𝑆, and with
cost(𝑆′) ≤ cost(𝑆).

4 This theorem states that, in a bipartite graph, the cardinality of a maximum matching equals the cardinality of a
minimum vertex cover, see e.g. [33, Chapter 16].

16 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

In order to prove the above lemma, we need the following definition and intermediate
results.

DEF IN IT ION 3.3. Let 𝐶 be a 𝑘-cycle, 𝑘 ∈ {3, 4, 5}. We say that {𝑢, 𝑣} ⊆ 𝑉 (𝐶) is a shortcut pair of
𝐶 if there is a matching 𝑀 of size 2 from {𝑢, 𝑣} to𝑉 (𝐺) \𝑉 (𝐶), and there is a 𝑢-𝑣 Hamiltonian path
𝑃𝑢𝑣 in 𝐺[𝑉 (𝐶)] such that the first and last edge of 𝑃𝑢𝑣 are in 𝐸(𝐶). We call 𝑀 the corresponding
matching of {𝑢, 𝑣} and 𝑃𝑢𝑣 the shortcut path of {𝑢, 𝑣} or the shortcut path of 𝐶 if {𝑢, 𝑣} is clear
from the context.

Shortcut pairs play an important role in the proof of Lemma 3.2. Intuitively, once we find
a shortcut pair {𝑢, 𝑣} of a small component 𝐶 with corresponding matching {𝑢𝑥, 𝑣 𝑦}, we can
exchange the edges of 𝐶 with its shortcut path (hence “saving” one edge), thus getting a path
from 𝑥 to 𝑦 that includes all the nodes of 𝐶. We will use this to “chain” together several small
components in order to build a path between components of 𝑆 with some desired properties.
The next lemma shows that we can always find a shortcut pair of a small component. Addi-
tionally, it shows that we can choose such pair in a way that allows us to continue building the
aforementioned path.

LEMMA 3.4. Let 𝑆 be a canonical 2-edge-cover of a structured graph 𝐺, 𝐶 be a small component
of 𝑆, and 𝑤𝑥 be an edge of 𝐺 such that 𝑤 ∈ 𝑉 (𝐶), 𝑥 ∉ 𝑉 (𝐶). Then there exists a shortcut pair {𝑢, 𝑣}
such that 𝑢𝑥 is an edge of the corresponding matching of {𝑢, 𝑣}. Furthermore, if 𝐶 is a 3-cycle,
there exist two distinct shortcut pairs {𝑢, 𝑣1}, {𝑢, 𝑣2} such that their corresponding matchings are
{𝑢𝑥, 𝑣1𝑤1} and {𝑢𝑥, 𝑣2𝑤2}, 𝑤1 ≠ 𝑤2, resp. All such pairs and their corresponding matchings and
shortcut paths can be computed in polynomial time.

PROOF . By the 3-matching Lemma 3.1 applied to𝐶, there is a matching {𝑤1𝑥1, 𝑤2𝑥2, 𝑤3𝑥3}, with
𝑥𝑖 ∉ 𝑉 (𝐶), 𝑤𝑖 ∈ 𝑉 (𝐶), for 𝑖 ∈ {1, 2, 3}. W.l.o.g. we can assume 𝑥1 = 𝑥, indeed otherwise we can
add 𝑤𝑥 to the matching and remove 𝑤𝑥𝑖 if any. If 𝐶 is a 3-cycle, the pairs {𝑢, 𝑣1} = {𝑤1, 𝑤2} and
{𝑢, 𝑣2} = {𝑤1, 𝑤3} are the desired pairs, with shortcut paths 𝑃𝑢𝑣1 = 𝐶 \ {𝑢𝑣1} and 𝑃𝑢𝑣2 = 𝐶 \ {𝑢𝑣2},
resp.

Assume next that 𝐶 is a 4-cycle or a 5-cycle. If 𝑤𝑖 is adjacent to 𝑤1 in 𝐶 for some 𝑖 ∈ {2, 3}
then {𝑢, 𝑣} = {𝑤1, 𝑤𝑖} is the desired shortcut pair, with corresponding matching {𝑢𝑥, 𝑣𝑥𝑖} and
shortcut path 𝑃𝑢𝑣 = 𝐶 \ {𝑢𝑣}. Notice that this is always the case if 𝐶 is a 4-cycle. We next assume
that 𝑤𝑖 , 𝑖 ∈ {2, 3}, is not adjacent to 𝑤1 in 𝐶 (and thus 𝐶 is a 5-cycle). Moreover, we can assume
that there is no matching 𝑀 = {𝑤′1𝑥, 𝑤′2𝑥′2}, where 𝑥′2 ∉ 𝑉 (𝐶), 𝑤′1, 𝑤′2 ∈ 𝑉 (𝐶), and 𝑤′1 is adjacent
to 𝑤′2 in 𝐶.

Let 𝐶 = 𝑤1𝑎𝑤2𝑤3𝑏. Notice that by the above assumption there cannot exist an edge
𝑎𝑦 ∈ 𝐸(𝐺) with 𝑦 ∉ 𝑉 (𝐶). Indeed, if 𝑦 ≠ 𝑥, then the matching 𝑀 = {𝑤1𝑥, 𝑎 𝑦} is a contradiction
to our above assumption, and if 𝑦 = 𝑥 then the matching 𝑀 = {𝑎𝑥, 𝑤2𝑥2} is a contradiction to
our above assumption. Symmetrically, 𝑏 is not adjacent to any node outside 𝐶 in 𝐺.

17 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

Since 𝐺 is a structured graph, 𝐶 is not a removable 5-cycle, and thus either 𝑎 or 𝑏, say
𝑎 by symmetry, is adjacent in 𝐺 to some node in 𝐶 other than 𝑤1 and 𝑤2. We claim that
{𝑢, 𝑣} = {𝑤1, 𝑤2} is our desired shortcut pair, with its corresponding matching {𝑢𝑥, 𝑣𝑥2}. If
𝑎𝑏 ∈ 𝐺 then 𝑃𝑢𝑣 = 𝑤1𝑎𝑏𝑤3𝑤2 satisfies the claim. If 𝑎𝑏 ∉ 𝐸(𝐺), then it must be 𝑤3𝑎 ∈ 𝐸(𝐺).
Hence 𝑃𝑢𝑣 = 𝑤1𝑏𝑤3𝑎𝑤2 satisfies the claim. ■

COROLLARY 3.5. Let 𝑆 be a canonical 2-edge-cover of 𝐺 and 𝐶 be a small component of 𝑆. If 𝐶
is adjacent to at least two other connected components of 𝑆, then we can find in polynomial time
a shortcut pair {𝑢, 𝑣} of 𝐶 such that its corresponding matching {𝑢𝑥1, 𝑣𝑥2} has 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈
𝑉 (𝐶2), where 𝐶, 𝐶1 and 𝐶2 are distinct connected components of 𝑆.

PROOF . We first claim that there are edges 𝑎𝑥1, 𝑏𝑥2 with 𝑎, 𝑏 ∈ 𝑉 (𝐶), 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2), 𝑎 ≠

𝑏, where 𝐶1 and 𝐶2 are distinct connected components of 𝑆. To obtain this, we apply the 3-
matching Lemma 3.1 to 𝐶. If two edges of the matching have their endpoints not in 𝐶 in distinct
connected components of 𝑆 we are done. Otherwise, all edges of the matching are incident
to the same connected component 𝐶′. By assumption of the lemma there is at least one edge
between 𝐶 and a connected component of 𝑆 distinct from 𝐶′, so we can modify the matching by
including that edge and removing at most one edge. The claim follows.

Apply Lemma 3.4 to 𝑎𝑥1 and 𝑏𝑥2 to find shortcut pairs of 𝐶, {𝑢1, 𝑣1}, {𝑢2, 𝑣2}, such that
𝑢1𝑥1, 𝑢2𝑥2 belong to their respective corresponding matchings. If the corresponding matching
{𝑢1𝑥1, 𝑣1 𝑦1} has 𝑦1 ∉ 𝑉 (𝐶1), then {𝑢, 𝑣} = {𝑢1, 𝑣1} is the desired shortcut pair. Similarly for the
corresponding matching to {𝑢2, 𝑣2}, {𝑢2𝑥2, 𝑣2 𝑦2}. Assume now that 𝑦1 ∈ 𝑉 (𝐶1), 𝑦2 ∈ 𝑉 (𝐶2).

If 𝑢1 = 𝑢2, then {𝑢, 𝑣} = {𝑢1, 𝑣2} is the desired shortcut pair. Similarly with 𝑢1 = 𝑣2, 𝑣1 =

𝑢2, 𝑣1 = 𝑣2. Assume 𝑢1, 𝑣1, 𝑢2, 𝑣2 are all distinct. Then either 𝑢1 is adjacent in 𝐶 to one of 𝑢2

or 𝑣2, or 𝑣1 is. Say 𝑢1 is adjacent to 𝑢2. The shortcut pair {𝑢, 𝑣} = {𝑢1, 𝑢2} satisfies the claim
with matching {𝑢1𝑥1, 𝑢2𝑥2} and 𝑃𝑢𝑣 = 𝐶 \ {𝑢𝑣}. The other cases are treated identically, with the
corresponding matchings being {𝑢1𝑥1, 𝑣2 𝑦2}, {𝑣1 𝑦1, 𝑢2𝑥2}, and {𝑣1 𝑦1, 𝑣2 𝑦2}. ■

We are now ready to prove Lemma 3.2.

PROOF OF LEMMA 3.2 . We next describe an iterative procedure to construct a (maximal in
some sense) path 𝑃, incident on two distinct connected components 𝐶𝐿 and 𝐶𝑅 of 𝑆. Formally,
Algorithm 2 finds, in polynomial time, a path 𝑃 = 𝑢𝐿𝑢1𝑢2 . . . 𝑢𝑘𝑢𝑅 satisfying the following
properties:

1. |𝐸(𝑃) | ≥ 4.
2. The set {𝑢1, . . . , 𝑢𝑘} of internal nodes of 𝑃 is the union of the node sets of some small

components of 𝑆. The nodes 𝑢𝐿, 𝑢𝑅 belong to distinct connected components 𝐶𝐿, 𝐶𝑅 of 𝑆.
3. If 𝐶𝐿 is small, then for some 𝑣𝐿 ∈ 𝑉 (𝐶𝐿), {𝑢𝐿, 𝑣𝐿} is a shortcut pair of 𝐶𝐿 such that its

corresponding matching is {𝑢𝐿𝑢1, 𝑣𝐿𝑤𝐿}, with 𝑤𝐿 ∈ 𝑉 (𝐶𝑅) ∪ 𝑉 (𝑃). Moreover, if 𝐶𝐿 is a
3-cycle, then 𝑤𝐿 ≠ 𝑢3.

18 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

Input: A canonical 2-edge-cover 𝑆 of a structured graph 𝐺

containing a small component 𝐶 adjacent to at least two
other components of 𝑆

Output: A path 𝑃 between connected components of 𝑆 satisfying
Properties 1 to 5.

1: Initialization: Let {𝑢, 𝑣} be a shortcut pair of 𝐶 with shortcut
path 𝑃𝑢𝑣 and corresponding matching {𝑢𝑢𝐿, 𝑣𝑢𝑅}, 𝑢𝐿 ∈ 𝑉(𝐶𝐿), 𝑢𝑅 ∈ 𝑉(𝐶𝑅),
where 𝐶𝐿 and 𝐶𝑅 are distinct connected components of 𝑆

2: 𝑃 ← 𝑃𝑢𝑣 ∪ {𝑢𝑢𝐿, 𝑣𝑢𝑅}
3: while 𝐶𝐿 is small do
4: if there exists a shortcut pair {𝑢, 𝑣} of 𝐶𝐿 with shortcut path

𝑃𝑢𝑣 and corresponding matching {𝑢𝑢1, 𝑣𝑥} such that 𝑥 ∉ 𝑉(𝐶𝑅) ∪𝑉(𝑃)
then

5: Let 𝐶′𝐿 be the component of 𝑆 such that 𝑥 ∈ 𝑉(𝐶′𝐿)
6: 𝑃 ← (𝐸(𝑃) \ {𝑢1𝑢𝐿}) ∪ 𝐸(𝑃𝑢𝑣) ∪ {𝑢𝑢1, 𝑣𝑥}
7: 𝐶𝐿← 𝐶′𝐿 ⊲ Extension on the left side (see Figure 5)

8: else
9: Let {𝑢, 𝑣} be a shortcut pair of 𝐶𝐿 with corresponding

matching {𝑢𝑢1, 𝑣𝑥} such that 𝑥 ∈ 𝑉(𝐶𝑅) ∪ 𝑉(𝑃). If 𝐶𝐿 is a
3-cycle, choose such a pair such that 𝑥 ≠ 𝑢3

10: 𝑃 ← (𝐸(𝑃) \ {𝑢1𝑢𝐿}) ∪ {𝑢𝑢1} ⊲ Stop the extension on the left side (see Figure 6)

11: break ⊲ We exit the while loop

12: while 𝐶𝑅 is small do
13: if there exists a shortcut pair {𝑢, 𝑣} of 𝐶𝑅 with shortcut path

𝑃𝑢𝑣 and corresponding matching {𝑢𝑢𝑘, 𝑣𝑥} such that 𝑥 ∉ 𝑉(𝐶𝐿) ∪ 𝑉(𝑃)
then

14: Let 𝐶′𝑅 be the component of 𝑆 such that 𝑥 ∈ 𝑉(𝐶′𝑅)
15: 𝑃 ← (𝐸(𝑃) \ {𝑢𝑘𝑢𝑅}) ∪ 𝐸(𝑃𝑢𝑣) ∪ {𝑢𝑢𝑘, 𝑣𝑥}
16: 𝐶𝑅 ← 𝐶′𝑅 ⊲ Extension on the right side

17: else
18: Let {𝑢, 𝑣} be a shortcut pair of 𝐶𝑅 with corresponding

matching {𝑢𝑢𝑘, 𝑣𝑥} such that 𝑥 ∈ 𝑉(𝐶𝐿) ∪ 𝑉(𝑃). If 𝐶𝑅 is a
3-cycle, choose such a pair such that 𝑥 ≠ 𝑢𝑘−2

19: 𝑃 ← (𝐸(𝑃) \ {𝑢𝑘𝑢𝑅}) ∪ {𝑢𝑢𝑘} ⊲ Stop the extension on the right side

20: break ⊲ We exit the while loop

21: return 𝑃

Algorithm 2. Algorithm that computes 𝑃. During the execution of the algorithm, at the beginning of
every iteration of a while loop, we maintain the notation that 𝑃 = 𝑢𝐿𝑢1 . . . 𝑢𝑘𝑢𝑅, 𝑢𝐿 ∈ 𝑉(𝐶𝐿), 𝑢𝑅 ∈ 𝑉(𝐶𝑅).

