
1 / 25 2025 : 16

A Simple (1 − 𝜀)-Approximation
Semi-Streaming Algorithm for
Maximum (Weighted) Matching

Received Apr 23, 2024
Revised Nov 29, 2024
Accepted Feb 07, 2025
Published Aug 01, 2025

Key words and phrases
Graph streaming algorithms,
Semi-streaming algorithms,
Multiplicative weight update
method

Sepehr Assadia � � a School of Computer Science,
University of Waterloo.

ABSTRACT. We present a simple semi-streaming algorithm for (1 − 𝜀)-approximation of
bipartite matching in 𝑂(log(𝑛)/𝜀) passes. This matches the performance of state-of-the-art
“𝜀-efficient” algorithms—the ones with much better dependence on 𝜀 albeit with some mild
dependence on 𝑛—while being considerably simpler.

The algorithm relies on a direct application of the multiplicative weight update method
with a self-contained primal-dual analysis that can be of independent interest. To showcase this,
we use the same ideas, alongside standard tools from matching theory, to present an equally
simple semi-streaming algorithm for (1 − 𝜀)-approximation of weighted matchings in general
(not necessarily bipartite) graphs, again in 𝑂(log(𝑛)/𝜀) passes.

1. Introduction

We consider the maximum matching problem in the semi-streaming model of [27]: given any
𝑛-vertex graph 𝐺 = (𝑉, 𝐸) whose edges are presented in a stream, the goal is to make a minimal
number of passes over this stream and use a limited space of 𝑂(𝑛) := 𝑂(𝑛 · polylog (𝑛)) bits to
output a (1 − 𝜀)-approximate maximum matching of 𝐺 for some given 𝜀 > 0.

The maximum matching problem is arguably the most studied problem in the graph
streaming literature at this point (see, e.g. [12] for a quick summary). Most relevant to our work,
the first (1 − 𝜀)-approximation algorithm for maximum cardinality matching was designed
by [47] which requires (1/𝜀)𝑂(1/𝜀) passes. This algorithm has since been improved numerous
times [26, 3, 2, 25, 35, 1, 15, 53, 29, 10, 28, 9, 32] culminating in the state-of-the-art, consisting of
two incomparable families of algorithms:

Supported in part by a Sloan Research Fellowship, an NSERC Discovery Grant, and a Faculty of Math Research Chair grant
from University of Waterloo. This article was invited from Symposium on Simplicity in Algorithms, SOSA 2024 [6].

Cite as Sepehr Assadi. A Simple (1 − 𝜀)-Approximation Semi-Streaming Algorithm
for Maximum (Weighted) Matching. TheoretiCS, Volume 4 (2025), Article 16, 1-25.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.16

mailto:sepehr@assadi.info
https://orcid.org/0009-0006-8914-5995

2 / 25 S. Assadi

“Constant pass” algorithms. We have the algorithm of [10] (and its precursor [3]) with
𝑂(1/𝜀2) passes for bipartite graphs and that of [28] with poly(1/𝜀) passes for general
graphs. Similarly, for weighted graphs, we have the algorithm of [3] with 𝑂(log (1/𝜀)/𝜀2)
passes for bipartite graphs and [32] with poly(1/𝜀) passes for general graphs1.

“𝜀-efficient” algorithms.2 We have the algorithm of [1] (and its precursor [2]) for weighted
general graphs with 𝑂(log(𝑛)/𝜀) passes, and a simpler and space-optimal algorithm of [9]
with 𝑂(log 𝑛 · log (1/𝜀)/𝜀) passes that is specific to bipartite cardinality matching.

See Table 1 for a detailed summary. Nevertheless, despite significant progress in bringing
down the pass-complexity of more general cases, for the most basic version of the problem,
namely, maximum (cardinality) bipartite matching (MBM), the best bounds have been stuck at
𝑂(1/𝜀2) and 𝑂(log(𝑛)/𝜀) passes for over a decade now (since [3] and [2], respectively). On the
other hand, even the recent advances on multi-pass graph streaming lower bounds in [11, 20, 7,
12, 40] only rule out 𝑜(log (1/𝜀))-pass algorithms for MBM [12] (under a certain combinatorial
hypothesis), leaving an exponential gap open for progress on both ends.

In our opinion, one contributing factor to the lack of algorithmic progress is the fact that
the 𝑂(log(𝑛)/𝜀)-pass algorithms of [2, 1] are quite complicated (even for MBM). While some
simplifications have been made in [9], even this new algorithm is far from being simple. This is
in contrast with constant-pass algorithms that, at least for MBM, admit quite simple algorithms
in [10] (even already from [3]). The goal of this paper is to remedy this state of affairs.

Our Contributions

We present a novel way of approximating matchings that is easily implementable via semi-
streaming algorithms (among others). The high level idea—with some ambiguity left on
purpose—is:

1. Sample 𝑂(𝑛/𝜀) edges uniformly and compute a maximum matching 𝑀 of the sample.
2. If 𝑀 is large enough, return 𝑀 ; otherwise, (a) find edges that “could have potentially

led to a larger matching”, (b) increase their “importance”, and repeat the sampling.

This general idea of “sample-and-solve” is a staple in the graph streaming literature dating
back, at the very least, to the filtering [44] and sample-and-prune [43] techniques (both used
for implementing greedy algorithms). It relies on a fundamental power of semi-streaming
algorithms: once we sparsify the input to fit into the memory, we can process it however we

1 It is worth mentioning that the dependence on 𝜀 in [28, 32] is quite high – it appears to be 𝑂((1/𝜀)19) passes in [28]
(see Lemma 5.6 of arXiv version 5) and can only be higher in [32].

2 We use this term to refer to algorithms that have much better dependence on parameter 𝜀 compared to the above line
of work at the cost of having some mild dependence on 𝑛, which is almost always an 𝑂(log 𝑛) factor.

3 / 25 A Semi-Streaming Algorithm for Maximum Matching

Citation Space Passes Bip./Gen. Size/Weight Det./Rand.

“constant-pass” algorithms

[47] 𝑂𝜀(𝑛) (1/𝜀)𝑂(1/𝜀) Gen. Size Rand.
[26] 𝑂(𝑛 log 𝑛) 𝑂(1/𝜀8) Bip. Size Det.
[3] 𝑂(𝑛 · poly(1/𝜀)) 𝑂((1/𝜀2) · log (1/𝜀)) Bip. Weight Det.

[25] 𝑂(𝑛 log 𝑛) 𝑂(1/𝜀5) Bip. Size Det.

[35] 𝑂(𝑛 log 𝑛) 𝑂(1/𝜀2) Bip.
(vertex arrival) Size Det.

[53] 𝑂𝜀(𝑛) (1/𝜀)𝑂(1/𝜀) Gen. Size Det.
[29] 𝑂𝜀(𝑛) (1/𝜀)𝑂(1/𝜀2) Gen. Weight Det.
[10] 𝑂(𝑛 log 𝑛) 𝑂(1/𝜀2) Bip. Size Det.
[28] 𝑂(𝑛 · poly(1/𝜀)) 𝑂((1/𝜀)19) Gen. Size Det.
[32] 𝑂(𝑛 · poly(1/𝜀)) (1/𝜀)𝑂(1) Gen. Weight Det.

“𝜀-efficient” algorithms

[3] 𝑂(𝑛 · poly(1/𝜀)) 𝑂(log 𝑛 · poly(1/𝜀)) Gen. Weight Det.

[2] 𝑂(𝑛 · poly(1/𝜀)) 𝑂(log(𝑛)/𝜀) Gen. Size
(value not edges) Rand.

[1] 𝑂(𝑛 · poly(1/𝜀)) 𝑂(log(𝑛)/𝜀) Gen. Weight Rand.
[9] 𝑂(𝑛 log 𝑛) 𝑂(log(𝑛)/𝜀 · log (1/𝜀)) Bip. Size Det.

beyond semi-streaming algorithms

[1] 𝑂(𝑛1+1/𝑝 · poly(1/𝜀)) 𝑂(𝑝/𝜀) Gen. Weight Rand.
[15] 𝑂(𝑛1.5 log(𝑛)/𝜀) 𝑂(1/𝜀) Bip. Size Rand.
[8] 𝑜𝜀(𝑛2) 1 Gen. Size Rand.

multi-pass lower bounds

[20] 𝑛1+Ω(1) Ω(log (1/𝜀)/log log 𝑛) Bip. Size Rand.
[7] 𝑛1+Ω(1) > 2 Bip. Size Rand.

[12] 𝑛1+Ω(1) Ω(log (1/𝜀)) Bip. Size Rand.

Table 1. Summary of the prior work on (1 − 𝜀)-approximate streaming matchings: Bip./Gen. refers to
bipartite versus general graphs, Size/Weight refers to cardinality versus weighted matchings, and
Det./Rand. refers to deterministic versus randomized algorithms. The space is stated in number of bits
and thus 𝑂(𝑛 log 𝑛) is space-optimal.
Due to the elegant “weighted-to-unweighted” reduction of [17], for bipartite graphs, all results for
unweighted matchings can be generalized to weighted matchings by increasing the space with a factor
of (1/𝜀)𝑂(1/𝜀), while keeping the number of passes exactly the same (not only asymptotically).
All lower bounds stated in the table hold under a combinatorial assumption regarding existence of
moderately dense Ruzsa-Szemeredi graphs (see [7, 12] for more details; see also [40] for a two-pass
unconditional lower bound.).
See also [30, 35, 36] for much better approximation lower bounds for single-pass semi-streaming
algorithms, which currently rule out 1/(1 + ln 2) ≈ 0.59 approximation in [36]. Finally, see also [18, 41, 42]
for multi-pass lower bounds that hold for different restricted families of algorithms.

want. Specifically in this context, once the algorithm only has 𝑂(𝑛/𝜀) edges to work with in the
sample, it can find its maximum matching or perform any “heavy” computation easily.

4 / 25 S. Assadi

The approach proposed above, based on adjusting importance of edges, is clearly remi-
niscent of the Multiplicative Weight Update (MWU) method (see [5]) and its application in the
Plotkin-Shmoys-Tardos framework for approximating packing/covering LPs [51]. There is just
one issue here: we would like this algorithm to converge in ≈ 1/𝜀 passes, while these MWU-
based approaches only guarantee ≈ 1/𝜀2 iterations for convergence to a (1 − 𝜀)-approximate
solution (see, e.g., [38]). Addressing this issue is the key difference in our work compared to
prior work.

