
1 / 17 2025 : 14

Minimizing Tardy
Processing Time on a
Single Machine in
Near-Linear Time

Received Aug 15, 2024
Accepted Mar 30, 2025
Published Jul 17, 2025

Key words and phrases
Scheduling, Fine-Grained
Complexity, Dynamic Strings

Nick Fischera � �

Leo Wennmannb � �

a INSAIT, Sofia University “St.
Kliment Ohridski”, Bulgaria

b University of Southern
Denmark, Odense, Denmark

ABSTRACT. In this work we revisit the elementary scheduling problem 1| |∑ 𝑝 𝑗𝑈 𝑗 . The goal
is to select, among 𝑛 jobs with processing times and due dates, a subset of jobs with maximum
total processing time that can be scheduled in sequence without violating their due dates. This
problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this
problem in pseudo-polynomial time 𝑂(𝑛𝑃), where 𝑃 is the total processing time of all jobs. With
the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results
has improved Lawler and Moore’s algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗: First to time 𝑂(𝑃7/4) [Bringmann,
Fischer, Hermelin, Shabtay, Wellnitz; ICALP’20], then to time 𝑂(𝑃5/3) [Klein, Polak, Rohwedder;
SODA’23], and finally to time 𝑂(𝑃7/5) [Schieber, Sitaraman; WADS’23]. It remained an exciting
open question whether these works can be improved further.

In this work we develop an algorithm in near-linear time 𝑂(𝑃) for the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem.
This running time not only significantly improves upon the previous results, but also matches
conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover
Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm
also extends to the case of 𝑚 machines in time 𝑂(𝑃𝑚). In contrast to the previous improvements,
we take a different, more direct approach inspired by the recent reductions from Modular
Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

This article was invited from ICALP 2024 [21].

Cite as Nick Fischer, Leo Wennmann. Minimizing Tardy Processing Time on a
Single Machine in Near-Linear Time. TheoretiCS, Volume 4 (2025), Article 14, 1-17.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.14

mailto:nick.fischer@insait.ai
https://orcid.org/0009-0001-0909-3296
mailto:wennmann@imada.sdu.dk
https://orcid.org/0009-0001-3346-6494

2 / 17 N. Fischer and L. Wennmann

1. Introduction

Consider the following natural optimization problem: A worker is offered 𝑛 jobs, where each job
𝑗 requires a processing time of 𝑝 𝑗 days and must be completed before some due date 𝑑 𝑗 . Which
jobs should the worker take on in order to maximize their pay, assuming that the worker is paid
a fixed amount per day of work? In standard scheduling notation [23], this task is somewhat
cryptically called the “1| |∑ 𝑝 𝑗𝑈 𝑗” problem (see Section 2 for a formal definition). The 1| |∑ 𝑝 𝑗𝑈 𝑗

problem constitutes an important scheduling task that is arguably among the simplest nontrivial
scheduling objectives, and has received considerable attention in the literature, especially in
recent years.

The 1| |∑ 𝑝 𝑗𝑈 𝑗 problem naturally generalizes the famous Subset Sum problem,1 and is
therefore NP-hard. However, it does admit pseudo-polynomial-time algorithms—in 1969, Lawler
and Moore [32] pioneered the first such algorithm in time 𝑂(𝑛𝑃), where 𝑃 =

∑
𝑗 𝑝 𝑗 is the total

processing time of all 𝑛 jobs. This result is the baseline in a line of research that, more than 50
years after the initial effort, is finally brought to a close in this paper.

State of the Art. Lawler and Moore originally designed their algorithm for a weighted gen-
eralization of the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem, and for this generalization the running time 𝑂(𝑛𝑃) was
proven to be conditionally tight.2 Even for the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem the Lawler-Moore algorithm
remained unchallenged for a long time. Only a few years ago, Bringmann, Fischer, Hermelin,
Shabtay and Wellnitz [12] managed to solve 1| |∑ 𝑝 𝑗𝑈 𝑗 in time3 𝑂(𝑃7/4), showcasing that im-
provements over Lawler-Moore are indeed possible in certain parameter regimes (specifically,
when 𝑃 ≪ 𝑛4/3). Their strategy is to design a reduction to an intermediate problem called
Skewed Convolution4, and to develop an 𝑂(𝑁7/4)-time algorithm for this intermediate problem.

Their work was later improved in two orthogonal ways. On the one hand, Klein, Polak and
Rohwedder [29] improved the running time of Skewed Convolution to 𝑂(𝑁5/3). On the other
hand, Schieber and Sitaraman [37] improved the algorithmic reduction and established that, if
Skewed Convolution is in time 𝑂(𝑁𝛼), then 1| |∑ 𝑝 𝑗𝑈 𝑗 is in time 𝑂(𝑃2−1/𝛼). The state-of-the-art
algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗 is obtained by combining these two works, resulting in time 𝑂(𝑃7/5).

In contrast, fine-grained lower bounds for the Subset Sum problem rule out 1| |∑ 𝑝 𝑗𝑈 𝑗

algorithms in time 𝑂(𝑃1−𝜖 · 𝑛𝑂(1)), for any 𝜖 > 0, conditioned on either the influential Strong
Exponential Time Hypothesis [1] or the Set Cover Hypothesis [17]. This leaves a substantial gap

1 Indeed, Subset Sum is the special case of 1| |∑ 𝑝 𝑗𝑈 𝑗 where all jobs share the same deadline 𝑑. In other words, Subset
Sum is the 1|𝑑 𝑗 = 𝑑 |∑ 𝑝 𝑗𝑈 𝑗 problem.

2 In the so-called 1| |∑𝑤 𝑗𝑈 𝑗 problem each job 𝑗 is rewarded by a specified pay 𝑤 𝑗 (instead of 𝑝 𝑗). For this generalization the
running time 𝑂(𝑛𝑃) was proven to be conditionally optimal [18, 31], in the sense that an algorithm in time 𝑂((𝑛 + 𝑃)2−𝜖),
for any 𝜖 > 0, contradicts the well-established (min, +)-Convolution hypothesis. See also the discussion in [12].

3 We write 𝑂(𝑇) = 𝑇 (log𝑇)𝑂(1) to suppress polylogarithmic factors.

4 Given length-𝑁 integer vectors 𝐴, 𝐵, the Skewed Convolution problem is to compute the length-(2𝑁 − 1) vector 𝐶
defined by 𝐶 [𝑘] = min𝑖+ 𝑗=𝑘 max{𝐴[𝑖], 𝐵[𝑗] − 𝑖}.

3 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

between the best known upper bound 𝑂(𝑃7/5) and the conceivable optimum 𝑂(𝑃). Closing this
gap is the starting point of our paper:

Can the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem be solved in near-linear time 𝑂(𝑃)?

In light of the recent algorithmic developments [12, 29, 37], a reasonable strategy appears
to aim for even faster algorithms for the Skewed Convolution problem—unfortunately, this
approach soon faces a barrier. Namely, improving the running time of Skewed Convolution
beyond 𝑂(𝑁3/2) would entail a similarly fast algorithm for (max,min)-Convolution, which,
while not ruled out under one of the big hypotheses, would be a surprising break-through
in fine-grained complexity theory. This leaves us in an uncertain situation. Even if Skewed
Convolution could be improved to time 𝑂(𝑁3/2), this would mean that the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem is
in time 𝑂(𝑃4/3) [37]. Are further improvements impossible?

Our Results. In this paper we bypass this barrier and develop a new algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗

that avoids the reduction to Skewed Convolution altogether. We thereby successfully resolve
our driving question:

THEOREM 1.1. The 1| |∑ 𝑝 𝑗𝑈 𝑗 problem can be solved in randomized time 𝑂(𝑃 log 𝑃) and in
deterministic time 𝑂(𝑃 log1+𝑜(1) 𝑃).

We stress that by the aforementioned lower bounds [1, 17] our new algorithm is optimal,
up to lower-order factors, conditioned on the Strong Exponential Time Hypothesis or the Set
Cover Hypothesis.

As an additional feature, and similar to all previous algorithms, our algorithm not only
computes the optimal value of the given instance, but in fact reports for each value 0 ≤ 𝑥 ≤ 𝑃

whether there is a feasible schedule with processing time (i.e., pay) 𝑥. Moreover, we can compute
an optimal schedule (represented as an ordered subset of jobs) in the same running time.

