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ABSTRACT. We introduce a new, remarkably powerful tool to the toolbox of algebraic FPT
algorithms, determinantal sieving. Given evaluation access to a polynomial 𝑃(𝑥1, . . . , 𝑥𝑛) over a
field F of characteristic 2, defined on the set of variables 𝑋 = 𝑥1, . . . , 𝑥𝑛, and a linear matroid
𝑀 = (𝑋,I) over F of rank 𝑘, one can determine – with 𝑂∗(2𝑘) evaluations of 𝑃 (where 𝑂∗

suppresses factors polynomial in the input size) – whether there exists a multilinear term in the
monomial expansion of 𝑃 whose support forms a basis for 𝑀 . The known tools of multilinear
detection and constrained multilinear detection then correspond to the case where𝑀 is a uniform
matroid and the truncation of a disjoint union of uniform matroids, respectively. More generally,
let the odd support of a monomial 𝑚 be the set of variables which have odd degree in 𝑚. Using
𝑂∗(2𝑘) evaluations of 𝑃, we can sieve for those terms 𝑚 whose odd support spans 𝑀 . Applying
this framework to well-known efficiently computable polynomial families allows us to simplify,
generalize and improve on a range of algebraic FPT algorithms, such as:

Solving 𝑞-Matroid Intersection in time 𝑂∗(2(𝑞−2)𝑘) and 𝑞-Matroid Parity in time 𝑂∗(2𝑞𝑘),
improving on𝑂∗(4𝑞𝑘) for matroids represented over general fields (Brand and Pratt, ICALP
2021)
Long (𝑠, 𝑡)-Path in 𝑂∗(1.66𝑘) time, improving on 𝑂∗(2𝑘) (Fomin et al., SODA 2023), as
well as further results on paths and linkages in so-called frameworks, including Rank 𝑘
(𝑆, 𝑇 )-Linkage in 𝑂∗(2𝑘) time (improving on 𝑂∗(2|𝑆 |+𝑂(𝑘2 log(𝑘+|F|))) over general fields by
Fomin et al.)
Many instances of the Diverse X paradigm, finding a collection of 𝑟 solutions to a problem
with a minimum mutual distance of 𝑑 in time𝑂∗(2𝑟2𝑑/2), improving solutions for 𝑘-Distinct
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Branchings from time 2𝑂(𝑘 log 𝑘) to 𝑂∗(2𝑘) (Bang-Jensen et al., ESA 2021), and for Diverse
Perfect Matchings from 𝑂∗(22𝑂(𝑟𝑑 ) ) to 𝑂∗(2𝑟2𝑑/2) (Fomin et al., STACS 2021)

For several other problems, such as Set Cover, Steiner Tree, Graph Motif and Subgraph
Isomorphism, where the current algorithms are either believed to be optimal or are proving
exceedingly difficult to improve, we show matroid-based generalisations at no increased cost
to the running time. In the above, all matroids are assumed to be represented over fields of
characteristic 2 and all algorithms use polynomial space. Over general fields, we achieve similar
results when the polynomial is given as an arithmetic circuit. However, this comes at the cost of
exponential space, as the approach relies on computations within the exterior algebra. For a
class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of
running time. However, the odd support sieving result appears to be specific to working over
characteristic 2.

1. Introduction

Algebraic algorithms is an algorithmic paradigm with remarkably powerful, yet non-obvious
applications, especially for the design of exact (exponential-time) and parameterized algorithms.
To narrow the scope a bit, let us consider more specifically what may be called the enumerating
polynomial method. Consider a problem of looking for a particular substructure in an object;
for example, given a graph 𝐺, we may ask if 𝐺 has a perfect matching, or a path on at least 𝑘
vertices, etc. (We focus on the decision problem. Given the ability to solve the decision problem,
an explicit solution can be found with limited overhead; see Björklund et al. [24, 25] for deeper
investigations into this.) For surprisingly many applications, this problem can be reduced to
polynomial identity testing, by constructing a multivariate polynomial 𝑃(𝑋) = 𝑃(𝑥1, . . . , 𝑥𝑛)
(occasionally referred to as multivariate generating polynomial [27]) such that the monomials of
𝑃 enumerate all instances of the desired substructure, and then testing whether 𝑃(𝑋) contains
at least one monomial or not. The latter is the polynomial identity testing (PIT) problem, which
can be solved efficiently in randomized polynomial time via the Schwartz-Zippel (a.k.a. DeMillo-
Lipton-Schwartz-Zippel) Lemma, requiring only the ability to evaluate 𝑃(𝑋), possibly over an
extension field of the original field [97, 105]1. Therefore the challenge lies in constructing an
enumerating polynomial that can be efficiently evaluated. In particular, it is a priori non-obvious
why it would be easier to construct an enumerating polynomial for a problem than it is to
simply solve the problem directly.

In our experience, the ability to do so has two sources. First, there are well-known families
of polynomials that can be efficiently evaluated (despite having exponentially many monomial

1 We typically assume that we are working over a finite field, preferably of characteristic 2, and of a size small enoughthat the time for field operations does not overwhelm the running time. See Section 2.3 for a discussion on this.
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terms) and which can be usefully interpreted combinatorially as enumerating polynomials for
certain objects. For example, if 𝐺 is a bipartite graph with vertex partition𝑈 ∪𝑉 , the Edmonds
matrix of 𝐺 over some field F is a matrix 𝐴 ∈ F𝑈×𝑉 constructed by replacing the non-zero entries
of the bipartite adjacency matrix of 𝐺 by distinct new variables – i.e., for every edge 𝑒 ∈ 𝐸(𝐺)
we define a variable 𝑥𝑒, and we let 𝐴(𝑢, 𝑣) = 𝑥𝑢𝑣 if 𝑢𝑣 ∈ 𝐸(𝐺) and 𝐴(𝑢, 𝑣) = 0 otherwise. If
|𝑈 | = |𝑉 |, then 𝑃(𝑋) = det 𝐴 is a polynomial over the variables 𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸(𝐺)}, and can
easily be seen to be an enumerating polynomial for perfect matchings in 𝐺. (Note that we pay
no attention to the coefficients of the monomials, which are here either 1 or −1 depending on
the matching; in particular, we are not concerned with counting the objects.) For our second
example, let 𝐺 be a digraph, and let 𝐴 be its standard adjacency matrix, modified as above so
that non-zero entries 𝐴[𝑢, 𝑣] are replaced by 𝑥(𝑢,𝑣) for distinct new variables 𝑥(𝑢,𝑣) , (𝑢, 𝑣) ∈ 𝐸(𝐺).
Then 𝐴𝑘 [𝑢, 𝑣] enumerates 𝑘-edge walks from 𝑢 to 𝑣. Further examples include the Tutte matrix,
which provides a way to enumerate perfect matchings in non-bipartite graphs [99]; branching
walks (due to Nederlof [91]), which are a relaxation of subtrees of a graph similar to how walks
are a relaxation of paths; and any number of applications of basic linear algebra, especially in
the context of linear matroids (see below).

Second, there is a rich toolbox of transformations of polynomials, by which a given enu-
merating polynomial can be modified into a more relevant form. We are particularly concerned
with what can be called sieving operations: transformations applied to a given polynomial
𝑃(𝑋) such that every monomial 𝑚 in the monomial expansion of 𝑃 either survives (possibly
multiplied by some new factor) or is cancelled, depending on the properties of 𝑚. For example,
consider a graph 𝐺 with edges partitioned as 𝐸(𝐺) = 𝐸𝑅 ∪ 𝐸𝐵 into red and blue edges. Does
𝐺 have a perfect matching where precisely half the edges are red (or more generally, with
precisely 𝑤 red edges)? This is known as the Exact Matching problem, and is not known
to have a deterministic polynomial-time algorithm. However, there is a simple randomized
polynomial-time algorithm using the enumerating polynomial approach (cf. Mulmuley et al. in
1987 [88]). Assume for simplicity that 𝐺 is bipartite, and let 𝐴 be the Edmonds matrix of 𝐺 as
above (if 𝐺 is not bipartite, a similar construction works over the Tutte matrix of 𝐺). Introduce
a new variable 𝑧, and for every edge 𝑢𝑣 ∈ 𝐸𝑅 multiply 𝐴[𝑢, 𝑣] by 𝑧. Now, a perfect matching 𝑀
of 𝐺 with 𝑤 red edges will correspond to a monomial where the degree of 𝑧 is 𝑤, and we are
left asking for monomials in 𝑃(𝑋, 𝑧) = det 𝐴 where the 𝑧-component is 𝑧𝑤. Via the standard
method of interpolation, we can define a second polynomial 𝑃2(𝑋) which enumerates precisely
these monomials, and 𝑃2(𝑋) can be evaluated using 𝑂(𝑛) evaluations of 𝑃(𝑋) (i.e., 𝑃2 sieves for
monomials in 𝑃(𝑋, 𝑧) where 𝑧 has degree 𝑤). Thus, applying polynomial identity testing to 𝑃2

gives a randomized polynomial-time algorithm for Exact Matching.
For applications to exact and parameterized algorithms, more powerful transformations

are available. The most well known is multilinear detection: Given a polynomial 𝑃(𝑋), does the
monomial expansion of 𝑃 contain a monomial of degree 𝑘 which is multilinear, i.e., where every
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variable has degree at most one? Slightly more generally, to avoid undesired cancellations, we
consider the following. Let 𝑃(𝑋,𝑌 ) be a polynomial in two sets of variables 𝑋 and 𝑌 . Say that a
monomial𝑚 is 𝑘-multilinear in𝑌 if the total degree of𝑚 in𝑌 is 𝑘 (not counting any contributions
from 𝑋) and every variable in 𝑌 has degree at most one in 𝑚. Then the following is known.

LEMMA 1.1 (Multilinear detection [17, 20]). Let 𝑃(𝑋,𝑌 ) be a polynomial over a field of char-
acteristic 2. There is a polynomial 𝑄(𝑋,𝑌 ), that can be computed using 𝑂∗(2𝑘) evaluations of 𝑃,
such that 𝑄 is not identically zero if and only if 𝑃 contains a monomial that is 𝑘-multilinear in 𝑌 .

For example, consider again the case where 𝐴 is the modified adjacency matrix of a graph
𝐺, and scale every entry 𝐴[𝑢, 𝑣] by a new variable 𝑦𝑣. Then the terms of 𝐴𝑘 [𝑢, 𝑣] that are
multilinear in 𝑌 = { 𝑦𝑣 | 𝑣 ∈ 𝑉 } enumerate 𝑘-edge paths from 𝑢 to 𝑣, i.e., multilinear detection
and a PIT algorithm solve the 𝑘-Path problem. This idea was pioneered by Koutis [71] and
improved by Williams and Koutis [74, 102], using a different approach based on group algebra;
the above polynomial sieving result is by Björklund et al. [17, 20]. Multilinear detection and
other algebraic sieving has had many applications, including Björklund’s celebrated algorithm
for finding undirected Hamiltonian cycles in time𝑂∗(1.66𝑛) [17] and an algorithm solving 𝑘-Path
in time 𝑂∗(1.66𝑘) [20]. See Koutis and Williams [72] for an overview; other related work is
surveyed in Section 1.1.3.

Some variations are also known. One arguably simpler variant is when |𝑌 | = 𝑘 and we
wish to sieve for monomials in 𝑃(𝑋,𝑌 ) where every variable of 𝑌 occurs (regardless of their
degree). This can be handled over any field in 2𝑘 evaluations of 𝑃 using inclusion-exclusion
(and this is a “clean” sieve, which does not change the coefficient of any monomial). This has
been used, e.g., in parameterized algorithms for List Colouring [59] and Rural Postman [61].
Another variant, which is a generalisation of multilinear detection, is constrained multilinear
detection. Let 𝑃(𝑋,𝑌 ) be a polynomial. Let 𝐶 be a set of colours, and for every 𝑞 ∈ 𝐶 let 𝑑𝑞 ∈ N be
the capacity of colour 𝑞. Let a colouring 𝑐 : 𝑌 → 𝐶 be given. A monomial 𝑚 is properly coloured
if, for every 𝑞 ∈ 𝐶, the total degree of all variables in 𝑚 with colour 𝑞 is at most 𝑑𝑞. Björklund et
al. [23] show the following (again, we allow an additional set of variables 𝑋 to avoid undesired
cancellations).

LEMMA 1.2 (Constrained multilinear detection [23]). Let 𝑃(𝑋,𝑌 ) be a polynomial over a field
of characteristic 2. Let a colouring 𝑐 : 𝑌 → 𝐶 and a list of colour capacities (𝑑𝑞)𝑞∈𝐶 be given.
There is a polynomial 𝑄(𝑋,𝑌 ), that can be computed using 𝑂∗(2𝑘) evaluations of 𝑃, such that 𝑄 is
not identically zero if and only if 𝑃 contains a monomial that is 𝑘-multilinear in 𝑌 and properly
coloured.

Using this method, Björklund et al. [23] solve Graph Motif and associated optimization
variants in time 𝑂∗(2𝑘), which is optimal under the Set Cover Conjecture (SeCoCo) [23, 37].
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Although many other variations of algebraically styled FPT algorithms are known [19, 28,

27, 30, 41, 53], the above methods (degree-extraction and multilinear detection) are remarkable
in terms of their power and simplicity in their applications. In this paper, we show an extension
of this toolbox.

1.1 Determinantal sieving

We introduce determinantal sieving, a powerful new sieving operation that drastically extends
the power of the tools of multilinear detection and constrained multilinear detection. Let
𝑃(𝑥1, . . . , 𝑥𝑛) be a polynomial over a field F of characteristic 2, and let 𝑀 ∈ F𝑘×𝑛 be a matrix
(e.g., a linear matroid on the ground set 𝑋 = {𝑥1, . . . , 𝑥𝑛}). For a monomial 𝑚 in 𝑃, let supp(𝑚)
be the set of variables 𝑥𝑖 of non-zero degree in 𝑚. We show a sieving method that, using 𝑂∗(2𝑘)
evaluations of 𝑃, sieves for those monomials 𝑚 in 𝑃 that are multilinear of degree 𝑘 and such
that the matrix 𝑀 [·, supp(𝑚)] indexed by the support is non-singular. More precisely, we show
the following.

THEOREM 1.3 (Basis sieving). Let 𝑃(𝑋) be a polynomial of degree 𝑑 over a field F of character-
istic 2, and let 𝐴 ∈ F𝑘×𝑋 be a matrix. There is a randomized algorithm, using𝑂(𝑑2𝑘) evaluations of
𝑃 and using 𝑂∗(2𝑘) arithmetic operations, to test if there is a multilinear term 𝑚 of degree 𝑘 in the
monomial expansion of 𝑃(𝑋) such that the matrix 𝐴[·, supp(𝑚)] is non-singular. The algorithm
uses polynomial space, needs only evaluation access to 𝑃, has no false positives and produces
false negatives with probability at most 2𝑘/|F|.

By applying Theorem 1.3 with a Vandermonde matrix 𝐴 (see Section 2.1), we can recover
the multilinear detection result stated in Lemma 1.1. The proof is remarkably simple, consisting
of merely inspecting the result of an application of inclusion-exclusion sieving; see Section 3.
While similar results are known, the above theorem is new in its generality and time and space
efficiency, which implies that determinantal sieving can be applied as a plug-in replacement
for multilinear detection at no increased cost (see related work and Section 3.1.3). In all our
applications, the failure rate can be made arbitrarily small with negligible overhead by moving
to an extension field of F.

We give a useful variant, where we sieve for a basis among the variables of odd degree
in each monomial 𝑚 – the odd support of 𝑚, denoted by osupp(𝑚). This has applications on
its own; see the Diverse X and paths and linkages examples below. For further variants, see
Section 3.

THEOREM 1.4 (Odd sieving). Let 𝑃(𝑋) be a polynomial of degree 𝑑 over a field F of characteris-
tic 2, and let 𝐴 ∈ F𝑘×𝑋 be a matrix. There is a randomized algorithm, using 𝑂(𝑑2𝑘) evaluations of
𝑃 and using 𝑂∗(2𝑘) arithmetic operations, to test if there is a term 𝑚 in the monomial expansion
of 𝑃(𝑋) such that the matrix 𝐴[·, osupp(𝑚)] has full row rank. The algorithm uses polynomial
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space, needs only evaluation access to 𝑃, has no false positives and produces false negatives with
probability at most (𝑘 + 𝑑)/|F|.

1.1.1 Over general fields

The aforementioned sieving algorithms only work over fields of characteristic 2. By utilizing
the exterior algebra, we can effectively sieve over arbitrary fields. We will follow the work of
Brand et al. [28], who exhibited the power of the exterior algebra in parameterized algorithms.
Assume that a polynomial 𝑃(𝑋) over F is represented by an arithmetic circuit 𝐶. Following
the idea of Brand et al. [28], we attempt to evaluate 𝐶 over the exterior algebra Λ(F𝑘). The
exterior algebra is an algebra over F of dimension 2𝑘, where the addition is commutative but
the multiplication (called wedge product) is not (see Section 3.2 for the definition). Thus, naively
evaluating over 𝐶 will not preserve the coefficients of 𝑃(𝑋). We present two ways to circumvent
this issue.

The first one concerns the restriction on the circuit. We consider strongly monotone circuits,
which are basically circuit without any “cancellation” whatsoever. An arithmetic circuit 𝐶 is
skew if at least one input of every product gate is an input gate. We show that the result of
evaluating a strongly monotone circuit 𝐶 over Λ(F𝑘) turns out non-zero only if 𝑃(𝑋) contains a
monomial 𝑚 such that 𝐴[·, supp(𝑚)] is non-singular.

THEOREM 1.5. Let 𝑃(𝑋) be a polynomial of degree 𝑑 over a field F, represented by a strongly
monotone arithmetic circuit 𝐶, and let 𝐴 ∈ F𝑘×𝑋 be a matrix. There is a randomized algorithm
in 𝑂∗(2𝜔𝑘/2) arithmetic operations (where 𝜔 < 2.373 is the matrix multiplication exponent) or
𝑂∗(2𝑘) arithmetic operations if 𝐶 is skew that tests if there is a multilinear term𝑚 in the monomial
expansion of 𝑃(𝑋) such that the matrix 𝐴[·, supp(𝑚)] is non-singular. The algorithm uses 𝑂∗(2𝑘)
space, has no false positives and produces false negatives with probability at most 2𝑘/|F|.

We also provide a way to sieve over arbitrary arithmetic circuits inspired by the lift mapping
of Brand et al. [28], which maps every element in Λ(F𝑘) to Λ(F2𝑘), an algebra of dimension
4𝑘. Although the lift mapping costs extra time and space usage, it brings commutativity to the
algebra, allowing us to evaluate the circuit over the exterior algebra.

THEOREM 1.6. Let 𝑃(𝑋) be a polynomial of degree 𝑑 over a field F, represented by a skew
arithmetic circuit 𝐶, and let 𝐴 ∈ F𝑘×𝑋 be a matrix. There is a randomized algorithm in 𝑂∗(2𝜔𝑘)
arithmetic operations or𝑂∗(4𝑘) arithmetic operations if 𝐶 is skew that tests if there is a multilinear
term𝑚 in the monomial expansion of 𝑃(𝑋) such that the matrix 𝐴[·, supp(𝑚)] is non-singular. The
algorithm uses 𝑂∗(4𝑘) space, has no false positives and produces false negatives with probability
at most 2𝑘/|F|.
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1.1.2 Linear matroids

For applications of determinantal sieving, we view the labelling matrix 𝑀 as representing a
linear matroid over the variable set. A matroid is a pair 𝑀 = (𝑉,I) where 𝑉 is the ground set
and I ⊆ 2𝑉 a set of independent sets in 𝑀 , subject to the following axioms: (1) ∅ ∈ I; (2) If 𝐵 ∈ I
and 𝐴 ⊂ 𝐵 then 𝐴 ∈ I; and (3) For any 𝐴, 𝐵 ∈ I such that |𝐴| < |𝐵| there exists an element
𝑥 ∈ 𝐵 \ 𝐴 such that 𝐴 + 𝑥 ∈ I. A linear matroid is a matroid 𝑀 represented by a matrix 𝐴 with
column set 𝑉 , such that a set 𝑆 ⊆ 𝑉 is independent in 𝑀 if and only if 𝐴[·, 𝑆] is non-singular.

A more complete overview of matroid theory concepts is given in Section 2, but let us
review two particularly relevant matroid constructions. A uniform matroid𝑈𝑛,𝑘 is the matroid
𝑀 = (𝑉,I) where I =

( 𝑉
≤𝑘

)
(for |𝑉 | = 𝑛), i.e., a set is independent if and only if it has cardinality

at most 𝑘. Letting 𝑀 be a uniform matroid in determinantal sieving corresponds to traditional
multilinear detection. More generally, a partition matroid 𝑀 = (𝑉,I) is defined by a partition
𝑉 = 𝑉1 ∪ . . . ∪𝑉𝑑 of the ground set and a list of capacities (𝑐𝑖)𝑑𝑖=1; note that we allow 𝑐𝑖 > 1 [92].
A set 𝑆 ⊆ 𝑉 is independent if and only if |𝑆 ∩𝑉𝑖 | ≤ 𝑐𝑖 for every 𝑖 ∈ [𝑑]. Constrained multilinear
detection corresponds roughly to the case of 𝑀 being a partition matroid (or more precisely,
the truncation of a partition matroid to rank 𝑘). Both of these classes can be represented over
fields of characteristic 2.

There also exists a range of transformations that can be applied to matroids, with preserved
representation; see Section 2.1. Here, we only note the operation of truncation: Given a matroid
𝑀 = (𝑉,I), represented over a field F (either a finite field or the rationals), and an integer 𝑘, we
can in polynomial time truncate 𝑀 to have rank 𝑘 while preserving the representation, at the
cost of moving to an extension field [77, 83]. Thereby, whenever we are looking for a solution of
rank 𝑘, we may assume that every matroid 𝑀 = (𝑉,I) in our input is represented by a full-rank
matrix of dimension 𝑘 × |𝑉 |.

We find it particularly interesting that the fastest known method for multilinear detection,
which sieves over a random bijective labelling [17, 20], can be seen as a direct application of
Theorem 1.3 using a randomized representation of a uniform matroid; see Section 3.1.3. In this
sense, the results of this paper come without any extra computational cost – they rely on the
same sieving steps that existing algorithms already perform, only computed on a more carefully
chosen set of evaluation points.

1.1.3 Comparison to related work

Let us now compare the determinantal sieving method to other approaches from the literature.
While the text so far (excepting the material on the exterior algebra) has been written to be
digestible for a reader of general background, this comparison is inevitably more technical. We
also note that the algebras underpinning the exterior algebra, apolar algebra and (over fields
of characteristic 2) group algebra approaches are isomorphic [26, 28], hence either of these
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methods is capable of recovering some variant of the determinantal sieving result from the
right perspective, but we focus on what is present in the literature.

The earliest work to identify multilinear detection as a useful primitive for FPT algorithms
is Koutis [69]. Koutis and Williams [71, 73, 102] refined the approach, giving a randomized
𝑂∗(2𝑘)-time, polynomial-space algorithm for multilinear detection using a group algebra. The
method implicitly solves determinantal sieving for monotone arithmetic circuits (i.e., circuits
over Z+) using matroids over GF(2), but independence over larger base fields was not consid-
ered [73]. Koutis [70] also proposed the task of constrained multilinear detection and provided
an 𝑂∗(2.54𝑘)-time algorithm. By comparison, the polynomial sieving methods solve multilinear
detection [17, 20] and constrained multilinear detection [23] in time 𝑂∗(2𝑘) and polynomial
space for arbitrary polynomials over fields of characteristic 2, but the more general task of
sieving for matroid bases was (again) not considered.

Fomin et al. [54, Section 5.1] use the representative sets lemma to solve what is effectively
determinantal sieving over arbitrary fields in deterministic time 𝑂∗(7.77𝑘) and exponential
space, again for monotone arithmetic circuits. They also consider a weighted optimization
version.

Finally, more recent research has employed algebraic approaches of exterior algebra [28]
and apolar algebra [30] for derandomizations and generalisations of the above. These methods
intrinsically solve the determinantal sieving problem, but pay exponential overhead in both
running time and space usage due to the complexity of the underlying algebraic operations
(as seen in the contrast between Theorem 1.3 and Theorem 1.6). For instance, Brand et al. [28]
give a randomized 𝑂∗(4.32𝑘)-time algorithm for multilinear detection for arbitrary polynomials
represented by an arithmetic circuit.

In summary, there are several approaches in the literature which can provide some form
of a determinantal sieving procedure, but the results are all restricted either in the structure of
the arithmetic circuit encoding the polynomial (such as only applying to monotone circuits)
or in requiring significant overhead in time and space usage. By contrast, Theorem 1.3 has
the advantage of simultaneously (1) providing the (presumably best possible) running time of
𝑂∗(2𝑘) and polynomial space; (2) applying to any polynomial over a field of characteristic 2,
regardless of encoding2; and (3) being simple to work with and apply, requiring no algebraic
techniques deeper than basic linear algebra and matroid theory. We argue that this qualitatively
and significantly increases the applicability of the result, as hopefully evidenced from the
applications we provide.

2 While working only over fields of characteristic 2 is of course a restriction, in practice we have not found it to bean obstacle (excepting issues of derandomization or counting algorithms). In particular, we are not aware of any“combinatorially important” matroid that is representable but not representable over fields of characteristic 2.
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1.2 Applications

Given Theorems 1.3–1.6, a large collection of applications can be achieved by combining a
suitable enumerating polynomial for a problem with a suitable matroid labelling. Before we
undertake a survey, let us more carefully define our terms. Let 𝑉 be a ground set and F ⊆ 2𝑉

a set system over 𝑉 . An enumerating polynomial for F is a polynomial 𝑃(𝑋,𝑌 ) over a set of
variables 𝑋 ∪ 𝑌 , where 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 }, such that the following holds: (i) 𝑃(𝑋,𝑌 ) is multilinear
in 𝑋 and (ii) for every 𝑆 ⊆ 𝑉 , there is a monomial 𝑚 in 𝑃(𝑋,𝑌 ) whose support in 𝑋 is exactly
𝑆 if and only if 𝑆 ∈ F . Similarly, to capture applications of Theorem 1.4 (odd sieving), define
a parity-enumerating polynomial for F as a polynomial 𝑃(𝑋,𝑌 ) where for every 𝑆 ⊆ 𝑉 , there
exists a monomial 𝑚 whose odd support in 𝑋 is 𝑆 if and only if 𝑆 ∈ F . The definition can be
generalized further – for example, if we want to refer to an “enumerating polynomial for walks”
we could treat walks as multisets of vertices or edges, and adjust the definition accordingly.
However, the above suffices for almost all applications.

We next survey results covered by our approach. Our results cover multiple areas, and
include both significant speedups of previous results (see Table 1) and generalisations where a
previous running time for a problem can be reproduced in a broader setting; e.g., generalized to
so-called frameworks [50, 79, 81]. Furthermore, in general, both the proofs and the algorithms
are short and simple, given existing families of enumerating polynomials and linear matroids.

1.2.1 Matroid Covering, Packing and Intersection Problems

We begin with a straightforward application to the Set Cover and Set Packing problems. Let 𝑉
be a ground set and E ⊆ 2𝑉 a collection of sets. Let 𝑀 = (𝑉,I) be a matroid of rank 𝑘, and let 𝑡
be an integer. In Rank 𝑘 Set Cover we ask: is there a subcollection 𝑆 ⊆ E with |𝑆 | ≤ 𝑡 such that⋃
𝑆 =

⋃
𝐸∈𝑆 𝐸 spans 𝑀? In Rank 𝑘 Set Packing we ask if there is a collection 𝑆 ⊆ E of pairwise

disjoint sets with |𝑆 | = 𝑡 such that
⋃
𝑆 is a basis of 𝑀 . (The variant of Rank 𝑘 Set Packing where⋃

𝑆 is only required to be independent in 𝑀 , not a basis, reduces to the above via truncation
of 𝑀 .)

THEOREM 1.7. Rank 𝑘 Set Cover and Rank 𝑘 Set Packing for matroids represented over a field
of characteristic 2 can be solved in randomized time 𝑂∗(2𝑘) and polynomial space, and in time
𝑂∗(2𝜔𝑘/2) and 𝑂∗(2𝑘) space over general fields.

To achieve this result, we use a simple subset-enumerating polynomial. Assume an input
(𝑉, E, 𝑀, 𝑡, 𝑘) is given, and define a set of variables 𝑋𝑣,𝐸, 𝑣 ∈ 𝑉 , 𝐸 ∈ E, as well as a set of
fingerprinting variables 𝑌 = { 𝑦𝑖,𝐸 | 𝑖 ∈ [𝑡], 𝐸 ∈ E} to prevent cancellations. Define

𝑃(𝑋,𝑌 ) =
𝑡∏
𝑖=1

∑︁
𝐸∈E

𝑦𝑖,𝐸
∏
𝑣∈𝐸

𝑥𝑣,𝐸 =
∑︁

𝑓 : [𝑡]→E

©­«
∏
𝑖∈[𝑡]

𝑦𝑖, 𝑓 (𝑖)
∏
𝑣∈𝐸𝑖

𝑥𝑣,𝐸𝑖
ª®¬ .
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We consider the polynomial in 𝑋 obtained from 𝑃(𝑋,𝑌 ) by substituting each variable 𝑦𝑖,𝐸 with
a random element from F. By the Schwartz-Zippel lemma, if there exists a family 𝑆 ⊆ E of 𝑡 sets
with𝑈 =

⋃
𝑆, then with high probability the resulting polynomial contains a monomial of the

form
∏

𝑣∈𝑈 𝑥𝑣,𝜄(𝑣) , where 𝜄 : 𝑈 → 𝑆 is a mapping that assigns to every 𝑣 ∈ 𝑈 a set 𝜄(𝑣) ∈ 𝑆. Hence
to solve Rank 𝑘 Set Packing we associate each variable 𝑥𝑣,𝐸 with the vector representing 𝑣 in 𝑀 ,
and invoke Theorem 1.3 or Theorem 1.5 depending on the representation of 𝑀 . For Rank 𝑘 Set
Cover we simply evaluate 𝑃 at a point 𝑥𝑣,𝐸 ← 1 + 𝑥𝑣,𝐸 for every 𝑥𝑣,𝐸 ∈ 𝑋 for the same result.

Note that Theorem 1.7 is tight for matroids represented over a field of characteristic 2
under Set Cover Conjecture (SeCoCo). SeCoCo asserts that there is no algorithm that solves Set
Cover in time 𝑂∗(2(1−𝜀)𝑛) for any 𝜀 > 0 [37], and since Set Cover corresponds to the simple case
where each element 𝑣𝑖 ∈ 𝑉 is associated with the 𝑛-dimensional unit vector 𝑒𝑖 , tightness follows.

Theorem 1.7 improves on state of the art even for very simple settings. InMatroid 𝑞-Parity,
the input is a matroid 𝑀 = (𝑉,I), a partition of 𝑉 into sets of size 𝑞, and an integer 𝑘, and the
question is whether there is a packing of 𝑘 sets that is independent in 𝑀 . This problem can be
solved in polynomial time if 𝑞 = 2 and 𝑀 is linear, but is hard even for linear matroids if 𝑞 ≥ 3.
The fastest known algorithm for Matroid 𝑞-Parity by Brand and Pratt (for matroids over R)
runs in deterministic 𝑂∗(4𝑞𝑘) time with exponential space [30], improving on a previous result
of Fomin et al. [53] with running time 𝑂∗(2𝜔𝑞𝑘) over general fields. We get the following.

COROLLARY 1.8. Matroid 𝑞-Parity for a linear matroid over a field of characteristic 2 can be
solved in randomized time 𝑂∗(2𝑞𝑘) and polynomial space.

For a related problem, we get a greater speedup. In 𝑞-Matroid Intersection, the input is 𝑞
matroids 𝑀1, . . . , 𝑀𝑞 of rank 𝑘, and the question is if they have a common basis. Again, this is
tractable if 𝑞 = 2, but NP-hard if 𝑞 ≥ 3 even for linear matroids. Assume that the matroids are
represented by matrices 𝐴1, . . . , 𝐴𝑞 over a common field F and a common ground set 𝑉 , where
w.l.o.g. every matrix 𝐴𝑖 has 𝑘 rows and has rank 𝑘 over F. We can use the Cauchy-Binet formula
to sieve for solutions more efficiently. Let 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } be a set of variables and let 𝐴′1 be
the result of scaling every column 𝑣 of 𝐴1 by 𝑥𝑣. By the Cauchy-Binet formula,

𝑃(𝑋) := det(𝐴′1𝐴𝑇2 ) =
∑︁
𝐵∈(𝑉𝑘)

det 𝐴1[·, 𝐵] det 𝐴2[·, 𝐵]
∏
𝑣∈𝐵

𝑥𝑣.

Thus 𝑃(𝑋) enumerates monomials
∏

𝑣∈𝐵 𝑥𝑣 for common bases 𝐵 of 𝐴1 and 𝐴2, and we only have
to sieve for terms that in addition are bases of the remaining 𝑞 − 2 matroids. For 𝑞 = 3, this
is immediate; for 𝑞 > 3, we can replace matroids 𝑀3, . . . , 𝑀𝑞 by their direct sum, and each
variable 𝑥𝑣 by a product

∏𝑞
𝑖=3 𝑥𝑣,𝑖 over variables 𝑥𝑣,𝑖 representing the copies of 𝑥𝑣 in the matroid

𝑀𝑖 . We get the following.

THEOREM 1.9. 𝑞-Matroid Intersection for linear matroids represented over a common field F
of characteristic 2 can be solved in randomized time 𝑂∗(2(𝑞−2)𝑘) and polynomial space.
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The previous best result (again, over general fields) is Brand and Pratt [30], with running

time 𝑂∗(4𝑞𝑘). In particular, for 𝑞 = 3 this improves on the state of the art from 𝑂∗(43𝑘) to
𝑂∗(2𝑘). Theorem 1.9 matches the fastest algorithm by Björklund et al. [20] for the much simpler
𝑞-Dimensional Matching problem.

As a particular special case, Theorem 1.9 with 𝑞 = 3 implies a polynomial-space, 𝑂∗(2𝑛)-
time algorithm for Directed Hamiltonian Path, which despite intense efforts at improvement
remains the state of the art for the general case [14, 22, 39].

1.2.2 Fair and Diverse Solutions

Fairness and diversity are important concepts in many areas of research, including artificial
intelligence and optimization, and have also seen increased focus in theoretical computer
science. We discuss two related problems: finding a balanced-fair solution and a diverse
collection of solutions.