19 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

4. If 𝐶𝑅 is small, then for some 𝑣𝑅 ∈ 𝑉 (𝐶𝑅), {𝑢𝑅, 𝑣𝑅} is a shortcut pair of 𝐶𝑅 such that its
corresponding matching is {𝑢𝑅𝑢1, 𝑣𝑅𝑤𝑅}, with 𝑤𝑅 ∈ 𝑉 (𝐶𝐿) ∪ 𝑉 (𝑃). Moreover, if 𝐶𝑅 is a
3-cycle, then 𝑤𝑅 ≠ 𝑢𝑘−2.

5. The edges 𝑢1𝑢2 and 𝑢𝑘−1𝑢𝑘 are edges of small components of 𝑆.

Since at every iteration the length of 𝑃 increases or a while loop stops, Algorithm 2,
terminates after a polynomial number of iterations. By Corollary 3.5, one can find the shortcut
pair required in Line 1 in polynomial time. The condition in Line 4 can be checked in polynomial
time by considering all pairs of nodes of 𝐶𝐿 (recall 𝐶𝐿 is small when executing Line 4) and all
matchings of size 2 incident to such pairs. When executing Line 9, by Lemma 3.4 and the fact
that the condition at Line 4 does not hold, we can find the desired pair. Notice that here we
used the fact that, if 𝐶𝐿 is a 3-cycle, Lemma 3.4 guarantees the existence of two shortcut pairs
{𝑢, 𝑣1}, {𝑢, 𝑣2} with corresponding matchings {𝑢𝑢1, 𝑣1𝑤1} and {𝑢𝑢1, 𝑣2𝑤2}, 𝑤1 ≠ 𝑤2. Since the
condition at Line 4 does not hold, 𝑤1, 𝑤2 ∈ 𝑉 (𝐶𝑅) ∪ 𝑉 (𝑃), so we can choose 𝑣 = 𝑣𝑖 such that
𝑤𝑖 ≠ 𝑢3, for some 𝑖 ∈ {1, 2}. The executions of Lines 13 and 18 can also be done in polynomial
time by identic arguments. Therefore, Algorithm 2 runs in polynomial time.

Now we show that 𝑃 satisfies Properties 1 to 5. Property 1 is satisfied when initializing 𝑃

at Line 2, and is maintained through the execution of the algorithm because we never decrease
the size of 𝑃. Notice that 𝑃 satisfies Property 2 at Line 2. The set of internal nodes of 𝑃 then only
changes at Lines 7 and 16. When executing those lines, we add the nodes of the shortcut path
𝑃𝑢𝑣 of 𝐶𝐿 (resp., 𝐶𝑅) to the set of internal nodes of 𝑃. Since when executing Line 7 (resp., 16) 𝐶𝐿

(resp., 𝐶𝑅) is small, we maintain Property 2. Properties 3 and 4 are satisfied by the choice of
{𝑢, 𝑣} at Lines 9 and 18, respectively. Finally, notice that the edges 𝑢1𝑢2 and 𝑢𝑘−1𝑢𝑘 are the last
edges of some shortcut path of some small component. Thus, by Definition 3.3, they are edges
of small components of 𝐶. Therefore, 𝑃 satisfies Properties 1 to 5, as we wanted to prove.

Next we build 𝑆′ as follows. Let 𝐶1, . . . , 𝐶𝑞 be the small components whose node sets form
the internal nodes of 𝑃 (Property 2). We initially set 𝑆′ := (𝑆\⋃𝑞

𝑖=1 𝐸(𝐶𝑖)) ∪𝐸(𝑃). If 𝐶𝐿 is small, let
{𝑢𝐿, 𝑣𝐿} be the shortcut pair given by Property 3, with matching {𝑢𝐿𝑢1, 𝑣𝐿𝑤𝐿} and shortcut path
𝑃𝑢𝐿𝑣𝐿: replace 𝑆′ with (𝑆′ \ 𝐸(𝐶𝐿)) ∪ 𝑃𝑢𝐿𝑣𝐿 ∪ {𝑣𝐿𝑤𝐿}. If 𝐶𝑅 is small, we update 𝑆′ symmetrically
(using Property 4). We will use figures to show examples of the construction of 𝑆′ based on 𝑃 in
the corresponding relevant cases.

Notice that |𝑆′| = |𝑆 | + 1. We also remark that we collect (|𝐸(𝑃) | − 1) · 1
3 credits from the

removed small components. Clearly 𝑆′ has fewer connected components than 𝑆 and is canonical.
We will show that in most cases cost(𝑆′) ≤ cost(𝑆). When the latter property does not hold, we
will describe an alternative 𝑆′ that satisfies the claim. We consider different cases depending on
the type of the components 𝐶𝑅 and 𝐶𝐿.

(1) Both 𝑪𝑹 and 𝑪𝑳 are large.
An example of the construction of 𝑆′ for this case is shown in Figure 7. 𝑆′ contains a (complex)

20 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

PCL

C ′
L

u

v

x

uL u1

Figure 5. An example of extending 𝑃 on the 𝐶𝐿 side. The shortcut path 𝑃𝑢𝑣 of 𝐶𝐿 is shown in bold blue.
In this iteration we remove 𝑢𝐿𝑢1 (in red) from 𝑃, and add 𝑃𝑢𝑣, 𝑢1𝑢 and 𝑣𝑥 (all of them in blue) to 𝑃. Here 𝐶′𝐿
could be small or large. In the next iteration 𝐶′𝐿 takes the place of 𝐶𝐿.

P

CL

u1 u3

u

uL = v

u2 = x

Figure 6. In this case we stop extending 𝑃 on the left side. Notice that in this case we have at least 2
choices for the pair {𝑢, 𝑣}. Since 𝐶𝐿 is a 3-cycle we select the pair {𝑢, 𝑣} such that 𝑥 ≠ 𝑢3. The dashed
edges are edges in 𝐺.

connected component 𝐶 spanning the nodes of 𝐶𝑅, 𝐶𝐿 and 𝑃. We need 1 credit for 𝐶 and |𝐸(𝑃) | · 14
credits for the edges of 𝑃 (which become bridges of 𝐶). Recall that we collect (|𝐸(𝑃) − 1|) · 1

3

credits from the removed small components. We also collect 1 credit from 𝐶𝑅 and 𝐶𝐿 each, while
their blocks retain their credits. Altogether

cost(𝑆) − cost(𝑆′) = |𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3 − cr(𝐶) − |𝐸(𝑃) | · 1/4
= −1 + 1 + 1 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − |𝐸(𝑃) | · 1/4 ≥ 0,

where in the last inequality we used |𝐸(𝑃) | ≥ 4 (Property 1).

P

CL CR

Figure 7. An example of the construction of 𝑆′ when both 𝐶𝐿 and 𝐶𝑅 are large components. The set of
internal nodes of 𝑃 is the union of the node sets of some small components 𝐶1, . . . , 𝐶𝑞 of 𝑆. In this case
we simply set 𝑆′ := (𝑆 \⋃𝑞

𝑖=1 𝐸(𝐶𝑖)) ∪ 𝐸(𝑃). Every connected component 𝐶 ∉ {𝐶𝐿, 𝐶𝑅} ∪ {𝐶1, . . . , 𝐶𝑞} of 𝑆
remains unaltered.

21 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

P CR

vR

CL

vL

uL wR uR = wL

Figure 8. An example of the construction of 𝑆′ when 𝐶𝐿 is a small component and 𝑤𝐿 ∈ 𝑉(𝐶𝑅). We show
the case in which 𝐶𝑅 is also a small component. We remove the edges of 𝐶𝐿 and 𝐶𝑅, and we add their
shortcut paths and the edges 𝑣𝐿𝑤𝐿 and 𝑣𝑅𝑤𝑅. This is equivalent to removing the red edges and adding
the blue edges. The shortcut paths of 𝐶𝐿 and 𝐶𝑅 are shown in bold blue. In this case every node of 𝑃
and 𝐶𝐿 belongs to a block 𝐵 in 𝑆′. If 𝐶𝑅 is small, the nodes of 𝐶𝑅 also belong to 𝐵. The set of internal
nodes of 𝑃 is the union of the node sets of some small components 𝐶1, . . . , 𝐶𝑞 of 𝑆. Every connected
component 𝐶 ∉ {𝐶𝐿, 𝐶𝑅} ∪ {𝐶1, . . . , 𝐶𝑞} of 𝑆 remains unaltered.

(2) At least one among 𝑪𝑹 and 𝑪𝑳 is small (w.l.o.g. assume 𝑪𝑳 is small).
Notice that, by Property 3, one has that 𝑤𝐿 ∈ 𝑉 (𝐶𝑅) ∪𝑉 (𝑃) \ {𝑢1}, so that either 𝑤𝐿 ∈ 𝑉 (𝐶𝑅) or
𝑤𝐿 = 𝑢 𝑗 for some 𝑗 ∈ {2, . . . , 𝑘}.

(2.1) 𝒘𝑳 ∈ 𝑽 (𝑪𝑹).
An example of the construction of 𝑆′ for this case is shown in Figure 8. Regardless of the type of
component 𝐶𝑅 is, the nodes of 𝐶𝑅, 𝐶𝐿 and 𝑃 are merged into a unique large component 𝐶 of 𝑆′,
and the nodes of 𝐶𝐿 and 𝑃 belong to a block 𝐵 in 𝑆′. Therefore the edges of 𝑃 are not bridges in
𝐶 and hence have no credits in 𝑆′.

If 𝐶𝑅 is also a small component the nodes of 𝐶𝑅 (and thus all nodes of 𝐶) also belong to 𝐵,
so 𝐵 is the only new block. To see this, notice that all the nodes of the path from 𝑤𝑅 to 𝑢𝑅 in 𝑆′

belong to a block 𝐵′ together with the nodes of 𝐶𝑅. Since 𝑤𝑅 ∈ 𝑉 (𝐶𝐿) ∪𝑉 (𝑃) (Property 4), this
implies that 𝐵 and 𝐵′ share at least one edge, and thus it must be that 𝐵 = 𝐵′. If 𝐶𝑅 is a large
component, then 𝐵 is also the only block of 𝑆′ not present in 𝑆. Using |𝐸(𝑃) | ≥ 4 (Property 1)
one has

cost(𝑆) − cost(𝑆′) = |𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3 − cr(𝐶) − cr(𝐵)
≥ −1 + 1 + 1 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − 1 ≥ 0.

(2.2) 𝒘𝑳 = 𝒖2.
We illustrate this case in Figure 9. Let 𝐶 be the component of 𝑆 such that 𝑤𝐿 ∈ 𝐶. By Property 5,
𝑢1𝑢2 ∈ 𝐸(𝐶). Let 𝑆′′ := (𝑆 \ 𝐸(𝐶𝐿)) ∪ 𝐸(𝑃𝑢𝐿𝑣𝐿) ∪ {𝑢𝐿𝑢1, 𝑣𝐿𝑢2} \ {𝑢1𝑢2}. In 𝑆′′, the nodes of 𝐶 and
𝐶𝐿 belong to a single cycle 𝐶′ of size at least 6: 𝐶′ is a 2VC large component, and thus it contains
exactly one block 𝐵. Then, 𝑆′′ is a solution with fewer components than 𝑆 and one has

cost(𝑆) − cost(𝑆′′) = cr(𝐶𝐿) + cr(𝐶) − cr(𝐶′) − cr(𝐵) ≥ 1 + 1 − 1 − 1 = 0.

22 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u1 u3 u4 u5
CL

CL

u1

u5

u4

u3

C

vL

vL

uL

uL

u2 = wL

u2 = wL

Figure 9. Lemma 3.2 Case 2. By Property 5, the edge 𝑢1𝑢2 belongs to some small component 𝐶 of 𝑆.
Note that 𝑢3𝑢4 ∈ 𝐸(𝑃). We can add the blue edges and remove the red edges from 𝑆 to merge two small
components into a large one.

P
CL

vL

uL

CR
wL = uju1 uk

uR

Figure 10. An example of the construction of 𝑆′ when 𝐶𝐿 is a small component, 𝑤𝐿 = 𝑢𝑗 , 𝑗 ∈ {3, . . . , 𝑘} and
𝐶𝑅 is a large component. We remove the edges of 𝐶𝐿 and we add the shortcut path of 𝐶𝐿 and the edge
𝑣𝐿𝑤𝐿. This is equivalent to removing the red edge and adding the blue edges. The shortcut path of 𝐶𝐿 is
shown in bold blue. The nodes of 𝐶𝐿 together with the path 𝑢𝐿𝑢1𝑢2 . . . 𝑢𝑗 and the edge 𝑣𝐿𝑢𝑗 belong to a
block 𝐵𝐿 in 𝑆′. The set of internal nodes of 𝑃 is the union of the node sets of some small components
𝐶1, . . . , 𝐶𝑞 of 𝑆. Every connected component 𝐶 ∉ {𝐶𝐿, 𝐶𝑅} ∪ {𝐶1, . . . , 𝐶𝑞} of 𝑆 remains unaltered.

(2.3) 𝒘𝑳 = 𝒖 𝒋, 𝒋 ∈ {3, . . . , 𝒌}.
(2.3.1) 𝑪𝑹 is a large component.

An example of the construction of 𝑆′ for this case is shown in Figure 10. 𝑆′ contains a complex
connected component 𝐶 spanning the nodes of 𝐶𝑅, 𝐶𝐿 and 𝑃. The nodes of 𝐶𝐿 together with the
path 𝑢𝐿𝑢1𝑢2 . . . 𝑢 𝑗 and the edge 𝑣𝐿𝑢 𝑗 belong now to a block 𝐵𝐿 in 𝑆′, so exactly |𝐸(𝑃) − 𝑗 | edges
of 𝑃 are now bridges of 𝐶, and require 1

4 credit each. If 𝐶𝐿 is not a 3-cycle one has

cost(𝑆) − cost(𝑆′) ≥
|𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3 − cr(𝐶) − cr(𝐵𝐿) − (|𝐸(𝑃) | − 𝑗) · 1/4 ≥
− 1 + 1 + 4/3 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − 1 − (|𝐸(𝑃) | − 3) · 1/4 > 0.