Prior approaches. The algorithms in [2, 1] also start with the same overall approach and
address the above-mentioned issue through several steps: (𝑖) using a non-standard LP relaxation
of the problem, (𝑖𝑖) relying on the dual variables of this LP to guide step (a) of the approach, (𝑖𝑖𝑖)
adding a penalty-term to the LP to maintain an 𝑂(log(𝑛)/𝜀2)-iterations convergence guarantee
as in the Plotkin-Shmoys-Tardos framework (to reduce the width of the resulting problem;
see [51, 5]), (𝑖𝑣) “folding” 𝑂(1/𝜀) iterations of this framework in 𝑂(1) passes, and (𝑣) using a
notion of a “deferred (cut) sparsification” (instead of sampling) that allows for implementing
this last step. We refer the reader to [1, Section 1 and 2 of arXiv version 3] for more details on this
algorithm; here, we only note that the end result is a highly sophisticated algorithm that barely
resembles the above strategy but can now run in 𝑂(log(𝑛)/𝜀) passes.

The recent algorithm of [9] deviates from the above approach. Instead, it relies on more
sophisticated optimizations tools in [52, 34, 21] based on the classical work in [49, 50] that give
≈ 1/𝜀-iteration solvers directly. This approach, to a certain degree, does not take advantage
of the aforementioned power of semi-streaming algorithms—meaning arbitrary computation
power on sparse-enough inputs—and is highly tailored to bipartite cardinality matching3.

Our approach. Unlike prior work, we are going to revert to the original approaches of [44,
43] and implement the above algorithmic approach quite literally, without relying on Plotkin-
Shmoys-Tardos or similar generic frameworks.

Concretely, our algorithm for MBM is this: in step (𝑎), find a minimum (bipartite) vertex
cover of the sampled graph (relying on Konig’s theorem; see Fact 2.1); we then consider any edge
of the original graph not covered by this vertex cover as an edge that “could have potentially
led to a larger matching”. For step (b), we double the importance of these edges (making them
twice as likely to be sampled next)4. A simple analysis, relying on the duality of matchings and
vertex covers, bounds the number of iterations by 𝑂(log(𝑛)/𝜀), leading to the following result.

3 The work of [9] also have an algorithm for weighted bipartite matching but the pass-complexity depends linearly on
the maximum weight of an edge (which can be polynomial in 𝑛) and hence is typically not efficient.

4 As a side note, this is a much more aggressive update rule compared to a typical MWU application, say in Plotkin-
Shmoys-Tardos framework, which would have updated the weights by only a (1 + 𝜀) factor; see also Section 5.5.

5 / 25 A Semi-Streaming Algorithm for Maximum Matching

RESULT 1.1. There is a semi-streaming algorithm that given any 𝑛-vertex bipartite graph 𝐺

and a parameter 𝜀 ∈ (0, 1), uses 𝑂(𝑛 log(𝑛)/𝜀) bits of space and 𝑂(log(𝑛)/𝜀) passes and with
exponentially high probability5 outputs a (1 − 𝜀)-approximate maximum matching of 𝐺.

We believe Result 1.1 is our main contribution as it already contains our key new ideas.
Still, this result can be significantly generalized to cover maximum weight matchings in general
graphs, with minimal additional effort and by relying on standard tools from matching theory.

RESULT 1.2. There is a semi-streaming algorithm that given any 𝑛-vertex general graph𝐺 with
integer edge weights 𝑤 : 𝐸 → N and a parameter 𝜀 ∈ (0, 1), uses 𝑂(𝑛 log2(𝑛)/𝜀) bits of space
and 𝑂(log(𝑛)/𝜀) passes and with exponentially high probability outputs a (1 − 𝜀)-approximate
maximum weight matching of 𝐺.

Result 1.2 is now providing a considerably simpler algorithm compared to the main
results of [1] (also with a better space-dependence by poly(log 𝑛, 1/𝜀) factors). We hope this can
pave the way for both future theoretical improvements and more practical algorithms for this
fundamental problem6.

Finally, we note that in the interest of keeping the main ideas in this paper as transparent
as possible, we have opted to focus only on the most important aspects of our algorithms in
our main arguments. Then, in Section 5, we point out several standard and not-so-standard
extensions of our algorithms such as improved runtime, 𝑂(1/𝜀)-pass algorithms in 𝑛1+Ω(1) space,
derandomization, and others.

2. Preliminaries

Notation. For any graph 𝐺 = (𝑉, 𝐸), we use 𝑛 to denote the number of vertices and 𝑚 as the
number of edges. We further use 𝜇(𝐺) to denote the maximum matching size in 𝐺 and 𝜇(𝐺, 𝑤)
to denote the maximum matching weight in 𝐺 under edge weights 𝑤 : 𝐸 → N.

In the following, we review some basic facts from matching theory in bipartite and general
(weighted) graphs, separately. We note that our Result 1.1 and the arguments in Section 3 only
rely on the basics for bipartite graphs, and thus a reader solely interested in that part of the
paper, can safely skip Section 2.2 below.

2.1 Basics of Matching Theory in Bipartite Graphs

Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph. Recall the following definitions:

5 Here, and throughout, ‘with exponentially high probability’ means with probability at least 1 − exp(−Θ(𝑛)).

6 It is worth mentioning that the generic approaches of [44, 43] that are most similar to our algorithms have indeed led
to highly practical algorithms; see the empirical evaluations in the aforementioned papers.

6 / 25 S. Assadi

A matching 𝑀 is a set of vertex-disjoint edges in 𝐸 and a fractional matching 𝑥 ∈ [0, 1]𝐸 is
an assignment to the edges so that for every vertex 𝑣 ∈ 𝐿 ∪ 𝑅, we have

∑
𝑒∋𝑣 𝑥𝑒 ⩽ 1. We

denote the size of a fractional matching 𝑥 by |𝑥 | :=
∑

𝑒∈𝐸 𝑥𝑒.
Similarly, a vertex cover𝑈 is a set of vertices incident on every edge and a fractional vertex
cover 𝑦 ∈ [0, 1]𝑉 is an assignment to the vertices so that for every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸,
𝑦𝑢 + 𝑦𝑣 ⩾ 1. We denote the size of a fractional vertex cover 𝑦 by | 𝑦 | :=

∑
𝑣∈𝐿∪𝑅 𝑦𝑣.

(We only use fractional matchings and vertex covers in the analysis).
Konig’s theorem [39] establishes duality of maximum (fractional) matchings and minimum

(fractional) vertex covers in bipartite graphs.

FACT 2 .1 (Konig’s theorem). In bipartite graphs, the sizes of maximum matchings, fractional
matchings, minimum vertex covers, and fractional vertex covers are all the same.

See the excellent book of Lovász and Plummer [45] on matching theory for more details.

2.2 Basics of Matching Theory in General (Weighted) Graphs

Let 𝐺 = (𝑉, 𝐸) be a (general) graph with integer edge weights 𝑤 : 𝐸 → N. The duality between
matchings and vertex covers no longer holds in general graphs, nor the equivalence of fractional
matchings and integral ones (the way defined previously). Thus, one needs a more general
definition. In the following, we use 𝑜𝑑𝑑 (𝑉) to denote the collection of all sets of vertices in 𝑉

with odd cardinality. For a set 𝑆 ⊆ 𝑉 , we use 𝐸[𝑆] to denote the edges with both endpoints in 𝑆.

As before, a matching 𝑀 is a set of vertex-disjoint edges in 𝐸 and 𝑤(𝑀) is its weight. We
define a (general) fractional matching 𝑥 ∈ [0, 1]𝐸 as an assignment to the edges satisfying:

for all 𝑣 ∈ 𝑉 :
∑︁
𝑒∋𝑣

𝑥𝑒 ⩽ 1 and for all 𝑆 ∈ 𝑜𝑑𝑑 (𝑉):
∑︁

𝑒∈𝐸[𝑆]
𝑥𝑒 ⩽

|𝑆 | − 1
2

.

We define the weight of a fractional matching as
∑

𝑒∈𝐸 𝑤(𝑒) · 𝑥𝑒.
The dual to maximum fractional matchings is the following “odd-set cover” problem. We
define a fractional odd-set cover as a pair of assignments 𝑦 ∈ R𝑉 and 𝑧 ∈ R𝑜𝑑𝑑 (𝑉) to vertices
and odd-sets in 𝐺 satisfying the following:

for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸: 𝑦𝑢 + 𝑦𝑣 +
∑︁

𝑆∈𝑜𝑑𝑑 (𝑉)
𝑒∈𝐸[𝑆]

𝑧𝑆 ⩾ 𝑤(𝑒). (1)

The value of a fractional odd-set cover is then

| (𝑦, 𝑧) | :=
∑︁
𝑣∈𝑉

𝑦𝑣 +
∑︁

𝑆∈𝑜𝑑𝑑 (𝑉)

|𝑆 | − 1
2

· 𝑧𝑆 .

7 / 25 A Semi-Streaming Algorithm for Maximum Matching

We have the following result—similar in spirit to Fact 2.1 for bipartite graphs—on the
duality of maximum fractional matchings and odd-set covers.

FACT 2 .2 (Edmond’s matching polytope theorem [24]). In any graph, the weights of maximum
weight matchings and fractional matchings, and the sizes of minimum odd-set covers are the
same.

Finally, we shall also use the following result on the structure of optimal fractional odd-set
covers, which is crucial for the probabilistic analysis of our algorithm. Recall that a family of
sets F is laminar iff for all 𝐴, 𝐵 ∈ F , either 𝐴 ∩ 𝐵 = ∅ or 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴.

FACT 2 .3 (Cunningham-Marsh theorem [22]). In any graph 𝐺 with integer edge-weights, there
is an optimal fractional odd-set cover 𝑦 ∈ R𝑉 and 𝑧 ∈ R𝑜𝑑𝑑 (𝑉) such that (𝑖) both 𝑦 and 𝑧 only take
integer values, and (𝑖𝑖) 𝑧𝑆 > 0 only for a family of sets in 𝑜𝑑𝑑 (𝑉) that form a laminar family.

Again, see [45] for more details and proofs of these facts.

3. MaximumCardinality Bipartite Matching

We prove Result 1.1 in this section. We start with presenting our new algorithm in a generic
and model-independent way, and the show how it can be implemented in the semi-streaming
model.

ALGOR ITHM 3.1. A sample-and-solve approximation algorithm for maximum bipartite match-
ing.

Input: A bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) and parameter 𝜀 ∈ (0, 1);
Output: A (1 − 𝜀)-approximate maximum matching in 𝐺.

1. Start with importance7 𝑞(1)𝑒 = 1 for every edge 𝑒 ∈ 𝐸 and define 𝑄(1) :=
∑

𝑒∈𝐸 𝑞
(1)
𝑒 .

2. For 𝑟 = 1 to 𝑅 :=
4
𝜀
· log𝑚 iterations:

a. Sample each edge 𝑒 ∈ 𝐸 independently at random with probability:

𝑝
(𝑟)
𝑒 :=

2𝑛
𝜀

· 𝑞
(𝑟)
𝑒

𝑄(𝑟) . (2)

b. Compute a maximum matching 𝑀 (𝑟) and a minimum vertex cover 𝑈 (𝑟) of the sample.
c. For any edge 𝑒 ∈ 𝐸 not covered by 𝑈 (𝑟) , update:

𝑞
(𝑟+1)
𝑒 = 𝑞

(𝑟)
𝑒 · 2. (3)

Then, let 𝑄(𝑟+1) =
∑

𝑒∈𝐸 𝑞
(𝑟+1)
𝑒 .

