
1 / 39 2025 :22

Optimal Padded
Decomposition For
Bounded Treewidth Graphs

Received Nov 11, 2024
Revised Jul 18, 2025
Accepted Aug 17, 2025
Published Oct 10, 2025

Key words and phrases
padded decompositions,
treewidth, tree-ordered nets,
sparse covers, padded partition
covers, metric embeddings,
max-flow/min-multicut

Arnold Filtsera � �

Tobias Friedrichb � �

Davis Isaacc � �

Nikhil Kumard � �

Hung Lee � �

Nadym Mallekb � �

Ziena Zeifb � �

a Bar-Ilan University, Ramat Gan,
Israel

b Hasso Plattner Institute,
University of Potsdam, Germany

c NextSilicon, Berlin, Germany

d University of Waterloo, Waterloo
Ontario, Canada

e University of Massachusetts
Amherst, USA

ABSTRACT. A (𝛽, 𝛿, Δ)-padded decomposition of an edge-weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) is a
stochastic decomposition into clusters of diameter at most Δ such that for every vertex 𝑣 ∈ 𝑉 ,
the probability that B𝐺 (𝑣, 𝛾Δ) is entirely contained in the cluster containing 𝑣 is at least 𝑒−𝛽𝛾

for every 𝛾 ∈ [0, 𝛿]. Padded decompositions have been studied for decades and have found
numerous applications, including metric embedding, multicommodity flow-cut gap, multicut,
and zero extension problems, to name a few. In these applications, parameter 𝛽, called the
padding parameter, is the most important parameter since it decides either the distortion or the
approximation ratios. For general graphs with 𝑛 vertices, the padding parameter 𝛽 is known to
be in Θ(log 𝑛).

Klein, Plotkin, and Rao [52] (KPR) showed that 𝐾𝑟-minor-free graphs have padding param-
eter 𝛽 = 𝑂(𝑟3), which is a significant improvement over general graphs when 𝑟 is a constant.
However, when 𝑟 = Ω(log 𝑛), the padding parameter in KPR decomposition can be much worse
than log 𝑛. A long-standing conjecture is that constructing a padded decomposition for 𝐾𝑟-minor-

Part of the results in this paper were previously published in conference STOC’23 [39].
Arnold Filtser was supported by the Israel Science Foundation (grant No. 1042/22). Hung Le was supported by the NSF
CAREER Award No. CCF-223728, an NSF Grant No. CCF-2121952, and a Google Research Scholar Award.

Cite as Arnold Filtser, Tobias Friedrich, Davis Isaac, Nikhil Kumar, Hung Le, Nadym
Mallek, Ziena Zeif. Optimal Padded Decomposition For Bounded Treewidth Graphs.
TheoretiCS, Volume 4 (2025), Article 22, 1-39.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.22

mailto:arnold.filtser@biu.ac.il
https://orcid.org/0000-0001-9578-9304
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:davisisaac22@gmail.com
https://orcid.org/0000−0001−5559−7471
mailto:nikhil.kumar2@uwaterloo.ca
https://orcid.org/0000-0001-8634-6237
mailto:hungle@cs.umass.edu
https://orcid.org/0000-0001-8223-9944
mailto:nadym.mallek@hpi.de
https://orcid.org/0000-0002-4370-5145
mailto:ziena.zeif@hpi.de
https://orcid.org/0000-0003-0378-1458

2 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

free graphs is possible with padding parameter 𝛽 = 𝑂(log 𝑟). Despite decades of research, the
best-known result is 𝛽 = 𝑂(𝑟), even for graphs with treewidth at most 𝑟.

In this work, we make significant progress toward the aforementioned conjecture by
showing that graphs with treewidth tw admit a padded decomposition with padding parameter
𝑂(log tw), which is tight. Our padding parameter is strictly better than 𝑂(log 𝑛) whenever
tw = 𝑛𝑜(1) , and is never worse than what is known for general graphs. As corollaries, we obtain
an exponential improvement in dependency on treewidth in a host of algorithmic applications:
𝑂(

√︁
log 𝑛 · log(tw)) flow-cut gap, the maxflow-min multicut ratio of 𝑂(log(tw)), an 𝑂(log(tw))

approximation for the 0-extension problem, an ℓ𝑂(log 𝑛)
∞ embedding with distortion 𝑂(log tw),

and an 𝑂(log tw) bound for integrality gap for the uniform sparsest cut.

1. Introduction

A basic primitive in designing divide-and-conquer graph algorithms is partitioning a graph into
clusters such that there are only a few edges between clusters. This type of primitive has been
extensively applied in the design of divide-and-conquer algorithms. Since guaranteeing a few
edges crossing different clusters in the worst case could be very expensive, we often seek a good
guarantee in a probabilistic sense: the probability that two vertices 𝑢 and 𝑣 are placed into two
different clusters is proportional to 𝑑𝐺 (𝑢, 𝑣)/Δ where 𝑑𝐺 (𝑢, 𝑣) is the distance between 𝑢 and 𝑣
in the input graph 𝐺 and Δ is the upper bound on the diameter of each cluster. A (stochastic)
partition of 𝑉 (𝐺) with this property is called a separating decomposition of 𝐺 [32].

In this work, we study a stronger notion of stochastic decomposition, called padded decom-
position. More formally, given a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤), a partition is Δ-bounded if the
diameter of every cluster is at most Δ. A distributionD over partitions is called a (𝛽, 𝛿, Δ)-padded
decomposition, if every partition in the support is Δ-bounded, and for every vertex 𝑣 ∈ 𝑉 and
𝛾 ∈ [0, 𝛿], we have:

Pr[B𝐺 (𝑣, 𝛾Δ) ⊆ 𝑃(𝑣)] ≥ 𝑒−𝛽𝛾 where 𝑃(𝑣) is the cluster containing 𝑣. (1)

That is, the probability that the entire ball B𝐺 (𝑣, 𝛾Δ) of radius 𝛾Δ around 𝑣 is clustered
together, is at least 𝑒−𝛽𝛾. If 𝐺 admits a (𝛽, 𝛿, Δ)-padded decomposition for every Δ > 0, we say
that 𝐺 admits (𝛽, 𝛿)-padded decomposition scheme. The parameter 𝛽 is usually referred to as a
padding parameter.

In an influential work, Klein, Plotkin and Rao [52] showed that every 𝐾𝑟 minor free
graph admits a weak

(
𝑂(𝑟3),Ω(1)

)
-padded decomposition scheme; the padding parameter is

𝑂(𝑟3). This result has found numerous algorithmic applications for solving problems in 𝐾𝑟-
minor-free graphs; a few examples are the flow-cut gap of 𝑂(𝑟3) for uniform multicommodity
flow [52], extending Lipschitz functions with absolute extendability of 𝑂(𝑟3) [57], the maxflow-

3 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

min multicut ratio of 𝑂(𝑟3) for the multicommodity flow with maximum total commodities [69],
an 𝑂(𝑟3 log log(𝑛)) approximation for minimum linear arrangement, minimum containing
interval graphs [66], an𝑂(𝑟3) approximation for the 0-extension problem [15], and an𝑂(𝑟3 log 𝑛)-
approximation for the minimum bisection problem [29]. An important takeaway is that key
parameters quantifying the quality of these applications depend (linearly) on the padding
parameter; any improvement to the padding parameter would imply the same improvement in
the applications.

Fakcharoenphol and Talwar [28] improved the padding parameter of 𝐾𝑟 minor free graphs
to𝑂(𝑟2). Abraham, Gavoille, Gupta, Neiman, and Talwar [3] (see also [32]) improved the padding
parameter to 𝑂(𝑟). These improvements imply an 𝑂(𝑟) dependency on the minor size of all
aforementioned applications. The only lower bound is Ω(log 𝑟) coming from the fact that 𝑟-
vertex expanders (trivially) exclude 𝐾𝑟 as a minor while having padding parameter Ω(log 𝑟) [8].
Closing the gap between the upper bound of 𝑂(𝑟) and the lower bound Ω(log 𝑟) has been an
outstanding problem asked by various authors [28, 56, 3, 32].

CONJECTURE 1.1. There exists a padded decomposition of any 𝐾𝑟-minor-free metric with
padding parameter 𝛽 = 𝑂(log 𝑟).

Progress on Conjecture 1.1 has been made on very special classes of minor-free graphs.
Specifically, graphs with pathwidth pw admit padding parameter 𝑂(log pw) [3]. This result
implies that 𝑛-vertex graphs with treewidth tw admit padding parameter 𝑂(log tw + log log 𝑛),
since the pathwidth of graphs of treewidth tw is 𝑂(tw · log(𝑛)) (also see [49]). However, the
padding parameter depends on 𝑛. Thus, a significant step towards Conjecture 1.1 is to show
that graphs of treewidth tw admit a padded decomposition with padding parameter 𝑂(log tw).
The best-known result (without the dependency on 𝑛) for small treewidth graphs is the same
as minor-free graphs, implied by the fact that such graphs of treewidth tw exclude 𝐾tw+2 as
a minor. Our first main result is to prove Conjecture 1.1 for the special case of treewidth-tw
graphs:

THEOREM 1.2. Every weighted graph 𝐺 with treewidth tw admits a (𝑂(log tw),Ω(1))-padded
decomposition scheme. Furthermore, such a partition can be sampled efficiently.

Our Theorem 1.2 implies that we could replace 𝑟3 with 𝑂(log tw) in the aforementioned
problems when the input graphs have treewidth tw: 𝑂(log(tw)) for uniform multicommod-
ity flow-cut gap, extending Lipschitz functions with absolute extendability of 𝑂(log(tw)), the
maxflow-min multicut ratio of 𝑂(log(tw)), an 𝑂(log(tw) log log(𝑛)) approximation for mini-
mum linear arrangement, minimum containing interval graphs, an 𝑂(log(tw)) approximation
for the 0-extension problem, and an 𝑂(log(tw) log 𝑛)-approximation for the minimum bisection
problem. Furthermore, we obtain the first ℓ1 embedding of treewidth-tw metrics with distortion
O(

√︁
log tw · log 𝑛), an ℓ

𝑂(log 𝑛)
∞ embedding with distortion 𝑂(log tw), and 𝑂(log tw) bound for

4 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

integrality gap for the uniform sparsest cut. For several of these problems, for example, uni-
form multicommodity flow-cut gap, maxflow-min multicut ratio, and 0-extension, our results
provide the state-of-the-art approximation ratio for an entire range of parameter tw, even when
tw = Ω(𝑛). We refer readers to Section 5 for a more comprehensive discussion of these results.

Here we point out another connection to Conjecture 1.1. Filtser and Le [37] showed that
one can embed any 𝐾𝑟-minor-free metric of diameter Δ into a graph with treewidth 𝑂𝑟 (𝜖−2 ·
(log log 𝑛)2) and additive distortion 𝜖 · Δ. The dependency of 𝑂𝑟 (·) on 𝑟 is currently huge; it is
the constant in the Robertson-Seymour decomposition. However, if one could manage to get the
same treewidth to be𝑂(poly(𝑟/𝜀)), then in combination with our Theorem 1.2, one has a positive
answer to Conjecture 1.1. Even an embedding with a treewidth𝑂(poly(𝑟/𝜀)poly(log(𝑛)) already
implies a padding parameter𝑂(log(𝑟)+log log(𝑛)), a significant progress towards Conjecture 1.1.

Sparse Covers. A related notion to padded decompositions is sparse cover. A collection C of
clusters is a (𝛽, 𝑠, Δ)-sparse cover if it is Δ-bounded, each ball of radius Δ

𝛽 is contained in some
cluster, and each vertex belongs to at most 𝑠 different clusters. A graph admits (𝛽, 𝑠)-sparse
cover scheme if it admits (𝛽, 𝑠, Δ)-sparse cover for every Δ > 0.

Sparse covers have been studied for various classes of graphs, such as general graphs [7],
planar graphs [14], minor-free graphs [53, 14, 4], and doubling metrics [32].

By simply taking the union of many independently drawn copies of padded decomposi-
tion, one can construct a sparse cover. Indeed, given (𝛽, 𝛿, Δ)-padded decomposition, by taking
the union of 𝑂(𝑒𝛽𝛾 log 𝑛) partitions (for 𝛾 ≤ 𝛿) one will obtain w.h.p. a (𝛾, 𝑂(𝑒𝛽𝛾 log 𝑛), Δ)-
sparse cover. In particular, using Theorem 1.2 one can construct (𝑂(1), 𝑂(𝑒log tw log 𝑛)) =

(𝑂(1), tw𝑂(1) log 𝑛))-sparse cover scheme. The main question in this context is whether one can
construct sparse covers for bounded treewidth graphs with constant cover parameter (𝛽) and
sparseness (𝑠) independent from 𝑛. If one is willing to sacrifice a (quadratic) dependency on tw
on the cover parameter 𝛽, then a sparse cover with parameters independent of 𝑛 is known [52,
28, 2]. However, in many applications, for example, constructing sparse spanners, it is desirable
to have 𝛽 = 𝑂(1) as it directly governs the stretch of the spanners.

THEOREM 1.3. Every graph 𝐺 with treewidth tw admits a (6, poly(tw))-sparse cover scheme.

It is sometimes useful to represent the sparse cover C as a union of partitions, for example,
in metric embeddings [53], and the construction of ultrametric covers [37, 30], leading to the
notion of padded partition cover scheme:

DEF IN IT ION 1.4 (Padded Partition Cover Scheme). A collection of partitions P1, . . . ,P𝜏 is
(𝛽, 𝑠, Δ)-padded partition cover if (a) 𝜏 ≤ 𝑠, (b) every partition P𝑖 is Δ-bounded, and (c) for every
point 𝑥, there is a cluster 𝐶 in one of the partitions P𝑖 such that 𝐵(𝑥, Δ

𝛽) ⊆ 𝐶.
A space (𝑋, 𝑑𝑋) admits a (𝛽, 𝑠)-padded partition cover scheme if for every Δ, it admits a (𝛽, 𝑠, Δ)-
padded partition cover.

5 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

While a padded partition cover implies a sparse cover with the same parameters, the
reverse direction is not true. For example, graphs with pathwidth pw admit (10, 5(pw + 1))-
sparse cover scheme [33], however, they are only known to admit (𝑂(pw2), 2pw+1)-padded
partition cover scheme (this is due to 𝐾𝑟-minor free graphs [52, 28] (see also [53, 33])).1 That
is, the sparseness parameter in the padded partition cover scheme is exponentially worse (in
terms of pw) than that of the sparse cover scheme. In this work, we construct a padded partition
cover scheme with the same quality as our sparse covers.

THEOREM 1.5. Every graph𝐺 with treewidth tw admits a (12, poly(tw))-padded partition cover
scheme.

Tree-Ordered Net. A key new technical insight to all of our aforementioned results is the
notion of tree-ordered net (Definition 1.6). A tree order net is analogous to the notion of nets. Nets
were used extensively in designing algorithms for metric spaces. More formally, a Δ-net is a set
of points 𝑁 such that every two net points are at a distance at least Δ (i.e min𝑥, 𝑦∈𝑁 𝑑𝑋 (𝑥, 𝑦) ≥ Δ),
and every point has a net point at a distance at most Δ (i.e. max𝑥∈𝑉 min𝑦∈𝑁 𝑑𝑋 (𝑥, 𝑦) ≤ Δ). Filtser
[32] showed that if there is a Δ-net such that every ball of radius 3Δ contains at most 𝜏 net points,
then the metric admits a (𝑂(log 𝜏),Ω(1), 𝑂(Δ))-padded decomposition. This result implies that
metrics of doubling dimension 𝑑 have padding parameter 𝑂(𝑑) since doubling metrics have
sparse nets: 𝜏 = 2𝑂(𝑑) . Unfortunately, graphs of small treewidth do not have sparse nets; this
holds even in very simple graphs such as star graphs. Nonetheless, we show that small treewidth
graphs possess a structure almost as good: a net that is sparse w.r.t. some partial order. We
formalize this property via tree-ordered nets. As we will later show, a sparse tree-ordered net
is enough to construct the padded decomposition scheme; see Section 3. We believe that the
notion of a tree-ordered net is of independent interest.

Tree-Order. Another important insight, is that of tree orders. A tree order ⪯ of a set 𝑉 is
a partial order (i.e. transitive, reflexive, and antisymmetric) associated with a rooted tree
𝑇 and a map 𝜑 : 𝑉 → 𝑉 (𝑇) such that 𝑢 ⪯ 𝑣 iff 𝜑(𝑣) is an ancestor of 𝜑(𝑢) in 𝑇 . Given a
weighted graph 𝐺 = (𝑉, 𝐸, 𝑤), a tree order ⪯ w.r.t. tree 𝑇 is a valid order of 𝐺 if for every edge
{𝑢, 𝑣} ∈ 𝐸, it holds that 𝑢 ⪯ 𝑣 or 𝑣 ⪯ 𝑢 or both (i.e. 𝑣 is an ancestor of 𝑢 or 𝑢 is an ancestor of
𝑣). A simple consequence of the validity is that every connected subset 𝐶 in 𝐺 must contain
a maximum element w.r.t ⪯; see Observation 3.1. For a vertex 𝑣 ∈ 𝑉 , and subset 𝑆 ⊆ 𝑉 let
𝑆𝑣⪯ = {𝑢 ∈ 𝑆 | 𝑣 ⪯ 𝑢} be the ancestors of 𝑣 w.r.t. 𝑇 in 𝑆. Similarly, let 𝑆⪯𝑥 = {𝑢 ∈ 𝑆 | 𝑢 ⪯ 𝑥} be all
the descendants of 𝑥 in 𝑆.

1 Note that we do not have matching lower bounds, so there is no provable separation.

6 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

S⪯x

Sx⪯

x

Figure 1. Illustration of a tree order.

DEF IN IT ION 1.6. Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) and parameters 𝜏, 𝛼, Δ > 0, a (𝜏, 𝛼, Δ)-
tree-ordered net is a triple (𝑁,𝑇, 𝜑) where 𝑁 ⊆ 𝑉 , and 𝑇 and 𝜑 define a tree order ⪯ of 𝑉 such
that for every 𝑣 ∈ 𝑉 :

Covering. There is 𝑥 ∈ 𝑁𝑣⪯ such that 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ Δ. That is, there exists an ancestor 𝑥
of 𝑣 in 𝑁 such that the distance from 𝑣 to 𝑥 in the subgraph of 𝐺 induced by descendants
of 𝑥 is at most Δ.
Packing. Denote by 𝑁𝛼Δ

𝑣⪯ =
{
𝑥 ∈ 𝑁𝑣⪯ | 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ 𝛼Δ

}
the set of ancestor centers of 𝑣 at

distance at most 𝛼Δ from 𝑣 (w.r.t the subgraphs induced by descendants of the ancestors.
Then

��𝑁𝛼Δ
𝑣⪯
�� ≤ 𝜏.

