
1 / 56 2025 :23

Upper and Lower Bounds
on the Smoothed
Complexity of the Simplex
Method

Received May 16, 2024
Revised Apr 30, 2025
Accepted Sep 1, 2025
Published Oct 15, 2025

Key words and phrases
simplex method, linear
programming, smoothed analysis,
beyond worst case analysis,
extended formulation

Sophie Huibertsa,b � �

Yin Tat Leec,d �
Xinzhi Zhangc �

a CNRS / LIMOS,
Clermont-Ferrand, France
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ABSTRACT. The simplex method for linear programming is known to be highly efficient
in practice, and understanding its performance from a theoretical perspective is an active
research topic. The framework of smoothed analysis, first introduced by Spielman and Teng
(JACM ’04) for this purpose, defines the smoothed complexity of solving a linear program with
𝑑 variables and 𝑛 constraints as the expected running time when Gaussian noise of variance
𝜎2 is added to the LP data. We prove that the smoothed complexity of the simplex method is
𝑂(𝜎−3/2𝑑13/4 log5/4 𝑛), improving the dependence on 1/𝜎 compared to the previous bound of
𝑂(𝜎−2𝑑2

√︁
log 𝑛). We accomplish this through a new analysis of the shadow bound, key to earlier

analyses as well. Illustrating the power of our new approach, we moreover prove a nearly tight
upper bound on the smoothed complexity of two-dimensional polygons.

We also establish the first non-trivial lower bound on the smoothed complexity of the
simplex method, proving that the shadow vertex simplex method requires, with a given auxiliary
objective, at least Ω

(
min

(
𝜎−1/2𝑑−1/2 log−1/4 𝑑, 2𝑑

) )
pivot steps with high probability. A key part

of our analysis is a new variation on the extended formulation for the regular 2𝑘-gon. We end
with a numerical experiment that suggests our lower bound could be further improved.
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1. Introduction

Introduced by Dantzig [20], the simplex method is one of the primary methods for solving
linear programs (LP’s) in practice and is an essential component in many software packages for
combinatorial optimization. It is a family of local search algorithms which begin by finding a
vertex of the set of feasible solutions and iteratively move to a better neighboring vertex along
the edges of the feasible polyhedron until an optimal solution is reached. These moves are
known as pivot steps. Variants of the simplex method can be differentiated by the choice of
pivot rule, which determines which neighboring vertex is chosen in each iteration, as well as by
the method for obtaining the initial vertex. Some well-known pivot rules are the most negative
reduced cost rule, the steepest edge rule, and an approximate steepest edge rule known as the
Devex rule. In theoretical work, the parametric objective rule, also known as the shadow vertex
rule, plays an important role.

Empirical evidence suggests that the simplex algorithm typically takes 𝑂(𝑑 + 𝑛) pivot
steps, see [47, 5, 29]. However, obtaining a rigorous explanation for this excellent performance
has proven challenging. In contrast to the practical success of the simplex method, all studied
variants are known to have super-polynomial or even exponential worst-case running times.
For deterministic variants, many published bad inputs are based on deformed cubes, see [40,
36, 6, 32, 43, 30] and a unified construction in [4]. For randomized and history-dependent
variants, bad inputs have been constructed based on Markov Decision Processes [38, 41, 25, 24,
34, 23]. The fastest provable (randomized) simplex algorithm takes 𝑂(2

√
𝑑 log 𝑛) pivot steps in

expectation [38, 41, 34].
Average-case analyses of the simplex method have been performed for a variety of random

distributions over linear programs [14, 13, 12, 48, 33, 42, 1, 50, 2]. While insightful, the results
from average-case analyses might not be fully realistic due to the fact that “random” linear
programs tend to have certain properties that “typical” linear programs do not.

To better explain why the simplex algorithm performs well in practice, while avoiding
some of the pitfalls of average-case analysis, Spielman and Teng [49] introduced the smoothed
complexity framework. For any base LP data 𝐴̄ ∈ R𝑛×𝑑 , 𝑏 ∈ R𝑛, 𝑐 ∈ R𝑑\{0} where the rows of
(𝐴̄, 𝑏) are normalized to have ℓ2 norm at most 1, they consider the smoothed LP obtained by
adding independent Gaussian perturbations to the constraints:

max
𝑥∈R𝑑

𝑐⊤𝑥 subject to (𝐴̄ + 𝐴̂)𝑥 ≤ (𝑏 + 𝑏̂).

The entries of 𝐴̂ and 𝑏̂ are i.i.d. Gaussian random variables with mean 0 and variance 𝜎2. The
smoothed complexity of a simplex algorithm A is defined to be the maximum (over 𝐴̄, 𝑏, 𝑐)
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expected number of pivot steps the algorithm takes to solve the smoothed LP, i.e.,

SCA,𝑛,𝑑,𝜎 := max
𝐴̄∈R𝑛×𝑑 ,𝑏∈R𝑛,𝑐∈R𝑑

∥ [𝐴̄,𝑏] ∥1,2≤1

(
E𝐴̂,𝑏̂

[
𝑇A (𝐴̄ + 𝐴̂, 𝑏 + 𝑏̂, 𝑐)

] )
.

Here 𝑇A (𝐴, 𝑏, 𝑐) is the number of pivot steps that the algorithm A takes to solve the linear
program max𝑥∈R𝑑 {𝑐⊤𝑥 : 𝐴𝑥 ≤ 𝑏}. We may note that if 𝜎 → ∞ then SCA,𝑛,𝑑,𝜎 approaches the
average-case complexity of A on independent Gaussian distributed input data. In contrast, if
𝜎 → 0 then SCA,𝑛,𝑑,𝜎 will approach the worst-case complexity of A. As a result, most interest
has been directed at understanding the dependence on 𝜎 in the regime where 𝜎 ≥ 2−Ω(𝑑) but
𝜎 ≤ 1/poly(𝑑).

The motivation for smoothed analysis lies in the observation that the above-mentioned
worst-case instances are very “brittle” to perturbations, and computer implementations require
great care in handling numerical inaccuracies to obtain the theorized running times even
on problems with a small number of variables. When implemented with a larger number
of variables, the limited accuracy of floating-point numbers make it impossible to reach the
theorized running times.

An algorithm is said to have polynomial smoothed complexity if under the perturbation
of constraints, it has expected running time poly(𝑛, 𝑑, 𝜎−1), and [49] proved that the smoothed
complexity of a specific simplex method based on the shadow vertex simplex method (which we
will describe next) is at most 𝑂(𝑑55𝑛86𝜎−30 + 𝑑70𝑛86). The best bound available in the literature
is 𝑂(𝜎−2𝑑2

√︁
log 𝑛) pivot steps due to [17], assuming 𝜎 ≤ 1/

√︁
𝑑 log 𝑛. We note that assuming an

upper bound on 𝜎 can be done without loss of generality; its influence can be captured as an
additive term in the upper bound that does not depend on 𝜎.

This work improves the dependence on 𝜎 of the smoothed complexity, obtaining an upper
bound of 𝑂(𝜎−3/2𝑑13/4 log5/4 𝑛) for 𝜎 ≤ 1/𝑑

√︁
log 𝑛. As a second contribution, we prove the first

non-trivial lower bound on the smoothed complexity of a simplex method, finding that the
shadow vertex simplex method requires Ω(min( 1√︃

𝜎𝑑
√

log 𝑛
, 2𝑑)) pivot steps.

Shadow Vertex Simplex Algorithm One of the most extensively studied simplex algorithms
in theory is the shadow vertex simplex algorithm [27, 14]. Given an LP

max
𝑥∈R𝑑

𝑐⊤𝑥, 𝐴𝑥 ≤ 𝑏,

for 𝐴 ∈ R𝑛×𝑑 , 𝑏 ∈ R𝑛, 𝑐 ∈ R𝑑 , let 𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑏} denote the feasible polyhedron of the
linear program. The algorithm starts from an initial vertex 𝑥0 ∈ 𝑃 that optimizes an initial
objective 𝑐0 1. During the execution, it maintains an intermediate objective 𝑐𝜆 = 𝜆𝑐 + (1 − 𝜆)𝑐0

and a vertex that optimizes 𝑐𝜆 . Thus by slowly increasing 𝜆 from 0 to 1 during different pivot

1 There are many standard methods of finding such initialization with at most multiplicative 𝑂(𝑑) overhead in running
time, so we can assume that both 𝑥0 and 𝑐0 are already given. See the discussion in [17].
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steps, the temporary objective gradually changes from 𝑐0 to 𝑐, revealing the desired solution at
the end. Since each pivot step requires poly(𝑑, 𝑛) computational work, theoretical analysis has
focused on analysing the number of pivot steps.

The algorithm is called the shadow vertex simplex method because, when performing or-
thogonal projection of the feasible set onto the two-dimensional linear subspace𝑊 = span(𝑐0, 𝑐),
the vertices visited by the algorithm project onto the boundary of the projection (“shadow”)
𝜋𝑊 (𝑃). Assuming certain non-degeneracy conditions, which will hold with probability 1 for the
distributions we consider, this projection gives an injective map from iterations of the method
to vertices of the shadow, meaning that we can upper bound the number of pivot steps in the
algorithm by the number of vertices of the shadow polygon. This characterization makes the
shadow vertex simplex method ideally suited for probabilistic analysis.

To analyse the “shadow size”, the number of vertices of the shadow polygon, we follow
earlier work of [52] and reduce to the case that 𝑏 = 1𝑛. In this case, well-established principles
of polyhedral duality show that we can bound the number of vertices of a convex polygon by
the number of edges of its dual polygon:

vertices(𝜋𝑊 (𝑃)) ≤ edges(𝑊 ∩ conv(0, 𝑎1, . . . , 𝑎𝑛)) ≤ edges(𝑊 ∩ conv(𝑎1, . . . , 𝑎𝑛)) + 1.

Here, 𝑎1, . . . , 𝑎𝑛 denote the rows of the matrix 𝐴 used to define 𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 1𝑛}. Note
that the second inequality holds because 0 ∈𝑊 .

The smoothed complexity of shadow vertex simplex algorithm can thus be reduced to the
smoothed complexity of a two-dimensional slice of a convex hull. For this reason, let us define
the maximum smoothed shadow size as

S(𝑛, 𝑑, 𝜎) = max
𝑎1,...,𝑎𝑛∈R𝑑

max𝑖∈[𝑛] ∥𝑎𝑖 ∥2≤1
𝑊⊆R𝑑 ,dim(𝑊)=2

E𝑎̃1,...,𝑎̃𝑛∼N(0,𝜎2)
[
edges

(
conv(𝑎1 + 𝑎̃1, . . . , 𝑎𝑛 + 𝑎̃𝑛) ∩𝑊

) ]
(1)

The following upper bound we take from [17], which states that the analysis of [52] can be
strengthened to obtain the claimed bound. This upper bound should be understood as stating
that there exists a shadow vertex rule based simplex algorithm which satisfies that smoothed
complexity bound. The lower bound is due to [13] and shows that the shadow vertex simplex
rule, with two adversarially specified objectives 𝑐0, 𝑐, can be made to follow paths of this length.

THEOREM 1.1 (Smoothed Complexity of Shadow Vertex Simplex Algorithm). Given any
𝑛 ≥ 𝑑 ≥ 2, 𝜎 > 0, the smoothed complexity of the shadow vertex simplex algorithm satisfies

S(𝑛, 𝑑, 𝜎)/4 ≤ SCShadowSimplex,𝑛,𝑑,𝜎 ≤ 2 · S
(
𝑛 + 𝑑, 𝑑,min(𝜎, 1√

𝑑 log 𝑑
,

1√︁
𝑑 log 𝑛

)
)
+ 4.

With this reduction, analysing the smoothed complexity of the simplex method comes
down to bounding the smoothed shadow size S(𝑛, 𝑑, 𝜎). As such, that will be the focus of the
remainder of this paper.
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1.1 Our Results

The previous best shadow bound is due to [17], who prove that S(𝑛, 𝑑, 𝜎) ≤ 𝑂(𝑑2
√︁

log 𝑛𝜎−2).
Our first main result strengthens this result for small values of 𝜎.

THEOREM 1.2. For 𝑛 ≥ 𝑑 ≥ 3 and 𝜎 ≤ 1
8𝑑
√

log 𝑛
, the smoothed shadow size satisfies

S(𝑛, 𝑑, 𝜎) = 𝑂
(
𝜎−3/2𝑑13/4 log5/4 𝑛

)
.

A full overview of bounds on the smoothed shadow size, including previous results in the
literature, can be found in Table 1.

Second, we prove the first non-trivial lower bound on the smoothed shadow size, estab-
lishing that S(4𝑑 − 13, 𝑑, 𝜎) ≥ Ω(min( 1√︃

𝜎𝑑
√

log 𝑑
, 2𝑑)) for 𝑑 > 5. This lower bound is proven by

constructing a polyhedron 𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 1𝑛} and a two-dimensional subspace𝑊 such
that for any small perturbation of 𝐴, the new polyhedron 𝑃 projected onto𝑊 will have many
vertices. The construction is based on an extended formulation similar to those first constructed
by [8, 28].

THEOREM 1.3. For any 𝑑 > 5 and 𝜎 ≤ 1
360𝑑

√
log(4𝑑)

, the smoothed shadow size satisfies

S(4𝑑 − 13, 𝑑, 𝜎) = Ω
©­­«min

( 1√︃
𝑑𝜎

√︁
log 𝑑

, 2𝑑
)ª®®¬ .

It is possible that the exponent of 𝜎 in our bound can be further optimized. In Section 6.6,
we describe numerical experiments which suggest that the actual shadow size for random
perturbations of our constructed polytope might be as high as Ω(min(𝜎−3/4, 2𝑑)). We leave
open the question whether having 𝑛/𝑑 > 4 can lead to stronger lower bounds in the regime of
𝜎 < 2−𝑑 .

Two-dimensional polygons To better understand the smoothed complexity of the intersec-
tion polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 , we also analyse its two-dimensional analogue introduced by
[19]. Taking 𝑎1, . . . , 𝑎𝑛 ∈ R2, each satisfying ∥𝑎𝑖 ∥2 ≤ 1, we are interested in the number of edges
of the smoothed polygon conv(𝑎1+ 𝑎̂1, . . . , 𝑎𝑛+ 𝑎̂𝑛), where 𝑎̂1, . . . , 𝑎̂𝑛 ∼ 𝑁 (0, 𝜎2) are independent.
The previous best upper bound on the smoothed complexity of this polygon is 𝑂(𝜎−1 +

√︁
log 𝑛),

due to [18]. Their analysis is based on an adaptation of the shadow bound by [17]. In Section 4
we improve this upper bound, obtaining the following theorem.

THEOREM 1.4 (Two-Dimensional Upper Bound). Let 𝑎1, . . . , 𝑎𝑛 ∈ R2 be 𝑛 > 2 vectors with
norm at most 1. For each 𝑖 ∈ [𝑛], let 𝑎𝑖 be independently distributed as N(𝑎𝑖 , 𝜎2𝐼2). Then

E [edges (conv(𝑎1, . . . , 𝑎𝑛))] ≤ 𝑂

(√︁
log 𝑛 +

4
√︁

log 𝑛√
𝜎

)
.



6 / 56 S. Huiberts, Y.T. Lee, X. Zhang

Reference Shadow size Model

[13] Θ(𝑑3/2
√︁

log 𝑛)
Average-
case,
Gaussian

[49] 𝑂(𝜎−6𝑑3𝑛 + 𝑑6𝑛 log3 𝑛) Smooth

[21] 𝑂(𝜎−2𝑑𝑛2 log 𝑛 + 𝑑2𝑛2 log2 𝑛) Smooth

[52] 𝑂(𝜎−4𝑑3 + 𝑑5 log2 𝑛) Smooth

[17] 𝑂(𝜎−2𝑑2
√︁

log 𝑛 + 𝑑3 log1.5 𝑛) Smooth

This paper 𝑂(𝜎−3/2𝑑13/4 log5/4 𝑛 + 𝑑19/4 log2 𝑛) Smooth

This paper Ω(min( 1√︃
𝜎𝑑
√

log 𝑑
, 2𝑑)) Smooth

[53, 43, 31] 2𝑑 Worst

Table 1. Bounds of expected number of pivots in previous literature, assuming 𝑑 ≥ 3. Logarithmic
factors are simplified. The lower bound of [13] holds in the smoothed model as well.

To confirm that the above upper bound is stronger than that of [18], one may use the

AM-GM inequality to verify that 2
4
√

log 𝑛√
𝜎

≤
√︁

log 𝑛 + 𝜎−1. Combined with the trivial upper bound

of 𝑛 vertices, our bound nearly matches the lower bound of Ω(min(
√︁

log 𝑛+
4√log(𝑛√𝜎)√

𝜎
, 𝑛)) proven

by [22]. A full overview of previous results on the smoothed complexity of the two-dimensional
convex hull can be found in Table 2.

1.2 Related work

Shadow Vertex Simplex Method The shadow vertex simplex algorithm has played a key
role in many analyses of simplex and simplex-like algorithms. On well-conditioned polytopes,
such as those of the form {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑏} where 𝐴 is integral with subdeterminants bounded
by Δ, the shadow vertex method has been studied by in [15, 16]. The shadow vertex method on
polytopes all whose vertices are integral was studied in [9, 10]

On random polytopes of the form {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 1𝑛}, assuming the constraint vectors
are independently drawn from any rotationally symmetric distribution, the expected iteration
complexity of the shadow vertex simplex method was studied by [14, 13, 12]. In the case when
the rows of 𝐴 arise from a Poisson distribution on the unit sphere, concentration results for the
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Reference Smoothed polygon complexity

[19] 𝑂(log(𝑛)2 + 𝜎−2 log 𝑛)

[45] 𝑂(log 𝑛 + 𝜎−2)

[22] 𝑂(
√︁

log 𝑛 + 𝜎−1
√︁

log 𝑛)

[18] 𝑂(
√︁

log 𝑛 + 𝜎−1)

This paper 𝑂(
√︁

log 𝑛 +
4
√

log(𝑛)√
𝜎

)

[22] Ω(min(
√︁

log 𝑛 +
4√log(𝑛√𝜎)√

𝜎
, 𝑛))

Table 2. Bounds on the smoothed complexity of a two-dimensional polygon.

shadow size and diameter bounds were proven in [11]. The diameter of smoothed polyhedra
was studied by [44], who used the shadow bound of [17] to show that most vertices, according
to some measure, are connected by short paths.

A randomized algorithm for solving linear programs in weakly polynomial time, using
the shadow vertex simplex method as a subroutine, was proposed in [39]. The shadow vertex
algorithm was recently used as part of the analysis of an interior point method by [3].

Extended Formulations For a polyhedron 𝑃 ⊆ R𝑑 , an extended formulation is any polyhedron
𝑄 ⊆ R𝑑′ , 𝑑′ ≥ 𝑑, such that 𝑃 can be obtained as the orthogonal projection of 𝑄 to some 𝑑-
dimensional subspace. Importantly, 𝑄 can have much fewer facets than 𝑃. While there is a
wider literature on extended formulations, here we describe only what is most relevant to the
construction in Section 6.

The construction in our lower bound is based on an adaptation of the extended formulation
by [8] of the regular 2𝑘-gon. They used this construction to obtain a polyhedral approximation
of the second order cone {𝑥 ∈ R𝑛+1 :

∑𝑛
𝑖=1 𝑥

2
𝑖 ≤ 𝑥2

𝑛+1}. A variant on their construction using
fewer variables and inequalities was given by [28]. A more general construction based on
reflection relations is used to construct extended formulation for the regular 2𝑘-gon, as well as
other polyhedra, in [37]. Extended formulations for regular 𝑛-gons, when 𝑛 is not a power of 2,
can be found in [51].

Approximations of the second order cone based on the work of [8, 28] have been used to
solve second order conic programs, see, e.g., [7]. These approximations were included in the
open-source MIP solver SCIP until version 7.0 [26].
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1.3 Proof Overview

1.3.1 Smoothed Complexity Upper Bound

We write the random polytope from (1) as 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) where each 𝑎𝑖 is sampled
independently from N𝑑 (𝑎𝑖 , 𝜎2𝐼) such that ∥𝑎𝑖 ∥ ≤ 1. Our goal is to upper bound the expected
number of edges of the polygon 𝑄 ∩𝑊 for fixed two-dimensional plane𝑊 ⊆ R𝑑 and 𝑎1, . . . , 𝑎𝑛.
This will immediately give us an upper bound of S(𝑛, 𝑑, 𝜎).

A fact used since the early days of smoothed analysis [49] states that the intersection
polygon 𝑄 ∩𝑊 is non-degenerate with probability measure 1: every edge on 𝑄 ∩𝑊 is uniquely
given by the intersection between𝑊 and a facet of 𝑄, and every facet of 𝑄 is spanned by exactly
𝑑 vertices. For any index set 𝐼 ∈ ([𝑛]

𝑑

)
, write 𝐸𝐼 as the event that conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 is an edge

of 𝑄 ∩𝑊 . Non-degeneracy implies that every edge of 𝑄 ∩𝑊 uniquely corresponds to an index
set 𝐼 ∈ ([𝑛]

𝑑

)
such that 𝐸𝐼 holds.

Before sketching our proof, we first review the approach of [17], then discuss the main
technical challenges in achieving an upper bound with better dependence on 𝜎.

As a first step in [17], the authors replace the Gaussian distribution with a distribution they
call the Laplace-Gaussian distribution2. The latter distribution approximates the probability
density of the former, in particular having nearly equivalent smoothed shadow size, while
being 𝑂(𝜎−1

√︁
𝑑 log 𝑛)-log-Lipschitz for any point on its domain. A probability distribution with

probability density function 𝜇 is 𝐿-log-Lipschitz for some 𝐿 > 0 if, for any 𝑥, 𝑦 ∈ R𝑑 , the
condition | log(𝜇(𝑥)) − log(𝜇( 𝑦)) | ≤ 𝐿∥𝑥 − 𝑦∥ holds.

Next, define ℓ𝐼 as the length of the edge on 𝑄∩𝑊 that corresponds to 𝐼 , i.e., when conv(𝑎𝑖 :
𝑖 ∈ 𝐼) ∩𝑊 is an edge of 𝑄∩𝑊 then ℓ𝐼 gives the length of this line segment, and otherwise ℓ𝐼 = 0.
[17] showed that, for any family 𝑆 ⊆ ([𝑛]

𝑑

)
, the expected number of edges of 𝑄 ∩𝑊 coming from

𝑆 is at most

E

[∑︁
𝐼∈𝑆

1[𝐸𝐼]
]
≤ E[perimeter(𝑄 ∩𝑊)]

min𝐼∈𝑆 E[ℓ𝐼 | 𝐸𝐼] . (2)

Therefore, by taking 𝑆 = {𝐼 ∈ ([𝑛]
𝑑

)
: Pr[𝐸𝐼] ≥

(𝑛
𝑑

)−1}, the expected number of edges of 𝑄 ∩𝑊 is
at most

E[edges(𝑄 ∩𝑊)] = E
[ ∑︁
𝐼∈( [𝑛]𝑑 )

1[𝐸𝐼]
]
≤ 1 + E

[∑︁
𝐼∈𝑆

1[𝐸𝐼]
]
≤ 1 + E[perimeter(𝑄 ∩𝑊)]

min𝐼∈𝑆 E[ℓ𝐼 | 𝐸𝐼] . (3)

To upper bound the numerator of (3), notice that 𝑄 ∩𝑊 is a convex polygon contained
in the two-dimensional disk centered at 0 with radius max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥. It follows that the

2 The Laplace-Gaussian distribution follows the Gaussian probability density function near its mean but exhibits
exponentially decaying tails.
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perimeter of 𝑄 ∩𝑊 is at most the perimeter of this disk, namely,

E[perimeter(𝑄 ∩𝑊)] ≤ 2𝜋 · E[max
𝑖∈[𝑛]

∥𝜋𝑊 (𝑎𝑖)∥] ≤ 2𝜋 · (1 + 4𝜎
√︁

log 𝑛), (4)

where the last step comes from a Gaussian tail bound. For the denominator of (3), [17] showed
that for any 𝐼 ∈ ([𝑛]

𝑑

)
with Pr[𝐸𝐼] ≥

(𝑛
𝑑

)−1 that, conditional on 𝐸𝐼 , the expected edge length is at
least

E[ℓ𝐼 | 𝐸𝐼] ≥ Ω( 𝜎2

𝑑2
√︁

log 𝑛
· 1

1 + 𝜎
√︁
𝑑 log 𝑛

) (5)

By combining (3), (4) and (5), they proved an upper bound of 𝑂(𝜎−2𝑑2
√︁

log 𝑛 + 𝑑3 log1.5 𝑛).

New Strategy for Counting Edges While [17] made the best possible analysis based of their
edge-counting strategy as outlined in (3), the strategy itself is sub-optimal. The main drawback
is that using the minimum expected length of edge min𝐼∈( [𝑛]𝑑 ) E[ℓ𝐼 | 𝐸𝐼] at the denominator of
(3) is too pessimistic when the edges of 𝑄 ∩𝑊 are long. For instance, consider the case where
an edge on 𝑄 ∩𝑊 has length Ω(1) without perturbation. After the perturbation, is very likely
that the length of this edge is still Ω(1), but [17] uses a lower-bound of Ω( 𝜎2

𝑑2
√

log 𝑛
).