The problem of finding a balanced-fair solution arises in many contexts [6, 15, 34, 35],
including Matroid Intersection, 𝑘-matching, and 𝑘-path. We define a general problem Bal-
anced Solution: Given a set 𝐸 with coloured elements, a collection F of subsets of 𝐸, the goal is
to find a set 𝑆 ∈ F of size 𝑘 such that the number of elements of 𝑆 with each colour is within
certain bounds. We show that this problem can be solved in 𝑂∗(2𝑘) time using basis sieving:

THEOREM 1.10. Balanced Solution can be solved in 𝑂∗(2𝑘) time if there is an enumerating
polynomial for F that can be evaluated in polynomial time over a field of characteristic 2.

The problem of finding a diverse collection of solutions is another important optimization
problem. Here, the goal is to find not just a single optimal solution, but a collection of solutions
that are diverse in some sense. We measure diversity in terms of Hamming distance, i.e.,
diverse solutions should have a large Hamming distance between them. This problem has
received significant attention in the parameterized complexity literature [12, 13, 49, 51, 63].
We discuss a general method based on the odd sieving technique that can be used to find
a diverse collection of solutions for a wide range of optimization problems. We define the
Diverse Collection problem as follows. The input is a set 𝐸, collections of subsets F1, . . . , F𝑘,
and 𝑑𝑖, 𝑗 ∈ N for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, and the goal is to find subsets 𝑆𝑖 ∈ F𝑖 for each 𝑖 ∈ [𝑘] such
that |𝑆𝑖Δ𝑆 𝑗 | = | (𝑆𝑖 \ 𝑆 𝑗) ∪ (𝑆 𝑗 \ 𝑆𝑖) | ≥ 𝑑𝑖, 𝑗 for every 𝑖, 𝑗. Let 𝐷 =

∑
𝑖< 𝑗∈[𝑘] 𝑑𝑖, 𝑗 . We use the odd

sieving algorithm to obtain an 𝑂∗(2𝐷)-time algorithm. The key here is to use a distinct set of
variables for every pair 𝑖, 𝑗. Thereby, those elements in the intersection of two solutions, having
contribution two, can be excluded in the odd sieving.

THEOREM 1.1 1. Diverse Collection can be solved in 𝑂∗(2𝐷) time if all collections F𝑖 admit
enumerating polynomials that can be evaluated in polynomial time over fields of characteristic 2.
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This leads to significant speed-ups compared to existing algorithms, one for Diverse

Matchings and another for 𝑑-Distinct Branchings. The Diverse Matchings problem ask
whether a given graph contains 𝑘 perfect matchings 𝑀1, . . . , 𝑀𝑘 whose pairwise Hamming
distances are all at least 𝑑. Fomin et al. [49] give an algorithm with running time 22𝑂(𝑘𝑑 ) . We
obtain a faster algorithm running in time 𝑂∗(2𝑑(𝑘2)). In 𝑑-Distinct Branchings, we are given a
directed graph𝐺, two vertices 𝑠, 𝑡, and an integer 𝑑, and we search for an in-branching rooted at
𝑠 and out-branching rooted 𝑡 whose Hamming distance is at least 𝑑. This problem can be solved
in 𝑂∗(2𝑑) time. In particular, this answers the question of Bang-Jensen et al. [9] whether there
exists an 𝑂∗(2𝑂(𝑑))-time algorithm. Previously known algorithms run in time 𝑂∗(2𝑑2 log2 𝑑) [60]
and 𝑂∗(𝑑𝑂(𝑑)) [9].

1.2.3 Undirected paths and linkages

As noted above, among the earliest and most powerful applications of algebraic FPT algorithms
are path and cycle problems. In fact, all the current fastest FPT algorithms for 𝑘-Path – ran-
domized time 𝑂∗(1.66𝑘) for undirected graphs [20] and 𝑂∗(2𝑘) for digraphs [102]; deterministic
𝑂∗(2.55𝑘) time for both variants [98] – ultimately have algebraic underpinnings.

Another highly surprising result was for the 𝑇 -Cycle problem (we use the name from
Fomin et al. [50] to distinguish more clearly from 𝑘-Cycle). Here, the input is an undirected
graph 𝐺 and a set of terminals 𝑇 ⊆ 𝑉 (𝐺), and the question is whether 𝐺 contains a simple cycle
𝐶 that passes through all vertices in 𝑇 . This problem was known to be FPT parameterized by
𝑘 = |𝑇 |, using graph structural methods, but the running time was impractical [67]. Björklund,
Husfeldt and Taslaman [21] showed an 𝑂∗(2𝑘)-time algorithm, based on cancellations in the
evaluation of a large polynomial. Wahlström [101] showed that the problem even has a poly-
nomial compression in 𝑘, based on a reinterpretation of the previous algorithm in terms of
the determinant of a modified Tutte matrix (similar to Björklund’s celebrated 𝑂∗(1.66𝑛)-time
algorithm for Hamiltonicity [17]). It is this latter determinant approach that we build upon in
the algorithms for path and linkage problems in this paper.

Let 𝐺 be an undirected graph and 𝑆,𝑇 ⊆ 𝑉 (𝐺) be disjoint vertex sets. An (𝑆,𝑇 )-linkage in
𝐺 is a collection of |𝑆 | = |𝑇 | pairwise vertex-disjoint paths from 𝑆 to 𝑇 – i.e., a vertex-disjoint
(𝑆,𝑇 )-flow assuming that vertices of 𝑆 ∪ 𝑇 have capacity 1. Let P be an (𝑆, 𝑇 )-linkage for some
(𝐺, 𝑆, 𝑇 ). A padding of P is a collection of oriented cycles that covers 𝐺 − 𝑉 (P), where every
cycle has length at most 2 (i.e., every cycle is either a 2-cycle 𝑢𝑣𝑢 over some edge 𝑢𝑣 ∈ 𝐸(𝐺) or a
loop 𝑣 on some vertex 𝑣 ∈ 𝑉 (𝐺)). A padded (𝑆, 𝑇 )-linkage is an (𝑆,𝑇 )-linkage P together with a
padding of P. We show that there is an enumerating polynomial for padded (𝑆,𝑇 )-linkages.

LEMMA 1.12. Let𝐺 be an undirected graph, possibly with loops, and let 𝑆, 𝑇 ⊆ 𝑉 (𝐺) be disjoint. In
polynomial time, we can construct a matrix 𝐴with entries from the variable set𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸(𝐺)}
such that the polynomial 𝑃(𝑋) = det 𝐴, when evaluated over a field of characteristic 2, enumerates
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padded (𝑆, 𝑇 )-linkages of 𝐺. In other words, 𝑃(𝑋) is a parity-enumerating polynomial for (𝑆,𝑇 )-
linkages: it contains a monomial whose odd support is exactly 𝐸(𝐿) if and only if an (𝑆, 𝑇 )-linkage
𝐿 exists.

This result is interesting even when |𝑆 | = |𝑇 | = 1, in which case 𝑃(𝑋) enumerates padded
(𝑠, 𝑡)-paths. We find this remarkable, as normally, a polynomial that is efficiently computable
would only be expected to enumerate walks, as opposed to paths or cycles. It is not too powerful,
since the padding terms from 2-cycles prevent us from using it to solve, e.g., Hamiltonian Path
in polynomial time. But it is highly useful for FPT purposes, since Theorem 1.4 allows us to
sieve for terms that span a linear matroid 𝑀 while ignoring the padding-part of each padded
linkage. Thus we get the following.

THEOREM 1.13. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and let 𝑀 = (𝑉,I) be a matroid
represented over a field of characteristic 2. Let 𝑆,𝑇 ⊆ 𝑉 (𝐺) be disjoint vertex sets and 𝑘 ∈ N. In
randomized time 𝑂∗(2𝑘) and polynomial space we can find a minimum-length (𝑆, 𝑇 )-linkage in 𝐺
that has rank at least 𝑘 in 𝑀 (or determine that none exist).

This result improves and generalizes a number of results. Fomin et al. [50] gave randomized
algorithms in time 𝑂∗(2𝑘+𝑝) for finding a minimum-length colourful (𝑆,𝑇 )-linkage, and in time
𝑂∗(2𝑝+𝑂(𝑘2 log(𝑞+𝑘))) for finding a minimum-length (𝑆, 𝑇 )-linkage of rank at least 𝑘 in 𝑀 , where
𝑀 is represented by a matrix over a finite field of order 𝑞 and 𝑝 = |𝑆 | = |𝑇 |.3 Theorem 1.13
directly generalizes the first result, removing the dependency on 𝑝, and improves the running
time for the second in the case that 𝑀 can be represented over a field of characteristic 2. It also
significantly simplifies the correctness proof, which in [50] runs to over 20 pages.

As they observe, even the problem Colourful (𝑠, 𝑡)-Path captures a number of problems,
including 𝑇 -Cycle, Long (𝑠, 𝑡)-Path and Long Cycle (i.e., finding an (𝑠, 𝑡)-path, respectively
cycle, of length at least 𝑘). Finding an (𝑠, 𝑡)-path of rank at least 𝑘 also generalizes the variant
List 𝑇 -Cycle, previously shown to be FPT by Panolan, Saurabh and Zehavi [93].

We also show an improvement to Long (𝑠, 𝑡)-Path and Long Cycle. Fomin et al. [50] ask
as an open problem whether these can be solved in time 𝑂∗((2 − 𝜀)𝑛) for some 𝜀 > 0, given that
𝑘-Path and 𝑘-Cycle have 𝑂∗(1.66𝑘)-time algorithms due to Björklund et al. [20]. We confirm
this.

THEOREM 1.14. Long (𝑠, 𝑡)-Path and Long Cycle can be solved in randomized time 𝑂∗(1.66𝑘)
and polynomial space.

3 The formulation of Fomin et al. [50] is slightly different, but equivalent under simple transformations.
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1.2.4 Subgraph problems

Another class of problems where algebraic methods have been important is for the general
question of finding subgraphs of a graph 𝐺 with a given property. We give two results in this
domain.

First, let 𝐺 = (𝑉, 𝐸) be a graph and 𝑀 a matroid over 𝑉 . Let Rank 𝑘 Connected Subgraph
be the following general problem: Given integers 𝑘 and 𝑡, is there a connected subgraph 𝐻 of 𝐺
on at most 𝑡 vertices such that 𝑉 (𝐻) has rank at least 𝑘 in 𝑀?

THEOREM 1.15. Rank 𝑘 Connected Subgraph for a linear matroid 𝑀 can be solved in random-
ized time 𝑂∗(2𝑘) and polynomial space if 𝑀 is represented over a field of characteristic 2, and in
randomized time 𝑂∗(2𝜔𝑘) and space 𝑂∗(4𝑘) otherwise.

This result is an application of the powerful notion of branching walks, introduced by
Nederlof [91], which underlie several FPT algorithms. We rely on Björklund et al. [23] who
gave an explicit algorithm for evaluating the branching walk polynomial. As special cases
of Theorem 1.15 with various matroids 𝑀 we recover the 𝑂∗(2𝑘)-time algorithms for Steiner
Tree [91] and Group Steiner Tree [86] on 𝑘 terminals, and for Graph Motif and Closest Graph
Motif [23].

More generally, consider Subgraph Isomorphism, the problem of finding a subgraph
of 𝐺 isomorphic to a given graph 𝐻 . This is W[1]-hard in general (cf. 𝑘-clique), but when
restricted to a class of graphs G, it is FPT parameterized by |𝑉 (𝐻) |, when every graph in G has
bounded treewidth. In fact, up to plausible conjectures, the dependency on the treewidth 𝑤 for
known algorithms is optimal for every 𝑤 ≥ 3 [31]. Like previous algorithms, we employ the
homomorphism polynomial (see, e.g., Brand [27]), and show the following.

THEOREM 1.16. Let 𝐺 and 𝐻 be undirected graphs, 𝑘 = |𝑉 (𝐻) | and 𝑛 = |𝑉 (𝐺) |, and let 𝑀
be a linear matroid over 𝑉 (𝐺). Let a tree decomposition of 𝐻 of width 𝑤 be given. We can find
a subgraph 𝐻′ of 𝐺 isomorphic to 𝐻 such that 𝑉 (𝐻′) is independent in 𝑀 in randomized time
𝑘𝑂(1) · 2𝑘 · 𝑛𝑤+1 and polynomial space if 𝑀 is represented over a field of characteristic 2, and in
time 𝑘𝑂(1) · 2𝜔𝑘 · 𝑛𝑤+1 and space 𝑂∗(4𝑘) otherwise.

1.2.5 Speeding up dynamic programming

The representative sets lemma [79, 83] is a statement from matroid theory that has seen a
multitude of applications in parameterized complexity, both in kernelization [75] and in FPT
algorithms [53, 83]. The latter class of application typically consists of a sped-up dynamic
programming algorithm; e.g., a dynamic programming algorithm over a state space that could
potentially contain 𝑛𝑂(𝑘) different partial solutions, but where the representative sets lemma is
used to prove that it suffices to maintain a set of 2𝑂(𝑘) representative solutions. This includes



15 / 75 Determinantal Sieving
algorithms for paths and cycles [53] as well as many more complex questions. We refer to this
as a rep-set DP.

For many of these applications, faster randomized algorithms are known, even in poly-
nomial space, and the main contribution of the representative sets lemma becomes to enable
an almost competitive deterministic FPT algorithm [53, 98]. However, for other applications
this is not so clear, and there are many applications of the representative sets lemma where no
faster method is known. With the more powerful algebraic sieving methods of this paper, we
can revisit some of these applications and show a speed-up of the algorithm, while at the same
time reducing the space usage to polynomial space. We give three examples.

In Minimum Equivalent Graph (MEG), the input is a digraph 𝐺, and the task is to find a
subgraph𝐺′ of𝐺with a minimum number of edges such that𝐺 and𝐺′ have the same reachability
relation. Fomin et al. [53] give the first single-exponential algorithm for MEG. They show that
MEG ultimately reduces down to finding an in-branching 𝐵1 and an out-branching 𝐵2 with a
common root sharing at least ℓ edges for ℓ as large as possible, which they solve via rep-set DP
in time 𝑂∗(24𝜔𝑛). We reduce this question to an application of 4-Matroid Intersection and get
the following.

THEOREM 1.17. Minimum Equivalent Graph can be solved in polynomial space and randomized
time 𝑂∗(4𝑛).

In (Undirected/Directed) Eulerian Edge Deletion, the input is a graph 𝐺 (undirected
respectively directed), and the question is whether we can remove at most 𝑘 edges from 𝐺 so
that the resulting graph is Eulerian (i.e., has a closed walk that visits every edge precisely once).
Cai and Yang [32] surveyed related problems, but left the above questions open. Cygan et al. [40]
gave the first FPT algorithms, with running times of𝑂∗(2𝑂(𝑘 log 𝑘)), and Goyal et al. [58] improved
this to 𝑂∗(2(2+𝜔)𝑘) using a rep-set DP approach over the co-graphic matroid. We combine the
co-graphic matroid approach with suitable enumerating polynomials to get the following.

THEOREM 1.18. Undirected Eulerian Edge Deletion and Directed Eulerian Edge Deletion
can be solved in 𝑂∗(2𝑘) randomized time and polynomial space.

Finally, we consider a more unusual application. Consider a generic problem where we
are searching for a subset 𝑆 with property Π of a ground set 𝑉 . In the conflict-free version,
the input additionally contains a graph 𝐻 = (𝑉, 𝐸) and 𝑆 is required to be an independent
set in 𝐻 . Naturally, this is hard in general (even disregarding the property Π), but multiple
authors have considered restricted variants. In particular, if 𝐻 is chordal, then Agrawal et
al. [2] show that Conflict-Free Matching, where we search for a matching in a graph 𝐺 and
the conflict graph is defined on the edge set of 𝐺, can be solved in 𝑂∗(2(2𝜔+2)𝑘) time, and Jacob
et al. [65] show that Conflict-Free Set Cover can be solved in 𝑂∗(3𝑛) time. We note that the
independent set polynomial (in our terminology, an enumerating polynomial for independent
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Problem Existing New

𝑞-Matroid Intersection 𝑂∗(4𝑞𝑘)†[30] 𝑂∗(2(𝑞−2)𝑘)§

𝑂∗(2(𝑞−2+(𝑞 mod 2))𝑘)†

𝑞-Matroid Parity 𝑂∗(4𝑞𝑘)†[30] 𝑂∗(2𝑞𝑘)†, 𝑂∗(2𝑞𝑘)§

Long (𝑠, 𝑡)-Path 𝑂∗(2𝑘) [50] 𝑂∗(1.66𝑘)
Colourful (𝑆, 𝑇 )-Linkage 𝑂∗(2𝑘+𝑝) [50] 𝑂∗(2𝑘)
Rank 𝑘 (𝑆,𝑇 )-Linkage 𝑂∗(2𝑝+𝑂(𝑘2 log(𝑘+|F|))) [50] 𝑂∗(2𝑘)§

Diverse Perfect Matchings 𝑂∗(22𝑂(𝐷) )†[49] 𝑂∗(2𝐷)
𝑘-Distinct Branchings 𝑂∗(𝑘𝑂(𝑘))†[9] 𝑂∗(2𝑘)

Minimum Equivalent Graph 𝑂∗(24𝜔𝑛)†[53] 𝑂∗(22𝑛)
(Un)directed Eulerian Deletion 𝑂∗(2(2+𝜔)𝑘)†[58] 𝑂∗(2𝑘)
Chordal-Conflict-free Matching 𝑂∗(2(2+2𝜔)𝑘)†[2] 𝑂∗(22𝑘)

Table 1. A list of speed-ups over previous results. Results marked with † use exponential space, andthose with § only work over a field of characteristic 2. For the linkage problems, 𝑝 is the order of thelinkage.
sets in a graph) can be efficiently evaluated if 𝐻 is chordal [1], allowing us to speed up both
results. See Section 8.3 for details.

Subsequent work. After the conference version of this article appeared, Akmal and Koana [4]
introduced partition sieving, based on the odd sieving technique. As an application, they ob-
tained improved polynomial-space exact algorithms for Edge Coloring and List Edge Coloring.

Structure of the paper. In Section 2 we cover preliminaries, and in Section 3 we prove the
determinantal sieving statements of Theorems 1.3–1.6. In Sections 4–8 we cover the applications
mentioned in Sections 1.2.1–1.2.5, respectively. We conclude in Section 9 with discussion and
open problems.

2. Preliminaries

We use standard terminology from parameterized complexity, see, e.g., the book of Cygan et
al. [38]. For background on graph theory, see Diestel [46] and Bang-Jensen and Gutin [8].

Let 𝑃(𝑋) be a polynomial over a set of variables 𝑋 = {𝑥1, · · · , 𝑥𝑛}. A monomial is a product
𝑚 = 𝑥𝑚1

1 · · · 𝑥
𝑚𝑛
𝑛 for non-negative integers 𝑚1, · · · , 𝑚𝑛. A monomial 𝑚 is called multilinear if

𝑚𝑖 ≤ 1 for each 𝑖 ∈ [𝑛]. We say that its support is {𝑖 ∈ [𝑛] | 𝑚𝑖 > 0} and that its odd support is
{𝑖 ∈ [𝑛] | 𝑚𝑖 ≡ 1 mod 2} denoted by supp(𝑚) and osupp(𝑚), respectively. We sometimes use
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the notation 𝑋𝑚 for the monomial 𝑚 = 𝑥𝑚1

1 𝑥𝑚2
2 · · · 𝑥

𝑚𝑛
𝑛 , to clarify that the monomial 𝑚 does not

include a coefficient. For a set of variables 𝑋′ = {𝑥′1, . . . , 𝑥′𝑛}we will also write (𝑋′)𝑚 =
∏𝑛

𝑖=1(𝑥′𝑖 )
𝑚𝑖 .

For a monomial 𝑚 in the monomial expansion of 𝑃(𝑋), we let 𝑃(𝑚) denote the coefficient of 𝑚
in 𝑃, i.e., 𝑃(𝑋) = ∑

𝑚 𝑃(𝑚)𝑋𝑚 where 𝑚 ranges over all monomials in 𝑃(𝑋). The total degree of
𝑃(𝑋) is max𝑚

∑
𝑖∈[𝑛] 𝑚𝑖 . A polynomial of total degree 𝑑 is called homogeneous if every monomial

has degree 𝑑. The Schwartz-Zippel lemma [97, 105] states that a polynomial 𝑃(𝑋) of total degree
at most 𝑑 over a field F becomes non-zero with probability at least 1 − 𝑑/|F| when evaluated at
uniformly chosen elements from F, unless 𝑃(𝑋) is identically zero.

Lemmas 2.1 and 2.3 are the foundation of our sieving algorithms.

LEMMA 2.1 (Interpolation). Let 𝑃(𝑧) be a univariate polynomial of degree 𝑛 − 1 over a field F.
Suppose that 𝑃(𝑧𝑖) = 𝑝𝑖 for distinct 𝑧1, . . . , 𝑧𝑛 ∈ F. By the Lagrange interpolation,

𝑃(𝑧) =
∑︁
𝑖∈[𝑛]

𝑝𝑖
∏

𝑗∈[𝑛]\{𝑖}

𝑧 − 𝑧 𝑗
𝑧𝑖 − 𝑧 𝑗

.

Thus, given 𝑛 evaluations 𝑝1, . . . , 𝑝𝑛 of 𝑃(𝑧), the coefficient of 𝑧𝑡 in 𝑃(𝑧) for every 𝑡 ∈ [𝑛] can be
computed in polynomial time.

LEMMA 2.2. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of variables and let 𝑃(𝑋) be a polynomial of degree 𝑑
over a field F. Let 𝑃𝑘 (𝑋) be the homogeneous part of 𝑃(𝑋) of degree 𝑘, i.e., for every monomial
𝑚, its coefficient in 𝑃𝑘 is 𝑃𝑘 (𝑚) = 𝑃(𝑚) if 𝑚 has degree 𝑘, and 𝑃𝑘 (𝑚) = 0 otherwise. Given
evaluation access to 𝑃, we can simulate evaluation access of 𝑃𝑘 using 𝑑 + 1 evaluations of 𝑃 and
𝑂̃(𝑑) arithmetic operations.

PROOF . Given 𝑎1, . . . , 𝑎𝑛 ∈ F, we compute 𝑃𝑘 (𝑎1, . . . , 𝑎𝑛) as follows. Let 𝑓𝑋 (𝑧) := 𝑃(𝑎1𝑧, . . . , 𝑎𝑛𝑧)
for a new variable 𝑧. Note that 𝑃𝑘 (𝑎1, . . . , 𝑎𝑛) equals the coefficient of 𝑧𝑘 in 𝑓 (𝑧), which can be
computed in 𝑂̃(𝑑) arithmetic operations using fast interpolation (see e.g., [100]). Alternatively,
for a simpler version that is sufficient for our purposes, choose distinct 𝑐1, . . . , 𝑐𝑑+1 ∈ F, and
for each 𝑖 ∈ [𝑑 + 1], compute 𝑓 (𝑧) = 𝑃(𝑐𝑖𝑎1, . . . , 𝑐𝑖𝑎𝑛) using evaluation access to 𝑃. Using these
values, we can interpolate 𝑓 (𝑧) in 𝑂(𝑑2) arithmetic operations by Lemma 2.1. ■

LEMMA 2.3 (Inclusion-exclusion [101]). Let 𝑃(𝑌 ) be a polynomial over a set of variables
𝑌 = { 𝑦1, . . . , 𝑦𝑛} and a field of characteristic 2. For 𝑇 ⊆ [𝑛], let 𝑄 be a polynomial identical to 𝑃
except that the coefficients of monomials not divisible by

∏
𝑖∈𝑇 𝑦𝑖 are zero. Then, 𝑄 =

∑
𝐼⊆𝑇 𝑃−𝐼 ,

where 𝑃−𝐼 ( 𝑦1, . . . , 𝑦𝑛) = 𝑃( 𝑦′1, . . . , 𝑦′𝑛) for 𝑦′
𝑖
= 𝑦𝑖 if 𝑖 ∉ 𝐼 and 𝑦′

𝑖
= 0 otherwise.

Let 𝐴 be a matrix over a field F. For a set of rows 𝐼 and columns 𝐽 , we denote by 𝐴[𝐼, 𝐽]
the submatrix containing rows 𝐼 and columns 𝐽 . If 𝐼 contains all rows (𝐽 contains all columns),
then we use the shorthand 𝐴[·, 𝐽] (𝐴[𝐼, ·], respectively).
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For a 𝑘 × 𝑛-matrix 𝐴1 and an 𝑛 × 𝑘-matrix 𝐴2, the Cauchy-Binet formula states that

det(𝐴1𝐴2) =
∑︁

𝑆∈( [𝑛]𝑘 )
det(𝐴1[·, 𝑆]) det(𝐴2[𝑆, ·]).

A square matrix 𝐴 whose diagonal entries are all zero is called skew-symmetric if 𝐴 = −𝐴𝑇 .
Suppose that the rows and columns of 𝐴 are indexed by 𝑉 . The Pfaffian of 𝐴 is defined by

Pf 𝐴 =
∑︁
𝑀

𝜎𝑀
∏
𝑢𝑣∈𝑀

𝐴[𝑢, 𝑣],

where 𝑀 is ranges over all perfect matchings of the complete graph (𝑉,
(𝑉

2
)
), and 𝜎𝑀 = ±1 is

the sign of 𝑀 , whose definition is not relevant in this work (see e.g., [89]). It is well-known that
det 𝐴 = (Pf 𝐴)2.

2.1 Linear matroids

We review the essentials of matroid theory, with a focus on linear matroids. For more back-
ground, see Oxley [92] and Marx [83]. A matroid is a pair 𝑀 = (𝑉,I) where 𝑉 is the ground set
and I ⊆ 2𝑉 a set of independent sets in 𝑀 , subject to the following axioms:

1. ∅ ∈ I
2. If 𝐵 ∈ I and 𝐴 ⊂ 𝐵 then 𝐴 ∈ I
3. For any 𝐴, 𝐵 ∈ I such that |𝐴| < |𝐵| there exists an element 𝑥 ∈ 𝐵\𝐴 such that (𝐴+𝑥) ∈ I.

A basis of a matroid 𝑀 is a maximal independent set. The rank 𝑟(𝑀) of 𝑀 is the cardinality of a
basis of 𝑀 . A linear matroid is a matroid 𝑀 represented by a matrix 𝐴 with column set 𝑉 , such
that a set 𝑆 ⊆ 𝑉 is independent in 𝑀 if and only if the set of columns of 𝐴 indexed by 𝑆 is linearly
independent. We review some useful matroid constructions, expanded from the introduction.
All the matroids below can be represented over fields of characteristic 2, although in some cases
the only known methods for efficiently constructing a representation are randomized.

A uniform matroid𝑈𝑛,𝑘 is the matroid 𝑀 = (𝑉,I) where I =
( 𝑉
≤𝑘

)
(for |𝑉 | = 𝑛), i.e., a set is

independent if and only if it has cardinality at most 𝑘. It is well-known that a Vandermonde
matrix 𝐴 ∈ F𝑘×𝑛 defined by 𝐴[𝑖, 𝑗] = 𝑎𝑖−1

𝑗
, where 𝑎 𝑗 ’s are all distinct, gives a representation

of a uniform matroid.
A partition matroid 𝑀 = (𝑉,I) is defined by a partition 𝑉 = 𝑉1 ∪ . . . ∪ 𝑉𝑑 of the ground
set and a list of capacities (𝑐𝑖)𝑑𝑖=1. A set 𝑆 ⊆ 𝑉 is independent if and only if |𝑆 ∩𝑉𝑖 | ≤ 𝑐𝑖 for
every 𝑖 ∈ [𝑑].
Given an undirected graph 𝐺 = (𝑉, 𝐸), the graphic matroid of 𝐺 is a matroid 𝑀 = (𝐸,I)
where a set 𝐹 ⊆ 𝐸 is independent if and only if it is acyclic. The cographic matroid of
𝐺 is a matroid 𝑀 = (𝐸,I) where a set 𝐹 ⊆ 𝐸 is independent if and only if its deletion
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preserves connectivity (i.e., 𝐺 and 𝐺 − 𝐹 have the same connected components). Graphic
and co-graphic matroids are representable over every field [92].
Let 𝐺 = (𝑈 ∪ 𝑉, 𝐸) be a bipartite graph. The transversal matroid of 𝐺 is the matroid
𝑀 = (𝑉,I) where a set 𝑆 ⊆ 𝑉 is independent if and only if it is matchable in 𝐺.
Let 𝐺 = (𝑉, 𝐸) be a digraph and 𝑇 ⊆ 𝑉 a set of terminals. A set 𝑆 ⊆ 𝑉 is linked to 𝑇 if there
is a collection of |𝑆 | pairwise vertex-disjoint paths from 𝑆 to 𝑇 . The set of all sets 𝑆 ⊆ 𝑉 that
are linked to 𝑇 form a matroid called a gammoid.

If 𝑀 = (𝑉,I) is a matroid, the dual matroid of 𝑀 is the matroid 𝑀∗ = (𝑉,I′) where a set
𝑆 ⊆ 𝑉 is independent in 𝑀∗ if and only if 𝑉 \ 𝑆 contains a basis of 𝑀 . Given a representation
for 𝑀 , a representation for 𝑀∗ can be constructed in deterministic polynomial time over the
same field (see [92]). Given two matroids 𝑀1(𝑉1,I1) and 𝑀2(𝑉2,I2) on disjoint sets 𝑉1 and 𝑉2,
the disjoint union of 𝑀1 and 𝑀2 is the matroid 𝑀 = 𝑀1 ∨ 𝑀2 = (𝑉,I) where 𝑉 = 𝑉1 ∪ 𝑉2 and
a set 𝑆 ⊆ 𝑉 is independent if and only if 𝑆 ∩ 𝑉1 ∈ I1 and 𝑆 ∩ 𝑉2 ∈ I2. More generally, for any
two matroids 𝑀1 = (𝑉1,I1) and 𝑀2 = (𝑉2,I2) the matroid union 𝑀 = 𝑀1 ∨ 𝑀2 is the matroid
𝑀 = (𝑉,I) where 𝑉 = 𝑉1 ∪ 𝑉2 and I = {𝐼1 ∪ 𝐼2 | 𝐼1 ∈ I1, 𝐼2 ∈ I2}. Given representations of
𝑀1 and 𝑀2, a representation for 𝑀1 ∨𝑀2 can be constructed in randomized polynomial time,
possibly by moving to an extension field (see [92]). Note that moving to an extension field
preserves the characteristic. The extension of a matroid 𝑀 = (𝑉,I) by rank 𝑑 is the matroid
𝑀 ∨𝑀′ where 𝑀′ is the uniform matroid of rank 𝑑 over 𝑉 .

For a matroid 𝑀 = (𝑉,I), the 𝑘-truncation of 𝑀 is the matroid 𝑀′ = (𝑉,I′) where for
𝑆 ⊆ 𝑉 , 𝑆 ∈ I′ if and only if 𝑆 ∈ I and |𝑆 | ≤ 𝑘. Given a representation of 𝑀 over a field F,
which is either a finite field or the rationals, a representation of the 𝑘-truncation of 𝑀 over an
extension field of F can be constructed in polynomial time, at the cost of moving to an extension
field of F [77, 83].

Given two matroids 𝑀1 = (𝑉,I) and 𝑀2 = (𝑉,I), the matroid intersection problem is to
find a common basis 𝐵 of 𝑀1 and 𝑀2. Matroid intersection can be solved in polynomial time,
with a variety of methods [96]. In this paper, with a focus on linear matroids, we note that the
Cauchy-Binet formula yields an enumerating polynomial for matroid intersection, and thereby
a randomized efficient algorithm. More generally, given a matroid 𝑀 = (𝑉,I) and a partition 𝐸
of𝑉 into pairs, the matroid matching (or matroid parity) problem is to find a basis 𝐵 of 𝑀 which
is a union of |𝐵|/2 pairs. Matroid matching is infeasible in general, but efficiently solvable over
linear matroids [80, 96].
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2.2 Enumerating polynomials

Let 𝑉 be a ground set and F ⊆ 2𝑉 be a set family over 𝑉 . An enumerating polynomial over a set
of variables 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } and auxiliary variables 𝑌 over a field F is

𝑃(𝑋,𝑌 ) =
∑︁
𝑆∈F

𝑄𝑆 (𝑌 )
∏
𝑣∈𝑆

𝑥𝑣,

where 𝑄𝑆 (𝑌 ) for 𝑆 ∈ F is a polynomial over F that is not identically zero. We give useful
examples of enumerating polynomials that can be efficiently evaluated below.

𝒌-walks. For a directed graph𝐺 = (𝑉, 𝐸), two vertices 𝑠, 𝑡 ∈ 𝑉 , and an integer 𝑘, an enumerating
polynomial for 𝑘-walks from 𝑠 to 𝑡 is defined as follows. Let 𝑋 = {𝑥𝑠,0} ∪ {𝑥𝑣,𝑖 | 𝑣 ∈ 𝑉, 𝑖 ∈
[𝑘]} ∪ {𝑥𝑒,𝑖 | 𝑒 ∈ 𝐸, 𝑖 ∈ [𝑘]} be variables. For every 𝐴𝑖 define a 𝑉 ×𝑉 -matrix 𝐴𝑖 with

𝐴𝑖 [𝑢, 𝑣] =

𝑥𝑣,𝑖𝑥𝑢𝑣,𝑖 if 𝑢𝑣 ∈ 𝐸

0 otherwise.

Then, the polynomial

𝑃(𝑋) = 𝑥𝑠,0 · 𝑒𝑇𝑠 𝐴1𝐴2 · · · 𝐴𝑘𝑒𝑡,

where 𝑒𝑠 and 𝑒𝑡 are the unit vectors with 𝑒𝑠 [𝑠] = 1 and 𝑒𝑡 [𝑡] = 1, enumerates all (labelled)
𝑘-walks from 𝑠 to 𝑡. The polynomial can be defined for undirected graphs analogously.