Another benefit of our work is that we managed to distill an astonishingly simple algorithm.
In fact, our algorithm is basically identical to the original Lawler-Moore algorithm, except that
we replace certain naive computations by an appropriate efficient data structure on strings,
and employ a careful new analysis. This approach is inspired by the recent progress on the
Modular Subset Sum problem [5, 4, 14, 35] (see Section 3 for more details). We find it surprising
that these conceptually simple ideas lead to near-optimal running times for 1| |∑ 𝑝 𝑗𝑈 𝑗 .

In particular, in contrast to previous improvements for 1| |∑ 𝑝 𝑗𝑈 𝑗 [12, 29, 37], our algorithm
is purely combinatorial and does not require the use of the Fast Fourier Transform. Given this
simple nature of our algorithm, we are confident that actual implementations of the algorithm
would perform well.

4 / 17 N. Fischer and L. Wennmann

Multiple Machines. The “𝑃𝑚 | |
∑

𝑝 𝑗𝑈 𝑗” problem is the straightforward generalization of the
1| |∑ 𝑝 𝑗𝑈 𝑗 problem to 𝑚 workers (or machines) that can partition the jobs arbitrarily among
themselves. The goal, as before, is to maximize the total workload across all workers while
respecting all due dates. We assume for simplicity that 𝑚 is a constant.5

The Lawler-Moore algorithm generalizes in a straightforward manner to time 𝑂(𝑛𝑃𝑚). For
the algorithms based on Skewed Convolution, it seems significantly harder to derive multiple-
machine generalizations. Luckily, with some appropriate changes our new algorithm also
generalizes to multiple machines:

THEOREM 1.2. The 𝑃𝑚 | |
∑

𝑝 𝑗𝑈 𝑗 problem can be solved in randomized time 𝑂(𝑃𝑚 log 𝑃) and in
deterministic time 𝑂(𝑃𝑚 log1+𝑜(1) 𝑃).

In particular, Theorem 1.2 outperforms the Lawler-Moore algorithm by a near-linear
factor Ω̃(𝑛). In contrast to the single-machine setting, however, we emphasize that this algorithm
is not necessarily optimal. A conditional lower bound for this problem would, most likely, be
derived from an analogous lower bound for the multiple-target Subset Sum problem [3]. This
appears to be a challenging question which is not resolved yet.

Alternative Parameters. So far we have only mentioned the parameters 𝑛 and 𝑃 =
∑

𝑗 𝑝 𝑗 ,
which have been the main focus in previous work. But there are many other parameters
worth considering. Natural candidates include the number of distinct deadlines (𝐷#), the
sum of all distinct deadlines (𝐷), the largest processing time (𝑝max = max 𝑗 𝑝 𝑗) and the largest
deadline (𝑑max = max 𝑗 𝑑 𝑗).

There has been research on developing nontrivial 1| |∑ 𝑝 𝑗𝑈 𝑗 algorithms (for a single
machine) with respect to these parameters, such as an 𝑂(min{𝑃 ·𝐷#, 𝑃 +𝐷})-time algorithm due
to [12], and an 𝑂(𝑛 + 𝑝3

max)-time algorithm due to [29]. We remark that the former is subsumed
by our new results. The latter algorithm is incomparable to our result (specifically, our algorithm
in time 𝑂(𝑃) = 𝑂(𝑛𝑝max) performs better if and only if 𝑝max ≫ 𝑛1/2). Both of these results [12,
29] generalize to 𝑚 machines as well, leading to similar comparisons with our work.

It remains an interesting open question whether our 𝑂(𝑃)-time algorithm can be further
improved with respect to the parameters 𝑑max and 𝑝max. The Lawler-Moore algorithm achieves
a running time of 𝑂(𝑛𝑑max), but in principle it seems reasonable that time 𝑂(𝑛 + 𝑑max) can be
achieved, as the analogous question for Subset Sum is resolved [8, 27]. We leave this as an
open question. An even more exciting question is whether we could possibly achieve time
𝑂(𝑛 + 𝑝max). However, such an algorithm would entail a break-through for Subset Sum with
small items, which currently seems out of reach.

5 When viewing 𝑚 as an input, it is easy to trace that our algorithms depend only polynomially on 𝑚.

5 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Further Related Work. This work is part of a bigger effort of the fine-grained complexity
community to design best-possible pseudo-polynomial time algorithms for a host of optimiza-
tion problems. This line of research encompasses, besides the aforementioned scheduling
problems [12, 24, 29, 37], various variants of Subset Sum [30, 8, 1, 5, 6, 13, 34, 4, 14, 35, 19],
Knapsack [39, 18, 31, 7, 20, 34, 10, 16, 11, 9, 26], Integer Programming [20, 25] and many others [15,
19].

2. Preliminaries

Throughout, we write [𝑛] = {0, . . . , 𝑛 − 1} and use the interval notation [𝑖 . . 𝑗] = {𝑖, . . . , 𝑗}, and
similarly [𝑖 . . 𝑗), (𝑖 . . 𝑗], (𝑖 . . 𝑗). For two sets of integers 𝑆,𝑇 and an integer 𝑡 we employ the
sumset notation 𝑆 + 𝑡 = {𝑠 + 𝑡 : 𝑠 ∈ 𝑆} and 𝑆 + 𝑇 = {𝑠 + 𝑡 : 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 }.

Scheduling Problems. We begin with a formal definition of the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem. The input
consists of 𝑛 jobs, where each job 𝑗 ∈ [𝑛] has a processing time 𝑝 𝑗 ∈ N>0 and due dates 𝑑 𝑗 ∈ N>0.
A schedule is a permutation 𝜎 : [𝑛] → [𝑛]. The completion time 𝐶 𝑗 of a job 𝑗 in the schedule 𝜎

is 𝐶 𝑗 =
∑

𝑖:𝜎(𝑖)≤𝜎(𝑗) 𝑝𝑖 (i.e., the total processing time of all jobs preceding 𝑗, including 𝑗 itself). We
say that 𝑗 is early if 𝐶 𝑗 ≤ 𝑑 𝑗 and tardy otherwise, and let 𝑈 𝑗 ∈ {0, 1} be the indicator variable
indicating whether 𝑗 is tardy. In this notation, our objective is to find a schedule minimizing∑

𝑗 𝑝 𝑗𝑈 𝑗 (i.e., the total processing time of all tardy jobs). This explains the description 1| |∑ 𝑝 𝑗𝑈 𝑗

in three-field notation.6 For convenience we have defined the problem in such a way that
𝑝 𝑗 > 0, and as a consequence we can always bound 𝑛 ≤ 𝑃.7

For the 𝑚-machine problem 𝑃𝑚 | |
∑

𝑝 𝑗𝑈 𝑗 a schedule is analogously defined as a func-
tion 𝜎 : [𝑛] → [𝑛] × [𝑚], where the first coordinate determines the order of the jobs as before,
and the second coordinate determines the machine which is supposed to execute the job. The
completion time 𝐶 𝑗 is the total processing time of all jobs preceding 𝑗 on 𝑗’s machine (including 𝑗

itself), and the objective of the problem remains unchanged. For simplicity, we assume through-
out the paper that 𝑚 is a constant (it can easily be verified that we only omit 𝑚𝑂(1)-factors this
way).

Earliest-Due-Date-First Schedules. A key observation about 1| |∑ 𝑝 𝑗𝑈 𝑗 dating back to
Lawler and Moore [32] is that, without loss of generality, the early jobs are scheduled in
increasing order of their due dates. This observation is leveraged as follows: We reorder the
jobs such that 𝑑0 ≤ · · · ≤ 𝑑𝑛−1 (we will stick to this ordering for the rest of the paper). Thus, the

6 The 1 in the first field denotes a single machine, the empty second field symbolizes no additional constraints, and the
third field gives the objective to minimize ∑

𝑗 𝑝 𝑗𝑈 𝑗 .

7 If jobs with processing time 𝑝 𝑗 = 0 were permitted, all of our algorithms would additionally require 𝑂(𝑛) time prepro-
cessing.

6 / 17 N. Fischer and L. Wennmann

1| |∑ 𝑝 𝑗𝑈 𝑗 problem is effectively to compute a subset of jobs 𝐽 ⊆ [𝑛] that maximizes
∑

𝑗∈𝐽 𝑝 𝑗 and
is feasible in the sense that all jobs in 𝐽 are early (i.e., 𝐶 𝑗 =

∑
𝑖∈𝐽 :𝑖≤ 𝑗 𝑝𝑖 ≤ 𝑑 𝑗 for all 𝑗 ∈ 𝐽).

