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ABSTRACT. The simplex method for linear programming is known to be highly efficient
in practice, and understanding its performance from a theoretical perspective is an active
research topic. The framework of smoothed analysis, first introduced by Spielman and Teng
(JACM ’04) for this purpose, defines the smoothed complexity of solving a linear program with
d variables and n constraints as the expected running time when Gaussian noise of variance
o2 is added to the LP data. We prove that the smoothed complexity of the simplex method is
0(o-3/2d'3/*10g%/* n), improving the dependence on 1/0 compared to the previous bound of
O(G‘zdzx/loﬂ). We accomplish this through a new analysis of the shadow bound, key to earlier
analyses as well. Illustrating the power of our new approach, we moreover prove a nearly tight
upper bound on the smoothed complexity of two-dimensional polygons.

We also establish the first non-trivial lower bound on the smoothed complexity of the
simplex method, proving that the shadow vertex simplex method requires, with a given auxiliary
objective, at least Q( min (67/2d"1/?1og™ 4 g, Zd)) pivot steps with high probability. A key part
of our analysis is a new variation on the extended formulation for the regular 2X-gon. We end
with a numerical experiment that suggests our lower bound could be further improved.
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1. Introduction

Introduced by Dantzig [20], the simplex method is one of the primary methods for solving
linear programs (LP’s) in practice and is an essential component in many software packages for
combinatorial optimization. It is a family of local search algorithms which begin by finding a
vertex of the set of feasible solutions and iteratively move to a better neighboring vertex along
the edges of the feasible polyhedron until an optimal solution is reached. These moves are
known as pivot steps. Variants of the simplex method can be differentiated by the choice of
pivot rule, which determines which neighboring vertex is chosen in each iteration, as well as by
the method for obtaining the initial vertex. Some well-known pivot rules are the most negative
reduced cost rule, the steepest edge rule, and an approximate steepest edge rule known as the
Devex rule. In theoretical work, the parametric objective rule, also known as the shadow vertex
rule, plays an important role.

Empirical evidence suggests that the simplex algorithm typically takes O(d + n) pivot
steps, see [47, 5, 29]. However, obtaining a rigorous explanation for this excellent performance
has proven challenging. In contrast to the practical success of the simplex method, all studied
variants are known to have super-polynomial or even exponential worst-case running times.
For deterministic variants, many published bad inputs are based on deformed cubes, see [40,
36, 6, 32, 43, 30] and a unified construction in [4]. For randomized and history-dependent
variants, bad inputs have been constructed based on Markov Decision Processes [38, 41, 25, 24,
34, 23]. The fastest provable (randomized) simplex algorithm takes O(zm) pivot steps in
expectation [38, 41, 34].

Average-case analyses of the simplex method have been performed for a variety of random
distributions over linear programs [14, 13, 12, 48, 33, 42, 1, 50, 2]. While insightful, the results
from average-case analyses might not be fully realistic due to the fact that “random” linear
programs tend to have certain properties that “typical” linear programs do not.

To better explain why the simplex algorithm performs well in practice, while avoiding
some of the pitfalls of average-case analysis, Spielman and Teng [49] introduced the smoothed
complexity framework. For any base LP data A € R™¢, b € R", ¢ € R4\ {0} where the rows of
(A, I;) are normalized to have ¢; norm at most 1, they consider the smoothed LP obtained by
adding independent Gaussian perturbations to the constraints:

maxc'x subjectto (A+A)x < (b+D).
xeR4

The entries of A and b are i.i.d. Gaussian random variables with mean 0 and variance o2. The
smoothed complexity of a simplex algorithm A is defined to be the maximum (over A, b, ¢)
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expected number of pivot steps the algorithm takes to solve the smoothed LP, i.e.,

SCaAndo:=  max (EAB [Tﬂ(A +A,b+Db, c)]) :
AeR™4 beRM,ceR \
[I[A,b]]l1,2<1
Here T4 (A, b, ¢) is the number of pivot steps that the algorithm A takes to solve the linear
program max, gpa{c'x : Ax < b}. We may note that if ¢ — oo then SC 4 4, approaches the
average-case complexity of A on independent Gaussian distributed input data. In contrast, if
o — 0 then SC 4 54,6 Will approach the worst-case complexity of A. As a result, most interest
has been directed at understanding the dependence on o in the regime where ¢ > 27%(@ but
o < 1/poly(d).

