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ABSTRACT. We study two classic variants of block-structured integer programming. Two-
stage stochastic programs are integer programs of the form {𝐴𝑖x + 𝐷𝑖y𝑖 = b𝑖 for all 𝑖 = 1, . . . , 𝑛},
where 𝐴𝑖 and 𝐷𝑖 are bounded-size matrices. Intuitively, this form corresponds to the setting
when after setting a small set of global variables x, the program can be decomposed into a
possibly large number of bounded-size subprograms. On the other hand, 𝑛-fold programs are
integer programs of the form {∑𝑛

𝑖=1 𝐶𝑖y𝑖 = a and 𝐷𝑖y𝑖 = b𝑖 for all 𝑖 = 1, . . . , 𝑛}, where again 𝐶𝑖
and 𝐷𝑖 are bounded-size matrices. This form is natural for knapsack-like problems, where we
have a large number of variables partitioned into small-size groups, each group needs to obey
some set of local constraints, and there are only a few global constraints that link together all
the variables.

A line of recent work established that the optimization problem for both two-stage stochas-
tic programs and 𝑛-fold programs is fixed-parameter tractable when parameterized by the
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dimensions of relevant matrices 𝐴𝑖 , 𝐶𝑖 , 𝐷𝑖 and by the maximum absolute value of any entry
appearing in the constraint matrix. A fundamental tool used in these advances is the notion of
the Graver basis of a matrix, and this tool heavily relies on the assumption that all the entries of
the constraint matrix are bounded.

In this work, we prove that the parameterized tractability results for two-stage stochastic
and 𝑛-fold programs persist even when one allows large entries in the global part of the program.
More precisely, we prove the following:

The feasibility problem for two-stage stochastic programs is fixed-parameter tractable
when parameterized by the dimensions of matrices 𝐴𝑖 , 𝐷𝑖 and by the maximum absolute
value of the entries of matrices 𝐷𝑖 . That is, we allow matrices 𝐴𝑖 to have arbitrarily large
entries.
The linear optimization problem for 𝑛-fold integer programs that are uniform – all matrices
𝐶𝑖 are equal – is fixed-parameter tractable when parameterized by the dimensions of
matrices 𝐶𝑖 and 𝐷𝑖 and by the maximum absolute value of the entries of matrices 𝐷𝑖 . That
is, we require that 𝐶𝑖 = 𝐶 for all 𝑖 = 1, . . . , 𝑛, but we allow 𝐶 to have arbitrarily large entries.

In the second result, the uniformity assumption is necessary; otherwise the problem is NP-hard
already when the parameters take constant values. Both our algorithms are weakly polynomial:
the running time is measured in the total bitsize of the input.

In both results, we depart from the approach that relies purely on Graver bases. Instead, for
two-stage stochastic programs, we devise a reduction to integer programming with a bounded
number of variables using new insights about the combinatorics of integer cones. For 𝑛-fold
programs, we reduce a given 𝑛-fold program to an exponential-size program with bounded
right-hand sides, which we consequently solve using a reduction to mixed integer programming
with a bounded number of integral variables. For 𝑛-fold programs, we reduce a given 𝑛-fold
program to an exponential-size program with bounded right-hand sides, which we consequently
solve using a reduction to mixed integer programming with a bounded number of integral
variables.

1. Introduction

We study two variants of integer programming problems, where the specific structure of the
constraint matrix can be exploited for the design of efficient parameterized algorithms. Two-
stage stochastic programs are integer programs of the following form:

x ∈ Z𝑘⩾0, y𝑖 ∈ Z𝑘⩾0, and

𝐴𝑖x + 𝐷𝑖y𝑖 = b𝑖 for all 𝑖 = 1, 2, . . . , 𝑛. (♠)
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Here, 𝐴𝑖 , 𝐷𝑖 are integer 𝑘 × 𝑘 matrices1 and each b𝑖 is an integer vector of length 𝑘. This form
arises naturally when the given integer program can be decomposed into multiple independent
subprograms on disjoint variable sets y𝑖 , except there are several global variables x that are
involved in all the subprograms and thus link them. See the survey of Shultz et al. [48] as well
as an exposition article by Gavenčiak et al. [23] for examples of applications.

We moreover study 𝑛-fold programs which are integer programs of the form

y𝑖 ∈ Z𝑘⩾0,
𝑛∑︁
𝑖=1

𝐶𝑖y𝑖 = a, and (♣)

𝐷𝑖y𝑖 = b𝑖 for all 𝑖 = 1, 2, . . . , 𝑛,

where again 𝐶𝑖 , 𝐷𝑖 are integer 𝑘 × 𝑘 matrices and a, b𝑖 are integer vectors of length 𝑘. This kind
of programs appears for knapsack-like and scheduling problems, where blocks of variables y𝑖
correspond to some independent local decisions (for instance, whether to pack an item into
the knapsack or not), and there are only a few linear constraints that involve all variables (for
instance, that the capacity of the knapsack is not exceeded). See [11, 18, 23, 27, 33, 35, 36, 37]
for examples of 𝑛-fold programs appearing naturally “in the wild”. Figure 1 depicts constraint
matrices of two-stage stochastic and 𝑛-fold programs.


𝐴1 𝐷1

𝐴2 𝐷2
... . . .

𝐴𝑛 𝐷𝑛





𝐶1 𝐶2 . . . 𝐶𝑛

𝐷1

𝐷2
. . .

𝐷𝑛





𝐵 𝐶1 𝐶2 . . . 𝐶𝑛

𝐴1 𝐷1

𝐴2 𝐷2
... . . .

𝐴𝑛 𝐷𝑛


Figure 1. Constraint matrices in two-stage stochastic, 𝑛-fold, and 4-block integer programs,
respectively. (The last kind will be discussed later.) Every block is a 𝑘 × 𝑘 matrix, where 𝑘 is the
parameter. Empty spaces denote blocks of zeroes.

Both for two-stage stochastic programs and for 𝑛-fold programs, we can consider two
computational problems. The simpler feasibility problem just asks whether the given program
has a solution: an evaluation of variables in nonnegative integers that satisfies all the constraints.
In the harder (linear) optimization problem, we are additionally given an integer weight 𝑤𝑥 for
every variable 𝑥 appearing in the program, and the task is to minimize

∑
𝑥 : variable 𝑤𝑥 · 𝑥 over

all solutions.

1 Reliance on square matrices is just for convenience of presentation. The setting where blocks are rectangular matrices
with dimensions bounded by 𝑘 can be reduced to the setting of 𝑘 × 𝑘 square matrices by just padding with 0s.
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Two-stage stochastic and 𝑛-fold programs have recently gathered significant interest in the
theoretical community for two reasons. On one hand, it turns out that for multiple combinatorial
problems, their natural integer programming formulations take either of the two forms. On
the other hand, one can actually design highly non-trivial fixed-parameter algorithms for the
optimization problem for both two-stage stochastic and 𝑛-fold programs; we will review them
in a minute. Combining this two points yields a powerful algorithmic technique that allowed
multiple new tractability results and running times improvements for various problems of
combinatorial optimization; see [11, 23, 27, 33, 32, 35, 36, 37, 42] for examples.

Delving more into technical details, if by Δ we denote the maximum absolute value of any
entry in the constraint matrix, then the optimization problem for

two-stage stochastic programs (♠) can be solved in time 2ΔO(𝑘2 ) · 𝑛 logO(𝑘2) 𝑛 [13]; and
𝑛-fold programs (♣) can be solved in time (𝑘Δ)O(𝑘3) · 𝑛 logO(𝑘2) 𝑛 [12].

The results above are in fact pinnacles of an over-a-decade-long sequence of developments,
which gradually improved both the generality of the results and the running times [3, 12, 13,
18, 19, 20, 25, 28, 30, 39], as well as provided complexity lower bounds [26, 38]. We refer the
interested reader to the monumental manuscript of Eisenbrand et al. [20] which provides a
comprehensive perspective on this research area.

We remark that the tractability results presented above can be also extended to the setting
where the global-local block structure present in two-stage stochastic and 𝑛-fold programs
can be iterated further, roughly speaking to trees of bounded depth. This leads to the study
of integer programs with bounded primal or dual treedepth, for which analogous tractability
results have been established. Since these notions will not be of interest in this work, we refrain
from providing further details and refer the interested reader to the works relevant for this
direction [5, 6, 10, 12, 13, 19, 20, 30, 31, 38, 39].

All the above-mentioned works, be it on two-stage stochastic or 𝑛-fold programs, or on
programs of bounded primal or dual treedepth, crucially rely on one tool: the notion of the
Graver basis of a matrix. Formal definition can be found in Section 5.1, but intuitively speaking,
the Graver basis of a matrix 𝐴 consists of “minimal steps” within the lattice of integer points
belonging to the kernel of 𝐴. Therefore, the maximum norm of an element of the Graver basis
reflects the “granularity” of this lattice. And so, the two fundamental observations underlying
all the discussed developments are the following:

in two-stage stochastic matrices (or more generally, matrices of bounded primal treedepth),
the ℓ∞ norm of the elements of the Graver basis is bounded in terms of 𝑘 (the dimension
of every block) and the maximum absolute value of any entry appearing in the matrix
(see [20, Lemma 28]); and
an analogous result holds for 𝑛-fold matrices (or more generally, matrices of bounded dual
treedepth) and the ℓ1 norm (see [20, Lemma 30]).
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Based on these observations, various algorithmic strategies, including augmentation frame-
works [28, 39] and proximity arguments [12, 13, 19], can be employed to solve respective integer
programs.

The drawback of the Graver-based approach is that it heavily relies on the assumption
that all the entries of the input matrices are (parametrically) bounded. Indeed, the norms of the
elements of the Graver basis are typically at least as large as the entries, so lacking any upper
bound on the latter renders the methodology inapplicable. This is in stark contrast with the
results on fixed-parameter tractability of integer programming parameterized by the number
of variables [15, 16, 22, 29, 44, 47], which rely on different tools and for which no bound on
the absolute values of the entries is required. In fact, two-stage stochastic programs generalize
programs with a bounded number of variables (just do not use variables y𝑖), yet the current
results for two-stage stochastic programs do not generalize those for integer programs with few
variables, because they additionally assume a bound on the absolute values of the entries.

The goal of this paper is to understand to what extent one can efficiently solve two-stage
stochastic and 𝑛-fold programs while allowing large entries on input.

Our contribution. We prove that both the feasibility problem for two-stage stochastic programs
and the optimization problem for uniform 𝑛-fold programs (that is, where 𝐶1 = 𝐶2 = . . . = 𝐶𝑛)
can be solved in fixed-parameter time when parameterized by the dimensions of the blocks and
the maximum absolute value of any entry appearing in the diagonal blocks 𝐷𝑖 . That is, we allow
the entries of the global blocks (𝐴𝑖 and 𝐶𝑖 , respectively) to be arbitrarily large, and in the case
of 𝑛-fold programs, we require that all blocks 𝐶𝑖 are equal. The statements below summarize
our results. (∥𝑃∥ denotes the total bitsize of a program 𝑃.)

THEOREM 1.1. The feasibility problem for two-stage stochastic programs 𝑃 of the form (♠) can
be solved in time 𝑓 (𝑘,max𝑖 ∥𝐷𝑖 ∥∞) · ∥𝑃∥ for a computable function 𝑓 , where 𝑘 is the dimension of
all the blocks 𝐴𝑖 , 𝐷𝑖 .

THEOREM 1.2. The optimization problem for 𝑛-fold programs 𝑃 of the form (♣) that are uniform
(that is, satisfy 𝐶1 = . . . = 𝐶𝑛) can be solved in time 𝑓 (𝑘,max𝑖 ∥𝐷𝑖 ∥∞) · ∥𝑃∥O(1) for a computable
function 𝑓 , where 𝑘 is the dimension of all the blocks 𝐶𝑖 , 𝐷𝑖 .

We remark that in Theorem 1.1 it is necessary to include max𝑖 ∥𝐷𝑖 ∥∞ among the parameters,
because with no bound on the entries of the constraint matrix, the feasibility problem for two-
stage stochastic programs becomes NP-hard already for a constant 𝑘. An easy way to see
it is via a straightforward reduction from an NP-hard problem called Good Simultaneous
Approximation [43], where the input consists of a rational vector a ∈ Q𝑛, a desired error
bound 𝜖 ∈ Q, and an upper bound 𝑁 ∈ Z⩾0, and the goal is to decide if there exists an integer
multiplier 𝑄 ∈ {1, 2, . . . , 𝑁} such that 𝑄a is 𝜖-close in the infinity norm to an integer vector, i.e.,
∃b∈Z𝑛∥𝑄a − b∥∞ ⩽ 𝜖. In Appendix B we give a different argument, reducing directly from 3-SAT,
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and showing that two-stage stochastic feasibility is actually strongly NP-hard for 𝑘 = 16. This
rules out also any running time of the form 𝑓 (𝑘) · (∥𝑃∥ + max𝑖 ∥𝐷𝑖 ∥∞)O(1) .

The uniformity condition in Theorem 1.2 is also necessary (unless P = NP), as one can
very easily reduce Subset Sum to the feasibility problem for 𝑛-fold programs with 𝑘 = 2 and
𝐷𝑖 being {0, 1}-matrices. Indeed, given an instance of Subset Sum consisting of positive inte-
gers 𝑎1, . . . , 𝑎𝑛 and a target integer 𝑡, we can write the following 𝑛-fold program on variables
𝑦1, . . . , 𝑦𝑛, 𝑦

′
1, . . . , 𝑦

′
𝑛 ∈ Z⩾0: 𝑦𝑖 + 𝑦′

𝑖
= 1 for all 𝑖 = 1, . . . , 𝑛 and

∑𝑛
𝑖=1 𝑎𝑖 𝑦𝑖 = 𝑡. We remark that

uniform 𝑛-fold programs are actually of the highest importance, as this form typically arises
in applications. In fact, many of the previous works named such problems “𝑛-fold”, while our
formulation (♣) would be called “generalized 𝑛-fold”.

We also remark that the algorithm of Theorem 1.2 does not use the assumption that the
number of rows of matrix 𝐶 is bounded by 𝑘 (formally, in the precise, statement Theorem 5.1,
we do not consider this number among parameters). However, we stress that the bound on the
number of columns of 𝐶 is heavily exploited, which sets our approach apart from many of the
previous works [12, 19, 39].

Further, observe that Theorem 1.1 applies only to the feasibility problem for two-stage
stochastic programs. We actually do not know whether Theorem 1.1 can be extended to the
optimization problem as well, and we consider determining this an outstanding open problem.
We will discuss its motivation in more details later on. Also, we remark that Theorem 1.1 seems
to be the first algorithm for feasibility of two-stage stochastic programs that achieves truly
linear dependence of the running time on the total input size; the earlier algorithms of [13, 39]
had at least some additional polylogarithmic factors.

Finally, note that the algorithms of Theorems 1.1 and 1.2 are not strongly polynomial (i.e.,
the running time depends on the total bitsize of the input, rather than is counted in the number
of arithmetic operations), while the previous algorithms of [12, 13, 19, 39] for the stronger
parameterization are. At least in the case of Theorem 1.1, this is justified, as the problem
considered there generalizes integer programming parameterized by the number of variables,
for which strongly polynomial FPT algorithms are not known.

Not surprisingly, the proofs of Theorems 1.1 and 1.2 depart from the by now standard
approach through Graver bases; they are based on entirely new techniques, with some key
Graver-based insight needed in the case of Theorem 1.2. In both cases, the problem is ultimately
reduced to (mixed) integer programming with a bounded number of (integral) variables, and
this allows us to cope with large entries on input. We expand the discussion of our techniques
in Section 2, which contains a technical overview of the proofs.

4-block programs. Finally, we would like to discuss another motivation for investigating
two-stage stochastic and 𝑛-fold programs with large entries, namely the open question about
the parameterized complexity of 4-block integer programming. 4-block programs are programs
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in which the constraint matrix has the block-structured form depicted in the right panel of
Figure 1; note that this form naturally generalizes both two-stage stochastic and 𝑛-fold programs.
It is an important problem in the area to determine whether the feasibility problem for 4-block
programs can be solved in fixed-parameter time when parameterized by the dimension of
blocks 𝑘 and the maximum absolute value of any entry in the input matrix. The question was
asked by Hemmecke et al. [24], who proposed an XP algorithm for the problem. Improvements
on the XP running time were reported by Chen et al. [9], and FPT algorithms for special cases
were proposed by Chen et al. [8]; yet no FPT algorithm for the problem in full generality is known
so far. We remark that recently, Chen et al. [7] studied the complexity of 4-block programming
while allowing large entries in all the four blocks of the matrix. They showed that then the
problem becomes NP-hard already for blocks of constant dimension, and they discussed a few
special cases that lead to tractability.

We observe that in the context of the feasibility problem for uniform 4-block programs
(i.e., with 𝐴𝑖 = 𝐴 and 𝐶𝑖 = 𝐶 for all 𝑖 = 1, . . . , 𝑛), it is possible to emulate large entries within
the global blocks 𝐴, 𝐵, 𝐶 using only small entries at the cost of adding a bounded number of
auxiliary variables. This yields the following reduction, which we prove in Appendix A.

OBSERVAT ION 1.3. Suppose the feasibility problem for uniform 4-block programs can be solved
in time 𝑓 (𝑘, Δ) · ∥𝑃∥O(1) for some computable function 𝑓 , where 𝑘 is the dimension of every block
and Δ is the maximum absolute value of any entry in the constraint matrix. Then the feasibility
problem for uniform 4-block programs can be also solved in time 𝑔 (𝑘,max𝑖 ∥𝐷𝑖 ∥∞) · ∥𝑃∥O(1) for
some computable function 𝑔 under the assumption that all the absolute values of the entries in
matrices 𝐴, 𝐵, 𝐶 are bounded by 𝑛.