Machine Model. We work in the standard Word RAM model with word size Θ(log 𝑛 + log 𝑃)
(such that each job can be stored in a constant number of cells). Moreover, all randomized
algorithms mentioned throughout are Las Vegas (i.e., zero-error) algorithms running in their
claimed time bounds with high probability 1 − 1/𝑛Ω(1) .

3. Near-Optimal Algorithm for a SingleMachine

In this section, we give the details of our near-optimal algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗 . We start with a
brief summary of the Lawler-Moore algorithm.

Lawler and Moore’s Baseline. The Lawler-Moore algorithm [32] is the natural dynamic
programming solution for the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem. We present it here by recursively defining
the following sets 𝑆0, . . . , 𝑆𝑛 ⊆ [0 . . 𝑃]:

𝑆0 = {0},
𝑆′𝑗+1 = 𝑆 𝑗 + {0, 𝑝 𝑗} (𝑗 ∈ [𝑛]),

𝑆 𝑗+1 = 𝑆′𝑗+1 ∩ [0, 𝑑 𝑗] (𝑗 ∈ [𝑛]).

(The construction of 𝑆 𝑗+1 is divided into two steps as this will be convenient later on.) Each set
𝑆 𝑗+1 can naively be computed from 𝑆 𝑗 in time 𝑂(𝑃), and thus all sets 𝑆0, . . . , 𝑆𝑛 can be naively
computed in time 𝑂(𝑛𝑃). We can ultimately read off the optimal value as max 𝑆𝑛, based on the
following observation:

OBSERVAT ION 3.1 (Lawler and Moore [32]). There is a feasible schedule of total processing
time 𝑡 if and only if 𝑡 ∈ 𝑆𝑛.

More generally, 𝑆 𝑗+1 is the set of processing times of feasible schedules involving the
jobs 0, . . . , 𝑗. To see this, consider any feasible schedule of the jobs 0, . . . , 𝑗 − 1 (whose processing
time is in 𝑆 𝑗). We can either leave out the next job 𝑗 or append to the schedule. Thereby, the set
of processing times becomes 𝑆′

𝑗+1 = 𝑆 𝑗 + {0, 𝑝 𝑗} = {𝑠, 𝑠 + 𝑝 𝑗 : 𝑠 ∈ 𝑆′
𝑗
}. However, this appended

schedule is not necessarily feasible as it might not comply with the due date 𝑑 𝑗 . Hence, all
processing times greater than 𝑑 𝑗 are deleted again in the construction of 𝑆 𝑗+1.

Our Approach. Perhaps surprisingly, our algorithm essentially follows the same approach, i.e.,
our goal remains to compute the sets 𝑆0, . . . , 𝑆𝑛. However, we will demonstrate that the naive
𝑂(𝑃)-time computation of each step can be significantly sped up. Our algorithm relies on two
ingredients—an algorithmic and a structural one.

7 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Ingredient 1: An Efficient Data Structure. As the sets 𝑆′
𝑗

and 𝑆 𝑗 are constructed in a highly
structured way, can we compute them faster than time 𝑂(𝑃)? Specifically, is there a way
to (i) compute each set 𝑆′

𝑗+1 in time proportional to the number of insertions |𝑆′
𝑗+1 \ 𝑆 𝑗 |, and

to (ii) compute 𝑆 𝑗+1 in time proportional to the number of deletions |𝑆′
𝑗+1 \ 𝑆 𝑗+1 |?

Question (i) is closely related to the Subset Sum problem, and has been successfully resolved
in [5] leading to near-optimal algorithms for Modular Subset Sum. Their solution based on linear
sketching is quite involved [5], but two independent papers [4, 14] provided a significantly
simpler proof by replacing linear sketching with a reduction to a dynamic string problem;
see also [35]8. Regarding (ii), it turns out that we can adapt this reduction to the dynamic
string problem to efficiently accommodate our deletions. The following lemma summarizes the
resulting data structure; we defer its proof to Section 3.1.

LEMMA 3.2 (Sum-Cap Data Structure). There is a randomized data structure that maintains a
set 𝑆 ⊆ [𝑢] and supports the following operations:

init(𝑆): Initializes the data structure to the given set 𝑆 ⊆ [𝑢].
Runs in time 𝑂(|𝑆 | · log𝑢 + log2 𝑢).

query(𝑠): Given 𝑠 ∈ [𝑢], tests whether 𝑠 ∈ 𝑆.
Runs in time 𝑂(log𝑢).

sum(𝑝): Given 𝑝 ∈ [𝑢], updates 𝑆 ← 𝑆 + {0, 𝑝}.
Runs in time 𝑂(| (𝑆 + 𝑝) \ 𝑆 | · log𝑢) (where 𝑆 is as before the operation).

cap(𝑑): Given 𝑑 ∈ [𝑢], updates 𝑆 ← 𝑆 ∩ [𝑑].
Runs in time 𝑂(log𝑢).

If at any point during the execution an element 𝑠 ∉ [𝑢] is attempted to be inserted, the data
structure becomes invalid. Moreover, the data structure can be made deterministic at the cost of
worsening all operations by a factor log𝑜(1) 𝑢.

Ingredient 2: A Structural Insight. What have we gained by computing the sets 𝑆 𝑗 and 𝑆′
𝑗

with the data structure from Lemma 3.2? Due to the particularly efficient cap operation, the
computation of the sets 𝑆 𝑗 is essentially for free. Computing the sets 𝑆′

𝑗
using the sum operation,

however, amounts to time

𝑂
©«
∑︁
𝑗∈[𝑛]
|𝑆′𝑗+1 \ 𝑆 𝑗 |

ª®¬.
A priori, it is not clear whether this is helpful. In case of only inserting elements, this sum
could be conveniently bounded by 𝑃 (as is the case for Modular Subset Sum). Unfortunately, we
additionally have to deal with deletions. Specifically, it is possible that some element 𝑠 is inserted

8 In [35], Potępa proposes an improved deterministic data structure with applications to the Modular Subset Sum
problem. A priori, it looks like their improvement might similarly apply to our setting. Unfortunately, the data structure
is only efficient if we have the freedom to arbitrarily reorder the items, which is prohibitive for us as we have to stick
to the order 𝑑0 ≤ · · · ≤ 𝑑𝑛−1.

8 / 17 N. Fischer and L. Wennmann

in 𝑆′1, deleted in 𝑆1, inserted again in 𝑆′2, and so on. All in all, 𝑠 could be inserted up to 𝑛 times,
and so the only immediate upper bound for the sum is 𝑛𝑃 (which recovers the Lawler-Moore
running time).

Our crucial structural insight is that, while the same element can indeed be inserted and
deleted multiple times, the total number of insertions is nevertheless bounded. More precisely,
we show that the overall number of insertions is at most 𝑂(𝑃):

LEMMA 3.3 (Bounded Insertions). It holds that
∑

𝑗∈[𝑛] |𝑆′𝑗+1 \ 𝑆 𝑗 | ≤ 2𝑃 + 1.

PROOF . We split the sum into two parts:∑︁
𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗)
�� = ∑︁

𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]
�� + ∑︁

𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) ∩ (𝑑 𝑗 . . 𝑃]
��.

Intuitively, the first sum counts the number of elements that are irreversibly inserted into the
sets 𝑆 𝑗+1, . . . , 𝑆𝑛 in the 𝑗-th step. The second sum counts the number of elements that are inserted
into 𝑆′

𝑗+1 and immediately deleted in 𝑆 𝑗+1.
For the first sum, consider the following observation: For any 𝑥 ∈ [0 . . 𝑃], if 𝑥 ≤ 𝑑 𝑗 and

𝑥 ∈ 𝑆′
𝑗+1 \ 𝑆 𝑗 , then 𝑥 ∈ 𝑆 𝑗+1, . . . , 𝑆𝑛 (since 𝑑 𝑗 ≤ 𝑑 𝑗+1, . . . , 𝑑𝑛−1). It follows that��{ 𝑗 ∈ [𝑛] : 𝑥 ∈ (𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]}

�� ≤ 1

for all 𝑥 ∈ [0 . . 𝑃]. Thus,∑︁
𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]
�� = ∑︁

𝑥∈[0 . . 𝑃]

��{ 𝑗 ∈ [𝑛] : 𝑥 ∈ (𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]}
�� ≤ 𝑃 + 1.

