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ABSTRACT. We investigate the constant-depth circuit complexity of the Isomorphism Prob-
lem, Minimum Generating Set Problem (MGS), and Sub(quasi)group Membership Problem
(Membership) for groups and quasigroups (=Latin squares), given as input in terms of their
multiplication (Cayley) tables. Despite decades of research on these problems, lower bounds for
these problems even against depth-2 AC circuits remain unknown. Perhaps surprisingly, Chat-
topadhyay, Torán, and Wagner (FSTTCS 2010; ACM Trans. Comput. Theory, 2013) showed that
Quasigroup Isomorphism could be solved by AC circuits of depth 𝑂(log log 𝑛) using 𝑂(log2 𝑛)
nondeterministic bits, a class we denote ∃log2 𝑛FOLL. We narrow this gap by improving the upper
bound for many of these problems to quasiAC0, thus decreasing the depth to constant.
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In particular, we show that Membership can be solved in NTIME(polylog(𝑛)) and use this
to prove the following:

MGS for quasigroups belongs to ∃log2 𝑛∀log 𝑛NTIME(polylog(𝑛)) ⊆ quasiAC0. Papadimitriou
and Yannakakis (J. Comput. Syst. Sci., 1996) conjectured that this problem was ∃log2 𝑛P-
complete; our results refute a version of that conjecture for completeness under quasiAC0

reductions unconditionally, and under polylog-space reductions assuming EXP ≠ PSPACE.
It furthermore implies that this problem is not hard for any class containing Parity. The
analogous results concerning Parity were known for Quasigroup Isomorphism (Chattopad-
hyay, Torán, & Wagner, ibid.) and Subgroup Membership (Fleischer, Theory Comput. 2022),
though not for MGS.
MGS for groups belongs to AC1(L). Our AC1(L) bound improves on the previous, very
recent, upper bound of P (Lucchini & Thakkar, J. Algebra, 2024). Our quasiAC0 upper bound
is incomparable to P, but has similar consequences to the above result for quasigroups.
Quasigroup Isomorphismbelongs to∃log2 𝑛AC0(TIMESPACE(polylog(𝑛), log(𝑛))) ⊆ quasiAC0.
As a consequence of this result and previously known AC0 reductions, this implies the same
upper bound for the Isomorphism Problems for: Steiner triple systems, pseudo-STS graphs,
Latin Square Isotopy, Latin square graphs, and Steiner (𝑡, 𝑡 + 1)-designs. This improves
upon the previous upper bound for these problems, which was ∃log2 𝑛L ∩ ∃log2 𝑛FOLL ⊆
quasiFOLL (Chattopadhyay, Torán, & Wagner, ibid.; Levet, Australas. J. Combin. 2023).
As a strong contrast, we show that MGS for arbitrary magmas is NP-complete.

Our results suggest that understanding the constant-depth circuit complexity may be key
to resolving the complexity of problems concerning (quasi)groups in the multiplication table
model.

1. Introduction

The Group Isomorphism (GpI) problem is a central problem in computational complexity and
computer algebra. When the groups are given as input by their multiplication (a.k.a. Cayley)
tables, the problem reduces to Graph Isomorphism (GI), and because the best-known runtimes
for the two are quite close (𝑛𝑂(log 𝑛) [43]1 vs. 𝑛𝑂(log2 𝑛) [5]2), the former stands as a key bottleneck
towards further improvements in the latter.

Despite this, GpI seems quite a bit easier than GI. For example, Tarjan’s 𝑛log 𝑛+𝑂(1) algorithm
for groups [43] can now be given as an exercise to undergraduates: every group is generated by
at most ⌊log2 |𝐺 |⌋ elements, so the algorithm is to try all possible

( 𝑛
log 𝑛

)
≤ 𝑛log 𝑛 generating sets,

and for each, check in 𝑛𝑂(1) time whether the map of generating sets extends to an isomorphism.

1 Miller [43] credits Tarjan for 𝑛log 𝑛+𝑂(1) .

2 Babai [5] proved quasi-polynomial time, and the exponent of the exponent was analyzed and improved by Helfgott [29].
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In contrast, the quasi-polynomial time algorithm for graphs was a tour de force that built on
decades of research into algorithms and the structure of permutation groups. Nonetheless, it
remains unknown whether the problem for groups is actually easier than that for graphs under
polynomial-time reductions, or even whether both problems are in P!

Using a finer notion of reduction, Chattopadhyay, Torán, and Wagner [17] proved that there
was no AC0 reduction from GI to GpI. This gave the first unconditional evidence that there is
some formal sense (namely, the AC0 sense) in which GpI really is easier than GI. The key to their
result was that the generator-enumeration technique described above can be implemented by
non-deterministically guessing log2 𝑛 bits (describing the log 𝑛 generators, each of log 𝑛 bits),
and then verifying an isomorphism by a non-deterministic circuit of depth only 𝑂(log log 𝑛), a
class we denote ∃log2 𝑛FOLL. Observe that ∃log2 𝑛FOLL ⊆ quasiFOLL (by trying all 2𝑂(log2 𝑛) settings
of the non-deterministic bits in parallel), which cannot compute Parity [28], even if augmented
with Mod𝑝 gates for 𝑝 an odd prime [46, 52, 17]. As GI is DET-hard [55]—and hence can compute
Parity—there can be no AC0 reduction from GI to GpI.

Such a low-depth circuit was quite surprising, although that surprise is perhaps tempered
by the use of non-determinism. Nonetheless, it raises the question:

Is it possible that Group Isomorphism is in AC0?

The authors would be shocked if the answer were “yes,” and yet we do not even have re-
sults showing that Group Isomorphism cannot be computed by polynomial-size circuits of (!)
depth 2. Indeed, it is not clear how to use existing AC0 lower bound techniques against Group
Isomorphism.3

In this paper, we aim to close the gap between AC0 and ∃log2 𝑛FOLL in the complexity of
Group Isomorphism and related problems. Our goal is to obtain constant-depth circuits of
quasipolynomial size, a natural benchmark in circuit complexity [9]. Significantly improving
the size of these circuits would improve the state of the art run-time of Group Isomorphism, a
long-standing open question that we do not address here.

Our first main result along these lines is:

THEOREM 1.1. (Quasi)Group Isomorphism can be solved in quasiAC0.

(We discuss quasigroups more below.)

REMARK 1.2. We in fact get a more precise bound of ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛)))
(Theorem 6.1 gives an even more specific bound), where DTISP(𝑡(𝑛), 𝑠(𝑛)) is the class of lan-
guages decidable by a Turing machine that simultaneously uses time at most 𝑡 and space

3 The ∃log2 𝑛FOLL upper bound unconditionally rules out reductions from Parity and Majority. While switching lemmas
have been used to get AC0 lower bounds on LogClique (deciding if a graph has a clique on 𝑂(log 𝑛) vertices) [42,14, 50] (covered in Beame’s switching lemma primer [13]), which is in ∃log2 𝑛AC0 ⊆ quasiAC0, that problem feels quite
different from Group Isomorphism.
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at most 𝑠. This more precise bound is notable because it is contained in both quasiAC0 and
∃log2 𝑛FOLL ∩ ∃log2 𝑛L, the latter thus improving on [17]. We get similarly precise bounds with
complicated-looking complexity classes for the other problems mentioned in the introduction,
but we omit the precise bounds here for readability.

Focusing on depth bounds—that is, without attempting to improve the worst-case runtime—
our result is close to the end of the line for a series of works stretching back to 1970; see Table 1.
The only possible further improvements we see, without improving the worst-case runtime,
are to get an ∃log2 𝑛AC0 upper bound—for which there are several obstacles, see Section 8—or
improving the exact size and depth of our result, but there is not much room for improvement
here, as we already get quasi-polynomial-size circuits of depth only 4 and size 𝑛𝑂(log 𝑛) , matching
the current-best serial runtime up to the constant in the exponent (we have not attempted to
optimize the constant hidden in the big-Oh; we certainly do not get a constant less than 1, and
we conservatively estimate our proof yields a constant not more than 20).

Year Result Depth Citation
1970 Generator-enumerator introduced poly(𝑛) Felsch & Neubüser [23]4

1978 ∃log2 𝑛P ⊆ DTIME(𝑛log 𝑛+𝑂(1)) poly(𝑛) Tarjan (see Miller [43])
1977 DSPACE(log2 𝑛) 𝑂(log2 𝑛) Lipton–Snyder–Zalcstein [38]5

1994 ∃log2 𝑛AC1 𝑂(log 𝑛) Wolf [59]6

2010 ∃log2 𝑛SAC1 𝑂(log 𝑛) Wagner [58]
2010 ∃log2 𝑛FOLL ∩ ∃log2 𝑛L 𝑂(log log 𝑛) Chattopadhyay–Torán–Wagner [17]7

2013 ∃log2 𝑛SC2 ∩ ∃log2 𝑛L 𝑂(log 𝑛) Papakonstantinou–Tang–Qiao [53]8

2024 ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛)))
⊆ quasiAC0

4 This work

Table 1. History of the low-level circuit complexity of algorithms for (Quasi)Group Isomorphism based
on the generator-enumerator technique. For non-circuit classes, we list their depth as the best-known
depth of their simulation by circuits. The class in our bound is contained in all the other classes listed in
the table. Although depth 4 in our result does not follow from the complexity class as listed here, it
follows from the more exact class we use in Theorem 6.1.

4 Complexity not analyzed there, but the same as Tarjan’s algorithm [43].

5 Despite the publication dates, this seems to have been independent of Tarjan’s result. They note that Miller and Rabin
had also observed this result independently.

6 Wolf only claims a bound of ∃log2 𝑛NC2. However, if we replace his use of NC1 circuits to multiply two elements of a
quasigroup with AC0 circuits, we immediately get the ∃log2 𝑛AC1 bound.

7 They do not claim the ∃log2 𝑛L bound, but it follows immediately from their algorithm and results.

8 We have written the result this way, despite ∃log2 𝑛L ⊆ ∃log2 𝑛SC2, because in Tang’s thesis [53], the only place this is
currently published, they only claim NSC2 using only 𝑂(log2 𝑛) bits of nondeterminism, which in our notation would be
∃log2 𝑛SC2. However, their algorithm and results also immediately yields a ∃log2 𝑛L bound.
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We note that although there are depth reduction techniques for bounded-depth circuits
with Mod𝑝 gates [2], no such result is known for quasiAC0 circuits (without Mod𝑝 gates).

Minimum generating set. Another very natural problem in computational algebra is the
Min Generating Set (MGS) problem. Given a group, this problem asks to find a generating set
of the smallest possible size. Given that many algorithms on groups depend on the size of a
generating set, finding a minimum generating set has the potential to be a widely applicable
subroutine. The MGS problem for groups was shown to be in P by Lucchini & Thakkar only
very recently [40]. We improve their complexity bound to:

THEOREM 1.3. MinGenerating Set for groups can be solved inquasiAC0 and inAC1(L) (𝑂(log 𝑛)-
depth, unbounded fan-in circuits with a logspace oracle).

We note that, although quasiAC0 is incomparable to P because of the quasi-polynomial size
(whereas AC1(L) ⊆ P), the key we are focusing on here is reducing the depth.

For nilpotent groups (widely believed to be the hardest cases of GpI), if we only wish
to compute the minimum number of generators, we can further improve this complexity to
L ∩ AC0(NTISP(polylog(𝑛), log(𝑛))) (Proposition 7.3).

While ourAC1(L) bound above is essentially a careful complexity analysis of the polynomial-
time algorithm of Lucchini & Thakkar [40], the quasiAC0 upper bound is in fact a consequence
of our next, more general, result for quasigroups, which involves some new ingredients.

Enter quasigroups. Quasigroups can be defined in (at least) two equivalent ways: (1) an
algebra whose multiplication table is a Latin square,9 or (2) a group-like algebra that need not
have an identity nor be associative, but in which left and right division are uniquely defined,
that is, for all 𝑎, 𝑏, there are unique 𝑥 and 𝑦 such that 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏.

In the paper in which they introduced log2(𝑛)-bounded nondeterminism, Papadimitriou
and Yannakakis showed that for arbitrary magmas,10 testing whether the magma has log 𝑛
generators was in fact complete for ∃log2 𝑛P, and conjectured:

CONJECTURE 1.4 (Papadimitriou & Yannakakis [45, p. 169]). Min Generating Set for
Quasigroups is ∃log2 𝑛P-complete.

They explicitly did not conjecture the same for MGS for groups, writing:

“We conjecture that this result [∃log2 𝑛P-completeness] also holds for the more struc-
tured MINIMUM GENERATOR SET OF A QUASIGROUP problem. In contrast, QUASI-
GROUP ISOMORPHISM was recently shown to be in DSPACE(log2 𝑛) [59]. Notice that

9 A Latin square is an 𝑛 × 𝑛 matrix where for each row and each column, the elements of [𝑛] appear exactly once.

10 A magma is a set 𝑀 together with a function 𝑀 ×𝑀 → 𝑀 that need not satisfy any additional axioms.



5 / 39 On the Constant-Depth Circuit Complexity of Generating Quasigroups

the corresponding problems for groups were known to be in DSPACE(log2 𝑛) [38].”—
Papadimitriou & Yannakakis [45, p. 169]

We thus turn our attention to the analogous problems for quasigroups: MGS for quasigroups,
Quasigroup Isomorphism, and the key subroutine, Sub-quasigroup Membership. We note
that the ∃log2 𝑛FOLL upper bound of Chattopadhyay, Torán, and Wagner [17] actually applies to
Quasigroup Isomorphism and not just GpI; we perform a careful analysis of their algorithm to
put Quasigroup Isomorphism into quasiAC0 as well.

THEOREM 1.5. Min Generating Set for Quasigroups is in quasiAC0 ∩ DSPACE(log2 𝑛).

To the best of our knowledge, MGS for Quasigroups has not been studied from the
complexity-theoretic viewpoint previously. While a DSPACE(log2 𝑛) upper bound for MGS
for groups follows from [53, 3], as far as we know it remained open for quasigroups prior to
our work.

As with prior results on Quasigroup Isomorphism and Group Isomorphism [17], and other
isomorphism problems such as Latin Square Isotopy and Latin Square Graph Isomorphism
[37], Thm. 1.5 implies that Parity does not reduce to MGS for Quasigroups, thus ruling out most
known lower bound methods that might be used to prove that MGS for Quasigroups is not in
AC0. We also observe a similar bound for MGS for Groups using Fleischer’s technique [25].

Papadimitriou and Yannakakis did not specify the type of reduction used in their conjecture,
though their ∃log2 𝑛P-completeness result for Log Generating Set of a Magma works in both
logspace and AC0 (under a suitable input encoding). Our two upper bounds rule out such
reductions for MGS for Quasigroups (unconditionally in one case, conditionally in the other):

COROLLARY 1.6. The conjecture of Papadimitriou & Yannakakis [45, p. 169] is false under
quasiAC0 reductions. It is also false under polylog-space reductions assuming EXP ≠ PSPACE.

In strong contrast, we show that MGS for Magmas is NP-complete (Thm. 7.12).
A key ingredient in our proof of Thm. 1.5 is an improvement in the complexity of an-

other central problem in computational algebra: the Sub-quasigroup Membership problem
(Membership,11 for short):

THEOREM 1.7. Membership for quasigroups is in ∃log2 𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆ quasiAC0.

Membership for groups is well-known to belong to L, by reducing to the connectivity
problem on the appropriate Cayley graph (cf. [11, 47]), but as L sits in between AC0 and AC1, this
is not low enough depth for us.

11 In the literature, the analogous problem for groups is sometimes called Cayley Group Membership or CGM, to highlight
that it is in the Cayley table model.
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Additional results. We also obtain a number of additional new results on related problems,
some of which we highlight here:

By known AC0 reductions (see, e.g., Levet [37] for details), our quasiAC0 analysis of Chat-
topadhyay, Torán, and Wagner’s algorithm for Quasigroup Isomorphism yields quasiAC0

upper bound for the isomorphism problems for Steiner triple systems, pseudo-STS graphs,
Latin square graphs, and Steiner (𝑡, 𝑡+1)-designs, as well as Latin Square Isotopy. Prior to
our work, Quasigroup Isomorphism was not known to be solvable using quasiAC circuits
of depth 𝑜(log log 𝑛). See Cor. 6.2.
Group Isomorphism for simple groups (Cor. 3.3) or for groups from a dense set Υ of orders
(Thm. 5.1) can be solved in AC0(DTISP(polylog(𝑛), log(𝑛))) ⊆ quasiAC0 ∩ L ∩ FOLL. For
groups in a dense set of orders, this improves the parallel complexity compared to the
original result of Dietrich & Wilson [22]. As in their paper, note that Υ omits large prime
powers. Thus, we essentially have that for groups that are not 𝑝-groups, Group Isomor-
phism belongs to a proper subclass of DET. This evidence fits with the widely-believed idea
that 𝑝-groups are a bottleneck case for Group Isomorphism.
Abelian Group Isomorphism (Thm. 4.1) is in ∀log log 𝑛MAC0(DTISP(polylog(𝑛), log(𝑛))). The
key novelties here are (1) a new observation that allows us to reduce the number of co-
nondeterministic bits from log 𝑛 (as in [26]) down to log log 𝑛, and (2) using an
AC0(DTISP(polylog(𝑛), log(𝑛))) circuit for order finding, rather than FOLL as in [17].
Membership for nilpotent groups is in AC0(NTISP(polylog(𝑛), log(𝑛))) ⊆ FOLL ∩ quasiAC0

(Prop. 7.3).

