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ABSTRACT. We give a construction of public key quantum money, and even a strengthened
version called quantum lightning, from abelian group actions, which can in turn be constructed
from suitable isogenies over elliptic curves. We prove security in the generic group model for
group actions under a plausible computational assumption, and develop a general toolkit for
proving quantum security in this model. Along the way, we explore knowledge assumptions
and algebraic group actions in the quantum setting, finding significant limitations of these
assumptions/models compared to generic group actions.

1. Introduction

Quantum money, first envisioned by Wiesner [64], is a system of money where banknotes
are quantum states. By the no-cloning theorem, such banknotes cannot be copied, leading
to un-counterfeitable currency. A critical goal for quantum money, identified by [1], is public
verification, allowing anyone to verify while only the mint can create new banknotes. Such
public key quantum money is an important central object in the study of quantum protocols,
but unfortunately convincing constructions have remained elusive. See Section 1.5 for a more
thorough discussion of prior work in the area.

This Work. We construct public key quantum money from abelian group actions, which can be
instantiated by suitable isogenies over ordinary elliptic curves. Group actions, and the isogenies
they abstract, are one of the leading contenders for post-quantum secure cryptosystems. Our
construction could plausibly even be quantum lightning, a strengthening of quantum money
with additional applications. Our construction is arguably the first time group actions have
been used to solve a classically-impossible cryptographic task that could not already be solved
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using other standard tools like LWE. Our construction is sketched in Section 1.1 below, and
given in detail in Section 3.

While our main construction can be instantiated on a clean abelian group action — often
referred to as an “effective group action” (EGA) — many isogeny-based group actions diverge
from this convenient abstraction. We therefore provide an alternative candidate scheme which
can be instantiated on so-called “restricted effective group actions” (REGAs); see Section 6 for
details. We prove the quantum lightning security of our protocols in the generic group action
model — a black box model for group actions — assuming a new but natural strengthening of
the discrete log assumption on group actions. Note that generic group actions cannot be used to
give unconditional quantum hardness results, so some additional computational assumption is
necessary. In order to prove our result, we develop a new toolkit for quantum generic group
action proofs; see Section 4. We believe ours is the first proof of security in the quantum generic
group action model.

Along the way, we explore knowledge assumptions and algebraic group actions in the
quantum setting, finding significant limitations of these assumptions/models compared to
generic group actions. Specifically, unlike the classical setting where knowledge assumptions
typically hold unconditionally against generic attacks, we explain why such statements likely do
not hold quantumly. In the specific case of group actions, we indeed show an efficient generic
attack on an analog of the “knowledge of exponent” assumption. This potentially casts doubt
on quantum knowledge assumptions in general. We do give a more complex definition that
avoids our attack, but it is unclear if the assumption is sound and more analysis is needed. For
completeness, we give an alternative proof of security for our construction under this new
knowledge assumption, which avoids generic group actions.

We also discuss an algebraic model for group actions, which can be seen as a variant of
the knowledge of exponent assumption. Unlike the classical setting where algebraic models live
“between” the fully generic and standard models, we find that the algebraic group action model
is likely incomparable to the generic group action model, and security proofs in the model are
potentially problematic. As these issues do not appear for generic group actions, we therefore
propose that generic group actions are the preferred quantum idealized model for analyzing
cryptosystems, instead of the algebraic group action model as argued for in [28]. See Section 5
for details.

We conclude in Section 7 with a discussion of possible generalizations. In particular, we
propose the notion of a quantum group action where the set elements are quantum states
instead of bit strings. We discuss how instantiating our scheme on quantum group actions is
closely related to failed approaches for building quantum money from LWE, but different in
key ways that seem to allow our scheme to remain secure while the related LWE approaches
failed.
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1.1 Our Construction

Abelian Group Actions. We will use additive group notation for abelian groups. An abelian
group action consists of an abelian group G and a set X, such that G “acts” on X through the
efficiently computable binary relation ∗ : G×X → Xwith the property that 𝑔∗(ℎ∗𝑥) = (𝑔+ℎ)∗𝑥
for all 𝑔, ℎ ∈ G, 𝑥 ∈ X. We will also assume a regular group action, which means that for every
𝑥 ∈ X, the map 𝑔 ↦→ 𝑔 ∗ 𝑥 is a bijection.

The main group actions used in cryptography are those arising from isogenies over elliptic
curves. For example, see [20, 58, 16, 9, 22]. Group action cryptosystems rely at a minimum
on the assumed hardness of discrete logarithms: given 𝑥, 𝑦 = 𝑔 ∗ 𝑥 ∈ X, finding 𝑔. In other
words, while the map 𝑔 ↦→ 𝑔 ∗ 𝑥 is efficiently computable and has an inverse, the inverse is
not efficiently computable. For isogeny-based actions, this corresponds to the hard problem
of computing isogenies between elliptic curves. Other hard problems on group actions are
possible to consider, such as analogs of computational/decisional Diffie-Hellman, and more.

The QFT. Our quantum money scheme will utilize the quantum Fourier transform (QFT) over
general abelian groups. This is a quantum procedure that maps

|𝑔⟩ ↦→ 1√︁
|G|

∑︁
ℎ∈G

𝜒(𝑔, ℎ) |ℎ⟩ .

Here, 𝜒 is some potentially complex phase term. In the case of G being the additive group Z𝑁 ,
𝜒(𝑔, ℎ) is defined as 𝑒𝑖2𝜋𝑔ℎ/𝑁 , with a slightly more complicated definition for non-cyclic groups1.
The main property we utilize from 𝜒 (besides making the QFT unitary) is that it is bilinear, in
the sense that 𝜒(𝑔, ℎ1 + ℎ2) = 𝜒(𝑔, ℎ1) · 𝜒(𝑔, ℎ2). It is also symmetric: 𝜒(𝑔, ℎ) = 𝜒(ℎ, 𝑔).

Our Quantum Money Scheme. Our quantum money scheme is as follows; see Section 3 for
additional details.

Gen: initialize a register in the state 1√
|G|

∑
𝑔∈G |𝑔⟩, which can be computed by applying the

QFT to |0⟩. Let 𝑥 ∈ X be arbitrary. Then by computing the group action in superposition,
compute 1√

|G|

∑
ℎ∈G |𝑔⟩|𝑔 ∗ 𝑥⟩. Next, apply the QFT over G to the first register. The result is:

1
|G|

∑︁
𝑔,ℎ∈G

𝜒(𝑔, ℎ) |ℎ⟩|𝑔 ∗ 𝑥⟩ = 1√︁
|G|

∑︁
ℎ

|ℎ⟩|Gℎ ∗ 𝑥⟩

Here, |Gℎ ∗ 𝑥⟩ is the state 1√
|G|

∑
𝑔∈G 𝜒(𝑔, ℎ) |𝑔 ∗ 𝑥⟩. Note that |Gℎ ∗ 𝑥⟩ is, up to an overall

phase, independent of 𝑥.
Now measure ℎ, in which case the second register collapses to |Gℎ ∗ 𝑥⟩. Output ℎ as the
serial number, and |Gℎ ∗ 𝑥⟩ as the money state.

1 Remember that the group operation is +, so 𝑔ℎ in the exponent is not the group operation, but instead multiplication in
the ring Z𝑁 .
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To verify a banknote $, we do the following2: Initialize a new register in the state |𝜙⟩ :=
1√
|G|

∑
𝑢∈G |𝑢⟩. Then apply the map (𝑢, 𝑦) ↦→ (𝑢, (−𝑢) ∗ 𝑦) to the joint system |𝜙⟩ × $ 3. In

the case where $ is the honest banknote |Gℎ ∗ 𝑥⟩, the result is
1
|G|

∑︁
𝑢∈G
|𝑢⟩

∑︁
𝑔∈G

𝜒(𝑔, ℎ) | (𝑔 − 𝑢) ∗ 𝑥⟩ = 1
|G|

∑︁
𝑢∈G
|𝑢⟩

∑︁
𝑔′∈G

𝜒(𝑔′ + 𝑢, ℎ) |𝑔′ ∗ 𝑥⟩

=
1
|G|

∑︁
𝑢∈G

𝜒(𝑢, ℎ) |𝑢⟩
∑︁
𝑔∈G

𝜒(𝑔′, ℎ) |𝑔′ ∗ 𝑥⟩

=

(
1√︁
|G|

∑︁
𝑢∈G

𝜒(𝑢, ℎ) |𝑢⟩
)
|Gℎ ∗ 𝑥⟩

where we used the substitution 𝑔′ = 𝑔 − 𝑢. Thus we see that this process preserves the
honest banknote state |Gℎ ∗ 𝑥⟩. Moreover, if we apply the inverse QFT to the first register,
the result for honest banknotes is |ℎ⟩, and for any state orthogonal to the honest banknote,
the result of the inverse QFT will be something orthogonal to |ℎ⟩. Thus by measuring this
register and checking if the result is ℎ, we can distinguish the honest banknote state from
any other state.

An instantiation using REGAs. In some isogeny-based group actions such as CSIDH [16], the
operation ∗ is only efficiently computable for a very small set 𝑆 ⊆ G of group elements. Such
group actions are called “restricted effective group actions” (REGAs) [3]. Above, however, we
see that we need to compute the group action on all possible elements in G, both for minting
and for verification. We therefore give a variant of the construction above which only uses
the ability to compute ∗ for elements in 𝑆. We show that we are still able to sample |Gℎ ∗ 𝑥⟩,
but now the serial number has the form A𝑇ℎ + e mod 𝑁 for a known matrix A and a “small”
e ∈ Z𝑛 4. Under plausible assumptions, the serial number actually hides ℎ 5. We nevertheless
show that we can use such a noisy serial number for verification. For details, see Section 6. The
security of our alternate scheme is essentially equivalent to the main scheme.

2 In an initial version of this work, we had a more complicated verification. The simplified version here was pointed out
to us by Jake Doliskani.

3 Note that we used the “minimal” oracle here for the group action computation, having (−𝑢) ∗ 𝑦 replace 𝑦, instead of
being written to a response register as in the standard quantum oracle. However, since the computation 𝑦 ↦→ (−𝑢) ∗ 𝑦
is efficiently reversible given 𝑢 (by 𝑦 ↦→ 𝑢 ∗ 𝑦), we can easily implement the minimal oracle efficiently by first computing
| (−𝑢) ∗ 𝑦⟩, then uncomputing | 𝑦⟩ using the efficient inverse, and finally swapping in | (−𝑢) ∗ 𝑦⟩.

4 Here, we are interpreting ℎ a vector in Z𝑛𝑁 for some 𝑛, 𝑁 , which is possible since G is abelian.

5 This is the search Learning with Errors (search LWE) problem [53] which is widely believed to be hard for random A. In
our case, A is a fixed matrix that depends on the group action, and LWE may or may not be hard for this A. However,
if LWE is easy for this A, then we in fact have a plain group action. Indeed, a variant of Regev’s quantum reduction
between LWE and Short Integer Solution (SIS) [53], outlined by [68], shows that if LWE can be solved relative to A,
then SIS can be solved for A as well. It is straightforward to adapt this reduction to solve the Inhomogeneous SIS
(ISIS) problem, which then allows for computing the group action for all of G. In this case we would have a clean group
action and would not need this alternate construction.
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1.2 The security of our scheme

We do not know how to base the security of our schemes on any standard assumptions on
isogenies. However, we are able to prove the security of our scheme in a black box model for
group actions called the generic group action model (GGAM), an analog of the generic group
model [60, 44] adapted to group actions. Generic models for group actions have been considered
previously [46, 10, 49, 28]. While the model is motivated by post-quantum security, to the best of
our knowledge ours is the first time the model has been used to actually prove security against
quantum attacks.

The challenge with the quantum GGAM is that the query complexity of computing discrete
logarithms is actually polynomial (this follows from [29]; see Section 4 for an explanation). This
means we cannot rely on query complexity alone to justify hardness, and must additionally make
computational assumptions. This is in contrast to the classical setting, where the generic group
(action) model allows for unconditional proofs of security by analyzing query complexity alone.
In fact, most if not all generic group model proofs from the classical setting are unconditional
query complexity proofs. This means that proofs in the quantum GGAM will look very different
than classical proofs in the GGM/GGAM; in particular, proofs will still require a reduction from
an underlying hard computational problem. At the same time, in order to take advantage of
the generic oracle setting, it would seem that quantum query complexity arguments are still
needed. But a priori, it may not be obvious how to leverage query complexity in any useful way,
given the preceding discussion.

Our Framework. In Section 4, we develop a new framework to help in the task of proving
quantum hardness results relative to generic group actions. To illustrate our ideas, we consider
the following warm-up task. An important feature in some isogeny-based group actions are
twists, which allow for computing “negations”: computing (−𝑔) ∗ 𝑥 from 𝑔 ∗ 𝑥. An interesting
question is whether this additional structure makes computing discrete logarithms easier. Here,
we show that for generic group actions, such negations are unlikely to make discrete logarithms
any easier than in group actions without negations. Concretely, we will show that discrete
logarithms are generically hard, assuming a plausible computational assumption on some
group action where such negation queries are not permitted.

Suppose toward contradiction that there was a generic adversary which could utilize
negation queries to solve discrete logarithms. Let (∗,G,X) be a plain group action where
negation queries are not allowed. We will define a new group action (★,G,X′) as follows. First
sample a random injection Π : X2 → {0, 1}𝑚 whose inputs are pairs of set elements. Then
define X′ as the image under Π of pairs of the form (𝑔 ∗ 𝑥, (−𝑔) ∗ 𝑥). ★ acts in the natural way:
𝑔 ★Π( 𝑦, 𝑧) = Π(𝑔 ∗ 𝑦, (−𝑔) ∗ 𝑧).
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Our reduction will sample a Π 6 and run the generic adversary on the new group action,
using its knowledge of Π and its inverse to implement the action★. Notice now that our reduction
also has the ability to compute negations: given Π( 𝑦, 𝑧) where 𝑦 = 𝑔 ∗ 𝑥 and 𝑧 = (−𝑔) ∗ 𝑥, the
negation of Π( 𝑦, 𝑧) is exactly the element Π(𝑧, 𝑦) obtained by swapping 𝑦 and 𝑧. Thus, our
reduction is able to simulate the negation queries, even though the underlying group action
does not support efficient negations. This is our main idea, though there are a couple lingering
issues to sort out:

The reduction cannot perfectly simulate (★,G,X′). The issue is that there are elements
Π( 𝑦, 𝑧) where 𝑦, 𝑧 do not have the form 𝑦 = 𝑔 ∗ 𝑥, 𝑧 = (−𝑔) ∗ 𝑥 for some 𝑔. In the group
action (★,G,X′), these elements will be identified as invalid set elements. On the other
hand, while our reduction can carry out the correct computation on 𝑦, 𝑧 of the correct
form, it will be unable to distinguish such 𝑦, 𝑧 from ones of the incorrect form, and will
act on these elements even though they are incorrect. As such, there will be elements that
are not in X′ that the reduction will nevertheless falsely identify as valid set elements. We
resolve this problem by choosing the images of Π to be somewhat sparse, by setting the
output length 𝑚 sufficiently large. Our reduction only provides the adversary elements
corresponding to valid 𝑦, 𝑧, and we can show, roughly, that the adversary has a negligible
chance of computing elements in the image of Π that correspond to invalid 𝑦, 𝑧. This
follows from standard query complexity arguments. Thus, we are able to simulate with
negligible error the correct group action (★,G,X′).
We have not yet specified what problem the reduction actually solves. The problem we
would like to solve is the plain discrete logarithm on (∗,G,X), where the reduction is given
𝑔 ∗𝑥, and must compute 𝑔 . However, it is unclear what challenge the reduction should give
to the adversary. The natural approach is to try to give the adversary Π(𝑔 ∗ 𝑥, (−𝑔) ∗ 𝑥),
which is just the discrete log instance relative to (★,G,X′) with the same solution 𝑔; the
reduction can then simply output whatever the adversary outputs. However, this requires
the reduction to know (−𝑔) ∗ 𝑥, which is presumably hard to compute given just 𝑔 ∗ 𝑥
(remember that negation queries are not allowed on (∗,G,X)). Our solution is to simply use
a slight strengthening of discrete logarithms, where the adversary is given (𝑔 ∗ 𝑥, (−𝑔) ∗ 𝑥)
and must compute 𝑔. Under the assumed hardness of this strengthened discrete log
problem (again, in ordinary group actions where negations are presumed hard), we can
complete the reduction and prove the generic hardness of discrete logarithms in the
presence of negation queries.

6 A random injection is exponentially large and cannot be sampled efficiently. Instead, the reduction will actually
efficiently simulate a random injection Π using known techniques. For the purposes of our discussion here, we can
ignore this issue.
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The security of our money scheme. We now turn to using our framework to prove the
security of our quantum money scheme in the GGAM. Inspired by our negation example above,
we will simulate a generic group action (★,G,X′) using an injection Π applied to a vector of
set elements. Our goal will be to use two banknotes with the same serial number relative to
(★,G,X′) in order to break some distinguishing problem relative to (∗,G,X). Any quantum
money adversary yields such a pair of banknotes, and so if the distinguishing problem is hard,
then there can be no such efficient quantum money adversary. This argument in fact shows the
scheme attains the stronger notion of quantum lightning [68], which has additional applications.

Concretely, our starting assumption gives the adversary 𝑦 = 𝑢 ∗ 𝑥 for a random 𝑢, and then
allows the adversary a single quantum query to 𝑧 ↦→ 𝑣 ∗ 𝑧 for an unknown 𝑣, where either 𝑣 is
random or 𝑣 = 2𝑢. The adversary then has to tell whether 𝑣 = 2𝑢 or not. It is straightforward
to prove this assumption is true in the classical GGAM. In fact, it is a quantum analog of the
classical group-based problem of distinguishing 𝑔𝑎, 𝑔𝑏 from 𝑔𝑎, 𝑔𝑎2 for a group generator 𝑔 , a
widely used Diffie-Hellman-like assumption. Under this analogy, 𝑔 plays the role of 𝑥, 𝑎 plays
the role of 𝑢, and 𝑏 plays the role of 𝑣. The main difference from the classical assumption
(besides being over group actions instead of groups) is that, instead of receiving 𝑔𝑏 or 𝑔𝑎2 , the
adversary receives ℎ𝑏 or ℎ𝑎2 for an adversarially chosen ℎ, and we allow the adversary’s ℎ to be
in superposition.

Our idea is to have X′ be elements of the form Π(𝑔 ∗ 𝑥, 𝑔 ∗ 𝑦) where 𝑦 = 𝑢 ∗ 𝑥 is the
challenge given by the assumption. Let 𝑋 = Π(𝑥, 𝑦) ∈ X′. Now consider the output of a
successful adversary, which is two copies of the banknote |Gℎ ★ 𝑋⟩ relative to (★,G,X′) for
some serial number ℎ. Now consider applying the following process to, say, the first copy: map
any element Π(𝑧1, 𝑧2) in the range of Π to Π(𝑧2, 𝑣 ∗ 𝑧1), where we compute 𝑣 ∗ 𝑧1 from 𝑧1 using
the challenge oracle. We then observe that if 𝑣 = 2𝑢, this process preserves the banknote:

|Gℎ ★ 𝑋′⟩ = 1√︁
|G|

∑︁
𝑔∈G

𝜒(𝑔, ℎ) |𝑔 ★Π(𝑥, 𝑦)⟩ = 1√︁
|G|

∑︁
𝑔∈G

𝜒(𝑔, ℎ) |Π(𝑔 ∗ 𝑥, 𝑔 ∗ 𝑦)⟩

↦→ 1√︁
|G|

∑︁
𝑔∈G

𝜒(𝑔, ℎ) |Π(𝑔 ∗ 𝑦, (𝑔 + 2𝑢) ∗ 𝑥)⟩

=
1√︁
|G|

∑︁
𝑔∈G

𝜒(𝑔, ℎ) |Π((𝑔 + 𝑢) ∗ 𝑥, (𝑔 + 2𝑢) ∗ 𝑥)⟩

= 𝜒(−𝑢, ℎ) 1√︁
|G|

∑︁
𝑔′∈G

𝜒(𝑔′, ℎ) |Π(𝑔′ ∗ 𝑥, 𝑔′ ∗ 𝑦)⟩ = 𝜒(−𝑢, ℎ) |Gℎ ★ 𝑋′⟩ .

Above, we used the substitution 𝑔′ = 𝑔 + 𝑢.
On the other hand, if 𝑣 ≠ 2𝑢, then the transformation will produce a state whose support

is not even on X′. In particular, the transformed state would be orthogonal to the original state.
So our reduction will apply the above transformation to one copy of |Gℎ ★ 𝑋⟩, leaving the other
as is. Then it will perform the SWAP test on the two states. If 𝑣 = 2𝑢, the states will be identical
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and the SWAP test will accept. If 𝑣 ≠ 2𝑢, the states will be orthogonal, and the swap test will
accept only with probability 1/2. Thus, we achieve a distinguishing advantage between the two
cases, contradicting the assumption.

We believe our proof gives convincing evidence that our scheme should be secure on a
suitable group action, perhaps even those based on isogenies over elliptic curves. However,
our underlying assumption is new, and needs further cryptanalysis. One limitation of our
assumption is that it is interactive, requiring a (quantum) oracle query to the challenger. One
may hope instead to use a non-interactive assumption. We do not know how to make non-
interactive assumptions work, in general. In particular, if we do not have an oracle that can
transform the input for us, it seems like we are limited to strategies that only permute the
inputs to Π, like in our negation-query example. But since the scheme has to be efficient, the
inputs to Π can only consist of polynomial-length vectors of set elements. Any permutation on a
polynomial-length set must have smooth order. On the other hand, the only permutations on X′

which preserve |Gℎ ★ 𝑋⟩ seem to have order that divides |G|. Thus, if, say, the order of G were
a large prime, it does not seem that permuting the inputs to Π alone will be able to preserve
|Gℎ ★ 𝑋⟩.

1.3 On Knowledge Assumptions and Algebraic Group Actions

In Section 5, we show a different approach to justifying the security of our scheme, by adapting
certain knowledge assumptions [39] to the setting of group actions. Despite some high-level
similarities to [39], the underlying details are somewhat different. The advantage of this route is
that it gives a standard-model security proof (albeit, using a non-standard knowledge definition)
rather than a generic model proof.

However, we find significant issues with using knowledge assumptions quantumly, that
appear not to have been observed before. In particular, the straightforward way to adapt
the knowledge assumptions of [39] to group actions actually results in false assumptions, as
we demonstrate. Interestingly, our attack on the assumption is entirely generic. This is quite
surprising, as in the classical setting, knowledge assumptions generally trivially hold against
generic attacks.

Concretely, we show how to construct a superposition overXwhere the underlying discrete
logarithms are hidden, even to the algorithm creating the superposition. To accomplish this,
we observe that any set element 𝑥 can be seen as a superposition over all possible banknotes
|Gℎ ∗ 𝑥⟩; the superposition is uniform up to individual phases. Then we show a procedure
to compute, given |Gℎ ∗ 𝑥⟩, the serial number ℎ. This allows us to apply individual phases to
the various banknotes in the superposition. Certain phases will simply map 𝑥 to another set
element 𝑦. But other phases will map 𝑥 to a uniform superposition (up to phases) over X. Call
this state |𝜓⟩.
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Any meaningful knowledge assumption, and in particular the result of adapting [39] to
group actions, would imply that if we were to measure |𝜓⟩ to get a set element 𝑦, then we must
also “know” 𝑔 such that 𝑦 = 𝑔 ∗ 𝑥. However, measuring |𝜓⟩ simply gives a uniform set element,
importantly without any side information about 𝑦. As such, under the discrete log assumption,
computing such a 𝑔 is hard.