While we state our main result in terms of treewidth, it will be more convenient to use the
notion of bounded tree-partition width [25]. We will show that graphs of bounded tree-partition
width admit a small tree-ordered net.

DEF IN IT ION 1.7 (Tree Partition). A tree partition of a graph 𝐺 = (𝑉, 𝐸) is a rooted tree T
whose vertices are bijectively associated with the sets of partition S = {𝑆1, 𝑆2, . . . , 𝑆𝑚} of 𝑉 ,
called bags, such that for each (𝑢, 𝑣) ∈ 𝐸, there exists a 𝑆𝑖 , 𝑆 𝑗 ∈ S such that 𝑆 𝑗 is the parent of 𝑆𝑖
and {𝑢, 𝑣} ⊆ 𝑆𝑖 ∪ 𝑆 𝑗 . The width of T is max𝑖∈𝑚{|𝑆𝑖 |}.

Unlike a tree decomposition, bags of a tree partition are disjoint. Therefore, graphs of
bounded-tree partition width have a more restricted structure than graphs of bounded treewidth.
Indeed, one can show that any graphs of tree-partition width 𝑘 have treewidth at most 2𝑘 − 1.
However, from a metric point of view, graphs of bounded treewidth are the same as graphs of
bounded tree-partition width: We could convert a tree decomposition into a tree partition by
making copies of vertices; see Lemma 2.2. We will show in Section 4 that:

7 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

LEMMA 1.8. Every weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a tree-partition width tp admits a
(poly(tp), 3, Δ)-tree-ordered net, for every Δ > 0.

In Section 3, we show how to use the tree-ordered net in Lemma 1.8 to obtain all results
stated above.

Follow-up Work. Recently, inspired by our technique, [44] constructed a tree cover with
stretch 1 + 𝜀 and 2(tw/𝜀)𝑂(tw) trees. This result has applications to constructing distance oracles
and approximate labeling schemes for graphs of small treewidth. Filtser [31] showed recently
that 𝐾𝑟-minor-free graphs admit a (4 + 𝜀, 𝑂(1/𝜀)𝑟)-sparse cover scheme for every 𝜀 ∈ (0, 1).
While the stretch is an absolute constant, the dependency on the minor size is exponential and
hence is incomparable to our Theorem 1.3.

In a subsequent work [22], Conroy and Filtser answered the main open question left
by this paper (see Section 5.8), and showed that every 𝐾𝑟-minor-free graph admits a padded
decomposition with padding parameter 𝑂(log 𝑟). Conroy and Filtser have been inspired by the
techniques developed in the current paper. Specifically, they use the buffered cup decomposition
of [17] and, in the spirit of the current paper, recursively remove many supernodes at once to
reduce the treewidth of each remaining component. Conroy and Filtser establish their result by
showing the existence of good sparse covers for 𝐾𝑟-minor-free graphs and a general reduction
from sparse cover to padded decomposition.

2. Preliminaries

Graphs. We consider connected undirected graphs 𝐺 = (𝑉, 𝐸) with edge weights 𝑤 : 𝐸 → R≥0.
We say that vertices 𝑣 and 𝑢 are neighbors if {𝑣, 𝑢} ∈ 𝐸. Let 𝑑𝐺 denote the shortest path metric
in 𝐺. B𝐺 (𝑣, 𝑟) = {𝑢 ∈ 𝑉 | 𝑑𝐺 (𝑣, 𝑢) ≤ 𝑟} is the ball of radius 𝑟 around 𝑣. For a vertex 𝑣 ∈ 𝑉 and a
subset 𝐴 ⊆ 𝑉 , let 𝑑𝐺(𝑥,𝐴) := min𝑎∈𝐴 𝑑𝐺 (𝑥, 𝑎), where 𝑑𝐺 (𝑥, ∅) = ∞. For a subset of vertices 𝐴 ⊆ 𝑉 ,
let 𝐺[𝐴] denote the induced graph on 𝐴, and let 𝐺 \ 𝐴 := 𝐺[𝑉 \ 𝐴].

The diameter of a graph 𝐺 is diam(𝐺) = max𝑣,𝑢∈𝑉 𝑑𝐺 (𝑣, 𝑢), i.e. the maximal distance
between a pair of vertices. Given a subset 𝐴 ⊆ 𝑉 , the weak-diameter of 𝐴 is diam𝐺 (𝐴) =
max𝑣,𝑢∈𝐴 𝑑𝐺 (𝑣, 𝑢), i.e. the maximal distance between a pair of vertices in 𝐴, w.r.t. to original
distances 𝑑𝐺. The strong-diameter of 𝐴 is diam(𝐺[𝐴]), the diameter of the graph induced by 𝐴.
A graph 𝐻 is a minor of a graph 𝐺 if we can obtain 𝐻 from 𝐺 by edge deletions/contractions,
and isolated vertex deletions. A graph family G is 𝐻-minor-free if no graph 𝐺 ∈ G has 𝐻 as a
minor. We will drop the prefix 𝐻 in 𝐻-minor-free whenever 𝐻 is not important or clear from
the context.

Some examples of minor-free graphs are planar graphs (𝐾5- and 𝐾3,3-minor-free), outer-
planar graphs (𝐾4- and 𝐾3,2-minor-free), series-parallel graphs (𝐾4-minor-free) and trees (𝐾3-
minor-free).

8 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

Treewidth. A tree decomposition of a graph 𝐺 = (𝑉, 𝐸) is a tree T where each node 𝑥 ∈ T is
associated with a subset 𝑆𝑥 of 𝑉 , called a bag, such that: (i) ∪𝑥∈𝑉 (T)𝑆𝑥 = 𝑉 , (ii) for every edge
(𝑢, 𝑣) ∈ 𝐸, there exists a bag 𝑆𝑥 for some 𝑥 ∈ 𝑉 (T) such that {𝑢, 𝑣} ⊆ 𝑆, and (iii) for every 𝑢 ∈ 𝑉 ,
the bags containing 𝑢 induces a connected subtree of T . The width of T is max𝑥∈𝑉 (T){|𝑆𝑥 |}-1.
The treewidth of 𝐺 is the minimum width among all possible tree decompositions of 𝐺.

Padded Decompositions. Consider a partition P of 𝑉 into disjoint clusters. For 𝑣 ∈ 𝑉 , we
denote by 𝑃(𝑣) the cluster 𝑃 ∈ P that contains 𝑣. A partition P is strongly Δ-bounded (resp.
weakly Δ-bounded) if the strong-diameter (resp. weak-diameter) of every 𝑃 ∈ P is bounded by
Δ. If the ball B𝐺 (𝑣, 𝛾Δ) of radius 𝛾Δ around a vertex 𝑣 is fully contained in 𝑃(𝑣), we say that 𝑣 is
𝛾-padded by P. Otherwise, if B𝐺 (𝑣, 𝛾Δ) ⊈ 𝑃(𝑣), we say that the ball is cut by the partition.

DEF IN IT ION 2 .1 (Padded Decomposition). Consider a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). A distri-
butionD over partitions of 𝐺 is strongly (resp. weakly) (𝛽, 𝛿, Δ)-padded decomposition if every
P ∈ supp(D) is strongly (resp. weakly) Δ-bounded and for any 0 ≤ 𝛾 ≤ 𝛿, and 𝑧 ∈ 𝑉 ,

Pr[B𝐺 (𝑧, 𝛾Δ) ⊆ 𝑃(𝑧)] ≥ 𝑒−𝛽𝛾 .

We say that a graph 𝐺 admits a strong (resp. weak) (𝛽, 𝛿)-padded decomposition scheme, if for
every parameter Δ > 0 it admits a strongly (resp. weakly) (𝛽, 𝛿, Δ)-padded decomposition that
can be sampled in polynomial time.

2.1 From Tree Decomposition to Tree Partition

We first show that any graph of treewidth tw can be embedded isometrically into a graph of
tree-partition width tw by duplicating vertices.

LEMMA 2.2. Given an edge-weighed graph 𝐺(𝑉, 𝐸, 𝑤) and its tree decomposition of width tw,
there is an isometric polynomial time constructible embedding of𝐺 into a graph with tree partition
of width tw+1. More formally, there is a graph 𝐻 = (𝑋, 𝐸𝐻 , 𝑤𝐻) with tree partition of width tw+1
and a map 𝜙 : 𝑉 → 𝑋 such that ∀𝑥, 𝑦 ∈ 𝑉 , 𝑑𝐻 (𝜙(𝑥), 𝜙(𝑦)) = 𝑑𝐺 (𝑥, 𝑦).

PROOF . Let B be a tree decomposition of width at most 𝑟 of 𝐺 = (𝑉, 𝐸, 𝑤). We create a graph
𝐻 and its tree partition as follows (see Figure 2). For each 𝑢 ∈ 𝑉 , if 𝑢 appears in 𝑘 bags of B,
say 𝐵1, 𝐵2, . . . , 𝐵𝑘, then we make 𝑘 copies of 𝑢, say 𝑢1, 𝑢2, . . . , 𝑢𝑘 and replace 𝑢 in bag 𝐵𝑖 with its
copies 𝑢𝑖 , 𝑖 ∈ [1, 𝑘]. This defines the set of vertices 𝑋 of 𝐻 . We then set 𝜙(𝑢) = 𝑢1.

If 𝐵𝑖 and 𝐵 𝑗 are two adjacent bags in B, we create an edge (𝑢𝑖 , 𝑢 𝑗) and assign a weight
𝑤𝐻 (𝑢𝑖 , 𝑢 𝑗) = 0. For each (𝑢, 𝑣) ∈ 𝐸, there exists at least one bag 𝐵 𝑗 of the tree decomposition of 𝐺
such that 𝑢, 𝑣 ∈ 𝐵 𝑗 . We add the edge (𝑢 𝑗 , 𝑣 𝑗) of weight𝑤𝐻 (𝑢 𝑗 , 𝑣 𝑗) = 𝑤(𝑢, 𝑣) to 𝐸𝐻 . This completes
the construction of 𝐻 .

The tree partition of 𝐻 , say T , has the same structure as the tree decomposition B of 𝐺:
for each bag 𝐵 ∈ B, there is a corresponding bag 𝐵̂ ∈ T containing copies of vertices of 𝐵. As

9 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

(a) (b)

a

a i h

a b h a c h a i d

b e h c f h d g i

b

e

G

h

f

c
d

g

i

b5 5 5e h c6 6 6f h d 7 7 7
g i

a3 3 3c h a4 4 4d i

a1 1 1i h

a2 2 2b h

Figure 2. Converting a tree decomposition in (a) into a tree partition in (b). The thick red edges are the
original edges in 𝐺, and the thin blue edges are the added edges with weight zero.

|𝐵| ≤ 𝑟 + 1, the width of T is 𝑟 + 1. For each 𝑢 ∈ 𝑉 , we map it to exactly one copy of 𝑢 in 𝑋 . As
edges between copies of the same vertex have 0 weight, the distances in 𝐺 are preserved exactly
in 𝐻 . ■

Using Lemma 2.2 together with the tree-ordered net in Lemma 1.8 we will construct (weak)
padded decomposition and sparse covers for graphs of small treewidth.

3. Padded Decomposition and Sparse Cover

In this section, we prove three general lemmas on constructing a padded decomposition and a
sparse cover from a tree-ordered net. These lemmas, together with Lemma 1.8, imply Theo-
rem 1.2, Theorem 1.3, and Theorem 1.5. We begin by proving Theorem 1.3, as its proof is the
simplest among the three. We observe the following by the definition of a tree order.

OBSERVAT ION 3.1. Let ⪯ be a valid tree order of 𝐺 = (𝑉, 𝐸, 𝑤) defined by a tree 𝑇 . Every subset
of vertices 𝐶 such that 𝐺[𝐶] is connected must contain a single maximum element w.r.t ⪯.

PROOF . Suppose that there are 𝑡 maximal elements 𝑢1, 𝑢2, . . . , 𝑢𝑡 ∈ 𝐶 for 𝑡 ≥ 2. Let 𝐴𝑖 = {𝑣 :
𝑣 ⪯ 𝑢𝑖} for every 𝑖 ∈ [𝑡] and A = {𝐴1, . . . , 𝐴𝑡}. Then A is a partition of 𝐶 since {𝑢𝑖}𝑡𝑖=1 are
maximal (and 𝑇 is a tree). As 𝐺[𝐶] is connected and 𝑡 ≥ 2, there must be some edge {𝑥, 𝑦} ∈ 𝐸
such that 𝑥 ∈ 𝐴𝑖 and 𝑦 ∈ 𝐴 𝑗 for 𝑖 ≠ 𝑗. The validity of 𝑇 implies that either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥.

10 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

However, this means either 𝑥 is also in 𝐴 𝑗 or 𝑦 is also in 𝐴𝑖 , contradicting thatA is a partition
of 𝐶. ■

3.1 Proof of Theorem 1.3

The following lemma is a reduction from tree-ordered nets to sparse covers.

LEMMA 3.2. Consider a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a (𝜏, 𝛼, Δ)-tree-ordered net (w.r.t. a
tree order ⪯, associated with a tree 𝑇), then 𝐺 admits a strong

(4𝛼
𝛼−1 , 𝜏, 2𝛼Δ

)
-sparse cover that can

be computed efficiently.

PROOF . Let 𝑁 be the (𝜏, 𝛼, Δ)-tree-ordered net of 𝐺. Let 𝑥1, 𝑥2, . . . be an ordering of the centers
in 𝑁 w.r.t distance from the root in 𝑇 . Specifically, 𝑥1 is closest to the root, and so on. Note that
distances in 𝑇 are unweighted and unrelated to 𝑑𝐺; we break ties arbitrarily. For every vertex
𝑥𝑖 ∈ 𝑁 , create a cluster

𝐶𝑖 = B𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝛼Δ) ,

of all the vertices that are at distances at most 𝛼Δ from 𝑥𝑖 in the subgraph induced by the
descendants of 𝑥𝑖 . We now show that C = {𝐶𝑖}𝑖 is the sparse cover claimed in the lemma.

Clearly, by the triangle inequality, every cluster in C has a diameter at most 2𝛼Δ. Further-
more, observe that every vertex 𝑣 belongs to at most 𝜏 clusters since it has at most 𝜏 ancestors
in 𝑁 at distance at most 𝛼Δ (in the respective induced graphs).

Finally, we show that for every vertex 𝑣, B𝐺 (𝑣, Δ
𝛽) is fully contained in some cluster in C,

for 𝛽 = 2
𝛼−1 . Let 𝐵 = B𝐺 (𝑣, Δ

𝛽). Let 𝑣𝐵 ∈ 𝐵 be the closest vertex to the root w.r.t. 𝑇 . Observation 3.1
implies that for every vertex 𝑢 ∈ 𝐵, 𝑢 ⪯ 𝑣𝐵. By the triangle inequality, for every 𝑢 ∈ 𝐵 it holds
that:

𝑑𝐺[𝑉⪯𝑣𝐵] (𝑣𝐵, 𝑢) ≤ 𝑑𝐺[𝑉⪯𝑣𝐵] (𝑣𝐵, 𝑣) + 𝑑𝐺[𝑉⪯𝑣𝐵] (𝑣, 𝑢) ≤
2Δ
𝛽

(2)

Let 𝑥𝐵 ∈ 𝑁 be the ancestor of 𝑣𝐵 in 𝑇 that minimizes 𝑑𝐺[𝑉⪯𝑥] (𝑥, 𝑣𝐵). Since 𝑁 is a (𝜏, 𝛼, Δ)-tree-
ordered net, it holds that 𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑣𝐵) ≤ Δ. In particular, for every 𝑢 ∈ 𝐵 it holds that:

𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑢) ≤ 𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑣𝐵) + 𝑑𝐺[𝑉⪯𝑥𝐵] (𝑣𝐵, 𝑢)

≤ Δ + 2Δ
𝛽
≤ 𝛼Δ (by Equation (2))

Thus, 𝐵 is fully contained in the cluster centered in 𝑥𝐵. As the diameter of each cluster is 2𝛼Δ,
the padding we obtain is 2𝛼Δ

Δ
𝛽

= 2𝛼
𝛼−1

2
= 4𝛼

𝛼−1 , a required. ■

Now we are ready to show that Theorem 1.3 follows from Lemma 1.8, Lemma 2.2, and
Lemma 3.2. We restate Theorem 1.3 for convenience.

THEOREM 1.3. (Restated) Every graph𝐺 with treewidth tw admits a (6, poly(tw))-sparse cover
scheme.

11 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

PROOF . Let Δ > 0 be a parameter; we will construct a (6, poly(tw), Δ)-sparse cover for 𝐺. Let
𝐻 be the graph of tree-partition width tw + 1 in the isometric embedding 𝜙 of 𝐺 in Lemma 2.2.
We abuse notation by using 𝑣, for each 𝑣 ∈ 𝑉 (𝐺), to denote 𝜙(𝑣) in 𝐻 . This means𝑉 (𝐺) ⊆ 𝑉 (𝐻).

Let Δ̂ = Δ/6. By Lemma 1.8, 𝐻 admits a (poly(tw), 3, Δ̂)-tree-ordered net. By Lemma 3.2,
we can construct a (6, poly(tw), 6Δ̂ = Δ)-sparse cover of 𝐻 , denoted by Ĉ. We then construct
C = {𝐶 ∩𝑉 (𝐺) : 𝐶 ∈ Ĉ}. Let 𝐶 be a cluster in C, and we denote by 𝐶 its corresponding cluster in
Ĉ; that is, 𝐶 = 𝐶 ∩𝑉 (𝐺). We claim that C is a (6, poly(tw), Δ)-sparse cover for 𝐺.

For any 𝐶 ∈ C, diam(𝐶) ≤ diam(𝐶) ≤ Δ, since 𝜙 is an isometric embedding. Thus, C is
Δ-bounded. Furthermore, any 𝑣 ∈ 𝑉 (𝐺) belongs to at most poly(tw) clusters in Ĉ and hence it
belongs to at most poly(tw) clusters in C. Finally, we consider any ball 𝐵𝐺 (𝑣, Δ/6) in 𝐺. Observe
that 𝐵𝐺 (𝑣, Δ/6) ⊆ 𝐵𝐻 (𝑣, Δ/6). Since Ĉ is a (6, poly(tw), Δ)-sparse cover of 𝐻 , there exists a
cluster 𝐶 ∈ Ĉ such that 𝐵𝐻 (𝑣, Δ/6) ⊆ 𝐶, implying 𝐵𝐻 (𝑣, Δ/6) ⊆ 𝐶. ■

3.2 Proof of Theorem 1.5

In this subsection, we show that the construction in Lemma 3.2 can be adapted to obtain a
padded partition cover scheme (with a small loss in the padding parameter).

LEMMA 3.3. Consider a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a (𝜏, 𝛼, Δ)-tree-ordered net (w.r.t. a
tree order ⪯, associated with 𝑇) for 𝛼 > 2, then 𝐺 admits strong (4𝛼

𝛼−2 , 𝜏, 𝛼Δ)-padded partition
cover.