1.1 Methods
Several of our results involve careful analysis of the low-level circuit complexity of extant algo-
rithms, showing that they in fact lie in smaller complexity classes than previously known. One
important ingredient here is that we use simultaneous time- and space-restricted computations.
This not only facilitates several proofs and gives better complexity bounds, but also gives rise to
new algorithms such as for Membership for nilpotent groups, which previously was not known
to be in FOLL.

One such instance is in our improved bound for order-finding and exponentiation in a semi-
group (Lem. 3.1). The previous proof [10] (still state of the art 23 years later) used a then-novel
and clever “double-barrelled” recursive approach to compute these in FOLL. In contrast, our
proof uses standard repeated doubling, noting that it can be done inDTISP(polylog(𝑛), log(𝑛)) ⊆
FOLL ∩ quasiAC0, recovering their result with standard tools and reducing the depth; in fact,
from our proof we get quasiAC0 circuits of depth 2, which is clearly optimal from the perspective
of depth. We use this improved bound on order-finding to improve the complexity of isomor-
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phism testing of Abelian groups (Thm. 4.1), simple groups (Cor. 3.3), and groups of almost all
orders (Thm. 5.1).

For a few of our results, however, we need to develop new tools to work with quasigroups.
In particular, for the quasiAC0 upper bound on MGS for quasigroups, we cannot directly adapt
the technique of Chattopadhyay, Torán, and Wagner. Indeed, their analysis of their algorithm
already seems tight to us in terms of having depth Θ(log log 𝑛).

The first key is Thm. 1.7, putting Membership for quasigroups into NTIME(polylog(𝑛))
(more precisely, into ∃log2 𝑛DTISP(polylog(𝑛), log(𝑛))). To do this, we replace the use of a cube
generating sequences from [17] with something that is nearly as good for the purposes of MGS:
we extend the Babai–Szemerédi Reachability Lemma [7, Thm. 3.1] from groups (its original
setting) to quasigroups in order to obtain what we call cube-like generating sequences, which
also give us short straight-line programs. Division in quasigroups is somewhat nuanced, e.g.,
despite the fact that for any 𝑎, 𝑏, there exists a unique 𝑥 such that 𝑎𝑥 = 𝑏, this does not necessarily
mean that there is an element “𝑎−1” such that 𝑥 = 𝑎−1𝑏, because of the lack of associativity. Our
proof is thus a careful adaptation of the technique of Babai & Szemerédi, with a few quasigroup
twists that result in a slightly worse, but still sufficient, bound.

1.2 Prior work
Isomorphism testing. The best known runtime bound for GpI is 𝑛(1/4) log𝑝(𝑛)+𝑂(1)-time (where 𝑝
is the smallest prime dividing 𝑛) due to Rosenbaum [49] and Luks [41] (see [36, Sec. 2.2]), though
this tells us little about parallel complexity. In addition to Tarjan’s result mentioned above
[43], Lipton, Snyder, & Zalcstein [38] independently observed that if a group is 𝑑-generated,
then we can decide isomorphism by considering all possible 𝑑-element subsets. This is the
generator enumeration procedure. Using the fact that every group admits a generating set of size
≤ log𝑝(𝑛) (where 𝑝 is the smallest prime dividing 𝑛), Tarjan obtained a bound of 𝑛log𝑝(𝑛)+𝑂(1)-
time for Group Isomorphism, while Lipton, Snyder, & Zalcstein [38] obtained a stronger bound of
DSPACE(log2 𝑛). Miller [43] extended Tarjan’s observation to the setting of quasigroups. There
has been subsequent work on improving the parallel complexity of generator enumeration for
quasigroups, resulting in bounds of ∃log2 𝑛AC1 (AC1 circuits that additionally receive 𝑂(log2 𝑛)
non-deterministic bits, denoted by other authors as 𝛽2AC1) due to Wolf [59],12 ∃log2 𝑛SAC1 due to
Wagner [58], and ∃log2 𝑛L∩∃log2 𝑛FOLL due to Chattopadhyay, Torán, & Wagner [17]. In the special
case of groups, generator enumeration is also known to belong to ∃log2 𝑛SC2 [53]. There has been
considerable work on polynomial-time, isomorphism tests for several families of groups, as
well as more recent work on NC isomorphism tests—we refer to recent works [27, 22, 26] for a
survey. We are not aware of work on isomorphism testing for specific families of quasigroups
that are not groups.

12 See footnote 6.
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Min Generating Set. As every (quasi)group has a generating set of size ≤ ⌈log 𝑛⌉, MGS admits
an 𝑛log(𝑛)+𝑂(1)-time solution for (quasi)groups. In the case of groups, Arvind & Torán [3] improved
the complexity to DSPACE(log2 𝑛). They also gave a polynomial-time algorithm in the special
case of nilpotent groups. Tang further improved the general bound for MGS for groups to
∃log2 𝑛SC2 [53]. We observe that Wolf’s technique for placing Quasigroup Isomorphism into
DSPACE(log2 𝑛) also suffices to get MGS for Quasigroups into the same class. Very recently,
Das & Thakkar [20] improved the algorithmic upper bound for MGS in the setting of groups to
𝑛(1/4) log(𝑛)+𝑂(1) . A month later, Lucchini & Thakkar [40] placed MGS for groups into P. Prior to
[40], MGS for Groups was considered comparable to Group Isomorphism in terms of difficulty.
Our AC1(L) bound (Thm. 1.5) further closes the gap between Membership Testing in groups and
MGS for Groups, and in particular suggests that MGS is of comparable difficulty to Membership
for groups rather than GpI. Note that Membership for groups has long been known to belong to
L [11, 47].

2. Preliminaries

2.1 Algebra and Combinatorics
Graph Theory. A strongly regular graph with parameters (𝑛, 𝑘, 𝜆, 𝜇) is a simple, undirected
𝑘-regular, 𝑛-vertex graph 𝐺(𝑉, 𝐸) where any two adjacent vertices share 𝜆 neighbors, and any
two non-adjacent vertices share 𝜇 neighbors. The complement of a strongly regular graph is
also strongly regular, with parameters (𝑛, 𝑛 − 𝑘 − 1, 𝑛 − 2 − 2𝑘 + 𝜇, 𝑛 − 2𝑘 + 𝜆).

A magma 𝑀 is an algebraic structure together with a binary operation · : 𝑀 ×𝑀 → 𝑀 . We will
frequently consider subclasses of magmas, such as groups, quasigroups, and semigroups.

Quasigroups and Latin squares. A quasigroup consists of a set 𝐺 and a binary operation
★ : 𝐺 × 𝐺 → 𝐺 satisfying the following. For every 𝑎, 𝑏 ∈ 𝐺, there exist unique 𝑥, 𝑦 such that
𝑎★𝑥 = 𝑏 and 𝑦★𝑎 = 𝑏. We write 𝑥 = 𝑎\𝑏 and 𝑦 = 𝑏/𝑎, i. e., 𝑎★(𝑎\𝑏) = 𝑏 and (𝑏/𝑎)★𝑎 = 𝑏. When
the multiplication operation is understood, we simply write 𝑎𝑥 for 𝑎★ 𝑥. A sub-quasigroup of a
quasigroup is a subset that itself is a quasigroup. This means it is closed under the multiplication
as well as under left and right quotients. Given 𝑋 ⊆ 𝐺, the sub-quasigroup generated by 𝑋 is
denoted as ⟨𝑋⟩. It is the smallest sub-quasigroup containing 𝑋 .

Unless otherwise stated, all quasigroups are assumed to be finite and represented using
their Cayley (multiplication) tables.

As quasigroups need not be associative, the parenthesization of a given expression may
impact the resulting value. For a sequence 𝑆 := (𝑠0, 𝑠1, . . . , 𝑠𝑘) and parenthesization 𝑃 from a
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quasigroup, define:

Cube(𝑆) = {𝑃(𝑠0𝑠
𝑒1
1 · · · 𝑠𝑒𝑘

𝑘
) : 𝑒1, . . . , 𝑒𝑘 ∈ {0, 1}}.

We say that 𝑆 is a cube generating sequence if each element 𝑔 in the quasigroup can be
written as 𝑔 = 𝑃(𝑠0𝑠

𝑒1
1 · · · 𝑠𝑒𝑘

𝑘
), for 𝑒1, . . . , 𝑒𝑘 ∈ {0, 1}. Here, 𝑠0

𝑖
indicates that 𝑠𝑖 is not being

considered in the product. For every parenthesization, every quasigroup is known to admit a
cube generating sequence of size 𝑂(log 𝑛) [17].

A Latin square of order 𝑛 is an 𝑛 × 𝑛 matrix 𝐿 where each cell 𝐿𝑖 𝑗 ∈ [𝑛], and each element
of [𝑛] appears exactly once in a given row or a given column. Latin squares are precisely the
Cayley tables corresponding to quasigroups. We will abuse notation by referring to a quasigroup
and its multiplication table interchangeably. An isotopy of Latin squares 𝐿1 and 𝐿2 is an ordered
triple (𝛼, 𝛽, 𝛾), where 𝛼, 𝛽, 𝛾 : 𝐿1 → 𝐿2 are bijections satisfying the following: whenever 𝑎𝑏 = 𝑐

in 𝐿1, we have that 𝛼(𝑎)𝛽(𝑏) = 𝛾(𝑐) in 𝐿2. Alternatively, we may view 𝛼 as a permutation of the
rows of 𝐿1, 𝛽 as a permutation of the columns of 𝐿1, and 𝛾 as a permutation of the values in the
table. Here, 𝐿1 and 𝐿2 are isotopic precisely if 𝑥 is the (𝑖, 𝑗) entry of 𝐿1 if and only if 𝛾(𝑥) is the
(𝛼(𝑖), 𝛽( 𝑗)) entry of 𝐿2.

Albert showed that a quasigroup 𝑄 is isotopic to a group 𝐺 if and only if 𝑄 is isomorphic to
𝐺. In general, isotopic quasigroups need not be isomorphic [1].

A Latin square 𝐿 can equivalently be viewed as a set of triples {(𝑖, 𝑗, 𝐿𝑖 𝑗) : 𝑖, 𝑗 ∈ [𝑛]} ⊆
[𝑛]×[𝑛]×[𝑛]. Given a set of triples 𝑆 ⊆ [𝑛]×[𝑛]×[𝑛], the Latin square property can equivalently
be rephrased as: every 𝑖 ∈ [𝑛] appears as the first—resp. second, resp. third—coordinate
of some triple in 𝑆, and no two triples in 𝑆 agree in more than one coordinate. From this
perspective, an additional potential symmetry of Latin squares emerges: two Latin squares 𝐿1, 𝐿2

are parastrophic13 if there is a permutation 𝜋 ∈ 𝑆3 (where 𝑆3 is the symmetric group of degree
3) such that, when viewed as sets of triples, we have 𝐿2 = {(𝑥1𝜋 , 𝑥2𝜋 , 𝑥3𝜋) : (𝑥1, 𝑥2, 𝑥3) ∈ 𝐿1}; the
induced map 𝐿1 → 𝐿2 is called a parastrophy. A main class isomorphism of Latin squares is the
composition of a parastrophy and an isotopy; if there exists a main class isomorphism 𝐿1 → 𝐿2,
we say they are main class isomorphic.14

For a given Latin square 𝐿 of order 𝑛, we associate a Latin square graph 𝐺(𝐿) that has 𝑛2

vertices; one for each triple (𝑎, 𝑏, 𝑐) that satisfies 𝑎𝑏 = 𝑐. Two vertices (𝑎, 𝑏, 𝑐) and (𝑥, 𝑦, 𝑧) are
adjacent in 𝐺(𝐿) precisely if 𝑎 = 𝑥 or 𝑏 = 𝑦 or 𝑐 = 𝑧. Miller showed that two Latin square graphs
𝐺1 and 𝐺2 are isomorphic if and only if the corresponding Latin squares, 𝐿1 and 𝐿2, are main
class isomorphic [43].

13 This terminology is borrowed from the quasigroup literature. In the Latin square literature this is sometimes referred to
as “conjugate”, but we find the argument in Keedwell and Denes [35, pp. 15–16] to use the quasigroup nomenclature
even in the setting of Latin squares compelling.

14 Miller [43], and then Levet [37] following Miller, referred to this as “main class isotopy”; we have since found several
modern textbooks on quasigroups and Latin squares that refer to this notion as one of “main class isomorphism”,
“paratopy”, or “isostrophy” (sic). Keedwell and Denes [35, pp. 15–16] have a nice discussion of the terminology, as well
as the history of its usage.
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A Latin square graph on 𝑛2 vertices is a strongly regular graph with parameters (𝑛2, 3(𝑛 −
1), 𝑛, 6). Conversely, a strongly regular graph with these same parameters (𝑛2, 3(𝑛 − 1), 𝑛, 6) is
called a pseudo-Latin square graph. Bruck showed that for 𝑛 > 23, a pseudo-Latin square graph
is a Latin square graph [16].

Group Theory. For a standard reference, see [48]. All groups are assumed to be finite. For
a group 𝐺, 𝑑 (𝐺) denotes the minimum size of a generating set for 𝐺. The Frattini subgroup
Φ(𝐺) is the set of non-generators of 𝐺. If 𝐺 is a 𝑝-group, the Burnside Basis Theorem (see [48,Theorem 5.3.2]) provides that (i) 𝐺 = 𝐺𝑝[𝐺, 𝐺], (ii) 𝐺/Φ(𝐺) � (Z/𝑝Z)𝑑 (𝐺) , and (iii) if 𝑆 generates
(Z/𝑝Z)𝑑 (𝐺) , then any lift of 𝑆 generates 𝐺. A chief series of 𝐺 is an ascending chain (𝑁𝑖)𝑘𝑖=0 of
normal subgroups of 𝐺, where 𝑁0 = 1, 𝑁𝑘 = 𝐺, and each 𝑁𝑖+1/𝑁𝑖 (𝑖 = 0, . . . , 𝑘 − 1) is minimal
normal in 𝐺/𝑁𝑖 . For 𝑔, ℎ ∈ 𝐺, the commutator [𝑔, ℎ] := 𝑔ℎ𝑔−1ℎ−1. The commutator subgroup
[𝐺, 𝐺] = ⟨{[𝑔, ℎ] : 𝑔, ℎ ∈ 𝐺}⟩.

Designs. Let 𝑡 ≤ 𝑘 ≤ 𝑣 and 𝜆 be positive integers. A (𝑡, 𝑘, 𝜆, 𝑣) design is an incidence structure
D = (𝑋,B, 𝐼), where 𝑋 is a set of 𝑣 points, B is a subset of

(𝑋
𝑘

)
—whose elements are referred to

as blocks—and such that each 𝑡-element subset of 𝑋 belongs to exactly 𝜆 blocks. Now 𝐼 is the
point-block incidence matrix, where 𝐼𝑥,𝐵 = 1 precisely if the point 𝑥 belongs to the block 𝐵.

If 𝑡 < 𝑘 < 𝑣, we say that the design is non-trivial. If 𝜆 = 1, the design is referred to as a
Steiner design. We denote Steiner designs as (𝑡, 𝑘, 𝑣)-designs when we want to specify 𝑣 the
number of points, or Steiner (𝑡, 𝑘)-designs when referring to a family of designs. We note
that Steiner (2, 3)-designs are known as Steiner triple systems. Projective planes are Steiner
(2, 𝑞 + 1, 𝑞2 + 𝑞 + 1)-designs, and affine planes are Steiner (2, 𝑞, 𝑞2)-designs. We assume that
designs are given by the point-block incidence matrix.

For a design D = (𝑋,B, 𝐼), we may define a block intersection graph (also known as a
line graph) 𝐺(𝑉, 𝐸), where 𝑉 (𝐺) = B and two blocks 𝐵1, 𝐵2 are adjacent in 𝐺 if and only if
𝐵1 ∩ 𝐵2 ≠ ∅. In the case of a Steiner 2-design, the block-intersection graph is strongly regular.
For Steiner triple systems, the block-intersection graphs are strongly regular with parameters
(𝑛(𝑛 − 1)/6, 3(𝑛 − 3)/2, (𝑛 + 3)/2, 9). Conversely, strongly regular graphs with the parameters
(𝑛(𝑛 − 1)/6, 3(𝑛 − 3)/2, (𝑛 + 3)/2, 9) are referred to as pseudo-STS graphs. Bose showed that
pseudo-STS graphs with strictly more than 67 vertices are in fact STS graphs [15].