We resolve this particular problem by re-framing knowledge assumptions as follows:
instead of saying that any algorithm 𝐴 which produces a set element 𝑦 must know 𝑔 such
that 𝑦 = 𝑔 ∗ 𝑥, we say that for any such 𝐴 solving some task 𝑇 , there is another algorithm
𝐵 that also solves 𝑇 such that 𝐵 knows 𝑔, even if 𝐴 would not. Thus, even if the original 𝐴
is constructed in such a way that it does not know 𝑔, at least 𝐵 does, and we can apply any
security arguments to 𝐵 instead of 𝐴. We demonstrate that this assumption, together with an
appropriate generalization of the discrete log assumption, are enough to prove the security of
our scheme. However, we are somewhat skeptical of our new knowledge assumption, and it
certainly needs more cryptanalysis.

Algebraic Group Actions. The Algebraic Group Model (AGM) [31] is an important classical
model for studying group-based cryptosystems. It is considered a refinement of the generic
group model, meaning that a proof in the model is “at least as” convincing as a proof in the
generic group model7, potentially even more convincing. A couple of recent works [28, 49]
have considered the group action analog, the Algebraic Group Action Model (AGAM). Here, any
time an adversary outputs a set element 𝑦, it must “explain” 𝑦 in terms of one of its input set
elements 𝑥1, . . . , 𝑥𝑛 by providing a group element 𝑔 such that 𝑦 = 𝑔 ∗ 𝑥𝑖 .

The AGM can be seen as an idealized model version of the knowledge of exponent as-
sumption, and likewise the AGAM can be seen as an idealized model version of an appropriate
knowledge assumption on group actions. After all, a knowledge assumption would say that any
time the adversary outputs a 𝑦, it must “know” how it derived 𝑦 from its inputs. The AGM/AGAM
simply require the adversary to actually output this knowledge.

In Section 5, we explore the AGAM in the presence of quantum attackers. We do not prove
any formal results, but discuss why, unfortunately, the quantum AGAM appears problematic.
For starters, given our attack on quantum knowledge assumptions, we are skeptical about the
soundness of the quantum AGAM. In particular, our attack indicates that it is unlikely that the
AGAM is a refinement of the generic group action model; rather they are likely incomparable.

Another problem we observe with the AGAM is that it requires the adversary to both
solve some task, and also produce some extra information, namely the explanation 𝑔 of any
output element 𝑦. Classically, if the adversary is able to both solve the task and produce this
extra information (which would follow from an appropriate knowledge assumption), then the
adversary can do both simultaneously, as required by the AGM/AGAM. However, quantumly,

7 There are some caveats to this classical claim; see [71] for discussion.
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even if we believe the adversary can separately solve the task or produce the extra information
(provided we believe the knowledge assumption), it may be impossible to do both simultaneously,
as required by the AGAM.

This issue manifests in the following way: suppose the output is actually a superposition.
Then the information 𝑔 will be entangled with the superposition, meaning the AGAM adversary’s
output will actually be a different state than if it did not output 𝑔. For example, if an AGAM
adversary had to output a banknote |Gℎ ∗ 𝑥⟩ (say, as part of the quantum money/lightning
experiment), then if it also “explained” the banknote by outputting a group element 𝑔, the
entanglement with 𝑔 would actually cause the banknote state to fail verification. It therefore
unclear how to interpret such an adversary. Does it actually break the scheme, even if it does
not pass verification? In Section 5, we go into more details about this issue as well as pointing
out several other issues with the AGAM.

We note that these issues are not present in the generic group action model. Thus, despite
classically being a “worse” model than the algebraic model, we propose for the quantum setting
that the generic group action model is actually preferred to the AGAM.

1.4 Further Discussion

In Section 7, we generalize group actions to quantum group actions, which replace classical set
elements with quantum states, but otherwise behave mostly the same as standard group actions.
We give a simple quantum group action based on the Learning with Errors (LWE) problem [53],
where we can actually prove that the discrete log problem is hard under LWE. Despite this
promising result, we expect that the LWE-based quantum group action will be of limited use. In
particular, if we instantiate our quantum money construction over this group, the construction
is insecure. The reason is that, in this group action, it is impossible to recognize the quantum
states of the set. Our security proof crucially relies on such recognition in order to characterize
states accepted by the verifier. Moreover, without recognition, there is an attack which fools the
verifier with dishonest — and importantly, clonable — banknotes that are different from the
honest ones, breaking security.

Interestingly, we explain that this failed instantiation is actually equivalent to a folklore
approach toward building quantum money from lattices, an approach that has been more-or-
less shown impossible to make secure [40, 39]. The only missing piece in the folklore approach
has been how to efficiently verify honest banknotes. Under our equivalence, this missing piece
exactly maps to the problem of recognizing set elements in our quantum group action. For
details, see Section 7. We believe this adds to the confidence of our proposal, since in group
actions based on isogenies it is possible to recognize set elements, presumably without otherwise
compromising hardness.
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1.5 Related Work

Public key quantum money. In Wiesner’s original scheme, the mint is required to verify
banknotes, meaning the mint must be involved in any transaction. The involvement of the mint
also leads to potential attacks [41]. Some partial solutions have been proposed, e.g. [6, 56]. The
dream solution, however, is known as public key quantum money [1]. Here, anyone can verify
the banknote, while only the mint can create them.

Unlike Wiesner’s scheme, which is well-understood, secure public key quantum money
has remained elusive. While there have been many proposals for public key quantum money [1,
2, 30, 36, 68, 37, 38, 39], they mostly either (1) have been subsequently broken (e.g. [1, 2, 68,
38] which were broken by [42, 52, 55, 39]), or (2) rely on new cryptographic building blocks
that have received little attention from the cryptographic community (e.g. [30, 36, 37] from
problems on knots or quaternion algebras). The two exceptions are:

Building on a suggestion of [7], [68] proved that quantum money can be built from post-
quantum indistinguishability obfuscation (iO). iO has received considerable attention and
even has a convincing pre-quantum instantiation [35]. Yet the post-quantum study of iO is
much less thorough. While some post-quantum proposals have been made [32, 5, 14, 63],
their post-quantum hardness is not well-understood.
[39] construct quantum money from isogenies over super-singular elliptic curves. While
isogenies have garnered significant attention from cryptographers, there is a crucial
missing piece to their proposal: generating uniform superpositions over super-singular
curves, which is currently unknown how to do. This is closely related to the major open
question of obliviously sampling super-singular elliptic curves.

In light of the above, the existence of public key quantum money is largely considered open.

Cryptography from group actions and isogenies. Isogenies were first proposed for use
in post-quantum cryptography by Couveignes [20] and Rostovtsev and Stolbunov [58]. Isoge-
nies give a Diffie-Hellman-like structure, but importantly are immune to Shor’s algorithm for
discrete logarithms [59] due to a more restricted structure. This restricted structure, while
helping preserve security against quantum attacks, also makes the design of cryptosystems
based on them more complex. Thus, significant effort has gone into building secure classical
cryptosystems from isogenies and understanding their post-quantum security (e.g. [18, 24, 16, 9,
19, 25, 51, 11, 3, 4, 46, 43, 15, 10, 54]).

Certain isogenies such as the original proposals of [20, 58] as well as CSIDH and its vari-
ants [16, 22] can be abstracted as abelian group actions. However, many other isogenies (such as
SIDH [24] and OSIDH [19]) cannot be abstracted as abelian group actions. Even among abelian
group actions, we must distinguish between “effective group actions” (EGAs) and restricted
EGAs (REGAs). The former satisfies the notion of a clean group action, whereas in the latter, the
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group action can only be efficiently computed for a certain small set of group elements. CSIDH
could plausibly be a EGA at certain concrete security parameters, though asymptotically it only
achieves quasi-polynomial security8. Our alternate construction also works on REGAs, which
can plausibly be instantiated even asymptotically by CSIDH using a quantum computer9.

While some non-isogeny abelian group actions have been proposed (e.g. [62]), currently
all such examples have been broken (e.g. [61]). For this reason, (abelian) group actions are
largely considered synonymous with isogenies in the cryptography literature, though this may
change if more secure group actions are found.

The vast majority of the isogeny and group action literature has focused on post-quantum
cryptography — classical protocols that are immune to quantum attacks. To the best of our
knowledge, only two prior works have used isogenies/group actions to build quantum protocols
for tasks that are impossible classically. The first is [4], who build a proof of quantumness [13]. We
note that proofs of quantumness can also be achieved under several “standard” cryptographic
tools, such as LWE [13] or under certain assumptions on hash functions [66]. In contrast, no
prior quantum money protocol could be based on similar standard building blocks. We also note
that [4] currently has no known asymptotic instantiation with better-than-quasi-polynomial
security, as it requires a clean group action (EGA). The second quantum protocol based on
isogenies is that of [39], who build quantum money from walkable invariants, and propose
an instantiation using isogenies over super-singular elliptic curves. However, such isogenies
cannot be described as abelian group actions, and even more importantly their proposal is
incomplete, as discussed above. Thus, ours is arguably the first application of group actions
or isogenies to obtain classically impossible tasks that could not already be achieved under
standard tools.

Relation to [39]. Aside from using isogenies, our construction has some conceptual similarities
to [39], though also crucial differences that allow us to specify a complete protocol, and our
idealized-model analysis is completely new. Here, we give a brief overview of the similarities
and differences.

The walkable invariant framework of [39] is very general, but here we describe a special
case of it that would apply to certain group actions, in order to illustrate the differences with our
scheme. Consider a group action that is not regular, so that the set X is partitioned into many
distinct orbits. For 𝑥, 𝑦 in the same orbit there will exist a unique 𝑔 such that 𝑦 = 𝑔 ∗ 𝑥, but
for 𝑥, 𝑦 in different orbits, there will not exist any group element mapping between them. We

8 With the state-of-the-art, evaluating CSIDH as an EGA would require time approximately 2
3√𝑛 on a quantum computer,

while the best quantum attack is time 2
√
𝑛. For a thorough discussion, see [50]. By setting 𝑛 = log3 (𝜆), one gets

polynomial-time evaluation and the best attack taking time 𝜆
√

log(𝜆 ) .

9 In order for CSIDH to be a REGA, one needs to compute the structure of the group. While this is hard classically, it is
easy with a quantum computer using Shor’s algorithm [59]. Since we always assume a quantum computer in this
work, we can therefore treat CSIDH as a REGA.
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will also assume the ability to generate a uniform superposition over X. We finally assume an
“invariant”, a unique label for each orbit which can be efficiently computed from any element
in the orbit.

The minting process generates the uniform superposition over X, and then measures the
invariant, which becomes the serial number. The state then collapses to a uniform superposition
over a single orbit, which becomes the banknote. This superposition can then be verified as
follows. First check that the banknote has support on the right orbit by re-computing the
invariant. Then check that the state is in uniform superposition by checking that the state is
preserved under action by random group elements; this is accomplished using an analog of
the swap test. [39] prove the security of their scheme under the certain assumptions which,
when mapped to the group action setting above, correspond to the discrete log assumption and
a knowledge assumption very similar to ours.

Unfortunately, when [39] was first published, there were no known instantiations of their
scheme from isogenies. One possibility is to use the set of ordinary elliptic curves as the set,
the number of points on the curve as the invariant, and orbits being sets of curves with the
same number of points. Isogenies between curves are then the action10, which do not change
the number of points on the curve. The problem is that in general curves, it is not possible to
efficiently compute the action, since the degree of the isogenies will be too high. The action
can be computed on smooth-degree isogenies, but these are rare and there is no known way to
compute a uniform superposition over curves supporting smooth-degree isogenies. For reasons
we will not get into here, [39] propose using instead supersingular curves with non-smooth
order, but again these are rare and there is no known way to generate a uniform superposition
over such curves.

We resolve the issues with instantiating [39], without needing the ability to compute
uniform superpositions over the set. Our key insight is that, if we can compute the group action
efficiently (say because we are using isogenies of smooth degree), then this is enough to sample
states that are uniform over a given orbit, except for certain phase terms: namely the states
|Gℎ ∗ 𝑥⟩ for uniform ℎ. Then, rather than the serial number indicating which orbit we are in
(which is now useless since we are in a single orbit), the serial number is a description of the
phase terms, namely ℎ. Note that subsequent to our work, [45] successfully instantiate the
walkable invariant approach using isogenies by developing new algorithms for working with
isogenies.

Subsequent work. In [47], quantum state group actions are further explored. Most relevant
to our work, they show a quantum state group action based on hash functions such that, when
used to instantiate our quantum lightning scheme, one recovers exactly the quantum lightning

10 It is not a proper group action since different orbits will be acted on by different groups.
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scheme from non-collapsing hash functions explained in [68]. This generalizes our observations
regarding the equivalence between lattice-based quantum money attempts discussed above.

In the case the group has a smooth order (no large prime factors), a very recent preprint [26]
shows that our scheme is a secure quantum money scheme, in the generic model but under
the standard discrete-log assumption. Interestingly, this argument is fundamentally limited to
proving quantum money, and does not extend to the stronger notion of quantum lightning. In
another recent preprint, [27] generalize our scheme to work with the Hartley transform instead
of the QFT.

In [12], our scheme is generalized to work with non-abelian group actions, where a non-
abelian group G (written multiplicatively) acts on a set X satisfying 𝑔 ∗ (ℎ ∗ 𝑥) = (𝑔ℎ) ∗ 𝑥.
They give a candidate instantiation based on the McEliece cryptosystem. Additionally, they
consider a new concrete assumption related to the hardness of computing “pre-actions”: that
is, computing (ℎ𝑔) ∗ 𝑥) from 𝑔 and ℎ ∗ 𝑥. Note the order ℎ𝑔 makes computing pre-actions
non-trivial in non-abelian groups, whereas computing (𝑔ℎ) ∗ 𝑥 from 𝑔 and ℎ ∗ 𝑥 follows from
the functionality of the group action. On the other hand, pre-actions and actions coincide for
abelian group actions and so both are easy, meaning pre-action hardness only makes sense
in the non-abelian setting. Under such a pre-action hardness assumption, they can prove the
security of their scheme in the standard model.
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2. Preliminaries

Here we give our notation and definitions. We assume the reader is familiar with the basics of
quantum computation.

2.1 Quantum Fourier Transform over Abelian Groups

Let G be an abelian group, which we will denote additively. We here define our notation for the
quantum Fourier transform over G. Write G = Z𝑛1 × Z𝑛2 × · · · × Z𝑛𝑘 where Z𝑛 𝑗

are the additive
cyclic groups on 𝑛 𝑗 elements, and associate elements 𝑔 ∈ G with tuples 𝑔 = (𝑔1, . . . , 𝑔𝑘) where
𝑔 𝑗 ∈ Z𝑛 𝑗

. Then define 𝜒 : G2 → C by

𝜒G(𝑔, ℎ) =
𝑘∏
𝑗=1

𝑒𝑖2𝜋𝑔 𝑗ℎ 𝑗/𝑛 𝑗
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Observe the following:

𝜒G(𝑔, ℎ) = 𝜒G(ℎ, 𝑔) 𝜒G(𝑔1 + 𝑔2, ℎ) = 𝜒G(𝑔1, ℎ) × 𝜒G(𝑔2, ℎ)

𝜒G(−𝑔, ℎ) = 𝜒G(𝑔, ℎ)−1
∑︁
𝑔∈G

𝜒G(𝑔, ℎ) =

|G| if ℎ = 0G

0 if ℎ ≠ 0G

The quantum Fourier transform (QFT) over G is the unitary QFTG defined as

QFTG |𝑔⟩ =
1√︁
|G|

∑︁
ℎ∈G

𝜒(𝑔, ℎ) |ℎ⟩ .

Observe that QFTG = QFTZ𝑛1
⊗ · · · ⊗ QFTZ𝑛𝑘 . Therefore, since the standard QFT corresponds to

QFTZ𝑛 𝑗 and can be implemented efficiently, so can QFTG.
From this point on, we will only work with a single group, so we will drop the sub-script

and simply write 𝜒(𝑔, ℎ),QFT, etc.

2.2 Public Key Quantum Money and Quantum Lightning

Here we define public key quantum money and quantum lightning. In the case of quantum
money, we focus on public key mini-schemes [2], which are essentially the setting where there
is only ever a single valid banknote produced by the mint. As shown in [2], such mini-schemes
can be upgraded generically to full quantum money schemes using digital signatures. We will
generally drop the term “public key”, since we exclusively consider this variant of quantum
money.

Syntax. Both quantum money mini-schemes and quantum lightning share the same syntax:
Gen(1𝜆) is a quantum polynomial-time (QPT) algorithm that takes as input the security
parameter (written in unary) which samples a classical serial number 𝜎 and quantum
banknote $.
Ver(𝜎, $) takes as input the serial number and a supposed banknote, and either accepts or
rejects, denoted by 1 and 0 respectively.

Correctness. Both quantum money mini-schemes and quantum lightning have the same
correctness requirement, namely that valid banknotes produced by Gen are accepted by Ver.
Concretely, there exists a negligible function negl(𝜆) such that

Pr[Ver(𝜎, $) = 1 : (𝜎, $) ← Gen(1𝜆)] ≥ 1 − negl(𝜆) .

Security. We now discuss the security requirements, which differ between quantum money
and quantum lightning.
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DEF IN IT ION 2 .1. Consider a QPT adversaryA, which takes as input a serial number 𝜎 and
banknote $, and outputs two potentially entangled states $1, $2, which it tries to pass off as two
banknotes. (Gen, Ver) is a secure quantum money mini-scheme if, for all suchA, there exists a
negligible negl(𝜆) such that the following holds:

Pr
[
Ver(𝜎, $1) = Ver(𝜎, $2) = 1 : (𝜎,$)←Gen(1𝜆)

($1,$2)←A(𝜎,$)

]
≤ negl(𝜆) .

DEF IN IT ION 2 .2. Consider a QPT adversary B, which takes as input the security parameter 𝜆,
and outputs a serial number 𝜎 and two potentially entangled states $1, $2, which it tries to pass
off as two banknotes. (Gen, Ver) is a secure quantum lightning scheme if, for all such B, there
exists a negligible negl(𝜆) such that the following holds:

Pr
[
Ver(𝜎, $1) = Ver(𝜎, $2) = 1 : (𝜎, $1, $2) ← B(1𝜆)

]
≤ negl(𝜆) .

Quantum lightning trivially implies quantum money: any quantum money adversaryA
can be converted into a quantum lightning adversary B by having B run both Gen andA. But
quantum lightning is potentially stronger, as it means that even if the serial number is chosen
adversarially, it remains hard to devise two valid banknotes. This in particular means there is
some security against the mint, which yields a number of additional applications, as discussed
by [68].

REMARK 2 .3. One limitation of quantum lightning as defined above is that it cannot be secure
against non-uniform attackers with quantum advice, as such attackers could have 𝜎, $1, $2

hard-coded in their advice. The situation is analogous to the case of collision resistance, where
unkeyed hash functions cannot be secure against non-uniform attackers. This limitation can
be remedied by either insisting on only uniform attackers or attackers with classical advice.
Alternatively, one can work in a trusted setup model, where a trusted third party generates
a common reference string that is then inputted into Gen, Ver. A third option is to use the
“human ignorance” approach [57], in which we would formalize security proofs as explicitly
transforming a quantum lightning adversary into an adversary for some other task, the latter
adversary existing but is presumably unknown to human knowledge. We will largely ignore
these issues throughout this work, but occasionally make brief remarks about what the various
approaches would look like.

2.3 Group Actions

An (abelian) group action consists of a family of (abelian) groups G = (G𝜆)𝜆 (written additively),
a family of sets X = (X𝜆)𝜆 , and a binary operation ∗ : G𝜆 × X𝜆 → X𝜆 satisfying the following
properties:

Identity: If 0 ∈ G𝜆 is the identity element, then 0 ∗ 𝑥 = 𝑥 for any 𝑥 ∈ X𝜆 .
Compatibility: For all 𝑔, ℎ ∈ G𝜆 and 𝑥 ∈ X𝜆 , (𝑔 + ℎ) ∗ 𝑥 = 𝑔 ∗ (ℎ ∗ 𝑥).



17 / 62 Quantum Money from Abelian Group Actions

We will additionally require the following properties:
Efficient Group Operation: Each group G𝜆 has a polynomial-sized (in 𝜆) description ⟨G𝜆⟩,
which consists of a polynomial-sized set of generators 𝑔1, · · · as well as a polynomial-sized
(potentially quantum) circuit Add𝜆 such that Add𝜆 (𝑔, ℎ) = 𝑔 + ℎ for 𝑔, ℎ ∈ G𝜆 .
Efficient Group Action: For each 𝜆, there is a polynomial-sized (potentially quantum)
circuit Act𝜆 such that Act𝜆 (𝑔, 𝑥) = 𝑔 ∗ 𝑥 for 𝑔 ∈ G𝜆 , 𝑥 ∈ X𝜆 .
Efficiently Recognizable Set: For each 𝜆, there is a polynomial-sized (potentially quantum)
circuit Recog𝜆 which recognizes elements in X𝜆 . That is, for any 𝜆 and any string 𝑦 (not
necessarily in X𝜆), Recog𝜆 ( 𝑦) accepts 𝑦 with overwhelming probability if 𝑦 ∈ X𝜆 , and
rejects with overwhelming probability if 𝑦 ∉ X𝜆 .
Efficient Setup: There is a QPT procedure Construct which, on input 1𝜆 , outputs the
description ⟨G𝜆⟩, an element 𝑥𝜆 ∈ X𝜆 , the circuit Act𝜆 , and the circuit Recog𝜆 . We denote
this collection by ⟨G𝜆 ,X𝜆⟩, which we call the description of the group action. We will
assume Construct is pseudo-deterministic, meaning that repeated runs of Construct(1𝜆)
will output the same values with overwhelming probability.
Regular: For every 𝑦 ∈ X𝜆 , there is exactly one 𝑔 ∈ G𝜆 such that 𝑦 = 𝑔 ∗ 𝑥𝜆 .

Structure of the groupG𝝀. Given a quantum computer, we can always assume without loss of
generality that G𝜆 has the form Z𝑛1 × Z𝑛2 × · · ·Z𝑛𝑘 for some known integers 𝑛1, 𝑛2, · · · , 𝑛𝑘. What
we describe here is at least folklore: this is mostly worked out in [17] except for a minor detail.
While we do not know of any reference for a full description, the following is well-known.

The key observation is that G𝜆 is isomorphic so such a group (since it is abelian), and
moreover, the bijection with the group is efficiently computable using standard quantum period-
finding techniques. The basic idea is that, for element 𝑔𝑖 of the generating set of the group G𝜆 ,
we can compute its order, 𝑜𝑖 , using Shor’s period-finding algorithm [59]. Then the order of the
group G𝜆 divides 𝑜 =

∏
𝑖 𝑜𝑖 . We can also compute the prime-factorization of 𝑜 using Shor’s

algorithm.
Now we use period-finding to find the periods of the function v ∈ Z𝑘𝑜 ↦→

∑
𝑖 𝑣𝑖𝑔𝑖 =: v · g,

where g is the vector of generators and 𝑣𝑖𝑔𝑖 means to add 𝑔𝑖 to itself 𝑣𝑖 times. The period-finding
algorithm produces the (generators of the) subgroup 𝐻 of Z𝑘𝑜 of vectors v such that v · g = 0.
Then G𝜆 is isomorphic to Z𝑘𝑜/𝐻 , which can be easily decomposed as Z𝑛1 × Z𝑛2 × · · ·Z𝑛𝑘 using
linear algebra and knowledge of the factorization of 𝑜.