Matroid Intersections. For linear matroids 𝑀1 = (𝑉,I1), 𝑀2 = (𝑉,I2) with the ground set 𝑉
represented by 𝐴1, 𝐴2 ∈ F𝑘×𝑉 , let 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } be variables for 𝑉 . Then, by the Cauchy-Binet
formula, the polynomial

𝑃(𝑋) = det 𝐴1𝐴𝑋𝐴
𝑇
2 =

∑︁
𝐵∈(𝑉𝑘)

det 𝐴1[·, 𝐵] det 𝐴2[·, 𝐵]
∏
𝑣∈𝐵

𝑥𝑣,

where 𝐴𝑋 is a diagonal matrix of dimension𝑉×𝑉 with 𝐴𝑋 [𝑣, 𝑣] = 𝑥𝑣 for every 𝑣 ∈ 𝑉 , enumerates
all matroid intersection terms. Particularly, we obtain an effective evaluation of an enumerating
polynomial for branchings in directed graphs. Recall that an out-branching (in-branching) is
a rooted tree with every arc oriented away from (towards) the root. This can be expressed
as the intersection of a graphic matroid and a partition matroid, where the partition matroid
ensures that every vertex has in-degree (out-degree) at most one. Hence this is a special case of
matroid intersection and an enumerating polynomial for out-branchings and in-branchings
can be efficiently evaluated. Alternatively, one can use the directed matrix-tree theorem (see
[22, 57]).
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Perfect matchings. For an undirected graph 𝐺 = (𝑉, 𝐸) (with a fixed ordering < on 𝑉 ), the
Tutte matrix is defined by

𝐴[𝑢, 𝑣] =


𝑥𝑢𝑣 if 𝑢𝑣 ∈ 𝐸 and 𝑢 < 𝑣

−𝑥𝑢𝑣 if 𝑢𝑣 ∈ 𝐸 and 𝑣 < 𝑢

0 otherwise.

Then, the Pfaffian Pf 𝐴 enumerates all perfect matchings, which can be efficiently evaluated
using an elimination procedure. For an integer 𝑘, all 𝑘-matchings (matchings with 𝑘 edges) also
can be enumerated: Introduce 𝑛 − 2𝑘 vertices that are adjacent to all vertices in 𝐺; the Pfaffian
of the resulting graph enumerates all 𝑘-matchings.

2.3 Conventions – fields and representations

We frequently make the assumption that operations are performed over a sufficiently large
field (typically of characteristic 2); e.g., that a given polynomial 𝑃(𝑋) can be evaluated over a
sufficiently large field and that a linear matroid 𝑀 is represented over a sufficiently large field.
The precise notion of “sufficiently large” depends somewhat on context, but typically we can
assume with no significant impact on complexity that we are working over a finite field F with
|F| = 2𝑂(𝑛) elements, where 𝑛 = |𝑋 | is the size of the variable set of 𝑃 (respectively, the ground
set of the matroid).

To briefly justify this assumption, we make some quick notes. For a finite field F, members
of F can be represented in 𝑂(log |F|) bits, and arithmetic operations over F can be performed
in 𝑂̃(log |F|) time, where 𝑂̃ hides factor of 𝑂(log log |F|). Thus, in a context where our running
times are only given up to a polynomial factor, such an assumption on |F| does not have a major
impact. Furthermore, if 𝑃(𝑋) is already represented over a field F, then we generally assume
that we can choose to carry out the evaluation over an extension field of F instead, if needed.
We refer to von zur Gathen and Gerhard [100] for background on these algorithms.

The field size is relevant in our algorithms in two ways. First, given 𝑃(𝑋) and 𝑀 , our
algorithms reduce down to testing whether a second, implicitly defined polynomial 𝑄(𝑋) is
non-zero, which is done via the Schwartz-Zippel lemma. For this step, it suffices that |F| ≫ 𝑑

where 𝑑 is the degree of 𝑃(𝑋), where typically 𝑑 = 𝑛𝑂(1) . Second, we require that the matroid
𝑀 can be represented over F. This gives a bound on |F| that depends on the matroid, but for all
the matroids considered in this paper, a linear representation can be efficiently produced (with
high probability) over any field with |F| = 2Ω(𝑛) elements. See [92, 83].

In a setting where this overhead is unacceptable, we have two options. The main option is
to assume that the matroid 𝑀 is representable over a smaller field than above, e.g., a field of
size 2(𝑘+log 𝑛)𝑂(1) so that the time per field operation is restricted to (𝑘 + log 𝑛)𝑂(1) . Among the
matroids listed in Section 2.1, this covers everything except gammoids. In particular, graphic
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and co-graphic matroids can be represented over any field; uniform matroids and partition
matroids can be represented over any field of size at least 𝑛; and a transversal matroid of rank
𝑘 can be represented over a field of size 2Ω(𝑘 log 𝑛) by the use of the Schwartz-Zippel lemma. It
also covers the use of matroid union (disjoint or not) and (randomized) truncation to rank 𝑘𝑂(1) .

Another option might be to follow Koana and Wahlström [68] and consider approximate
representations – randomized representations of matroids 𝑀′ over a smaller field size, whose
independent sets are a subset of the independent sets of 𝑀 and where every independent set of
𝑀 has some probability 1 − 𝜀 of being independent in 𝑀′. We refrain from pursuing this in any
detail, in order not to complicate our results needlessly.

In all the above, the randomness is one-sided – the errors can consist of false negatives
but not false positives.

3. Determinantal sieving

3.1 Over a field of characteristic 2

We show that, with only evaluation access to a polynomial (over a field of characteristic 2), we
can decide whether its expansion contains a monomial whose support spans a linear matroid
(equivalently, contains a basis as a subset). We will give two sieving algorithms, one that sieves
for terms that are also independent (basis sieving) and the other that sieves for terms whose
odd support sets are spanning (odd sieving). One could derive basis sieving from odd sieving
using polynomial interpolation (Lemma 2.2). We will, however, give a direct proof for basis
sieving as well because basis sieving itself has applications. Typically, basis sieving is useful
when we are searching for a solution of size exactly 𝑘 (regardless of whether the objective is
maximisation or minimisation). Odd sieving is particularly powerful when we want to exclude
variables in the support set with even (typically 2) contributions. See Sections 5.2 and 6 for such
applications.

We begin with a support statement. This is the central observation for our sieving algo-
rithms.

LEMMA 3.1. Let 𝐴 ∈ F𝑘×𝑘 be a matrix over a field F of characteristic 2 and define the polynomial

𝑃( 𝑦1, . . . , 𝑦𝑘) =
𝑘∏
𝑖=1

𝑘∑︁
𝑗=1

𝑦 𝑗𝐴[ 𝑗, 𝑖] .

Then the coefficient of
∏𝑘

𝑖=1 𝑦𝑖 in 𝑃 is det 𝐴.

PROOF . Expanding the product into monomials, we get precisely∑︁
𝑓 : [𝑘]→[𝑘]

𝑘∏
𝑖=1

𝑦 𝑓 (𝑖)𝐴[ 𝑓 (𝑖), 𝑖]
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where 𝑓 ranges over all mappings [𝑘] → [𝑘]. Considering only those terms of the sum which
contain all variables 𝑦𝑖 , 𝑖 ∈ [𝑘] we find that the coefficient of

∏𝑘
𝑖=1 𝑦𝑖 is precisely a sum over

all transversals of 𝐴, i.e., det 𝐴, in particular, since F is of characteristic 2 the sign term of the
determinant disappears. ■

If performed over fields of characteristic other than 2, then instead of det 𝐴 the coefficient
is the permanent of 𝐴 (while over fields of characteristic 2, the permanent and the determinant
agree). To cover applications for fields of other characteristics, we instead use the exterior
algebra; see Section 3.2. For the below, we focus on applications over fields of characteristic 2.

3.1.1 Sieving for bases

The following is the most immediate application of Lemma 3.1 (proving Theorem 1.3 from the
introduction). We also add an observation about tighter running time when the polynomial is
already homogeneous.

THEOREM 3.2 (Basis sieving). Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of variables and let 𝑃(𝑋) be a
polynomial of degree 𝑑 over a field F of characteristic 2. Let 𝐴 ∈ F𝑘×𝑛 be a matrix representing a
matroid 𝑀 = (𝑋,I). In time 𝑂∗(2𝑘) and polynomial space, using evaluation access to 𝑃, we can
test if the monomial expansion of 𝑃 contains a multilinear monomial 𝑚 whose support is a basis
for 𝑀 . Our algorithm is randomized with no false positives and failure probability at most 2𝑘/|F|.
If 𝑃 is a homogeneous polynomial of degree 𝑘, then the polynomial overhead disappears and the
running time is 𝑂(2𝑘 (𝑛𝑘 · 𝑓 + 𝑇 )) where 𝑓 is the time for a field operation and 𝑇 is the time to
evaluate 𝑃.

PROOF . Let 𝑃𝑘 (𝑋) denote the homogeneous degree 𝑘 part of 𝑃(𝑋), i.e., for every monomial 𝑚
of total degree 𝑘 the coefficient of 𝑚 in 𝑃𝑘 is 𝑃𝑘 (𝑚) = 𝑃(𝑚), and for every other monomial 𝑚
we have 𝑃𝑘 (𝑚) = 0. By Lemma 2.2, one can evaluate 𝑃𝑘 (𝑋) in 𝑂̃(𝑑) field operations using 𝑂(𝑑)
evaluations of 𝑃. To simplify notation, we will write 𝑃 in place of 𝑃𝑘.

Introduce a set of variables 𝑌 = { 𝑦1, . . . , 𝑦𝑘} and define a new polynomial

𝑃′(𝑋,𝑌 ) = 𝑃𝑘

(
𝑥1

𝑘∑︁
𝑖=1

𝑦𝑖𝐴[𝑖, 1], . . . , 𝑥𝑛
𝑘∑︁
𝑖=1

𝑦𝑖𝐴[𝑖, 𝑛]
)
.

Let𝑄(𝑋,𝑌 ) be the coefficient of
∏

𝑖∈[𝑘] 𝑦𝑖 in 𝑃′(𝑋,𝑌 ), which can be computed from 2𝑘 evaluations
of 𝑃′ (hence of 𝑃), using the method of inclusion-exclusion in Lemma 2.3. Since 𝑄 is obtained
from 𝑃′ via substitutions, it suffices to consider its effect on a single monomial at a time. Let
𝑚 = 𝑥𝑚1

1 · · · 𝑥
𝑚𝑛
𝑛 be a monomial in the expansion of 𝑃. Let (𝑖1, . . . , 𝑖𝑘) be the sequence of non-zero

indices of 𝑚 repeated with multiplicity according to degree, in non-decreasing order; e.g., a
monomial 𝑥3

1𝑥
2
4 corresponds to sequence (1, 1, 1, 4, 4). In the evaluation of 𝑃′, each monomial 𝑚
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in 𝑃 turns into

𝑃(𝑚) · 𝑋𝑚 ·
𝑘∏
𝑝=1

𝑘∑︁
𝑗=1

𝑦 𝑗𝐴[ 𝑗, 𝑖𝑝]

where 𝑃(𝑚) is the coefficient of 𝑚 in 𝑃. Using Lemma 3.1, the contribution of the monomial 𝑚
to 𝑄(𝑋,𝑌 ) is precisely

𝑃(𝑚) · 𝑋𝑚 · 𝑌𝑘 · det 𝐴[·, (𝑖1, . . . , 𝑖𝑘)]

where 𝑌𝑘 =
∏𝑘

𝑖=1 𝑦𝑖 and 𝐴′ = 𝐴[·, (𝑖1, . . . , 𝑖𝑘)] denotes the matrix consisting of columns 𝑖 𝑗 of
𝐴 included with multiplicity. Now, if 𝑚 is not multilinear, then the resulting matrix 𝐴′ has a
repeated column and is clearly singular, so 𝑚 does not contribute to 𝑄. If 𝑚 is multilinear, then
𝑚 contributes a non-zero value to 𝑄 if and only if the support of 𝑚 spans 𝑀 . Furthermore, since
the first part 𝑃(𝑚)𝑋𝑚 of this expression is precisely the value of the original monomial 𝑚 in 𝑃,
no further algebraic cancellation occurs in 𝑄. Hence 𝑄 enumerates monomials corresponding
to multilinear monomials in 𝑃 whose support spans 𝑀 . The result now follows from a random
evaluation of 𝑃 using Schwartz-Zippel. In particular, 𝑄 has degree 2𝑘 since the sieving started
from 𝑃𝑘 (𝑋).

For the case that 𝑃 is homogeneous, we can bypass the phase of extracting 𝑃𝑘 (𝑋) and
use 𝑃(𝑋) directly. The polynomial 𝑄(𝑋,𝑌 ) is defined as a sum over 2𝑘 evaluations of 𝑃(𝑋)
with arguments 𝑥 𝑗

∑𝑘
𝑖=1 𝑦𝑖𝐴[𝑖, 𝑗], 𝑗 ∈ 𝑋 . The precise running time follows with no additional

tricks. ■

We note a variant of this. Instead of every variable 𝑥𝑣 being associated with only one
column 𝑣 of 𝐴, we may wish for each variable to be associated with multiple columns.

COROLLARY 3.3. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of variables and let 𝑃(𝑋) be a polynomial of
degree 𝑑 over a field F of characteristic 2. Let 𝐴 ∈ F𝑘×𝑉 be a matrix representing a matroid
𝑀 = (𝑉,I) of rank 𝑘. Suppose that each variable 𝑥𝑖 is associated with pairwise disjoint subsets
Γ𝑖 ⊆ 𝑉 of size 𝛾𝑖 . In time 𝑂∗(2𝑘) and polynomial space, using evaluation access to 𝑃, we can test if
the monomial expansion of 𝑃 contains a multilinear monomial 𝑚 such that

⋃
𝑖∈supp(𝑚) Γ𝑖 is a basis

for 𝑀 . Our algorithm is randomized with no false positives and failure probability at most 2𝑘/|F|.

PROOF . Define a new set of variables 𝑋′ = {𝑥′
𝑖,𝑣
| 𝑖 ∈ [𝑛], 𝑣 ∈ Γ𝑖}, and applying Theorem 3.2 to

the polynomial 𝑃′(𝑋′) resulting from an evaluation where

𝑥𝑖 =
∏
𝑣∈Γ𝑖

𝑥′𝑖,𝑣

for every 𝑥𝑖 ∈ 𝑋 , yields the desired result. ■
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3.1.2 Sieving for spanning sets

We give the odd sieving algorithm, proving Theorem 1.4. The proof is similar to that of basis
sieving. In particular, we give a variant as in Corollary 3.3, where each variable is associated
with a subset of elements from the matroid. Let us illustrate why only the odd support sets pass
through the sieve. To sieve for spanning sets, we basically need to replace each variable 𝑥𝑖 with
1 + 𝑥𝑖 . Then, (1 + 𝑥𝑖)𝑚𝑖 = 1 +𝑚𝑖𝑥𝑖 +

(𝑚𝑖
2
)
𝑥2
𝑖
+ · · · (for a monomial 𝑚) becomes 1 +𝑚𝑖𝑥𝑖 because

only multilinear terms survive, and further reduces to 1 if 𝑚𝑖 is even. So a variable with even
contributions effectively diminishes. We give the formal proof:

THEOREM 3.4 (Odd sieving). Let 𝑃(𝑋) be a polynomial over a variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}
over a field F of characteristic 2 with degree 𝑑. Let 𝐴 ∈ F𝑘×𝑉 be a matrix representing a matroid
𝑀 = (𝑉,I) of rank 𝑘. Suppose that each variable 𝑥𝑖 is associated with pairwise disjoint subsets
Γ𝑖 ⊆ 𝑉 of size 𝛾𝑖 . Given black-box (evaluation) access to a polynomial 𝑃(𝑋), we can test in
randomized 𝑂∗(2𝑘) time with failure probability at most 𝛿 = (𝑑 + 𝑘)/|F| and in polynomial space,
whether 𝑃 contains a term in the monomial expansion of 𝑃(𝑋) such that Γ𝑆 =

⋃
𝑖∈𝑆 Γ𝑖 is a basis of

𝑀 , where 𝑆 ⊆ 𝑋 is a subset of its odd support set with
∑
𝑖∈𝑆 𝛾𝑖 = 𝑘.

PROOF . We will define a polynomial 𝑄 such that it evaluates to non-zero with probability at
least 1 − 𝛿 if it contains a monomial as stated in the lemma and to zero otherwise. For every
𝑖 ∈ [𝑛], we define

𝑥∗𝑖 = 𝑥
′′
𝑖 (1 + 𝑧

𝛾𝑖𝑥′𝑖

∏
𝑞∈Γ𝑖

∑︁
𝑝∈[𝑘]

𝑦𝑝𝐴[𝑝, 𝑞]),

where 𝑥′
𝑖
, 𝑥′′

𝑖
for 𝑖 ∈ [𝑛], 𝑦𝑝 for 𝑝 ∈ [𝑘], and 𝑧 are new variables. Let 𝑋′ = {𝑥′1 . . . , 𝑥′𝑛}, 𝑋′′ =

{𝑥′′1 , . . . , 𝑥′′𝑛 }, and define a polynomial 𝑄(𝑋′, 𝑋′′) that sieves for those terms in the monomial
expansion of 𝑃∗ = 𝑃(𝑥∗1, . . . , 𝑥∗𝑛) that contain precisely 𝑘 contributions of 𝑧 and which contain 𝑦𝑝

for each 𝑝 ∈ [𝑘]. By Lemmas 2.2 and 2.3, 𝑄(𝑋′, 𝑋′′) can be evaluated using 𝑂∗(2𝑘) evaluations
of 𝑃.

The expansion in 𝑃∗ corresponding to 𝑚 is

𝑃∗𝑚 = 𝑃(𝑚) · (𝑋′′)𝑚 ·
∏

𝑖∈supp(𝑚)
(1 + 𝑧𝛾𝑖𝑥′𝑖

∏
𝑞∈Γ𝑖

∑︁
𝑝∈[𝑘]

𝑦𝑝𝐴[𝑝, 𝑞])𝑚𝑖

= 𝑃(𝑚) · (𝑋′′)𝑚 ·
∑︁
𝑚∗

∏
𝑖∈supp(𝑚∗)

(
𝑚𝑖

𝑚∗
𝑖

)
(𝑧𝛾𝑖𝑥′𝑖

∏
𝑞∈Γ𝑖

∑︁
𝑝∈[𝑘]

𝑦𝑝𝐴[𝑝, 𝑞])𝑚
∗
𝑖

where 𝑚∗ ranges over all monomials that divide 𝑚. The last equality is due to the binomial
theorem. Simplifying further gives

𝑃∗𝑚 = 𝑃(𝑚) · (𝑋′′)𝑚 ·
∑︁
𝑚∗

𝑧deg(𝑚∗)
∏

𝑖∈supp(𝑚∗)

©­«
(
𝑚𝑖

𝑚∗
𝑖

)
(𝑥𝑖)𝑚

∗
𝑖

∏
𝑞∈Γ𝑖

∑︁
𝑝∈[𝑘]

𝑦𝑝𝐴[𝑝, 𝑞]𝑚
∗
𝑖
ª®¬ ,
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where deg(𝑚∗

𝑖
) = ∑

𝑖∈supp(𝑚∗) 𝑚
∗
𝑖
. It follows that the coefficient 𝑧𝑘 in 𝑃∗𝑚 is the sum over all

monomials of degree 𝑘 that divide 𝑚. By Lemma 3.1, the coefficient of 𝑧𝑘
∏

𝑖∈[𝑘] 𝑦𝑖 in 𝑃∗(𝑚) is
thus

𝑄𝑚 = 𝑃(𝑚) · (𝑋′′)𝑚 ·
∑︁
𝑚′

det 𝐴𝑚′
∏

𝑖∈supp(𝑚′)

(
𝑚𝑖

𝑚′
𝑖

)
(𝑥′𝑖 )

𝑚′
𝑖 ,

where 𝑚′ ranges over all monomials of degree 𝑘 that divide 𝑚 and 𝐴𝑚′ is the 𝑘 × 𝑘-matrix
that contain 𝑚′

𝑖
copies of 𝐴[·, Γ𝑖] for each 𝑖 ∈ supp(𝑚′). If 𝐴𝑚′

𝑖
contains duplicate columns (i.e.,

𝑚′
𝑖
≥ 2 for some 𝑖), then det 𝐴𝑚′

𝑖
= 0, and thus we may assume that 𝑚′ is multilinear. Hence, we

obtain
𝑄𝑚 = 𝑃(𝑚) · (𝑋′′)𝑚 ·

∑︁
𝑚′

det 𝐴𝑚′
∏

𝑖∈supp(𝑚′)
𝑚𝑖𝑥

′
𝑖 ,

where 𝑚′ ranges over all multilinear monomials of degree 𝑘 that divide 𝑚. Since F has charac-
teristic 2, the summand correspond to 𝑚′ is non-zero only if supp(𝑚′) is contained in the odd
support of 𝑚.

On the other hand, for every pair of monomials 𝑚 and 𝑚′ such that 𝑚′ divides 𝑚 and 𝐴𝑚′
is non-singular, there is a term

𝑃(𝑚) · ©­«
∏

𝑖∈supp(𝑚′)
𝑚𝑖

ª®¬ (𝑋′′)𝑚 · (𝑋′)𝑚′ det 𝐴𝑚′ .

Since the variables 𝑥′
𝑖

and 𝑥′′
𝑖

are newly added variables, this term does not cancel against any
other term from the expansion of 𝑄(𝑚). More specifically, these variables uniquely indicate the
combination of the monomials 𝑚 and 𝑚′. We evaluate 𝑄 for variables 𝑥′

𝑖
, 𝑥′′
𝑖

randomly chosen
from F. Since 𝑄 has degree most 𝑑 + 𝑘, by the Schwartz-Zippel lemma, the probability that 𝑄
evaluates to zero at most (𝑑 + 𝑘)/|F|. ■

3.1.3 Multilinear and constrained multilinear detection as determinantal sieving

We now make explicit the claim from earlier, that the known polynomial sieving-based al-
gorithms for multilinear detection [17, 20] and constrained multilinear detection [23] due to
Björklund et al. are equivalent to applications of the algorithm of Theorem 3.2.

User’s guide – the less technical view. Let us point out that what we are pursuing here is a
technical statement about the algorithms themselves. If we only want to reproduce the effect of
these previous sieving methods, then we can do so much easier via combinatorial arguments
over matroids as follows.

Multilinear detection of rank 𝑘 over a ground set 𝑉 is equivalent to basis sieving with a
matroid 𝑀 where every set of 𝑘 elements from 𝑉 is independent. This is precisely the
uniform matroid 𝑀 = 𝑈𝑛,𝑘.



27 / 75 Determinantal Sieving
Another application which is frequently seen is to look for a “colourful” term, where
elements of 𝑉 have 𝑘 different colours, and we are looking for a term that contains every
colour. In this case, 𝑀 would be a unit partition matroid. For example, this covers the
𝑇 -Cycle problem by assigning a private colour to every terminal in 𝑇 and looking for a
colourful cycle; and Steiner Tree and Group Steiner Tree are similarly reduced to the
Rank 𝑘 Connected Subgraph problem.
Finally, constrained multilinear detection is the following setting: the ground set 𝑉 is
coloured from a set of colours 𝐶, where every colour 𝑞 ∈ 𝐶 has a capacity 𝑑𝑞 ∈ N re-
stricting how many times it can be used. The corresponding matroid is then precisely the
𝑘-truncation of a non-unit partition matroid. Equivalently, it can be constructed directly
as the gammoid of a simple digraph, with 𝑘 sources, 𝑑𝑞 internal vertices for every colour
𝑞 ∈ 𝐶 connected to all sources, and each element 𝑣 ∈ 𝑉 of colour 𝑞 being connected to all
internal vertices representing colour 𝑞.

For further pointers, see material covering matroid theory [92, 83, 96]. We now proceed with
the more technical demonstrations.

Multilinear detection. We recall the procedure of sieving for multilinear detection, as pre-
sented in Björklund et al. [23]. We demonstrate that their procedure is mathematically equiva-
lent to an application of determinantal sieving with a random linear matroid. Let us first recall
their method. Let 𝑃(𝑋) be a homogeneous polynomial of degree 𝑘 on 𝑛 variables 𝑋 = {𝑥1, . . . , 𝑥𝑛)
over a field of characteristic 2. For every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘] define a variable 𝑧𝑖, 𝑗 , and for
𝐽 ⊆ [𝑘] and 𝑖 ∈ [𝑛] define 𝑧 𝐽

𝑖
=

∑
𝑗∈𝐽 𝑧𝑖, 𝑗 . Let 𝑍 = {𝑧𝑖, 𝑗 | 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]} and define

𝑄(𝑍) =
∑︁
𝐽⊆[𝑘]

𝑃(𝑧 𝐽1, . . . , 𝑧
𝐽
𝑛). (1)

Then 𝑄(𝑍) is not identically zero if and only if 𝑃(𝑋) contains a multilinear monomial [23].
We argue that this is precisely the procedure of Theorem 3.2 applied to the matrix 𝐴where

𝐴[ 𝑗, 𝑖] = 𝑧𝑖, 𝑗 . Indeed, expanding the inclusion-exclusion step Theorem 3.2 applied to 𝑃(𝑋) and
𝐴 computes

𝑄(𝑋,𝑌 ) =
∑︁
𝐼⊆[𝑘]

𝑃−𝐼 (𝑥1

𝑘∑︁
𝑗=1

𝑦 𝑗𝐴[ 𝑗, 1], . . . , 𝑥𝑛
𝑘∑︁
𝑗=1

𝑦 𝑗𝐴[ 𝑗, 𝑖])

over the evaluation where 𝑦 𝑗 = 0 for 𝑗 ∈ 𝐼 . Consider an evaluation 𝑄(𝑋, 1). Then for each index
𝑖 ∈ [𝑛], the 𝑖-th argument of the evaluation is

𝑥𝑖
∑︁
𝑗∈[𝑘]\𝐼

𝑦 𝑗𝑧𝑖, 𝑗 = 𝑥𝑖𝑧
[𝑘]\𝐼
𝑖

.

Hence (1) is an evaluation of𝑄(1, 1), and the classical polynomial sieving method for multilinear
detection can be seen as an instance of determinantal sieving for the matrix 𝐴 = (𝑧 𝑗,𝑖)(𝑖, 𝑗)
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consisting entirely of random (independent) values. Assuming the field F is large enough, this
matrix 𝐴 is with high probability a representation of the uniform matroid𝑈𝑛,𝑘.

Parenthetically, evaluating at 𝑌 = 1 in Theorem 3.2 as above is always safe – since distinct
monomials in 𝑃(𝑋) have distinct contributions in 𝑋 , setting 𝑌 = 1 does not cause any undesired
cancellations. Evaluating at 𝑋 = 1 is not normally safe, but in the precise case of the matrix 𝐴
all contributed determinants det 𝐴[·,𝑈] for |𝑈 | = 𝑘 are distinct polynomials over the variables
𝑍, hence it works in equation (1).

Constrained multilinear detection. We now consider the somewhat more involved sieving
used for constrained multilinear detection [23], and demonstrate a similar equivalence. Let
𝐶 be a set of colours, and for each 𝑞 ∈ 𝐶 let 𝑑𝑞 ∈ 𝑁 denote the capacity of colour 𝑞. Refer to
such a monomial as a properly coloured monomial. We shift the notation slightly. Let 𝑃(𝑋)
be a homogeneous polynomial of degree 𝑘 over 𝑛 variables 𝑋 = {𝑥1, . . . , 𝑥𝑛} over a field of
characteristic 2 and let 𝑐 : 𝑋 → 𝐶 be a colouring and recall that we are sieving for multilinear
monomials 𝑚 in 𝑃(𝑋) where for every colour 𝑞 ∈ 𝐶, 𝑚 contains at most 𝑑𝑞 variables of colour 𝑞.
Define two sets of auxiliary variables

𝑉 = {𝑣𝑖,𝑠 | 𝑖 ∈ [𝑛], 𝑠 ∈ [𝑑𝑐(𝑖)]}

where 𝑠 ranges over shades of colour 𝑐(𝑖) ∈ 𝐶, and

𝑊 = {𝑤𝑞,𝑠, 𝑗 | 𝑞 ∈ 𝐶, 𝑠 ∈ [𝑑𝑞], 𝑗 ∈ [𝑘]}.

Finally, for 𝐽 ⊆ [𝑘] and 𝑖 ∈ [𝑛] define

𝑢
𝐽
𝑖
=

∑︁
𝑗∈𝐽

𝑢𝑖, 𝑗 where 𝑢𝑖, 𝑗 =
∑︁

𝑠∈[𝑑𝑐(𝑖 ) ]
𝑣𝑖,𝑠𝑤𝑐(𝑖),𝑠, 𝑗 .

Then
𝑄(𝑉,𝑊) =

∑︁
𝐽⊆[𝑘]

𝑃(𝑢𝐽1, . . . 𝑢
𝐽
𝑛) (2)

is not identically zero if and only if 𝑃(𝑋) has a properly coloured multilinear monomial [23].
Analogously to unconstrained multilinear detection, we note that this is equivalent to applying
Theorem 3.2, evaluated at 𝑋 = 𝑌 = 1, to the matrix 𝐴 ∈ F𝑘×𝑛 where

𝐴[ 𝑗, 𝑖] =
∑︁

𝑠∈[𝑑𝑐(𝑖 ) ]
𝑣𝑖,𝑠𝑤𝑐(𝑖),𝑠, 𝑗 .

We note a factorization of 𝐴. Let 𝑆 = {(𝑞, 𝑠) | 𝑞 ∈ 𝐶, 𝑠 ∈ [𝑑𝑞]} be the set of all shades of all
colours used above. Define 𝐵 ∈ F𝑘×𝑆 and 𝐶 ∈ F𝑆×𝑛 by

𝐵[ 𝑗, (𝑞, 𝑠)] = 𝑤𝑞,𝑠, 𝑗 and 𝐶 [(𝑞, 𝑠), 𝑖] =

𝑣𝑖,𝑠 𝑐(𝑖) = 𝑞

0 otherwise
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Then 𝐴 = 𝐵𝐶 by direct expansion of the matrix multiplication. Here, 𝐶 is a representation
of the transversal matroid mapping each variable index 𝑖 ∈ [𝑛] to the set of shades (𝑐(𝑖), 𝑠)
available to it, hence a set of variables is independent in 𝐶 if and only if the corresponding
monomial is properly coloured. Finally, 𝐵 is again a fully random matrix, hence multiplication
by 𝐵 represents the truncation of 𝐶 to rank 𝑘. Hence (2) corresponds to Theorem 3.2 applied to
the 𝑘-truncation of the “colour assignment” matroid 𝐶, which is precisely the encoding discussed
in the introduction.

3.2 Over general fields

We give two sieving algorithms for general fields. First, we present an algorithm for what we
call strongly monotone circuits – circuits without any cancellation, informally speaking. Our
second algorithm works for arbitrary arithmetic circuits albeit with a worse running time.

To sieve over general fields, we use the exterior algebra. For a field F, Λ(F𝑘) is a 2𝑘-
dimensional vector space where there is a basis {𝑒𝐼 | 𝐼 ⊆ [𝑘]}. Each element 𝑎 =

∑
𝐼⊆[𝑘] 𝑎𝐼𝑒𝐼

is called an extensor. For 𝑖 ∈ {0, . . . , 𝑘}, we denote by Λ𝑖 (F𝑘) the vector subspace spanned by
bases 𝑒𝐼 with |𝐼 | = 𝑖. For instance, Λ0(F𝑘) is isomorphic to F and Λ1(F𝑘) is isomorphic to the
vector space F𝑘, so we will use them interchangeably. The addition in Λ(F𝑘) is defined in the
element-wise manner. The multiplication in Λ(F𝑘) is called wedge product, and it is defined
as follows: If 𝐼 ∩ 𝐽 ≠ ∅, then 𝑒𝐼 ∧ 𝑒𝐽 = 0. If 𝐼 and 𝐽 are disjoint, then 𝑒𝐼 ∧ 𝑒𝐽 = (−1)𝜎(𝐼,𝐽)𝑒𝐼∪𝐽 ,
where 𝜎(𝐼, 𝐽) = ±1 is the sign of the permutation that maps the concatenation of 𝐼 and 𝐽 each
in increasing order into the increasing sequence of 𝐼 ∪ 𝐽 . Over vectors 𝑣, 𝑣′ ∈ F𝑘, we have
anti-commutativity, i.e., 𝑣∧ 𝑣′ = −𝑣′∧ 𝑣, and in particular, 𝑣∧ 𝑣 = 0. The key property of exterior
algebra is that for a matrix 𝐴 ∈ F𝑘×𝑘 with 𝑎𝑖 = 𝐴[·, 𝑖], we have 𝑎1 ∧ · · · ∧ 𝑎𝑘 = det 𝐴 · 𝑒[𝑘] , where
𝑒[𝑘] is the basis extensor 𝑒1 ∧ · · · ∧ 𝑒𝑘. For instance, when 𝑘 = 2,

(𝑎11𝑒1 + 𝑎21𝑒2) ∧ (𝑎12𝑒1 + 𝑎22𝑒2)
= 𝑎11𝑎12 · 𝑒1 ∧ 𝑒1 + 𝑎11𝑎22 · 𝑒1 ∧ 𝑒2 + 𝑎21𝑎12 · 𝑒2 ∧ 𝑒1 + 𝑎21𝑎22 · 𝑒2 ∧ 𝑒2

= 0 + 𝑎11𝑎22 · 𝑒1 ∧ 𝑒2 − 𝑎21𝑎12 · 𝑒1 ∧ 𝑒2 + 0 = (𝑎11𝑎22 − 𝑎12𝑎21) · 𝑒1 ∧ 𝑒2.

So a matrix is non-singular if and only if the wedge product of its columns are non-zero.
An extensor 𝑎 ∈ Λ(F𝑘) is decomposable if there are vectors 𝑣1, . . . , 𝑣ℓ such that 𝑎 = 𝑣1 ∧

· · · ∧ 𝑣ℓ. A decomposable extensor 𝑎 is zero if the vectors 𝑣1, . . . , 𝑣ℓ are linearly dependent. For
two decomposable extensors 𝑎, 𝑎′, it holds that 𝑎 ∧ 𝑎′ = ±𝑎′ ∧ 𝑎 (this is generally not the case,
e.g., 𝑒1 ∧ (𝑒2 ∧ 𝑒3 + 𝑒4) = 𝑒1 ∧ 𝑒2 ∧ 𝑒3 + 𝑒1 ∧ 𝑒4 and (𝑒2 ∧ 𝑒3 + 𝑒4) ∧ 𝑒1 = 𝑒1 ∧ 𝑒2 ∧ 𝑒3 − 𝑒1 ∧ 𝑒4).

