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ABSTRACT. We give the first 𝑂(1)-approximation for the weighted Nash Social Welfare
problem with additive valuations. The approximation ratio we obtain is 𝑒1/𝑒 + 𝜖 ≈ 1.445 + 𝜖,
which matches the best known approximation ratio for the unweighted case [3].

Both our algorithm and analysis are simple. We solve a natural configuration LP for
the problem, and obtain the allocation of items to agents using the Shmoys-Tardos rounding
algorithm developed for unrelated machine scheduling problems [32]. In the analysis, we show
that the approximation ratio of the algorithm is at most the worst gap between the Nash social
welfare of the optimum allocation and that of an EF1 allocation, for an unweighted Nash Social
Welfare instance with identical additive valuations. This was shown to be at most 𝑒1/𝑒 ≈ 1.445
by Barman, Krishnamurthy and Vaish [3], leading to our approximation ratio.

1. Introduction

In the weighted (or asymmetric) Nash Social Welfare problem with additive valuations, we are
given a set A of 𝑛 agents, and a set G of 𝑚 indivisible items. Every agent 𝑖 ∈ A has a weight
𝑤𝑖 ≥ 0 such that

∑
𝑖∈A 𝑤𝑖 = 1. There is a value 𝑣𝑖 𝑗 ∈ R≥0 for every 𝑖 ∈ A and 𝑗 ∈ G. The goal

of the problem is to find an allocation 𝜎 : G → A of items to agents so as to maximize the
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following weighted Nash Social Welfare of 𝜎:∏
𝑖∈A

( ∑︁
𝑗∈𝜎−1(𝑖)

𝑣𝑖 𝑗

)𝑤𝑖

.

In the case where all 𝑤𝑖 ’s are equal to 1
𝑛 , we call the problem the unweighted (or symmetric)

Nash Social Welfare problem.
Allocating resources in a fair and efficient manner among multiple agents is a fundamental

problem in computer science, game theory, and economics, with applications across diverse
domains [21, 35, 4, 30, 27, 2, 31, 5]. The weighted Nash Social Welfare function is a notable
objective that balances efficiency and fairness. The unweighted (or symmetric) objective was
independently proposed by different communities [28, 22, 34], and later the study has been
extended to the weighted case [18, 20]. Since then it has been used in a wide range of applications,
including bargaining theory [23, 7, 33], water allocation [19, 10], and climate agreements [36].

The unweighted Nash Social Welfare problem with additive valuations is proved to be
NP-hard by Nguyen, Nguyen, Roos and Rothe [29], and APX-hard by Lee [24]. Later the hardness
of approximation was improved to

√︁
8/7 ≈ 1.069 by Garg, Hoefer and Mehlhorn [14], via a

reduction from Max-E3-Lin-2.
On the positive side, Cole and Gkatzelis [9] gave a (2𝑒1/𝑒 + 𝜖 ≈ 2.889 + 𝜖)-approximation

using a spending restricted market equilibrium relaxation. The ratio was improved by Cole,
Devanur, Gkatzelis, Jain, Mai, Vazirani and Yazdanbod [8] to 2 using a tight analysis, and by
Anari, Oveis Gharan, Saberi and Singh [1] to 𝑒 via a connection of the problem to real stable
polynomials. Both papers formulated convex programming (CP) relaxations of the problem.
In particular, [8] showed that the optimum solution to their CP corresponds to the spending-
restricted market equilibrium defined in [9]. The state-of-the-art result for the problem is a
combinatorial (𝑒1/𝑒 + 𝜖 ≈ 1.445 + 𝜖)-approximation algorithm due to Barman, Krishnamurthy
and Vaish [3]. They showed that when all the valuations of agents are identical, any allocation
that is envy-free up to one item (EF1) is 𝑒1/𝑒-approximate. Their approximation result then
follows from a connection between the non-identical and identical valuation settings they
established.

All the results discussed above are for the unweighted case. For the weighted case with
agent weights 𝑤 ∈ [0, 1]A , |𝑤|1 = 1, Brown, Laddha, Pittu and Singh [6] presented a 5 · exp(2 ·
𝐷KL

(
𝑤| | ®1𝑛)

)
= 5 · exp(2 log 𝑛 + 2

∑
𝑖∈A 𝑤𝑖 log𝑤𝑖) approximation algorithm, where 𝐷KL denotes

the KL divergence of two distributions. Their result is based on the CP from [8], generalized to
the weighted setting.