The isomorphism itself is computed in one direction as v ∈ Z𝑘𝑜/𝐻 ↦→ v · g. Up until this
point, this describes the algorithm of [17]. To finish off the isomorphism, we explain how to
compute it in the other direction: given ℎ ∈ G𝜆 , we use period-finding to find the period of the
function (v, 𝑤) ↦→ v · g+𝑤ℎ. This produces the (description of the) subgroup 𝐻′ of Z𝑘+1

𝑜 of (v, 𝑤)
such that v · g + 𝑤ℎ = 0; in other words, 𝑤ℎ = −v · g. We then simply find a vector in this space
with 𝑤 = −1, so that ℎ = v · g using linear algebra. Such a vector is guaranteed to exist since
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g generates the entire group. We then finally output v mod 𝐻 , again computed using linear
algebra.

Once one has this isomorphism, one can derive a group action with Z𝑘𝑜/𝐻 acting on X𝜆
defined as v★𝑥 = (v · g) ∗ 𝑥. As a consequence, throughout this work, we will typically assume
that the groupG𝜆 is explicitly given as Z𝑛1×Z𝑛2×· · ·Z𝑛𝑘 . In particular, this allows us to efficiently
compute the QFT over G𝜆 .

Cryptographic group actions. A cryptographic group action is one for which some task is
computationally intractable, and that this hardness is useful for cryptography. Here, we briefly
define three standard assumptions that can be made on group actions; we will ultimately not
use these assumptions, but they are useful as a point of comparison. always First, at a minimum,
a cryptographically useful group action will always satisfy the following discrete log assumption:

ASSUMPT ION 2 .4. The discrete log assumption (DLog) holds on a group action (G,X, ∗) if,
for all QPT adversariesA, there exists a negligible 𝜆 such that

Pr[A(⟨G𝜆 ,X𝜆⟩, 𝑔 ∗ 𝑥𝜆) = 𝑔 : ⟨G𝜆 ,X𝜆⟩ ← Construct(1𝜆), 𝑔 ← G𝜆] ≤ negl(𝜆) .

Another pair of standard assumptions for group actions are the analogs of CDH and DDH:

ASSUMPT ION 2 .5. The computational Diffie-Hellman assumption (CDH) holds on a group
action (G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that

Pr
[
A(⟨G𝜆 ,X𝜆⟩, 𝑎 ∗ 𝑥𝜆 , 𝑏 ∗ 𝑥𝜆) = (𝑎 + 𝑏) ∗ 𝑥𝜆 : ⟨G𝜆 ,X𝜆⟩ ← Construct(1𝜆), 𝑎, 𝑏← G𝜆

]
≤ negl(𝜆) .

ASSUMPT ION 2 .6. The decisional Diffie-Hellman assumption (DDH) holds on a group action
(G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that��� Pr

[
A(⟨G𝜆 ,X𝜆⟩, 𝑎 ∗ 𝑥𝜆 , 𝑏 ∗ 𝑥𝜆 , 𝑐 ∗ 𝑥𝜆) = 1 : ⟨G𝜆 ,X𝜆⟩←Construct(1𝜆)

𝑎,𝑏,𝑐←G𝜆

]
− Pr

[
A(⟨G𝜆 ,X𝜆⟩, 𝑎 ∗ 𝑥𝜆 , 𝑏 ∗ 𝑥𝜆 , (𝑎 + 𝑏) ∗ 𝑥𝜆) = 1 : ⟨G𝜆 ,X𝜆⟩←Construct(1𝜆)

𝑎,𝑏←G𝜆

] ��� ≤ negl(𝜆) .

REMARK 2 .7. For simplicity, we model the group actions as being pseudo-deterministically
computed from the security parameter. In the assumptions above, this means we can actually
forgo giving ⟨G𝜆 ,X𝜆⟩ to A since A can compute them for itself using Construct. This is the
modeling we will use throughout the paper, so we will typically drop explicit mentions of
Construct and also drop ⟨G𝜆 ,X𝜆⟩ from the inputs to A. We could alternatively imagine the
group actions being probabilistic, in which for each security parameter 𝜆 there is a family of
possible descriptions of groups and sets ⟨G𝜆 ,X𝜆⟩, and Construct(1𝜆) samples from this family
according to some distribution. In this case, we imagineConstructbeing a global setup procedure
that is run to obtain a single instance ⟨G𝜆 ,X𝜆⟩, which is then supplied to all parties including
the adversary via a common reference string. In this case, we must model ⟨G𝜆 ,X𝜆⟩ as being
given to the adversary, as in the assumptions above.
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3. Our Quantum Lightning Scheme

Here, we give our basic quantum lightning construction, which assumes a cryptographic group
action.

CONSTRUCT ION 3.1. Let Gen, Ver be the following QPT procedures:
Gen(1𝜆): Initialize quantum registers S (for serial number) andM (for money) to states
|0⟩S and |0⟩M , respectively. Then do the following:

Apply QFTG𝜆
to S, yielding the joint state 1√

|G𝜆 |

∑
𝑔∈G𝜆
|𝑔⟩S |0⟩M .

Apply in superposition the map |𝑔⟩S | 𝑦⟩M ↦→ |𝑔⟩S | 𝑦 ⊕ (𝑔 ∗ 𝑥𝜆)⟩M . Here, 𝑥𝜆 is an
arbitrary set element. The joint state of the system S ⊗M is then 1√

|G𝜆 |

∑
𝑔∈G𝜆
|𝑔⟩S |𝑔 ∗

𝑥𝜆⟩M .
Apply QFTG𝜆

to S again, yielding 1
|G𝜆 |

∑
𝑔,ℎ∈G𝜆

𝜒(𝑔, ℎ) |ℎ⟩S |𝑔 ∗ 𝑥𝜆⟩M
Measure S, giving the serial number 𝜎 := ℎ. TheM register then collapses to the
banknote $ = |Gℎ

𝜆
∗ 𝑥𝜆⟩ := 1√

|G𝜆 |

∑
𝑔∈G𝜆

𝜒(𝑔, ℎ) |𝑔 ∗ 𝑥𝜆⟩M . Output (𝜎, $).
Ver(𝜎, $) : First verify that the support of $ is contained in X𝜆 , by applying the assumed
algorithm for recognizing X𝜆 in superposition. Then do the following:

Initialize a new registerH to 1√
|G𝜆 |

∑
𝑢∈G𝜆
|𝑢⟩H

Apply in superposition the map |𝑢⟩H | 𝑦⟩M ↦→ |𝑢⟩H | (−𝑢) ∗ 𝑦⟩M 11.
Apply QFT−1

G𝜆
toH .

MeasureH , obtaining a group element ℎ′. Accept if and only if ℎ′ = ℎ.

REMARK 3.2. If using a probabilistic setup of the group action, there are two options. The
first is to have Gen set up the group action, and have the parameters be included in the serial
number. The second is to have a trusted third party set up the group action, and publish the
parameters in a common reference string (CRS). If the goal is only quantum money security, then
the former option is always possible, since the security experiment uses an honestly generated
serial number. If the goal is quantum lightning security, the former option may not be possible,
as the adversary computes the serial number; it may be that there are bad choices of parameters
for the group action (and hence the CRS inside the serial number) which make it easy to forge
banknotes. Therefore, for quantum lightning security, we would expect using a trusted setup to
generate a CRS containing the group action parameters.

11 Note that we used the “minimal” oracle here for the group action computation, having (−𝑢) ∗ 𝑦 replace 𝑦, instead of
being written to a response register as in the standard quantum oracle. However, since the computation 𝑦 ↦→ (−𝑢) ∗ 𝑦
is efficiently reversible given 𝑢 (by 𝑦 ↦→ 𝑢 ∗ 𝑦), we can easily implement the minimal oracle efficiently by first computing
| (−𝑢) ∗ 𝑦⟩M′ in a new registerM′, then uncomputing | 𝑦⟩M using the efficient inverse (so it now contains |0⟩M), and
finally swappingM′ withM.
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3.1 Accepting States of the Verifier

Here we prove that honest banknote states are accepted by the verifier, and roughly that they
are the only states accepted by the verifier.

THEOREM 3.3. Let |𝜓⟩ be a state overM. Then Pr[Ver(ℎ, |𝜓⟩) = 1] = ∥⟨𝜓|Gℎ
𝜆
∗ 𝑥𝜆⟩∥2. Moreover,

if verification accepts, the resulting state is exactly |Gℎ
𝜆
∗ 𝑥𝜆⟩.

In other words, we can treat Ver(ℎ, |𝜓⟩) as projecting exactly onto |Gℎ
𝜆
∗ 𝑥𝜆⟩. In particular,

honest banknotes are accepted with probability 1. The remainder of this subsection is devoted
to proving Theorem 3.3.

LEMMA 3.4. For ℎ′ ≠ ℎ, ⟨Gℎ′

𝜆
∗ 𝑥𝜆 |Gℎ

𝜆
∗ 𝑥𝜆⟩ = 0.

PROOF .

⟨Gℎ′

𝜆 ∗ 𝑥𝜆 |G
ℎ
𝜆 ∗ 𝑥𝜆⟩ =

1
|G𝜆 |

∑︁
𝑔,𝑔′∈G𝜆

𝜒(𝑔′, ℎ′)−1𝜒(𝑔, ℎ)⟨𝑔′ ∗ 𝑥𝜆 |𝑔 ∗ 𝑥𝜆⟩

=
1
|G𝜆 |

∑︁
𝑔∈G𝜆

𝜒(𝑔, ℎ′)−1𝜒(𝑔, ℎ) = 1
|G𝜆 |

∑︁
𝑔∈G𝜆

𝜒(𝑔, ℎ − ℎ′) = 0 . ■

PROOF OF THEOREM 3.3 . Let |𝜓⟩ be a state with support on X. Since the |Gℎ′ ∗ 𝑥𝜆⟩ are
orthogonal and the number of ℎ′ equals the size ofX, the set {|Gℎ′

𝜆
∗𝑥𝜆⟩}ℎ′ forms an orthonormal

basis for the set of states with support on X. We can then write |𝜓⟩ = ∑
ℎ′ 𝛼ℎ′ |Gℎ′

𝜆
∗ 𝑥𝜆⟩ where∑

ℎ′ ∥𝛼ℎ′ ∥2 = 1. We then have ∥𝛼ℎ∥2 = ∥⟨𝜓|Gℎ
𝜆
∗ 𝑥𝜆⟩∥2.

We now consider applying the verification algorithm to the state |𝜓⟩M . After initializing
H to 1√

|G𝜆 |

∑
𝑢∈G𝜆
|𝑢⟩H and applying the map (𝑢, 𝑦) ↦→ (𝑢, (−𝑢) ∗ 𝑦), the state ofH ,M is:

1√︁
|G𝜆 |

∑︁
𝑢

|𝑢⟩H
∑︁
ℎ′

𝛼ℎ′
1√︁
|𝐺𝜆 |

∑︁
𝑔

𝜒(𝑔, ℎ′) | (𝑔 − 𝑢) ∗ 𝑥𝜆⟩M

=
1√︁
|G𝜆 |

∑︁
𝑢

|𝑢⟩H
∑︁
ℎ′

𝛼ℎ′
1√︁
|𝐺𝜆 |

∑︁
𝑔′

𝜒(𝑔′ + 𝑢, ℎ′) |𝑔′ ∗ 𝑥𝜆⟩M

=
∑︁
ℎ′

𝛼ℎ′
1√︁
|G𝜆 |

∑︁
𝑢

𝜒(𝑢, ℎ′) |𝑢⟩H
1√︁
|𝐺𝜆 |

∑︁
𝑔′

𝜒(𝑔′, ℎ′) |𝑔′ ∗ 𝑥𝜆⟩M

=
∑︁
ℎ′

𝛼ℎ′
1√︁
|G𝜆 |

∑︁
𝑢

𝜒(𝑢, ℎ′) |𝑢⟩H |Gℎ′ ∗ 𝑥𝜆⟩M

where above we used the substitution 𝑔′ = 𝑔 − 𝑢. Now when we apply the inverse QFT toH ,
the resulting state is: ∑︁

ℎ′
𝛼ℎ′ |ℎ′⟩H |Gℎ′ ∗ 𝑥𝜆⟩M .

We now measureH , which produces outcome ℎ′ with probability |𝛼ℎ′ |2, and the registerM
collapses to the state |Gℎ′ ∗ 𝑥𝜆⟩. We have that the verifier accepts if ℎ′ = ℎ, which occurs with
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probability ∥𝛼ℎ∥2 = ∥⟨𝜓|Gℎ
𝜆
∗ 𝑥𝜆⟩∥2 as desired. In this case, the registerM collapses to |Gℎ ∗ 𝑥𝜆⟩,

as desired. This completes the proof of Theorem 3.3. ■

3.2 Computing the Serial Number

Here, we show that, given a valid banknote $ = |Gℎ
𝜆
∗ 𝑥𝜆⟩ with unknown serial number ℎ, it is

possible to efficiently compute ℎ. This result is not needed for understanding the construction
or its security, but will be used in Section 5 to break a certain natural knowledge assumption.

THEOREM 3.5. There exists a QPT algorithm Findh such that, on input |Gℎ
𝜆
∗ 𝑥𝜆⟩, outputs ℎ with

probability 1.

PROOF . We originally had a much more complicated algorithm Findh (and one that had a
negligible correctness error). We thank Jake Doliskani for pointing out a much simpler version
using phase kickback.

Indeed, by simply modifying Ver to output the measurement result ℎ′ instead of testing
whether or not ℎ′ = ℎ, we immediately obtain such a Findh. The proof of Theorem 3.3 shows
that Findh indeed outputs ℎ with probability 1 for the input state |Gℎ

𝜆
∗ 𝑥𝜆⟩. ■

4. A Quantum Toolkit for Generic Group Actions

Here, we recall a definition of the generic group action model (GGAM), and show how to use it
to give quantum security proofs.

A Shoup-style generic group action. There have been several different proposals for how to
define generic group actions [46, 28, 10, 49]. Here, we give a definition in the style of Shoup [60].
To help disambiguate between the different models, we will adapt terminology from [71] and
refer to ours as the Random Set Representation model. Roughly, in this model the group elements
will be described as a standard-model group in the usual sense, and all parties can perform
group operations for themselves. However, the set elements will be given as random strings,
and the only way to perform the group action ∗ is using an oracle.

We first fix a (family of) groups G = (G𝜆)𝜆 . This family is provided as a family standard
model groups, meaning all algorithms have complete knowledge of the groups. In particular,
this means that all algorithms can perform the group operations for themselves and there is
no oracle for group operations. Moreover, in this work we always consider abelian groups,
meaning we can model each G𝜆 as Z𝑛1 × Z𝑛2 × · · ·Z𝑛𝑘 . This in particular means that G admits
an efficient QFT.

We also fix a length function 𝑚 : Z → Z with the property that 𝑚(𝜆) ≥ log2 |G𝜆 |. We
call 𝑚 the label length. In this model, for a given security parameter 𝜆, a random injection
𝐿 : G𝜆 → {0, 1}𝑚 is chosen, where 𝑚 = 𝑚(𝜆). Think of 𝐿(𝑔) as representing 𝑔 ∗ 𝑥𝜆; we call 𝐿 the
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labeling function. X𝜆 will then be the image of G𝜆 under 𝐿. All parties – both the algorithms in
the cryptosystem and also the adversary – are then given the following:

As input, all parties receive the string 𝐿(0), where 0 ∈ G𝜆 is the identity. 𝐿(0) represents
𝑥𝜆 .
All parties can then make “group action” queries. For classical algorithms, such a query
takes the form (ℓ, 𝑔) ∈ {0, 1}𝑚 × G𝜆 . The response to the query is 𝐿(𝑔 + 𝐿−1(ℓ)); if ℓ is not
in the image of 𝐿, then the response to the query is ⊥. For quantum algorithms, we follow
the “standard oracle” convention for modeling superposition queries to classical functions,
and have the query perform the map:∑︁

ℓ,𝑔,ℓ′
𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, ℓ′⟩ ↦→

∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩ .

The set X𝜆 will be interpreted as the image of G𝜆 under 𝐿. Note that group action queries
allow for testing membership in X𝜆: X𝜆 are exactly the set of strings where the group
action query does not output ⊥.

We call the oracle above GGAMG,𝑚.

Cost Metrics. In the classical setting, we usually consider queries to the oracle to have unit
cost while computation outside the oracle queries is free. While this is technically an overly-
conservative modeling, it tends to reflect the cost of actual known generic attacks. Moreover,
lower-bounds (e.g. [60]) in the classical setting exclusively work by lower-bounding the query
complexity, and cannot say anything about the computational cost outside of the queries, so this
model corresponds exactly to what the lower-bounds can show. If following this convention,
our model essentially corresponds to the model considered in [28].

However, in the quantum setting, considering the query complexity alone is insufficient,
as discrete logarithms can be solved in polynomial query complexity [29]. In slightly more
detail, [29] show that the hidden subgroup problem has polynomial (in the bit-length of group
elements) query complexity. This includes as a special case the dihedral hidden subgroup
problem, which is known to be equivalent to the abelian hidden shift problem. Recall that in
the abelian hidden shift problem one is given access to two functions 𝑓0 and 𝑓1 with the promise
that 𝑓1(ℎ) = 𝑓0(𝑔 + ℎ) for some secret 𝑔, where the domains of 𝑓0, 𝑓1 is an abelian group with
group operation +. The goal is to find 𝑔. We see that the (abelian) group action discrete log
problem is an example of an (abelian) hidden shift problem as follows. On discrete log instance
𝑦 = 𝑔 ∗ 𝑥, let 𝑓0(ℎ) = ℎ ∗ 𝑥 and 𝑓1(ℎ) = ℎ ∗ 𝑦 = (𝑔 + ℎ) ∗ 𝑥 = 𝑓0(𝑔 + ℎ). Applying the hidden shift
solver to 𝑓0, 𝑓1 recovers the discrete log 𝑔 using polynomially-many queries.

While the above shows that the query complexity of discrete logs is polynomial, the
computational cost of [29] is exponential in the bit-length of group elements. As such, in
contrast to the classical setting, it makes sense to consider the total cost of an algorithm as
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including both the queries (unit cost per query) and the computation outside the queries. This
is the convention we follow in this work.

Minimal Oracles. Note that we can equivalently model group action queries using the “mini-
mal” oracle ∑︁

ℓ,𝑔

𝛼ℓ,𝑔 |ℓ, 𝑔⟩ ↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔 |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔⟩ .

Observe that we can perform a standard oracle query using two calls to the minimal oracle,
and a minimal oracle using two calls to a standard oracle. Indeed:∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, ℓ′⟩ ↦→
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔, ℓ′⟩ (Minimal oracle)

↦→
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩ (CNOT)

↦→
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)),−𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩ (Group inversion)

↦→
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |𝐿((−𝑔) + 𝑔 + 𝐿−1(ℓ)),−𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩ (Minimal oracle)

=
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |ℓ,−𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩

↦→
∑︁
ℓ,𝑔,ℓ′

𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, ℓ′ ⊕ 𝐿(𝑔 + 𝐿−1(ℓ))⟩ , (Group inversion)

∑︁
ℓ,𝑔

𝛼ℓ,𝑔 |ℓ, 𝑔⟩ ↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, 0⟩ (Initialize new register)

↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |ℓ, 𝑔, 𝐿(𝑔 + 𝐿−1(ℓ))⟩ (Standard Oracle)

↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔, ℓ⟩ (Swap registers)

↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)),−𝑔, ℓ⟩ (Group inversion)

↦→
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)),−𝑔, ℓ ⊕ 𝐿((−𝑔) + 𝑔 + 𝐿−1(ℓ))⟩ (Standard Oracle)

=
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)),−𝑔, ℓ ⊕ ℓ⟩

=
∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)),−𝑔, 0⟩∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔, 0⟩ (Group inversion)∑︁
ℓ,𝑔

𝛼ℓ,𝑔,ℓ′ |𝐿(𝑔 + 𝐿−1(ℓ)), 𝑔⟩ . (Discard register)
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Therefore, we will allow either the minimal oracle or standard oracle when making queries to
GGAMG,𝑚.

Verifying Membership in X𝝀. Given a label ℓ ∈ {0, 1}𝑚, we can determine if ℓ ∈ X𝜆 , the
image of 𝐿. To do so, pick an arbitrary element in G𝜆 , say 0, and query GGAMG,𝑚(ℓ, 0). Output
1 if the result is ℓ, and 0 if the result is ⊥. Observe that if ℓ = 𝐿(𝑔) ∈ X𝜆 , then the result of the
query is 𝐿(0 + 𝑔) = 𝐿(𝑔) = ℓ. On the other hand, if ℓ ∉ X𝜆 , then the query gives ⊥.

We can perform this membership test on superpositions of elements by implementing this
classical procedure in superposition, and making a superposition query to the generic group
action.

Our Quantum Lightning Construction in the GGAM. For completeness, we explain how
our quantum lightning construction (Construction 3.1) works in the GGAM.

Gen(1𝜆): Initialize quantum registers S (for serial number) andM (for money) to states
|0⟩S and |𝐿(0)⟩M , respectively. Then do the following:

Apply QFTG𝜆
to S, yielding the joint state 1√

|G𝜆 |

∑
𝑔∈G𝜆
|𝑔⟩S |𝐿(0)⟩M .

Apply in superposition the minimal oracle for GGAM. The joint state of the system
S ⊗M is then 1√

|G𝜆 |

∑
𝑔∈G𝜆
|𝑔⟩S |𝐿(𝑔)⟩M .

Apply QFTG𝜆
to S again, yielding 1

|G𝜆 |
∑

𝑔,ℎ∈G𝜆
𝜒(𝑔, ℎ) |ℎ⟩S |𝐿(𝑔)⟩M

Measure S, giving the serial number 𝜎 := ℎ. TheM register then collapses to the
banknote $ = 1√

|G𝜆 |

∑
𝑔∈G𝜆

𝜒(𝑔, ℎ) |𝐿(𝑔)⟩M . Output (𝜎, $).
Ver(𝜎, $) : First verify that the support of $ is contained inX𝜆 , by applying the membership
testing procedure above in superposition. Then do the following:

Initialize a new registerH to 1√
|G𝜆 |

∑
𝑢∈G𝜆
|𝑢⟩H

Apply in superposition the map |𝑢⟩H |𝐿(𝑔)⟩M ↦→ |𝑢⟩H |𝐿((−𝑢) + 𝑔)⟩M using a query
to the minimal oracle for GGAM.
Apply QFT−1

G𝜆
toH .

MeasureH , obtaining a group element ℎ′. Accept if and only if ℎ′ = ℎ.

Assumptions in the GGAM. We can likewise frame essentially any assumption or computa-
tional problem on group actions as an assumption/computational problem in the GGAM model,
by similarly replacing the group action operation ∗ with queries to GGAM and the set elements
𝑔 ∗ 𝑥𝜆 with the labels 𝐿(𝑔). For example, the discrete logarithm assumption (Assumption 2.4)
translates to the following:

ASSUMPT ION 4.1. The discrete log assumption (DLog) holds in GGAMG,𝑚 if, for all QPT adver-
sariesA making polynomially-many queries, there exists a negligible 𝜆 such that

Pr[AGGAMG,𝑚 (𝐿(𝑔)) = 𝑔] ≤ negl(𝜆) .
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Where the probability is over the choice of 𝑔 ← G𝜆 and the randomness of the labeling function
𝐿.