To improve this, we developed a new edge-counting strategy that can handle the long
and short edges separately with two different ways of counting the edges. Take any index set
𝐼 ∈ ([𝑛]

𝑑

)
; conditional on 𝐸𝐼 , we write 𝑒𝐼 for its edge conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 . We call the next

edge in clockwise direction as 𝑒𝐼+ and say it has length ℓ𝐼+ . We say 𝑒𝐼+ is likely to be long if
Pr[ℓ𝐼+ ≥ 𝑡 | 𝐸𝐼] ≥ 0.05 for some parameter 𝑡 > 0 to be specified later. Here 0.05 can be replaced
by some arbitrary constant in (0, 0.5). Let 𝑆0 ⊆ ([𝑛]

𝑑

)
denote the set of 𝐼 ∈ ([𝑛]

𝑑

)
such that 𝑒𝐼+ is

likely to be long. Following (2), the expected number of edges in 𝑄 ∩𝑊 that are likely to be long
is at most

E[
∑︁
𝐼∈𝑆0

1[𝐸𝐼]] ≤ E[perimeter(𝑄 ∩𝑊)]
0.05𝑡

≤ (2𝜋 + 𝑂(𝜎
√︁

log 𝑛))
0.05𝑡

. (6)

Here the second step uses the exact same upper bound of E[perimeter(𝑄 ∩𝑊)] as in (4).
In the other case, 𝑒𝐼+ is unlikely to be long, i.e., Pr[ℓ𝐼+ ≥ 𝑡 | 𝐸𝐼] < 0.05. Now we will

upper bound the number of such edges by claiming that their exterior angles each are large in
expectation. Let 𝜃𝐼 be the exterior angle at the endpoint of conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 that comes last
in clockwise order, i.e., the vertex where 𝑒𝐼 and 𝑒𝐼+ meet. Our key observation is that sin(𝜃𝐼) · ℓ𝐼+
equals the distance from the affine hull of 𝑒𝐼 to the second vertex of 𝑒𝐼+ in clockwise order.
Therefore, by establishing a universal lower bound for such line-to-vertex distances, we can
derive a lower bound for 𝐸[𝜃𝐼 | 𝐸𝐼] for any edge 𝑒𝐼+ that is unlikely to be long. See Figure 1 for
an illustration.

More formally, let 𝑝𝐼+ denote the next vertex of 𝑄 ∩𝑊 after 𝑒𝐼 in clockwise order.
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Let 𝑆1 ⊆ ([𝑛]
𝑑

)
be the collection of index sets 𝐼 ∈ ([𝑛]

𝑑

)
for which Pr[𝐸𝐼] ≥ 10

(𝑛
𝑑

)−1. For a
specific value of 𝛾 > 0, suppose that for each 𝐼 ∈ 𝑆1 we have

Pr[dist(𝑝𝐼+ , affhull(𝑒𝐼)) ≥ 𝛾 | 𝐸𝐼] ≥ 0.1. (7)

Then, for 𝐼 ∈ 𝑆1 \ 𝑆0, conditional on 𝐸𝐼 , we have 𝜃𝐼 ≥ sin(𝜃𝐼) ≥ 𝛾
𝑡 with probability at least

0.05, and the expectation of the exterior angle at the shared endpoint of 𝑒𝐼 and 𝑒𝐼+ is at least 𝛾
20𝑡 .

𝑒𝐼 ℓ𝐼+

𝑝𝐼+

≥ 𝛾
𝜃𝐼 ≥ 𝛾/ℓ𝐼+

Figure 1. Illustration of the case when 𝑒𝐼+ is short. In purple is the edge 𝑒𝐼 with its extension line dashed.
The next edge in clockwise direction, 𝑒+𝐼 , has length ℓ𝐼+ and is drawn in black. In red is the line-to-vertex
distance dist(𝑝𝐼+ , affhull(𝑒𝐼)), and in blue is the angle 𝜃𝐼 . If dist(𝑝𝐼+ , affhull(𝑒𝐼)) ≥ 𝛾 then 𝜃𝐼 ≥ sin(𝜃𝐼) ≥ 𝛾/ℓ𝐼+ .

On the other hand, the sum of exterior angles of a polygon equals to 2𝜋. Therefore we can
upper bound the expected number of edges that are not likely to be long of at most

E[
∑︁

𝐼∈𝑆1\𝑆0

1[𝐸𝐼]] ≤ 2𝜋
min𝐼∈𝑆1\𝑆0 E[𝜃𝐼 | 𝐸𝐼]

≤ 2𝜋 · 20𝑡
𝛾

. (8)

We will select 𝛾 > 0 as large as possible subject to the fact that every 𝐼 ∈ ([𝑛]
𝑑

)
with Pr[𝐸𝐼] ≥

10
(𝑛
𝑑

)−1 satisfies 𝐼 ∈ 𝑆1.
Summing up the number of edges induced by sets in 𝑆0, 𝑆1 \ 𝑆0 and

([𝑛]
𝑑

) \ 𝑆1, we get an
upper bound on the expected edge-count of 𝑄 ∩𝑊 of at most

E[edges(𝑄 ∩𝑊)] ≤ 2𝜋 + 𝑂(𝜎
√︁

log 𝑛)
𝑡

+ 40𝜋𝑡
𝛾

+ 10 = 𝑂
©­«
√︄

1 + 𝜎
√︁

log 𝑛
𝛾

ª®¬ (9)

where the final step follows from optimizing 𝑡 > 0 to get the strongest possible bound. We
summarize our result in Theorem 3.4. For details of the edge-counting strategy, see Section 3.

Two-dimensional Upper Bound In the second part of our proof, we need to show a lower
bound of the expected distance from the affine hull of an edge of 𝑄 ∩𝑊 to the next vertex in
clockwise order, which is the quantity 𝛾 mentioned in (7).
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As a warm-up, we first discuss the two-dimensional case 𝑑 = 2, which will be explained
in detail in Section 4. In this case,𝑊 will become the entire two-dimensional space and will
disappear from consideration. Therefore, we can focus on lower-bounding the distance from
any edge 𝑒 of the polygon 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) to any other vertices, i.e., it suffices to find 𝛾 > 0
such that for any 𝐼 ∈ ([𝑛]

2
)
,

Pr[dist({𝑎 𝑗 : 𝑗 ∉ 𝐼}, affhull(𝑒𝐼)) ≥ 𝛾 | 𝐸𝐼] ≥ 0.1.

We can obtain a lower bound on this quantity for any 𝐿-log-Lipschitz distribution. Through an
appropriate coordinate transformation we prove that, irrespective of the values of 𝑎 𝑗 , 𝑗 ∉ 𝐼 ,
the distance dist(conv(𝑎 𝑗 , 𝑗 ∉ 𝐼), affhull(𝑒𝐼)), conditional on being non-zero, follows from a
2𝐿-log-Lipschitz distribution. We will calculate that we may choose 𝛾 = Ω(1/𝐿). This result
can be applied with small changes to our Gaussian random variables 𝑎1, . . . , 𝑎𝑛 by substituting
for the Laplace-Gaussian distribution following [17]. Plugging into (9), we get that in the two-

dimensional case, E[edges(𝑄)] ≤ 𝑂(
√︃
(1 + 𝜎

√︁
log 𝑛)/(𝜎/

√︁
log 𝑛)) = 𝑂( 4

√︁
log 𝑛/√𝜎 +

√︁
log 𝑛) as

stated in Theorem 1.4.

Multi-Dimensional Upper Bound As in the two-dimensional case, we must lower-bound
of the line-to-vertex distance dist(𝑝𝐼+ , affhull(𝑒𝐼)) (see (7)) of 𝑄 ∩𝑊 . Analysing this, however,
becomes more challenging. In two-dimensional case, each edge is the convex hull of two vertices
among 𝑎1, . . . , 𝑎𝑛 and is independent of the other potential vertices 𝑎𝑖 . In contrast, if 𝑑 ≥ 3 then
each edge on 𝑄 ∩𝑊 will be the intersection between𝑊 and a (𝑑 − 1)-dimensional facet of 𝑄
(which is the convex hull of 𝑑 vertices), and each vertex will be the intersection between𝑊 and
a (𝑑 − 2)-dimensional ridge of 𝑄 (which is the convex hull of 𝑑 − 1 vertices). So the distributions
of 𝑒𝐼 and 𝑝𝐼+ are correlated.

To overcome these difficulties, we first factor dist(𝑝𝐼+ , affhull(𝑒𝐼)) into the product of sepa-
rate parts which are easier to analyse, and then use log-Lipschitzness of 𝑎1, . . . , 𝑎𝑛 to lower-bound
each part with good probability. Fix without loss of generality 𝑒 = 𝑒[𝑑] = conv(𝑎1, . . . , 𝑎𝑑) ∩𝑊 ,
as the potential edge of interest. Consider the second endpoint 𝑝 on 𝑒 in clockwise direction and
let 𝐽 ∈ ( [𝑑]

𝑑−1
)

be the index set such that {𝑝} = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽) ∩𝑊 . Let 𝑝′ = conv(𝑎𝑖 : 𝑖 ∈ 𝐽′) ∩𝑊
(with 𝐽′ ∈ ( [𝑛]

𝑑−1
)
) be the vertex next to the edge 𝑒 in clockwise direction. From the non-degeneracy

conditions, we know that 𝐽′ only differs from 𝐽 with two vertices almost surely, so we can assume
without loss of generality that 𝐽 = {2, . . . , 𝑑} and 𝐽′ = {3, . . . , 𝑑} ∪ {𝑘} for some 𝑘 ∈ {𝑑 +1, . . . , 𝑛}.

The main idea of our analysis is the observation that if the Euclidean diameter of 𝑄 is
bounded above by 𝑂(1) (which happens with overwhelming probability due to Gaussian tail
bound), then we can lower bound the two-dimensional line-to-vertex distance dist(𝑝′, affhull(𝑒))
by the product of two distances Ω(𝛿 · 𝑟), where
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𝛿 is the 𝑑-dimensional distance from the facet-defining hyperplane affhull(𝑎1, . . . , 𝑎𝑑)
containing 𝑒, to the vertices of 𝑄 that are not in the facet, i.e.,

𝛿 = dist(conv(𝑎𝑑+1, . . . , 𝑎𝑛), affhull(𝑎1, . . . , 𝑎𝑑));

𝑟 is the distance from the boundary of the ridge 𝜕 conv(𝑎2, . . . , 𝑎𝑑) to the one-dimensional
line affhull(𝑒), i.e., 𝑟 = dist(affhull(𝑒), 𝜕 conv(𝑎2, . . . , 𝑎𝑑)).

We will give the formal statement of the distance splitting lemma in Lemma 5.5.
It then remains to show that 𝑟 and 𝛿 are both unlikely to be too small. Similar to the

two-dimensional case, we will also use log-Lipschitzness of 𝑎1, . . . , 𝑎𝑑 as our main tool.
After specifying affhull(𝑎1, . . . , 𝑎𝑑), the lower bound on 𝛿 is derived from the remaining
randomness in 𝑎𝑑+1, . . . , 𝑎𝑛. Here we use both the 𝐿-log-Lipschitzness of the distribu-
tions of 𝑎𝑑+1, . . . , 𝑎𝑛, as well as the knowledge that we only need to consider hyperplanes
affhull(𝑎1, . . . , 𝑎𝑑) which are likely to have all points 𝑎𝑑+1, . . . , 𝑎𝑛 on its one side. This is
made precise in Section 5.3.
The lower bound of 𝑟 resembles a more technical version of the proof of the “distance
lemma” of [49].
Write 𝜋 : affhull(𝑎1, . . . , 𝑎𝑑) → affhull(𝑒)⊥ for the orthogonal projection sending 𝑒 to a
single point 𝑝 = 𝜋(𝑒). With this notation we have 𝑟 = dist(𝑝, 𝜕 conv(𝜋(𝑎2), . . . , 𝜋(𝑎𝑑))).
First we show that each vertex of the projected ridge conv(𝜋(𝑎2), . . . , 𝜋(𝑎𝑑)) is a distance
Ω(1/(𝑑2𝐿)) away from the hyperplane spanned by its other vertices. That means that the
projected (𝑑 − 2)-dimensional ridge conv(𝜋(𝑎2), . . . , 𝜋(𝑎𝑑)) is likely to be wide in every
direction.
In the second step, we show that𝑊 intersects conv(𝑎2, . . . , 𝑎𝑑) “through the center”. Specif-
ically, we show that if we write 𝑝 =

∑
𝑖∈[𝑑] 𝜆𝑖𝜋(𝑎𝑖) as the convex combination of 𝑎2, · · · , 𝑎𝑑 ,

then with constant probability min𝑖∈[𝑑] 𝜆𝑖 ≥ Ω(1/(𝑑2𝐿)).
The product of the lower bounds Ω(1/(𝑑2𝐿)) and Ω(1/(𝑑2𝐿)) for the individual quantities
will yield a lower bound for 𝑟 with good probability. This is included in Section 5.4.

We conclude our main result of the line-to-vertex distance lower bound in Lemma 5.2.
Readers are referred to Section 5 for detailed discussions.

1.3.2 Smoothed Complexity Lower Bound

Our smoothed complexity lower bound (Theorem 6.1) is based on two geometric observations
using the inner and outer radius of the perturbed polytope. For a polytope 𝑃 and a unit norm
ball B, its outer radius with center 𝑥 is the smallest 𝑅 such that there exists 𝑃 ⊆ 𝑅 · B + 𝑥. Its
inner radius with center 𝑥 is the largest 𝑟 such that 𝑟 · B + 𝑥 ⊆ 𝑃.

The first observation is that, if a two-dimensional polygon 𝑇 has inner ℓ2-radius of 𝑟 and
outer ℓ2-radius of (1 + 𝜀) · 𝑟 with respect to the same center, then 𝑇 has at least Ω(𝜀−1/2) edges
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(Lemma 6.10). This comes from the fact that every edge of 𝑇 has length at most𝑂(𝑟√𝜀), whereas
the perimeter of 𝑇 is at least 2𝜋𝑟.

Second, if two polytopes 𝑄, 𝑄̃ ⊆ R𝑑 , each with inner radius 𝑡, have Hausdorff distance
𝜀 < 𝑡/2 to each other, then 𝑄 will approximate 𝑄̃ in the way that (Lemma 6.9)

(1 − 2𝜀/𝑡) · 𝑄 ⊆ 𝑄̃ ⊆ (1 + 𝜀/𝑡) · 𝑄.

In particular, for any two-dimensional linear subspace𝑊 we have

(1 − 2𝜀/𝑡) · 𝑄 ∩𝑊 ⊆ 𝑄̃ ∩𝑊 ⊆ (1 + 𝜀/𝑡) · 𝑄 ∩𝑊. (10)

To prove our lower bound, we construct a polytope 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑 and a
two-dimensional linear subspace𝑊 such that Ω(1) ·B𝑑1 ⊆ 𝑄 ⊆ B𝑑1 , and𝑄∩𝑊 has outer ℓ2-radius
𝑟 > 0 and inner ℓ2-radius 𝑟

(1+4−𝑑) . Perturbing the vertices of 𝑄, we obtain 𝑄̃ = conv(𝑎1, . . . , 𝑎𝑛),
where 𝑎𝑖 ∼ 𝑁 (𝑎𝑖 , 𝜎2𝐼𝑑×𝑑) for each 𝑖 ∈ [𝑛]. Note that 𝑄 ⊆ B𝑑1 implies that 𝑎1, . . . , 𝑎𝑛 satisfy the
normalization requirement in (1). With high probability the Hausdorff distance in ℓ1 between
𝑄 and 𝑄̃ is bounded by max𝑖∈[𝑛] ∥𝑎𝑖 − 𝑎̃𝑖 ∥1 ≤ 𝑂(𝜎𝑑

√︁
log 𝑛). Using (10), we bound the inner and

outer radius of 𝑄̃ ∩𝑊 . A lower bound on the number of edges of 𝑄̃ ∩𝑊 then follows from
Lemma 6.10 as described above.

We remark that the polytopes 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑 with 𝑛 = 𝑂(𝑑) and two-
dimensional subspaces𝑊 such that 𝑄 ∩𝑊 has inner ℓ2-radius 𝑟

1+4−𝑑 and outer ℓ2-radius 𝑟 > 0
were first obtained by [8] as an extended formulation for a regular 2𝑘-gon with 𝑂(𝑘) variables
and 𝑂(𝑘) inequalities. Their polytope, however, has an outer and inner radius that differ by a
factor 2Ω(𝑘) , meaning that we cannot apply Lemma 6.9 for 𝜎 > 2−𝑘. We construct an alternative
extended formulation where the ratio between inner and outer ℓ1-radius is only 𝑂(1). With an
appropriate scaling to get 𝑄 ⊆ 𝐵𝑑1 , we find that the perturbed polytope 𝑄̃ will have intersection
𝑄̃ ∩𝑊 with inner radius 𝑟

1+4−𝑑 (1 − 2𝜀/𝑡) and outer radius (1 + 𝜀/𝑡)𝑟, where 𝜀 = 𝑂(𝜎𝑑
√︁

log 𝑛),
and thus has Ω(min( 1√

𝜀
, 2𝑑)) edges, with high probability.

2. Preliminaries

We write 1𝑛 for the all-ones vector in R𝑛, 0𝑛 for the all-zeroes vector in R𝑛, and 𝐼𝑛×𝑛 for the 𝑛
by 𝑛 identity matrix. The standard basis vectors are denoted by 𝑒1, . . . , 𝑒𝑛 ∈ R𝑛. For a linear
subspace𝑊 ⊆ R𝑛 we denote the orthogonal projection onto𝑊 by 𝜋𝑊 . The subspace of vectors
orthogonal to a given vector 𝜔 ∈ R𝑛 is denoted 𝜔⊥.

For a vector 𝑥 ∈ R𝑛, the ℓ1 norm is ∥𝑥∥1 =
∑
𝑖∈[𝑛] |𝑥𝑖 |, the ℓ2-norm is ∥𝑥∥2 =

√︃∑
𝑖∈[𝑛] 𝑥2

𝑖 and
the ℓ∞-norm is ∥𝑥∥∞ = max𝑖∈[𝑛] |𝑥𝑖 |. A norm without a subscript is always the ℓ2-norm. Given
𝑝 ≥ 1, 𝑑 ∈ Z+, define B𝑑𝑝 = {𝑥 ∈ R𝑑 : ∥𝑥∥𝑝 ≤ 1} as the 𝑑-dimensional unit ball of ℓ𝑝 norm.

We write [𝑛] := {1, . . . , 𝑛}. By conv(𝑎1, . . . , 𝑎𝑛) = conv(𝑎𝑖 : 𝑖 ∈ [𝑛]) we denote the convex
hull of vectors 𝑎1, . . . , 𝑎𝑛, and similarly we write for the affine hull as affhull(𝑎𝑖 : 𝑖 ∈ [𝑛]). For
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sets 𝐴, 𝐵 ⊆ R𝑑 , the distance between the two is dist(𝐴, 𝐵) = inf𝑎∈𝐴,𝑏∈𝐵 ∥𝑎−𝑏∥. For a point 𝑥 ∈ R𝑑
we write dist(𝑥, 𝐴) = dist(𝐴, 𝑥) = dist(𝐴, {𝑥}).

We say a random event happens almost surely if it occurs with probability 1.
For a convex body 𝐾 ∈ R𝑑 , we define 𝜕𝐾 ⊆ span(𝐾) as the boundary of 𝐾 in the linear

subspace spanned by the vectors in 𝐾 .

2.1 Polytopes

DEF IN IT ION 2 .1 (Polytope). A convex set 𝑃 ⊆ R𝑑 is a polyhedron if it can be expressed as
𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑏} for some 𝐴 ∈ R𝑛×𝑑 , 𝑏 ∈ R𝑛 where 𝑛 ∈ Z+. A bounded polyhedron is also
called a polytope.

DEF IN IT ION 2 .2 (Valid Condition and Facet). Given a polytope 𝑃 ⊆ R𝑑 , vector 𝑐 ∈ R𝑑 and
𝑑 ∈ R, we say the linear condition 𝑥⊤𝑐 ≤ 𝑑 is valid for 𝑃 if the condition holds for all 𝑥 ∈ 𝑃.

A subset 𝐹 ⊆ 𝑃 is called a face of 𝑃 if 𝐹 = 𝑃 ∩ {𝑥 ∈ R𝑑 : 𝑥⊤𝑐 = 𝑑} ≠ ∅ for some valid
condition 𝑥⊤𝑐 ≤ 𝑑. A facet is a 𝑑 − 1-dimensional face, a ridge is a 𝑑 − 2-dimensional face, an
edge is a 1-dimensional face and a vertex is a 0-dimensional face.

DEF IN IT ION 2 .3 (Polar dual of a convex body). Let 𝑃 ⊆ R𝑑 be a convex set. Define the polar
dual of 𝑃 as

𝑃◦ = { 𝑦 ∈ R𝑑 : 𝑦⊤𝑥 ≤ 1,∀𝑥 ∈ 𝑃}.

We state some basic facts from duality theory:

FACT 2 .4 (Polar dual of polytope). Let 𝑃 ⊆ R𝑑 be a polytope given by the linear system
𝑃 = {𝑥 ∈ R𝑑 , 𝐴𝑥 ≤ 1𝑛} ⊆ R𝑑 for some 𝐴 ∈ R𝑛×𝑑 . Then the polar dual of 𝑃 equals to

𝑃◦ := conv(0𝑑 , 𝑎1, 𝑎2, . . . , 𝑎𝑛).

where 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 are the row vectors of 𝐴. Moreover, 𝑃 is bounded if and only if 0𝑑 ∈
int(conv(𝑎1, . . . , 𝑎𝑛)).

FACT 2 .5. Let 𝑃, 𝑄 ⊆ R𝑑 be two convex sets such that 𝑃 ⊆ 𝑄. Then 𝑄◦ ⊆ 𝑃◦.

FACT 2 .6. Let 𝑃 ⊆ R𝑑 be a polytope, and let𝑊 ⊆ R𝑑 be any 𝑘 ≤ 𝑑-dimensional linear subspace.
Then the polar dual of 𝜋𝑊 (𝑃), considered as a subset of the linear space𝑊 , is equal to 𝑃◦ ∩𝑊 .

2.2 Probability Distributions

All probability distributions considered in this paper will admit a probability density function
with respect to the Lebesgue measure.
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DEF IN IT ION 2 .7 (Gaussian distribution). The 𝑑-dimensional Gaussian distributionN𝑑 (𝑎, 𝜎2𝐼)
with support R𝑑 , mean 𝑎 ∈ R𝑑 , and standard deviation 𝜎 is defined by the probability density
function

(2𝜋)−𝑑/2 · exp
(
−∥𝑠 − 𝑎∥2/(2𝜎2)

)
.

at every 𝑠 ∈ R𝑑 .

A basic property of Gaussian distribution is the following strong tail bound:

LEMMA 2.8 (Gaussian tail bound). Let 𝑥 ∈ R𝑑 be a random vector sampled from N𝑑 (0, 𝜎2𝐼).
For any 𝑡 ≥ 1 and any 𝜃 ∈ S𝑑−1 where S𝑑−1 is the unit sphere in the 𝑑-dimensional space, we have

Pr[∥𝑥∥ ≥ 𝑡𝜎
√
𝑑] ≤ exp(−(𝑑/2) (𝑡 − 1)2).

From this, one can upper-bound the maximum norm over 𝑛 Gaussian random vectors
with mean 0𝑑 and variance 𝜎2 by 4𝜎

√︁
𝑑 log 𝑛 with dominating probability.

COROLLARY 2 .9 (Global diameter of Gaussian random variables). For any 𝑛 ≥ 2, let
𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 be random variables where each 𝑥𝑖 ∼ N𝑑 (0𝑑 , 𝜎2𝐼). Then with probability at least
1 − (𝑛

𝑑

)−1, max𝑖∈[𝑛] ∥𝑥𝑖 ∥ ≤ 4𝜎
√︁
𝑑 log 𝑛.

PROOF . From Lemma 2.8, we have for each 𝑖 ∈ [𝑛] that

Pr[∥𝑥𝑖 ∥ > 4𝜎
√︁
𝑑 log 𝑛] ≤ exp(−𝑑 (4

√︁
log 𝑛 − 1)2

2
) ≤ exp(−2𝑑 log 𝑛) ≤ 𝑛−1 ·

(
𝑛

𝑑

)−1

.

Then the statement follows from the union bound over all choices of 𝑖 ∈ [𝑛]. ■

A helpful technical substitute for the Gaussian distribution was introduced by [17]:

DEF IN IT ION 2 .10 ((𝜎, 𝑟)-Laplace-Gaussian distribution). For any 𝜎, 𝑟 > 0, 𝑎 ∈ R𝑑 , define the
𝑑-dimensional (𝜎, 𝑟)-Laplace-Gaussian distribution with mean 𝑎, or 𝐿𝐺𝑑 (𝑎, 𝜎, 𝑟), if its density
function is proportional to

𝑓 (𝑥) =


exp
(
− ∥𝑥−𝑎∥2

2𝜎2

)
, if ∥𝑥 − 𝑎∥ ≤ 𝑟𝜎

exp
(
− ∥𝑥−𝑎∥𝑟

𝜎 + 𝑟2

2

)
, if ∥𝑥 − 𝑎∥ > 𝑟𝜎.

(11)

The Laplace-Gaussian random variables satisfies many desirable properties. Like the
Gaussian distribution, the distance to its mean is bounded above with high probability. Moreover,
its probability density is log-Lipschitz throughout its domain (as a contrast, the probability
density of Gaussian distribution is only log-Lipschitz close to the expectation). The definition of
𝐿-log-Lipschitz is as follows:
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DEF IN IT ION 2 .1 1 (𝐿-log-Lipschitz random variable). Given 𝐿 > 0, we say a random variable
𝑥 ∈ R𝑑 with probability density 𝜇 is 𝐿-log-Lipschitz (or 𝜇 is 𝐿-log-Lipschitz), if for all 𝑥, 𝑦 ∈ R𝑑 ,
we have

| log(𝜇(𝑥)) − log(𝜇( 𝑦)) | ≤ 𝐿∥𝑥 − 𝑦∥,

or equivalently, 𝜇(𝑥)/𝜇( 𝑦) ≤ exp(𝐿∥𝑥 − 𝑦∥).