The motivation for smoothed analysis lies in the observation that the above-mentioned
worst-case instances are very “brittle” to perturbations, and computer implementations require
great care in handling numerical inaccuracies to obtain the theorized running times even
on problems with a small number of variables. When implemented with a larger number
of variables, the limited accuracy of floating-point numbers make it impossible to reach the
theorized running times.

An algorithm is said to have polynomial smoothed complexity if under the perturbation
of constraints, it has expected running time poly(n, d, c~1), and [49] proved that the smoothed
complexity of a specific simplex method based on the shadow vertex simplex method (which we
will describe next) is at most O(d>>n®%c73% + d’°n®%). The best bound available in the literature
is 0(6=2d%/log n) pivot steps due to [17], assuming ¢ < 1/+/d log n. We note that assuming an
upper bound on o can be done without loss of generality; its influence can be captured as an
additive term in the upper bound that does not depend on o.

This work improves the dependence on o of the smoothed complexity, obtaining an upper
bound of 0(c~%/2d'%/410g>/* n) for o < 1/d+/log n. As a second contribution, we prove the first

non-trivial lower bound on the smoothed complexity of a simplex method, finding that the
1

\/od\/loﬂ

Shadow Vertex Simplex Algorithm One of the most extensively studied simplex algorithms

shadow vertex simplex method requires Q(min( ,2)) pivot steps.

in theory is the shadow vertex simplex algorithm [27, 14]. Given an LP

maxc'x, Ax < b,
xeRd

for A e R4 p e R, ceR? letP = {x € R?: Ax < b} denote the feasible polyhedron of the
linear program. The algorithm starts from an initial vertex xy, € P that optimizes an initial
objective ¢o'. During the execution, it maintains an intermediate objective c; = Ac + (1 — A)cg
and a vertex that optimizes c¢;. Thus by slowly increasing A from 0 to 1 during different pivot

1 There are many standard methods of finding such initialization with at most multiplicative 0(d) overhead in running
time, so we can assume that both xo and ¢, are already given. See the discussion in [17].
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steps, the temporary objective gradually changes from ¢y to ¢, revealing the desired solution at
the end. Since each pivot step requires poly(d, n) computational work, theoretical analysis has
focused on analysing the number of pivot steps.

The algorithm is called the shadow vertex simplex method because, when performing or-
thogonal projection of the feasible set onto the two-dimensional linear subspace W = span(cy, ¢),
the vertices visited by the algorithm project onto the boundary of the projection (“shadow™)
s (P). Assuming certain non-degeneracy conditions, which will hold with probability 1 for the
distributions we consider, this projection gives an injective map from iterations of the method
to vertices of the shadow, meaning that we can upper bound the number of pivot steps in the
algorithm by the number of vertices of the shadow polygon. This characterization makes the
shadow vertex simplex method ideally suited for probabilistic analysis.

To analyse the “shadow size”, the number of vertices of the shadow polygon, we follow
earlier work of [52] and reduce to the case that b = 1,. In this case, well-established principles
of polyhedral duality show that we can bound the number of vertices of a convex polygon by
the number of edges of its dual polygon:

vertices(my (P)) < edges(W Nconv(0,ay,...,a,)) < edges(W N conv(ay,...,a,)) + 1.

Here, ay, ..., a, denote the rows of the matrix A used to define P = {x € R4 : Ax < 1,}. Note
that the second inequality holds because 0 € W.