It is straightforward to adapt other standard-model assumptions to the GGAM. In our
proofs below, we will consider both the standard-model assumptions such as Assumption 2.4
and assumptions in the GGAM such as Assumption 4.1. Note that GGAM assumptions are
independent of any particular group action, whereas standard-model assumptions are always
with respect to a specific group action (G,X, ∗).

4.1 On other Styles of Generic Group Actions

Other styles of generic group action are possible. For example, [46] consider a similar model
except where the group G itself is also hidden behind an oracle, meaning that group elements
are random labels and an additional oracle is provided for performing group operations. We
might call this the Random Group, Random Set Representation model. Based on the discussion in
Section 2.3, in the case of abelian groups G this alternative model is equivalent to the Random
Set Representation model defined above.

It is also possible to consider a version that is akin to Maurer’s [44] generic group model,
where instead of random labels for every element one only receives handles. This is the kind
of model considered in [10, 49]. Following the terminology of [71], this can be called the Type
Safe model. We note that it does not make much sense to consider the group as an idealized
object while allowing complete access to the set. Indeed, the discussion in Section 2.3 shows
that any such “Random Group Representation” effectively is just a standard-model group action,
defeating the purpose of considering an idealized model.

Here, we discuss why these alternate models come with limitations. First we observe that
hiding the group behind an oracle puts more idealized constraints on the adversary. In the
case of abelian groups this makes ends up making no difference, but in the case of non-abelian
groups results in a model that is potentially less reflective of the real world.

Worse is the case of Type Safe models. In the classical generic group setting, as first proved
in [34] and clarified in [71], when it comes to proving security, the Type Safe and Random
Representation models can usually be treated as equivalent12. This equivalence would carry
over to the classical setting for generic group actions. However, we observe that the equivalence
proved in [34, 71] does not hold in the quantum setting. This observation was first made, but
not elaborated on, by [33].

In more detail, one direction of the equivalence — converting an adversary in the Type
Safe model into one in the Random Representation model — is trivial, both classically and
quantumly. We just use the random labels from the random representation model as the handles

12 This is not the case when using the models to prove impossibility results, where even classically there is a major
difference between the two models.
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for the Type Safe adversary. For the other direction, the classical proof will construct a Type
Safe adversary out of a Random Representation adversary by choosing the random labels itself.
The challenge is that the Random Representation adversary will expect identical labels on
certain related queries, namely if it computes the same element 𝑔 ∗ 𝑥𝜆 in multiple ways. To
account for this, the Type Safe adversary maintains a table of all the queries made so far, and
the labels generated for those queries. Then if it ever needs to output an element that was
already produced, it can use the table to make sure it uses the same label.

In the quantum setting, maintaining this table is problematic, as it requires recording
the queries made by the adversary. Quantum queries cannot be recorded without perturbing
them, and if the adversary detects any disturbance it may abort and refuse to work. Such an
adversary would break the classical reduction. We note that sometimes it is possible to record
quantum queries [67], but the recording has to be done in careful ways that limit applications.
In particular, such query recording is usually done on random oracles, and there has so far
been no techniques for recording queries for complicated structures like group action oracles.

Thus, based on our current understanding, the Random Set Representation model defined
above seems to be “at least as good” as any other model for group actions in the quantum setting,
and may in fact be “better” than the other models. For this reason, we focus on the Random Set
Representation model. We leave exploring the exact relationship between the models as an
interesting open question.

Algebraic Group Action Model. In Section 5, we consider a different idealized model called
the Algebraic Group Action Model, the quantum and group action version of the classical
Algebraic Group Model (AGM) [31]. In the classical world, this model is “between” the Type Safe
model and the standard model, in the sense that security in the algebraic model implies security
in the Type Safe model (which in turn often implies security in the Random Representation
model, per [71]). However, in Section 5, we explain that the quantum analog of this model is
actually problematic, and the proof of “between-ness” does not hold quantumly, for similar
reasons as to why the equivalence between Random Representation and Type Safe models does
not appear to hold quantumly. As such, it seems that the (Random Representation) generic
group action model actually better captures available attacks than the algebraic group action
model.

4.2 Our Framework for Quantum GGAM Security Proofs.

Challenges with the quantum GGAM. The challenge with the quantum GGAM, as observed
by [28], is that we cannot hope for unconditional security results, as the discrete logarithm is
easy if we only count quantum query complexity. [28] take the approach of instead considering
the Algebraic Group Action Model (AGAM). We discuss the pitfalls of this approach in Section 5.
Here we instead observe that we can recover a meaningful model by counting both queries
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and computational cost. However, because we cannot hope to prove unconditional query
complexity lower bounds, we must instead resort to making computational assumptions and
giving reduction-style arguments. This means arguments in the quantum GGAM will look very
different that proofs in the classical GGM. To the best of our knowledge, there have been no prior
security proofs in the quantum GGAM. We therefore develop some new tools and techniques
for giving such proofs, including a proof of security of our quantum money scheme.

Our Abstract Framework. We first give a very abstract framework, which we will then apply
the framework to the GGAM.

LetY be a set, and F be a family of functions 𝑓 : Y → Y. Let 𝑦0 ∈ Y be a specific starting
element inY. Consider a random injection 𝐿 : Y → {0, 1}𝑚′ , and consider the oracle O which
maps O(𝐿( 𝑦), 𝑓 ) = 𝐿( 𝑓 ( 𝑦)); O outputs ⊥ on any string that is not in the image of 𝐿. We will
give the adversary 𝐿( 𝑦0) and also superposition access to O.

Now consider a setY′ ⊂ {0, 1}𝑠, and suppose we have a not-necessarily-random injection
Γ : Y → Y′ (meaning 𝑠 ≥ |Y|). We also have a procedure 𝑃 which is able to map 𝑃(Γ( 𝑦), 𝑓 ) =
Γ( 𝑓 ( 𝑦)). However, unlike the oracle O considered above, this procedure 𝑃 may output values
other than ⊥ when given inputs that are not in the image of Γ. Our goal is to, nevertheless,
simulate O using 𝑃.

Concretely, we will choose a random injection Π : {0, 1}𝑠 → {0, 1}𝑚′ , and simulate O with
the oracle O′(Π(𝑧), 𝑓 ) = Π(𝑃(𝑧, 𝑓 )); O′ will output ⊥ on any input not in the image of Π. We
will then give the adversary Π(Γ( 𝑦0)), and quantum query access to O′.

Application to the GGAM. In our case, we will have Y be a group G𝜆 . F will include for
each ℎ ∈ G𝜆 the map 𝑔 ↦→ ℎ + 𝑔. The distinguished element 𝑦0 is just 0 ∈ G𝜆 . In this way, O
becomes the generic group action oracle, with labeling function 𝐿. However, we also include
extra operations in F , the exact operations will depend on the application.

Our goal will be to simulate O, the generic group action oracle with extra operations, using
only a plain group action (G,X, ∗). (G,X, ∗) could be a standard-model group action, or perhaps
a plain generic group action. We will assume X𝜆 ⊆ {0, 1}𝑚 for some polynomial 𝑚 = 𝑚(𝜆). This
“base” group action will be the source of hardness. We will therefore make some hopefully
simple and mild computational assumptions about (G,X, ∗), and hope to derive useful hardness
results about the expanded group action O.

To do so, we will let Y′ = X⊗𝑘
𝜆

for some 𝑘. We will also choose some integers 𝑐1, . . . , 𝑐𝑘

whose GCD is 1, and starting set elements 𝑦1, . . . , 𝑦𝑘. Then define Γ(𝑔) = ((𝑐1𝑔) ∗ 𝑦1, (𝑐2𝑔) ∗
𝑦2, · · · , (𝑐𝑘𝑔) ∗ 𝑦𝑘). Since the GCD of the 𝑐𝑖 is 1, the map Γ(𝑔) is injective.

For 𝑓 corresponding to adding group element ℎ, we can set 𝑃((𝑧1, . . . , 𝑧𝑘), ℎ) = ((𝑐1ℎ) ∗
𝑧1, · · · , (𝑐𝑘ℎ) ∗ 𝑧𝑘). Note that this will have the correct effect, as 𝑃(Γ(𝑔), ℎ) = Γ(ℎ + 𝑔). For
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simulating other functions 𝑓 ∈ F , we will rely on other transformations to the vector (𝑧1, . . . , 𝑧𝑘),
which will depend on the application.

Correctness of the Simulation.

LEMMA 4.2. Fix 𝑦0,Y,Y′, Γ, F as above. Assume 𝑚′ ≥ 𝑠 + 𝑡 for some 𝑡. Then consider any
quantum algorithmA which makes 𝑞 quantum queries to its oracle. Then:���Pr

[
AO (𝐿( 𝑦0)) = 1

]
− Pr

[
AO′ (Π(Γ( 𝑦0))) = 1

] ��� < 𝑂(𝑞 × 2−𝑡/2) .

Above, 𝐿,Π are random injections, with O,O′ being derived from them as above. The probabilities
are over the random choice of 𝐿,Π and the randomness ofA. Note that our order of quantifiers
allowsA to depend on 𝑦0,Y,Y′, Γ, F .

PROOF . We prove security via a sequence of hybrids.

Hybrid 0. This is the case where we runAO (𝐿( 𝑦0)) where 𝐿 : Y → {0, 1}𝑚′ is uniform random
injection. Let 𝑝0 be the probability of outputting 1.

Hybrid 1. Here, we run AO (𝐿( 𝑦0)), except that we set 𝐿 to be the function 𝐿( 𝑦) = Π(Γ( 𝑦)),
where Π is a random injection. But since Γ is an injection, this means 𝐿 is a random injection
anyway, so the distribution of 𝐿 and hence O is identical to Hybrid 0. Therefore, if we let 𝑝1 be
the probability 𝑝0 outputs 1 in Hybrid 1, we have 𝑝1 = 𝑝0. Observe that 𝐿( 𝑦0) = Π(Γ( 𝑦0)).

Hybrid 2. Here, we runAO′ (Π(Γ( 𝑦0))). Let 𝑝2 be the probability of outputting 1. On all points
that O accepts, O′ behaves identically. Likewise, on any point that O′ rejects, O′ rejects as well.
The only difference between this and Hybrid 1 is that here, O′ may accept elements that were
rejected by O, namely elements that are in the image of Π but not in the image of 𝐿 = Π ◦ Γ.
We will show that these potential changes are nevertheless undetectable except with small
probability.

Consider running AO (𝐿( 𝑦0)) where 𝐿( 𝑦) = Π(Γ( 𝑦)) as in Hybrid 1. However, we only
sample Π on inputs 𝑧 that are in the image of Γ; for all other inputs 𝑧, Π remains unspecified.
Observe that Hybrid 1 never needs to evaluate Π on 𝑧 outside of the image of Γ, since the oracle
O will anyway reject in these cases. Let 𝑆 ⊆ {0, 1}𝑚′ be the set of images of Π sampled so far.

Now imagine simulating the rest of Π. Let 𝑇 ⊂ {0, 1}𝑚′ be the set of images of Π for 𝑧 ∈ Y′

that are not in the image of Γ. Observe that 𝑇 is a random subset of size |Y′| \ |Y| ≤ |Y′| ≤ 2𝑠.
We now observe that the only points where O and O′ differ are on pairs (ℓ, 𝑓 ) for ℓ ∈ 𝑇 : for
ℓ ∈ 𝑆, the two faithfully compute the same function and are identical, while for ℓ ∉ 𝑇 ∪ 𝑆, both
output ⊥.

From here, concluding that 𝑝1 and 𝑝2 are close is a standard argument. The expected total
query weight in Hybrid 1 on points (ℓ, 𝑓 ) for ℓ ∈ 𝑇 is at most |𝑇 |/2𝑚′ ≤ 2−𝑡. Then via standard
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results in quantum query complexity [8], the difference in acceptance probabilities |𝑝1 − 𝑝2 | is
at most 𝑂(

√︁
𝑞22−𝑡) = 𝑂(𝑞 × 2−𝑡/2). Thus |𝑝0 − 𝑝2 | ≤ 𝑂(𝑞 × 2−𝑡/2), as desired. ■

Next, we recall a lemma that shows that random injections can be simulated quantumly:

LEMMA 4.3 ([70]). Random injections with quantum query access can be simulated efficiently.

With Lemmas 4.2 and 4.3 in hand, we now turn to security proofs in the GGAM.

4.3 Group Actions with Twists

In group actions based on isogenies, it is possible to compute a “twist”, which maps 𝑔 ∗ 𝑥𝜆 ↦→
(−𝑔) ∗ 𝑥𝜆 . It is straightforward to update our notion of group action and generic group action to
incorporate twists. Let GGAM±G,𝑚 denote the generic group action relative to group G with label
length 𝑚. Such twists effectively allow for the dihedral group to act on the set X𝜆 . An important
question is whether having this larger (non-abelian) group act on X𝜆 can be damaging for
security. Here, we show that, at least generically, the existence of twists plausibly has little
impact on security.

Assumptions with Negation. We consider variants of standard assumptions on group actions
where additional “negation” elements are given out. For example:

ASSUMPT ION 4.4. The discrete log assumption with negation (DLog±) holds on a group action
(G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that

Pr[A(𝑔 ∗ 𝑥𝜆 , (−𝑔) ∗ 𝑥𝜆) = 𝑔 : 𝑔 ← G𝜆] ≤ negl(𝜆) .

ASSUMPT ION 4.5. The computational Diffie-Hellman assumption with negation (CDH±) holds
on a group action (G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that

Pr
[
A

(
𝑎∗𝑥𝜆 ,𝑏∗𝑥𝜆 ,

(−𝑎)∗𝑥𝜆 ,(−𝑏)∗𝑥𝜆

)
= (𝑎 + 𝑏) ∗ 𝑥𝜆 : 𝑎, 𝑏← G𝜆

]
≤ negl(𝜆) .

ASSUMPT ION 4.6. The decisional Diffie-Hellman assumption with negation (DDH±) holds on
a group action (G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that���Pr

[
A

(
𝑎∗𝑥𝜆 ,𝑏∗𝑥𝜆 ,𝑐∗𝑥𝜆 ,

(−𝑎)∗𝑥𝜆 ,(−𝑏)∗𝑥𝜆 ,(−𝑐)∗𝑥𝜆

)
= 1 : 𝑎, 𝑏, 𝑐← G𝜆

]
− Pr

[
A

(
𝑎∗𝑥𝜆 ,𝑏∗𝑥𝜆 ,(𝑎+𝑏)∗𝑥𝜆 ,

(−𝑎)∗𝑥𝜆 ,∗(−𝑏)∗𝑥𝜆 ,(−𝑎−𝑏)∗𝑥𝜆

)
= 1 : 𝑎, 𝑏← G𝜆

] ��� ≤ negl(𝜆) .

Note that the ± versions of DLog, CDH, DDH imply their ordinary counterparts (Defini-
tions 2.4, 2.5, and 2.6, respectively). Moreover, the assumptions are equivalent to the ordinary
versions on group actions with twists. Also, note that, while [46] prove the quantum equivalence
of ordinary DLog and CDH, their proof does not necessarily apply to the ± versions, and an
equivalence between these versions may be incomparable since it would start from a stronger
property, but also reach a stronger conclusion.
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Our Result. We now show that, the negation assumptions allow us to lift to security under
twists, generically.

THEOREM 4.7. Let (G,X, ∗) be a group with X ⊆ {0, 1}𝑚 such that DLog± (resp. CDH±, DDH±)
holds. Let 𝑚′ ≥ 2𝑚 + 𝜔(log 𝜆). Then DLog± (resp. CDH±, DDH±) hold in GGAM±G,𝑚′ , the GGAM
with twists relative to group G and with label length 𝑚′.

PROOF . We prove the case of DDH, the other proofs being nearly identical. LetAGGAM±
G,𝑚 be a

supposed adversary for DDH± in GGAM±G,𝑚, the GGAM with twists and with label length 𝑚′. Let
𝜖 be the distinguishing advantage ofA, and 𝑞 the polynomial number of queries. We construct
a new adversary B for DDH± in the group action (G,X, ∗) as follows.

B, on input𝑢+, 𝑣+, 𝑤+, 𝑢−, 𝑣−, 𝑤−, will choose a random injective function Π from {0, 1}2𝑚 →
{0, 1}𝑚′ . To make B efficient, we will actually use Lemma 4.3 to efficiently simulate Π. For
simplicity in the following proof, we will treat B as actually using a true random injection.
B will compute 𝑋 = Π(𝑥𝜆 , 𝑥𝜆),𝑈 = Π(𝑢+, 𝑢−), 𝑉 = Π(𝑣+, 𝑣−),𝑊 = Π(𝑤+, 𝑤−).
B will then runA(𝑋,𝑈,𝑉,𝑊) 13, simulating its queries as follows:

For queries to the group action (ℓ, 𝑔), B simulates the query by computing (𝑧1, 𝑧2) ←
Π−1(ℓ), and then returning Π(𝑔 ∗ 𝑧1, (−𝑔) ∗ 𝑧2). For superposition queries, B simply
runs this computation in superposition. Note that if we let Γ(𝑔) = (𝑔 ∗ 𝑥𝜆 , (−𝑔) ∗ 𝑥𝜆),
thenB simulates these queries exactly as prescribed above in our general framework,
for constants 𝑐1 = 1, 𝑐2 = −1 and 𝑦1 = 𝑦2 = 𝑥𝜆 .
When A makes a twist query on label ℓ, B computes (𝑧1, 𝑧2) ← Π−1(ℓ), and then
computes ℓ′ = Π(𝑧2, 𝑧1) and responds with ℓ′. For superposition queries, B simply
runs this computation in superposition. Observe that the twist of Π(Γ(𝑔)) as computed
by B is exactly Π(Γ(−𝑔)).

B then outputs whateverA outputs.

We now prove security via a sequence of hybrids.

Hybrid 0. Here, we run AO (𝑋,𝑈 = 𝑎 ∗ 𝑋,𝑉 = 𝑏 ∗ 𝑋,𝑊 = 𝑐 ∗ 𝑋) for a random injection 𝐿,
where 𝑋 = 𝐿(0), 𝑎, 𝑏, 𝑐 are uniform in G𝜆 , and ∗ denotes the action defined by O. Let 𝑝0 be the
probabilityA outputs 1.

Hybrid 1. Here, B is given 𝑢+, 𝑣+, 𝑤+, 𝑢−, 𝑣−, 𝑤− = 𝑎 ∗ 𝑦, 𝑏 ∗ 𝑦, 𝑐 ∗ 𝑦, (−𝑎) 𝑦, (−𝑏) ∗ 𝑦, (−𝑐) ∗ 𝑦,
and simulates A as described above. Let 𝑝1 be the probability A (and hence B) outputs
1. Observe that 𝑋,𝑈,𝑉,𝑊 = 𝐿(0), 𝐿(𝑎), 𝐿(𝑏), 𝐿(𝑐), where 𝐿 is the implicit labeling function
𝐿(𝑔) = Π(𝑔 ∗ 𝑥𝜆 , (−𝑔) ∗ 𝑥𝜆). Since B simulates twist queries by mapping 𝐿(𝑔) ↦→ 𝐿(−𝑔), B
correctly simulates the view ofA in Hybrid 0, except that O′ and the twist oracle operate on

13 Recall that in the definition of DDH, the adversary is only given 𝑈,𝑉,𝑊 . However, in the generic group action model,
we additionally give all parties the starting point 𝑋 .
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values Π(𝑧1, 𝑧2) that might not be in the image of 𝐿. But we can invoke Lemma 4.2 to conclude
that |𝑝0 − 𝑝1 | ≤ 𝑂(𝑞 × 22𝑚−𝑚′) = 𝑞 × negl(𝜆) = negl(𝜆).

Hybrid 2. Here, B is 𝑢+, 𝑣+, 𝑤+, 𝑢−, 𝑣−, 𝑤− = 𝑎 ∗ 𝑦, 𝑏 ∗ 𝑦, (𝑎 + 𝑏) ∗ 𝑦, (−𝑎) 𝑦, (−𝑏) ∗ 𝑦, (−𝑎− 𝑏) ∗ 𝑦,
and simulatesA as described above. Let 𝑝2 be the probabilityA (and hence B) outputs 1. By
Assumption 4.6, |𝑝1 − 𝑝2 | ≤ negl(𝜆).

Hybrid 3. Now we runAO (𝑋,𝑈 = 𝑎 ∗ 𝑋,𝑉 = 𝑏 ∗ 𝑋,𝑊 = (𝑎 + 𝑏) ∗ 𝑋). Let 𝑝3 be the probability
A outputs 1. By a similar argument for going from Hybrid 0 to Hybrid 1, we conclude that
|𝑝2−𝑝3 | ≤ negl(𝜆) is negligible. Piecing everything together, we have that 𝜖 = |𝑝0−𝑝3 | ≤ negl(𝜆),
thereby proving DDH± holds in GGAM±G,𝑚′ . ■

4.4 Computing Banknotes With Complementary Serial Numbers

Here, we prove that it is hard in generic group action to compute two banknotes for our scheme
with “complementary” serial numbers that sum to zero.

THEOREM 4.8. Let (G,X, ∗) be a group withX ⊆ {0, 1}𝑚 such that DDH holds (Assumption 2.6).
Let 𝑚′ ≥ 4𝑚 + 𝜔(log 𝜆). Let (GenGGAMG,𝑚′ , VerGGAMG,𝑚′ ) be the quantum money construction from
Construction 3.1, using the generic group action GGAMG,𝑚′ . Consider a QPT adversary BGGAMG,𝑚′

making queries to GGAMG,𝑚′ , which takes as input the security parameter 𝜆, and outputs a serial
number ℎ ∈ G𝜆 and two potentially entangled states $1, $2, which it tries to pass off as two
banknotes. For all such B, there exists a negligible negl(𝜆) such that the following holds:

Pr
[
VerGGAMG,𝑚′ (ℎ, $1) = VerGGAMG,𝑚′ (−ℎ, $2) = 1 : (ℎ, $1, $2) ← BGGAMG,𝑚′ (1𝜆)

]
≤ negl(𝜆) .

Notice that the statement above is almost the statement that (GenGGAMG,𝑚′ , VerGGAMG,𝑚′ ) is
a quantum lightning scheme, except that the second banknote is verified with respect to −ℎ
instead of ℎ. Theorem 4.8 is therefore not quite enough to prove the security of our scheme,
since it could be the case that it is possible to output many banknotes with the same serial
number, even if it is impossible to output two with complementary numbers. We give a different
proof below in Section 4.5 based on a stronger assumption which proves our scheme quantum
lightning. We use the result here as a warm-up to our later result, which is based on a more
complex assumption. Moreover, Theorem 4.8 lets us prove that it is generically hard to output
the uniform superposition 1√

|G𝜆 |

∑
𝑔∈G𝜆
|𝐿(𝑔)⟩, which is just the banknote |G0

𝜆
∗ 𝐿(0)⟩ with serial

number 0. We state and prove this fact before proving Theorem 4.8.

COROLLARY 4.9. Let (G,X, ∗) be a group with X ⊆ {0, 1}𝑚 such that DDH holds (Assump-
tion 2.6). Let 𝑚′ ≥ 4𝑚 + 𝜔(log 𝜆). Let 𝐿 be the labeling function for the generic group action
GGAMG,𝑚′ . Then for any QPT adversaryAGGAMG,𝑚′ making queries to GGAMG,𝑚′ which outputs a
state 𝜌, there exists a negligible negl(𝜆) such that ⟨G0

𝜆
∗ 𝐿(0) |𝜌|G0

𝜆
∗ 𝐿(0)⟩ ≤ negl(𝜆).
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PROOF . Consider an adversaryAGGAMG,𝑚′ outputting a mixed state 𝜌and let 𝜖 = ⟨G0
𝜆
∗𝐿(0) |𝜌|G0

𝜆
∗

𝐿(0)⟩ ≤ negl(𝜆). Recall that our verifier from Section 3 can project exactly onto the state
|G0

𝜆
∗ 𝐿(0)⟩. By applying this projection to 𝜌, we have thatAGGAMG,𝑚′ outputs |G0

𝜆
∗ 𝐿(0)⟩ with

probability 𝜖. We will therefore assume we have the state |G0
𝜆
∗ 𝐿(0)⟩.