LEMMA 2.12 (Properties of Laplace-Gaussian random variables, Lemmas 3.7 and 3.33 of
[17]). Given any 𝑛 ≥ 𝑑, 𝜎 > 0. Let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be independent random variables each sampled
form 𝐿𝐺𝑑 (𝑎, 𝜎, 4𝜎

√︁
𝑑 log 𝑛) (see Definition 2.10). Then 𝑎1, . . . , 𝑎𝑛 satisfy the follows:

1. (Log-Lipschitzness) For each 𝑖 ∈ [𝑛], the probability density of 𝑎𝑖 is (4𝜎−1
√︁
𝑑 log 𝑛)-log-

Lipschitz.
2. (Bounded maximum norm) With probability at least 1− (𝑛

𝑑

)−1, max𝑖∈𝑛 ∥𝑎𝑖−𝑎𝑖 ∥ ≤ 4𝜎
√︁
𝑑 log 𝑛.

3. (Bounded expected radius of projection) For any 𝑘 ≤ 𝑑, any fixed 𝑘-dimensional linear
subspace 𝐻 ⊆ R𝑑 , we have E[max𝑖∈[𝑛] ∥𝜋𝐻 (𝑎𝑖 − 𝑎𝑖)∥] ≤ 8𝜎

√︁
𝑘 log 𝑛.

Most importantly, Laplace-Gaussian perturbations lead to nearly the same shadow size as
Gaussian perturbations.

LEMMA 2.13 (Lemma 3.34 of [17]). Given any 𝑛 ≥ 𝑑 ≥ 2, 𝜎 > 0, any two-dimensional linear
subspace 𝑊 ⊆ R𝑑 , and any 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 . For every 𝑖 ∈ [𝑛], let 𝑎𝑖 ∼ N𝑑 (𝑎𝑖 , 𝜎) and 𝑎̂𝑖 ∼
𝐿𝐺𝑑 (𝑎𝑖 , 𝜎, 4𝜎

√︁
𝑑 log 𝑛) be independently sampled. Then the following holds

E [edges(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊)] ≤ 1 + E [
edges(conv(𝑎̂1, . . . , 𝑎̂𝑛) ∩𝑊)] .

Although [17] state the above lemma only for 𝑑 ≥ 3, their proof applies without change to
the case 𝑑 = 2.

2.3 Change of Variables

We will make use of a specific change of variables, which is a standard tool in stochastic and
integral geometry. It will allow us to investigate, for points 𝑎1, . . . , 𝑎𝑑 ∈ R𝑑 , the distribution of
these points when conditioning on a specific affine hyperplane affhull(𝑎1, . . . , 𝑎𝑑). This will
enable us to make conclusions about the shapes of the faces of the convex hull conv(𝑎1, . . . , 𝑎𝑛)
of 𝑛 vectors.

DEF IN IT ION 2 .14 (Change of variables). Let 𝜃 ∈ S𝑑−1, 𝑡 ∈ R be such that ∀𝑖 ∈ [𝑑], 𝜃⊤𝑎𝑖 = 𝑡
and suppose 𝜃⊤𝑒1 > 1 without loss of generality where 𝑒1 = (1, 0, . . . , 0)⊤ ∈ R𝑑 is the unit vector
that has nonzero element on the first coordinate.

Fix ℎ as any isometric embedding from R𝑑−1 → 𝑒⊥1 . Let 𝑅̃𝜃 : R𝑑 → R𝑑 denote the rotation
that rotates 𝑒1 to 𝜃 in the two-dimensional subspace span(𝑒1, 𝜃), and is the identity transfor-
mation on span(𝑒1, 𝜃)⊥. Define 𝑅𝜃 = 𝑅̃𝜃 ◦ ℎ to be the resulting isometric embedding from R𝑑−1,
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identified with 𝑒⊥1 , to 𝜃⊥. Now define the transformation 𝜙 from 𝜃 ∈ S𝑑−1, 𝑡 ∈ R, 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1

to 𝑎1, . . . , 𝑎𝑑 ∈ R𝑑 as follows:

𝜙(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑) = (𝑅𝜃(𝑏1) + 𝑡𝜃, . . . , 𝑅𝜃(𝑏𝑑) + 𝑡𝜃). (12)

The choice of the embeddings 𝑅̃𝜃 is largely arbitrary. What matters is that the transforma-
tion 𝜙 and its inverse are continuous almost everywhere.

LEMMA 2.15 (Jacobian of the transformation, see Theorem 7.2.7 in [46]). Let 𝜙 : S𝑑−1 × R ×
R(𝑑−1)×𝑑 → R𝑑×𝑑 be the transformation defined in Definition 2.14. The transformation 𝜙 is defined
almost everywhere and has Jacobian determinant that equals to����det

(
𝜕𝜙

𝜕(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑)

)���� = 𝐶𝑑 · (𝑑 − 1)! · vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑))

for some constant 𝐶𝑑 depending only on the dimension. As a consequence, if 𝑎1, . . . , 𝑎𝑑 ∈ R𝑑
are points with probability density 𝜇(𝑎1, . . . , 𝑎𝑑) and if 𝜃 ∈ S𝑑−1, 𝑡 ∈ R, 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1 have
probability density proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) · 𝜇(𝑡𝜃 + 𝑅𝜃(𝑏1), . . . , 𝑡𝜃 + 𝑅𝜃(𝑏𝑑))

then E[ 𝑓 (𝑎1, . . . , 𝑎𝑑)] = E[ 𝑓 (𝜙(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑))] for any measurable function 𝑓 .

The interested reader might observe that if (𝑎1, . . . , 𝑎𝑑) = 𝜙(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑) then the Jaco-
bian

(𝑑 − 1)! · vol𝑑−1(conv(𝑎1, . . . , 𝑎𝑑)) = (𝑑 − 1)! · vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑))

is equal to the determinant of the 𝑑 × 𝑑 matrix (𝜃⊤, (𝑎1 − 𝑎𝑑)⊤, (𝑎2 − 𝑎𝑑)⊤, . . . , (𝑎𝑑−1 − 𝑎𝑑)⊤),
which is equal to the determinant of the (𝑑 − 1) × (𝑑 − 1) matrix with rows or columns given by
𝑏1 − 𝑏𝑑 , 𝑏2 − 𝑏𝑑 , . . . , 𝑏𝑑−1 − 𝑏𝑑 .

In particular, we will use this transformation to condition on the value of 𝜃 and consider
events in the variables 𝑡, 𝑏1, . . . , 𝑏𝑑 . For this purpose, we have the following fact.

LEMMA 2.16 (Log-Lipschitzness of the Position of Affine Hull). Let 𝑎1, . . . , 𝑎𝑑 ∈ R𝑑 be 𝑑
independent 𝐿-log-Lipschitz random variables, and let (𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑) = 𝜙−1(𝑎1, . . . , 𝑎𝑑), where
𝜙 : S𝑑−1 × R × R(𝑑−1)×𝑑 → R𝑑×𝑑 is defined in Definition 2.14. Then conditional on the values of
𝜃, 𝑏1, . . . , 𝑏𝑑 , the random variable 𝑡 is (𝑑𝐿)-log-Lipchitz.

PROOF . By Lemma 2.15, the joint probability density of (𝑎1, . . . , 𝑎𝑑) is proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇𝑖 (𝑅𝜃(𝑏𝑖) + 𝑡𝜃)

where 𝜇𝑖 is the probability density of 𝑎𝑖 . Conditioning on 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1 and 𝜃 ∈ S𝑑−1, the
volume vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) is fixed. The statement then follows from the fact that for each
𝑖 ∈ [𝑑], 𝜇𝑖 (𝑅𝜃(𝑏𝑖) + 𝑡𝜃) is 𝐿-log-Lipschitz in 𝑡 for any 𝑏𝑖 . ■
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Conditional on 𝜃 and 𝑡, the points 𝑏1, . . . , 𝑏𝑑 are not 𝐿-log-Lipschitz due to the volume term.
When it becomes relevant, we will show that this factor does not affect the argument in any
negative way.

2.4 Non-Degenerate Conditions

DEF IN IT ION 2 .17 (Non-degenerate polytope). A polytope 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑 is called
non-degenerate, if it is simplicial (every facet is a simplex) and if, for 𝑖 ∈ [𝑛], 𝑎𝑖 ∈ 𝜕𝑄 implies
that 𝑎𝑖 is a vertex of 𝑄.

DEF IN IT ION 2 .18 (Non-degenerate intersection with a 2D-plane). Let 𝑄 ⊆ R𝑑 be a non-
degenerate polytope and let 𝑊 ⊆ R𝑑 be a two-dimensional linear subspace. We say 𝑄 has
non-degenerate intersection with𝑊 , if

1. the edges of the two-dimensional polygon 𝑄 ∩𝑊 have one-to-one correspondence to the
facets of 𝑄 that have non-empty intersection with𝑊 ; and

2. the vertices of 𝑄 ∩𝑊 have one-to-one correspondence to the (𝑑 − 2)-dimensional faces
(ridges) of 𝑄 that have non-empty intersection with𝑊

FACT 2 .19 (Non-degenerate conditions of random polytope). Given any 𝑛 ≥ 𝑑 ≥ 2 and any
fixed two-dimensional plane 𝑊 ⊆ R𝑑 . For 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 , the polytope 𝑄 = conv(𝑎1, . . . , 𝑎𝑛)
satisfies the following properties everywhere except for a set of measure 0:

1. 𝑄 is non-degenerate;
2. 𝑄 has non-degenerate intersection with𝑊 ;
3. For every normal vector 𝑣 to any facet of 𝑄, 𝑒⊤1 𝑣 ≠ 0.

Assume the polytope 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) and the two-dimensional linear subspace𝑊 ⊆
R𝑑 satisfy the non-degenerate conditions in Fact 2.19. Each edge of the two-dimensional polygon
formed by the intersection𝑊 ∩ 𝑄 can be described by a set of 𝑑 vertices, where the edge is
equivalent to the intersection of𝑊 with the convex hull of these 𝑑 vertices. Furthermore, each
vertex of 𝑄 ∩𝑊 corresponds to a set of (𝑑 − 1) vertices. The following lemma characterizes the
relation of these sets for adjacent vertices and edges:

FACT 2 .20 (Properties of neighboring vertices on non-degenerate intersection polygon).
Let 𝑊 ⊆ R𝑑 be a two-dimensional linear subspace, 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑 is simplicial
and has non-degeneracy intersection with 𝑊 . Given 𝐽1, 𝐽2 ∈ ( [𝑛]

𝑑−1
)
, 𝐼 ∈ ([𝑛]

𝑑

)
, suppose (1) 𝑉𝐽1 =

conv(𝑎 𝑗 : 𝑗 ∈ 𝐽1) ∩𝑊 and 𝑉𝐽2 = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽2) ∩𝑊 are two adjacent vertices of 𝑄 ∩𝑊 , and
(2) conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 is an edge of 𝑄 ∩𝑊 that contains 𝑉𝐽1 but not contains 𝑉𝐽2 . Then we have
| 𝐽1\𝐽2 | = | 𝐽2\𝐽1 | = 1 and |𝐼\𝐽2 | = 2.
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PROOF . Let 𝐼′ = 𝐽1 ∪ 𝐽2. Then conv(𝑉𝐽1 , 𝑉𝐽2) = conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 is an edge of the polygon
𝑄 ∩𝑊 . Since 𝑄 has non-degenerate intersection with𝑊 , we have that |𝐼′| = 𝑑. Combining with
| 𝐽1 | = | 𝐽2 | = 𝑑 − 1 gives us that | 𝐽1\𝐽2 | = | 𝐽2\𝐽1 | = 1.

Next we consider |𝐼\𝐽2 |. Since 𝐽1 ⊆ 𝐼 and | 𝐽1\𝐽2 | = 1, it could only be the case that
|𝐼\𝐽2 | ∈ {1, 2}. If |𝐼\𝐽2 | = 1, then since |𝐼 | = | 𝐽2 | + 1 we must have 𝐽2 ⊆ 𝐼 , but this contradicts to
the fact that conv( 𝐽2) ⊄ conv(𝐼). Therefore we could only have |𝐼\𝐽2 | = 2. ■

3. Smoothed Complexity Upper Bound

In this section, we establish our key theorem for upper bounding the number of edges of
a random polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 for 𝑊 a fixed 2-dimensional linear subspace and
𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 . We demonstrate that if for any edge on the shadow polygon conv(𝑎1, . . . , 𝑎𝑛)∩𝑊 ,
the expected distance between the affine hull of the edge and the next vertex on the shadow is
sufficiently large in expectation, then the expected number of edges of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊
can be upper-bounded.

DEF IN IT ION 3.1 (Facet and edge event). For 𝐼 ⊆ [𝑛], we write 𝐹𝐼 = conv(𝑎𝑖 : 𝑖 ∈ 𝐼). Define 𝐸𝐼
to be the event that both 𝐹𝐼 is a facet of conv(𝑎1, . . . , 𝑎𝑛) and 𝐹𝐼 ∩𝑊 ≠ ∅.

REMARK 3.2. Any edge 𝑒 of conv(𝑎1, . . . , 𝑎𝑛)∩𝑊 can be written as 𝑒 = 𝐹𝐼∩𝑊 for some 𝐼 ⊆ [𝑛]
for which 𝐸𝐼 holds. Assuming non-degeneracy, this relation between edges and index sets is a
one-to-one correspondence, and moreover every 𝐼 ⊆ [𝑛] for which 𝐸𝐼 holds satisfies |𝐼 | = 𝑑.

To state the key theorem’s assumption, we need a concept of ’clockwise’ to characterize
the order of edges and vertices on the shadow polygon.

DEF IN IT ION 3.3 (Clockwise order of edges and vertices). For any given two-dimensional
linear subspace 𝑊 ⊆ R𝑑 we denote an arbitrary but fixed rotation as “clockwise”. For the
polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 of our interest, let 𝑝1, . . . , 𝑝𝑘 denote its vertices in clockwise order
and write 𝑝𝑘+1 = 𝑝1, 𝑝𝑘+2 = 𝑝2. Then for any edge 𝑒 = [𝑝𝑖−1, 𝑝𝑖], we call 𝑝𝑖 its second vertex in
clockwise order and we call 𝑝𝑖+1 the next vertex after 𝑒 in clockwise order. The edge [𝑝𝑖 , 𝑝𝑖+1] is
the next edge after 𝑒 in clockwise order.

Note that the above terms are well-defined in the sense that they depend only on the
polygon and the orientation of the subspace, not on the vertex labels. With this definition in
place, we can now state the theorem itself:

THEOREM 3.4 (Smoothed complexity upper bound for continuous perturbations). Fix
any 𝑛, 𝑑 ≥ 2, 𝜎 ≥ 0, and any two-dimensional linear subspace𝑊 ⊆ R𝑑 . Let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be
independently distributed each according to a continuous probability distribution.



20 / 56 S. Huiberts, Y.T. Lee, X. Zhang

For any 𝐼 ∈ ([𝑛]
𝑑

)
, conditional on 𝐸𝐼 , define 𝑦𝐼 ∈ 𝑊 as the outer unit normal of the edge

𝐹𝐼 ∩𝑊 . For 𝛾 > 0, suppose that for each 𝐼 ∈ ([𝑛]
𝑑

)
such that Pr[𝐸𝐼] ≥ 10

(𝑛
𝑑

)−1 we have

Pr[ 𝑦⊤𝐼 𝑝2 − 𝑦⊤𝐼 𝑝3 ≥ 𝛾 | 𝐸𝐼] ≥ 0.1,

where we write [𝑝1, 𝑝2] = 𝐹𝐼 ∩𝑊 and 𝑝3 ∈ conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 as the next vertex after 𝐹𝐼 ∩𝑊
in clockwise order. Then we have

E [edges (conv(𝑎1, . . . , 𝑎𝑛))] ≤ 10 + 80𝜋

√︄
E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]

𝛾

= 𝑂
©­«
√︄
E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]

𝛾
ª®¬ .

Note that, assuming non-degeneracy, 𝑦𝐼 is well-defined if and only if 𝐸𝐼 happens. In this
case, we are guaranteed that 𝑦⊤𝐼 𝑝2 − 𝑦⊤𝐼 𝑝3 > 0.

To prove the above theorem, we show that any 𝐼 ∈ ([𝑛]
𝑑

)
with Pr[𝐸𝐼] ≥

(𝑛
𝑑

)−1 can be charged
to either a portion of the perimeter of the polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 or to a portion of its
sum 2𝜋 of exterior angles at its vertices.

DEF IN IT ION 3.5 (Exterior angle and length of the next edge). Given any 𝐼 ∈ ([𝑛]
𝑑

)
, we define

two random variables 𝜃𝐼 , ℓ𝐼+ ≥ 0. If 𝐸𝐼 happens, write 𝑝1, 𝑝2 ∈ 𝐹𝐼 ∩𝑊 for the first and the
second endpoint of 𝐹𝐼 ∩𝑊 in clockwise order. Let 𝜃𝐼 to be the (two-dimensional) exterior angle
of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 at 𝑝2; If 𝐸𝐼 doesn’t happen then let 𝜃𝐼 = 0.

Let ℓ𝐼+ denote the following random variable: If 𝐸𝐼 happens, then ℓ𝐼+ equals to the length
of the next edge after 𝐹𝐼 ∩𝑊 in clockwise order, i.e., the other edge of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊
containing 𝑝2. If 𝐸𝐼 doesn’t happen then let ℓ𝐼+ = 0.

PROOF OF THEOREM 3.4 . Since we have non-degeneracy with probability 1, by Fact 2.19
and linearity of expectation we find

E [edges (conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊)] =
∑︁

𝐼∈( [𝑛]𝑑 )
Pr[𝐸𝐼] .

We can give an upper bound on the expected number of edges of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 by
upper-bounding each Pr[𝐸𝐼]. Fix any 𝐼 ∈ ([𝑛]

𝑑

)
and let 𝑡 > 0 be a parameter to be determined

later. We consider three different possible upper bounds on Pr[𝐸𝐼], at least one of which will
always hold:

Case 1: Pr[𝐸𝐼] ≤ 10
(𝑛
𝑑

)−1.
Since

∑
𝐼∈( [𝑛]𝑑 ) 10

(𝑛
𝑑

)−1
= 10, one can immediately see that the total contribution of edges

counted in this case is at most 10.
Case 2: Pr[𝐸𝐼] > 10

(𝑛
𝑑

)−1 and Pr[ℓ𝐼+ ≥ 𝑡 | 𝐸𝐼] ≥ 1
20 .
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In this case, by Markov’s inequality E[ℓ𝐼+ | 𝐸𝐼] ≥ 𝑡
20 , therefore we obtain from E[ℓ𝐼+] =

E[ℓ𝐼+ | 𝐸𝐼] Pr[𝐸𝐼] and 𝐸[ℓ𝐼+ |𝐸𝐶𝐼 ] = 0 that

Pr[𝐸𝐼] = E[ℓ𝐼+]
E[ℓ𝐼+ | 𝐸𝐼] ≤ 20

𝑡
· E[ℓ𝐼+] .

Case 3: Pr[𝐸𝐼] > 10
(𝑛
𝑑

)−1 and Pr[ℓ𝐼+ ≤ 𝑡 | 𝐸𝐼] ≥ 19
20 . Readers are referred to Figure 1 for

more illustration of the proof.
Conditional on 𝐸𝐼 , without loss of generality we write [𝑝1, 𝑝2] = 𝐹𝐼 ∩𝑊 and let 𝑝3 denote

the next vertex after 𝐹𝐼 ∩𝑊 in clockwise direction. From the theorem’s assumption we have
Pr[dist(affhull(𝑝1, 𝑝2), 𝑝3) ≥ 𝛾 | 𝐸𝐼] ≥ 1

10 . Then from the union bound,

Pr[(ℓ𝐼+ ≤ 𝑡) ∧ (dist(affhull(𝑝1, 𝑝2), 𝑝3) ≥ 𝛾) | 𝐸𝐼]
≥ 1 − Pr[ℓ𝐼+ > 𝑡 | 𝐸𝐼] − Pr[dist(affhull(𝑝1, 𝑝2), 𝑝3) < 𝛾 | 𝐸𝐼] ≥ 1

20
.

Referring back to Figure 1, we know that 𝜃𝐼 ≥ 0 and thus

𝜃𝐼 ≥ sin(𝜃𝐼) = dist(affhull(𝑝1, 𝑝2), 𝑝3)
ℓ𝐼+

we have E[𝜃𝐼 | 𝐸𝐼] ≥ 1
20 ·

𝛾
𝑡 . Combining this with the fact that 𝜃𝐼 = 0 if 𝐸𝐼 does not hold, we know

that E[𝜃𝐼] = E[𝜃𝐼 | 𝐸𝐼] Pr[𝐸𝐼] and we can upper bound

Pr[𝐸𝐼] = E[𝜃𝐼]
E[𝜃𝐼 | 𝐸𝐼] ≤ 20𝑡

𝛾
· E[𝜃𝐼] .

Combining the upper bounds for each Pr[𝐸𝐼] for the above three cases, we get that

E [edges (conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊)] =
∑︁

𝐼∈( [𝑛]𝑑 )
Pr[𝐸𝐼]

≤
∑︁

𝐼∈( [𝑛]𝑑 )

(
10

(
𝑛

𝑑

)−1

+ 20
𝑡

· E[ℓ𝐼+] + 20𝑡
𝛾

· E[𝜃𝐼]
)

= 10 + 20
𝑡

· E[
∑︁

𝐼∈( [𝑛]𝑑 )
ℓ𝐼+] + 20𝑡

𝛾
· E[

∑︁
𝐼∈( [𝑛]𝑑 )

𝜃𝐼] (13)

To upper bound the second term of (13), we notice that
∑
𝐼∈( [𝑛]𝑑 ) ℓ𝐼+ exactly equals the

perimeter of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 . Since the shadow polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 is contained
in the two-dimensional disk of radius max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥, by the monotonicity of surface area
for convex sets we have

E[
∑︁

𝐼∈( [𝑛]𝑑 )
ℓ𝐼+] ≤ 2𝜋 · E[max

𝑖∈[𝑛]
∥𝜋𝑊 (𝑎𝑖)∥] .
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To upper bound the third term of (13), we notice that the sum of exterior angles for any
polygon always equals 2𝜋. Thus

E[
∑︁

𝐼∈( [𝑛]𝑑 )
𝜃𝐼] = 2𝜋 (14)

Finally, we combine (13 - 14) and minimize over all 𝑡 > 0:

E [edges (conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊)] ≤ min
𝑡>0

(
10 + 40𝜋E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]

𝑡
+ 40𝜋𝑡

𝛾

)
= 10 + 80𝜋

√︄
E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]

𝛾
.

where in the final step, we set 𝑡 =
√︁
𝛾E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]. ■

In the subsequent sections, we will show a lower bound for the edge-to-vertex distance 𝛾
assuming the independently distributed vectors 𝑎1, · · · , 𝑎𝑛 follow Laplace-Gaussian distribu-
tions. This allows us to directly apply Theorem 3.4 to derive an upper bound on the expected
number of edges of conv(𝑎1, · · · , 𝑎𝑛) ∩𝑊 . Furthermore, by using Lemma 2.13, we can further
reduce our upper bound to the case when 𝑎1, . . . , 𝑎𝑛 are Gaussian distributed vectors.

4. Upper Bound in Two Dimension

In this section, we establish the smoothed complexity upper bound for 𝑑 = 2. For this scenario,
the shadow plane 𝑊 encompasses the entire two-dimensional Euclidean space, and 𝑃 ∩𝑊
is identical to 𝑃 = conv(𝑎1, · · · , 𝑎𝑛). From Theorem 3.4 and Lemma 2.13, it remains to lower
bound the distance from the affine hull of an edge to its neighboring vertex in clockwise order
(denoted by 𝛾 in Theorem 3.4), where the vertices of the polygon 𝑎1, · · · , 𝑎𝑛 is sampled from
a Laplace-Gaussian distribution with the center of 𝑎1, · · · , 𝑎𝑛. We will demonstrate a slightly
stronger result: a lower bound for the distance between the affine hull of an edge to all of the
remaining (𝑛 − 2) vertices.

LEMMA 4.1 (Edge-to-vertex distance in Two Dimension). Let 𝑎1, . . . , 𝑎𝑛 ∈ R2 be 𝑛 independent
𝐿-log-Lipschitz random variables. Then, for any 𝐼 ∈ ([𝑛]

2
)
, the outer unit normal 𝑦 ∈𝑊 of the edge

conv(𝑎𝑖 : 𝑖 ∈ 𝐼) satisfies
Pr[ 𝑦⊤𝑎𝑖 − max

𝑗∉𝐼
𝑦⊤𝑎 𝑗 ≥ 1

𝐿
| 𝐸𝐼] ≥ 0.1,

for any 𝑖 ∈ 𝐼 .

By applying Theorem 3.4, Lemma 2.13, and the Laplace-Gaussian tail bound of Lemma 2.12,
we find the following upper bound for two-dimensional polygons under Gaussian perturbation:
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THEOREM 4.2 (Two-Dimensional Upper Bound). Let 𝑎1, . . . , 𝑎𝑛 ∈ R2 be 𝑛 > 2 vectors with
norm at most 1. For each 𝑖 ∈ [𝑛], let 𝑎𝑖 be independently distributed as N2(𝑎𝑖 , 𝜎2𝐼). Then

E [edges (conv(𝑎1, . . . , 𝑎𝑛))] ≤ 𝑂

(
4
√︁

log 𝑛√
𝜎

+
√︁

log 𝑛

)
.

PROOF . For each 𝑖 ∈ [𝑛], let 𝑎̂𝑖 be independently sampled form the 2-dimensional Laplace-
Gaussian distribution 𝐿𝐺2(𝑎𝑖 , 𝜎, 4𝜎

√︁
2 log 𝑛). It follows from Lemma 2.12 that 𝑎̂𝑖 is (4𝜎−1

√︁
2 log 𝑛)-

log-Lipschitz andE[max𝑖∈[𝑛] ∥𝑎̂𝑖 ∥] ≤ 1+4𝜎
√︁

2 log 𝑛. We use Lemma 4.1, setting 𝐿 = 4𝜎−1
√︁

2 log 𝑛,
and Theorem 3.4, setting 𝛾 = 1

𝐿 = 𝜎

4
√

2 log 𝑛
, to find

E [edges (conv(𝑎̂1, . . . , 𝑎̂𝑛))] ≤ 𝑂
©­­«
√︄√︁

log 𝑛
𝜎

+ log 𝑛
ª®®¬ ≤ 𝑂

(
4
√︁

log 𝑛√
𝜎

+
√︁

log 𝑛

)
.