Second, we bound | (𝑆′
𝑗+1 \ 𝑆 𝑗) ∩ (𝑑 𝑗 . . 𝑃] | ≤ |𝑆′𝑗+1 ∩ (𝑑 𝑗 . . 𝑃] |. Note that 𝑆 𝑗 ⊆ [0 . . 𝑑 𝑗−1] and

therefore 𝑆′
𝑗+1 = 𝑆 𝑗 + {0, 𝑝 𝑗} ⊆ [0 . . 𝑑 𝑗−1 + 𝑝 𝑗]. Consequently,��𝑆′𝑗 ∩ (𝑑 𝑗 . . 𝑃]

�� ≤ ��[0 . . 𝑑 𝑗−1 + 𝑝 𝑗] ∩ (𝑑 𝑗 . . 𝑃]
�� ≤ 𝑑 𝑗−1 + 𝑝 𝑗 − 𝑑 𝑗 ≤ 𝑝 𝑗 ,

where the final inequality follows from the assumption that 𝑑 𝑗−1 ≤ 𝑑 𝑗 . Hence, the number of
overall deletions is ∑︁

𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) ∩ (𝑑 𝑗 . . 𝑃]
�� ≤ ∑︁

𝑗∈[𝑛]
𝑝 𝑗 = 𝑃.

Combining both parts concludes the proof. ■

The proof for Lemma 3.2 is provided in Section 3.1. Using Lemma 3.3 and 3.2, we are in
the position to show our main result.

THEOREM 1.1. (Restated) The 1| |∑ 𝑝 𝑗𝑈 𝑗 problem can be solved in randomized time 𝑂(𝑃 log 𝑃)
and in deterministic time 𝑂(𝑃 log1+𝑜(1) 𝑃).

PROOF . In summary, our algorithm works as follows. We compute 𝑆0, . . . , 𝑆𝑛 ⊆ [0 . . 𝑃] using
the data structure from Lemma 3.2 (with 𝑢 = 𝑃 + 1). Specifically, after initializing 𝑆 with

9 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

init(𝑆0), we repeatedly construct the sets 𝑆′
𝑗

and 𝑆 𝑗 using the operations sum(𝑝 𝑗) and cap(𝑑 𝑗)
for all 𝑗 ← 0, . . . , 𝑛 − 1. The largest element in the final set 𝑆 = 𝑆𝑛 is the maximal total processing
of a feasible schedule of all jobs 0, . . . , 𝑛 − 1. Finding and returning it is the last step of our
algorithm, by repeatedly using the query(𝑖) operation and returning the largest index 𝑖 for
which the query returns yes. The correctness of our algorithm follows from Observation 3.1.

The running time is composed of the following parts: The initialization runs in time
𝑂(log2 𝑃), the repeated use of sum and cap takes time 𝑂(∑ 𝑗∈[𝑛] (|𝑆′𝑗+1 \ 𝑆 𝑗 | · log 𝑃 + log 𝑃)) and
the optimal value is found in time 𝑂(𝑃). Using 𝑛 ≤ 𝑃 and Lemma 3.3, it holds that

𝑂
©«
∑︁
𝑗∈[𝑛]
(|𝑆′𝑗+1 \ 𝑆 𝑗 | · log 𝑃 + log 𝑃)ª®¬ ≤ 𝑂(𝑃 log 𝑃).

In total, we have a randomized running time of 𝑂(𝑃 log 𝑃). Applying the same arguments yields
the deterministic running time of 𝑂(𝑃 log1+𝑜(1) 𝑃). ■

We stress that the algorithm described in this section only computes the optimal value. In
Section 3.2, we explain how our algorithm can be easily extended to obtain the optimal schedule
as well.

3.1 Cap-Sum Data Structure via Dynamic Strings

In this section, we provide the missing proof of Lemma 3.2 by a reduction to the dynamic
strings data structure problem. This is the fundamental problem of maintaining a collection
of strings that can be concatenated, split, updated, and tested for equality—see [38, 36, 33, 2,
22]. We summarize the state of the art in the following lemma; the fastest randomized (and
in fact, optimal) data structure is due to Gawrychowski, Karczmarz, Kociumaka, Lacki and
Sankowski [22], and for the fastest deterministic one see [28, Section 8].

Here we use standard string notation for a string 𝑥, where 𝑥 [𝑖] denotes the letter at index 𝑖,
and 𝑥 [𝑖 . . 𝑗], 𝑥 [𝑖 . . 𝑗) denote the appropriate substrings.

LEMMA 3.4 (Dynamic String Data Structure [22, 28]). There is a data structure that maintains
a dynamic collection 𝑋 of non-empty strings and support the following operations:

make_string(𝑥): Given any string 𝑥 ∈ Σ+, inserts 𝑥 into 𝑋 .
concat(𝑥1, 𝑥2): Given 𝑥1, 𝑥2 ∈ 𝑋 , inserts the concatenation 𝑥1𝑥2 into 𝑋 .
split(𝑥, 𝑖): Given 𝑥 ∈ 𝑋 and 𝑖 ∈ [0 . . |𝑥 |), inserts 𝑥 [0 . . 𝑖] and 𝑥 (𝑖 . . |𝑥 |) into 𝑋 .
LCP(𝑥1, 𝑥2): Given 𝑥1, 𝑥2 ∈ 𝑋 , returns the length ℓ of their longest common

prefix, i.e., returns max{0 ≤ ℓ ≤ min{|𝑥1 |, |𝑥2 |} : 𝑥1[0 . . ℓ) = 𝑥2[0 . . ℓ)}.
query(𝑥, 𝑖): Given 𝑥 ∈ 𝑋 and 𝑖 ∈ [|𝑥 |], returns 𝑥 [𝑖].

10 / 17 N. Fischer and L. Wennmann

Let 𝑛 be the maximum of the total length of all strings and the number of executed operations.
Then all operations run in randomized time 𝑂(log 𝑛) or in deterministic time 𝑂(log1+𝑜(1) 𝑛), except
for make_string which takes time 𝑂(|𝑥 | + log 𝑛) and 𝑂(|𝑥 | · log𝑜(1) 𝑛), respectively.

For the sake of convenience, we include two more dynamic string operations that are
derived from the previous lemma in a black-box fashion. As both are standard operations [22],
we only provide their implementations for completeness.

update(𝑥, 𝑖, 𝜎): Given 𝑥 ∈ 𝑋 , an index 𝑖 ∈ [|𝑥 |] and 𝜎 ∈ Σ, inserts the string obtained from
𝑥 by changing the 𝑖-th character to 𝜎 into the data structure. To implement this, we split the
string 𝑥 twice to separate the letter 𝑥 [𝑖] from the rest of the string. Specifically, we obtain
the substring 𝑥 [0 . . 𝑖] using split(𝑥, 𝑖) and further divide it to get the substring 𝑥 [0 . . 𝑖)
by split(𝑥 [0 . . 𝑖), 𝑖 − 1). Next, the make_string(𝜎) operation creates the string 𝜎. Lastly,
we use concat(𝑥 [0 . . 𝑖), concat(𝜎, 𝑥 (𝑖 . . |𝑥 |))) to reinsert 𝜎 between the two substrings.
LCE(𝑥1, 𝑥2, 𝑖1, 𝑖2): Given 𝑥1, 𝑥2 ∈ 𝑋 and 𝑖1 ∈ [|𝑥1 |], 𝑖2 ∈ [|𝑥2 |], returns the longest common
extension max{0 ≤ ℓ ≤ min{|𝑥1 | − 𝑖1, |𝑥2 | − 𝑖2} : 𝑥1[𝑖1 . . 𝑖1 + ℓ) = 𝑥2[𝑖2 . . 𝑖2 + ℓ)}. To
implement this, using the two operations split(𝑥1, 𝑖 − 1) and split(𝑥2, 𝑗 − 1) we first
separate the substrings 𝑥1[𝑖 . . |𝑥1 |) and 𝑥2[𝑗 . . |𝑥2 |). Observe that the length of the longest
common extension of the original strings is exactly the length of the longest common prefix
of 𝑥1[𝑖 . . |𝑥1 |) and 𝑥2[𝑗 . . |𝑥2 |) returned by the operation LCP(𝑥1[𝑖 . . |𝑥1 |), 𝑥2[𝑗 . . |𝑥2 |)).

Both update and LCE require a constant number of original operations that run in randomized
time 𝑂(log 𝑛), or deterministic time 𝑂(log1+𝑜(1) 𝑛).