Apply in superposition the map |𝑥⟩ ↦→ |𝑥, 𝑥⟩. Now we have the state

1√︁
|G𝜆 |

∑︁
𝑔∈G𝜆

|𝐿(𝑔), 𝐿(𝑔)⟩ .

We can equivalently write this state as:

1√︁
|G𝜆 |

∑︁
ℎ∈G𝜆

|Gℎ
𝜆 ∗ 𝐿(0)⟩|G

−ℎ
𝜆 ∗ 𝐿(0)⟩ .

We therefore apply our algorithm Findh from Theorem 3.5 to the first register. The output will
be a random serial number ℎ, and the state will collapse to |Gℎ

𝜆
∗ 𝐿(0)⟩|G−ℎ

𝜆
∗ 𝐿(0)⟩. We output

this, which solves the problem in Theorem 4.8. Thus, we conclude that 𝜖 must be negligible. ■

We now turn to proving Theorem 4.8.

PROOF OF THEOREM 4.8 . Consider an adversary BGGAMG,𝑚′ , and define:

𝜖 := Pr
[
VerGGAMG,𝑚′ (ℎ, $1) = VerGGAMG,𝑚′ (−ℎ, $2) = 1 : (ℎ, $1, $2) ← BGGAMG,𝑚′ (1𝜆)

]
.

Recall that VerGGAMG,𝑚′ (ℎ, $) projects onto the correct banknote |Gℎ
𝜆
∗ 𝐿(0)⟩. Therefore, with

probability 𝜖, B outputs ℎ and exactly the states |Gℎ
𝜆
∗ 𝐿(0)⟩, |G−ℎ

𝜆
∗ 𝐿(0)⟩.

We now construct an adversary A for DDH on the group action (G,X, ∗). A, on input
(𝑢, 𝑣, 𝑤), will choose a random injection Π : {0, 1}4𝑚 → {0, 1}𝑚′ . It will then compute 𝑋 =

Π(𝑥𝜆 , 𝑢, 𝑣, 𝑤). A will then run B(𝑋), simulating its queries (ℓ, 𝑔) to the group action as follows:
compute (𝑧1, 𝑧2, 𝑧3, 𝑧4) ← Π−1(ℓ), and then return Π(𝑔 ∗ 𝑧1, (−𝑔) ∗ 𝑧2, 𝑔 ∗ 𝑧3, (−𝑔) ∗ 𝑧4). For
superposition queries, A simply runs this computation in superposition. Note that if we let
Γ(𝑔) = (𝑔∗𝑥𝜆 , (−𝑔)∗𝑢, 𝑔∗𝑣, (−𝑔)∗𝑤), thenA simulates these queries exactly as prescribed above
in our general framework, for constants 𝑐1 = 1, 𝑐2 = −1, 𝑐3 = 1, 𝑐4 = −1 and ( 𝑦1, 𝑦2, 𝑦3, 𝑦4) =
(𝑥𝜆 , 𝑢, 𝑣, 𝑤).

Finally, when B produces serial number ℎ and banknotes $1, $2,A does the following:
Run VerO′ (ℎ, $1) and VerO′ (−ℎ, $2), answering the queries of Ver using the simulated group
action oracle. If either run rejects, output a random bit. Otherwise, let $′1, $

′
2 be the resulting

states of the verifier.
In superposition, it applies the following map ℓ ↦→ ℓ′ to $′2:

First map ℓ ↦→ Π−1(ℓ) = (𝑧1, 𝑧2, 𝑧3, 𝑧4)
Now map (𝑧1, 𝑧2, 𝑧3, 𝑧4) ↦→ ℓ′ = Π(𝑧2, 𝑧1, 𝑧4, 𝑧3). Note that the 𝑧𝑖 inside Π have been
permuted.

Let $′′2 be the result of this map.
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Apply the swap test to $′1, $
′′
2 , outputting whatever the swap test outputs.

By applying Lemma 4.2, we can conclude that $1, $2 are actually superpositions over
elements of the form 𝐿(𝑔) = Π(𝑔 ∗ 𝑧1, (−𝑔) ∗ 𝑧2, 𝑔 ∗ 𝑧3, (−𝑔) ∗ 𝑧4) for varying 𝑔. Then using
our characterization of the accepting states of Ver, we see that both runs of Ver simultaneously
accept with probability 𝜖, and in this case $′1 = |Gℎ

𝜆
∗ 𝐿(0)⟩, $′2 = |G−ℎ

𝜆
∗ 𝐿(0)⟩.

We must analyze the effect of the map ℓ ↦→ ℓ′ on |G−ℎ
𝜆
∗ 𝐿(0)⟩. We break into two cases:

𝑢 = 𝑎 ∗ 𝑥𝜆 , 𝑣 = 𝑏 ∗ 𝑥𝜆 , 𝑤 = (𝑎 + 𝑏) ∗ 𝑥𝜆 . Let ℓ = 𝐿(𝑔) = Π(𝑔 ∗ 𝑧1, (−𝑔) ∗ 𝑧2, 𝑔 ∗ 𝑧3, (−𝑔) ∗ 𝑧4) =
Π(𝑔 ∗ 𝑥𝜆 , (𝑎 − 𝑔) ∗ 𝑥𝜆 , (𝑏 + 𝑔) ∗ 𝑥𝜆 , (𝑎 + 𝑏 − 𝑔) ∗ 𝑥𝜆), which maps to ℓ′ = Π((𝑎 − 𝑔) ∗ 𝑥𝜆 , 𝑔 ∗
𝑥𝜆 , (𝑎 + 𝑏 − 𝑔) ∗ 𝑥𝜆 , (𝑏 + 𝑔) ∗ 𝑥𝜆) = 𝐿(𝑎 − 𝑔).
Therefore, |G−ℎ

𝜆
∗ 𝐿(0)⟩ maps to

|G−ℎ𝜆 ∗ 𝐿(0)⟩ =
1√︁
|G𝜆 |

∑︁
𝑔

𝜒(𝑔,−ℎ) |𝐿(𝑔)⟩

↦→ 1√︁
|G𝜆 |

∑︁
𝑔

𝜒(𝑔,−ℎ) |𝐿(𝑎 − 𝑔)⟩

=
1√︁
|G𝜆 |

∑︁
𝑔′

𝜒(𝑎 − 𝑔′,−ℎ) |𝐿(𝑔′)⟩

= 𝜒(𝑎,−ℎ) 1√︁
|G𝜆 |

∑︁
𝑔′

𝜒(𝑔′, ℎ) |𝐿(𝑔′)⟩

= 𝜒(𝑎,−ℎ) |Gℎ
𝜆 ∗ 𝐿(0)⟩ .

Above, we used the substitution 𝑔′ = 𝑎 − 𝑔. Thus, in this case, A obtains two copies of
|Gℎ

𝜆
∗ 𝐿(0)⟩, which the swap test will accept with probability 1. Therefore, the probability

A outputs 1 is 1
2 (1 − 𝜖) + 𝜖 =

1+𝜖
2 .

𝑢 = 𝑎 ∗ 𝑥𝜆 , 𝑣 = 𝑏 ∗ 𝑥𝜆 , 𝑤 = 𝑐 ∗ 𝑥𝜆 with 𝑐 ≠ 𝑎 + 𝑏. In this case, ℓ = 𝐿(𝑔) = Π(𝑔 ∗ 𝑥𝜆 , (𝑎 − 𝑔) ∗
𝑥𝜆 , (𝑏 + 𝑔) ∗ 𝑥𝜆 , (𝑐 − 𝑔) ∗ 𝑥𝜆) maps to ℓ′ = Π((𝑎 − 𝑔) ∗ 𝑥𝜆 , 𝑔 ∗ 𝑥𝜆 , (𝑐 − 𝑔) ∗ 𝑥𝜆 , (𝑏 + 𝑔) ∗ 𝑥𝜆).
However, ℓ′ is not equal to 𝐿(𝑔′) for any 𝑔′. Indeed, in order for ℓ′ = 𝐿(𝑔′), we get several
equations:

𝑔′ = 𝑎 − 𝑔 , 𝑎 − 𝑔′ = 𝑔 , 𝑏 + 𝑔′ = 𝑐 − 𝑔′ , 𝑐 − 𝑔′ = 𝑏 + 𝑔 .

The first two equations require that 𝑔′ = 𝑎−𝑔 , while the last two require that 𝑔′ = 𝑐−𝑏−𝑔 ≠

𝑎 − 𝑔. Hence, the state $′′2 has disjoint support from the state |Gℎ
𝜆
∗ 𝐿(0)⟩, and hence is

orthogonal to it. Therefore, the swap test will accept with probability exactly 1/2. The
overall probabilityA outputs 1 is therefore exactly 1/2.

Thus, we see thatA has advantage 𝜖/2 in distinguishing DDH, breaking the assumption. ■
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4.5 Security of our Quantum Lightning Scheme

Here, we prove the generic security of our quantum lightning scheme (Construction 3.1). We
do not know how to prove security under any standard group action-based assumption. We
instead introduce a novel assumption that appears plausible, but needs extra cryptanalysis to
be certain.

The Decisional 2x Assumption (D2X). A classical “Diffie-Hellman Exponent” assumption
is to distinguish 𝑔𝑎, 𝑔𝑎2 from 𝑔𝑎, 𝑔𝑏 for uniform 𝑎, 𝑏. The group action equivalent would be to
distinguish 𝑎 ∗ 𝑥𝜆 , (2𝑎) ∗ 𝑥𝜆 from 𝑎 ∗ 𝑥𝜆 , 𝑏 ∗ 𝑥𝜆 for uniform 𝑎, 𝑏 ∈ G𝜆 . Our assumption is based
on this assumption. However, we need something a bit stronger. In particular, we need not just
the set element (2𝑎) ∗ 𝑥𝜆 or 𝑏 ∗ 𝑥𝜆 , but the ability to query on an arbitrary set element 𝑦 and
receive (2𝑎) ∗ 𝑦 or 𝑏 ∗ 𝑦. In the classical group setting, this would correspond to receiving 𝑔𝑎,
and then being able to query the function ℎ ↦→ ℎ𝑎

2 or ℎ ↦→ ℎ𝑏.
Note that if allowing arbitrary queries to this oracle, the problem is easy in many cases.

In particular, suppose the order of G𝜆 is odd with order 2𝑡 − 1. Then by querying the oracle
𝑡 times, we can compute 𝑦1 = (2𝑎) ∗ 𝑥𝜆 , 𝑦2 = (2𝑎) ∗ 𝑦1 = (4𝑎) ∗ 𝑥𝜆 , · · · , ultimately computing
𝑦𝑡 = (2𝑡𝑎) ∗ 𝑥𝜆 = 𝑎 ∗ 𝑥𝜆 . On the other hand, if the oracle maps 𝑦 ↦→ 𝑏 ∗ 𝑥𝜆 for a random 𝑏, then
𝑦𝑡 = (𝑡𝑏) ∗ 𝑥𝜆 ≠ 𝑎 ∗ 𝑥𝜆 . This allows for distinguishing the two cases.

Therefore, we only allow a single query to the oracle. In this case, a single query does not
appear sufficient for breaking the assumption. The adversary, on input 𝑢 = 𝑎 ∗ 𝑥𝜆 , can send
𝑢 to the oracle, receiving (3𝑎) ∗ 𝑥𝜆 or (𝑎 + 𝑏) ∗ 𝑥𝜆 . Or it can send 𝑥𝜆 to the oracle, receiving
(2𝑎) ∗ 𝑥𝜆 or 𝑏 ∗ 𝑥𝜆 . It can also act on these elements by known constants, computing either
(2𝑎 + 𝑐) ∗ 𝑥𝜆 , (3𝑎 + 𝑑) ∗ 𝑥𝜆 , or (𝑏 + 𝑐) ∗ 𝑥𝜆 , (𝑎 + 𝑏 + 𝑑) ∗ 𝑥𝜆 . It can also act on the original element
𝑢, and also on 𝑥𝜆 by known constants, receiving (𝑎 + 𝑒) ∗ 𝑥𝜆 , 𝑓 ∗ 𝑥𝜆 . Intuitively, it seems the only
way the adversary can distinguish between these cases is to find constants 𝑐, 𝑑, 𝑒, 𝑓 that cause a
collision between elements when the oracle acts by 2𝑎, but no collision when the oracle acts by
𝑏. However, for any constants 𝑐, 𝑑, 𝑒, 𝑓 , the probability of a collision occurring in either case
is negligible. Based on this intuitive argument, it is possible to prove that this assumption is
generically hard against classical algorithms. We do not, however, know if there is a clever
quantum algorithm that breaks the assumption. However, it seems plausible that there is no
such efficient quantum algorithm.

We will also allow the query to be quantum, and for technical reasons, we will use an
in-place (also known as minimal) oracle, meaning it maps

∑
𝑔 𝛼𝑔 |𝑔 ∗ 𝑥𝜆⟩ ↦→

∑
𝑔 𝛼𝑔 | (2𝑎 + 𝑔) ∗ 𝑥𝜆⟩.

This is in contrast to the usual “standard” oracle which maps
∑

𝑔, 𝑦 𝛼𝑔, 𝑦 |𝑔 ∗𝑥𝜆 , 𝑦⟩ ↦→
∑

𝑔, 𝑦 𝛼𝑔, 𝑦 |𝑔 ∗
𝑥𝜆 , 𝑦 ⊕ |(𝑔 + 2𝑎) ∗ 𝑥𝜆⟩.

ASSUMPT ION 4.10. The Decisional 2X Assumption with minimal oracle (D2X/min) assump-
tion holds on a group action (G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆
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such that���Pr
[
A𝑀1

2𝑎 (𝑎 ∗ 𝑥𝜆) = 1 : 𝑎← G𝜆
]
− Pr

[
A𝑀1

𝑏 (𝑎 ∗ 𝑥𝜆) = 1 : 𝑎, 𝑏← G𝜆
] ��� ≤ negl(𝜆) .

Above, 𝑀𝑐 is the in-place (or “minimal”) oracle mapping 𝑦 ↦→ 𝑐∗ 𝑦 but accessible in superposition,
and 𝑀1

𝑐 means the adversary can make only a single quantum query to 𝑀𝑐.

If we insist on standard oracles, we can instead utilize the following assumption:

ASSUMPT ION 4.1 1. The Decisional 2X Assumption with standard oracle (D2X/std) assumption
holds on a group action (G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such
that ���Pr

[
A𝑆1

2𝑎,𝑆
1
−2𝑎 (𝑎 ∗ 𝑥𝜆) = 1 : 𝑎← G𝜆

]
− Pr

[
A𝑆1

𝑏
,𝑆1
−𝑏 (𝑎 ∗ 𝑥𝜆) = 1 : 𝑎, 𝑏← G𝜆

] ��� ≤ negl(𝜆) .

Above, 𝑆𝑐 is the standard oracle mapping ( 𝑦, 𝑧) ↦→ ( 𝑦, 𝑧⊕ (𝑐∗ 𝑦)) but accessible in superposition,
and 𝑆1

𝑐 means the adversary can make only a single query to 𝑆𝑐.

The following lemma is straightforward:

LEMMA 4.12. If D2X/std holds on a group action (G,X, ∗), then so does D2X/min

PROOF . We simply use the oracles 𝑆1
𝑐 , 𝑆

1
−𝑐 to simulate the oracle 𝑀1

𝑐 in the obvious way. ■

Our security proof. We now prove the generic security of our quantum lightning scheme.

THEOREM 4.13. Let (G,X, ∗) be a group with X ⊆ {0, 1}𝑚 such that D2X/min holds (Assump-
tion 4.10). Let 𝑚′ ≥ 2𝑚 + 𝜔(log 𝜆). Let (GenGGAMG,𝑚′ , VerGGAMG,𝑚′ ) be the quantum money con-
struction from Construction 3.1, using the generic group action GGAMG,𝑚′ . Then the quantum
money construction is a secure quantum lightning scheme.

PROOF . Consider an adversary BGGAMG,𝑚′ for quantum lightning security, and let 𝜖 be the
probability that B wins. Recall that VerGGAMG,𝑚′ (ℎ, $) projects onto the correct banknote |Gℎ

𝜆
∗

𝐿(0)⟩. Therefore, with probability 𝜖, B outputs ℎ and exactly two copies of the state |Gℎ
𝜆
∗ 𝐿(0)⟩.

We now construct an adversary A for D2X/min on the group action (G,X, ∗). A, on
input 𝑢 = 𝑎 ∗ 𝑥𝜆 , will choose a random injection Π : {0, 1}2𝑚 → {0, 1}𝑚′ . It will then compute
𝑋 = Π(𝑥𝜆 , 𝑢). A will then run B(𝑋), simulating its queries (ℓ, 𝑔) to the group action as follows:
compute (𝑧1, 𝑧2) ← Π−1(ℓ), and then return Π(𝑔 ∗ 𝑧1, 𝑔 ∗ 𝑧2). For superposition queries, A
simply runs this computation in superposition. Note that if we let Γ(𝑔) = (𝑔 ∗ 𝑥𝜆 , 𝑔 ∗ 𝑢), thenA
simulates these queries exactly as prescribed above in our general framework, for constants
𝑐1 = 𝑐2 = 1 and ( 𝑦1, 𝑦2) = (𝑥𝜆 , 𝑢).

Finally, when B produces serial number ℎ and banknotes $1, $2,A does the following:
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Run VerO′ (ℎ, $1) and VerO′ (ℎ, $2), answering the queries of Ver using the simulated group
action oracle. If either run rejects, output a random bit. Otherwise, let $′1, $

′
2 be the resulting

states of the verifier.
In superposition, it applies the following map ℓ ↦→ ℓ′ to $′2:

First map ℓ ↦→ Π−1(ℓ) = (𝑧1, 𝑧2).
Use the oracle 𝑀𝑐 from the D2X/min assumption to replace 𝑧1 with 𝑧′1 = 𝑐 ∗ 𝑧1, where
𝑐 = 2𝑎 or 𝑏.
Now map (𝑧′1, 𝑧2) ↦→ ℓ′ = Π(𝑧2, 𝑧

′
1).

Let $′′2 be the result of this map.
Apply the swap test to $′1, $

′′
2 , outputting whatever the swap test outputs.

By applying Lemma 4.2, we can conclude that $1, $2 are actually superpositions over
elements of the form 𝐿(𝑔) = Π(𝑔 ∗ 𝑧1, 𝑔 ∗ 𝑧2) for varying 𝑔 . Then using our characterization of
the accepting states of Ver, we see that both runs of Ver simultaneously accept with probability
𝜖, and in this case $′1 = $′2 = |Gℎ

𝜆
∗ 𝐿(0)⟩, $′2.

We must analyze the effect of the map ℓ ↦→ ℓ′ on |Gℎ
𝜆
∗ 𝐿(0)⟩. We break into two cases:

𝑀𝑐 implements the action 𝑦 ↦→ 𝑐 ∗ 𝑦 with 𝑐 = 2𝑎. Let ℓ = 𝐿(𝑔) = Π(𝑔 ∗ 𝑧1, 𝑔 ∗ 𝑧2) =
Π(𝑔 ∗ 𝑥𝜆 , (𝑎 + 𝑔) ∗ 𝑥𝜆), which maps to ℓ′ = Π(𝑔 ∗ 𝑥𝜆 , (2𝑔) ∗ 𝑥𝜆) = 𝐿(𝑎 + 𝑔).
Therefore, |Gℎ

𝜆
∗ 𝐿(0)⟩ maps to

|Gℎ
𝜆 ∗ 𝐿(0)⟩ =

1√︁
|G𝜆

∑︁
𝑔

𝜒(𝑔, ℎ) |𝐿(𝑔)⟩

↦→ 1√︁
|G𝜆 |

∑︁
𝑔

𝜒(𝑔, ℎ) |𝐿(𝑎 + 𝑔)⟩

=
1√︁
|G𝜆 |

∑︁
𝑔′

𝜒(𝑔′ − 𝑎, ℎ) |𝐿(𝑔′)⟩

= 𝜒(𝑎,−ℎ) |Gℎ
𝜆 ∗ 𝐿(0)⟩ .

Above, we used the substitution 𝑔′ = 𝑎 + 𝑔. Thus, in this case, A obtains two copies of
|Gℎ

𝜆
∗ 𝐿(0)⟩, which the swap test will accept with probability 1. Therefore, the probability

A outputs 1 is 1
2 (1 − 𝜖) + 𝜖 =

1+𝜖
2 .

𝑀𝑐 implements the action 𝑦 ↦→ 𝑐 ∗ 𝑦 with 𝑐 = 𝑏 for a random 𝑏. In this case, ℓ = 𝐿(𝑔) =
Π(𝑔 ∗ 𝑥𝜆 , (𝑎 + 𝑔) ∗ 𝑥𝜆) maps to ℓ′ = Π((𝑎 + 𝑔) ∗ 𝑥𝜆 , (𝑔 + 𝑏) ∗ 𝑥𝜆). However, ℓ′ is not equal to
𝐿(𝑔′) for any 𝑔 . Indeed, in order for ℓ′ = 𝐿(𝑔′), we get several equations:

𝑔′ = 𝑎 + 𝑔 , 𝑎 + 𝑔′ = 𝑔 + 𝑏 .

The first equation requires that 𝑔′ = 𝑎+𝑔 , while the last one requires that 𝑔′ = 𝑔+𝑏−𝑎 ≠ 𝑔+𝑎.
Hence, the state $′′2 has disjoint support from the state |Gℎ

𝜆
∗𝐿(0)⟩, and hence is orthogonal to
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it. Therefore, the swap test will accept with probability exactly 1/2. The overall probability
A outputs 1 is therefore exactly 1/2.

Thus, we see thatA has advantage 𝜖/2 in distinguishing DDH, breaking the assumption. ■

5. OnQuantumKnowledgeAssumptionsandAlgebraicAdversaries

In this section, we explore knowledge assumptions in the quantum setting, as well the algebraic
model for group actions. We find significant issues with both settings. Nevertheless, we give
a second security proof for our quantum lightning scheme (Construction 3.1), this time using
knowledge assumptions.

5.1 The Knowledge of Group Element Assumption (KGEA)

Here, we discuss a new assumption that we define, called the Knowledge of Group Element
Assumption (KGEA). This is an analog of the classical Knowledge of Exponent Assumption
(KEA) [21], but adapted for quantum adversaries and group actions. It can also be seen as an
adaptation of the Knowledge of Path assumption of [39], specialized to group actions. Despite
coming from plausible origins, however, we will see that the assumption is, in fact, false. This
leads to concerns over the more general Knowledge of Path assumption. We give a candidate
replacement assumption that avoids our attack, but more cryptanalysis is needed to understand
the new assumption.