Algorithmic Problems. A multiplication table of a magma 𝐺 = {𝑔1, . . . , 𝑔𝑛} of order 𝑛 is
an array 𝑀 of length 𝑛2 where each entry 𝑀 [𝑖 + ( 𝑗 − 1)𝑛] for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} contains the
binary representation of 𝑘 such that 𝑔𝑖𝑔 𝑗 = 𝑔𝑘. In the following all magmas are given as their
multiplication tables.

We will consider the following algorithmic problems. The Quasigroup Isomorphism
problem takes as input two quasigroups 𝑄1, 𝑄2 given by their multiplication tables, and asks
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if there is an isomorphism 𝜑 : 𝑄1 � 𝑄2. The Membership problem for groups takes as input
a group 𝐺 given by its multiplication table, a set 𝑆 ⊆ 𝐺, and an element 𝑥 ∈ 𝐺, and asks if
𝑥 ∈ ⟨𝑆⟩. We may define the Membership problem analogously when the input is a semigroup or
quasigroup, and ⟨𝑆⟩ is considered as the sub-semigroup or sub-quasigroup, respectively.

The Minimum Generating Set (MGS) problem takes as input a magma 𝑀 given by its
multiplication table and asks for a generating set 𝑆 ⊆ 𝑀 where |𝑆 | is minimum. At some point
we will also consider the decision variant of MGS: here we additionally give an integer 𝑘 in the
input and the question is whether there exists a generating set of cardinality at most 𝑘.

We will be primarily interested in Minimum Generating Set and Membership in the setting
of (quasi)groups, with a few excursions to semigroups and magmas. Note that Membership for
groups is known to be in L ∩ quasiAC0 [11, 47, 25]. Here the containment in L follows from the
deep result by Reingold [47] that symmetric logspace (nondeterministic logspace where each
transition is also allowed to be applied backward) coincides with L.

2.2 Computational Complexity
We assume that the reader is familiar with standard complexity classes such as L, NL, NP, and
EXP. For a standard reference on circuit complexity, see [57]. We consider Boolean circuits using
the AND,OR,NOT, and Majority, where Majority(𝑥1, . . . , 𝑥𝑛) = 1 if and only if ≥ 𝑛/2 of the inputs
are 1. Otherwise, Majority(𝑥1, . . . , 𝑥𝑛) = 0. In this paper, we will consider DLOGTIME-uniform
circuit families (𝐶𝑛)𝑛∈N. For this, one encodes the gates of each circuit 𝐶𝑛 by bit strings of
length 𝑂(log 𝑛). Then the circuit family (𝐶𝑛)𝑛≥0 is called DLOGTIME-uniform if (i) there exists a
deterministic Turing machine that computes for a given gate 𝑢 ∈ {0, 1}∗ of 𝐶𝑛 (|𝑢| ∈ 𝑂(log 𝑛))
in time 𝑂(log 𝑛) the type of gate 𝑢, where the types are 𝑥1, . . . , 𝑥𝑛, NOT, AND,OR,Majority, or
oracle gates, and (ii) there exists a deterministic Turing machine that decides for two given
gates 𝑢, 𝑣 ∈ {0, 1}∗ of 𝐶𝑛 (|𝑢|, |𝑣| ∈ 𝑂(log 𝑛)) and a binary encoded integer 𝑖 with 𝑂(log 𝑛) many
bits in time 𝑂(log 𝑛) whether 𝑢 is the 𝑖-th input gate for 𝑣.

DEF IN IT ION 2 .1. Fix 𝑘 ≥ 0. We say that a language 𝐿 belongs to (uniform) NC𝑘 if there exist a
(uniform) family of circuits (𝐶𝑛)𝑛∈N over the AND,OR,NOT gates such that the following hold:

The AND and OR gates take exactly 2 inputs. That is, they have fan-in 2.
𝐶𝑛 has depth 𝑂(log𝑘 𝑛) and uses (has size) 𝑛𝑂(1) gates. Here, the implicit constants in the
circuit depth and size depend only on 𝐿.
𝑥 ∈ 𝐿 if and only if 𝐶 |𝑥 | (𝑥) = 1.

The complexity class AC𝑘 is defined analogously as NC𝑘, except that the AND,OR gates are
permitted to have unbounded fan-in. That is, a single AND gate can compute an arbitrary
conjunction, and a single OR gate can compute an arbitrary disjunction. The class SAC𝑘 is
defined analogously, in which the OR gates have unbounded fan-in but the AND gates must have
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fan-in 2. The complexity class TC𝑘 is defined analogously as AC𝑘, except that our circuits are
now permitted Majority gates of unbounded fan-in. We also allow circuits to compute functions
by using multiple output gates.

Furthermore, for a language 𝐿 the class AC𝑘 (𝐿), apart from Boolean gates, also allows
oracle gates for 𝐿 (an oracle gate outputs 1 if and only if its input is in 𝐿). If 𝐾 ∈ AC𝑘 (𝐿), then 𝐾
is said to be AC𝑘-Turing reducible to 𝐿. Finally, for some complexity class C denote AC𝑘 (C) to
be the set of decision problems that are AC𝑘-Turing reducible to problems in C. Be aware that
here we follow the notation of [57], which is different from [58, 26] (where AC𝑘 (C) is used to
denote composition of functions).

For every 𝑘, the following containments are well-known:

NC𝑘 ⊆ SAC𝑘 ⊆ AC𝑘 ⊆ TC𝑘 ⊆ NC𝑘+1.

In the case of 𝑘 = 0, we have that:

NC0 ⊊ AC0 ⊊ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ SAC1 ⊆ AC1.

We note that functions that are NC0-computable can only depend on a bounded number of
input bits. Thus, NC0 is unable to compute the AND function. It is a classical result that AC0 is
unable to compute Parity [52]. The containment TC0 ⊆ NC1 (and hence, TC𝑘 ⊆ NC𝑘+1) follows
from the fact that NC1 can simulate the Majority gate.

We will crucially use the following throughout the paper.

THEOREM 2.2 ([30, Theorem 5.1]). The product of (log 𝑛)𝑂(1)-many integers each of (log 𝑛)𝑂(1)

bits can be computed in AC0.

We also use the following easy lemma:

LEMMA 2.3. The prime factors of a 𝑂(log 𝑛)-bit integer can be computed in AC0.

(We remind the reader that we always refer to the uniform classes unless otherwise
specified; without uniformity the result would be immediate as all functions of log 𝑛 bits are in
nonuniform AC0.)

PROOF . Each prime divisor of 𝑛 can be represented using 𝑂(log 𝑛) bits. As the numbers
involved are only𝑂(log 𝑛) bits, ordinary arithmetic function of these numbers can be computed
in AC0, in particular, testing if an𝑂(log 𝑛)-bit number is prime, testing if one𝑂(log 𝑛)-bit number
divides another. So, in parallel, for all numbers 𝑥 = 2, 3, . . . , 𝑛/2, an AC0 circuit checks which
ones are prime and divide 𝑛. ■

Further circuit classes. The complexity class MAC0 is the set of languages decidable by
constant-depth uniform circuit families with a polynomial number of AND,OR, and NOT gates,
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and a single Majority gate at the output. The class MAC0 was introduced (but not so named) in
[4], where it was shown that MAC0 ⊊ TC0. This class was subsequently given the name MAC0 in
[32].

The complexity class FOLL is the set of languages decidable by uniform AC circuit families
of depth 𝑂(log log 𝑛) and polynomial size. It is known that AC0 ⊊ FOLL ⊊ AC1, and it is open as
to whether FOLL is contained in NL [10].

We will be particularly interested in NC circuits of quasipolynomial size (i. e., 2𝑂(log𝑘 𝑛) for
some constant 𝑘). For a circuit class C ⊆ NC, the analogous class permitting a quasipolynomial
number of gates is denoted quasiC. We will focus specifically on quasiAC0. Here, we stress
that our results for quasiAC0 will be stated for the nonuniform setting. Note that DLOGTIME
uniformity does not make sense for quasiAC0, as we cannot encode gate indices using 𝑂(log 𝑛)
bits. Nonetheless, there exist suitable notions of uniformity for quasiAC0 [9, 24].

Bounded nondeterminism. For a complexity class C, we define ∃log𝑖 𝑛C to be the set of
languages 𝐿 such that there exists an 𝐿′ ∈ C such that 𝑥 ∈ 𝐿 if and only if there exists 𝑦 of length
at most𝑂(log𝑖 |𝑥 |) such that (𝑥, 𝑦) ∈ 𝐿′. Similarly, define∀log𝑖 𝑛C to be the set of languages 𝐿 such
that there exists an 𝐿′ ∈ C such that 𝑥 ∈ 𝐿 if and only if for all 𝑦 of length at most 𝑂(log𝑖 |𝑥 |),
(𝑥, 𝑦) ∈ 𝐿′. For any 𝑖 ≥ 0 and any 𝑐 ≥ 0, both ∃log𝑖 𝑛FOLL and ∀log𝑖 𝑛FOLL are contained in
quasiFOLL, and so cannot compute Parity [17, 52]. Note that ∀log 𝑛C ∪ ∃log 𝑛C ⊆ AC0(C).

Time and space-restricted Turing machines. When considering complexity classes defined
by Turing machines with a time bound 𝑡(𝑛) ∈ 𝑜(𝑛), we use Turing machines with random
access and a separate address (or index) tape. After writing an address, the machine can go to a
query state reading the symbol from the input at the location specified by the address tape. As
usual, the machines are otherwise allowed to have multiple work tapes.

For functions 𝑡(𝑛), 𝑠(𝑛) ∈ Ω(log 𝑛), the classes DTISP(𝑡(𝑛), 𝑠(𝑛)) and NTISP(𝑡(𝑛), 𝑠(𝑛)) are
defined to consist of decision problems computable by deterministic (resp. nondeterministic)
𝑡(𝑛) time and 𝑠(𝑛) space bounded Turing machines. Be aware that there must be one Turing
machine that simultaneously satisfies the time and space bound. For details we refer to [57,Section 2.6]. For further reading on the connection to quasiAC0, we refer to [9, 24].

We frequently use DTISP(polylog(𝑛), log(𝑛)) and NTISP(polylog(𝑛), log(𝑛)). However, be-
cause of how small the time and space bounds are for these classes, when we abuse notation to
say some function (not necessarily decision problem) is computable inDTISP(polylog(𝑛), log(𝑛)),
there is some ambiguity as to what this might mean. We use the following two equivalent defi-
nitions. First we need some setup. For a function 𝑓 from bit-strings to bit-strings, we define its
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bit function bit- 𝑓 as follows. Write 𝑓 (𝑥)𝑖 to denote the 𝑖-th bit of 𝑓 (𝑥). Then define

bit- 𝑓 (𝑥, 𝑖) =

𝑓 (𝑥)𝑖 𝑖 ≤ | 𝑓 (𝑥) |

⊥ 𝑖 > | 𝑓 (𝑥) |.

Note that bit- 𝑓 is always a function which we may take to have at most two output bits (e.g., by
encoding 𝑓 (𝑥)𝑖 by repeating the bit, and encoding ⊥ by 01), i.e. a pair of decision problems.

DEF IN IT ION/LEMMA 2.4. For any function 𝑓 : {0, 1}∗ → {0, 1}∗ with | 𝑓 (𝑥) | ≤ 𝑂(log |𝑥 |), the
following are equivalent:

1. 𝑓 is computable by a Turing machine, using poly(log 𝑛) time and 𝑂(log 𝑛) space, that halts
with the result written in a specified place on its work tape.

2. The two bits of bit- 𝑓 are each decision problems in DTISP(polylog(𝑛), log(𝑛)), i. e., can each
be decided by a Turing machine using poly(log 𝑛) time and 𝑂(log 𝑛) space.

In either case, we say 𝑓 is computable in DTISP(polylog(𝑛), log(𝑛)).

PROOF . (⇒) Suppose 𝑓 is computable by a Turing machine 𝑀 using poly(log 𝑛) time and
𝑂(log 𝑛) workspace (including the output). Then the following machine 𝑁 computes the function
(𝑥, 𝑖) ↦→ 𝑓 (𝑥)𝑖 . On input (𝑥, 𝑖), 𝑁 simulates𝑀 (𝑥) while leaving 𝑖 untouched. After the simulation
has completed, one of 𝑁 ’s worktapes contains 𝑓 (𝑥)𝑖 , while 𝑖 is still on the input tape. Next,
using another worktape to keep a counter, 𝑁 walks through 𝑓 (𝑥) until it gets to the 𝑖-th bit, and
outputs that bit of 𝑓 (𝑥).

The entirety of the computation after the simulation of 𝑁 uses an amount of space that
is |𝑖 | ≤ 𝑂( | 𝑓 (𝑥) |) ≤ 𝑂(log |𝑥 |), and time that is at most |𝑖 |2 ≤ 𝑂(log2 |𝑥 |) (in fact, by noting that
incrementing a counter by +1 𝑘 many times only incurs 𝑂(𝑘) many changes to the bits of the
counter, this can be reduced to 𝑂(log |𝑥 |) as well).

(⇐) Suppose the function (𝑥, 𝑖) ↦→ 𝑓 (𝑥)𝑖 is computable by a Turing machine 𝑁 using
poly(log 𝑛) = poly(log |𝑥 |) time and 𝑂(log 𝑛) = 𝑂(log |𝑥 |) space. The following machine 𝑀
computes 𝑓 in the manner in which, when started with 𝑥 on its input tape, at the end of
the computation 𝑓 (𝑥) is the only thing written on the work tape. On input 𝑥, 𝑀 simulates
𝑁 (𝑥, 0), 𝑁 (𝑥, 1), . . . , writing those bits in the specified place on its work tape, until it reaches an 𝑖
such that𝑁 (𝑥, 𝑖) = ⊥. As𝑁 was called | 𝑓 (𝑥) |+1 times, this multiplies the time complexity of𝑁 by
| 𝑓 (𝑥) | ≤ 𝑂(log |𝑥 |). However, the space need does not increase except to keep track of the integer
𝑖 for which the machine will next simulate 𝑁 (𝑥, 𝑖), plus the space for the output, as the space to
simulate𝑁 (𝑥, 𝑖) can be re-used when simulating𝑁 (𝑥, 𝑖+1). Thus the space used is that of𝑁 , plus
the space for the output, plus the space to maintain 𝑖, which is |𝑖 | ≤ log( | 𝑓 (𝑥) |+1) ≤ 𝑂(log log |𝑥 |),
so the total space is still 𝑂(log |𝑥 | + log log |𝑥 |) = 𝑂(log |𝑥 |). The additional clearing and marking
at the end at most doubles the time and adds a constant amount of space usage. ■
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FACT 2 .5. NTISP(polylog(𝑛), log(𝑛)) ⊆ NTIME(polylog(𝑛)) ⊆ quasiAC0. In particular, any de-
cision problem in NTIME(polylog(𝑛)) is computable by a quasi-polynomial-size DNF (a particular
kind of depth-2 quasiAC0 circuit).

Furthermore, decision problems in DTIME(polylog(𝑛)) are computable by quasi-polynomial-
size CNFs as well.

PROOF . Given a polylog(𝑛)-time nondeterministic Turing machine 𝑀 , we get a decision tree
𝑇𝑀 that decides that same language as follows. Each node of the tree corresponds to any time
𝑀 either queries an input bit or makes a nondeterministic guess. The two children of such a
node correspond to whether the queried (resp., nondeterministically guessed) bit was 0 or 1.
The leaves of the tree are labeled accepting or rejecting according to whether 𝑀 accepts or
rejects at that point (note: once no more input bits are queried and no more nondeterministic
guesses are made, the answer is fully determined, even though 𝑀 may deterministically spend
an additional polylog(𝑛) steps figuring out what the answer should be). The decision tree has
height at most polylog(𝑛), and thus at most quasi-polynomially many branches. We get a DNF
by taking the disjunction over all accepting paths of the conjunction of the answers to the input
queries on those paths.

If there are no non-deterministic guesses made, i.e. our machine 𝑀 was deterministic,
then we can get a CNF from the above decision tree by using De Morgan’s law: negate the leaves
of the decision tree, get the corresponding DNF of the negated tree, then negate the DNF. (This
does not work in the nondeterminstic case, as the disjunction includes all inputs such that there
exists nondeterministic guesses that lead to an accepting leaf, and when we negate the leaves
we end up with co-nondeterminism instead of non-determinism.) ■

LEMMA 2.6. NTISP(polylog(𝑛), log(𝑛)) ⊆ FOLL.