By exactly the same argument in the proof of Theorem 1.3 in Section 3.1, one can show that
Theorem 1.5 follows directly from Lemma 1.8, Lemma 2.2 and Lemma 3.3: first, we isometrically
embed 𝐺 of treewidth tw to a graph 𝐻 of tree-partition width tw + 1, and then apply Lemma 3.3
and Lemma 1.8 to construct a padded partition cover P̂ for 𝐻 , which will then be turned into a
padded partition cover for 𝐺 by removing vertices not in 𝐺 from P̂. Our main focus now is to
prove Lemma 3.3.

PROOF OF LEMMA 3.3 . We say that a set of clusters is a partial partition if it is a partition of
a subset of vertices; that is, a vertex might not belong to any cluster in a partial partition. We
then can turn the partial partitions into partitions of 𝑉 by adding singleton clusters. Similarly
to Lemma 3.2, we define a set of clusters (note radius 𝛼

2 · Δ compared to 𝛼 · Δ in Lemma 3.2):

C =

{
𝐶𝑥 = B𝐺[𝑉⪯𝑥] (𝑥,

𝛼

2
· Δ)

}
𝑥∈𝑁

Our partial partitions will consist of clusters in C only.
We construct the partitions greedily: form a partition from a maximal set of disjoint

clusters, preferring ones that are closer to the root, and repeat. The pseudocode is given in
Algorithm 1.

12 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

1: 𝐴← 𝑁

2: 𝑖 ← 0
3: while 𝐴 ≠ ∅ do
4: 𝑖 ← 𝑖 + 1
5: P𝑖 ← ∅
6: while ∃𝑥 ∈ 𝐴 such that 𝐶𝑥 is disjoint from ∪𝐶∈P𝑖𝐶 do
7: Let 𝑥 ∈ 𝐴 be a maximal element w.r.t. (⪯, 𝑇) such that 𝐶𝑥

is disjoint from ∪𝐶∈P𝑖𝐶
8: Remove 𝑥 from 𝐴

9: Add 𝐶𝑥 to P𝑖
10: return {P𝑗}𝑖𝑗=1

Algorithm 1. Create Partial Partitions((⪯, 𝑇), 𝑁, C)

By construction in Line 7, clusters in every partition P𝑖 are pairwise disjoint. Furthermore,
for every 𝑥 ∈ 𝑁 , 𝐶𝑥 belongs to one of the created partitions due to Line 3. We next argue that
the algorithm creates at most 𝜏 partial partitions.

Suppose for contradiction that the algorithm does not terminate after creating 𝜏 partial
partitions. Thus, after 𝜏 iterations, there was still an element 𝑥 ∈ 𝐴. In particular, in every
iteration 𝑖, there exists some vertex 𝑥𝑖 ∈ 𝑁 such that 𝑥 ⪯ 𝑥𝑖 , and 𝐶𝑥 ∩ 𝐶𝑥𝑖 ≠ ∅. Let 𝑦𝑖 be a vertex
in 𝐶𝑥 ∩ 𝐶𝑥𝑖 . By the triangle inequality:

𝑑𝐺 (𝑥, 𝑥𝑖) ≤ 𝑑𝐺[𝑉⪯𝑥] (𝑥, 𝑦𝑖) + 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑦𝑖 , 𝑥𝑖) ≤ 𝛼Δ .

Note that as every cluster in C can join only one partial partition, all these centers {𝑥𝑖}𝜏𝑖=1
are unique; this contradicts the fact that 𝑁 is a (𝜏, 𝛼, Δ)-tree-ordered net (as together with 𝑥

itself,
��𝑁𝛼Δ

𝑥⪯
�� > 𝜏).

It remains to show padding property, which is followed by the same proof as in Lemma 3.2.
Consider a ball 𝐵 = B𝐺 (𝑣, Δ

𝛽), for 𝛽 = 4
𝛼−2 . Let 𝑣𝐵 ∈ 𝐵 be the closest vertex to the root w.r.t.

𝑇 . Following Equation (2), for every 𝑢 ∈ 𝐵, 𝑑𝐺[𝑉⪯𝑣𝐵] (𝑣𝐵, 𝑢) ≤
2Δ
𝛽 . Let 𝑥𝐵 ∈ 𝑁 be the ancestor

of 𝑣𝐵 in 𝑇 that minimizes 𝑑𝐺[𝑉⪯𝑥] (𝑥, 𝑣𝐵). Since 𝑁 is a (𝜏, 𝛼, Δ)-tree-ordered net, it holds that
𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑣𝐵) ≤ Δ. In particular, for every 𝑢 ∈ 𝐵 it holds that

𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑢) ≤ 𝑑𝐺[𝑉⪯𝑥𝐵] (𝑥𝐵, 𝑣𝐵) + 𝑑𝐺[𝑉⪯𝑥𝐵] (𝑣𝐵, 𝑢)

≤ Δ + 2Δ
𝛽

=

(
1 + 2 · (𝛼 − 2)

4

)
· Δ =

𝛼

2
· Δ ,

13 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

and thus 𝐵 is fully contained in the cluster centered in 𝑥𝐵 a required. ■

3.3 Proof of Theorem 1.2

In the following lemma, we construct a padded decomposition from a tree-ordered net.

LEMMA 3.4. Consider a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a (𝜏, 𝛼, Δ)-tree-ordered net (w.r.t.
a tree order ⪯, associated with 𝑇), then 𝐺 admits a weak

(
16 · 𝛼+1

𝛼−1 · ln(2𝜏),
𝛼−1

8·(𝛼+1) , (𝛼 + 1) · Δ
)
-

padded decomposition that can be efficiently sampled.

By exactly the same argument in the proof of Theorem 1.3 in Section 3.1, one can show
that Theorem 1.2 follows directly from Lemma 1.8, Lemma 2.2 and Lemma 3.4. We will use
truncated exponential distribution during the proof of Lemma 3.4:

Truncated Exponential Distributions. To create padded decompositions, similarly to previ-
ous works, we will use truncated exponential distributions. A truncated exponential distribution
is an exponential distribution conditioned on the event that the outcome lies in a certain interval.
More precisely, the [𝜃1, 𝜃2]-truncated exponential distribution with parameter 𝜆, denoted by
Texp[𝜃1,𝜃2] (𝜆), has the density function: 𝑓 (𝑦) = 𝜆 𝑒−𝜆 · 𝑦

𝑒−𝜆 ·𝜃1−𝑒−𝜆 ·𝜃2
, for 𝑦 ∈ [𝜃1, 𝜃2].

PROOF OF LEMMA 3.4 . Let 𝑥1, 𝑥2, . . . be an ordering of the centers in 𝑁 w.r.t distances from
the root in 𝑇 . Set 𝛽 = 𝛼+1

2 . For every vertex 𝑥𝑖 ∈ 𝑁 , sample 𝛿𝑖 ∈ [1, 𝛽] according to Texp[1,𝛽] (𝜆),
a truncated exponential distribution, with parameter 𝜆 = 4

𝛼−1 · ln(2𝜏). Set 𝑅𝑖 = 𝛿𝑖 · Δ ∈ [Δ, 𝛽Δ]
and create a cluster:

𝐶𝑖 = B𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝑅𝑖) \ ∪ 𝑗<𝑖𝐶 𝑗 .

Recall that B𝐺[𝑆⪯𝑥𝑖] (𝑥𝑖 , 𝑅𝑖) is the ball of radius 𝑅𝑖 around 𝑥𝑖 in the graph induced by all the
descendants of 𝑥𝑖 . Thus, the cluster 𝐶𝑖 of 𝑥𝑖 consists of all the points in this ball that did not join
the clusters centered at the (proper) ancestors of 𝑥𝑖 . Note that 𝐶𝑖 might not be connected and
that 𝑥𝑖 might not even belong to 𝐶𝑖 as it could join a previously created cluster. Nonetheless, 𝐶𝑖
has a (weak) diameter at most 2𝑅𝑖 ≤ 2𝛽Δ = (𝛼 + 1) · Δ by the triangle inequality.

We claim that each vertex will eventually be clustered. Indeed, consider a vertex 𝑣 ∈ 𝑉 .
There exists some vertex 𝑥𝑖 ∈ 𝑁𝑣⪯ at a distance at most Δ from 𝑣 in 𝐺[𝑉⪯𝑥𝑖] by the definition of
the tree-ordered net. If 𝑣 did not join any cluster centered at an ancestor of 𝑥𝑖 , then 𝑣 will join
𝐶𝑖 because 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑣, 𝑥𝑖) ≤ Δ ≤ 𝑅𝑖 .

It remains to prove the padding property. Consider some vertex 𝑣 ∈ 𝑉 and parameter
𝛾 ≤ 𝛼−1

8 . We argue that the ball 𝐵 = B𝐺 (𝑣, 𝛾Δ) is fully contained in 𝑃(𝑣) with probability at least
𝑒−4𝛾·𝜆 . We define 𝐹𝑖 as the event that some vertex of 𝐵 belongs to 𝐶𝑖 , but 𝐵 does not intersect
any cluster 𝐶 𝑗 for 𝑗 < 𝑖, i.e., 𝐶𝑖 is the first cluster to intersect 𝐵. That is, 𝐵 ∩ 𝐶𝑖 ≠ ∅ and for all
𝑗 < 𝑖, 𝐵 ∩ 𝐶 𝑗 = ∅. Denote by C𝑖 the event that F𝑖 occurred and 𝐵 is cut by 𝐶𝑖 (i.e. 𝐵 ⊈ 𝐶𝑖).

14 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

Let 𝑣𝐵 ∈ 𝐵 be the vertex closest to the root of 𝑇 (w.r.t distances in 𝑇). By Observation 3.1,
for every vertex 𝑢 ∈ 𝐵, it holds that 𝑢 ⪯ 𝑣𝐵. Let 𝑥𝐵 ∈ 𝑁 be the center that is an ancestor of
𝑣𝐵 and minimizes B𝐺[𝑉⪯𝑥] (𝑥, 𝑣𝐵). Note that 𝑣𝐵 will join the cluster of 𝑥𝐵, if it did not join any
other cluster. It follows that no descendant of 𝑥𝐵 can be the center of the first cluster having a
non-trivial intersection with 𝐵. This implies that for every center 𝑥𝑖 ∉ 𝑁𝑥𝐵⪯, Pr[F𝑖] = 0.

CLAIM 3.5. Let 𝑁𝐵 be the set of centers 𝑥𝑖 for which Pr[F𝑖] > 0. Then |𝑁𝐵 | ≤ 𝜏.

Proof. Observe that F𝑖 can have non-zero probability only if 𝑥𝑖 is an ancestor of 𝑥𝐵 and that
𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝑧) ≤ 𝑅𝑖 ≤ 𝛽Δ for some vertex 𝑧 ∈ 𝐵. As all vertices of 𝐵 are descendants of 𝑥𝑖 , 𝐺[𝐵]
is a subgraph of 𝐺[𝑉⪯𝑥𝑖]. It follows from the triangle inequality that:

𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝑣𝐵) ≤ 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝑧) + 𝑑𝐺[𝐵] (𝑧, 𝑣𝐵)

≤ (𝛽 + 2𝛾)Δ =

(
𝛼 + 1

2
+ 2 · 𝛼 − 1

8

)
· Δ < 𝛼Δ (3)

As 𝑁 is a (𝜏, 𝛼, Δ)-tree-ordered net, there are at most 𝜏 centers in 𝑁𝑖 satisfying Equation (3),
implying the claim. ■

We continue by bounding the probability of a cut by each center.

CLAIM 3.6. For every 𝑖, Pr [C𝑖] ≤
(
1 − 𝑒−2𝛾·𝜆) · (Pr [F𝑖] + 1

𝑒 (𝛽−1) ·𝜆−1

)
.

Proof. We assume that by the round 𝑖, no vertex in 𝐵 is clustered, and that 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝐵) ≤ 𝛽Δ,
as otherwise Pr[C𝑖] = Pr[F𝑖] = 0 and the proof follows. Let 𝜌 be the minimal value of 𝛿𝑖 such
that if 𝛿𝑖 ≥ 𝜌, some vertex of 𝐵 will join 𝐶𝑖 . Formally 𝜌 = 1

Δ · 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝐵). By our assumption,
𝜌 ≤ 𝛽. Set 𝜌̃ = max{𝜌, 1}. We have:

Pr [F𝑖] = Pr [𝛿𝑖 ≥ 𝜌] =
∫ 𝛽

𝜌̃

𝜆 · 𝑒−𝜆 𝑦

𝑒−𝜆 − 𝑒−𝛽𝜆
𝑑 𝑦 =

𝑒−𝜌̃·𝜆 − 𝑒−𝛽𝜆

𝑒−𝜆 − 𝑒−𝛽𝜆
.

Let 𝑣𝑖 ∈ 𝐵 by the closest vertex to 𝑥𝑖 w.r.t. 𝐺[𝑉⪯𝑥𝑖]. Note that 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑥𝑖 , 𝑣𝑖) = 𝜌 ·Δ. Then for every
𝑢 ∈ 𝐵 it holds that

𝑑𝐺[𝑉⪯𝑥𝑖] (𝑢, 𝑥𝑖) ≤ 𝑑𝐺[𝑉⪯𝑥𝑖] (𝑣𝑖 , 𝑥𝑖) + 2𝛾Δ = (𝜌 + 2𝛾) · Δ .

Therefore, if 𝛿𝑖 ≥ 𝜌 + 2𝛾, the entire ball 𝐵 will be contained in 𝐶𝑖 . We conclude that:

Pr [C𝑖] ≤ Pr [𝜌 ≤ 𝛿𝑖 < 𝜌 + 2𝛾]

=

∫ min{𝛽,𝜌+2𝛾}

𝜌̃

𝜆 · 𝑒−𝜆 𝑦

𝑒−𝜆 − 𝑒−𝛽𝜆
𝑑 𝑦

≤ 𝑒
−𝜌̃·𝜆 − 𝑒−(𝜌̃+2𝛾)·𝜆

𝑒−𝜆 − 𝑒−𝛽𝜆

=

(
1 − 𝑒−2𝛾·𝜆

)
· 𝑒−𝜌̃·𝜆

𝑒−𝜆 − 𝑒−𝛽𝜆

15 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

=

(
1 − 𝑒−2𝛾·𝜆

)
·
(
Pr [F𝑖] +

𝑒−𝛽𝜆

𝑒−𝜆 − 𝑒−𝛽𝜆

)
=

(
1 − 𝑒−2𝛾·𝜆

)
·
(
Pr [F𝑖] +

1
𝑒(𝛽−1)·𝜆 − 1

)
. ■

We now bound the probability that the ball 𝐵 is cut. As the events {F𝑖}𝑥𝑖∈𝑁 are disjoint, we
have that

Pr [∪𝑖C𝑖] =
∑︁
𝑥𝑖∈𝑁𝐵

Pr [C𝑖] ≤
(
1 − 𝑒−2𝛾·𝜆

)
·
∑︁
𝑥𝑖∈𝑁𝐵

(
Pr [F𝑖] +

1
𝑒(𝛽−1)·𝜆 − 1

)
≤

(
1 − 𝑒−2𝛾·𝜆

)
·
(
1 + 𝜏

𝑒(𝛽−1)·𝜆 − 1

)
(by Claim 3.5)

≤
(
1 − 𝑒−2𝛾·𝜆

)
·
(
1 + 𝑒−2𝛾·𝜆

)
= 1 − 𝑒−4𝛾·𝜆 ,

where the last inequality follows as

𝑒−2𝛾𝜆 =
𝑒−2𝛾𝜆 (𝑒(𝛽−1)·𝜆 − 1

)
𝑒(𝛽−1)·𝜆 − 1

(#)
≥
𝑒−2𝛾𝜆 · 𝑒(𝛽−1)·𝜆 · 1

2

𝑒(𝛽−1)·𝜆 − 1
(∗)
≥

1
2 · 𝑒

𝛼−1
4 ·𝜆

𝑒(𝛽−1)·𝜆 − 1
=

𝜏

𝑒(𝛽−1)·𝜆 − 1
.

The inequality (#) only holds if (𝛽 − 1)𝜆 ≥ ln(2), which is the case since (𝛽 − 1)𝛼 =
(
𝛼+1

2 − 1
)
·

4
𝛼−1 · ln(2𝜏) = 2 ln(2𝜏) ≥ ln(2).

The inequality (∗) holds as 𝛽 − 1 − 2𝛾 ≥ 𝛼+1
2 − 1 − 2 · 𝛼−1

8 = 𝛼−1
4 .

To conclude, we obtain a partition where each cluster has diameter at most 2𝛽Δ ≤ (𝛼+1) ·Δ,
and for every 𝛾 ≤ 𝛼−1

8 , every ball of radius 𝛾 · Δ =
𝛾
𝛼+1 · (𝛼 + 1) · Δ is cut with probability at most

𝑒−4𝛾·𝜆 = 𝑒−
𝛾
𝛼+1 ·(𝛼+1)·4·𝜆 . Thus the padding parameter is (𝛼 + 1) · 4 · 𝜆 = 𝛼+1

𝛼−1 · 16 · ln(2𝜏), while the
guarantee holds for balls of radius up to 1

𝛼+1 ·
𝛼−1

8 . The lemma now follows. ■

4. Tree-Ordered Nets for Graphs of Bounded Tree-partitionWidth

In this section, we show that graphs of bounded tree-partition width have small tree-ordered
nets as claimed in Lemma 1.8, which we restate here for convenience.

LEMMA 1.8. (Restated) Every weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a tree-partition width tp
admits a (poly(tp), 3, Δ)-tree-ordered net, for every Δ > 0.

Herein, let T be a tree partition of 𝐺 of width tp. Recall that in the definition of a tree
order ⪯ realized by a tree 𝑇 and a map 𝜑 : 𝑉 → 𝑉 (𝑇), ⪯ is a partial order, which means ⪯ is
antisymmetric. This means 𝜑 is injective, i.e., two different vertices in 𝑉 will be mapped to
two distinct vertices in 𝑉 (𝑇). In our construction presented below, it is convenient to drop the
antisymmetric property to allow two distinct vertices to be mapped to the same vertex in 𝑉 (𝑇).
We call a tree order ⪯ without the antisymmetric property a semi-tree order.

16 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

We then can extend the notion of a tree-ordered net to a semi-tree-ordered net naturally:
a triple (𝑁,𝑇, 𝜑) is a (𝜏, 𝛼, Δ)-semi-tree-ordered net if 𝑇 and 𝜑 define a semi-tree order on 𝑉 ,
and 𝑁 satisfies the covering and packing properties as in Definition 1.6. Specifically:

Covering: for every 𝑣 ∈ 𝑉 there is 𝑥 ∈ 𝑁 such that 𝜑(𝑣) ⪯ 𝜑(𝑥), and 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ Δ for
the set 𝑉⪯𝑥 = {𝑢 | 𝜑(𝑢) ⪯ 𝜑(𝑥)}.
Packing: for a vertex 𝑣 ∈ 𝑉 , denote by 𝑁𝛼Δ

𝑣⪯ = {𝑥 ∈ 𝑁 ∩𝑉𝑣⪯ | 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ 𝛼Δ} the set of
ancestor centers of 𝑣 at distance at most 𝛼Δ (here𝑉𝑣⪯ = {𝑢 | 𝜑(𝑣) ⪯ 𝜑(𝑢)}). Then |𝑁𝛼Δ

𝑣⪯ | ≤ 𝜏.