The Knowledge of Group Element Assumption (KGEA). This assumption states, informally,
that any algorithm that produces a set element 𝑦 must “know” 𝑔 such that 𝑦 = 𝑔 ∗ 𝑥𝜆 . Implicit
in this assumption is the requirement that it is hard to obliviously sample set elements; we
discuss later how to model security when oblivious sampling is possible. In the classical setting,
the KGEA assumption would be formalized as follows:

ASSUMPT ION 5.1. The classical knowledge of group element assumption (C-KGEA) holds on
a group action (G,X, ∗) if the following is true. For any probabilistic polynomial time (PPT)
adversaryA, there exists a PPT “extractor” E and a negligible 𝜖 such that:

Pr
[
𝑦 ∈ X ∧ 𝑦 ≠ 𝑔 ∗ 𝑥𝜆 : 𝑦←A(1𝜆 ;𝑟)

𝑔←E(1𝜆 ,𝑟)

]
≤ 𝜖(𝜆) .

Above, 𝑟 are the random coins given to A, which are also given to E, and the probability is
taken over uniform 𝑟 and any additional randomness of E.

In other words, ifA outputs any set element, it must “know” how to derive that set element
from 𝑥𝜆 , since it can compute 𝑔 such that 𝑦 = 𝑔 ∗ 𝑥𝜆 using E and its random coins. Note that
once the random coins are fixed,A is deterministic.
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As observed by [39], when moving to the quantum setting, the problem with Assumption 5.1
is that quantum algorithms do not have to flip random coins to generate randomness, and instead
their output may be a measurement applied to a quantum state, the result being inherently
randomized even if the quantum state is fixed. Thus, there is no meaningful way to give the
same random coins to E.

The solution used in [39] is to, instead of giving E the same inputs as A, give E the
remaining state ofA at the end of the computation. This requires some care, since an algorithm
can of course forget any bit of information by simply throwing it away. A more sophisticated
way to lose information is to perform other measurements on the state, say measuring in the
Fourier basis. The solution in [39] is to require thatA makes no measurements at all, except
for measuring the final output. Note that the Principle of Delayed Measurement implies that it
is always possible without loss of generality to move all measurements to the final output. Then
E is given both the output and the remaining quantum state ofA, and tries to compute 𝑔 . Note
that in the classical setting, if we restrict to reversibleA, this formulation of giving E the final
state ofA is equivalent to given E the randomness, since the randomness can be computed by
reversingA. Similar to how we can assume a quantumA makes all its measurements at the
end, in we can always assume without loss of generality that a classicalA is reversible. Thus,
in the classical setting these two definitions coincide. Adapting to our setting, this approach
yields the following assumption:

ASSUMPT ION 5.2. The quantum knowledge of group element assumption (Q-KGEA) holds
on a group action (G,X, ∗) if the following is true. For any quantum polynomial time (QPT)
adversaryA which performs no measurements except for its final output, there exists a QPT
extractor E and negligible 𝜖 such that

Pr
[
𝑦 ∈ X ∧ 𝑦 ≠ 𝑔 ∗ 𝑥𝜆 : ( 𝑦,|𝜓⟩)←A(1

𝜆)
𝑔←E( 𝑦,|𝜓⟩)

]
≤ 𝜖(𝜆) .

Above, 𝑦 is considered as the output ofA, and the only measurements applied toA is the
measurement of 𝑦 to obtain the output.

Our Attack on Q-KGEA. Here, we show that Q-KGEA is false.

THEOREM 5.3. On any group action where the discrete logarithm assumption holds (Assump-
tion 2.4), Q-KGEA (Assumption 5.2) does not hold.

PROOF . Our proof will use the Findh algorithm developed in Section 3.2. We first recall the
functionality guaranteed by the algorithm. The algorithm takes as input the state |Gℎ

𝜆
∗ 𝑥𝜆⟩ =

1√
|G𝜆 |

∑
𝑔∈G𝜆

𝜒(𝑔, ℎ) |𝑔 ∗ 𝑥𝜆⟩, and outputs ℎ, while leaving |Gℎ
𝜆
∗ 𝑥𝜆⟩ intact. In other words, it maps

|Gℎ
𝜆
∗ 𝑥𝜆⟩ ↦→ |Gℎ

𝜆
∗ 𝑥𝜆⟩|ℎ⟩.
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Now, recall that the |Gℎ
𝜆
∗𝑥𝜆⟩ form a basis. In particular, observe that |𝑥𝜆⟩ = 1√

|G𝜆 |

∑
ℎ |Gℎ

𝜆
∗𝑥𝜆⟩.

Therefore, we have that
Findh|𝑥𝜆⟩ =

1√︁
|G𝜆 |

∑︁
ℎ

|Gℎ
𝜆 ∗ 𝑥𝜆⟩|ℎ⟩ .

We can now apply an arbitrary ℎ-dependent phase to the state, and then uncompute ℎ.
The result is that we have applied an arbitrary phase to whatever state we started from, but in
the Fourier domain of the group. That is, let 𝐹 : G ↦→ R be an arbitrary function. We can apply
the phase |ℎ⟩ ↦→ 𝑒𝑖𝐹 (ℎ) |ℎ⟩, and then uncompute ℎ. The result is that |𝑥𝜆⟩ maps to

1√︁
|G𝜆 |

∑︁
ℎ

𝑒𝑖𝐹 (ℎ) |Gℎ
𝜆 ∗ 𝑥𝜆⟩ =

1
|G𝜆 |

∑︁
𝑔

|𝑔 ∗ 𝑥𝜆⟩
(∑︁

ℎ

𝜒(𝑔, ℎ)𝑒𝑖𝐹 (ℎ)
)

. (5.1)

Now suppose we apply Q-KGEA to the algorithm producing this state. When we measure
the register, all we get is a sample of |𝑔 ∗ 𝑥𝜆⟩ according to some distribution, with no side
information. The Q-KGEA assumption then implies an algorithm E which can recover 𝑔 just
given |𝑔 ∗ 𝑥𝜆⟩. Therefore, if we can guarantee that measuring the state in Equation 5.1 gives a
uniform choice of 𝑔 , then E must be solving discrete logarithms, thus breaking Assumption 2.4
and reaching a contradiction.

It is not hard to devise a function 𝐹 which makes the resulting sample 𝑔 close uniform; a
random 𝐹 would accomplish this, for example. With a bit more care, we can even obtain a truly
uniform 𝑔 . Indeed, suppose G = Z𝑁 for an odd integer 𝑁 . Then we can let 𝐹 (ℎ) = 2𝜋ℎ2/𝑁 . Then
the probability of observing 𝑔 is

1
|G𝜆 |2

×
�����∑︁
ℎ

𝑒𝑖2𝜋(𝑔ℎ+ℎ
2)/𝑁

�����2 =
1
|G𝜆 |2

× |G𝜆 | =
1
|G𝜆 |

as desired, where above we used the fact about quadratic Gauss sums that
∑

ℎ 𝑒
𝑖2𝜋(𝑔ℎ+ℎ2)/𝑁 is

equal to |G𝜆 |−1/2, up to phase. ■

Our Modified Knowledge Assumption. We propose a simple way to circumvent the attack
above. Our basic observation is that, while the attack in Theorem 5.3 allows for obliviously
sampling elements in arbitrary group actions, it does not appear useful for actually breaking
cryptosystems. After all, all the attack is doing is sampling random set elements, which can
anyway be sampled easily by choosing a random group element 𝑔 and computing 𝑔 ∗ 𝑥𝜆 . Thus,
while strictly speaking violating the knowledge assumption, the attack appears useless for
actually breaking cryptosystems.

More generally, for “nice” cryptographic games (which we will define shortly), in particular
games that only use the group action interface and do not themselves obliviously sample
elements, it seems that giving the adversary the ability to obliviously sample elements is no
help in breaking the game. We therefore postulate that, for any adversaryA that wins such a
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nice game, there is a different adversaryA′ for which the KGEA assumption can be applied,
yielding an extractor for thatA′. Thus, even if the originalA can obliviously sample elements,
we essentially assume thatA′ cannot, and therefore E is possible. We now make this intuition
precise.

We first introduce the notion of generic group action games. Note that we will only be
interested in games that are given by generic algorithms; we will always treat the adversary as
non-generic.

Briefly, a generic group action game is given by an interactive algorithm (“challenger”)
Ch. Ch is limited to only performing group action computations that are “generic” and only
interacts with the group action through oracles implementing the group action interface.
Specifically, a generic algorithm is an oracle-aided algorithm B that has access to oracles
GA = (Start, Act,Mem). Here, Start is the oracle that takes as input the empty query, and out-
puts a string 𝑥 representing 𝑥𝜆 . Act is the oracle that takes as input a group element 𝑔 ∈ G𝜆

and a string �̃� representing a set element 𝑦, and outputs a string 𝑧 representing 𝑧 = 𝑔 ∗ 𝑥.
Finally, Mem is a membership testing oracle, that tests is a given string 𝑥 represents an actual
set element. From a generic game, we obtain a standard model game by implementing the
oracles Start, Act,Mem with the algorithms for an actual group action: Start outputs the actual
set element 𝑥𝜆 , Act is the group action ∗, and Mem is the membership tester for the set X𝜆 . For
a concrete group action (G,X, ∗), we denote this standard-model game by Ch(G,X,∗) . Note that
in the quantum setting, we will allow the gave Ch to send quantum messages to and from the
adversary, and make quantum queries to the oracles in GA.

For any algorithmA, we say the algorithm 𝛿(𝜆)-breaks Ch(G,X,∗) if Ch(G,X,∗) (1𝜆) outputs 1
with probability at least 𝛿(𝜆) when interacting withA.

We say that Ch is one-round if it sends a single classical string toA, and then receives a
single quantum message fromA, before deciding ifA wins.

We now give our modified KGEA assumption.

ASSUMPT ION 5.4. The quantum modified knowledge of group element assumption (Q-mKGEA)
holds on a group action (G,X, ∗) if the following is true. Consider a one-round generic group
action game Ch and any quantum polynomial time (QPT) adversaryA that 1−𝛿-breaks Ch(G,X,∗)

for a negligible 𝛿. Write the final state of A as 𝜌1,2, as a joint system over two registers 1, 2,
where the first register contains the state given to Ch(G,X,∗) and the second register contains any
remaining state ofA. White the final state ofA as 𝜌1,2 ← A(1𝜆) ⇔ Ch(G,X,∗) (1𝜆). Then for all
such 𝛿,A, Ch, there exists another negligible 𝛿′, a QPTA′ that also 1 − 𝛿′-breaks Ch(G,X,∗) , and
moreover there exists a QPT extractor E and negligible 𝜖 such that

Pr
[
𝑦 ∈ X ∧ 𝑦 ≠ 𝑔 ∗ 𝑥𝜆 :

𝜌1,2←A′ (1𝜆)⇔Ch(G,X,∗) (1𝜆)
𝑦←Measure(𝜌1)
𝑔←E( 𝑦,𝜌2( 𝑦)

]
≤ 𝜖(𝜆) .
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Above, 𝑦 ← Measure(𝜌1) means to measure 𝜌1 (the part of 𝜌1,2 contained in the first register)
in the computational basis, obtaining string 𝑦. Then the state of the second register collapses to
𝜌2( 𝑦).

Intuitively, this assumption says that ifA wins some game, we might not be able to apply
the KGEA extractor to it. However, there is some otherA′ that also wins the game, and that we
can apply the KGEA extractor to.

REMARK 5.5. Our solution with Assumption 5.4 also resolves the problem that, for group
actions based on isogenies over elliptic curves, it is classically possible to sample certain set
element obliviously, thus violating the plain KGEA assumption. A different remedy used in [39]
explicitly assumes a probabilistic classical procedure 𝑆() for obliviously sampling set elements,
and modifies the KGEA assumption so that the extractor either outputs (1) an explanation
relative to 𝑥𝜆 or (2) an explanation relative to some input 𝑦 together with the random coins 𝑟
that are fed into 𝑆 so that 𝑦 = 𝑆(𝑟). This approach works, but is not robust, in the sense that
if another sampling procedure is found, it would contradict even the modified assumption.
Moreover, our attack in Theorem 5.3 shows that, when specialized to group actions, even
this approach fails, since there is a quantum procedure for sampling elements that has no
randomness at all, and therefore can not be explained. Our solution is robust to new sampling
procedures being found as well as our quantum sampler. Nevertheless, more cryptanalysis is
needed to understand if the assumption is sound.

5.2 Quantum Lightning Security Using Q-mKGEA

Here, we give an alternative and incomparable proof of security of our quantum lightning
construction to the proof given in Section 4. Our proof here does not require generic group
actions, but instead requires our Q-mKGEA assumption. Thus, it achieves a trade-off by giving a
standard-model justification, but the computational assumption is more suspect.

The Discrete Log Assumption, with Help. We now define a strengthening of the Discrete
Log assumption (Assumption 2.4), which allows the adversary limited query access to a compu-
tational Diffie Hellman (CDH) oracle.

ASSUMPT ION 5.6. We say that the Discrete Log with a single minimal CDH query assumption
(DLog/1-minCDH) assumption holds if the following is true. For any QPT adversaryA playing
the following game, parameterized by 𝜆, there is a negligible 𝜖 such thatA wins with probability
at most 𝜖(𝜆):

The challenger, on input 𝜆, chooses a random 𝑔 ∈ G𝜆 . It sends 𝜆 toA
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A submits a superposition query
∑

𝑦∈X,𝑧∈{0,1}∗ 𝛼𝑦,𝑧 | 𝑦, 𝑧⟩. Here, 𝑦 is a set element that
forms the query, and 𝑧 is the internal state of the adversary when making the query. The
challenger responds with

∑
𝑦∈X,𝑧∈{0,1}∗ 𝛼𝑦,𝑧 | (−𝑔) ∗ 𝑦, 𝑧⟩ 14.

The challenger sends 𝑔 ∗ 𝑥 toA.
A outputs a guess 𝑔′ for 𝑔 . It wins if 𝑔′ = 𝑔 .

Note that Assumption 5.6 uses a “minimal” oracle for the CDH oracle, meaning it replaces
𝑦 with (−𝑔) ∗ 𝑦 instead of writing (−𝑔) ∗ 𝑦 to a different register. This is only a possibility
because 𝑦 ↦→ (−𝑔) ∗ 𝑦 is reversible; otherwise the query would not be unitary. The minimal
oracle, however, is somewhat non-standard. So we here define a slightly different assumption
which uses “standard” oracles:

ASSUMPT ION 5.7. We say that the Discrete Log with a double standard CDH query assumption
(DLog/2-stdCDH) assumption holds if the following is true. For any QPT adversaryA playing the
following game, parameterized by 𝜆, there is a negligible 𝜖 such thatA wins with probability at
most 𝜖(𝜆):

The challenger, on input 𝜆, chooses a random 𝑔 ∈ G𝜆 . It sends 𝜆 toA.
A submits a superposition query

∑
𝑦∈X,𝑤,𝑧∈{0,1}∗ 𝛼𝑦,𝑤,𝑧 | 𝑦, 𝑤, 𝑧⟩. Here, 𝑦 is a set element

that forms the query, 𝑤 is a string that forms the response register, and 𝑧 is the in-
ternal state of the adversary when making the query. The challenger responds with∑

𝑦∈X,𝑤,𝑧∈{0,1}∗ 𝛼𝑦,𝑤,𝑧 | 𝑦, 𝑤 ⊕ [(−𝑔) ∗ 𝑦], 𝑧⟩.
A submits a second superposition query

∑
𝑦∈X,𝑤,𝑧∈{0,1}∗ 𝛼𝑦,𝑤,𝑧 | 𝑦, 𝑤, 𝑧⟩. The challenger

responds with
∑

𝑦∈X,𝑤,𝑧∈{0,1}∗ 𝛼𝑦,𝑤,𝑧 | 𝑦, 𝑤 ⊕ [𝑔 ∗ 𝑦], 𝑧⟩.
The challenger sends 𝑔 ∗ 𝑥 toA.
A outputs a guess 𝑔′ for 𝑔 . It wins if 𝑔′ = 𝑔 .

LEMMA 5.8. If DLog/2-stdCDH (Assumption 5.7) holds in a group action, then so does DLog/1-
minCDH (Assumption 5.6).

PROOF . Like the proof of Lemma 4.12, Lemma 5.8 follows by using the two standard oracle
queries to simulate a single minimal oracle query. ■

From this point forward, we will use DLog/1-minCDH as our assumption; Lemma 5.8 then
shows that we could have instead used DLog/2-stdCDH.

The security proof. We are now ready to formally state and prove security.

THEOREM 5.9. Assuming Q-mKGEA (Assumption 5.4) and DLog/1-minCDH (Assumption 5.6)
both hold on a group action (G,X, ∗), then Construction 3.1 is a quantum lightning scheme.

14 Note that this operation is unitary and efficiently computable since 𝑦 ↦→ (−𝑔) ∗ 𝑦 is efficiently computable and efficiently
reversible given 𝑔.



43 / 62 Quantum Money from Abelian Group Actions

REMARK 5.10. Before proving Theorem 5.9, we briefly discuss how to handle the case of
non-uniform attackers, since with non-uniform quantum advice quantum lightning is insecure
without some modifications. Note that even against non-uniform quantum-advice attackers,
DLog/1-minCDH still plausibly holds. However, Q-KGEA (Assumption 5.2) certainly does not, as a
non-uniform attacker may have a 𝑦 hard-coded for which it does not know the discrete log with
𝑥𝜆 . Theorem 5.9 also implies that Q-mKGEA (Assumption 5.4) does not hold in the non-uniform
quantum advice setting, though this is a priori harder to see. As discussed in Section 2, there
are several possibilities.

The first is to restrict to non-uniform attackers that only have classical advice. Note that Q-
KGEA is still trivially false in this setting, leading to a vacuous theorem. However, Q-mKGEA
may still plausibly hold.
The second is to use a probabilistically generated group action, and define Q-mKGEA and
DLog/1-minCDH accordingly. For quantum money security, it would suffice to have Gen
create the parameters of the group action and then include them in the serial number,
since the serial number is generated honestly. For quantum lightning security, we would
instead need the parameters to be generated by a trusted third party and then placed in a
common random string (CRS).
The final option is to use the human ignorance approach [57], where we explicitly state
our security theorem as transforming a quantum lightning adversary into a Q-mKGEA
adversary; while such Q-mKGEA adversaries exist in the non-uniform quantum advice
setting without a CRS, they are presumably unknown to human knowledge. As a con-
sequence, a quantum lightning attacker, while existing, would likewise be unknown to
human knowledge.

For simplicity, we state and prove Theorem 5.9 in the uniform setting; either probabilisti-
cally generating the group action or using human ignorance would require straightforward
modifications.

We now are ready to prove Theorem 5.9.

PROOF OF THEOREM 5.9 . Consider a QPT quantum lightning adversaryA′ which breaks
security with non-negligible success probability 𝜖. Since an adversary can always tell if it
succeeded by running Ver, we can runA′multiple times to boost the probability of a successful
break. In particular, we can runA′ for 𝜆𝜖 times, and at except with probability 1 − 2−Θ(𝜆) , at
least one of the runs will succeed. This allows us to conclude without loss of generality thatA′

has success probability 1 − 2−Θ(𝜆) . We can then invoke Q-mKGEA (Assumption 5.4) to arrive at
an adversaryA which also breaks quantum lightning security with high success probability.

By Theorem 3.3, we know that if A outputs a serial number ℎ, the states outputted are
exponentially close to two copies of |Gℎ

𝜆
∗ 𝑥𝜆⟩.



44 / 62 M. Zhandry

For simplicity in the following proof, we will assume the probability of passing verification
is actually 1; it is straightforward to adapt the proof to the case of negligible error.

Next, we purifyA, and assume that before measurement,A outputs a pure state |𝜓⟩. By
our assumption that the success probability is 1, |𝜓⟩ will have the form

|𝜓⟩ =
∑︁
ℎ

𝛼ℎ |𝜙ℎ⟩|Gℎ
𝜆 ∗ 𝑥𝜆⟩|G

ℎ
𝜆 ∗ 𝑥𝜆⟩ =

1
|G𝜆 |

∑︁
𝑔1,𝑔2,ℎ

𝛼ℎ |𝜙ℎ⟩𝜒(ℎ, 𝑔1 + 𝑔2) |𝑔1 ∗ 𝑥⟩M1 |𝑔2 ∗ 𝑥⟩M2 .

Above, |𝜙ℎ⟩ are arbitrary normalized states representing whatever state the adversary contains
after outputting its banknotes, and

∑
ℎ ∥𝛼ℎ∥2 = 1.

Now consider the adversary B which first constructs |𝜓⟩, and then measures the register
M2 to obtain 𝑦2 = 𝑔2 ∗ 𝑥.

CLAIM 5.1 1. 𝑔2 is uniform in G.

Proof. Consider additionally measuringM1 in the basis {|Gℎ
𝜆
∗ 𝑥𝜆⟩}. Since this measurement

is on a different register than the measurement onM2, measuringM1 does not affect the
output distribution ofM2 (though the results may be correlated). But the measurement on
M1 determines ℎ, and conditioned on ℎ,M2 collapses to |Gℎ

𝜆
∗ 𝑥𝜆⟩. Regardless of what ℎ is,

measuring |Gℎ
𝜆
∗ 𝑥𝜆⟩ gives a uniformly random element in X. Thus, even without measuring

M1, the measurement ofM2 gives a uniform element in X. ■

Therefore, after measuringM2, the state |𝜓⟩ then collapses to

|𝜓𝑔2∗𝑥𝜆⟩ :=
1√︁
|G𝜆 |

∑︁
𝑔1,ℎ

𝛼ℎ |𝜙ℎ⟩𝜒(ℎ, 𝑔1 + 𝑔2) |𝑔1 ∗ 𝑥⟩M1 .

CLAIM 5.12. There is a QPT procedure Map such that Map(𝑔, |𝜓𝑦⟩) = |𝜓𝑔∗𝑦⟩.

Proof. Map simply applies the map 𝑦 ↦→ (−𝑔) ∗ 𝑦 toM1 in superposition. Then we have that:

Map(𝑔, |𝜓𝑔2∗𝑥𝜆⟩) =
1√︁
|G𝜆 |

∑︁
𝑔1,ℎ

𝛼ℎ |𝜙ℎ⟩𝜒(ℎ, 𝑔1 + 𝑔2) | (𝑔1 − 𝑔) ∗ 𝑥⟩M1

=
1√︁
|G𝜆 |

∑︁
𝑔′1,ℎ

𝛼ℎ |𝜙ℎ⟩𝜒(ℎ, 𝑔′1 + 𝑔 + 𝑔2) |𝑔′1 ∗ 𝑥⟩M1 = |𝜓(𝑔+𝑔2)∗𝑦⟩ = |𝜓𝑔∗(𝑔2∗𝑦)⟩ .

Above we used the change of variables 𝑔′1 = 𝑔1 − 𝑔 . ■

Now we invoke Q-KGEA (Assumption 5.2) on the adversary B. Since B always outputs a
valid set element, this means there is another QPT algorithm E such that

Pr[E(𝑔2 ∗ 𝑥𝜆 , |𝜓𝑔2∗𝑥𝜆⟩) = 𝑔2] ≥ 1 − negl(𝜆) .

Above, the probability is over 𝑔2 ∗ 𝑥𝜆 , as well as any randomness incurred when executing
E. We note by a simple random self-reduction that we can insist the above probability holds for
all 𝑔2 ∗ 𝑥𝜆 , where the randomness is only over E. Indeed, given |𝜓𝑔2∗𝑥𝜆⟩, 𝑔2 ∗ 𝑥𝜆 , we can choose a
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random 𝑔 and compute 𝑔′2 ∗ 𝑥𝜆 as 𝑔 ∗ (𝑔2 ∗ 𝑥𝜆) where 𝑔′2 = 𝑔 + 𝑔2. Likewise, we can compute
|𝜓𝑔′2∗𝑥𝜆⟩ as Map(𝑔, |𝜓𝑔2∗𝑥𝜆⟩). This gives a random instance on which to apply E, giving 𝑔′2 with
probability 1 − negl(𝜆), regardless of 𝑔2. Then we can compute 𝑔2 = 𝑔′2 − 𝑔 . We thus compute
𝑔2 with overwhelming probability, even in the worst case. We will therefore assume without
loss of generality that this is the case for E.