7 While it is more common to refer to this concept as ‘weight’ in the context of MWU, given that we will eventually work
with weighted matchings, we use the term ‘importance’ to avoid ambiguity.

8 / 25 S. Assadi

3. Return the largest of matchings 𝑀 (𝑟) for 𝑟 ∈ [𝑅].

THEOREM 3.2. For any bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) and parameter 𝜀 ∈ (0, 1), Algorithm 3.1
outputs a matching of size at least (1 − 𝜀) · 𝜇(𝐺) in 𝐺 with exponentially high probability.

The proof follows the recipe of the MWU analysis (e.g., in [5]), using 𝑄(𝑟) as a potential
function. The first lemma upper bounds 𝑄(𝑅+1) at the end of the algorithm.

LEMMA 3.3. With exponentially high probability, 𝑄(𝑅+1) ⩽ (1 + 𝜀/2)𝑅 · 𝑚.

PROOF . Fix any iteration 𝑟 ∈ [𝑅]. Let 𝐹 (𝑟) ⊆ 𝐸 denote the set of edges not covered by 𝑈 (𝑟) . We
claim that with exponentially high probability, we have,∑︁

𝑒∈𝐹 (𝑟)

𝑞
(𝑟)
𝑒 ⩽

𝜀

2
· 𝑄(𝑟) . (4)

In words, Eq (4) states that the importance of edges not covered by 𝑈 (𝑟) in the graph, relative to
the importances of iteration 𝑟, is “small” (despite the fact that𝑈 (𝑟) was computed on a sample
and not the entire input). Before proving this claim, let us see how it concludes the proof.

By a union bound over 𝑂(log (𝑛)/𝜀) iterations of the algorithm, we have that for every
𝑟 ∈ [𝑅],

𝑄(𝑟+1) =
∑︁
𝑒∈𝐹 (𝑟)

𝑞
(𝑟+1)
𝑒 +

∑︁
𝑒∈𝐸\𝐹 (𝑟)

𝑞
(𝑟+1)
𝑒 (by partitioning the edges in and out of 𝐹 (𝑟))

=
∑︁
𝑒∈𝐹 (𝑟)

2 · 𝑞(𝑟)𝑒 +
∑︁

𝑒∈𝐸\𝐹 (𝑟)

𝑞
(𝑟)
𝑒 (by the update rule of the algorithm)

=

(∑︁
𝑒∈𝐹 (𝑟)

𝑞
(𝑟)
𝑒

)
+ 𝑄(𝑟) (by the definition of 𝑄(𝑟))

⩽ (1 + 𝜀

2
) · 𝑄(𝑟) ,

where the inequality is by Eq (4). The lemma then follows from this and since 𝑄(1) = 𝑚.
Proof of Eq (4). Let𝑈 ⊆ 𝑉 be any subset of vertices in the graph and 𝐹 (𝑈) be the set of edges not
covered by 𝑈 . Suppose ∑︁

𝑒∈𝐹 (𝑈)
𝑞
(𝑟)
𝑒 >

𝜀

2
· 𝑄(𝑟) .

We show that in this case, with an exponentially high probability, 𝑈 cannot be a vertex cover of
the sampled edges either. Indeed, we have,

Pr(𝑈 is a vertex cover of sampled edges) = Pr(no edge from 𝐹 (𝑈) is sampled)
=

∏
𝑒∈𝐹 (𝑈)

(1 − 𝑝
(𝑟)
𝑒)

(by the independence and the sampling probability of edges)

9 / 25 A Semi-Streaming Algorithm for Maximum Matching

⩽ exp(−
∑︁

𝑒∈𝐹 (𝑈)
𝑝
(𝑟)
𝑒)

(as (1 − 𝑥) ⩽ 𝑒−𝑥 for all 𝑥 ∈ [0, 1])

= exp(−2𝑛
𝜀

·
∑︁

𝑒∈𝐹 (𝑈)

𝑞
(𝑟)
𝑒

𝑄(𝑟))

(by the choice of 𝑝(𝑟)𝑒 in Eq (2))

⩽ exp(−𝑛)

by our assumption about 𝑈 and importance of edges in 𝐹 (𝑈) earlier.
A union bound over the 2𝑛 choices of𝑈 ensures that with exponentially high probability,

any choice of 𝑈 (𝑟) that is returned as a vertex cover of sampled edges should satisfy Eq (4). ■

On the other hand, we are going to show that if none of the matchings 𝑀 (𝑟) is sufficiently
large, then the importance of at least one edge should have dramatically increased to the point
that it will contradict the bounds in Lemma 3.3. The proof of this lemma is based on a simple
primal-dual analysis using Konig’s theorem in Fact 2.1.

LEMMA 3.4. Suppose in every iteration 𝑟 ∈ [𝑅], we have |𝑀 (𝑟) | < (1 − 𝜀) · 𝜇(𝐺). Then, there
exists at least one edge 𝑒 ∈ 𝐸 such that 𝑞(𝑅+1)

𝑒 ⩾ 2𝜀·𝑅.

PROOF . By Konig’s theorem (Fact 2.1) and the assumption in the lemma statement, we also
have that |𝑈 (𝑟) | < (1 − 𝜀) · 𝜇(𝐺) for every 𝑟 ∈ [𝑅]. Let 𝑀∗ be a maximum matching of 𝐺. We
thus have that in each iteration 𝑟 ∈ [𝑅], at least 𝜀 · 𝜇(𝐺) edges of 𝑀∗ are not covered. By an
averaging argument, this implies that there exists at least one edge 𝑒 in 𝑀∗ that is not covered
in at least 𝜀 · 𝑅 iterations. Hence, by the update rule of the algorithm, the importance of this
edge increases to at least 2𝜀·𝑅, concluding the proof. ■

We are now ready to conclude the proof of Theorem 3.2.

PROOF OF THEOREM 3.2 . Assume the event of Lemma 3.3 happens, thus

𝑄(𝑅+1) ⩽ (1 + 𝜀/2)𝑅 · 𝑚 < 23𝜀𝑅/4+log𝑚. (as (1 + 𝑥) < 23𝑥/2 for 𝑥 > 0)

Suppose towards a contradiction that none of the matchings 𝑀 (𝑟) for 𝑟 ∈ [𝑅] computed by the
algorithm are of size at least (1 − 𝜀) · 𝜇(𝐺). Then, by Lemma 3.4, there is an edge 𝑒 ∈ 𝐸 such that

𝑞
(𝑅+1)
𝑒 ⩾ 2𝜀𝑅.

Putting these two equations together, as 𝑞(𝑅+1)
𝑒 ⩽ 𝑄(𝑅+1) (by positivity of importances), we obtain

𝜀𝑅 < 3𝜀𝑅/4 + log𝑚,

which only holds for 𝑅 < 4 log𝑚/𝜀, contradicting the choice of 𝑅 in the algorithm. Thus, at least
one of the matchings returned by the algorithm is of size (1− 𝜀) · 𝜇(𝐺), concluding the proof. ■

10 / 25 S. Assadi

Semi-Streaming Implementation

We now present a semi-streaming implementation of Algorithm 3.1 in the following lemma.

LEMMA 3.5. Algorithm 3.1 can be implemented in the semi-streaming model with 𝑂(𝑛 log(𝑛)/𝜀)
bits of memory and 𝑂(log(𝑛)/𝜀) passes.

PROOF . We implement each iteration of the algorithm in 𝑂(1) streaming passes. The main
part of the implementation is to maintain the importance of the edges implicitly. We do this as
follows:

For every vertex 𝑣 ∈ 𝑉 and iteration 𝑟 ∈ [𝑅], we maintain a bit 𝑏(𝑣, 𝑟) denoting if 𝑣 belongs
to the vertex cover 𝑈 (𝑟) of iteration 𝑟 (this needs 𝑅 = 𝑂(log(𝑛)/𝜀) bits per vertex in total);
Whenever an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 arrives in the stream in the 𝑟-th pass, we can compute
the number of times 𝑒 has remained uncovered by 𝑈 (𝑟′) for 𝑟′ < 𝑟, denoted by 𝑐(𝑒, 𝑟). This
is done by checking 𝑏(𝑢, 𝑟′) and 𝑏(𝑣, 𝑟′) stored so far; in particular,

𝑐(𝑒, 𝑟) = |{𝑟′ < 𝑟 | 𝑏(𝑢, 𝑟′) = 𝑏(𝑣, 𝑟′) = 0}|.

The importance 𝑞
(𝑟)
𝑒 of the edge 𝑒 in this pass 𝑟 is then 2𝑐(𝑒,𝑟) .

Given we can calculate the importance of each edge upon its arrival, we can first make a
single pass and compute the normalization factor 𝑄(𝑟) =

∑
𝑒∈𝐸 𝑞

(𝑟)
𝑒 . Then, we make another

pass and for each arriving edge 𝑒 ∈ 𝐸, we compute 𝑞
(𝑟)
𝑒 as above and sample the edges

with the probability prescribed by Eq (2).

The rest of the algorithm can be implemented directly. In particular, the total number
of edges sampled in each iteration is 𝑂(𝑛/𝜀) with exponentially high probability by Chernoff
bound. Thus, in the semi-streaming algorithm, we can store these edges and then compute 𝑀 (𝑟)

and 𝑈 (𝑟) at the end of the pass. This concludes the proof of the lemma. ■

Result 1.1 now follows immediately from Theorem 3.2 and Lemma 3.5.

4. MaximumWeight General Matching

We now switch to proving Result 1.2 which is a vast generalization of Result 1.1. Interestingly
however, despite its generality, the proof is more or less a direct “pattern matching” of the
previous ideas to general weighted graphs using the existing rich theory of matchings reviewed
in Section 2.2. As before, we start by presenting a model-independent algorithm first followed
by its semi-streaming implementation. Also, for simplicity of exposition, we are going to present
our algorithm with space- and pass-complexity depending on the parameter𝑊 :=

∑
𝑒∈𝐸 𝑤(𝑒),

and then show how to fix this using standard ideas and conclude the proof of Result 1.2. Our
algorithm is as follows.

11 / 25 A Semi-Streaming Algorithm for Maximum Matching

ALGOR ITHM 4.1. A sample-and-solve approximation algorithm for weighted general match-
ing.

Input: A (general) graph 𝐺 = (𝑉, 𝐸) with weights 𝑤 : 𝐸 → N and parameter 𝜀 ∈ (0, 1);
Output: A (1 − 𝜀)-approximate maximum weight matching in 𝐺.

1. Start with importance 𝑞
(1)
𝑒 = 1 for every edge 𝑒 ∈ 𝐸 and define 𝑄(1) :=

∑
𝑒∈𝐸 𝑤(𝑒) · 𝑞(1)𝑒 .