Consequently, to approach the problem of fixed-parameter tractability of 4-block integer
programming, it is imperative to understand first the complexity of two-stage stochastic and
𝑛-fold programming with large entries allowed in the global blocks. And this is precisely what
we do in this work.

We believe that the next natural step towards understanding the complexity of 4-block
integer programming would be to extend Theorem 1.1 to the optimization problem; that is,
to determine whether optimization of two-stage stochastic programs can be solved in fixed-
parameter time when parameterized by 𝑘 and max𝑖 ∥𝐷𝑖 ∥∞. Indeed, lifting the result from
feasibility to the optimization problem roughly corresponds to adding a single constraint that
links all the variables, and 4-block programs differ from two-stage stochastic programs precisely
in that there may be up to 𝑘 such additional linking constraints. Thus, we hope that the new
approach to block-structured integer programming presented in this work may pave the way
towards understanding the complexity of solving 4-block integer programs.
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2. Overview

In this section, we provide a technical overview of our results aimed at presenting the main
ideas and new conceptual contributions.

2.1 Two-stage stochastic programming

We start with an overview on the proof of Theorem 1.1. We will heavily rely on the combinatorics
of integer and polyhedral cones, so let us recall basic definitions and properties.

Cones. Consider an integer matrix 𝐷 with 𝑡 columns and 𝑘 rows. The polyhedral cone spanned
by 𝐷 is the set cone(𝐷) B {𝐷y : y ∈ R𝑡⩾0} ⊆ R𝑘⩾0, or equivalently, the set of all vectors in R𝑘⩾0

expressible as nonnegative combinations of the columns of 𝐷. Within the polyhedral cone,
we have the integer cone where we restrict attention to nonnegative integer combinations:
intCone(𝐷) B {𝐷y : y ∈ Z𝑡⩾0} ⊆ Z𝑘. Finally, the integer lattice is the set lattice(𝐷) B {𝐷y : y ∈
Z𝑡} ⊆ Z𝑘 which comprises all integer combinations of columns of 𝐷 with possibly negative
coefficients.

Clearly, not every integer vector in cone(𝐷) has to belong to intCone(𝐷). It is not even
necessarily the case that intCone(𝐷) = cone(𝐷) ∩ lattice(𝐷), as there might be vectors that can
be obtained both as a nonnegative combination and as an integer combination of columns of
𝐷, but every such integer combination must necessarily contain negative coefficients. To see
an example, note that in dimension 𝑘 = 1, this is the Frobenius problem: supposing all entries
of 𝐷 are positive integers, the elements of intCone(𝐷) are essentially all nonnegative numbers
divisible by the gcd (greatest common divisor) of the entries of 𝐷, except that for small numbers
there might be some aberrations: a positive integer of order O(∥𝐷∥2

∞) may not be presentable
as a nonnegative combination of the entries of 𝐷, even assuming it is divisible by the gcd of the
entries of 𝐷.

However, the Frobenius example suggests that the equality intCone(𝐷) = cone(𝐷) ∩
lattice(𝐷) is almost true, except for aberrations near the boundary of cone(𝐷). We forge this
intuition into a formal statement presented below that says roughly the following: if one takes
a look at intCone(𝐷) at a large scale, by restricting attention to integer vectors v ∈ Z𝑘 with fixed
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remainders of entries modulo some large integer 𝐵, then intCone(𝐷) behaves like a polyhedron.
In the following, for a positive integer 𝐵 and a vector r ∈ {0, 1, . . . , 𝐵 − 1}𝑘, we let Λ𝐵r be the set
of all vectors v ∈ Z𝑘 such that v ≡ r mod 𝐵, which means 𝑣𝑖 ≡ 𝑟𝑖 mod 𝐵 for all 𝑖 ∈ {1, . . . , 𝑘}.

THEOREM 2.1 (Reduction to Polyhedral Constraints, see Theorem 4.9). Let 𝐷 be an integer
matrix with 𝑡 columns and 𝑘 rows. Then there exists a positive integer 𝐵, computable from 𝐷, such
that for every r ∈ {0, 1, . . . , 𝐵 − 1}𝑘, there exists a polyhedron Qr such that

Λ𝐵r ∩ intCone(𝐷) = Λ𝐵r ∩ Qr.

Moreover, a representation of such a polyhedron Qr can be computed given 𝐷 and r.

In other words, Theorem 2.1 states that if one fixes the remainders of entries modulo 𝐵,
then membership in the integer cone can be equivalently expressed through a finite system of
linear inequalities. Before we sketch the proof of Theorem 2.1, let us discuss how to use this to
solve two-stage stochastic programs.

The algorithm. Consider a two-stage stochastic program 𝑃 = (𝐴𝑖 , 𝐷𝑖 ,b𝑖 : 𝑖 ∈ {1, . . . , 𝑛}) such
that blocks 𝐴𝑖 , 𝐷𝑖 are integer 𝑘 × 𝑘 matrices and all entries of blocks 𝐷𝑖 are bounded in absolute
value by Δ. The feasibility problem for 𝑃 can be understood as the question about satisfaction
of the following sentence, where all quantifications range over Z𝑘⩾0:

∃x

(
𝑛∧
𝑖=1

∃y𝑖 𝐴𝑖x + 𝐷𝑖y𝑖 = b𝑖

)
, or equivalently, ∃x

(
𝑛∧
𝑖=1

b𝑖 − 𝐴𝑖x ∈ intCone(𝐷𝑖)
)
. (1)

Applying Theorem 2.1 to each matrix 𝐷𝑖 yields a positive integer 𝐵𝑖 . Note that there are only
at most (2Δ + 1)𝑘2 different matrices 𝐷𝑖 appearing in 𝑃, which also bounds the number of
different integers 𝐵𝑖 . By replacing all 𝐵𝑖s with their least common multiple, we may assume
that 𝐵1 = 𝐵2 = . . . = 𝐵𝑛 = 𝐵. Note that 𝐵 is bounded by a computable function of Δ and 𝑘.

Consider a hypothetical solution x, (y𝑖 : 𝑖 ∈ {1, . . . , 𝑛}) to 𝑃. We guess, by branching into 𝐵𝑘

possibilities, a vector r ∈ {0, 1, . . . , 𝐵 − 1}𝑘 such that x ≡ r mod 𝐵. Having fixed r, we know how
the vectors b𝑖 − 𝐴𝑖x look like modulo 𝐵, hence by Theorem 2.1, we may replace the assertion
b𝑖 − 𝐴𝑖x ∈ intCone(𝐷𝑖) with the assertion b𝑖 − 𝐴𝑖x ∈ Qr𝑖 , where r𝑖 ∈ {0, 1, . . . , 𝐵 − 1}𝑘 is the
unique vector such that b𝑖 − 𝐴𝑖r ≡ r𝑖 mod 𝐵. Thus, (1) can be rewritten to the sentence∨

r∈{0,1,...,𝐵−1}𝑘
∃x (x ≡ r mod 𝐵) ∧

(
𝑛∧
𝑖=1

b𝑖 − 𝐴𝑖x ∈ Qr𝑖

)
,

which is equivalent to ∨
r∈{0,1,...,𝐵−1}𝑘

∃x∃z (x = 𝐵 · z + r) ∧
(
𝑛∧
𝑖=1

b𝑖 − 𝐴𝑖x ∈ Qr𝑖

)
. (2)
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Verifying satisfiability of (2) boils down to solving 𝐵𝑘 integer programs on 2𝑘 variables x and z
and linearly FPT many constraints, which can be done in linear fixed-parameter time using
standard algorithms, for instance that of Kannan [29].

We remark that the explanation presented above highlights that Theorem 2.1 can be
understood as a quantifier elimination result in the arithmetic theory of integers. This may be
of independent interest, but we do not pursue this direction in this work.

Reduction to polyhedral constraints. We are left with sketching the proof of Theorem 2.1.
Let Z B Λ𝐵

r ∩ intCone(𝐷). Our goal is to understand that Z can be expressed as the points of
Λ𝐵r that are contained in some polyhedron Q = Qr.

The first step is to understand cone(𝐷) itself as a polyhedron. This understanding is
provided by a classic theorem of Weyl [49]: given 𝐷, one can compute a set of integer vectors
F ⊆ Z𝑘 such that

cone(𝐷) = {v ∈ R𝑘 | ⟨f , v⟩ ⩾ 0 for all f ∈ F }.

Here, ⟨·, ·⟩ denotes the scalar product in R𝑘. We will identify vectors f ∈ F with their associated
linear functionals v ↦→ ⟨f , v⟩. Thus, cone(𝐷) comprises all vectors v that have nonnegative
evaluations on all functionals in F . It is instructive to also think of the elements of F as of
the facets of cone(𝐷) understood as a polyhedron, where the functional associated with f ∈ F
measures the distance from the corresponding facet.

Recall that in the context of Theorem 2.1, we consider vectors of Λ𝐵r , that is, vectors v ∈ Z𝑘

such that v ≡ r mod 𝐵. Then ⟨f , v⟩ ≡ ⟨f , r⟩ mod 𝐵 for every f ∈ F , hence we can find a unique
integer 𝑝f ∈ {0, 1, . . . , 𝐵 − 1}, 𝑝f ≡ ⟨f , r⟩ mod 𝐵, such that ⟨f , v⟩ ≡ 𝑝f mod 𝐵 for all v ∈ Λ𝐵r . Now
⟨f , v⟩ is also nonnegative provided v ∈ cone(𝐷), hence

⟨f , v⟩ ∈ {𝑝f , 𝑝f + 𝐵, 𝑝f + 2𝐵, . . .} for all f ∈ F and v ∈ Λ𝐵r ∩ cone(𝐷).

Now comes the key distinction about the behavior of v ∈ Λ𝐵r ∩cone(𝐷) with respect to f ∈ F : we
say that f is tight with respect to v if ⟨f , v⟩ = 𝑝f , and is not tight otherwise, that is, if ⟨f , v⟩ ⩾ 𝑝f +𝐵.
Recall that in the context of Theorem 2.1, we are eventually free to choose 𝐵 to be large enough.
Intuitively, this means that if f is not tight for v, then v lies far from the facet corresponding to f
and there is a very large slack in the constraint posed by f understood as a functional. On the
other hand, if f is tight with respect to v, then v is close to the boundary of cone(𝐷) at the facet
corresponding to f , and there is a potential danger of observing Frobenius-like aberrations at v.

Thus, the set R B Λ𝐵
r ∩ cone(𝐷) can be partitioned into subsets {RG : G ⊆ F } defined as

follows: RG comprises all vectors v ∈ R such that G is exactly the set of functionals f ∈ F that
are tight with respect to v. Our goal is to prove that each set RG behaves uniformly with respect
to Z: it is either completely disjoint or completely contained in Z. To start the discussion, let us
look at the particular case of RG for G = ∅. These are vectors that are deep inside cone(𝐷), for
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which no functional in F is tight. For these vectors, we use the following lemma, which is the
cornerstone of our proof.

LEMMA 2.2 (Deep-in-the-Cone Lemma, simplified version of Lemma 4.6). There exists a
constant 𝑀 , depending only on 𝐷, such that the following holds. Suppose v ∈ cone(𝐷) ∩ Z𝑘 is
such that ⟨f , v⟩ > 𝑀 for all f ∈ F . Then v ∈ intCone(𝐷) if and only if v ∈ lattice(𝐷).

PROOF . The left-to-right implication is obvious, hence let us focus on the right-to-left implica-
tion. Suppose then that v ∈ lattice(𝐷).

Let w =
∑

d∈𝐷 𝐿 · d, where the summation is over the columns of 𝐷 and 𝐿 is a positive
integer to be fixed later. Observe that for every f ∈ F , we have ⟨f , v −w⟩ > 𝑀 − 𝐿 · ∑d∈𝐷⟨f , d⟩.
Therefore, if we choose 𝑀 to be not smaller than 𝐿 ·maxf∈F ∥f∥1 · ∥𝐷∥∞, then we are certain that
⟨f , v −w⟩ ⩾ 0 for all f ∈ F , and hence v −w ∈ cone(𝐷). Consequently, we can write v −w = 𝐷y
for some y ∈ R𝑡⩾0. Let y′ ∈ Z𝑡⩾0 be such that 𝑦′

𝑖
= ⌊ 𝑦𝑖⌋ for all 𝑖 ∈ {1, . . . , 𝑡}, and let v′ = w + 𝐷y′.

Then
∥v − v′∥∞ = ∥𝐷(y − y′)∥∞ ⩽ 𝑡 · ∥𝐷∥∞.

On the other hand, we clearly have v′ ∈ intCone(𝐷) and by assumption, v ∈ lattice(𝐷). It follows
that v − v′ ∈ lattice(𝐷). From standard bounds, see e.g. [45], it follows that there exists z ∈ Z𝑡

with v − v′ = 𝐷z such that ∥z∥1 is bounded by a function of 𝐷 and ∥v − v′∥∞, which in turn
is again bounded by a function of 𝐷 as explained above. (Note here that 𝑡 is the number of
columns of 𝐷, hence it also depends only on 𝐷.) This means that if we choose 𝐿 large enough
depending on 𝐷, we are certain that ∥z∥1 ⩽ 𝐿. Now, it remains to observe that

v = w + 𝐷y′ + (v − v′) = 𝐷(𝐿 · 1 + y′ + z),

where 1 denotes the vector of 𝑡 ones, and that all the entries of 𝐿 · 1 + y′ + z are nonnegative
integers. This proves that v ∈ intCone(𝐷). ■

We remark that the statement of Lemma 2.2 actually follows from results present in the
literature, concerning the notion of diagonal Frobenius numbers. See the work of Aliev and
Henk [2] for a broader discussion and pointers to earlier works, as well as the works of Aggrawal
et al. [1] and of Bach et al. [4] for the newest developments on optimal bounds. As we will
discuss in a moment, in this work we actually use a generalization of Lemma 2.2.

Consider any u, v ∈ R. Since all the entries of u − v are divisible by 𝐵, it is not hard to
prove the following: if we choose 𝐵 to be a large enough factorial, then u ∈ lattice(𝐷) if and
only if v ∈ lattice(𝐷). Hence, from Lemma 2.2 it follows that R∅ is either entirely disjoint or
entirely contained in Z.

A more involved reasoning based on the same fundamental ideas, but using a gener-
alization of Lemma 2.2, yields the following lemma, which tackles also the case when some
functionals of F are tight with respect to the considered vectors.
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LEMMA 2.3 (see Claim 4.9.2). Suppose u, v ∈ R are such that for every f ∈ F , if f is tight with
respect to u, then f is also tight with respect to v. Then u ∈ Z implies v ∈ Z.

We remark that the proof of Lemma 2.3 actually requires more work and more ideas than
those presented in the proof of Lemma 2.2. In essence, one needs to partition functionals that
are tight with respect to u into those that are very tight (have very small 𝑝f) and those that are
only slightly tight (have relatively large 𝑝f) in order to create a sufficient gap between very tight
and slightly tight functionals. Having achieved this, a delicate variant of the reasoning from the
proof of Lemma 2.2 can be applied. It is important that whenever a functional f ∈ F is tight
with respect to both u and v, we actually know that ⟨f ,u⟩ = ⟨f , v⟩ = 𝑝f . Note that this is exactly
the benefit achieved by restricting attention to the vectors of Λ𝐵r .

Using Lemma 2.3, we can immediately describe how the structure of Z relates to that of R.

COROLLARY 2 .4 (see Claim 4.9.3). For every G ⊆ F , either RG ∩Z = ∅ or RG ⊆ Z. Moreover,
if RG ⊆ Z and RG is non-empty, then RG′ ⊆ Z for all G′ ⊆ G.

Corollary 2.4 suggests now how to define the polyhedron Q. Namely, Q is defined as the
set of all v ∈ R𝑘 satisfying the following linear inequalities:

inequalities ⟨f , v⟩ ⩾ 0 for all f ∈ F that define cone(𝐷); and
for every G ⊆ F such that RG is nonempty and RG ∩Z = ∅, the inequality∑︁

g∈G
⟨g, v⟩ ⩾ 1 +

∑︁
g∈G

𝑝g.

In essence, the inequalities from the second point “carve out” those parts RG that should not
be included in Z. We note that computing the inequalities defining Q requires solving several
auxiliary integer programs to figure out for which G ⊆ F the corresponding inequality should
be included.

It is now straightforward to verify, using all the accumulated observations, that indeed
Z = R ∩ Q as required. This concludes a sketch of the proof of Theorem 2.1.

2.2 𝒏-fold programming

We now give an overview of the proof of Theorem 1.2. For simplicity, we make the following
assumptions.

We focus on the feasibility problem instead of optimization. At the very end, we will
remark on what additional ideas are needed to also tackle the optimization problem.
We assume that all the diagonal blocks 𝐷𝑖 are equal: 𝐷𝑖 = 𝐷 for all 𝑖 ∈ {1, . . . , 𝑛}, where
𝐷 is a 𝑘 × 𝑘 integer matrix with ∥𝐷∥∞ ⩽ Δ. This is only a minor simplification because
there are only (2Δ + 1)𝑘2 different matrices 𝐷𝑖 with ∥𝐷𝑖 ∥∞ ⩽ Δ, and in the general case, we
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simply treat every such possible matrix “type” separately using the reasoning from the
simplified case.

Breaking up bricks. Basic components of the given 𝑛-fold program 𝑃 = (𝐶, 𝐷, a,b𝑖 : 𝑖 ∈
{1, . . . , 𝑛}) are bricks: programs 𝐷y𝑖 = b𝑖 for 𝑖 ∈ {1, . . . , 𝑛} that encode local constraints on the
variables y𝑖 . While the entries of 𝐷 are bounded in absolute values by the parameter Δ, we do
not assume any bound on the entries of vectors b𝑖 . This poses an issue, as different bricks may
have very different behaviors.