In Section 4.1, we show that graphs of tree-partition width tp admit a good semi-tree-ordered
net.

LEMMA 4.1. Every weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with a tree-partition width tp admits a
(poly(tp), 3, Δ)-semi-tree-ordered net, for every Δ > 0.

Given Lemma 4.1, we now show how to construct a good tree-ordered net as claimed in
Lemma 1.8.

PROOF OF LEMMA 1.8 . Let (𝑁, 𝑇̂ , 𝜑̂) be a (poly(tp), 3, Δ)-semi-tree-ordered net of 𝐺. For
each vertex 𝑥̂ ∈ 𝑇̂ , let 𝜑̂−1(𝑥̂) ⊆ 𝑉 be the set of vertices in 𝐺 that are mapped to 𝑥̂. That is,
𝜑̂−1(𝑥) = {𝑣 ∈ 𝑉 : 𝜑̂(𝑣) = 𝑥̂}. Roughly speaking, to construct a tree order 𝑇 for 𝐺, we simply
replace 𝑥̂ in 𝑇̂ by a path, say 𝑃𝑥̂ , composed of vertices in 𝜑̂−1(𝑥̂). The packing property remains
the same, but the covering property might not hold if vertices in 𝜑̂−1(𝑥̂) are ordered arbitrarily
along 𝑃𝑥̂ . Our idea to guarantee the packing property is to place net points in 𝜑̂−1(𝑥̂) closer to
the root of the tree.

We now formally describe the construction of 𝑇 . Let 𝑁𝑥̂ = 𝑁 ∩ 𝜑̂−1(𝑥). 𝑁𝑥̂ is the set of
net points that are mapped to 𝑥̂ by 𝜑̂. Let 𝑃𝑥̂ be a rooted path created from vertices in 𝜑̂−1(𝑥)
where all vertices in 𝜑̂−1(𝑥) \ 𝑁𝑥̂ are descendants of every vertex in 𝑁𝑥̂ . Note that if 𝑁𝑥̂ ≠ ∅,
then the root of 𝑃𝑥̂ is a vertex in 𝑁𝑥̂ . Vertices in 𝑁𝑥̂ are ordered arbitrarily in 𝑃𝑥̂ and vertices in
𝜑̂−1(𝑥) \ 𝑁𝑥̂ are also ordered arbitrarily. (If 𝜑̂−1(𝑥) = ∅, then 𝑃𝑥̂ will be a single vertex that does
not correspond to any vertex in 𝑉 (𝐺).) Then we create the tree 𝑇 by connecting all the paths
{𝑃𝑥̂ : 𝑥̂ ∈ 𝑉 (𝑇̂)} in the following way: if (𝑥̂, 𝑦̂) is an edge in 𝑇̂ such that 𝑥 is the parent of 𝑦, then
we connect the root of 𝑃 𝑦̂ to the (only) leaf of 𝑃𝑥̂ . The bijection between 𝑃𝑥̂ and 𝜑̂−1(𝑥), unless
when 𝜑̂−1(𝑥) = ∅, naturally induce an injective map 𝜑 : 𝑉 (𝐺) → 𝑇 .

Let ⪯𝑇 (⪯𝑇̂) be the tree order (semi-tree order resp.) induced by 𝑇 and 𝜑 (𝑇̂ and 𝜑̂ resp.). To
show that 𝑇 and 𝜑 induce a tree order, it remains to show the validity: for every edge {𝑢, 𝑣} ∈ 𝐸,
either 𝑢 ⪯𝑇 𝑣 or 𝑣 ⪯𝑇 𝑢. Since ⪯𝑇̂ is a semi-tree ordered, w.l.o.g., we can assume that 𝜑̂(𝑢) is
an ancestor of 𝜑̂(𝑣); it is possible that 𝜑̂(𝑢) = 𝜑̂(𝑣). If 𝜑̂(𝑢) ≠ 𝜑̂(𝑣), then every vertex in 𝑃𝜑̂(𝑢)

will be an ancestor of every vertex in 𝑃𝜑̂(𝑣) , implying that 𝜑(𝑢) is an ancestor of 𝜑(𝑣) and hence
𝑢 ⪯𝑇 𝑣. If 𝜑̂(𝑢) = 𝜑̂(𝑣), then 𝑢 and 𝑣 belong to the same path 𝑃𝜑̂(𝑢) and hence either 𝑢 ⪯𝑇 𝑣 or
𝑣 ⪯𝑇 𝑢. Thus, the validity follows.

17 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

Finally, we show that (𝑁,𝑇, 𝜑) is a (poly(tp), 3, Δ)-tree-ordered net. Observe by the con-
struction of 𝑇 that:

OBSERVAT ION 4.2. if 𝑢 ⪯𝑇 𝑣 then 𝑢 ⪯𝑇̂ 𝑣.

The converse of Observation 4.2 might not be true, specifically in the case when 𝑢 and 𝑣
are mapped to the same vertex in 𝑇̂ by 𝜑̂. By Observation 4.2, for any vertex 𝑥 ∈ 𝑉 , 𝑉⪯𝑇𝑥 ⊆ 𝑉⪯𝑇̂𝑥 .
Thus, for any 𝑣 and 𝑥 such that 𝑣 ⪯𝑇 𝑥, if 𝑑𝐺[𝑉⪯𝑇 𝑥] (𝑣, 𝑥) ≤ 3Δ, then 𝑑𝐺[𝑉⪯

𝑇̂
𝑥] (𝑣, 𝑥) ≤ 3Δ. Therefore,

𝑁3Δ
𝑣⪯𝑇 ⊆ 𝑁

3Δ
𝑣⪯𝑇̂ and hence |𝑁3Δ

𝑣⪯𝑇 | ≤ |𝑁
3Δ
𝑣⪯𝑇̂ | = poly(tp), giving the packing property.

Next, we show the covering property. By the covering property of (𝑁, 𝑇̂ , 𝜑̂), for every
𝑣 ∈ 𝑉 , there exists 𝑥 ∈ 𝑁𝑣⪯𝑇̂ such that 𝑑𝐺[𝑉⪯

𝑇̂
𝑥] (𝑥, 𝑣) ≤ Δ.

Let 𝑄 be a shortest path in 𝐺[𝑉⪯𝑇̂𝑥] from 𝑣 to 𝑥. Note that 𝑄 might contain vertices that are
not in 𝐺[𝑉⪯𝑇𝑥].

CLAIM 4.3. If 𝑄 contains 𝑦 ∉ 𝑉⪯𝑇𝑥 , then 𝑦 ∈ 𝑁 and 𝑥 ⪯𝑇 𝑦.

Proof. Since 𝑦 ⪯𝑇̂ 𝑥, as 𝑦 ∉ 𝑉⪯𝑇𝑥 , it must be the case that 𝜑̂(𝑦) = 𝜑̂(𝑥) by the construction of 𝑇 .
Let 𝑥̂ = 𝜑̂(𝑥). Since net points in 𝜑̂−1(𝑥̂) are placed closer to the root in 𝑃𝑥̂ and 𝑦 ∉ 𝑉⪯𝑇𝑥 , 𝑦 must
also be a net point and 𝑥 ⪯𝑇 𝑦. ■

Let 𝑧 ∈ 𝑁 ∩ 𝑄 such that 𝑧 has the highest order in 𝑇 . By Claim 4.3, every 𝑦 ∈ 𝑄[𝑣, 𝑧]
satisfies 𝑦 ∈ 𝑉⪯𝑇 𝑧. This implies 𝑧 ∈ 𝑁⪯𝑇𝑣 and 𝐺[𝑉⪯𝑇 𝑧] (𝑣, 𝑧) ≤ 𝑤(𝑄[𝑥, 𝑧]) ≤ 𝑤(𝑄) ≤ Δ, giving the
covering property. ■

4.1 The (Semi-)Tree-Ordered Net

For a bag 𝐵 in T , we define T𝐵 to be the subtree of T rooted at 𝐵. For a subtree T ′ of T , we
define 𝑉 [T ′] to be the union of all bags in T ′; that is, 𝑉 [T ′] = ∪𝐵∈T ′𝐵.

Constructing Cores. We construct a set R of subsets of the vertex set 𝑉 whose union covers
𝑉 ; see Algorithm 2. Each set in R is called a core. We then construct a tree ordering of the
vertices of 𝐺 using these sets. The cores are built in order to define a hierarchical structure on
the graph that underlies the tree order ⪯. This structure lets us assign each vertex to a center
bag and construct the map 𝜑 used in the (semi-)tree-ordered net. The core construction is key
to proving both the covering and packing properties required for our decomposition results.

We describe the notation used in Algorithm 2. For a subset𝑈 ⊆ 𝑉 of vertices, we define
B𝐺 (𝑈, Δ) = ∪𝑢∈𝑈B𝐺 (𝑢, Δ) to be the ball of radius Δ centered at𝑈 . We say that a vertex is covered
if it is part of at least one core constructed so far. For any subset 𝑋 ⊆ 𝑉 of vertices, we use
Uncov(𝑋) to denote the set of uncovered vertices of 𝑋 . We say that a bag T is covered if all the
vertices in the bag are covered; a bag is uncovered if at least one vertex in the bag is uncovered.

18 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

The algorithm proceeds in rounds—the while loop in Line 15— covers vertices in each
round and continues until all vertices are covered. During each round, we process each con-
nected component T ′ of the forest induced on T by the uncovered bags of T . Note that T is
rooted and T ′ is a rooted subtree of T . The algorithm then works on T ′ in a top-down manner.
The basic idea is to take an unvisited bag 𝐵 of T ′ (initially all bags in T ′ are marked unvisited)
closest to the root (Line 19), carve a ball of radius Δ centered at the uncovered vertices of 𝐵 in a
subgraph 𝐻 (defined in Line 20) of 𝐺 as a new core 𝑅 (Line 21), mark all bags intersecting with
𝑅 as visited, and repeat. We call the bag 𝐵 in Line 19 the center bag of 𝑅, and the uncovered
vertices in 𝐵 are called the centers of the core 𝑅. Graph 𝐻 is the subgraph of 𝐺 induced by
uncovered vertices in the subtree of T ′ rooted at 𝐵 and the attachments of the bags of this
subtree—the set 𝐴(𝑋) associated with each bag 𝑋 . We will clarify the role of the attachments
below. See Figure 3 for an illustration.

For each bag 𝐵 of the tree partition 𝑇 , we associate a subset of vertices of 𝑉 [𝑇𝐵], defined
as the union of all bags in the subtree 𝑇𝐵 rooted at 𝐵. This set is called the attachment of 𝐵, and
is denoted by 𝐴(𝐵). Attachments allow cores created in a given round to include vertices from
previously formed cores. Intuitively, the attachment 𝐴(𝐵) collects the portions of cores (from
earlier rounds) whose center bags are descendants of 𝐵. However, attachments may also be
updated dynamically during the algorithm, as we describe next.

For a subtree T ′ of T , we use 𝐴[T ′] to denote the union of attachments of all bags of
T ′. Formally, 𝐴[T ′] = ∪𝐵∈T ′𝐴(𝐵). When forming a core from a center bag 𝐵 in a connected
component T ′, we construct a graph 𝐻 , which is a subgraph 𝐺 induced by uncovered vertices
in the subtree T ′𝐵 rooted at 𝐵 and the attachment 𝐴[T ′𝐵] (Line 20). The core 𝑅 is a ball of radius
at most Δ from uncovered vertices of 𝐵 in 𝐻 (Line 21). We call 𝐻 the support graph of 𝑅. Note
that 𝑅 may contain vertices in the attachments of the bags in T ′𝐵 , and for each such bag, we
remove vertices in 𝑅 from its attachment (Line 24).

Once we construct a core 𝑅 from the center bag 𝐵, we have to update the attachment of
the parent bag of 𝐵 to contain 𝑅 (Line 28), unless 𝐵 is the root of T ′. If 𝐵 is the root of T ′, either
𝐵 has no parent bag—𝐵 is also the root of T in this case—or the parent bag of 𝐵 is covered,
and hence will not belong to any connected component of uncovered bags. In both cases, the
parent of 𝐵 will not be directly involved in any subsequent rounds; they could be involved
indirectly via the attachments. It is useful to keep in mind that if 𝑋 is already a covered bag,
the attachment update in Line 28 by adding a core centered at child bag 𝐵 has no effect on
subsequent rounds as we only consider uncovered bags.

As alluded above, cores in a specific round could contain vertices of cores in previous
rounds via attachments. However, as we will show in the following claim that cores in the same
round are vertex-disjoint.

CLAIM 4.4. The cores and attachments satisfy the following properties:
1. ∪𝑅∈R𝑅 = 𝑉 .

19 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

11: R ← ∅
12: 𝐴(𝐵) ← ∅ for every bag 𝐵 ∈ T > the attachment.

13: mark every vertex of 𝑉 uncovered
14: round← 1
15: while there is an uncovered vertex do
16: for each tree T ′ of the forest induced by uncovered bags of T

do
17: mark all bags of T ′ unvisited
18: while there is an unvisited bag in T ′ do
19: pick the unvisited bag 𝐵 of T ′ closest to the root
20: 𝐻← the graph induced in 𝐺 by Uncov(𝑉[T ′𝐵]) ∪ 𝐴[T ′𝐵]
21: add B𝐻(Uncov(𝐵), Δ) as a new core 𝑅 into R
22: mark uncovered vertices of 𝑅 as covered
23: mark all the bags of T ′ that intersect 𝑅 as visited
24: for every bag 𝑋 ∈ T ′𝐵 s.t. 𝐴(𝑋) ∩ 𝑅 ≠ ∅ do
25: 𝐴(𝑋) ← 𝐴(𝑋) \ 𝑅 > remove vertices of 𝑅 from the attachment

26: if 𝐵 is not the root of T ′ then
27: 𝑋 ← parent bag of 𝐵 in T ′

28: 𝐴(𝑋) ← 𝐴(𝑋) ∪ 𝑅 > update the attachment of 𝐵’s parent.

29: round← round + 1
30: return R

Algorithm 2. ConstructCores(T , 𝐺)

2. For any bag 𝑋 in a connected component of unvisited bags T ′ of T considered in Line 16,
𝐴(𝑋) contains vertices in the descendant bags of 𝑋 that are currently not in T ′. As a
corollary, at any point of the algorithm, 𝐴(𝑋) only contains vertices in descendant bags of
𝑋 , excluding 𝑋 .

3. For every core 𝑅 ∈ R centered at a bag 𝐵, vertices in 𝑅 are in descendant bags of 𝐵. (𝐵 is
considered its own descendant.)

4. For every core 𝑅 ∈ R centered at a bag 𝐵, if a vertex 𝑢 ∈ 𝑅 was covered before 𝑅 is created,
then 𝑢 is in the attachments of descendant bags of 𝐵.

5. Let 𝑅1 and 𝑅2 be two different cores created from the same connected component T ′ in the
same round. Then 𝑉 (𝑅1) ∩𝑉 (𝑅2) = ∅.

20 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

(a)

round 1 round 2

(c)

H

B

X

A(X)H

(d)(b) (e)

Figure 3. Illustrating two rounds of Algorithm 2. (b) In the first round, the algorithm creates (blue)
cores from T ; the attachment of every bag is ∅. (c) After the first round, uncovered bags of T form a
forest; these are the white bags. Some bags now have non-empty attachments, illustrated by the
gray-shaded regions. (d) In the second round, the algorithm considers each connected component T ′

of uncovered bags and creates cores by carving balls B𝐻(Uncov(𝐵), Δ) in graph 𝐻 from uncovered
vertices of 𝐵. The attachment allows a core of the 2nd round to grow within a core of the 1st round. (e)
The remaining uncovered bags and their attachments after round 2. A core in round 2 carves out a
portion of the attachment of 𝑋.

PROOF . We observe that the algorithm only terminates when every vertex is covered. Fur-
thermore, the algorithm only marks an uncovered vertex as covered when it is contained in a
new core (Line 22), implying Item 1.

Item 2 follows from the fact that whenever we update the attachment of an uncovered bag
𝑋 in Line 28 by a core 𝑅, the center bag 𝐵 of 𝑅 become covered and hence will be disconnected
from the connected component containing 𝑋 in the next round.

For Item 3, we observe that the support graph 𝐻 of 𝑅 in Line 20 contains uncovered
vertices in descendant bags of 𝐵 and their attachments. By Item 2, the attachment of a bag 𝑋
only contains vertices in the descendant bags of 𝑋 . Thus, vertices in 𝐻 are in descendant bags
of 𝐵, as claimed.

For Item 4, observe that the only way for a covered vertex to be considered in subsequent
rounds is via the attachments. Thus, Item 4 follows from Item 3.

For the last Item 5, suppose otherwise: there is a vertex 𝑣 in a bag 𝑍 such that 𝑣 ∈ 𝑅1 ∩ 𝑅2.
W.l.o.g, we assume that 𝑅1 is created before 𝑅2. Let 𝐵1 (𝐵2, resp.) be the center bag of 𝑅1 (𝑅2,

21 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

resp.). Then 𝐵1 is the ancestor of 𝐵2 by construction, and furthermore, by Item 3, 𝑍 is descendant
of both 𝐵1 and 𝐵2.

If 𝑍 ∈ T ′, then when 𝑅1 was created, all the bags on the path from 𝐵1 to 𝑍 will be marked
visited, and hence 𝐵2 will also be marked visited, contradicting that 𝑅2 was created from 𝐵2.
Otherwise, 𝑍 ∉ T ′ and that means 𝑣 belongs to the attachment 𝐴(𝑌) of some bag 𝑌 ∈ T ′. Since
all bags on the path from 𝐵1 to 𝑌 are marked when 𝑅1 was created, 𝐵2 is not an ancestor of 𝑌 .
But this means 𝑣 cannot belong to a descendant bag of 𝐵2, contradicting Item 3. ■

A crucial property of the core construction algorithm used in our analysis is that it has
a natural hierarchy of clusters associated with it. To define this hierarchy, we need some
new notation. Let T ′ be a connected component of uncovered bags in a specific round. Let
𝐶T ′ = Uncov(𝑉 [T ′]) ∪ 𝐴[T ′] be a set of vertices, called the cluster associated with T ′. Note that
𝑉 (𝐻) ⊆ 𝐶T ′ . The following lemma implies that clusters over different rounds form a hierarchy.