PROOF . This is essentially the proof of Savitch’s Theorem: A configuration of a Turing machine
consist of the current state, the work and index tape content, but not the content of the input
tape. For configurations 𝛼, 𝛽 define the Reach predicate as follows:

Reach(𝛼, 𝛽, 0) ⇐⇒ 𝛽 is reachable from 𝛼 in at most one computation step

Reach(𝛼, 𝛽, 𝑖 ) ⇐⇒ ∃𝛾 :
(
Reach(𝛼, 𝛾, 𝑖 − 1) ∧ Reach(𝛾, 𝛽, 𝑖 − 1)

)
for 𝑖 ≥ 1. Thus, Reach(𝛼, 𝛽, 𝑖) holds if and only if 𝛽 can be reached from 𝛼 in at most 2𝑖

computation steps. Since the running time is bounded by log𝑘 𝑛 for some 𝑘, by letting Start(𝑤)
denote the initial configuration for the input 𝑤 ∈ Σ∗ and Accept the accepting configuration of
𝑀 (which can be assumed to be unique after a suitable manipulation of 𝑀), we have

Reach(Start(𝑤),Accept, log log𝑘 𝑛) ⇐⇒ 𝑤 ∈ 𝐿.
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Now, it remains to observe that the inductive definition of the Reach predicate can be evaluated
in FOLL since the recursion depth is 𝑂(log log 𝑛), each recursion step is clearly in AC0 and there
are only polynomially many configurations (because of the space bound of log 𝑛). ■

By the very definition we have DTISP(polylog(𝑛), log(𝑛)) ⊆ L and NTISP(polylog(𝑛), log(𝑛)) ⊆
NL. Thus, we obtain

FACT 2 .7.

AC0(DTISP(polylog(𝑛), log(𝑛))) ⊆ L ∩ FOLL ∩ quasiAC0 and
AC0(NTISP(polylog(𝑛), log(𝑛))) ⊆ NL ∩ FOLL ∩ quasiAC0.

Disjunctive truth-table reductions. We finally recall the notion of a disjunctive truth-table
reduction. Again let 𝐿1, 𝐿2 be languages. We say that 𝐿1 is disjunctive truth-table (dtt) reducible
to 𝐿2, denoted 𝐿1 ≤𝑑𝑡𝑡 𝐿2, if there exists a function 𝑔 mapping a string 𝑥 to a tuple of strings
( 𝑦1, . . . , 𝑦𝑘) such that 𝑥 ∈ 𝐿1 if and only if there is some 𝑖 ∈ {1, . . . , 𝑘} such that 𝑦𝑖 ∈ 𝐿2. When
𝑔 is computable in a complexity class C, we call this a C-dtt reduction, and write 𝐿1 ≤C

𝑑𝑡𝑡
𝐿2. For

any class C, C-dtt reductions are intermediate in strength between C-many-one reductions and
C-Turing reductions.

FACT 2 .8. ∃log2 𝑛AC0(C) is closed under ≤AC0
𝑑𝑡𝑡

reductions for any class C.

PROOF . Let 𝐿 ∈ ∃log2 𝑛AC0(C), and suppose 𝐿′ ≤AC0
𝑑𝑡𝑡

𝐿 via 𝑔. We show that 𝐿′ is also in
∃log2 𝑛AC0(C). Let 𝑉 ∈ AC0(C) be a predicate such that 𝑥 ∈ 𝐿 ⇐⇒ [∃log2 |𝑥 |𝑤]𝑉 (𝑥, 𝑤) for
all strings 𝑥. Then we have 𝑥 ∈ 𝐿′ iff ∃ 𝑖 ∈ {1, . . . , 𝑘}, ∃𝑤 ∈ {0, 1}log2 𝑛 : 𝑉 (𝑔 (𝑥)𝑖 , 𝑤), where 𝑔 (𝑥)𝑖
denotes the 𝑖-th string output by 𝑔 (𝑥) = ( 𝑦1, . . . , 𝑦𝑘). Since 𝑔 is, in particular, polynomial size,
we have 𝑘 ≤ poly( |𝑥 |), so we have the bit-length of the index 𝑖 is at most 𝑂(log |𝑥 |). Finally,
since AC0(C) denotes the oracle class, it is closed under AC0 reductions, and thus the function
(𝑥, 𝑤, 𝑖) ↦→ 𝑉 (𝑔 (𝑥)𝑖 , 𝑤) is in AC0(C), and therefore 𝐿′ ∈ ∃log2 𝑛AC0(C). ■

3. Order Finding and Applications

In this section, we consider the parallel complexity of order finding. We begin with the following
lemma.

LEMMA 3.1. The following function is in DTISP(polylog(𝑛), log(𝑛)) (NB: Definition/Lemma 2.4):
On input of a multiplication table of a semigroup 𝑆, an element 𝑠 ∈ 𝑆, and a unary or binary
number 𝑘 ∈ N with 𝑘 ≤ |𝑆 |, compute 𝑠𝑘.

Note that, because the multiplication table is part of the input, the input size 𝑛 is always at
least |𝑆 |.
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PROOF . If 𝑘 is given in unary, we first compute its binary representation using a binary
search (note that we can write it on the work tape as is uses at most ⌈log |𝑆 |⌉ bits). We identify
the semigroup elements with the natural numbers 0, . . . , |𝑆 | − 1. Now, we compute 𝑠𝑘 using
the standard fast exponentiation algorithm. Note that the multiplication of two semigroup
elements can be done in DTIME(log 𝑛) as we only need to write down two log 𝑛 bit numbers on
the address tape (if the multiplication table is not padded up to a power of two, this is still in
DTISP(polylog(𝑛), log(𝑛)) because we need to multiply two log 𝑛 bit numbers to compute the
index in the multiplication table).

It is well-known that the fast exponentiation algorithm needs only 𝑂(log 𝑘) elementary
multiplications and 𝑂(log 𝑘 + log 𝑛) space; hence, the lemma follows. ■

Note that Lem. 3.1 together with Lem. 2.6 gives a new proof that the problem of computing
a power 𝑠𝑘 in a semigroup can be done in FOLL. This approach seems easier and more general
than the double-barrelled recursive approach in [10].

Lem. 3.1 also yields the following immediate corollary:

COROLLARY 3.2. On input of a multiplication table of a group 𝐺, an element 𝑔 ∈ 𝐺, and
𝑘 ∈ N, we may decide whether ord(𝑔) = 𝑘 in ∀log 𝑛DTISP(polylog(𝑛), log(𝑛)). The same applies if,
instead of 𝑘, another group element ℎ ∈ 𝐺 is given with the question whether ord(𝑔) = ord(ℎ).
In particular, both questions can be decided by quasi-polynomial-size CNFs (a particular case of
depth-2 quasiAC0).

PROOF . First check whether 𝑔𝑘 = 1 using Lem. 3.1. If yes (and 𝑘 > 1), we use 𝑂(log 𝑛)
universally quantified co-nondeterministic bits to verify that for all 1 ≤ 𝑖 < 𝑘 that 𝑔 𝑖 ≠ 1 using
again Lem. 3.1. For the second form of input observe that ord(𝑔) = ord(ℎ) if and only if for all
𝑖 ≤ |𝐺 | we have 𝑔 𝑖 = 1 if and only if ℎ𝑖 = 1.

For the depth-2 upper bound: we can compute the decision problems (𝑔, 𝑖) ↦→ [𝑔 𝑖 = 1],
(𝑔, 𝑖) ↦→ [𝑔 𝑖 ≠ 1], and (𝑔, ℎ, 𝑖) ↦→ [𝑔 𝑖 = 1 ↔ ℎ𝑖 = 1] in DTISP(polylog(𝑛), log(𝑛)), which in
turn can be decided by quasi-polynomial-size CNFs. Implementing the above strategy, the ∀log 𝑛

becomes an AND gate of fan-in poly(𝑛). That can be merged with the AND gates at the top of
the aforementioned CNFs to get a single CNF of quasi-polynomial size. ■

3.1 Application to isomorphism testing
Using Cor. 3.2, we can improve the upper bound for isomorphism testing of finite simple groups.
Previously, this problem was known to be in L [53] and FOLL [26]. We obtain the following
improved bound.

COROLLARY 3.3. Let𝐺 be a finite simple group and 𝐻 be arbitrary. We can decide isomorphism
between 𝐺 and 𝐻 in AC0(DTISP(polylog(𝑛), log(𝑛)))
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PROOF . As 𝐺 is a finite simple group, 𝐺 is determined up to isomorphism by (i) |𝐺 |, and
(ii) the set of orders of elements of 𝐺: spec(𝐺) := {ord(𝑔) : 𝑔 ∈ 𝐺} [56]. We may check
whether |𝐺 | = |𝐻 | in AC0. By Cor. 3.2, we may compute and compare spec(𝐺) and spec(𝐻) in
AC0(DTISP(polylog(𝑛), log(𝑛))). ■

In light of Cor. 3.2, we obtain an improved bound for testing whether a group 𝐺 is nilpotent.
Testing for nilpotency was previously known to be in L ∩ FOLL [10].

COROLLARY 3.4. Let 𝐺 be a finite group given by its multiplication table. We may decide
whether 𝐺 is nilpotent in AC0(DTISP(polylog(𝑛), log(𝑛))).

PROOF . A finite group 𝐺 is nilpotent if and only if it is the direct product of its Sylow sub-
groups. As 𝐺 is given by its multiplication table, we may in AC0 compute the prime factors
of |𝐺 | (Lemma 2.3). Thus, for each prime 𝑝 dividing |𝐺 |, we identify the elements 𝑋𝑝 := {𝑔 :
ord(𝑔) is a power of 𝑝} and then test whether 𝑋𝑝 forms a group. By Cor. 3.2, we can identify 𝑋𝑝
in AC0(DTISP(polylog(𝑛), log(𝑛))). Verifying the group axioms is AC0-computable. The result
follows. ■

3.2 Application to membership testing
A group 𝐺 has the log 𝑛 power basis property (as defined in [10, 25]) if for every subset 𝑋 ⊆ 𝐺

every 𝑔 ∈ ⟨𝑋⟩ can be written as 𝑔 = 𝑔𝑒1
1 · · · 𝑔𝑒𝑚𝑚 with 𝑚 ≤ log 𝑛 and suitable 𝑔𝑖 ∈ 𝑋 and 𝑒𝑖 ∈ Z.

OBSERVAT ION 3.5. Membership testing for semigroups with the log 𝑛 power basis property is
in NTISP(polylog(𝑛), log(𝑛)).

PROOF . This follows by guessing suitable exponents and using Lem. 3.1 to compute the re-
spective powers. In order to keep the space logarithmically bounded, we do not simply guess
𝑔1, . . . , 𝑔𝑚 ∈ 𝑋—which could take up to log2 𝑛 bits to store—but rather guess the 𝑔𝑖 sequentially
and only store the running product. That is, first guess 𝑔1 and 𝑒1 using 2 log 𝑛 bits, and compute
𝑔𝑒1

1 . Inductively suppose we have computed 𝑔𝑒1
1 · · · 𝑔𝑒𝑖

𝑖
. Note that we do not need to store the

elements 𝑔1, . . . , 𝑔𝑖 and exponents 𝑒1, . . . , 𝑒𝑖 , we only keep the product 𝑔𝑒1
1 · · · 𝑔𝑒𝑖

𝑖
, which takes

log 𝑛 bits. Then we guess 𝑔𝑖+1 and 𝑒𝑖+1, and continue. ■

This observation allows us to improve several results from [10, 25] from FOLL to
NTISP(polylog(𝑛), log(𝑛)).

COROLLARY 3.6. Membership for commutative semigroups is in NTISP(polylog(𝑛), log(𝑛)).

PROOF . Commutative semigroups have the log 𝑛 power basis property [25, Lem. 4.2]. ■

COROLLARY 3.7. Let 𝑑 be a constant. Membership for solvable groups of class bounded by 𝑑 is
in NTISP(polylog(𝑛), log(𝑛)).
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PROOF . Let 𝑋 be the input set for Membership and 𝐺 the input group. Theorem 3.5 in [10] is
proved by showing that ⟨𝑋⟩ = 𝑋𝑑 where 𝑋0 = 𝑋 and for some suitable constant 𝐶

𝑋𝑖 = {𝑥𝑒1
1 · · · 𝑥𝑒𝑚𝑚 | 𝑚 ≤ 𝐶 log 𝑛, 𝑥 𝑗 ∈ 𝑋𝑖−1, 𝑒 𝑗 ∈ Z for 𝑗 ∈ {1, . . . , 𝑚}}.

Now, as in Observation 3.5, we can guess an element of 𝑋𝑖 in NTISP(polylog(𝑛), log(𝑛))
given that we have the elements of 𝑋𝑖−1. As 𝑑 is a constant, we can guess the elements of 𝑋𝑖−1

in NTISP(polylog(𝑛), log(𝑛)) by induction. Thus, we can decide membership in ⟨𝑋⟩ = 𝑋𝑑 in
NTISP(polylog(𝑛), log(𝑛)). ■

For nilpotent groups, we can do even better and show NTISP(polylog(𝑛), log(𝑛)) even
without a bound on the nilpotency class—thus, improving considerably over [10]. This also
underlines that the classNTISP(polylog(𝑛), log(𝑛)) is useful not only because it provides a better
complexity bound than FOLL, but it also facilitates some proofs.

THEOREM 3.8. Membership for nilpotent groups is in NTISP(polylog(𝑛), log(𝑛)).

PROOF . Let 𝑋 be the input set for Membership and 𝐺 the input group. Write 𝑛 = |𝐺 |. Note
that the nilpotency class of 𝐺 is at most log 𝑛. Define 𝐶 = {[𝑥1, . . . , 𝑥ℓ] | 𝑥𝑖 ∈ 𝑋, ℓ ≤ log 𝑛} where
[𝑥1, . . . , 𝑥ℓ] is defined inductively by [𝑥1, . . . , 𝑥ℓ] = [[𝑥1, . . . , 𝑥ℓ−1], 𝑥ℓ] for ℓ ≥ 3. When ℓ = 1,
define [𝑥1, . . . , 𝑥ℓ] := 𝑥1; and when ℓ = 2, [𝑥1, . . . , 𝑥ℓ] := [𝑥1, 𝑥2].

We claim that there is a subset 𝐶′ = {𝑐1, . . . , 𝑐𝑚} ⊆ 𝐶 with 𝑚 ≤ log 𝑛 such that every
𝑔 ∈ ⟨𝑋⟩ can be written as 𝑔 = 𝑐𝑒1

1 · · · 𝑐𝑒𝑚𝑚 with 𝑒𝑖 ∈ Z.
Let Γ𝑚 denote the 𝑚-th term of the lower central series of ⟨𝑋⟩ (meaning that Γ0 = ⟨𝑋⟩ and

Γ𝑚+1 = [Γ𝑚, ⟨𝑋⟩]). Then Γ𝑚 is generated by 𝐶𝑚 = {[𝑥1, . . . , 𝑥𝑘] | 𝑥𝑖 ∈ 𝑋, 𝑘 ≥ 𝑚} (e. g., [18, Lemma2.6]). Observe that, although 𝑘 is unbounded, the terms with 𝑘 > log 𝑛 are trivial because log 𝑛
is a bound on the nilpotency class. We obtain the desired set 𝐶′ by first choosing a minimal
generating set for the Abelian group Γ0/Γ1, then a minimal generating set of Γ1/Γ2 and so on
(meaning that (𝑐1, . . . , 𝑐𝑚) is a so-called polycyclic generating sequence of ⟨𝑋⟩– see [31, Chapter 8]).
Note that 𝑚 is bounded by log 𝑛 since ⟨𝑐𝑖 , . . . , 𝑐𝑚⟩ is a proper subgroup of ⟨𝑐𝑖−1, . . . , 𝑐𝑚⟩ for all 𝑖.

Next, let us show that in NTISP(polylog(𝑛), log(𝑛)) we can non-deterministically guess
elements such that (1) all guessed elements are in ⟨𝑋⟩ and (2) every power-product of elements
of 𝐶′ occurs on at least one non-deterministic branch.

This is not difficult: we start by guessing 𝑥1 and set 𝑎 = 𝑥1. Then, guess whether or
not to continue; as long as we guess to continue, we guess 𝑖 and compute 𝑎 := [𝑎, 𝑥𝑖]. As ℓ
(in the definition of 𝐶) is bounded by log 𝑛, we can guess any element of 𝐶′ in this way in
polylogarithmic time. Moreover, note that at any point we only need to store a constant number
of group elements. By construction, all such guessed elements are visibly in ⟨𝑋⟩.

Once we have guessed an element of𝐶′, we can guess a power of it as in Observation 3.5 and
then guess the next element of𝐶′ and so on. As𝑚 ≤ log 𝑛, this gives anNTISP(polylog(𝑛), log(𝑛))
algorithm. ■
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4. Abelian Group Isomorphism

In this section, we consider isomorphism testing of Abelian groups. Our main result in this
regard is:

THEOREM 4.1. Let 𝐺 be an Abelian group, and let 𝐻 be arbitrary. We can decide isomorphism
between 𝐺 and 𝐻 in ∀log log 𝑛MAC0(DTISP(polylog(𝑛), log(𝑛))).