The smoothed complexity of shadow vertex simplex algorithm can thus be reduced to the
smoothed complexity of a two-dimensional slice of a convex hull. For this reason, let us define
the maximum smoothed shadow size as

S(n,d,o) = max  Eg _a w002 [edges (conv(ar +di,...,an+d) NW)| (D)

al,...,anng
maXie(n] llaill2<1

WCRY, dim(W)=2
The following upper bound we take from [17], which states that the analysis of [52] can be
strengthened to obtain the claimed bound. This upper bound should be understood as stating
that there exists a shadow vertex rule based simplex algorithm which satisfies that smoothed
complexity bound. The lower bound is due to [13] and shows that the shadow vertex simplex
rule, with two adversarially specified objectives ¢y, ¢, can be made to follow paths of this length.

THEOREM 1.1 (Smoothed Complexity of Shadow Vertex Simplex Algorithm). Given any
n>d > 2,0 >0, the smoothed complexity of the shadow vertex simplex algorithm satisfies

S(n,d,o0)/4 < SCSHADOWSIMPLEX,n,d,O' <2-S|n+d,d, min(o,

1 1
, )| + 4.
Vdlogd +/dlogn

With this reduction, analysing the smoothed complexity of the simplex method comes
down to bounding the smoothed shadow size S(n, d, g). As such, that will be the focus of the
remainder of this paper.



S /56

TheoretiCS Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method

11 Our Results

The previous best shadow bound is due to [17], who prove that S(n,d, o) < 0(d?*+/logno™2).
Our first main result strengthens this result for small values of o.

THEOREM1.2. Forn>d >3 and o < L_ the smoothed shadow size satisfies

logn

S(n,d,0) =0 (0_3/2d13/4 log®/4 n) .

A full overview of bounds on the smoothed shadow size, including previous results in the
literature, can be found in Table 1.

Second, we prove the first non-trivial lower bound on the smoothed shadow size, estab-
lishing that S(4d — 13, d, 0) > Q(min(——, 29)) for d > 5. This lower bound is proven by

\/od\ﬂoﬂ

constructing a polyhedron P = {x € R? : Ax < 1,} and a two-dimensional subspace W such
that for any small perturbation of A, the new polyhedron P projected onto W will have many
vertices. The construction is based on an extended formulation similar to those first constructed
by [8, 28].

THEOREM 1.3. Forany d > 5 and 6 < —————, the smoothed shadow size satisfies
360d+/log(4d)

1
S(4d - 13,d,0) = Q| min (————, 24

do+/logd
It is possible that the exponent of o in our bound can be further optimized. In Section 6.6,
we describe numerical experiments which suggest that the actual shadow size for random
perturbations of our constructed polytope might be as high as Q(min(c7%/%4,29)). We leave
open the question whether having n/d > 4 can lead to stronger lower bounds in the regime of
o< 279

Two-dimensional polygons To better understand the smoothed complexity of the intersec-
tion polygon conv(ay, ..., a,) N W, we also analyse its two-dimensional analogue introduced by
[19]. Taking ay, ..., a, € R?, each satisfying ||a;||2 < 1, we are interested in the number of edges
of the smoothed polygon conv(a; +4s, . . . , Gn +Gyn), where dy, ..., a, ~ N(0, %) are independent.
The previous best upper bound on the smoothed complexity of this polygon is O(c™! + \/@),
due to [18]. Their analysis is based on an adaptation of the shadow bound by [17]. In Section 4
we improve this upper bound, obtaining the following theorem.