LEMMA 4.5. Let T1 and T2 be two different connected components of uncovered bags. If T1 and
T2 belong to the same round, then 𝐶T1 ∩ 𝐶T2 = ∅. If T1 and T2 belong to two consecutive rounds
such that T2 is a subtree of T1, then 𝐶T2 ⊆ 𝐶T1 .

PROOF . We prove the lemma by induction. The base case holds since in round 1, we only
have a single tree 𝑇 whose associated cluster 𝐶T = 𝑉 (𝐺). Let T ′ be a connected component of
uncovered bags at round 𝑖, and T1,T2 be two different components of uncovered bags that are
subtrees of T ′ in round 𝑖 + 1. It suffices to show that 𝐶T𝑖 ⊆ 𝐶T ′ for any 𝑖 = 1, 2, and 𝐶T1 ∩ 𝐶T2 = ∅.

Observe that in a round 𝑖, the attachment of a bag 𝑋 either shrinks (due to the removal in
Line 25) or grows by the addition of the cores. As any core 𝑅1 created from T ′ is a subset of the
cluster 𝐶T ′ , 𝐴(𝑋) remains a subset of 𝐶T ′ in both cases. This means all attachments of bags in
T1 are subsets of 𝐶T ′ , implying that 𝐶T1 ⊆ 𝐶T ′ . The same argument gives 𝐶T2 ⊆ 𝐶T ′ .

Let 𝐵1 and 𝐵2 be the root bag of T1 and T2, respectively. Assume w.l.o.g that 𝐵1 is an ancestor
of 𝐵2. Let 𝑋 be the (only) leaf of 𝐵1 that is the ancestor of 𝐵2. By Item 4 of Claim 4.4, only the
attachment of 𝑋 could possibly have a non-empty intersection with 𝐶T2 . Suppose that there
exists a vertex 𝑣 ∈ 𝐴(𝑋) ∩ 𝐶T2 . Let 𝐵 be the child bag of 𝑋 that is an ancestor of 𝐵2. Then we
have that 𝐵 ∈ 𝑇 ′, and 𝐵 is the center bag of a core 𝑅 created in round 𝑖. Observe that 𝑣 ∈ 𝑅.
When 𝑅 was created, all the uncovered vertices in T ′ ∩ 𝑅 were marked covered. This means
𝑅 ∩ Uncov(𝑉 [T2]) = ∅. Thus, 𝑣 ∈ 𝑅 ∩ 𝐴(𝑌) for some bag 𝑌 ∈ T ′ in round 𝑖 + 1. However, by
Line 25, 𝑣 will be removed from 𝐴(𝑌) in round 𝑖 and hence will not be present in 𝐴(𝑌) in round
𝑖 + 1, a contradiction. Thus, 𝐶T1 ∩ 𝐶T2 = ∅. ■

The Semi-tree-ordered Net. We now construct a tree ordering of the vertices using R. We
define the rank of a core 𝑅, denoted by rank(𝑅), to be the round number when 𝑅 is constructed.
That is, rank(𝑅) = 𝑖 if 𝑅 was constructed in the 𝑖-th round. Lastly, for a vertex 𝑣, we define 𝑄(𝑣)
to be the center bag of the smallest-rank core containing 𝑣. We observe that:

22 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

OBSERVAT ION 4.6. The core 𝑅 covering 𝑣 for the first time is the smallest-rank core contain-
ing 𝑣.

We now define the tree ordering of vertices, and the tree-ordered net as follows.

DEF IN IT ION 4.7 (Tree Ordering and Tree-Ordered Net). Let 𝑇 be the rooted tree that is
isomorphic to the tree partition T of 𝐺; each node 𝑥 ∈ 𝑇 corresponds to a bag 𝐵𝑥 in T .

The map 𝜑 : 𝑉 → 𝑉 (𝑇) maps each vertex 𝑣 to a node 𝜑(𝑣) such that its corresponding
bag 𝐵𝜑(𝑣) is exactly 𝑄(𝑣). This map naturally induces a semi-tree ordering of vertices in 𝑉 :
𝑢 ⪯ 𝑣 if and only if 𝑄(𝑣) is an ancestor of 𝑄(𝑢) in the tree partition T .
The tree-ordered net 𝑁 is the union of all the centers of the cores in R. Recall that the
centers of a core is the set of uncovered vertices of the center bag in Line 21.

The semi-tree-ordered net for 𝐺 is (𝑁,𝑇, 𝜑).

The following lemma stems directly from the description of the algorithm and the discus-
sion above.

LEMMA 4.8. Given the tree partition T of 𝐺, the semi-tree-ordered net (𝑁,𝑇, 𝜑) can be con-
structed in polynomial time.

We can see that the tree ordered induced by 𝑇 and 𝜑 is a semi-tree-order since it does
not have the antisymmetric property: there could be two different vertices 𝑢 and 𝑣 such that
𝑄(𝑢) = 𝑄(𝑣) and hence they will be mapped to the same vertex of 𝑇 via 𝜑.

4.2 The Analysis

We now show all properties of the tree-ordered net (𝑁,𝑇, 𝜑) as stated in Lemma 1.8. Specifically,
we will show the covering property in Lemma 4.9 and the packing property in Lemma 4.15. We
start with the covering property.

LEMMA 4.9. Let (𝑁,𝑇, 𝜑) be the tree-ordered net defined in Definition 4.7. For every vertex
𝑣 ∈ 𝑉 there is an 𝑥 ∈ 𝑁𝑣⪯ such that 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ Δ.

PROOF . By Item 1 of Claim 4.4, 𝑣 is in at least one core of R. Let 𝑅 ∈ R be the core of the
smallest rank containing 𝑣. Let 𝐵 be the center bag of 𝑅. Note that 𝑄(𝑣) = 𝐵 by definition.

Let𝑈 ⊆ 𝑅 be the set of uncovered vertices in 𝑅 when 𝑅 is created; all vertices in𝑈 will be
marked as covered in Line 22 after 𝑅 is created. We observe that:

1. All vertices in𝑈 are equivalent under the tree ordering ⪯. This is because 𝑄(𝑢) = 𝐵 for
every 𝑢 ∈ 𝑈 by Observation 4.6 and definition of 𝑄(·).

2. For any two vertices 𝑧 ∈ 𝑅 \𝑈 and 𝑢 ∈ 𝑈 , 𝑧 ≺ 𝑢 (i.e. 𝑧 a proper descendant of 𝑢). To see
this, observe that, by Item 4 in Claim 4.4, 𝑧 is in the attachment of some bag 𝑌 , which is

23 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

the descendant of the center bag 𝐵. By Item 2 and the definition of 𝑄(·), 𝑄(𝑧) is a (proper)
descendant of 𝑌 . Therefore, 𝑄(𝑧) is a descendant of 𝐵, which is 𝑄(𝑢), implying that 𝑧 ≺ 𝑢.

Let 𝐻 be the support graph (in Line 20) of 𝑅. By the construction of 𝑅 (Line 21), 𝑑𝐻 [𝑅] (𝑣,𝑈) ≤ Δ.
This means there exists an 𝑥 ∈ 𝑈 such that 𝑑𝐻 [𝑅] (𝑣, 𝑥) ≤ Δ. The two observations above imply
that 𝐻 [𝑅] ⊆ 𝐺[𝑉⪯𝑥]. Thus, 𝑑𝐺[𝑉⪯𝑥] (𝑣, 𝑥) ≤ Δ as desired. ■

The packing property is substantially more difficult to prove. Our argument goes roughly
as follows. First, we establish several structural properties of the cores. In particular, we show
that for every bag 𝐵 in 𝑇 , the number of cores intersecting 𝐵 is at most 𝑂(tp2), and that each
vertex 𝑣 belongs to at most 𝑂(tp) cores (Corollary 4.12). This allows us to bound

��𝑁2Δ
𝑣⪯
�� via

bounding the number of cores that contain at least one vertex in 𝑁2Δ
𝑣⪯. This set of cores can be

partitioned into two sets: those that contain 𝑣—there are only 𝑂(tp) of them—and those that
do not contain 𝑣. To bound the size of the latter set, we basically construct a sequence of cores
of strictly increasing ranks 𝑅∗1, 𝑅

∗
2, . . . , 𝑅

∗
ℓ for ℓ ≤ tp, and for each 𝑅∗

𝑗
, show that there are only

𝑂(tp2) ancestral cores of 𝑅∗
𝑗

that are not ancestors of lower ranked cores in the sequence. This
implies a bound of 𝑂(tp3) on the set of cores, giving the packing property.

We begin by analyzing several properties of the cores.

LEMMA 4.10. The cores of the same rank are vertex-disjoint.

PROOF . Let 𝑅1 and 𝑅2 be two cores of the same rank, say 𝑟. Let 𝐵𝑘 be the center bags of 𝑅𝑘 for
𝑘 = 1, 2. If 𝐵1 and 𝐵2 belong to two different connected components of uncovered bags in round
𝑟, then by Lemma 4.5, 𝑅1 ∩ 𝑅2 = ∅. Thus, we only consider the complementary case where 𝐵1

and 𝐵2 belong to the same connected component.
Suppose for contradiction that there exists 𝑣 ∈ 𝑅1 ∩ 𝑅2. By Item 3 in Claim 4.4, 𝑅𝑘 only

contains vertices in descendant bags of 𝐵𝑘. As 𝑅1 ∩ 𝑅2 ≠ ∅, either 𝐵1 is an ancestor of 𝐵2 or 𝐵2

is ancestor of 𝐵1. W.l.o.g., we assume that 𝐵1 is an ancestor of 𝐵2. Let 𝑌 be the bag containing 𝑣.
Then 𝑌 is the descendant of both 𝐵1 and 𝐵2. As endpoints of edges of 𝐺 are either in the same
bag or in two adjacent bags of the tree partition, 𝑅1 ∩ 𝑌 ≠ ∅ implies that 𝑅1 ∩ 𝐵2 ≠ ∅. Thus, 𝐵2

will be marked as visited in Line 23 of the algorithm, and hence 𝑅2 will not have the same rank
as 𝑅1, a contradiction. ■

LEMMA 4.11. The algorithm has at most tp iterations. Therefore, rank(𝑅) ≤ tp for every 𝑅 ∈ R.

PROOF . Let 𝐵′ be any bag of T . We claim that in every iteration, at least one uncovered vertex
of 𝐵′ gets covered. Thus, after tp iterations, every vertex of 𝐵′ is covered, and hence the algorithm
will terminate.

Consider an arbitrary iteration where 𝐵′ remains uncovered; that is, at least some vertex
of 𝐵′ is uncovered. Let T ′ be the connected component of uncovered bags of T containing 𝐵′. If
𝐵′ got picked in Line 21, then all uncovered vertices of 𝐵′ are marked as covered (in Line 22),

24 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

and hence the claim holds. Otherwise, 𝐵′ is marked visited in Line 23 when a core 𝑅 ∈ R is
created. Let 𝐻 be the support graph of 𝑅. By Item 2 in Claim 4.4, no bag in T ′ contains a vertex
of 𝐵′. Thus, 𝐻 only contains uncovered vertices of 𝐵′. As 𝑅 ∩ 𝐵′ ≠ ∅, 𝑅 contains at least one
uncovered vertex of 𝐵′, which will be marked as covered in Line 22; the claim holds. ■

We obtain the following corollary of Lemma 4.10 and Lemma 4.11.

COROLLARY 4.12. Each vertex is contained in at most tp cores. Furthermore, the number of
cores intersecting any bag is at most tp2.

PROOF . By Lemma 4.10, cores of the same rank are vertex-disjoint. Thus, each vertex belongs
to at most one core of a given rank. As there are tp different ranks by Lemma 4.11, each vertex
belongs to at most tp cores.

Let 𝐵 be any bag in T . As the cores of the same rank are vertex-disjoint by Lemma 4.10,
there is at most tp cores of a given rank intersecting 𝐵. As there are at most tp different ranks
by Lemma 4.11, the total number of cores intersecting any bag is at most tp2. ■

We define the rank of a vertex 𝑣, denoted by rank(𝑣), to be the lowest rank among all the
cores containing it: rank(𝑣) = min𝑅∈R∧𝑣∈𝑅 rank(𝑅). The following lemma also follows from the
algorithm.

LEMMA 4.13. Let 𝐵 be the center bag of a core 𝑅, and the vertices of 𝑈 be its center. If 𝑅 has
rank 𝑖, then every vertex 𝑣 ∈ 𝐵 \𝑈 has rank strictly smaller than 𝑖.

PROOF . When 𝑅 is constructed (in Line 21), all uncovered vertices of 𝐵 are in𝑈 and will be
marked as covered afterward. Thus, before 𝑅 is constructed, vertices in 𝐵 \𝑈 must be marked
covered, and furthermore, 𝐵 is not marked as visited. This means vertices in 𝐵 \𝑈 are marked
in previous rounds, and hence have ranks strictly smaller than 𝑖. ■

Next, we introduce central concepts in the proof of the packing property. We say that a
core 𝑅1 is an ancestor (descendant resp.) of 𝑅2 if the center-bag of 𝑅1 is an ancestor (descendant
resp.) of the center bag of 𝑅2. For any bag of T , we define its level to be the hop distance from
the root in T . Also, we define the graph rooted at 𝐵 to be the subgraph of 𝐺 induced by the
subtree of T rooted at 𝐵. For any core 𝑅, we define a graph 𝐺T [𝑅] to be the subgraph of 𝐺
induced by vertices in the bags of the subtrees of T rooted at the center-bag of 𝑅; see Figure 4(a).

Let A≺(𝑅) be the set of cores that are ancestors of 𝑅 and have rank strictly less than 𝑅.
We define the shadow domain of a core 𝑅 to be the graph obtained from 𝐺T [𝑅] by removing
the vertices that are contained in at least one core inA≺(𝑅). The shadow of a core 𝑅, denoted
by 𝑠ℎ𝑎𝑑𝑜𝑤(𝑅), is defined as the ball of radius Δ centered around 𝑅 in the shadow domain of 𝑅.
The strict shadow of 𝑅 is defined as its shadow minus itself, i.e., 𝑠ℎ𝑎𝑑𝑜𝑤(𝑅) \ 𝑅. To bound the
size of 𝑁2Δ

𝑣⪯, for a vertex 𝑣 we are interested in the cores and their shadows where 𝑣 is located.
See Figure 4(b).

25 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

(a) (b)

𝑅1

𝑅2

𝑅3

𝐺T [𝑅2]
shadow domain

of 𝑅2

𝑅2

shadow of 𝑅2

strict shadow of 𝑅2Δ

Figure 4. (a) Core 𝑅2 and graph 𝐺T [𝑅2] rooted at its center bag, (b) the shadow domain, shadow and
strict shadow of core 𝑅2.

◦ Rank of 𝑅: the round number when 𝑅 is con-
structed.

◦ Central bag of 𝑅 - the bag from Line 19, from
which we grew the core.

◦ Core 𝑅1 is an ancestor of 𝑅2 if the center-bag of
𝑅1 is an ancestor of 𝑅2 (independent of round).

◦ The level of a bag 𝐵 is the hop distance from the
root in T .

◦ The graph rooted at 𝐵 is the subgraph of 𝐺 in-
duced by the subtree of T rooted at 𝐵.

◦ 𝐺T [𝑅] denotes to be the graph rooted at the
center-bag of 𝑅 (independent of rank).

◦ A≺ (𝑅) - cores that are ancestors of 𝑅 and have
rank strictly less than 𝑅.

◦ Shadow domain of 𝑅 is the graph obtained from
𝐺T [𝑅] by removing the vertices that are contained
in at least one core inA≺ (𝑅).

◦ 𝑠ℎ𝑎𝑑𝑜𝑤(𝑅): Shadow of 𝑅 is the ball of radius Δ
centered around 𝑅 in the shadow domain of 𝑅.

◦ Strict shadow of 𝑅: the shadow minus 𝑅:
𝑠ℎ𝑎𝑑𝑜𝑤(𝑅) \ 𝑅.

Figure 5. Key definitions used during the proof of Lemma 4.8.

We observe the following properties of ranks and shadow domains.

LEMMA 4.14. Let 𝑅1 and 𝑅2 be two cores such that rank(𝑅1) ≥ rank(𝑅2) and 𝑅1 is an ancestor
of 𝑅2. For each 𝑖 ∈ {1, 2}, let 𝐷𝑖 , 𝐵𝑖 , and 𝑌𝑖 be the shadow domain, the center bag, and the center of
𝑅𝑖 , respectively. (Note that 𝑌𝑖 ⊆ 𝐵𝑖 .)

26 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

1. If𝑉 (𝐷1) ∩ (𝐵2 \𝑌2) ≠ ∅, then there exists a core 𝑅3 that is an ancestor of 𝑅2 and descendant
of 𝑅1 such that rank(𝑅3) < rank(𝑅2).

2. If rank(𝑅1) > rank(𝑅2) and there are no cores of rank smaller than 𝑅2 whose center bag
is in the path between 𝐵1 and 𝐵2 (in T), then 𝑉 (𝐺T [𝑅2]) ∩𝑉 (𝐷1) ⊆ 𝑉 (𝐷2). In other words,
every vertex in the shadow domain of 𝑅1 in 𝐺T [𝑅2] is in the shadow domain of 𝑅2.

PROOF . We first show Item 1. Let 𝑥 be a vertex in𝑉 (𝐷1) ∩ (𝐵2 \𝑌2). By Lemma 4.13, rank(𝑥) <
rank(𝑅2), implying that 𝑥 is contained in a core 𝑅3 such that rank(𝑅3) < rank(𝑅2). Furthermore,
𝑅3 is a descendant of 𝑅1 as otherwise, by the definition of shadow domain, 𝑅3 ∩𝑉 (𝐷1) = ∅ and
hence 𝑥 ∉ 𝑉 (𝐷1), a contradiction. Also, 𝑅3 is an ancestor of 𝑅2 as the center-bag of 𝑅2 contains a
vertex of 𝑅3, which is 𝑥.

We show Item 2 by contrapositive. Let 𝑥 be a vertex in 𝐺T [𝑅2] such that 𝑥 ∉ 𝑉 (𝐷2). We
show that 𝑥 ∉ 𝑉 (𝐷1). Since 𝑥 is not in 𝑉 (𝐷2), there exists an ancestor core 𝑅3 of 𝑅2 such that
𝑥 ∈ 𝑅3 and rank(𝑅3) < rank(𝑅2). By the assumption in Item 2, 𝑅3 is also an ancestor of 𝑅1 and
hence 𝑅3 ∈ A≺(𝑅1). Thus, 𝑥 ∉ 𝑉 (𝐷1) as claimed. ■

Equipped with the lemmas above, we are finally ready to prove the packing property with
𝛼 = 2.

LEMMA 4.15. Let (𝑁,𝑇, 𝜑) be the tree-ordered net defined in Definition 4.7. For every vertex
𝑣 ∈ 𝑉 ,

��𝑁2Δ
𝑣⪯
�� ≤ tp4 + tp2.