The key idea in our approach is to simplify the program 𝑃 by iteratively breaking up every
brick 𝐷y = b into two bricks 𝐷y = b′ and 𝐷y = b′′ with strictly smaller right-hand sides b′,b′′,
until eventually, we obtain an equivalent 𝑛-fold program 𝑃′ in which all right-hand sides have
ℓ∞-norms bounded in terms of the parameters. The following lemma is the crucial new piece
of technology used in our proof. (Here, we use the conformal order on Z𝑘: we write u ⊑ v if
|u[𝑖] | ⩽ |v[𝑖] | and u[𝑖] · v[𝑖] ⩾ 0 for all 𝑖 ∈ {1, . . . , 𝑘}.)

LEMMA 2.5 (Brick Decomposition Lemma, see Lemma 5.4). There exists a function 𝑔 (𝑘, Δ) ∈
2(𝑘Δ)O(𝑘) such that the following holds. Let 𝐷 be an integer matrix with 𝑡 columns and 𝑘 rows and
all absolute values of its entries bounded by Δ. Further, let b ∈ Z𝑘 be an integer vector such that
∥b∥∞ > 𝑔 (𝑘, Δ). Then there are non-zero vectors b′, b′′ ∈ Z𝑘 such that:

b′, b′′ ⊑ b and b = b′ + b′′; and
for every v ∈ Zy⩾0 satisfying 𝐷v = b, there exist v′, v′′ ∈ Zy⩾0 such that

v = v′ + v′′, 𝐷v′ = b′, and 𝐷v′′ = b′′.

In other words, Lemma 2.5 states that the brick 𝐷y = b can be broken into two new bricks
𝐷y′ = b′ and 𝐷y′′ = b′′ with conformally strictly smaller b′, b′′ so that every potential solution v
to 𝐷y = b can be decomposed into solutions v′, v′′ to the two new bricks. It is easy to see that
this condition implies that in 𝑃, we may replace the brick 𝐷y = b with 𝐷y′ = b′ and 𝐷y′′ = b′′

without changing feasibility or, in the case of the optimization problem, the minimum value of
the optimization goal. In the latter setting, both new bricks inherit the optimization vector c𝑖
from the original brick.

Before we continue, let us comment on the proof of Lemma 2.5. We use two ingredients.
The first one is the following fundamental result of Klein [30]. (Here, for a multiset of vectors 𝐴,
by

∑
𝐴 we denote the sum of all the vectors in 𝐴.)

LEMMA 2.6 (Klein Lemma, variant from [13]). Let 𝑇1, . . . , 𝑇𝑛 be non-empty multisets of vectors
in Z𝑘 such that

∑
𝑇1 =

∑
𝑇2 = . . . =

∑
𝑇𝑛 and all vectors contained in all multisets 𝑇1, . . . , 𝑇𝑛 have
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ℓ∞-norm bounded by Δ. Then there are non-empty multisets 𝑆1 ⊆ 𝑇1, . . . , 𝑆𝑛 ⊆ 𝑇𝑛, each of size at
most 2O(𝑘Δ)𝑘 , such that

∑
𝑆1 =

∑
𝑆2 = . . . =

∑
𝑆𝑛.

In the context of the proof of Lemma 2.5, we apply Lemma 2.6 to the family of all multisets𝑇
that consist of columns of 𝐷 and satisfy

∑
𝑇 = b. By encoding multiplicities, such multisets

correspond to vectors v ∈ Z𝑘⩾0 satisfying 𝐷v = b. (We hide here some technicalities regarding
the fact that this family is infinite.) By Lemma 2.6, from each such multiset 𝑇 , we can extract
a submultiset 𝑆 of bounded size such that all the submultisets 𝑆 sum up to the same vector b′.
Denoting b′′ = b−b′, this means that every vector v ∈ Z𝑘⩾0 satisfying 𝐷v = b can be decomposed
as v = v′ + v′′ with v′, v′′ ∈ Z𝑘⩾0 so that 𝐷v′ = b′ and 𝐷v′′ = b′′. Namely, v′ corresponds to the
vectors contained in 𝑆 and v′′ corresponds to the vectors contained in 𝑇 − 𝑆, where 𝑇 is the
multiset corresponding to v.

There is an issue in the above reasoning: we do not obtain the property b′, b′′ ⊑ b, which
will be important in later applications of Lemma 2.5. To bridge this difficulty, we apply the
argument above exhaustively to decompose b as b1 + . . . + b𝑚, for some integer 𝑚, so that every
vector b𝑖 has the ℓ∞-norm bounded by 2O(𝑘Δ)𝑘 and every vector v ∈ Z𝑘⩾0 satisfying 𝐷v = b can
be decomposed as v = v1 + . . . + v𝑚 where v𝑖 ∈ Z𝑘⩾0 satisfies 𝐷v𝑖 = b𝑖 . Then, we treat vectors
b1, . . . , b𝑚 with the following lemma.

LEMMA 2.7 (see Lemma 5.6). Let u1, . . . ,u𝑚 be vectors in Z𝑘 of ℓ∞-norm bounded by Ξ, and let
b =

∑𝑚
𝑖=1 u𝑖 . Then the vectors u1, . . . ,u𝑚 can be grouped into non-empty groups𝑈1, . . . ,𝑈ℓ, each of

size at most O(Δ)2𝑘−1 , so that
∑
𝑈𝑖 ⊑ b for all 𝑖 = 1, . . . , ℓ.

More precisely, Lemma 2.7 allows us to group vectors b1, . . . , b𝑚 into groups of bounded
size so that the sum within each group is sign-compatible with b. Assuming ∥b∥∞ is large
enough, there will be at least two groups. Then, any non-trivial partition of the groups translates
into a suitable decomposition b = b′ + b′′ with b′, b′′ ⊑ b.

The proof of Lemma 2.7 is by induction on 𝑘 and uses arguments similar to standard proofs
of Steinitz Lemma. This concludes a sketch of the proof of Lemma 2.5.

Once Lemma 2.5 is established, it is natural to use it iteratively: break b into b′,b′′, then
break b′ into two even smaller vectors, and so on. By applying the argument exhaustively,
eventually we obtain a collection of vectors b1, . . . , b𝑚 ⊑ b such that b = b1 + . . . + b𝑚, ∥b𝑖 ∥∞ ⩽
2(𝑘Δ)O(𝑘) for all 𝑖 ∈ {1, . . . , 𝑚}, and every v ∈ Z𝑘⩾0 satisfying 𝐷v = b can be decomposed as
v = v1 + . . . + v𝑚 with v𝑖 ∈ Z𝑘⩾0 and 𝐷v𝑖 = b𝑖 for all 𝑖 ∈ {1, . . . , 𝑚}. We call such a collection a
faithful decompostion of b of order 2(𝑘Δ)O(𝑘) .

There is an important technical caveat here. Observe that the size 𝑚 of a faithful decom-
position of a right-hand side b can be as large as Ω(∥b∥1), which is exponential in the bitsize of
the program 𝑃. So we cannot hope to compute a faithful decomposition explicitly within the
target time complexity. However, observe that all vectors b𝑖 in a faithful decomposition B are
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bounded in ℓ∞-norm by Ξ B 2(𝑘Δ)O(𝑘) , and there are only at most (2Ξ+ 1)𝑘 different such vectors.
Therefore, B can be encoded by storing, for each vector b′ present in B, the multiplicity of b′

in B. Thus, describing B takes 2(𝑘Δ)O(𝑘) · log ∥b∥∞ bits.
With this encoding scheme in mind, we show that a faithful decomposition B of a given

vector b of order at most Ξ can be computed in fixed-parameter time 𝑓 (Δ, 𝑘) · (log ∥b∥∞)O(1) ,
for a computable function 𝑓 . For this, we show that one can extract parts of the decomposition
in “larger chunks”, at each step reducing the ℓ1-norm of the decomposed vector by a constant
fraction; this gives a total number of steps logarithmic in ∥b∥1. In each step, to extract the
next large chunk of the decomposition, we use the fixed-parameter algorithm for optimization
problems definable in Presburger arithmetic, due to Koutecký and Talmon [41]. We remark that
in our context, this tool could be also replaced by the fixed-parameter algorithm of Eisenbrand
and Shmonin [21] for ∀∃ integer programming.

Reduction to (mixed) integer programming with few variables. With faithful decompo-
sitions understood, we can compute, for every right-hand side b𝑖 part of 𝑃, a faithful decom-
position {b1

𝑖
, . . . ,b𝑚𝑖

𝑖
} of b𝑖 . This allows us to construct an equivalent (in terms of feasibility

and optimization) 𝑛-fold program 𝑃′ by replacing each brick 𝐷y𝑖 = b𝑖 with bricks 𝐷y 𝑗
𝑖
= b 𝑗

𝑖
for

𝑗 ∈ {1, . . . , 𝑚𝑖}. Thus, the program 𝑃′ has an exponential number of bricks, but can be computed
and described concisely: all right-hand sides are bounded in the ℓ∞-norm by at most Ξ, so for
every potential right-hand side b, we just write the multiplicity in which b appears in 𝑃′. We
remark that such high-multiplicity encoding of 𝑛-fold integer programs has already been studied
by Knop et al. [34].

For convenience, let RHS B {−Ξ, . . . , Ξ}𝑘 be the set of all possible right-hand sides, and for
b ∈ RHS, by count[b] we denote the multiplicity of b in 𝑃′.

It is now important to better understand the set of solutions to a single brick 𝐷y = b present
in 𝑃′. Here comes a key insight stemming from the theory of Graver bases: as (essentially) proved
by Pottier [45], every solution w ∈ Z𝑘⩾0 to 𝐷w = b can be decomposed as w = ŵ + g1 + . . . + gℓ,
where

ŵ ∈ Z𝑘⩾0 is a base solution that also satisfies 𝐷ŵ = b, but ∥ŵ∥∞ is bounded by a function of
Δ and ∥b∥∞, and
g1, . . . , gℓ ∈ Z𝑘⩾0 are elements of the Graver basis of 𝐷.

Here, the Graver basis of 𝐷 consists of all conformally-minimal non-zero vectors g satisfying
𝐷g = 0. In particular, it is known that the Graver basis is always finite and consists of vectors
of ℓ∞ norm bounded by (2𝑘Δ + 1)𝑘 [19]. The decomposition explained above will be called a
Graver decomposition of w.

For b ∈ RHS, let Base[b] be the set of all possible base solutions ŵ to 𝐷y = b. As ∥b∥∞ ⩽ Ξ
and Ξ is bounded by a function of the parameters under consideration, it follows that Base[b]
consists only of vectors of bounded ℓ∞-norms, and therefore it can be efficiently constructed.



16 / 49 J. Cslovjecsek, M. Koutecký, A. Lassota, M. Pilipczuk, A. Polak

Having this understanding, we can write an integer program 𝑀 with few variables that is
equivalent to 𝑃′. The variables are as follows:

For every b ∈ RHS and ŵ ∈ Base[b], we introduce a variable 𝜁 bŵ ∈ Z⩾0 that signifies how
many times in total ŵ is used in the Graver decompositions of solutions to individual bricks.
For every nonnegative vector g in the Graver basis of 𝐷, we introduce a variable 𝛿g ∈ Z⩾0

signifying how many times in total g appears in the Graver decompositions of solutions to
individual bricks.

Note that since program 𝑃′ is uniform, the guessed base solutions and elements of the Graver
basis can be assigned to any brick with the same effect on the linking constraints of 𝑃′. Hence, it
suffices to verify the cardinalities and the total effect on the linking constrains of 𝑃′, yielding
the following constraints of 𝑀 :

the translated linking constraints:
∑

b∈RHS
∑

ŵ∈Base[b] 𝜁
b
ŵ · 𝐶ŵ + ∑

g∈Graver(𝐷),g⩾0 𝛿g · 𝐶g = a.
for every b ∈ RHS, the cardinality constraint

∑
ŵ∈Base[b] 𝜁

b
ŵ = count[b].

Noting that the number of variables of 𝑀 is bounded in terms of the parameters, we may
apply any fixed-parameter algorithm for integer programming parameterized by the number
of variables, for instance that of Kannan [29], to solve 𝑀 . This concludes the description of the
algorithm for the feasibility problem.

In the case of the optimization problem, there is an issue that the optimization vectors c𝑖
may differ between different bricks, and there may be as many as 𝑛 different such vectors. While
the Graver basis elements can be always greedily assigned to bricks in which their contribution
to the optimization goal is the smallest, this is not so easy for the base solutions, as every brick
may accommodate only one base solution. We may enrich 𝑀 by suitable assignment variables
𝜔b,𝑖
ŵ to express how many base solutions of each type are assigned to bricks with different

optimization vectors; but this yields as many as Ω(𝑛) additional variables. Fortunately, we
observe that in the enriched program 𝑀 , if one fixes any integral valuation of variables 𝜁 bŵ
and 𝛿g, the remaining problem on variables 𝜔b,𝑖

ŵ corresponds to a flow problem, and hence
its constraint matrix is totally unimodular. Thus, we may solve 𝑀 as a mixed integer program
where variables 𝜔b,𝑖

ŵ are allowed to be fractional. The number of integral variables is bounded
in terms of parameters, so we may apply the fixed-parameter algorithm for mixed integer
programming of Lenstra [44].

3. Preliminaries

We write Z⩾0 and R⩾0 for the sets of nonnegative integers and nonnegative reals, respectively.
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Linear algebra. In the technical part of this paper we choose to use a somewhat unorthodox
notation for linear algebra, which we introduce now. The correspondence between this notation
and the standard notation used in the previous sections is straightforward.

A tuple of variables is just a finite set of variable names. We use the convention that tuples
of variables are denoted x, y, z, etc., while individual variable names are 𝑥, 𝑦, 𝑧, etc. For a set
𝐴 and a tuple of variables x, an x-vector over 𝐴 is a function u : x → 𝐴. The value of u on a
variable 𝑥 ∈ x will be denoted by u[𝑥], and we call it the 𝑥-entry of u. Vectors will be typically
denoted by a, b, c,u, v,w and so on. We write 𝐴x for the set of all x-vectors over 𝐴. We can also
apply arithmetics to vectors coordinate-wise in the standard manner, whenever the set 𝐴 is
endowed with a structure of a ring. When 𝐴 = R, as usual we write ∥u∥∞ B max𝑥∈x |u[𝑥] | and
∥u∥1 B

∑
𝑥∈x |u[𝑥] |.

For a ring 𝑅 (typically Z or R) and tuples of variables x and y, an x×y-matrix is an x-vector
of y-vectors, that is, an element of (𝑅y)x; we denote the latter set as 𝑅x×y for convenience. The
reader should think of the individual y-vectors comprised in a matrix as of the columns of
the said matrix. We use capital letters 𝐴, 𝐵, 𝐶, etc. for matrices. For 𝑥 ∈ x and 𝑦 ∈ y, we
write 𝐴[𝑥, 𝑦] B (𝐴[𝑥]) [ 𝑦], that is, 𝐴[𝑥, 𝑦] is the 𝑦-entry of the column of 𝐴 corresponding to
variable 𝑥. As for vectors, by ∥𝐴∥∞ B max𝑥∈x, 𝑦∈y |𝐴[𝑥, 𝑦] | we denote the maximum absolute
value of an entry of 𝐴.

For a matrix 𝐴 ∈ 𝑅x×y and a vector u ∈ 𝑅x, 𝐴u is the vector v ∈ 𝑅y satisfying

v[ 𝑦] =
∑︁
𝑥∈x

𝐴[𝑥, 𝑦] · u[𝑥] for all 𝑦 ∈ y.

For vectors u, v ∈ 𝑅x, the inner product of u and v is

⟨u, v⟩ B
∑︁
𝑥∈x

u[𝑥] · v[𝑥] .

All-zero and all-one vectors are denoted by 0 and 1, respectively, and their domains will be
always clear from the context.

Conformal order. Let x be a tuple of variables. Vectors u, v ∈ Zx are sign-compatible if
u[𝑥] · v[𝑥] ⩾ 0 for all 𝑥 ∈ x; that is, on every coordinate u and v must have the same sign,
where 0 is assumed to be compatible with both signs. The conformal order ⊑ on vectors in Zx is
defined as follows: For two vectors u, v ∈ Zx, we have u ⊑ v if u and v are sign-compatible and

|u[𝑥] | ⩽ |v[𝑥] | for all 𝑥 ∈ x.

Note that thus, ⊑ is a partial order on Zx.

Collections. A collection over a set 𝐴 is a function 𝐶 : 𝐼 → 𝐴, where 𝐼 is the index set of 𝐶. We
often use notation 𝐶 = ⟨𝑐𝑖 : 𝑖 ∈ 𝐼⟩ to enumerate the elements of a collection with the elements
of its index set, where formally 𝑐𝑖 is the value of 𝐶 on 𝑖. Note that syntactically, a collection
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with index set 𝐼 is just an 𝐼-vector, but we will use collections and vectors in different ways.
Typically, when speaking about collections we are not really interested in the index set, and the
reader can always assume it to be a prefix of natural numbers. However, in notation it will be
convenient to consider various index sets.

Standard set theory notation can be used in the context of collections in the natural manner,
by applying it to the index sets. In particular, a subcollection of a collection 𝐶 = ⟨𝑐𝑖 : 𝑖 ∈ 𝐼⟩ is any
collection 𝐶′ = ⟨𝑐𝑖 : 𝑖 ∈ 𝐼′⟩ for 𝐼′ ⊆ 𝐼 .

Block-structured integer programming. We now introduce the two variants of block-
structured integer programming problems that we are interested in: two-stage stochastic
integer programming and 𝑛-fold integer programming.

A two-stage stochastic integer program consists of three collections:
⟨𝐴𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of matrices in Zx×t;
⟨𝐷𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of matrices in Zy×t; and
⟨b𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of vectors in Zt.

Here, x, y, t are tuples of variables and 𝐼 is the index set of the program. A solution to such a
program consists of a vector u ∈ Zx⩾0 and vectors ⟨v𝑖 : 𝑖 ∈ 𝐼⟩ in Zy⩾0 such that

𝐴𝑖u + 𝐷𝑖v𝑖 = b𝑖 for all 𝑖 ∈ 𝐼 .