23 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

On the other hand, if 𝐶𝐿 is a 3-cycle by Property 3 we can assume 𝑗 ≥ 4, so one has

cost(𝑆) − cost(𝑆′) ≥
|𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3 − cr(𝐶) − cr(𝐵𝐿) − (|𝐸(𝑃) | − 𝑗) · 1/4 ≥
− 1 + 1 + 1 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − 1 − (|𝐸(𝑃) | − 4) · 1/4 ≥ 0.

In both cases we used Property 1, i.e., |𝐸(𝑃) | ≥ 4.

(2.3.2) 𝑪𝑹 is a small component.
An example of the construction of 𝑆′ for this case is shown in Figure 11. 𝑆′ contains a large
component 𝐶 spanning the nodes of 𝐶𝑅, 𝐶𝐿 and 𝑃. If in 𝑆′ the nodes of 𝐶𝑅, 𝐶𝐿 and 𝑃 belong to a
single block 𝐵 then one has

cost(𝑆) − cost(𝑆′) = |𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3 − cr(𝐶) − cr(𝐵)
≥ −1 + 1 + 1 + 1 − 1 − 1 = 0,

where we have used |𝐸(𝑃) | ≥ 4 (Property 1). Otherwise, 𝐶 is a complex component. As in the
previous case, the nodes of 𝐶𝐿 together with the path 𝑢𝐿𝑢1𝑢2 . . . 𝑢 𝑗 and the edge 𝑣𝐿𝑢 𝑗 belong now
to a block 𝐵𝐿 in 𝑆′. By the symmetry of Properties 1 to 5 w.r.t. 𝐶𝐿 and 𝐶𝑅, we can assume that the
nodes of 𝐶𝑅 together with the subpath of 𝑃, 𝑢𝑅𝑢𝑘𝑢𝑘−1 . . . 𝑢𝑘− 𝑗′ and an edge 𝑣𝑅𝑢𝑘− 𝑗′ belong now
to a block 𝐵𝑅, where 𝑗′ ≥ 3 and 𝑘 − 𝑗′ ≥ 𝑗 (otherwise 𝐵𝑅 and 𝐵𝐿 would share an edge in 𝑆′ and
thus 𝐶 would not be a complex component). Notice that we have |𝐸(𝑃) | ≥ 𝑗 + 𝑗′. If 𝐶𝐿 is not a
3-cycle one has

cost(𝑆) − cost(𝑆′) = |𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3
− cr(𝐶) − cr(𝐵𝑅) − cr(𝐵𝐿) − (|𝐸(𝑃) | − 𝑗 − 𝑗′) · 1/4
≥ −1 + 1 + 4/3 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − 1 − 1 − (|𝐸(𝑃) | − 6) · 1/4 ≥ 0.

The last inequality above follows from the fact that |𝐸(𝑃) | ≥ 𝑗 + 𝑗′ ≥ 6. If 𝐶𝐿 is a 3-cycle
we can assume by Property 3 that 𝑗 ≥ 4 and one has

cost(𝑆) − cost(𝑆′) = |𝑆 | − |𝑆′| + cr(𝐶𝑅) + cr(𝐶𝐿) + (|𝐸(𝑃) | − 1) · 1/3
− cr(𝐶) − cr(𝐵𝑅) − cr(𝐵𝐿) − (|𝐸(𝑃) | − 𝑗 − 𝑗′) · 1/4
≥ −1 + 1 + 1 + (|𝐸(𝑃) | − 1) · 1/3 − 1 − 1 − 1 − (|𝐸(𝑃) | − 7) · 1/4 ≥ 0.

The last inequality above follows from the fact that |𝐸(𝑃) | ≥ 𝑗 + 𝑗′ ≥ 7. ■

We next address the small components of the second type, i.e., small components adjacent
only to a single connected component of 𝑆 (excluding pendant 4-cycles).

LEMMA 3.6. Let 𝑆 be a canonical 2-edge-cover of a structured graph 𝐺. Assume that 𝑆 contains
a small component 𝐶 such that 𝐶 is only adjacent to another component 𝐶′ of 𝑆 and 𝐶 is not a

24 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

P CR

vR

CL

vL

uL uRu1 wL = uj wR = uk−j′ uk

Figure 11. An example of the construction of 𝑆′ when 𝐶𝐿 is a small component, 𝑤𝐿 = 𝑢𝑗 , 𝑗 ∈ {3, . . . , 𝑘} and
𝐶𝑅 is also a small component. We remove the edges of 𝐶𝐿 and 𝐶𝑅, and we add their shortcut paths and
the edges 𝑣𝐿𝑤𝐿 and 𝑣𝑅𝑤𝑅. This is equivalent to removing the red edges and adding the blue edges. The
shortcut paths of 𝐶𝐿 and 𝐶𝑅 are shown in bold blue. The nodes of 𝐶𝐿 together with the path 𝑢𝐿𝑢1𝑢2 . . . 𝑢𝑗

and the edge 𝑣𝐿𝑤𝐿 belong to a block 𝐵𝐿 in 𝑆′. Similarly, the nodes of 𝐶𝑅 together with the path
𝑢𝑅𝑢𝑘𝑢𝑘−1 . . . 𝑢𝑘− 𝑗′ and the edge 𝑣𝑅𝑤𝑅 belong to a block 𝐵𝑅 in 𝑆′. In the case shown, 𝐵𝐿 ≠ 𝐵𝑅. The set of
internal nodes of 𝑃 is the union of the node sets of some small components 𝐶1, . . . , 𝐶𝑞 of 𝑆. Every
connected component 𝐶 ∉ {𝐶𝐿, 𝐶𝑅} ∪ {𝐶1, . . . , 𝐶𝑞} of 𝑆 remains unaltered.

pendant 4-cycle. Then one can compute in polynomial time a canonical 2-edge-cover 𝑆′ of 𝐺 with
strictly fewer components than 𝑆 and with cost(𝑆′) ≤ cost(𝑆).

PROOF . Apply the 3-matching Lemma 3.1 to 𝐶 to get a matching {𝑢1𝑣1, 𝑢2𝑣2, 𝑢3𝑣3}, 𝑢𝑖 ∈ 𝐶, 𝑣𝑖 ∈
𝐶′ for 𝑖 ∈ {1, 2, 3}. W.l.o.g. assume that 𝑢1 and 𝑢2 are adjacent in 𝐶. This way, 𝐸(𝐶)∪{𝑢1𝑣1, 𝑢2𝑣2}\
{𝑢1𝑢2} is a path from 𝑣1 to 𝑣2 whose internal nodes are given by 𝑉 (𝐶). We will consider a few
cases depending on the type of 𝐶 and 𝐶′.

(1) 𝑪′ is small.
(1.1) At least one among 𝑪 and 𝑪′ is a 3-cycle or both 𝑪 and 𝑪′ are 4-cycles.

In this case w.l.o.g. we can assume that 𝑣1 and 𝑣2 are adjacent in 𝐶′. Let 𝑆′ := 𝑆 ∪ {𝑢1𝑣1, 𝑢2𝑣2} \
{𝑢1𝑢2, 𝑣1𝑣2}. Notice that 𝐸(𝐶) ∪ 𝐸(𝐶′) ∪ {𝑢1𝑣1, 𝑢2𝑣2} \ {𝑢1𝑢2, 𝑣1𝑣2} induces a cycle 𝐶′′ of length
at least 6 in 𝑆′ (hence a 2VC large component with a single block 𝐵). One has

cost(𝑆) − cost(𝑆′) = cr(𝐶) + cr(𝐶′) − cr(𝐶′′) − cr(𝐵) ≥ 1 + 1 − 1 − 1 = 0.

(1.2) At least one among 𝑪 and 𝑪′ is a 5-cycle.
Assume that 𝐶′ is a 5-cycle, the other case being symmetric. By Case 1 we can assume that 𝐶 is a
4-cycle or a 5-cycle. Set 𝑆′ := 𝑆 ∪ {𝑢1𝑣1, 𝑢2𝑣2} \ {𝑢1𝑢2}. Notice that 𝐶 and 𝐶′ are merged into a
2VC large component 𝐶′′ of 𝑆′ with a single block 𝐵. One has

cost(𝑆) − cost(𝑆′) = cr(𝐶) + cr(𝐶′) − cr(𝐶′′) − cr(𝐵) − 1 ≥ 4/3 + 5/3 − 1 − 1 − 1 = 0.

(2) 𝑪′ is large.

Observe that 𝐶 is a 3-cycle or a 5-cycle since by assumption it is not a pendant 4-cycle.

(2.1) 𝑪 is a 5-cycle.
(2.1.1) There is a 𝒗1-𝒗2 path 𝑷 in𝑪′ that includes some edge of some block or at least 2 bridges.

Set 𝑆′ := 𝑆 ∪ {𝑢1𝑣1, 𝑢2𝑣2} \ {𝑢1𝑢2}. Let 𝐶′′ be the connected component of 𝑆′ that includes the

25 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

nodes of 𝐶 and 𝑃. If 𝑃 includes an edge of some block 𝐵 in 𝑆, then in 𝑆′ the nodes of 𝐶, 𝑃 and 𝐵

belong to a single block 𝐵′, and one has:

cost(𝑆) − cost(𝑆′) ≥ |𝑆 | − |𝑆′| + cr(𝐶) + cr(𝐵) − cr(𝐵′) = −1 + 5
3
+ 1 − 1 > 0.

Otherwise, 𝑃 includes at least 2 bridges, so we get at least 2 · 1
4 = 1

2 credits from the bridges
along 𝑃. Also, the nodes of 𝐶 and 𝑃 form a new block 𝐵′, which is the only block in 𝑆′ not present
in 𝑆. Altogether

cost(𝑆) − cost(𝑆′) ≥ |𝑆 | − |𝑆′| + cr(𝐶) + 1
2
− cr(𝐵′) = −1 + 5

3
+ 1

2
− 1 > 0.

(2.1.2) 𝒗1𝒗2 is a bridge of 𝑪′.
Set 𝑆′ := 𝑆∪{𝑢1𝑣1, 𝑢2𝑣2} \ {𝑢1𝑢2, 𝑣1𝑣2}. In 𝑆′we replace the bridge 𝑣1𝑣2 with a path 𝑃 of |𝐸(𝐶) | +1
bridges. One has

cost(𝑆) − cost(𝑆′) = cr(𝐶) + cr(𝑣1𝑣2) −
∑︁

𝑒∈𝐸(𝑃)
cr(𝑒) = |𝐸(𝐶) |1

3
+ 1

4
− (|𝐸(𝐶) | + 1)1

4
≥ 0.

(2.2) 𝑪 is a 3-cycle.

(2.2.1) There is a 𝒗𝒊-𝒗 𝒋 path 𝑷 in 𝑪′, for some 𝒊, 𝒋, that includes some edge of some block or at

least 4 bridges.
W.l.o.g. assume (𝑖, 𝑗) = (1, 2). In this case we build 𝑆′ as in Case 1. The cost analysis works
almost identically as in Case 1. In this case 𝐶 provides 1 credit only (rather than 5/3), but in
both subcases this is enough. In particular, in the case 𝑃 includes at least 4 bridges they provide
4 · 1

4 = 1 credits which makes up for the loss of credit of 𝐶.

(2.2.2) 𝒗𝒊𝒗 𝒋 is a bridge of 𝑪′, for some 𝒊, 𝒋.
W.l.o.g. assume (𝑖, 𝑗) = (1, 2). In this case we build 𝑆′ like in Case 2. The analysis is identical.

(2.2.3) None of the above cases.
This case is illustrated in Figure 12. Let 𝑃𝑣𝑖𝑣 𝑗 be the 𝑣𝑖-𝑣 𝑗 path in 𝐶′. Observe that such paths
consist of bridges only, and have length 2 or 3. W.l.o.g. assume |𝐸(𝑃𝑣1𝑣2) | ≥ |𝐸(𝑃𝑣1𝑣3) |, |𝐸(𝑃𝑣2𝑣3) |.
Since 2 ≤ |𝐸(𝑃𝑣1𝑣2) | ≤ 3, 𝑣3 cannot be an internal vertex of 𝑃𝑣1𝑣2: indeed otherwise the path
from 𝑣3 to at least one of 𝑣1 or 𝑣2 would have length 1, a contradiction. However since 𝑃𝑣1𝑣2

consists only of bridges and |𝐸(𝑃𝑣1𝑣2) | ≥ |𝐸(𝑃𝑣1𝑣3) |, |𝐸(𝑃𝑣2𝑣3) |, at least one internal node 𝑤 of
𝑃𝑣1𝑣2 has degree at least 3 in 𝐶′. Note 𝑤 is adjacent to 𝑣1 or 𝑣2 in 𝐶′: assume w.l.o.g. 𝑣1𝑤 ∈ 𝐸(𝐶′).
Set 𝑆′ := 𝑆 ∪ {𝑢1𝑣1, 𝑢2𝑣2} \ {𝑢1𝑢2, 𝑣1𝑤}. The nodes of 𝐶 and 𝐶′ belong to a single connected
component 𝐶′′ in 𝑆′. In 𝐶′′ the bridges and blocks of 𝐶′ remain the same, except for the removed
bridge 𝑣1𝑤. The edges of the path 𝑃 = 𝑣1𝑢1𝑢3𝑢2𝑣2 are bridges of 𝐶′′. Altogether

cost(𝑆) − cost(𝑆′) ≥ cr(𝐶) + cr(𝑣1𝑤) + cr(𝐶′) − cr(𝐶′′) −
∑︁

𝑒∈𝐸(𝑃)
cr(𝑒) = 1 + 1

4
− 4 · 1

4
> 0.

26 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

v1

u1 u2

u3

w

v3

C

C ′

v2

Figure 12. Illustration of Case 3 of Lemma 3.6. 𝑆′ is obtained from 𝑆 by adding the blue edges and
removing the red ones.