Now, we are in the position to provide the proof of Lemma 3.2. Recall that this proof is in
parts borrowed from [4, 14].

PROOF OF LEMMA 3.2 . We maintain the set 𝑆 ⊆ [𝑢] as an indicator string 𝑥𝑆 ∈ {0, 1}𝑢 such
that 𝑖 ∈ 𝑆 if and only if 𝑥𝑆 [𝑖] = 1.

init(𝑆): Using repeated squaring, we construct the string 0𝑢 by inserting 𝑤 = 0 and
concatenating 𝑤 with itself log𝑢 times. Note that 0𝑢 will remain in the data structure and
can be used by other operations. We compute 𝑥𝑆 by updating 0𝑢 using update(𝑥𝑆, 𝑖, 1)
for all indices 𝑖 ∈ 𝑆. Since the repeated squaring takes time 𝑂(log2 𝑢) and updating the
elements takes time 𝑂(|𝑆 | · log𝑢), the init operation runs in time 𝑂(log2 𝑢 + |𝑆 | · log𝑢).
query(𝑖): As the original data structure already provides a query operation, we use
query(𝑥𝑆, 𝑖) that returns 𝑥𝑆 [𝑖] in time 𝑂(log𝑢).
sum(𝑝): We implement sum in three steps. First, we will compute the string 𝑥𝑆+𝑝 that
represents the set 𝑆 + 𝑝. Observe that 𝑥𝑆+𝑝 is obtained by shifting 𝑥𝑆 by 𝑝 positions to
the right. Thus, we extend 𝑥𝑆 using concat(0𝑝, 𝑥𝑆) where the string 0𝑝 is split off the
precomputed string 0𝑢 using split(0𝑢, 𝑝 − 1). Then we trim it down to length 𝑢 with

11 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

split(0𝑝𝑥𝑆, 𝑢− 1). (Note that due to the assumption max(𝑆 + 𝑝) < 𝑢 we only split off zeros
in this step.)

Second, note that the desired string 𝑥𝑆∪(𝑆+𝑝) is the result of the bit-wise OR of 𝑥𝑆 and
𝑥𝑆+𝑝. We compute the set 𝐷 = {𝑖 ∈ [𝑢] : 𝑥𝑆 [𝑖] ≠ 𝑥𝑆+𝑝[𝑖]} that contains all indices at which
𝑥𝑆 and 𝑥𝑆+𝑝 differ from each other. To this end, starting with 𝑖 ← 0, we will repeat the
following process as long as 𝑖 < 𝑢: Compute ℓ← LCE(𝑥𝑆, 𝑥𝑆+𝑝, 𝑖, 𝑖) to determine the next
index 𝑖 + ℓ at which both strings differ, insert 𝐷← 𝐷 ∪ {𝑖 + ℓ} and update 𝑖 ← 𝑖 + ℓ + 1.

As the third and last step, we compute 𝑥𝑆∪(𝑆+𝑝) by updating 𝑥𝑆 using update(𝑥𝑆, 𝑖, 1) for
all indices 𝑖 ∈ 𝐷.

Creating the shifted string 𝑥𝑆+𝑝 takes time 𝑂(log𝑢). Both the construction of set 𝐷 and
computing the string 𝑥𝑆∪(𝑆+𝑝) require | (𝑆 + 𝑝) \ 𝑆 | + |𝑆 \ (𝑆 + 𝑝) | many operations that each
run in time 𝑂(log𝑢). Since |𝑆 + 𝑝| = |𝑆 |, we have

| (𝑆 + 𝑝) \ 𝑆 | = |𝑆 + 𝑝| − |(𝑆 + 𝑝) ∩ 𝑆 | = |𝑆 | − |(𝑆 + 𝑝) ∩ 𝑆 | = |𝑆 \ (𝑆 + 𝑝) |

and therefore | (𝑆 + 𝑝) \ 𝑆 | + |𝑆 \ (𝑆 + 𝑝) | = 2 · | (𝑆 + 𝑝) \ 𝑆 |. In summary, the sum operation
takes time 𝑂(| (𝑆 + 𝑝) \ 𝑆 | · log𝑢).
cap(𝑑): In order to set 𝑥𝑆 [𝑖] = 0 for all 𝑖 ∈ (𝑑 . . 𝑢), we separate the substring 𝑥𝑆 [0 . . 𝑑] with
split(𝑥𝑆, 𝑑) and split the substring 0𝑢−𝑑−1 off the precomputed string 0𝑢 using split(0𝑢, 𝑢−
𝑑 − 2). Then 𝑥𝑆 is assembled using concat(𝑥𝑆 [0 . . 𝑑], 0𝑢−𝑑−1). All three operations take
time 𝑂(log𝑢).

Following Lemma 3.4, the deterministic running times can be obtained by worsening all opera-
tions by a factor log𝑜(1) 𝑢. ■

3.2 Obtaining an Optimal Schedule

In the previous sections we have argued that the optimal value OPT (i.e., the maximum total
processing of a feasible schedule) can be computed in near-linear time 𝑂(𝑃). In this section we
explain how the actual optimal schedule can be computed by a deterministic post-processing
routine in time 𝑂(𝑛).

The idea is, as is standard for dynamic programming algorithms, to trace through the
sets 𝑆0, . . . , 𝑆𝑛 in reverse order. To make this traversal efficient, we slightly modify our algo-
rithm to additionally compute an array 𝐴[0 . . 𝑃] such that 𝐴[𝑠] = min{ 𝑗 ∈ [𝑛] : 𝑠 ∈ 𝑆 𝑗+1}.
Intuitively, 𝐴[𝑠] stores the smallest job 𝑗 such that there exists a feasible schedule with total
processing time 𝑠 that contains 𝑗 and a subset of the jobs {0, . . . , 𝑗−1}. It is easy to appropriately
maintain the array 𝐴 whenever an element is inserted into 𝑆′

𝑗+1 without worsening the asymp-
totic running time. Then, in order to compute an optimal schedule, we apply the following
algorithm: We initialize 𝐽 ← ∅ and 𝑠← OPT. We repeatedly retrieve the next job 𝑗 ← 𝐴[𝑠] and
update 𝐽 ← 𝐽 ∪ { 𝑗} and 𝑠← 𝑠− 𝑝 𝑗 , until 𝑠 = 0. In each step, we identify a job 𝑗 that is contained

12 / 17 N. Fischer and L. Wennmann

in the optimal schedule, and thus 𝐽 is an optimal schedule once the process has terminated. In
fact, the same idea can be used to retrieve a feasible schedule for any given processing time
𝑠 ∈ 𝑆𝑛.

4. Generalization toMultiple Machines

In this section, we show that our algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗 can be extended to 𝑃𝑚 | |
∑

𝑝 𝑗𝑈 𝑗 . Since
it follows the same approach as the single machine algorithm, we will keep this section short
and concise. For more details refer to Section 3.

Let 𝑒0, . . . , 𝑒𝑚−1 denote the standard unit vectors of Z𝑚, then we recursively define the sets
𝑆0, . . . , 𝑆𝑛 ⊆ [0, 𝑃]𝑚 as follows:

𝑆0 = {0},
𝑆′𝑗+1 = 𝑆 𝑗 + {0, 𝑝 𝑗 · 𝑒0, . . . , 𝑝 𝑗 · 𝑒𝑚−1} (𝑗 ∈ [𝑛]),

𝑆 𝑗+1 = 𝑆′𝑗+1 ∩ [0, 𝑑 𝑗]𝑚 (𝑗 ∈ [𝑛]).

As before, the optimal value is the maximum entry in 𝑆𝑛:

OBSERVAT ION 4.1 (Lawler and Moore [32]). There is a feasible schedule of total processing
time 𝑡 if and only if there is some 𝑠 ∈ 𝑆𝑛 with 𝑠0 + · · · + 𝑠𝑚−1 = 𝑡.

The crucial difference to before is that here all 𝑠 ∈ 𝑆 𝑗 are vectors where their 𝑖-th entry
corresponds to the 𝑖-th machine. Because each job is either scheduled on exactly one machine
or not at all, we consider all scheduling possibilities of job 𝑗 with 𝑆 𝑗 + {0, 𝑝 𝑗 · 𝑒0, . . . , 𝑝 𝑗 · 𝑒𝑚−1}.
As our goal is again to bound the total number of insertions, see the following lemma:

LEMMA 4.2 (Generalized Bounded Insertions). It holds that∑︁
𝑗∈[𝑛]

��𝑆′𝑗+1 \ 𝑆 𝑗

�� ≤ (𝑚 + 1) · (𝑃 + 1)𝑚.