The additive valuation setting is a special case of the submodular valuation setting, which
is another important setting studied in the literature. In this setting, instead of a 𝑣𝑖 𝑗 value for
every 𝑖 𝑗 pair, we are given a monotone submodular function 𝑣𝑖 : 2G → R≥0 for every agent
𝑖 ∈ A. Till the end of the section, our goal is to find an allocation 𝜎 : G → A so as to maximize



3 / 12 Approximating Weighted Nash Social Welfare with Additive Valuations

∏
𝑖∈A

(
𝑣𝑖 (𝜎−1(𝑖))

)𝑤𝑖

. A bulk of the previous work has focused on the unweighted case; that is,
𝑤𝑖 =

1
𝑛 for all 𝑖 ∈ A. For this case, [17] proved a hardness of 𝑒/(𝑒− 1) ≈ 1.5819 using a reduction

from Max-3-Coloring; this is better than the 1.069 hardness for the additive valuation case.
On the positive side, Li and Vondrák [26] extended the techniques of [1], to obtain an

𝑒3/(𝑒 − 1)2-approximation algorithm for the unweighted Nash Social Welfare problem for a
large family of submodular valuations, including coverage functions and linear combinations
of matroid rank functions. Later, Garg, Husić, and Végh [16] considered a family of submodular
functions called Rado functions, and gave an 𝑂(1)-approximation for this family using the
matching theory and convex program techniques. Li and Vondrák [25] developped the first
𝑂(1)-approximation for general submodular functions, with an approximation ratio of 380.
Recently, Garg, Husić, Li, Végh and Vondrák [15] presented an elegant 4-approximation local
search algorithm for the problem, which is the current best approximation result for the
problem. All the results discussed above are for the unweighted case. For the weighted case,
[15] gave an 𝑂(𝑛𝑤max)-approximation, where 𝑤max = max𝑖∈A 𝑤𝑖 .

Using our configuration LP idea, Feng, Hu, Li and Zhang [12] recently developed a (233+ 𝜖)-
approximation for the weighted case, which is the first 𝑂(1)-approximation for the weighted
Nash Social Welfare problem with submodular valuations.

Recently, the problem has been studied in an even more general setting, namely, the subad-
ditive valuation setting. Dobzinski, Li, Rubinstein and Vondrák [11] gave an 𝑂(1)-approximation
for the unweighted Nash Social Welfare problem in this setting under the demand oracle model.

1.1 Our Result and Techniques

In this note, we give the first𝑂(1)-approximation algorithm for the weighted Nash Social Welfare
problem with additive valuations:

THEOREM 1.1. For any 𝜖 > 0, there is a deterministic (𝑒1/𝑒 + 𝜖 ≈ 1.445 + 𝜖)-approximation
algorithm for the weighted Nash Social Welfare problem with additive valuations, with running
time polynomial in the size of the input and 1

𝜖 .

Our approximation ratio of 𝑒1/𝑒 + 𝜖 matches the best ratio for the unweighted case due to
Barman, Krishnamurthy and Vaish [3]. In contrast, the ratio given by [6] is 5 · exp(2 ·𝐷KL(𝑤| | ®1𝑛)),
which could be polynomial in 𝑛.

Our algorithm is based on a natural configuration LP for the problem, which has not been
studied before to the best of our knowledge. The configuration LP contains a 𝑦𝑖,𝑆 variable for
every agent 𝑖 and subset 𝑆 of items, indicating if the set of items 𝑖 gets is 𝑆 or not. We show
that the configuration LP can be solved in polynomial time to any precision, despite having an
exponential number of variables. Once we obtain the LP solution, we define 𝑥𝑖 𝑗 for every 𝑖 ∈ A
and 𝑗 ∈ G to be the fraction of 𝑗 assigned to 𝑖.
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To round 𝑥 into an integral solution, it is more convenient to focus on a randomized
algorithm first, which uses the Shmoys-Tardos rounding algorithm [32] developed for unrelated
machine scheduling problems. For every agent 𝑖, we break the fractional items assigned to 𝑖

into groups from the most valuable to the least, each containing 1 fractional item. The rounding
algorithm maintains marginal probabilities, and the requirement that 𝑖 gets exactly one item
from each group (except for the last one, from which 𝑖 gets at most one item). In the analysis
for each agent 𝑖, we construct an instance of the unweighted Nash Social Welfare problem
with identical additive valuations, that involves many copies of the agent 𝑖, along with two
allocations S and S′ to the instance. S corresponds to the LP solution, and S′ corresponds to
the randomized solution given by the rounding algorithm. Thanks to the condition that every
group contains one item, the solution S′ is envy-free up to one item (EF1), defined as follows.

DEF IN IT ION 1.2. Given an instance of the unweighted Nash Social Welfare problem with
agents A, items G, and identical additive valuation 𝑣 : G → R≥0 for all agents, an allocation
𝜎 : G → A is said to be envy-free up to one item (EF1), if for every two distinct agents 𝑖, 𝑖′ with
𝜎−1(𝑖′) ≠ ∅, there exists some 𝑗 ∈ 𝜎−1(𝑖′), such that 𝑣(𝜎−1(𝑖′) \ 𝑗) ≤ 𝑣(𝜎−1(𝑖)).

Barman, Krishnamurthy and Vaish [3] showed the following result on the quality of EF1
allocations:

THEOREM 1.3 ([3]). For the unweighted Nash Social Welfare problem with identical additive
valuations, any EF1-allocation is an 𝑒1/𝑒-approximate solution.

The result implies that the Nash social welfare of S′ is at least 𝑒−1/𝑒 times that of S. This in
turn proves that the expected weighted Nash Social Welfare of the solution returned by our
rounding algorithm is at least the exponential of the value of the LP solution. To de-randomize
the algorithm, we break the fractional matching between groups and items into a convex
combination of polynomial number of integral matchings, and choose the best matching in the
combination.