The sum of two extensors can be computed with 2𝑘 field operations. The wedge product
𝑎 ∧ 𝑎′ of two extensors 𝑎 ∈ Λ(F𝑘) and 𝑏 ∈ Λ𝑖 (F𝑘) can be computed with 2𝑘

(𝑘
𝑖

)
field operations

according to the definition (hence𝑂∗(2𝑘) time for 𝑖 ∈ 𝑂(1)). In general, there is an𝑂(2𝜔𝑘/2)-time



30 / 75 E. Eiben, T. Koana, M. Wahlström
algorithm to compute the wedge product, given implicitly by Włodarczyk [103] (see the thesis
of Brand [27] for a more explicit exposition).

Suppose that a polynomial 𝑃(𝑋) is represented by an arithmetic circuit 𝐶. An arithmetic
circuit is a directed acyclic graph with a single sink (called output gate) in which every source is
labelled by a variable 𝑥𝑖 or an element of F (called input gate) and every other node is labelled
by addition (called sum gate) or multiplication (called product gate). We will assume that
every sum and product gate has in-degree 2. An arithmetic circuit is called skew (𝛿-skew) if
at least one input of every product gate is an input gate (has polynomial degree at most 𝛿,
respectively). An arithmetic circuit over the field of rationals Q is called monotone if every
constant is non-negative. We say that an arithmetic circuit (over any field) is strongly monotone
if the following hold:

For each gate, the corresponding polynomial is multilinear, which implies that each input
to the sum or product gate can be represented as a set family F over 𝑋 and coefficients
𝑐 : F → F \ {0}.
For every sum gate with two inputs (F , 𝑐) and (F ′, 𝑐′), F ∩ F ′ = ∅.
For every product gate with two inputs (F , 𝑐) and (F ′, 𝑐′), 𝑆∪ 𝑆′ is distinct for every 𝑆 ∈ F
and 𝑆′ ∈ F ′.

At first glance, the condition for strong monotonicity may seem very restrictive. However, any
“cancellation-free” circuit can be turned into an equivalent strongly monotone circuit, often
without blowing up its size: simply make 𝑑 copies of sub-circuits for each gate with out-degree
𝑑 > 1. Note that, for every input gate 𝑔 for the variable 𝑥 with out-degree 𝑑, we will have 𝑑 input
gates each labelled by a new variable, say 𝑥𝑖 . By associating the variables 𝑥𝑖 with one vector,
the resulting circuit is essentially equivalent to the original. See e.g., 𝑂∗(2𝑞𝑘)-time algorithm for
𝑞-Matroid Parity (Theorem 4.3) in Section 4.

THEOREM 3.5. Let 𝐶 be a strongly monotone arithmetic circuit computing a multilinear polyno-
mial 𝑃(𝑋) of degree 𝑑 over a variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛} and a field F. Let 𝐴 ∈ F𝑘×𝑉 be a matrix
representing a matroid 𝑀 = (𝑉,I) of rank 𝑘. Suppose that each variable 𝑥𝑖 is associated with a
subset Γ𝑖 ⊆ 𝑉 of size 𝛾𝑖 , and that the subsets Γ𝑖 are pairwise disjoint. We can test in randomized
𝑂∗(2𝜔𝑘/2) time with failure probability 𝑑/|F| and in 𝑂∗(2𝑘) space, whether there is a term 𝑚 in
the monomial expansion of 𝑃(𝑋) such that

⋃
𝑖∈supp(𝑚) Γ𝑖 is a basis of 𝑀 . The running time can be

improved to 𝑂∗(2𝑘) if 𝐶 is 𝛿-skew for 𝛿 ∈ 𝑂(1) and 𝛾𝑖 ∈ 𝑂(1) for all 𝑖.

PROOF . Fixing an arbitrary ordering of the input of each product gate (this is necessary because
the wedge product is not commutative), we evaluate the circuit 𝐶 over Λ(F𝑘) by plugging in
the extensor 𝑥𝑖 = 𝑥′𝑖𝑎𝑖 for every 𝑖 ∈ [𝑛], where 𝑥′

𝑖
is a new variable and 𝑎𝑖 =

∧
𝑞∈Γ𝑖 𝐴[·, 𝑞] (the

order of wedge products is not important here). Let 𝑟 ∈ Λ(F𝑘) denote the result. Note that
with each variable 𝑥′

𝑖
substituted by a random element from F, the extensor 𝑟 can be computed

in time 𝑂∗(2𝜔𝑘/2) (and 𝑂∗(2𝑘) if 𝐶 is skew and max𝑖∈[𝑛] 𝛾𝑖 ∈ 𝑂(1) – simply by computing the
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product according to the definition), as noted in the introduction to exterior algebra. We will
show that the coefficient of 𝑒[𝑘] is non-zero with high probability given that there is a monomial
constituting a basis of 𝑀 .

We show by induction on the number of gates that

𝑟 =
∑︁
𝑚

±𝑃(𝑚) · (𝑋′)𝑚
∧

𝑖∈supp(𝑚)
𝑎𝑖 ,

where 𝑚 ranges over all monomials 𝑚 of 𝑃(𝑋). For every monomial 𝑚, the sign ± depends on
the ordering on product gates. There are two cases depending on whether the last gate 𝑔 in
𝐶 is a sum gate or product gate. Let 𝑄(𝑋) = ∑

𝑚𝑄
𝑄(𝑚𝑄)𝑚𝑄 and 𝑄′(𝑋) = ∑

𝑚′𝑄
𝑄(𝑚′𝑄)𝑚′𝑄 denote

its inputs. By the induction hypothesis, suppose that the result of evaluating over the exterior
algebra Λ(F𝑘) is

𝑞 =
∑︁
𝑚𝑄

±𝑄(𝑚𝑄) ©­«
∏

𝑖∈supp(𝑚𝑄)
𝑥′𝑖

ª®¬
∧

𝑖∈supp(𝑚𝑄)
𝑎𝑖 and 𝑞′ =

∑︁
𝑚′𝑄

±𝑄′(𝑚′𝑄)
©­­«

∏
𝑖∈supp(𝑚′𝑄)

𝑥′𝑖
ª®®¬

∧
𝑖∈supp(𝑚′𝑄)

𝑎𝑖 .

First, suppose that 𝑔 is a sum gate. By the strong monotonicity of 𝐶, each term 𝑚 in 𝑃

corresponding to 𝑄 (and 𝑄′) has coefficient 𝑄(𝑚) (and 𝑄′(𝑚), respectively). Thus, for every
monomial 𝑚 in 𝑃, there is a term

∏
𝑖∈supp(𝑚) 𝑥

′
𝑖

∧
𝑖∈supp(𝑚) 𝑎𝑖 (with the coefficient ±𝑄(𝑚) or

±𝑄′(𝑚)) in 𝑟. We stress that the strong monotonicity is crucial here; suppose that𝑄 and𝑄′ share
a term with opposite signs. This term should cancel out in 𝑃, but it does not necessarily when
evaluated over Λ(F𝑘) as the sign may be flipped.

Next, suppose that 𝑔 is a product gate. By the strong monotonicity of 𝐶, each term 𝑚 in
𝑃 corresponds to a pair of monomials, one from 𝑄(𝑚) and the other from 𝑄′(𝑚). We need to
verify that for every monomial 𝑚 of 𝑃(𝑋) with

∧
𝑖∈supp(𝑚) 𝑎𝑖 ≠ 0, the corresponding terms in

𝑞 ∧ 𝑞′ and 𝑞′ ∧ 𝑞 have non-zero coefficients. Note that

𝑞 ∧ 𝑞′ =
∑︁
𝑚𝑄,𝑚

′
𝑄

±𝑄(𝑚𝑄)𝑄(𝑚′𝑄)
©­­«

∏
𝑖∈supp(𝑚𝑄)∪supp(𝑚′𝑄)

𝑥′𝑖
ª®®¬

∧
𝑖∈supp(𝑚𝑄)

𝑎𝑖 ∧
∧

𝑖∈supp(𝑚′𝑄)
𝑎𝑖 .

Since
∧
𝑖∈supp(𝑚𝑄) 𝑎𝑖 and

∧
𝑖∈supp(𝑚′𝑄) 𝑎𝑖 are both decomposable,

∧
𝑖∈supp(𝑚′𝑄) 𝑎𝑖 ∧

∧
𝑖∈supp(𝑚𝑄) 𝑎𝑖 =

±∧
𝑖∈supp(𝑚𝑄) 𝑎𝑖 ∧

∧
𝑖∈supp(𝑚′𝑄) 𝑎𝑖 , and consequently, 𝑞∧ 𝑞′ and 𝑞′∧ 𝑞 have the same form possibly

with opposite signs. In particular, this shows that the induction is correct regardless of how two
inputs of product gates are ordered.

Thus, the circuit evaluates to

𝑟 =
∑︁
𝑚

±𝑃(𝑚) ©­«
∏

𝑖∈supp(𝑚)
𝑥′𝑖

ª®¬
∧

𝑖∈supp(𝑚)
𝑎𝑖 =

∑︁
𝑚

±𝑃(𝑚) · (𝑋′)𝑚 · det 𝐴[·, supp(𝑚)] · 𝑒[𝑘] ,
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where 𝑚 ranges over all monomials in 𝑃 with

∑
𝑖∈supp(𝑚) 𝛾𝑖 = 𝑘. Observe that there is no

further cancellation between any two terms. We evaluate the coefficient of 𝑒[𝑘] in 𝑟 at random
coordinates. By the Schwartz-Zippel lemma, the result follows. ■

We also provide a sieving algorithm for general arithmetic circuits. The idea is again,
to evaluate the circuit over the exterior algebra. In order to deal with the issue of non-
commutativity, we make the assumption that every variable is associated with an even number
of matroid elements. If 𝑣 = 𝑣1 ∧ · · · ∧ 𝑣𝑐 and 𝑣′ = 𝑣′1 ∧ · · · ∧ 𝑣′𝑐′ for even integers 𝑐 and 𝑐′, then

𝑣 ∧ 𝑣′ = 𝑣1 ∧ · · · ∧ 𝑣𝑐 ∧ 𝑣′1 ∧ · · · ∧ 𝑣′𝑐′
= (−1)𝑐𝑐′𝑣′1 ∧ · · · ∧ 𝑣′𝑐′ ∧ 𝑣1 ∧ · · · ∧ 𝑣𝑐 = 𝑣′ ∧ 𝑣.

Here, the second equality holds because the transposition occurs 𝑐𝑐′ times. We thus have
commutativity.

THEOREM 3.6. Let 𝐶 be an arithmetic circuit computing a polynomial 𝑃(𝑋) over a variable
set 𝑋 = {𝑥1, . . . , 𝑥𝑛} and a field F. Let 𝐴 ∈ F𝑘×𝑉 be a matrix representing a matroid 𝑀 = (𝑉,I)
of rank 𝑘. Suppose that each variable 𝑥𝑖 is associated with a subset Γ𝑖 ⊆ 𝑉 of even size 𝛾𝑖 , and
that the subsets Γ𝑖 are pairwise disjoint. We can test in randomized 𝑂∗(2𝜔𝑘/2) time with failure
probability 𝑘/|F| and in 𝑂∗(2𝑘) space, whether 𝐶 contains a term 𝑚 in the monomial expansion of
𝑃(𝑋) such that

⋃
𝑖∈supp(𝑚) Γ𝑖 is a basis of 𝑀 . The running time can be improved to 𝑂∗(2𝑘) if 𝐶 is

𝛿-skew for 𝛿 ∈ 𝑂(1) and 𝛾𝑖 ∈ 𝑂(1) for all 𝑖.

PROOF . We evaluate the circuit over the algebra Λ(F𝑘) by plugging in the extensor 𝑥𝑖 = 𝑥′𝑖𝑎𝑖 ,
where 𝑥′

𝑖
is a new variable and 𝑎𝑖 =

∧
𝑖∈Γ𝑖 𝐴[·, 𝑞]. Let 𝑟 ∈ Λ(F𝑘) denote the result. Note that with

each variable 𝑥𝑖 substituted with a random element from F, the extensor 𝑟 can be computed in
time 𝑂∗(2𝜔𝑘/2) (and 𝑂∗(2𝑘) if 𝐶 is skew and max𝑖∈[𝑛] 𝛾𝑖 ∈ 𝑂(1)). As in the proof of Theorem 3.5,
we will show that the coefficient of 𝑒[𝑘] is non-zero with high probability given that there is a
monomial constituting a basis of 𝑀 .

Since the evaluation is over a commutative algebra, for every monomial 𝑚 in 𝑃, there is a
“term” in the expansion of 𝑟:

𝑃(𝑚) ·
∏

𝑖∈supp(𝑚)
(𝑥′𝑖 )

𝑚𝑖 ·
∧

𝑖∈supp(𝑚)
𝑎𝑖 .

It is straightforward to prove by induction as in the proof of Theorem 3.5 that its coefficient is
𝑃(𝑚) (without any sign flip). The crucial difference (i.e., no sign flip) arises from the commuta-
tivity of the underlying algebra. The term corresponding to 𝑒[𝑘] in 𝑟 is∑︁

𝑚

𝑃(𝑚) ©­«
∏

𝑖∈supp(𝑚)
𝑥′𝑖

ª®¬
∧

𝑖∈supp(𝑚)
𝑎𝑖 =

∑︁
𝑚

𝑃(𝑚) · (𝑋′)𝑚 · det 𝐴[·, supp(𝑚)] · 𝑒[𝑘] ,
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where 𝑚 ranges over all monomials in 𝑃 with

∑
𝑖∈supp(𝑚) 𝛾𝑖 = 𝑘. Observe that there is no cancel-

lation between any two terms. We evaluate the coefficient of 𝑒[𝑘] in 𝑟 at random coordinates.
By the Schwartz-Zippel lemma, the result follows. ■

One can apply Theorem 3.6 even if the variables are associated with an odd number of
elements, albeit with increased running time, essentially by padding every variable with an
additional element. This is similar to the idea of lift mapping [28]. Using Theorem 3.6, we show
how to solve 𝑞-Matroid Intersection in 𝑂∗(2(𝑞−2+(𝑞 mod 2))𝑘) time in Theorem 4.6.

4. Matroid Covering, Packing and Intersection Problems

For our first application section, we review some fairly straightforward results regarding
matroid variants of the Set Cover and Set Packing problems defined in Section 1 and related
problems. We start off by recalling the definitions.

Set Cover and Set Packing are classical NP-hard problems. For both problems, the input is
a ground set 𝑉 , a set system E ⊆ 2𝑉 over 𝑉 , and an integer 𝑡. Set Cover asks whether there is a
subcollection 𝑆 ⊆ E such that |𝑆 | ≤ 𝑡 and

⋃
𝑆 = 𝑉 , i.e., 𝑆 covers𝑉 , and Set Packing asks whether

is a subcollection 𝑆 ⊆ E of 𝑡 pairwise disjoint sets. Their matroid variants Rank 𝑘 Set Cover and
Rank 𝑘 Set Packing are defined as follows. We are given as input a set 𝑉 , a set family E ⊆ 2𝑉 , a
matroid 𝑀 = (𝑉,I) of rank 𝑘, and an integer 𝑡. In Rank 𝑘 Set Cover, the question is whether
there is a subcollection 𝑆 ⊆ E with |𝑆 | ≤ 𝑡 such that

⋃
𝑆 has rank 𝑘. Rank 𝑘 Set Packing asks for

a subcollection 𝑆 of pairwise disjoint 𝑡 sets such that
⋃
𝑆 has size 𝑘 and rank 𝑘 (i.e., it is a basis

of 𝑀). Note that Set Cover is the special case of Rank 𝑘 Set Cover where 𝑀 is the free matroid,
i.e., all subsets of 𝑉 are independent, and 𝑘 = |𝑉 |. Similarly, Set Packing is the special case of
Rank 𝑘 Set Packing where 𝑀 is the uniform matroid of rank 𝑘 = |⋃ 𝑆 | for a solution 𝑆. One
may also consider the apparently more general variant of Rank 𝑘 Set Packing where one does
not require that

⋃
𝑆 is a basis for 𝑀 , but only that it is independent. However, this reduces to

Rank 𝑘 Set Packing by iterating over the acceptable cardinalities |⋃ 𝑆 | and applying matroid
truncation.

For 𝑞 ∈ 𝑂(1), the 𝑞-Set Packing problem is Set Packing in which every set has cardinality 𝑞.
The 𝑞-Dimensional Matching problem is a well-studied special case of 𝑞-Set Packing, where 𝑉
is partitioned into 𝑞 sets𝑉1, . . . , 𝑉𝑞, and every set in E is from𝑉1×· · ·×𝑉𝑞. The matroid analogs to
𝑞-Dimensional Matching and 𝑞-Set Packing are 𝑞-Matroid Intersection and 𝑞-Matroid Parity,
respectively. In 𝑞-Matroid Intersection, we are given as input 𝑞 matroids 𝑀1, . . . , 𝑀𝑞 over the
same ground set𝑉 and an integer 𝑘, and the question is whether there is a subset 𝑆 ⊆ 𝑉 of size 𝑘
that is independent in 𝑀𝑖 (equivalently, a basis for 𝑀𝑖 by applying matroid truncation) for every
𝑖 ∈ [𝑞]. In 𝑞-Matroid Parity, we are given as input a matroid 𝑀 = (𝑉,I) with 𝑉 partitioned
into disjoint sets E = {𝐸1, . . . , 𝐸𝑚} each of size 𝑞, and an integer 𝑘, the question is whether a
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collection 𝑆 of 𝑘 sets from 𝑉1, . . . , 𝑉𝑚, such that

⋃
𝑆 has rank 𝑞𝑘 in 𝑀 . The problems 𝑞-Matroid

Parity and 𝑞-Matroid Intersection generalize 𝑞-Set Packing (when 𝑀 is the uniform matroid)
and 𝑞-Dimensional Matching (when 𝑀𝑖 is the partition matroid over 𝑉𝑖), respectively.

We survey the known results for these problems. The fastest known algorithm for Set
Cover in terms of 𝑛 = |𝑉 | is 𝑂∗(2𝑛), which can be achieved either via classical dynamic pro-
gramming or by inclusion-exclusion. It is a major open problem whether this can be improved;
Cygan et al. [37] propose the Set Cover Conjecture (SeCoCo) that effectively conjectures that
this is not possible, analogous to the more commonly used strong exponential-time hypothesis
(SETH). More precisely, SeCoCo states that for every 𝜀 > 0 there exist 𝑑 ∈ N such that Set Cover
on 𝑛 elements where all sets of size at most 𝑑 cannot be solved in 𝑂∗(2(1−𝜀)𝑛) time [37]. The
currently known fastest algorithms for 𝑞-Dimensional Matching and 𝑞-Set Packing are by
Björklund et al. [20]. (The reader is referred to [20] for a series of previous improvements on
these problems e.g., [33, 71, 74].) Their running time bounds are 𝑂∗(2(𝑞−2)𝑘) and 𝑂∗(2(𝑞−𝜀𝑞)𝑘),
respectively, where 𝜀𝑞 < 2 is a constant depending on 𝑞, tending to zero as 𝑞→∞. The fastest
known algorithms for 𝑞-Matroid Intersection and 𝑞-Matroid Parity run in time 𝑂∗(4𝑞𝑘) [30].
Very recently, Brand et al. [29] gave an 𝑂∗(4𝑘)-time algorithm for 𝑞 ≤ 4.

4.1 Rank 𝒌 Set Cover and Rank 𝒌 Set Packing.

We start with Rank 𝑘 Set Cover, reiterating Theorem 1.7. We will assume that the solution size
is exactly 𝑡. We will use the polynomial-space sieving algorithm (Theorem 3.2) if the underlying
field has characteristic 2, and the sieving algorithm for strongly monotone circuits (Theorem 3.5)
otherwise. To that end, we construct a polynomial as follows. Let 𝑋 = {𝑥𝑣,𝐸 | 𝑣 ∈ 𝑉, 𝐸 ∈ E} and
𝑌 = { 𝑦𝑖,𝐸 | 𝑖 ∈ [𝑡], 𝐸 ∈ E} be a set of variables. For Rank 𝑘 Set Cover, we define

𝑃(𝑋,𝑌 ) =
∏
𝑖∈[𝑡]

∑︁
𝐸∈E

𝑦𝑖,𝐸
∏
𝑣∈𝐸
(1 + 𝑥𝑣,𝐸)

=
∑︁

𝑓 : [𝑡]→E

∏
𝑖∈[𝑡]

𝑦𝑖, 𝑓 (𝑖)
∏
𝑣∈ 𝑓 (𝑖)

(1 + 𝑥𝑣, 𝑓 (𝑖)) =
∑︁

𝑓 : [𝑡]→E

∑︁
𝐸1,...,𝐸𝑡

𝐸𝑖⊆ 𝑓 (𝑖),𝑖∈[𝑡]

©­«
∏
𝑖∈[𝑡]

𝑦𝑖, 𝑓 (𝑖)
ª®¬ ©­«

∏
𝑖∈[𝑡]

∏
𝑣∈𝐸𝑖

𝑥𝑣, 𝑓 (𝑖)
ª®¬

For Rank 𝑘 Set Packing, we tweak the polynomial slightly:

𝑃(𝑋,𝑌 ) =
∏
𝑖∈[𝑡]

∑︁
𝐸∈E

𝑦𝑖,𝐸
∏
𝑣∈𝐸

𝑥𝑣,𝐸 =
∑︁

𝑓 : [𝑡]→E

∏
𝑖∈[𝑡]

𝑦𝑖, 𝑓 (𝑖)
∏
𝑣∈ 𝑓 (𝑖)

𝑥𝑣, 𝑓 (𝑖) .

Note that the function 𝑓 : [𝑡] → E plays the role of choosing 𝑡 sets from E. For every 𝑓 : [𝑡] → E,
there is a distinct monomial and thus no further algebraic cancellation occurs. Let 𝐴 ∈ F𝑘×𝑉

be the linear representation of 𝑀 . We may assume that 𝐴 has exactly 𝑘 rows by truncating
𝑀 . Let 𝑃′(𝑋) be the result of substituting every variable 𝑦𝑖,𝐸 with a uniformly chosen random
element from F. By the Schwartz-Zippel lemma, if there exists a collection 𝑆 ⊆ E of 𝑡 sets such
that𝑈 =

⋃
𝑆, then with high probability the polynomial 𝑃′(𝑋) contains a monomial of the form
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∏

𝑣∈𝑈 𝑥𝑣,𝜄(𝑣) , where 𝜄 : 𝑈 → 𝑆 is any function satisfying 𝜄(𝑣) ∈ 𝑆 for each 𝑣 ∈ 𝑈 . Mapping every
variable 𝑥𝑣,𝐸 to the column vector 𝐴[·, 𝑣], we use the sieving algorithm. If F has characteristic 2,
then Theorem 3.2 gives an 𝑂∗(2𝑘)-time algorithm. Otherwise, we use Theorem 3.5. Note that
𝑃′(𝑋) can be realized by a strongly monotone circuit. Thus, we have:

THEOREM 4.1 (Restatement of Theorem 1.7). Rank 𝑘 Set Cover for matroids represented
over a field F can be solved in 𝑂∗(2𝑘) time and polynomial space if F has characteristic 2 and in
𝑂∗(2𝜔𝑘/2) time and 𝑂∗(2𝑘) space in general.

THEOREM 4.2. Rank 𝑘 Set Packing for matroids represented over a field F can be solved in
𝑂∗(2𝑘) time and polynomial space if F has characteristic 2 and in 𝑂∗(2𝜔𝑘/2) time and 𝑂∗(2𝑘) space
in general.

4.2 𝒒-Matroid Parity and 𝒒-Matroid Intersection

Next, we discuss 𝑞-Matroid Intersection and 𝑞-Matroid Parity. Recall that the problems are
defined as follows: In the 𝑞-Matroid Intersection problem, we are given 𝑞matroids 𝑀1, . . . , 𝑀𝑞

of rank 𝑘 over the same ground set 𝑉 . The task is to decide whether there exists a subset 𝑆 ⊆ 𝑉
that forms a basis in every matroid𝑀𝑖 . In the 𝑞-Matroid Parity problem, we are given a matroid
𝑀 = (𝑉,I) of rank 𝑞𝑘 together with a partition E = {𝐸1, . . . , 𝐸𝑚} of 𝑉 into disjoint sets, each of
size 𝑞. The problem is to decide whether there exists a collection 𝑆 ⊆ E of 𝑘 sets such that the
union

⋃
𝑆 has rank 𝑞𝑘 in 𝑀 .

We start with the 𝑞-Matroid Parity problem. Let 𝑋 = {𝑥𝐸 | 𝐸 ∈ E} be a set of variables.
We define a polynomial:

𝑃(𝑋) =
∏
𝐸∈E
(1 + 𝑥𝐸) =

∑︁
𝑗∈[|E |]

∑︁
𝑆∈(E𝑗 )

∏
𝐸∈𝑆

𝑥𝐸 .

We apply the sieving algorithm by associating every 𝑥𝐸 with 𝑞 columns 𝐴[·, 𝐸]. To sieve over
general fields, observe that the polynomial 𝑃(𝑋) can be computed using a 1-skew strongly
monotone circuit. Using the basis sieving algorithm (Corollary 3.3 and Theorem 3.5), we obtain:

THEOREM 4.3. 𝑞-Matroid Parity for matroids represented over a field F can be solved in
𝑂∗(2𝑞𝑘) time (and polynomial space if F has characteristic 2).

Since 𝑞-Matroid Intersection is a special case of 𝑞-Matroid Parity, we also obtain:

COROLLARY 4.4. 𝑞-Matroid Intersection for matroids represented over a field F can be solved
in 𝑂∗(2𝑞𝑘) time (and polynomial space if F has characteristic 2).

We obtain a greater speedup for 𝑞-Matroid Intersection by using the Cauchy-Binet for-
mula. Suppose that 𝐴𝑖 ∈ F𝑘×𝑉 represents the matroid 𝑀𝑖 . Let 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } be a set of
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variables and let 𝐴′1 be the result of scaling every column 𝑣 of 𝐴1 by 𝑥𝑣. By the Cauchy-Binet
formula,

𝑃(𝑋) := det(𝐴′1𝐴𝑇2 ) =
∑︁
𝐵∈(𝑉𝑘)

det 𝐴1[·, 𝐵] det 𝐴2[·, 𝐵]
∏
𝑣∈𝐵

𝑥𝑣.

Thus 𝑃(𝑋) enumerates monomials
∏

𝑣∈𝐵 𝑥𝑣 for common bases 𝐵 of 𝐴1 and 𝐴2, and we only have
to sieve for terms that in addition are bases of the remaining 𝑞 − 2 matroids. We construct a
matroid of rank (𝑞 − 2)𝑘 by taking the direct sum of these 𝑞 − 2 matroids. Then, by applying
Corollary 3.3 (with each variable 𝑥𝑣 corresponding to its copies in the direct sum), we obtain
the following.

THEOREM 4.5 (Restatement of Theorem 1.9). 𝑞-Matroid Intersection for linear matroids
represented over a common field F of characteristic 2 can be solved in randomized time𝑂∗(2(𝑞−2)𝑘)
and polynomial space.

For fields of characteristic other than 2, this does not represent a speedup over Corollary 4.4
since the circuit computing det 𝐴′1𝐴

𝑇
2 is not strongly monotone. However, we do obtain a speedup

for general F for the special case 𝑞 = 3. Observe that every entry in 𝐴′1𝐴
𝑇
2 has polynomial degree

at most 1. It is known that the determinant of a symbolic matrix can be computed with a skew
circuit [82]. Thus, there is a 1-skew circuit computing det(𝐴′1𝐴𝑇2 ). Using the sieving algorithm of
Theorem 3.6 for general arithmetic circuits, we obtain:

THEOREM 4.6. 𝑞-Matroid Intersection for linear matroids can be solved in 𝑂∗(4(𝑞−2)𝑘) time.
In particular, the bound is 𝑂∗(4𝑘) for 𝑞 = 3.

It is an interesting open question whether 𝑞-Matroid Parity can be solved in𝑂∗(2(𝑞−𝜀)𝑘) for
𝜀 > 0 when 𝑞 ≥ 3 is constant. Note that an enumerating polynomial for 2-matroid parity (let us
call it matroid matching for clarity) can be efficiently evaluated using the linear representation
of Lovász [80]: Suppose that 𝐴 represents a matroid 𝑀 = (𝑉,I) with 𝑉 partitioned into pairs
𝑃𝑖 = {𝑣𝑖 , 𝑣′𝑖}. If 𝑥𝑖 is a variable representing the pair 𝑃𝑖 , then the Pfaffian Pf 𝐵, where

𝐵 =
∑︁
𝑖

𝑥𝑖 (𝐴[·, 𝑣𝑖]𝐴𝑇 [𝑣′𝑖 , ·] − 𝐴[·, 𝑣
′
𝑖]𝐴

𝑇 [𝑣𝑖 , ·]),

enumerates all matroid matching terms. Lovász [80] only showed that the rank of 𝐵 equals
twice the maximum matroid matching size, but Pf 𝐵 indeed enumerates all matroid matching
terms. We refer to the textbook of Murota [89, Section 7.3.4] for this fact (the exposition concerns
an alternative equivalent formulation of matroid matching proposed by Geelen and Iwata [56]).
The trick employed by Björklund et al. [20] to speed up 𝑞-Set Packing of “reducing” (via colour-
coding type arguments) to 𝑞-Dimensional Matching, however, seemingly does not work for the
matroid analogs. The simple idea of having the variable 𝑥𝑖 encode 𝑞 − 2 columns in the matroid
matching enumerating polynomial fails because the space spanned by vectors in the matroid
matching is not necessarily orthogonal to the other of 𝑞 − 2 columns.
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4.3 Odd Coverage

Finally, let us discuss another corollary of Theorem 3.4 on a variant of Set Cover, called Odd
Coverage. The input is a set family E over 𝑉 and integers 𝑡, 𝑝. The question is whether there
is a subcollection 𝑆 ⊆ E with |𝑆 | = 𝑡 such that there are at least 𝑝 elements 𝑣 ∈ 𝑉 with
|{𝐸 ∈ 𝑆 | 𝑣 ∈ 𝐸}| mod 2 = 1 (i.e., 𝑣 is covered an odd number of times). Over a set of variables
𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } and 𝑌 = { 𝑦𝐸 | 𝐸 ∈ E}, define

𝑃(𝑋,𝑌 , 𝑧) =
∏
𝐸∈E

(
1 + 𝑧 𝑦𝐸

∏
𝑣∈𝐸

𝑥𝑣

)
.

The coefficient of 𝑧𝑡 then enumerates the subcollections of size 𝑡. Note that there is a solution if
and only if there is a monomial (over 𝑋) whose odd support set is size at least 𝑝. Thus, the odd
sieving algorithm implies:

THEOREM 4.7. Odd Coverage can be solved in 𝑂∗(2𝑝) time and polynomial space.

An 𝑂∗(2𝑝)-time (and exponential-space) algorithm for a special case is known, given by
Saurabh and Zehavi [95]. They studied the following problem: given a graph 𝐺 = (𝑉, 𝐸) and
integers 𝑡, 𝑝, is there a set 𝑆 of exactly 𝑡 vertices such that there are at least 𝑝 edges with one
endpoint in 𝑆 and the other in 𝑉 \ 𝑆? Note that this is a special case of Odd Coverage in which
every element occurs in two sets.

5. Balanced Solution and Diverse Collection

As noted, given an efficient enumerating polynomial 𝑃(𝑋) for a category of objects, and given a
representable matroid 𝑀 over 𝑋 , we can use our methods out-of-the-box to sieve for objects in
the collection that are independent or spanning in𝑀 . In this section, we survey two applications.
The first concerns the problem of finding a balance-fair solution. A balanced-fairness is, in a way,
a stronger notion of colourfulness; every colour should appear not only once, but also almost
equally frequently. We note that with an efficient enumerating polynomial at hand, our sieving
algorithm can find a balanced-fair solution. The second addresses another problem category, of
finding a diverse collection of objects, with prescribed pairwise minimum distances. Utilizing
the odd sieving method (Theorem 3.4), we show a general way to find a diverse collection.

5.1 Balance-fair X paradigm

There is a recent trend in pursing fairness especially in artificial intelligence applications (see
e.g., the work of Chierichetti et al. [34]). There are many notions of fairness known in the
literature. Here, we consider the problem of finding a balanced solution. We assume that
every object is assigned a colour from a set 𝐶. For 𝛼 ≤ 𝛽 ∈ N, a set 𝑆 of objects is said to be
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(𝛼, 𝛽)-balanced if 𝛼 ≤ |𝑆𝑐 | ≤ 𝛽 for every colour 𝑐 ∈ 𝐶, where 𝑆𝑐 ⊆ 𝑆 denotes the objects in 𝑆
with colour 𝑐. The problem of finding a balanced solution has been studied in the context of
Matroid Intersection [35], 𝑘-Matching [6], and 𝑘-Path [15]. We define a general problem called
Balanced Solution as follows. The input is a set 𝐸, a collection of (possibly exponentially many)
subsets F ⊆ 2𝐸 of 𝐸, a set of colours 𝐶, a colouring 𝜒 : 𝐸 → 𝐶, and integers 𝑘, 𝛼, 𝛽. The question is
whether there is a set 𝑆 ∈ F of size 𝑘 such that 𝛼 ≤ |𝑆∩𝜒−1(𝑐) | ≤ 𝛽 for all 𝑐 ∈ 𝐶. We observe that
the basis sieving (Theorem 3.2) solves this problem in time𝑂∗(2𝑘), if an enumerating polynomial
for F can be evaluated in polynomial time over a field of characteristic 2. To set up the matroid
constraint, we use the observation of Bentert et al. [15] that there is a linear matroid 𝑀 of rank
𝑘 with coloured objects as its ground set such that a set of 𝑘 objects is (𝛼, 𝛽)-balanced if and
only if it is a basis for 𝑀 . In particular, a linear representation of 𝑀 over a field of characteristic
2 can be constructed in randomized polynomial time. We thus obtain from the definitions:

THEOREM 5.1. Balanced Solution can be solved in 𝑂∗(2𝑘) time if there is an enumerating
polynomial for F that can be evaluated in polynomial time over a field of characteristic 2.

In particular, this implies 𝑂∗(2𝑘)-time algorithms for balanced-fair variants of Matroid
Intersection, 𝑘-Matching, and 𝑘-Path (see Section 2.2 for the enumerating polynomials). In
particular, for 𝑘-Path we use the enumerating polynomial for 𝑘-walks, and give all copies 𝑥𝑣,𝑖
for a vertex 𝑣 the same label in the matroid 𝑀 , thereby ensuring that any surviving monomial
represents a path. This is an improvement over the existing algorithms, all of which run in
𝑂∗(2𝑐𝑘) time for some 𝑐 > 1.