THEOREM 1.4 (Two-Dimensional Upper Bound). Let a,,...,a, € R? be n > 2 vectors with
norm at most 1. For each i € [n], let a; be independently distributed as N (a;, 0*I,). Then

vlogn
o |

E [edges (conv(ay,...,a,))] <O (\/logn +
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Reference | Shadow size Model
Average-
[13] 0(d®/?,/logn) case,
Gaussian
[49] 0(07%d%n + d®nlog® n) Smooth
[21] O(0~%dn*logn + d*n?log? n) Smooth
[52] 0(o~*d? + d®log? n) Smooth
[17] 0(o72d?*y/logn + d3log'® n) Smooth
This paper | O(o~3/2d*3/410g°* n + d'%/*log? n) | Smooth
This paper | Q(min(——, 29)) Smooth
pap ( (\/delogd
[53, 43, 31] | 24 Worst

Table 1. Bounds of expected number of pivots in previous literature, assuming d > 3. Logarithmic
factors are simplified. The lower bound of [13] holds in the smoothed model as well.

To confirm that the above upper bound is stronger than that of [18], one may use the
AM-GM inequality to verify that 2 ‘i/(;gn < +/logn + o1. Combined with the trivial upper bound
Ylog(nyo)
Vo

of nvertices, our bound nearly matches the lower bound of @(min(+/log n+
by [22]. A full overview of previous results on the smoothed complexity of the two-dimensional

,N)) proven

convex hull can be found in Table 2.

1.2 Related work

Shadow Vertex Simplex Method The shadow vertex simplex algorithm has played a key
role in many analyses of simplex and simplex-like algorithms. On well-conditioned polytopes,
such as those of the form {x € R? : Ax < b} where A is integral with subdeterminants bounded
by A, the shadow vertex method has been studied by in [15, 16]. The shadow vertex method on
polytopes all whose vertices are integral was studied in [9, 10]

On random polytopes of the form {x € R? : Ax < 1,}, assuming the constraint vectors
are independently drawn from any rotationally symmetric distribution, the expected iteration
complexity of the shadow vertex simplex method was studied by [14, 13, 12]. In the case when

the rows of A arise from a Poisson distribution on the unit sphere, concentration results for the
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Reference | Smoothed polygon complexity

[19] O(log(n)? + o~%log n)
[45] O(logn +c7?)

[22] O(+/logn +a~4/logn)
[18] O({/logn+a71)

: N
This paper | O(4/logn + f;ga(n))

[22] Q(min(+/logn + —qu\/(_;z\/‘a), n))

Table 2. Bounds on the smoothed complexity of a two-dimensional polygon.

shadow size and diameter bounds were proven in [11]. The diameter of smoothed polyhedra
was studied by [44], who used the shadow bound of [17] to show that most vertices, according
to some measure, are connected by short paths.

A randomized algorithm for solving linear programs in weakly polynomial time, using
the shadow vertex simplex method as a subroutine, was proposed in [39]. The shadow vertex
algorithm was recently used as part of the analysis of an interior point method by [3].

Extended Formulations For a polyhedron P C RY, an extended formulation is any polyhedron
Q € RY, &’ > d, such that P can be obtained as the orthogonal projection of Q to some d-
dimensional subspace. Importantly, Q can have much fewer facets than P. While there is a
wider literature on extended formulations, here we describe only what is most relevant to the
construction in Section 6.

The construction in our lower bound is based on an adaptation of the extended formulation
by [8] of the regular 2X-gon. They used this construction to obtain a polyhedral approximation
of the second order cone {x € R™! : 3\, xl.2 < x,zl .1J- A variant on their construction using
fewer variables and inequalities was given by [28]. A more general construction based on
reflection relations is used to construct extended formulation for the regular 2X-gon, as well as
other polyhedra, in [37]. Extended formulations for regular n-gons, when n is not a power of 2,
can be found in [51].

Approximations of the second order cone based on the work of [8, 28] have been used to
solve second order conic programs, see, e.g., [7]. These approximations were included in the

open-source MIP solver SCIP until version 7.0 [26].
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1.3 Proof Overview

1.3.1 Smoothed Complexity Upper Bound

We write the random polytope from (1) as Q = conv(ay,..., a,) where each q; is sampled
independently from Ny (a;, 62I) such that ||a;|| < 1. Our goal is to upper bound the expected
number of edges of the polygon Q N W for fixed two-dimensional plane W € R? and ay, ..., ax.
This will immediately give us an upper bound of S(n, d, 0).