2. Let 𝑊 :=
∑

𝑒∈𝐸 𝑤(𝑒). For 𝑟 = 1 to 𝑅 :=
4
𝜀
· log𝑊 iterations:

a. Sample each edge 𝑒 ∈ 𝐸 independently at random with probability:

𝑝
(𝑟)
𝑒 :=

8𝑛 · ln (𝑛𝑊)
𝜀

· 𝑞
(𝑟)
𝑒 · 𝑤(𝑒)
𝑄(𝑟) . (5)

b. Compute a maximum weight matching 𝑀 (𝑟) and a minimum odd-set cover solution
(𝑦(𝑟) , 𝑧(𝑟)) of the sample (using the original weights 𝑤(·) on sampled edges).

c. For any edge 𝑒 ∈ 𝐸 not covered by (𝑦(𝑟) , 𝑧(𝑟))8, update:

𝑞
(𝑟+1)
𝑒 = 𝑞

(𝑟)
𝑒 · 2. (6)

Then, let 𝑄(𝑟+1) =
∑

𝑒∈𝐸 𝑤(𝑒) · 𝑞(𝑟+1)
𝑒 .

3. Return the maximum weight matching among 𝑀 (𝑟) ’s for 𝑟 ∈ [𝑅].

THEOREM 4.2. For any graph 𝐺 = (𝑉, 𝐸) with weights 𝑤 : 𝐸 → N and parameter 𝜀 ∈ (0, 1),
Algorithm 4.1 outputs a matching of weight at least (1 − 𝜀) · 𝜇(𝐺, 𝑤) with exponentially high
probability.

We follow the same exact strategy as before. The first step is to bound the total sum of
importances across the iterations. The following lemma is an analogue of Lemma 3.3. The key
difference is a new union bound argument at the very end for all potential odd-set covers which
needs to be more careful compared to the trivial 2𝑛-bound for vertex covers.

LEMMA 4.3. With an exponentially high probability, 𝑄(𝑅+1) ⩽ (1 + 𝜀/2)𝑅 ·𝑊 .

PROOF . Fix any iteration 𝑟 ∈ [𝑅]. Let 𝐹 (𝑟) ⊆ 𝐸 denote the set of edges not covered by (𝑦(𝑟) , 𝑧(𝑟))
as defined in Line (c) of Algorithm 4.1. We claim that with exponentially high probability, we
have, ∑︁

𝑒∈𝐹 (𝑟)

𝑞
(𝑟)
𝑒 · 𝑤(𝑒) ⩽ 𝜀

2
· 𝑄(𝑟) . (7)

In words, Eq (7) states that the total “importance × weight” of the edges not covered by the
odd-set cover solution on the entire graph, relative to the importances of iteration 𝑟, is “small”.
Before proving this claim, let us see how it concludes the proof.

8 By this, we mean (𝑦, 𝑧) does not satisfy Eq (1) for the given edge 𝑒 ∈ 𝐸.

12 / 25 S. Assadi

By a union bound over all iterations of the algorithm, we have that for every 𝑟 ∈ [𝑅],

𝑄(𝑟+1) =
∑︁
𝑒∈𝐹 (𝑟)

𝑞
(𝑟+1)
𝑒 · 𝑤(𝑒) +

∑︁
𝑒∈𝐸\𝐹 (𝑟)

𝑞
(𝑟+1)
𝑒 · 𝑤(𝑒) (by partitioning the edges in and out of 𝐹 (𝑟))

=
∑︁
𝑒∈𝐹 (𝑟)

2 · 𝑞(𝑟)𝑒 · 𝑤(𝑒) +
∑︁

𝑒∈𝐸\𝐹 (𝑟)

𝑞
(𝑟)
𝑒 · 𝑤(𝑒) (by the update rule of the algorithm)

=

(∑︁
𝑒∈𝐹 (𝑟)

𝑞
(𝑟)
𝑒 · 𝑤(𝑒)

)
+ 𝑄(𝑟) (by the definition of 𝑄(𝑟))

⩽ (1 + 𝜀

2
) · 𝑄(𝑟) ,

where the inequality is by Eq (7). The lemma then follows from this and the choice of 𝑞(1)𝑒 = 1
for all edge 𝑒 ∈ 𝐸 which implies 𝑄(1) =

∑
𝑒∈𝐸 1 · 𝑤(𝑒) =𝑊 .

Proof of Eq (7). Let 𝑦 ∈ R𝑉 and 𝑧 ∈ R𝑜𝑑𝑑 (𝑉) be any “potential” odd-set cover of 𝐺. We define
𝐹 (𝑦, 𝑧) ⊆ 𝐸 as the set of edges not covered by this potential odd-cut cover. Suppose∑︁

𝑒∈𝐹 (𝑦,𝑧)
𝑞
(𝑟)
𝑒 · 𝑤(𝑒) > 𝜀

2
· 𝑄(𝑟);

we show that in this case, with an exponentially high probability, (𝑦, 𝑧) cannot be a feasible
odd-set cover of the sampled edges either. Indeed, we have,

Pr((𝑦, 𝑧) is feasible on sampled edges) = Pr(no edge from 𝐹 (𝑦, 𝑧) is sampled)
=

∏
𝑒∈𝐹 (𝑦,𝑧)

(1 − 𝑝
(𝑟)
𝑒)

(by the independence and the sampling probability of edges)

⩽ exp(−
∑︁

𝑒∈𝐹 (𝑦,𝑧)
𝑝
(𝑟)
𝑒)

(as (1 − 𝑥) ⩽ 𝑒−𝑥 for all 𝑥 ∈ [0, 1])

= exp(−8𝑛 · ln (𝑛𝑊)
𝜀

·
∑︁

𝑒∈𝐹 (𝑦,𝑧)

𝑞(𝑟) · 𝑤(𝑒)
𝑄(𝑟))

(by the choice of 𝑝(𝑟)𝑒 in Eq (5))

⩽ exp(−4𝑛 · ln (𝑛𝑊)),

by our assumption about (𝑦, 𝑧) and importance of edges in 𝐹 (𝑦, 𝑧) earlier.
The last step of the proof is to union bound over all potential odd-set covers (𝑦, 𝑧) using

the calculated probabilities above. This step needs to be more careful compared to Lemma 3.3
because (𝑦, 𝑧) can be fractional and even for integral values, 𝑧 can have an exponential sup-
port, leading to a doubly exponential number of choices for it; this is too much for the above
probabilities to handle. Both of these are handled using the Cunningham-Marsh theorem
(Fact 2.3):

13 / 25 A Semi-Streaming Algorithm for Maximum Matching

Firstly, we can assume without loss of generality that (𝑦, 𝑧) only take integer values in [0 : 𝑊]
in the optimal solutions computed in Line (b) of Algorithm 4.1. This, for instance, implies that
the total number of choices for 𝑦 that we need to consider is (𝑊 + 1)𝑛.
Secondly, and more importantly, we can use the laminarity of F (𝑧) := {𝑆 ∈ 𝑜𝑑𝑑 (𝑉) | 𝑧𝑆 > 0} in
the optimal solution. A standard observation about laminar families (over 𝑛 elements/vertices)
is that they can have size at most 2𝑛 − 19. We can use this to provide a (crude) upper bound
the number of choices for 𝑧:

Define 𝑇 (𝑛) as the number of laminar families on [𝑛] 10. We claim 𝑇 (𝑛) ⩽ (4𝑛) · 𝑇 (𝑛 − 1).
We can pick a laminar family on 𝑛 − 1 elements in 𝑇 (𝑛 − 1) ways, and then decide to put
the last element in (a) one of its (at most) (2𝑛 − 3) sets and “propagate” it to each of its
supersets also, (b) in a singleton set and decide whether or not to propagate it, or (c) not
place it anywhere. This leads to < 4𝑛 options times 𝑇 (𝑛 − 1), establishing the claim.
Given that 𝑇 (1) = 2 (singleton or empty-set), we get 𝑇 (𝑛) ⩽ (4𝑛)𝑛. To pick 𝑧, we can first
pick F (𝑧) using at most (4𝑛)𝑛 ways, and then assign values from [𝑊] to each of its at
most (2𝑛 − 1) sets. Hence, there are at most 𝑊2𝑛−1 · (4𝑛)𝑛 choices for 𝑧.

All in all, we obtain that the total number of possible optimal solutions (𝑦, 𝑧) that we need to
take a union bound over can be (very) crudely upper bounded by the following (assuming 𝑛 > 4
without loss of generality):

(𝑊 + 1)𝑛 ·𝑊2𝑛−1 · (4𝑛)𝑛 < (2𝑛)2𝑛 ·𝑊3𝑛 < (𝑛𝑊)3𝑛 < exp(3𝑛 · ln (𝑛𝑊)).

Finally, we can apply a union bound over these many choices and get that with an exponentially
high probability no such solution (𝑦, 𝑧) can be a feasible solution on the sample. This concludes
the proof. ■

We then prove an analogue of Lemma 3.4, using the duality of odd-set covers and (general)
matchings, in place of vertex cover/matching duality in bipartite graphs.

LEMMA 4.4. Suppose in every iteration 𝑟 ∈ [𝑅], we have 𝑤(𝑀 (𝑟)) < (1 − 𝜀) · 𝜇(𝐺, 𝑤). Then,
there exists at least one edge 𝑒 ∈ 𝐸 such that 𝑞(𝑅+1)

𝑒 · 𝑤(𝑒) ⩾ 2𝜀·𝑅.

PROOF . By Edmond’s matching polytope theorem (Fact 2.2) and the assumption in the lemma
statement, we also have that | (𝑦(𝑟) , 𝑧(𝑟)) | < (1−𝜀) ·𝜇(𝐺) for every 𝑟 ∈ [𝑅]. Let 𝑀∗ be a maximum
matching of 𝐺. We thus have that in each iteration 𝑟 ∈ [𝑅], at least 𝜀 · 𝜇(𝐺) edges of 𝑀∗ are not
covered (as defined in Line (c) of Algorithm 4.1); otherwise, another application of Fact 2.2 to

9 Without loss of generality, assume F is a maximal laminar family on [𝑛]. Proof by induction (base case is trivial):
maximality ensures that there are two non-empty sets 𝐴, 𝐵 ∈ F with 𝐴 ∪ 𝐵 = [𝑛] and 𝐴 ∩ 𝐵 = ∅. By induction, there are
at most 2|𝐴| − 1 subsets of 𝐴 in F , at most 2|𝐵| − 1 subsets of 𝐵 in F , and the set 𝐴 ∪ 𝐵 can also be in F , implying that
|F | ⩽ (2|𝐴| − 1) + (2|𝐵| − 1) + 1 = 2𝑛 − 1.

10 There are more accurate ways of bounding 𝑇 (𝑛) (see, e.g. [19]), but given that these more accurate bounds do not
help with our subsequent calculations, we just establish a crude upper bound with a self-contained proof here.