5.2 Diverse X paradigm

In the so-called “diverse X paradigm” (X being the placeholder for an optimization problem),
we seek – rather than a single solution – a diverse collection of solutions, where the diversity is
measured in terms of the Hamming distance, i.e., the size of the symmetric difference. Recently,
there is an increasing number of publications studying the problem of finding diverse solutions
from the parameterized complexity perspective [12, 13, 49, 51, 63].

The Diverse Collection problem is defined as follows. For a set 𝐸, let F𝑖 be a collection of
(potentially exponentially many) subsets of 𝐸 for each 𝑖 ∈ [𝑘]. Given 𝑑𝑖, 𝑗 ∈ N for 𝑖 < 𝑗 ∈ [𝑘], the
problem asks to determine the existence of subsets 𝑆𝑖 ∈ F𝑖 for 𝑖 ∈ [𝑘] such that |𝑆𝑖Δ𝑆 𝑗 | ≥ 𝑑𝑖, 𝑗 for
each 𝑖 < 𝑗 ∈ [𝑘]. Here, 𝑆𝑖Δ𝑆 𝑗 denotes the symmetric difference (𝑆𝑖 \ 𝑆 𝑗) ∪ (𝑆 𝑗 \ 𝑆𝑖). We show that
if all collections F𝑖 admit enumerating polynomials 𝑃𝑖 (𝑋) that can be efficiently evaluated, then
Diverse Collection can be solved in 𝑂∗(2𝐷) time, where 𝐷 =

∑
𝑖< 𝑗∈[𝑘] 𝑑𝑖, 𝑗 .

Let 𝑋′ = {𝑥{𝑖, 𝑗}𝑒 | 𝑖, 𝑗 ∈ [𝑘], 𝑒 ∈ 𝐸} and 𝑌 = { 𝑦𝑖,𝑒 | 𝑖 ∈ [𝑘], 𝑒 ∈ 𝐸} be variables. We define

𝑃(𝑋′, 𝑌 ) =
∏
𝑖∈[𝑘]

𝑃′𝑖 (𝑋
′, 𝑌 )
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where 𝑃′

𝑖
(𝑋′, 𝑌 ) is the result of plugging 𝑥𝑒 = 𝑦𝑖,𝑒

∏
𝑗∈[𝑘]\{𝑖} 𝑥

{𝑖, 𝑗}
𝑒 in the enumerating polynomial

𝑃𝑖 (𝑋) =
∑
𝑆𝑖∈F𝑖 𝑐(𝑖, 𝑆𝑖)

∏
𝑒∈𝑆𝑖 𝑥𝑒 for coefficients 𝑐(𝑖, 𝑆𝑖) ∈ F. The variables 𝑥{𝑖, 𝑗}𝑒 will play a key role

in ensuring that |𝑆𝑖Δ𝑆 𝑗 | ≥ 𝑑𝑖, 𝑗 . Let us expand 𝑃(𝑋′, 𝑌 ) into a sum of monomials:

𝑃(𝑋′, 𝑌 ) =
∑︁

𝑆1,...,𝑆𝑘
𝑆𝑖∈F𝑖

©­«
∏
𝑖∈[𝑘]

𝑐(𝑖, 𝑆𝑖) ·
∏

𝑖∈[𝑘],𝑒∈𝑆𝑖

𝑦𝑖,𝑒 ·
∏

𝑖∈[𝑘],𝑒∈𝑆𝑖

∏
𝑗∈[𝑘]\{𝑖}

𝑥
{𝑖, 𝑗}
𝑒

ª®¬
With 𝑆𝑖 ∈ F𝑖 fixed for each 𝑖 ∈ [𝑘], we have∏

𝑖∈[𝑘],𝑒∈𝑆𝑖

∏
𝑗∈[𝑘]\{𝑖}

𝑥
{𝑖, 𝑗}
𝑒 =

∏
𝑖< 𝑗∈[𝑘]

(∏
𝑒∈𝑆𝑖

𝑥
{𝑖, 𝑗}
𝑒

) ©­«
∏
𝑒∈𝑆 𝑗

𝑥
{𝑖, 𝑗}
𝑒

ª®¬ =
∏

𝑖< 𝑗∈[𝑘]

©­«
∏

𝑒∈𝑆𝑖Δ𝑆 𝑗
𝑥
{𝑖, 𝑗}
𝑒

ª®¬ ©­«
∏

𝑒∈𝑆𝑖∩𝑆 𝑗
(𝑥{𝑖, 𝑗}𝑒 )2ª®¬ .

We therefore have

𝑃(𝑋′, 𝑌 ) =
∑︁

𝑆1,...,𝑆𝑘
𝑆𝑖∈F𝑖

©­«
∏
𝑖∈[𝑘]

𝑐(𝑖, 𝑆𝑖) ·
∏

𝑖∈[𝑘],𝑒∈𝑆𝑖

𝑦𝑖,𝑒 ·
∏

𝑖< 𝑗∈[𝑘]

©­«
∏

𝑒∈𝑆𝑖Δ𝑆 𝑗
𝑥
{𝑖, 𝑗}
𝑒

ª®¬ ©­«
∏

𝑒∈𝑆𝑖∩𝑆 𝑗
(𝑥{𝑖, 𝑗}𝑒 )2ª®¬ª®¬ .

For every collection of 𝑘-tuples (𝑆1, . . . , 𝑆𝑘) with 𝑆𝑖 ∈ F𝑖 , there is a distinct monomial in 𝑃(𝑋′, 𝑌 ).
We use the odd sieving algorithm of Theorem 3.4. More precisely, we add constraints such that
for every {𝑖, 𝑗} ⊆ [𝑘], there are at least 𝑑𝑖, 𝑗 variables 𝑥{𝑖, 𝑗}𝑒 in the odd support set. This ensures
that each pairwise Hamming distance is at least 𝑑𝑖, 𝑗 . Note that these constraints can be realized
using a partition matroid of rank 𝐷, where for each 𝑖 < 𝑗 ∈ [𝑘] there is a block {𝑥𝑖, 𝑗𝑒 | 𝑒 ∈ 𝐸}
with capacity 𝑑𝑖, 𝑗 . Thus, we obtain:

THEOREM 5.2. Diverse Collection can be solved in 𝑂∗(2𝐷) time if all collections F𝑖 admit
enumerating polynomials that can be evaluated in polynomial time over a field of characteristic 2.

REMARK 5.3. Our approach can be adapted to solve the weighted variant considered by
Fomin et al. [51]. For the weighted variant, every element 𝑒 has a positive weight 𝑤𝑒 ∈ N, and
we require 𝑆𝑖 and 𝑆 𝑗 to have

∑
𝑒∈𝑆𝑖Δ𝑆 𝑗 𝑤𝑒 ≥ 𝑑𝑖, 𝑗 , rather than |𝑆𝑖Δ𝑆 𝑗 | ≥ 𝑑𝑖, 𝑗 . To deal with weights,

simply replace each variable 𝑥{𝑖, 𝑗}𝑒 with the product of 𝑤𝑒 variables 𝑥{𝑖, 𝑗}𝑒,1 𝑥
{𝑖, 𝑗}
𝑒,2 · · · 𝑥

{𝑖, 𝑗}
𝑒,𝑤𝑒 .

REMARK 5.4. A variant of Diverse Collection where we wish to maximise the sum of all
pairwise Hamming distances (that is,

∑
𝑖< 𝑗∈[𝑘] |𝑆𝑖Δ𝑆 𝑗 | ≥ 𝐷+) is also studied in the literature [12,

13, 62, 63]. A similar approach yields an FPT algorithm with running time 𝑂∗(2𝐷+). Using the
same polynomial 𝑃(𝑋′, 𝑌 ), we require that there should be at least 𝐷+ variables 𝑥{𝑖, 𝑗}𝑒 in the odd
support set. Obviously, this can be done using a uniform matroid of rank 𝐷+. Thus, the sieving
algorithm of Theorem 3.4 gives an 𝑂∗(2𝐷+)-time algorithm.

We discuss several corollaries of Theorem 5.2. First, we consider Diverse Perfect Match-
ings: we are given an undirected graph 𝐺, an integer 𝑘, and

(𝑘
2
)

integers 𝑑𝑖, 𝑗 for 𝑖 < 𝑗 ∈ [𝑘], and
we want to find 𝑘 perfect matchings 𝑀1, . . . , 𝑀𝑘 with |𝑀𝑖Δ𝑀 𝑗 | ≥ 𝑑𝑖, 𝑗 for every 𝑖 < 𝑗 ∈ [𝑘]. Let
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𝑑 = 𝑑1,2 and 𝐷 =

∑
𝑖< 𝑗∈[𝑘] 𝑑𝑖, 𝑗 . This problem is NP-hard even for 𝑘 = 2 [64]. Fomin et al. [49] gave

an 𝑂∗(4𝑑)-time algorithm for the special case 𝑘 = 2. Later, Fomin et al. [51] proved that Diverse
Perfect Matchings is FPT for the case 𝑑𝑖, 𝑗 = 𝑑 for all 𝑖 < 𝑗 ∈ [𝑘], giving an algorithm running
in time 𝑂∗(22𝑂(𝑑𝑘) ). Since the Pfaffian is an enumerating polynomial for perfect matchings, we
obtain:

COROLLARY 5.5. Diverse Perfect Matchings can be solved in 𝑂∗(2𝐷) time.

Our approach also works for diverse matroid problemsDiverse Bases andDiverse Common
Independent Sets, which were introduced by Fomin et al. [51]. In Diverse Bases, we are given a
matroid 𝑀 and 𝑘, 𝑑𝑖, 𝑗 ∈ N for 𝑖 < 𝑗 ∈ [𝑘], and the question is whether 𝑀 has bases 𝐵1, . . . , 𝐵𝑘

such that |𝐵𝑖Δ𝐵 𝑗 | ≥ 𝑑𝑖, 𝑗 for all 𝑖 < 𝑗 ∈ [𝑘]. In Diverse Common Independent Sets, we are
given two matroids and 𝑘, 𝑑𝑖, 𝑗 ∈ N for 𝑖 < 𝑗 ∈ [𝑘], and the question is whether a collection of
sets 𝐼1, . . . , 𝐼𝑘 that are independent in both matroids such that |𝐼𝑖Δ𝐼 𝑗 | ≥ 𝑑𝑖, 𝑗 for all 𝑖 < 𝑗 ∈ [𝑘].
The previous known algorithms of Fomin et al. [51] solve Diverse Bases and Diverse Common
Independent Sets in time 𝑂∗(2𝑂(𝑘2𝑑 log 𝑘𝑑)) and 𝑂∗(2𝑂(𝑘3𝑑2 log 𝑘𝑑)), respectively when 𝑑𝑖, 𝑗 = 𝑑.

COROLLARY 5.6. Diverse Bases on linear matroids represented over fields of characteristic 2
can be solved in 𝑂∗(2𝐷) time.

COROLLARY 5.7. Diverse Common Independent Sets on linear matroids represented over
fields of characteristic 2 can be solved in 𝑂∗(2𝐷) time.

Theorem 5.2 also has an implication for the 𝑘-Distinct Branching problem. Its input
is a directed graph 𝐺, two vertices 𝑠 and 𝑡, and an integer 𝑘. The problem asks whether 𝐺
admits an out-branching (𝑉, 𝐵+𝑠 ) rooted at 𝑠 and in-branching (𝑉, 𝐵−𝑡 ) rooted at 𝑡 such that
|𝐵+𝑠Δ𝐵−𝑡 | ≥ 𝑘. The NP-hardness is even for 𝑠 = 𝑡 and 𝑘 = 2𝑛 − 2 [7]. Since Bang-Jensen and
Yeo [11] asked whether 𝑘-Distinct Branching is FPT for 𝑠 = 𝑡, this problem has been studied in
parameterized complexity. We briefly survey the history here. Bang-Jensen et al. [10] gave an
FPT algorithm for strongly connected graphs. Later, Gutin et al. [60] showed that 𝑘-Distinct
Branching on arbitrary directed graphs can be solved in 𝑂∗(2𝑂(𝑘2 log2 𝑘)) time for 𝑠 = 𝑡. Very
recently, Bang-Jensen et al. [9] designed an 𝑂∗(2𝑂(𝑘 log 𝑘))-time algorithm. They asked whether
𝑘-Distinct Branchings can be solved in𝑂∗(2𝑂(𝑘)) time. As a corollary of Theorem 5.2, we answer
this question in the affirmative. Recall that the determinant of the symbolic Laplacian matrix
yields an enumerating polynomial for out-branchings and for in-branchings by reversing arcs
(see [22, 57]). Thus, Theorem 5.2 implies:

COROLLARY 5.8. 𝑘-Distinct Branchings can be solved in 𝑂∗(2𝑘) time.
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6. Path, cycle and linkage problems

One of the main application areas of algebraic algorithms in parameterized complexity is for
path and cycle problems. Indeed, one of the earliest examples of an algebraic FPT algorithm
was for 𝑘-Path, finding a path on 𝑘 vertices in a possibly directed graph, ultimately improved
to time 𝑂∗(2𝑘) [71, 102, 74]. Another breakthrough result in the area is Björklund’s algorithm
for Hamiltonicity, finding a Hamiltonian path in an undirected graph, in time 𝑂∗(1.66𝑛) [17],
and more generally solving 𝑘-Path in undirected graphs in time 𝑂∗(1.66𝑘) [20]. In fact, even
the apparently simple question of 𝑘-Path, 𝑘-Cycle and Hamiltonicity problems remains a
highly active area of research. This is particularly true in directed graphs; however, in this
section we restrict ourselves to undirected graphs. We also restrict ourselves solely to matroids
represented over fields of characteristic 2, since we need the power of the odd support sieving
method (Theorem 3.4).

Another, subtly different problem is to find a cycle of length at least 𝑘, which we refer
to as the Long Cycle problem. Unlike the corresponding “Long Path” problem, being able to
find a 𝑘-cycle in time 𝑂∗(𝑐𝑘) does not guarantee being able to solve Long Cycle in the same
time. On directed graphs, the first algorithm for Long Cycle with running time 𝑂∗(2𝑂(𝑘)) was
given by Fomin et al. [53] using representative families (cf. Sections 1.2.5 and 8); the current
record is𝑂∗(4𝑘) by Zehavi [104]. For undirected graphs, the currently fastest algorithm for Long
Cycle is by reduction to the more general Long (𝑠, 𝑡)-Path problem. Note that, again unlike
unrooted Long Path, asking for an (𝑠, 𝑡)-path of length at least 𝑘 is a sensible question that does
not trivially reduce to rooted 𝑘-Path (i.e., to finding an (𝑠, 𝑡)-path of length exactly 𝑘). In turn,
the fastest algorithm for Long (𝑠, 𝑡)-Path is by Fomin et al. [50] in time 𝑂∗(2𝑘); see below.

In a different direction, in the problem 𝑇 -Cycle (a.k.a. 𝐾-Cycle), the input is an undirected
graph 𝐺 and a set of vertices 𝑇 ⊆ 𝑉 (𝐺), and the question is whether there is a simple cycle in 𝐺
that visits every vertex in 𝑇 . As mentioned in the introduction, this problem was known to be
FPT using an algorithm working over heavy graph structural methods [67], and it was a major
surprise when Björklund, Husfeldt and Taslaman [21] showed an 𝑂∗(2|𝑇 |)-time algorithm based
on polynomial cancellations. Specifically, they defined a polynomial, roughly corresponding to
walks without U-turns, and showed in an intricate argument that an 𝑂∗(2|𝑇 |)-time sieving step
over this polynomial tests for 𝑇 -cycles in 𝐺. Wahlström [101] adapted Björklund’s determinant
sums method [17] to the𝑇 -Cycle problem and thereby showed that it even allows for a polynomial
compression, i.e., a reduction in polynomial time to an object of size |𝑇 |𝑂(1) from which the
existence of a 𝑇 -cycle can be decided.

Recently, Fomin et al. [50] considered problems pushing the envelope on the method of
Björklund, Husfeldt and Taslaman [21], showing more involved cancellation-based algorithms
for more general path and cycle problems, and also extending the scope to linkages. Let
𝐺 = (𝑉, 𝐸) be a graph, and 𝑆,𝑇 ⊆ 𝑉 be vertex sets. An (𝑆, 𝑇 )-linkage in 𝐺 is a set P of pairwise
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vertex-disjoint (𝑆,𝑇 )-paths. The order of the linkage is 𝑝 = |P |. We say the linkage is perfect
if |P | = |𝑆 | = |𝑇 |. Let the Colourful (𝑆, 𝑇 )-Linkage problem refer to the following question.
Let 𝐺 = (𝑉, 𝐸), 𝑆,𝑇 ⊆ 𝑉 , and an integer 𝑘 be given. Furthermore, let 𝑐 : 𝑉 → [𝑛] be a not
necessarily proper vertex colouring, also given as input. Then the question is: Does 𝐺 contain a
perfect (𝑆,𝑇 )-linkage using vertices of at least 𝑘 colours? (More generally, one may ask of an
(𝑆,𝑇 )-linkage of order 𝑝, but this is essentially equivalent as we can create new sets 𝑆′ and 𝑇 ′ of
𝑝 vertices each, and connect them to 𝑆 and 𝑇 .) Fomin et al. showed, using complex polynomial
cancellation arguments, that Colourful (𝑆, 𝑇 )-Linkage can be solved in time 𝑂∗(2𝑘+𝑝) where
𝑝 = |𝑆 | = |𝑇 | [50]. We show the following improvement.

THEOREM 6.1. Colourful (𝑆,𝑇 )-Linkage for undirected graphs can be solved in randomized
time 𝑂∗(2𝑘) and polynomial space.

As Fomin et al. note, even the problem Colourful (𝑠, 𝑡)-Path (being the case where |𝑆 | =
|𝑇 | = 1) has a multitude of applications. Among others, their result implies solving Long (𝑠, 𝑡)-
Path and Long Cycle in time𝑂∗(2𝑘) – i.e., in an undirected graph, find an (𝑠, 𝑡)-path, respectively
a cycle, of length at least 𝑘 in time 𝑂∗(2𝑘), and 𝑇 -Cycle in time 𝑂∗(2|𝑇 |). All of these improve on
or match the previous state of the art.

Fomin et al. also consider the more general setting of frameworks, as defined by Lovász
(and previously known as pregeometric graphs or matroid graphs) [50, 79, 81]. Let 𝐺 = (𝑉, 𝐸) be
an undirected graph and 𝑀 = (𝑉,I) a matroid over the vertex set of 𝐺. Let 𝑆, 𝑇 ⊆ 𝑉 and let 𝑘
be an integer. Fomin et al. show that if 𝑀 is represented over a finite field of order 𝑞, then an
(𝑆,𝑇 )-linkage of rank at least 𝑘 in 𝑀 can be found in time 𝑂∗(2𝑝+𝑂(𝑘2 log(𝑘+𝑞))) [50]. We note that
if 𝑀 is represented over a field of characteristic 2, then we get a significant speedup over their
algorithm.

THEOREM 6.2. Given an undirected graph 𝐺 = (𝑉, 𝐸), a matroid 𝑀 over 𝑉 represented over a
field of characteristic 2, sets 𝑆, 𝑇 ⊆ 𝑉 and an integer 𝑘, in randomized time 𝑂∗(2𝑘) and polynomial
space we can find a perfect (𝑆, 𝑇 )-linkage in 𝐺 which has rank at least 𝑘 in 𝑀 .

Theorem 6.1 follows from Theorem 6.2 by letting 𝑀 be a partition matroid. Concretely, let
𝑀 = (𝑉,I) be the linear matroid with a representation where each vertex 𝑣 ∈ 𝑉 is associated
with the 𝑐(𝑣)-th 𝑛-dimensional unit vector 𝑒𝑐(𝑣) . Then a linkage has rank at least 𝑘 if and only if
it visits vertices of at least 𝑘 different colours.

We note that directed variants of the above results are excluded, as it is NP-hard to find a
directed (𝑠, 𝑡)-path with even two distinct colours (see Fomin et al. [50]).

Finally, Fomin et al. [50] ask as an open question whether Long (𝑠, 𝑡)-Path and Long Cycle
can be solved in 𝑂((2 − 𝜀)𝑘) for any 𝜀 > 0. We show this in the affirmative, giving an algorithm
for both problems that matches the running time for Undirected Hamiltonicity. Our algorithm
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is a mild reinterpretation of the narrow sieves algorithm for 𝑘-Path [20], rephrased in terms of
an external matroid labelling the vertices of 𝐺.

THEOREM 6.3. Long Cycle and Long (𝑠, 𝑡)-Path can be solved in randomized time 𝑂∗(1.66𝑘)
and polynomial space.

All the above theorems follow from the same underlying enumerating polynomial result.
At the heart of the Hamiltonicity algorithm of Björklund [17], and the polynomial compression
for 𝑇 -Cycle of Wahlström [101], is the result that given a graph 𝐺 = (𝑉, 𝐸) and 𝑠, 𝑡 ∈ 𝑉 , there
is a particular almost symmetric matrix 𝐴𝑠𝑡 such that det 𝐴𝑠𝑡 effectively enumerates (𝑠, 𝑡)-
paths, with some additional “padding” terms (see below). We note that this statement can be
generalized to linkages: Given 𝐺 = (𝑉, 𝐸) and 𝑆, 𝑇 ⊆ 𝑉 there is a matrix 𝐴𝑆𝑇 such that det 𝐴𝑆𝑇
enumerates padded perfect (𝑆,𝑇 )-linkages. Furthermore, the “padding” is compatible with the
odd sieving approach of Theorem 3.4. We review this construction next.

6.1 The linkage-generating determinant

We now present the algebraic statements that underpin the algorithms in this section. Like the
rest of the paper, these algorithms are based on algebraic sieving over a suitable enumerating
polynomial. Here, we present this polynomial, in the form of a linkage-enumerating determinant.

6.1.1 Path enumeration

We begin with the simpler case of enumerating (𝑠, 𝑡)-paths. This result is from Wahlström [101],
repeated for completeness, but is also implicitly present in Björklund [17]. We note (𝑠, 𝑡)-path
enumeration is still far from a trivial conclusion, since we want to enumerate only paths
without also enumerating (𝑠, 𝑡)-walks. Indeed, there is a catch, since otherwise we could solve
Hamiltonicity in polynomial time by searching for an (𝑠, 𝑡)-path term of degree 𝑛. Specifically,
we generate padded (𝑠, 𝑡)-paths, which is a union of (𝑠, 𝑡)-paths and 2-cycles; details follow.

Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑠, 𝑡 ∈ 𝑉 be vertices. We show that a modified
Tutte matrix of 𝐺 can be used to produce a polynomial that effectively enumerates (𝑠, 𝑡)-paths
in 𝐺. This was previously used in the polynomial compression for the 𝑇 -cycle problem [101].

Let 𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸} be a set of edge variables. Let 𝑃 be an (𝑠, 𝑡)-path in 𝐺 and define

𝑋 (𝑃) =
∏
𝑒∈𝐸(𝑃)

𝑥𝑒.

A 2-cycle term over (𝐺, 𝑋) is a term 𝑥2
𝑒 for some 𝑒 ∈ 𝐸; note that as a polynomial, if 𝑒 = 𝑢𝑣 then

this term corresponds to the closed walk 𝑢𝑣𝑢 in 𝐺. A padded (𝑠, 𝑡)-path term for an (𝑠, 𝑡)-path 𝑃
is a term

𝑋 (𝑃) ·
∏
𝑒∈𝑀

𝑥2
𝑒 ,
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where 𝑀 is a (not necessarily perfect) matching of 𝐺 −𝑉 (𝑃). We assume by edge subdivision
that 𝑠𝑡 ∉ 𝐸.

LEMMA 6.4. Assume (e.g. via edge subdivision) that 𝑠𝑡 ∉ 𝐸. There is a matrix 𝐴𝑠𝑡 whose entries
are linear polynomials over a field of characteristic 2 such that det 𝐴𝑠,𝑡 enumerates padded (𝑠, 𝑡)-
path terms.

PROOF . Let 𝐴 be the Tutte matrix of 𝐺 over a sufficiently large field of characteristic 2. Define
𝐴𝑠𝑡 starting from 𝐴 modified by letting 𝐴𝑠𝑡 [𝑣, 𝑣] = 1 for every 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}, 𝐴𝑠𝑡 [𝑠, 𝑡] = 0,
𝐴𝑠𝑡 [𝑡, 𝑠] = 1 and 𝐴𝑠𝑡 [𝑡, 𝑣] = 0 for every 𝑣 ∈ 𝑉 − 𝑠. We claim that det 𝐴𝑠𝑡 enumerates padded
(𝑠, 𝑡)-path terms as described. This follows from arguments in Wahlström [101]. Viewing the
rows and columns of 𝐴𝑠𝑡 as vertices of 𝐺, each term of det 𝐴𝑠𝑡 can be viewed as an oriented cycle
cover of 𝐺, i.e., a partition of𝑉 into oriented cycles (which may include cycles of length 1 where
a diagonal entry of 𝐴𝑠𝑡 is used). Due to the modifications made to 𝐴𝑠𝑡 above, 𝑡 has 𝑠 as its unique
out-neighbour in every oriented cycle cover, and for every vertex 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} the loop term
on 𝑣 can be used in the cycle cover. Furthermore, every other edge of the graph is bidirected
(i.e., symmetric). Hence, if a cycle cover C contains any cycle 𝐶 of at least three edges which
does not use the arc 𝑡𝑠, then the orientation of 𝐶 can be reversed to produce a distinct oriented
cycle cover C′, corresponding to a distinct term of the determinant. Let a reversible cycle in an
oriented cycle cover C be a cycle 𝐶 in C which contains at least three edges and does not use
the arc 𝑡𝑠. To argue that all oriented cycle covers with reversible cycles cancel over a field of
characteristic 2, we define the following pairing. Fix an arbitrary ordering < on 𝑉 . For each
oriented cycle cover C with at least one reversible cycle, select such a cycle 𝐶 ∈ C by the earliest
incidence of a vertex of 𝐶 according to <, and let C′ be the result of reversing 𝐶 in C. Since the
selection of 𝐶 is independent of orientation, this map defines a pairing between C and C′. By
the symmetry of 𝐴𝑠𝑡, C and C′ contribute precisely the same term to det 𝐴𝑠𝑡. Generalising the
argument, every oriented cycle cover C with at least one reversible cycle cancels in det 𝐴𝑠𝑡 in
characteristic 2.

For any oriented cycle cover C that is not cancelled by this argument, we note that the
monomial contributed by C to det 𝐴𝑠𝑡 is unique (recall that there is one distinct variable 𝑥𝑒
for every edge 𝑒 of 𝐺). Furthermore, let 𝑒 = 𝑢𝑣 be an edge such that 𝑥𝑒 occurs in a monomial
𝑚 of det 𝐴𝑠𝑡 corresponding to an oriented cycle cover C. If 𝑒 occurs in a 2-cycle in C, then 𝑚

contains 𝑥2
𝑒 ; otherwise 𝑒 occurs in the (𝑠, 𝑡)-cycle 𝐶 with a passage such as 𝑢𝑣𝑤, and 𝑥𝑒 has

degree 1 in 𝑚. ■

Note the slightly subtle interaction between 2-cycle-terms in det 𝐴𝑠𝑡 and applications of
Theorem 3.4. Since variables in 2-cycle-terms have even degree, they are not relevant for the
matroid basis sieving of the algorithm, which will therefore effectively sieve directly over (𝑠, 𝑡)-
paths in 𝐺. However, the 2-cycle terms prevent us from (for example) finding a Hamiltonian
(𝑠, 𝑡)-path in polynomial time by sieving for terms of degree 𝑛. (However, using a weight-tracing
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variable it is possible to find a shortest solution, and to check for the existence of an odd or even
solution.)

6.1.2 Linkage enumeration

Through the same principle, we can construct a matrix whose determinant enumerates perfect
(𝑆,𝑇 )-linkages. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and let 𝑆,𝑇 ⊆ 𝑉 where |𝑆 | = |𝑇 |. As above,
define a set of edge variables 𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸}. For an (𝑆,𝑇 )-linkage P, define

𝑋 (P) =
∏

𝑒∈𝐸(P)
𝑥𝑒.

A padded (𝑆,𝑇 )-linkage term for an (𝑆,𝑇 )-linkage P is defined as a term

𝑋 (P) ·
∏
𝑒∈𝑀

𝑥2
𝑒 ,

where again 𝑀 is a (not necessarily perfect) matching in 𝐺 −𝑉 (P). Since we are interested in
perfect (𝑆,𝑇 )-linkages we make some simplifications. If there is a vertex 𝑣 ∈ 𝑆∩𝑇 , simply delete
𝑣 from 𝐺, 𝑆 and 𝑇 since the only possible path on 𝑣 in a perfect (𝑆, 𝑇 )-linkage is the length-0
path 𝑣. Hence we assume 𝑆 ∩ 𝑇 = ∅. We also assume by edge subdivision that 𝑆 ∪ 𝑇 is an
independent set: Note that no (𝑆,𝑇 )-linkage needs to use an edge of 𝐺[𝑆] or 𝐺[𝑇 ], and a perfect
(𝑆,𝑇 )-linkage cannot use such an edge. Furthermore, any edge between 𝑆 and 𝑇 can be safely
subdivided without altering the structure of linkages (and, e.g., give the subdividing vertex the
zero vector in the matroid representation).

LEMMA 6.5. Assume that 𝑆 ∩ 𝑇 = ∅ and that 𝑆 ∪ 𝑇 is an independent set. There is a matrix 𝐴𝑆𝑇
over a field of characteristic 2 such that det 𝐴𝑆𝑇 enumerates padded perfect (𝑆, 𝑇 )-linkage terms.

PROOF . We follow the proof of Lemma 6.4, suitably modified. Let 𝐴 be the Tutte matrix of
𝐺 over a sufficiently large field of characteristic 2. Let 𝑆 = {𝑠1, . . . , 𝑠𝑝} and 𝑇 = {𝑡1, . . . , 𝑡𝑝}
with arbitrary ordering. We obtain 𝐴𝑆𝑇 from 𝐴 by letting 𝐴𝑆𝑇 [𝑣, 𝑣] = 1, 𝐴𝑆𝑇 [𝑠, 𝑠], 𝐴𝑆𝑇 [𝑡, 𝑡] = 0,
𝐴𝑆𝑇 [𝑣, 𝑠] = 0 and 𝐴𝑆𝑇 [𝑡, 𝑣] = 0 for every 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉 \ (𝑆 ∪ 𝑇 ). Furthermore, we let
𝐴𝑆𝑇 [𝑡𝑖 , 𝑠𝑖] = 1 for 𝑖 ∈ [𝑝] and 𝐴𝑆𝑇 [𝑡𝑖 , 𝑠 𝑗] = 0 otherwise. Essentially, one can think of 𝐴𝑆𝑇 as the
Tutte-like matrix on the directed graph 𝐺′ where every 𝑣 ∈ 𝑉 \ (𝑆 ∪ 𝑇 ) has a self-loop and the
incoming arcs of 𝑆 and outgoing arcs of 𝑇 are replaced by the induced matching {𝑡𝑖𝑠𝑖 | 𝑖 ∈ [𝑝]}.

We claim that det 𝐴𝑆𝑇 enumerates padded perfect (𝑆, 𝑇 )-linkage terms as described. This
mimics the argument of Lemma 6.4: the terms of det 𝐴𝑆𝑇 have a one-to-one correspondence
with oriented cycle covers of 𝐺′. Note that all other edges of 𝐺′ not incident with 𝑆 ∪ 𝑇 are
bidirected (i.e., symmetric). Hence, if a cycle cover C contains any cycle 𝐶 of length at least 3
disjoint from 𝑆 ∪ 𝑇 , then the orientation of 𝐶 can be reversed to produce a distinct oriented
cycle cover C′. We call such a cycle reversible. To argue that all oriented cycle covers with
reversible cycles cancel over a field of characteristic 2, we define the following pairing. Fix an
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arbitrary ordering < on 𝑉 . For each oriented cycle cover C with at least one reversible cycle,
select such a cycle 𝐶 ∈ C by the earliest incidence of a vertex of 𝐶 according to <, and let C′ be
the result of reversing 𝐶 in C. Since the selection of 𝐶 is independent of orientation, this map
defines a pairing between C and C′. By the symmetry of 𝐴𝑆𝑇 , C and C′ contribute precisely the
same term to det 𝐴𝑆𝑇 . Generalising the argument, every oriented cycle cover C with at least
one reversible cycle cancels in det 𝐴𝑆𝑇 in characteristic 2.

It remains to show that any oriented cycle cover where every cycle either intersects 𝑆 ∪ 𝑇
or has length at most 2 corresponds to a monomial that does not cancel in det 𝐴𝑆𝑇 , and that
such terms are precisely padded perfect (𝑆, 𝑇 )-linkages. Let C be such an oriented cycle cover.
We note that the monomial contributed by C is a unique “fingerprint” of C as an undirected
cycle cover, since all edges correspond to distinct variables. Hence if C is cancelled, it has to
be against a distinct oriented cycle cover C′ over the same underlying set of undirected edges.
However, reversing a cycle 𝐶 of length at most 2 yields precisely the same oriented cycle 𝐶 again,
and any cycle 𝐶 intersecting 𝑆 ∪ 𝑇 is non-reversible. The latter follows since the only edges
leaving 𝑇 or entering 𝑆 in 𝐺′ are directed edges from 𝑇 to 𝑆, so reversing 𝐶 leads to attempting
to use a non-existing edge from 𝑆 to 𝑇 . Hence any oriented cycle cover C that consists of cycles
intersecting 𝑆 ∪ 𝑇 , 2-cycles and 1-cycles survives cancellation.

We next show that the surviving oriented cycle cover terms correspond directly to padded
perfect (𝑆,𝑇 )-linkages. For any perfect (𝑆, 𝑇 )-linkage P padded with a matching 𝑀 , we can
construct a non-cancelled oriented cycle cover: connect the paths of P up using the edges 𝑡𝑖𝑠𝑖 ,
𝑖 ∈ [𝑝]. This defines a vertex-disjoint cycle packing on 𝑉 (P) which covers all of 𝑆 ∪ 𝑇 . The
number of cycles in the cycle cover depends on how the paths in P connect their endpoints,
but the number of cycles is immaterial to the correctness; it is enough that P produces a
unique non-padded term. Together with 𝑀 and 1-cycles we get an oriented cycle cover with no
reversible cycles.