A fact used since the early days of smoothed analysis [49] states that the intersection
polygon Q N W is non-degenerate with probability measure 1: every edge on Q N W is uniquely
given by the intersection between W and a facet of Q, and every facet of Q is spanned by exactly
d vertices. For any index set I € ([Z]), write E; as the event that conv(a; : i € I) N W is an edge
of Q N W. Non-degeneracy implies that every edge of Q N W uniquely corresponds to an index
set I € (") such that E; holds.

Before sketching our proof, we first review the approach of [17], then discuss the main
technical challenges in achieving an upper bound with better dependence on o.

As a first step in [17], the authors replace the Gaussian distribution with a distribution they
call the Laplace-Gaussian distribution?. The latter distribution approximates the probability
density of the former, in particular having nearly equivalent smoothed shadow size, while
being O(o™} \/m)-log-mpschitz for any point on its domain. A probability distribution with
probability density function u is L-log-Lipschitz for some L > 0 if, for any x, y € RY, the
condition |log(u(x)) —log(u(y))| < L||x — y|| holds.

Next, define ¢; as the length of the edge on Q "W that corresponds to I, i.e., when conv(a; :
i € I)NW is an edge of Q N W then ¢; gives the length of this line segment, and otherwise ¢; = 0.
[17] showed that, for any family S C ([Z]), the expected number of edges of Q N W coming from
S is at most

- E[perimeter(Q N W)]
minges B[4 | Ef]

E (2)

D LE]

Therefore, by taking S = {I € () : Pr[E;] > ()"}, the expected number of edges of Q N W is

at most

E[perimeter(Q N W)]

E[edges(Q N W)] = E minses B[4 | Ef]

<1+E <1+

(3)

Z 1[E;]
1e('3)

To upper bound the numerator of (3), notice that Q N W is a convex polygon contained

Z 1[E/]

IeS

in the two-dimensional disk centered at 0 with radius maX;e(,) ||7Tw (a;)||. It follows that the

2 The Laplace-Gaussian distribution follows the Gaussian probability density function near its mean but exhibits
exponentially decaying tails.
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perimeter of Q N W is at most the perimeter of this disk, namely,
E[perimeter(Q N W)] < 2 - E[m[a}]( lmw (a;)]|]] < 27 - (1 + 40+/log n), 4)
lejn

where the last step comes from a Gaussian tail bound. For the denominator of (3), [17] showed
n

that for any I € ([Z]) with Pr[E;] > (d)_1 that, conditional on Ej, the expected edge length is at
least

2
o) 1
E[¢; | Ef] = @

B (dzw/logn 1+ g/dlog n)

By combining (3), (4) and (5), they proved an upper bound of O(c~2d?y/log n + d*log'* n).

(5)

New Strategy for Counting Edges While [17] made the best possible analysis based of their
edge-counting strategy as outlined in (3), the strategy itself is sub-optimal. The main drawback
is that using the minimum expected length of edge minIE([Z]) E[#¢; | E;] at the denominator of
(3) is too pessimistic when the edges of Q N W are long. For instance, consider the case where
an edge on Q N W has length Q(1) without perturbation. After the perturbation, is very likely
that the length of this edge is still Q(1), but [17] uses a lower-bound of Q( o ).

d?+/logn
To improve this, we developed a new edge-counting strategy that can handle the long

and short edges separately with two different ways of counting the edges. Take any index set
I e ([Z]); conditional on Ej, we write e; for its edge conv(a; : i € I) N W. We call the next
edge in clockwise direction as e;+ and say it has length £;+. We say e+ is likely to be long if

Pr[¢;+ > t | E;] > 0.05 for some parameter t > 0 to be specified later. Here 0.05 can be replaced

nj
d

likely to be long. Following (2), the expected number of edges in Q N W that are likely to be long

by some arbitrary constant in (0,0.5). Let So C (7)) denote the set of I € (1)) such that e;- is

is at most

E[perimeter(Q N W)] - (211 + O(o+/logn))

E[Z E]] < 0.05¢ = 0.05¢

IeSy

(6)

Here the second step uses the exact same upper bound of E[perimeter(Q N W)] as in (4).