In the Two-Stage Stochastic ILP Feasability problem, we are given a two-stage stochastic
integer program in the form described above, and the task is to decide whether this program
has a solution.

An 𝑛-fold integer program consists of the following components:
⟨𝐶𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of matrices in Zy×s;
⟨𝐷𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of matrices in Zy×t;
a is a vector in Zs; and
⟨b𝑖 : 𝑖 ∈ 𝐼⟩ is a collection of vectors in Zt.

Again, y, s, t are tuples of variables and 𝐼 is the index set of the program. A uniform program is
one where 𝐶𝑖 = 𝐶 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 . A solution to the program described above consists of vectors
⟨v𝑖 : 𝑖 ∈ 𝐼⟩ in Zy⩾0 such that∑︁

𝑖∈𝐼
𝐶𝑖v𝑖 = a and 𝐷𝑖v𝑖 = b𝑖 for all 𝑖 ∈ 𝐼 .

The 𝑛-fold ILP Feasability problem asks for the existence of a solution to a given 𝑛-fold integer
program, while in the 𝑛-fold ILP Optimization problem, the task is to minimize

∑
𝑖∈𝐼 ⟨c𝑖 , v𝑖⟩

among the solutions, for additionally given vectors ⟨c𝑖 : 𝑖 ∈ 𝐼⟩ in Zy. A prefix Uniform may be
added to the problem name to specify that we speak about uniform programs. (Note that only
the matrices 𝐶𝑖 have to be equal, and not necessarily the optimization goal vectors c𝑖 .)
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For an integer program 𝑃, be it a two-stage stochastic or an 𝑛-fold program, by ∥𝑃∥ we
denote the total bitsize of the encoding of 𝑃, where all numbers are encoded in binary.

4. Two-stage stochastic integer programming

Our main result for two-stage stochastic integer programs is captured in the following statement,
which is Theorem 1.1 with adjusted notation.

THEOREM 4.1. An instance 𝑃 = ⟨𝐴𝑖 , 𝐷𝑖 , b𝑖 : 𝑖 ∈ 𝐼⟩ of Two-Stage Stochastic ILP Feasability can
be solved in time 𝑓 (Δ, |x|, |t|) · ∥𝑃∥ for some computable function 𝑓 , where Δ = max𝑖∈𝐼 ∥𝐷𝑖 ∥∞.

Note that importantly, the absolute values of the entries of matrices 𝐴𝑖 are not assumed to
be bounded in terms of the considered parameters. Also, in Theorem 4.1 the parameters do
not include |y|, the number of columns of each block 𝐷𝑖 . This is because by removing equal
columns in those blocks (which does not affect the feasibility of the program), we may always
assume |y| ⩽ (2Δ + 1) |t|.

The proof of Theorem 4.1 spans the entirety of this section.

4.1 Cones

In our proof we will rely on the geometry of polyhedral and integer cones. For this, we introduce
the following notation. Let t be a tuple of variables and D ⊆ Zt be a finite set of vectors. For
𝑆 ∈ {R,R⩾0,Z,Z⩾0}, we define the 𝑆-span of D as

span𝑆 (D) B
{∑︁
d∈D

𝜆d · d : ⟨𝜆d : d ∈ D⟩ is a collection of elements of 𝑆

}
⊆ Rt.

In other words, span𝑆 (D) are all vectors that can be expressed as a linear combination of
vectors in D with coefficients belonging to 𝑆. For clarity, we write

span(D) B spanR(D), cone(D) B spanR⩾0 (D),
lattice(D) B spanZ(D), intCone(D) B spanZ⩾0 (D).

Thus, span(D) is just the usual linear space spanned of D. Next, cone(D) is the standard poly-
hedral cone: it consists of all vectors expressible as nonnegative linear combinations of vectors
in D. Similarly, intCone(D) is the integer cone, where we restrict attention to nonnegative
integer combinations of vectors in D. Finally, lattice(D) is the integer lattice consisting of all
vectors that can be reached from 0 by adding and subtracting vectors of D.

We remark that while the reader may think of D as of a matrix whose columns are the
vectors of D, ordered arbitrarily, in the notation we will consistently treat D as a set of vectors.
Consequently, |D| denotes the number of vectors in D (or, the number of columns of D treated
as a matrix), and the same also applies to all subsets of D.
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4.1.1 Dual representation of cones

We will use the classic result of Weyl about representing polyhedral cones as intersections of
half-spaces.

THEOREM 4.2 (Weyl, [49]). For every set of vectors D ⊆ Zt there exists a finite set of vectors
F ⊆ Zt such that

cone(D) = {v ∈ Rt | ⟨f , v⟩ ⩾ 0 for all f ∈ F }.

Moreover, such a set F can be computed given D.

A set F satisfying the outcome of Theorem 4.2 will be called a dual representation of
cone(D). Here is a simple observation about how elements of the dual representation relate to
the elements of D.

OBSERVAT ION 4.3. Suppose F is a dual representation of cone(D) for a set of vectors D ⊆ Zt.
Then

⟨f , d⟩ ⩾ 0 for all f ∈ F and d ∈ D .

PROOF . Clearly d ∈ cone(D), so ⟨f , d⟩ ⩾ 0 because F is a dual representation of cone(D). ■

For a subset G ⊆ F , we define

DG B {d ∈ D | ⟨g, d⟩ = 0 for all g ∈ G}.

In other words, DG consists of those vectors of D that are orthogonal to all vectors in G. The
next lemma expresses the following intuition: the facet of cone(D) corresponding to G is
spanned by the vectors of DG .

LEMMA 4.4. Suppose F is a dual representation of cone(D) for a set of vectors D ⊆ Zt. Then
for every subset G ⊆ F we have

cone(DG) = cone(D) ∩ {v ∈ Rt | ⟨g, v⟩ = 0 for all g ∈ G}.

PROOF . Note that DG ⊆ D entails cone(DG) ⊆ cone(D). Further, since ⟨g,d⟩ = 0 for all
g ∈ G and all d ∈ DG , the same also holds for all linear combinations of vectors in DG , implying
that ⟨g, v⟩ = 0 for all g ∈ G and v ∈ cone(DG). This proves inclusion ⊆.

For the converse inclusion, consider any v ∈ cone(D) such that ⟨g, v⟩ = 0 for all g ∈ G. As
v ∈ cone(D), there is a collection of nonnegative reals ⟨𝜆d : d ∈ D⟩ such that

v =
∑︁
d∈D

𝜆d · d.
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Consider any e ∈ D − DG . By the definition of DG and Observation 4.3, there exists g ∈ G such
that ⟨g, e⟩ > 0. As all coefficients ⟨𝜆d : d ∈ D⟩ are nonnegative, by Observation 4.3 we have

0 = ⟨g, v⟩ =
∑︁
d∈D

𝜆d · ⟨g, d⟩ ⩾ 𝜆e · ⟨g, e⟩.

As ⟨g, e⟩ > 0, we necessarily have 𝜆e = 0; and this holds for every e ∈ D − DG . So in fact v is a
nonnegative linear combination of vectors in DG , or equivalently v ∈ cone(DG). This proves
inclusion ⊇. ■

4.1.2 Membership in integer cones and in integer lattices

First, we need a statement that membership in an integer lattice can be witnessed by a vector
with small entries. The following lemma follows from standard bounds given by Pottier [45,
Corollary 4] (c.f. Lemma 5.3).

LEMMA 4.5. For every set of vectors D ⊆ Zt and a vector v ∈ lattice(D), there exist integer
coefficients ⟨𝜆d : d ∈ D⟩ such that

v =
∑︁
d∈D

𝜆d · d and
∑︁
d∈D

|𝜆d | ⩽
(
2 + max

d∈D
∥d∥∞ + ∥v∥∞

)2|t|
.

We now proceed to a technical statement that is crucial in our approach. Intuitively, it
says that if a vector lies “deep” in the polyhedral cone, then its membership in the integer cone
is equivalent to the membership in the integer lattice.

LEMMA 4.6 (Deep-in-the-Cone Lemma). Let D ⊆ Zt be a set of vectors and F ⊆ Zt be a dual
representation of cone(D). Then there is a positive integer 𝑀 , computable from D and F , such
that for every G ⊆ F and every v ∈ cone(DG) satisfying ⟨f , v⟩ ⩾ 𝑀 for all f ∈ F − G, we have

v ∈ lattice(DG) if and only if v ∈ intCone(DG).

PROOF . We set

𝑀 B 𝐿 · |D| · max
f∈F

∥f∥1 · max
d∈D

∥d∥∞, where 𝐿 B

(
2 + (|D| + 1) · max

d∈D
∥d∥∞

)2|t|

is the bound provided by Lemma 4.5 for vectors of ℓ∞-norm bounded by |D| · maxd∈D ∥d∥∞.
As intCone(DG) ⊆ lattice(DG), it suffices to prove the following: if v ∈ cone(DG) ∩

lattice(DG) satisfies ⟨f , v⟩ ⩾ 𝑀 for all f ∈ F − G, then in fact v ∈ intCone(DG). Let

w B
∑︁
d∈DG

𝐿 · d.

As both v and w are linear combinations of vectors in DG , we have

⟨g, v −w⟩ = 0 for all g ∈ G.
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Further, for each f ∈ F − G we have

⟨f , v −w⟩ = ⟨f , v⟩ − ⟨f ,w⟩ ⩾ 𝑀 − 𝐿 ·
∑︁
d∈D

|⟨f , d⟩| ⩾ 𝑀 − 𝐿 · |D| · max
f∈F

∥f∥1 · max
d∈D

∥d∥∞ = 0.

As F is a dual representation of cone(D), the two assertions above together with Lemma 4.4 im-
ply that v−w ∈ cone(DG). Consequently, there is a collection of nonnegative reals

〈
𝜆d : d ∈ DG

〉
such that

v −w =
∑︁
d∈DG

𝜆d · d.

Now, consider the vector

v′ B w +
∑︁
d∈DG

⌊𝜆d⌋ · d =
∑︁
d∈DG

(𝐿 + ⌊𝜆d⌋) · d.

Clearly v′ ∈ lattice(DG). As v ∈ lattice(DG) by assumption, we have v − v′ ∈ lattice(DG) as
well. Furthermore,

∥v − v′∥∞ =

 ∑︁
d∈DG

(𝜆d − ⌊𝜆d⌋) · d


∞

⩽ |DG | · max
d∈DG

∥d∥∞ ⩽ |D| · max
d∈D

∥d∥∞.

By Lemma 4.5 we conclude that there exist integer coefficients
〈
𝜇d : d ∈ DG

〉
such that

v − v′ =
∑︁
d∈DG

𝜇d · d and
∑︁
d∈DG

|𝜇d | ⩽ 𝐿.

Hence,
v = v′ + (v − v′) =

∑︁
d∈DG

(𝐿 + ⌊𝜆d⌋ + 𝜇d) · d.

It now remains to observe that each coefficient 𝐿 + ⌊𝜆d⌋ + 𝜇d is a nonnegative integer, because
𝜆d ⩾ 0 and |𝜇d | ⩽ 𝐿. This shows that v ∈ intCone(DG), thereby completing the proof. ■

4.2 Regular lattices

As mentioned in Section 1, the key idea in our approach is to guess the remainders of the entries
of the sought solution modulo some large integer. To describe this idea formally, we consider
regular lattices defined as follows.

Let 𝐾 be a positive integer. For a vector of residues r ∈ {0, 1, . . . , 𝐾 − 1}t, where t is a tuple
of variables, we define the regular lattice Λ𝐾r :

Λ𝐾r B {v ∈ Zt | v(𝑡) ≡ r(𝑡) mod 𝐾 for all 𝑡 ∈ t}.

In other words, Λ𝐾r comprises all integer vectors in which the remainders mod 𝐾 on all coordi-
nates are exactly as specified in r. Note that regular lattices are affine rather than linear. In
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particular, 0 ∈ Λ𝐾r if and only if r = 0, and hence a regular lattice Λ𝐾r is not the form lattice(D)
for a multiset of vectors D, unless r = 0.

We will need the following simple claim about fractionality of solutions to systems of
equations.

LEMMA 4.7. Let D ⊆ Zt be a set of vectors, where t is a tuple of variables. Then there is a
positive integer 𝐶, computable from D, satisfying the following: for every v ∈ span(D) ∩ Zt there
exist coefficients ⟨𝜆d : d ∈ D⟩ such that

v =
∑︁
d∈D

𝜆d · d and 𝐶𝜆d is an integer for every d ∈ D .

PROOF . Let z be a tuple of variables containing one variable 𝑧d for each d ∈ D, and let 𝐷
be the z × t matrix such that the column of 𝐷 corresponding to 𝑧d ∈ z is d. Thus, collections
of coefficients ⟨𝜆d : d ∈ D⟩ as in the lemma statement correspond to solutions 𝝀 ∈ Zz of the
system of equations 𝐷z = v. By first restricting the rows of 𝐷 to a linearly independent set of
rows, and then adding some {0, 1} row vectors together with zeroes on the right hand side, we
can obtain a system of equations 𝐷z = ṽ such that every solution to 𝐷z = ṽ is also a solution to
𝐷z = v, and 𝐷 is a non-singular square matrix. It now follows from Cramer rules that if 𝝀 ∈ Zz

is the unique solution to 𝐷z = ṽ, then det 𝐷 · 𝝀 is an integer. Therefore, we may set 𝐶 B det 𝐷,
where 𝐷 is any non-singular square matrix that can be obtained from 𝐷 by first restricting it
to a linearly independent set of rows, and then extending this set of rows to a row basis using
{0, 1} row vectors. Note that 𝐶 is clearly computable from 𝐷. ■

We now use Lemma 4.7 to prove the following statement that relates regular lattices with
integer lattices generated by sets of vectors.

LEMMA 4.8. Let D ⊆ Zt be a set of vectors, where t is a tuple of variables. Then there is a
positive integer 𝐾 , computable from D, satisfying the following: for every positive integer 𝐾′

divisible by 𝐾 and every vector of residues r ∈ {0, 1, . . . , 𝐾′ − 1}t,

span(D) ∩ Λ𝐾
′

r ⊆ lattice(D) or lattice(D) ∩ Λ𝐾
′

r = ∅.

PROOF . We set 𝐾 B 𝐶, where 𝐶 is the integer provided by Lemma 4.7 for D. Fix any positive
integer 𝐾′ divisible by 𝐾 and r ∈ {0, 1, . . . , 𝐾′ − 1}t. It suffices to prove that if there exists
u ∈ lattice(D) ∩ Λ𝐾′

r , then in fact span(D) ∩ Λ𝐾′
r ⊆ lattice(D). Consider any v ∈ span(D) ∩ Λ𝐾′

r .
Since u, v ∈ Λ𝐾′

r , every entry of the vector u − v is divisible by 𝐾′, so also by 𝐾 . It follows that

u − v = 𝐾 · w for some w ∈ Zt.

Since u, v ∈ span(D), we also have w ∈ span(D). By Lemma 4.7, there exist coefficients
⟨𝜆d : d ∈ D⟩ such that

w =
∑︁
d∈D

𝜆d · d and 𝐾𝜆d is an integer for all d ∈ D .
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Therefore, we have
u − v = 𝐾 · w =

∑︁
d∈D

(𝐾𝜆d) · d,

where coefficients 𝐾𝜆d are integral. So u − v ∈ lattice(D). As u ∈ lattice(D) by assumption, we
conclude that v ∈ lattice(D) as well; this concludes the proof. ■

4.3 Reduction to polyhedral constraints

We proceed to the cornerstone of our approach: the theorem stated below, which was presented
in Section 2 as Theorem 2.1. Intuitively, it says that under fixing residues modulo a large integer,
membership in an integer cone is equivalent to membership in a carefully crafted polyhedron.

THEOREM 4.9 (Reduction to Polyhedral Constraints). Let D ⊆ Zt be a set of vectors, where t
is a tuple of variables. Then there exists a positive integer 𝐵, computable from D, satisfying the
following: for every vector of residues r ∈ {0, 1, . . . , 𝐵 − 1}t, there is a finite set Q ⊆ Zt × Z such
that

Λ𝐵r ∩ intCone(D) = Λ𝐵r ∩
{
v ∈ Rt | ⟨q, v⟩ ⩾ 𝑎 for all (q, 𝑎) ∈ Q

}
.

Moreover, there is an algorithm that given D and r, computes Q satisfying the above.

PROOF . Let F be a dual representation of cone(D), computed from D using Theorem 4.2.
Further, let

𝐾 be the least common multiple of all integers 𝐾G obtained by applying Lemma 4.8 to DG

for every G ⊆ F , and
𝑀 be the integer obtained by applying Lemma 4.6 to D and F .

We define
𝑀 B 𝑀 + |D| · max

f∈F
∥f∥1 · max

d∈D
∥d∥∞,

and set

𝐵0 B 𝐾, 𝐵𝑖 B 𝑀 · 𝐵𝑖−1 for 𝑖 = 1, 2, . . . , |F |, and 𝐵 B 2 · 𝐵|F | .

We are left with constructing a suitable set Q for a given r ∈ {0, 1, . . . , 𝐵 − 1}t.
For convenience, denote

R B Λ𝐵r ∩ cone(D) and Z B Λ𝐵r ∩ intCone(D).

For every f ∈ F , let 𝑝f be the unique integer in {0, 1, . . . , 𝐵 − 1} such that

𝑝f ≡ ⟨f , r⟩ mod 𝐵.

Observe the following.
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CLAIM 4.9.1. For every f ∈ F and v ∈ R, we have

⟨f , v⟩ ∈ {𝑝f , 𝑝f + 𝐵, 𝑝f + 2𝐵, . . .}.