PROOF . Consider a vertex 𝑣 ∈ 𝑉 . Recall that the net 𝑁 is the set of centers of all cores in R. Let
ℭall be the set of cores whose center that have a non-empty intersection with the vertices in
𝑁2Δ
𝑣⪯. Instead of bounding |𝑁2Δ

𝑣⪯ | directly, we bound |ℭall |. Note that every vertex in 𝑁2Δ
𝑣⪯ is in the

center of one of the cores in ℭall.
Let ℭΔ ⊆ ℭall be the cores that contain 𝑣 and let ℭ := ℭall \ℭΔ. By Corollary 4.12, |ℭΔ | ≤ tp.

The bulk of our proof below is to show that |ℭ | ≤ tp3. Since each core has at most tp centers, we
have

��𝑁2Δ
𝑣⪯
�� ≤ tp · |ℭall | ≤ tp4 + tp2, as claimed.

We now focus on proving that |ℭ | ≤ tp3. Let 𝐵𝑣 be the bag containing 𝑣. Let P be the path
in T from the root bag to 𝐵𝑣. We claim that every core in ℭ has a center bag on P. This is
because every core 𝑅 in ℭ contains a vertex, say 𝑥, in 𝑁2Δ

𝑣⪯, whose bag is an ancestor of 𝐵𝑣. By
construction in Line 21, every vertex in 𝑅 is in a descendant of the center bag of 𝑅. This means
𝐵𝑣 is a descendant of the center bag of 𝑅, implying the claim.

The rest of our proof goes as follows:
Let 𝑟1 be the lowest rank among all cores in ℭ. We will show in Claim 4.16 below that
there is only one core in ℭ having rank 𝑟1. Let this unique core in ℭ with rank 𝑟1 be 𝑅∗1.
Let ℭ1 be the set of all cores in ℭ that are ancestors of 𝑅∗1, including 𝑅∗1. Next, we show in
Claim 4.17 that each core in ℭ1 intersects the center of 𝑅∗1. Since the center is contained in
a bag, Corollary 4.12 implies that |ℭ1 | ≤ tp2.

27 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

Next, let ℭ̄1 = ℭ \ℭ1. If ℭ̄1 is non-empty, we define 𝑟2 be the lowest rank among cores in ℭ̄1.
Note that 𝑟2 > 𝑟1. Claim 4.16 below again implies that there is only one core in ℭ̄1 having
rank 𝑟2. Let this unique core in ℭ̄1 with rank 𝑟2 be 𝑅∗2. Let ℭ2 be the set of all ancestor cores
𝑅∗2 in ℭ̄1 including 𝑅∗2. Then Claim 4.17 implies that each core in ℭ2 intersects the center of
𝑅∗2. Since the center is contained in a bag, Corollary 4.12 gives that |ℭ2 | ≤ tp2.
Inductively, we define the sequence of sets of cores ℭ1,ℭ2,ℭ3, . . . ,ℭℓ and 𝑟1 < 𝑟2 < · · · < 𝑟ℓ

until ℭ̄ℓ = ℭ̄ℓ−1 \ ℭℓ is empty. Here, 𝑟 𝑗 is defined as the lowest rank among cores in ℭ̄ 𝑗−1,
and ℭ̄0 = ℭ. For each 𝑗 ∈ [ℓ], Claim 4.16 implies that there exist a unique core 𝑅∗

𝑗
in ℭ̄ 𝑗−1

with rank 𝑟 𝑗 . Let ℭ 𝑗 be the set of all cores in ℭ̄ 𝑗 that are ancestors of 𝑅∗
𝑗
, including 𝑅∗

𝑗
.

Claim 4.17 then implies that all cores in ℭ 𝑗 intersect the center of 𝑅∗
𝑗

in. Thus, |ℭ 𝑗 | ≤ tp2

for each 𝑗 ∈ [ℓ] by Corollary 4.12. By Lemma 4.11, 𝑟1 < 𝑟2 < · · · < 𝑟ℓ ≤ tp, implying that
|ℭ | ≤ tp3 as desired.

For the rest of the proof, we prove two claims.

(a)

R1

R

Δ

Δ 2

(b)

R1

R2

R3

v
v

x

Z

Figure 6. Illustration for the proof of Claim 4.16.

CLAIM 4.16. There is only one core in ℭ̄ 𝑗−1 having rank 𝑟 𝑗 for each 𝑗 ∈ [ℓ].

Proof. Suppose otherwise. Then there are two cores 𝑅1 and 𝑅2 in ℭ̄ 𝑗−1 having rank 𝑟 𝑗 . Assume
w.l.o.g. that 𝑅1 is an ancestor of 𝑅2. By Lemma 4.10, 𝑅1 and 𝑅2 are disjoint as they have the same
rank. Also, since 𝑅1, 𝑅2 ∈ ℭ, the center-bags of 𝑅1 and 𝑅2 lie on the path P.

28 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

Since 𝑅1 contains a point of 𝑁2Δ
𝑣⪯, 𝑣 is in the shadow of 𝑅1. Thus, there is a path 𝑍 of length

at most 2Δ that goes from the center of 𝑅1 to 𝑣 in the shadow domain of 𝑅1. This path 𝑍 has to
intersect the center bag of 𝑅2 to get to 𝑣.

Suppose this intersection occurs at a vertex in the center of 𝑅2; see Figure 6(a). Then the
path 𝑍 goes from the center of 𝑅1 to outside 𝑅1 and then into the center of 𝑅2 and then to outside
𝑅2. It has to go outside of 𝑅2 as 𝑣 is in the strict shadow of 𝑅2. Also, it has to go outside of 𝑅1

before entering 𝑅2 as 𝑅1 and 𝑅2 are vertex disjoint (however, it is possible that there is an edge
from 𝑅1 to 𝑅2). This means 𝑍 has a length of more than Δ + Δ = 2Δ, a contradiction.

Now, suppose this intersection occurs at a vertex in the center-bag of 𝑅2 that is not in the
center of 𝑅2; see Figure 6(b). Then by Item 1 of Lemma 4.14 it follows that there is at least one
core that is ancestor of 𝑅2 and descendant of 𝑅1, and having rank lower than 𝑟 𝑗 . Let 𝑅3 be the
one among such cores whose center-bag has the smallest level.

We claim that the path 𝑍 intersects the center of 𝑅3. Suppose otherwise. However, the path
has to intersect the center-bag of 𝑅3 to get to 𝑣. Then, by Item 1 (of Lemma 4.14) it follows that
there is a core that is ancestor of 𝑅3 and descendant of 𝑅1, and having rank lower than 𝑟 𝑗 , a
contradiction to the selection of 𝑅3.

By definition of shadow domain, 𝑅3 is disjoint from the shadow domain of 𝑅2. Hence 𝑣 is
not in 𝑅3. However, 𝑣 is contained in the shadow of 𝑅3 as the part of the path 𝑍 from the center of
𝑅3 to 𝑣 is contained in the shadow domain of 𝑅3 and has length at most 2Δ. Thus, 𝑣 is contained
in the strict shadow of 𝑅3. Since 𝑅3 is a descendant of 𝑅1, we have that 𝑅3 ∉ ℭ1 ∪ℭ2 ∪ · · · ∪ℭ 𝑗−1

and hence 𝑅3 ∈ ℭ̄ 𝑗−1. Thus, there is a core in ℭ̄ 𝑗−1 that has rank lower than 𝑟 𝑗 , a contradiction
to the choice of 𝑟 𝑗 . ■

CLAIM 4.17. Each core in ℭ 𝑗 intersects the center of 𝑅∗
𝑗

for each 𝑗 ∈ [ℓ].

Proof. Suppose this is not true, and let 𝑗 be the minimum index for which the claim does not
hold. Then there exists a core 𝑅 ∈ ℭ 𝑗 that is disjoint from the center of 𝑅∗

𝑗
. Note that 𝑅∗

𝑗
is a

descendant of 𝑅 by definition of ℭ 𝑗 and the rank of 𝑅∗
𝑗

is strictly less than the rank of 𝑅 by the
definition of 𝑅∗

𝑗
. Since 𝑣 is in the shadow of 𝑅 there is a path 𝑍 of length at most 2Δ that goes

from the center of 𝑅 to 𝑣 in the shadow domain of 𝑅. This path 𝑍 has to intersect the center-bag
of 𝑅∗

𝑗
to get to 𝑣.
Suppose this intersection occurs at a vertex in the center of 𝑅∗

𝑗
. Then the path 𝑍 goes from

the center of 𝑅 outside 𝑅 and then into the center of 𝑅∗
𝑗

and then to outside of 𝑅∗
𝑗
. It has to go

outside of 𝑅∗
𝑗

as 𝑣 is in the strict shadow of 𝑅∗
𝑗
. Also, it has to go outside of 𝑅 before entering 𝑅∗

𝑗
as

𝑅 and the center of 𝑅∗
𝑗

are vertex disjoint (this is what we assumed for the sake of contradiction).
This means 𝑍 has a length of more than Δ + Δ = 2Δ, a contradiction.

Now, suppose this intersection occurs at a vertex in the center-bag of 𝑅∗
𝑗

that is not in the
center of 𝑅∗

𝑗
. Then, by Item 1 (of Lemma 4.14), there exist at least one core that is an ancestor of

𝑅∗
𝑗

and a descendant of 𝑅 and having rank lower than 𝑟 𝑗 . Let 𝑅′ be the one among such cores

29 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

whose center-bag has the smallest level. The path 𝑍 has to intersect the center of 𝑅′ as otherwise
there is a core that is an ancestor of 𝑅′ and a descendant of 𝑅 and having rank lower than 𝑟 𝑗 ,
contradicting the selection of 𝑅′.

Note that 𝑣 is not in 𝑅′ as 𝑅′ is disjoint from the shadow domain of 𝑅∗
𝑗

by definition of
shadow domain. However, 𝑣 is contained in the shadow of 𝑅′ as the part of the path 𝑍 from
center of 𝑅′ to 𝑣 is contained in the shadow domain of 𝑅′ (by Item 2 of Lemma 4.14) and has
length at most 2Δ. Thus, 𝑣 is contained in the strict shadow of 𝑅′. Since 𝑗 is the minimum index
for which the statement of the claim does not hold, if 𝑅′ ∈ ℭ1∪ . . .ℭ 𝑗−1, then 𝑅 ∉ ℭ 𝑗 . This implies
that 𝑅′ ∈ ℭ 𝑗 . Thus we have a core in ℭ 𝑗 having rank strictly smaller than 𝑟 𝑗 , a contradiction. ■

The discussion in the proof outline with Claim 4.16 and Claim 4.17 proves the lemma. ■

5. Applications

In this section, we give a more detailed exposition of the applications of Theorem 1.2 and
Theorem 1.3 mentioned in Section 1. The list of applications here is not meant to be exhaustive,
and we believe that our result will find further applications.

5.1 Flow Sparsifier

Given an edge-capacitated graph 𝐺 = (𝑉, 𝐸, 𝑐) and a set 𝐾 ⊆ 𝑉 of terminals, a 𝐾-flow is a
flow where all the endpoints are terminals. A flow-sparsifier with quality 𝜌 ≥ 1 is another
capacitated graph 𝐻 = (𝐾, 𝐸𝐻 , 𝑐𝐻) such that (a) any feasible 𝐾-flow in 𝐺 can be feasibly routed
in 𝐻 , and (b) any feasible 𝐾-flow in 𝐻 can be routed in 𝐺 with congestion 𝜌 (see [26] for formal
definitions).

Englert et al. [26] showed that given a graph𝐺which admits a (𝛽, 1
𝛽)-padded decomposition

scheme, then for any subset 𝐾 , one can efficiently compute a flow-sparsifier with quality 𝑂(𝛽).
Using their result, we obtain the following corollary of Theorem 1.2.

COROLLARY 5.1. Given an edge-capacitated graph𝐺 = (𝑉, 𝐸, 𝑐) with treewidth tw, and a subset
of terminals 𝐾 ⊆ 𝑉 , one can efficiently compute a flow sparsifier with quality 𝑂(log tw).

The best previously known result had quality 𝑂(tw) approximation [26, 3]. Thus, our
result improves the dependency on tw exponentially. For further reading on flow sparsifiers,
see [61, 62, 60, 18, 20, 5].

We note that, though the graph 𝐺 has treewidth tw, the flow-sparsifier 𝐻 in Corollary 5.1
can have arbitrarily large treewidth. Having low treewidth is a very desirable property of a
graph, and naturally, we would like to have a sparsifier of small treewidth. A flow-sparsifier
𝐻 = (𝐾, 𝐸𝐻 , 𝑐𝐻) of 𝐺 is called minor-based if 𝐻 is a minor of 𝐺. That is, 𝐻 can be obtained from
𝐺 by deleting/contracting edges, and deleting vertices. Englert et al. [26] showed that given a

30 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

graph 𝐺 which admits a (𝛽, 1
𝛽)-padded decomposition scheme, then for any subset 𝐾 , one can

efficiently compute a minor-based flow-sparsifier with quality 𝑂(𝛽 log 𝛽). By Theorem 1.2, we
obtain:

COROLLARY 5.2. Given an edge-capacitated graph𝐺 = (𝑉, 𝐸, 𝑐) with treewidth tw, and a subset
of terminals 𝐾 ⊆ 𝑉 , one can efficiently compute a minor-based flow-sparsifier 𝐻 = (𝐾, 𝐸𝐻 , 𝑐𝐻)
with quality 𝑂(log tw log log tw). In particular, 𝐻 also has treewidth at most tw.

5.2 Sparse Partition

Given a metric space (𝑋, 𝑑𝑋), a (𝛼, 𝜏, Δ)-sparse partition is a partition C of 𝑋 such that:
Low Diameter: ∀𝐶 ∈ C, the set 𝑋 has diameter at most Δ;
Sparsity: ∀𝑥 ∈ 𝑋 , the ball 𝐵𝑋 (𝑥, Δ

𝛼) intersects at most 𝜏 clusters from C.

We say that the metric (𝑋, 𝑑𝑋) admits a (𝛼, 𝜏)-sparse partition scheme if for every Δ > 0, 𝑋
admits a (𝛼, 𝜏, Δ)-sparse partition.

Jia et al. [48] implicitly proved (see [33] for an explicit proof) that if a space admits a (𝛽, 𝑠)-
sparse cover scheme, then it admits a (𝛽, 𝑠)-sparse partition scheme. Therefore, by Theorem 1.3
we obtain:

COROLLARY 5.3. Every graph 𝐺 with treewidth tw admits a (𝑂(1), poly(tw))-sparse partition
scheme.

Previously, it was only known that graphs with treewidth tw admit
(
𝑂(tw2), 2tw)-sparse

partition scheme [28, 33]. Thus, Corollary 5.3 implies an exponential improvement in the
dependency on tw. For further reading on sparse partitions, see [48, 13, 33, 23, 31].

5.3 Universal Steiner Tree and Universal TSP

We consider the problem of designing a network that allows a server to broadcast a message
to a single set of clients. If sending a message over a link incurs some cost, then designing the
best broadcast network is classically modeled as the Steiner tree problem [47]. However, if the
server has to solve this problem repeatedly with different client sets, it is desirable to construct
a single network that will optimize the cost of the broadcast for every possible subset of clients.
This setting motivates the Universal Steiner Tree (UST) problem.

Given a metric space (𝑋, 𝑑𝑋) and root 𝑟 ∈ 𝑋 , a 𝜌-approximate UST is a weighted tree 𝑇
over 𝑋 such that for every 𝑆 ⊆ 𝑋 containing 𝑟, we have

𝑤(𝑇 {𝑆}) ≤ 𝜌 · OPT𝑆

where 𝑇 {𝑆} ⊆ 𝑇 is the minimal subtree of 𝑇 connecting 𝑆, and OPT𝑆 is the minimum weight
Steiner tree connecting 𝑆 in 𝑋 .

31 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

A closely related problem to UST is the Universal Traveling Salesman Problem (UTSP).
Consider a postman providing post service for a set 𝑋 of clients with 𝑛 different locations (with
distance measure 𝑑𝑋). Each morning, the postman receives a subset 𝑆 ⊂ 𝑋 of the required
deliveries for the day. In order to minimize the total tour length, one solution may be to compute
each morning an (approximation of an) Optimal TSP tour for the set 𝑆. An alternative solution
will be to compute a Universal TSP (UTSP) tour 𝑅 containing all the points 𝑋 . Given a subset 𝑆,
𝑅{𝑆} is the tour visiting all the points in 𝑆 w.r.t. the order induced by 𝑅. Given a tour 𝑇 , denote
its length by |𝑇 |. The stretch of 𝑅 is the maximum ratio among all subsets 𝑆 ⊆ 𝑋 between the
length of 𝑅{𝑆} and the length of the optimal TSP tour on 𝑆, max𝑆⊆𝑋 |𝑅{𝑆}|

|Opt(𝑆) | .
Jia et al. [48] showed that for every 𝑛-point metric space that admits (𝜎, 𝜏)-sparse partition

scheme, there is a polynomial time algorithm that given a root rt ∈ 𝑉 computes a UST with
stretch 𝑂(𝜏𝜎2 log𝜏 𝑛). In addition, Jia et al. [48] also showed that such a metric admit a UTSP
with stretch 𝑂(𝜏𝜎2 log𝜏 𝑛). Using our Corollary 5.3, we conclude:

COROLLARY 5.4. Consider an 𝑛-point graph with treewidth tw. Then its shortest path metric
admits a solution to both universal Steiner tree and universal TSP with stretch poly(tw) · log 𝑛.

The best-known previous result for both problems had a stretch of exp(tw) · log 𝑛 [33],
which is exponentially larger than ours in terms of the tw dependency. For further reading on
the UTSP and TSP problems, see [64, 9, 48, 42, 45, 68, 40, 10, 13, 14, 33, 31]. Interestingly, our
solution to the UST problem in Corollary 5.4 produces a solution which is not a subgraph of the
low treewidth input graph 𝐺. If one requires that the UST will be a subgraph of 𝐺, the current
state of the are is by Busch et al. [12] who obtained stretch 𝑂(log7 𝑛). To date, this is also the
best known upper bound for graph with bounded treewidth.