PROOF . In the following, we consider two parts of the sum separately:∑︁
𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗)
�� = ∑︁

𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]𝑚
�� + ∑︁

𝑗∈[𝑛]

��(𝑆′𝑗+1 \ 𝑆 𝑗) \ [0 . . 𝑑 𝑗]𝑚
��.

In other words, in analogy to Lemma 3.3, we first count the number of elements that are
irrevocably inserted into 𝑆 𝑗+1, . . . , 𝑆𝑛 in the 𝑗-th step. Second, we count the number of elements
that are inserted into 𝑆′

𝑗+1 and instantly deleted in 𝑆 𝑗+1.
We bound the first sum with the following observation. For any 𝑥 ∈ [0 . . 𝑃]𝑚, it holds that

if 𝑥 ∈ (𝑆′
𝑗+1 \𝑆 𝑗) and 𝑥 ∈ [0 . . 𝑑 𝑗], then 𝑥 ∈ 𝑆 𝑗+1, . . . , 𝑆𝑛. This follows directly from the assumption

that 𝑑 𝑗 ≤ 𝑑 𝑗+1, . . . , 𝑑𝑛−1. Therefore, it holds that��{ 𝑗 ∈ [𝑛] : 𝑥 ∈ (𝑆′𝑗+1 \ 𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]𝑚}
�� ≤ 1,

13 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

for all 𝑥 ∈ [0 . . 𝑃]𝑚, and thus∑︁
𝑗∈[𝑛]

��(𝑆′𝑗+1\𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]𝑚
�� = ∑︁
𝑥∈[0 . . 𝑃]𝑚

��{ 𝑗 ∈ [𝑛] : 𝑥 ∈ (𝑆′𝑗+1\𝑆 𝑗) ∩ [0 . . 𝑑 𝑗]𝑚}
�� ≤ (𝑃 + 1)𝑚.

For the second sum, we bound | (𝑆′
𝑗+1 \ 𝑆 𝑗) \ [0 . . 𝑑 𝑗]𝑚 | ≤ |𝑆′𝑗+1 \ [0 . . 𝑑 𝑗]𝑚 |. Using the fact

that 𝑆 𝑗 ⊆ [0 . . 𝑑 𝑗−1]𝑚, we have that

𝑆′𝑗+1 = 𝑆 𝑗 + {0, 𝑝 𝑗 · 𝑒0, . . . , 𝑝 𝑗 · 𝑒𝑚−1}

⊆ [0 . . 𝑑 𝑗−1]𝑚 + {0, 𝑝 𝑗 · 𝑒0, . . . , 𝑝 𝑗 · 𝑒𝑚−1} C 𝑉 𝑗+1.

As each job 𝑗 is scheduled on exactly one machine, we observe that 𝑉 𝑗+1 is the set of vec-
tors where all entries are in [0 . . 𝑑 𝑗−1], except for possibly one entry that is in [0 . . 𝑑 𝑗−1 + 𝑝 𝑗].
Hence, 𝑉 𝑗+1 \ [0 . . 𝑑 𝑗]𝑚 is the set of vectors where all entries are in [0 . . 𝑑 𝑗−1], except for exactly
one entry that is in (𝑑 𝑗 . . 𝑑 𝑗−1 + 𝑝 𝑗]. Next, we bound the size of 𝑉 𝑗+1 \ [0 . . 𝑑 𝑗]𝑚: There are 𝑚

options for the index of the special entry, there are 𝑑 𝑗−1 + 𝑝 𝑗 − 𝑑 𝑗 options for the value of the
special entry, and finally there are (𝑃 + 1)𝑚−1 options for the other 𝑚 − 1 entries. Thus,��𝑆′𝑗+1 \ [0 . . 𝑑 𝑗]𝑚

�� ≤ ��𝑉 𝑗+1 \ [0 . . 𝑑 𝑗]𝑚
��

≤ 𝑚 · (𝑃 + 1)𝑚−1 · (𝑑 𝑗−1 + 𝑝 𝑗 − 𝑑 𝑗)
≤ 𝑚 · (𝑃 + 1)𝑚−1 · 𝑝 𝑗 ,

where the final inequality follows from the assumption that 𝑑 𝑗−1 ≤ 𝑑 𝑗 . Consequently, the second
sum is bounded by∑︁

𝑗∈[𝑛]

��𝑆′𝑗+1 \ [0 . . 𝑑 𝑗]𝑚
�� ≤ 𝑚 · (𝑃 + 1)𝑚−1 ·

∑︁
𝑗∈[𝑛]

𝑝 𝑗 ≤ 𝑚 · (𝑃 + 1)𝑚.

Combining the bounds for both sums yields the overall bound. ■

Analogous to Section 3, we use the generalized sum-cap data structure to efficiently main-
tain the generalized sets 𝑆0, . . . , 𝑆𝑛.

LEMMA 4.3 (Generalized Sum-Cap Data Structure). There is a randomized data structure
maintaining a set 𝑆 ⊆ [𝑢]𝑚 that supports the following operations:

init(𝑆): Initializes the data structure to the given set 𝑆 ⊆ [𝑢]𝑚.
Runs in time 𝑂(log2 𝑢 + |𝑆 | · log𝑢).

query(𝑠): Given 𝑠 ∈ [𝑢]𝑚, tests whether 𝑠 ∈ 𝑆.
Runs in time 𝑂(log𝑢).

sum(𝑇): Given 𝑇 ⊆ [𝑢]𝑚, updates 𝑆 ← 𝑆 + 𝑇 .
Runs in time 𝑂(|𝑇 | · | (𝑆 + 𝑇) \ 𝑆 | · log𝑢) (where 𝑆 is as before the operation).

cap(𝑑): Given 𝑑 ∈ [𝑢], updates 𝑆 ← 𝑆 ∩ [𝑑]𝑚.
Runs in time 𝑂(𝑢𝑚−1 · log𝑢).

14 / 17 N. Fischer and L. Wennmann

If at any point during the execution an element 𝑠 ∉ [𝑢]𝑚 is attempted to be inserted, the data
structure becomes invalid. Moreover, the data structure can be made deterministic at the cost of
worsening all operations by a factor log𝑜(1) 𝑢.

PROOF . Let 𝑈 = 𝑢𝑚. Let 𝜙 : [𝑢]𝑚 → [𝑈] be the bijection defined by 𝜙(𝑠) = ∑
𝑖∈[𝑚] 𝑠𝑖𝑢

𝑖 . We
extend the definition to sets 𝑆 ⊆ [𝑢]𝑚 via 𝜙(𝑆) = {𝜙(𝑠) : 𝑠 ∈ 𝑆}. We maintain the set 𝑆 ⊆ [𝑢]𝑚 as
the indicator string of 𝜙(𝑆), namely 𝑥𝜙(𝑆) ∈ {0, 1}𝑈 , such that 𝑖 ∈ 𝑆 if and only if 𝑥𝜙(𝑆) [𝜙(𝑖)] = 1.
In other words, we store for each 𝑠 ∈ [𝑢]𝑚, listed in lexicographical order, whether 𝑠 ∈ 𝑆.

init(𝑆): The string 0𝑈 is constructed using repeated squaring by inserting 𝑥 = 0 and
concatenating 𝑥 with itself 𝑚 log𝑢 times. It will remain in the data structure available
to other operations. Repeatedly using update(·, 𝜙(𝑠), 1) for all entries 𝑠 ∈ 𝑆, we update
the string 0𝑈 to obtain 𝑥𝜙(𝑆) . As repeated squaring takes time 𝑂(log2 𝑢) and updating the
elements takes time 𝑂(|𝑆 | · log𝑢), the init operation runs in time 𝑂(log2 𝑢 + |𝑆 | · log𝑢).
query(𝑠): Using query(𝑥𝜙(𝑆) , 𝑠) from the string data structure allows us to return 𝑥𝜙(𝑆) [𝑠]
in time 𝑂(log𝑢).
sum(𝑇): We can assume without loss of generality that 0 ∈ 𝑇 (as otherwise we can simply
shift 𝑇 and 𝑥𝜙(𝑆) appropriately). Fix an arbitrary nonzero element 𝑝 ∈ 𝑇 . Analogously to
Lemma 3.2, we first show how to compute the set (𝑆 + 𝑝) \ 𝑆 in output-sensitive time. The
string 𝑥𝜙(𝑆+𝑝) representing the set 𝑆 + 𝑝 can be computed using the two following facts.
If 𝑥, 𝑦, 𝑥 + 𝑦 ∈ [𝑢]𝑚, then it holds that 𝜙(𝑥 + 𝑦) = 𝜙(𝑥) + 𝜙(𝑦). Further, if 𝑝 ∈ [𝑢]𝑚 and
𝑆, 𝑆 + 𝑝 ⊆ [𝑢]𝑚, then 𝜙(𝑆 + 𝑝) = 𝜙(𝑆) + 𝜙(𝑝). Therefore, 𝑥𝜙(𝑆+𝑝) is 𝑥𝜙(𝑆) up to a shift of 𝜙(𝑝),
and can be obtained by split(concat(0𝜙(𝑝) , 𝑥𝜙(𝑆)),𝑈 − 1).