Proof. As v ∈ cone(D) and F is a dual representation of cone(D), we have ⟨f , v⟩ ⩾ 0. As
v ∈ Λ𝐵r , we also have ⟨f , v⟩ ≡ ⟨f , r⟩ ≡ 𝑝f mod 𝐵. The claim follows. ■

For a given vector v ∈ R, call f ∈ F tight for v if ⟨v, f⟩ = 𝑝f . Importantly, Claim 4.9.1
implies the following: if f is not tight for v, then ⟨f , v⟩ ⩾ 𝑝f + 𝐵. Further, let

Tight(v) B {f ∈ F | f is tight for v}.

The next claim is the key step. Its proof relies on a carefully crafted application of the Deep-in-
the-Cone Lemma (Lemma 4.6).

CLAIM 4.9.2. Suppose u ∈ Z and v ∈ R are such that Tight(u) ⊇ Tight(v). Then v ∈ Z as
well.

Proof. Denote ℓ B |F | for brevity. Enumerate F as {f1, f2, . . . , fℓ} so that

⟨f1, v⟩ ⩽ ⟨f2, v⟩ ⩽ ⟨f3, v⟩ ⩽ . . . ⩽ ⟨fℓ, v⟩,

and recall that all these values are nonnegative integers due to v being an integer vector in
cone(D) and F being the dual representation of cone(D). Let 𝑘 ∈ {0, 1, . . . , ℓ} be the largest
index such that

⟨f𝑖 , v⟩ ⩽ 𝐵𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑘},

and denote
G B {f1, f2, . . . , f𝑘} and 𝐵 B 𝐵𝑘 .

By the maximality of 𝑘 it follows that either 𝑘 = ℓ, or 𝑘 < ℓ and ⟨f𝑘+1, v⟩ > 𝐵𝑘+1. In any case, by
the choice of the sequence 𝐵0, 𝐵1, . . . , 𝐵ℓ we have

⟨g, v⟩ ⩽ 𝐵 for all g ∈ G and ⟨f , v⟩ > 𝑀𝐵 for all f ∈ F − G. (3)

Since 𝐵 < 𝐵, all vectors of G are tight for v; see Claim 4.9.1. As Tight(u) ⊇ Tight(v), these
vectors are tight for u as well. We conclude that

⟨g,u⟩ = ⟨g, v⟩ = 𝑝g for all g ∈ G. (4)

Since u ∈ Z by assumption, there is a collection of nonnegative integers ⟨𝜆d : d ∈ D⟩ such
that

u =
∑︁
d∈D

𝜆d · d.

Define now a collection of nonnegative integers ⟨𝜇d : d ∈ D⟩ as follows:
if d ∉ DG , then 𝜇d = 𝜆d; and
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otherwise, if d ∈ DG, then 𝜇d is the unique integer in {0, 1, . . . , 𝐾 − 1} such that 𝜆d ≡
𝜇d mod 𝐾 .

Consider now any e ∈ D − DG . By the definition of DG , there exists g ∈ G such that ⟨g, e⟩ > 0,
which by integrality entails ⟨g, e⟩ ⩾ 1. By Observation 4.3, (3), and (4), we have

𝐵 ⩾ ⟨g, v⟩ = ⟨g,u⟩ =
∑︁
d∈D

𝜆d · ⟨g, d⟩ ⩾ 𝜆e · ⟨g, e⟩ ⩾ 𝜆e = 𝜇e.

Together with the straightforward inequality 𝜇d ⩽ 𝐾 ⩽ 𝐵 for all d ∈ DG , we conclude that

𝜇d ⩽ 𝐵 for all d ∈ D . (5)

Let
u′ B

∑︁
d∈D

𝜇d · d.

Clearly u′ ∈ intCone(D). Our goal is to show that Lemma 4.6 can be applied to v − u′.
First, consider any f ∈ F − G. Then by (3) and (5), we have

⟨f , v − u′⟩ = ⟨f , v⟩ − ⟨f ,u′⟩ > 𝑀𝐵 −
∑︁
d∈D

𝜇d · ⟨f , d⟩

⩾ 𝑀𝐵 − |D| · max
f∈F

∥f∥1 · max
d∈D

∥d∥∞ · 𝐵 = 𝑀𝐵 ⩾ 𝑀. (6)

Next, consider any g ∈ G. Then

⟨g, v − u′⟩ =
∑︁
d∈D

(𝜆d − 𝜇d) · ⟨g, d⟩ =
∑︁
d∈DG

(𝜆d − 𝜇d) · ⟨g, d⟩ +
∑︁

d∈D−DG

(𝜆d − 𝜇d) · ⟨g, d⟩. (7)

Note that for d ∈ D − DG we have 𝜆d = 𝜇d, while for d ∈ DG we have ⟨g,d⟩ = 0. So both
summands on the right hand side of (7) are equal to 0, implying that

⟨g, v − u′⟩ = 0 for all g ∈ G. (8)

Observe that since F is the dual representation of cone(D), (6) and (8) together imply that

v − u′ ∈ cone(D). (9)

Then by combining (8), (9), and Lemma 4.4 we conclude that

v − u′ ∈ cone(DG). (10)

Finally, observe that for every d ∈ D, 𝜆d − 𝜇d is an integer divisible by 𝐾 . Therefore,
u−u′ = 𝐾 ·w for some integer vector w, implying that u−u′ ∈ Λ𝐾0 . As u, v ∈ Λ𝐵r and 𝐾 divides 𝐵,
we also have v − u ∈ Λ𝐾0 . Combining these two observations yields

v − u′ ∈ Λ𝐾0 . (11)
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Noting that 0 ∈ lattice(DG) ∩ Λ𝐾
0 and 𝐾 is divisible by 𝐾G, by applying Lemma 4.8 to DG we

infer that
span(DG) ∩ Λ𝐾0 ⊆ lattice(DG).

Combining this with (10) and (11) yields

v − u′ ∈ lattice(DG). (12)

Now, assertions (6), (10), and (12) show that we can use Lemma 4.6 to conclude that

v − u′ ∈ intCone(DG).

Since u′ =
∑

d∈D 𝜇d · d and ⟨𝜇d : d ∈ D⟩ are nonnegative integers, we have u′ ∈ intCone(DG) as
well. So as a sum of two vectors from intCone(DG), v also belongs to intCone(DG), and we are
done. ■

For every G ⊆ F , let
RG B {v ∈ R | Tight(v) = G}.

In other words, RG comprises all vectors in R for which G is exactly the set of tight vectors in
F . Thus, {RG : G ⊆ F } is a partition of R.

Let L be the family of subsets of F consisting of all G ⊆ F such that RG ∩Z ≠ ∅. Further,
let L ↓ be the downward closure of L : a set G ⊆ F belongs to L ↓ if and only if there exists
G′ ⊇ G such that G′ ∈ L . The following statement is an immediate corollary of Claim 4.9.2.

CLAIM 4.9.3. Suppose G ⊆ F . If G ∈ L ↓ then RG ⊆ Z, and if G ∉ L ↓ then RG ∩ Z = ∅.
Consequently,

Z =
⋃

G∈L ↓

RG .

Next, we show that the characterization of Claim 4.9.3 can be expressed through linear
inequalities.

CLAIM 4.9.4. For every v ∈ Λ𝐵r , the following conditions are equivalent:
(1) v ∈ intCone(D); and
(2) v ∈ cone(D) and∑︁

g∈G
⟨g, v⟩ ⩾ 1 +

∑︁
g∈G

𝑝g for all G ⊆ F such that G ∉ L ↓.

Proof.We first prove implication (1)⇒(2). Since v ∈ Λ𝐵
r ∩ intCone(D) = Z, by Claim 4.9.3 we

have that v ∈ RG for some G ∈ L ↓. In particular, for every G′ ⊆ F with G′ ∉ L ↓, G′ is not a
subset of G, implying that there exists some h ∈ G′ − G. As G = Tight(v), h is not tight for v,
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hence ⟨h, v⟩ ⩾ 𝑝h + 𝐵 by Claim 4.9.1. Hence, by Claim 4.9.1 again,∑︁
g∈G′

⟨g, v⟩ ⩾ 𝐵 +
∑︁
g∈G′

𝑝g ⩾ 1 +
∑︁
g∈G′

𝑝g;

and this holds for each G′ ⊆ F with G′ ∉ L ↓. As v ∈ intCone(D) entails v ∈ cone(D), this
proves (2).

We now move to the implication (2)⇒(1). Since v ∈ Λ𝐵
r ∩ cone(D) = R, by Claim 4.9.3 it

suffices to show that the unique G ⊆ F for which v ∈ RG satisfies G ∈ L ↓. Note v ∈ RG is
equivalent to G = Tight(v). Therefore ⟨g, v⟩ = 𝑝g for all g ∈ G, implying that∑︁

g∈G
⟨g, v⟩ =

∑︁
g∈G

𝑝g.

Hence we necessarily must have G ∈ L ↓, for otherwise (2) would not be satisfied. ■

We may now define Q to be the set of the following pairs:
(f , 0) for all f ∈ F ; and(∑

g∈G g, 1 + ∑
g∈G 𝑝g

)
for all G ⊆ F with G ∉ L ↓.

As F is a dual representation of cone(D), we have cone(D) = {v ∈ Rt | ⟨f , v⟩ ⩾ 0 for all f ∈ F }.
Hence, Claim 4.9.4 directly implies that

Λ𝐵r ∩ intCone(D) = Λ𝐵r ∩
{
v ∈ Rt | ⟨q, v⟩ ⩾ 𝑎 for all (q, 𝑎) ∈ Q

}
,

as required.

It remains to argue that the set Q can be computed given D and r. For this, it suffices to
distinguish which sets G ⊆ F belong to L and which not, because based on this knowledge
we may compute L ↓ and then construct Q right from the definition. (Recall here that by
Theorem 4.2, F can be computed from D.) Testing whether given G ⊆ F belongs to L boils
down to verifying whether there exists v ∈ Zt such that

v ∈ Λ𝐵r , or equivalently, v = 𝐵 · w + r for some w ∈ Zt;
⟨g, v⟩ = 𝑝g for all g ∈ G; and
⟨g, v⟩ ⩾ 𝑝g + 1 for all g ∈ F − G; and
v ∈ lattice(D), or equivalently, there exist nonnegative integer coefficients ⟨𝜆d : d ∈ D⟩
such that v =

∑
d∈D 𝜆d · d.

These conditions form an integer program with 2|t| + |D| variables: |t| variables for v, |t|
variables for w, and |D| variables for the coefficients ⟨𝜆d : d ∈ D⟩. Hence we may just check
the feasibility of this program using any of the standard algorithms for integer programming,
e.g., the algorithm of Kannan [29]. ■

We remark that while the statement of Theorem 4.9 does not specify any concrete upper
bound on the value of 𝐵, it is not hard to trace all the estimates used throughout the reasoning to
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see that 𝐵 is bounded by an elementary function (that is, a constant-height tower of exponents)
of the relevant parameters |t|, |D|, and maxd∈D ∥D∥∞. We did not attempt to optimize the value
of 𝐵 in our proof, hence finding tighter estimates is left to future work.

4.4 Algorithm for two-stage stochastic integer programming

With all the tools prepared, we are ready to give a proof of Theorem 4.1.

PROOF OF THEOREM 4.1 . For each matrix 𝐷𝑖 , let D𝑖 be the set of columns of 𝐷𝑖 . Since every
member of D𝑖 is a vector in Zt with all entries of absolute value at most Δ, and there are (2Δ+1) |t|

different such vectors, we have |D𝑖 | ⩽ (2Δ+1) |t|. In particular, there are at most 2(2Δ+1) |t | distinct
sets D𝑖 .

Now, the feasibility of the program 𝑃 is equivalent to the following assertion: there exist
u ∈ Zx⩾0 such that

b𝑖 − 𝐴𝑖u ∈ intCone(D𝑖) for all 𝑖 ∈ 𝐼 . (13)

For each 𝑖 ∈ 𝐼 apply Theorem 4.9 to D𝑖 , yielding a positive integer 𝐵𝑖 , computable from D𝑖 . Let
𝐵 be the least common multiple of all integers 𝐵𝑖 for 𝑖 ∈ 𝐼 . Since the number of distinct sets D𝑖

is bounded by 2(2Δ+1) |t | , it follows that 𝐵 is bounded by a computable function of Δ and |t|.
Towards verification of assertion (13), the algorithm guesses, by iterating through all

possibilities, the vector r ∈ {0, 1, . . . , 𝐵 − 1}x such that u[𝑥] ≡ r[𝑥] mod 𝐵 for each 𝑥 ∈ x;
equivalently u ∈ Λ𝐵

r . This uniquely defines, for each 𝑖 ∈ 𝐼 , a vector r𝑖 ∈ {0, 1, . . . , 𝐵𝑖 − 1}t such
that

(b𝑖 − 𝐴𝑖u) [𝑡] ≡ r𝑖 [𝑡] mod 𝐵𝑖 for all 𝑡 ∈ t.

Or equivalently, b𝑖 − 𝐴𝑖u ∈ Λ𝐵𝑖r𝑖 .
Apply the algorithm of Theorem 4.9 to D𝑖 and r𝑖 , yielding a set of pairs Q𝑖 ⊆ Zt × Z such

that
Λ𝐵𝑖r𝑖 ∩ intCone(D𝑖) = Λ𝐵𝑖r𝑖 ∩ {v ∈ Rt | ⟨q, v⟩ ⩾ 𝑎 for all (q, 𝑎) ∈ Q𝑖}.

Hence, under the supposition that indeed u ∈ Λ𝐵
r , assertion (13) boils down to verifying the

existence of u ∈ Zx satisfying the following:
u[𝑥] ⩾ 0 for all 𝑥 ∈ x;
u ∈ Λ𝐵r , or equivalently, u = 𝐵 · w + r for some w ∈ Zx;
for each 𝑖 ∈ 𝐼 and each (q, 𝑎) ∈ Q𝑖 , we have

⟨q, b𝑖 − 𝐴𝑖u⟩ ⩾ 𝑎.

The conditions above form an integer program with 2|x| variables (|x| variables for u and
|x| variables for w) whose total bitsize is bounded by 𝑔 (Δ, |t|) · ∥𝑃∥ for some computable
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function 𝑔. Hence, we can solve this program (and thus verify the existence of a suitable u)
in time ℎ(Δ, |x|, |t|) · ∥𝑃∥ for a computable ℎ using, for instance, the algorithm of Kannan [29].
Iterating through all r ∈ {0, 1, . . . , 𝐵 − 1}x adds only a multiplicative factor that depends in a
computable manner on Δ, |x|, |t|, yielding in total a time complexity bound of 𝑓 (Δ, |x|, |t|) · ∥𝑃∥
for a computable function 𝑓 , as claimed. ■

5. 𝒏-fold integer programming

Our main result for 𝑛-fold integer programming is presented in the following statement, which
is just Theorem 1.2 with adjusted notation.

THEOREM 5.1. An instance 𝑃 = (𝐶, a, ⟨𝐷𝑖 , b𝑖 , c𝑖 : 𝑖 ∈ 𝐼⟩) ofUniform 𝑛-fold ILPOptimization can
be solved in time 𝑓 (Δ, |y|, |t|) · ∥𝑃∥O(1) for some computable function 𝑓 , where Δ = max𝑖∈𝐼 ∥𝐷𝑖 ∥∞.

Again, importantly, we do not impose any upper bound on the absolute values of the
entries of the matrix 𝐶. Note also that as mentioned in Section 1, the considered parameters
do not include |s|, the number of linking constraints, but do include |y|, the number of local
variables in each block.

The remainder of this section is devoted to the proof of Theorem 5.1.

5.1 Graver bases

One ingredient that we will repeatedly use in our proofs is the notion of the Graver basis of a
matrix, which consists of ⊑-minimal integral elements of the kernel. Formally, the integer kernel
of a matrix 𝐷 ∈ Zy×t, denoted kerZ(𝐷), is the set of all integer vectors u ∈ Zt such that 𝐷u = 0.
The Graver basis of 𝐷 is the set Graver(𝐷) of all ⊑-minimal non-zero elements of kerZ(𝐷). In
other words, a vector u ∈ kerZ(𝐷) − {0} belongs to Graver(𝐷) if there is no u′ ⊑ u, u′ ∉ {0,u},
such that u′ ∈ kerZ(𝐷) as well.

Note that since Graver(𝐷) is an antichain in the ⊑ order, which is a well quasi-order on Zt

by Dickson’s Lemma, Graver(𝐷) is always finite. There are actually many known bounds on the
norms of the elements of the Graver basis under different assumptions about the matrix. We
will use the following one tailored to matrices with few rows.

LEMMA 5.2 (Lemma 2 of [19]). Let 𝐷 ∈ Zy×t be an integer matrix, and let Δ = ∥𝐷∥∞. Then for
every g ∈ Graver(𝐷), it holds that

∥g∥1 ⩽ (2|t|Δ + 1) |t|

We will also use the fact that every solution to an integer program can be decomposed
into some solution of bounded norm and a multiset consisting of elements of the Graver basis.
This fact was observed by Pottier in [45, Corollary 1], we recall his proof for completeness.
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LEMMA 5.3. Let 𝐷 ∈ Zy×t be an integer matrix and b ∈ Zt⩾0 be an integer vector. Then for
every w ∈ Zy⩾0 such that 𝐷w = b, there exists a vector ŵ ∈ Zy⩾0 and a multiset G consisting of
nonnegative elements of Graver(𝐷) such that

𝐷ŵ = b, ∥ŵ∥ ⩽ (2|t| (∥𝐷∥∞ + ∥b∥∞) + 1) |t|, and w = ŵ +
∑︁
g∈G

g.

PROOF . Let 𝑧 be a fresh variable that does not belong to y and let z B y ∪ {𝑧}. Further, let
𝐷′ ∈ Zz×t be the matrix obtained from 𝐷 by adding column 𝐷′[𝑧] = −b, and w′ ∈ Zz⩾0 be the
vector obtained from w by adding the entry w′[𝑧] = 1. Observe that 𝐷w = b entails 𝐷′w′ = 0,
which means that w′ ∈ kerZ(𝐷′). Every element of the integer kernel can be decomposed into
a sign-compatible sum of elements of the Graver basis; see e.g. [17, Lemma 3.2.3]. Therefore,
there is a multiset G′ consisting of nonnegative elements of Graver(𝐷′) such that

∑
g′∈G′ g′ = w′.