Finally, from Lemma 2.13, we conclude thatE [edges (conv(𝑎1, . . . , 𝑎𝑛))] ≤ 1+𝑂(
4
√

log 𝑛√
𝜎

+
√︁

log 𝑛).
■

PROOF OF LEMMA 4.1 . Fix any set 𝐼 = {𝑖, 𝑖′} ⊆ [𝑛]. Define 𝑧 ∈ S1 and 𝑡 to satisfy 𝑧⊤𝑎𝑖 =
𝑧⊤𝑎𝑖′ = 𝑡 and 𝑧⊤𝑒1 > 0. Both are well-defined with probability 1.

Note that 𝐸𝐼 is now equivalent to either having 𝑧⊤𝑎 𝑗 < 𝑡 for all 𝑗 ∉ 𝐼 or having 𝑧⊤𝑎 𝑗 > 𝑡

for all 𝑗 ∉ 𝐼 . Write 𝐸+𝐼 for the former case and 𝐸−𝐼 for the latter. The vector 𝑧 is always defined,
assuming non-degeneracy, and is equal to the outer normal unit vector 𝑦 conditional on 𝐸+𝐼 and
equal to −𝑦 conditional on 𝐸−𝐼 .

We want to apply the principle of deferred decisions to fix the values of 𝑎 𝑗 for each 𝑗 ∉ 𝐼

and 𝑧, and now only allow 𝑎𝑖 and 𝑎𝑖′ to vary while fixing the slope of the line between 𝑎𝑖 and
𝑎𝑖′ . Let 𝜇 : R → R≥0 denote the induced probability density function of 𝑡 = 𝑦⊤𝑎𝑖 = 𝑦⊤𝑎𝑖′ .
Lemma 2.16 tells us that 𝜇 is (2𝐿)-log-Lipschitz.

In the first case, for 𝐸+𝐼 , we have, still only considering the randomness over 𝑡,

Pr[(𝑡 − max
𝑗∉𝐼

𝑧⊤𝑎 𝑗 ≥ 1
𝐿
) ∧ 𝐸+𝐼 ]

=

∫ ∞

max 𝑗∉𝐼 𝑧⊤𝑎 𝑗+1/𝐿
𝜇(𝑡)d𝑡

=

∫ ∞

max 𝑗∉𝐼 𝑧⊤𝑎 𝑗
𝜇(𝑠 + 1/𝐿)d𝑠

≥
∫ ∞

max 𝑗∉𝐼 𝑧⊤𝑎 𝑗
𝑒−2𝜇(𝑠)d𝑠 (By (2𝐿)-log-Lipschitzness of 𝜇)

=𝑒−2 Pr[𝐸+𝐼 ] .
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Similarly for the other case, 𝐸−𝐼 , we find

Pr[(min
𝑗∉𝐼

𝑧⊤𝑎 𝑗 − 𝑡 ≥ 1
𝐿
) ∧ 𝐸−𝐼 ] ≥ 𝑒−2 Pr[𝐸−𝐼 ] .

Now observe that, for any 𝑖 ∈ 𝐼 , we have

Pr[ 𝑦⊤𝑎𝑖 − max
𝑗∉𝐼

𝑦⊤𝑎 𝑗 ≥ 1
𝐿
∧ 𝐸𝐼]

= Pr[(𝑡 − max
𝑗∉𝐼

𝑧⊤𝑎 𝑗 ≥ 1
𝐿
) ∧ 𝐸+𝐼 ] + Pr[(min

𝑗∉𝐼
𝑧⊤𝑎 𝑗 − 𝑡 ≥ 1

𝐿
) ∧ 𝐸−𝐼 ]

≥𝑒−2 Pr[𝐸+𝐼 ] + 𝑒−2 Pr[𝐸−𝐼 ] = 𝑒−2 Pr[𝐸𝐼] .

This finishes the proof since

Pr[ 𝑦⊤𝑎𝑖 − max
𝑗∉𝐼

𝑦⊤𝑎 𝑗 ≥ 1
𝐿
| 𝐸𝐼] = Pr[ 𝑦⊤𝑎𝑖 − max

𝑗∉𝐼
𝑦⊤𝑎 𝑗 ≥ 1

𝐿
∧ 𝐸𝐼]/Pr[𝐸𝐼] ≥ 𝑒−2 ≥ 0.1.

■

5. Multi-Dimensional Upper Bound

In this section, we establish the upper bound for the higher-dimensional case (i.e., 𝑑 ≥ 3):

THEOREM 5.1 (Multi-dimensional Upper Bound). Let 𝑑 > 2, 𝑛 ≥ 𝑑, and 𝜎 ≤ 1
16𝑑

√
log 𝑛

. Let

𝑎1, . . . , 𝑎𝑛 be 𝑛 vectors with max𝑖∈[𝑛] ∥𝑎𝑖 ∥ ≤ 1. For each 𝑖 ∈ [𝑛], let 𝑎𝑖 be independently distributed
as N𝑑 (𝑎𝑖 , 𝜎2𝐼). Then

E[edges(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊)] = 𝑂
(
𝜎−3/2𝑑13/4 log5/4 𝑛

)
. (15)

Similar to the two-dimensional case (see Section 4), the main technical ingredient of
Theorem 5.1 is a lower-bound of the edge-to-vertex distance (the quantity 𝛾 in Theorem 3.4) on
the shadow polygon:

LEMMA 5.2 (Edge-to-vertex distance of shadow polygon in multi-dimension). For any 𝑑 ≥ 3,
let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be independent 𝐿-log-Lipschitz random variables. For any 𝐼 ∈ ([𝑛]

𝑑

)
that satisfies

Pr[𝐸𝐼] ≥ 10
(𝑛
𝑑

)−1
, (where 𝐸𝐼 is defined in Definition 3.1), we have

Pr[ 𝑦⊤𝑝 − 𝑦⊤𝑝′ ≥ Ω( 1
𝐿3𝑑5 log 𝑛

) | 𝐸𝐼] ≥ 0.1,

where 𝑝 is any point in 𝐹𝐼 ∩𝑊 , and 𝑝′ ∈ conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 is the next vertex after 𝐹𝐼 ∩𝑊 in
clockwise direction. Here 𝑦 ∈𝑊 is the outer unit normal to the edge 𝐹𝐼∩𝑊 on conv(𝑎1, . . . , 𝑎𝑛)∩𝑊 .

Theorem 5.1 then immediately follows from Lemma 5.2, Theorem 3.4, and Lemma 2.13:

PROOF OF THEOREM 5.1 . For each 𝑖 ∈ [𝑛], let 𝑎̂𝑖 be independently sampled from the
Laplace-Gaussian distribution 𝐿𝐺𝑑 (𝑎𝑖 , 𝜎, 4𝜎

√︁
𝑑 log 𝑛). From Lemma 2.12, we know that
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1. Each 𝑎̂𝑖 is 𝐿 = (4𝜎−1
√︁
𝑑 log 𝑛)-log-Lipschitz;

2. E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎̂𝑖)∥] ≤ 1 + 8𝜎
√︁

2 log 𝑛 ≤ 1.5.

From Lemma 5.2, we get that for any 𝑝 ∈ 𝐹𝐼 ∩𝑊 , if 𝑝′ is the next vertex after the edge
𝐹𝐼 ∩𝑊 in clockwise order, then

Pr[ 𝑦⊤𝐼 𝑝 ≥ 𝑦⊤𝐼 𝑝
′ + Ω( 1

𝐿3𝑑5 log 𝑛
) | 𝐸𝐼] ≥ 0.1.

Here 𝑦𝐼 ∈ 𝑊 is the outer unit normal vector of the polygon conv(𝑎̂1, . . . , 𝑎̂𝑛) ∩𝑊 on the
edge 𝐹𝐼 ∩𝑊 . Then we can use Theorem 3.4 by setting 𝐿 = 4𝜎−1

√︁
𝑑 log 𝑛, 𝛾 = Ω( 1

𝐿3𝑑5 log 𝑛) and
E[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥] = 1.5, to find

E [| edges (conv(𝑎̂1, . . . , 𝑎̂𝑛)) |] ≤ 10 + 𝑂(
√︄
𝐸[max𝑖∈[𝑛] ∥𝜋𝑊 (𝑎𝑖)∥]

𝛾
)

≤ 10 + 𝑂(
√︄

1.5
1

𝐿3𝑑5 log 𝑛

)

≤ 10 + 𝑂(
√︁
𝐿3𝑑5 log 𝑛)

≤ 10 + 𝑂(
√︃
𝜎−3𝑑13/2 log5/2 𝑛).

Finally, from Lemma 2.13, we conclude that

E [| edges (conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) |] ≤ 11 + 𝑂(
√︃
𝜎−3𝑑13/2 log5/2 𝑛)

= 𝑂
(
𝜎−3/2𝑑13/4 log5/4 𝑛

)
. ■

The rest of this section is dedicated to the proof of Lemma 5.2 and will be structured as
follows. In Section 5.1 we define some basic notation that will be used in the proof. In Section 5.2
we establish two sufficient criteria for the conclusion of Lemma 5.2 to hold. In Section 5.3
and Section 5.4, we prove that these conditions hold with good probability conditional on 𝐸𝐼 .
Section 5.5 to Section 5.7 include the proof of the auxiliary lemmas. Finally, we finish the proof
of Lemma 5.2 in Section 5.8.

5.1 Notations

Since we assume that the constraint matrix rows 𝑎1, . . . , 𝑎𝑛 each have a continuous probability
density function, conv(𝑎1, . . . , 𝑎𝑛) and𝑊 satisfy the non-degeneracy conditions (see Fact 2.19)
almost surely. In this case, each edge of the polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 is given by 𝐹𝐼 ∩𝑊 =

conv(𝑎𝑖 : 𝑖 ∈ 𝐼) for which 𝐼 ∈ ([𝑛]
𝑑

)
and 𝐸𝐼 holds (where 𝐹𝐼 and 𝐸𝐼 are defined in Definition 3.1).

In addition, each vertex of the polygon conv(𝑎1, . . . , 𝑎𝑛)∩𝑊 is given by the intersection between
𝑊 and (𝑑 − 2)-dimensional ridges of conv(𝑎1, . . . , 𝑎𝑛), which are convex hulls of (𝑑 − 1) vertices
of conv(𝑎1, . . . , 𝑎𝑛). We define the following notations for a ridge and its corresponding vertex:
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DEF IN IT ION 5.3 (Ridge and vertex event). For any 𝐽 ⊆ [𝑛], write 𝑅 𝐽 = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽).
Define 𝐴𝐽 to be the event that 𝑅 𝐽 is a ridge of conv(𝑎1, . . . , 𝑎𝑛) and 𝑅 𝐽 ∩𝑊 ≠ ∅.

REMARK 5.4. Any vertex 𝑣 of conv(𝑎1, . . . , 𝑎𝑛) can be written as 𝑣 = 𝑅 𝐽 ∩𝑊 for some 𝐽 ⊆ [𝑛]
for which 𝐴𝐽 holds. Assuming non-degeneracy, each 𝐽 for which 𝐴𝐽 holds satisfies | 𝐽 | = 𝑑−1 and
the relation between vertices and index sets 𝐽 ∈ ( [𝑛]

𝑑−1
)

with 𝐴𝐽 is a one-to-one correspondence.

5.2 Deterministic Conditions for a Good Edge-to-Vertex Separator

In this subsection, we present a series of sufficient conditions such that an edge on the polygon
conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 maintains a significant separation from its next vertex in clockwise order.
When the vertex set {𝑎𝑖}𝑛𝑖=1 is fixed, this edge-to-vertex distance can be decomposed into two
geometric components:

the distance from all other vertices of𝑄 to the supporting hyperplane of the facet containing
the edge, and
the depth at which the intersection point 𝑝 = 𝑅 ∩𝑊 lies in the interior of the ridge 𝑅.

Lemma 5.5 shows that if these two quantities are bounded below by 𝛿 and 𝑟 respectively, then
their product, 𝑟𝛿/3, guarantees a significant edge-to-vertex gap in the projected polygon 𝑄 ∩𝑊 .

LEMMA 5.5. Let𝑊 ⊆ R𝑑 be a two-dimensional linear subspace, 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑 be a
non-degenerate polytope with a non-degenerate intersection with𝑊 such that max𝑖, 𝑗∈[𝑛] ∥𝑎𝑖−𝑎 𝑗 ∥ ≤
3 and𝑊 ∩ 𝑄 ≠ ∅. Fix any facet 𝐹 of 𝑄 such that 𝐹 ∩𝑊 ≠ ∅ and any ridge 𝑅 ⊆ 𝐹 of 𝐹 such that
𝑊 ∩ 𝑅 is a singleton set {𝑝}. Let 𝛿, 𝑟 ≥ 0 be such that

1. (distance between 𝐹 and other vertices) ∀𝑎𝑘 ∉ 𝐹, dist(affhull(𝐹), 𝑎𝑘) ≥ 𝛿;
2. (Inner radius of 𝑅) dist(affhull(𝐹 ∩𝑊), 𝜕𝑅) ≥ 𝑟.

Then for any 𝑝 ∈ 𝐹 ∩𝑊 , the outer unit normal vector 𝜃 ∈𝑊 to the edge 𝐹 ∩𝑊 satisfies

𝜃⊤𝑝 − 𝜃⊤𝑝′ ≥ 𝛿𝑟/3,

where 𝑝′ ∈ 𝑄 ∩𝑊 is the next vertex after 𝐹 ∩𝑊 in clockwise order.

The reader who desires a more intuitive illustration of the geometry involved may take a
look at Figure 2 from the next lemma, where relevant concepts are depicted as they happen
for 𝑑 = 4. The simplex is the “next” facet after 𝐹, and its bottom face 𝐵 is the ridge of 𝑄 that
is shared with 𝐹. The distance from 𝑏1 to 𝐵 is large due to the first assumption of Lemma 5.5,
and the distance from 𝑞 to the boundary of 𝐵 is large due to the second assumption. To map
the depicted facet to a three-dimensional space for the purpose of the illustration, it has been
projected orthogonally to the subspace perpendicular to 𝐹 ∩𝑊 .

We remark that Lemma 5.5 gives a sufficient condition assuming that {𝑎𝑖 : 𝑖 ∈ [𝑛]} is
fixed. In later subsections, our goal is to show this sufficient condition actually occurs with high
probability even when {𝑎𝑖 : 𝑖 ∈ [𝑛]} are Laplace-Gaussian distributed random variables.
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To start, we show a lemma about the distance from a point in the simplex to the affine
hull of its neighboring facet.

LEMMA 5.6. Given 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1 such that conv(𝑏1, . . . , 𝑏𝑑) is non-degenerate. For any
𝐷 > 0, suppose

1. ∀𝑖, 𝑗 ∈ [𝑑], ∥𝑏𝑖 − 𝑏 𝑗 ∥ ≤ 𝐷;
2. dist(𝑏1, affhull(𝑏2, . . . , 𝑏𝑑)) ≥ 𝛿;
3. There exists 𝑞 ∈ conv(𝑏2, . . . , 𝑏𝑑) such that dist(𝑞, 𝜕(conv(𝑏2, . . . , 𝑏𝑑))) ≥ 𝑟.

Then we have dist(𝑞, affhull(𝑏1, . . . , 𝑏𝑑−1)) ≥ 𝑟𝛿/𝐷.

PROOF . For simplicity, write 𝐵 = conv(𝑏2, . . . , 𝑏𝑑) and 𝐵′ = conv(𝑏1, . . . , 𝑏𝑑−1). Let 𝑞′ = 𝜋𝐵′ (𝑞)
be the point closest to 𝑞 on affhull(𝐵′), i.e., ∥𝑞 − 𝑞′∥ = dist(𝑞, affhull(𝑏1, . . . , 𝑏𝑑−1)).

Let 𝑥 = (𝐵 ∩ 𝐵′) ∩ affhull(𝑏1, 𝑞, 𝑞′) be its intersection between the two-dimensional plane
affhull(𝑏1, 𝑞, 𝑞′) and the (𝑑 − 3)-dimensional ridge 𝐵 ∩ 𝐵′ (which gives a unique point). (See
Figure 2 for an illustration). Consider the triangle conv(𝑏1, 𝑞, 𝑥) and calculate its area in two

𝑏1

𝐵

𝐵′

𝑞

𝑞′𝑥

𝑏𝑑

Figure 2. Illustration of Lemma 5.6 when 𝑑− 1 = 3. In light green is the intersection between the
two-dimensional plane affhull(𝑏1, 𝑞, 𝑞

′) and conv(𝑏1, . . . , 𝑏𝑑). The red triangle is conv(𝑏1, 𝑥, 𝑞). The bottom
face is 𝐵 and the left-facing back face is 𝐵′.

different ways. On one hand, it has base conv(𝑏1, 𝑥) of length ∥𝑏1 − 𝑥∥ ≤ 𝐷 with height
dist(𝑞, affhull(𝑏1, 𝑥)) = ∥𝑞 − 𝑞′∥, which gives that the area of the triangle is at most 𝐷∥𝑞 − 𝑞′∥/2.
On the other hand, this triangle has base conv(𝑥, 𝑞) of length ∥𝑥 − 𝑞∥ ≥ dist(𝑞, 𝜕(𝐵)) ≥ 𝑟 with
height dist(𝑏1, affhull(𝑥, 𝑞)) ≥ dist(𝑏1, affhull(𝐵)) ≥ 𝛿, which gives that the area of the triangle
is at least 𝑟𝛿/2.

Combining the above two ways of determining the area of triangle conv(𝑏1, 𝑞, 𝑥), we have
𝐷∥𝑞 − 𝑞′∥/2 ≥ 𝑟𝛿/2. Therefore we have dist(𝑞, affhull(𝐵′)) = ∥𝑞 − 𝑞′∥ ≥ 𝑟𝛿

𝑅 as desired. ■
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What Lemma 5.6 tells us is that, if we have sufficiently strong information about the
geometry in base of a simplex (conditions 1 and 2) then we can relate the height of that simplex
to the length of a given chord. In our setting, we let a ridge of the polar polytope play the role of
the base, and take the apex to be one of the vertices 𝑎𝑖 not contained in the chosen facet.

To prove our main deterministic geometric result (Lemma 5.5), we squash the configuration
by projecting it orthogonally onto the (𝑑 − 1)-dimensional subspace 𝑠⊥ orthogonal to the edge
direction. Under this projection, the two neighboring ridges 𝑅 and 𝑅′ become adjacent facets
of a simplex, with the apex corresponding to the first vertex outside the facet 𝐹. The bounded
diameter, height, and inner radius conditions in Lemma 5.5 then align precisely with the
assumptions of Lemma 5.6, which allow us to apply it and lift the resulting bound back to the
original two-dimensional slice𝑊 .

aff(𝐹 ∩𝑊)

𝑄

𝑊

𝐹

𝑅

𝑝

𝑝′

𝑅
′

𝑠

𝜃 ∈𝑊

𝜃
⊤ (𝑝 − 𝑝′)

𝜃

Figure 3. Illustration of the variables in Lemma 5.5 for 𝑑 = 3. The light-green parallelogram is the
two-dimensional plane 𝑊. The red arrows are 𝜃 (outward unit normal of 𝐹) and 𝜃 = 𝜋𝑊 (𝜃)/∥𝜋𝑊 (𝜃)∥. The
red points 𝑝 =𝑊 ∩ 𝑅 and 𝑝′ =𝑊 ∩ 𝑅′ are two consecutive points on the polygon 𝑄 ∩𝑊. The red dashed
line demonstrates the edge-to-vertex distance 𝜃⊤(𝑝 − 𝑝′).

PROOF OF LEMMA 5.5 . Write 𝑅′ for the ridge of𝑄 such that {𝑝′} = 𝑅′∩𝑊 . Since 𝑝′ ∈ 𝑄∩𝑊
is adjacent to vertex 𝑝 and the edge 𝐹 ∩𝑊 , by Fact 2.20 we may relabel the 𝑎𝑖 such that 𝑅′ =
conv(𝑎1, . . . , 𝑎𝑑−1), 𝑅 = conv(𝑎2, . . . , 𝑎𝑑), and 𝐹 = conv(𝑎2, . . . , 𝑎𝑑+1) without loss of generality.
Let 𝜃 ∈ S𝑑−1 denote the outward unit normal to 𝐹. This normal vector satisfies

𝛿 ≤ min
𝑖∈[𝑛]
𝑎𝑖∉𝐹

𝜃𝑇 (𝑝 − 𝑎𝑖) ≤ 𝜃⊤(𝑝 − 𝑎1).

Let 𝑠 ∈ S𝑑−1 be a unit vector indicating the direction of the (one-dimensional) line 𝐹 ∩𝑊 . This
vector is unique up to sign. Also, let 𝜃 = 𝜋𝑊 (𝜃)/∥𝜋𝑊 (𝜃)∥ be the outward unit normal to 𝐹 ∩𝑊 in
the two-dimensional plane𝑊 . See Figure 3 for an illustration of the variables for 𝑑 = 3. Notice
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that 𝜃 and 𝑠 form an orthonormal basis of𝑊 . Therefore we get

𝜃⊤(𝑝 − 𝑝′) = 𝜃⊤𝜋𝑠⊥ (𝑝 − 𝑝′) = ∥𝜋𝑠⊥ (𝑝 − 𝑝′)∥ (16)

Here the last equality comes from (𝑝 − 𝑝′) ∈𝑊 = span(𝜃, 𝑠), so 𝜋𝑠⊥ (𝑝 − 𝑝′) = 𝜋𝜃(𝑝 − 𝑝′).
Now we focus on the (𝑑 − 1)-dimensional space 𝑠⊥, and consider the orthogonal pro-

jections 𝜋𝑠⊥ (𝑎1), . . . , 𝜋𝑠⊥ (𝑎𝑑). Since the diameter of conv(𝑎1, . . . , 𝑎𝑑) is at most 3, we have
max𝑖, 𝑗∈[𝑑] ∥𝜋𝑠⊥ (𝑎𝑖) − 𝜋𝑠⊥ (𝑎 𝑗)∥ ≤ 3. By definition, 𝜃 is a unit normal of 𝑅, so since 𝑠 ∈ 𝑅, we have
𝜃 ∈ 𝑠⊥. It follows that 𝜃 is also a unit normal of 𝜋𝑠⊥ (𝑅) = 𝜋𝑠⊥ (conv(𝑎2, . . . , 𝑎𝑑)). This gives

dist(𝜋𝑠⊥ (𝑎1), affhull(𝜋𝑠⊥ (𝑅))) = 𝜃⊤(𝑝 − 𝑎1) ≥ 𝛿.

Also, since dist(𝐹 ∩𝑊, 𝜕𝑅) ≥ 𝑟 and 𝐹 ∩𝑊 is one-dimensional, after the projection to 𝑠⊥ we have

dist(𝜋𝑠⊥ (𝑝), 𝜕𝜋𝑠⊥ (𝑅)) = dist(affhull(𝐹 ∩𝑊), 𝜕𝑅) ≥ 𝑟.

Therefore we can use Lemma 5.6 to get

∥𝜋𝑠⊥ (𝑝) − 𝜋𝑠⊥ (𝑝′)∥ ≥ dist(𝜋𝑠⊥ (𝑝), affhull(𝜋𝑠⊥ (𝑅′))) ≥ 𝑟𝛿/3,

where the first step comes from 𝜋𝑠⊥ (𝑝′) ∈ affhull(𝜋𝑠⊥ (𝑅′)). The lemma then follows from
(16). ■

5.3 Randomized Lower-Bound for 𝜹: Distance between vertices and facets

In this section, we show that the affine hull of a given facet 𝐹 of the polytope conv(𝑎1, . . . , 𝑎𝑛) is
Ω( 1

𝐿𝑑 log 𝑛)-far away to other vertices with good probability, or in other words, the distance 𝛿
in Lemma 5.5 is at least Ω( 1

𝐿𝑑 log 𝑛) with good probability. Our main result of this section is as
follows:

LEMMA 5.7 (Randomized lower-bound for 𝛿). Let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be independent 𝐿-log-
Lipschitz random vectors. For any 𝐼 ∈ ([𝑛]

𝑑

)
such that Pr[𝐸𝐼] ≥ 10

(𝑛
𝑑

)−1, we have

Pr[ min
𝑘∈[𝑛]\𝐼

dist(affhull(𝐹𝐼), 𝑎𝑘) ≥ 1
10𝑒3𝑑𝐿 log 𝑛

) | 𝐸𝐼] ≥ 0.72.

Intuition The proof of this lemma will span this entire subsection. Let us start with some
words on the intuition behind it. Assume affhull(𝐹𝐼) is fixed arbitrarily. Then the quantities
dist(affhull(𝐹𝐼), 𝑎𝑘) are determined solely by the points 𝑎𝑘, 𝑘 ∈ [𝑛] \ 𝐼 . The points are 𝐿-
log-Lipschitz, which makes each signed distance |𝜃⊤𝑎𝑘 | = dist(affhull(𝐹𝐼), 𝑎𝑘) ∈ R into an
𝐿-log-Lipschitz random variable as well. Any 𝐿-log-Lipschitz random variable has its probability
density function pointwise upper bounded by 𝐿, and hence the probability that for a given
𝑘 ∈ [𝑛] \ 𝐼 we have Pr[𝜃⊤𝑎𝑘 ∈ [−𝜀, 𝜀]] ≤ 2𝜀𝐿. A union bound would then give

Pr[ min
𝑘∈[𝑛]\𝐼

dist(affhull(𝐹𝐼), 𝑎𝑘) ≤ 𝜀] ≤ 2(𝑛 − 𝑑)𝜀𝐿.
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Taking 𝜀 = 0.28
2(𝑛−𝑑)𝐿 would give us a bound on the probability.