In each case it is easy to check that 𝑆′ is a 2-edge-cover and the number of components of
𝑆′ is strictly less than the number of components of 𝑆. Furthermore, 𝑆′ is canonical since each
newly created block has at least 5 nodes and each newly created connected component has at
least 6 edges (hence it is large). ■

Lemma 2.17 follows by repeated applications of Lemma 3.2 and Lemma 3.6.

3.2 Removing complex components

In this section we prove Lemma 2.18. Recall that initially we are given a canonical 2-edge-cover
𝑆 where the only small components are pendant 4-cycles: we will maintain this invariant.

DEF IN IT ION 3.7. We say that 𝑃 is an extending path of a complex component 𝐶, if it is a path
in 𝐸(𝐺) \ 𝐸(𝐶) between two nodes of 𝐶 such that 𝑃 = {𝑒0} ∪ 𝑃1 ∪ {𝑒1} ∪ 𝑃2 ∪ {𝑒2} · · · ∪ 𝑃𝑘 ∪ {𝑒𝑘},
𝑘 ≥ 0, where 𝑃1, . . . , 𝑃𝑘 are paths (possibly of length zero) in distinct components 𝐶1, . . . , 𝐶𝑘,
resp., of 𝑆 \ 𝐸(𝐶), and 𝑒0, . . . , 𝑒𝑘 are edges in 𝐸(𝐺) \ 𝑆.

Since 𝐶1, . . . , 𝐶𝑘 are all distinct, and the only small components of 𝑆 are pendant 4-cycles,
either 𝑃 = {𝑒0}∪𝑃1∪{𝑒1}, with𝐶1 being a pendant 4-cycle, or𝐶1, . . . , 𝐶𝑘 are all large components.
In the latter case, we say that 𝑃 is a clean extending path. Notice that a clean extending path
might consist of a single edge.

Consider what happens to the cost of 𝑆 when we add the edges of a clean extending path
𝑃𝑢𝑣 = {𝑒0} ∪ 𝑃1 ∪ {𝑒1} ∪ 𝑃2 ∪ {𝑒2} · · · ∪ 𝑃𝑘 ∪ {𝑒𝑘} between nodes 𝑢 and 𝑣 of some complex
component 𝐶 of 𝑆. By doing this, the edges of 𝑃𝑢𝑣 and of every path in 𝐶 from 𝑢 to 𝑣 become part
of a block 𝐵. Therefore this operation cannot create any new bridge. The cost increases by 𝑘 + 1
due to the extra edges of 𝑃𝑢𝑣. The blocks of every 𝐶𝑖 retain their credit, and we collect 1 credit
from every 𝐶𝑖 . Hence we earn at least 𝑘 credits from the components along 𝑃𝑢𝑣. Altogether,
the cost increases by at most 1 based on the above arguments. We call such cost increase, the

27 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

increase of the cost due to 𝑃𝑢𝑣, and denote it by c̃ost(𝑃𝑢𝑣) ≤ 1. We remark that in the following
we sometimes add ℓ ≥ 2 clean extending paths simultaneously. In that case we will guarantee
that they do not share any component 𝐶𝑖 (we say that they are component disjoint): this way we
can guarantee that the overall increase of the cost due to such paths is the sum of their individual
cost increases, hence at most ℓ (otherwise we might overcount the credits gained from some
component). In the following we might add several component disjoint extending paths and
remove some edges from 𝐶. When doing this we will guarantee that the extending paths are
still part of some block, despite removing edges of 𝐶: this way we maintain the invariant that
we do not create new bridges and thus the above cost analysis holds.

We next show that we can extend the 3-matching Lemma 3.1 to work with extending
paths. If 𝐶 is a complex component of 𝑆, we define the graph 𝐺𝐶 such that 𝑉 (𝐺𝐶) = 𝑉 (𝐶), and
for 𝑢, 𝑣 ∈ 𝑉 (𝐺𝐶), 𝑢𝑣 ∈ 𝐸(𝐺𝐶) iff 𝑢𝑣 ∈ 𝐸(𝐶) or there is an extending path from 𝑢 to 𝑣.

LEMMA 3.8. Let 𝐶 be a complex component of 𝑆, and (𝑉1, 𝑉2) be a partition of the nodes of 𝐶
such that 4 ≤ |𝑉1 | ≤ |𝑉2 |. Then there is a matching of size 3 in 𝐺𝐶 between 𝑉1 and 𝑉2.

PROOF . We claim 𝐺𝐶 has no non-isolating cut. Assume to get a contradiction that there is
a non-isolating cut {𝑢, 𝑣} in 𝐺𝐶 splitting 𝐺𝐶 into components 𝐶1, 𝐶2, . . . , 𝐶𝑘, 𝑘 ≥ 2. Since 𝐺 is
structured, {𝑢, 𝑣} is not a non-isolating cut of 𝐺. Therefore, there are at least 2 components
among 𝐶1, 𝐶2, . . . , 𝐶𝑘 such that there is a path in 𝐺 \ {𝑢, 𝑣} between them. Moreover, we can
assume such path to be fully outside 𝐶. Indeed, all edges of 𝐶 are in 𝐺𝐶 , so a path 𝑃 between
two components among 𝐶1, 𝐶2, . . . , 𝐶𝑘 must contain an edge not in 𝐶 (otherwise it would also be
a path in 𝐺𝐶 , a contradiction). Thus, the subpath of 𝑃 that is fully outside 𝐶 is a path between
two components among 𝐶1, 𝐶2, . . . , 𝐶𝑘. W.l.o.g. assume there is a path 𝑃 in 𝐺 \ {𝑢, 𝑣} between
nodes 𝑣1 ∈ 𝑉 (𝐶1) and 𝑣2 ∈ 𝑉 (𝐶2) not using any edge of 𝐶. But then there exists an extending
path between 𝑣1 and 𝑣2: this implies that there exists an edge in 𝐺𝐶 \ {𝑢, 𝑣} from 𝑣1 to 𝑣2, a
contradiction. The claim follows.

Now assume |𝑉1 |, |𝑉2 | ≥ 4. Then if there is no matching of size 3 in 𝐺𝐶 between 𝑉1 and 𝑉2,
using König-Egeváry Theorem, there exists a vertex cover 𝑉 ′ of the bipartite graph induced by
(𝑉1, 𝑉2) in 𝐺𝐶 of size at most 2. Notice that there is no edge between𝑉1 \𝑉 ′ and𝑉2 \𝑉 ′, where the
latter sets have size at least 2. If𝑉 ′ is of size 2, then it is a non-isolating cut of 𝐺𝐶 , a contradiction.
If instead 𝑉 ′ = {𝑣′}, then 𝑣′ is a cut vertex in 𝐺𝐶 (hence in 𝐺), a contradiction. ■

For the sake of brevity, when given a complex component 𝐶 of 𝑆 and a subgraph 𝐵 of 𝐶, we
will usually say that we apply Lemma 3.8 to 𝐵 instead of to (𝑉 (𝐵), 𝑉 (𝐶) \𝑉 (𝐵)). Also, because
𝑆 is canonical, every leaf-block of 𝐶 has at least 5 nodes, so we can apply Lemma 3.8 to any
partition 𝑉1, 𝑉2 of 𝑉 (𝐶) if 𝑉1 and 𝑉2 both contain the nodes of some leaf-block.

The most complicated part of proving Lemma 2.18 is removing complex components
without creating new small components. We do this in Lemma 3.9 whose proof is postponed.

28 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

LEMMA 3.9. Let 𝑆 be a canonical 2-edge-cover of a structured graph 𝐺 whose small components
are pendant 4-cycles and that has at least one complex component. In polynomial time one
can find a canonical 2-edge-cover 𝑆′ of 𝐺, whose small components are pendant 4-cycles, with
no more connected components than 𝑆, with fewer complex components than 𝑆, and such that
cost(𝑆′) ≤ cost(𝑆).

After this, the only remaining components are large 2VC components and pendant 4-cycles.
It is then quite simple to remove pendant 4-cycles and thus obtain a solution satisfying the
conditions of Lemma 2.18. We show this first in the following simple lemma. Then, Lemma 2.18
follows by chaining Lemmas 3.9 and 3.10.

LEMMA 3.10. Let 𝑆 be a canonical 2-edge-cover such that the only connected components of 𝑆 are
large 2VC components and pendant 4-cycles. Then in polynomial time one can find a 2-edge-cover
𝑆′ such that the only components of 𝑆′ are large 2VC components and cost(𝑆′) ≤ cost(𝑆).

PROOF . Let 𝐶1 be a 4-cycle of 𝑆 adjacent only to one connected component 𝐶2 of 𝑆 that is large
and 2VC. Let 𝐵 be the only block of 𝐶2. By applying the 3-matching Lemma 3.1 to 𝐶1 we can find
a matching {𝑎1𝑎2, 𝑏1𝑏2}, with 𝑎1𝑏1 ∈ 𝐸(𝐶1) and 𝑎2, 𝑏2 ∈ 𝑉 (𝐶2). Set 𝑆′ := 𝑆∪ {𝑎1𝑎2, 𝑏1𝑏2} \ {𝑎1𝑏1}.
In 𝑆′ the nodes of 𝐶1 and 𝐶2 belong to a single large component 𝐶3 with a single block 𝐵′. One
has

cost(𝑆) − cost(𝑆′) = cr(𝐶1) + cr(𝐶2) + cr(𝐵) − cr(𝐶3) − cr(𝐵′) − 1 =
4
3
+ 1 + 1 − 1 − 1 − 1 > 0.

By iterating the above construction we obtain the claim. ■

Notation in the figures of Lemma 3.9. In the coming figures, gray regions represent blocks
or 4-cycles, blue edges are added to 𝑆 and red edges are being removed from 𝑆. Blue curved
line represent clean extending paths that are added to 𝑆. Edges in a complex component that
become part of a new block are shown in green. The dashed edges represent other edges of 𝐺
not in 𝑆.

PROOF OF LEMMA 3.9 . Let 𝐶 be any complex component of 𝑆. We will show how to modify
𝑆 into a canonical 2-edge-cover 𝑆′ without creating new connected components and in a way
that 𝑉 (𝐶) is contained in a connected component 𝐶′ of 𝑆′, and either 𝑆′ has fewer connected
components than 𝑆 or 𝐶′ has fewer bridges or fewer blocks than 𝐶. We then repeat this operation
on 𝐶′ until it becomes a (large) 2VC component.

For every 𝑎, 𝑏 ∈ 𝐶 let 𝑃𝐶
𝑎𝑏

be any path in 𝐶 between them. We consider the following cases,
assuming at each case that the previous ones do not hold.

(1) For some leaf-block 𝑩, there is a non-clean extending path 𝑷𝒙 𝒚 from 𝒙 ∈ 𝑽 (𝑩) \ {𝒖} to
𝒚 ∈ 𝑽 (𝑪) \𝑽 (𝑩), where 𝒖 is the only cut vertex of 𝑩.
This case is illustrated in Figure 13. Let 𝐶′ be the 4-cycle corresponding to 𝑃𝑥 𝑦 and let 𝑥𝑎, 𝑎 ∈

29 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

B

C ′

u

x = w1

w2

w3

v1 v2

v3

Figure 13. Lemma 3.9 Case 1.

𝑉 (𝐶′), be the first edge of 𝑃𝑥 𝑦. Apply the 3-matching Lemma 3.1 to 𝐶′ to get a matching
{𝑣1𝑤1, 𝑣2𝑤2, 𝑣3𝑤3}, with 𝑤𝑖 ∈ 𝐶, 𝑣𝑖 ∈ 𝐶′ for all 𝑖. W.l.o.g. we can assume 𝑤1 = 𝑥: indeed if
𝑤1 ≠ 𝑥, we can add 𝑎𝑥 to the matching and remove 𝑎𝑤𝑖 if any. Notice that at least one of 𝑣2 or
𝑣3 is adjacent to 𝑣1, say 𝑣1𝑣2 ∈ 𝐸(𝐶′) w.l.o.g. Set 𝑆′ := 𝑆 ∪ {𝑣1𝑤1, 𝑣2𝑤2} \ {𝑣1𝑣2}. In 𝑆′, the path
𝐸(𝐶′) ∪ {𝑣1𝑤1, 𝑣2𝑤2} \ {𝑣1𝑣2} is merged with 𝐵 (and potentially more edges of 𝐶) into a single
block 𝐵′. Hence one has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐶′) − cr(𝐵′) − 1 = 1 + 4/3 − 1 − 1 > 0.

We will use the next remark repeatedly in the rest of the cases.

REMARK 3.1 1. Let 𝐵 be any leaf-block with cut vertex 𝑢, and assume that Case 1 does not
hold. Apply Lemma 3.8 to 𝐵. There are two extending paths with distinct endpoints from
𝑣1, 𝑣2 ∈ 𝑉 (𝐵) \ {𝑢} to 𝑤1, 𝑤2 ∈ 𝑉 (𝐶) \ 𝑉 (𝐵). Since Case 1 does not hold, these paths are clean.
Given 𝑥 ∈ 𝑉 (𝐶) \ 𝑉 (𝐵) at least one of those paths goes from 𝑎 to 𝑏, where 𝑎 ∈ 𝑉 (𝐵) \ {𝑢},
𝑏 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵) ∪ {𝑥}).

(2) For some block 𝑩, there is a clean extending path 𝑷𝒙 𝒚 from 𝒙 ∈ 𝑽 (𝑩) to 𝒚 ∈ 𝑽 (𝑪) \𝑽 (𝑩)

such that there is a path 𝑷𝑪
𝒙 𝒚 containing an edge of 𝑩 and either an edge of another block 𝑩′

or at least 4 bridges.
This case is illustrated in Figure 14. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑥 𝑦). 𝑃𝑥 𝑦, 𝐵 and all edges of 𝑃𝐶

𝑥 𝑦 are merged
into a single block 𝐵′′ of 𝑆′. If 𝑃𝐶

𝑥 𝑦 contains the edge of another block 𝐵′ then 𝐵′ is also part of 𝐵′′

in 𝑆′, and it brings 1 credit. If 𝑃𝐶
𝑥 𝑦 contains at least 4 bridges each of them brings 1/4 credits, so

we collect 1 credit from the edges of 𝑃𝐶
𝑥 𝑦 as well. Altogether

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝑃𝐶
𝑥 𝑦) − cr(𝐵′′) − c̃ost(𝑃𝑥 𝑦) ≥ 1 + 1 − 1 − 1 = 0.