14 / 25 S. Assadi

the covered edges of 𝑀∗ implies that | (𝑦(𝑟) , 𝑧(𝑟)) | ⩾ (1 − 𝜀) · 𝜇(𝐺) also, a contradiction. By an
averaging argument, this implies that there exists at least one edge 𝑒 in 𝑀∗ that is not covered
in at least 𝜀 · 𝑅 iterations. Hence, by the update rule of the algorithm, the importance of this
edge increases to at least 2𝜀·𝑅, concluding the proof. ■

We are now ready to conclude the proof of Theorem 4.2 exactly as in that of Theorem 3.2,
using the above established lemmas instead.

PROOF OF THEOREM 4.2 . Assume the event of Lemma 4.3 happens, thus

𝑄(𝑅+1) ⩽ (1 + 𝜀/2)𝑅 ·𝑊 < 23𝜀𝑅/4+log𝑊 . (as (1 + 𝑥) < 23𝑥/2 for 𝑥 > 0)

Suppose towards a contradiction that none of the matchings 𝑀 (𝑟) for 𝑟 ∈ [𝑅] computed by the
algorithm are of weight at least (1 − 𝜀) · 𝜇(𝐺, 𝑤). By Lemma 4.4, there is an edge 𝑒 ∈ 𝐸 such that

𝑞
(𝑅+1)
𝑒 ⩾ 2𝜀𝑅.

Putting these two equations together, as 𝑞(𝑅+1)
𝑒 ⩽ 𝑄(𝑅+1) (by positivity of importances), we obtain

𝜀𝑅 < 3𝜀𝑅/4 + log𝑊,

which only holds for 𝑅 < 4 log𝑊/𝜀, contradicting the choice of 𝑅 in the algorithm. Thus, at
least one of the found matchings 𝑀 (𝑟) ’s is of weight (1 − 𝜀) · 𝜇(𝐺, 𝑤), concluding the proof. ■

Semi-Streaming Implementation

Finally, we are going to show a semi-streaming implementation of Algorithm 4.1 in the following
lemma. The proof is similar to that of Lemma 3.5 although again with crucial changes to account
for the difference of vertex covers in Algorithm 3.1 with odd-set covers in Algorithm 4.1 (we
need some minor modifications after this also in order to be able to prove Result 1.2 which will
be done next).

LEMMA 4.5. Algorithm 4.1 is implementable in the semi-streaming model with𝑂(𝑛 log(𝑛𝑊) ·
log(𝑛)/𝜀) bits of memory and 𝑂(log(𝑊)/𝜀) passes.

PROOF . We implement each iteration of the algorithm via 𝑂(1) passes over the stream. The
main part of the semi-streaming implementation is to maintain the importance of the edges
implicitly. To do this, we do as follows:

For every iteration/pass 𝑟 ∈ [𝑅]:
Store the vector 𝑦(𝑟) explicitly using 𝑂(𝑛 log𝑊) bits using the integrality of the optimal
solution (by Fact 2.3).
Store the vector 𝑧(𝑟) explicitly using 𝑂(𝑛 log 𝑛 + 𝑛 log𝑊) bits using the laminarity of
support of 𝑧 in the optimal solution (by Fact 2.3): this can be done because earlier (a)
we bounded the number of laminar families by (4𝑛)𝑛 and hence they require 𝑂(𝑛 log 𝑛)

15 / 25 A Semi-Streaming Algorithm for Maximum Matching

bits of representation, and (b) we bounded the number of sets in any laminar family by
2𝑛 − 1, so we only need to store 𝑂(𝑛 log𝑊) bits to store their values.

Whenever an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 arrives in the stream in the 𝑟-th pass, we can compute
the number of times 𝑒 has remained uncovered by 𝑈 (𝑟′) for 𝑟′ < 𝑟, denoted by 𝑐(𝑒, 𝑟), by
checking (𝑦(𝑟′) , 𝑧(𝑟′)) stored so far and counting the number of times they violate Eq (1) for
this particular edge 𝑒. The importance 𝑞

(𝑟)
𝑒 of the edge 𝑒 is then 2𝑐(𝑒,𝑟) .

Once we calculate the importance of an edge upon its arrival, we can sample the edge with
probability prescribed by Eq (5), by making an additional pass to compute the normalization
factor 𝑄(𝑟) first.

The rest of the algorithm can be implemented directly. In particular, the total number
of edges sampled in each iteration is 𝑂(𝑛 log(𝑛𝑊)/𝜀) with exponentially high probability by
Chernoff bound. Thus, in the semi-streaming algorithm, we can store these edges and then
compute 𝑀 (𝑟) and (𝑦(𝑟) , 𝑧(𝑟)) at the end of the pass. This concludes the proof of the lemma. ■

PROOF OF RESULT 1.2 . The only remaining part to prove Result 1.2 is to remove the depen-
dence on the parameter 𝑊 , which can be done using an entirely standard idea.

We can use a single pass to find the maximum weight edge 𝑤∗ and subsequently, ignore
all edges with weight less than (𝜀/𝑛) · 𝑤∗ because the total contribution of those edges to the
maximum weight matching is always less than 𝜀-fraction of its weight. Thus, we can assume that
the weights are in [1 : 𝑛/𝜀] from now on. Moreover, we can assume without loss of generality that
𝜀 > 1/𝑛3 as otherwise, we can simply store the entire graph in 𝑂(𝑛2 log (𝑛/𝜀)) = 𝑂(𝑛 log(𝑛)/𝜀)
bits (consistent with the bounds of Result 1.2) and trivially solve the problem in one pass (as a
side note, we are only interested in much larger values of 𝜀 anyway).

This step implies that without loss of generality, when proving Result 1.2, we can assume
all edges have integer weights bounded by 𝑛4 by re-scaling 𝜀 to some Θ(𝜀). Combining this
with Theorem 4.2 and Lemma 4.5 now gives an𝑂(𝑛 log2(𝑛)/𝜀) memory algorithm in𝑂(log(𝑛)/𝜀)
passes. ■

5. Further Extensions and Discussions

As stated earlier, in the interest of having a clear and concise exposition of our results, we opted
to focus solely on the most important aspects of our algorithms in Result 1.1 and Result 1.2. We
now present some natural extensions of our results and further discuss the connection between
our work and the Plotkin-Shmoys-Tardos Framework [51] for solving covering/packing LPs via
MWU.

16 / 25 S. Assadi

5.1 Fewer Passes in More Space

Our algorithms, similar to that of [1], can be made more pass efficient at the cost of increasing
the space, allowing us to prove the following result:

COROLLARY 5.1. For every 𝑝 ⩾ 1 and 𝜀 ∈ (0, 1), there is a randomized streaming algorithm
for (1 − 𝜀)-approximation of maximum weight matching in 𝑂(𝑛1+1/𝑝 log2(𝑛)/𝜀) space and 𝑂(𝑝/𝜀)
passes.

This in particular means that if instead of semi-streaming space, we allow the streaming
algorithm to use 𝑛1+𝛿 space for any constant 𝛿 > 0, then, the number of passes is only 𝑂(1/𝜀).
This also implies that even for semi-streaming algorithms, the pass-complexity can be brought
down to𝑂(log(𝑛)/(log log(𝑛) ·𝜀)) passes by taking 𝑝 = (log 𝑛/log log 𝑛) and having 𝑛1+1/𝑝 = 𝑂(𝑛).

A common technique for proving Corollary 5.1, from an already-existing semi-streaming
algorithm, is “delayed sampling” used, e.g., in [1, 33]: we can “fold” multiple passes of the
semi-streaming algorithm into a single-pass of the larger-space algorithm by oversampling the
input first, and then do rejection sampling (see [33, step 2 of Section 1.3] for more details). While
this approach would work for us also, it would require (slightly) more space (by some 𝑛1/𝑝/𝜀
factors), and more importantly an indirect analysis.

Instead, one can directly adjust our importance-sampling based approach in Algorithm 4.1.
It simply involves sampling the edges by a factor of 𝑂(𝑛1/𝑝) more and then increasing the
importance of violated edges in the algorithm, quite aggressively, by a factor of 𝑂(𝑛1/𝑝) instead
of only 2. We now formalize this proof.

PROOF OF COROLLARY 5.1 . Let 𝜂 be a parameter (that will be later chosen to be 𝑛1/𝑝). We
prove this corollary by modifying Algorithm 4.1 as follows:

1. Increase the sampling rate in Eq (5) by a factor of 𝜂.
2. Increase the importance of any violated edge in Eq (6) by a factor of (1 + 𝜂) instead.

The implications of these changes are:
1. The space of the algorithm is increased by an 𝑂(𝜂) factor because we store a larger sample.
2. The upper bound of (1 + 𝜀/2)𝑅 ·𝑊 on the potential function in Lemma 4.3 still holds. This

is because Eq (7) now holds with 𝜀/2 replaced by 𝜀/2𝜂 which “cancels out” the effect of
increasing importances by a (1 + 𝜂) factor instead.

3. On the other hand the lower bound of 2𝜀𝑅 on the potential function in Lemma 4.4 simply
becomes (1 + 𝜂)𝜀·𝑅 given this new update rule on the importances.

Thus, by combining the steps above, we get that

𝜀𝑅 log 𝜂 ⩽ 3𝜀/4 · 𝑅 + log𝑊

which gives us the bound of 𝑅 = 𝑂(log𝑊/(log 𝜂 · 𝜀)).

17 / 25 A Semi-Streaming Algorithm for Maximum Matching

Now, recall that in the proof of Result 1.2, we argued that we can take 𝑊 to be at most 𝑛4.
This implies that by setting 𝜂 = 𝑛1/𝑝, we get

𝑅 = 𝑂(log𝑊/(log 𝜂 · 𝜀)) = 𝑂(log 𝑛/(1/𝑝 · log 𝑛 · 𝜀)) = 𝑂(𝑝/𝜀),

This concludes the proof of Corollary 5.1. ■

Before moving on, we remark that in addition to [1] and Corollary 5.1, [15] also provides
an 𝑂(𝑛1.5/𝜀)-space, 𝑂(1/𝜀)-pass algorithm for maximum (cardinality) bipartite matching. The
algorithm behind our Result 1.1 (and its extension in Corollary 5.1) turns out to be quite similar
in hindsight to the algorithm of [15] that also relies on a sample-and-solve approach using vertex
covers to guide their sampling; however, unlike our approach, [15] sticks to uniform sampling
and does not adjust any importances, which leads to the larger space-complexity of 𝑂(𝑛1.5)
instead of (essentially) 𝑛1+𝑜(1)-space in our work for 𝑂(1/𝜀)-pass algorithms.

5.2 Derandomization via Cut Sparsifiers

The failure probability of our algorithms in Result 1.1 and Result 1.2 are exponentially small,
which is better than the typical ‘with high probability bounds’ (namely, 1 − 1/poly(𝑛) bounds)
in the same context. But, in fact, we can fully derandomize the algorithms also at the cost of
increasing the space by poly(log 𝑛, 1/𝜀) factors and keeping the number of passes asymptotically
the same. We state and prove this part only for unweighted graphs, but with more technical
work, one can also extend this to weighted graphs (we omit the latter result as it requires too
much of a detour).