2. (𝒆1/𝒆 + 𝝐)-Approximation Using Configuration LP

At the beginning of the algorithm, we check if there is an allocation with positive weighted
Nash Social Welfare, using the bipartite matching algorithm. If not, we terminate the algorithm
immediately by returning any allocation. From now on, we assume the optimum weighted
Nash Social Welfare value is positive. We describe the configuration LP in Section 2.1 and the
rounding algorithm in Section 2.2. The analysis is given in Section 2.3.
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2.1 The Configuration LP

For convenience, for any value function 𝑣 : G → R≥0, we define 𝑣(𝑆) :=
∑

𝑗∈𝑆 𝑣 𝑗 for every
𝑆 ⊆ G to be the total value of items in 𝑆 according to the value function 𝑣. In the integer
program corresponding to the configuration LP, for every 𝑖 ∈ A and 𝑆 ⊆ G, we have a variable
𝑦𝑖,𝑆 ∈ {0, 1} indicating if the set of items assigned to 𝑖 is 𝑆 or not. We relax the integer constraint
to obtain the following configuration LP:

max
∑︁

𝑖∈A,𝑆⊆G
𝑤𝑖 · 𝑦𝑖,𝑆 · ln 𝑣𝑖 (𝑆) s.t. (Conf-LP)

∑︁
𝑖∈A,𝑆∋ 𝑗

𝑦𝑖,𝑆 ≤ 1 ∀ 𝑗 ∈ G (1)∑︁
𝑆⊆G

𝑦𝑖,𝑆 = 1 ∀𝑖 ∈ A (2)

𝑦𝑖,𝑆 ≥ 0 ∀𝑖 ∈ A, 𝑆 ⊆ G (3)

It is convenient for us to consider the natural logarithm of the Nash social welfare function
as the objective, which is

∑
𝑖∈A 𝑤𝑖 · ln 𝑣𝑖 (𝜎−1(𝑖)). This leads to the objective in (Conf-LP). (1)

requires that every item 𝑗 is assigned to at most one agent, and (2) requires that every agent 𝑖 is
assigned one set of items.

The configuration LP has an exponential number of variables, but it can be solved within
an additive error of ln(1 + 𝜖) for any 𝜖 > 0, in time polynomial in the size of the instance and 1

𝜖 .

THEOREM 2.1. For any 𝜖 > 0, there is an algorithm that outputs a valid solution ( 𝑦𝑖,𝑆 ∈
Q≥0)𝑖∈A,𝑆⊆G to (Conf-LP) whose value is at least the optimum value of the LP minus ln(1 + 𝜖),
represented using a list of the non-zero entries. The running time of the algorithm is polynomial in
the input size and 1

𝜖 .

We defer the proof of Theorem 2.1 to Section 3. Notice that we are considering the logarithm
of Nash social welfare, and the typical (1 + 𝜖)-multiplicative factor becomes an additive error of
ln(1 + 𝜖).

2.2 The Rounding Algorithm

From now on, we assume we have obtained a vector 𝑦 from solving the LP, described using
a list of non-zero coordinates; the value of 𝑦 to (Conf-LP) is at least the optimum value minus
ln(1 + 𝜖). We can assume (1) holds with equalities:

∑
𝑖∈A,𝑆∋ 𝑗 𝑦𝑖,𝑆 = 1 for every 𝑗 ∈ G. Then we let

𝑥𝑖 𝑗 =
∑

𝑆∋ 𝑗 𝑦𝑖,𝑆 for every 𝑖 ∈ A and 𝑗 ∈ G. So
∑

𝑖∈A 𝑥𝑖 𝑗 = 1 for every 𝑗 ∈ G.
In this paragraph, we fix an agent 𝑖 and break the fractional items assigned to 𝑖 into a set

𝐺𝑖 of groups, each containing 1 fractional item. They are created in non-increasing order of
values, as in the Shmoys-Tardos algorithm for unrelated machine scheduling problems. That is,



6 / 12 Y. Feng, S. Li

the first group contains the 1 fractional most valuable items assigned to 𝑖, the second group
contains the 1 fractional most valuable items assigned to 𝑖 after removing the first group, and
so on. Formally, we sort the items in G in non-increasing order of 𝑣𝑖 𝑗 values, breaking ties
arbitrarily. Let 𝑝𝑖 = ⌈∑ 𝑗∈G 𝑥𝑖 𝑗⌉. Then we can find vectors 𝑔1, 𝑔2, · · · , 𝑔𝑝𝑖 ∈ [0, 1]G satisfying the
following properties:

(P1) For every 𝑡 ∈ [1, 𝑝𝑖−1], we have |𝑔𝑡 |1 = 1; for 𝑡 = 𝑝𝑖 , we have |𝑔𝑡 |1 =
∑

𝑗∈G 𝑥𝑖 𝑗− (𝑝𝑖−1) ∈
(0, 1].