REMARK 3.12. Assuming that Cases 1 and 2 do not hold, every leaf-block 𝐵 must have at least
one bridge incident to them. Otherwise, let 𝑢 be the cut vertex of 𝐵. By Remark 3.11, there is a
clean extending path from a vertex 𝑣 ∈ 𝑉 (𝐵) \ {𝑢} to some 𝑤 ∈ 𝑉 (𝐶) \𝑉 (𝐵). Since no bridge is

30 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

B

B′

x

y

Figure 14. Lemma 3.9 Case 2.

incident to 𝑢, 𝑃𝐶
𝑤𝑢 includes the edge of another block 𝐵′, and thus 𝑃𝐶

𝑣𝑤 includes edges of both 𝐵

and 𝐵′, which is excluded by Case 2.

Let𝐶∗ be the block-cutpoint graph (see Section 1.2) of𝐶, and take a longest path 𝑃∗ in the tree
𝐶∗. Note that the endpoints of this paths are two leaf-blocks. Let 𝐵 be the block corresponding
to one of those leaves. By Remark 3.12 and because 𝑃∗ is a longest path, 𝐵 must have exactly
one bridge 𝑢0𝑢1, 𝑢0 ∈ 𝑉 (𝐵), incident to it. 𝑃∗ is the path 𝑏1𝑐1𝑏2𝑐2𝑏3𝑐3 . . . , where 𝑏1, 𝑏2, . . . are
blocks or bridges of 𝐶, 𝑐1, 𝑐2, . . . are cut vertices of 𝐶 and 𝑏1, 𝑐1, 𝑏2 correspond to 𝐵, 𝑢0 and 𝑢0𝑢1,
respectively. Consider the maximal sequence 𝑏2, 𝑏3, . . . such that 𝑏𝑖 is a bridge of 𝐶 for all 𝑖 ≥ 2,
and let 𝑢0𝑢1𝑢2𝑢3 . . . be the path of bridges corresponding to that sequence. For every 𝑖 ≥ 0, let
𝐴(𝑢𝑖) be the set of nodes (other than 𝑢𝑖) with paths in 𝐶 to 𝑢𝑖 that do not go through 𝑢𝑖−1 or 𝑢𝑖+1.
Observe that the sets 𝐴(𝑢𝑖) are disjoint and that𝑉 (𝐵) \ {𝑢0} ⊆ 𝐴(𝑢0). An example of how 𝐶 and
𝑃∗ might look like is shown in Figure 15.

u0B u1 u2 u3

A(u0)

A(u1)

A(u2)

Figure 15. A representation of 𝐶 with respect to the path 𝑃∗. Recall that, because of Remark 3.12, every
leaf-block must have a bridge incident to it.

31 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

u0 u1

x

yB

B′

v

w

Figure 16. Lemma 3.9 Case 3.

(3) There is clean extending path 𝑷𝒗𝒘 from 𝒗 ∈ 𝑽 (𝑩) \ {𝒖0} to 𝒘 ∈ 𝑨(𝒖1).
This case is illustrated in Figure 16. No path 𝑃𝐶

𝑤𝑢0
can include the edge of a block distinct from

𝐵, because of Case 2. Thus 𝑃𝐶
𝑤𝑢0

consists only of bridges. Also, since 𝑃∗ is a longest path, 𝑃𝐶
𝑤𝑢1

consists of a single bridge 𝑢1𝑤 and 𝑤 ∈ 𝑉 (𝐵′), where 𝐵′ is a leaf-block of 𝐶 distinct from 𝐵. Apply
Remark 3.11 to 𝐵′ to find a clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐵′) \ {𝑤}, to 𝑦 ∈ 𝑉 (𝐶) \𝑉 (𝐵′).
Let us first argue that the paths 𝑃𝑣𝑤 and 𝑃𝑥 𝑦 are component disjoint. If that is not the case then
there is a clean extending path 𝑃𝑣𝑥 from 𝑣 to 𝑥, but since every 𝑃𝐶

𝑣𝑥 includes at least an edge of
𝐵 and an edge of 𝐵′ this is excluded by Case 2.

Notice that every path 𝑃𝐶
𝑦𝑢0

must not use 𝑢1𝑤. Otherwise, since 𝑃∗ is a longest path, it must
be that 𝑦 ∈ 𝐵′′, where 𝐵′′ is another leaf-block with 𝑤 ∈ 𝑉 (𝐵′′), and 𝑃𝐶

𝑥 𝑦 contains the edges of
two distinct blocks, a contradiction by Case 2. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣𝑤) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢1𝑤}, so that 𝐵
and 𝐵′ are merged into a single block 𝐵′′ by the paths 𝑃𝑣𝑤 and 𝑃𝑥 𝑦 ∪ 𝑃𝐶

𝑦𝑢0
. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + 1 − cr(𝐵′′) − c̃ost(𝑃𝑣𝑤) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 1 + 1 − 1 − 1 − 1 = 0.

(4) There is a clean extending path 𝑷𝒗𝒘 from 𝒗 ∈ 𝑽 (𝑩) \ {𝒖0} to 𝒘 ∈ 𝑨(𝒖2).
By Case 2 it must be that every 𝑃𝐶

𝑤𝑢0
contains no edge of a block and |𝐸(𝑃𝐶

𝑤𝑢0
) | ≤ 3. Thus there is

a bridge 𝑢2𝑤 in 𝐶 and 𝑃𝐶
𝑤𝑢0

= 𝑤𝑢2𝑢1𝑢0.

(4.1) There is another bridge 𝒘𝒘′, 𝒘′ ≠ 𝒖2.
This case is illustrated in Figure 17. Since 𝑃∗ is a longest path, 𝑤′ ∈ 𝑉 (𝐵′), where 𝐵′ is a leaf-
block of 𝐶 distinct from 𝐵. Apply Remark 3.11 to 𝐵′ to find a clean extending path 𝑃𝑥 𝑦 from
𝑥 ∈ 𝑉 (𝐵′) \ {𝑤′} to 𝑦 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵′) ∪ {𝑤}). Notice that 𝑃𝑥 𝑦 and 𝑃𝑣𝑤 are component disjoint,
otherwise there is a clean extending path 𝑃𝑣𝑥 from 𝑣 to 𝑥, which is excluded by Case 2.

Let 𝐶1 and 𝐶2 be the connected components resulting from removing the bridge 𝑢2𝑤,
with 𝑉 (𝐵) ⊂ 𝑉 (𝐶1). If 𝑦 ∈ 𝑉 (𝐶2) then either 𝑦 ∈ 𝑉 (𝐵′′), where 𝐵′′ is another leaf-block with
𝑤′ ∈ 𝑉 (𝐵′′), and 𝑃𝐶

𝑥 𝑦 contains the edges of two distinct blocks (a contradiction by Case 2), or

32 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u0

u1

y

u2

B′

B

x

v
w

w′

Figure 17. Lemma 3.9 Case 1.

we are in a case symmetric to Case 3 (with 𝐵′ in place of 𝐵). So we can assume 𝑦 ∈ 𝑉 (𝐶1) and
therefore 𝑤 ∉ 𝑉 (𝑃𝐶

𝑦𝑢0
). Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣𝑤) ∪ 𝐸(𝑃𝑥 𝑦), so that in 𝑆′, 𝐵 and 𝐵′ are merged into a

block 𝐵′′ of 𝑆′ through the paths 𝑃𝑣𝑤 ∪ {𝑤𝑤′} and 𝑃𝑥 𝑦 ∪ 𝑃𝐶
𝑦𝑢0

. Observe that the path 𝑃𝐶
𝑤𝑢0

is also
part of 𝐵′′ in 𝑆′. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + cr(𝑤𝑤′) + cr(𝑤𝑢2) + cr(𝑢2𝑢1) + cr(𝑢1𝑢0)
− cr(𝐵′′) − c̃ost(𝑃𝑣𝑤) − c̃ost(𝑃𝑥 𝑦) ≥ 1 + 1 + 4 · 1/4 − 1 − 1 − 1 = 0.

(4.2) There is no bridge 𝒘𝒘′, 𝒘′ ≠ 𝒖2.
This case is illustrated in Figure 18. Using the fact that 𝑃∗ is a longest path and Remark 3.12, it
must be that 𝑤 ∈ 𝑉 (𝐵′) for some leaf-block 𝐵′ of 𝐶 distinct from 𝐵. Apply Remark 3.11 to 𝐵′ to
find a clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐵′) \ {𝑤} to 𝑦 ∈ 𝑉 (𝐶) \ 𝑉 (𝐵′). As in the previous
case, 𝑃𝑥 𝑦 and 𝑃𝑣𝑤 are component disjoint, otherwise there is a clean extending path 𝑃𝑣𝑥 from 𝑣

to 𝑥, which is excluded by Case 2.
If 𝑤𝑢2 ∈ 𝐸(𝑃𝐶

𝑦𝑢0
) for some path 𝑃𝐶

𝑦𝑢0
, it must be that 𝑦 ∈ 𝑉 (𝐵′′), where 𝐵′′ is another

leaf-block of 𝐶 with 𝑤 ∈ 𝑉 (𝐵′′), a contradiction by Case 2. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣𝑤) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢2𝑤},
so that 𝐵 and 𝐵′ are merged into a single block 𝐵′′ of 𝑆′ through the paths 𝑃𝑣𝑤 and 𝑃𝑥 𝑦 ∪ 𝑃𝐶

𝑦𝑢0
.

Then we get

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + 1 − cr(𝐵′′) − c̃ost(𝑃𝑣𝑤) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 1 + 1 − 1 − 1 − 1 = 0.

(5) There are two clean extending paths 𝑷𝒗1𝒖2 and 𝑷𝒗2𝒖3 from 𝒗1, 𝒗2 ∈ 𝑽 (𝑩) \ {𝒖0}, 𝒗1 ≠ 𝒗2 to
𝒖2 and 𝒖3.
Notice that 𝑃𝑣1𝑢2 and 𝑃𝑣2𝑢3 might not be component disjoint. Removing the bridge 𝑢2𝑢3 splits 𝐶
into 2 connected components 𝐶1, 𝐶2, with 𝑉 (𝐵) ⊆ 𝑉 (𝐶1).

33 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

u0 u1 u2
B

y

x

B′

v
w

Figure 18. Lemma 3.9 Case 2.

(5.1) There is a non-clean extending path 𝑷𝒂𝒃 from 𝒂 ∈ 𝑽 (𝑪1) to 𝒃 ∈ 𝑽 (𝑪2).
This case is illustrated in Figure 19. Let 𝐶′ be the 4-cycle corresponding to 𝑃𝑎𝑏 and let 𝑎𝑎′ and
𝑏𝑏′ be the first and last edges of 𝑃𝑎𝑏. Apply the 3-matching Lemma 3.1 to 𝐶′ to get a matching
{𝑥1 𝑦1, 𝑥2 𝑦2, 𝑥3 𝑦3}, with 𝑥𝑖 ∈ 𝐶, 𝑦𝑖 ∈ 𝐶′ for all 𝑖.

Let us prove that we can assume w.l.o.g. that 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2) and 𝑦1 𝑦2 ∈ 𝐸(𝐶′).
First notice that we can assume w.l.o.g. that neither 𝑥𝑖 ∈ 𝑉 (𝐶1) for all 𝑖 ∈ {1, 2, 3} nor 𝑥𝑖 ∈ 𝑉 (𝐶2)
for all 𝑖 ∈ {1, 2, 3}. Indeed, if 𝑥𝑖 ∈ 𝑉 (𝐶1) for 𝑖 ∈ {1, 2, 3} add 𝑏𝑏′ to the matching and remove
𝑥𝑖𝑏
′ if any. Symmetrically if 𝑥𝑖 ∈ 𝑉 (𝐶2) for 𝑖 ∈ {1, 2, 3} add 𝑎𝑎′ to the matching and remove 𝑥𝑖𝑎

′

if any. Now assume 𝑥1, 𝑥3 ∈ 𝑉 (𝐶1) and 𝑥2 ∈ 𝑉 (𝐶2). Since 𝐶′ is a 4-cycle, at least one of 𝑦1, 𝑦3,
say w.l.o.g. 𝑦1, is adjacent to 𝑦2 in 𝐶′, so 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2) and 𝑦1 𝑦2 ∈ 𝐸(𝐶′). The case
where two of 𝑥1, 𝑥2, 𝑥3 belong to 𝑉 (𝐶2) is symmetric. From now on we assume that 𝑥1 ∈ 𝑉 (𝐶1),
𝑥2 ∈ 𝑉 (𝐶2) and 𝑦1 𝑦2 ∈ 𝐸(𝐶′).

Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣2𝑢3) ∪ {𝑥1 𝑦1, 𝑥2 𝑦2} \ { 𝑦1 𝑦2}. Notice that since 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2),
there are vertex disjoint paths 𝑃𝐶

𝑥1𝑢2
and 𝑃𝐶

𝑥2𝑢3
. Adding 𝑃𝑣2𝑢3 merges 𝐵 and 𝑃𝐶

𝑢0𝑢3
= 𝑢0𝑢1𝑢2𝑢3 into

a single block, and adding 𝐸(𝐶′) ∪ {𝑥1 𝑦1, 𝑥2 𝑦2} \ { 𝑦1 𝑦2} merges that block and the paths 𝑃𝐶
𝑥1𝑢2

,
𝑃𝐶
𝑥2𝑢3

into a new block 𝐵′ of 𝑆′. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐶′) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3)
− cr(𝐵′) − c̃ost(𝑃𝑣2𝑢3) − 1 ≥ 1 + 4/3 + 3 · 1/4 − 1 − 1 − 1 > 0.