COROLLARY 5.2. For every 𝑝 ⩾ 1 and 𝜀 ∈ (0, 1), there is a deterministic streaming algorithm
for (1 − 𝜀)-approximation of maximum cardinality matching in 𝑂(𝑛1+1/𝑝/𝜀2) space and 𝑂(𝑝/𝜀)
passes.

Corollary 5.2 is proven via replacing the sampling step of the algorithm with cut sparsifiers
of [16]: these are (re-weighted) subgraphs of the input that preserve weights of cuts to within
a (1 ± 𝜀)-approximation while having only 𝑂(𝑛 log(𝑛)/𝜀2) edges. We note that in general cut
sparsifiers are not good at preserving large matchings11 but appear to be good at preserving
“near feasible” vertex covers and odd-set covers we need for our primal-dual analysis. Finally,
it is known how to compute an 𝜀-cut sparsifier in the streaming model using a single pass and
𝑂(𝑛/𝜀2) space deterministically using any deterministic static (non-streaming) algorithm for
this problem, say [13]; see, e.g., [48] for this elegant and quite simple reduction (based on the
merge-and-reduce technique dating back to the work of [46] on quantile estimation).

11 There are examples wherein a cut sparsifier of graph with a perfect matching may only have a maximum matching of
size (𝑛1/2+𝑜(1)) edges (e.g., a union of a perfect matching plus (𝑛1/2+𝑜(1)) vertices connected to all other vertices).

18 / 25 S. Assadi

Before getting to the formal proof, which focuses on Result 1.2 (and Corollary 5.1), let
us see an intuition for this result by focusing on derandomizing Result 1.1 for MBM instead.
Suppose in Algorithm 3.1, instead of sampling edges proportional to importances, we pick a
Θ(𝜀)-cut sparsifier 𝐻 of 𝐺 with edges weighted by the importances. Then, we simply pick a
vertex cover of 𝐻 (ignoring the weights now). We claim that Eq (4) still holds. Let𝑈 ⊆ 𝑉 be a
“potential” vertex cover so that the total importance of edges it does not cover is > (𝜀/2) · 𝑄,
where 𝑄 is the importance of all edges in 𝐺 in this iteration. One can show that 𝐻 needs to
contain at least one edge entirely in 𝑉 \ 𝑈 to be able to be a, say, (𝜀/100)-cut sparsifier of 𝐺.
This means that 𝑈 could have not been chosen as a vertex cover of 𝐻 . Thus, vertex covers of 𝐻
satisfy Eq (4) and the rest of the analysis is the same (recall that 𝐻 is a subgraph of 𝐺 so a “good”
vertex cover always exist). We now formalize the proof.

PROOF OF COROLLARY 5.2 . We focus on proving the result for semi-streaming algorithms;
extending this approach to larger-space algorithms with fewer passes is exactly as in Corol-
lary 5.1 and thus we do not repeat the argument.

The algorithm is the following. Instead of sampling edges in Algorithm 4.1, we compute
an (𝜀/100)-cut sparsifier 𝐻 of 𝐺 whose edges are weighted by the importances in this iteration.
Then, we compute an odd-set cover (𝑦, 𝑧) of 𝐻 , ignoring all edge weights in this step, and
continue exactly as before. Given that a cut sparsifier can be computed in 𝑂(𝑛/𝜀2) space in the
semi-streaming model (see [48]), we will obtain the desired deterministic algorithm.

Recall that the sampling step was only used in the analysis in Lemma 4.3 and in particular
to establish Eq (7) with an exponentially high probability. We instead show that this new
approach deterministically satisfies Eq (7). The rest of the proof of Corollary 5.2 then follows
verbatim as in Result 1.2. Thus, we only need to show the following:

Let 𝐻 be an (𝜀/100)-cut sparsifier of 𝐺 = (𝑉, 𝐸) under the edge weights 𝑞𝑒. Then, any
odd-set cover (𝑦, 𝑧) of 𝐻 satisfies Eq (7) deterministically, i.e.,∑︁

𝑒∈𝐹 (𝑦,𝑧)
𝑞𝑒 ⩽ (𝜀/2) · 𝑄, (8)

where 𝐹 (𝑦, 𝑧) is the set of violated edges by (𝑦, 𝑧) in the unweighted graph 𝐺, and 𝑞𝑒 and
𝑄 are the importance of edge 𝑒 ∈ 𝐸, and total importance of all edges, respectively.

We now prove this statement. In the following, for a graph 𝐺 = (𝑉, 𝐸) and two disjoint sets
of vertices 𝐴, 𝐵 ⊆ 𝑉 , we define 𝑐𝑢𝑡𝐺 (𝐴) and 𝑐𝑢𝑡𝐺 (𝐴, 𝐵) as the weight of the cuts (𝐴,𝑉 \ 𝐴) and
(𝐴, 𝐵), respectively (we apply this to 𝐺 with weight function being edge importances, and to 𝐻

with the re-weighted weights of the sparsifier).
Let (𝑦, 𝑧) be an optimal odd-set cover of 𝐻 . By Cunningham-Marsh theorem (Fact 2.3), 𝑦

and 𝑧 are both integral and F (𝑧) := {𝑆 ∈ 𝑜𝑑𝑑 (𝑉) | 𝑧𝑆 > 0} forms a laminar family. Moreover,
given the optimality of (𝑦, 𝑧) and since 𝐻 is unweighted (when calculating the odd-set cover),
we have that 𝑦, 𝑧 ∈ {0, 1}𝑛 which implies that F (𝑧) = 𝑆1, 𝑆2, . . . , 𝑆𝑠 is actually a collection of

19 / 25 A Semi-Streaming Algorithm for Maximum Matching

disjoint sets, and is disjoint from the support of 𝑦, denoted by 𝑇 . Notice that the set of violated
edges by (𝑦, 𝑧) in 𝐺 are the ones that are not inside 𝑆1, . . . , 𝑆𝑠, nor incident on 𝑇 .

Suppose towards a contradiction that Eq (8) does not hold. Let (𝐴, 𝐵) be a maximum cut of
the graph 𝐺[𝑉 \ 𝑇] among all cuts where each 𝑆𝑖 ∈ F (𝑧) is entirely on one side of the cut. Since
a maximum cut always has weight at least half of the weight of edges in the graph, we have,

𝑐𝑢𝑡𝐺 (𝐴, 𝐵) > (𝜀/4) · 𝑄.

On the other hand, in any graph, we also have

𝑐𝑢𝑡𝐺 (𝐴) + 𝑐𝑢𝑡𝐺 (𝐵) = 𝑐𝑢𝑡𝐺 (𝐴 ∪ 𝐵) + 𝑐𝑢𝑡𝐺 (𝐴, 𝐵).

Given that 𝑐𝑢𝑡𝐺 (𝐴), 𝑐𝑢𝑡𝐺 (𝐵), 𝑐𝑢𝑡𝐺 (𝐴 ∪ 𝐵) ⩽ 𝑄 trivially, and since 𝐻 is an (𝜀/100)-cut sparsifier,

𝑐𝑢𝑡𝐻 (𝐴, 𝐵) = 𝑐𝑢𝑡𝐻 (𝐴) + 𝑐𝑢𝑡𝐻 (𝐵) − 𝑐𝑢𝑡𝐻 (𝐴 ∪ 𝐵)
⩾ 𝑐𝑢𝑡𝐺 (𝐴) + 𝑐𝑢𝑡𝐺 (𝐵) − 𝑐𝑢𝑡𝐺 (𝐴 ∪ 𝐵) − 3 · (𝜀/100) · 𝑄
= 𝑐𝑢𝑡𝐺 (𝐴, 𝐵) − 3 · (𝜀/100) · 𝑄
⩾ (𝜀/4) · 𝑄 − 3 · (𝜀/100) · 𝑄 > 0,

which implies that there is at least one edge between 𝐴 and 𝐵 in 𝐻 . But recall that none of the
edges between 𝐴 and 𝐵 were covered by (𝑦, 𝑧), contradicting the fact that (𝑦, 𝑧) was a feasible
odd-set cover of 𝐻 . This proves Eq (8). ■

We shall remark that we were inspired by the use of cut sparsifiers in [1] for this part of
the argument. Although, to our knowledge, the use of sparsifiers in [1] is for a different purpose
of their “delayed sparsification” and folding 𝑂(1/𝜀) iterations of their optimization method in
𝑂(1) passes; we are instead using them for derandomization purposes (the algorithms of [1] are
randomized despite using sparsifiers even in insertion-only streams).

5.3 Running Times of Our Algorithms

Given that the main resource of interest in the streaming model is the space, we did not put
any emphasis on the runtime of our algorithms in the preceding discussions. It is clear that our
algorithms run in polynomial time since finding maximum matchings and minimum vertex
covers in bipartite graphs or minimum odd-set covers in general graphs can all be done in
polynomial time. However, our algorithms can be made more time efficient, captured by the
following corollary.

COROLLARY 5.3. Both algorithms in Result 1.1 and Result 1.2 can be implemented in 𝑂(𝑚/𝜀2 +
𝑛/𝜀3) time and the same asymptotic space and pass complexity.

20 / 25 S. Assadi

We note that in the semi-streaming model, our algorithms can only handle values of 𝜀 such that
1/𝜀 = poly log (𝑛), as otherwise the space of the algorithm will be more than the semi-streaming
restriction of 𝑂(𝑛) bits. In this regime, our algorithms run in near-linear time.

We first recall the seminal algorithm of [23]—generalizing classical results in [31] for
bipartite graphs—which we shall use as a blackbox in our algorithms.

PROPOS IT ION 5.4 ([23]). There exists an algorithm that given any graph 𝐺 = (𝑉, 𝐸) and
any parameter 𝜀 > 0, outputs a (1 − 𝜀)-approximate maximum weight matching and a (1 + 𝜀)-
approximate minimum odd-set cover of 𝐺 in 𝑂(𝑚/𝜀) time. Moreover, the support of the odd-set
cover returned by the algorithm forms a laminar family.

We can now present a proof of Corollary 5.3.

PROOF OF COROLLARY 5.3 . The only modification we need for this corollary is that in
each iteration of Algorithm 3.1 (for Result 1.1) or Algorithm 4.1 (for Result 1.2), instead of finding
an exact maximum matching or minimum vertex cover/odd-set cover, we run the algorithm
in Proposition 5.4 to find a (1 − 𝜀)-approximation to these problems on the sampled graph.