It is clear that this weaker version of Lemma 5.7 would be relatively easy to prove. However,
it has a linear dependence on 𝑛 and thus it would add a factor of

√
𝑛 to our shadow bound. This

is undesirable. To obtain the stronger conclusion, we consider the expected number of points
at close distance to affhull(𝐹𝐼).

Pr
[

min
𝑘∈[𝑛]\𝐼

dist(affhull(𝐹𝐼), 𝑎𝑘) ≤ 𝜀
��� 𝐸𝐼 ] ≤ E

[
|{𝑖 ∈ [𝑘] \ 𝐼 : dist(affhull(𝐹𝐼), 𝑎𝑘) ≤ 𝜀}|

��� 𝐸𝐼 ] . (17)

If 𝜀 ≤ 1/𝐿 then we can use 𝐿-log-Lipschitzness to derive a lower bound on the number of points
𝑎𝑘 lying above (or below) the affine subspace affhull(𝐹𝐼). What we prove is that if (17) is large
then (without conditioning on 𝐸𝐼) both the expected number of points above affhull(𝐹𝐼) and
the expected number of points below affhull(𝐹𝐼) are at least Ω( 1

𝜀𝐿) times as large as (17).
However, recall that the event 𝐸𝐼 requires all points to lie on the same side of affhull(𝐹𝐼).

If there is simultaneously a point above affhull(𝐹𝐼) and a point below affhull(𝐹𝐼) then 𝐸𝐼 does
not hold. Using the Chernoff bound we can show, conditional on some affhull(𝐹𝐼) = 𝐻 , that
if we have Pr[𝐸𝐼 | affhull(𝐹𝐼) = 𝐻] ≥ 𝑛−𝑑 then at least one of the expected number of points
above affhull(𝐹𝐼) or the expected number of points below affhull(𝐹𝐼) must be at most 2𝑑 log 𝑛.
If one of these is bounded from above, then (17) must be bounded from above. Taking proper
care to observe that those affine subspaces 𝐻 for which Pr[𝐸𝐼 | affhull(𝐹𝐼) = 𝐻] ≥ 𝑛−𝑑 together
account for most of the probability mass, this will yield the desired result.

Proving the lemma To show Lemma 5.7, we fix any 𝐼 ∈ ([𝑛]
𝑑

)
of consideration. Without loss of

generality, assume 𝐼 = [𝑑] and write 𝐸 = 𝐸[𝑑] . We define the following event 𝐵𝜀 indicating that
the distance from affhull(𝐹[𝑑]) to other vertices is at least 𝜀.

DEF IN IT ION 5.8 (Separation by the margin of a facet). Let 𝜃 ∈ S𝑑−1, 𝑡 ∈ R be as in Defini-
tion 2.14. For any 𝜀 > 0, let 𝐵+𝜀 denote the event that 𝜃⊤𝑎𝑖 < 𝑡 − 𝜀 for all 𝑖 ∈ [𝑛] \ [𝑑] and 𝐵−𝜀
denote the event that 𝜃⊤𝑎𝑖 > 𝑡 + 𝜀 for all 𝑖 ∈ [𝑛] \ [𝑑]. We write 𝐵𝜀 = 𝐵+𝜀 ∨ 𝐵−𝜀 .

In the following lemma, we show that for sufficiently small 𝜀, Pr[𝐸 ∧ 𝐵𝜀] is still a constant
fraction of Pr[𝐸].

LEMMA 5.9. For any 0 < 𝜀 ≤ 1
10𝑒3𝐿𝑑 log 𝑛 it holds that

Pr[𝐸] ≤
(
𝑛

𝑑

)−1

+ 5
4
· Pr[𝐸 ∧ 𝐵𝜀] .

PROOF . Writing random variables as subscripts to denote which expectation is over which
variables, we start by using Fubini’s theorem to write

Pr
𝑎1,...,𝑎𝑛

[𝐸] = E𝑎1,...,𝑎𝑑 [ Pr
𝑎𝑑+1,...,𝑎𝑛

[𝐸]] .
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Fix any 𝑎1, . . . , 𝑎𝑑 ∈ R𝑛 subject to conv(𝑎1, . . . , 𝑎𝑑) ∩𝑊 ≠ ∅ and the non-degeneracy assump-
tions in Fact 2.19. Define 𝜃 ∈ S𝑑−1, 𝑡 > 0 as described in Definition 2.14, i.e., 𝜃⊤𝑎𝑖 = 𝑡 for each
𝑖 ∈ [𝑑]. Write 𝑠𝑖 = 𝜃⊤𝑎𝑖 for each 𝑖 ∈ [𝑛] \ [𝑑]. We note that 𝑠𝑖 is an 𝐿-log-Lipschitz random
variable for all 𝑖 ∈ [𝑛]\[𝑑]. Moreover, over the remaining randomness in 𝑎𝑑+1, . . . , 𝑎𝑛, we have
Pr[𝐸] = Pr[𝐵+0] + Pr[𝐵−0 ] and Pr[𝐵𝜀] = Pr[𝐵+𝜀 ] + Pr[𝐵−𝜀 ]. We will show that

Pr[𝐵+0] ≤
1

2
(𝑛
𝑑

) + 5
4

Pr[𝐵+𝜀 ] (18)

and the appropriate statement will follow for 𝐵−𝜀 analogously. Putting together this will prove
the lemma. If Pr[𝐵+0] ≤ 1

2
(𝑛
𝑑

)−1 then the desired inequality holds directly.
In order to prove (18) we require the following claim:

CLAIM 5.10. Conditional on 𝜃, 𝑡, if Pr[𝐵+0 | 𝜃, 𝑡] ≥ 𝑛−𝑑 thenE[#{𝑖 ∈ [𝑛]\[𝑑] : 𝑠𝑖 ≥ 𝑡}] ≤ 2𝑑 log 𝑛.
If Pr[𝐵−0 | 𝜃, 𝑡] ≥ 𝑛−𝑑 then E[#{𝑖 ∈ [𝑛] \ [𝑑] : 𝑠𝑖 ≤ 𝑡}] ≤ 2𝑑 log 𝑛.

PROOF . We prove the first implication, and the second follows analogously. For each 𝑖 ∈
[𝑛] \ [𝑑], let 𝑋𝑖 ∈ {0, 1} have value 1 if and only if 𝑠𝑖 ≥ 𝑡. Since 𝜃, 𝑡 are fixed and depend only
on 𝑎1, . . . , 𝑎𝑑 , the random variables 𝑋𝑑+1, . . . , 𝑋𝑛 are independent. Write 𝑋 =

∑𝑛
𝑖=𝑑+1 𝑋𝑖 . The

Chernoff bound gives

Pr[𝑋 = 0] ≤ exp
(
−E[𝑋]

2

)
.

As such, E[𝑋] > 2𝑑 log 𝑛 would imply Pr[𝑋 = 0] < 𝑛−𝑑 , contradicting the original assumption
that Pr[𝑋 = 0] ≥ 𝑛−𝑑 . It follows that E[𝑋] ≤ 2𝑑 log 𝑛. ■

Thus, in what remains, we may suppose that 𝑃𝑟[𝐵+0] > 1/2
(𝑛
𝑑

)−1. Fix any 𝑖 ∈ [𝑛]\[𝑑]
and let 𝜇𝑖 denote the induced probability density function of 𝑠𝑖 . We then have a sequence of
inequalities as found below. The first two inequalities above follow from 𝐿-log-Lipschitzness of
𝜇𝑖 . For the first inequality in particular, note that for any 𝑠 ∈ [− 1

𝐿 , 0], we have |𝑠 − 𝜀𝐿𝑠| ≤ 1/𝐿
from 𝜀 ≤ 1/𝐿. This then gives 𝜇𝑖 (𝑡+𝜀𝐿𝑠)

𝜇𝑖 (𝑡+𝑠) ≤ exp(𝐿 · (1 − 𝜀𝐿)𝑠) ≤ 1.

Pr[𝑠𝑖 ≥ 𝑡 − 𝜀 | 𝑠𝑖 ≤ 𝑡] =
∫ 0
−𝜀 𝜇𝑖 (𝑡 + 𝑠)d𝑠∫ 0
−∞ 𝜇𝑖 (𝑡 + 𝑠)d𝑠

=
𝜀𝐿

∫ 0
−1/𝐿 𝜇𝑖 (𝑡 + 𝜀𝐿𝑠)d𝑠∫ 0
−∞ 𝜇𝑖 (𝑡 + 𝑠)d𝑠

≤ 𝑒
𝜀𝐿

∫ 0
−1/𝐿 𝜇𝑖 (𝑡 + 𝑠)d𝑠∫ 0
−∞ 𝜇𝑖 (𝑡 + 𝑠)d𝑠

= 𝑒
𝜀𝐿

∫ 1/𝐿
0 𝜇𝑖 (𝑡 + 𝑠 − 1/𝐿)d𝑠∫ 1/𝐿

−∞ 𝜇𝑖 (𝑡 + 𝑠 − 1/𝐿)d𝑠
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≤ 𝑒3𝜀𝐿
∫ 1/𝐿

0 𝜇𝑖 (𝑡 + 𝑠)d𝑠∫ 1/𝐿
−∞ 𝜇𝑖 (𝑡 + 𝑠)d𝑠

= 𝑒3𝜀𝐿 Pr[𝑠𝑖 ≥ 𝑡 | 𝑠𝑖 ≤ 𝑡 + 1/𝐿]
≤ 𝑒3𝜀𝐿 Pr[𝑠𝑖 ≥ 𝑡] . (19)

The third inequality, on the final line, follows from the fact that 𝑠𝑖 ≥ 𝑡 + 1/𝐿 implies 𝑠𝑖 ≥ 𝑡, and
hence Pr[𝑠𝑖 ≥ 𝑡 | 𝑠𝑖 > 𝑡 + 1/𝐿] = 1. As such we can, for fixed 𝑡, 𝜃, upper-bound the probability
over 𝑠1, . . . , 𝑠𝑑 that, conditional on 𝐵+0 , there exists a vertex being 𝜀-close to affhull(𝐹𝐼):

Pr[¬𝐵+𝜀 | 𝐵+0] = Pr[∃𝑖 ∈ [𝑛] \ [𝑑] : 𝑠𝑖 ≥ 𝑡 − 𝜀 | 𝐵+0] (By union bound)

≤
∑︁

𝑖∈[𝑛]\[𝑑]
Pr[𝑠𝑖 ≥ 𝑡 − 𝜀 | 𝐵+0]

≤
∑︁

𝑖∈[𝑛]\[𝑑]
𝑒3𝜀𝐿 Pr[𝑠𝑖 ≥ 𝑡] (By (19))

= 𝑒3𝜀𝐿 E[#{𝑖 ∈ [𝑛] \ [𝑑] : 𝑠𝑖 ≥ 𝑡}] . (20)

To interpret the last equality above, we observe that #{𝑖 ∈ [𝑛] \ [𝑑] : 𝑠𝑖 ≥ 𝑡} = 0 if and only
if 𝐵+0 happens. Then by applying (20) to Claim 5.10 (note that we are using the assumption
𝑃𝑟[𝐵+0] > 1/2

(𝑛
𝑑

)−1) with our choice of 𝜀 we conclude that

Pr[𝐵+0] ≤
5
4

Pr[𝐵+𝜀 ] ≤
1
2

(
𝑛

𝑑

)−1

+ 5
4

Pr[𝐵+𝜀 ] . ■

Now we can prove Lemma 5.7 using Lemma 5.9.

PROOF OF LEMMA 5.7 . Fix any 𝐼 ∈ ([𝑛]
𝑑

)
. By Lemma 5.9, we have that Pr[𝐸𝐼] ≤ (𝑛

𝑑

)−1 + 5
4 ·

Pr[𝐸𝐼 ∧ (𝛿 ≥ 𝜀)] for 𝜀 = 1
10𝑒3𝐿𝑑 log 𝑛 . This gives that

Pr[𝐸𝐼 ∧ (𝛿 ≥ 𝜀)]
Pr[𝐸𝐼] ≥ 4

5
−

(
𝑛

𝑑

)−1

· 4
5 Pr[𝐸𝐼]

Moreover, since Pr[𝐸𝐼] ≥ 10
(𝑛
𝑑

)−1, we have

Pr[(𝛿 ≥ 𝜀) | 𝐸𝐼] = Pr[𝐸𝐼 ∧ (𝛿 ≥ 𝜀)]
Pr[𝐸𝐼]

≥ 4
5
−

(
𝑛

𝑑

)−1

· 4
5 Pr[𝐸𝐼] ≥ 0.72,

as desired. ■

5.4 Randomized Lower-Bound for 𝒓: Inner Radius of a Ridge Projected onto
(𝒅− 1)-Dimensional Subspace

In the next sections, we demonstrate that for any ridge 𝑅 of the polytope 𝑃, wherein 𝑅 ∩𝑊
is a vertex of 𝑃 ∩𝑊 , its inner radius—after projection onto the subspace orthogonal to the
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adjacent edge of 𝑃 ∩𝑊—is at least Ω(𝑑−4𝐿−2) with high probability. Essentially, this establishes
that the parameter 𝑟, as referred to in Lemma 5.5, is at least Ω(𝑑−4𝐿−2) with good probability.
We remark that Lemma 5.11 does not have an analogue when 𝑑 = 2. Moreover, it will require
substantially more technical effort. Its proof is similar to Lemma 4.1.1 (Distance bound) in [49],
their main technical result. In an effort to help the ease of understanding the larger structure,
some lemmas will be stated while their proofs will be given in later sections.

LEMMA 5.11 (Randomized Lower-bound for 𝑟). Let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be independent 𝐿-log-
Lipschitz random vectors. Let 𝐷 denote the event that ∀𝑖, 𝑗 ∈ [𝑛], ∥𝑎𝑖 − 𝑎 𝑗 ∥ ≤ 3. Fix any 𝐼 ∈ ([𝑛]

𝑑

)
and any 𝐽 ∈ ( 𝐼

𝑑−1
)
, we have

Pr[dist(𝑊∩affhull(𝑎𝑖 : 𝑖 ∈ 𝐼), 𝜕 conv(𝑎 𝑗 : 𝑗 ∈ 𝐽)) ≤ 1
19200𝑑4𝐿2 | 𝐸𝐼∧𝐴𝐽] ≤ 0.1+Pr[¬𝐷 | 𝐸𝐼∧𝐴𝐽] .

Then Lemma 5.11 will quickly from its lower-dimensional equivalent:

LEMMA 5.12 (Randomized lower bound for 𝑟 after change of variables). Let 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1

be random vectors with joint probability density proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇̄𝑖 (𝑏𝑖)

where 𝜇̄𝑖 is 𝐿-log-Lipschitz for each 𝑖 ∈ [𝑑]. Let 𝐷′ denote the event that the set {𝑏1, . . . , 𝑏𝑑} has
Euclidean diameter of at most 3. Fox any fixed one-dimensional line ℓ ⊆ R𝑑−1, we have that

Pr
[(

dist
(
ℓ, 𝜕 conv(𝑏1, . . . , 𝑏𝑑−1)

)
<

1
19200𝑑4𝐿2

)
| ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1) ≠ ∅

]
≤ 0.1 + Pr[¬𝐷′ | ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1) ≠ ∅] .

The proof of Lemma 5.12 will be presented in Section 5.5.

PROOF OF LEMMA 5.11 . We may assume without loss of generality that 𝐼 = [𝑑] and 𝐽 =

[𝑑 − 1]. Apply the change of variables 𝜙 as in Definition 2.14 to {𝑎𝑖 : 𝑖 ∈ [𝑑]} and obtain

𝜙(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑) = (𝑎1, . . . , 𝑎𝑑).

where 𝜃 ∈ S𝑑−1, 𝑡 ∈ R, 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1. For any 𝑖 ∈ [𝑛], let 𝜇𝑖 denote the probability density
function of 𝑎𝑖 . Writing the conditioning to (𝐸[𝑑] ∧ 𝐴[𝑑−1]) as part of the pdf, we find that the
joint probability density of 𝑡, 𝜃, 𝑏1, . . . , 𝑏𝑑 , 𝑎𝑑+1, . . . , 𝑎𝑛 is proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇̄𝑖 (𝑡, 𝜃, 𝑏𝑖) ·
𝑛∏

𝑖=𝑑+1
𝜇𝑖 (𝑎𝑖) · 1[𝐸[𝑑] ∧ 𝐴[𝑑−1]], (21)

where vol𝑑−1(·) is the volume function of (𝑑−1)-dimensional simplex in its spanning hyperplane,
𝜇̄𝑖 (𝑡, 𝜃, 𝑏𝑖) = 𝜇𝑖 (𝑡𝜃 + 𝑅𝜃(𝑏𝑖)) is the induced probability density of 𝑏𝑖 , which is 𝐿-log-Lipschitz, and
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1[·] denotes the indicator function. Write 𝑆 for the event that

dist(𝑊 ∩ affhull(𝑎𝑖 : 𝑖 ∈ 𝐼), 𝜕 conv(𝑎 𝑗 : 𝑗 ∈ 𝐽)) ≤ 1
19200𝑑4𝐿2 .

In this language, our goal is to prove that Pr[𝑆] ≤ 0.1 + Pr[¬𝐷].
Let 𝐷′ denote the event that ∥𝑏𝑖 − 𝑏 𝑗 ∥ ≤ 3 for all 𝑖, 𝑗 ∈ [𝑑]. Each of the events 𝐸𝐼 , 𝐴𝐽 , 𝑆, 𝐷′, 𝐷

are functions of the random variables 𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑑 , 𝑎𝑑+1, . . . , 𝑎𝑛. We then use Fubini’s theorem
to write

Pr
𝜃,𝑡,𝑏1,...,𝑏𝑑 ,𝑎𝑑+1,...,𝑎𝑛

[𝑆] = E𝜃,𝑡,𝑎𝑑+1,...,𝑎𝑛 [ Pr
𝑏1,...,𝑏𝑑

[𝑆]]

With probability 1 over the choice of 𝜃, 𝑡, 𝑎𝑑+1, . . . , 𝑎𝑛, the inner term satisfies all the conditions of
Lemma 5.12. Specifically, since the value of 1[𝐸[𝑑]] is already fixed, the intersection (𝑡𝜃+𝜃⊥)∩𝑊
is a line. Let ℓ ⊆ R𝑑−1 be the image of such line under the inverse change of variables 𝜙−1, i.e.,
(𝑡𝜃 + 𝜃⊥) ∩𝑊 = 𝑡𝜃 + 𝑅𝜃(ℓ). Then the event 𝐴[𝑑−1] is equivalent to ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1) ≠ ∅.
From Lemma 2.15, the joint probability distribution of 𝑏1, . . . , 𝑏𝑑 is thus proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇̄𝑖 (𝑏𝑖) · 1[ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1 ≠ ∅]

Applying Lemma 5.12 to the term Pr𝑏1,...,𝑏𝑑 [𝑆] we find

E𝜃,𝑡,𝑎𝑑+1,...,𝑎𝑛

[
Pr

𝑏1,...,𝑏𝑑
[𝑆]] ≤ E𝜃,𝑡,𝑎𝑑+1,...,𝑎𝑛

[
0.1 + Pr

𝑏1,...,𝑏𝑑
[¬𝐷′]]

= 0.1 + Pr[¬𝐷′] ≤ 0.1 + Pr[¬𝐷],

using Fubini’s theorem for the equality and the fact that ¬𝐷′ implies ¬𝐷 for the final inequality.
■

5.5 Proof of Lemma 5.12: Randomized lower bound for 𝒓 after change of variables

In this section, we deliver the proof of Lemma 5.12. We use the following two technical lemmas.
As in from the proof of Lemma 5.12 we define 𝜆 ∈ R𝑑−1

≥0 to be the unique solution to
∑𝑑−1
𝑖=1 𝜆𝑖𝑏𝑖 =

ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1) and
∑𝑑−1
𝑖=1 𝜆𝑖 = 1. First, we describe Lemma 5.13 which we will use to

show that every convex parameter 𝜆𝑖 is at least Ω(1/𝑑2𝐿) with constant probability.

LEMMA 5.13 (Lower-bound for Convex Parameters of Vertices on the Ridge). Let 𝑏1, . . . , 𝑏𝑑 ∈
R𝑑−1 be random vectors with joint probability density proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇̄𝑖 (𝑏𝑖)

where each 𝜇̄𝑖 : R𝑑−1 → R+ is 𝐿-log-Lipschitz. Let one-dimensional line ℓ ⊆ R𝑑−1 and conditional
on ℓ ∩ conv(𝑏𝑖 : 𝑖 ∈ [𝑑 − 1]) ≠ ∅. Let 𝜆 ∈ R𝑑−1+ be the unique solution to

∑𝑑−1
𝑖=1 𝜆𝑖𝑏𝑖 ∈ ℓ ∩ conv(𝑏𝑖 :
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𝑖 ∈ [𝑑 − 1]). Let 𝐷′ denote the event that ∀𝑖, 𝑗 ∈ [𝑑], ∥𝑏𝑖 − 𝑏 𝑗 ∥ ≤ 3. Then we have

Pr
[
∀𝑖 ∈ [𝑑 − 1] : 𝜆𝑖 ≥ 1

120𝑑2𝐿

����𝐷′ ∧ ℓ ∩ conv(𝑏𝑖 : 𝑖 ∈ [𝑑 − 1]) ≠ ∅
]
≥ 0.95.

We will prove Lemma 5.13 in Section 5.6.
Secondly, we present a lemma to lower bound the distance between each vertex 𝑏 𝑗 (where

𝑗 ∈ [𝑑 − 1]) and the (𝑑 − 3)-dimensional hyperplane spanned by the other vertices affhull(𝑏 𝑗 :
𝑗 ∈ [𝑑 − 1], 𝑗 ≠ 𝑖). Specifically, we show the following lemma:

LEMMA 5.14. Let 𝑏1, . . . , 𝑏𝑑 ∈ R𝑑−1 be random vectors with joint probability density proportional
to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑∏
𝑖=1

𝜇̄𝑖 (𝑏𝑖)

where each 𝜇̄𝑖 : R𝑑−1 → [0, 1] is 𝐿-log-Lipschitz. Given a one-dimensional line ℓ ⊆ R𝑑−1, let
𝑤 ∈ S𝑑−2 be any unit direction of ℓ. For any 𝑖 ∈ [𝑑 − 1] we have

Pr
[

dist
(
𝜋𝑤⊥ (𝑏𝑖), affhull(𝜋𝑤⊥ (𝑏 𝑗) : 𝑗 ∈ [𝑑 − 1], 𝑗 ≠ 𝑖)) ≥ 1

160𝑑2𝐿

��� ℓ ∩ conv(𝑏𝑖 : 𝑖 ∈ [𝑑 − 1]) ≠ ∅
]

≥ 1 − 1
20𝑑

.

We defer the proof of Lemma 5.14 to Section 5.7. In addition to the above two lemmas, we
need the following two basic linear algebraic statements.

FACT 5.15. Let ℓ ⊆ R𝑘 be an affine line and 𝑥 ∈ R𝑘 be a point. Suppose 𝑤 ∈ S𝑘−1 \ {0} points in
the direction of ℓ, i.e., that ℓ + 𝑤 = ℓ. Then dist(𝑥, ℓ) = dist(𝜋𝑤⊥ (𝑥), 𝜋𝑤⊥ (ℓ)).

PROOF . Let {𝑧} = ℓ∩(𝑥+𝑤⊥). This intersection is non-empty because𝑤 points in the direction
along ℓ and so must intersect any affine subspace orthogonal to𝑤. The intersection is a singleton
because if 𝑧, 𝑧′ were two distinct points in this set then 𝑧 − 𝑧′ ∈ 𝑤R ∩ 𝑤⊥ = {0}.

Since 𝑥 − 𝑧 ∈ 𝑤⊥, we have dist(𝑥, 𝑧) = dist(𝜋𝑤⊥ (𝑥), 𝜋𝑤⊥ (ℓ)). Also notice that for any
𝑧′ ∈ ℓ, 𝑧′ ≠ 𝑧,

∥𝑥 − 𝑧′∥2 = ∥𝜋𝑤(𝑥 − 𝑧′)∥2 + ∥𝜋𝑤⊥ (𝑥 − 𝑧′)∥2 ≥ ∥𝜋𝑤⊥ (𝑥 − 𝑧′)∥2 = ∥𝑥 − 𝑧∥2.

Therefore, dist(𝑥, ℓ) = ∥𝑥 − 𝑧∥ = dist(𝜋𝑤⊥ (𝑥), 𝜋𝑤⊥ (ℓ)). ■

FACT 5.16. Let 𝐻 ⊆ R𝑘 be a hyperplane, and let 𝑝1, . . . , 𝑝𝑘 ∈ 𝐻 and 𝑝𝑘+1 ∈ R𝑘, and assume
𝜆𝑘+1 ≥ 0.

Then

dist(
𝑘+1∑︁
𝑖=1

𝜆𝑖𝑝𝑖 , 𝐻) = 𝜆𝑘+1 dist(𝑝𝑘+1, 𝐻).

PROOF . Let 𝑦 ∈ R𝑘, 𝑡 ∈ R be such that 𝐻 = {𝑥 ∈ R𝑘 : 𝑦⊤𝑥 = 𝑡} and ∥ 𝑦∥ = 1.
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Now we have

dist(
𝑘+1∑︁
𝑖=1

𝜆𝑖𝑝𝑖 , 𝐻) = |𝑡 − 𝑦⊤(
𝑘+1∑︁
𝑖=1

𝜆𝑖𝑝𝑖) |

= |
𝑘+1∑︁
𝑖=1

𝜆𝑖 (𝑡 − 𝑦⊤𝑝𝑖) |

= |𝜆𝑘+1(𝑡 − 𝑦⊤𝑝𝑘+1) |
= 𝜆𝑘+1 dist(𝑝𝑘+1, 𝐻),

using that 𝑦⊤𝑝𝑖 = 𝑡 for all 𝑖 = 1, . . . , 𝑘. ■

Assuming Lemma 5.13 and Lemma 5.14, we can prove Lemma 5.12.