Similarly to Lemma 3.2, repeatedly using LCE queries allows us to first compute the set
{𝑖 ⊆ [𝑈] : 𝑥𝜙(𝑆) [𝑖] ≠ 𝑥𝜙(𝑆+𝑝) [𝑖]} and then read off the symmetric difference of 𝑆 and 𝑆 + 𝑝,
denoted by 𝐷𝑝 = (𝑆 \ (𝑆 + 𝑝)) ∪ ((𝑆 + 𝑝) \ 𝑆). We repeat the same for all other nonzero
elements 𝑝 ∈ 𝑇 . Let 𝐷 =

⋃
𝑝∈𝑇\{0} 𝐷𝑝, then we have 𝐷 ⊇ (𝑆 + 𝑇) \ 𝑆. Thus, we can update

the indicator string 𝑥𝜙(𝑆) by calling update(·, 𝜙(𝑠), 1) for all 𝑠 ∈ 𝐷.
In order to bound the running time, we bound the size of the sets 𝐷𝑝 and 𝐷. Using

that |𝑆 \ (𝑆 + 𝑝) | = | (𝑆 + 𝑝) \ 𝑆 |, we have that |𝐷𝑝 | ≤ 2| (𝑆 + 𝑝) \ 𝑆 | ≤ 2| (𝑆 + 𝑇) \ 𝑆 |, and
therefore |𝐷| ≤ 2|𝑇 | · | (𝑆 + 𝑇) \ 𝑆 |. In total, we used 𝑂(|𝐷|) data structure operations,
leading to a running time of 𝑂(|𝑇 | · | (𝑆 + 𝑇) \ 𝑆 | · log𝑢).
cap(𝑑): We delete all vectors 𝑠 ∈ 𝑆 with at least one entry that is larger than 𝑑 as follows.
We enumerate all (𝑚 − 1)-tuples (𝑠1, . . . , 𝑠𝑚−1) ∈ [𝑢]𝑚−1. Recall that the vectors are stored
in lexicographical order. Thus, the set of vectors (𝑠0, 𝑠1, . . . , 𝑠𝑚−1) where 𝑠0 ranges over [𝑢]
and 𝑠1, . . . , 𝑠𝑚−1 are fixed, is represented by a length-𝑢 substring of 𝑥𝜙(𝑆) . Specifically,
the substring 𝑥𝜙(𝑆) [𝜙(0, 𝑠1, . . . , 𝑠𝑚−1) . . 𝜙(𝑢 − 1, 𝑠1, . . . , 𝑠𝑚−1)]. We distinguish two cases: If
max𝑚−1

𝑖=1 𝑠𝑖 > 𝑑, then the entire substring is replaced with 0𝑢. Otherwise, we retain its

15 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

length-(𝑑 + 1) prefix and replace its suffix is by 0𝑢−𝑑−1. It takes 𝑂(𝑢𝑚−1) concat and split

operations to perform these modifications, running in total time 𝑂(𝑢𝑚−1 · log𝑢).

Again, following Lemma 3.4 the deterministic running time of the operations differs by replacing
log𝑢 with log1+𝑜(1) 𝑢. ■

Based on Lemma 4.2 and 4.3, we show the following generalization of our main result.

THEOREM 1.2. (Restated)The 𝑃𝑚 | |
∑

𝑝 𝑗𝑈 𝑗 problem can be solved in randomized time𝑂(𝑃𝑚 log 𝑃)
and in deterministic time 𝑂(𝑃𝑚 log1+𝑜(1) 𝑃).

PROOF . Analogous to Theorem 1.1, we use the algorithm: We initialize the data structure from
Lemma 4.3 (used with 𝑢 = 𝑃 + 1) with init(𝑆0). For all 𝑗 ← 0, . . . , 𝑛 − 1, we repeatedly use
the operations sum({0, 𝑝 𝑗 · 𝑒0, . . . , 𝑝 𝑗 · 𝑒𝑚−1}) and cap(𝑑 𝑗) to compute the sets 𝑆′

𝑗+1 and 𝑆 𝑗+1. We
return the optimal value contained in 𝑆𝑛 as described in Theorem 1.1. Our algorithm is correct
due to Observation 4.1. Finally, using Lemmas 4.2 and 4.3 and the assumption 𝑛 ≤ 𝑃, we can
bound the dominant term of the running time by

𝑂
©«
∑︁
𝑗∈[𝑛]
(𝑚 · |𝑆′𝑗+1 \ 𝑆 𝑗 | · log 𝑃 + 𝑃𝑚−1 log 𝑃)ª®¬ = 𝑂(𝑃𝑚 log 𝑃).

(Recall that 𝑚 is constant.) Thus, we obtain a randomized running time of 𝑂(𝑃𝑚 log 𝑃), and
similarly a deterministic running time of 𝑂(𝑃𝑚 log1+𝑜(1) 𝑃). ■

References
[1] Amir Abboud, Karl Bringmann, Danny Hermelin,
and Dvir Shabtay. Seth-based lower bounds for
subset sum and bicriteria path. ACM Trans.
Algorithms, 18(1):6:1–6:22, 2022. DOI (2, 3, 5)

[2] Stephen Alstrup, Gerth Stølting Brodal, and
Theis Rauhe. Pattern matching in dynamic texts.
11th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2000), pages 819–828.
ACM/SIAM, 2000. URL (9)

[3] Antonis Antonopoulos, Aris Pagourtzis,
Stavros Petsalakis, and Manolis Vasilakis. Faster
algorithms for k-subset sum and variations. J.
Comb. Optim. 45(1):24, 2023. DOI (4)

[4] Kyriakos Axiotis, Arturs Backurs, Karl Bringmann,
Ce Jin, Vasileios Nakos, Christos Tzamos, and
Hongxun Wu. Fast and simple modular subset sum.
4th Symposium on Simplicity in Algorithms (SOSA
2021), pages 57–67. SIAM, 2021. DOI (3, 5, 7, 10)

[5] Kyriakos Axiotis, Arturs Backurs, Ce Jin,
Christos Tzamos, and Hongxun Wu. Fast modular
subset sum using linear sketching. 30th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2019), pages 58–69. SIAM, 2019. DOI (3,
5, 7)

[6] Kyriakos Axiotis and Christos Tzamos.
Capacitated dynamic programming: faster
knapsack and graph algorithms. 46th International
Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of LIPIcs,
19:1–19:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. DOI (5)

[7] MohammadHossein Bateni,
MohammadTaghi Hajiaghayi, Saeed Seddighin,
and Cliff Stein. Fast algorithms for knapsack via
convolution and prediction. 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC
2018), pages 1269–1282. ACM, 2018. DOI (5)

https://doi.org/10.1145/3450524
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.1007/S10878-022-00928-0
https://doi.org/10.1137/1.9781611976496.6
https://doi.org/10.1137/1.9781611975482.4
https://doi.org/10.4230/LIPICS.ICALP.2019.19
https://doi.org/10.1145/3188745.3188876

16 / 17 N. Fischer and L. Wennmann

[8] Karl Bringmann. A near-linear pseudopolynomial
time algorithm for subset sum. 28th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2017), pages 1073–1084. SIAM, 2017. DOI
(4, 5)

[9] Karl Bringmann. Knapsack with small items in
near-quadratic time. Proceedings of the 56th
Annual ACM Symposium on Theory of Computing,
STOC 2024, Vancouver, BC, Canada, June 24-28,
2024, pages 259–270. ACM, 2024. DOI (5)