As for the analysis, Lemma 3.3 and Lemma 4.3 hold as before as they only relied on
the feasibility of the dual solution, not their optimality. On the other hand, Lemma 3.4 and
Lemma 4.4 relied on the optimality of the dual solutions in each step. However, both these
results still hold with a (1 − 𝜀)-approximation loss, namely, the conclusion of the lemmas hold
as long as we assume

|𝑀 (𝑟) | < (1 − 𝜀)2 · 𝜇(𝐺) or 𝑤(𝑀 (𝑟)) < (1 − 𝜀)2 · 𝜇(𝐺, 𝑤);

this is simply because these conditions, plus the guarantee of Proposition 5.4, imply the same
prior bounds on the value of optimum solution in the sampled graph as needed in Lemma 3.4
and Lemma 4.4. The rest of the analysis follows verbatim as before.

All in all, this ensures that the total runtime of the algorithms is only 𝑂(𝑚/𝜀2 + 𝑛/𝜀3)
time: there are 𝑂(log (𝑛)/𝜀) passes and each pass takes 𝑂(𝑚/𝜀) time for reading the stream
and sampling the edges plus 𝑂(𝑛/𝜀2) time for running the algorithm of [23] on the sampled
subgraph of size 𝑂(𝑛/𝜀) edges. This concludes the proof. ■

An alternative way of looking at Corollary 5.3, from a purely time-complexity point of
view, is the following: to obtain a (1 − 𝜀)-approximation to maximum (weight) matching on
arbitrary graphs, we only need to have an oracle for finding a (1 − Θ(𝜀))-approximation to
the same problem on sparse graphs with 𝑂(𝑛/𝜀) edges; running this oracle for 𝑂(log (𝑛)/𝜀)
times on different sampled subgraphs of the input (plus some low overhead computation for
updating the weights and performing the sampling), gives us a (1 − 𝜀)-approximation on any
(not necessarily sparse) graph as well.

21 / 25 A Semi-Streaming Algorithm for Maximum Matching

5.4 Extension to Other Related Models

Our algorithmic approach in this paper is quite flexible and easily extends to many other models.
In particular, given its sample-and-solve nature, the algorithm can be implemented via a linear
sketch (see [4]), which also implies the following two results:

COROLLARY 5.5 (Extension to Dynamic streams). There is a randomized semi-streaming
algorithm for (1 − 𝜀)-approximation of weighted (general) matching in dynamic streams—with
edge insertions and deletions—that for every 𝑝 ⩾ 1, uses 𝑂(𝑛1+1/𝑝/𝜀) space and 𝑂(𝑝/𝜀) passes.

COROLLARY 5.6 (Extension to Massively Parallel Computation (MPC)). There is a random-
ized MPC algorithm for (1 − 𝜀)-approximation of weighted (general) matchings that for every
𝑝 ⩾ 1, uses machines of memory 𝑂(𝑛1+1/𝑝/𝜀) and 𝑂(𝑛1+1/𝑝/𝜀) global memory beside the input size,
and 𝑂(𝑝/𝜀) rounds.

As this is not the focus of the paper, we omit the definition and details of the models and
instead refer the interested to [4, 48] and [37, 14] for each model, respectively. We only note that
the prior results in [1] also achieved similar corollaries but this is not the case for the approach
of [9].

5.5 Explicit Connections to MWU and Plotkin-Shmoys-Tardos Framework

It turns out that our algorithms can be cast in the Plotkin-Shmoys-Tardos (PST) Framework [51]
for solving covering/packing LPs via MWU—despite the fact that the number of iterations is
𝑂(log(𝑛)/𝜀2) in this framework—by making the following observation (this discussion assumes
a basic familiarity with this framework; see [5] for a quick introduction).

Firstly, suppose we use the PST framework for solving the (fractional) vertex/odd-set
cover LP, which translates to maintaining “MWU weights” over the edges. The goal, perhaps
counter intuitively, is to fail in finding a small vertex/odd-set cover, which implies we have
found a “witness” to the existence of a large matching in the graph. The oracle used for the PST
framework can be implemented by our sampling approach. The key observation is that this
oracle is extremely efficient compared to a typical oracle, in that, it achieves a very accurate
solution with a very small width. This leads to something interesting: the weights of the variables,
under the “cautious” update rules of MWU, grows so slowly that the same oracle solution remains
approximately valid for the next 𝑂(1/𝜀) iterations!

The implication of the above for semi-streaming algorithms is that, effectively, one only
needs to rerun the oracle, using another pass over the stream, for every 𝑂(1/𝜀) iterations of the
framework. This allows running the 𝑂(log(𝑛)/𝜀2) iterations of this framework in 𝑂(log(𝑛)/𝜀)
passes.

We shall however caution the reader that while the above intuition is morally true, imple-
menting the algorithm and following the standard analysis this way is quite “messy” and does

22 / 25 S. Assadi

not seem to yield to a necessarily simple algorithm nor analysis. Thus, we find the direct proof
presented in the paper much more illuminating and opted to provide that instead12.

6. Concluding Remarks and Open Questions

In this paper, we presented a rather complete simplification of the prior 𝑂(log(𝑛)/𝜀)-pass
algorithms of [1] in our Result 1.1 and Result 1.2.

The key open question at this point—which was also the key motivation behind this work
itself—is to obtain the best of both worlds among the two types of pass-complexity of semi-
streaming algorithms obtained for bipartite (cardinality) matching: the 𝑂(log(𝑛)/𝜀) passes of [1,
9] and Result 1.1, and the 𝑂(1/𝜀2) passes of [3, 10].

Open question 1: Can we design a semi-streaming algorithm for maximum bipartite
cardinality matching with 𝑂(1/𝜀) passes?

We would like to make a (rather bold) conjecture that the “right” pass-complexity of this
problem might be even (much) lower than 𝑂(1/𝜀) passes. But, at this point, we seem to be far
from achieving such results or ruling out their possibilities13.

A slightly less exciting question than the above is to significantly reduce the pass-complexity
of the “constant-pass” algorithms for maximum matching in general graphs in [28, 32] to match
the results for MBM in [10] (see Footnote 1). In particular,

Open question 2: Can we obtain a semi-streaming algorithm for maximum matching in
general graphs (weighted or unweighted) with 𝑂(1/𝜀2) passes?

We hope that by simplifying the state-of-the-art, our results in this paper can pave the way
for addressing these questions. Note that as stated earlier, we can indeed provide a positive
answer to both questions for the (strictly) more relaxed case when the space of the algorithms is
𝑛1+𝛿 for constant 𝛿 > 0 (this was also already known by the prior work of [1]).

Acknowledgement

Many thanks to Soheil Behnezhad, Shang-En Huang, Peter Kiss, Rasmus Kyng, and Thatchaphol
Saranurak for helpful discussions and to the organizers of the DIMACS Workshop on “Modern
Techniques in Graph Algorithms” (June 2023)—Prantar Ghosh, Zihan Tan, and Nicole Wein—
where these conversations happened.

12 We should also add that this connection was only made in hindsight after having the new algorithm and analysis.

13 [9] provides a semi-streaming 𝑛3/4+𝑜(1)-pass algorithm for solving MBM exactly, which can be seen as (1 − 𝜀)-
approximation for 𝜀 = 1/𝑛. Thus, at least for very small values of 𝜀, we already know ≪ 1/𝜀-pass algorithms.

23 / 25 A Semi-Streaming Algorithm for Maximum Matching

I am also grateful to Aaron Bernstein, Aditi Dudeja, Arun Jambulapati, Michael Kapralov,
Sanjeev Khanna, Kent Quanrud, and Janani Sundaresan for various helpful discussions about
this problem over the years.

Additionally, I would like to thank Soheil Behnezhad for pointing out the similarity of Re-
sult 1.1 with the 𝑂(𝑛1.5/𝜀)-space 𝑂(1/𝜀)-pass streaming algorithm of [15] for MBM (as discussed
in Section 5.1), and to Vikrant Ashvinkumar and Lap Chi Lau for many helpful comments on
the presentation of this paper.

Finally, I am quite grateful to the anonymous reviewers of TheoretiCS for numerous
detailed and insightful comments, and for suggesting simpler proof of Lemma 3.4 (and by
extension Lemma 4.4) that are presented in the current version of the paper.

References
[1] Kook Jin Ahn and Sudipto Guha. Access to data

and number of iterations: dual primal algorithms for
maximum matching under resource constraints.
ACM Trans. Parallel Comput. 4(4):17:1–17:40, 2018.
DOI (1–5, 16, 17, 19, 21, 22)

[2] Kook Jin Ahn and Sudipto Guha. Laminar families
and metric embeddings: non-bipartite maximum
matching problem in the semi-streaming model.
CoRR, abs/1104.4058, 2011. (1–4)

[3] Kook Jin Ahn and Sudipto Guha. Linear
programming in the semi-streaming model with
application to the maximum matching problem. Inf.
Comput. 222:59–79, 2013. DOI (1–3, 22)

[4] Kook Jin Ahn, Sudipto Guha, and
Andrew McGregor. Analyzing graph structure via
linear measurements. Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, pages 459–467, 2012. DOI (21)

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The
multiplicative weights update method: a
meta-algorithm and applications. Theory Comput.
8(1):121–164, 2012. DOI (4, 8, 21)

[6] Sepehr Assadi. A simple (1 - 𝜖)-approximation
semi-streaming algorithm for maximum (weighted)
matching. 2024 Symposium on Simplicity in
Algorithms, SOSA 2024, Alexandria, VA, USA,
January 8-10, 2024, pages 337–354. SIAM, 2024.
DOI (1)

[7] Sepehr Assadi. A two-pass (conditional) lower
bound for semi-streaming maximum matching.
Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, pages 708–742.
SIAM, 2022. DOI (2, 3)

[8] Sepehr Assadi, Soheil Behnezhad,
Sanjeev Khanna, and Huan Li. On regularity lemma
and barriers in streaming and dynamic matching.
Proceedings of the ACM Symposium on Theory of
Computing, STOC 2023, pages 131–144. ACM,
2023. DOI (3)

[9] Sepehr Assadi, Arun Jambulapati, Yujia Jin,
Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal
space. Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022,
pages 627–669. SIAM, 2022. DOI (1–4, 21, 22)

[10] Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An
auction algorithm for bipartite matching in
streaming and massively parallel computation
models. 4th Symposium on Simplicity in Algorithms,
SOSA 2021, pages 165–171. SIAM, 2021. DOI
(1–3, 22)

[11] Sepehr Assadi and Ran Raz. Near-quadratic lower
bounds for two-pass graph streaming algorithms.
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, pages 342–353.
IEEE, 2020. DOI (2)

[12] Sepehr Assadi and Janani Sundaresan. Hidden
permutations to the rescue: multi-pass streaming
lower bounds for approximate matchings. IEEE
Annual Symposium on Foundations of Computer
Science, FOCS 2023, pages 909–932. IEEE, 2023.
DOI (1–3)

[13] Joshua D. Batson, Daniel A. Spielman, and
Nikhil Srivastava. Twice-ramanujan sparsifiers.
SIAM J. Comput. 41(6):1704–1721, 2012. DOI (17)