For simplicity, we will actually assume that the probability is 1; it is straightforward to
handle the case the probability is negligibly close to 1. By the Gentle Measurement Lemma [65], E
can compute 𝑔2 without altering the state |𝜓𝑔2∗𝑥⟩. Thus, by combining B and E, we can compute
both |𝜓𝑔2∗𝑥⟩ and 𝑔2 with probability 1. We can then compute Map(−𝑔2, |𝜓𝑔2∗𝑥𝜆⟩) = |𝜓𝑥𝜆⟩.

We now describe a new algorithm C which breaks DLog/1-minCDH (Assumption 5.6). C
works as follows:

It constructs |𝜓𝑥𝜆⟩ as above.
It makes its query to the DLog/1-minCDH challenger, settingM1 as the query register.
This query simulates the operation Map(𝑔, ·), where 𝑔 is the group element chosen by the
challenger. Thus, at the end of the query, C has |𝜓𝑔∗𝑥𝜆⟩.
Now upon receiving 𝑔 ∗ 𝑥𝜆 from the challenger, run E(𝑔 ∗ 𝑥𝜆 , |𝜓𝑔∗𝑥𝜆⟩). By the guarantees
of E, the output will be 𝑔 .

Thus, we see that C breaks the DLog/1-minCDH assumption. This completes the security proof.
■

5.3 Algebraic Group Actions.

Next we turn to the Algebraic Group Action Model (AGAM), considered by a couple recent
works [28, 49]. This is an analog of the Algebraic Group Model (AGM) [31], adapted to group
actions and quantum attackers. This model considers algebraic adversaries, which are algo-
rithms where, any time they produce a set element output, must also “explain” the output in
terms of the set elements the adversary saw as input. That is, if the algebraic adversary has so
far been given set elements 𝑦1, . . . , 𝑦ℓ, when it outputs a new element 𝑦, it must also output a
group element 𝑔 ∈ G𝜆 and index 𝑖 such that 𝑦 = 𝑔 ∗ 𝑦𝑖 .

In the classical world, a common refrain is that the AGM is “between” the generic group
model and standard model. As formalized by Zhandry [71], this is true in a particular sense:
any “nice” security game that is secure in the standard model is also secure in the AGM, and in
turn any nice security game that is secure in the AGM is also secure in the appropriate generic
group model. The statements also hold true for group actions, provided we still restrict to the
classical world. Here, “nice” comes with some important restrictions. The game must be “single
stage”, meaning there is only a single adversary interacting with the challenger. Moreover, the
game must be a “type safe” game, which for group actions informally means the algorithms can
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pass set elements around and perform group action computations on them as a black box, but
cannot manipulate the individual bits of the set element representations.

We might expect, therefore, that the AGAM is also “between” the GGAM and the standard
model quantumly. However, this appears not to be the case, or at least it does not follow from
any obvious adaptation of existing work. There are at least three problems.

The first is closely related to the issue with knowledge assumptions explored above. After
all, the motivation for the AGAM, following the motivation from the AGM, is that we would
expect the only way to output set elements is to actually derive them from existing set elements
via the group action, in which case we would seem to know how to explain the new elements
in terms of existing elements. In the classical setting, you can indeed show that this is true
generically. However, our attack on the Q-KGEA assumption (Theorem 5.3) shows that this is
not true quantumly. Namely, it is possible to output a superposition of set elements where one
does not “know” how to derive those elements from input elements.

For the second issue, consider the security game for our quantum lightning scheme. Recall
that the adversary must output someℎ along with two copies of |Gℎ∗𝑥𝜆⟩ = 1√

|G𝜆 |

∑
𝑔 𝜒(ℎ, 𝑔) |𝑔∗𝑥𝜆⟩.

An algebraic adversary would have to “explain” this state, meaning it must output two copies of

1√︁
|G𝜆 |

∑︁
𝑔

𝜒(ℎ, 𝑔) |𝑔 ∗ 𝑥𝜆 , 𝑔⟩ .

But here, note that if the challenger tries to verify the banknote state, the verification will
actually fail, since the state is entangled with 𝑔. Worse, observe that the state produced by
the algebraic adversary is actually trivial to construct for any given ℎ, by first constructing

1√
|G𝜆 |

∑
𝑔 𝜒(ℎ, 𝑔) |𝑔⟩ and then applying the group action operation. Thus, we see that the algebraic

adversary can actually trivially produce two copies of the requisite state. This is in contrast to
the actual banknote state |Gℎ ∗ 𝑥𝜆⟩, where it appears only possible to sample actual banknotes
for a random ℎ, but not produce a banknote for a given ℎ; indeed the security of our scheme
inherently relies on this difficulty. That is, the state required of the algebraic adversary is trivial,
whereas the state required by a standard-model adversary is presumably hard to construct.
This is in contrast to the classical world, where the algebraic adversary’s task is always at least
as hard as the real-world adversary.

The third issue is the claim that any game which is secure in the classical AGM/AGAM
is also secure in the classical GGM/GGAM. This claim, or at least the classical proof of it, does
not hold quantumly. This is because the proof relies on the ability to view the adversary’s
queries to the group/group action oracle and extract information from them. Specifically, in
the classical GGM/GGAM, the only way the adversary can obtain new set elements is to act
on existing elements by querying the group action. By writing down the input set and group
element as well as the output group element, we can remember how we derived all set elements.
Importantly, for any set element we produce, we can trace that set element back to an input
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set element, and see that the output element was obtained via a sequence of actions by group
elements on the original input element. By multiplying these group actions together, we can
explain the output element in terms of the input set element.

This strategy, however, does not work quantumly. Consider for example the hardness
assumption DLog/minCDH (Assumption 5.6). Here, the adversary can query on a superposition∑

𝑦 𝛼𝑦 | 𝑦⟩ of set elements, and get the resulting superposition obtained by action of a secret
group element (−𝑔): ∑𝑦 𝛼𝑦 | (−𝑔) ∗ 𝑦⟩

In the AGAM, we would ask the adversary queries on
∑

𝑦 𝛼𝑦 | 𝑦, Explain𝑦⟩, where Explain𝑦

is an explanation of 𝑦 in terms of the elements the adversary has seen so far. In the case of
DLog/minCDH, the only element seen by the time the adversary must make its query is 𝑥𝜆 , and
so Explain𝑦 is the unique ℎ such that 𝑦 = ℎ ∗ 𝑥𝜆 . Thus, the adversary’s query takes the form∑

ℎ 𝛼ℎ∗𝑥𝜆 |ℎ ∗ 𝑥𝜆 , ℎ⟩. In response, it receives

|𝜙AGAM⟩ =
∑︁
ℎ

𝛼ℎ∗𝑥𝜆 | (ℎ − 𝑔) ∗ 𝑥𝜆 , ℎ⟩ .

On the other hand, a generic adversary would have just

|𝜙GGAM⟩ =
∑︁
ℎ

𝛼ℎ∗𝑥𝜆 | (ℎ − 𝑔) ∗ 𝑥𝜆⟩ .

While in the classical setting, having the extra information ℎ about 𝑦 does not cause
problems (it can just be erased or ignored), this extra information is problematic quantumly.
For example, it might be that having |𝜙GGAM⟩ allows for solving some task, whereas having∑

ℎ 𝛼ℎ∗𝑥𝜆 | (ℎ − 𝑔) ∗ 𝑥𝜆 , ℎ⟩ does not. In such a case, we find that the task is hard in the AGAM,
despite being easy in the GGAM and even in the standard model. In particular, if we want the
AGAM to be “between” the GGAM and standard models, we would need to rule this situation
out, meaning we would need a way to map the state |𝜙AGAM⟩ containing the explanation back
to the state |𝜙GGM⟩ without the explanation. This mapping, in general, will be intractable, as it
requires un-computing ℎ from | (ℎ − 𝑔) ∗ 𝑥𝜆⟩.

Based on these issues, we see that the AGAM is probably not a reasonable model for
quantum attacks, at least when the game is inherently quantum, as with the security of our
quantum lightning scheme or with assumptions that allow quantum queries. On the other hand,
the model might be reasonable for “classically stated” security games, such as ordinary discrete
log or CDH. However, these problems do not arise at all for generic group actions. Therefore,
based on this discussion, we posit that generic group actions should be the preferred method
for analyzing cryptosystems and security games.
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6. A Construction for REGAs

In this section, we give a construction for the case where the group action can only be computed
efficiently for a small “base” set of group elements. Such group actions are known as “restricted
effective group actions” (REGAs).

6.1 Some additional background

Before giving the construction, we here provide some additional background that will be
necessary for understanding the construction.

Groups. Let G be a group (written additively), and 𝑁 an integer such that 𝑁 × 𝑔 = 0 for all
𝑔 ∈ G. 𝑁 = |G| will do. Then G is a subgroup of Z𝑛𝑁 for some positive integer 𝑛. Let 𝑊 be the
set of vectors in Z𝑛𝑁 such that w · 𝑔 = 0 mod 𝑁 for all 𝑔 ∈ G. 𝑊 is then a group, and we can
therefore consider the group (Z𝑛𝑁 )/𝑊 defined using the equivalence relation ∼, where u1 ∼ u2

if u1 − u2 ∈ 𝑊 . (Z𝑛𝑁 )/𝑊 is isomorphic to G; let 𝜙 : G → (Z𝑛𝑁 )/𝑊 be an isomorphism. Note
that for 𝑔 ∈ G ⊆ Z𝑛𝑁 and ℎ ∈ G, 𝑔 · 𝜙(ℎ) mod 𝑁 is well-defined by taking any representative
ℎ′ ∈ 𝜙(ℎ) and computing 𝑔 · ℎ′ mod 𝑁 .

Under this notation, we can re-define 𝜒(𝑔, ℎ) as 𝑒𝑖2𝜋𝑔 ·𝜙(ℎ)/𝑁 , which is equivalent to the
definition in Section 2.

We associate Z𝑁 with the interval [−⌊(𝑁 − 1)/2⌋, ⌈(𝑁 − 1)/2⌉] in the obvious way, and
likewise associate Z𝑛𝑁 with the hypercube [−⌊(𝑁 − 1)/2⌋, ⌈(𝑁 − 1)/2⌉]𝑛. This gives rise to a
notion of norm on Z𝑛𝑁 by taking the norm in Z𝑛.

LEMMA 6.1. Let G be a subgroup of Z𝑁 . Then the number of elements 𝑔 ∈ G such that |𝑔 | ≥ 𝑁/4
is exactly |G| + 1 − 2⌈|G|/4⌉. In particular, if G ≠ {0}, then there is at least one element 𝑔 ∈ G has
|𝑔 | ≥ 𝑁/4.

PROOF . First, it suffices to consider |G| = 𝑁 , in other wordsG = Z𝑁 : we can then lift to 𝑁 = 𝑡 |G|,
where G is embedded into Z𝑁 by multiplying each element in G by 𝑡 (where multiplication is
over the integers). Since 𝑁 is also multiplied by 𝑡, this preserves the number of elements with
|𝑔 | ≥ 𝑁/4.

When G = Z𝑁 , we are then simply asking for the number of elements in [−⌊(|G| −
1)/2⌋, ⌈(|G| − 1)/2⌉] with absolute value at least |G|/4. In other words, it is the combined
size of the intervals [⌈|G|/4⌉, ⌈(|G| − 1)/2⌉] and [−⌊(|G| − 1)/2⌋,−⌈|G|/4⌉], giving a total of
(⌈(|G| − 1)/2⌉ − ⌈|G|/4⌉ + 1) + (⌊(|G| − 1)/2⌊−⌈|G|/4⌉ + 1) = |G| + 1 − 2⌈|G|/4⌉. ■

LEMMA 6.2. Let A ∈ Z𝑛×𝑚𝑁 be a matrix. Let G be the subgroup of Z𝑛𝑁 generated by the columns
of A. Let 𝐵, 𝐶 be positive integers such that 8𝐵𝐶𝑚 < 𝑁 . Suppose there is a distribution D
on [−𝐵, 𝐵]𝑚 such that A · x for x ← D is negligibly close to uniform in G. Then the function
𝑓 : G × [−𝐶, 𝐶] → Z𝑚𝑁 given by 𝑓 (𝑔, e) = A𝑇 · 𝜙(𝑔) + e is injective.
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PROOF . Note that A𝑇 · 𝜙(𝑔) is well-defined since it is independent of the representative of
𝜙(𝑔). Consider a potential collision in 𝑓 : A𝑇 · 𝜙(𝑔1) + e1 = A𝑇 · 𝜙(𝑔2) + e2. By subtracting, this
gives a non-zero pair (𝑔 = 𝑔1 − 𝑔2, e = e1 − e2) where e ∈ [−2𝐶, 2𝐶] such that A𝑇 · 𝜙(𝑔) + e = 0
or equivalently A𝑇 · 𝜙(𝑔) = −e. Now consider sampling x← D, meaning u = A · x is negligibly
close to uniform in G. Then u𝑇 · 𝜙(𝑔) = x𝑇 · A𝑇 · 𝜙(𝑔) = −x𝑇 · e. On one hand, u𝑇 · 𝜙(𝑔) is
statistically close to uniform in a subgroup G′ of Z𝑁 , and G′ is different from {0} since 𝑔 ≠ 0.
By Lemma 6.1, the probability |u𝑇 · 𝜙(𝑔) | ≥ 𝑁/4 is |G′| + 1 − 2⌈|G′|/4⌉ > 0 since |G′| ≥ 2. On
the other hand, | − x𝑇 · e| < 2𝑚𝐵𝐶 ≤ 𝑁/4 always. This means the distributions of u𝑇 · 𝜙(𝑔) and
−x𝑇 · e must be non-negligibly far, a contradiction. ■

Discrete Gaussians. The discrete Gaussian distribution is the distribution over Z defined as:

Pr[𝑥] = D𝜎 (𝑥) := 𝐶𝜎𝑒
2𝜋𝑥2/𝜎2

,

where 𝐶𝜎 is the normalization constant 𝐶𝜎 =
∑

𝑥∈Z 𝑒
2𝜋𝑥2/𝜎2 , so that D𝜎 defined a probability

distribution. We will also define a truncated variant, denoted

D𝜎,𝐵(𝑥) :=

𝐶𝜎,𝐵𝑒

2𝜋𝑥2/𝜎2 if |𝑥 | ≤ 𝐵

0 otherwise
,

where again 𝐶𝜎,𝐵 is an appropriately defined normalization constant. For large 𝐵, we can treat
the truncated and un-truncated Gaussians as essentially the same distribution:

FACT 6.3. For 𝜎 ≥ 𝜔(
√︁

log 𝜆) and 𝐵 ≥ 𝜎 × 𝜔(
√︁

log 𝜆), the distributions D𝜎 and D𝜎,𝐵 are
negligibly close

For a vector r ∈ Z𝑚, we writeD𝜎,𝐵(r) =
∏𝑚

𝑖=1D𝜎,𝐵(𝑟𝑖).

The discrete Gaussian superposition is the quantum state

|D𝜎⟩ :=
∑︁
𝑥∈Z

√︁
D𝜎 (𝑥) |𝑥⟩ .

As we will generally need to restrict to finite-precision, we also consider the truncated variant

|D𝜎,𝐵⟩ :=
∑︁

𝑥∈[−𝐵,𝐵]

√︁
D𝜎,𝐵(𝑥) |𝑥⟩ .

Again, for large enough 𝐵, we can treat the truncated and un-truncated Gaussian superpositions
as essentially the same state:

FACT 6.4. For 𝜎 ≥ 𝜔(
√︁

log 𝜆) and 𝐵 ≥ 𝜎 × 𝜔(
√︁

log 𝜆), ∥|D𝜎⟩ − |D𝜎,𝐵⟩∥ is negligible.

By adapting classical lattice sampling algorithms, the states |D𝜎,𝐵⟩ can be efficiently constructed.



50 / 62 M. Zhandry

Fourier transform pairs. Fix an integer 𝑁 . We will associate the set Z𝑁 with the integers
[−⌊(𝑁 − 1)/2⌋, ⌈(𝑁 − 1)/2⌉]. Denote by QFT𝑁 the Quantum Fourier Transform QFTZ𝑁 . We now
recall some basic facts about quantum Fourier transforms.

QFT𝑚𝑁
∑︁

r∈Z𝑚𝑁 :A·r=s
|r⟩ = 𝑁𝑚/2−𝑛

∑︁
t∈Z𝑛𝑁

𝑒𝑖2𝜋t·s/𝑁 |A𝑇 · t⟩ for A ∈ Z𝑛×𝑚𝑁

QFT𝑚𝑁
∑︁
r
𝛼r𝛽r |r⟩ =

1
𝑁𝑚/2

∑︁
t,u

�̂�t𝛽u |u + t⟩ for
∑

t �̂�t |t⟩=QFT𝑚𝑁
∑

r 𝛼r |r⟩∑
u 𝛽u |u⟩=QFT𝑚𝑁

∑
r 𝛽r |r⟩

QFT𝑁 |D𝜎,⌊(𝑁−1)/2⌋⟩ ≈ |D𝑁/𝜎,⌊(𝑁−1)/2⌋⟩ for 𝑁≥𝜎×𝜔(
√

log 𝜆)
𝜎≥𝜔(
√

log 𝜆)

Above, ≈means the two states are negligibly close.

6.2 The Construction

Let G𝜆 ,X𝜆 , ∗ be a REGA, and T = (𝑔1, . . . , 𝑔𝑚) a set such that ∗ can be efficiently computed for
𝑔𝑖 and 𝑔−1

𝑖
. We can associate G𝜆 with a subgroup of Z𝑛𝑁 for some integers 𝑁, 𝑛. We can likewise

associate the list T with the matrix A = (𝑔1, · · · , 𝑔𝑚) ∈ Z𝑛×𝑚𝑁 .
Since we can only compute the action of certain group elements, this will significantly

complicate our construction. There are several issues that need to be resolved.
For both minting and verification of our original scheme, we needed the ability to apply
the group action on random group elements, which is not possible in REGAs. Our solution,
following typical applications of REGAs in the literature, is to choose our random group
element as a “small” known combination of the base group elements 𝑔 =

∑𝑚
𝑖=1 𝑟𝑖𝑔𝑖 where

the 𝑟𝑖 are small integers. Under mild assumptions, 𝑔 will be uniform, and using the
representation as a small combination of the 𝑔𝑖 we can efficiently compute the action by 𝑔 .
Unfortunately, the 𝑟𝑖 are now side-information entangled with 𝑔 which is hard to un-
compute. If the 𝑟𝑖 are left around, it they will be entangled with the banknote which
will break the correctness of the scheme. Our solution is to actually treat the 𝑟𝑖 as the
group element, and perform the QFT on the 𝑟𝑖 instead of on 𝑔 . This results in a number of
complications, one being that the serial number is actually now hidden, and a different
quantity must be used as the serial number. This quantity also turns out to be noisy.
Nevertheless, by careful analysis, we are able to show our scheme is correct, and explain
how to adapt the security proof from Section 4.5 to our REGA scheme.

We now give the details. We will make the following assumption about the structure of T ,
which is typical in the isogeny literature.

ASSUMPT ION 6.5. There is a polynomial 𝐵 and a distributionD∗ on [−𝐵, 𝐵]𝑚 such that for
x← D,

∑𝑚
𝑖=1 𝑥𝑖𝑔𝑖 = A · x is statistically close to a uniform element in G.
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Numerous examples of suchD∗ have been proposed, such as discrete Gaussians [23], or
uniform vectors in small balls relative to different norms [16, 48].

Let 𝐶 = 𝑁/8𝐵𝑚, which then satisfies the conditions of Lemma 6.2. Thus, for e with entries
in [−𝐶, 𝐶]𝑚, the map (𝑔, e) ↦→ A𝑇 · 𝜙(𝑔) + e is injective.

Let 𝜎 ≥ 16𝐵𝑚/𝜖 × 𝜔(
√︁

log 𝜆) and 𝐵′ ≥ 𝜎 × 𝜔(
√︁

log 𝜆) be polynomials. We will assume
𝑁 ≥ 2𝐵′, which is always possible since we can take 𝑁 to be arbitrarily large. We will also for
simplicity assume 𝑁 is even. This assumption is not necessary but will simplify some of the
analysis, and is moreover without loss of generality since we can always make 𝑁 larger by
multiplying it by arbitrary factors.

CONSTRUCT ION 6.6. Construct (Gen, Ver) as follows:
Gen(1𝜆): Initialize quantum registers S (for serial number) andM (for money) to states
|D𝜎,𝐵′⟩⊗𝑚S and |0⟩M , respectively. Then do the following:

Apply in superposition the map |r⟩S | 𝑦⟩M ↦→ |r⟩S | 𝑦 ⊕ [(
∑𝑚

𝑖=1 𝑟𝑖𝑔𝑖) ∗ 𝑥𝜆])⟩M . The joint
state of the system S ⊗M is then∑︁

r∈Z𝑚𝑁

√︁
D𝜎′,𝐵(r) |r⟩S | (

𝑚∑︁
𝑖=1

𝑟𝑖𝑔𝑖) ∗ 𝑥𝜆⟩M =
∑︁
𝑔∈G𝜆

©­«
∑︁

r∈Z𝑚𝑁 :A·r=𝑔

√︁
D𝜎,𝐵′ (r) |r⟩S

ª®¬ |𝑔 ∗ 𝑥𝜆⟩M .

Apply QFTZ𝑚𝑁 to S. Using the QFT rules given above, this yields the state negligibly
close to:

1
𝑁𝑛

∑︁
𝑔∈G𝜆

©­«
∑︁

s,e∈Z𝑛𝑁

√︃
D𝑁/𝜎,𝑁/2−1(e)𝑒𝑖2𝜋(𝑔 ·s) |A𝑇 · s + e⟩S

ª®¬ |𝑔 ∗ 𝑥𝜆⟩M
=

1
|G𝜆 |

∑︁
𝑔∈G𝜆

©­«
∑︁

ℎ∈G𝜆 ,e∈Z𝑛𝑁

√︃
D𝑁/𝜎,𝑁/2−1(e)𝑒𝑖2𝜋(𝑔 ·𝜙(ℎ)) |A𝑇 · 𝜙(ℎ) + e⟩S

ª®¬ |𝑔 ∗ 𝑥𝜆⟩M
=

1√︁
|G𝜆 |

∑︁
𝑔∈G𝜆

©­« 1√︁
|G𝜆 |

∑︁
ℎ∈G𝜆 ,e∈Z𝑛𝑁

√︃
D𝑁/𝜎,𝑁/2−1(e)𝜒(𝑔, ℎ) |A𝑇 · 𝜙(ℎ) + e⟩S

ª®¬ |𝑔 ∗ 𝑥𝜆⟩M .

MeasureS, giving the serial number t := A𝑇 ·𝜙(ℎ)+e. e is distributed negligibly close to
D𝑁/𝜎, meaning with overwhelming probability each entry is in [−𝑁/16𝐵𝑚, 𝑁/16𝐵𝑚] =
[−𝐶/2, 𝐶/2] ⊆ [−𝐶, 𝐶]. This means, to within negligible error, t uniquely determines
𝜙(ℎ) and hence ℎ. Therefore, theM register then collapses to a state negligibly close
to

1√︁
|G𝜆 |

∑︁
𝑔∈G𝜆

𝜒(𝑔, ℎ) |𝑔 ∗ 𝑥𝜆⟩M =: |Gℎ
𝜆 ∗ 𝑥𝜆⟩ .