5.4 Steiner Point Removal

Given a graph 𝐺 = (𝑉, 𝐸, 𝑤), and a subset of terminals 𝐾 ⊆ 𝑉 , in the Steiner point removal
problem, we are looking for a graph 𝐻 = (𝐾, 𝐸𝐻 , 𝑤𝐻), which is a minor of 𝐺. We say that 𝐻
has stretch 𝑡, if for every 𝑢, 𝑣 ∈ 𝐾 , 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐻 (𝑢, 𝑣) ≤ 𝑡 · 𝑑𝐺 (𝑢, 𝑣). Englert et al. [26] showed
that given a graph 𝐺 which admits a (𝛽, 1

𝛽)-padded decomposition scheme, one can compute a
distribution D over minors 𝐻 = (𝐾, 𝐸𝐻 , 𝑤𝐻), such that for every 𝑢, 𝑣 ∈ 𝐾 , and 𝐻 ∈ supp(D),
𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐻 (𝑢, 𝑣), and E𝐻∼D [𝑑𝐻 (𝑢, 𝑣)] ≤ 𝑂(𝛽 · log 𝛽) ·𝑑𝐺 (𝑢, 𝑣). That is, the minor has expected
stretch 𝑂(𝛽 log(𝛽)). Thus, by Theorem 1.2, we obtain:

COROLLARY 5.5. Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with treewidth tw, and a subset of
terminals 𝐾 ⊆ 𝑉 , one can efficiently sample a minor 𝐻 = (𝐾, 𝐸𝐻 , 𝑐𝐻) of 𝐺 such that for every
𝑢, 𝑣 ∈ 𝐾 , 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐻 (𝑢, 𝑣), and E[𝑑𝐻 (𝑢, 𝑣)] ≤ 𝑂(log tw log log tw) · 𝑑𝐺 (𝑢, 𝑣).

32 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

The best previously known result had expected stretch 𝑂(tw log tw) [26, 3]. For the classic
Steiner point removal, where we are looking for a single minor, the stretch is 2𝑂(tw log tw) [44].
For further reading on the Steiner point removal problem, see [41, 16, 50, 19, 34, 35, 33, 46, 44].

5.5 Zero Extension

In the 0-Extension problem, the input is a set 𝑋 , a terminal set 𝐾 ⊆ 𝑋 , a metric 𝑑𝐾 on 𝐾 , and a
cost function 𝑐 :

(𝑋
2
)
→ R≥0.

The goal is to find a retraction 𝑓 : 𝑋 → 𝐾 that minimizes
∑
{𝑥, 𝑦}∈(𝑋2) 𝑐(𝑥, 𝑦) · 𝑑𝐾 (𝑓 (𝑥), 𝑓 (𝑦)).

A retraction is a surjective function 𝑓 : 𝑋 → 𝐾 that satisfies 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ 𝐾 . The
0-Extension problem, first proposed by Karzanov [51], generalizes theMultiway Cut problem
[24] by allowing 𝑑𝐾 to be any discrete metric (instead of a uniform metric).

Lee and Naor [57] (see also [6, 15]) showed that for the case where the metric (𝐾, 𝑑𝐾)
on the terminals admits a (𝛽, 1

𝛽)-padded-decomposition, there is an 𝑂(𝛽) upper bound. By
Theorem 1.2, we get:

COROLLARY 5.6. Consider an instance of the 0-Extension problem
(
𝐾 ⊆ 𝑋, 𝑑,𝑘 , 𝑐 :

(𝑋
2
)
→ R+

)
,

where the metric (𝐾, 𝑑𝐾) is a sub-metric of a shortest path metric of a graph with treewidth tw.
Then, one can efficiently find a solution with cost at most 𝑂(log tw) times the cost of the optimal.
In particular, there is a 𝑂(log tw)-approximation algorithm for the multiway cut problem for
graphs of treewidth tw.

The best previously known result was 𝑂(tw) approximation [15, 3]. For further reading
on the 0-Extension problem, see [15, 27, 6, 57, 26, 35].

5.6 Lipschitz Extension

For a function 𝑓 : 𝑋 → 𝑌 between metric spaces (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌), set ∥ 𝑓 ∥Lip = sup𝑥, 𝑦∈𝑋
𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑦))

𝑑𝑋 (𝑥, 𝑦)
to be the Lipschitz parameter of the function. In the Lipschitz extension problem, we are given
a map 𝑓 : 𝑍 → 𝑌 from a subset 𝑍 of 𝑋 . The goal is to extend 𝑓 to a function 𝑓 over the entire
space 𝑋 , while minimizing ∥ 𝑓 ∥Lip as a function of ∥ 𝑓 ∥Lip. Lee and Naor [57], proved that if a
space admits a (𝛽, 1

𝛽)-padded decomposition scheme, then given a function 𝑓 from a subset
𝑍 ⊆ 𝑋 into a closed convex set 𝐶 in some Banach space, one can extend 𝑓 into 𝑓 : 𝑋 → 𝐶 such
that ∥ 𝑓 ∥Lip ≤ 𝑂(𝛽) · ∥ 𝑓 ∥Lip. By Theorem 1.2, we obtain:

COROLLARY 5.7 (Lipschitz Extension). Consider a graph 𝐺 = (𝑉, 𝐸, 𝑤) with treewidth tw,
and let 𝑓 : 𝑉 ′→ 𝐶 be a map from a subset 𝑉 ′ ⊆ 𝑉 into 𝐶, where 𝐶 is a convex closed set of some
Banach space. Then there is an extension 𝑓 : 𝑋 → 𝐶 such that ∥ 𝑓 ∥Lip ≤ 𝑂(log tw) · ∥ 𝑓 ∥Lip.

33 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

5.7 Embedding into ℓ𝒑 spaces

Metric embedding is a map between two metric spaces that preserves all pairwise distances up
to a small stretch. We say that embedding 𝑓 : 𝑋 → 𝑌 between (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) has distortion
𝑡 if for every 𝑥, 𝑦 ∈ 𝑋 it holds that 𝑑𝑋 (𝑥, 𝑦) ≤ 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑡 · 𝑑𝑋 (𝑥, 𝑦). Krauthgamer, Lee,
Mendel and Naor [53] (improving over Rao [65]) showed that every 𝑛-point metric space that
admits (𝛽, 1

𝛽)-padded decomposition scheme can be embedded into an ℓ𝑝 space with distortion

𝑂(𝛽1− 1
𝑝 · (log 𝑛)

1
𝑝). Previously, it was known that the shortest path metric of an 𝑛 point graph

with treewidth tw (or more generally 𝐾tw-minor free) embeds into ℓ𝑝 space with distortion
𝑂((tw)1−

1
𝑝 · (log 𝑛)

1
𝑝) [53, 3]. By Theorem 1.2, we conclude:

COROLLARY 5.8. Let 𝐺 be an 𝑛-point weighted graph with treewidth tw. Then there exist
embedding of 𝐺 into ℓ𝑝 (1 ≤ 𝑝 ≤ ∞) with distortion 𝑂((log tw)1−

1
𝑝 · (log 𝑛)

1
𝑝).

Since every finite subset of the Euclidean space ℓ2 embed isometrically into ℓ𝑝 (for 1 ≤
𝑝 ≤ ∞), it follows that for 1 ≤ 𝑝 ≤ ∞ such 𝐺 can be embedded into ℓ𝑝 space (in particular ℓ1)
with distortion 𝑂(

√︁
log tw · log 𝑛).

A norm space of special interest is ℓ∞, as every finite metric space embeds into ℓ∞ iso-
metrically (i.e. with distortion 1, this is the so called Fréchet embedding). However, the di-
mension of such embedding is very large: Ω(𝑛). Krauthgamer et al. [53] proved that every
graph with treewidth tw (or more generally 𝐾tw-minor free) embeds into ℓ𝑑∞ with dimension
𝑑 = 𝑂̃(3tw) · log 𝑛 and distortion 𝑂(tw2). This was recently improved by Filtser [31] who showed
that every graph with treewidth tw (or more generally 𝐾tw-minor free) embeds into ℓ𝑑∞ with
dimension 𝑑 = 𝑂̃(tw2) · log 𝑛 and distortion 𝑂(tw) (alternatively distortion 3 + 𝜀 and dimension
𝑑 = 𝑂̃(1𝜀)

tw+1 · log 𝑛). More generally, Filtser [31] proved that if a graph 𝐺 admits a (𝛽, 𝑠)-padded
partition cover scheme, then 𝐺 embeds into ℓ𝑑∞ with distortion (1 + 𝜀) · 2𝛽 and dimension
𝑑 = 𝑂

(
𝑠
𝜀 · log 𝛽

𝜀 · log(𝑛·𝛽𝜀)
)
. Using our Theorem 1.5, we conclude:

COROLLARY 5.9. Let 𝐺 be an 𝑛-point weighted graph with treewidth tw. Then there exist
embedding of 𝐺 into ℓ𝑑∞ with distortion 𝑂(1) and dimension 𝑑 = poly(tw) · log 𝑛.

Note that Corollary 5.9 provides an exponential improvement in the dependence on tw
compared to the previous best known embedding into ℓ∞ with constant distortion. For further
reading about metric embedding into ℓ𝑝 spaces see [63, 11, 59, 65, 53, 43, 58, 1, 54, 34, 55, 31].

5.8 Stochastic decomposition for minor-free graphs - a reduction from additive
stretch embeddings

A major open question is to determine the padding parameter of 𝐾𝑟-minor-free graphs. The
current state of the art is 𝑂(𝑟) [3] (see also [32]), while the natural conjecture is exponentially
smaller𝑂(log 𝑟). A somewhat weaker guarantee which we call (𝑡, 𝑝, Δ)-stochastic decomposition,

34 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

is a distribution over partitions with diameter Δ such that every pair of vertices at distance at
most Δ

𝑡 is clustered together with probability at least 𝑝. Compared to padded decomposition,
the guarantee here is over pairs (instead of balls), and there is a threshold distance for the
guarantee (instead of a linear dependence as in padded decomposition). Nonetheless, for
many applications, a stochastic decomposition is good enough. Moreover, in most cases, the
parameters of padded and stochastic decompositions are the same. The only case that we are
aware of where they are different is high-dimensional Euclidean spaces. In particular, for
minor-free graphs, the best-known result is a (𝑂(𝑟), 1

2 , Δ)-stochastic decomposition [3]. Here, we
argue that if the parameters of recently studied stochastic embeddings with additive distortion
are improved, then our Theorem 1.2 will imply much better stochastic decompositions for
minor-free graphs.

DEF IN IT ION 5.10 (Stochastic embedding with additive distortion). Consider an 𝑛-vertex
weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with diameter 𝐷. A stochastic additive embedding of 𝐺 into a
distribution over embeddings 𝑓 into graphs 𝐻 with treewidth 𝜏 and expected additive distortion
𝜀 · 𝐷, is a distributionD over maps 𝑓 from 𝐺 into graphs 𝐻 , such that

Small treewidth: Any graph 𝐻 in the support has treewidth at most 𝜏.
Dominating: for every 𝑢, 𝑣 ∈ 𝑉 , and (𝑓 , 𝐻) ∈ supp(D), 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐻 (𝑓 (𝑢), 𝑓 (𝑣)).
Expected additive distortion: for every𝑢, 𝑣 ∈ 𝑉 ,E(𝑓 ,𝐻)∈supp(D) [𝑑𝐻 (𝑓 (𝑢), 𝑓 (𝑣))] ≤ 𝑑𝐺 (𝑢, 𝑣)+
𝜀 · 𝐷.

Recently, Filtser and Le [37] (see also [38, 21, 36]) constructed a stochastic embedding of
every 𝑛-vertex 𝐾𝑟-minor free graph 𝐺 with diameter 𝐷, into a distribution over graphs with
treewidth𝑂((log log 𝑛)2

𝜀2) ·𝜒(𝑟) and expected additive distortion 𝜀 ·𝐷. Here 𝜒(𝑟) is an extremely fast-
growing function of 𝑟 (an outcome of the minor-structure theorem [67]). If one would construct
such stochastic embedding into treewidth poly(𝑟𝜀), then Lemma 5.11 bellow will imply stochastic
decomposition with parameter 𝑂(log 𝑟). Furthermore, even allowing treewidth poly(𝑟·log 𝑛

𝜀) will
imply stochastic decomposition with parameter 𝑂(log 𝑟 + log log 𝑛) which is yet unknown as
well.

LEMMA 5.11. Suppose that there is a coordinate monotone function 𝜋(𝜀, 𝑟, 𝑛), such that every 𝑛-
vertex 𝐾𝑟-minor free graph with diameter 𝐷 admits a stochastic embedding into a distribution over
graphs with treewidth 𝜋(𝜀, 𝑟, 𝑛) and expected additive distortion 𝜀 · 𝐷. Then for every Δ > 0, every
𝑛-vertex 𝐾𝑟-minor free admits a (𝑡, 1

2 , Δ)-stochastic decomposition, for 𝑡 = 𝑂(log𝜋(Ω(1𝑟), 𝑟, 𝑛)).

PROOF . Consider an 𝑛-vertex, 𝐾𝑟-minor-free graph 𝐺 = (𝑉, 𝐸, 𝑤). Fix Δ > 0. We will construct
a distributionD over partitions of 𝐺 such that every P ∈ supp(D) will be weakly Δ-bounded
and for every pair 𝑢, 𝑣 at distance Δ

𝑡 , 𝑢, 𝑣 will be clustered together with probability at least 1
2 .

The partition will be constructed as follows:

35 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

1. Use Filtser’s [32] strong padded decomposition scheme with diameter parameter Δ′ =
𝑂(𝑟𝑡) · Δ to sample a partition P′ of 𝑉 . Note that every cluster 𝐶 ∈ P′ is a 𝐾𝑟-minor free
graph of diameter Δ′.

2. Fix 𝜀 = Δ
5·𝑡·Δ′ = Ω(1𝑟). For every cluster 𝐶 ∈ P′, sample an embedding 𝑓𝐶 of 𝐺[𝐶] into a

graph 𝐻𝐶 with treewidth 𝜋(𝜀, 𝑟, |𝐶 |) ≤ 𝜋(Ω(1𝑟), 𝑟, 𝑛) and expected additive distortion 𝜀 · Δ′.
We will abuse notation and use 𝑣 ∈ 𝐶 to denote both 𝑣 and 𝑓𝐶 (𝑣).

3. For every 𝐶 ∈ P′, use Theorem 1.2 to sample a
(
𝑂(log(𝜋(Ω(1𝑟), 𝑟, 𝑛))),Ω(1), Δ

)
-padded

decomposition P𝐶 of 𝐻𝐶 .

The final partition we return is the union of all the created partitions P = ∪𝐶∈P′ (P𝐶 ∩𝑉). We
claim that P has a weak diameter at most Δ. Consider a cluster 𝑃 ∈ P and 𝑢, 𝑣 ∈ 𝑃. There is some
cluster 𝐶 ∈ P′ containing both 𝑢 and 𝑣. Then, it holds that 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐺[𝐶] (𝑢, 𝑣) ≤ 𝑑𝐻𝐶 (𝑢, 𝑣) ≤ Δ.

Consider a pair of vertices 𝑢, 𝑣 at distance ≤ Δ
𝑡 . Denote by Ψ1 the event that the ball of

radius Δ
𝑡 around 𝑣 belongs to a single cluster in P′. Denote by Ψ2 the event that conditioned

on Ψ1 occurring, 𝑑𝐻𝐶 (𝑢, 𝑣) ≤ 𝑑𝐺 (𝑢, 𝑣) + 5 · 𝜀 · Δ′. Denote by Ψ3 the event that conditioned on Ψ2

occurring, 𝑢 and 𝑣 belong to the same cluster of P𝐶 .
Let 𝐶 denote the cluster containing 𝑣 in P′. By choosing the constant in Δ′ large enough, it

holds that

Pr [Ψ1] = Pr
[
B𝐺 (𝑣,

Δ
𝑡
) ⊆ 𝐶

]
= Pr

[
B𝐺 (𝑣,

Δ
𝑡Δ′
· Δ′) ⊆ 𝐶

]
≥ 𝑒−𝑂(𝑟)· Δ

𝑡Δ′ ≥ 4
5
.

Note that if B𝐺 (𝑣, Δ
𝑡) ⊆ 𝐶, that the entire shortest path from 𝑢 to 𝑣 is contained in 𝐶, and hence

𝑑𝐺[𝐶] (𝑢, 𝑣) = 𝑑𝐺 (𝑢, 𝑣). Using Markov, the probability that the additive distortion by 𝑓𝐶 is too
large is bounded by:

Pr
[
Ψ2 | Ψ1

]
= Pr

[
𝑑𝐻𝐶 (𝑢, 𝑣) > 𝑑𝐺[𝐶] (𝑢, 𝑣) + 5 · 𝜖 · Δ′

]
≤
E
[
𝑑𝐻𝐶 (𝑢, 𝑣) − 𝑑𝐺[𝐶] (𝑢, 𝑣)

]
5 · 𝜖 · Δ′ ≤ 1

5
.

We conclude Pr [Ψ2 | Ψ1] ≥ 4
5 . Note that if Ψ2 indeed occurred, then 𝑑𝐻𝐶 (𝑢, 𝑣) ≤ 𝑑𝐺[𝐶] (𝑢, 𝑣) + 5 ·

𝜖 · Δ′ = 𝑑𝐺[𝐶] (𝑢, 𝑣) + Δ
𝑡 ≤

2Δ
𝑡 . Finally in step 3 we sample a padded decomposition 𝐶P of 𝐻𝐶 . As 𝐻𝐶

has treewidth 𝜋(Ω(1𝑟), 𝑟, 𝑛), the probability that 𝑢 and 𝑣 are clustered together is bounded by:

Pr [Ψ3 | Ψ1 ∧Ψ2] ≥ Pr
[
B𝐻𝐶 (𝑣,

2Δ
𝑡
) ⊆ P𝐶 (𝑐)

]
≥ 𝑒−𝑂(log𝜋(Ω(1

𝑟),𝑟,𝑛))·
2
𝑡 ≥ 4

5
,

where the last inequality holds for a large enough constant in the definition of 𝑡. We conclude

Pr [P(𝑣) = P(𝑢)] ≥ Pr [Ψ1 ∧Ψ2 ∧Ψ3] ≥
(

4
5

)3

>
1
2
.