(P2)
∑𝑝𝑖

𝑡=1 𝑔
𝑡
𝑗
= 𝑥𝑖 𝑗 for every 𝑗 ∈ G.

(P3) For every 1 ≤ 𝑡 < 𝑡′ ≤ 𝑝𝑖 , and two items 𝑗, 𝑗′ such that 𝑗 appears before 𝑗′ in the
ordering, it cannot happen that 𝑔𝑡

𝑗′ > 0 and 𝑔𝑡
′

𝑗
> 0.

It is easy to see that 𝑔1, 𝑔2, · · · , 𝑔𝑝𝑖 are uniquely determined by the three conditions. We say
each 𝑔𝑡 is a group. Let 𝐺𝑖 = {𝑔1, 𝑔2, · · · , 𝑔𝑝𝑖} be the set of all groups constructed for this agent 𝑖.

Now we take all agents 𝑖 into consideration and let 𝐺 = ⊎𝑖∈A𝐺𝑖 be the set of all groups
constructed.1 The representations of groups give a fractional matching between the groups 𝐺
and items G: an item 𝑗 is matched to a group 𝑔 ∈ [0, 1]G with a fraction of 𝑔 𝑗 . Then each item
is matched to an extent of 1, and every group 𝑔 is matched to an extent of |𝑔 |1. So a group is
matched to an extent of 1 if it is not the last group for an agent, and at most 1 otherwise.

We can efficiently partition the fractional matching between 𝐺 and G into a convex com-
bination of polynomial number of (partial-)matchings. If we randomly choose a matching from
the convex combination, the following property holds.

(★) For every group 𝑔 ∈ 𝐺 and item 𝑗 ∈ G, we have Pr[ 𝑗 is matched to 𝑔] = 𝑔 𝑗 .

Each matching in the combination naturally gives us an allocation of items to agents: If
an item 𝑗 ∈ G is matched to some group 𝑔 ∈ 𝐺𝑖 , then we assign 𝑗 to 𝑖. Our algorithm simply
outputs the best allocation from all matchings in the combination.

2.3 The Analysis

It is more convenient to analyze the following randomized rounding algorithm: randomly
choose a matching from the convex combination, and output the allocation corresponding to
the matching. Clearly, the deterministic algorithm can only perform better.

Let 𝑆𝑖 be the set of items assigned to 𝑖 by the randomized rounding algorithm. By (★) we
know that the probability that 𝑗 is assigned to 𝑖 is precisely 𝑥𝑖 𝑗 . (★) implies that an item 𝑗 ∈ G is
matched with probability 1. If a group 𝑔 has |𝑔 |1 = 1, then it is matched with probability 1.

With Theorem 1.3 on the quality of EF1 allocations in the setting of identical agents, we
prove the following key lemma:

1 It is possible that two groups from different sets 𝐺𝑖 and 𝐺𝑖′ have the same vector representation. So we treat 𝐺 as a
multi-set and we assume we know which set 𝐺𝑖 each group 𝑔 ∈ 𝐺 belongs to.



7 / 12 Approximating Weighted Nash Social Welfare with Additive Valuations

LEMMA 2.2. For every 𝑖 ∈ A, we have

E
[

ln 𝑣𝑖 (𝑆𝑖)
]
≥

∑︁
𝑆⊆G

𝑦𝑖,𝑆 · ln 𝑣𝑖 (𝑆) − 1
𝑒
.

PROOF . Throughout the proof, we fix the agent 𝑖. Let Δ > 0 be an integer, so that every 𝑦𝑖,𝑆 is
an integer multiple of 1/Δ, and the probability that 𝑆𝑖 = 𝑆 for any 𝑆 is also an integer multiple of
1/Δ.2 We consider an instance of the unweighted Nash Social Welfare problem with identical
additive valuations. In the instance, there are Δ copies of the agent 𝑖, and Δ𝑥𝑖 𝑗 copies of every
item 𝑗 ∈ G; so all the agents are identical. The 𝑦 = ( 𝑦𝑖,𝑆)𝑆⊆G vector gives us an allocation S to
the instance: For every 𝑆 ⊆ G, there are exactly Δ𝑦𝑖,𝑆 agents who get a copy of 𝑆. Notice that
this is a valid solution, as

∑
𝑆 𝑦𝑖,𝑆 = 1 and

∑
𝑆∋ 𝑗 𝑦𝑖,𝑆 = 𝑥𝑖 𝑗 for every item 𝑗.

The Nash Social Welfare of the allocation S is(∏
𝑆⊆G

𝑣𝑖 (𝑆)Δ𝑦𝑖,𝑆

)1/Δ

=
∏
𝑆⊆G

𝑣𝑖 (𝑆) 𝑦𝑖,𝑆 .