Finally, let C be a surviving oriented cycle cover, let C′ ⊆ C be the set of cycles of length
at least 3 (which includes every cycle on 𝑆 ∪ 𝑇 by construction), and let P be the set of paths
produced by deleting any arcs 𝑡𝑠, 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 from the cycles of C′. We claim that P is a perfect
(𝑆,𝑇 )-linkage. Indeed, since C is a cycle cover every vertex of 𝑆 ∪ 𝑇 occurs in a cycle, and there
are no cycles on 𝑆 ∪ 𝑇 of length 1 or 2. Hence 𝑆 ∪ 𝑇 occur in P. Furthermore, they clearly
occur as endpoints, and oriented such that every path in P leads from 𝑆 to 𝑇 . The cycles of
C \ C′ correspond to the padding of the term produced. Thus, det 𝐴𝑆𝑇 enumerates all padded
(𝑆,𝑇 )-linkage terms. ■

6.2 Rank 𝒌 (𝑺,𝑻)-linkage

We now formally note Theorem 6.2 (from which Theorem 6.1 follows). We begin by bridging
the gap between edge variables (from Lemma 6.5) and vertex variables (from the labels of
matroid 𝑀).
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LEMMA 6.6. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑆, 𝑇 ⊆ 𝑉 disjoint vertex sets so that
𝐺[𝑆 ∪ 𝑇 ] is edgeless. Let 𝑋𝑉 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } and 𝑋𝐸 = {𝑥𝑒 | 𝑒 ∈ 𝐸}. There is a polynomial
𝑃(𝑋𝑉 , 𝑋𝐸) which can be evaluated in polynomial time over any field of characteristic 2 such that
the following hold:

1. For every perfect (𝑆, 𝑇 )-linkage P there is a monomial in 𝑃(𝑋𝑉 , 𝑋𝐸) whose odd support
corresponds to 𝑉 (P) ∪ 𝐸(P)

2. For every monomial 𝑚 in 𝑃(𝑋𝑉 , 𝑋𝐸) with odd support𝑈 ⊆ 𝑋𝑉 and 𝐹 ⊆ 𝑋𝐸, 𝐹 is the edge set
of a perfect (𝑆,𝑇 )-linkage P where𝑈 ⊆ 𝑉 (P)

PROOF . Let 𝐴𝑆𝑇 be the matrix constructed in Lemma 6.5 over a new set of variables 𝑋′𝐸 = {𝑥′𝑒 |
𝑒 ∈ 𝐸}. Thus, det 𝐴𝑆𝑇 enumerates padded perfect (𝑆.𝑇 )-linkages over the variable set 𝑋′𝐸. We
evaluate det 𝐴𝑆𝑇 with an assignment where

𝑥′𝑢𝑣 ← 𝑥𝑢𝑣(𝑥𝑢 + 𝑥𝑣),

and define
𝑃(𝑋𝑉 , 𝑋𝐸) = det 𝐴𝑆𝑇 ·

∏
𝑠∈𝑆

𝑥𝑠.

We claim that this produces monomials precisely as described.
First, let P be a perfect (𝑆, 𝑇 )-linkage, and let𝑚 = 𝑋 (P) = ∏

𝑒∈𝐸(P) 𝑥
′
𝑒, with no padding (i.e.,

with 1-cycles on all other vertices). Then 𝑚 is a monomial produced by det 𝐴𝑆𝑇 . We consider
the expansion of 𝑚 into monomials over 𝑋𝑉 ∪ 𝑋𝐸 resulting from the evaluation. We claim that
the term ∏

𝑣∈𝑉 (P)
𝑥𝑣 ·

∏
𝑒∈𝐸(P)

𝑥𝑒

is contributed multilinearly precisely once in 𝑃(𝑋𝑉 , 𝑋𝐸). Indeed, for every edge 𝑒 = 𝑢𝑣 ∈ 𝐸(P),
effectively the expansion has to select either the contribution 𝑥𝑢 or 𝑥𝑣. Since 𝑃(𝑋𝑉 , 𝑋𝐸) is “pre-
padded” by

∏
𝑠∈𝑆 𝑥𝑠, every edge 𝑠𝑣 leaving 𝑠 ∈ 𝑆 in P must be oriented to produce 𝑥𝑣 instead, or

otherwise 𝑥𝑠 gets even degree. It follows that the only production that covers every variable
𝑥𝑣 for 𝑣 ∈ 𝑉 (P) is when every edge 𝑢𝑣, oriented in P from 𝑆 to 𝑇 as (𝑢, 𝑣), contributes its head
variable 𝑥𝑣.

Conversely, assume that 𝑃(𝑋𝑉 , 𝑋𝐸) has a monomial 𝑚 where the odd support consists of
𝑈 ⊆ 𝑋𝑉 and 𝐹 ⊆ 𝑋𝐸. Then there is a perfect (𝑆,𝑇 )-linkage P such that 𝐹 = {𝑥𝑒 | 𝑒 ∈ 𝐸(P)}. We
claim that every variable 𝑥𝑣 ∈ 𝑈 comes from an edge variable 𝑥′𝑒 where 𝑥𝑒 ∈ 𝐹. Indeed, the only
other production of 𝑥𝑣 would be from a padding 2-cycle 𝑢𝑣𝑢, which contributes

(𝑥𝑢𝑣(𝑥𝑢 + 𝑥𝑣))2 = 𝑥2
𝑢𝑣(𝑥2

𝑢 + 𝑥2
𝑣)
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since we are working over a field of characteristic 2. Since no padding cycles intersect 𝑆 ∪ 𝑇
and since padding 2-cycles evidently do not contribute to the odd support of 𝑚, the conclusion
follows. ■

We can now finish the result. We recall the statement of the theorem.

THEOREM 6.2. (Restated) Given an undirected graph 𝐺 = (𝑉, 𝐸), a matroid 𝑀 over 𝑉 repre-
sented over a field of characteristic 2, sets 𝑆, 𝑇 ⊆ 𝑉 and an integer 𝑘, in randomized time 𝑂∗(2𝑘)
and polynomial space we can find a perfect (𝑆,𝑇 )-linkage in 𝐺 which has rank at least 𝑘 in 𝑀 .

PROOF . Let 𝐼 = (𝐺, 𝑀, 𝑆, 𝑇 , 𝑘) be the input. As noted before Lemma 6.5 we can safely modify
𝐼 so that 𝑆 ∩ 𝑇 = ∅ and 𝐺[𝑆 ∪ 𝑇 ] is edgeless. Let 𝑋𝑉 = {𝑥𝑣 | 𝑣 ∈ 𝑉 } and 𝑋𝐸 = {𝑥𝑒 | 𝑒 ∈ 𝐸} and
let 𝑃(𝑋𝑉 , 𝑋𝐸) be the polynomial of Lemma 6.6. Let 𝐴𝑀 be the representation of 𝑀 truncated to
rank 𝑘 and dimension 𝑘 × |𝑉 |. Recall that this can be constructed efficiently, possibly by moving
to an extension field F (see Section 2.1). Furthermore, we assume |F| = Ω(𝑛) for the sake of
vanishing error probability; again, this can be arranged by moving to an extension field. Now,
we use Theorem 3.4 to sieve over 𝑃(𝑋𝑉 , 𝑋𝐸) for a monomial whose odd support in 𝑋𝑉 spans 𝐴𝑀 .
By Lemma 6.6, if there is such a monomial 𝑚 then the vertex set of the monomial is contained
in a perfect (𝑆,𝑇 )-linkage P, hence there is a perfect (𝑆,𝑇 )-linkage P such that 𝑉 (P) spans 𝐴𝑀 .
Conversely, if there is a perfect (𝑆,𝑇 )-linkage P such that 𝑉 (P) spans 𝐴𝑀 , then there is also
a monomial 𝑚 of 𝑃(𝑋𝑉 , 𝑋𝐸) such that the odd support of 𝑚 spans 𝐴𝑁 . The running time and
failure probability comes from Theorem 3.4 and |F|. ■

We note a handful of consequences (although the variations on finding shortest solutions
need a little bit more introspection of the proof).

COROLLARY 6.7. The following problems can be solved in randomized time 𝑂∗(2𝑘) and poly-
nomial space.

1. Finding a perfect (𝑆,𝑇 )-linkage of total length at least 𝑘
2. In a vertex-coloured graph, finding a perfect (𝑆, 𝑇 )-linkage which uses at least 𝑘 different

colours
3. Given a set of terminals 𝐾 ⊆ 𝑉 (𝐺) with |𝐾 | = 𝑘, finding a perfect (𝑆, 𝑇 )-linkage that visits

every vertex of 𝐾
4. Given a matroid 𝑀 over 𝑉 ∪ 𝐸 of total rank 𝑘, represented over a field of characteristic 2,

finding a perfect (𝑆, 𝑇 )-linkage P such that 𝐸(P) ∪𝑉 (P) is independent in 𝑀

Furthermore, for each of these settings we can find a shortest solution, or a shortest solution of
odd, respectively even total length.

PROOF . The first three applications follow as in the discussion at the start of this section, by
assigning appropriate vectors to the vertices of 𝐺. To additionally find a shortest, respectively



49 / 75 Determinantal Sieving
shortest odd/even solution, attach a weight-tracing variable 𝑧 to every edge variable 𝑥𝑒 and look
for a non-zero term in the sieving whose degree in 𝑧 is minimum (respectively minimum subject
to having odd/even degree). For every perfect (𝑆,𝑇 )-linkage P, there is a multitude of padded
productions, but there is a unique monomial 𝑚 where every vertex 𝑣 ∉ 𝑉 (P) is padded using a
1-cycle (such that only edge variables corresponding to 𝐸(P) occur in𝑚). Finding this minimum
degree therefore corresponds to finding the shortest length |P | for a solution P. Finally, note
that padding terms always come in pairs, hence padding 𝑚 does not change its parity in 𝑧.

For the final case, first let 𝑅 = 𝑆 ∩ 𝑇 . We delete 𝑅 from 𝑆, 𝑇 and 𝐺, contract 𝑅 in 𝑀 , and
set 𝑘 ← 𝑘 − |𝑅|. We then proceed as follows. Attach a weight-tracing variable 𝑧 to every edge
variable 𝑥𝑒. Guess the value of 𝑘𝑒 = |𝐸(P)| and note that |𝑉 (P)| = |𝐸(P)| + |𝑆 | for every perfect
(𝑆,𝑇 )-linkage; indeed, since 𝑆 ∩𝑇 = ∅, every path contains an edge, hence every path 𝑃 ∈ P is a
tree with |𝑉 (𝑃) | = |𝐸(𝑃) | + 1. Thus set 𝑘′ = 2𝑘𝑒 + |𝑆 |, restricting the guess for 𝑘𝑒 to values such
that 𝑘′ ≤ 𝑘, and truncate 𝑀 to rank 𝑘′. Use interpolation to extract terms of 𝑃(𝑋𝑉 , 𝑋𝐸) of degree
𝑘𝑒 in 𝑋𝐸 and use Theorem 3.2 to check for multilinear monomials that span the truncation of
𝑀 . As above, if there is a solution P, with the parameter 𝑘𝑒 = |𝐸(P)| as guessed, then there is
also a monomial 𝑚 in 𝑃(𝑋𝑉 , 𝑋𝐸) of degree precisely 𝑘𝑒 in 𝑋𝐸 such that 𝑚 is multilinear and its
support corresponds precisely to 𝐸(P) ∪𝑉 (P). Furthermore, 𝑚 is of degree precisely 𝑘′, hence
𝑚 precisely spans the truncation of 𝑀 . Any term in 𝑃(𝑋𝑉 , 𝑋𝐸) of total degree 𝑘𝑒 in 𝑋𝐸 that is
not of this form will either contribute fewer than 𝑘𝑒 + |𝑆 | variables from 𝑉 (P) or will fail to be
multilinear, and hence will fail to pass Theorem 3.2. ■

6.3 Faster Long (𝒔, 𝒕)-Path and Long Cycle

Fomin et al. [50] ask whether Long (𝑠, 𝑡)-Path or Long Cycle – i.e., the problem of finding,
respectively, an (𝑠, 𝑡)-path or a cycle of length at least 𝑘 – can be solved in time 𝑂∗((2 − 𝜀)𝑘) for
any 𝜀 > 0, given that there is an algorithm solving 𝑘-Cycle in time 𝑂∗(1.66𝑘) by Björklund et
al. [20]. We answer in the affirmative, showing that the algorithm of Björklund et al. can be
modified to solve Long (𝑠, 𝑡)-Path in time 𝑂∗(1.66𝑘) by working over the cycle-enumerating
determinant of Lemma 6.4. A corresponding algorithm for Long Cycle follows, by iterating
over all choices of (𝑠, 𝑡) as an edge of the cycle. We prove the following.

THEOREM 6.8. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑠, 𝑡 ∈ 𝑉 . There is a randomized
algorithm that finds an (𝑠, 𝑡)-path in 𝐺 of length at least 𝑘 in time 𝑂∗((4(

√
2 − 1))𝑘) = 𝑂∗(1.66𝑘)

and polynomial space.

The result takes the rest of the subsection. Like Björklund et al. [20], the algorithm is
based around randomly partitioning the vertex set of 𝐺 as 𝑉 = 𝑉1 ∪ 𝑉2, then use algebraic
sieving to look for an (𝑠, 𝑡)-path 𝑃 that splits “agreeably” between 𝑉1 and 𝑉2, in time better than
𝑂∗(2|𝑃 |). More specifically, we pick integers 𝑘𝑥 and 𝑘2 and define a matroid 𝑀 = 𝑀 (𝑘2, 𝑘𝑥) of
rank 𝑟 = 𝜂𝑘 for some 𝜂 < 3/4, and prove the following: Let 𝑃 be an (𝑠, 𝑡)-path that (1) intersects
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𝑉2 in precisely 𝑘2 vertices, (2) contains precisely 𝑘𝑥 edges that cross between 𝑉1 and 𝑉2, and (3)
has an edge set that spans 𝑀 . Then |𝑉 (𝑃) | ≥ 𝑘. We can then look for such a path by working
over Lemma 6.4. The details follow.

For a partition 𝑉 = 𝑉1 ∪ 𝑉2, let 𝐸1 = 𝐸(𝐺[𝑉1]), 𝐸2 = 𝐸(𝐺[𝑉2]) and 𝐸𝑋 = 𝐸 \ (𝐸1 ∪ 𝐸2) so
that 𝐸 = 𝐸1 ∪ 𝐸𝑋 ∪ 𝐸2 partitions 𝐸. Given a partition 𝑉 = (𝑉1, 𝑉2) and integers 𝑟1 and 𝑟2, define
a matroid 𝑀 (𝑟1, 𝑟2) as follows. Let 𝑀1 be a uniform matroid over 𝐸1 of rank 𝑟1. Let 𝑀2 be a
transversal matroid on ground set 𝐹 = 𝐸𝑋 ∪ 𝐸2, defined via the bipartite graph 𝐻 = (𝐹 ∪𝑉2, 𝐸𝐻)
where each 𝑒 ∈ 𝐹 is connected to every vertex 𝑣 ∈ 𝑒 ∩ 𝑉2 in 𝑉2. Furthermore, truncate 𝑀2 to
have rank 𝑟2. That is, a set 𝑆 ⊆ 𝐸𝑋 ∪ 𝐸2 is independent in 𝑀2 if and only if |𝑆 | ≤ 𝑟2 and 𝑆 has a
set of distinct representatives in 𝑉2. Let 𝑀 (𝑟1, 𝑟2) over ground set 𝐸 be the disjoint union of 𝑀1

and 𝑀2.

LEMMA 6.9. Let a partition 𝑉 = 𝑉1 ∪ 𝑉2 be given with corresponding edge partition 𝐸 =

𝐸1 ∪ 𝐸𝑋 ∪ 𝐸2. Furthermore let 𝑠, 𝑡 ∈ 𝑉 , and 𝑀 = 𝑀 (𝑟1, 𝑟2) for some 𝑟1, 𝑟2. Let 𝑃 be an (𝑠, 𝑡)-
path and let 𝐶 = 𝑃 + 𝑠𝑡 be the corresponding cycle. Assume there is a set 𝐹 ⊆ 𝐸(𝐶) such that
𝐸2 ∩ 𝐸(𝐶) ⊆ 𝐹 and 𝐹 is independent in 𝑀 , and let |𝐹 ∩ 𝐸𝑋 | = 𝑟𝑥 . Then |𝑉 (𝐶) | ≥ |𝐹 | + 𝑟𝑥 .

PROOF . Decompose 𝐶 cyclically into edges in 𝐸1 and 𝑉1-paths, i.e., paths whose endpoints lie
in 𝑉1 and whose internal vertices lie in 𝑉2, where we require each 𝑉1-path to have at least one
internal vertex. Let 𝑃′ be a 𝑉1-path. We claim that the initial and final edges of 𝑃′ cannot both
be in 𝐹. Indeed, all internal edges of 𝑃′ (except the initial and final edges) lie in 𝐹, and the full
set of edges 𝐸(𝑃′) intersect only |𝐸(𝑃′) | − 1 distinct vertices in 𝑉2, i.e., 𝐸(𝑃′) is dependent in 𝑀 .
Since this argument applies to every 𝑉1-path in 𝐶 separately, and since the 𝑉1-paths partition
the edges of 𝐸(𝐶) ∩ (𝐸𝑋 ∪ 𝐸2), we conclude

| (𝐸(𝐶) ∩ 𝐸𝑋) \ 𝐹 | ≥ 𝑟𝑥 .

Hence |𝑉 (𝐶) | = |𝐸(𝐶) | ≥ |𝐹 | + 𝑟𝑥 . ■

We show that this implies an algorithm for detecting long (𝑠, 𝑡)-paths.

LEMMA 6.10. Let𝑉 = 𝑉1∪𝑉2 be a partition and 𝑘, 𝑘2 and 𝑘𝑥 be integers. Let 𝜇 = max(𝑘2, 𝑘−𝑘𝑥/2).
There is a randomized, polynomial-space algorithm with running time 𝑂∗(2𝜇) that detects the
existence of an (𝑠, 𝑡)-path 𝑃 such that |𝑉 (𝑃) | ≥ 𝑘, |𝑉 (𝑃) ∩𝑉2 | = 𝑘2 and |𝐸(𝑃 + 𝑠𝑡) ∩ 𝐸𝑋 | = 𝑘𝑥 .

PROOF . Assume 𝑘 > 1 (or else solve the problem in polynomial time), and reject if 𝑘𝑥 is odd.
Remove any edge 𝑠𝑡 from the graph. We will use 𝑠𝑡 as a “virtual” edge to complete any (𝑠, 𝑡)-path
𝑃 into a cycle and use Lemma 6.9 to look for cycles 𝐶 = 𝑃 + 𝑠𝑡 of length at least 𝑘. Formally, let
𝐺 = (𝑉, 𝐸) be the input graph with no edge 𝑠𝑡 present, and let 𝐺′ = 𝐺 + 𝑠𝑡 be the graph with 𝑠𝑡
introduced.
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Let ℓ1 = max(0, 𝑘 − 𝑘𝑥/2 − 𝑘2) and note 𝜇 = 𝑘2 + ℓ1. Construct the matroid 𝑀 = 𝑀 (ℓ1, 𝑘2)

over 𝐺′ on the ground set 𝐸(𝐺′) = 𝐸(𝐺) + 𝑠𝑡. We will test whether 𝐺′ contains a cycle 𝐶 = 𝑃 + 𝑠𝑡
and an edge set 𝐹 ⊆ 𝐸(𝐶) such that the following hold.

1. 𝐹 is independent in 𝑀 ;
2. 𝐸(𝐶) ∩ 𝐸2 ⊆ 𝐹;
3. |𝐹 | ≥ 𝑘 − 𝑘𝑥/2;
4. |𝐹 ∩ 𝐸𝑋 | ≥ 𝑘𝑥/2.

By Lemma 6.9, if such a cycle exists, then |𝑉 (𝐶) | ≥ 𝑘. We show that the converse is true, i.e., if
𝐺′ contains a cycle 𝐶 = 𝑃 + 𝑠𝑡 with |𝑉 (𝐶) | ≥ 𝑘 then there is a set 𝐹 ⊆ 𝐸(𝐶) meeting the above
conditions, and we show how to use odd support sieving over the construction of Lemma 6.4 to
detect such a pair (𝐶, 𝐹).

We first define the polynomial 𝑃(𝑋) that we are working over. Let 𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸(𝐺′)}
be the variable set. Let 𝐴𝑠𝑡 be the matrix of Lemma 6.4 constructed from 𝐺, so that det 𝐴𝑠𝑡
enumerates padded (𝑠, 𝑡)-paths. Create additional variables 𝑧𝑥 and 𝑧2, and scale the entries
of 𝐴𝑠𝑡 so that variables 𝑥𝑒 for 𝑒 ∈ 𝐸2 are scaled by a factor of 𝑧2, and variables 𝑥𝑒 for 𝑒 ∈ 𝐸𝑋
are scaled by a factor of 𝑧𝑥 . Similarly define 𝑧𝑠𝑡 = 1 if 𝑠, 𝑡 ∈ 𝑉1: 𝑧𝑠𝑡 = 𝑧2 if 𝑠, 𝑡 ∈ 𝑉2; and 𝑧𝑠𝑡 = 𝑧𝑥
otherwise. Finally, we let 𝑃(𝑋) be the coefficient of 𝑧𝑘𝑥𝑥 𝑧

𝑘2−𝑘𝑥/2
2 in 𝑥𝑠𝑡𝑧𝑠𝑡 det 𝐴𝑠𝑡. Associate every

variable 𝑥𝑒, 𝑒 ∈ 𝐸(𝐺′) with the vector 𝑀 (𝑒) in the representation of 𝑀 . We claim that there is
an (𝑠, 𝑡)-path 𝑃 with |𝑉 (𝑃) | ≥ 𝑘, |𝑉 (𝑃) ∩ 𝑉2 | = 𝑘2 and |𝐸(𝑃 + 𝑠𝑡) ∩ 𝐸𝑋 | = 𝑘𝑥 if and only if 𝑃(𝑋)
contains a term whose odd support spans 𝑀 .

First, let 𝐶 = 𝑃 + 𝑠𝑡 be a simple cycle meeting the conditions. Orient 𝐶 arbitrarily cyclically
and let 𝐹 ⊆ 𝐸(𝐶) consist of every edge oriented towards a vertex of 𝑉2 together with ℓ1 further
edges of 𝐸(𝐶) ∩𝐸1; note |𝐸(𝐶) ∩𝐸1 | ≥ ℓ1. Also, 𝐹 contains precisely 𝑘𝑥/2 crossing edges. Further-
more, clearly 𝐹 is a basis for 𝑀 . Then 𝑥𝑠𝑡𝑧𝑠𝑡 det 𝐴𝑠𝑡 contains a monomial 𝑚 = 𝑥𝑠𝑡𝑧𝑠𝑡

∏
𝑒∈𝐸(𝑃) 𝑥𝑒𝑧𝑒

(for the suitable value of 𝑧𝑒 ∈ {1, 𝑧2, 𝑧𝑥}), by taking the term from the path 𝑃 and using only
loops for padding. The degree of 𝑧𝑥 in𝑚 is precisely 𝑘𝑥 and the degree of 𝑧2 is precisely 𝑘2−𝑘𝑥/2.
Hence 𝑚 also occurs in 𝑃(𝑋). This proves one direction of the equivalence.

Conversely, let 𝑚 be a term in 𝑃(𝑋) whose odd support spans 𝑀 , and let 𝐹 be a subset of
the odd support of 𝑚 such that 𝐹 is a basis for 𝑀 . Let 𝐶 be a cycle such that 𝑚 corresponds to a
padding of𝐶. By the definition of 𝑃(𝑋),𝑚 contains precisely 𝑘𝑥 crossing edges and 𝑘2−𝑘𝑥/2 edges
of 𝐸2, counting both𝐶 and any 2-cycles in the padding. Now, every vertex of𝑉2∩𝑉 (𝐶) contributes
two endpoints in 𝐸(𝐶), every edge of 𝐸2 ∩ 𝐸(𝐶) represents two such endpoints, and every edge
of 𝐸𝑋 ∩ 𝐸(𝐶) represents one such endpoint. Hence |𝑉2 ∩ 𝑉 (𝐶) | = |𝐸2 ∩ 𝐸(𝐶) | + |𝐸𝑋 ∩ 𝐸(𝐶) |/2.
Since not all edges counted in the degrees of 𝑧𝑥 and 𝑧2 must come from 𝐶 itself, this is upper
bounded by (𝑘2 − 𝑘𝑥/2) + 𝑘𝑥/2 = 𝑘2, with equality only if no padding 2-cycle uses an edge of
𝐸𝑋 ∪ 𝐸2. Furthermore, since 𝐹 spans 𝑀 , 𝐹 represents precisely 𝑘2 edges incident with distinct
vertices of 𝑉2, and since we sieve in the odd support 𝐹 cannot use edges from any padding
2-cycles. We conclude that 𝐶 contains precisely 𝑘𝑥 crossing edges and is incident with exactly 𝑘2
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vertices of 𝑉2. Finally, |𝑉 (𝐶) | ≥ 𝑟(𝑀) + 𝑘𝑥/2 ≥ 𝑘 by Lemma 6.9. The running time and failure
probability follow from Theorem 3.4. ■

It now only remains to combine Lemma 6.10 with a carefully chosen random partition
strategy for 𝑉 = 𝑉1 ∪𝑉2.

PROOF OF THEOREM 6.8 . Let 𝑃 be an (𝑠, 𝑡)-path and 𝐶 = 𝑃 + 𝑠𝑡 a cycle, and let |𝑉 (𝐶) | = 𝑐𝑘,
𝑐 ≥ 1. Sample a partition 𝑉 = 𝑉1 ∪ 𝑉2 by placing every vertex 𝑣 into 𝑉2 independently at
random with some probability 𝑝. For fix choices of 𝑝, 𝑘2 and ℓ1 we estimate the probability that
𝐶 contains precisely 𝑘2 vertices of 𝑉2 and precisely ℓ1 edges of 𝐸1. First, the probability that
|𝑉 (𝐶) ∩𝑉2 | = 𝑘2 is

𝑝1(𝑝, 𝑘2) :=
(
𝑐𝑘

𝑘2

)
𝑝𝑘2 (1 − 𝑝)𝑐𝑘−𝑘2 .

In particular, all
(𝑐𝑘
𝑘2

)
colourings of 𝑉 (𝐶) with 𝑘2 members of 𝑉2 are equally likely. Now, let us

count the number among those colourings where there are precisely 𝑘𝑥 transitions between
𝑉1 and 𝑉2. To eliminate edge cases, assume 𝑘2 < |𝑉 (𝑃) |, 𝑘𝑥 < 2𝑘2 and 𝑘𝑥 < 2(𝑐𝑘 − 𝑘2) and that
𝑘𝑥 is even, so that 𝑘𝑥 is achievable. To describe the outcomes, consider an initial shorter cycle
of 𝑘2 elements, all of which are coloured 𝑉2, and consider the different ways to place 𝑐𝑘 − 𝑘2

vertices coloured 𝑉1 between these so that there are precisely 𝑘𝑥 transitions between 𝑉1 and
𝑉2. Counting cyclically, this implies that there are precisely 𝑘𝑥/2 blocks of vertices coloured 𝑉1.
There are precisely (

𝑐𝑘 − 𝑘2 − 1
𝑘𝑥/2 − 1

)
ordered sequences of 𝑘𝑥/2 positive numbers that sum to 𝑐𝑘−𝑘2. Indeed, these can be thought of
as placing all 𝑐𝑘 − 𝑘2 elements in a sequence (coding the number 𝑐𝑘 − 𝑘2 in unary) and selecting
𝑘𝑥/2 − 1 out of the 𝑐𝑘 − 𝑘2 − 1 gaps between elements to insert a break between blocks. For
every such ordered sequence, we similarly select(

𝑘2

𝑘𝑥/2

)
positions in the cycle of 𝑉2-vertices into which to insert the blocks. This undercounts slightly –
e.g., for a given vertex 𝑣 ∈ 𝑉 (𝐶), this accurately counts the number of assignments where 𝑣 ∈ 𝑉2,
missing assignments where 𝑣 ∈ 𝑉1 – but it is tight up to a polynomial factor. Hence, given an
outcome with |𝑉 (𝐶) ∩𝑉2 | = 𝑘2 the probability of precisely 𝑘𝑥 crossing edges is at least

𝑝2(𝑘2, 𝑘𝑥) :=
(
𝑐𝑘

𝑘2

)−1 (
𝑐𝑘 − 𝑘2 − 1
𝑘𝑥/2 − 1

) (
𝑘2

𝑘𝑥/2

)
.

Thus the total probability of meeting both conditions is at least

𝑝3(𝑝, 𝑘2, 𝑘𝑥) = 𝑝1(𝑝, 𝑘2)𝑝2(𝑘2, 𝑘𝑥) = 𝑝𝑘2 (1 − 𝑝)𝑐𝑘−𝑘2

(
𝑐𝑘 − 𝑘2 − 1
𝑘𝑥/2 − 1

) (
𝑘2

𝑘𝑥/2

)
.
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Given such an outcome, we can then detect a cycle by Lemma 6.10 in time 𝑂∗(2𝜇) where 𝜇 =

max(𝑘2, 𝑘 − 𝑘𝑥/2). By repeating the algorithm Θ∗(𝑝3(𝑝, 𝑘2, 𝑘𝑥)) times, we get a high probability
of success, with a total running time of

𝑂∗(2𝜇/𝑝3(𝑝, 𝑘2, 𝑘𝑥)) = 𝑛𝑂(1)
2𝜇

𝑝𝑘2 (1 − 𝑝)𝑐𝑘−𝑘2
(𝑐𝑘−𝑘2−1
𝑘𝑥/2−1

) ( 𝑘2
𝑘𝑥/2

) .
The choice of 𝑝, 𝑘2 and 𝑘𝑥 will depend on 𝑐, but since there are only 𝑛 − 𝑘 + 1 possible values of
|𝑉 (𝐶) | ≥ 𝑘 we may repeat the algorithm for every such value. We follow approximately the
analysis used by Björklund et al. [20]. Due to 𝜇, the algorithm has two modes, depending on the
value of 𝑐. The expected value of 𝑘𝑥/2 depends on 𝑐 and 𝑝, and is maximised at 𝑝 = 1/2 with
expected value 𝑐𝑘/4. When 𝑐 is close to 1 setting 𝑝 = 1/2 yields 𝐸[𝑘2] = 𝑐𝑘/2 < 𝑘 − 𝐸[𝑘𝑥/2] =
(1−𝑐/4)𝑘, hence the algorithm is dominated by 𝜇 = 𝑘−𝑘𝑥/2, and the best strategy is to maximise
𝑘𝑥 . Here, the analysis of Björklund et al. applies. At some crossover point (e.g., 𝑐 = 4/3 if we use
the näıve values 𝑝 = 1/2, 𝑘2 = 𝑐𝑘/2, 𝑘𝑥/2 = 𝑐𝑘/4) the algorithm at 𝑝 = 1/2 becomes dominated
by 𝜇 = 𝑘2, and the best strategy is to pick 𝑝 so that 𝐸[𝑘2] = 𝐸[𝑘 − 𝑘𝑥/2]. Let us consider the
second case first. We refrain from optimizing the running time for these values (since this
regime does not represent the limiting behaviour of the algorithm) and use 𝑘2 = 𝑐𝑝𝑘 and
𝑘𝑥/2 = 𝑐𝑝(1 − 𝑝)𝑘. Then we set 𝑝 so that

𝑐𝑝𝑘 = 𝑘 − 𝑐𝑝(1 − 𝑝)𝑘 ⇒ 𝑝 = 1 −
√︂

1 − 1
𝑐
.

It can easily be checked that with 𝑘2 = 𝑝𝑐𝑘 and 𝑘𝑥 = 2𝑝(1 − 𝑝)𝑐𝑘, we get 1/𝑝3(𝑝, 𝑘2, 𝑘𝑥) = 𝑂∗(1)
– e.g., the first part is 2−𝐻 (𝑝)𝑐𝑘 and up to polynomial factors the binomial terms are 2𝐻 (𝑝)𝑐(1−𝑝)𝑘

and 2𝐻 (1−𝑝)𝑐𝑝𝑘 = 2𝐻 (𝑝)𝑐𝑝𝑘, respectively, where 𝐻 (𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) is the binary
entropy function. Thus the running time of the algorithm in this regime is 𝑂∗(2𝑐(1−

√
1−1/𝑐)𝑘),

where the exponent decreases with increasing 𝑐 (approaching 𝑘/2) and at 𝑐 = 4/3 it becomes
𝑂∗(22𝑘/3) = 𝑂∗(1.59𝑘). Now we focus on the regime 𝑐 < 4/3, in which case we set 𝑝 = 1/2 and
𝑘2 = 𝑐𝑘/2 (to maximise the expected number of crossing edges). We set 𝑘𝑥 = 2𝑐𝑝(1−𝑝)𝑘+2𝛽𝑐𝑘 =

(1/2 + 2𝛽)𝑐𝑘 where 𝛽 > 0 is a parameter to optimize. We are in the case 𝜇 = 𝑘 − 𝑘𝑥/2. Consider
the effect of increasing 𝑘𝑥 by 2. Noting that(

𝑛

𝑘 + 1

)
=

(
𝑛

𝑘

)
· 𝑛 − 𝑘
𝑘 + 1

,

the total running time is multiplied by a factor

1/2
(1/4−𝛽)𝑐𝑘
(1/4+𝛽)𝑐𝑘 ·

(1/4−𝛽)𝑐𝑘
(1/4+𝛽)𝑐𝑘

.
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For the best possible value of 𝛽, this will equal 1 ± 𝑜(1), since otherwise we can improve the
running time by raising or lowering 𝑘𝑥 . Thus

1/4 + 𝛽 = (1/4 − 𝛽)
√

2⇒ 𝛽 =

√
2 − 1

4(1 +
√

2)
=
(
√

2 − 1)2
4

=
3
4
− 1
√

2

by multiplying with
√

2 − 1 in the next-to-last step. We now revisit the total running time. By
Stirling’s approximation, (

𝑛

𝛼𝑛

)
= Θ∗

((
1

𝛼𝛼(1 − 𝛼)1−𝛼

)𝑛)
(see [20] for a derivation). Plugging the values (𝑝 = 1/2, 𝑘2 = 𝑐𝑘/2, 𝑘𝑥/2 = (1/4 + 𝛽)𝑐𝑘 =

(1 − 1/
√

2)𝑐𝑘) into the running time and simplifying we get (up to a polynomial factor)

2𝑐𝑘2𝑘−(1−1/
√

2)𝑐𝑘( 𝑐𝑘/2
(1−1/

√
2)𝑐𝑘

)2 = 2𝑘2(1/
√

2)𝑐𝑘 (2 −
√

2) (2−
√

2)𝑐𝑘 (
√

2 − 1) (
√

2−1)𝑐𝑘 = 2𝑘2𝑐𝑘 (
√

2 − 1)𝑐𝑘,

where the last step follows by factoring 2 −
√

2 =
√

2(
√

2 − 1) and simplifying the result. This
equals 𝑂∗((4(

√
2 − 1))𝑘) = 𝑂∗(1.66𝑘) for the basic case 𝑐𝑘 = 𝑘, and is a decreasing function in 𝑐.