Due to the sign-compatibility, exactly one element ŵ′ ∈ G′ has ŵ[𝑧] = 1, and all the other
elements g′ ∈ G′ − {ŵ′} satisfy g′[𝑧] = 0. We can now obtain ŵ and G from ŵ′ and G′ − {ŵ′},
respectively, by stripping every vector from the coordinate corresponding to variable 𝑧 (formally,
restricting the domain to y). As g′[𝑧] = 0 for all g′ ∈ G′ − {ŵ′}, it follows that all elements of G
belong to Graver(𝐷). Finally, from Lemma 5.2 applied to 𝐷′ we conclude that ∥ŵ∥∞ ⩽ ∥ŵ′∥∞ ⩽
(2|t| (∥𝐷∥∞ + ∥b∥∞) + 1) |t|. ■

5.2 Decomposing bricks

As explained in Section 2, the key idea in the proof of Theorem 5.1 is to decompose right-hand
sides of the program (that is, vectors b𝑖) into smaller and smaller vectors while preserving the
optimum value of the program. The next lemma is the key observation that provides a single
step of the decomposition.

LEMMA 5.4 (Brick Decomposition Lemma). There exists a function 𝑔 (𝑘, Δ) ∈ 2(𝑘Δ)O(𝑘) such
that the following holds. Let 𝐷 ∈ Zy×t be a matrix and b ∈ Zt be a vector such that ∥b∥∞ > 𝑔 (𝑘, Δ),
where 𝑘 = |t| and Δ = ∥𝐷∥∞. Then there are non-zero vectors b′,b′′ ∈ Zt such that the following
conditions hold:

b′, b′′ ⊑ b and b = b′ + b′′; and
for every v ∈ Zy⩾0 satisfying 𝐷v = b, there exist v′, v′′ ∈ Zy⩾0 such that

v = v′ + v′′, 𝐷v′ = b′, and 𝐷v′′ = b′′.

Throughout this section, for a multiset𝑉 of vectors or numbers, we denote by
∑
𝑉 the sum

of the elements in 𝑉 .
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The crucial ingredient to prove Lemma 5.4 is the following result of Klein [30]. We use the
variant from Cslovjecsek et al. [13], which compared to the original version of Klein [30] has
better bounds and applies to vectors with possibly negative coefficients.

LEMMA 5.5 (Klein Lemma, Theorem 4.1 of [13] for 𝜖 = 1 and with adjusted notation). Let
t be a tuple of variables with |t| = 𝑘 and let 𝑇1, . . . , 𝑇𝑛 be non-empty multisets of vectors in Zt

such that for all 𝑖 ∈ {1, . . . , 𝑛} and u ∈ 𝑇𝑖 , we have ∥u∥∞ ⩽ Δ, and the sum of all elements in each
multiset is the same: ∑︁

𝑇1 =
∑︁

𝑇2 = . . . =
∑︁

𝑇𝑛.

Then there exist non-empty submultisets 𝑆1 ⊆ 𝑇1, 𝑆2 ⊆ 𝑇2, . . . , 𝑆𝑛 ⊆ 𝑇𝑛, each of size bounded by
2O(𝑘Δ)𝑘 , such that ∑︁

𝑆1 =
∑︁

𝑆2 = . . . =
∑︁

𝑆𝑛.

We also need the following lemma about partitioning a multiset of vectors into small
submultisets with sign-compatible sums.

LEMMA 5.6. Let𝑈 be a multiset of vectors in Zt with ∥u∥∞ ⩽ Δ for all u ∈ 𝑈 , where t is a tuple of
variables with |t| = 𝑘. Further, let b =

∑
𝑈 . Then one can partition𝑈 into a collection of non-empty

submultisets ⟨𝑈𝑖 : 𝑖 ∈ 𝐼⟩ so that for every 𝑖 ∈ 𝐼 , we have |𝑈𝑖 | ⩽ (2𝑘Δ + 1)𝑘 and
∑
𝑈𝑖 ⊑ b.

PROOF . Let𝑊 be a multiset of vectors in Zt such that
w ⊑ −b and ∥w∥∞ ⩽ 1 for each w ∈𝑊 , and∑
w = −b.

Let x and y be tuples of variables enumerating the elements of𝑈 and𝑊 , respectively, so that
we can set up a matrix 𝐴 ∈ Z(x∪y)×t with the elements of𝑈 as the columns corresponding to x
and the elements of𝑊 as the columns corresponding to y. Thus, we have

𝐴1 = 0.

By Lemma 5.2, there exists g ∈ Graver(𝐴) such that

∥g∥1 ⩽ (2𝑘Δ + 1)𝑘 and g ⊑ 1.

Let 𝑈1 be the multisets of those elements of 𝑈 that correspond to the variables 𝑥 ∈ x with
g(𝑥) = 1. Similarly, let 𝑊1 be the multiset of those elements of 𝑊 that correspond to the
variables 𝑦 ∈ y with g( 𝑦) = 1. Thus, we have |𝑈1 | + |𝑊1 | = ∥g∥1 ⩽ (2𝑘Δ + 1)𝑘. Moreover, as
𝐴g = 0,

∑
𝑊 = −b, and w ⊑ −b for each w ∈𝑊1, we have∑︁

𝑈1 = −
∑︁

𝑊1 ⊑ b.



33 / 49 Parameterized algorithms for block-structured integer programs with large entries

Therefore, we can set𝑈1 to be the first multiset in the sought collection. It now remains to apply
the same reasoning inductively to the multiset𝑈 −𝑈1 in order to extract the next elements of
the collection, until the multiset under consideration becomes empty. ■

We are now ready to prove Lemma 5.4.

PROOF OF LEMMA 5.4 . Let Ξ ∈ 2O(𝑘Δ)𝑘 be the bound provided by Lemma 5.5 for parameters
𝑘 and Δ.

Call a vector v ∈ Zy⩾0 a solution if 𝐷v = b. Further, a solution v is minimal if it is conformally
minimal among the solutions: there is no solution v′ such that v′ ≠ v and v′ ⊑ v. Let 𝑉 be the
set of all minimal solutions. Note that 𝑉 is an antichain in ⊑, so as ⊑ is a well quasi-order on
Z
y
⩾0 by Dickson’s Lemma, it follows that 𝑉 is finite. If 𝑉 is empty, then there are no solutions

and there is noting to prove, so assume otherwise.
For each v ∈ 𝑉 , construct a multiset of vectors 𝑇v as follows: for each 𝑦 ∈ y, include v[ 𝑦]

copies of the column 𝐷[ 𝑦] (i.e., the column of 𝐷 corresponding to variable 𝑦) in 𝑇v. Thus, we
obtain a finite collection of multisets ⟨𝑇v : v ∈ 𝑉⟩. By construction, we have∑︁

𝑇v = 𝐷v = b for all v ∈ 𝑉.

Note that all vectors in all multisets 𝑇v have all entries bounded in absolute value by Δ. In the
sequel, we will use the following claim a few times.

CLAIM 5.6.1. Suppose v ∈ 𝑉 and 𝐴 ⊆ 𝑇v is a submultiset such that
∑
𝐴 = 0. Then 𝐴 is empty.

Proof. Let w ∈ Zy⩾0 be the vector of multiplicities in which the columns of 𝐷 appear in 𝐴: for
𝑦 ∈ y, w[ 𝑦] is the number of times 𝐷[ 𝑦] appears in 𝐴. Clearly, w ⊑ v and

∑
𝐴 = 0 implies that

𝐷w = 0. Then 𝐷(v −w) = b and v −w ⊑ v as well. This is a contradiction with the minimality
of v unless w = 0, or equivalently, 𝐴 is empty. ■

As 𝑉 is finite, we may apply Lemma 5.5 to multisets ⟨𝑇v : v ∈ 𝑉⟩. In this way, we obtain
submultisets ⟨𝑆v ⊆ 𝑇v : v ∈ 𝑉⟩, each of size at most Ξ, such that∑︁

𝑆v =
∑︁

𝑆v′ for all v, v′ ∈ 𝑉.

Consider multisets 𝑇 ′
v B 𝑇v − 𝑆v for v ∈ 𝑉 . Observe that the multisets 𝑇 ′

v have again the
same sums. Moreover, if some 𝑇 ′

v is empty, then
∑
𝑇 ′
v′ = 0 for every v′ ∈ 𝑉 , which by Claim 5.6.1

implies that 𝑇 ′
v′ is empty as well. It follows that either all multisets

〈
𝑇 ′
v : v ∈ 𝑉

〉
are empty, or all

of them are non-empty.
If all multisets

〈
𝑇 ′
v : v ∈ 𝑉

〉
are non-empty, then we may apply the same argument to

them again, and thus extract suitable non-empty submultisets
〈
𝑆′v ⊆ 𝑇 ′

v : v ∈ 𝑉
〉

with the same
sum. By performing this reasoning iteratively until all multisets become empty (which occurs
simultaneously due to Claim 5.6.1), we find a collection of partitions〈〈

𝑆𝑖v : 𝑖 ∈ 𝐼
〉

: v ∈ 𝑉
〉
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for some index set 𝐼 such that:〈
𝑆𝑖v : 𝑖 ∈ 𝐼

〉
is a partition of 𝑇v for each v ∈ 𝑉 ;

𝑆𝑖v is non-empty and |𝑆𝑖v | ⩽ Ξ for all 𝑖 ∈ 𝐼 and v ∈ 𝑉 ; and∑
𝑆𝑖v =

∑
𝑆𝑖v′ for all 𝑖 ∈ 𝐼 and v, v′ ∈ 𝑉 .

For 𝑖 ∈ 𝐼 , let p𝑖 be the common sum of multisets 𝑆𝑖v for v ∈ 𝑉 , that is,

p𝑖 =
∑︁

𝑆𝑖v for all v ∈ 𝑉.

Note that
∑
𝑖∈𝐼 p𝑖 = b and ∥p𝑖 ∥∞ ⩽ ΔΞ C Δ′ for all 𝑖 ∈ 𝐼 .

We now apply Lemma 5.6 to the collection of vectors ⟨p𝑖 : 𝑖 ∈ 𝐼⟩. This yields a partition〈
𝐼 𝑗 : 𝑗 ∈ 𝐽

〉
of 𝐼 with some index set 𝐽 such that for each 𝑗 ∈ 𝐽 , we have

|𝐼 𝑗 | ⩽ (2𝑘Δ′ + 1)𝑘 ⩽ 2(𝑘Δ)O(𝑘)
and

∑︁
𝑖∈𝐼 𝑗

p𝑖 ⊑ b.

By setting 𝑔 (𝑘, Δ) ∈ 2(𝑘Δ)O(𝑘) large enough, we may guarantee that |𝐼 𝑗 | · Δ ⩽ 𝑔 (𝑘, Δ) for all 𝑗 ∈ 𝐽 .
Since we assumed that ∥𝑏∥∞ > 𝑔 (𝑘, 𝑑), we conclude that ∥𝑏∥∞ >

∑
𝑖∈𝐼 𝑗 p𝑖 for all 𝑗 ∈ 𝐽 , and

consequently it must be the case that | 𝐽 | ⩾ 2.
Let {𝐽′, 𝐽′′} be any partition of 𝐽 with both 𝐽′ and 𝐽′′ being non-empty. Define

𝐼′ B
⋃
𝑗∈𝐽 ′

𝐼 𝑗 and 𝐼′′ B
⋃
𝑗∈𝐽 ′′

𝐼 𝑗 .

Further, we set
b′ B

∑︁
𝑖∈𝐼 ′

p𝑖 and b′′ B
∑︁
𝑖∈𝐼 ′′

p𝑖 .

As
∑
𝑖∈𝐼 p𝑖 = b and p𝑖 ⊑ b for all 𝑖 ∈ 𝐼 , it follows that b′ + b′′ = b and b′,b′′ ⊑ b. Further, from

Claim 5.6.1 we have that both b′ and b′′ are non-zero.
Consider any v ∈ 𝑉 . Let

𝑆′v B
⋃
𝑖∈𝐼 ′

𝑆𝑖v and 𝑆′′v B
⋃
𝑖∈𝐼 ′′

𝑆𝑖v.

Note that ∑︁
𝑆′v = b′ and

∑︁
𝑆′′v = b′′. (14)

Further, let v′ ∈ Zy⩾0 be the vector of multiplicities in which the columns of 𝐷 appear in 𝑆′v: for
𝑦 ∈ y, v′[ 𝑦] is the number of times 𝐷[ 𝑦] appears in 𝑆′v. Define v′′ analogously for 𝑆′′v . Since
{𝑆′v, 𝑆′′v } is a partition of 𝑇v, we have v′ + v′′ = v and v′, v′′ ⊑ v. Moreover, from (14) it follows
that

𝐷v′ = b′ and 𝐷v′′ = b′′.

The above reasoning already settles the second condition from the lemma statement for
every minimal solution. So consider now any solution v ∈ Zy⩾0. Then there exists a minimal
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solution v̂ ∈ 𝑉 such that v̂ ⊑ v. As both v and v̂ are solutions, we have 𝐷(v − v̂) = 0. It follows
that we may simply take

v′ B v̂′ + (v − v̂) and v′′ B v̂′′.

This concludes the proof. ■

From now on, we adopt the function 𝑔 (Δ, 𝑘) provided by Lemma 5.4 in the notation.
Now that Lemma 5.4 is established, it is tempting to apply it iteratively: first break b into

b′ and b′′, then break b′ into two even smaller vectors, and so on. To facilitate the discussion
about such decompositions, we introduce the following definition.

DEF IN IT ION 5.7. Let 𝐷 ∈ Zy×t be a matrix and b ∈ Zt be a vector. A faithful decomposition
of b with respect to 𝐷 is a collection ⟨b𝑖 : 𝑖 ∈ 𝐼⟩ of non-zero vectors in Zt satisfying the following
conditions:

b𝑖 ⊑ b for each 𝑖 ∈ 𝐼 and b =
∑
𝑖∈𝐼 b𝑖; and

for every v ∈ Zy⩾0 satisfying 𝐷v = b, there exist a collection of vectors ⟨v𝑖 : 𝑖 ∈ 𝐼⟩ in Zy⩾0

such that
v =

∑︁
𝑖∈𝐼

v𝑖 and 𝐷v𝑖 = b𝑖 for each 𝑖 ∈ 𝐼 .

The order of a faithful decomposition ⟨b𝑖 : 𝑖 ∈ 𝐼⟩ is max𝑖∈𝐼 ∥b𝑖 ∥∞.

By applying Lemma 5.4 iteratively, we get the following:

LEMMA 5.8. For every matrix 𝐷 ∈ Zy×t and a non-zero vector b ∈ Zt, there exists a faithful
decomposition of b with respect to 𝐷 of order at most 𝑔 (Δ, 𝑘), where 𝑘 = |t| and Δ = ∥𝐷∥∞.

PROOF . Start with a faithful decomposition B consisting only of b. Then, as long as B contains
a vector p with ∥p∥ > 𝑔 (𝑘, Δ), apply Lemma 5.4 to p yielding suitable vectors p′ and p′′, and
replace p with p′ and p′′ in B. It is straightforward to verify that throughout this procedure
B remains a faithful decomposition. Moreover, the size of B increases in each step of the
procedure, while every faithful decomposition of b has cardinality bounded by ∥b∥1. Therefore,
the procedure must eventually end, yielding a faithful decomposition of order at most 𝑔 (𝑘, Δ). ■

Observe that in the worst case, a faithful decomposition B provided by Lemma 5.8 can
consist of as many as Ω(∥b∥1) vectors, which in our case is exponential in the size of the bit
encoding of b. However, as all vectors in B have ℓ∞-norm bounded in terms of 𝑘 and Δ, the
total number of distinct vectors is bounded by a function of 𝑘 and Δ. Therefore, a faithful
decomposition B provided by Lemma 5.8 can be encoded compactly using 𝑔 (𝑘, Δ) · log ∥b∥∞
bits, by storing each vector present in B together with its multiplicity in B, encoded in binary.
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In all further algorithmic discussions we will assume that this encoding scheme for faithful
decompositions.

Our next goal is to prove that the faithful decomposition of Lemma 5.8 can be computed
algorithmically, in fixed-parameter time when parameterized by |y|, 𝑘, and Δ, assuming b is
given on input in binary. The idea is to iteratively extract a large fraction of the elements of the
decomposition, so that the whole process finishes after a number of steps that is logarithmic
in ∥b∥∞. Each extraction step will be executed using a fixed-parameter algorithm for deciding
Presburger Arithmetic. Let us give a brief introduction.

Presburger Arithmetic is the first-order theory of the structure ⟨Z⩾0, +, 0, 1, 2, . . .⟩, that is,
of nonnegative integers equipped with addition (treated as a binary function) and all elements
of the universe as constants. More precisely, a term is an arithmetic expression using the
binary function +, variables (meant to be evaluated to nonnegative integers), and constants
(nonnegative integers). Formulas considered in Presburger Arithmetic are constructed from
atomic formulas — equalities of terms — using the standard syntax of first-order logic, including
standard boolean connectives, negation, and both existential and universal quantification (over
nonnegative integers). The semantics is as expected. Note that while comparison is not directly
present in the signature, it can be easily emulated by existentially quantifying a slack variable:
for two variables 𝑥, 𝑦, the assertion 𝑥 ⩽ 𝑦 is equivalent to ∃𝑧 𝑥 + 𝑧 = 𝑦. As usual, 𝜑(x) denotes
a formula with a tuple of free variables x, while a sentence is a formula without free variables.
The length of a formula 𝜑(x), denoted ∥𝜑∥, is defined in a standard way by structural induction
on the formula and the terms contained within. Here, all constants are deemed to have length 1.