The distribution for 𝑆𝑖 also corresponds to an allocation S′ of items to agents: For every
𝑆 ⊆ G, there are Δ · Pr[𝑆𝑖 = 𝑆] agents who get a copy of 𝑆. Again, this is a valid solution as∑

𝑆 Pr[𝑆𝑖 = 𝑆] = 1 and
∑

𝑆∋ 𝑗 Pr[𝑆𝑖 = 𝑆] = E[𝑆𝑖 ∋ 𝑗] = 𝑥𝑖 𝑗 .
The Nash Social Welfare of the allocation S′ is(∏

𝑆⊆G
𝑣𝑖 (𝑆)Δ Pr[𝑆𝑖=𝑆]

)1/Δ

=
∏
𝑆⊆G

𝑣𝑖 (𝑆)Pr[𝑆𝑖=𝑆] .

A crucial property for the solution S′ is that it is EF1. Indeed, if Pr[𝑆𝑖 = 𝑆] > 0 for some 𝑆,
then 𝑆 contains exactly one item from each group in 𝐺𝑖 except for the last one, from which 𝑆

contains at most one item. Also, the items in the groups 𝐺𝑖 are sorted by (P3). So if there are two
sets 𝑆 and 𝑆′ in the support of the distribution for 𝑆𝑖 , and we remove the most valuable item
from 𝑆′, then 𝑆 beats 𝑆′ item by item.

Therefore, by Theorem 1.3, we know that the Nash Social Welfare of S′ is at least 𝑒−1/𝑒

times that of the optimum allocation for the instance, which is at least that of S. That is,∏
𝑆⊆G

𝑣𝑖 (𝑆)Pr[𝑆𝑖=𝑆] ≥ 𝑒−1/𝑒 ·
∏
𝑆⊆G

𝑣𝑖 (𝑆) 𝑦𝑖,𝑆 .

Taking logarithm on both sides gives the lemma. ■

Applying the lemma for every 𝑖 ∈ A and using linearity of expectation, we have

E

[∑︁
𝑖∈A

𝑤𝑖 · ln 𝑣𝑖 (𝑆𝑖)
]
≥

∑︁
𝑖∈A,𝑆⊆G

𝑤𝑖 · 𝑦𝑖,𝑆 · ln 𝑣𝑖 (𝑆) −
1
𝑒
.

2 We have that all 𝑦𝑖,𝑆 values are rational numbers. Under this condition, it is easy to guarantee that the probabilities are
rational numbers.
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We used that
∑

𝑖∈A 𝑤𝑖 = 1. By the convexity of exponential function, we have

E

[∏
𝑖∈A

𝑣𝑖 (𝑆𝑖)𝑤𝑖

]
≥ 𝑒−1/𝑒 · exp

( ∑︁
𝑖∈A,𝑆⊆G

𝑤𝑖 · 𝑦𝑖,𝑆 · ln 𝑣𝑖 (𝑆𝑖)
)
≥ 𝑒−1/𝑒 · opt

1 + 𝜖
,

where opt is the weighted Nash Social Welfare of the optimum allocation, and the second
inequality used that the value of our solution 𝑦 to (Conf-LP) is at least its optimum value minus
ln(1 + 𝜖). By scaling 𝜖 down by an absolute constant at the beginning, we can make the right
side to be at least opt

𝑒1/𝑒+𝜖 . As we argued, the deterministic algorithm will output an allocation
whose weighted Nash Social Welfare is at least opt

𝑒1/𝑒+𝜖 . This finishes the proof of Theorem 1.1.

3. Solving Configuration LP within an Additive Error of ln(1 + 𝝐):
Proof of Theorem 2.1

In this section, we prove Theorem 2.1. By scaling valuation functions, we assume 𝑣𝑖 𝑗 = 0 or
𝑣𝑖 𝑗 ≥ 1 for every 𝑖 ∈ A, 𝑗 ∈ G; this does not change the instance. Let lp be the value of the
(Conf-LP). As we assumed there is an allocation with positive value, we have lp ≠ −∞.

We assume 𝜖 > 0 is upper bounded by a sufficiently small constant; otherwise, we take 𝜖

to be the constant. We say an algorithm is efficient if its running time is polynomial in the size
of the input instance and 1

𝜖 . We assume that we are given a number 𝑜 < lp. Our goal is to find a
valid solution to (Conf-LP) with rational coordinates, whose value is at least 𝑜 − 𝜖

4 − ln
(
1 + 𝜖

4
)
.

At the end of the section, we show that this is sufficient.

We consider the dual of (Conf-LP), with the objective replaced by a constraint.∑︁
𝑗∈G

𝛼 𝑗 +
∑︁
𝑖∈A

𝛽𝑖 ≤ 𝑜 (4)∑︁
𝑗∈𝑆

𝛼 𝑗 + 𝛽𝑖 ≥ 𝑤𝑖 · ln 𝑣𝑖 (𝑆) ∀𝑖 ∈ A, 𝑆 ⊆ G (5)

𝛼 𝑗 ≥ 0 ∀ 𝑗 ∈ G (6)

As we assumed 𝑜 < lp, the dual LP (4-6) is infeasible. Abusing the terminology slightly, we say
a vector (𝛼 ∈ RG≥0, 𝛽 ∈ RA) is an optimum solution to the dual LP if it minimizes the left-side
of (4), subject to (5) and (6). By linear programming duality, an optimum solution (𝛼, 𝛽) has∑