Chattopadhyay, Torán, and Wagner [17] established a TC0(FOLL) upper bound on this
problem. Grochow & Levet [26, Theorem 5] gave a tighter analysis of their algorithm, placing it in
the sub-class∀log 𝑛MAC0(FOLL).15 We note that Chattopadhyay, Torán, & Wagner also established
an upper bound of L for this problem, which is incomparable to the result of Grochow & Levet
(ibid.). We improve upon both these bounds by (i) showing that 𝑂(log log 𝑛) non-deterministic
bits suffice instead of 𝑂(log 𝑛) bits, and (ii) using an AC0(DTISP(polylog(𝑛), log(𝑛))) circuit for
order finding rather than an FOLL circuit. We note that while ∀log 𝑛MAC0(FOLL) is contained in
TC0(FOLL), it is open whether this containment is strict. In contrast, Cor. 4.3 shows that our new
bound of ∀log log 𝑛MAC0(DTISP(polylog(𝑛), log(𝑛))) is a class that is in fact strictly contained in
L ∩ TC0(FOLL).

Jeřábek also previously established bounds of Σ2-TIME(log2 𝑛) for isomorphism testing
of Abelian groups, which can be simulated by depth-3 quasiAC0-circuits of size 𝑛𝑂(log 𝑛) [34];
Jeřábek’s result and our Theorem 4.1 are incomparable.

PROOF OF THM. 4 .1 . Following the strategy of [26, Theorem 7.15], we show that being non-
isomorphic can be decided in the same class but with existentially quantified non-deterministic
bits.

We may check in AC0 whether a group is Abelian. So if 𝐻 is not Abelian, we can decide
in AC0 that 𝐺 � 𝐻 . So suppose now that 𝐻 is Abelian. By the Fundamental Theorem of
Finite Abelian Groups, 𝐺 and 𝐻 are isomorphic if and only if their multisets of orders are the
same. In particular, if 𝐺 � 𝐻 , then there exists a prime power 𝑝𝑒 such that there are more
elements of order 𝑝𝑒 in 𝐺 than in 𝐻 . We first identify the order of each element, which is
AC0(DTISP(polylog(𝑛), log(𝑛)))-computable by Lem. 3.1.

We will show how to nondeterministically guess and check the prime power 𝑝𝑒 such that 𝐺
has more elements of order 𝑝𝑒 than𝐻 does. Let 𝑛 = 𝑝𝑒1

1 · · · 𝑝𝑒ℓℓ be the prime factorization of 𝑛. We
have that ℓ ≤ log2 𝑛, and the number of distinct prime powers dividing 𝑛 is 𝑒1 + · · · + 𝑒ℓ ≤ log2 𝑛.
Nondeterministically guess a pair (𝑖, 𝑒) with 1 ≤ 𝑖 ≤ ⌊log2 𝑛⌋ and 1 ≤ 𝑒 ≤ ⌊log2 𝑛⌋. We treat this
pair as representing the prime power 𝑝𝑒

𝑖
at which we will test that 𝐺 has more elements of that

order than 𝐻 . Because both 𝑖 and 𝑒 are bounded in magnitude by log2 𝑛, the number of bits

15 Grochow & Levet consider ∀log 𝑛MAC0 ◦ FOLL, where ◦ denotes composition (see [26] for a precise formulation). We
note that as AC0 ◦ FOLL = FOLL = AC0 (FOLL), we have that ∀log 𝑛MAC0 ◦ FOLL = ∀log 𝑛MAC0 (FOLL). Thus, Thm. 4.1 improves
upon the previous bound of ∀log 𝑛MAC0 (FOLL) obtained by Grochow & Levet.
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guessed is at most log2 log2 𝑛. So we may effectively guess 𝑝𝑒 using 𝑂(log log 𝑛) bits to specify 𝑝
(implicitly, i.e., by its index 𝑖) and to specify 𝑒 (explicitly, i.e., in its binary expansion).

However, to identify elements of order 𝑝𝑒, we will need the number 𝑝𝑒 explicitly, in its full
binary expansion. First we show that we can get 𝑝𝑒 explicitly if we can get 𝑝 explicitly. Once we
have 𝑝 in its binary expansion, the function (𝑝, 𝑒) ↦→ 𝑝𝑒 can be computed in AC0, by Thm. 2.2.
Thus all that remains is to get 𝑝 explicitly.

By Lemma 2.3 we can compute in AC0 the prime factors of |𝐺 |. Consider this list of primes
as a list of length 𝑂(log 𝑛), consisting of numbers each of 𝑂(log 𝑛) bits. Now for each pair of
primes 𝑝 𝑗 , 𝑝ℎ, we define an indicator 𝑋 ( 𝑗, ℎ) = 1 ⇐⇒ 𝑝 𝑗 > 𝑝ℎ. As 𝑝 𝑗 , 𝑝ℎ are representable
using 𝑂(log 𝑛) bits, we may compute 𝑋 ( 𝑗, ℓ) in AC0. Now as the number of primes ℓ ≤ log2(𝑛),
we may in AC0 find a prime 𝑗 with:

ℓ∑︁
ℎ=1

𝑋 ( 𝑗, ℎ) = 𝑖.

The result now follows. ■

As with many of our other results, we show that this class is restrictive enough that it cannot
compute Parity. To do this, we appeal to the following theorem of Barrington & Straubing:

THEOREM 4.2 (Barrington & Straubing [12, Thm. 7]). Let 𝑘 > 1. Any TC circuit family of
constant depth, size 2𝑛𝑜(1) , and with at most 𝑛𝑜(1) Majority gates cannot compute theMod𝑘 function.

COROLLARY 4.3. Let 𝑘 > 1, and let𝑄𝑜(log 𝑛) be any finite sequence (of𝑂(1) length) of alternating
∃ and ∀ quantifiers, where the total number of bits quantified over is 𝑜(log 𝑛). Then

Mod𝑘 ∉ 𝑄𝑜(log 𝑛)MAC0(DTISP(polylog(𝑛), log(𝑛))).

PROOF . Let 𝐿 ∈ 𝑄𝑜(log 𝑛)MAC0(DTISP(polylog(𝑛), log(𝑛))). Since by Fact 2.5 we know that
DTISP(polylog(𝑛), log(𝑛)) ⊆ quasiAC0, we have MAC0(DTISP(polylog(𝑛), log(𝑛))) ⊆ quasiMAC0,
that is, quasi-polynomial size circuits of constant depth with a single Majority gate at the output.
Thus 𝐿 ∈ 𝑄𝑜(log 𝑛)quasiMAC0.

Let 𝐶 be the quasiMAC0 circuit such that 𝑥 ∈ 𝐿 ⇐⇒ (𝑄𝑦)𝐶(𝑥, 𝑦), where | 𝑦 | < 𝑜(log |𝑥 |),
for all strings 𝑥. There are 2𝑜(log 𝑛) = 𝑛𝑜(1) possible choices for 𝑦; let 𝐶 𝑦 (𝑥) = 𝐶(𝑥, 𝑦), where 𝐶 𝑦
denotes the circuit 𝐶 with the second inputs fixed to the string 𝑦.

Now, to compute 𝐿, the quantifiers 𝑄𝑜(log 𝑛) can be replaced by a constant-depth circuit
(whose depth is equal to the number of quantifier alternations), and whose total size is 2𝑜(log 𝑛) =

𝑛𝑜(1) , where at each leaf of this circuit, we put the corresponding circuit 𝐶 𝑦. The resulting circuit
is a quasiTC0 circuit with only 𝑛𝑜(1) Majority gates, hence by Theorem 4.2, cannot compute
Parity. ■
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5. Isomorphism for Groups of Almost All Orders

Dietrich & Wilson [22] previously established that there exists a dense set Υ ⊆ N such that
if 𝑛 ∈ Υ and 𝐺1, 𝐺2 are magmas of order 𝑛 given by their multiplication tables, we can (i)
decide if 𝐺1, 𝐺2 are groups, and (ii) if so, decide whether 𝐺1 � 𝐺2 in time 𝑂(𝑛2 log2 𝑛), which is
quasi-linear time relative to the size of the multiplication table.

In this section, we establish the following.

THEOREM 5.1. Let Υ ⊆ N be the dense set considered by Dietrich and Wilson [22]. Let
𝑛 ∈ Υ, and let 𝐺1, 𝐺2 be groups of order 𝑛. We can decide isomorphism between 𝐺1 and 𝐺2

in AC0(DTISP(polylog(𝑛), log(𝑛))).

Note that verifying the group axioms is AC0-computable.

REMARK 5.2. Theorem 5.1 provides that for almost all orders, Group Isomorphism belongs to
AC0(DTISP(polylog(𝑛), log(𝑛))), which is contained within L ∩ FOLL ⊊ P and cannot compute
Parity. While it is known that Group Isomorphism belongs to complexity classes such as
∃log2 𝑛L ∩ ∃log2 𝑛FOLL [17] and quasiAC0 (Theorem 6.1) that cannot compute Parity, membership
within P—let alone a subclass of P that cannot compute Parity—is a longstanding open problem.

PROOF OF THEOREM 5.1 . Dietrich & Wilson showed [22, Theorem 2.5] that if 𝐺 is a group of
order 𝑛 ∈ Υ, then 𝐺 = 𝐻 ⋉ 𝐵, where gcd( |𝐵|, |𝐻 |) = 1 and:

𝐵 is a cyclic group of order 𝑝1 · · · 𝑝ℓ, where for each 𝑖 ∈ [ℓ], 𝑝𝑖 > log log 𝑛 and 𝑝𝑖 is the
maximum power of 𝑝𝑖 dividing 𝑛.
|𝐻 | = (log 𝑛)poly log log 𝑛; and in particular, if a prime divisor 𝑝 of 𝑛 satisfies 𝑝 ≤ log log 𝑛,
then 𝑝 divides |𝐻 |.

As 𝐺1, 𝐺2 are given by their multiplication tables, we may in AC0 compute (i) the prime
divisors 𝑝1, . . . , 𝑝𝑘 of 𝑛, and (ii) determine whether, for each 𝑖 ∈ [𝑘], 𝑝𝑖 is the maximal power
of 𝑝𝑖 dividing 𝑛. Furthermore, in AC0, we may write down ⌊log log 𝑛⌋ and test whether 𝑝𝑖 >
⌊log log 𝑛⌋.

Fix a group 𝐺 of order 𝑛. We will first discuss how to decompose 𝐺 = 𝐻 ⋉ 𝐵, as prescribed
by [22, Theorem 2.5]. Without loss of generality, suppose that 𝑝1, . . . , 𝑝ℓ (ℓ ≤ 𝑘) are the unique
primes where 𝑝𝑖 (𝑖 ∈ [ℓ]) divides 𝑛 only once and 𝑝𝑖 > log log 𝑛. Now as each 𝑝𝑖 can be
represented as a string of length ≤ ⌈log(𝑛)⌉ + 1, we may in AC0 compute 𝑝 := 𝑝1 · · · 𝑝ℓ (Thm. 2.2).
Using Lem. 3.1, we may in AC0(DTISP(polylog(𝑛), log(𝑛))) identify an element 𝑔 ∈ 𝐺 of order 𝑝.

Now in AC0, we may write down the multiplication table for 𝐻 𝑗 � 𝐺 𝑗/𝐵 𝑗 . As |𝐻 𝑗 | ≤
(log 𝑛)poly log log 𝑛, there are poly(𝑛) possible generating sequences for 𝐻 𝑗 of length at most
log

��𝐻 𝑗

��. By [7] it actually suffices to consider cube generating sequences for 𝐻 𝑗 . Now given
cube generating sequences 𝑥 𝑗 for 𝐻 𝑗 , we may by the proof of Theorem 6.1 decide whether
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𝑥1 ↦→ 𝑥2 extends to an isomorphism of 𝐻1 and 𝐻2 in ∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆
AC0(DTISP(polylog(𝑛), log(𝑛))). As there are only poly(𝑛) such generating sequences to consider,
we may decide whether 𝐻1 � 𝐻2 in AC0(DTISP(polylog(𝑛), log(𝑛))).

Suppose 𝐻1 � 𝐻2, 𝐵1 � 𝐵2, and gcd( |𝐵 𝑗 |, |𝐻 𝑗 |) = 1 for 𝑗 = 1, 2. We have by the Schur–
Zassenhaus Theorem that 𝐺 𝑗 = 𝐻 𝑗 ⋉𝜃 𝑗 𝐵 𝑗 ( 𝑗 = 1, 2) for some action 𝜃 𝑗 : 𝐻 𝑗 → Aut(𝐵 𝑗). By Taunt’s
Lemma [54], it remains to test whether the actions 𝜃1 and 𝜃2 are equivalent in the following
sense: do there exist isomorphisms 𝛼 : 𝐻1 � 𝐻2 and 𝛽 : 𝐵1 � 𝐵2 such that

𝛽(ℎ𝑏ℎ−1) = 𝛼(ℎ)𝛽(𝑏)𝛼(ℎ−1) ∀ℎ ∈ 𝐻1, 𝑏 ∈ 𝐵1?

Note that, as 𝐵 𝑗 is Abelian, for any two elements ℎ1, ℎ2 of 𝐺 𝑗 belonging to the same coset of 𝐵 𝑗
and any element 𝑏 ∈ 𝐵 𝑗 , that ℎ1𝑏ℎ

−1
1 = ℎ2𝑏ℎ

−1
2 , so the above conjugation action is well-defined,

independent of the choice of isomorphic copy of 𝐻 𝑗 in 𝐺 𝑗 . Next, since the 𝐵 𝑗 are cyclic, if 𝑏1

generates 𝐵1, then the above condition is satisfied iff for all ℎ ∈ 𝐻1 we have

𝛽(ℎ𝑏1ℎ
−1) = 𝛼(ℎ)𝛽(𝑏1)𝛼(ℎ−1) ∀ℎ ∈ 𝐻1.

As above, in AC0(DTISP(polylog(𝑛), log(𝑛))) we can find a generator 𝑏1 ∈ 𝐵1 and a cube
generating sequence ℎ1, . . . , ℎ𝑘 ∈ 𝐻1. In parallel, for all poly(𝑛) generators 𝑏2 ∈ 𝐵2 and all
poly(𝑛) cube generating sequences ℎ′1, . . . , ℎ

′
𝑘
∈ 𝐻2, we then test the above condition on the

isomorphisms specified by 𝛽(𝑏1) = 𝑏2 and 𝛼(ℎ𝑖) = ℎ′𝑖 for 𝑖 = 1, . . . , 𝑘. That is, for each choice of
𝑏2 we write down the isomorphism 𝐵1 → 𝐵2 defined by 𝛽(𝑏1) = 𝑏2, and for each choice of cube
generating sequence ℎ′1, . . . , ℎ

′
𝑘
∈ 𝐻2, we check that

𝛽(ℎ𝑖𝑏1ℎ
−1
𝑖 ) = ℎ′𝑖𝑏2(ℎ′𝑖)

−1 ∀𝑖 = 1, . . . , 𝑘.

Checking the preceding condition only involves a constant number of group multiplications,
which can thus be done in DTISP(polylog(𝑛), log(𝑛)). ■

6. Quasigroup Isomorphism

In this section, we establish the following.

THEOREM 6.1. Quasigroup Isomorphism belongs to ∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)).
In particular, it can be solved by quasiAC0 circuits of depth 4 and size 𝑛𝑂(log 𝑛) .

Note that we have

∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆ ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛)))
⊆ quasiAC0 ∩ ∃log2 𝑛L ∩ ∃log2 𝑛FOLL.
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This statement is inspired by [21] where a similar problem is shown to be in the third
level of the polynomial-time hierarchy using the same approach. Our proof follows closely the
algorithm for [17, Theorem 3.4].

PROOF OF THEOREM 6.1 . Let 𝐺 and 𝐻 be quasigroups given as their multiplication tables.
We assume that the elements of the quasigroups are indexed by integers 1, . . . , |𝐺 |. If |𝐺 | ≠ |𝐻 |
(this can be tested in DTIME(log 𝑛) by a standard binary search), we know that 𝐺 and 𝐻 are not
isomorphic. Otherwise, let us write 𝑛 = |𝐺 | and 𝑘 = ⌈2 log 𝑛⌉ + 1 (while [17, Theorem 3.3] only
states that some 𝑘 ∈ 𝑂(log 𝑛) suffices, the corresponding proof states that for 𝑘 = ⌈2 log 𝑛⌉ + 1,
there is actually a cube generating set).

The basic idea is to guess cube generating sequences (𝑔0, . . . , 𝑔𝑘) and (ℎ0, . . . , ℎ𝑘) for 𝐺
and 𝐻 and verify that the map 𝑔𝑖 ↦→ ℎ𝑖 induces an isomorphism between 𝐺 and 𝐻 . Hence, we
start by guessing cube generating sequences (𝑔0, . . . , 𝑔𝑘) and (ℎ0, . . . , ℎ𝑘) with respect to the
parenthesization 𝑃 where the elements are evaluated left-to-right (so 𝑃(𝑔1𝑔2𝑔3) = (𝑔1𝑔2)𝑔3),
with 𝑔𝑖 ∈ 𝐺, ℎ𝑖 ∈ 𝐻 . This amounts to guessing 2𝑘 · log(𝑛) ∈ 𝑂(log2 𝑛) many bits (thus, ∃log2 𝑛).
Now, we need to verify two points in ∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)):

that these sequences are actually cube generating sequences,
that 𝑔𝑖 ↦→ ℎ𝑖 induces an isomorphism.