(5.2) All extending paths between nodes of 𝑪1 and 𝑪2 are clean.
This case is illustrated in Figure 20. Apply Lemma 3.8 to (𝑉 (𝐶1), 𝑉 (𝐶2)). By the hypothesis
of this case, there must be at least one clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐶2) \ {𝑢3} to
𝑦 ∈ 𝑉 (𝐶1) \ {𝑢0}. Since 𝑥 ≠ 𝑢3, 𝑃𝐶

𝑥𝑢3
is not empty, and it contains at least one edge 𝑒. Thus,

|𝐸(𝑃𝐶
𝑥𝑢0
) | ≥ 4, so 𝑦 ∉ 𝐴(𝑢0) by Case 2, and thus 𝑦 ∈ 𝐴(𝑢1) ∪ 𝐴(𝑢2) ∪ {𝑢1, 𝑢2}. Observe that the

paths 𝑃𝑥 𝑦 and 𝑃𝑣1𝑢2 are component disjoint. Indeed, otherwise there is a clean extending path
𝑃𝑣1𝑥 from 𝑣1 to 𝑥, and there is a path 𝑃𝐶

𝑣1𝑥 that includes an edge of 𝐵 and at least 4 other edges

34 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u0 u1 u2 u3

C2C1

B

C ′

x2
x1

y2y1

v2

Figure 19. Lemma 3.9 Case 1.

not in 𝐵 (since |𝐸(𝑃𝐶
𝑥𝑢0
) | ≥ 4); this is excluded by Case 2. By a similar argument 𝑃𝑥 𝑦 and 𝑃𝑣2𝑢3

are also component disjoint.
If 𝑦 ∈ 𝐴(𝑢1) ∪ {𝑢1} set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢2) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢1𝑢2}. Notice that 𝑢1𝑢2 is neither in

𝑃𝐶
𝑢1 𝑦 nor in 𝑃𝐶

𝑥𝑢3
. The path {𝑢0𝑢1} ∪ 𝑃𝐶

𝑢1 𝑦 ∪ 𝑃𝑥 𝑦 ∪ 𝑃𝐶
𝑥𝑢3
∪ {𝑢2𝑢3} ∪ 𝑃𝑣1𝑢2 is merged with 𝐵 into a

single block 𝐵′ of 𝑆′. If 𝑒 is the edge of a block then that block is also merged into 𝐵′, bringing 1
credit, and if it is a bridge it brings 1/4 credits, so we get at least 1/4 credits from the edges of
𝑃𝐶
𝑥𝑢3

. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3) + 1/4 + 1

− cr(𝐵′) − c̃ost(𝑃𝑣1𝑢2) − c̃ost(𝑃𝑥 𝑦) ≥ 1 + 4 · 1/4 + 1 − 1 − 1 − 1 = 0.

If 𝑦 ∈ 𝐴(𝑢2) ∪ {𝑢2} set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣2𝑢3) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢2𝑢3}. Notice that 𝑢2𝑢3 is neither in
𝑃𝐶
𝑢2 𝑦 nor in 𝑃𝐶

𝑥𝑢3
. The path {𝑢0𝑢1} ∪ {𝑢1𝑢2} ∪ 𝑃𝐶

𝑢2 𝑦 ∪ 𝑃𝑥 𝑦 ∪ 𝑃𝐶
𝑥𝑢3
∪ 𝑃𝑣2𝑢3 is merged with 𝐵 into a

single block 𝐵′ of 𝑆′. As before, if 𝑒 is the edge of a block then that block is also merged into 𝐵′,
bringing 1 credit, and if it is a bridge it brings 1/4 credits, so we get at least 1/4 credits from the
edges of 𝑃𝐶

𝑥𝑢3
. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3) + 1/4 + 1

− cr(𝐵′) − c̃ost(𝑃𝑣2𝑢3) − c̃ost(𝑃𝑥 𝑦) ≥ 1 + 4 · 1/4 + 1 − 1 − 1 − 1 = 0.

REMARK 3.13. Assume that all previous cases do not hold. Then, if there is a clean extending
path 𝑃𝑣𝑤 from 𝑣 ∈ 𝑉 (𝐵) \ {𝑢0} to 𝑤 ∈ 𝑉 (𝐶) \𝑉 (𝐵) one has 𝑤 ∈ {𝑢1, 𝑢2, 𝑢3}. To see this, notice that
by Case 2 and since the path from every 𝑢 ∈ 𝐴(𝑢0) to 𝑢0 contains the edge of a block, 𝑤 ∉ 𝐴(𝑢0).
By Cases 3 and 4 𝑤 ∉ 𝐴(𝑢1) ∪ 𝐴(𝑢2), and by Case 2 𝑤 ∈ 𝐴(𝑢0) ∪ 𝐴(𝑢1) ∪ 𝐴(𝑢2) ∪ {𝑢1, 𝑢2, 𝑢3},
because otherwise |𝐸(𝑃𝐶

𝑤𝑢0
) | ≥ 4.

35 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

u0 u1

u2

u3

C2C1

B

xy

v1

u0 u1 u2 u3

C2C1

xy

B

v2

Figure 20. Lemma 3.9 Case 2. We show the two possibilities, 𝑦 ∈ 𝐴(𝑢1) ∪ {𝑢1} and 𝑦 ∈ 𝐴(𝑢2) ∪ {𝑢2}.

(6) None of the previous cases hold.
Many subcases of this case are analogous to previous cases; however, we include them all here
for the sake of completeness. Apply Lemma 3.8 to 𝐵 to find a matching {𝑒1, 𝑒2, 𝑒3} in 𝐺𝐶 . Since 𝐵

is a leaf-block, we can assume w.l.o.g. that 𝑒1, 𝑒2 correspond to extending paths with distinct
endpoints from𝑉 (𝐵) \ {𝑢0} to𝑉 (𝐶) \𝑉 (𝐵). Since Case 1 does not hold, those paths are clean. By
Remark 3.13 and the fact that Case 5 does not hold, at least one of those paths has an endpoint
in 𝑢1 and the other in either 𝑢2 or 𝑢3. This implies that 𝑒1, 𝑒2 correspond to clean extending
paths 𝑃𝑣1𝑢1 , 𝑃𝑣2𝑤2 with distinct endpoints from 𝑣1, 𝑣2 ∈ 𝑉 (𝐵) \ {𝑢0} to 𝑢1 and 𝑤2 ∈ {𝑢2, 𝑢3}, resp.

(6.1) There is a leaf-block 𝑩′ with 𝑽 (𝑩′) ⊂ 𝑨(𝒖0) distinct from 𝑩.
This case is illustrated in Figure 21. Apply Remark 3.11 to 𝐵′ to find a clean extending path 𝑃𝑥 𝑦

from 𝑥 ∈ 𝑉 (𝐵′) \{𝑢0}, to 𝑦 ∈ 𝑉 (𝐶) \𝑉 (𝐵′). Note that by Case 2 we have 𝑦 ∉ 𝐴(𝑢0) since otherwise
𝑃𝐶
𝑦𝑢0

would include the edge of a block distinct from 𝐵′. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢0𝑢1},
so that 𝐵 and 𝐵′ are merged into a single block 𝐵′′ of 𝑆′ through the paths 𝑃𝑣1𝑢1 ∪ 𝑃𝐶

𝑦𝑢1
and 𝑃𝑥 𝑦.

Notice that by Case 2, 𝑃𝑣1𝑢1 and 𝑃𝑥 𝑦 are component disjoint. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + 1 − cr(𝐵′′) − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 1 + 1 − 1 − 1 − 1 = 0.

(6.2) There is a non-clean extending path 𝑷𝒖0𝒘 from 𝒖0 to 𝒘 ∈ 𝑽 (𝑪) \𝑽 (𝑩).
This case is illustrated in Figure 22. Let 𝐶′ be the pendant 4-cycle corresponding to 𝑃𝑢0𝑤. Apply
the 3-matching Lemma 3.1 to 𝐶′ to get a matching {𝑥1 𝑦1, 𝑥2 𝑦2, 𝑥3 𝑦3} with 𝑥𝑖 ∈ 𝐶, 𝑦𝑖 ∈ 𝐶′ for all 𝑖.
W.l.o.g. we can assume 𝑥1 = 𝑢0 and 𝑦1 𝑦2 ∈ 𝐸(𝐶′). If 𝑥1 ≠ 𝑢0 we can add the first edge of 𝑃𝑢0𝑤 to

36 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

B u1

u0

B′ x

y

v1

Figure 21. Lemma 3.9 Case 1.

B

C ′

u0 = x1

y1
y2

y3

x3

x2

v1

u1

Figure 22. Lemma 3.9 Case 2.

the matching and remove any edge sharing an endpoint with it. Since one of 𝑦2 or 𝑦3 must be
adjacent to 𝑦1 we can also assume 𝑦1 𝑦2 ∈ 𝐸(𝐶′). By exclusion of Case 1, every path in 𝐶 from 𝑢1

to 𝑥2 does not include the edge 𝑢0𝑢1. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪ {𝑢0 𝑦1, 𝑥2 𝑦2} \ {𝑢0𝑢1, 𝑦1 𝑦2}. Observe
that 𝑃𝑣1𝑢1 , 𝐸(𝐶′) ∪ {𝑢0 𝑦1, 𝑥2 𝑦2} \ { 𝑦1 𝑦2}, and 𝑃𝐶

𝑥2𝑢1
form a path from 𝑣1 to 𝑢0 such that its inner

vertices are not in 𝐵, and thus in 𝑆′ they are merged with 𝐵 into a single block 𝐵′ of 𝑆′. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐶′) − cr(𝐵′) − c̃ost(𝑃𝑣1𝑢1) ≥ 1 + 4/3 − 1 − 1 > 0.

REMARK 3.14. For every clean extending path 𝑃𝑢0𝑤 from 𝑢0 to 𝑤 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵) ∪ {𝑢1, 𝑤2}),
𝑃𝑢0𝑤 and 𝑃𝑣1𝑢1 are component disjoint. Indeed, otherwise there exists a clean extending path
𝑃𝑣1𝑤 from and 𝑣1 to 𝑤, and by Remark 3.13, 𝑤 ∈ {𝑢2, 𝑢3}. This, together with the path 𝑃𝑣2𝑤2 ,
constitute a contradiction to the fact that Case 5 does not hold.

(6.3) There is a clean extending path 𝑷𝒖0𝒘 from 𝒖0 to 𝒘 ∈ 𝑽 (𝑪) \ (𝑽 (𝑩) ∪ {𝒖1, 𝒘2}) such that
there is a path 𝑷𝑪

𝒖0𝒘 containing the edge of another block 𝑩′ or at least 4 bridges.
This case is illustrated in Figure 23. By Remark 3.14, 𝑃𝑣1𝑢1 and 𝑃𝑢0𝑤 are component disjoint. Set
𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪ 𝐸(𝑃𝑢0𝑤) \ {𝑢0𝑢1}. Notice that 𝑃𝐶

𝑢1𝑤 does not include the edge 𝑢0𝑢1, since by
Case 1, 𝐴(𝑢0) = 𝑉 (𝐵) \ {𝑢0}. The paths 𝑃𝑢0𝑤 ∪ 𝑃𝐶

𝑢1𝑤 and 𝑃𝑣1𝑢1 are merged with 𝐵 into a single
block 𝐵′′ of 𝑆′. All edges of 𝑃𝐶

𝑢0𝑤 (except 𝑢0𝑢1) are also included in 𝐵′′. If one of those edges is the
edge of another block it gets merged as well in 𝐵′′, and if not we get the credit from 4 bridges.

37 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

B

B′

u0

u1

v1

w

Figure 23. Lemma 3.9 Case 3.

In both cases we get at least 1 credit. One has

cost(𝑆) − cost(𝑆′) ≥ 1 + 1 − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑢0𝑤) ≥ 1 + 1 − 1 − 1 = 0.

(6.4) There is a clean extending path 𝑷𝒖0𝒘 from 𝒖0 to 𝒘 ∈ 𝑨(𝒖1).
This case is illustrated in Figure 24. By Case 3 and the fact that 𝑢1, 𝑤2 ∉ 𝐴(𝑢1), no path 𝑃𝐶

𝑢0𝑤

contains the edge of another block 𝐵′. Thus, 𝑃𝐶
𝑢0𝑤 consists only of bridges. Also, since 𝑃∗ is a

longest path, 𝑃𝐶
𝑤𝑢1

consists of a single bridge 𝑢1𝑤 and 𝑤 ∈ 𝑉 (𝐵′), where 𝐵′ is a leaf-block of 𝐶
distinct from 𝐵. Apply Remark 3.11 to find a clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐵′) \ {𝑤} to
𝑦 ∈ 𝑉 (𝐶) \𝑉 (𝐵′).

Let us first argue that the paths 𝑃𝑢0𝑤, 𝑃𝑣1𝑢1 and 𝑃𝑥 𝑦 are pair-wise component disjoint. By
Remark 3.14, 𝑃𝑢0𝑤 and 𝑃𝑣1𝑢1 are component disjoint. If 𝑃𝑣1𝑢1 and 𝑃𝑥 𝑦 are not component disjoint,
then there is a clean extending path 𝑃𝑣1𝑥 from 𝑣1 ∈ 𝑉 (𝐵) \ {𝑢0} to 𝑥, a contradiction by Case 2.
If 𝑃𝑢0𝑤 and 𝑃𝑥 𝑦 are not component disjoint then there is a clean extending path 𝑃𝑢0𝑥 from 𝑢0 to
𝑥. Since every 𝑃𝐶

𝑢0𝑥 includes at least an edge of 𝐵′ this is excluded by Case 3.
Notice that every path 𝑃𝐶

𝑦𝑢1
must not use 𝑢1𝑤. Otherwise, since 𝑃∗ is a longest path, it must

be that 𝑦 ∈ 𝐵′′, where 𝐵′′ is another leaf-block with 𝑤 ∈ 𝑉 (𝐵′′), and 𝑃𝐶
𝑥 𝑦 contains the edges of

two distinct blocks, a contradiction by Case 2. Also, every path 𝑃𝐶
𝑦𝑢1

does not use 𝑢0𝑢1, because by
exclusion of Cases 1 and 3, 𝑦 ∉ 𝐴(𝑢0)∪{𝑢0}. Set 𝑆′ := 𝑆∪𝐸(𝑃𝑣1𝑢1)∪𝐸(𝑃𝑢0𝑤)∪𝐸(𝑃𝑥 𝑦) \{𝑢0𝑢1, 𝑢1𝑤},
so that 𝐵 and 𝐵′ are merged into a single block 𝐵′′ through the paths 𝑃𝑢0𝑤 and 𝑃𝑥 𝑦 ∪ 𝑃𝐶

𝑦𝑢1
∪ 𝑃𝑢1𝑣1 .

One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + 2 − cr(𝐵′′) − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑢0𝑤) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 1 + 2 − 1 − 1 − 1 − 1 = 0.