In the other case, e+ is unlikely to be long, i.e., Pr[¢;+ > t | E;] < 0.05. Now we will
upper bound the number of such edges by claiming that their exterior angles each are large in
expectation. Let 0; be the exterior angle at the endpoint of conv(a; : i € I) N W that comes last
in clockwise order, i.e., the vertex where e; and e;+ meet. Our key observation is that sin(6;y) - €;+
equals the distance from the affine hull of e; to the second vertex of e;+ in clockwise order.
Therefore, by establishing a universal lower bound for such line-to-vertex distances, we can
derive a lower bound for E[0; | E;] for any edge e+ that is unlikely to be long. See Figure 1 for
an illustration.

More formally, let p;+ denote the next vertex of Q N W after e; in clockwise order.
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Let S; C (") be the collection of index sets I € (")) for which Pr[E;] > 10(")". For a
specific value of y > 0, suppose that for each I € §; we have

Pr[dist(p;+, affhull(e;)) > y | E;] = 0.1. (7)

Then, for I € S; \ Sy, conditional on E;, we have 6; > sin(6;) > % with probability at least

s

0.05, and the expectation of the exterior angle at the shared endpoint of e; and e;- is at least 5.

eI [

Figure 1. lllustration of the case when e+ is short. In purple is the edge e; with its extension line dashed.
The next edge in clockwise direction, e}, has length £;+ and is drawn in black. In red is the line-to-vertex
distance dist(p;+, affhull(e;)), and in blue is the angle 9;. If dist(p;-, affhull(e;)) > y then 6; > sin(68;) > y/&;+.

On the other hand, the sum of exterior angles of a polygon equals to 277. Therefore we can
upper bound the expected number of edges that are not likely to be long of at most

27T 21 - 20t
5l Z HE] < minges,\s, E[0r | Ef] : y
1€S1\So 1120

(8)

We will select y > 0 as large as possible subject to the fact that every I € ([Z]) with Pr[E;] >
10(") " satisfies I € S;.

Summing up the number of edges induced by sets in S, S1 \ So and ([Z]) \ S1, we get an
upper bound on the expected edge-count of Q N W of at most

271+ O(o+/logn) 407t 1+ o+/logn
(t g1 401t o-0 \/—y 2

E[edges(Q NW)] < 9)

where the final step follows from optimizing t > 0 to get the strongest possible bound. We
summarize our result in Theorem 3.4. For details of the edge-counting strategy, see Section 3.

Two-dimensional Upper Bound In the second part of our proof, we need to show a lower
bound of the expected distance from the affine hull of an edge of Q N W to the next vertex in
clockwise order, which is the quantity y mentioned in (7).
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As a warm-up, we first discuss the two-dimensional case d = 2, which will be explained
in detail in Section 4. In this case, W will become the entire two-dimensional space and will
disappear from consideration. Therefore, we can focus on lower-bounding the distance from
any edge e of the polygon Q = conv(ay, ..., a,) to any other vertices, i.e., it suffices to find y > 0
such that for any I € ('),

Pr(dist({a; : j ¢ I}, affhull(e;)) > y | E7] > 0.1.

We can obtain a lower bound on this quantity for any L-log-Lipschitz distribution. Through an
appropriate coordinate transformation we prove that, irrespective of the values of a;, j ¢ I,
the distance dist(conv(aj, j ¢ I), affhull(e;r)), conditional on being non-zero, follows from a
2L-log-Lipschitz distribution. We will calculate that we may choose y = Q(1/L). This result
can be applied with small changes to our Gaussian random variables ag, . . ., a, by substituting
for the Laplace-Gaussian distribution following [17]. Plugging into (9), we get that in the two-
dimensional case, E[edges(Q)] < O(\/(l +avflogn)/(a/+flogn)) = O(slogn/vo + +/logn) as

stated in Theorem 1.4.