Presburger [46] famously proved that Presburger Arithmetic is decidable: there is an
algorithm that given a sentence 𝜑 of first-order logic over ⟨Z⩾0, +, 0, 1, 2, . . .⟩, decides whether 𝜑
is true. As observed by Koutecký and Talmon [41], known algorithms for deciding Presburger
Arithmetic can be understood as fixed-parameter algorithms in the following sense.

THEOREM 5.9 (follows from [41, Theorem 1]). Given a first-order sentence 𝜑 over the structure
⟨Z⩾0, +, 0, 1, 2, . . .⟩, with constants encoded in binary, one can decide whether 𝜑 is true in time
𝑓 (∥𝜑∥) · (log Δ)O(1) , where Δ ⩾ 3 is an upper bound on all the constants present in 𝜑 and 𝑓 is a
computable function.

We remark that Koutecký and Talmon discuss a more general setting where formulas are
written in a more concise form, including allowing a direct usage of modular arithmetics, and
one considers minimization of convex functions over tuples of variables satisfying constraints
expressible in Presburger Arithmetic. Nevertheless, Theorem 5.9, as stated above, follows
readily from [41, Theorem 1]. For a proof of [41, Theorem 1], see [40, Theorem 2.2].

We now use Theorem 5.9 to argue that ∀∃ integer programs can be solved efficiently.
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LEMMA 5.10. Suppose 𝐴 ∈ Zx×y and 𝐵 ∈ Zy×t are matrices and d ∈ Zt is a vector. Then the
satisfaction of the following sentence

∀v∈Zy [(𝐵v ⩽ d) =⇒ ∃u∈Zx (𝐴u ⩽ v)]

can be verified in time 𝑓 (Δ, |x|, |y|, |t|) · (log ∥d∥∞)O(1) , where Δ = max(∥𝐴∥∞, ∥𝐵∥∞) and 𝑓 is a
computable function.

PROOF . It suffices to combine Theorem 5.9 with the observation that the considered sentence
can be easily rewritten to an equivalent first-order sentence over ⟨Z⩾0, +, 0, 1, 2, . . .⟩, whose
length depends only on Δ, |x|, |y|, |t| and whose constants are bounded by ∥d∥∞. Indeed, every
inequality present in the constraint 𝐵v ⩽ d can be rewritten to an equality of two terms as
follows:

Every summand on the left hand side with a negative coefficient is moved to the right
hand side. Also, if the constant on the right hand side is negative, it is moved to the left
hand side. Thus, after this step, every side is a sum of variables multiplied by positive
coefficients and positive constants.
Every summand of the form 𝛼𝑣, where 𝛼 is a positive coefficient and 𝑣 = v[ 𝑦] for some
𝑦 ∈ y, is replaced by 𝑣 + 𝑣 + . . . + 𝑣︸           ︷︷           ︸

𝛼

. Note here that 𝛼 ⩽ Δ.

Inequality is turned into an equality by existentially quantifying a nonnegative slack
variable.

We apply a similar rewriting to the constraints present in 𝐴u ⩽ v. After these steps, the sentence
is a first-order sentence over ⟨Z⩾0, +, 0, 1, 2, . . .⟩. ■

We remark that Lemma 5.10 follows also from the work of Eisenbrand and Shmonin on
∀∃ integer programs; see [21, Theorem 4.2]. In [21] Eisenbrand and Shmonin only speak about
polynomial-time solvability for fixed parameters, but a careful inspection of the proof shows
that in fact, the algorithm works in fixed-parameter time with relevant parameters, as described
in Lemma 5.10.

With Lemma 5.10 in place, we present an algorithm to compute faithful decompositions.
We first prove the following statement, which shows that a large fraction of a decomposition
can be extracted efficiently.

LEMMA 5.11. Given a matrix 𝐷 ∈ Zy×t and a non-zero vector b ∈ Zt, one can in time 𝑓 (Δ, |y|, 𝑘) ·
(log ∥b∥∞)O(1) , where 𝑓 is a computable function, Δ = ∥𝐷∥∞, and 𝑘 = |t|, compute a faithful
decomposition B0 of b with respect to 𝐷 with the following property: the ℓ∞-norms of all the
elements of B0 are bounded by 𝑔 (Δ, 𝑘) except for at most one element b′, for which it holds that

∥b′∥1 ⩽

(
1 − 1

2(𝑘Δ)O(𝑘)

)
· ∥b∥1.
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PROOF . By Lemma 5.8, b admits a faithful decomposition B with respect to 𝐷 such that the
order of B is at most Ξ B 𝑔 (Δ, 𝑘). Observe that there are 𝑀 B (2Ξ + 1)𝑘 different vectors in Zt

of ℓ∞-norm at most Ξ, hence also at most 𝑀 different vectors present in B. Therefore, there
exists a vector b0 appearing in B with multiplicity 𝛼 ⩾ 1 such that

𝛼 · ∥b0∥1 ⩾
1
𝑀

· ∥b∥1.

Let 𝛼′ be the largest power of two such that 𝛼′ ⩽ 𝛼. Then we have

𝛼′ · ∥b0∥1 ⩾
1

2𝑀
· ∥b∥1. (15)

The algorithm guesses, by trying all possibilities, vector b0 and power of two 𝛼′. Note
that there are at most 𝑀 ⩽ 2(𝑘Δ)O(𝑘) choices for b0 and at most log ∥b∥1 choices for 𝛼′, as every
faithful decomposition of b consists of at most ∥b∥1 vectors. Having guessed, b0 and 𝛼′, we
define decomposition B0 to consist of

𝛼′ copies of the vector b0, and
vector b′ B b − 𝛼′b0.

As B is a faithful decomposition, it follows that B0 defined in this way is a faithful decomposition
as well, provided b0 and 𝛼′ were chosen correctly. Further, we have ∥b0∥ ⩽ Ξ = 𝑔 (Δ, 𝑘) and,
by (15), also

∥b′∥1 ⩾

(
1 − 1

2𝑀

)
· ∥b∥1.

Note that 2𝑀 = 2 · (2Ξ + 1)𝑘 = 2 · (2𝑔 (Δ, 𝑘) + 1)𝑘 ∈ 2(𝑘Δ)O(𝑘) , as promised. So what remains to
prove is that for a given choice of b0 and 𝛼′, one can efficiently verify whether B0 defined as
above is indeed a faithful decomposition of b.

Before we proceed, observe that by Lemma 5.3, every solution w ∈ Zy⩾0 to 𝐷w = b0 can be
decomposed as

w = ŵ +
∑︁
g∈G

g, (16)

where ŵ ∈ Zy⩾0 is also a solution to 𝐷ŵ = b0 that additionally satisfies ∥ŵ∥∞ ⩽ (2𝑘(Ξ + Δ) + 1)𝑘,
while G is a multiset of nonnegative vectors belonging to the Graver basis of 𝐷. Vector ŵ will
be called the base solution for w.

With this observation, we can formulate the task of verifying faithfulness of B0 as a ∀∃
integer program as follows. We need to verify whether for every v ∈ Zy⩾0 satisfying 𝐷v = b, there
is a vector v′ ∈ Zy⩾0 satisfying 𝐷v′ = b′ and vectors w1, . . . ,w𝛼′ ∈ Zy⩾0 satisfying 𝐷w𝑖 = b0 for all
𝑖 ∈ {1, . . . , 𝛼′} such that v′+∑𝛼′

𝑖=1 w𝑖 = v. Note that every vectorw𝑖 will have a decomposition (16),
with some base vector ŵ𝑖 . Hence, to verify the existence of suitable v′,w1, . . . ,w𝛼′ , it suffices to
find the following objects:

a vector v′ ∈ Zy⩾0 satisfying 𝐷v′ = b′;
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for every ŵ ∈ Zy⩾0 such that ∥ŵ∥∞ ⩽ (2𝑘(Ξ + Δ) + 1)𝑘 and 𝐷ŵ = b0, a multiplicity 𝛾ŵ ∈ Z⩾0

signifying how many times ŵ will appear as the base solution ŵ𝑖; and
for every Graver element g ∈ Graver(𝐷) ∩ Zy⩾0, a multiplicity 𝛿g ∈ Z⩾0 with which g will
appear in the decompositions (16) of the solutions ⟨w𝑖 : 𝑖 ∈ {1, . . . , 𝛼′}⟩ in total.

Note that by Lemma 5.2, Graver(𝐷) can be computed in time depending only on Δ, |y|, and 𝑘.
The constraints that the above variables should obey, except for integrality and nonnegativity,
are the following:

𝐷v′ = b′,

v′ +
∑︁
ŵ

𝛾ŵ · ŵ +
∑︁
g
𝛿g · g = v,∑︁
ŵ

𝛾ŵ = 𝛼′,

where summations over ŵ and g go over all relevant ŵ and g for which the corresponding
variables are defined. It is easy to see that the feasibility of the integer program presented above
is equivalent to the existence of suitable v′,w1, . . . ,w𝛼′; note here that the nonnegative elements
of the Graver basis can be added to any solution of 𝐷w = b0 without changing feasibility. As we
need to verify the feasibility for every v ∈ Zy⩾0 satisfying 𝐷v = b, we have effectively constructed
a ∀∃ integer program of the form considered in Lemma 5.10. It now remains to observe that
the number of variables of this program as well as the absolute values of all the entries in its
matrices are bounded by computable functions of Δ, |y|, and 𝑘. So we may use the algorithm of
Lemma 5.10 to solve this ∀∃ program within the promised running time bounds. ■

We now give the full algorithm, which boils down to applying Lemma 5.11 exhaustively.

LEMMA 5.12. Given a matrix 𝐷 ∈ Zy×t and a non-zero vector b ∈ Zt, one can in time 𝑓 (Δ, |y|, 𝑘) ·
(log ∥b∥∞)O(1) , where 𝑓 is a computable function, Δ = ∥𝐷∥∞, and 𝑘 = |t|, compute a faithful
decomposition B of b with respect to 𝐷 of order at most 𝑔 (Δ, 𝑘).

PROOF . Again, start with a faithful decomposition B consisting only of b. Next, as long as
B contains a vector b′ with ∥b′∥ > 𝑔 (Δ, 𝑘), apply Lemma 5.11 to b′, which yields a faithful
decomposition B′ of b′. Then replace b with B′ in B and continue. It is easy to see that B
remains a faithful decomposition throughout this procedure, hence once all vectors in B have
ℓ∞-norm bounded by 𝑔 (Δ, 𝑘), one can simply output B.

It is easy to see that at each point of the procedure, B contains at most one vector with
ℓ∞-norm larger than 𝑔 (Δ, 𝑘). Moreover, by Lemma 5.11, at every iteration the ℓ1-norm of this
vector decreases by being multiplied by at most 1 − 1

2(𝑘Δ) O (𝑘) . It follows that the total number of

iterations performed by the procedure is at most 2(𝑘Δ)O(𝑘) · log ∥b∥1 = 2(𝑘Δ)O(𝑘) · log ∥b∥∞. Since
by Lemma 5.11 every iteration takes time 𝑓 (Δ, |y|, 𝑘) · (log ∥b∥∞)O(1) , the claim follows. ■
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5.3 Algorithm for 𝒏-fold integer programming

We are now ready to prove Theorem 5.1.

PROOF OF THEOREM 5.1 . Let 𝑃 = (𝐶, a, ⟨𝐷𝑖 , b𝑖 , c𝑖 : 𝑖 ∈ 𝐼⟩) be the given program. By adding
some dummy variables and constraints if necessary, we may assume that all vectors b𝑖 are
non-zero. The first step of the algorithm is to construct a new program 𝑃′, equivalent to 𝑃, in
which all the right-hand sides b𝑖 will be bounded in the ℓ∞-norm. This essentially boils down to
applying Lemma 5.12 to every b𝑖 as follows.

For every 𝑖 ∈ 𝐼 , apply Lemma 5.12 to matrix 𝐷𝑖 and vector b𝑖 , yielding a faithful decompo-
sition B𝑖 of b𝑖 with respect to 𝐷𝑖 of order at most Ξ B 𝑔 (Δ, |t|). Obtain a new uniform 𝑛-fold
program 𝑃′ = (𝐶, a,

〈
𝐷 𝑗 , b 𝑗 , c 𝑗 : 𝑗 ∈ 𝐽

〉
) by replacing the single vector b𝑖 with the collection of

vectors B𝑖 , for each 𝑖 ∈ 𝐼 . Thus every index 𝑗 ∈ 𝐽 originates in some index 𝑖 ∈ 𝐼 , and for all
indices 𝑗 originating in 𝑖 we put 𝐷 𝑗 = 𝐷𝑖 and c 𝑗 = c𝑖 .

Since collections B𝑖 were faithful decompositions of vectors b𝑖 with respect to 𝐷𝑖 , for all
𝑖 ∈ 𝐼 , it follows that the program 𝑃′ is equivalent to 𝑃 in terms of feasibility and the minimum
attainable value of the optimization goal. This is because every solution to 𝑃 can be decomposed
into a solution to 𝑃′ with the same optimization goal value using faithfulness of the decomposi-
tions B𝑖 , and also every solution to 𝑃′ can be naturally composed into a solution to 𝑃 with the
same value.

We note that the program 𝑃′ is not computed by the algorithm explicitly, but in a high-
multiplicity form. That is, decompositions B𝑖 are output by the algorithm of Lemma 5.12 by
providing every vector present in B𝑖 together with its multiplicity in B𝑖 . Consequently, we may
describe 𝑃′ concisely by writing the multiplicity of every brick type present in 𝑃′, where the
brick type of an index 𝑗 ∈ 𝐽 is defined by

the diagonal matrix 𝐷 𝑗;
the right-hand side b 𝑗; and
the optimization vector c 𝑗 .

In other words, indices 𝑗, 𝑗′ ∈ 𝐽 with 𝐷 𝑗 = 𝐷 𝑗′ , b 𝑗 = b 𝑗′ , and c 𝑗 = c 𝑗′ are considered to have
the same brick type. Note that there are at most (2Δ + 1) |y|·|t| different diagonal matrices 𝐷 𝑗 ,
at most (2Ξ + 1) |t| different right-hand sides b 𝑗 , and at most |𝐼 | ⩽ ∥𝑃∥ different optimization
vectors c 𝑗 , hence the total number of possible brick types is bounded ℎ(Δ, |y|, |t|) · ∥𝑃∥, for
some computable function ℎ. For each such brick type, we store one positive integer of bitsize
bounded by ∥𝑃∥ describing the multiplicity.

We now aim to solve the 𝑛-fold integer program 𝑃′ efficiently by formulating it as another
integer program𝑀 , and then relaxing𝑀 to a mixed integer program𝑀′ with a bounded number
of integral variables. Intuitively, 𝑀 will determine multiplicities in which solutions to individual
bricks are taken, and assign them to the blocks in an optimal manner. The solutions to bricks
will not be guessed explicitly, but through their decompositions provided by Lemma 5.3.
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To formulate 𝑀 , we need first some notation regarding 𝑃′. Let
Diag = {−Δ, . . . , Δ}y×t be the set of all possible diagonal blocks; and
RHS = {−Ξ, . . . , Ξ}t be the set of all possible right-hand sides.

Also, 𝐼 is the index set of the collection ⟨c𝑖 : 𝑖 ∈ 𝐼⟩ consisting of all possible optimization vectors.
Thus, the set of all possible brick types that may be present in 𝑃′ is Types B RHS × Diag × 𝐼 ,
and we assume that 𝑃′ is stored by providing, for each type (𝐷,b, 𝑖) ∈ Types, the multiplicity
count[𝐷, b, 𝑖] with which the type (𝐷, b, 𝑖) appears in 𝑃′.

For 𝐷 ∈ Diag and b ∈ RHS, we let Base[𝐷,b] be the set of all base solutions for 𝐷 and b:
vectors ŵ ∈ Zy⩾0 such that 𝐷ŵ = b and ∥ŵ∥ ⩽ (2|t| (Δ+Ξ) + 1) |t|. Recall that by Lemma 5.3, every
nonnegative integer solution w to 𝐷w = b can be decomposed as

w = ŵ +
∑︁
g∈G

g, (17)

where ŵ ∈ Base[𝐷,b] and G is a multiset consisting of nonnegative vectors from the Graver
basis. For convenience, denote Gra+(𝐷) B Graver(𝐷) ∩ Zt⩾0.

We may now define the variables of 𝑀 . These will be:
𝜁 𝐷,bŵ for 𝐷 ∈ Diag, b ∈ RHS, and ŵ ∈ Base[𝐷,b], signifying how many times in total the
base solution ŵ will be taken for a brick with diagonal block 𝐷 and right-hand side b;
𝛿𝐷g for 𝐷 ∈ Diag and g ∈ Gra+(𝐷), signifying how many times in total the Graver basis
element g will appear in the decompositions (17) of solutions to bricks; and
𝜔𝐷,b,𝑖
ŵ for 𝐷 ∈ Diag, b ∈ RHS, 𝑖 ∈ 𝐼 , and ŵ ∈ Base[𝐷,b], signifying how many times the

base solution ŵ will be assigned to a brick of type (𝐷, b, 𝑖).