(6.5) There is clean extending path 𝑷𝒖0𝒘 from 𝒖0 to 𝒘 ∈ 𝑨(𝒖2).
By Case 3 and the fact that 𝑢1, 𝑤2 ∉ 𝐴(𝑢2) it must be that every 𝑃𝐶

𝑤𝑢0
contains no edge of a block

and |𝐸(𝑃𝐶
𝑤𝑢0
) | ≤ 3. Thus there is a bridge 𝑢2𝑤 in 𝐶 and 𝑃𝐶

𝑤𝑢0
= 𝑤𝑢2𝑢1𝑢0.

38 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u0 u1

x

yB

B′

v1

w

Figure 24. Lemma 3.9 Case 4.

(6.5.1) There is another bridge 𝒘𝒘′, 𝒘′ ≠ 𝒖2.
This case is illustrated in Figure 25. Since 𝑃∗ is a longest path, 𝑤′ ∈ 𝑉 (𝐵′), where 𝐵′ is a leaf-
block of 𝐶 distinct from 𝐵. Apply Remark 3.11 to 𝐵′ to find a clean extending path 𝑃𝑥 𝑦 from
𝑥 ∈ 𝑉 (𝐵′) \ {𝑤′} to 𝑦 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵′) ∪ {𝑤}). Notice that 𝑃𝑥 𝑦 and 𝑃𝑣1𝑢1 are component disjoint,
otherwise there is a clean extending path 𝑃𝑣1𝑥 from 𝑣1 to 𝑥, which is excluded by Case 2. Also,
𝑃𝑢0𝑤 and 𝑃𝑥 𝑦 are also component disjoint, otherwise there is a clean extending path 𝑃𝑢0𝑥 from
𝑢0 to 𝑥, which is excluded by Case 3. Thus, by Remark 3.14, 𝑃𝑥 𝑦, 𝑃𝑣1𝑢1 and 𝑃𝑢0𝑤 are pair-wise
component disjoint.

Let 𝐶1 and 𝐶2 be the connected components resulting from removing the bridge 𝑢2𝑤,
with 𝑉 (𝐵) ⊂ 𝑉 (𝐶1). If 𝑦 ∈ 𝑉 (𝐶2) then either 𝑦 ∈ 𝑉 (𝐵′′), where 𝐵′′ is another leaf-block with
𝑤′ ∈ 𝑉 (𝐵′′), and 𝑃𝐶

𝑥 𝑦 contains the edges of two distinct blocks (a contradiction by Case 2), or
we are in a case symmetric to Case 3 (with 𝐵′ in place of 𝐵). So we can assume 𝑦 ∈ 𝑉 (𝐶1) and
therefore 𝑤 ∉ 𝑉 (𝑃𝐶

𝑦𝑢1
). Also, every path 𝑃𝐶

𝑦𝑢1
does not use 𝑢0𝑢1, because by exclusion of Cases 1

and 3, 𝑦 ∉ 𝐴(𝑢0) ∪ {𝑢0}. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑢0𝑤) ∪ 𝐸(𝑃𝑣1𝑢1) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢0𝑢1}, so that in 𝑆′, 𝐵 and 𝐵′

are merged into a block 𝐵′′ of 𝑆′ through the paths 𝑃𝑢0𝑤 ∪ {𝑤𝑤′} and 𝑃𝑥 𝑦 ∪ 𝑃𝐶
𝑦𝑢1
∪ 𝑃𝑣1𝑢1 . Observe

that the path 𝑃𝐶
𝑤𝑢1

is also part of 𝐵′′ in 𝑆′. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + cr(𝑤𝑤′) + cr(𝑤𝑢2) + cr(𝑢2𝑢1) + cr(𝑢1𝑢0) + 1

− cr(𝐵′′) − c̃ost(𝑃𝑢0𝑤) − c̃ost(𝑃𝑥 𝑦) − c̃ost(𝑃𝑣1𝑢1)
≥ 1 + 1 + 4 · 1/4 + 1 − 1 − 1 − 1 − 1 = 0.

(6.5.2) There is no bridge 𝒘𝒘′, 𝒘′ ≠ 𝒖2.
This case is illustrated in Figure 26. Using the fact that 𝑃∗ is a longest path and Remark 3.12,
it must be that 𝑤 ∈ 𝑉 (𝐵′) for some leaf-block 𝐵′ of 𝐶 distinct from 𝐵. Apply Remark 3.11 to
𝐵′ to find a clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐵′) \ {𝑤} to 𝑦 ∈ 𝑉 (𝐶) \ 𝑉 (𝐵′). By the same
arguments as in the previous case, 𝑃𝑣1𝑢1 , 𝑃𝑢0𝑤 and 𝑃𝑥 𝑦 are pair-wise component disjoint.

39 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

u0

u1

y

u2

B′

w′

B

x

v1

w

Figure 25. Lemma 3.9 Case 1.

u0 u1 u2

y

x

B′

B

v1

w

Figure 26. Lemma 3.9 Case 2.

If 𝑤𝑢2 ∈ 𝐸(𝑃𝐶
𝑦𝑢1
) for some path 𝑃𝐶

𝑦𝑢1
, it must be that 𝑦 ∈ 𝑉 (𝐵′′), where 𝐵′′ is another

leaf-block of 𝐶 with 𝑤 ∈ 𝑉 (𝐵′′), a contradiction by Case 2. Thus, one has 𝑤𝑢2 ∉ 𝑃𝐶
𝑦𝑢1

. Also, by
exclusion of Cases 1 and 3, 𝑢0𝑢1 ∉ 𝑃𝐶

𝑦𝑢1
. Set 𝑆′ := 𝑆∪ 𝐸(𝑃𝑣1𝑢1) ∪ 𝐸(𝑃𝑢0𝑤) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢0𝑢1, 𝑢2𝑤}, so

that 𝐵 and 𝐵′ are merged into a single block 𝐵′′ of 𝑆′ through the paths 𝑃𝑢0𝑤 and 𝑃𝑥 𝑦∪𝑃𝐶
𝑦𝑢1
∪𝑃𝑣1𝑢1 .

Then we get

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐵′) + 2 − cr(𝐵′′) − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑢0𝑤) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 1 + 2 − 1 − 1 − 1 − 1 = 0.

(6.6) None of the previous cases hold.
Let us first show that there must exist a clean extending path 𝑃𝑢0𝑤1 from 𝑢0 to𝑤1 ∈ {𝑢2, 𝑢3}\{𝑤2}.
Recall that {𝑒1, 𝑒2, 𝑒3} is a matching in 𝐺𝐶 such that 𝑒1 and 𝑒2 correspond to 𝑃𝑣1𝑢1 and 𝑃𝑣2𝑤2 ,
respectively. Recall also that 𝑤2 ∈ {𝑢2, 𝑢3}. Notice that 𝑒3 must be incident to 𝑢0 in 𝐵, otherwise
it is incident to some 𝑣3 ∈ 𝑉 (𝐵) \ {𝑢0, 𝑣1, 𝑣2} in 𝐵, and thus it corresponds to some extending
path 𝑃𝑣3𝑤1 from 𝑣3 to 𝑤1 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵) ∪ {𝑢1, 𝑤2}). By exclusion of Case 1, 𝑃𝑣3𝑤1 is clean, and by
Remark 3.13, it must be that 𝑤1 ∈ {𝑢1, 𝑢2, 𝑢3}. Thus, the paths 𝑃𝑣2𝑤2 , 𝑃𝑣3𝑤1 imply a contradiction

40 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u0 u1 u2 u3

C1

C ′

x2x1

y2y1

C2

B

v1

Figure 27. Lemma 3.9 Case 1.

to the fact that Case 5 does not hold. Therefore, 𝑒3 is incident to 𝑢0 in 𝐵. Notice that, since 𝑒1 is
incident to 𝑢1, it must be that 𝑒3 is not incident to 𝑢1. But then, since 𝑢0𝑢1 is the only bridge of 𝐶
incident to 𝑉 (𝐵) and Case 1 does not hold, the only edge of 𝐶 not in 𝐵 incident to 𝑢0 is 𝑢0𝑢1, and
thus it must be that the edge 𝑒3 corresponds to some extending path 𝑃𝑢0𝑤1 from 𝑢0 to some node
𝑤1 ∈ 𝑉 (𝐶) \ (𝑉 (𝐵) ∪ {𝑢1, 𝑤2}).

Now, since Case 2 does not hold, 𝑃𝑢0𝑤1 is clean. Since Cases 1, 4 and 5 do not hold, 𝑤1 ∈
𝑉 (𝐶) \ (𝐴(𝑢0) ∪𝐴(𝑢1) ∪𝐴(𝑢2) ∪ {𝑢0, 𝑢1}). If 𝑤1 ∈ 𝑉 (𝐶) \ (𝐴(𝑢0) ∪𝐴(𝑢1) ∪𝐴(𝑢2) ∪ {𝑢0, 𝑢1, 𝑢2, 𝑢3})
then |𝐸(𝑃𝐶

𝑤𝑢0
) | ≥ 4, so that Case 3 holds, a contradiction. Thus 𝑤1 ∈ {𝑢2, 𝑢3} \ {𝑤2}.

We remark that 𝑃𝑢0𝑤1 and 𝑃𝑣2𝑤2 might not be component disjoint. Removing the bridge
𝑢2𝑢3 splits 𝐶 into 2 connected components 𝐶1, 𝐶2, with 𝑉 (𝐵) ⊂ 𝑉 (𝐶1).

(6.6.1) There is a non-clean extending path 𝑷𝒂𝒃 from 𝒂 ∈ 𝑽 (𝑪1) to 𝒃 ∈ 𝑽 (𝑪2).
This case is illustrated in Figure 27. Let 𝐶′ be the 4-cycle corresponding to 𝑃𝑎𝑏 and let 𝑎𝑎′ and
𝑏𝑏′ be the first and last edges of 𝑃𝑎𝑏. Apply the 3-matching Lemma 3.1 to 𝐶′ to get a matching
{𝑥1 𝑦1, 𝑥2 𝑦2, 𝑥3 𝑦3}, with 𝑥𝑖 ∈ 𝐶, 𝑦𝑖 ∈ 𝐶′ for all 𝑖. By the same arguments as in Case 1, we can
assume w.l.o.g. that 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2) and 𝑦1 𝑦2 ∈ 𝐸(𝐶′).

If 𝑤2 = 𝑢3, then the same construction and analysis as in Case 1 holds. Otherwise, one
has 𝑤1 = 𝑢3. By Remark 3.14, the paths 𝑃𝑣1𝑢1 and 𝑃𝑢0𝑢3 are component disjoint. Set 𝑆′ :=
𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪ 𝐸(𝑃𝑢0𝑢3) ∪ {𝑥1 𝑦1, 𝑥2 𝑦2} \ {𝑢0𝑢1, 𝑦1 𝑦2}. Notice that since 𝑥1 ∈ 𝑉 (𝐶1), 𝑥2 ∈ 𝑉 (𝐶2),
there are vertex disjoint paths 𝑃𝐶

𝑥1𝑢2
and 𝑃𝐶

𝑥2𝑢3
. Moreover, by Case 1, none of those paths contains

the edge 𝑢0𝑢1. Notice 𝑃𝐶
𝑢1𝑢3

= 𝑢1𝑢2𝑢3. Adding 𝑃𝑣1𝑢1 and 𝑃𝑢0𝑢3 and removing 𝑢0𝑢1 merges 𝐵 and
𝑃𝑣1𝑢1 ∪ 𝑃𝐶

𝑢0𝑢3
into a single block, and adding 𝐸(𝐶′) ∪ {𝑥1 𝑦1, 𝑥2 𝑦2} \ { 𝑦1 𝑦2}merges that block and

the paths 𝑃𝐶
𝑥1𝑢2

, 𝑃𝐶
𝑥2𝑢3

into a new block 𝐵′ of 𝑆′. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝐶′) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3)
− cr(𝐵′) − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑢0𝑢3) ≥ 1 + 4/3 + 3 · 1/4 − 1 − 1 − 1 > 0.

41 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

(6.6.2) All extending paths between nodes of 𝑪1 and 𝑪2 are clean.
This case is illustrated in Figure 28. Apply Lemma 3.8 to (𝑉 (𝐶1), 𝑉 (𝐶2)). By the hypothesis
of this case, there must be at least one clean extending path 𝑃𝑥 𝑦 from 𝑥 ∈ 𝑉 (𝐶2) \ {𝑢3} to
𝑦 ∈ 𝑉 (𝐶1) \ {𝑢0}. Since 𝑥 ≠ 𝑢3, 𝑃𝐶

𝑥𝑢3
is not empty, and it contains at least one edge 𝑒. Thus,

|𝐸(𝑃𝐶
𝑥𝑢0
) | ≥ 4, so 𝑦 ∉ 𝐴(𝑢0) by Case 2, and thus 𝑦 ∈ 𝐴(𝑢1) ∪ 𝐴(𝑢2) ∪ {𝑢1, 𝑢2}. Observe that the

paths 𝑃𝑣1𝑢1 and 𝑃𝑥 𝑦 are pair-wise component disjoint. Indeed, if 𝑃𝑣1𝑢1 and 𝑃𝑥 𝑦 are not component
disjoint there is a clean extending path 𝑃𝑣1𝑥 from 𝑣1 to 𝑥, and there is a path 𝑃𝐶

𝑣1𝑥 that includes
an edge of 𝐵 and at least 4 other edges not in 𝐵 (since |𝐸(𝑃𝐶

𝑥𝑢0
) | ≥ 4); this is excluded by Case 2.