Therefore, this analysis applies for values of 𝑐 up to the crossover point where 𝜇 = 𝑘2. Switching
from the running time 2𝜇 = 2𝑘−𝑘𝑥/2 to 2𝜇 = 2𝑘2 for the above values of 𝑘2 and 𝑘𝑥 represents
multiplying the running time by

2𝑘2−𝑘+𝑘𝑥/2 = 2𝑐𝑘/2−𝑘+(1−1/
√

2)𝑐𝑘

hence the running time after the crossover point, with the above parameters, is some function
𝑂∗(𝜉𝑐𝑘), 𝜉 > 1. We evaluate the formula at 𝑐 = 4/3 and find it reaches 𝑂∗(1.62𝑘) at this point.
Hence no further case distinctions are needed. In summary, our algorithm has the following
steps:

1. Repeat the below with every target value 𝑐𝑘 ∈ {𝑘, . . . , 𝑛}.
2. If 𝑐 ≤ 4/3, set 𝑝 = 1/2, 𝑘2 = 𝑐𝑘/2 and 𝑘𝑥 = 2(1 − 1/

√
2)𝑐𝑘.

3. If 𝑐 > 4/3, set 𝑝 = 1 −
√︁

1 − 1/𝑐, 𝑘2 = 𝑝𝑐𝑘 and 𝑘𝑥 = 2𝑝(1 − 𝑝)𝑐𝑘.
4. Repeat Ω(𝑛/𝑝3(𝑝, 𝑘2, 𝑘𝑥)) times: Compute a partition 𝑉 = 𝑉1 ∪𝑉2 by placing every vertex

𝑣 ∈ 𝑉 into𝑉2 independently at random with probability 𝑝. Use Lemma 6.10 with partition
(𝑉1, 𝑉2) and arguments 𝑘, 𝑘2, 𝑘𝑥 to detect a cycle in 𝐺 with the given parameters. If
successful, return YES.

5. If every attempt fails, return NO.

This concludes the proof of Theorem 6.8. ■
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7. Subgraph problems

Another major area of applications of algebraic methods in FPT algorithms is problems of
detecting a particular kind of subgraph. This is of course very broad (and in the form just
described would arguably cover all of Section 6 as well), so we focus on two topics. Essentially,
these topics correspond to two families of enumerating polynomials: branching walks and
homomorphic images.

The first topic, which is already very broad, is detecting whether a given graph 𝐺 contains
a connected subgraph meeting a particular condition. The parameter here may either be the
size of the subgraph or a parameter related to the condition itself. We review some examples.
The first application of branching walks that we are aware of was for the well-known Steiner
Tree problem. Here the input is a graph 𝐺 = (𝑉, 𝐸) and a set of terminals 𝑇 ⊆ 𝑉 , |𝑇 | = 𝑘, and
the task is to find a smallest connected subgraph of 𝐺 that spans 𝑇 (i.e., a subtree of 𝐺 whose
vertex set contains 𝑇 ). Nederlof [91] showed a polynomial-space, 𝑂∗(2𝑘)-time algorithm for this
problem, using an inclusion-exclusion sieving algorithm. We may also consider generalisations
of the problem. In Group Steiner Tree, the terminals come in 𝑘 groups and the task is to find
the smallest subtree that contains a terminal of each group. In Directed Steiner Out-Tree, the
graph is directed, and the task is to find the smallest out-tree (i.e., a directed subtree of 𝐺 where
every arc leads away from the root) which spans the terminals. Misra et al. [86] showed that
both of these variants can be solved in the same running time 𝑂∗(2𝑘).

Another problem, perhaps of an apparently very different nature, is Graph Motif. The
precise definition is slightly involved, but in its base variant the input contains a graph𝐺 = (𝑉, 𝐸),
a vertex colouring 𝑐 : 𝑉 → [𝑛], an integer 𝑘, and a capacity 𝑑𝑞 for every colour 𝑞 ∈ 𝑐(𝑉 ). The
task is to find a subtree𝑇 of 𝐺 on 𝑘 vertices such that every colour 𝑞 occurs in at most 𝑑𝑞 vertices
of 𝑇 . As surveyed in the introduction, this problem led to the development of the constrained
multilinear detection method by Björklund et al., leading to a solution in time 𝑂∗(2𝑘) for Graph
Motif as well as several weighted and approximate variants [23].

In our first application in this section, we note a generalisation of the above results.

THEOREM 7.1. Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑀 be a matroid over 𝑉 . Let 𝑘, 𝑤 ∈ N.
If 𝑀 is represented over a field of characteristic 2, then in randomized time 𝑂∗(2𝑘) and polynomial
space we can detect the existence of a connected subgraph 𝐻 of 𝐺 such that 𝑉 (𝐻) has rank at
least 𝑘 in 𝑀 and |𝑉 (𝐻) | ≤ 𝑤. If 𝑀 is represented over any other field, then the algorithm needs
𝑂∗(2𝜔𝑘) time and 𝑂∗(4𝑘) space.

REMARK 7.2. In the conference version of this paper, we also claimed results for Rank 𝑘
Connected Subgraph with a matroid defined on the edge set of 𝐺 instead of the vertex set. In
preparing this journal version, we realized that the proof given previously was incomplete. An
edge version of Theorem 7.1 is possible, but cannot use the simple branching walk polynomial
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𝑃𝑘 (𝑋,𝑌 ) of Björklund et al. [23], but must use a “decorated” version (e.g., in the style of the
results of Section 7.2). Given that most (if not all) main applications of Theorem 7.1 are for
matroids over the vertex set, we choose to omit the details of such an edge variant.

The second result regards subgraph isomorphism. Given graphs 𝐺 and 𝐻 , the problem of
checking whether 𝐻 is a subgraph of 𝐺 parameterized by |𝑉 (𝐻) | can be either FPT, as when 𝐻
is a path, or W[1]-hard, as when 𝐻 is a clique. More generally, Subgraph Isomorphism is FPT
by |𝑉 (𝐻) | if 𝐻 comes from a family of graphs with bounded treewidth (originally shown using
the colour-coding technique of Alon et al. [5]), and there is good evidence that no more general
such class exists [31, 84]. In general, the parameterized complexity of subgraph isomorphism
problems has been extensively and meticulously investigated [66, 85].

In fact, one of the fastest methods for Subgraph Isomorphism works via an arithmetic
circuit for evaluating the homomorphism polynomial [55], allowing for the randomized detection
of a subgraph 𝐻 with |𝑉 (𝐻) | = 𝑘 and of treewidth 𝑤 in time 𝑂(2𝑘𝑛𝑤+1). Furthermore, the
exponent 𝑤 + 1 here is optimal, up to plausible conjectures [31]. We observe that this running
time is compatible with an additional constraint that the copy of 𝐻 found in 𝐺 should be
independent in a given linear matroid. Since we in this application care about the concrete
polynomial factor, unlike in the rest of the paper, we make an additional assumption that field
operations can be performed in 𝑘𝑂(1) time. As briefly discussed in Section 2.3, this covers many
but not all matroids in common use in parameterized complexity.

THEOREM 7.3. Let 𝐺 and 𝐻 be undirected graphs, 𝑘 = |𝑉 (𝐻) | and 𝑛 = |𝑉 (𝐺). Let a tree
decomposition of 𝐻 of width 𝑤 be given. Also let 𝑀 be a matroid over 𝑉 (𝐺). If 𝑀 is represented
over a field of characteristic 2, then in randomized time 𝑂(2𝑘 · 𝑘𝑂(1) · 𝑛𝑤+1) and polynomial space
we can detect whether there is a subgraph of 𝐺 isomorphic to 𝐻 whose vertex set is independent in
𝑀 . Similarly, given 𝑀 over𝑉 (𝐺) ∪ 𝐸(𝐺) in time 𝑂(2𝑘+𝐸(𝐻) · 𝑘𝑂(1) · 𝑛𝑤+1) we can detect a subgraph
of 𝐺 isomorphic to 𝐻 whose edge and vertex set, are independent in 𝑀 . Here, we assume that
field operations over F take at most 𝑘𝑂(1) time. Over a general field, the algorithm needs 𝑂∗(4𝑟)
space and the running time becomes 𝑂(2𝜔𝑟𝑘𝑂(1)𝑛𝑤+1), or 𝑂(4𝑟𝑘𝑂(1)𝑛𝑤+1) if a path decomposition
of 𝐻 of width 𝑤 is provided instead of a tree decomposition. Here, 𝑟 = 𝑘 if 𝑀 is over 𝑉 (𝐺) and
𝑟 = 𝑘 + |𝐸(𝐺) | if 𝑀 is over 𝑉 (𝐺) ∪ 𝐸(𝐺).

7.1 Finding high-rank connected subgraphs

For our first application, generalizing Steiner Tree and Graph Motif, we apply the concept of
branching walks. Informally, branching walks in a graph 𝐺 are a relaxation of subtrees of 𝐺,
similar to how walks are a generalisation of paths. More formally, a branching walk in 𝐺 can
be described as a tree 𝑇 and a homomorphism mapping 𝑇 into 𝐺. Let us recall the definitions.

DEF IN IT ION 7.4. Let 𝐺 and 𝐻 be undirected graphs. A homomorphism from 𝐺 to 𝐻 is a
mapping 𝜑 : 𝑉 (𝐺) → 𝑉 (𝐻) such that for every edge 𝑢𝑣 ∈ 𝐸(𝐺), 𝜑(𝑢)𝜑(𝑣) ∈ 𝐸(𝐻).
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Branching walks were defined by Nederlof [91]. We use the more careful definition of

Björklund et al. [23].

DEF IN IT ION 7.5. Let 𝐺 be a graph. A branching walk 𝑊 = (𝑇, 𝜑) is an ordered, rooted
tree 𝑇 and a homomorphism 𝜑 from 𝑇 to 𝐺. We assume w.l.o.g. that 𝑉 (𝐺) = {1, . . . , 𝑛} and
𝑉 (𝑇 ) = {1, . . . , |𝑉 (𝑇 ) |}, where 𝑉 (𝑇 ) is ordered according to the preorder traversal of 𝑇 . We say
that𝑊 starts from the vertex 𝜑(1) in 𝐺. The size of𝑊 is |𝑉 (𝑇 ) | and its span is 𝜑(𝑉 (𝑇 )). 𝑊 visits
a vertex 𝑣 ∈ 𝑉 (𝐺) if 𝑣 ∈ 𝜑(𝑉 (𝑇 )). 𝑊 is simple if 𝜑 is injective. Finally,𝑊 is properly ordered if
for any two sibling nodes 𝑎, 𝑏 ∈ 𝑉 (𝑇 ) with 𝑎 < 𝑏 we have 𝜑(𝑎) < 𝜑(𝑏).

The ordering here is a technical device to make the map non-ambiguous. Björklund et
al. define a generating polynomial (or in our terms, an enumerating polynomial) for properly
ordered branching walks. We recall their construction next. Fix a host graph 𝐺 = (𝑉, 𝐸) and
a size 𝑘 for the branching walk. Introduce two sets of variables 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 (𝐺)} and
𝑌 = { 𝑦(𝑢,𝑣) , 𝑦(𝑣,𝑢) | 𝑢𝑣 ∈ 𝐸(𝐺)}. For a properly ordered branching walk𝑊 = (𝑇, 𝜑) in 𝐺, define
the corresponding monomial

𝑚(𝑊, 𝑋,𝑌 ) = 𝑥𝜑(1)
∏

𝑎𝑏∈𝐸(𝑇 ):𝑎<𝑏
𝑦(𝜑(𝑎),𝜑(𝑏))𝑥𝜑(𝑏) .

As Björklund et al. show, 𝑚(𝑊, 𝑋,𝑌 ) is multilinear if and only if 𝑊 is simple, and 𝑊 can be
reconstructed from the factors of 𝑚(𝑊, 𝑋,𝑌 ). Given a target size 𝑘 for𝑊 and a starting vertex
𝑠 ∈ 𝑉 (𝐺), define

𝑃𝑘,𝑠(𝑋,𝑌 ) =
∑︁
𝑊

𝑚(𝑊, 𝑋,𝑌 ) and 𝑃𝑘 (𝑋,𝑌 ) =
∑︁

𝑠∈𝑉 (𝐺)
𝑃𝑘,𝑠(𝑋,𝑌 ),

where the sum goes over all properly ordered branching walks of size 𝑘 in 𝐺 that start from 𝑠.
Björklund et al. show that 𝑃𝑘,𝑠(𝑋,𝑌 ) can be evaluated in time polynomial in 𝑛 + 𝑘 (in fact, in
𝑂(𝑘2𝑚) field operations, where 𝑚 = |𝐸(𝐺) |) [23].

We now visit our target result, Theorem 7.1. We observe the key property of branching
walks that make them algorithmically useful: A minimal branching walk spanning a given
vertex set is always a subtree of 𝐺.

LEMMA 7.6. Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑈 ⊆ 𝑉 be a set of vertices such that 𝐺[𝑈] is
connected. Then there is a properly ordered branching walk𝑊 in 𝐺 with span𝑈 and size |𝑈 | such
that the corresponding monomial 𝑚(𝑊, 𝑋,𝑌 ) is contributed only once in 𝑃 |𝑈 | (𝑋,𝑌 ). Furthermore,
any branching walk with span𝑈 and size |𝑈 | is simple.

PROOF . Clearly, every branching walk𝑊 with span𝑈 needs size at least |𝑈 |, and any branching
walk whose size equals the cardinality of its span is simple. For existence, let 𝑇 be an arbitrary
spanning tree of 𝐺[𝑈] where the nodes of 𝑇 are ordered in preorder traversal, such that at
every vertex the lowest-index unvisited child is visited first. Let 𝑊 = (𝑇, 𝜑) where 𝜑 is the
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inverse of the resulting vertex ordering of 𝑇 . Then𝑊 is a properly ordered branching walk
with size |𝑈 | and span𝑈 . Finally, Björklund et al. [23] show that any simple properly ordered
branching walk can be reconstructed from its monomial fingerprint 𝑚(𝑊, 𝑋,𝑌 ). It follows that
𝑚(𝑊, 𝑋,𝑌 ) has coefficient precisely 1 in 𝑃 |𝑈 | (𝑋,𝑌 ). ■

Given this, and given the ability to evaluate 𝑃𝑘 (𝑋,𝑌 ), Theorem 7.1 follows easily.

PROOF OF THEOREM 7.1 . Let (𝐺, 𝑀, 𝑘, 𝑤) be the input, where 𝑀 is represented by a matrix
𝐴 over a field of characteristic 2. We assume by truncation that 𝐴 has dimension 𝑘 × 𝑉 (𝐺)
and rank 𝑘, and let 𝑤 = min(𝑤, |𝐸(𝐺) |). Furthermore, ensure that 𝐴 is over a field F of size
𝜔(𝑛2), e.g., F = 𝐺𝐹 (2𝑐 log 𝑛) for 𝑐 > 2. For each ℓ = 𝑘, . . . , 𝑤 let 𝑃ℓ (𝑋,𝑌 ) be the branching
walk polynomial for branching walks of size ℓ over variable sets 𝑋 and 𝑌 defined above. Use
Theorem 3.4 with the vectors of 𝐴 associated with 𝑋 and assume that for some ℓ, Theorem 3.4
reports that 𝑃ℓ (𝑋,𝑌 ) contains a monomial 𝑚 whose odd support spans 𝐴. Then 𝑚 = 𝑚(𝑊, 𝑋,𝑌 )
for a branching walk𝑊 . Let𝑊 = (𝑇, 𝜑) and let 𝑆 ⊆ 𝜑(𝑉 (𝑇 )) ∪𝜑(𝐸(𝑇 )) correspond to the subset
of the odd support of 𝑚 that spans 𝐴, |𝑆 | = 𝑘. Since𝑊 is a branching walk, 𝑆 is the vertex set of
a connected subgraph of 𝐺 on at most ℓ vertices. Hence (𝐺, 𝑀, 𝑘, 𝑤) is a YES-instance.

On the other hand, assume that (𝐺, 𝑀, 𝑘, 𝑤) is a YES-instance and let 𝐻 be a subgraph of
minimum cardinality that spans 𝐴. Let ℓ = |𝑉 (𝐻) |. By Lemma 7.6, there is a simple branching
walk 𝑊 with span 𝑉 (𝐻). Thus 𝑃ℓ (𝑋,𝑌 ) contains a monomial 𝑚 = 𝑚(𝑊, 𝑋,𝑌 ) which is mul-
tilinear in 𝑋 and which spans 𝐴. Note that 𝑃ℓ (𝑋,𝑌 ) is a homogeneous polynomial of degree
2ℓ − 1 < 𝑛2, so the probability of a false negative for 𝑃ℓ (𝑋,𝑌 ) is 𝑜(1). Hence with probability
1 − 𝑜(1), the algorithm reports that the input is a YES-instance. The running time follows from
Theorem 3.4.

In the case that 𝑀 is represented over some other field F, the same analysis applies
(including assuming |F| = 𝜔(𝑛2)), but the running time and space complexity follow from
Theorem 3.6 instead. More precisely, instead of directly evaluating 𝑃ℓ (𝑋,𝑌 ), we evaluate
𝑃ℓ (𝑋′, 𝑌 ) for a new set of variables 𝑋′ = {𝑥′ | 𝑥 ∈ 𝑋}, at a value of 𝑥′ = 1 + 𝑥 for every 𝑥 ∈ 𝑋 . We
argue that this works as a form of “spanning set sieve” for 𝑃ℓ (𝑋,𝑌 ) over arbitrary characteristic.
Indeed, if an application of Theorem 3.6 reports that there is a multilinear monomial 𝑚 in
𝑃ℓ (𝑋′, 𝑌 ) such that the support of 𝑋′ in 𝑚 spans 𝑀 , then 𝑚 is produced from some monomial
𝑚(𝑊, 𝑋,𝑌 ) in 𝑃ℓ (𝑋,𝑌 ), and the input is a YES-instance. On the other hand, if the input is a
YES-instance, then 𝑃ℓ (𝑊, 𝑋,𝑌 ) contains a multilinear monomial 𝑚(𝑊, 𝑋,𝑌 ) which spans 𝑀 ; let
𝑆 ⊆ 𝑋 be the support of 𝑚 in 𝑋 of some basis 𝐵 of 𝑀 . Then 𝑃ℓ (𝑋′, 𝑌 ) contains the monomial
𝑚′ =

∏
𝑣∈𝐵 𝑥𝑣

∏
𝑦∈supp(𝑚)∩ 𝑦 with coefficient 1: it is clear that 𝑚′ is produced precisely once from

𝑚. Since supp(𝑚) ∩𝑌 = supp(𝑚′) ∩𝑌 , and 𝑚 can be recovered from its support in 𝑌 , 𝑚′ cannot
be produced from any other monomial in 𝑃ℓ (𝑋,𝑌 ). ■

We note some applications of this result. First, consider the basic Steiner Tree problem,
and let 𝐺 = (𝑉, 𝐸) and 𝑇 ⊆ 𝑉 be an input, 𝑇 = {𝑡1, . . . , 𝑠𝑡𝑘}. Define a 𝑘-dimensional matroid
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𝑀 over 𝑉 by letting vertex 𝑡𝑖 be associated with vector 𝑒𝑖 , and every other vertex associated
with the 𝑘-dimensional zero vector. Then a connected subgraph 𝐻 of 𝐺 spans 𝑀 if and only
if 𝑇 ⊆ 𝑉 (𝐻). We can cover Group Steiner Tree with a similar construction. Let the input be
(𝐺 = (𝑉, 𝐸),T), with terminal grouping T = {𝑇1, . . . , 𝑇𝑘}, 𝑇𝑖 ⊆ 𝑉 for each 𝑖. We assume the
terminal sets are pairwise disjoint by adding pendants: for every 𝑇𝑖 ∈ T and every vertex 𝑡 ∈ 𝑇𝑖 ,
add a pendant 𝑡𝑖 to 𝑡 and replace 𝑇𝑖 by the set {𝑡𝑖 | 𝑡 ∈ 𝑇𝑖}. This raises the size of a minimum
solution by precisely 𝑘 vertices. We can now apply label 𝑒𝑖 to every vertex in 𝑇𝑖 and the zero
vector as label to every other vertex and proceed as above.

Next, let us review how to use matroid constructions to solve the various optimization
variants of Graph Motif surveyed by Björklund et al. [23]. Let (𝐺 = (𝑉, 𝐸), 𝑐, 𝑘, (𝑑𝑞)𝑞∈𝑐(𝑉 )) be
a Graph Motif instance. Additionally, we consider the following operations, mimicking the
Edit Distance problem. Let 𝐻 be a connected subgraph of 𝐺 with 𝑘 vertices. Let 𝐶 = 𝐶(𝐻) be
the multiset of vertex colours in 𝐻 , i.e., 𝐶(𝐻) = {𝑐(𝑣) | 𝑣 ∈ 𝑉 (𝐻)} with element multiplicities
preserved. To substitute a colour 𝑞 ∈ 𝐶 for another colour 𝑞′ ∈ 𝑐(𝑉 ), we remove one copy of 𝑞
from 𝐶 and add a copy of 𝑞′. To insert a colour 𝑞, we add a copy of 𝑞 to 𝐶. To delete a colour 𝑞,
we remove a copy of 𝑞 from 𝐶. Furthermore, let a multiset 𝑄 of colours be given. We wish to
decide whether there is a connected subgraph 𝐻 of 𝐺 with |𝑉 (𝐻) | = 𝑘 such that 𝐶(𝐻) can be
transformed into 𝑄 by making at most 𝑘𝑠 substitutions, at most 𝑘𝑖 insertions, and at most 𝑘𝑑
deletions. Individually, these operations correspond well to standard matroid transformations.
Let 𝑀 be the partition matroid over𝑉 (𝐷) where every colour class 𝑐−1(𝑞) has capacity 𝑑𝑞. Then
using 𝑀 in Theorem 7.1 directly solves Graph Motif. Further allowing substitutions, insertions
and/or deletions can be handled by combinations of extensions and truncations over 𝑀 . We
consider the following general case.

LEMMA 7.7. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑐 a vertex colouring of 𝐺. Let 𝑘𝑠, 𝑘𝑑 , 𝑘𝑖 ∈ N and a
multiset 𝑄 be given. There is a matroid 𝑀 over 𝑉 , representable over a field of characteristic 2,
such that any set of 𝑘 vertices from 𝑉 forms a basis of 𝑀 if and only if the multiset 𝐶(𝐻) can be
transformed into 𝑄 by making at most 𝑘𝑠 substitutions, 𝑘𝑑 deletions and 𝑘𝑖 insertions.

PROOF . We note that since 𝐶(𝐻) and 𝑄 are multisets, without element order, finding the
minimum cost for a transformation is much simpler than in Edit Distance. Let 𝐶 = 𝐶(𝐻) and
let 𝐶0 = 𝐶 ∩ 𝑄 be the multiset intersection. Let 𝑎 = min( |𝐶 | − |𝐶0 |, |𝑄| − |𝐶0 |, 𝑘𝑠).

CLAIM 7.8. 𝐶(𝐻) can be transformed into 𝑄 with the operation limits prescribed if and only if
|𝐶0 | + 𝑎 ≥ max( |𝑄| − 𝑘𝑖 , 𝑘 − 𝑘𝑑).

Proof. The transformation can use 𝑎 substitutions, and thereafter it has either exhausted 𝐶, 𝑄
or the budget 𝑘𝑠. In either case, it thereafter needs to use |𝐶 | − |𝐶0 | − 𝑎 deletions and |𝑄| − |𝐶0 | − 𝑎
insertions, i.e., 𝑘𝑑 ≥ |𝐶 | − (|𝐶0 | + 𝑎) and 𝑘𝑖 ≥ |𝑄| − (|𝐶0 | + 𝑎). The result follows. ■
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Hence, let 𝑟 = |𝐶0 | + 𝑎 be the number of vertices from𝑉 (𝐻) that can be matched against 𝑄

by using at most 𝑘𝑠 substitutions. We wish to accept a vertex set 𝑉 (𝐻) if and only if 𝑟 ≥ 𝑘0 :=
max( |𝑄| − 𝑘𝑖 , 𝑘 − 𝑘𝑑). We construct a matroid for this purpose. If 𝑘0 > 𝑘, reject the parameters.
Otherwise, execute the following construction sequence.

1. Let 𝑀1 be the partition matroid over 𝑉 (𝐺) where for every colour 𝑞, the set 𝑐−1(𝑞) has
capacity in 𝑀1 corresponding to its count in 𝑄.

2. Let 𝑀2 be 𝑀1 with the rank extended by 𝑘𝑠.
3. Let 𝑀3 be 𝑀2 truncated to rank 𝑘0.
4. Let 𝑀 be 𝑀3 extended by additional rank 𝑘 − 𝑘0.

Indeed, let 𝑆 be a basis of 𝑀 . Then there is a set 𝑆′ ⊆ 𝑆 with |𝑆′| = 𝑘0 that is a basis of 𝑀3,
implying that using at most 𝑘𝑠 substitutions, 𝑆′ can be matched into 𝑄, and |𝑆′| = 𝑘0. Conversely,
if 𝑆 is a set of 𝑘 vertices, let 𝐶′ = 𝐶(𝑆) ∩𝑄, and assume that |𝐶′| +min(𝑘 − |𝐶′|, |𝑄| − |𝐶′|, 𝑘𝑠) ≥ 𝑘0.
Then there is a set 𝑆′ ⊆ 𝑆 consisting of 𝑘0 vertices that can be matched into 𝑄 using at most 𝑘𝑠
substitutions, i.e., 𝑆′ is independent in 𝑀3, and 𝑆 is a basis of 𝑀 . ■

Since there are only 𝑂(𝑘3) valid options for the integers 𝑘𝑠, 𝑘𝑑 and 𝑘𝑖 , by repeating this
construction we can clearly sieve for a connected subgraph 𝐻 of size 𝑘 with a minimum cost
of transformation, using costs as given in Björklund et al. [23]. Another option, of attaching
weight-tracing variables keeping track of the number of substitutions and deletions, similarly
to the algorithm in [23], would of course also be possible, but our purpose here was to illustrate
the matroid construction.

Further variations are clearly also possible, e.g., as in the notion of balanced solutions
considered in Section 5.1 one may look for subgraphs with both upper and lower bounds
𝑑𝑞 ≤ |𝑉 (𝐻) ∩ 𝑐−1(𝑞) | ≤ 𝑒𝑞 for every colour class 𝑞.

Interestingly, both Steiner Tree and Graph Motif are SeCoCo-hard, i.e., under the set
cover conjecture they cannot be solved in time 𝑂∗(2(1−𝜀)𝑘) for any 𝜀 > 0 [37]. Hence improving
the algorithm of Theorem 7.1 is certainly SeCoCo-hard as well.

7.2 Independent subgraph isomorphism

Next, we review the Subgraph Isomorphism problem. Let 𝐺 and 𝐻 be undirected graphs, and
introduce a variable set 𝑋 = {𝑥𝑣 | 𝑣 ∈ 𝑉 (𝐺)}. Let 𝑘 = |𝑉 (𝐻) | and 𝑛 = |𝑉 (𝐺) |. The homomorphism
polynomial is the polynomial ∑︁

𝜑 : 𝑉 (𝐻)→𝑉 (𝐺)

∏
𝑣∈𝑉 (𝐻)

𝑥𝜑(𝑣)

where the sum goes over homomorphisms 𝜑. If a treewidth decomposition of width 𝑤 is given
for 𝐻 , then the homomorphism polynomial can be evaluated in time 𝑓 (𝑘) · 𝑛𝑤+1 for a modest
function 𝑓 (𝑘) [55]. In particular, we follow the exposition of Brand [27] who shows that in time
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𝑂(𝑐𝑘 +𝑛𝑤+1) for 𝑐 < 2 we can both compute a tree decomposition of width𝑤 for 𝐻 and construct
an algebraic circuit of total size 𝑂(𝑘 · 𝑛𝑤+1) which evaluates the homomorphism polynomial.

Since the homomorphism polynomial has no negative terms working over, e.g., the reals
there is no concern for cancellations. However, since we want to work over fields of character-
istic 2, we introduce additional terms in the way of algebraic fingerprinting (cf. [72]), to prevent
cancellations. In fact, we introduce two sets of additional variables for algorithmic convenience.
Let 𝑋′ = {𝑥′

𝑖,𝑣
| 𝑖 ∈ 𝑉 (𝐻), 𝑣 ∈ 𝑉 (𝐺)} and 𝑌 = { 𝑦𝑒 | 𝑒 ∈ 𝑉 (𝐺)}. Then we define the decorated

homomorphism polynomial

𝑃𝐻→𝐺 (𝑋, 𝑋′, 𝑌 ) =
∑︁

𝜑 : 𝑉 (𝐻)→𝑉 (𝐺)

∏
𝑖∈𝑉 (𝐻)

𝑥𝜑(𝑖)𝑥
′
𝑖,𝜑(𝑖)

∏
𝑖 𝑗∈𝐸(𝐻)

𝑦𝜑(𝑖)𝜑( 𝑗) ,

where the variables 𝑦𝜑(𝑖)𝜑( 𝑗) = 𝑦𝜑( 𝑗)𝜑(𝑖) are taken without order on its subscript terms, and
where 𝜑 ranges over all homomorphisms from𝐻 to𝐺. Then clearly, every homomorphism 𝜑 has
a unique algebraic “fingerprint” monomial 𝑚(𝜑), since it is encoded in the 𝑋′-factors of 𝑚(𝜑).

It is easy to modify the construction of Brand [27, Section 4.6.1] to construct a circuit for
(or directly compute) 𝑃𝐻→𝐺 (𝑋, 𝑋′, 𝑌 ) at a slightly larger polynomial cost in 𝑘.

PROPOS IT ION 7.9. Let a tree decomposition of with 𝑤 for 𝐻 be given. Then in time 𝑘𝑂(1)𝑛𝑤+1

we can construct an algebraic circuit of size 𝑘𝑂(1)𝑛𝑤+1 that computes 𝑃𝐻→𝐺. Furthermore, if the
decomposition is a path decomposition, then the circuit can be made skew.

We can now show Theorem 7.3. This follows the obvious path, with some extra care taken
to ensure that our polynomial term remains 𝑛𝑤+1.

PROOF OF THEOREM 7.3 . Let 𝐺 and 𝐻 be given, as well as a tree decomposition of 𝐻 of
width 𝑤. Note that a homomorphism 𝜑 : 𝐻 → 𝐺 represents a subgraph of 𝐺 isomorphic to 𝐻 if
and only if 𝜑 is injective on 𝑉 (𝐻), which holds if and only if

∏
𝑖∈𝑉 (𝐻) 𝑥𝜑(𝑖) is multilinear.

Let 𝑀 be a linear matroid, and let 𝑟 = 𝑘 if 𝑀 is over 𝑉 (𝐺) or 𝑟 = 𝑘 + |𝐸(𝐻) | if 𝑀 is over
𝑉 (𝐺) ∪ 𝐸(𝐺). We assume that 𝑀 is represented by a matrix 𝐴 with 𝑟 rows and rank 𝑟. We also
assume 𝐴 is over a sufficiently large field F (where in fact some |F| = Ω(𝑘2) suffices since only
the degree of 𝑃𝐻→𝐺 is important for correctness). We now employ the sieving of Theorem 3.2.
Note that 𝑃𝐻→𝐺 is homogeneous of degree 2𝑘+ |𝐸(𝐻) | (and homogeneous in 𝑋 and𝑌 separately).
Using the precise running time bound from Theorem 3.2, we note that field operations over F
can be performed in log𝑂(1) |F| = 𝑂̃(1) time, independent of 𝑛. A larger field F could be given
in the input, but in this case operations over F take only 𝑘𝑂(1) time by assumption. If there is
a subgraph 𝐻′ of 𝐺 isomorphic to 𝐻 and independent in 𝑀 , then 𝑃𝐻→𝐺 will contain a term 𝑚

corresponding to that map 𝜑, thus 𝑚 is multilinear in 𝑋 ∪ 𝑌 and Theorem 3.2 applies and will
detect 𝐻′ with high probability. Conversely, assume that Theorem 3.2 detects a monomial 𝑚
such that 𝑚 (in 𝑋 , respectively in 𝑋 ∪𝑌 ) is multilinear and contains a basis for 𝑀 . Then 𝑚 must
be multilinear in 𝑋 , since𝑚 spans𝑀 . Since the monomials of 𝑃𝐻→𝐺 are in 1-to-1 correspondence
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with homomorphisms 𝜑 : 𝐻 → 𝐺, 𝑚 must represent a homomorphism 𝜑 which is injective
over 𝑉 (𝐻). Thus 𝐻′ is isomorphic to 𝐻 as noted above, and is independent in 𝑀 . If 𝑀 is over
𝑉 (𝐺) ∪ 𝐸(𝐺), then the same argument and algorithm applies except that we are sieving over
both the variable sets 𝑋 and 𝑌 .

The running time over a general field follows from Theorem 3.6. In particular, Brand [27]
notes that the homomorphism polynomial circuit can be made skew if constructed over a path
decomposition, and not otherwise. ■

The result with a matroid over 𝑉 (𝐺) ∪ 𝐸(𝐺) could also be achieved by simply subdividing
every edge of 𝐻 and 𝐺, but this would blow up |𝑉 (𝐺) | and hence the polynomial factor of the
algorithm.

As with our other matroid applications, there is a range of consequences, including (e.g.)
finding a colourful copy of 𝐻 in a vertex-coloured graph; finding a copy of 𝐻 in 𝐺 subject
to capacity constraints on vertex classes; finding a copy 𝐻′ of 𝐻 in 𝐺 such that 𝐺 − 𝐸(𝐻′) is
connected; and all the other applications of matroid constraints covered in this paper.