[10] Karl Bringmann and Alejandro Cassis. Faster
0-1-knapsack via near-convex
min-plus-convolution. 31st Annual European
Symposium on Algorithms (ESA 2023), volume 274
of LIPIcs, 24:1–24:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. DOI (5)

[11] Karl Bringmann and Alejandro Cassis. Faster
knapsack algorithms via bounded monotone
min-plus-convolution. 49th International
Colloquium on Automata, Languages, and
Programming (ICALP 2022), volume 229 of LIPIcs,
31:1–31:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. DOI (5)

[12] Karl Bringmann, Nick Fischer, Danny Hermelin,
Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single
machine. Algorithmica, 84(5):1341–1356, 2022.
DOI (2–5)

[13] Karl Bringmann and Philip Wellnitz. On
near-linear-time algorithms for dense subset sum.
32nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2021), pages 1777–1796. SIAM,
2021. DOI (5)

[14] Jean Cardinal and John Iacono. Modular subset
sum, dynamic strings, and zero-sum sets. 4th
Symposium on Simplicity in Algorithms (SOSA
2021), pages 45–56. SIAM, 2021. DOI (3, 5, 7, 10)

[15] Timothy M. Chan and Qizheng He. More on
change-making and related problems. J. Comput.
Syst. Sci. 124:159–169, 2022. DOI (5)

[16] Lin Chen, Jiayi Lian, Yuchen Mao, and
Guochuan Zhang. Faster algorithms for bounded
knapsack and bounded subset sum via
fine-grained proximity results. 35th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2024), pages 4828–4848. SIAM, 2024. DOI
(5)

[17] Marek Cygan, Holger Dell, Daniel Lokshtanov,
Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and
Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24,
2016. DOI (2, 3)

[18] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and
Michal Wlodarczyk. On problems equivalent to
(min, +)-convolution. ACM Trans. Algorithms,
15(1):14:1–14:25, 2019. DOI (2, 5)

[19] Mingyang Deng, Xiao Mao, and Ziqian Zhong. On
problems related to unbounded SubsetSum: A
unified combinatorial approach. 32nd Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA 2021), pages 2980–2990. SIAM, 2023. DOI
(5)

[20] Friedrich Eisenbrand and Robert Weismantel.
Proximity results and faster algorithms for integer
programming using the Steinitz lemma. ACM Trans.
Algorithms, 16(1):5:1–5:14, 2020. DOI (5)

[21] Nick Fischer and Leo Wennmann. Minimizing tardy
processing time on a single machine in near-linear
time. 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July
8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs,
64:1–64:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024. DOI (1)

[22] Pawel Gawrychowski, Adam Karczmarz,
Tomasz Kociumaka, Jakub Lacki, and
Piotr Sankowski. Optimal dynamic strings. 29th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018), pages 1509–1528. SIAM,
2018. DOI (9, 10)

[23] Ronald L. Graham, Eugene L. Lawler,
Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic
sequencing and scheduling: A survey. Annals of
Discrete Mathematics, 5:287–326, 1979. DOI (2)

[24] Danny Hermelin, Hendrik Molter, and Dvir Shabtay.
Minimizing the weighted number of tardy jobs via
(max,+)-convolutions. INFORMS J. Comput.
36(3):836–848, 2024. DOI (5)

[25] Klaus Jansen and Lars Rohwedder. On integer
programming, discrepancy, and convolution. Math.
Oper. Res. 48(3):1481–1495, 2023. DOI (5)

[26] Ce Jin. 0-1 knapsack in nearly quadratic time.
Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouver,
BC, Canada, June 24-28, 2024, pages 271–282.
ACM, 2024. DOI (5)

[27] Ce Jin and Hongxun Wu. A simple near-linear
pseudopolynomial time randomized algorithm for
subset sum. 2nd Symposium on Simplicity in
Algorithms (SOSA 2019), volume 69 of OASIcs,
17:1–17:6. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. DOI (4)

[28] Dominik Kempa and Tomasz Kociumaka. Dynamic
suffix array with polylogarithmic queries and
updates. 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2022),
pages 1657–1670. ACM, 2022. DOI (9)

[29] Kim-Manuel Klein, Adam Polak, and
Lars Rohwedder. On minimizing tardy processing
time, max-min skewed convolution, and triangular
structured ILPs. 34th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2023),
pages 2947–2960. SIAM, 2023. DOI (2–5)

[30] Konstantinos Koiliaris and Chao Xu. Faster
pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms, 15(3):40:1–40:20, 2019.
DOI (5)

[31] Marvin Künnemann, Ramamohan Paturi, and
Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. 44th
International Colloquium on Automata, Languages,
and Programming (ICALP 2017), volume 80 of
LIPIcs, 21:1–21:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. DOI (2, 5)

https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1145/3618260.3649719
https://doi.org/10.4230/LIPICS.ESA.2023.24
https://doi.org/10.4230/LIPICS.ICALP.2022.31
https://doi.org/10.1007/S00453-022-00928-W
https://doi.org/10.1007/S00453-022-00928-W
https://doi.org/10.1137/1.9781611976465.107
https://doi.org/10.1137/1.9781611976496.5
https://doi.org/10.1016/J.JCSS.2021.09.005
https://doi.org/10.1137/1.9781611977912.171
https://doi.org/10.1145/2925416
https://doi.org/10.1145/3293465
https://doi.org/10.1137/1.9781611977554.CH114
https://doi.org/10.1145/3340322
https://doi.org/10.4230/LIPICS.ICALP.2024.64
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1287/IJOC.2022.0307
https://doi.org/10.1287/MOOR.2022.1308
https://doi.org/10.1145/3618260.3649618
https://doi.org/10.4230/OASICS.SOSA.2019.17
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1137/1.9781611977554.CH112
https://doi.org/10.1145/3329863
https://doi.org/10.1145/3329863
https://doi.org/10.4230/LIPICS.ICALP.2017.21

17 / 17 Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

[32] Eugene L. Lawler and J. Michael Moore. A
functional equation and its application to resource
allocation and sequencing problems. Management
Science, 16(1):77–84, 1969. DOI (2, 5, 6, 12)

[33] Kurt Mehlhorn, R. Sundar, and Christian Uhrig.
Maintaining dynamic sequences under equality
tests in polylogarithmic time. Algorithmica,
17(2):183–198, 1997. DOI (9)

[34] Adam Polak, Lars Rohwedder, and
Karol Wegrzycki. Knapsack and subset sum with
small items. 48th International Colloquium on
Automata, Languages, and Programming (ICALP
2021), volume 198 of LIPIcs, 106:1–106:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
DOI (5)

[35] Krzysztof Potępa. Faster deterministic modular
subset sum. 29th Annual European Symposium on
Algorithms, (ESA 2021), volume 204 of LIPIcs,
76:1–76:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. DOI (3, 5, 7)

[36] WilliamW. Pugh and Tim Teitelbaum. Incremental
computation via function caching. 16th Annual
ACM Symposium on Principles of Programming
Languages (POPL 1989), pages 315–328. ACM
Press, 1989. DOI (9)

[37] Baruch Schieber and Pranav Sitaraman. Quick
minimization of tardy processing time on a single
machine. 18th International Symposium on
Algorithms and Data Structures (WADS 2023),
volume 14079 of Lecture Notes in Computer
Science, pages 637–643. Springer, 2023. DOI
(2, 3, 5)

[38] Rajamani Sundar and Robert Endre Tarjan. Unique
binary-search-tree representations and equality
testing of sets and sequences. SIAM J. Comput.
23(1):24–44, 1994. DOI (9)

[39] Arie Tamir. New pseudopolynomial complexity
bounds for the bounded and other integer
knapsack related problems. Oper. Res. Lett.
37(5):303–306, 2009. DOI (5)

2025 : 14
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Nick Fischer, Leo Wennmann.

https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1007/BF02522825
https://doi.org/10.4230/LIPICS.ICALP.2021.106
https://doi.org/10.4230/LIPICS.ICALP.2021.106
https://doi.org/10.4230/LIPICS.ESA.2021.76
https://doi.org/10.1145/75277.75305
https://doi.org/10.1007/978-3-031-38906-1_42
https://doi.org/10.1137/S0097539790189733
https://doi.org/10.1016/J.ORL.2009.05.003

	Introduction
	Preliminaries
	Near-Optimal Algorithm for a Single Machine
	Cap-Sum Data Structure via Dynamic Strings
	Obtaining an Optimal Schedule

	Generalization to Multiple Machines
	References