By a similar argument 𝑃𝑥 𝑦 and 𝑃𝑣2𝑤2 are also component disjoint. Also, the paths 𝑃𝑢0𝑤1 and 𝑃𝑥 𝑦

must also be component disjoint, otherwise there is a clean extending path 𝑃𝑢0𝑥 from 𝑢0 to 𝑥,
and there is a path 𝑃𝐶

𝑢0𝑥 that includes an edge of 𝐵 and at least 4 other edges not in 𝐵 (since
|𝐸(𝑃𝐶

𝑥𝑢0
) | ≥ 4); this is excluded by Case 3. Finally, 𝑃𝑣1𝑢1 and 𝑃𝑢0𝑤1 are also component disjoint by

Remark 3.14.
Assume first 𝑦 ∈ 𝐴(𝑢1) ∪ {𝑢1}. If 𝑤2 = 𝑢2 then the same construction and analysis as in

Case 2, with 𝑃𝑣2𝑤2 in place of 𝑃𝑣1𝑢2 holds. Otherwise, one has 𝑤1 = 𝑢2. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪
𝐸(𝑃𝑢0𝑢2) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢0𝑢1, 𝑢1𝑢2}. Notice that the edges 𝑢0𝑢1, 𝑢1𝑢2 are not in 𝑃𝐶

𝑥𝑢3
. Also, the edges

𝑢0𝑢1, 𝑢1𝑢2 are not in 𝑃𝐶
𝑢1 𝑦 because 𝑦 ∈ 𝐴(𝑢1)∪{𝑢1}. The path 𝑃𝑣1𝑢1∪𝑃𝐶

𝑢1 𝑦∪𝑃𝑥 𝑦∪𝑃
𝐶
𝑥𝑢3
∪{𝑢2𝑢3}∪𝑃𝑢0𝑢2

is merged with 𝐵 into a single block 𝐵′ of 𝑆′. If 𝑒 is the edge of a block then that block is also
merged into 𝐵′, bringing 1 credit, and if it is a bridge it brings 1/4 credits, so we get at least 1/4
credits from the edges of 𝑃𝐶

𝑥𝑢3
. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3) + 1/4 + 2

− cr(𝐵′) − c̃ost(𝑃𝑢1𝑣1) − c̃ost(𝑃𝑢0𝑢2) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 4 · 1/4 + 2 − 1 − 1 − 1 − 1 = 0.

Assume now that 𝑦 ∈ 𝐴(𝑢2) ∪ {𝑢2}. If 𝑤2 = 𝑢3 then the same construction and analysis as in
Case 2, with 𝑃𝑣2𝑤2 in place of 𝑃𝑣2𝑢3 holds. Otherwise, one has 𝑤1 = 𝑢3. Set 𝑆′ := 𝑆 ∪ 𝐸(𝑃𝑣1𝑢1) ∪
𝐸(𝑃𝑢0𝑢3) ∪ 𝐸(𝑃𝑥 𝑦) \ {𝑢0𝑢1, 𝑢2𝑢3}. By similar arguments as above, the edges 𝑢0𝑢1, 𝑢2𝑢3 are neither
in 𝑃𝐶

𝑥𝑢3
nor in 𝑃𝐶

𝑢2 𝑦. The path 𝑃𝑣1𝑢1 ∪ {𝑢1𝑢2} ∪ 𝑃𝐶
𝑢2 𝑦 ∪ 𝑃𝑥 𝑦 ∪ 𝑃𝐶

𝑥𝑢3
∪ 𝑃𝑢0𝑢3 is merged with 𝐵 into a

single block 𝐵′ of 𝑆′. As before, if 𝑒 is the edge of a block then that block is also merged into 𝐵′,
bringing 1 credit, and if it is a bridge it brings 1/4 credits, so we get at least 1/4 credits from the
edges of 𝑃𝐶

𝑥𝑢3
. One has

cost(𝑆) − cost(𝑆′) ≥ cr(𝐵) + cr(𝑢0𝑢1) + cr(𝑢1𝑢2) + cr(𝑢2𝑢3) + 1/4 + 2

− cr(𝐵′) − c̃ost(𝑃𝑣1𝑢1) − c̃ost(𝑃𝑢0𝑢3) − c̃ost(𝑃𝑥 𝑦)
≥ 1 + 4 · 1/4 + 2 − 1 − 1 − 1 − 1 = 0.

Notice that in each case the constructed 𝑆′ is canonical. Indeed, we never create connected
components with fewer than 6 edges, nor any leaf-block with fewer than 5 nodes. Furthermore,

42 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

u1

u2

u3

C1

xy

u0

C2

B

v1

u0 u1 u2 u3

C2C1

xy

B

v1

Figure 28. Lemma 3.9 Case 2.

each 4-cycle which is adjacent to a unique other large component 𝐶′ preserves this property
(though 𝐶′ might turn from 2VC to complex or vice versa). Finally, the number of complex
components decreases since we iteratively apply the above construction to a complex component
𝐶 until it has only one block and thus is no longer a complex component. ■

References
[1] David Adjiashvili. Beating approximation factor two
for weighted tree augmentation with bounded
costs. ACM Trans. Algorithms, 15(2):19:1–19:26,
2019. DOI (3)

[2] Étienne Bamas, Marina Drygala, and Ola Svensson.
A simple LP-based approximation algorithm for the
matching augmentation problem. Integer
Programming and Combinatorial Optimization -
23rd International Conference, IPCO 2022,
Eindhoven, The Netherlands, June 27-29, 2022,
Proceedings, volume 13265 of Lecture Notes in
Computer Science, pages 57–69. Springer, 2022.
DOI (3)

[3] Miguel Bosch-Calvo, Fabrizio Grandoni, and
Afrouz Jabal Ameli. A 4/3 Approximation for
2-Vertex-Connectivity. 50th International
Colloquium on Automata, Languages, and
Programming (ICALP 2023), volume 261 of Leibniz
International Proceedings in Informatics (LIPIcs),
29:1–29:13, Dagstuhl, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. DOI (1)

[4] Jaroslaw Byrka, Fabrizio Grandoni, and
Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: A reduction
to steiner tree. SIAM J. Comput. 52(3):718–739,
2023. DOI (3)

[5] Federica Cecchetto, Vera Traub, and
Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger
approaches. STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pages 370–383. ACM, 2021.

DOI (3)

[6] Joe Cheriyan, Jack Dippel, Fabrizio Grandoni,
Arindam Khan, and Vishnu V. Narayan. The
matching augmentation problem: a
7
4-approximation algorithm. Math. Program.
182(1):315–354, 2020. DOI (3, 9, 11)

[7] Joseph Cheriyan, Robert Cummings, Jack Dippel,
and Jasper Zhu. An improved approximation
algorithm for the matching augmentation problem.
SIAM J. Discret. Math. 37(1):163–190, 2023. DOI
(3)

https://doi.org/10.1145/3182395
https://doi.org/10.1007/978-3-031-06901-7_5
https://doi.org/10.1007/978-3-031-06901-7_5
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://doi.org/10.1137/21M1421143
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1007/s10107-019-01394-z
https://doi.org/10.1137/21M1453505

43 / 44 A 4/3 Approximation for 2-Vertex-Connectivity

[8] Joseph Cheriyan and Zhihan Gao. Approximating
(unweighted) tree augmentation via
lift-and-project, part I: stemless TAP. Algorithmica,
80(2):530–559, 2018. DOI (3)

[9] Joseph Cheriyan and Zhihan Gao. Approximating
(unweighted) tree augmentation via
lift-and-project, part II. Algorithmica,
80(2):608–651, 2018. DOI (3)

[10] Joseph Cheriyan, András Sebö, and Zoltán Szigeti.
Improving on the 1.5-approximation of a smallest
2-edge connected spanning subgraph. SIAM J.
Discret. Math. 14(2):170–180, 2001. DOI (2)

[11] Joseph Cheriyan and Ramakrishna Thurimella.
Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM J. Comput.
30(2):528–560, 2000. DOI (2)

[12] Nachshon Cohen and Zeev Nutov. A
(1+ln2)-approximation algorithm for minimum-cost
2-edge-connectivity augmentation of trees with
constant radius. Theor. Comput. Sci.
489-490:67–74, 2013. DOI (3)

[13] Artur Czumaj and Andrzej Lingas. On
approximability of the minimum-cost k-connected
spanning subgraph problem. Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 17-19 January 1999, Baltimore,
Maryland, USA, pages 281–290. ACM/SIAM, 1999.
URL (2)

[14] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov.
On the structure of the system of minimum edge
cuts of a graph. Studies in Discrete
Optimization:290–306, 1976. (3)

[15] Guy Even, Jon Feldman, Guy Kortsarz, and
Zeev Nutov. A 1.8 approximation algorithm for
augmenting edge-connectivity of a graph from 1 to
2. ACM Trans. Algorithms, 5(2):21:1–21:17, 2009.
DOI (3)

[16] Samuel Fiorini, Martin Groß, Jochen Könemann,
and Laura Sanità. Approximating weighted tree
augmentation via chvátal-gomory cuts.
Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 817–831. SIAM, 2018. DOI (3)

[17] Harold N. Gabow and Suzanne Gallagher. Iterated
rounding algorithms for the smallest k-edge
connected spanning subgraph. SIAM J. Comput.
41(1):61–103, 2012. DOI (2)

[18] Waldo Gálvez, Fabrizio Grandoni,
Afrouz Jabal Ameli, and Krzysztof Sornat. On the
cycle augmentation problem: hardness and
approximation algorithms. Theory Comput. Syst.
65(6):985–1008, 2021. DOI (3)

[19] Mohit Garg, Fabrizio Grandoni, and
Afrouz Jabal Ameli. Improved approximation for
two-edge-connectivity. Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023,
pages 2368–2410. SIAM, 2023. DOI (2, 4, 9, 11,
13, 14)

[20] Naveen Garg, Santosh S. Vempala, and
Aman Singla. Improved approximation algorithms
for biconnected subgraphs via better lower
bounding techniques. Proceedings of the Fourth
Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, 25-27 January 1993, Austin, Texas,
USA, pages 103–111. ACM/SIAM, 1993. URL (2)

[21] Fabrizio Grandoni, Afrouz Jabal Ameli, and
Vera Traub. Breaching the 2-approximation barrier
for the forest augmentation problem. STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of
Computing, Rome, Italy, June 20 - 24, 2022,
pages 1598–1611. ACM, 2022. DOI (3, 11)

[22] Fabrizio Grandoni, Christos Kalaitzis, and
Rico Zenklusen. Improved approximation for tree
augmentation: saving by rewiring. Proceedings of
the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 632–645, Los
Angeles, CA, USA. Association for Computing
Machinery, 2018. DOI (3)

[23] Prabhakar Gubbala and Balaji Raghavachari.
Approximation algorithms for the minimum
cardinality two-connected spanning subgraph
problem. Integer Programming and Combinatorial
Optimization, 11th International IPCO Conference,
Berlin, Germany, June 8-10, 2005, Proceedings,
volume 3509 of Lecture Notes in Computer Science,
pages 422–436. Springer, 2005. DOI (2)

[24] Klaus Heeger and Jens Vygen. Two-connected
spanning subgraphs with at most 10

7 opt edges.
SIAM J. Discret. Math. 31(3):1820–1835, 2017. DOI
(2)

[25] Christoph Hunkenschröder, Santosh S. Vempala,
and Adrian Vetta. A 4/3-approximation algorithm
for the minimum 2-edge connected subgraph
problem. ACM Trans. Algorithms, 15(4):55:1–55:28,
2019. DOI (2, 9)

[26] Raja Jothi, Balaji Raghavachari, and
Subramanian Varadarajan. A 5/4-approximation
algorithm for minimum 2-edge-connectivity.
Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 12-14,
2003, Baltimore, Maryland, USA, pages 725–734.
ACM/SIAM, 2003. URL (2)

[27] Samir Khuller and Uzi Vishkin. Biconnectivity
approximations and graph carvings. J. ACM,
41(2):214–235, 1994. DOI (2)

[28] Samir Khuller and Uzi Vishkin. Biconnectivity
approximations and graph carvings. J. ACM,
41(2):214–235, March 1994. DOI (2)

[29] Guy Kortsarz and Zeev Nutov. A simplified
1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM
Trans. Algorithms, 12(2):23:1–23:20, 2016. DOI
(3)

[30] Guy Kortsarz and Zeev Nutov. Lp-relaxations for
tree augmentation. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September
7-9, 2016, Paris, France, volume 60 of LIPIcs,
13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. DOI (3)

https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/j.tcs.2013.04.004
http://dl.acm.org/citation.cfm?id=314500.314573
http://dl.acm.org/citation.cfm?id=314500.314573
https://doi.org/10.1145/1497290.1497297
https://doi.org/10.1145/1497290.1497297
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/080732572
https://doi.org/10.1007/S00224-020-10025-6
https://doi.org/10.1137/1.9781611977554.ch92
http://dl.acm.org/citation.cfm?id=313559.313618
https://doi.org/10.1145/3519935.3520035
https://doi.org/10.1145/3188745.3188898
https://doi.org/10.1007/11496915_31
https://doi.org/10.1137/16M1091587
https://doi.org/10.1145/3341599
http://dl.acm.org/citation.cfm?id=644108.644227
https://doi.org/10.1145/174652.174654
https://doi.org/10.1145/174652.174654
https://doi.org/10.1145/2786981
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13

44 / 44 M. Bosch-Calvo, F. Grandoni, A. Jabal Ameli

[31] Hiroshi Nagamochi. An approximation for finding a
smallest 2-edge-connected subgraph containing a
specified spanning tree. Discret. Appl. Math.
126(1):83–113, 2003. DOI (3)

[32] Zeev Nutov. On the tree augmentation problem.
25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria,
61:1–61:14, Dagstuhl, Germany. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.
DOI (3)

[33] Alexander Schrijver. Combinatorial optimization:
polyhedra and efficiency. Springer Science &
Business Media, 2003. (4, 9, 15)

[34] András Sebö and Jens Vygen. Shorter tours by
nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for
two-edge-connected subgraphs. Comb.
34(5):597–629, 2014. DOI (2)

[35] Vera Traub and Rico Zenklusen. A
(1.5 + 𝜖)-approximation algorithm for weighted
connectivity augmentation. Proceedings of the
55th Annual ACM Symposium on Theory of
Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 1820–1833. ACM, 2023. DOI
(3)

[36] Vera Traub and Rico Zenklusen. A better-than-2
approximation for weighted tree augmentation.
62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1–12. IEEE, 2021. DOI
(3)

[37] D.B. West. Introduction to Graph Theory. Featured
Titles for Graph Theory. Prentice Hall, 2001. URL
(3)

2025 : 13
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Miguel Bosch-Calvo, Fabrizio Grandoni, Afrouz Jabal Ameli.

https://doi.org/10.1016/S0166-218X(02)00218-4
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1145/3564246.3585122
https://doi.org/10.1109/FOCS52979.2021.00010
https://books.google.ch/books?id=TuvuAAAAMAAJ

	Introduction
	Related Work
	Preliminaries

	Overview of Our Approach
	A Reduction to Structured Graphs
	A Canonical 2-Edge-Cover
	A Credit-Based Argument

	From a Canonical 2-Edge-Cover to a 2VC Spanning Subgraph
	Removing almost all small components
	Removing complex components

	References