Next, we define the constraints of 𝑀 :∑︁
𝐷∈Diag

∑︁
b∈RHS

©«
∑︁

ŵ∈Base[𝐷,b]
𝜁 𝐷,bŵ · 𝐶ŵ +

∑︁
g∈Gra+(𝐷)

𝛿𝐷g · 𝐶gª®¬ = a; (C1)∑︁
𝑖∈𝐼

𝜔𝐷,b,𝑖
ŵ = 𝜁 𝐷,bŵ for all 𝐷 ∈ Diag, b ∈ RHS, and ŵ ∈ Base[𝐷, b]; (C2)∑︁

ŵ∈Base[𝐷,b]
𝜔𝐷,b,𝑖
ŵ = count[𝐷, b, 𝑖] for all 𝐷 ∈ Diag, b ∈ RHS, and 𝑖 ∈ 𝐼 ; (C3)

𝜁 𝐷,bŵ ∈ Z⩾0 for all 𝐷 ∈ Diag, b ∈ RHS, and ŵ ∈ Base[𝐷, b]; (C4)

𝛿𝐷g ∈ Z⩾0 for all 𝐷 ∈ Diag and g ∈ Gra+[𝐷, b]; (C5)

𝜔𝐷,b,𝑖
ŵ ∈ Z⩾0 for all 𝐷 ∈ Diag, b ∈ RHS, ŵ ∈ Base[𝐷, b], and 𝑖 ∈ 𝐼 . (C6)

Let us explain these constraints:
Constraint (C1) corresponds to the linking constraints of the 𝑛-fold program 𝑃′.
Constraint (C2) assures that the numbers 𝜔𝐷,b,𝑖

ŵ of base solutions ŵ ∈ Base[𝐷, b] assigned
to bricks with different optimization vectors add up to the total number of such base
solutions.
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In a similar vein, Constraint (C3) states that the number of bricks of a particular brick type
matches the total number of suitable base solutions assigned to them.
Finally, constraints (C4), (C5), and (C6) ensure the integrality and nonnegativity of our
variables.

Last but not least, the objective function of 𝑀 is to

minimize
∑︁

𝐷∈Diag

∑︁
b∈RHS

∑︁
ŵ∈Base[𝐷,b]

∑︁
𝑖∈𝐼

𝜔𝐷,b,𝑖
ŵ · ⟨c𝑖 , ŵ⟩ +

∑︁
𝐷∈Diag

∑︁
g∈Gra+(𝐷)

𝛿𝐷g · best𝐷g ,

where for 𝐷 ∈ Diag and g ∈ Gra+(𝐷), we define best𝐷g to be the minimum of ⟨c𝑖 , g⟩ over all 𝑖 ∈ 𝐼
such that 𝐷𝑖 = 𝐷. Here, the first summand is just the contribution of the base solutions to the
optimization goal, while in the second summand we observe that every Graver basis element
that appears in decompositions (17) can be assigned freely to any brick with the corresponding
diagonal block 𝐷, hence we may greedily assign it to the brick where its contribution to the
optimization goal is the smallest. Note that here we crucially use the assumption that the 𝑛-fold
program 𝑃′ is uniform, because we exploit the fact that assigning both the base solutions and the
Graver basis elements to different bricks has always the same effect on the linking constraints.

From the construction it is clear that the integer programs 𝑃′ and 𝑀 are equivalent in
terms of feasibility and the minimum attainable value of the optimization goal. However, the
number of variables of 𝑀 is too large to solve it directly: while the total number of variables
𝜁 𝐷,bŵ and 𝛿𝐷g is indeed bounded in terms of the parameters, this is not the case for the assignment
variables 𝜔𝐷,b,𝑖

ŵ , of which there may be as many as Ω( |𝐼 |).
To solve this difficulty, we consider a mixed program 𝑀′ that differs from 𝑀 by replacing

(C6) with the following constraint:

𝜔𝐷,b,𝑖
ŵ ∈ R⩾0 for all 𝐷 ∈ Diag, b ∈ RHS, ŵ ∈ Base[𝐷, b], and 𝑖 ∈ 𝐼 . (C7’)

That is, we relax variables𝜔𝐷,b,𝑖
ŵ to be fractional. We now observe that 𝑀 and 𝑀′ in fact have the

same optima, because after fixing the integral variables, the program 𝑀′ encodes a weighted
flow problem and therefore its constraint matrix is totally unimodular.

CLAIM 5.12 .1. The minimum attainable optimization goal values of programs 𝑀 and 𝑀′ are
equal.

Proof. As 𝑀′ is a relaxation of 𝑀 , it suffices to prove that 𝑀′ has an optimum solution that
is integral. Observe that after fixing the integral variables 𝜁 𝐷,bŵ and 𝛿𝐷g , the only remaining
constraints are (C2) and (C3). These constraints encode that values 𝜔𝐷,b,𝑖

ŵ form a feasible flow in
the following flow network:

There is a source 𝑠, a sink 𝑡, and two set of vertices: 𝑉𝑠 B {(𝐷, b, ŵ) : 𝐷 ∈ Diag, b ∈ RHS, ŵ ∈
Base[𝐷, b]} and 𝑉𝑡 B {(𝐷, b, 𝑖) : 𝐷 ∈ Diag, b ∈ RHS, 𝑖 ∈ 𝐼}.
For every (𝐷, b, ŵ) ∈ 𝑉𝑠, there is an arc from 𝑠 to (𝐷, b, ŵ) with capacity 𝜁 𝐷,bŵ .
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For every (𝐷, b, 𝑖) ∈ 𝑉𝑡, there is an arc from (𝐷, b, 𝑖) to 𝑡 with capacity count[𝐷, b, 𝑖].
For every 𝐷 ∈ Diag, b ∈ RHS, ŵ ∈ Base[𝐷,b], and 𝑖 ∈ 𝐼 , there is an arc from (𝐷,b, ŵ) to
(𝐷, b, 𝑖) with infinite capacity.

It is well known that constraint matrices of flow problems are totally unimodular, hence so
is the matrix of program 𝑀′ after fixing any evaluation of the integral variables. Vertices of
polyhedra defined by totally unimodular matrices are integral, hence after fixing the integral
variables of 𝑀′, the fractional variables can be always made integral without increasing the
optimization goal value. This shows that𝑀′ always has an optimum solution that is integral. ■

Consequently, to find the optimum value for the initial 𝑛-fold program 𝑃, it suffices to solve
the mixed program𝑀′. As𝑀′ can be constructed in time 𝑓 (Δ, |y|, |t|) · ∥𝑃∥O(1) and has 𝑓 (Δ, |y|, |t|)
integral variables, for some computable function 𝑓 , we may apply any fixed-parameter algorithm
for solving mixed programs, for instance that of Lenstra [44], to solve 𝑀′ within the promised
running time bounds.

Finally, let us remark that while the presented procedure outputs only the optimum value
for 𝑃, one can actually find an optimum solution to 𝑃 by (i) finding an optimum mixed solution
to 𝑀′, (ii) finding an optimum integer solution to 𝑀′ by solving the fractional part integrally
using e.g. the flow formulation constructed in Claim 5.12.1, and (iii) translating the obtained
optimum solution to 𝑀′ back to an optimum solution to 𝑃. We leave the details to the reader. ■
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A. Proof of Observation 1.3

In this section, we prove Observation 1.3, restated below for convenience.

OBSERVAT ION 1.3. (Restated) Suppose the feasibility problem for uniform 4-block programs
can be solved in time 𝑓 (𝑘, Δ) · ∥𝑃∥O(1) for some computable function 𝑓 , where 𝑘 is the dimension
of every block and Δ is the maximum absolute value of any entry in the constraint matrix. Then
the feasibility problem for uniform 4-block programs can be also solved in time 𝑔 (𝑘,max𝑖 ∥𝐷𝑖 ∥∞) ·
∥𝑃∥O(1) for some computable function 𝑔 under the assumption that all the absolute values of the
entries in matrices 𝐴, 𝐵, 𝐶 are bounded by 𝑛.

PROOF . Let 𝑃 be the input program:

x ∈ Z𝑘⩾0, y𝑡 ∈ Z𝑘⩾0,

𝐵x +
𝑛∑︁
𝑡=1

𝐶𝑡y𝑡 = a, and (18)

𝐴𝑡x + 𝐷𝑡y𝑡 = b𝑡 for all 𝑡 = 1, 2, . . . , 𝑛, (19)

where 𝐴, 𝐵, 𝐶, 𝐷𝑖 are integer 𝑘 × 𝑘 matrices and a,b𝑖 are integer vectors of length 𝑘. Denote
𝐴 = [𝑎𝑖 𝑗] 𝑖, 𝑗∈[𝑘] , 𝐵 = [𝑏𝑖 𝑗] 𝑖, 𝑗∈[𝑘] , and 𝐶 = [𝑐𝑖 𝑗] 𝑖, 𝑗∈[𝑘] , and recall that we assume that all entries in
𝐴, 𝐵, 𝐶 have absolute values bounded by 𝑛. Also, let a = (𝑎1, . . . , 𝑎𝑘)⊺, x = (𝑥1, . . . , 𝑥𝑘)⊺, and
y𝑡 = ( 𝑦𝑡,1, . . . , 𝑦𝑡,𝑘)⊺, for 𝑡 = 1, . . . , 𝑛. Variables x will be called global variables and variables y𝑡
will be called local variables. Similarly, constraints (18) will be called linking, and constraints (19)
will be called local. Local variables and local constraints come in 𝑡 groups, each consisting of 𝑘
variables/constraints.

We will gradually modify the program 𝑃 so that at the end, in the modified blocks 𝐴, 𝐵, 𝐶
all the coefficients will belong to {−1, 0, 1}. During the modification, we do not insist on all
blocks being always square matrices; this can be always fixed at the end by adding some zero
rows or zero columns.

First, we reduce large entries in 𝐶. Note that the 𝑖th linking constraint takes the form

𝑘∑︁
𝑗=1

𝑏𝑖 𝑗 𝑥 𝑗 +
𝑛∑︁
𝑡=1

𝑘∑︁
𝑗=1

𝑐𝑖 𝑗 𝑦𝑡, 𝑗 = 𝑎𝑖 ,

or equivalently,
𝑘∑︁
𝑗=1

𝑏𝑖 𝑗 𝑥 𝑗 +
𝑘∑︁
𝑗=1

𝑐𝑖 𝑗

𝑛∑︁
𝑡=1

𝑦𝑡, 𝑗 = 𝑎𝑖 .

Hence, for every pair (𝑖, 𝑗) ∈ [𝑘] × [𝑘] we introduce a new global variable 𝑧𝑖 𝑗 together with the
constraint

−𝑧𝑖 𝑗 +
𝑛∑︁
𝑡=1

𝑦𝑡, 𝑗 = 0,
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and in the 𝑖th linking constraint, we replace the summand 𝑐𝑖 𝑗
∑𝑛
𝑡=1 𝑦𝑡, 𝑗 with the summand 𝑐𝑖 𝑗𝑧𝑖 𝑗 .

It is easy to see that after this modification, only {0, 1} entries will appear in the blocks 𝐶. This
comes at the price of increasing the number of global variables and the number of linking
constraints by 𝑘2, and possibly adding some large (but bounded by 𝑛 in absolute value) entries
to the block 𝐵.

Next, we remove large entries in 𝐴. Suppose then 𝑎𝑖 𝑗 > 1 for some 𝑖, 𝑗 ∈ [𝑘]; recall that we
assume also that 𝑎𝑖 𝑗 ⩽ 𝑛. In program 𝑃, entry 𝑎𝑖 𝑗 occurs in summands of the form 𝑎𝑖 𝑗𝑥 𝑗; every
group of local constraints contains one such summand. Therefore, the idea is to (i) copy the
variable 𝑥 𝑗 to 𝑎𝑖 new local variables, (ii) use one new linking constraint to define a new global
variable 𝑧′

𝑖 𝑗
equal to the sum of the copies, and hence equal to 𝑎𝑖 𝑗𝑥 𝑗 , and (iii) replace each usage

of the summand 𝑎𝑖 𝑗𝑥 𝑗 in local constraints with just the variable 𝑧′
𝑖 𝑗

. This idea can be executed
as follows:

(i) For every 𝑡 = 1, . . . , 𝑛, introduce two new local variables 𝑝𝑖 𝑗,𝑡, 𝑝′𝑖 𝑗,𝑡 together with two new
local constraints:

− 𝑥 𝑗 + 𝑝′𝑖 𝑗,𝑡 = 0; and

𝑝𝑖 𝑗,𝑡 − 𝑝′𝑖 𝑗,𝑡 = 0 when 𝑡 ⩽ 𝑎𝑖 𝑗 and 𝑝𝑖 𝑗,𝑡 = 0 when 𝑡 > 𝑎𝑖 𝑗 .

(ii) Add a new global variable 𝑧′
𝑖 𝑗

together with a new linking constraint

−𝑧′𝑖 𝑗 +
𝑛∑︁
𝑡=1

𝑝𝑖 𝑗,𝑡 = 0.

(iii) Replace every usage of summand 𝑎𝑖 𝑗𝑥𝑖 𝑗 with variable 𝑧′
𝑖 𝑗

in every local constraint within 𝑃.

Entries 𝑎𝑖 𝑗 ∈ {−𝑛, . . . ,−2} can be removed similarly: we perform the above construction
for |𝑎𝑖 𝑗 |, and then replace each summand 𝑎𝑖 𝑗𝑥𝑖 𝑗 with −𝑧′

𝑖 𝑗
instead of 𝑧′

𝑖 𝑗
. Entries with large

absolute values in 𝐵 can be removed in exactly the same way.
It is straightforward to see that by applying all the modifications presented above, we

obtain a uniform 4-block program with O(𝑘2) global variables, O(𝑘2) linking constraints, O(𝑘2)
local variables in each group of local variables, and O(𝑘2) local constraints in each group of local
constraints. Moreover, all entries in the blocks 𝐴, 𝐵, 𝐶 belong to {−1, 0, 1}, while blocks 𝐷𝑖 got
modified only by adding some {−1, 0, 1} entries. Hence, we can just solve the modified program
using the assumed fixed-parameter algorithm for feasibility of uniform 4-block programs
parameterized by the dimensions of the block and the maximum absolute value of any entry
appearing in the constraint matrix. ■
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B. Hardness of two-stage stochastic integer programming with
large diagonal entries

We conclude our discussion of two-stage stochastic integer programming by a short argument
showing that it is indeed necessary to include Δ = max𝑖∈𝐼 ∥𝐷𝑖 ∥∞ among the parameters. This is
because when Δ is unbounded the problem becomes strongly NP-hard already for blocks of size
𝑘 = 16, as we prove below. This rules out even a running time of the form 𝑓 (𝑘) · (∥𝑃∥ + Δ)O(1) ,
and shows that the dependence on Δ needs to be superpolynomial.

We give a reduction from the 3-SAT problem. Let 𝑁 denote the number of variables and 𝑀
the number of clauses in the input formula. The reduction creates an instance of Two-Stage
Stochastic ILP Feasability with only one global variable 𝑥 ∈ Z⩾0, whose role is to encode a
satisfying 3-SAT assignment. Let 𝑝1, 𝑝2, . . . , 𝑝𝑁 be the first 𝑁 primes. In our encoding, 𝑝𝑖 | 𝑥 if
and only if the 𝑖-th SAT variable is set to false. The IP instance contains 𝑀 diagonal blocks, each
corresponding to a single clause.

We use a certain gadget to construct the blocks. The gadget consists of five ILP variables,
named 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ Z⩾0, and three constraints that involve those five variables as well as the
global variable 𝑥. Let 𝑝 be a fixed prime (not an ILP variable). The key properties of the gadget
are:

if 𝑝 | 𝑥, then every feasible assignment to the five local variables has 𝑏 = 0;
if 𝑝 ∤ 𝑥, then every feasible assignment to the five local variables has 𝑏 = 1; and
for every 𝑥 ∈ Z⩾0 there exists a feasible assignment to the five local variables.

We leave it to the reader to verify that the following gadget satisfies the desired properties.

−𝑥 + 𝑝 · 𝑎 + 𝑏 + 𝑐 = 0

(𝑝 − 2) · 𝑏 − 𝑐 − 𝑑 = 0 (equivalent to 𝑐 ⩽ (𝑝 − 2) · 𝑏)

𝑏 + 𝑒 = 1 (equivalent to 𝑏 ⩽ 1)

Each block consists of three such independent gadgets, instantiated for the three primes
corresponding to the three SAT variables involved in the corresponding clause. Moreover, each
block contains one additional constraint (and one additional local variable) ensuring that the
three 𝑏-variables (or their negations in case of negative literals) sum up to at least one (minus
the number of negative literals in the clause), which corresponds to the clause being satisfied.
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Summarizing, the resulting two-stage stochastic ILP instance is:

𝐷𝑖 =



𝑝𝑣𝑖,1 1 1
𝑝𝑣𝑖,1−2 −1 −1

1 1
𝑝𝑣𝑖,2 1 1

𝑝𝑣𝑖,2−2 −1 −1
1 1

𝑝𝑣𝑖,3 1 1
𝑝𝑣𝑖,3−2 −1 −1

1 1
𝑡𝑖,1 𝑡𝑖,2 𝑡𝑖,3 −1



,

𝐴𝑖 =



−1
0
0
−1
0
0
−1
0
0
0



, b𝑖 =



0
0
1
0
0
1
0
0
1

1 − ℓ𝑖



, for 𝑖 ∈ [𝑀],

where, for every for 𝑖 ∈ [𝑀] and 𝑗 ∈ {1, 2, 3}, 𝑣𝑖, 𝑗 denotes the index of the variable in the 𝑗-th
literal in the 𝑖-th clause, 𝑡𝑖, 𝑗 = 1 if this is a positive literal and 𝑡𝑖, 𝑗 = −1 otherwise, and ℓ𝑖 equals
the number of negative literals in the 𝑖-th clause, i.e., ℓ𝑖 = (3 − (𝑡𝑖,1 + 𝑡𝑖,2 + 𝑡𝑖,3))/2.

From the preceding discussion it follows that the obtained integer program is feasible
if and only if the input 3-SAT formula is satisfiable. Each 𝐴𝑖 is a 10 × 1 matrix, each 𝐷𝑖 is a
10 × 16 matrix, and we have max𝑖∈𝐼 ∥𝐷𝑖 ∥∞ ⩽ 𝑝𝑁 = O(𝑁 log𝑁) by the Prime Number Theorem.
We conclude that the two-stage stochastic integer programming feasibility problem is strongly
NP-hard already for 𝑘 = 16.
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