𝑗∈G 𝛼 𝑗 +
∑

𝑖∈A 𝛽𝑖 = lp.
To check the feasibility of dual LP, we need an approximate separation oracle for (5). This

can be done using dynamic programming:
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LEMMA 3.1. Given (𝛼 ∈ RG≥0, 𝛽 ∈ RA) that does not satisfy (5), there is an efficient oracle that
finds some 𝑖 ∈ A and 𝑆′ ⊆ G satisfying∑︁

𝑗∈𝑆′
𝛼 𝑗 + 𝛽𝑖 < 𝑤𝑖 · ln

( (
1 + 𝜖

2
)
𝑣𝑖 (𝑆′)

)
. (7)

PROOF . Suppose (5) is not satisfied for 𝑖 ∈ A and 𝑆 ⊆ G. We can guess the agent 𝑖, and the
item 𝑗∗ ∈ 𝑆 with the largest 𝑣𝑖 𝑗∗ . Then we discard the items 𝑗 with 𝑣𝑖 𝑗 > 𝑣𝑖 𝑗∗ . Let G′ be the set of
remaining items. For every 𝑗 ∈ G′, we round down 𝑣𝑖 𝑗 to the nearest integer multiple of 𝜖·𝑣𝑖 𝑗∗

2𝑚 ;
let �̄�𝑖 𝑗 be the rounded value. As �̄�𝑖 𝑗 values are integer multiples of 𝜖·𝑣𝑖 𝑗∗

2𝑚 not exceeding 𝑣𝑖 𝑗∗ , we
can afford to guess �̄� := �̄�𝑖 (𝑆) as it has only 𝑂(𝑚2

𝜖 ) possibilities.
We solve the following knapsack covering problem: find a set 𝑆′ ⊆ G′ such that �̄�𝑖 (𝑆′) ≥ �̄�

so as to minimize
∑

𝑗∈𝑆′ 𝛼 𝑗 . As the �̄�𝑖 𝑗 values are of the form 𝑧·𝜖·𝑣𝑖 𝑗∗
2𝑚 with 𝑧 ∈

[
0, 2𝑚

𝜖

]
being

integers, the problem can be solved efficiently and exactly using dynamic programming. As
the set 𝑆 is a valid solution to the knapsack covering instance, the solution 𝑆′ returned satisfies
�̄�𝑖 (𝑆′) ≥ �̄� = �̄�𝑖 (𝑆) and

∑
𝑗∈𝑆′ 𝛼 𝑗 ≤

∑
𝑗∈𝑆 𝛼 𝑗 . So,

𝑣𝑖 (𝑆′) ≥ �̄�𝑖 (𝑆′) ≥ �̄�𝑖 (𝑆) ≥ 𝑣𝑖 (𝑆) −𝑚 ·
𝜖 · 𝑣𝑖 𝑗∗

2𝑚
= 𝑣𝑖 (𝑆) −

𝜖 · 𝑣𝑖 𝑗∗
2

≥ 𝑣𝑖 (𝑆) −
𝜖

2
· 𝑣𝑖 (𝑆′).

Therefore 𝑣𝑖 (𝑆) ≤
(
1 + 𝜖

2
)
𝑣𝑖 (𝑆′). Then (7) follows from that (5) is not satisfied for 𝑖, 𝑆.

We need to guess 𝑖, 𝑗∗ and �̄� ; there are 𝑂( 𝑛𝑚3

𝜖 ) possibilities for the combination. For a fixed
𝑖, 𝑗∗ and �̄� , the dynamic programming runs in 𝑂(𝑚3

𝜖 )-time. So, overall, the running time of the
oracle is poly

(
𝑛, 𝑚, 1

𝜖

)
.3 Finally as (7) can be verified easily for any given 𝑖 and 𝑆′, incorrect

guesses will not cause any issue. ■

To run the ellipsoid method, we need some bounds on 𝛼 𝑗 and 𝛽𝑖 values. This is not
straightforward as the 𝛽𝑖 values can be negative. We define 𝑣max := max𝑖∈A, 𝑗∈G 𝑣𝑖 𝑗 .

LEMMA 3.2. There is an optimum solution (𝛼 ∈ RG≥0, 𝛽 ∈ RA) to the dual LP such that 𝛼 𝑗 ∈
[0, ln(𝑚𝑣2

max)] for every 𝑗 ∈ G and |𝛽𝑖 | ≤ ln(𝑚𝑣2
max) for every 𝑖 ∈ A.

PROOF . We modify constraint (5) in the dual LP (4-6), so that we only consider the constraint
for pairs (𝑖 ∈ A, 𝑆 ⊆ G) satisfying 𝑣𝑖 𝑗 > 0 for every 𝑗 ∈ 𝑆. This does not change the dual LP as
constraint (5) for a pair (𝑖, 𝑆) is implied by the constraint for the pair (𝑖, { 𝑗 ∈ 𝑆 : 𝑣𝑖 𝑗 > 0}). Let(
𝛼 ∈ RG≥0, 𝛽 ∈ RA

)
an optimum solution to the dual LP with the smallest

∑
𝑗∈G 𝛼 𝑗; notice that∑

𝑗∈G 𝛼 𝑗 +
∑

𝑖∈A 𝛽𝑖 = lp. Let Π be the set of (𝑖, 𝑆) pairs for which (5) is tight for the given (𝛼, 𝛽),
after the modification to constraint (5).