Let us describe the first point for𝐺 (for𝐻 this follows exactly the same way): we universally
verify for every element 𝑔 ∈ 𝐺 (which can be encoded using 𝑂(log 𝑛) bits, hence, ∀log 𝑛) that we
can existentially guess a sequence (𝑒1, . . . , 𝑒𝑘) ∈ {0, 1}𝑘 (i.e. ∃log 𝑛) such that 𝑔 = 𝑃(𝑔0𝑔

𝑒1
1 · · · 𝑔𝑒𝑘

𝑘
).

We can compute this product in DTISP(log2+𝑜(1) 𝑛, log 𝑛) by multiplying from left to right:16 Each
multiplication can be done in time 𝑂(log1+𝑜(1) 𝑛) because we simply need to compute 𝑖 + 𝑗 · 𝑛 for
two addresses 𝑖, 𝑗 of quasigroup elements, write the result on the index tape and then read the
corresponding product of group elements from the multiplication table. Moreover, note that for
this procedure we only need to store one intermediate result on the working tape at any time ,
and one quasigroup multiplication only queries 𝑂(log 𝑛) bits (this point will be important for
our size analysis below); the “+𝑜(1)” in the exponent is merely to perform the arithmetic. Thus,
computing the product 𝑃(𝑔0𝑔

𝑒1
1 · · · 𝑔𝑒𝑘

𝑘
) can be done in time 𝑂(log2+𝑜(1) 𝑛) and space 𝑂(log 𝑛)

and it can be checked whether the result is 𝑔 .
To check the second point, by [17], we need to verify universally that for all (𝑐1, . . . , 𝑐𝑘),

(𝑑1, . . . , 𝑑𝑘), (𝑒1, . . . , 𝑒𝑘) ∈ {0, 1}𝑘 (hence, ∀log 𝑛) whether

𝑃(𝑔0𝑔
𝑐1
1 · · · 𝑔𝑐𝑘

𝑘
) · 𝑃(𝑔0𝑔

𝑑1
1 · · · 𝑔𝑑𝑘

𝑘
) = 𝑃(𝑔0𝑔

𝑒1
1 · · · 𝑔𝑒𝑘

𝑘
)

⇐⇒ 𝑃(ℎ0ℎ
𝑐1
1 · · · ℎ𝑐𝑘

𝑘
) · 𝑃(ℎ0ℎ

𝑑1
1 · · · ℎ𝑑𝑘

𝑘
) = 𝑃(ℎ0ℎ

𝑒1
1 · · · ℎ𝑒𝑘

𝑘
)

16 Here, we could impose the additional requirement that the length of each row/column of the multiplication table is
padded up to a power of two in order to get a bound of ∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(log2 𝑛, log 𝑛)).
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These products can be computed in the same asymptotic complexity bounds as the product
above, using the same technique. Now, it remains to observe that we can combine the two ∀log 𝑛

blocks into one ∀log 𝑛 block because the check whether 𝑔𝑖 ↦→ ℎ𝑖 induces an isomorphism does
not depend on the existentially guessed bits in the first check.

The depth 4 circuit bound then follows from the DNF for DTIME(polylog(𝑛)) (Fact 2.5): the
quantifier blocks∃log2 𝑛∀log 𝑛∃log 𝑛 turn into

∨log2 𝑛∧log 𝑛∨log 𝑛, and then the disjunction at the top
of the DNF forDTIME(polylog(𝑛)) can be merged into the final

∨
from the quantifier blocks. The

size bound is computed as follows: the
∨log2 𝑛∧log 𝑛∨log 𝑛 multiplies the size by 2𝑂(log2 𝑛+2 log 𝑛) .

For each of the above two points, we showed it can be decided in DTIME((log 𝑛)2+𝑜(1)) using at
most 𝑂(log2 𝑛) queries to the input. By the proof of Fact 2.5, those yield decision trees of depth
𝑂((log 𝑛)2), giving a DNF of size at most 𝑛 · 2𝑂(log 𝑛)2 . Multiplying all these factors together gives
size 2𝑂(log2 𝑛) = 𝑛𝑂(log 𝑛) . ■

COROLLARY 6.2. The following problems belong to ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛))).
(a) Latin Square Isotopy. In particular, it belongs to

∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)), which yields depth 4 quasiAC0 circuits.
(b) Isomorphism testing of Steiner triple systems. In particular, this problem belongs to

∃log2 𝑛∀log 𝑛∃log 𝑛NTISP(polylog(𝑛), log(𝑛)), which yields depth 4 quasiAC0 circuits.
(c) Isomorphism testing of Latin square graphs.
(d) Isomorphism testing of Steiner (𝑡, 𝑡 + 1)-designs.
(e) Isomorphism testing of pseudo-STS graphs.

For Latin Square Isotopy and isomorphism testing of Steiner triple systems, a careful analysis
yields depth-4 quasiAC0 circuits. In contrast, the reductions from [37] for isomorphism testing
of Latin square graphs, Steiner (𝑡, 𝑡 + 1)-designs, and pseudo-STS graphs all use circuits of depth
at least 4. Obtaining reductions of depth less than 4 will likely require new techniques.

PROOF . We proceed as follows.
(a) We note that the reductions outlined in [43, Theorem 2] and [37, Remark 1.6] in fact

allow us to determine whether two quasigroups are isotopic, and not just main class
isomorphic. Thus, we have an AC0-computable disjunctive truth-table reduction from
Latin Square Isotopy to Quasigroup Isomorphism. This suffices to yield the bound of
∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛))).
We now turn to establishing the stronger∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) bound.
We carefully analyze the ∃log2 𝑛L ∩ ∃log2 𝑛FOLL algorithm from [37, Section 3] using cube
generating sequences. Our analysis adapts the proof technique of Theorem 6.1. Let
𝑄1, 𝑄2 be quasigroups, and let 𝑘 ∈ 𝑂(log 𝑛). We begin by guessing three cube gen-
erating sequences 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑘), 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑘), 𝑐 = (𝑐0, 𝑐1, . . . , 𝑐𝑘) for 𝑄1,
and 𝑎′ = (𝑎′0, 𝑎′1, . . . , 𝑎′𝑘), 𝑏′ = (𝑏′0, 𝑏′1, . . . , 𝑏′𝑘), 𝑐′ = (𝑐′0, 𝑐′1, . . . , 𝑐′𝑘) for 𝑄2. This requires
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𝑂(log2 𝑛) non-deterministic bits (∃log2 𝑛). From the proof of Theorem 6.1, we may check
in ∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) whether each of 𝑎, 𝑏, 𝑐 generates𝑄1, and whether
𝑎′, 𝑏′, 𝑐′ generates 𝑄2.
So now suppose that each of 𝑎, 𝑏, 𝑐 generates 𝑄1, and each of 𝑎′, 𝑏′, 𝑐′ generates 𝑄2. Let
𝛼, 𝛽, 𝛾 : 𝑄1 → 𝑄2 be the bijections induced by the respective maps 𝑎 ↦→ 𝑎′, 𝑏 ↦→ 𝑏′, and
𝑐 ↦→ 𝑐′. Now for each pair (𝑔, ℎ) ∈ 𝑄1, there exist 𝑥, 𝑦, 𝑧 ∈ {0, 1}𝑘 s.t.:

𝑔 = 𝑎0𝑎
𝑥1
1 · · · 𝑎𝑥𝑘

𝑘
,

ℎ = 𝑏0𝑏
𝑦1
1 · · · 𝑏𝑦𝑘

𝑘

𝑔ℎ = 𝑐0𝑐
𝑧1
1 · · · 𝑐𝑧𝑘

𝑘
.

We require 𝑂(log 𝑛) universally quantified co-nondeterministic bits (∀log 𝑛) to represent
(𝑔, ℎ), and 𝑂(log 𝑛) existentially quantified non-deterministic bits to represent 𝑥, 𝑦, 𝑧
(∃log 𝑛). Given 𝑥, 𝑦, 𝑧, we may write down 𝑔, ℎ, 𝑔ℎ in DTISP(polylog(𝑛), log(𝑛)) (following
the proof of Theorem 6.1). Similarly, let:

𝑔′ = 𝑎′0(𝑎′1)𝑥1 · · · (𝑎′𝑘)
𝑥𝑘 ,

ℎ′ = 𝑏′0(𝑏′1) 𝑦1 · · · (𝑏′𝑘)
𝑦𝑘

ℓ′ = 𝑐0(𝑐′1)𝑧1 · · · (𝑐′𝑘)
𝑧𝑘 .

We can check in DTISP(polylog(𝑛), log(𝑛)) whether 𝑔′ℎ′ = ℓ′. Similar to the proof of
Theorem 6.1, we can combine the two ∀log 𝑛 blocks into one ∀log 𝑛 block, as the check
whether (𝑎, 𝑏, 𝑐) ↦→ (𝑎′, 𝑏′, 𝑐′) preserves the quasigroup operation (the homotopism
condition) is independent of whether each of 𝑎, 𝑏, 𝑐 generates 𝑄1, and each of 𝑎′, 𝑏′, 𝑐′

generates 𝑄2.
By Fact 2.5, anNTISP(polylog(𝑛), log(𝑛)) machine can be simulated by a depth-2quasiAC0

circuit, taking care of the final ∃log 𝑛DTISP(polylog(𝑛), log(𝑛)). The additional quantifiers
∃log2 𝑛∀log 𝑛 then yield depth-4 quasiAC0 circuits.

(b) Given a Steiner triple system, we may obtain a quasigroup 𝑄 in the following manner.
For each block {𝑎, 𝑏, 𝑐} in the Steiner triple system, we include the products 𝑎𝑏 = 𝑐, 𝑏𝑎 =

𝑐, 𝑎𝑐 = 𝑏, 𝑐𝑎 = 𝑏, 𝑏𝑐 = 𝑎, 𝑐𝑏 = 𝑎. We can write down the multiplication table using an
AC0 circuit, which suffices to obtain a bound of ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛))).
However, we can use the blocks of the Steiner triple system to look up the relevant
products inNTISP(polylog(𝑛), log(𝑛)), and so we need not write down the multiplication
table. This allows us to directly apply the proof of Theorem 6.1, which yields a bound of

∃log2 𝑛∀log 𝑛∃log 𝑛NTISP(polylog(𝑛), log(𝑛)),
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and so we obtain depth-4 quasiAC0 circuits, as desired. (Analyzing the AC0 reduction in
terms of circuits, yielded only depth 6 in the end, whereas realizing the reduction can
be computed in NTISP(polylog(𝑛), log(𝑛)) allows us to get depth 4 overall.)

(c) Given two Latin square graphs 𝐺1, 𝐺2, we may recover corresponding Latin squares
𝐿1, 𝐿2 in AC0 (cf. [37, Lemma 3.9]). Now 𝐺1 � 𝐺2 if and only if 𝐿1 and 𝐿2 are main class
isomorphic [43, Lemma 3]. We may decide whether 𝐿1, 𝐿2 are main class isomorphic
using an AC0-computable disjunctive truth-table reduction to Quasigroup Isomorphism
(cf. [37, Remark 1.6]). By Fact 2.8, ∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛))) is closed under
AC0-computable dtt reductions, thus yielding the bound of
∃log2 𝑛AC0(DTISP(polylog(𝑛), log(𝑛))).

(d) This immediately follows from the fact that isomorphism testing of Steiner (𝑡, 𝑡 + 1)-
designs is ∃log2 𝑛AC0-reducible to isomorphism testing of Steiner triple systems [8] (cf.,
[37, Corollary 4.11]).

(e) Bose [15] previously showed that pseudo-STS graphs with > 67 vertices are STS graphs.
Now given a block-incidence graph from a Steiner 2-design with bounded block size, we
can recover the underlying design in AC0 [37, Proposition 4.7]. This yields the desired
bound. ■

REMARK 6.3. Latin square graphs are one of the four families of strongly regular graphs
under Neumaier’s classification [44] (the other families being line graphs of Steiner 2-designs,
conference graphs, and graphs whose eigenvalues satisfy the claw bound). Levet [37] previously
established an upper bound of ∃log2 𝑛AC0 for isomorphism testing of conference graphs, which
is a stronger upper bound than we obtain for Latin square graphs. In contrast, the best known
algorithmic runtime for isomorphism testing of conference graphs is 𝑛2 log(𝑛)+𝑂(1) due to Babai
[6], whereas isomorphism testing of Latin square graphs is known to admit an 𝑛log(𝑛)+𝑂(1)-time
solution [43].

7. MinimumGenerating Set

In this section, we consider the Minimum Generating Set (MGS) problem for quasigroups, as
well as arbitrary magmas.

7.1 MGS for Groups in AC1(L)

In this section, we establish the following.

THEOREM 7.1. MGS for groups belongs to AC1(L).

We begin with the following lemma.
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LEMMA 7.2. Let 𝐺 be a group. We can compute a chief series for 𝐺 in AC1(L).

PROOF . We will first show how to compute the minimal normal subgroups 𝑁1, . . . , 𝑁ℓ of 𝐺.
We proceed as follows. We first note that the normal closure ncl(𝑥) is the subgroup generated
by {𝑔𝑥𝑔−1 : 𝑔 ∈ 𝐺}. Now we may write down the elements of {𝑔𝑥𝑔−1 : 𝑔 ∈ 𝐺} in AC0, and then
compute ncl(𝑥) in L using a membership test. Now in L, we may identify the minimal (with
respect to inclusion) subgroups amongst those obtained.

Given 𝑁1, . . . , 𝑁ℓ, we may easily in L compute
∏𝑘

𝑖=1 𝑁𝑖 for each 𝑘 ≤ ℓ. In particular, we may
compute Soc(𝐺) in L. We claim that

∏𝑘
𝑖=1 𝑁𝑖 , for 𝑘 = 1, . . . , ℓ, is in fact a chief series of Soc(𝐺)

(which will then fit into a chief series for 𝐺). To see this, we have that
∏𝑘

𝑖=1 𝑁𝑖 is normal in(∏𝑘
𝑖=1 𝑁𝑖

)
× 𝑁𝑘+1 and that (∏𝑘+1

𝑖=1 𝑁𝑖)/(
∏𝑘

𝑖=1 𝑁𝑖) � 𝑁𝑘+1 is a normal subgroup of 𝐺/∏𝑘
𝑖=1 𝑁𝑖 . By

the Lattice Isomorphism Theorem, (∏𝑘+1
𝑖=1 𝑁𝑖)/(

∏𝑘
𝑖=1 𝑁𝑖) is in fact minimal normal in 𝐺/∏𝑘

𝑖=1 𝑁𝑖 .
We iterate on this process starting from 𝐺/Soc(𝐺). Note that, as we have computed Soc(𝐺)

from the previous paragraph, we may write down the cosets for 𝐺/Soc(𝐺) in AC0. Furthermore,
given a subgroup 𝐻 ≤ 𝐺/Soc(𝐺), we may write down the elements of 𝐻Soc(𝐺) in AC0. By the
above, the minimal normal subgroups of a group are computable in L. As there are at most
log 𝑛 terms in a chief series, we may compute a chief series for 𝐺 in AC1(L), as desired. (Recall
that we use this notation to mean an AC1 circuit with oracle gates calling a L oracle, not function
composition such as AC1 ◦ L.) ■

We now prove the Theorem 7.1.

PROOF OF THEOREM 7.1 . By Lem. 7.2, we can compute a chief series for 𝐺 in AC1(L). So
let 𝑁1 ⊳ · · · ⊳ 𝑁𝑘 be a chief series 𝑆 of 𝐺. Lucchini and Thakkar [40] showed that minimum
generating sets of𝐺/𝑁𝑖+1 have specific structure depending on whether or not𝑁𝑖+1/𝑁𝑖 is Abelian.
We proceed inductively down 𝑆 starting from 𝑁𝑘−1. As 𝐺/𝑁𝑘−1 is a finite simple group, and
hence at most 2-generated, we can write all

(𝑛
2
)

possible generating sets in parallel with a single
AC0 circuit and test whether each generates the group with a membership test. This can be done
in L.