PROOF OF LEMMA 5.12 . We can bound the distance from ℓ to 𝜕 conv(𝑏1, . . . , 𝑏𝑑−1). Note
that generically 𝑤 is not parallel to any direction in affhull(𝑏1, . . . , 𝑏𝑑−1) which makes it so that
𝜋𝑤⊥ (conv(𝑏1, . . . , 𝑏𝑑−1)) is a simplex of the same dimension as conv(𝑏1, . . . , 𝑏𝑑−1).

dist
(
ℓ, 𝜕 conv(𝑏1, . . . , 𝑏𝑑−1)

)
= dist

(
𝜋𝑤⊥ (ℓ), 𝜋𝑤⊥ (𝜕 conv(𝑏1, . . . , 𝑏𝑑−1))

)
(By Fact 5.15)

= dist
(
𝜋𝑤⊥ (ℓ), 𝜕 conv(𝜋𝑤⊥ (𝑏1), . . . , 𝜋𝑤⊥ (𝑏𝑑−1))

)
= min
𝑖∈[𝑑−1]

dist
(
𝜋𝑤⊥ (ℓ), conv(𝜋𝑤⊥ (𝑏1), . . . , 𝜋𝑤⊥ (𝑏𝑖−1), 𝜋𝑤⊥ (𝑏𝑖+1), . . . , 𝜋𝑤⊥ (𝑏𝑑−1))

)
≥ min
𝑖∈[𝑑−1]

dist
(
𝜋𝑤⊥ (ℓ), affhull(𝜋𝑤⊥ (𝑏1), . . . , 𝜋𝑤⊥ (𝑏𝑖−1), 𝜋𝑤⊥ (𝑏𝑖+1), . . . , 𝜋𝑤⊥ (𝑏𝑑−1))

)
= min
𝑖∈[𝑑−1]

𝜆𝑖 · dist(𝜋𝑤⊥ (𝑏𝑖), affhull(𝜋𝑤⊥ (𝑏 𝑗) : 𝑗 ∈ [𝑑 − 1], 𝑗 ≠ 𝑖)) (By Fact 5.16)

≥ min
𝑖∈[𝑑−1]

𝜆𝑖 · min
𝑘∈[𝑑−1]

dist(𝜋𝑤⊥ (𝑏𝑘), affhull(𝜋𝑤⊥ (𝑏 𝑗) : 𝑗 ∈ [𝑑 − 1], 𝑗 ≠ 𝑘))

Where in the second step, we use the fact that 𝜋𝑤⊥ is an affine isomorphism restricting to
𝑏1, . . . , 𝑏𝑑−1, thus taking the boundary of conv(𝜋𝑤⊥ (𝑏1), . . . , 𝜋𝑤⊥ (𝑏𝑑−1)) commutes with the pro-
jection 𝜋⊥𝑤. In the fifth step, 𝜆 ∈ R𝑑−1

≥0 is the unique solution to
∑𝑑−1
𝑖=1 𝜆𝑖𝑏𝑖 = ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1)

and
∑𝑑−1
𝑖=1 𝜆𝑖 = 1. Additionally, assume ℓ = 𝑤R for a non-zero 𝑤 ∈ S𝑑−2. Abbreviate, for

𝑘 ∈ [𝑑 − 1],
𝑟𝑘 = dist(𝜋𝑤⊥ (𝑏𝑘), affhull(𝜋𝑤⊥ (𝑏 𝑗) : 𝑗 ∈ [𝑑 − 1], 𝑗 ≠ 𝑘)).

Let 𝑇 denote the event that ℓ ∩ conv(𝑏1, . . . , 𝑏𝑑−1) ≠ ∅. We now find using a union bound, for
any 𝛼, 𝛽 > 0,

Pr[dist(ℓ, 𝜕 conv(𝑏1, . . . , 𝑏𝑑−1)) < 𝛼𝛽 | 𝑇 ]
≤ Pr[ min

𝑖∈[𝑑−1]
𝜆𝑖 < 𝛼 | 𝑇 ] + Pr[ min

𝑘∈[𝑑−1]
𝑟𝑘 < 𝛽 | 𝑇 ]

≤ Pr[ min
𝑖∈[𝑑−1]

𝜆𝑖 < 𝛼 | 𝐷′ ∧ 𝑇 ] + Pr[ min
𝑘∈[𝑑−1]

𝑟𝑘 < 𝛽 | 𝑇 ] + Pr[¬𝐷′ | 𝑇 ]
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By Lemma 5.13 we know that Pr[min𝑖∈[𝑑−1] 𝜆𝑖 < 𝛼 | 𝐷′∧𝑇 ] ≤ 0.05 for𝛼 = 1
120𝑑2𝐿

. By Lemma 5.14,
we know that Pr[min𝑘∈[𝑑−1] 𝑟𝑘 < 𝛽 | 𝑇 ] ≤ ∑

𝑘∈[𝑑−1] Pr[𝑟𝑘 < 𝛽 | 𝑇 ] ≤ 0.05 for 𝛽 = 1
160𝑑2𝐿

. This
proves the lemma. ■

5.6 Proof of Lemma 5.13

Now we show that, with good probability, the convex multipliers 𝜆 are not too small.

PROOF OF LEMMA 5.13 . By using a union bound, it suffices to prove for each 𝑖 ∈ [𝑑 − 1]
that

Pr[𝜆𝑖 < 1
120𝑑2𝐿

| 𝐷′ ∧ ℓ ∩ conv(𝑏 𝑗 : 𝑗 ∈ [𝑑 − 1]) ≠ ∅] ≤ 1
20(𝑑 − 1) .

Fix any 𝑖 ∈ [𝑑 − 1], without loss of generality 𝑖 = 1. Recall that 𝑤 ∈ S𝑑−1 is such that ℓ = ℓ + 𝑤,
and hence that 𝜋𝑤⊥ (ℓ) is a singleton point. For ease of exposition we assume that the plane
𝑤⊥ is coordinatized such that 𝜋𝑤⊥ (ℓ) = 0 and hence ℓ = 𝑤R. Thus 𝜆 is defined to satisfy∑𝑑−1
𝑗=1 𝜆 𝑗𝜋𝑤⊥ (𝑏 𝑗) = 0.

Using the principle of deferred decision, we fix the values of 𝑏1−𝑏 𝑗 , 𝑗 ∈ [𝑑]. This determines
the shape of the simplex conv(𝑏 𝑗 : 𝑗 ∈ [𝑑]), including its volume. The remainder of this proof
will use the randomness in the position of the simplex in the subspace orthogonal to the line,
which we represent using𝜋𝑤⊥ (𝑏1). For the remainder of this proof, we can consider all 𝑏 𝑗 , 𝑗 ∈ [𝑑]
to be functions of 𝑏1. The position 𝜋𝑤⊥ (𝑏1) has probability density 𝜇′(𝜋𝑤⊥ (𝑏1)) ∝

∏𝑑
𝑗=1 𝜇 𝑗 (𝑏 𝑗),

which is 𝑑𝐿-log-Lipschitz in 𝜋𝑤⊥ (𝑏1) with respect to the (𝑑 − 2)-dimensional Lebesgue measure
on 𝑤⊥.

Define 𝑀 = conv(𝜋𝑤⊥ (𝑏1 − 𝑏 𝑗) : 𝑗 ∈ [𝑑 − 1]) ⊆ 𝑤⊥ and note that, due to our fixing the
values of 𝑏1 − 𝑏 𝑗 in the previous paragraph, the shape 𝑀 is fixed and we can see that that
𝜋𝑤⊥ (𝑏1) ∈ 𝑀 if and only if 𝜆 ≥ 0. It remains to show that

Pr[𝜆1 <
1

120𝑑2𝐿
| 𝐷′ ∧ 𝜋𝑤⊥ (𝑏1) ∈ 𝑀] < 1

20𝑑
. (22)

For any 𝑗 ∈ [𝑑 − 1], let 𝑙 𝑗 : 𝑀 → [0, 1] be the function sending any point to its 𝑗’th convex
coefficient, i.e., the functions satisfy

∑𝑑−1
𝑗=1 𝑙 𝑗 (𝑥) = 1 and

∑𝑑−1
𝑗=1 𝑙 𝑗 (𝑥) · 𝜋𝑤⊥ (𝑏1 − 𝑏 𝑗) = 𝑥 for every

𝑥 ∈ 𝑀 . For any 1 ≥ 𝛼 ≥ 0, observe that 𝑙1 takes values in the interval [𝛼, 1] on the set (1 − 𝛼)𝑀 .
Hence we get

Pr[𝜆1 ≥ 𝛼 | 𝜋𝑤⊥ (𝑏1) ∈ 𝑀] =
∫
𝑀
𝜇′(𝑥)1[𝑙1(𝑥) ≥ 𝛼]d𝑥∫

𝑀
𝜇′(𝑥)d𝑥

≥
∫
(1−𝛼)𝑀 𝜇′(𝑥)d𝑥∫
𝑀
𝜇′(𝑥)d𝑥 (∀𝑥 ∈ (1 − 𝛼)𝑀 , 𝑙1(𝑥) ≥ 𝛼)

=
(1 − 𝛼)𝑑−2

∫
𝑀
𝜇′((1 − 𝛼)𝑥)d𝑥∫

𝑀
𝜇′(𝑥)d𝑥
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≥ (1 − 𝛼)𝑑−2 max
𝑥∈𝑀

𝑒−𝑑𝐿∥𝛼𝑥∥ ,

where in the last inequality, we use 𝑑𝐿-log-Lipschitzness of 𝜇′ to see that for any 𝑠 ∈ 𝑀 we have
𝜇′ ((1−𝛼)𝑠)

𝜇′ (𝑠) ≤ max𝑥∈𝑀 𝑒−𝑑𝐿∥𝛼𝑥∥ .
By definition of 𝐷′, we know that 𝑀 has Euclidean diameter at most 3. Thus we can bound

∥𝛼𝑥∥ ≤ 3𝛼 for any 𝑥 ∈ 𝑀 . Now take 𝛼 = 1
120𝑑2𝐿

, we find

Pr[(𝜆𝑖 < 1
120𝑑2𝐿

) | 𝐷′ ∧ 𝜋𝑤⊥ (𝑏𝑖) ∈ 𝑀] ≤ 1 − Pr[𝜆𝑖 ≥ 1
120𝑑2𝐿

| 𝐷′ ∧ 𝜋𝑤⊥ (𝑏𝑖) ∈ 𝑀]

≤ 1 − (1 − 1
120𝑑2𝐿

)𝑑−2𝑒−1/40𝑑 ≤ 1
20(𝑑 − 1) ,

where the last inequality comes from 𝑑 ≥ 3 and 𝐿 ≥ 1. Thus (22) holds as desired. ■

5.7 Proof of Lemma 5.14

To show Lemma 5.14 on the width of the facet, we need the following upper bound about the
mass around zero for a random variable whose density is formed by a log-Lipschitz function
multiplied by a convex function. Its function is to deal with the volume term that we receive
from the Jacobian in Lemma 2.15.

LEMMA 5.17. Assume that ℎ : R → R≥0 is a 𝐾-log-Lipschitz function and 𝑔 : R → R≥0 is a
convex function such that

∫ ∞
−∞ 𝑔 (𝑥) ·ℎ(𝑥)d𝑥 = 1. Suppose that 𝑋 ∈ R is distributed with probability

density 𝑔 (𝑋) · ℎ(𝑋). For any 𝜀 > 0 we have Pr[𝑋 ∈ [−𝜀, 𝜀]] ≤ 8𝜀𝐾 .

PROOF . We can assume that 𝜀 < 1/(8𝐾), for otherwise the bound is trivial. First, we use the
rudimentary upper bound

Pr
[
𝑋 ∈ [−𝜀, 𝜀]] ≤ Pr

[
𝑋 ∈ [−𝜀, 𝜀] | 𝑋 ∈ [−1/𝐾, 1/𝐾]] = ∫ 𝜀

−𝜀 𝑔 (𝑥) · ℎ(𝑥)d𝑥∫ 1/𝐾
−1/𝐾 𝑔 (𝑥) · ℎ(𝑥)d𝑥

.

Log-Lipschitzness implies that for any 𝛾 > 0 we have

𝑒−𝛾𝐾ℎ(0)
∫ 𝛾

−𝛾
𝑔 (𝑥)d𝑥 ≤

∫ 𝛾

−𝛾
𝑔 (𝑥) · ℎ(𝑥)d𝑥 ≤ 𝑒𝛾𝐾ℎ(0)

∫ 𝛾

−𝛾
𝑔 (𝑥)d𝑥,

and hence we get

Pr[𝑋 ∈ [−𝜀, 𝜀]] ≤ 𝑒(1/𝐾+𝜀)𝐾
∫ 𝜀

−𝜀 𝑔 (𝑥)d𝑥∫ 1/𝐾
−1/𝐾 𝑔 (𝑥)d𝑥

≤ 𝑒1+𝜀𝐾 2𝜀 · max𝑥∈[−𝜀,𝜀] 𝑔 (𝑥)∫ 1/𝐾
−1/𝐾 𝑔 (𝑥)d𝑥

Since 𝑔 (𝑥) is convex, at least one of

max
𝑥∈[−𝜀,𝜀]

𝑔 (𝑥) ≤ min
𝑥∈[−1/𝐾,−𝜀]

𝑔 (𝑥) or max
𝑥∈[−𝜀,𝜀]

𝑔 (𝑥) ≤ min
𝑥∈[𝜀,1/𝐾]

𝑔 (𝑥)
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holds. Without loss of generality, assume the second case holds. Then we bound

max𝑥∈[−𝜀,𝜀] 𝑔 (𝑥)∫ 1/𝐾
−1/𝐾 𝑔 (𝑥)d𝑥

≤ max𝑥∈[−𝜀,𝜀] 𝑔 (𝑥)∫ 1/𝐾
𝜀

𝑔 (𝑥)d𝑥
≤ 1

1/𝐾 − 𝜀.

To summarize, we find Pr[𝑋 ∈ [−𝜀, 𝜀]] ≤ 𝑒1+𝜀𝐾 · 2𝜀
1/𝐾−𝜀 . Since 𝜀 < 1/(8𝐾) this implies

Pr[𝑋 ∈ [−𝜀, 𝜀]] ≤ 2𝑒9/8 · 8
7
· 𝜀𝐾 ≤ 8𝜀𝐾. ■

Now we show Lemma 5.14.

PROOF OF LEMMA 5.14 . In the following arguments, we condition on ℓ ∩ conv(𝑏𝑖 : 𝑖 ∈
[𝑑 − 1]) ≠ ∅. Without loss of generality, set 𝑖 = 𝑑 − 1 and assume that ℓ is a linear subspace, i.e.,
𝜋𝑤⊥ (ℓ) = 0.

We start with a coordinate transformation. Let 𝜙 ∈ 𝑤⊥ ∩ S𝑑−2 denote the unit vector
satisfying 𝜙⊤𝑏1 = 𝜙⊤𝑏 𝑗 > 0 for all 𝑗 = 1, . . . , 𝑑 − 1. Note that 𝜙 is uniquely defined almost
surely: 𝑤⊥ is a (𝑑 − 2)-dimensional linear space and we impose (𝑑 − 3) linear constraints
{𝜙⊤𝑏1 = 𝜙⊤𝑏 𝑗 ,∀ 𝑗 ∈ [𝑑 − 2]}. Almost surely, these give a one-dimensional linear subspace which,
after adding the unit norm and 𝑏⊤1 𝜙 > 0 constraint, leaves a unique choice of 𝜙.

Now define ℎ ∈ R by ℎ = 𝜙⊤𝑏1 and define 𝛼 ∈ R by 𝛼ℎ = −𝜙⊤𝑏𝑑−1. Since 0 ∈ conv(𝜋𝑤⊥ (𝑏𝑖) :
𝑖 ∈ [𝑑 − 1]) but 𝜙⊤𝑏𝑖 > 0 for all 𝑖 ∈ [𝑑 − 2], we must have 𝛼 ≥ 0 for otherwise 𝜙 would separate
conv(𝜋𝑤⊥ (𝑏𝑖) : 𝑖 ∈ [𝑑 − 1]) from 0. Again from almost-sure non-degeneracy we get 𝛼 > 0 and
ℎ ≠ 0. We define the following coordinate transformation:

𝑏 𝑗 = ℎ𝜙 + 𝑐 𝑗 , ∀ 𝑗 ∈ [𝑑 − 2]
𝑏𝑑−1 = −𝛼ℎ𝜙 + 𝑐𝑑−1

where for each 𝑗 ∈ [𝑑 − 1], 𝑐 𝑗 ∈ 𝜙⊥ ∩ affhull(𝑏1, . . . , 𝑏𝑑−1) has (𝑑 − 3) degrees of freedom. From
here on out, we consider the vertices (𝑏1, . . . , 𝑏𝑑−1) to be a function of (ℎ, 𝛼, 𝜙, 𝑐1, . . . , 𝑐𝑑−1). Again
by Lemma 2.15, the induced joint probability density on (ℎ, 𝛼, 𝜙, 𝑐1, . . . , 𝑐𝑑−1, 𝑏𝑑), is proportional
to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) · vol𝑑−3(conv(𝑐1, . . . , 𝑐𝑑−2)) ·
𝑑∏
𝑗=1

𝜇̄ 𝑗 (𝑏 𝑗)

Using the principle of deferred decision, fix the exact values of (𝛼, 𝜙, 𝑐1, . . . , 𝑐𝑑−1, 𝑏𝑑). When this
is the case we find that

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) · vol𝑑−3(conv(𝑐1, . . . , 𝑐𝑑−2)) ·
𝑑∏
𝑗=1

𝜇̄ 𝑗 (𝑏 𝑗)

∝ vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) · vol𝑑−3(conv(𝜋𝑤⊥ (𝑐1), . . . , 𝜋𝑤⊥ (𝑐𝑑−2))) ·
𝑑∏
𝑗=1

𝜇̄ 𝑗 (𝑏 𝑗).
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To see why vol𝑑−3(conv(𝑐1, . . . , 𝑐𝑑−2)) and vol𝑑−3(conv(𝜋𝑤⊥ (𝑐1), . . . , 𝜋𝑤⊥ (𝑐𝑑−2)) are proportional,
consider the following. Note that 𝜋𝑤⊥ is a fixed projection. Generically we know that 𝑤 ∉

span(𝑏2 − 𝑏1, . . . , 𝑏𝑑−1 − 𝑏1), this is a non-degeneracy condition that holds true with probability
1. This implies that 𝜋𝑤⊥ is a bijection between the affine hyperplane affhull(𝑏1, . . . , 𝑏𝑑−1) and its
image 𝜋𝑤⊥ (affhull(𝑏1, . . . , 𝑏𝑑−1)), and also a bijection between the subsets

𝜙⊥ ∩ affhull(𝑏1, . . . , 𝑏𝑑−1) and 𝜋𝑤⊥ (𝜙⊥ ∩ affhull(𝑏1, . . . , 𝑏𝑑−1)).

This is the space where 𝑐1, . . . , 𝑐𝑑−2 live. It follows that conv(𝑐1, . . . , 𝑐𝑑−2) has the same di-
mension as its projection conv(𝜋𝑤⊥ (𝑐1), . . . , 𝜋𝑤⊥ (𝑐𝑑−2)). The ratio between their volumes de-
pends only on 𝑤 and 𝜙⊥ ∩ span(𝑏2 − 𝑏1, . . . , 𝑏𝑑−1 − 𝑏1). Note that ℎ = 𝜙⊥𝑏1 and so, after fixing
(𝛼, 𝜙, 𝑐1, . . . , 𝑐𝑑−1, 𝑏𝑑) the ratio between the volumes is constant.

Note that the event 0 ∈ conv(𝜋𝑤⊥ (𝑏𝑖) : 𝑖 ∈ [𝑑 − 1]) depends only on these variables and
not on ℎ, and the same is true for vol𝑑−3(conv(𝜋𝑤⊥ (𝑐1), . . . , 𝜋𝑤⊥ (𝑐𝑑−2))). We are looking only
at the randomness in ℎ, and so we can ignore any constant factors in the probability density
function. The induced probability density on ℎ is now proportional to

vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ·
𝑑−1∏
𝑗=1

𝜇̃ 𝑗 (ℎ),

where 𝜇̃ 𝑗 (ℎ) := 𝜇̄ 𝑗 (ℎ𝜙 + 𝑐 𝑗), 𝑗 ∈ [𝑑 − 2] and 𝜇̃𝑑−1(ℎ) := 𝜇̄𝑑−1(𝛼ℎ𝜙 + 𝑐𝑑−1). Since each 𝜇̄ 𝑗 is 𝐿-log-
Lipschitz, it follows that the product

∏𝑑−1
𝑗=1 𝜇̃ 𝑗 (ℎ) is (𝑑 − 2 + 𝛼)𝐿 ≤ 𝑑 (1 + 𝛼)𝐿-log-Lipschitz in

ℎ.
Next, consider the volume term. We can write vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) as a constant

depending on 𝑑 times the absolute value of the determinant of the following (𝑑 − 1) × (𝑑 − 1)
matrix 

(𝑏1 − 𝑏𝑑)⊤
...

(𝑏𝑑−1 − 𝑏𝑑)⊤

 =


(ℎ𝜙 + 𝑐1 − 𝑏𝑑)⊤

...

(ℎ𝜙 + 𝑐𝑑−2 − 𝑏𝑑)⊤
(−𝛼ℎ𝜙 + 𝑐𝑑−1 − 𝑏𝑑)⊤


=


(𝑐1 − 𝑏𝑑)⊤

...

(𝑐𝑑−2 − 𝑏𝑑)⊤
(𝑐𝑑−1 − 𝑏𝑑)⊤


+ ℎ ·


1
...

1
−𝛼


𝜙⊤,

Define

𝐵 :=


(𝑐1 − 𝑏𝑑)⊤

...

(𝑐𝑑−2 − 𝑏𝑑)⊤
(𝑐𝑑−1 − 𝑏𝑑)⊤


, 𝑣 :=


1
...

1
−𝛼


.

Recall that both 𝐵 and 𝑣 are fixed and we are only interested in the distribution of ℎ. Then by
the matrix determinant lemma, we can write the volume as the absolute value of an affine
function of ℎ (which is a convex function):

𝑘(ℎ) := vol𝑑−1(conv(𝑏1, . . . , 𝑏𝑑)) ∝
��det(𝐵 + ℎ𝑣𝜙⊤)

��
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=
��det(𝐵) (1 + 𝑗𝜙⊤𝐵−1𝑣)

��
Hence, we have found a convex function 𝑘 : R→ R≥0 and a 𝑑 (1 + 𝛼)𝐿-log-Lipschitz function
𝜈 : R→ R≥0 such that ℎ has probability density proportional to 𝑘(ℎ) · 𝜈(ℎ).

To finalize the argument, we write dist(𝜋𝑤⊥ (𝑏𝑖), affhull(𝜋𝑤⊥ (𝑏 𝑗) : 𝑗 ∈ [𝑑−1], 𝑗 ≠ 𝑖)) = | (1+
𝛼)ℎ|. It follows that the signed distance (1 + 𝛼)ℎ has a probability density function proportional
to the product of a 𝑑𝐿-log-Lipschitz function and a convex function. The result follows from
Lemma 5.17 by plugging in the signed distance (1 + 𝛼)ℎ, 𝐾 = 𝑑𝐿, and 𝜀 = 1

160𝑑2𝐿
. ■

5.8 Combining Together and Proof of Lemma 5.2

In this section, we combine the deterministic argument in Lemma 5.5 with the probabilistic
arguments in Lemma 5.7 and Lemma 5.11. We can finally show the main technical lemma
(Lemma 5.2).

PROOF OF LEMMA 5.2 . Without loss of generality, let 𝐼 = [𝑑] and write 𝐸 = 𝐸𝐼 . Suppose
𝑝′ = 𝐴𝐽 = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽) ∩𝑊 is the next vertex after the edge 𝐹𝐼 ∩𝑊 . Here 𝐽 ∈ ( [𝑛]

𝑑−1
)

and
𝑅 𝐽 is the (𝑑 − 2)-dimensional ridge. With probability 1, the polytope conv(𝑎1, . . . , 𝑎𝑛) is non-
degenerate and𝑊 ∩ 𝑅′ is a single point for any ridge 𝑅′ of conv(𝑎1, . . . , 𝑎𝑛) that intersects with
𝑊 . We will show that conditional on 𝐸, each of the following conditions in the deterministic
argument (Lemma 5.5) is satisfied with good probability:

1. (Bounded diameter) ∀𝑖, 𝑗 ∈ [𝑛], ∥𝑎𝑖 − 𝑎 𝑗 ∥ ≤ 3;
2. (Lower bound of 𝛿) min𝑘∈[𝑛]\𝐼 dist(affhull(𝐹𝐼), 𝑎𝑘) ≥ Ω( 1

𝐿𝑑 log 𝑛);
3. (Lower bound of 𝑟) ∀𝐽 ∈ ( 𝐼

𝑑−1
)

for which the ridge 𝑅 𝐽 = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽) has nonempty
intersection with𝑊 , we have dist(𝐹𝐼 ∩𝑊, 𝜕𝑅 𝐽) ≥ Ω( 1

𝑑4𝐿2 ).
Note for the last point that Lemma 5.5 only requires this for the set 𝐽 which indexes the second
vertex of 𝐹𝐼∩𝑊 in clockwise direction, but we prove it for both of the sets 𝐽 for which 𝑅 𝐽∩𝑊 ≠ ∅.