Note that ℎ is unknown. Output (t, |Gℎ
𝜆
∗ 𝑥𝜆⟩).

Ver(t, $) : First verify that the support of $ is contained in X𝜆 , by applying the assumed
algorithm for recognizing X𝜆 in superposition. Then repeat the following 𝜆 times:
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Initialize a new registerH to ( |0⟩H + |1⟩H )/
√

2.
Choose a random element x← D∗.
Apply toH ⊗M in superposition the map

Apply|𝑏⟩H | 𝑦⟩M ↦→

|0⟩H | 𝑦⟩M if 𝑏 = 0 ,

|1⟩H | (−
∑

𝑖 𝑥𝑖𝑔𝑖) ∗ 𝑦⟩M if 𝑏 = 1 .

Since the entries of x are bounded by 𝐵 which is polynomial, this step is efficient.
MeasureH in the basis 𝐵t,x := {(|0⟩H +𝑒𝑖2𝜋x

𝑇 ·t/𝑁 |1⟩H )/
√

2, ( |0⟩H−𝑒𝑖2𝜋x
𝑇 ·t/𝑁 |1⟩H )/

√
2},

giving a bit 𝑏x ∈ {0, 1}. Discard theH register.
Accept if at least a fraction 7/8 of the 𝑏x = 0 and the support of $ is contained in X𝜆;
otherwise reject.

6.3 Accepting States of the Verifier

We now analyze the correctness of the construction.

THEOREM 6.7. Let |𝜓⟩ be a state overM. Then Pr[Ver(ℎ, |𝜓⟩) = 1] = ∥⟨𝜓|Gℎ
𝜆
∗ 𝑥𝜆⟩∥2(1 −

2−Ω(
√
𝜆)) ± 2−Ω(

√
𝜆) .

PROOF . For simplicity, we analyze the case of |𝜓⟩ = |Gℎ′

𝜆
∗ 𝑥𝜆⟩, which form a basis for super-

positions over X𝜆 . In this case, Theorem 6.7 states that |Gℎ
𝜆
∗ 𝑥𝜆⟩ is accepted with probability

1− 2Ω(
√
𝜆) , while |Gℎ′

𝜆
∗ 𝑥𝜆⟩ for ℎ′ ≠ ℎ is accepted with probability 2Ω(

√
𝜆) . Linearity of the verifier

allows us to extend to all possible states.
If we let 𝑢 = A · x =

∑
𝑖 𝑥𝑖𝑔𝑖 , then by the same analysis as in Construction 3.1, we have that

applying Apply to the state |Gℎ′

𝜆
∗ 𝑥𝜆⟩ results in the state

1
√

2
( |0⟩H + 𝜒(𝑢, ℎ′) |1⟩H ) |Gℎ′

𝜆 ∗ 𝑥𝜆⟩

=
1
√

2

(
|0⟩H + 𝑒𝑖2𝜋𝑢·𝜙(ℎ

′)/𝑁 |1⟩H
)
|Gℎ′

𝜆 ∗ 𝑥𝜆⟩

=
1
√

2

(
|0⟩H + 𝑒𝑖2𝜋x

𝑇 ·A𝑇 ·𝜙(ℎ′)/𝑁 |1⟩H
)
|Gℎ′

𝜆 ∗ 𝑥𝜆⟩ .

Conditioned on sampling x, the probability Pr[𝑏x = 0] is the inner product squared of(
|0⟩H + 𝑒𝑖2𝜋x

𝑇 ·A𝑇 ·𝜙(ℎ′)/𝑁 |1⟩H
)
/
√

2

with the basis state (
|0⟩H + 𝑒𝑖2𝜋x·t/𝑁 |1⟩H

)
/
√

2 .
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This probability therefore evaluates to:

Pr[𝑏x = 0] = 1
4




1 + 𝑒𝑖2𝜋(x𝑇 ·A𝑇 ·𝜙(ℎ′)−x𝑇 ·t)/𝑁



2

=
1
2

(
1 + cos

[
2𝜋(x𝑇 · A𝑇 · 𝜙(ℎ′) − x𝑇 · (A𝑇 · 𝜙(ℎ) + e))/𝑁

] )
=

1
2

(
1 + cos

[
2𝜋(x𝑇 · A𝑇 · 𝜙(ℎ′ − ℎ) + x𝑇 · e)/𝑁

] )
.

In the case ℎ = ℎ′, Pr[𝑏x = 0] = 1
2
(
1 + cos

[
2𝜋x𝑇 · e/𝑁

] )
. We have that |2𝜋x𝑇 · e/𝑁 | ≤ 𝜋/8.

Using the fact that cos(𝑥) ≥ 1 − 𝑥2/2, we therefore have that Pr[𝑏x = 0] ≥ 1 − 𝜋2/256 =

0.9614 . . . = 7/8 + Ω(1). Then via standard concentration inequalities, after 𝜆 trials, except
with probability 2−Ω(

√
𝜆) , at least 7/8 of the 𝑏x will be 0. Therefore, Ver accepts with probability

1 − 2−Ω(
√
𝜆) .

On the other hand, if ℎ ≠ ℎ′, then x𝑇A𝑇 is statistically close to uniform in G𝜆 , and so
x𝑇 ·A𝑇 ·𝜙(ℎ′−ℎ) is statistically close to uniform in a non-trivial subgroupG′ of Z𝑁 . By Lemma 6.1
and our assumption that 𝑁 is even, at least half of the elements of Z𝑁 are at least 𝑁/4 in
absolute value. In particular, this means Pr[|x𝑇 · A𝑇 · 𝜙(ℎ′ − ℎ) | ≥ 𝑁/4] ≥ 1/2 − negl. On the
other hand, |x𝑇 · e| ≤ 𝑁/16 always. This means ∥x𝑇 · A𝑇 · 𝜙(ℎ′ − ℎ) + x𝑇 · e∥ ≥ 𝑁/4 − 𝑁/16
with probability at least 1/2 − negl. In this case, we can use that cos(𝜋/2 + 𝑥) ≤ |𝑥 | to bound
cos

[
2𝜋(x𝑇 · A𝑇 · 𝜙(ℎ′ − ℎ) + x𝑇 · e)/𝑁

]
≤ 2𝜋/16 = 𝜋/8, meaning Pr[𝑏x = 0] ≤ 1/2 + 𝜋/16.

Averaging over all x, we therefore have that: Pr[𝑏x = 0] ≤ 3
4 + 𝜋/32 + negl = 0.8481 . . . =

7/8 − Ω(1). Then via standard concentration inequalities, after 𝜆 trials, except with probability
2−Ω(

√
𝜆) , fewer than 7/8 of the 𝑏x will be 0. Therefore, Ver accepts with probability 2−Ω(

√
𝜆) . ■

6.4 Security

Here, we state the security of Construction 6.6.

Assumptions. We first need to define slight variants of our assumptions, in order to be
consistent with the more limited structure of a REGA. For example, in the ordinary Discrete Log
assumption (Assumption 2.4), the challenger computes 𝑦 = 𝑔 ∗ 𝑥 for a random 𝑔 , and adversary
produces 𝑔 . But the adversary cannot even tell if it succeeded since it cannot compute the action
of 𝑔 in general. Instead, the adversary is required not to compute 𝑔 , but instead to compute any
short x such that 𝑔 =

∑
𝑖 𝑥𝑖𝑔𝑖 . The adversary can then check that it has a solution by computing

the action of 𝑔 using its knowledge of x. We analogously update each of our assumptions to
work with the limited ability to compute the group action on REGAs.

As above, let G𝜆 ,X𝜆 , ∗ be a REGA, and T = (𝑔1, . . . , 𝑔𝑚) a set such that ∗ can be efficiently
computed for 𝑔𝑖 and 𝑔−1

𝑖
. LetD∗, 𝐵 be as in Assumption 6.5.

ASSUMPT ION 6.8. The REGA quantum knowledge of group element assumption (REGA-Q-
KGEA) holds on a group action (G,X, ∗) if the following is true. For any quantum polynomial
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time (QPT) adversary A which performs no measurements except for its final output, there
exists a polynomial 𝐶, a QPT extractor E with outputs in [−𝐶, 𝐶]𝑚, and negligible 𝜖 such that

Pr
[
𝑦 ∈ X ∧ 𝑦 ≠ 𝑔 ∗ 𝑥𝜆 :

( 𝑦,|𝜓⟩)←A(1𝜆)
x←E( 𝑦,|𝜓⟩)
𝑔←∑

𝑖 𝑥𝑖𝑔𝑖

]
≤ 𝜖(𝜆) .

As with the non-REGA Q-KGEA assumption, we expect the REGA-Q-KGEA assumption is
likely false. Certainly it is false on group actions with oblivious sampling. However, we note
that it is unclear if our attack from Theorem 5.3 can be adapted to REGAs. Nevertheless, to
mitigate any risks associated with the plain REGA-Q-KGEA assumption, we can likewise define
a modified REGA KGEA assumption (REGA-Q-mKGEA), in the same spirit as Assumption 5.4.

We next define our REGA analog of Assumption 5.6.

ASSUMPT ION 6.9. We say that the REGA Discrete Log with a single minimal CDH query
assumption (REGA-DLog/1-minCDH) assumption holds if the following is true. For any QPT
adversaryA playing the following game, parameterized by 𝜆, there is a negligible 𝜖 such that
A wins with probability at most 𝜖(𝜆):

The challenger, on input 𝜆, chooses a random 𝑔 ∈ G𝜆 . It sends 𝜆 toA
A submits a superposition query

∑
𝑦∈X,𝑧∈{0,1}∗ 𝛼𝑦,𝑧 | 𝑦, 𝑧⟩. Here, 𝑦 is a set element that

forms the query, and 𝑧 is the internal state of the adversary when making the query. The
challenger responds with

∑
𝑦∈X,𝑧∈{0,1}∗ 𝛼𝑦,𝑧 | (−𝑔) ∗ 𝑦, 𝑧⟩.

The challenger sends 𝑔 ∗ 𝑥 toA.
A outputs a x ∈ Z𝑚, encoded in unary. It wins if 𝑔 =

∑
𝑖 𝑥𝑖𝑔𝑖 .

Note that the challenger in Assumption 6.9 is inefficient on a REGA. However, under
Assumption 6.5, the challenger can be made efficient by first sampling y ← D∗ and then
computing 𝑔 =

∑
𝑖 𝑦𝑖𝑔𝑖 .

THEOREM 6.10. Assuming REGA-DLog/1-minCDH (Assumption 6.9) and REGA-Q-KGEA (As-
sumption 6.8) (or more generally, REGA-Q-mKGEA) both hold on a group action (G,X, ∗), then
Construction 6.6 is a quantum lightning scheme. Alternatively, if D2X/min (Assumption 4.10) holds
on a group action with X ⊆ {0, 1}𝑚, then Construction 6.6 is a quantum lightning scheme in the
generic group action model GGAMG,𝑚′ with label length 𝑚′.

We only sketch the proof. Like in the proof of Theorems 4.13 and 5.9, we can assume the
adversary wins the quantum lightning experiment with probability 1 − negl(𝜆). In order for a
supposed note $ to be accepted relative to serial number t with overwhelming probability, t
must have the form t = A𝑇 · 𝜙(ℎ) + e for “short” e, and $ must be negligibly close to |Gℎ

𝜆
∗ 𝑥𝜆⟩.

Therefore, a quantum lightning adversary outputs two copies of |Gℎ
𝜆
∗ 𝑥𝜆⟩ for some ℎ. The

security reduction of Theorem 4.13 did not rely on knowing ℎ, just that the adversary outputted
two copies of |Gℎ

𝜆
∗ 𝑥𝜆⟩. Hence, a near-identical proof holds for Construction 6.6. The only
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difference is that when the extractor E outputs a group element, it instead outputs a small
linear combination of the 𝑔𝑖 giving that group element, and then the DLog/1-minCDH adversary
uses this small representation to compute the action by that group element.

7. Further Discussion

7.1 Quantum Group Actions

Here, we consider a generalization of group actions where set elements are replaced with
quantum states.

A quantum (abelian) group action consists of a family of (abelian) groups G = (G𝜆)𝜆
(written additively), a family X = (X𝜆)𝜆 of sets X𝜆 of quantum states over a systemM𝜆 , and an
operation ∗. We will require that the states in X𝜆 are orthogonal. ∗ is a quantum algorithm that
takes as input a group element 𝑔 ∈ G𝜆 and a quantum state |𝜓⟩ overM𝜆 , and outputs another
state overM𝜆 . ∗ satisfies the following properties:

Identity: If 0 ∈ G𝜆 is the identity element, then |0⟩ ∗ |𝜓⟩ = |𝜓⟩ for any |𝜓⟩ ∈ X𝜆 .
Compatibility: For all 𝑔, ℎ ∈ G𝜆 and |𝜓⟩ ∈ X𝜆 , (𝑔 + ℎ) ∗ |𝜓⟩ = 𝑔 ∗ (ℎ ∗ |𝜓⟩).

We can also relax the above properties to only hold to within negligible error, and/or relax the
orthogonality requirement to being near-orthogonal. We will additionally require the following
properties:

Efficiently computable: There is a pseudo-deterministic QPT procedure Construct which,
on input 1𝜆 , outputs a description of G𝜆 and an specific element |𝜓𝜆⟩ ∈ X𝜆 . The operation
∗ is also computable by a QPT algorithm.
Efficiently Recognizable: There is a QPT procedure Recog which recognizes elements in
X𝜆 . That is, Recog(1𝜆 , ·) projects onto the span of the states in X𝜆 .
Regular: For every |𝜙⟩ ∈ X𝜆 , there is exactly one 𝑔 ∈ G𝜆 such that |𝜙⟩ = 𝑔 ∗ |𝜓𝜆⟩.

Again, we can also relax the above properties to only hold to within negligible error.

Cryptographic group actions. At a minimum, a cryptographically useful quantum group
action will satisfy the following discrete log assumption:

ASSUMPT ION 7.1. The discrete log assumption (DLog) holds on a quantum group action
(G,X, ∗) if, for all QPT adversariesA, there exists a negligible 𝜆 such that

Pr[A(𝑔 ∗ |𝜓𝜆⟩) = 𝑔 : 𝑔 ← G𝜆] ≤ negl(𝜆) .

Note that if we do not insist on orthogonality of the states inX𝜆 , then it is trivial to construct
a quantum group action in which DLog holds: simply have all |𝜓⟩ ∈ X𝜆 be identical, or negligibly
close. Then it will be information-theoretically impossible to determine 𝑔. Orthogonality
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essentially says that the group action is classical, except that the basis for the set elements is
potentially different than the computational basis.

7.2 Quantum Group Actions From Lattices

Here, we describe a simple quantum group action from lattices.
The group GLWE,N,n,m,𝜎 will be set to Z𝑛𝑁 for some integers 𝑁, 𝑛. We will fix a short wide

matrix A ∈ Z𝑛×𝑚𝑁 ; we can think of A as being sampled randomly and included in a common
reference string. Note that G is independent of 𝜎, but we include it for notational consistency.

The set XLWE,N,n,m,𝜎 will be the set of states |𝜓s⟩ =
∑

e∈Z𝑛𝑁

√︁
D𝜎,𝑁/2(e) |A𝑇 · s + e⟩. In other

words, we take the discrete Gaussian vector superposition of some width, and add the vector
A𝑇 · s.

GLWE,N,n,m,𝜎 acts on XLWE,N,n,m,𝜎 in the following obvious way: r ∗ |𝜓s⟩ = |𝜓r+s⟩, which can
be computed by simply adding A𝑇 · r in superposition.

We have the following theorem:

THEOREM 7.2. Let 𝜎, 𝜎0 be non-negative real numbers such that 𝜎/𝜎0 is super-polynomial.
Assuming the Learning with Errors problem is hard for noise distributionD𝜎0 , discrete logarithms
are hard in the group action (GLWE,N,n,m,𝜎,XLWE,N,n,m,𝜎, ∗).

PROOF . The learning with errors assumption states that it is hard to compute s given A𝑇 · s + e
with e sampled from D𝜎0 . We need to show that it is hard to compute s given the analogous
superposition over A𝑇 · s + e, where here e comes from the Gaussian superposition |D𝜎⟩.
The idea is a simple application of noise flooding: given u = A𝑇 · s + e, compute the state
|𝜓′s⟩ :=

∑
e′∈Z𝑛𝑁

√︁
D𝜎,𝑁/2(e′) |A𝑇 ·s+e+e′⟩. Since 𝜎/𝜎0 is super-polynomial, e+e′where e′← D𝜎,𝑁/2

is negligibly close to a Gaussian centered at 0. Therefore, |𝜓′s⟩ is negligibly close to |𝜓s⟩. Plugging
into a supposed DLog adversary then gives s, breaking LWE. ■

Unfortunately, this LWE-based group action is missing a crucial feature: it is not possible
to recognize states in X. In particular, the states in X are indistinguishable from states of
the form

∑
e∈Z𝑛𝑁

√︁
D𝜎,𝑁/2(e) |v + e⟩, where v is an arbitrary vector in Z𝑚𝑁 . As we will see in the

next subsection, the inability to recognize X will prevent us from using this group action to
instantiate our quantum money scheme.

7.3 Relation to Quantum Money Approaches based on Lattices

Here, we see that our quantum money scheme is conceptually related to a folklore approach
to building quantum money from lattices. This approach has not been able to work; in our
language, the reason is exactly due to the inability to recognize XLWE,N,n,m,𝜎.

The approach is the following. Let A ∈ Z𝑛×𝑚𝑁 be a random short wide matrix over Z𝑛. To
mint a banknote, construct the discrete Gaussian superposition |D𝜎⟩⊗𝑚 in registerM. Then



57 / 62 Quantum Money from Abelian Group Actions

compute and measure A · x applied toM. The result is a vector h ∈ Z𝑛𝑁 , which will be the
serial number, andM collapses to a superposition |$h⟩ ∝

∑
x:A·x=h

√︁
D𝜎 (x) |x⟩ of short vectors

x such that A · x = h. This is the banknote. A simple argument shows that it is impossible to
construct two copies of |$h⟩ for the same h: given such a pair, measure each to get x,x′ such
that A · x = A · x′ = h. Then subtract to get a short vector x − x′ such that A · (x − x′) = 0𝑛.
We can conclude x − x′ is non-zero with overwhelming probability, since the measurement
of |$h⟩ has high entropy. Such a non-zero short kernel vector would solve the Short Integer
Solution (SIS) problem, which is widely believed to be hard and is the foundation of lattice-based
cryptography.

Unfortunately, the above approach is broken. The problem is that there is no way to
actually verify banknotes. One can verify that a banknote has support on short vectors with
A · x = h, but it is impossible to verify that the banknote is in superposition. If one could solve
the Learning with Errors (LWE) problem, it would be possible to verify banknotes as follows:
first perform the QFT to the banknote state. If an honest banknote, the QFT will give a state
negligibly close to

|$′h⟩ :=
1

𝑁𝑛/2

∑︁
s,e∈Z𝑛𝑁

√︃
D𝑁/𝜎 (e)𝑒𝑖2𝜋h·s/𝑁 |A𝑇 · s + e⟩ . (7.1)

The second step is to simply apply the supposed LWE solver to this state in superposition,
ensuring that the state has support on vectors of the form A𝑇 · s + e for small e.

Unfortunately, LWE is likely hard. In fact, it is quantumly equivalent to SIS [53], meaning
if one could verify banknotes using an LWE solver, then SIS is easy. Not only does this mean we
are reducing from an easy problem, but it would be possible to turn such a SIS algorithm into
an attack.

Without the ability to verify that banknotes are in superposition, the attacker can simply
measure a banknote to get x, and then pass off |x⟩ as a fake banknote that will pass verification.
Since x is trivially copied, this would break security. Interestingly, [40] prove that, no matter
what efficient verification procedure is used, even if the verification diverged from the LWE-
based approach above, this attack works. [39] extend this to a variety of potential schemes
based on similar ideas, including a recent proposed instantiation of this approach by [38].

We now see how the above approach is essentially equivalent to our construction of
quantum money from group actions, instantiated over our LWE-based quantum group action.
The inability to recognizeX is the reason this instantiation is insecure, despite natural hardness
assumptions presumably holding on the group action.

We consider the quantum group action (GLWE,N,n,m,N/𝜎,XLWE,N,n,m,N/𝜎, ∗), where 𝜎 is from
the folklore construction above. When applied to (GLWE,N,n,m,N/𝜎,XLWE,N,n,m,N/𝜎, ∗), a banknote
in our scheme, up to negligibly error from truncating discrete Gaussians, is the state |$′h⟩ from
Equation 7.1 above, where the serial number is h. Thus, we see that our quantum money
scheme is simply the folklore construction but moved to the Fourier domain. The attack on
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the folklore construction can therefore easily be mapped to an attack on our scheme: if the
adversary is given |$′h⟩, it measures in the Fourier domain (which is the primal domain for the
folklore construction) to get a short vector x such that A · s = h. Then it switched back to the
primal domain, giving the state

1
𝑁𝑚/2

∑︁
u

𝑒𝑖2𝜋e·x |x⟩ .

This is a state that lies outside the span of X. However, no efficient verification procedure can
distinguish it from an honest banknote state.

Two features distinguish isogeny-based group actions from the LWE-based action above.
The first is the ability to recognize elements inX. Suppose it were possible to recognize elements
of X in the LWE-based action, and we had the verifier check to see if the banknote belonged
to the span of the elements in X. In the language of quantum group actions, this check would
prevent the attacker from sending 1

𝑁𝑚/2
∑

u 𝑒
𝑖2𝜋e·x |x⟩, which lies outside the span of X. In the

language of the folklore construction, this check would correctly distinguish between an honest
banknote and the easily clonable state |x⟩ in the attack. If such a check were possible, the proof
sketched above would work to base the security of the scheme on SIS. Unfortunately, such a
check is computationally intractable under the decision LWE problem, which is equivalent to
SIS and most likely hard.

The issue of recognizing set elements is also crucial in our security arguments. Indeed,
the first step in our proof was to characterize the states accepted by the verifier, showing that
only honest banknote states are accepted. This step in the proof fails in the LWE-based scheme,
which would prevent the proof from going through. Thus, even though the scheme based on
LWE is broken, it does not contradict our DLog/1-minCDH and Q-KGEA assumptions holding on
the LWE-based group action.

The second difference, is that, with the LWE-based group action, taking the QFT of money
states gives elements with meaningful structure: short vectors x such that A · x = h. This
structure and its relation to the original money state are what enables the attack. In contrast,
taking the QFT of money states overX coming from isogenies will give terms with no discernible
structure.

We believe the above perspective adds to the confidence in our proposal. Indeed, in the
LWE-based scheme, the key missing piece is recognizing set elements; if not for this missing
piece the scheme could be proven secure. By switching to group actions based on isogenies, we
add the missing piece. The hope is that even though the source of hardness is now from hard
problems on isogenies over elliptic curves instead of lattices, by adding the missing piece we
can finally obtain a scheme.
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[19] Leonardo Colò and David Kohel. Orienting
supersingular isogeny graphs. J. Math. Cryptol.
14(1):414–437, 2020. DOI (11)

[20] Jean-Marc Couveignes. Hard homogeneous
spaces. Cryptology ePrint Archive, Report
2006/291, 2006. URL (3, 11)
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