Fix 𝑖 < 𝑘. Suppose we are given a minimum generating sequence 𝑔1, . . . , 𝑔𝑑 ∈ 𝐺 for 𝐺/𝑁𝑖 .
We will construct a minimum generating sequence for 𝐺/𝑁𝑖−1 as follows. We consider the
following cases:

Case 1: Suppose that 𝑁 = 𝑁𝑖/𝑁𝑖−1 is Abelian. By [39, Theorem 4], we have two cases:
Case 1a: We have 𝐺/𝑁𝑖−1 = ⟨𝑔1, · · · , 𝑔𝑖 , 𝑔 𝑗𝑛, 𝑔 𝑗+1, · · · , 𝑔𝑑⟩ for some 𝑗 ∈ [𝑑] and some
𝑛 ∈ 𝑁 (possibly 𝑛 = 1). There are at most 𝑑 · |𝑁 | generating sets to consider in this
case and we can test each of them in L.
Case 1b: If Case 1a does not hold, then we necessarily have that
𝐺/𝑁𝑖−1 = ⟨𝑔1, · · · , 𝑔𝑑 , 𝑥⟩ for any non-identity element 𝑥 ∈ 𝑁 .

Note that there are at most 𝑑 · |𝑁 | + 1 generating sets to consider, we may construct a
minimum generating set for 𝐺/𝑁𝑖−1 in L using a membership test.
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Case 2: Suppose instead that 𝑁 = 𝑁𝑖/𝑁𝑖−1 is non-Abelian. Then by [40, Corollary 13], the
following holds. Let 𝜂𝐺 (𝑁) denote the number of factors in a chief series with order |𝑁 |.
Let 𝑢 = max{𝑑, 2} and 𝑡 = min{𝑢, ⌈8

5 + log|𝑁 | 𝜂𝐺 (𝑁)⌉}. Then there exist 𝑛1, . . . , 𝑛𝑡 ∈ 𝑁𝑖−1

(possibly 𝑛1 = · · · = 𝑛𝑡 = 1) such that 𝐺/𝑁𝑖−1 = ⟨𝑔1𝑛1, · · · , 𝑔𝑡𝑛𝑡, 𝑔𝑡+1, · · · , 𝑔𝑑⟩.
By [40, Corollary 13], there are at most |𝑁 | ⌈ 8

5+log |𝑁 | 𝜂𝐺 (𝑁)⌉ generating sets of this form. As
log|𝑁 | 𝜂𝐺 (𝑁) ∈ 𝑂(1), we may write down these generating sets in parallel with a single AC0

circuit and test whether each generate 𝐺/𝑁𝑖−1 in L using Membership.

Descending along the chief series in this fashion, we compute quotients 𝑁𝑖/𝑁𝑖−1 and compute a
generating set for 𝐺/𝑁𝑖−1. The algorithm terminates when we’ve computed a generating set for
𝐺/𝑁0 = 𝐺. Since a chief series has 𝑂(log 𝑛) terms, this algorithm requires 𝑂(log 𝑛) iterations
and each iteration is computable in L. Hence, we have an algorithm for MGS in AC1(L). ■

Improving upon the AC1(L) bound on MGS for groups appears daunting. It is thus natural
to inquire as to families of groups where MGS is solvable in complexity classes contained within
AC1(L). To this end, we examine the class of nilpotent groups. Arvind & Torán previously
established a polynomial-time algorithm for nilpotent groups [3, Theorem 7]. We improve their
bound as follows.

PROPOS IT ION 7.3. For a nilpotent group 𝐺, we can compute 𝑑 (𝐺) in

L ∩ AC0(NTISP(polylog(𝑛), log(𝑛))).

PROOF . Let 𝐺 be our input group. Recall that a finite nilpotent group is the direct product of
its Sylow subgroups (which by the Sylow theorems, implies that for a given prime 𝑝 dividing |𝐺 |,
the Sylow 𝑝-subgroup of 𝐺 is unique). We can, in AC0(DTISP(polylog(𝑛), log(𝑛))) (using Cor. 3.2),
decide if𝐺 is nilpotent; and if so, compute its Sylow subgroups. So we write𝐺 = 𝑃1×𝑃2×· · ·×𝑃ℓ,
where each 𝑃𝑖 is the Sylow subgroup of 𝐺 corresponding to the prime 𝑝𝑖 . Arvind & Torán (see
the proof of [3, Theorem 7]) established that 𝑑 (𝐺) = max1≤𝑖≤ℓ 𝑑 (𝑃𝑖). Thus, it suffices to compute
𝑑 (𝑃𝑖) for each 𝑖 ∈ [ℓ].

The Burnside Basis Theorem provides that Φ(𝑃) = 𝑃𝑝[𝑃, 𝑃]. We may compute 𝑃𝑝 in
L ∩ AC0(DTISP(polylog(𝑛), log(𝑛))) (the latter using Cor. 3.2). We now turn to computing [𝑃, 𝑃].
Using a membership test, we can compute [𝑃, 𝑃] in L. By [51, I.§4 Exercise 5], every element in
[𝑃, 𝑃] is the product of at most log |𝑃 | commutators. Therefore, we can also decide membership
in [𝑃, 𝑃] in NTISP(polylog(𝑛), log(𝑛)), and so we can write down the elements of [𝑃, 𝑃] in
AC0(NTISP(polylog(𝑛), log(𝑛))).

Thus, we may compute Φ(𝑃) in L ∩ AC0(NTISP(polylog(𝑛), log(𝑛))). Given Φ(𝑃), we may
compute |𝑃/Φ(𝑃) | in AC0. Thus, we may recover 𝑑 (𝑃) from |𝑃/Φ(𝑃) | in AC0, by iterated multipli-
cation of the prime divisor 𝑝 of |𝑃 |. As the length of the encoding of 𝑝 is at most log |𝑃 | and we
are multiplying 𝑝 by itself log |𝑃 | times, iterated multiplication is AC0-computable. Thus, in total,
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we may compute 𝑑 (𝑃) in L ∩ AC0(NTISP(polylog(𝑛), log(𝑛))). It follows that for an arbitrary
nilpotent group 𝐺, we may compute 𝑑 (𝐺) in L ∩ AC0(NTISP(polylog(𝑛), log(𝑛))). ■

REMARK 7.4. While Prop. 7.3 allows us to compute 𝑑 (𝐺) for a nilpotent group𝐺, the algorithm
is non-constructive. It is not clear how to find such a generating set in L. We can, however,
compute such a generating set in AC1(NTISP(polylog(𝑛), log(𝑛))). Note that this bound is incom-
parable to AC1(L). We outline the algorithm here.

The Burnside Basis Theorem provides that for a nilpotent group 𝐺, (i) every generating set
of𝐺 projects to a generating set of𝐺/Φ(𝐺), and (ii) for every generating set 𝑆 of𝐺/Φ(𝐺), every lift
of 𝑆 is a generating set of 𝐺. Furthermore, every minimum generating set of 𝐺 can be obtained
from the Sylow subgroups in the following manner. Write 𝐺 = 𝑃1 × · · · × 𝑃ℓ, where 𝑃𝑖 is the
Sylow 𝑝𝑖-subgroup of 𝐺. Suppose that 𝑃𝑖 = ⟨𝑔𝑖1, . . . , 𝑔𝑖𝑘⟩ (where we may have 𝑔𝑖 𝑗 = 1 for certain
values of 𝑗). Write 𝑔 𝑗 =

∏ℓ
𝑖=1 𝑔𝑖 𝑗 . As in the proof of [3, Theorem 7] we obtain 𝐺 = ⟨𝑔1, . . . , 𝑔𝑘⟩.

Given generating sets for 𝑃1, . . . , 𝑃ℓ, we may in L∩AC0(NTISP(polylog(𝑛), log(𝑛))) recover
a generating set for 𝐺. Thus, it suffices to compute a minimum generating set for 𝑃/Φ(𝑃) �
(Z/𝑝Z)𝑑 (𝑃) , where 𝑃 is a 𝑝-group. Note that we may handle each Sylow subgroup of𝐺 in parallel.
To compute a minimum generating set of 𝑃/Φ(𝑃), we use the generator enumeration strategy.
As 𝑃/Φ(𝑃) is Abelian, we may check in AC0(NTISP(polylog(𝑛), log(𝑛))) (by Cor. 3.6) whether a
set of elements generates the group. As 𝑑 (𝑃) ≤ log |𝑃 |, we have log |𝑃 | steps where each step is
AC0(NTISP(polylog(𝑛), log(𝑛)))-computable. Thus, we may compute a minimum generating set
for 𝑃 in AC1(NTISP(polylog(𝑛), log(𝑛))), as desired.

7.2 MGS for Quasigroups
In this section, we consider the Minimum Generating Set problem for quasigroups. Our goal is
to establish the following.

THEOREM 7.5. For MGS for quasigroups,
1. The decision version belongs to∃log2 𝑛∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆ DSPACE(log2 𝑛);
2. The search version belongs to quasiAC0 ∩ DSPACE(log2 𝑛).

In the paper in which they introduced (polylog-)limited nondeterminism, Papadimitriou
and Yannakakis conjectured that MGS for quasigroups was ∃log2 𝑛P-complete [45, after Thm. 7].
While they did not specify the type of reductions used, it may be natural to consider polynomial-
time many-one reductions. Theorem 7.5 refutes two versions of their conjecture under other
kinds of reductions, that are incomparable to polynomial-time many-one reductions: quasiAC0

reductions unconditionally and polylog-space reductions conditionally. We note that their
other ∃log2 𝑛P-completeness result in the same section produces a reduction that in fact can
be done in logspace and (with a suitable, but natural, encoding of the gates in a circuit) also
in AC0, so our result rules out any such reduction for MGS. (We also note: assuming EXP ≠
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PSPACE, showing that this problem is complete under polynomial-time reductions would give a
separation between poly-time and log-space reductions, an open problem akin to P ≠ L.)

COROLLARY 7.6. MGS for quasigroups and Quasigroup Isomorphism are
1. not ∃log2 𝑛P-complete under quasiAC0[𝑝] Turing reductions, or even such reductions up to

depth 𝑜(log 𝑛/log log 𝑛).
2. not ∃log2 𝑛P-complete under polylog-space Turing reductions unless EXP = PSPACE.

PROOF . (a) Thm. 7.5 (1) for MGS, resp. Thm. 6.1 for Quasigroup Isomorphism, place both
problems into classes that are contained in quasiAC0 by Fact 2.5. If either problem were
∃log2 𝑛P-complete under quasi-polynomial size, 𝑜(log 𝑛/log log 𝑛)-depth, AC[𝑝] circuits, then,
since Parity ∈ P ⊆ ∃log2 𝑛P, we would get such circuits for Parity, which do not exist [46, 52]
(Smolensky’s argument yields a minimum size of exp(Ω(𝑛1/(2𝑑))) for depth-𝑑 circuits, which is
super-polynomial when 𝑑 ∈ 𝑜(log 𝑛/log log 𝑛)).

(b) Both MGS for quasigroups and Quasigroup Isomorphism are in DSPACE(log2 𝑛) by
Thm. 7.5, resp. [17]. The closure of DSPACE(log2 𝑛) under poly-log space reductions is contained
in polyL =

⋃
𝑘≥0 DSPACE(log𝑘 𝑛). If either of these two quasigroup problems were complete for

∃log2 𝑛P under polylog-space Turing reductions, we would get ∃log2 𝑛P ⊆ polyL. Under the latter
assumption, by a straightforward padding argument, we now show that EXP = PSPACE.

Let 𝐿 ∈ EXP; let 𝑘 be such that 𝐿 ∈ DTIME(2𝑛𝑘 + 𝑘). Define 𝐿𝑝𝑎𝑑 = {(𝑥, 12 |𝑥 |𝑘+𝑘) : 𝑥 ∈ 𝐿}. By
construction, 𝐿𝑝𝑎𝑑 ∈ P. Let us use 𝑁 to denote the size of the input to 𝐿𝑝𝑎𝑑 , that is, 𝑁 = 2𝑛𝑘 +𝑘 +𝑛.
By assumption, we thus have 𝐿𝑝𝑎𝑑 ∈ polyL. Suppose ℓ is such that 𝐿𝑝𝑎𝑑 ∈ DSPACE(logℓ 𝑁). We
now give a PSPACE algorithm for 𝐿. In order to stay within polynomial space, we cannot write
out the padding 12𝑛𝑘+𝑘 explicitly. What we do instead is simulate the DSPACE(logℓ 𝑁) algorithm
for 𝐿𝑝𝑎𝑑 as follows. Whenever the head on the input tape would move off the 𝑥 and into the
padding, we keep track of its index into the padding, and the simulation responds as though the
tape head were reading a 1. When the tape head moves right the index increases by 1, when it
moves left it decreases by 1, and if the index is zero and the tape head moves left, then we move
the tape head onto the right end of the string 𝑥. The index itself is a number between 0 and
2𝑛𝑘 + 𝑘, so can be stored using only 𝑂(𝑛𝑘) bits. The remainder of the 𝐿𝑝𝑎𝑑 algorithm uses only
𝑂(logℓ 𝑁) = 𝑂(𝑛𝑘ℓ) additional space, thus this entire algorithm uses only a polynomial amount
of space, so 𝐿 ∈ PSPACE, and thus EXP = PSPACE. ■

Now we return to establishing the main result of this section, Thm. 7.5. To establish
Thm. 7.5 (1) and (2), we will crucially leverage the Membership for quasigroups problem. To
this end, we will first establish the following.

THEOREM 7.7. Membership for quasigroups belongs to ∃log2 𝑛DTISP(polylog(𝑛), log(𝑛)).

Thm. 7.7 immediately yields the following corollary.
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COROLLARY 7.8. For quasigroups, Membership and MGS are not hard under AC0-reductions
for any complexity class containing Parity.

The Reachability Lemma and proofs. The proofs of Theorem 7.7 and Theorem 7.5 rely
crucially on the following adaption of the Babai–Szemerédi Reachability Lemma [7, Theorem 3.1]
to quasigroups. We first generalize the notion of a straight-line program for groups [7] to SLPs
for quasigroups. We follow the same strategy as in the proof of [7, Theorem 3.1], but there are
some subtle, yet crucial, modifications due to the fact that quasigroups are non-associative and
need not possess an identity element.

Let 𝑋 be a set of generators for a quasigroup 𝐺. We call a sequence of elements 𝑔1, . . . , 𝑔ℓ ∈
𝐺 a straight-line program (SLP for short) if each 𝑔𝑖 (𝑖 ∈ [ℓ]) either belongs to 𝑋 , or is of the form
or 𝑔 𝑗𝑔𝑘, 𝑔 𝑗\𝑔𝑘, or 𝑔 𝑗/𝑔𝑘 for some 𝑗, 𝑘 < 𝑖 (where 𝑔 𝑗\𝑔𝑘, resp. 𝑔 𝑗/𝑔𝑘, denotes the quasigroup
division as defined in Section 2.1). An SLP is said to compute or generate a set 𝑆 (or an element
𝑔) if 𝑆 ⊆ {𝑔1, . . . , 𝑔ℓ} (resp. 𝑔 ∈ {𝑔1, . . . , 𝑔ℓ}).

For any sequence of elements 𝑧1, . . . , 𝑧𝑘, let 𝑃(𝑧1𝑧2 · · · 𝑧𝑘) denote the left-to-right paren-
thesization, e.g., 𝑃(𝑧1𝑧2𝑧3) = (𝑧1𝑧2)𝑧3. For some initial segment 𝑧0, 𝑧1, . . . , 𝑧𝑖 define the cube

𝐾 (𝑖) = {𝑃(𝑧0𝑧
𝑒1
1 · · · 𝑧𝑒𝑖

𝑖
) : 𝑒1, . . . , 𝑒𝑖 ∈ {0, 1}},

where 𝑒 𝑗 = 0 denotes omitting 𝑧 𝑗 from the product (since there need not be an identity element).
Define 𝐿(𝑖) = 𝐾 (𝑖)\𝐾 (𝑖) = {𝑔\ℎ : 𝑔, ℎ ∈ 𝐾 (𝑖)}.

Note that, if 𝐿(𝑘) = 𝐺, then 𝑧1, . . . , 𝑧𝑘 is very similar to a cube generating sequence and
we call it a cube-like generating sequence (the difference is that 𝐿(𝑘) allows quotients of cube
words, not only cube words, and in a quasigroup quotients of cube words need not always be
cube words).

LEMMA 7.9 (Reachability Lemma for quasigroups). Let 𝐺 be a finite quasigroup and let 𝑋 be
a set of generators for 𝐺. Then there exists a sequence 𝑧0, . . . , 𝑧𝑡 with 𝑡 ≤ log |𝐺 | such that:

(1) 𝐿(𝑡) = 𝐺
(2) for each 𝑖 we have either 𝑧𝑖 ∈ 𝑋 or 𝑧𝑖 ∈ {𝑔ℎ, 𝑔/ℎ, ℎ\𝑔 | 𝑔, ℎ ∈ 𝐿(𝑖 − 1)}.

In particular, for each 𝑔 ∈ 𝐺, there exists a straight-line program over 𝑋 generating 𝑔 which has
length 𝑂(log2 |𝐺 |).