First, we write 𝐷 as the event that∀𝑖, 𝑗 ∈ [𝑛] for which ∥𝑎𝑖−𝑎 𝑗 ∥ ≤ 3. From Lemma 2.12, for
any 𝜎 ≤ 1

8
√
𝑑 log 𝑛

, with probability at least 1 − (𝑛
𝑑

)−1, we have max𝑖∈[𝑛] ∥𝑎̂𝑖 ∥ ≤ 1 + 4𝜎
√︁
𝑑 log 𝑛 ≤ 3

2 ,

i.e., Pr[𝐷] ≥ 1 − (𝑛
𝑑

)−1. Using the assumption that Pr[𝐸𝐼] ≥ 10
(𝑛
𝑑

)−1, we have

Pr[¬𝐷 | 𝐸] = Pr[¬𝐷 ∧ 𝐸]/Pr[𝐸] ≤ Pr[¬𝐷]
Pr[𝐸] ≤ 0.1,

This immediately implies Pr[𝐷 | 𝐸] ≥ 0.9.
Next, we consider 𝛿 := dist(affhull(𝑎1, . . . , 𝑎𝑑), {𝑎𝑑+1, . . . , 𝑎𝑛}). Using Lemma 5.7, we have

Pr[𝛿 ≥ 1
10𝑒3𝐿𝑑 log 𝑛 | 𝐸] ≥ 0.72.

Finally, we consider 𝑟 := max𝐽 dist(affhull(𝑎1, . . . , 𝑎𝑑) ∩𝑊, 𝜕𝑅 𝐽) subject to all 𝐽 ∈ ( 𝐼
𝑑−1

)
such that 𝐴𝐽 happens (in other words, 𝑅 𝐽 = conv(𝑎 𝑗 : 𝑗 ∈ 𝐽) is a ridge of 𝐹𝐼 such that 𝑅 𝐽 ∩𝑊 ≠ ∅).
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By a union bound,

Pr
[
∃𝐽 ∈

(
𝐼

𝑑 − 1

)
, 𝐴𝐽 ∧ dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 ≥ 1

19200𝑑4𝐿2 | 𝐸
]

≥1 −
∑︁

𝐽∈( 𝐼
𝑑−1)

Pr[𝐴𝐽 ∧ dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 < 1
19200𝑑4𝐿2 | 𝐸]

=1 −
∑︁

𝐽∈( 𝐼
𝑑−1)

Pr[dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 < 1
19200𝑑4𝐿2 | 𝐸 ∧ 𝐴𝐽] Pr[𝐴𝐽 | 𝐸] . (23)

From Lemma 5.11, for each 𝐽 ∈ ( 𝐼
𝑑−1

)
, we know that

Pr[dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 < 1
19200𝑑4𝐿2 | 𝐸 ∧ 𝐴𝐽] ≤ 0.1 + Pr[¬𝐷 | 𝐸 ∧ 𝐴𝐽],

Notice that when 𝐸 happens, there are exactly two distinct ridges 𝑅 𝐽 , 𝑅 𝐽 ′ that has nonempty
intersection with𝑊 (or 𝐴𝐽 happens), thus

∑
𝐽∈( 𝐼

𝑑−1) Pr[𝐴𝐽 | 𝐸] = 2. Therefore∑︁
𝐽∈( 𝐼

𝑑−1)
Pr[dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 < 1

19200𝑑4𝐿2 | 𝐸 ∧ 𝐴𝐽] Pr[𝐴𝐽 | 𝐸]

≤
∑︁

𝐽∈( 𝐼
𝑑−1)

(0.1 + Pr[¬𝐷 | 𝐸 ∧ 𝐴𝐽]) Pr[𝐴𝐽 | 𝐸]

≤0.1 · 2 − 2 · Pr[¬𝐷 | 𝐸],

and (23) becomes

Pr
[
∃𝐽 ∈

(
𝐼

𝑑 − 1

)
, 𝐴𝐽 ∧ dist(affhull(𝐹 ∩𝑊), 𝜕𝑅 𝐽 ≥ 1

19200𝑑4𝐿2 | 𝐸
]

≥1 − 0.1 · 2 − 2 · Pr[¬𝐷 | 𝐸] ≥ 0.6.

Therefore, by a union bound, the three conditions hold with probability at least 1 − (1 − 0.9) −
(1 − 0.72) − (1 − 0.6) ≥ 0.1, and the lemma directly follows from Lemma 5.5. ■

6. Smoothed Complexity Lower Bound

In this section, we present the lower bound of the smoothed complexity of the shadow vertex sim-
plex method by studying the intersection of the smoothed polar polytope conv(𝑎1, . . . , 𝑎𝑛) ⊆ R𝑑
(where each 𝑎𝑖 is a Gaussian perturbation from a 𝑎𝑖), and the two-dimensional shadow plane
𝑊 ⊆ R𝑑 . Our main result is as follows:

THEOREM 6.1. For any 𝑑 > 5, 𝑛 = 4𝑑 − 13, there exists a two-dimensional linear subspace
𝑊 ⊆ R𝑑 and vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 , max𝑖∈𝑛 ∥𝑎𝑖 ∥1 ≤ 1 such that the following holds. Let 𝑎1, . . . , 𝑎𝑛

be independent Gaussian random variables where each 𝑎𝑖 ∼ N𝑑 (𝑎𝑖 , 𝜎2𝐼), 𝜎 ≤ 1
7200𝑑

√
log 𝑛

. Then
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with probability at least 1 − (𝑛
𝑑

)−1 we have

edges(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) ≥ Ω
©­­«min

( 1√︃
𝑑𝜎

√︁
log 𝑛

, 2𝑑
)ª®®¬ .

Theorem 6.1 is a direct consequence of the next theorem, which is a lower bound for
adversarial perturbations of bounded magnitude:

THEOREM 6.2. For any 𝑑 > 5, 𝑛 = 4𝑑 − 13, there exists a two-dimensional linear subspace
𝑊 ⊆ R𝑑 and vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 , max𝑖∈𝑛 ∥𝑎𝑖 ∥1 ≤ 1 such that the following holds. For any
𝜀 < 1

180 , if 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 satisfy ∥𝑎𝑖 − 𝑎𝑖 ∥1 ≤ 𝜀 for all 𝑖 ∈ [𝑛] then we have

edges(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) ≥ Ω
(
min

( 1√
𝜀
, 2𝑑

))
.

The rest of this section is organized as follows. In Section 6.1, we construct an auxiliary
polytope 𝑃 ⊆ R𝑑 and a two-dimensional shadow plane 𝑊 . In Section 6.2, we show that the
projection 𝜋𝑊 (𝑃) approximates the unit disk B2

2. In Section 6.3, we analyse the largest ℓ∞-ball
contained in 𝑃 and the smallest ℓ∞-ball containing 𝑃. Section 6.4 investigates the polar polytope
𝑄 = (𝑃 − 𝑥)◦ of a shift of 𝑃, such that we may choose 𝑎1, . . . , 𝑎𝑛 to satisfy 𝑄 = conv(𝑎1, . . . , 𝑎𝑛).
The largest contained ℓ1-ball in 𝑄 is derived from the smallest ℓ∞-ball containing 𝑃, and the
smallest ℓ1-ball containing 𝑄 is derived from the largest ℓ∞-ball contained in 𝑃. Similarly, the
section 𝑄 ∩𝑊 approximates a circular disk because the projection 𝜋𝑊 (𝑃) approximates a
circular disk. Finally, Section 6.5 shows that the bounded ratio between the inner and outer
radii implies that any sufficiently small perturbation 𝑄̃ still has 𝑄̃ ∩𝑊 approximate the unit
disk B2

2 well and uses this to prove Theorem 6.1.

6.1 Construction of the Auxiliary Polytope

In this subsection, we construct the auxiliary polytope 𝑃 and the two-dimensional plane𝑊 . For
𝑘 ∈ N, we construct a (𝑘 + 5)-dimensional polytope. We will use the following vectors in the
definition:

Define 𝑒1 =

[
1
0

]
∈ R2 and 𝑒2 =

[
0
1

]
.

For every 𝑖 ∈ {0, 1, . . . , 𝑘}, define the pair of orthogonal unit vectors 𝑤𝑖 =

[
cos(𝜋/2𝑖+2)
sin(𝜋/2𝑖+2)

]
∈

R2 and 𝑣𝑖 =

[
sin(𝜋/2𝑖+2)
− cos(𝜋/2𝑖+2)

]
∈ R2.

With these definitions in mind, construct an auxiliary 𝑃′ ⊆ R3𝑘+5 as the set of points
(𝑥, 𝑦, 𝑝0, . . . , 𝑝𝑘, 𝑡, 𝑠) where 𝑥, 𝑦 ∈ R, 𝑝0, 𝑝1, . . . , 𝑝𝑘 ∈ R2, 𝑡 ∈ R𝑘 and 𝑠 ∈ R satisfy the following
system of linear inequalities:
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polytope for k = 4 projected onto x, y

Figure 4. Vertices of the
projected auxiliary polytope
𝜋𝑊 (𝑃) (see (30)) without
perturbation for 𝑘 = 4.

𝑒⊤1 𝑝0 ≥ |𝑥 |, 𝑒⊤2 𝑝0 ≥ | 𝑦 | (24)

𝑤⊤
𝑖 𝑝𝑖 = 𝑤

⊤
𝑖 𝑝𝑖−1, ∀𝑖 ∈ [𝑘] (25)

𝑡𝑖 + 𝑖𝑠 = 𝑣⊤𝑖 𝑝𝑖 ≥ |𝑣⊤𝑖 𝑝𝑖−1 |, ∀𝑖 ∈ [𝑘] (26)

𝑒⊤1 𝑝𝑘 ≤ 1 (27)

0𝑘 ≤ 𝑡 ≤ 1𝑘 (28)

0 ≤ 𝑠 ≤ 1. (29)

We remark that 𝑝0, 𝑡, 𝑠 uniquely define the values of 𝑝1, 𝑝2, . . . , 𝑝𝑘 via (25) and (26). As
such, define the polytope 𝑃 ⊆ R𝑘+5 as the projection of 𝑃′ onto the subspace spanned by the
variables (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠):

𝑃 = {(𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) : ∃ 𝑝1, . . . , 𝑝𝑘, s.t. (𝑥, 𝑦, 𝑝0, . . . , 𝑝𝑘, 𝑡, 𝑠) ∈ 𝑃′}. (30)

We choose the plane𝑊 to be the one that is spanned by the unit vectors in the 𝑥 and 𝑦 directions.
An illustration of the vertices of the projected polytope 𝜋𝑊 (𝑃) can be found in Figure 4

for 𝑘 = 4. Note that the figure appears to depict a regular polygon with 2𝑘+1 vertices. Our
construction of 𝑃′ is similar to those of [8, 28]. The primary difference lies in the addition of the
variables 𝑡 and 𝑠 in (26). This change is made to ensure that the projected polytope 𝑃 has its
largest contained and smallest containing ℓ∞-ball be of similar sizes.
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6.2 Projected Auxiliary Polytope Approximates Two-Dimensional Unit Disk

In this subsection, we will show that the polytope 𝑃 we constructed in (30) has a projection
𝜋𝑊 (𝑃) which approximates the two-dimensional unit disk B2

2 = {𝑥, 𝑦 ∈ R : 𝑥2 + 𝑦2 ≤ 1} within
exponentially small error:

LEMMA 6.3 (Projected auxiliary polytope approximates the two-dimensional disk). For
any 𝑘 ∈ N, let 𝑃 ⊆ R𝑘+5 be the polytope defined by the linear system (30) with variables 𝑥, 𝑦, 𝑠 ∈
R, 𝑝0 ∈ R2, 𝑡 ∈ R𝑘. Let𝑊 be the two-dimensional subspace spanned by the directions of 𝑥 and 𝑦.
Then we have

B2
2 ⊆ 𝜋𝑊 (𝑃) ⊆ cos(𝜋/2𝑘+2)−1B2

2.

Lemma 6.3 directly follows from the next two lemmas. First, we show that the two-
dimensional unit disk is contained in 𝜋𝑊 (𝑃):

LEMMA 6.4 (Inner ℓ2-radius of the projected auxiliary polytope). For every 𝑥, 𝑦 ∈ R with
𝑥2 + 𝑦2 ≤ 1 there exist 𝑝0 ∈ R2, 𝑡 ∈ R𝑘 and 𝑠 ∈ R such that (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃.

PROOF . Suppose 𝑥, 𝑦 ∈ R with 𝑥2 + 𝑦2 ≤ 1. We want to exhibit 𝑝0 ∈ R2, 𝑡 ∈ R𝑘, and 𝑠 ∈ R such
that (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃. We proceed as follows:

First, set 𝑠 = 0 and define 𝑝0 = (𝑥, 𝑦). Then define 𝑝𝑖 inductively by the recurrence

𝑝𝑖 =

[
𝑣⊤𝑖
𝑤⊤
𝑖

]−1 [
|𝑣⊤𝑖−1𝑝𝑖−1 |
𝑤⊤
𝑖−1𝑝𝑖−1

]
,

with the base case being 𝑝0 = ( |𝑥 |, | 𝑦 |). Finally, for each 𝑖 ∈ [𝑘] define 𝑡𝑖 = 𝑣⊤𝑖 𝑝𝑖 = |𝑣⊤𝑖 𝑝𝑖−1 |.
Then (24), (25), (26) and (29) follow by definition. It remains to argue that (27) and (28)

are satisfied. Since 𝑣𝑖 and 𝑤𝑖 are orthogonal and defined to have norm 1, the matrix

[
𝑣⊤𝑖
𝑤⊤
𝑖

]
is

an isometry. Thus, it preserves norms, meaning that each of the 𝑝𝑖 have ℓ2-norm
√︁
𝑥2 + 𝑦2.

Since 𝑡𝑖 = |𝑣⊤𝑖 𝑝𝑖−1 | ≤ ∥𝑣𝑖 ∥ · ∥𝑝𝑖−1∥ ≤ 1, we know that (28) is satisfied. Furthermore, we have
𝑒⊤1 𝑝𝑘 ≤ ∥𝑒1∥ · ∥𝑝𝑘∥ = ∥𝑒1∥ ·

√︁
𝑥2 + 𝑦2 ≤ 1, which ensures that (27) is satisfied. ■

In the next lemma, we show that the projection 𝜋𝑊 (𝑃) is contained in the two-dimensional
disk cos(𝜋/2𝑘+2)−1B2

2:

LEMMA 6.5 (Outer ℓ2-radius of the projected auxiliary polytope). For every 𝑥, 𝑦 ∈ R such that√︁
𝑥2 + 𝑦2 ≥ cos(𝜋/2𝑘+2)−1 , there exist no 𝑝0 ∈ R2, 𝑡 ∈ R𝑘 and 𝑠 ∈ R such that (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃.

PROOF . Fix any (𝑥, 𝑦) ∈ R2 and 𝑝0 ∈ R2, such that
√︁
𝑥2 + 𝑦2 > cos(𝜋/2𝑘+2)−1 and 𝑝0 ≥[

|𝑥 |, | 𝑦 |
]⊤

. Also fix any 𝑝1, . . . , 𝑝𝑘 ∈ R2 satisfying (25) and (26). We will show that such 𝑝1, . . . , 𝑝𝑘

would violate (27), i.e., 𝑒⊤1 𝑝𝑘 > 1. To simplify our notation, for all 𝑖 ∈ {0, 1, . . . , 𝑘}, let (𝑝𝑖)𝑣 =
𝑣⊤𝑖 𝑝𝑖 ∈ R and (𝑝𝑖)𝑤 = 𝑤⊤

𝑖 𝑝𝑖 ∈ R. Then 𝑝𝑖 = (𝑝𝑖)𝑣𝑣𝑖 + (𝑝𝑖)𝑤𝑤𝑖 .
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Notice that for all 𝑖 ∈ [𝑘], the increment of the first coordinate from 𝑝𝑖−1 to 𝑝𝑖 is

𝑒⊤1 𝑝𝑖 − 𝑒⊤1 𝑝𝑖−1 = 𝑒⊤1
((𝑝𝑖)𝑤𝑤𝑖 + (𝑝𝑖)𝑣𝑣𝑖 − (𝑤⊤

𝑖 𝑝𝑖−1)𝑤𝑖 − (𝑣⊤𝑖 𝑝𝑖−1)𝑣𝑖
)

= 𝑒⊤1
((𝑝𝑖)𝑣𝑣𝑖 − (𝑣⊤𝑖 𝑝𝑖−1)𝑣𝑖

) (By (25))
≥ 𝑒⊤1 𝑣𝑖

(|𝑣⊤𝑖 𝑝𝑖−1 | − 𝑣⊤𝑖 𝑝𝑖−1
) (By 𝑒⊤1 𝑣𝑖 > 0 and (26)) (31)

≥ 0

where the inequality in (31) is tight when 𝑣⊤𝑖 𝑝𝑖 = |𝑣⊤𝑖 𝑝𝑖−1 |. Let 𝑝∗0, 𝑝
∗
1, . . . , 𝑝

∗
𝑘 ∈ R2 be the (unique)

sequence defined by

𝑝∗0 = 𝑝0

𝑤⊤
𝑖 𝑝

∗
𝑖 = 𝑤

⊤
𝑖 𝑝

∗
𝑖−1, ∀𝑖 ∈ [𝑘] (Tight for (25))

𝑣⊤𝑖 𝑝
∗
𝑖 = |𝑣⊤𝑖 𝑝∗𝑖−1 |, ∀𝑖 ∈ [𝑘] (Tight for (26))

Then 𝑒⊤1 𝑝𝑖 − 𝑒⊤1 𝑝𝑖−1 ≥ 𝑒⊤1 𝑝
∗
𝑖 − 𝑒⊤1 𝑝∗𝑖−1 for each 𝑖 ∈ [𝑘]. Also, notice that 𝑒⊤1 𝑝0 = 𝑒⊤1 𝑝

∗
0, therefore for

each 𝑖 ∈ [𝑘], 𝑒⊤1 𝑝𝑖 ≥ 𝑒⊤1 𝑝
∗
𝑖 .

It remains to show that 𝑒⊤1 𝑝
∗
𝑘 > 1. For all 𝑖 ∈ {0, 1, . . . , 𝑘}, let 𝜃𝑖 ∈ [−𝜋, 𝜋] denote the angle

between 𝑝∗𝑖 ∈ R2 and 𝑒1. Then since 𝑒⊤1 𝑝0 ≥ 0 and 𝑒⊤2 𝑝0 ≥ 0, we have 0 ≤ 𝜃0 ≤ 𝜋
2 . For any 𝑖 ∈ [𝑘],

notice that 𝑝∗𝑖 equals to 𝑝∗𝑖−1 (if 𝜃𝑖−1 ≤ 𝜋
2𝑖+2 ), or equals to the mirror of 𝑝∗𝑖−1 with respect to the

line spanned by 𝑤𝑖 (if 𝜃𝑖−1 ≥ 𝜋
2𝑖+2 ). By induction, this gives

∥𝑝∗𝑖 ∥2 = ∥𝑝∗𝑖−1∥2 = . . . = ∥𝑝∗0∥2 = ∥𝑝0∥2,

and

𝜃𝑖 =
𝜋

2𝑖+2 − |𝜃𝑖−1 − 𝜋

2𝑖+2 | ≤
𝜋

2𝑖+2 .

Therefore, we get

𝑒⊤1 𝑝
∗
𝑘 = ∥𝑝∗𝑘∥ · cos(𝜃𝑘) ≥ ∥𝑝0∥ · cos

( 𝜋

2𝑘+2

)
> 1.

Thus we have shown 𝑥2 + 𝑦2 > cos(𝜋/2𝑘+2)−1 implies that 𝑒⊤1 𝑝𝑘 ≥ 𝑒⊤1 𝑝
∗
𝑘 > 1 as desired. ■

6.3 Inner and Outer ℓ∞-Radius of the Auxiliary Polytope

In this subsection, we will show that the auxiliary polytope 𝑃 has large inner ℓ∞-radius and
small outer ℓ∞-radius.

LEMMA 6.6 (Inner and Outer ℓ∞-Radius of the Auxiliary Polytope). For 𝑘 ∈ N, let 𝑃 ⊆ R𝑘+5

be the polytope defined by the linear system (30). Then for or 𝑥 = 𝑦̄ = 0, 𝑝̄0 = (1/6, 1/6)⊤, 𝑡 =
1𝑘/30, 𝑠 = 1

3 , it holds that

1
30

· B𝑘+5
∞ ⊆ 𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) ⊆ 3

2
B𝑘+5
∞ .
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The following lemma is the key to show Lemma 6.6, where we construct a point in 𝐵 such
that the ℓ∞ ball with radius 1

30 centered at that point is contained in 𝑃. Obtaining a large inner
ball is relatively easy using linear programming. In this exposition we demonstrate the large
inner ball by hand, which will require a somewhat tedious calculation to 3 significant digits.

LEMMA 6.7 (Inner ℓ∞-Radius of the Polytope). For 𝑥 = 𝑦̄ = 0, 𝑝̄0 = (1/6, 1/6)⊤, 𝑡 = 1𝑘/30, 𝑠 =
1
3 , we have (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) + 𝑟 · B𝑘+5∞ ⊆ 𝑃 for 𝑟 = 1

30 .

PROOF . Fix any (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ R𝑘+5 such that ∥(𝑥 − 𝑥, 𝑦 − 𝑦̄, 𝑝0 − 𝑝̄0, 𝑡 − 𝑡, 𝑠− 𝑠)∥∞ ≤ 𝑟. We set
𝑝1, . . . , 𝑝𝑘 ∈ R2 inductively by (25) and the equations in (26), i.e.,𝑤⊤

𝑖 𝑝𝑖 = 𝑤
⊤
𝑖 𝑝𝑖−1 and 𝑡𝑖+𝑖𝑠 = 𝑣⊤𝑖 𝑝𝑖

start from the base case of 𝑝0, 𝑠 and 𝑡.
We will show that (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃 by verifying the conditions in (24 - 29). To simplify our

notation, we define (𝑝𝑖)𝑣 = 𝑣⊤𝑖 𝑝𝑖 ∈ R and (𝑝𝑖)𝑤 = 𝑤⊤
𝑖 𝑝𝑖 ∈ R for all 𝑖 ∈ {0, 1, . . . , 𝑘}. Note that 𝑣𝑖

and 𝑤𝑖 are orthogonal, 𝑝𝑖 = (𝑝𝑖)𝑣𝑣𝑖 + (𝑝𝑖)𝑤𝑤𝑖 .
First, observe that 𝑒⊤1 𝑝0 ≥ 1

6 − 𝑟 ≥ 𝑟 ≥ |𝑥 | and 𝑒⊤2 𝑝0 ≥ 1
6 − 𝑟 ≥ 𝑟 ≥ | 𝑦 |, confirming that (24)

holds. Also, notice that 𝑡𝑖 ∈ [𝑡𝑖 − 𝑟, 𝑡𝑖 + 𝑟] ⊆ [0, 1] and 𝑠 ∈ [𝑠 − 𝑟, 𝑠 + 𝑟] ⊆ [0, 1]. Thus (28) and
(29) hold. The equality constraint (25) holds directly by definition of 𝑝1, . . . , 𝑝𝑘. It remains to
show (26) and (27), i.e., (𝑝𝑖)𝑣 ≥ |𝑣⊤𝑖 𝑝𝑖−1 | for all 𝑖 ∈ [𝑘] and 𝑒⊤1 𝑝𝑘 ≤ 1.

To aid in the remaining steps of the proof, we show the claim that (𝑝𝑖)𝑤 ≥ 0 for all
𝑖 ∈ {0, 1, . . . , 𝑘} by induction. Observe that 𝑤⊤

0 𝑝0 ≥ 𝑤⊤
0 𝑝̄0 − ∥𝑤0∥ · ∥𝑝0 − 𝑝̄0∥ ≥

√
2

6 − √
2𝑟 ≥ 0.

Also, for all 𝑖 ∈ [𝑘],

(𝑝𝑖)𝑤 = 𝑤⊤
𝑖 𝑝𝑖−1 (By (25))

= 𝑤⊤
𝑖 ((𝑝𝑖−1)𝑤𝑤𝑖−1 + (𝑝𝑖−1)𝑣𝑣𝑖−1)

= (𝑝𝑖−1)𝑤𝑤⊤
𝑖 𝑤𝑖−1 + (𝑝𝑖−1)𝑣𝑤⊤

𝑖 𝑣𝑖−1

= (𝑝𝑖−1)𝑤 · cos( 𝜋

2𝑖+2 ) + (𝑝𝑖−1)𝑣 · sin( 𝜋

2𝑖+2 ) (32)

≥ (𝑝𝑖−1)𝑤 · cos( 𝜋

2𝑖+2 ), (By (𝑝𝑖−1)𝑣 = 𝑡𝑖−1 + (𝑖 − 1)𝑠 ≥ 0)

where (32) follows from 𝑤⊤
𝑖 𝑤𝑖−1 = ∥𝑤𝑖 ∥∥𝑤𝑖−1∥ cos(𝜃) = cos(𝜃) where 𝜃 = 𝜋/2𝑖+2 is the angle

between𝑤𝑖 and𝑤𝑖−1; similarly, we have𝑤⊤
𝑖 𝑣𝑖−1 = ∥𝑤𝑖 ∥∥𝑣𝑖−1∥ cos(𝜋/2−𝜃) = sin(𝜃) = sin(𝜋/2𝑖+2).

It then follows by induction that (𝑝𝑖)𝑤 ≥ 0 for all 𝑖 ∈ {0, 1, . . . , 𝑘}.