We argue that if 𝛽𝑖 < 0 and |𝑆 | ≥ 2, then (𝑖, 𝑆) ∉ Π. Assume towards the contradiction that
some (𝑖, 𝑆) ∈ Π has 𝛽𝑖 < 0 and |𝑆 | ≥ 2.

3 We remark that we did not try to optimize the running time.
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Every 𝑗 ∈ 𝑆 has 𝑣𝑖 𝑗 ≥ 1 by the assumption made at the beginning of the section. We have
𝛼 𝑗 + 𝛽𝑖 ≥ 𝑤𝑖 · ln 𝑣𝑖 𝑗 for every 𝑗 ∈ 𝑆 as (5) holds for (𝑖, { 𝑗}). Summing up the inequalities over all
𝑗 ∈ 𝑆 gives us

∑
𝑗∈𝑆 𝛼 𝑗 + |𝑆 |𝛽𝑖 ≥ 𝑤𝑖 ·

∑
𝑗∈𝑆 ln 𝑣𝑖 𝑗 ≥ 𝑤𝑖 ln 𝑣𝑖 (𝑆). Therefore

∑
𝑗∈𝑆 𝛼 𝑗 + 𝛽𝑖 > 𝑤𝑖 ln 𝑣𝑖 (𝑆)

as |𝑆 | ≥ 2 and 𝛽𝑖 < 0, a contradiction.
Let A′ be the set of agents 𝑖 with 𝛽𝑖 < 0. Let 𝐸 =

{
(𝑖, 𝑗) : 𝑖 ∈ A′, (𝑖, { 𝑗}) ∈ Π

}
. We

prove that there is a matching in the bipartite graph 𝐻 := (A′ ∪ G, 𝐸) covering all agents A′.
Otherwise, there is a set A′′ ⊆ A′ of agents with |𝑁𝐻 (A′′) | < |A′′|, where 𝑁𝐻 (A′′) is the set of
neighbors of A′′ in 𝐻 . Then consider the following operation: decreasing 𝛽𝑖 for every 𝑖 ∈ A′′

by 𝛿 and increasing 𝛼 𝑗 for every 𝑗 ∈ 𝑁𝐻 (A′′) by 𝛿, for a small enough 𝛿 > 0. This decreases∑
𝑗∈G 𝛼 𝑗 +

∑
𝑖∈A 𝛽𝑖 as |𝐶 ∩ G| ≥ |𝐶 ∩ A| without violating (5) and (6), contradicting that (𝛼, 𝛽) is

optimum.
Focus on any connected component 𝐶 of 𝐻 . We prove that some 𝑗 ∈ 𝐶 ∩ G has 𝛼 𝑗 ≤

ln(𝑚𝑣max). Assume this is not the case; that is, every 𝑗 ∈ 𝐶 ∩ G has 𝛼 𝑗 > ln(𝑚𝑣max). Consider
the following operation: decreasing 𝛼 𝑗 by 𝛿 for every 𝑗 ∈ 𝐶 ∩ G and increasing 𝛽𝑖 by 𝛿 for every
𝑖 ∈ 𝐶 ∩ A, for a small enough 𝛿 > 0. This operation does not break constraint (5) for any 𝑖

with 𝛽𝑖 ≥ 0, as the right side of (5) is at most ln(𝑚𝑣max). It does not break the constraint for
any 𝑖 with 𝛽𝑖 < 0 as 𝛿 is sufficiently small. Moreover, the operation decreases

∑
𝑗∈G 𝛼 𝑗 without

increasing
∑

𝑗∈G 𝛼 𝑗 +
∑

𝑖∈A 𝛽𝑖 as |𝐶 ∩ G| ≥ |𝐶 ∩ A|, contradicting the way we choose (𝛼, 𝛽).
Therefore, every connected component𝐶 of 𝐻 contains some 𝑗 ∈ 𝐶∩G with𝛼 𝑗 ≤ ln(𝑚𝑣max).

Recall that every (𝑖, 𝑗) ∈ 𝐸 has 𝛽𝑖 < 0 and 𝛽𝑖 + 𝛼 𝑗 = 𝑤𝑖 · ln 𝑣𝑖 𝑗 . This is equivalent to 𝛼 𝑗 =

−𝛽𝑖 + 𝑤𝑖 · ln 𝑣𝑖 𝑗 . There is a simple path in 𝐻 connecting every vertex A′ ∪ G to an item 𝑗

with 𝛼 𝑗 ≤ ln(𝑚𝑣max). So, 𝛼 𝑗 for every 𝑗 ∈ G (respectively, −𝛽𝑖 for every 𝑖 ∈ A′) is at most
ln(𝑚𝑣max) +