PROOF . We will inductively construct the sequence 𝑧0, 𝑧1, . . . , 𝑧𝑡 as described in the lemma.
To start, we take 𝑧0 as an arbitrary element from 𝑋 . Hence, 𝐾 (0) = {𝑧0}. Next, let us construct
𝐾 (𝑖 + 1) from 𝐾 (𝑖). If 𝐿(𝑖) ≠ 𝐺, we set 𝑧𝑖+1 to be some element of 𝐺 𝐿(𝑖) that we can find as
follows: As 𝐺 ≠ 𝐿(𝑖), either 𝑋 ⊈ 𝐿(𝑖) or 𝐿(𝑖) is not a sub-quasigroup. Hence, we have one of the
following cases:

If there is some 𝑔 ∈ 𝑋 𝐿(𝑖), we simply take 𝑧𝑖+1 = 𝑔 .
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Otherwise, 𝐿(𝑖) is not a sub-quasigroup; hence, there exist 𝑔, ℎ ∈ 𝐿(𝑖) with one of 𝑔ℎ, 𝑔/ℎ,
or 𝑔\ℎ ∉ 𝐿(𝑖). We choose 𝑧𝑖+1 to be one of 𝑔ℎ, 𝑔/ℎ, or 𝑔\ℎ that is not in 𝐿(𝑖).

Next, we first claim that |𝐾 (𝑖 + 1) | = 2 · |𝐾 (𝑖) |. Note that 𝐾 (𝑖 + 1) = 𝐾 (𝑖) ∪ 𝐾 (𝑖)𝑧𝑖+1 by
definition. As right-multiplication by a fixed element is a bijection in a quasi-group, it suffices
to show that 𝐾 (𝑖) ∩ 𝐾 (𝑖)𝑧𝑖+1 = ∅. So, suppose that there exists some 𝑎 ∈ 𝐾 (𝑖) ∩ 𝐾 (𝑖)𝑧𝑖+1. Then
𝑎 = 𝑔𝑧𝑖+1 for some 𝑔 ∈ 𝐾 (𝑖). Hence, 𝑧𝑖+1 = 𝑔\𝑎, contradicting 𝑧𝑖+1 ∉ 𝐿(𝑖), since both 𝑎 and 𝑔 are
in 𝐾 (𝑖).

It now follows that |𝐾 (𝑖) | = 2𝑖 and, hence, for some 𝑡 ≤ ⌈log2( |𝐺 |)⌉ we have 𝐿(𝑡) = 𝐺. This
completes the proof of the first part of the lemma.

It remains to see that for every 𝑔 ∈ 𝐺 there is a straight-line program over 𝑋 of length
𝑂(log2 |𝐺 |). To see this, let 𝑐(𝑖) denote the straight-line cost for {𝑧0, 𝑧1, . . . , 𝑧𝑖} (1 ≤ 𝑖 ≤ 𝑡), which
is defined as the length of the shortest SLP generating {𝑧0, 𝑧1, . . . , 𝑧𝑖}. We have 𝑐(0) = 1 and, if
𝑧𝑖+1 ∈ 𝑋 𝐿(𝑖), then 𝑐(𝑖 + 1) ≤ 𝑐(𝑖) + 1. If 𝑧𝑖+1 ∈ {𝑔ℎ, 𝑔/ℎ, ℎ\𝑔 | 𝑔, ℎ ∈ 𝐿(𝑖)}, we can write each
of 𝑔 and ℎ as SLP over the set {𝑧0, 𝑧1, . . . , 𝑧𝑖} of length at most 2𝑖 + 1, yielding an SLP for 𝑧𝑖+1

over the same set of length at most 4𝑖 + 3. Together this yields 𝑐(𝑖 + 1) ≤ 𝑐(𝑖) + 4𝑖 + 3. Hence,
by induction, 𝑐(𝑡) ∈ 𝑂(log2 |𝐺 |). As 𝐿(𝑡) = 𝐺, we obtain for any element 𝑔 ∈ 𝐺 an SLP of length
𝑐(𝑡) + 2𝑡 + 1 ∈ 𝑂(log2 |𝐺 |). ■

REMARK 7.10. The proof of Lemma 7.9 shows that for any quasigroup 𝑄 and any generating
set 𝑆 ⊆ 𝑄, every element 𝑔 ∈ 𝑄 can be realized with a parse tree of depth𝑂(log2 |𝑄|). In contrast,
Wolf [59] establishes the existence of parse trees of depth 𝑂(log |𝑄|).

For proving Theorem 7.7 we follow essentially the ideas of [25] (though we avoid intro-
ducing the notion of Cayley circuits); however, we have to use a more refined approach by not
simply guessing an SLP but the complete information given in Lemma 7.9. Fleischer obtained a
quasiAC0 bound for Membership for groups by then showing that the Cayley circuits for this
problem can be simulated by a depth-2 quasiAC0 circuit. We will instead directly analyze the
straight-line programs using an ∃log2 𝑛DTISP(polylog(𝑛), log(𝑛)) (sequential) algorithm.

PROOF OF THEOREM 7.7 . To decide whether 𝑔 ∈ ⟨𝑋⟩ with 𝑋 = {𝑥1, . . . , 𝑥ℓ}, we guess a
sequence of elements 𝑧1, . . . , 𝑧𝑘 ∈ 𝐺 with 𝑘 ≤ log 𝑛 as in Lemma 7.9 together with the necessary
information to verify condition (2) in the lemma and whether 𝑔 ∈ 𝐿(𝑘). This information
consists of sequences ℓ𝑖 ∈ [ℓ] and 𝑒(𝜇)

𝑖, 𝑗
∈ {0, 1} for 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑖 − 1], 𝜇 ∈ [4] and, as witness

that 𝑔 ∈ 𝐿(𝑘), a sequence 𝑓 (𝜇)
𝑗

∈ {0, 1} for 𝑗 ∈ [𝑘], 𝜇 ∈ [2]. Note that all this information can be
represented using 𝑂(log2 𝑛) bits.

In the DTISP(polylog(𝑛), log(𝑛)) computation we compute for all 𝑖 the elements 𝑔 (𝜇)
𝑖

=

𝑃(𝑧0𝑧
𝑒
(𝜇)
𝑖,1

1 · · · 𝑧
𝑒
(𝜇)
𝑖,𝑖−1
𝑖−1 ) and verify that 𝑧𝑖 is either 𝑥ℓ𝑖 or can be written as 𝑎𝑏, 𝑎\𝑏 or 𝑎/𝑏 where 𝑎 =

𝑔
(1)
𝑖

\𝑔 (2)
𝑖

and 𝑏 = 𝑔
(3)
𝑖

\𝑔 (4)
𝑖

– thus, verifying the conditions of Lemma 7.9. Finally, with the same
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technique we verify that 𝑔 ∈ 𝐿(𝑘) by checking whether 𝑔 = 𝑃(𝑧0𝑧
𝑓
(1)

1
1 · · · 𝑧 𝑓

(1)
𝑘

𝑘
)\𝑃(𝑧0𝑧

𝑓
(2)

1
1 · · · 𝑧 𝑓

(2)
𝑘

𝑘
).
■

PROOF OF THEOREM 7.5 . (1) Let 𝐺 denote the input quasigroup (of order 𝑛). First, every
quasigroup has a generating set of size ≤ ⌈log 𝑛⌉ [43]. Therefore, we start by guessing a subset
𝑋 ⊆ 𝐺 of size at most ≤ ⌈log 𝑛⌉ (resp. the size bound given in the input). For this, we use
𝑂(log2 𝑛) existentially quantified non-deterministic bits (∃log2 𝑛). Furthermore, we also guess
some additional information, namely, the sequence 𝑧1, . . . , 𝑧𝑘 ∈ 𝐺 from Lemma 7.9 and, just as
in the proof of Theorem 7.7, the witnesses that this is, indeed, a cube-like sequence. As in the
proof of Theorem 7.7 this takes again 𝑂(log2 𝑛) existentially quantified bits.

In the next step, we verify whether 𝑋 actually generates 𝐺. This is done by checking for
all 𝑔 ∈ 𝐺 (universally quantifying 𝑂(log 𝑛) bits, ∀log 𝑛) whether 𝑔 ∈ ⟨𝑋⟩, which can be done in
∃log 𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆ quasiAC0 just as in Theorem 7.7. Here it is crucial to note that,
as we have already guessed the cube-like generating set in the outer existential block, it suffices
to guess 𝑂(log 𝑛) bits for the exponents. Finally, as in the proof of Theorem 7.7, we verify in
DTISP(polylog(𝑛), log(𝑛)) using the additional information guessed above that 𝑧1, . . . , 𝑧𝑘 ∈ 𝐺 is
indeed, a cube-like sequence. This concludes the proof of the bound (a) for the decision variant.

(2) To find a minimum-sized generating sequence, we can enumerate all possible generating
sets 𝑋 of size at most log 𝑛 in quasiAC0 ∩ DSPACE(log2 𝑛). If we want to compute the minimum
generating set, we first, have to find a generating set 𝑋 and then we have to check whether 𝑋
is actually of smallest possible size. To do this, in a last step, we use the decision variant from
above to check that there is no generating set of size at most |𝑋 | − 1 for 𝐺. ■

REMARK 7.1 1. While it is possible to directly reduce MGS to Membership in quasiAC0, we
obtain slightly better bounds by instead directly leveraging the Reachability Lemma 7.9. It is
also possible to quasiAC0-reduce Quasigroup Isomorphism to Membership. This formalizes the
intuition that, from the perspective of quasiAC0, membership testing is an essential subroutine
for isomorphism testing and MGS.

This might seem surprising, as in the setting of groups, Membership belongs to L, whileMGS
belongs to AC1(L) (Thm. 7.1), yet it is a longstanding open problem whether Group Isomorphism
is in P.

7.3 MGS for Magmas
In this section, we establish the following.

THEOREM 7.12. The decision variant of Minimum Generating Set for commutative magmas
(unital or not) is NP-complete under many-one AC0 reductions.

This NP-completeness result helps explain the use of Integer Linear Programming in
practical heuristic algorithms for the search version of this problem in magmas, e. g., [33].
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For the closely related problem they called Log Generators—given the multiplication
table of a binary function (=magma) of order 𝑛, decide whether it has a generating set of size
≤ ⌈log2 𝑛⌉—Papadimitriou and Yannakakis proved that Log Generators of Magmas is ∃log2 𝑛P-
complete under polynomial-time reductions [45, Thm. 7]. Our proof uses a generating set of size
roughly

√
𝑛, where 𝑛 is the order of the magma; this is analogous to the situation that Log-Clique

is in ∃log2 𝑛P, while finding cliques of size Θ(
√
𝑛) in an 𝑛-vertex graph is NP-complete.

PROOF . It is straightforward to see that the problem is in NP by simply guessing a suitable
generating set. To show NP-hardness we reduce 3SAT to Minimum Generating Set for commu-
tative magmas. Let 𝐹 =

∧𝑚
𝑗=1 𝐶 𝑗 with variables 𝑋1, . . . , 𝑋𝑛 and clauses 𝐶1, . . . , 𝐶𝑚 be an instance

of 3SAT. Our magma 𝑀 consists of the following elements:
for each variable 𝑋𝑖 , two elements 𝑋𝑖 , 𝑋 𝑖 ,
for each clause 𝐶 𝑗 an element 𝐶 𝑗 ,
for each 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚 an element 𝑆 𝑗,𝑘, and
a trash element 0.

We use 𝑆 as an abbreviation for 𝑆1,𝑚.
We define the multiplication as follows:

𝐶 𝑗𝑋 = 𝑆 𝑗, 𝑗 if the literal 𝑋 appears in 𝐶 𝑗
𝑆𝑋𝑖 = 𝑋 𝑖 ,

𝑆𝑋 𝑖 = 𝑋𝑖 ,

𝑆 𝑗,𝑘𝑆𝑘+1,ℓ = 𝑆 𝑗,ℓ.

Aside from multiplication being commutative (e. g., we also have 𝑋𝑖𝑆 = 𝑋 𝑖 , etc.), all other
products are defined as 0.

The idea is that the presence of 𝑆 𝑗,𝑘 in a word indicates that clauses 𝑗, 𝑗 +1, . . . , 𝑘 have been
satisfied. This interpretation aligns with the multiplication above: viz. 𝐶 𝑗𝑋 = 𝑆 𝑗, 𝑗 if 𝑋 satisfies
𝐶 𝑗 . If clauses 𝑗 through 𝑘 are satisfied (𝑆 𝑗,𝑘) and clauses 𝑘 + 1 through ℓ are satisfied (𝑆𝑘+1,ℓ),
then in fact clauses 𝑗 through ℓ are satisfied (𝑆 𝑗,𝑘𝑆𝑘+1,ℓ = 𝑆 𝑗,ℓ). We use “𝑆” for all of these as a
mnemonic for “satisfied” and also because 𝑆 = 𝑆1,𝑚 acts as a “swap” on literals.

Note that any generating set for 𝑀 must include all the 𝐶 𝑗 , since without them, there is no
way to generate them from any other elements. Similarly, any generating set must include, for
each 𝑖 = 1, . . . , 𝑛, at least one of 𝑋𝑖 or 𝑋 𝑖 , since again, without them, there is no way to generate
those from any other elements.

When 𝐹 is satisfiable, we claim that 𝑀 can be generated by precisely 𝑛 + 𝑚 elements.
Namely, include all 𝐶 𝑗 in the generating set. Fix a satisfying assignment 𝜑 to 𝐹. If 𝜑(𝑋𝑖) = 1,
then include 𝑋𝑖 in the generating set, and if 𝜑(𝑋𝑖) = 0, include 𝑋 𝑖 in the generating set. Since 𝜑
is a satisfying assignment, for each 𝑗, there is a literal 𝑋 in our generating set that appears in 𝐶 𝑗 ,
and from those two we can generate 𝐶 𝑗𝑋 = 𝑆 𝑗, 𝑗 . Next, 𝑆 𝑗, 𝑗𝑆 𝑗+1, 𝑗+1 = 𝑆 𝑗, 𝑗+1, and by induction we
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can generate all 𝑆 𝑗,𝑘. In particular, we can generate 𝑆 = 𝑆1,𝑚, and then using 𝑆 and our literal
generators, we can generate the remaining literals.

Conversely, suppose𝑀 is generated by 𝑛+𝑚 elements; we will show that 𝐹 is satisfiable. As
argued above, those elements must consist of {𝐶 𝑗 : 𝑗 ∈ [𝑚]} together with precisely one literal
corresponding to each variable. Since the final defining relation can only produce elements 𝑆 𝑗,ℓ
with 𝑗 strictly less than ℓ, the only way to generate 𝑆 𝑗, 𝑗 from our generating set is using the first
relation. Namely, at least one of the literals in our generating set must appear in 𝐶 𝑗 . But then,
reversing the construction of the previous paragraph, the literals in our generating set give a
satisfying assignment to 𝐹.

Identity elements. We may add a new element 𝑒, relations 𝑒𝑎 = 𝑎𝑒 = 𝑎 for all 𝑎, and
include 𝑒 as a generator. When this is done, the reduction queries whether the algebra is
generated by 𝑛 +𝑚 + 1 elements or more than that many, since the element 𝑒 must be contained
in every generating set. ■

As with most NP-complete decision versions of optimization problems, we expect that the
exact version—given a magma 𝑀 and an integer 𝑘, decide whether the minimum generating
set has size exactly 𝑘—is DP-complete, but we leave that as a (minor) open question.

8. Conclusion

The biggest open question about constant-depth complexity on algebras given by multiplication
tables is, in our opinion, still whether or not Group Isomorphism is in AC0 in the Cayley table
model. Our results make salient some more specific, and perhaps more approachable, open
questions that we now highlight.

First, sticking to the generator-enumerator technique, it would be interesting if the com-
plexity of any single part of our Theorem 6.1 could be improved, even if such an improvement
does not improve the complexity of the overall algorithm. Enumerating generators certainly
needs log2 𝑛 bits. Can one verify that a given list of elements is a cube generating sequence
better than ∀log 𝑛∃log 𝑛DTISP(polylog(𝑛), log(𝑛))? Can one verify that a given mapping 𝑔𝑖 ↦→ ℎ𝑖 of
generators induces an isomorphism with complexity lower than∀log 𝑛DTISP(polylog(𝑛), log(𝑛))?

More strongly, is GpI in ∃log2 𝑛AC0? We note that unlike the question of AC0, a positive
answer to this question does not entail resolving whether GpI is in P.

QUEST ION 8.1. Does MGS for groups belong to L?

QUEST ION 8.2. Does Membership for quasigroups belong to L?

The analogous result is known for groups, by reducing to the connectivity problem on Cay-
ley graphs. The best known bound for quasigroups is SAC1 due to Wagner [58]. Improvements
in this direction would immediately yield improvements in MGS for quasigroups. Furthermore,
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a constructive membership test would also yield improvements for isomorphism testing of
𝑂(1)-generated quasigroups. Note that isomorphism testing of 𝑂(1)-generated groups is known
to belong to L [53].

QUEST ION 8.3. What is the complexity of Minimum Generating Set for semigroups (in the
Cayley table model)? More specifically, is it NP-complete?
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