Verify (26): To verify the inequality listed in (26), i.e., (𝑝𝑖)𝑣 ≥ |𝑣⊤𝑖 𝑝𝑖−1 | for all 𝑖 ∈ [𝑘], we upper-
bound the right-hand-side by expanding it into the inner product with 𝑣𝑖−1 and the inner product
with 𝑤𝑖−1. Notice that for all 𝑖 ∈ [𝑘],

|𝑣⊤𝑖 𝑝𝑖−1 | =
��𝑣⊤𝑖 ((𝑝𝑖−1)𝑣𝑣𝑖−1 + (𝑝𝑖−1)𝑤𝑤𝑖−1)

��
≤ |(𝑝𝑖−1)𝑣 |𝑣⊤𝑖 𝑣𝑖−1 + |(𝑝𝑖−1)𝑤 | · |𝑣⊤𝑖 𝑤𝑖−1 | (Triangle inequality)

= (𝑡𝑖−1 + (𝑖 − 1)𝑠) · cos( 𝜋

2𝑖+2 ) + (𝑝𝑖−1)𝑤 · sin( 𝜋

2𝑖+2 ) (By (26) and (𝑝𝑖−1)𝑤 ≥ 0) (33)
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Next, we require an upper bound on (𝑝𝑖−1)𝑤. For all 𝑖 ∈ [𝑘], from (32)

(𝑝𝑖)𝑤 = (𝑝𝑖−1)𝑤 · cos( 𝜋

2𝑖+2 ) + (𝑝𝑖−1)𝑣 · sin( 𝜋

2𝑖+2 )

≤ (𝑝𝑖−1)𝑤 + (𝑡𝑖−1 + (𝑖 − 1)𝑠) · sin( 𝜋

2𝑖+2 ) (By (𝑝𝑖−1)𝑤 ≥ 0 and (26))

Let 𝑡0 = 𝑣⊤0 𝑝0 and 𝑡0 = 𝑣⊤0 𝑝̄0 = 0. By applying the above inequality to 1, 2, · · · , 𝑖 − 1, we have

(𝑝𝑖)𝑤 ≤ 𝑤⊤
0 𝑝0 +

𝑖−1∑︁
𝑗=0

(𝑡 𝑗 + 𝑗𝑠) · sin( 𝜋

2 𝑗+3 )

≤ 𝑤⊤
0 𝑝0 +

𝑖−1∑︁
𝑗=0

(𝑡 𝑗 + 𝑗𝑠) · sin(𝜋
8
) · 1.9− 𝑗

≤ 𝑤⊤
0 𝑝0 +

𝑖−1∑︁
𝑗=0

(𝑡 𝑗 + 𝑟 + 𝑗𝑠) · sin(𝜋
8
) · 1.9− 𝑗

≤ (
√

2
6

+
√

2𝑟) + sin(𝜋
8
)
𝑖−1∑︁
𝑗=0

( 1
30

+ 𝑟 + 𝑗𝑠) · 1.9− 𝑗 (By 𝑤⊤
0 𝑝̄0 =

√
2

6 , 𝑡 𝑗 = 1
30)

≤
√

2
6

+ sin(𝜋
8
) · 1

30
·

∞∑︁
𝑗=0

1.9− 𝑗 + 𝑟 ©­«
√

2 + sin(𝜋
8
)

∞∑︁
𝑗=0

1.9− 𝑗ª®¬ + 𝑠 ©­«sin(𝜋
8
)

∞∑︁
𝑗=0

𝑗(1.9)− 𝑗ª®¬
≤ 0.263 + 2.226𝑟 + 0.898𝑠. (34)

Here the second inequality uses the fact that for every 𝑥 ∈ [0, 𝜋8 ] one has sin(𝑥)/1.9 ≥ sin(𝑥/2).
This is because by the half angle formula, sin(𝑥/2) = ±

√︃
1−cos(𝑥)

2 , thus

sin(𝑥)2

sin(𝑥/2)2 =
1 − cos(𝑥)2

(1 − cos(𝑥))/2
= 2 + 2 cos(𝑥) ≥ 2 + 2 cos(𝜋/8) ≥ 1.92.

Plugging (34) back into (33), we have for all 𝑖 ∈ [𝑘],

|𝑣⊤𝑖 𝑝𝑖−1 | ≤ (𝑡𝑖−1 + (𝑖 − 1)𝑠) · cos( 𝜋

2𝑖+2 ) + (0.263 + 2.226𝑟 + 0.898𝑠) · sin( 𝜋

2𝑖+2 )

≤ ( 1
30

+ 𝑟 + (𝑖 − 1)𝑠) + (0.263 + 2.226𝑟 + 0.898𝑠) · sin(𝜋
8
) (By 𝑡𝑖−1 = 1

30 and 𝑖 ≥ 1)

≤ 0.134 + 1.852𝑟 + (𝑖 − 0.656)𝑠
≤ 0.134 + 1.852𝑟 + 𝑖𝑠 − 0.656(𝑠 − 𝑟)
≤ 𝑖𝑠 (By 𝑠 = 1

3 , 𝑟 ≤ 1
30)

≤ (𝑝𝑖)𝑣.

Therefore, 𝑣⊤𝑖 𝑝𝑖 ≥ |𝑣⊤𝑖 𝑝𝑖−1 | for all 𝑖 ∈ [𝑘] and (26) holds.

Verify (27): To verify (27), notice that increment of the first coordinate from 𝑝𝑖−1 to 𝑝𝑖 is

𝑒⊤1 𝑝𝑖 − 𝑒⊤1 𝑝𝑖−1 = 𝑒⊤1
((𝑝𝑖)𝑣𝑣𝑖 − (𝑣⊤𝑖 𝑝𝑖−1)𝑣𝑖

)
(By 𝑤⊤

𝑖 𝑝𝑖 = 𝑤
⊤
𝑖 𝑝𝑖−1)
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= sin( 𝜋

2𝑖+2 ) · (𝑡𝑖 + 𝑖𝑠 − 𝑣
⊤
𝑖 𝑝𝑖−1) (By 𝑒⊤1 𝑣𝑖 = sin( 𝜋

2𝑖+2 ) and (26))

= sin( 𝜋

2𝑖+2 ) ·
(
𝑡𝑖 + 𝑖𝑠 − 𝑣⊤𝑖 ((𝑝𝑖−1)𝑤𝑤𝑖−1 + (𝑝𝑖−1)𝑣𝑣𝑖−1)

)
= sin( 𝜋

2𝑖+2 ) ·
(
𝑡𝑖 + 𝑖𝑠 + (𝑝𝑖−1)𝑤 · sin( 𝜋

2𝑖+2 ) − (𝑡𝑖−1 + (𝑖 − 1)𝑠) · cos( 𝜋

2𝑖+2 )
)

(35)

where the last step comes from 𝑣⊤𝑖 𝑣𝑖−1 = cos( 𝜋
2𝑖+2 ) and 𝑣⊤𝑖 𝑤𝑖−1 = − sin( 𝜋

2𝑖+2 ). For all 𝑖 ≥ 2,
we can show that in (35), the third term in the brackets is at most the fourth term, thus the
right-hand-side of (35) is at most sin(𝜋/2𝑖+2) · (𝑡𝑖 + 𝑖𝑠):

(𝑝𝑖−1)𝑤 · sin( 𝜋

2𝑖+2 ) ≤ (0.263 + 2.226𝑟 + 0.898𝑠) · sin( 𝜋

2𝑖+2 ) (By (34))

≤ (0.263 + 2.226𝑟 + 0.898𝑠) · tan( 𝜋

2𝑖+2 ) · cos( 𝜋

2𝑖+2 )

≤ (0.263 + 2.226𝑟 + 0.898𝑠) · tan(𝜋
8
) · cos( 𝜋

2𝑖+2 ) (By 𝜋
2𝑖+2 ≤ 𝜋

8 )

≤ 0.277 · cos( 𝜋

2𝑖+2 ) (By 𝑟 ≤ 1
30 and 𝑠 ≤ 𝑠 + 𝑟 = 11

30)

≤ (𝑡𝑖−1 − 𝑟 + (𝑖 − 1)𝑠) · cos( 𝜋

2𝑖+2 )
(By 𝑡𝑖−1 − 𝑟 = 0 and (𝑖 − 1)𝑠 ≥ 𝑠 ≥ 𝑠 − 𝑟 = 0.3)

≤ (𝑡𝑖−1 + (𝑖 − 1)𝑠) · cos( 𝜋

2𝑖+2 ).

Plugging back into (35), we have for all 𝑖 ≥ 2 that

𝑒⊤1 𝑝𝑖 − 𝑒⊤1 𝑝𝑖−1 ≤ sin( 𝜋

2𝑖+2 ) · (𝑡𝑖 + 𝑖𝑠)

≤ sin( 𝜋

2𝑖+2 ) · (𝑡𝑖 + 𝑖𝑠 + (𝑖 + 1)𝑟)

≤ sin(𝜋
8
) · 1.9−(𝑖−1) · ( 1

30
+ 𝑖

3
+ (𝑖 + 1)𝑟) (By sin( 𝜋

2𝑖+2 ) ≤ sin( 𝜋8 ) · 1.9−(𝑖−1))

For 𝑖 = 1 we recall from above that (𝑝𝑖−1)𝑤 · sin( 𝜋
2𝑖+2 ) ≤ 0.277 · cos( 𝜋

2𝑖+2 ). Now take (35) and
observe 𝑒⊤1 𝑝1 − 𝑒⊤1 𝑝0 = sin(𝜋/8) (𝑡1 + 𝑠 + (𝑝0)𝑤 · sin(𝜋/8) − 𝑡0 · cos(𝜋/8)) ≤ sin(𝜋/8) (11/30 + 2𝑟 +
0.277 · cos(𝜋/8)). Hence we find that 𝑒⊤1 𝑝1 − 𝑒⊤1 𝑝0 ≤ 0.239 + 0.766𝑟 and therefore,

𝑒⊤1 𝑝𝑘 ≤ 𝑒⊤1 𝑝0 +
𝑘∑︁
𝑖=1

(𝑒⊤1 𝑝𝑖 − 𝑒⊤1 𝑝𝑖−1)

≤ (1
6
+ 𝑟) + 0.239 + 0.766𝑟 + sin(𝜋

8
) ·

𝑘∑︁
𝑖=2

1.9−(𝑖−1) · ( 1
30

+ 𝑖

3
+ (𝑖 + 1)𝑟)

≤ (1
6
+ 𝑟) + 0.239 + 0.766𝑟 + 0.456 + 1.749𝑟

≤ 0.862 + 3.515𝑟 ≤ 1.

where the last inequality holds for any 𝑟 ≤ 1
30 . Therefore (27) holds and (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃. ■

PROOF OF LEMMA 6.6 . In Lemma 6.7 we construct a point (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) such that 1
30B

𝑘+5∞ ⊆
𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠).
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For the second inclusion, we show that 𝑃 ⊆ (cos(𝜋/2𝑘+2)−1 ·B𝑘+5∞ . Suppose (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃
is arbitrary. From Lemma 6.5 we know that ∥(𝑥, 𝑦)∥∞ ≤

√︁
𝑥2 + 𝑦2 ≤ ∥𝑝0∥2 ≤ cos(𝜋/2𝑘+2)−1.

Since 0𝑘 ≤ 𝑡 ≤ 1𝑘 we get ∥𝑡∥∞ ≤ 1, and lastly we have 0 ≤ 𝑠 ≤ 1. Put together, we find
that ∥(𝑥, 𝑦, 𝑝0, 𝑡, 𝑠)∥∞ ≤ cos(𝜋/2𝑘+2)−1. Since (𝑥, 𝑦, 𝑝0, 𝑡, 𝑠) ∈ 𝑃 was arbitrary, we find that 𝑃 ⊆
cos(𝜋/2𝑘+2)−1 ·B𝑘+5∞ . By the triangle inequality we find that 𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) ⊆ (cos(𝜋/2𝑘+2)−1 +
∥(𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠)∥∞) · B𝑘+5∞ and we see in Lemma 6.7 that ∥(𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠)∥∞ = 1/3. Finally, note that
cos(𝜋/2𝑘+2)−1 ≤ cos(𝜋/8)−1 ≤ 1.1, we have

cos( 𝜋

2𝑘+2 )
−1 ≤ cos(𝜋

8
)−1 + 1

3
≤ 3

2
. ■

6.4 Properties of the Polar Polytope

In this section, we will analyse the scaled polar polytope 𝑄 = 1
30 (𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠))◦. From

well-known duality properties, we will find that 𝑄 satisfies the following desirable properties:
1. 𝑄 ∩𝑊 approximates a two-dimensional disk;
2. The inner ℓ1-radius of 𝑄 is at least 1

45 when centered at 0;
3. The outer ℓ1-radius of 𝑄 is at most 1 when centered at 0.

LEMMA 6.8. For any 𝑘 ∈ N, there exists a two-dimensional linear subspace 𝑊 ⊆ R𝑘+5 and
𝑛 = 4𝑘 + 7 points 𝑎1, . . . , 𝑎𝑛 ∈ B𝑘+5

1 such that 𝑄 := conv(𝑎1, . . . , 𝑎𝑛) satisfies

cos(𝜋/2𝑘+2)
30

· B𝑘+5
2 ∩𝑊 ⊆ 𝑄 ∩𝑊 ⊆ 1

30
· B𝑘+5

2 ∩𝑊

and
1

45
· B𝑘+5

1 ⊆ 𝑄 ⊆ B𝑘+5
1

PROOF . Let 𝑃 ⊆ R𝑘+5 be the polytope defined by the linear system in (30), and let

𝑃 = 𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠)

denote the polytope obtained from shifting its center (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) to 0𝑑 . Here, as in Lemma 6.7,

𝑥 = 𝑦̄ = 0, 𝑝̄0 = (1/6, 1/6)⊤, 𝑡 = 1𝑘/30, 𝑠 =
1
3
.

By applying row rescalings we transform the constraints (24 - 29) into a matrix 𝐴 ∈ R(4𝑘+7)×(𝑘+5)

such that
𝑃 = {𝑧 ∈ R𝑘+5 : 𝐴𝑧 ≤ 1}.

Let 𝑄̃ = (𝑃)◦ ⊆ R𝑑 denote the polar body of 𝑃. Since 𝑃 is bounded, 𝑄̃ is the convex hull of the
rows of the matrix 𝐴, i.e.

𝑄̃ = {𝐴⊤𝜆 : 𝜆 ∈ [0, 1]4𝑘+7 s.t.
4𝑘+7∑︁
𝑖=1

𝜆𝑖 = 1}.
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Then by Lemma 6.6 and Fact 2.5, the inner and outer ball of 𝑄̃ satisfy

2
3
· B𝑘+5

1 ⊆ 𝑄̃ ⊆ 30 · B𝑘+5
1 .

Also, by Lemma 6.3, Fact 2.6 and Fact 2.5, the inner and outer ball of 𝑄̃ ∩𝑊 satisfy

cos(𝜋/2𝑘+2) · B𝑘+5
2 ∩𝑊 ⊆ 𝑄̃ ∩𝑊 ⊆ B𝑘+5

2 ∩𝑊.

The lemma then follows from taking 𝑄 = 1
30𝑄̃. ■

6.5 Perturbation Analysis and Proof of the Lower Bound

In this subsection, we study the number of edges of the intersection polygon 𝑄 ∩𝑊 after
perturbation and prove our main lower bound theorem (Theorem 6.1). To show that our
construction has many edges even after perturbation, we require the following two statements:

LEMMA 6.9. Let 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 be points with 𝑟B𝑑1 ⊆ conv(𝑎1, . . . , 𝑎𝑛) for some 𝑟 > 0. If
𝜀 ≤ 𝑟/2 and points 𝑎1, . . . , 𝑎𝑛 ∈ R𝑑 satisfy ∥𝑎𝑖 − 𝑎𝑖 ∥1 ≤ 𝜀 for all 𝑖 ∈ [𝑛] then it follows that

(1 − 2𝜀
𝑟
) conv(𝑎1, . . . , 𝑎𝑛) ⊆ conv(𝑎1, . . . , 𝑎𝑛) ⊆ (1 + 𝜀

𝑟
) conv(𝑎1, . . . , 𝑎𝑛).

PROOF . Write 𝑄 = conv(𝑎1, . . . , 𝑎𝑛) and 𝑄̄ = conv(𝑎1, . . . , 𝑎𝑛). The second inclusion follows by
𝑄 ⊆ 𝑄̄ + 𝜀B𝑑1 ⊆ 𝑄̄ + 𝜀

𝑟𝑄̄. For the first inclusion, we observe that 𝑟B𝑑1 ⊆ 𝑄̄ ⊆ 𝑄 + 𝜀B𝑑1 ⊆ 𝑄 + 𝑟
2B

𝑑
1 .

This implies that 𝑟
2B

𝑑
1 ⊆ 𝑄, for if there were to exist 𝑥 ∈ 𝑟

2B
𝑑
1 such that 𝑥 ∉ 𝑄 then, since 𝑄 is

closed and convex, then we could find 𝑦 ∈ R𝑑 such that 𝑦⊤𝑥 > 𝑦⊤𝑧 for all 𝑧 ∈ 𝑄. Writing
𝑓 (𝑆) = max𝑧∈𝑆 𝑦⊤𝑧 for 𝑆 ⊆ R𝑑 , this would give

𝑓 (𝑟B𝑑1) ≥ 𝑓 (𝑥 + 𝑟
2
B𝑑1) = 𝑦⊤𝑥 + 𝑓 ( 𝑟

2
B𝑑1) > 𝑓 (𝑄) + 𝑓 ( 𝑟

2
B𝑑1) ≥ 𝑓 (𝑄 + 𝑟

2
B𝑑1) ≥ 𝑓 (𝑟B𝑑1).

By contradiction it follows that 𝑟
2B

𝑑
1 ⊆ 𝑄.

Note that 1 − 𝑥2 ≤ 1, so 1 − 𝑥 ≤ 1/(1 + 𝑥) for any 1 + 𝑥 > 0. Combining with 𝑄̄ ⊆ 𝑄 + 𝜀B𝑑1 ⊆
𝑄 + 𝜀

𝑟/2𝑄 we conclude the desired result. ■

LEMMA 6.10. If a polygon 𝑇 ⊆ R2 satisfies 𝛼 · B2
2 ⊆ 𝑇 ⊆ 𝛽 · B2

2 for some 𝛼, 𝛽 > 0 then 𝑇 has at
least

√︁
𝛼/(𝛽 − 𝛼) edges.

PROOF . If 𝛽 > 2𝛼 then the bound is trivially true, so assume that 𝛽 ≤ 2𝛼.
Without loss of generality, re-scale 𝑇 so that B2

2 ⊆ 𝑇 ⊆ (1 + 𝜀) · B2
2, where 𝜀 = 𝛽/𝛼 − 1 > 0.

Note that since 𝛽 ≤ 2𝛼 we have 𝜀 ≤ 1.
Consider any edge [𝑞1, 𝑞2] ⊆ 𝑇 and let 𝑝 ∈ [𝑞1, 𝑞2] denote the minimum-norm point in this

edge. Then we have ∥𝑞1 − 𝑝∥2 = ∥𝑞1∥2 + ∥𝑝∥2 − 2⟨𝑞1, 𝑝⟩. Since 𝑝 is the minimum-norm point, we
have ⟨𝑞1, 𝑝⟩ ≥ ∥𝑝∥2, and hence ∥𝑞1 − 𝑝∥2 ≤ ∥𝑞1∥2 − ∥𝑝∥2 ≤ (1 + 𝜀)2 − ∥𝑝∥2. Since 𝑝 lies on the
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boundary of𝑇 we have ∥𝑝∥ ≥ 1, which implies that ∥𝑞1−𝑝∥2 ≤ (1+𝜀)2−1 = 2𝜀+𝜀2. The analogous
argument for ∥𝑞2 − 𝑝∥ and the triangle inequality tell us that ∥𝑞1 − 𝑞2∥ ≤ 2

√
2𝜀 + 𝜀2 ≤ 4

√
𝜀,

where we use 𝜀 ≤ 1 at the second step. The choice of the edge [𝑞1, 𝑞2] was arbitrary, hence
every edge of 𝑇 has length as most 4

√
𝜀.

But 𝑇 has perimeter at least 2𝜋. Since the perimeter of a polygon is equal to the sum of the
lengths of its edges, this implies that 𝑇 has at least 2𝜋

4
√
𝜀
> 1√

𝜀
edges. ■

Now, we can prove the generic lower bound claimed in Theorem 6.2 on the shadow size
under adversarial ℓ1-perturbations.

PROOF OF THEOREM 6.2 . Fix any 𝑑 > 5, let 𝑘 = 𝑑 − 5 and observe that 𝑛 = 4𝑘 + 7. Let
𝑎1, . . . , 𝑎𝑛 be as constructed in Lemma 6.8. Then we have

cos(𝜋/2𝑘+2)
30

· B𝑘+5
2 ∩𝑊 ⊆ conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 ⊆ 1

30
· B𝑘+5

2 ∩𝑊,

and
1

45
· B𝑘+5

1 ⊆ conv(𝑎1, . . . , 𝑎𝑛) ⊆ B𝑘+5
1 .

For any set of points 𝑎1, . . . , 𝑎𝑛 such that ∥𝑎𝑖 − 𝑎𝑖 ∥1 ≤ 𝜀 for each 𝑖 ∈ [𝑛]. By Lemma 6.9 and
setting 𝑟 = 1/45, we have

conv(𝑎1, . . . , 𝑎𝑛) ⊆ 1
1 − 2𝜀/𝑟 conv(𝑎1, . . . , 𝑎𝑛) = 1

1 − 90𝜀
conv(𝑎1, . . . , 𝑎𝑛).

Therefore,

cos(𝜋/2𝑘+2)
30

· B𝑘+5
2 ∩𝑊 ⊆ conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 ⊆ (1 − 90𝜀)−1 conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊,

and
conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 ⊆ (1 + 45𝜀) conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 ⊆ 1 + 45𝜀

30
· B𝑘+5

2 ∩𝑊.

Therefore, we can bound the inner and outer ℓ1-radius of conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 by

(1 − 90𝜀) · cos(𝜋/2𝑘+2)
30

· B𝑘+5
2 ∩𝑊 ⊆ conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 ⊆ ·1 + 45𝜀

30
· B𝑘+5

2 ∩𝑊.

It then follows from Lemma 6.10 that the polygon conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊 has at least( (1 − 90𝜀) · cos(𝜋/2𝑘+2)
(1 + 45𝜀) − (1 − 90𝜀) · cos(𝜋/2𝑘+2)

)1/2

≥
( (1 − 90𝜀) · (1 − 𝜋2

4𝑘+2 )
(1 + 45𝜀) − (1 − 90𝜀) · (1 − 𝜋2

4𝑘+2 )

)1/2

(By cos(𝑥) ≥ 1 − 𝑥2 for 𝑥 ≤ 𝜋
2 )

≥
(

1 − 90𝜀 − 𝜋2

4𝑘+2

(1 + 45𝜀) − (1 − 90𝜀 − 𝜋2

4𝑘+2 )

)1/2
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≥ Ω
(

1√
𝜀 + 4−𝑘

)
edges. ■

Finally, we can prove our main result using Gaussian tail bound:

PROOF OF THEOREM 6.1 . Using concentration of Gaussian distribution in Corollary 2.9, we
find that if 𝜎 ≤ 1/(360𝑑

√︁
log 𝑛), then with probability at least 1 − (𝑛

𝑑

)−1, we have max𝑖∈[𝑛] ∥𝑎𝑖 −
𝑎𝑖 ∥2 ≤ 4𝜎

√︁
𝑑 log 𝑛 ≤ 1

90
√
𝑑

. The result follows from Theorem 6.2 and the fact that ∥𝑥∥1 ≤
√
𝑑∥𝑥∥2

for every 𝑥 ∈ R𝑑 . ■

6.6 Experimental Results
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Figure 5. Measured shadow sizes for sampled perturbations of our construction, for different values of
𝑘 and 𝜎.

To measure whether the analysis in Theorem 6.1 is tight or not, we ran numerical experi-
ments. Using Python and Gurobi 10.0.3, we constructed a matrix 𝐴 such that

𝑃 − (𝑥, 𝑦̄, 𝑝̄0, 𝑡, 𝑠) = {𝑧 ∈ R𝑘+5 : 𝐴𝑧 ≤ 14𝑘+7},

as described earlier in this section. Writing 𝑅 as the maximum Euclidean norm among the
row vectors of 𝐴, we sampled 𝐴̂ with independent Gaussian distributed entries with standard
deviation 𝜎𝑅 and E[𝐴̂] = 𝐴. To approximate the shadow size, we optimized the objective vectors
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cos( (𝑖+0.3)𝜋
2𝑘+4 )𝑥 + sin( (𝑖+0.3)𝜋

2𝑘+4 ) 𝑦, with 𝑖 = 0, . . . , 2𝑘+5 − 1, over the polyhedron {𝑧 ∈ R𝑘+5 : 𝐴̂𝑧 ≤ 1}
and counted the number of distinct values (𝑥, 𝑦) found among the solutions. Two consecutive
solutions were counted as distinct if their 𝑥, 𝑦 coordinates differed in ℓ1 norm by at least 10−11.3

Note that the number of vertices of this projection of the perturbed auxiliary polytope is equal
to the number of vertices of the section of the perturbed polar polytope, which then describes
the shadow size.

When 𝜎 = 0, our code found 2𝑘+1 such distinct points. For 𝜎 > 0, Theorem 6.1 shows that
we expect to find at least Ω

(
min

(
1√︃

𝑑𝜎
√

log 𝑑
, 2𝑘

))
distinct pairs (𝑥, 𝑦).

For 𝑘 = 10, 15, 20, we measured the shadow size for 20 different values of 𝜎 ranging
from 0.01 to 0.0001/2𝑘. The resulting data is depicted in Figure 5 along with a graph of the
function 𝜎 ↦→ 𝜎−3/4. We observe that for each 𝑘, the measured shadow size appears to follow
the graphed function up to a point, plateauing slightly above 2𝑘+1 when 𝜎 is small. The fact that
some measurements come out higher than 2𝑘+1, the shadow size for 𝜎 = 0, is not unexpected:
the polytope 𝑃 is highly degenerate, whereas the perturbed polytope is simple and can thus
have many more vertices.

The measured shadow sizes appear to grow much faster than 1/√𝜎 as 𝜎 gets small, closer
to the 𝜎−3/4 line that we plotted. These results suggest that the behaviour of the shadow size

is substantially different in 𝑑 = 2, where we have an upper bound of 𝑂
(

4
√

log(𝑛)√
𝜎

+
√︁

log 𝑛
)
, and

𝑑 > 3, where one might expect a lower bound with a higher dependence on 𝜎.
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