8. Speeding-up Dynamic Programming

The notion of representative sets for linear matroids plays an essential role in the design of
FPT algorithms [53, 54], as well as kernelization [75]. For a matroid 𝑀 = (𝑉,I), a set 𝑋 ⊆ 𝑉 is
said to extend a set 𝑌 , if 𝑋 and 𝑌 are disjoint and 𝑋 ∪ 𝑌 is independent in 𝑀 . The representative
set lemma, due to Lovász [79] and Marx [83], states the following: Let 𝑀 = (𝑉,I) be a linear
matroid of rank 𝑘, and Y ⊆ 2𝑉 be a collection of subsets of 𝑉 . Then, there is a subcollection
Y′ ⊆ Y (which can be computed “efficiently”) of size at most 2𝑘 that representsY, i.e., for every
𝑋 ⊆ 𝑉 , there is a set inY extending 𝑋 if and only if such a set exists inY′. There are plethora
of dynamic programming FPT algorithms in the literature, where the table size is reduced
from 𝑛𝑘 to 2𝑘, using the representative set lemma. In this section, we exemplify how to use
determinantal sieving in place of such dynamic programming approaches in three applications,
Minimum Equivalent Subgraph, Eulerian Deletion, and Conflict-free Solution. We improve
the running time over existing algorithms, while saving space usage to polynomial.

8.1 Minimum Equivalent Graph

Minimum Equivalent Graph is defined as follows. We are given a directed graph 𝐺 = (𝑉, 𝐸) and
an integer 𝑘, and the question is whether there is a subgraph 𝐺′ = (𝑉, 𝐸′) with at most 𝑘 edges
with the same reachability pattern, i.e., for every 𝑢, 𝑣 ∈ 𝑉 , there is a 𝑢𝑣-path in 𝐺 if and only if
there is in 𝐺′. Fomin et al. [53] show that Minimum Equivalent Graph reduces to the following
question: Are there a pair 𝐵1, 𝐵2 where 𝐵1 is an in-branching and 𝐵2 is an out-branching in 𝐺,
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with a common root 𝑣, such that they have at least ℓ edges in common? We phrase this as a
matroid-theoretical problem.

Let Matroid Intersection Overlap4 refer to the following problem. The input is four
matroids 𝑀1, . . . , 𝑀4 over the same ground set 𝑈 , each of rank 𝑘, and an integer ℓ > 0. The
question is whether there are bases 𝐵𝐴 ∈ 𝑀1 ∩𝑀2 and 𝐵𝐵 ∈ 𝑀3 ∩𝑀4 such that |𝐵𝐴 ∩ 𝐵𝐵 | ≥ ℓ.
This captures the above question, since rooted in- and out-branchings can be constructed as the
intersection of a graphic matroid and a suitable partition matroid.

LEMMA 8.1. For matroids represented over a common field F of characteristic 2, Matroid
Intersection Overlap can be solved in 𝑂∗(22𝑘) time.

PROOF . We define a new ground set 𝑈∗ = 𝑈1 ∪ 𝑈2, where 𝑈1 is a copy of 𝑈 and 𝑈2 = 𝑈 × 𝑈 .
We also define new matroids 𝑀′1, . . . , 𝑀′4 as follows. Let 𝐴𝑖 , 𝑖 = 1, . . . , 4 be the representation of
𝑀𝑖 . Then 𝑀′

𝑖
is represented by a matrix 𝐴′

𝑖
where for 𝑥 ∈ 𝑈1 we have 𝐴′

𝑖
[·, 𝑥] = 𝐴𝑖 [·, 𝑥], and for

(𝑥, 𝑦) ∈ 𝑈2 we have 𝐴′
𝑖
[·, (𝑥, 𝑦)] = 𝐴𝑖 [𝑥] for 𝑖 = 1, 2 and 𝐴′

𝑖
[·, (𝑥, 𝑦)] = 𝐴𝑖 [ 𝑦] for 𝑖 = 3, 4.

CLAIM 8.2. The rank of 𝑀′
𝑖

for each 𝑖 = 1, . . . , 4 is 𝑘.

Proof. Since each column of 𝐴′
𝑖

is a copy of a column from 𝐴𝑖 , clearly the rank of 𝐴′
𝑖

is at most
the rank of 𝐴𝑖 . Conversely, since every column of 𝐴𝑖 occurs as a column of 𝐴′

𝑖
, the rank of 𝐴′

𝑖
is

at least the rank of 𝐴𝑖 . ■

We show that this reduces Matroid Intersection Overlap to a kind of “weighted” instance
of 4-Matroid Intersection over matroids of rank 𝑘.

CLAIM 8.3. The input instance is positive if and only if there is a common basis of 𝑀′1 through
𝑀′4 that contains at least ℓ elements from𝑈1.

Proof. The idea is the following. Let (𝐵𝐴, 𝐵𝐵) be a solution to the problem. Split (𝐵𝐴, 𝐵𝐵) as
𝐵0 = 𝐵𝐴 ∩ 𝐵𝐵, 𝐵1 = 𝐵𝐴 \ 𝐵𝐵 and 𝐵2 = 𝐵𝐵 \ 𝐵𝐴, |𝐵0 | = 𝑟 for some 𝑟 ≥ ℓ. Write 𝐵0 = {𝑢1, . . . , 𝑢𝑟},
𝐵1 = {𝑥1, . . . , 𝑥𝑘−𝑟} and 𝐵2 = { 𝑦1, . . . , 𝑦𝑘−𝑟}. Define the new set

𝑆 = 𝐵0 ∪ {(𝑥𝑖 , 𝑦𝑖) | 𝑖 ∈ [𝑘 − 𝑟]}

where 𝐵0 ⊆ 𝑈1 and 𝑆 \ 𝐵0 ⊆ 𝑈2. Then 𝑆 is a common basis of 𝑀′1 through 𝑀′4. Indeed, for 𝑀′1 and
𝑀′2 the matrix 𝐴′

𝑖
[·, 𝑆] induced by 𝑆 is a copy of 𝐴𝑖 [·, 𝐵𝐴] and for 𝑀′3 and 𝑀′4 the matrix 𝐴′

𝑖
[·, 𝑆]

is a copy of 𝐴𝑖 [·, 𝐵𝐵]. These are bases by assumption. Furthermore 𝑆 contains 𝑟 ≥ ℓ elements
from𝑈1.

Conversely, assume that 𝑆 is a common basis of 𝑀′1 through 𝑀′4 with |𝑆 ∩𝑈1 | = 𝑟 for some
𝑟 ≥ ℓ. Extract the sets

𝐵𝐴 = (𝑆 ∩𝑈1) ∪ {𝑥 | (𝑥, 𝑦) ∈ 𝑆 ∩𝑈2} and 𝐵𝐵 = (𝑆 ∩𝑈1) ∪ { 𝑦 | (𝑥, 𝑦) ∈ 𝑆 ∩𝑈2}.

4 Called Matroid Intersection Intersection in an earlier version of the paper
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We claim that 𝐵𝐴 is a basis for 𝑀1 and 𝑀2, and 𝐵𝐵 a basis for 𝑀3 and 𝑀4. Indeed, we have
|𝐵𝐴 | = |𝐵𝐵 | = |𝑆 | since otherwise one matrix 𝐴′

𝑖
[·, 𝑆] would contain duplicated columns. Thus the

matrices 𝐴′
𝑖
[·, 𝑆] and 𝐴𝑖 [·, 𝐵𝐴] (respectively 𝐴𝑖 [·, 𝐵𝐵]) are identical up to column ordering. ■

Hence we are left to solve the question whether there exists a common basis for𝑀′1 through
𝑀′4 with at least ℓ elements from 𝑈1. For this, we proceed as in the algorithm for 4-Matroid
Intersection. By the Cauchy-Binet formula, there is a polynomial 𝑃(𝑋) over 𝑋 = {𝑥𝑢 | 𝑢 ∈ 𝑈}
which enumerates common bases of 𝑀′1 and 𝑀′2. Introduce a new variable 𝑧 and evaluate 𝑃(𝑋)
at a value where 𝑥𝑢 is multiplied by 𝑧 for 𝑢 ∈ 𝑈1. Let 𝑃′𝑟 (𝑋) be the coefficient of 𝑧𝑟 in 𝑃(𝑋)
under this evaluation. The question now reduces to asking if there is a monomial 𝑚 in 𝑃′𝑟 (𝑋)
for any 𝑟 ≥ ℓ such that 𝑚 is independent in 𝑀′3 and 𝑀′4, which can be solved using Corollary 3.3
in time 𝑂∗(22𝑘). ■

Since rooted in-branchings and out-branchings can be represented via matroid intersection
over matroids of rank 𝑛 − 1, an 𝑂∗(22𝑛)-time algorithm for Minimum Equivalent Graph follows.

8.2 Eulerian Deletion

An undirected (or directed) graph is said to be Eulerian if it admits a closed walk that visits every
edge (or arc, respectively.) exactly once. It is known that an undirected graph is Eulerian if and
only if it is connected and even, i.e., every vertex has even degree and that a directed graph is
Eulerian if and only if weakly connected and balanced, i.e., every vertex has the same number
of in-neighbors as out-neighbors [8]. Undirected Eulerian Edge Deletion (Directed Eulerian
Edge Deletion) is the problem of determining whether the input undirected (directed) graph
has an edge (arc) set 𝑆 of size at most 𝑘 such that 𝐺 \𝑆 is Eulerian. Cai and Yang [32] initiated the
parameterized analysis of these problems among other related problems. The parameterized
complexity of Undirected Eulerian Edge Deletion and Directed Eulerian Edge Deletion was
left open by Cai and Yang [32]. Cygan et al. [40] designed the first FPT algorithms with running
time 𝑂∗(2𝑂(𝑘 log 𝑘)) based on the colour-coding technique. Later, Goyal et al. [58] gave improved
algorithms running in time 𝑂∗(2(2+𝜔)𝑘) using a representative set approach.

We briefly describe their approach on Undirected Eulerian Edge Deletion (the directed
version is similar). Let 𝑇 denote the set of vertices of odd degree in 𝐺. (Note that 𝑇 must have
even cardinality.) An edge set 𝑆 is called a 𝑇 -join if 𝑇 is exactly the set of vertices of odd degree
in the graph (𝑉, 𝑆). In other words, a 𝑇 -join is an edge set that is the disjoint union of a set of
𝑇 -paths P that induce a matching on the vertices in 𝑇 and a set of cycles (see e.g., [96]). We note
that a 𝑇 -join is (inclusion-wise) minimal if and only if it is acyclic. It follows that a minimal
𝑇 -join decomposes (though not necessarily uniquely) into |𝑇 |/2 paths connecting disjoint pairs
of vertices in 𝑇 . However, a 𝑇 -join that decomposes into paths can still be non-minimal if, for
instance, two paths intersect at two vertices and thereby form a cycle. We will say that a 𝑇 -join
is semi-minimal if it is the edge-disjoint union of |𝑇 |/2 walks between disjoint pairs of 𝑇 . Cygan
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et al. [40] observed that an edge set 𝑆 with |𝑆 | ≤ 𝑘 is a solution for Undirected Eulerian Edge
Deletion if and only if 𝑆 is a 𝑇 -join and 𝐺 \ 𝑆 is connected. The algorithm of Goyal et al. [58]
employs a dynamic programming approach; there is an entry for every subset of 𝑇 ′ ⊆ 𝑇 (which
may have size up to 2𝑘), which stores 𝑇 -walks between disjoint pairs of 𝑇 ′. The number of such
walks is unbounded in 𝑘, but the number of walks stored in the table can be reduced using
representative sets of co-graphic matroids.

We give an 𝑂∗(2𝑘)-time (and polynomial-space) algorithm. The improvements are twofold.
First, we avoid computing the representative families. Second, we avoid dynamic programming
over the subsets of 𝑇 . Let 𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸} be a set of edge variables and 𝑌 = { 𝑦𝑡𝑡′ | 𝑡, 𝑡′ ∈ 𝑇 } a
set of variables which will encode the decomposition of a minimal 𝑇 -join into 𝑇 -paths. We use
the convention that 𝑦𝑡𝑡′ and 𝑦𝑡′𝑡 denote the same variable.

LEMMA 8.4. There is a polynomial 𝑃(𝑋,𝑌 ) that can be efficiently evaluated such that its terms
that are multilinear of degree 𝑘 in 𝑋 enumerate all minimal 𝑇 -joins 𝑆 of size 𝑘 and (not necessarily
all) semi-minimal 𝑇 -joins of size 𝑘.

PROOF . Let 𝐴 be a symmetric matrix indexed by𝑉 , where 𝐴[𝑢, 𝑣] = 𝑥𝑢𝑣 if 𝑢𝑣 ∈ 𝐸 and 𝐴[𝑢, 𝑣] =
0 otherwise. For every 𝑣 ∈ 𝑉 , let 𝑒𝑣 be the |𝑉 |-dimensional vector where 𝑒𝑣[𝑣] = 1 and 𝑒𝑣[𝑣′] =
0 for each 𝑣′ ∈ 𝑉 \ {𝑣}. We define a skew-symmetric matrix 𝐴′ indexed by 𝑇 , where for
every 𝑢, 𝑣 ∈ 𝑇 ,

𝐴′[𝑢, 𝑣] =
∑︁
ℓ∈[𝑘]

𝑒𝑇𝑢𝐴
ℓ𝑒𝑣 𝑦𝑢𝑣,

which enumerates all (𝑢, 𝑣)-walks of length up to 𝑘 (with an extra term 𝑦𝑡,𝑡′). Note that this is
the unlabelled walk polynomial, as opposed to the labelled walk polynomial defined in Section 2.
We claim that the degree-𝑘 terms of Pf 𝐴′ yield the desired polynomial. Recall that the Pfaffian
enumerates all perfect matching on the complete graph on 𝑇 . Thus, every multilinear term
in the monomial expansion corresponds to a set of 𝑇 -walks that connect disjoint pairs of 𝑇
with no edge occurring twice or more. Each multilinear term thus corresponds to a semi-
minimal 𝑇 -join in 𝐺. In the other direction, let 𝑆 be a minimal 𝑇 -join, decomposed into paths as
𝑆 = 𝐸(P1) ∪ . . . ∪ 𝐸(P𝑡). Note that since 𝑆 is acyclic, every path P𝑖 is uniquely determined by
its endpoints. Let 𝐹 ⊆

(𝑇
2
)

be the matching on 𝑇 induced by the decomposition, i.e., for every
𝑖 ∈ [𝑡] there is an edge 𝑒𝑖 ∈ 𝐹 on the endpoints of P𝑖 . Then the monomial

𝑡∏
𝑖=1

𝑦𝑒𝑖

∏
𝑒∈𝐸(P𝑖)

𝑥𝑒 =
∏
𝑠𝑡∈𝐹

𝑦𝑠𝑡
∏
𝑒∈𝑆

𝑥𝑒

is produced only exactly once in Pf 𝐴′. ■

We solve Undirected Eulerian Deletion as follows. Assume that there is no solution of
size at most 𝑘 − 1. To find a solution of size exactly 𝑘, let 𝑃𝑘 (𝑋,𝑌 ) be the part of 𝑃(𝑋,𝑌 ) that has
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degree 𝑘 in 𝑋 , where 𝑃(𝑋,𝑌 ) is the polynomial defined in Lemma 8.4. Note that 𝑃𝑘 (𝑋,𝑌 ) can be
evaluated via polynomial interpolation.

We use the basis sieving algorithm (Theorem 3.2) over the cographic matroid 𝑀𝑘 truncated
to rank 𝑘. Note that a multilinear term corresponding to a semi-minimal 𝑇 -join vanishes during
the sieving step, since we assumed that there is no solution of size 𝑘 − 1 or smaller. Thus, we
sieve for minimal 𝑇 -join 𝑆 such that 𝑆 is a basis for 𝑀𝑘, i.e., 𝐺 \ 𝑆 is connected. By iterating
over all values up to 𝑘, we can find a minimum solution (or decide that no solution of size 𝑘 or
smaller exists) in time 𝑂∗(2𝑘).

THEOREM 8.5. Undirected Eulerian Deletion can be solved in 𝑂∗(2𝑘) time.

Next, we briefly discuss the Directed Eulerian Deletion. Goyal et al. [58] showed that an
arc set 𝑆 with |𝑆 | ≤ 𝑘 is a minimal solution for Directed Eulerian Deletion if and only if 𝑆 is
the union of ℓ arc-disjoint paths P = {𝑃1, . . . , 𝑃ℓ} such that (i) 𝐺 \ 𝑆 is weakly connected and
(ii) there are exactly deg+(𝑣) − deg−(𝑣) paths starting at every 𝑣 with deg+(𝑣) > deg−(𝑣) and
deg−(𝑣) −deg+(𝑣) paths ending at every 𝑣with deg−(𝑣) > deg+(𝑣), where ℓ = 1

2
∑
𝑣∈𝑉 | deg+(𝑣) −

deg−(𝑣) |. We show the directed analogue of Lemma 8.4. For bookkeeping, we modify the graph
as follows. For every 𝑣 ∈ 𝑉 with deg+(𝑣) > deg−(𝑣), create 𝜄(𝑣) := deg+(𝑣) − deg−(𝑣) new
vertices 𝑣+

𝑖
, 𝑖 ∈ [𝜄(𝑣)], and add an arc 𝑣+

𝑖
𝑣 for each of them. Let 𝑇+ be the union of all such

vertices 𝑣+
𝑖
. Similarly, for every 𝑣 ∈ 𝑉 with deg−(𝑣) > deg+(𝑣), create 𝜄(𝑣) := deg−(𝑣) − deg+(𝑣)

new vertices 𝑣−
𝑖

, 𝑖 ∈ [𝜄(𝑣)], and add an arc 𝑣𝑣−
𝑖

for each of them. Let 𝑇− be the union of all such
vertices 𝑣−

𝑖
. Let 𝐺′ be the modified graph. We can now identify edge sets 𝑆 in 𝐺 that meet the

balance requirement of a solution with (𝑇+, 𝑇−)-flows in 𝐺′. Let 𝐸𝑇 be the edges incident to
𝑇+ ∪𝑇−. For simplicity, we refer to a (𝑇+, 𝑇−)-flow in 𝐺 as an edge set 𝑆 in 𝐺 such that 𝑆 ∪ 𝐸𝑇 is a
(𝑇+, 𝑇−)-flow in 𝐺′. Analogous to the undirected case, a minimal (𝑇+, 𝑇−)-flow is a (𝑇+, 𝑇−)-flow
in 𝐺 which is inclusion-wise minimal, and a semi-minimal (𝑇+, 𝑇−)-flow is a (𝑇+, 𝑇−)-flow 𝑆 in 𝐺
such that 𝑆 ∪ 𝐸𝑇 decomposes into (𝑇+, 𝑇−)-walks.

Let𝑋 = {𝑥𝑒 | 𝑒 ∈ 𝐸} be a set of edge variables; note that no edge variables are created for the
edge of 𝐸𝑇 . Furthermore, introduce a second set of variables 𝑌 = { 𝑦𝑒,𝑝𝑞 | 𝑒 ∈ 𝐸, 𝑝 ∈ 𝑇+, 𝑞 ∈ 𝑇−}
to keep track of the decomposition of a (𝑇+, 𝑇−)-flow 𝑆 into paths.

LEMMA 8.6. There is a polynomial 𝑃(𝑋,𝑌 ) that can be efficiently evaluated such that its terms
which are multilinear of degree 𝑘 in 𝑋 enumerate all minimal (𝑇+, 𝑇−)-flows 𝑆 in 𝐺 of size 𝑘, in
addition to possibly some that are semi-minimal but not minimal.

PROOF . We define a 𝑇+ × 𝑇− matrix 𝐴′, where for 𝑢+
𝑖
∈ 𝑇+ and 𝑣−

𝑗
∈ 𝑇− we let entry 𝐴′[𝑢+

𝑖
, 𝑣−

𝑗
]

contain a polynomial enumerating all (𝑢+
𝑖
, 𝑣−

𝑗
)-walks in 𝐺′ of length at most 𝑘, as in Lemma 8.4,

except every variable 𝑥𝑒, 𝑒 ∈ 𝐸 is multiplied by 𝑦𝑒,𝑝𝑞. Note, again, that we use the value 1 rather
than a variable 𝑥𝑒 for edges 𝑒 ∈ 𝐸𝑇 . Let 𝑃(𝑋,𝑌 ) = det 𝐴. Then, each term in 𝑃(𝑋,𝑌 ) corresponds
to a set of ℓ walks from 𝑇+ to 𝑇− in 𝐺′, where the initial and final edges are shared between all
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terms and thus can be ignored. Thus every monomial corresponds to a semi-minimal (𝑇+, 𝑇−)-
flow. Furthermore, for every minimal (𝑇+, 𝑇−)-flow 𝑆 and every decomposition of 𝑆 into paths
P1, . . . , Pℓ, the resulting monomial is unique, since the 𝑌 -variables encode the decomposition
of 𝑆, and given such a decomposition every path P𝑖 contains a unique spanning walk. As in
Lemma 8.4, the part of 𝑃(𝑋,𝑌 ) that is multilinear in 𝑋 of degree 𝑘 then corresponds to semi-
minimal (𝑇+, 𝑇−)-flows in 𝐺 of size 𝑘, including all minimal flows, and can be evaluated using
det 𝐴 via interpolation. ■

As for Undirected Eulerian Deletion, using the sieving algorithm of Theorem 3.2 over
the cographic matroid of the underlying undirected graph, we obtain:

THEOREM 8.7. Directed Eulerian Deletion can be solved in 𝑂∗(2𝑘) time.

8.3 Conflict-free Solution

There has been a line of research studying “conflict-free” variants of classical problems [2,
42, 43, 65]. Consider a problem in which we search for a solution 𝑆, which is a subset of the
ground set 𝐸. In the conflict-free version, the solution should form an independent (i.e., pairwise
non-adjacent) set in 𝐻 , where 𝐻 is an additionally given graph whose vertices are 𝐸 and whose
edges are “conflicts”. Formally, let us define the problem Conflict-free solution as follows.
The input is a collection F of (possibly exponentially many) subsets of 𝐸, a conflict graph 𝐻 on
𝐸, and an integer 𝑡. The problem asks there is a set 𝑆 ∈ F of size 𝑡 that forms an independent set
in 𝐻 . We give another immediate consequence of Theorem 3.4 on Conflict-free Solution. As
a by-product, we improve on existing algorithms. Since Conflict-free Solution is W[1]-hard in
general, we restrict the input as follows.

Let 𝑃𝐻 (𝑋) over {𝑥𝑣 | 𝑣 ∈ 𝑉 } be an enumerating polynomial for independent sets in 𝐻 , i.e.,
𝑃𝐻 (𝑋) =

∑
𝐼 𝑐𝐼

∏
𝑣∈𝐼 𝑥𝑣, where 𝐼 ranges over all independent sets of 𝐻 and 𝑐𝐼 ∈ F is a constant.

Since it is NP-hard to determine the existence of an independent set of size 𝑘, the polynomial
𝑃𝐻 (𝑋) cannot be efficiently evaluated, unless P = NP. However, when 𝐻 is from a restricted
graph, it can be. Let GIS be a class of such graphs, i.e., let GIS contain all graphs 𝐻 such that
𝑃𝐻 (𝑋) can be evaluated in time𝑂( |𝑉 (𝐻) |𝑐) for some constant 𝑐 using some fixed algorithm. One
example of such a class GIS is then, for instance, chordal graphs (graphs that do not contain any
cycle of length four or greater as an induced subgraph) as shown by Achlioptas and Zampetakis
[1]. Moreover, we will say that a set family F over 𝐸 is 𝑘-representable if there is a matrix
𝐴 ∈ F𝑘×ℓ over a field F of characteristic 2 such that every 𝑒 ∈ 𝐸 is associated with a pairwise
disjoint subset Γ𝑒 ⊆ [ℓ], and for any 𝑆 ⊆ 𝐸, 𝑆 ∈ F if and only if 𝐴[·,⋃𝑒∈𝑆 Γ𝑒] has full row rank
(i.e., contains a non-singular submatrix). By Theorem 3.4, we have

THEOREM 8.8. If F is 𝑘-representable and 𝐻 ∈ GIS, then Conflict-free Solution can be solved
in 𝑂∗(2𝑘) time.
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Theorem 8.8 gives the following improvements over existing dynamic programming

algorithms:
Conflict-free Matching: Given a graph 𝐺 = (𝑉, 𝐸), a conflict graph 𝐻 = (𝐸, 𝐸′), and an
integer 𝑘, the task is to decide whether 𝐺 has a conflict-free matching of size 𝑘. Agrawal et
al. [2] showed that Conflict-free Matching can be solved in 𝑂∗(2(2𝜔+2)𝑘) time when 𝐻

is chordal. We can solve this problem in 𝑂∗(4𝑘) time because the collection of matchings
of size 𝑘 is 2𝑘-representable: Let 𝐴 be the representation of the uniform matroid over 𝑉
(with every vertex 𝑣 copied deg(𝑣) times) of rank 2𝑘. For each edge 𝑢𝑣, let Γ𝑢𝑣 contain one
copy of the column for 𝑢 and one copy of the column for 𝑣. Then a set of 𝑘 edges spans 𝐴 if
and only if it is pairwise disjoint, i.e., forms a matching.
Conflict-free Set Cover: Given a collection E of sets over 𝑉 (with |𝑉 | = 𝑛), a conflict
graph 𝐻 = (E, 𝐸′), and an integer 𝑡, the task is to decide whether 𝐺 has a conflict-free set
cover 𝑆 ⊆ E (i.e.,

⋃
𝑆 = 𝑉 ) of size at most 𝑡. Jacob et al. [65] gave an 𝑂∗(3𝑛)-time algorithm

for Conflict-free Set Cover when the conflict graph 𝐻 is chordal. Since set covers are
𝑛-representable (mapping every set 𝐸 to a list of elements (𝑣, 𝐸), 𝑣 ∈ 𝐸 as in Section 4), by
Theorem 8.8, it can be solved in 𝑂∗(2𝑛) time.

Incidentally, Jacob et al. [65] showed that Conflict-free Set Cover is W[1]-hard parame-
terized by 𝑛, even if the conflict graph is bipartite. This implies that the class of bipartite graphs
is not contained in GIS, although a maximum independent set can be found in polynomial time
on bipartite graphs. It is perhaps no coincidence that the problem of counting independent sets
is #P-hard for bipartite graphs [94].

9. Conclusions

We have presented determinantal sieving, a new powerful method for algebraic exact and FPT
algorithms that extends the power of multilinear sieving with the ability to sieve for terms
in a polynomial that in addition to being multilinear are also independent in an auxiliary
linear matroid. This yields significantly improved and generalized results for a range of FPT
problems, including 𝑞-Matroid Intersection in time 𝑂∗(2(𝑞−2)𝑘) over a field of characteristic 2,
improving on a previous result, of 𝑂∗(4𝑞𝑘) [30], as well as algorithms solving problems over
frameworks in the same running time as was previously known for the basic existence problem
(e.g., Subgraph Isomorphism). Additionally, we showed that over fields of characteristic 2, we
can exploit cancellations in monomial expansion to sieve for terms in a polynomial whose odd
support contains a basis for the auxiliary matroid. This has further applications for a multitude
of problems, such as finding diverse solution collections and for parameterized path, cycle and
linkage problems. Over fields of characteristic 2, all our algorithms are randomized and use
polynomial space.

Let us mention a few issues that we have not focused on in this paper.
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Weighted problems. As in most algebraic algorithms, we can handle solution weights with a
pseudopolynomial running time. That is, given an algebraic sieving algorithm for some problem
over a ground set𝑉 with a running time of 𝑂∗( 𝑓 (𝑘)), and given a set of item weights 𝜔 : 𝑉 → N
and a weight target 𝑊 , we can usually find solutions of weight 𝑊 in time 𝑂∗( 𝑓 (𝑘) ·𝑊) by
multiplying every variable 𝑥𝑣, 𝑣 ∈ 𝑉 by 𝑧𝜔(𝑣) for a new variable 𝑧 and using interpolation.
However, the gold standard would be to reduce the weight dependency to 𝑂∗( 𝑓 (𝑘) · log𝑊)
for the task of finding a min-weight solution, and this appears incompatible with algebraic
algorithms. Even for the most classical problem TSP, whose unweighted variant Hamiltonicity
is solvable in 𝑂∗(1.66𝑛) time [17], the 𝑂∗(2𝑛)-barrier has been broken recently, and even then,
only partially and conditionally [90].

Counting. Since our most efficient algorithms work over fields of characteristic 2, they do not
intrinsically allow us to count the number of solutions. Indeed, for many settings relevant to us,
such as 𝑘-Path and bipartite or general matchings, the corresponding counting problems are
known to be hard (#W[1]-hard and #P-hard, respectively; see Curticapean [36] for a survey).
On the other hand, being able to detect the existence of a witness does have some applications
for approximate counting. In particular, having access to a decision oracle for colourful wit-
nesses, given a colouring of the ground set, implies approximate counting algorithms [16, 45,
44]. Improved, algebraically based FPT approximate counting algorithms are also known for
particular problems, such as #𝑘-Path [76].

Derandomization. The task of derandomizing our results ranges from doable with known
methods to completely infeasible, given the details of the application.

In a typical application of our method, combining a polynomial 𝑃(𝑋) and a linear ma-
troid 𝑀 over 𝑋 , we have two sources of randomness: Finding a representation of 𝑀 and the
Schwartz-Zippel step of checking whether 𝑃(𝑋) is non-zero (including avoiding cancellations
due to interference between multilinear monomials in 𝑃(𝑋), representing different bases of
𝑀). For many matroids and matroid constructions, a representation can be found efficiently,
including uniform matroids, partition matroids, and graphic and co-graphic matroids, as well
as matroids constructed from these using operations of dualization, contraction, disjoint union
and truncation [77, 92, 83]. Beyond this, there appears to be a barrier. A deterministic repre-
sentation of transversal matroids would presumably also lead to a deterministic solution to
Exact Matching, which is long open. Since gammoids generalize transversal matroids, and
transversal matroids can be constructed via a sequence of matroid union steps over very simple
matroids [92], gammoids and non-disjoint union also appear difficult. However, some progress
has been made on constructing representations in superpolynomial time that depends on the
rank [78, 87].
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For the Schwartz-Zippel PIT step, the obstacles are oddly similar. A polynomial 𝑃(𝑋)

(over Q or R) is combinatorial if all coefficients are non-negative. In such a case, PIT can be
derandomized via the exterior algebra; see Brand [27]. This aligns with the extensor-based
determinantal sieving used in this paper, hence some of our results can be derandomized,
albeit at the expense of increased running time. More precisely, given a skew arithmetic circuit
computing a combinatorial polynomial, we can sieve for a 𝑘-multilinear term whose support
forms a matroid basis in 𝑂∗(4𝑘) time, using the idea of lift mapping. However, for results that
depend on odd sieving, or where 𝑃(𝑋) corresponds to a determinant or Pfaffian computation,
derandomization once again appears infeasible.

9.1 Open questions

Let us highlight some open questions.
One very interesting question is Directed Hamiltonicity. We note two very different

methods for checking Hamiltonicity in bipartite digraphs in time 𝑂∗(𝑐𝑛) for 𝑐 < 2. The first is by
Cygan, Kratsch and Nederlof [39], who established a rank bound of 2𝑛/2−1 on the perfect matching
connectivity matrix. This leads to a SETH-optimal algorithm for Hamiltonicity parameterized
by pathwidth, and an algorithm for Hamiltonicity in bipartite digraphs in time 𝑂∗(1.888𝑛).
However, the fastest algorithm for Hamiltonicity in bipartite digraphs follows a polynomial
sieving approach by Björklund, Kaski and Koutis [22]. In our terminology, we would describe
their algorithm as, given a bipartite digraph 𝐺 = (𝑈 ∪𝑉, 𝐸), enumerating subgraphs of 𝐺 that
have in- and out-degree 1 in 𝑉 and whose underlying undirected graph is a spanning tree of
𝐺 plus one edge. It then remains to sieve via inclusion-exclusion for those graphs which have
non-zero in- and out-degree for every vertex in𝑈 as well, which they show can be done in time
𝑂∗(3|𝑈 |) rather than 4|𝑈 | due to the structure of the problem space. Still, it remains unknown
whether Hamiltonicity in general digraphs can be solved in 𝑂∗(𝑐𝑛) for any 𝑐 < 2.

We would be very interested in a derivation of the 2𝑛/2 rank bound for the perfect matching
connectivity matrix in a less problem-specific manner. Such a result, one would hope, could
uncover new tools and methods that could lead to improved algebraic algorithms for a wider
range of applications. We also note, to the best of our knowledge, that the optimal running time
for Hamiltonicity parameterized by treewidth remains open. Finally, can 𝑘-Path be solved in
time 𝑂∗(𝑐𝑘) for some 𝑐 < 2 on bipartite digraphs?

Another major problem concerns 𝑘 Disjoint Paths and its harder variant Min-Sum 𝑘

Disjoint Paths. Given the success of algebraic algorithms for related problems, it would be
very interesting to find an algebraic algorithm for either problem for general 𝑘. Björklund and
Husfeldt [18] show an algebraic algorithm for Min-Sum 𝑘 Disjoint Paths for 𝑘 = 2, by showing
a way to compute the permanent over Z4[𝑋]/(𝑋𝑚), the ring of bounded-degree polynomials
over Z4. For the nearly ten years since this result’s original publication, we do not know of any
developments even for 𝑘 = 3.
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As a more down-to-earth problem, what is the best running time for 𝑞-Matroid Parity and

(possibly) 𝑞-Set Packing? Recall that Björklund et al. [20] showed that 𝑞-Dimensional Matching
can be solved in 𝑂∗(2(𝑞−2)𝑘) time and that 𝑞-Set Packing can be solved in time 𝑂∗(2(𝑞−𝜀𝑞)𝑘) for
some 𝜀𝑞 > 0, essentially by a randomized reduction to 𝑞-DimensionalMatching. Can 𝑞-Matroid
Parity, the generalisation of 𝑞-Set Packing, be solved in 𝑂∗(2(𝑞−𝜀𝑞)𝑘) time for some 𝜀𝑞 > 0? The
difference is most stark for 𝑞 = 3, where 3-Matroid Intersection is solvable in time 𝑂∗(2𝑘),
3-Set Packing in time 𝑂∗(3.328𝑘) and 3-Matroid Parity only in time 𝑂∗(8𝑘).

Among other individual problems of interest are to find improvements and the best
possible running times for problems such as Long Directed Cycle [53, 104] Connected 𝑓 -
Factor [52], and more generally parameterized connectivity problems, cf. [3, 48].
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