∑
𝑖∈A′ 𝑤𝑖 ln 𝑣max ≤ ln(𝑚𝑣max) + ln 𝑣max = ln(𝑚𝑣2

max). Finally, for 𝑖 ∈ A \ A′, we
have 𝛽𝑖 ≥ 0. Clearly we have 𝛽𝑖 ≤ 𝑤𝑖 ln(𝑚𝑣max) ≤ ln(𝑚𝑣max) since other decreasing 𝛽𝑖 to
𝑤𝑖 ln(𝑚𝑣max) will not break any constraint, violating the optimality of (𝛼, 𝛽). ■

With the lemma, we start the ellipsoid method with the smallest ellipsoid containing
the cuboid [0, 𝑚𝑣2

max]G × [−𝑚𝑣2
max, 𝑚𝑣2

max]A . We terminate the procedure when the volume
of the ellipsoid is less than that of the cuboid

[
0, 𝜖

4(𝑛+𝑚)

]𝑛+𝑚
. The algorithm terminates in

poly
(
𝑛, 𝑚, log 1

𝜖 , log 𝑣max
)

iterations and is thus efficient.

We claim the following LP is infeasible:∑︁
𝑗∈G

𝛼 𝑗 +
∑︁
𝑖∈A

𝛽𝑖 ≤ 𝑜 − 𝜖

4
(8)∑︁

𝑗∈𝑆′
𝛼 𝑗 + 𝛽𝑖 ≥ 𝑤𝑖 · ln

( (
1 + 𝜖

2
)
𝑣𝑖 (𝑆′)

)
∀(𝑖, 𝑆′) used by the ellipsoid method (9)

𝛼 𝑗 ≥ 0 ∀ 𝑗 ∈ G (10)
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Otherwise, assume some (𝛼, 𝛽) is a feasible solution to the above LP. Then the cuboid{
(𝛼, 𝛽) + 𝛿 : 𝛿 ∈

[
0, 𝜖

4(𝑛+𝑚)
]G∪A

}
would be still contained in the final ellipsoid, contradicting our

termination condition.
We consider the weighted Nash Social Welfare instance where all 𝑣𝑖 𝑗 values are scaled

up by 1 + 𝜖
2 , and (Conf-LP) to the instance. By solving the LP restricted to the variables 𝑦𝑖,𝑆′

corresponding to constraints (9) (that is, we fix the other variables to 0), we obtain a solution 𝑦

whose value is at least 𝑜− 𝜖
4 w.r.t the scaled instance. The LP solver runs in polynomial time as the

number of variables 𝑦𝑖,𝑆′ now is polynomial. So, the value of the solution 𝑦 to (Conf-LP) w.r.t the
original instance is at least 𝑜− 𝜖

4 −
∑

𝑖∈A,𝑆⊆G 𝑦𝑖,𝑆𝑤𝑖 ln
(
1+ 𝜖

4
)
= 𝑜−∑

𝑖 𝑤𝑖 ln
(
1+ 𝜖

4
)
= 𝑜− 𝜖

4 − ln
(
1+ 𝜖

4
)
.

Moreover, if 𝑦 is a vertex solution, then it is rational as all the coefficients in the LP constraints
are in {0, 1}.

Finally, we show how to handle the assumption that we are given the parameter 𝑜. By
only allowing every agent to get one item, we can obtain an 𝑚-approximation for the weighted
Nash Social Welfare instance. Therefore, we can construct a list of 𝑂

(
log𝑚
𝜖

)
values of 𝑜, such

that for some value 𝑜 in the list, we have lp ∈ (𝑜, 𝑜 + 𝜖
4]. For every 𝑜 in the list, we run the above

algorithm and return the best solution constructed. In particular, for the 𝑜 with lp ∈ (𝑜, 𝑜 + 𝜖
4],

the solution has value at least 𝑜 − 𝜖
4 − ln

(
1 + 𝜖

4
)
≥ lp − 𝜖

4 − 𝜖
4 − ln

(
1 + 𝜖

4
)
≥ lp − ln(1 + 𝜖) for a

sufficiently small 𝜖. Therefore, the best solution returned has value at least lp − ln(1 + 𝜖); this
finishes the proof of Theorem 2.1.
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Nash social welfare for coverage and other
submodular valuations. Proceedings of the
Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’21. 2021.,
pages 1119–1130. DOI (3)

[27] Herve Moulin. Fair Division and Collective Welfare.
The MIT Press, 2004. DOI (2)

[28] John F. Nash. The Bargaining Problem.
Econometrica, 18(2):155–162, 1950. DOI (2)

[29] Nhan-Tam Nguyen, Trung Thanh Nguyen,
Magnus Roos, and Jörg Rothe. Complexity and
approximability of social welfare optimization in
multiagent resource allocation. Proceedings of the
11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, AAMAS
’12, pages 1287–1288, 2012. DOI (2)

[30] Jack Robertson and William Webb. Cake-Cutting
Algorithms: Be Fair if You Can. A K Peters/CRC
Press, 1998. DOI (2)

[31] Jörg Rothe, editor. Economics and Computation,
An Introduction to Algorithmic Game Theory,
Computational Social Choice, and Fair Division.
Springer texts in business and economics. Springer,
2016. DOI (2)
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