■

36 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

References
[1] Ittai Abraham, Arnold Filtser, Anupam Gupta, and

Ofer Neiman. Metric embedding via shortest path
decompositions. SIAM J. Comput. 51(2):290–314,
2022. DOI (33)

[2] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg,
and Dahlia Malkhi. Routing in networks with low
doubling dimension. 26th IEEE International
Conference on Distributed Computing Systems
(ICDCS 2006), 4-7 July 2006, Lisboa, Portugal,
page 75, 2006. DOI (4)

[3] Ittai Abraham, Cyril Gavoille, Anupam Gupta,
Ofer Neiman, and Kunal Talwar. Cops, robbers, and
threatening skeletons: padded decomposition for
minor-free graphs. SIAM J. Comput.
48(3):1120–1145, 2019. DOI (3, 29, 32–34)

[4] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, and
Udi Wieder. Strong-diameter decompositions of
minor free graphs. Theory Comput. Syst.
47(4):837–855, 2010. DOI (4)

[5] Alexandr Andoni, Anupam Gupta, and
Robert Krauthgamer. Towards (1 + 𝜖)-approximate
flow sparsifiers. Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 279–293, 2014. DOI
(29)

[6] Aaron Archer, Jittat Fakcharoenphol,
Chris Harrelson, Robert Krauthgamer,
Kunal Talwar, and Éva Tardos. Approximate
classification via earthmover metrics. Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, New Orleans,
Louisiana, USA, January 11-14, 2004,
pages 1079–1087. SIAM, 2004. URL (32)

[7] Baruch Awerbuch and David Peleg. Sparse
partitions (extended abstract). 31st Annual
Symposium on Foundations of Computer Science ,
STOC 1990, St. Louis, Missouri, USA, October
22-24, Volume II, pages 503–513, 1990. DOI (4)

[8] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. 37th
Annual Symposium on Foundations of Computer
Science, FOCS ’96, Burlington, Vermont, USA, 14-16
October, 1996, pages 184–193, 1996. DOI (3)

[9] Dimitris Bertsimas and Michelangelo Grigni.
Worst-case examples for the spacefilling curve
heuristic for the euclidean traveling salesman
problem. Operations Research Letters,
8(5):241–244, 1989. (31)

[10] Anand Bhalgat, Deeparnab Chakrabarty, and
Sanjeev Khanna. Optimal lower bounds for
universal and differentially private Steiner trees
and TSPs. APPROX-RANDOM, pages 75–86.
Springer, 2011. (31)

[11] J. Bourgain. On Lipschitz embedding of finite
metric spaces in Hilbert space. Israel Journal of
Mathematics, 52(1):46–52, 1985. DOI (33)

[12] Costas Busch, Da Qi Chen, Arnold Filtser,
Daniel Hathcock, D. Ellis Hershkowitz, and
Rajmohan Rajaraman. One tree to rule them all:
poly-logarithmic universal Steiner tree. 64th IEEE
Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 60–76. IEEE, 2023.
DOI (31)

[13] Costas Busch, Chinmoy Dutta,
Jaikumar Radhakrishnan, Rajmohan Rajaraman,
and Srinivasagopalan Srivathsan. Split and join:
strong partitions and universal Steiner trees for
graphs. 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012,
pages 81–90, 2012. DOI (30, 31)

[14] Costas Busch, Ryan LaFortune, and
Srikanta Tirthapura. Sparse covers for planar
graphs and graphs that exclude a fixed minor.
Algorithmica, 69(3):658–684, 2014. DOI (4, 31)

[15] Gruia Călinescu, Howard J. Karloff, and
Yuval Rabani. Approximation algorithms for the
0-extension problem. SIAM J. Comput.
34(2):358–372, 2004. DOI (3, 32)

[16] T.-H. Chan, Donglin Xia, Goran Konjevod, and
Andrea Richa. A tight lower bound for the Steiner
point removal problem on trees. Proceedings of the
9th International Conference on Approximation
Algorithms for Combinatorial Optimization
Problems, and 10th International Conference on
Randomization and Computation,
APPROX’06/RANDOM’06, pages 70–81, Barcelona,
Spain. Springer-Verlag, 2006. DOI (32)

[17] Hsien-Chih Chang, Jonathan Conroy, Hung Le,
Lazar Milenković, Shay Solomon, and Cuong Than.
Shortcut partitions in minor-free graphs: Steiner
point removal, distance oracles, tree covers, and
more. Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2024.,
pages 5300–5331. DOI (7)

[18] Moses Charikar, Tom Leighton, Shi Li, and
Ankur Moitra. Vertex sparsifiers and abstract
rounding algorithms. 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA,
pages 265–274, 2010. DOI (29)

[19] Yun Kuen Cheung. Steiner point removal - distant
terminals don’t (really) bother. Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans,
Louisiana, USA, January 7-10, 2018, 2018. (32)

[20] Julia Chuzhoy. On vertex sparsifiers with Steiner
nodes. Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 - 22, 2012, pages 673–688,
2012. DOI (29)

https://doi.org/10.1137/19m1296021
https://doi.org/10.1109/ICDCS.2006.72
https://doi.org/10.1137/17M1112406
https://doi.org/10.1007/s00224-010-9283-6
https://doi.org/10.1137/1.9781611973402.20
http://dl.acm.org/citation.cfm?id=982792.982952
https://doi.org/10.1109/FSCS.1990.89571
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1007/BF02776078
https://doi.org/10.1109/FOCS57990.2023.00012
https://doi.org/10.1109/FOCS57990.2023.00012
https://doi.org/10.1109/FOCS.2012.45
https://doi.org/10.1007/s00453-013-9757-4
https://doi.org/10.1137/S0097539701395978
https://doi.org/10.1007/11830924_9
https://doi.org/10.1137/1.9781611977912.191
https://doi.org/10.1109/FOCS.2010.32
https://doi.org/10.1145/2213977.2214039

37 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

[21] Vincent Cohen-Addad, Arnold Filtser,
Philip N. Klein, and Hung Le. On light spanners,
low-treewidth embeddings and efficient traversing
in minor-free graphs. 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020,
pages 589–600. IEEE, 2020. DOI (34)

[22] Jonathan Conroy and Arnold Filtser. How to
protect yourself from threatening skeletons:
optimal padded decompositions for minor-free
graphs. Proceedings of the 57th Annual ACM
Symposium on Theory of Computing, STOC ’25,
pages 2281–2292, Prague, Czechia. Association for
Computing Machinery, 2025. DOI (7)

[23] Artur Czumaj, Shaofeng H.-C. Jiang, Arnold Filtser,
Robert Krauthgamer, Pavel Veselý, and
Mingwei Yang. Streaming facility location in high
dimension via new geometric hashing. CoRR,
abs/2204.02095v5, 2023. DOI (30)

[24] Elias Dahlhaus, David S. Johnson,
Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The complexity of multiway
cuts (extended abstract). Proceedings of the 24th
Annual ACM Symposium on Theory of Computing,
STOC 1992, May 4-6, Victoria, British Columbia,
Canada, pages 241–251, 1992. DOI (32)

[25] Guoli Ding and Bogdan Oporowski. On
tree-partitions of graphs. Discret. Math.
149(1-3):45–58, 1996. DOI (6)

[26] Matthias Englert, Anupam Gupta,
Robert Krauthgamer, Harald Räcke,
Inbal Talgam-Cohen, and Kunal Talwar. Vertex
sparsifiers: new results from old techniques. SIAM
J. Comput. 43(4):1239–1262, 2014. DOI (29, 31,
32)

[27] Jittat Fakcharoenphol, Chris Harrelson, Satish Rao,
and Kunal Talwar. An improved approximation
algorithm for the 0-extension problem.
Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2003,
January 12-14, Baltimore, Maryland, USA.
Pages 257–265, 2003. URL (32)

[28] Jittat Fakcharoenphol and Kunal Talwar. An
improved decomposition theorem for graphs
excluding a fixed minor. Approximation,
Randomization, and Combinatorial Optimization:
Algorithms and Techniques, 6th International
Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX
2003 and 7th International Workshop on
Randomization and Approximation Techniques in
Computer Science, RANDOM 2003, Princeton, NJ,
USA, August 24-26, 2003, Proceedings,
pages 36–46, 2003. DOI (3–5, 30)

[29] Uriel Feige and Robert Krauthgamer. A
polylogarithmic approximation of the minimum
bisection. SIAM Journal on Computing,
31(4):1090–1118, 2002. DOI (3)

[30] Arnold Filtser. Labeled nearest neighbor search
and metric spanners via locality sensitive orderings.
39th International Symposium on Computational
Geometry (SoCG 2023), volume 258 of Leibniz
International Proceedings in Informatics (LIPIcs),
33:1–33:18, Dagstuhl, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. DOI (4)

[31] Arnold Filtser. On Sparse Covers of Minor Free
Graphs, Low Dimensional Metric Embeddings, and
Other Applications. 41st International Symposium
on Computational Geometry (SoCG 2025),
volume 332 of Leibniz International Proceedings in
Informatics (LIPIcs), 49:1–49:16, Dagstuhl, Germany.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2025. DOI (7, 30, 31, 33)

[32] Arnold Filtser. On strong diameter padded
decompositions. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2019, September
20-22, 2019, Massachusetts Institute of
Technology, Cambridge, MA, USA, volume 145 of
LIPIcs, 6:1–6:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. DOI (2–5,
33, 35)

[33] Arnold Filtser. Scattering and sparse partitions,
and their applications. ACM Trans. Algorithms,
20(4), August 2024. DOI (5, 30–32)

[34] Arnold Filtser. Steiner point removal with distortion
o(log k) using the relaxed-Voronoi algorithm. SIAM
J. Comput. 48(2):249–278, 2019. DOI (32, 33)

[35] Arnold Filtser, Robert Krauthgamer, and
Ohad Trabelsi. Relaxed Voronoi: A simple
framework for terminal-clustering problems. 2nd
Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego,
CA, USA, 10:1–10:14, 2019. DOI (32)

[36] Arnold Filtser and Hung Le. Clan embeddings into
trees, and low treewidth graphs. STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021,
pages 342–355. ACM, 2021. DOI (34)

[37] Arnold Filtser and Hung Le. Low treewidth
embeddings of planar and minor-free metrics. 63rd
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2022, Denver, CO, USA,
October 31 - November 3, 2022, pages 1081–1092.
IEEE, 2022. DOI (4, 34)

[38] Eli Fox-Epstein, Philip N. Klein, and Aaron Schild.
Embedding planar graphs into low-treewidth
graphs with applications to efficient approximation
schemes for metric problems. Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1069–1088. SIAM, 2019.
DOI (34)

[39] Tobias Friedrich, Davis Issac, Nikhil Kumar,
Nadym Mallek, and Ziena Zeif. Approximate
max-flow min-multicut theorem for graphs of
bounded treewidth. Proceedings of the 55th
Annual ACM Symposium on Theory of Computing,
STOC 2023, pages 1325–1334, Orlando, FL, USA.
Association for Computing Machinery, 2023. DOI
(1)

https://doi.org/10.1109/FOCS46700.2020.00061
https://doi.org/10.1145/3717823.3718252
https://doi.org/10.48550/arXiv.2204.02095v5
https://doi.org/10.1145/129712.129736
https://doi.org/10.1016/0012-365X(94)00337-I
https://doi.org/10.1137/130908440
http://dl.acm.org/citation.cfm?id=644108.644153
https://doi.org/10.1007/978-3-540-45198-3_4
https://doi.org/10.1137/s0097539701387660
https://doi.org/10.4230/LIPIcs.SoCG.2023.33
https://doi.org/10.4230/LIPIcs.SoCG.2025.49
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6
https://doi.org/10.1145/3672562
https://doi.org/10.1137/18M1184400
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.1145/3406325.3451043
https://doi.org/10.1109/FOCS54457.2022.00105
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1145/3564246.3585150

38 / 39 A. Filtser, T. Friedrich, D. Isaac, N. Kumar, H. Le, N. Mallek, Z. Zeif

[40] Igor Gorodezky, Robert D Kleinberg,
David B Shmoys, and Gwen Spencer. Improved
lower bounds for the universal and a priori TSP.
APPROX-RANDOM, pages 178–191. Springer, 2010.
(31)

[41] Anupam Gupta. Steiner points in tree metrics don’t
(really) help. Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA ’01, pages 220–227, Washington, D.C., USA.
Society for Industrial and Applied Mathematics,
2001. URL (32)

[42] Anupam Gupta, Mohammad Taghi Hajiaghayi, and
Harald Räcke. Oblivious network design.
Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006,
pages 970–979. ACM Press, 2006. URL (31)

[43] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and
Alistair Sinclair. Cuts, trees and l1-embeddings of
graphs. Comb. 24(2):233–269, 2004. DOI (33)

[44] H. Chang, J. Conroy, H. Le, L. Milenkovic,
S. Solomon, and C. Than. Covering planar metrics
(and beyond): O(1) trees suffice. 64th IEEE
Symposium on Foundations of Computer Science,
FOCS ‘23, pages 2231–2261, 2023. DOI (7, 32)

[45] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg,
and Frank Thomson Leighton. Improved lower and
upper bounds for universal TSP in planar metrics.
Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 649–658, 2006. URL (31)

[46] D. Ellis Hershkowitz and Jason Li. O(1) Steiner
point removal in series-parallel graphs. 30th Annual
European Symposium on Algorithms, ESA 2022,
September 5-9, 2022, Berlin/Potsdam, Germany,
volume 244 of LIPIcs, 66:1–66:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. DOI (32)

[47] Frank K. Hwang and Dana S. Richards. Steiner tree
problems. Networks, 22(1):55–89, 1992. DOI (30)

[48] Lujun Jia, Guolong Lin, Guevara Noubir,
Rajmohan Rajaraman, and Ravi Sundaram.
Universal approximations for TSP, Steiner tree, and
set cover. Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, STOC 2025
Baltimore, MD, USA, May 22-24, pages 386–395,
2005. DOI (30, 31)

[49] Lior Kamma and Robert Krauthgamer. Metric
decompositions of path-separable graphs.
Algorithmica, 79(3):645–653, 2017. DOI (3)

[50] Lior Kamma, Robert Krauthgamer, and
Huy L. Nguyen. Cutting corners cheaply, or how to
remove Steiner points. SIAM J. Comput.
44(4):975–995, 2015. DOI (32)

[51] Alexander V. Karzanov. Minimum 0-extensions of
graph metrics. Eur. J. Comb. 19(1):71–101, 1998.
DOI (32)

[52] Philip N. Klein, Serge A. Plotkin, and Satish Rao.
Excluded minors, network decomposition, and
multicommodity flow. Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of
Computing STOC 1993, May 16-18, San Diego, CA,
USA, pages 682–690, 1993. DOI (1, 2, 4, 5)

[53] Robert Krauthgamer, James R. Lee, Manor Mendel,
and Assaf Naor. Measured descent: A new
embedding method for finite metrics. 45th
Symposium on Foundations of Computer Science
(FOCS 2004), 17-19 October 2004, Rome, Italy,
Proceedings, pages 434–443, 2004. DOI (4, 5,
33)

[54] Robert Krauthgamer, James R. Lee, and
Havana Rika. Flow-cut gaps and face covers in
planar graphs. Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 525–534. SIAM, 2019. DOI (33)

[55] Nikhil Kumar. An approximate generalization of the
Okamura-Seymour theorem. 63rd IEEE Annual
Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 1093–1101. IEEE, 2022.
DOI (33)

[56] James Lee. A simpler proof of the KPR theorem,
2012. Accessed: 2023-22-05. URL (3)

[57] James R. Lee and Assaf Naor. Extending lipschitz
functions via random metric partitions. Inventiones
mathematicae, 160(1):59–95, 2005. DOI (2, 32)

[58] James R. Lee and Prasad Raghavendra. Coarse
differentiation and multi-flows in planar graphs.
Discret. Comput. Geom. 43(2):346–362, 2010. DOI
(33)

[59] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.
(33)

[60] Konstantin Makarychev and Yury Makarychev.
Metric extension operators, vertex sparsifiers and
Lipschitz extendability. 51th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 255–264, 2010. DOI (29)

[61] Ankur Moitra. Approximation algorithms for
multicommodity-type problems with guarantees
independent of the graph size. 50th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS 2009, October 25-27, 2009, Atlanta, Georgia,
USA, pages 3–12, 2009. DOI (29)

[62] Robin A. Moser and Gábor Tardos. A constructive
proof of the general Lovász local lemma. J. ACM,
57(2):11:1–11:15, 2010. DOI (29)

[63] Haruko Okamura and P.D. Seymour.
Multicommodity flows in planar graphs. Journal of
Combinatorial Theory, Series B, 31(1):75–81, 1981.
DOI (33)

[64] Loren K Platzman and John J Bartholdi III.
Spacefilling curves and the planar travelling
salesman problem. Journal of the ACM (JACM),
36(4):719–737, 1989. (31)

[65] Satish Rao. Small distortion and volume preserving
embeddings for planar and euclidean metrics.
Proceedings of the fifteenth annual symposium on
Computational geometry, SoCG ’99,
pages 300–306, Miami Beach, Florida, USA. ACM,
1999. DOI (33)

http://dl.acm.org/citation.cfm?id=365411.365448
http://dl.acm.org/citation.cfm?id=1109557.1109665
https://doi.org/10.1007/s00493-004-0015-x
https://doi.org/10.1109/FOCS57990.2023.00139
http://dl.acm.org/citation.cfm?id=1109557.1109628
https://doi.org/10.4230/LIPIcs.ESA.2022.66
https://doi.org/10.1002/NET.3230220105
https://doi.org/10.1145/1060590.1060649
https://doi.org/10.1007/s00453-016-0213-0
https://doi.org/10.1137/140951382
https://doi.org/10.1006/eujc.1997.0154
https://doi.org/10.1006/eujc.1997.0154
https://doi.org/10.1145/167088.167261
https://doi.org/10.1109/FOCS.2004.41
https://doi.org/10.1137/1.9781611975482.33
https://doi.org/10.1109/FOCS54457.2022.00106
https://doi.org/10.1109/FOCS54457.2022.00106
https://tcsmath.wordpress.com/2012/01/11/a-simpler-proof-of-the-kpr-theorem/
https://doi.org/10.1007/s00222-004-0400-5
https://doi.org/10.1007/s00454-009-9172-4
https://doi.org/10.1109/FOCS.2010.31
https://doi.org/10.1109/FOCS.2009.28
https://doi.org/10.1145/1667053.1667060
https://doi.org/https://doi.org/10.1016/S0095-8956(81)80012-3
https://doi.org/https://doi.org/10.1016/S0095-8956(81)80012-3
https://doi.org/10.1145/304893.304983

39 / 39 Optimal Padded Decomposition For Bounded Treewidth Graphs

[66] Satish Rao and Andréa W. Richa. New
approximation techniques for some linear ordering
problems. SIAM Journal on Computing,
34(2):388–404, 2005. DOI (3)

[67] Neil Robertson and Paul D. Seymour. Graph minors.
XVI. excluding a non-planar graph. J. Comb.
Theory, Ser. B, 89(1):43–76, 2003. DOI (34)

[68] Frans Schalekamp and David B Shmoys.
Algorithms for the universal and a priori TSP.
Operations Research Letters, 36(1):1–3, 2008. (31)

[69] Éva Tardos and Vijay V. Vazirani. Improved bounds
for the max-flow min-multicut ratio for planar and
k-free graphs. Information Processing Letters,
47(2):77–80, 1993. DOI (3)

2025 :22
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Arnold Filtser, Tobias Friedrich, Davis Isaac, Nikhil Kumar, Hung Le, Nadym Mallek, Ziena Zeif.

https://doi.org/10.1137/s0097539702413197
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/0020-0190(93)90228-2

	Introduction
	Preliminaries
	From Tree Decomposition to Tree Partition

	Padded Decomposition and Sparse Cover
	Proof of Theorem 1.3
	Proof of Theorem 1.5
	Proof of Theorem 1.2

	Tree-Ordered Nets for Graphs of Bounded Tree-partition Width
	The (Semi-)Tree-Ordered Net
	The Analysis

	Applications
	Flow Sparsifier
	Sparse Partition
	Universal Steiner Tree and Universal TSP
	Steiner Point Removal
	Zero Extension
	Lipschitz Extension
	Embedding into lp spaces
	Stochastic decomposition for minor-free graphs - a reduction from additive stretch embeddings

	References