[14] Paul Beame, Paraschos Koutris, and Dan Suciu.
Communication steps for parallel query processing.
J. ACM, 64(6):40:1–40:58, 2017. DOI (21)

[15] Soheil Behnezhad, Mahsa Derakhshan,
Hossein Esfandiari, Elif Tan, and Hadi Yami. Brief
announcement: graph matching in massive
datasets. Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
2017, pages 133–136. ACM, 2017. DOI (1, 3, 17,
23)

https://doi.org/10.1145/3154855
https://doi.org/10.1145/3154855
https://doi.org/10.1016/J.IC.2012.10.006
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1137/1.9781611977936.31
https://doi.org/10.1137/1.9781611977936.31
https://doi.org/10.1137/1.9781611977073.32
https://doi.org/10.1145/3564246.3585110
https://doi.org/10.1137/1.9781611977073.29
https://doi.org/10.1137/1.9781611976496.18
https://doi.org/10.1109/FOCS46700.2020.00040
https://doi.org/10.1109/FOCS57990.2023.00058
https://doi.org/10.1109/FOCS57990.2023.00058
https://doi.org/10.1137/090772873
https://doi.org/10.1145/3125644
https://doi.org/10.1145/3087556.3087601

24 / 25 S. Assadi

[16] András A. Benczúr and David R. Karger.
Approximating s-tminimum cuts in Õ(n2) time.
Proceedings of the ACM Symposium on the Theory
of Computing, STOC 1996, pages 47–55. ACM,
1996. DOI (17)

[17] Aaron Bernstein, Aditi Dudeja, and
Zachary Langley. A framework for dynamic
matching in weighted graphs. Proceedings of the
ACM SIGACT Symposium on Theory of Computing,
STOC 2021, pages 668–681. ACM, 2021. DOI (3)

[18] Lidiya Khalidah binti Khalil and Christian Konrad.
Constructing large matchings via query access to a
maximal matching oracle. IARCS Annual
Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2020,
volume 182 of LIPIcs, 26:1–26:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. DOI (3)

[19] Binh-Minh Bui-Xuan, Michel Habib, and
Michaël Rao. Tree-representation of set families
and applications to combinatorial decompositions.
Eur. J. Comb. 33(5):688–711, 2012. DOI (13)

[20] Lijie Chen, Gillat Kol, Dmitry Paramonov,
Raghuvansh R. Saxena, Zhao Song, and
Huacheng Yu. Almost optimal superconstant-pass
streaming lower bounds for reachability. SIAM
Journal on Computing, 2024. DOI (2, 3)

[21] Michael B. Cohen, Aaron Sidford, and Kevin Tian.
Relative lipschitzness in extragradient methods
and a direct recipe for acceleration. Innovations in
Theoretical Computer Science Conference, ITCS
2021, volume 185 of LIPIcs, 62:1–62:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
DOI (4)

[22] William H Cunningham and AB Marsh. A primal
algorithm for optimum matching. Polyhedral
Combinatorics: Dedicated to the memory of DR
Fulkerson:50–72, 1978. (7)

[23] Ran Duan and Seth Pettie. Linear-time
approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, 2014. DOI (20)

[24] Jack Edmonds. Maximum matching and a
polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B,
69(125-130):55–56, 1965. (7)

[25] Sebastian Eggert, Lasse Kliemann,
Peter Munstermann, and Anand Srivastav.
Bipartite matching in the semi-streaming model.
Algorithmica, 63(1-2):490–508, 2012. DOI (1, 3)

[26] Sebastian Eggert, Lasse Kliemann, and
Anand Srivastav. Bipartite graph matchings in the
semi-streaming model. Algorithms - ESA 2009, 17th
Annual European Symposium, 2009. Proceedings,
volume 5757 of Lecture Notes in Computer Science,
pages 492–503. Springer, 2009. DOI (1, 3)

[27] Joan Feigenbaum, Sampath Kannan,
Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model.
Theor. Comput. Sci. 348(2-3):207–216, 2005. (1)

[28] Manuela Fischer, Slobodan Mitrovic, and
Jara Uitto. Deterministic (1+𝜖)-approximate
maximum matching with poly(1/𝜖) passes in the
semi-streaming model and beyond. 54th Annual
ACM SIGACT Symposium on Theory of Computing,
STOC 2022, pages 248–260. ACM, 2022. DOI
(1–3, 22)

[29] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic,
and Ola Svensson.Weighted matchings via
unweighted augmentations. Proceedings of the
ACM Symposium on Principles of Distributed
Computing, PODC 2019, pages 491–500, 2019.
DOI (1, 3)

[30] Ashish Goel, Michael Kapralov, and
Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite
matching. Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012,
pages 468–485. SIAM, 2012. DOI (3)

[31] John E. Hopcroft and Richard M. Karp. An 𝑛5/2

algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4):225–231, 1973. (20)

[32] Shang-En Huang and Hsin-Hao Su.
(1 − 𝜀)-approximate maximum weighted matching
in distributed, parallel, and semi-streaming
settings. Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC 2023,
pages 44–54. ACM, 2023. DOI (1–3, 22)

[33] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld,
Jonathan R. Ullman, Ali Vakilian, and
Anak Yodpinyanee. Fractional set cover in the
streaming model. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, volume 81 of
LIPIcs, 12:1–12:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. DOI (16)

[34] Arun Jambulapati, Aaron Sidford, and Kevin Tian.
A direct tilde{o}(1/epsilon) iteration parallel
algorithm for optimal transport. Annual Conference
on Neural Information Processing Systems, NeurIPS
2019, pages 11355–11366, 2019. (4)

[35] Michael Kapralov. Better bounds for matchings in
the streaming model. Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, pages 1679–1697, 2013. DOI (1, 3)

[36] Michael Kapralov. Space lower bounds for
approximating maximum matching in the edge
arrival model. Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021,
pages 1874–1893. SIAM, 2021. DOI (3)

[37] Howard J. Karloff, Siddharth Suri, and
Sergei Vassilvitskii. A model of computation for
mapreduce. Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010,
pages 938–948, 2010. DOI (21)

[38] Philip N. Klein and Neal E. Young. On the number of
iterations for dantzig-wolfe optimization and
packing-covering approximation algorithms. SIAM
J. Comput. 44(4):1154–1172, 2015. DOI (4)

[39] Dénes Kőnig. Gráfok és mátrixok. Matematikai és
Fizikai Lapok, 38:116–119, 1931. (6)

https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/3406325.3451113
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.26
https://doi.org/10.1016/j.ejc.2011.09.032
https://doi.org/10.1137/21M1417740
https://doi.org/10.4230/LIPIcs.ITCS.2021.62
https://doi.org/10.4230/LIPIcs.ITCS.2021.62
https://doi.org/10.1145/2529989
https://doi.org/10.1007/S00453-011-9556-8
https://doi.org/10.1007/978-3-642-04128-0_44
https://doi.org/10.1145/3519935.352003
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.5555/2095116.2095157
https://doi.org/10.1145/3583668.3594570
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.12
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.5555/1873601.1873677
https://doi.org/10.1137/12087222X

25 / 25 A Semi-Streaming Algorithm for Maximum Matching

[40] Christian Konrad and Kheeran K Naidu. An
unconditional lower bound for two-pass streaming
algorithms for maximum matching approximation.
Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA 2024),
pages 2881–2899. SIAM, 2024. DOI (2, 3)

[41] Christian Konrad and Kheeran K. Naidu. On
two-pass streaming algorithms for maximum
bipartite matching. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2021, volume 207
of LIPIcs, 19:1–19:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. DOI (3)

[42] Christian Konrad, Kheeran K. Naidu, and
Arun Steward. Maximum matching via maximal
matching queries. International Symposium on
Theoretical Aspects of Computer Science, STACS
2023, volume 254 of LIPIcs, 41:1–41:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
DOI (3)

[43] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii,
and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. ACM Trans. Parallel
Comput. 2(3):14:1–14:22, 2015. DOI (2, 4, 5)

[44] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri,
and Sergei Vassilvitskii. Filtering: a method for
solving graph problems in MapReduce.
Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2011,
pages 85–94, 2011. DOI (2, 4, 5)

[45] László Lovász and Michael D Plummer. Matching
theory, volume 367. American Mathematical Soc.,
2009. (6, 7)

[46] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Approximate medians and other
quantiles in one pass and with limited memory.
Proceedings ACM SIGMOD International
Conference on Management of Data, SIGMOD 1998,
pages 426–435. ACM Press, 1998. DOI (17)

[47] Andrew McGregor. Finding graph matchings in
data streams. 8th International Workshop on
Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and
Computation, RANDOM 2005, Proceedings,
pages 170–181, 2005. DOI (1, 3)

[48] Andrew McGregor. Graph stream algorithms: a
survey. SIGMOD Rec. 43(1):9–20, 2014. DOI (17,
18, 21)

[49] Arkadi Nemirovski. Prox-method with rate of
convergence o(1/t) for variational inequalities with
lipschitz continuous monotone operators and
smooth convex-concave saddle point problems.
SIAM J. Optim. 15(1):229–251, 2004. DOI (4)

[50] Yurii E. Nesterov. Dual extrapolation and its
applications to solving variational inequalities and
related problems. Math. Program.
109(2-3):319–344, 2007. DOI (4)

[51] Serge A. Plotkin, David B. Shmoys, and Éva Tardos.
Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res.
20(2):257–301, 1995. DOI (4, 15, 21)

[52] Jonah Sherman. Area-convexity, l∞ regularization,
and undirected multicommodity flow. Proceedings
of the ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 452–460. ACM,
2017. DOI (4)

[53] Sumedh Tirodkar. Deterministic algorithms for
maximum matching on general graphs in the
semi-streaming model. 38th IARCS Annual
Conference on Foundations of Software
Technology and Theoretical Computer Science,
FSTTCS 2018, 39:1–39:16, 2018. DOI (1, 3)

2025 : 16
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Sepehr Assadi.

https://doi.org/10.1137/1.9781611977912.102
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19
https://doi.org/10.4230/LIPIcs.STACS.2023.41
https://doi.org/10.4230/LIPIcs.STACS.2023.41
https://doi.org/10.1145/2809814
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/276305.276342
https://doi.org/10.1007/11538462_15
https://doi.org/10.1145/2627692.262769
https://doi.org/10.1137/S1052623403425629
https://doi.org/10.1007/s10107-006-0034-z
https://doi.org/10.1109/SFCS.1991.185411
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.39

	Introduction
	Preliminaries
	Basics of Matching Theory in Bipartite Graphs
	Basics of Matching Theory in General (Weighted) Graphs

	Maximum Cardinality Bipartite Matching
	Maximum Weight General Matching
	Further Extensions and Discussions
	Fewer Passes in More Space
	Derandomization via Cut Sparsifiers
	Running Times of Our Algorithms
	Extension to Other Related Models
	Explicit Connections to MWU and Plotkin-Shmoys-Tardos Framework

	Concluding Remarks and Open Questions
	References