Multi-Dimensional Upper Bound As in the two-dimensional case, we must lower-bound
of the line-to-vertex distance dist(p;+, affhull(e;)) (see (7)) of Q N W. Analysing this, however,
becomes more challenging. In two-dimensional case, each edge is the convex hull of two vertices
among ay, ..., a, and is independent of the other potential vertices a;. In contrast, if d > 3 then
each edge on Q N W will be the intersection between W and a (d — 1)-dimensional facet of Q
(which is the convex hull of d vertices), and each vertex will be the intersection between W and
a (d — 2)-dimensional ridge of Q (which is the convex hull of d — 1 vertices). So the distributions
of e; and p;+ are correlated.

To overcome these difficulties, we first factor dist(p;+, affhull(e;)) into the product of sepa-
rate parts which are easier to analyse, and then use log-Lipschitzness of a, . . ., a, to lower-bound
each part with good probability. Fix without loss of generality e = e|q; = conv(ay,...,aq) N W,
as the potential edge of interest. Consider the second endpoint p on e in clockwise direction and
let J € (Ug‘_”l) be the index set such that {p} = conv(a;: j € J)NW.Letp’ =conv(a; : i € J') "W
(with J" € ( d[’_’]l)) be the vertex next to the edge e in clockwise direction. From the non-degeneracy
conditions, we know that J” only differs from J with two vertices almost surely, so we can assume
without loss of generality that ] = {2,...,d}and J' = {3,...,d} U{k} forsome k € {d+1,...,n}.

The main idea of our analysis is the observation that if the Euclidean diameter of Q is
bounded above by O(1) (which happens with overwhelming probability due to Gaussian tail
bound), then we can lower bound the two-dimensional line-to-vertex distance dist(p’, afthull(e))
by the product of two distances Q(6 - r), where
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— § is the d-dimensional distance from the facet-defining hyperplane affhull(ay,..., aq)
containing e, to the vertices of Q that are not in the facet, i.e.,

6 = dist(conv(agqq, ..., an), aftfhull(ay, ..., aq));

— r is the distance from the boundary of the ridge 8 conv(ay, ..., ag) to the one-dimensional
line affhull(e), i.e., r = dist(affhull(e), d conv(ay,..., az)).

We will give the formal statement of the distance splitting lemma in Lemma 5.5.
It then remains to show that r and 6 are both unlikely to be too small. Similar to the
two-dimensional case, we will also use log-Lipschitzness of a4, ..., ag as our main tool.

— After specifying affhull(ay, ..., ag), the lower bound on § is derived from the remaining
randomness in ag41,...,d,. Here we use both the L-log-Lipschitzness of the distribu-
tions of ag41, . . ., an, as well as the knowledge that we only need to consider hyperplanes
affhull(ay, ..., ag) which are likely to have all points ag41, ..., a, on its one side. This is
made precise in Section 5.3.

— The lower bound of r resembles a more technical version of the proof of the “distance
lemma” of [49].

Write 7 : affhull(ay,...,as) — affhull(e)* for the orthogonal projection sending e to a
single point p = ;r(e). With this notation we have r = dist(p, d conv(m(ay),...,m(aq))).

First we show that each vertex of the projected ridge conv(m(ay),...,m(aq)) is a distance
Q(1/(d?L)) away from the hyperplane spanned by its other vertices. That means that the

projected (d — 2)-dimensional ridge conv(mt(ay),...,m(aq)) is likely to be wide in every
direction.

In the second step, we show that W intersects conv(ay, .. ., ag) “through the center”. Specif-
ically, we show that if we write p = ;¢4 Ai77(a;) as the convex combination of ay, - - - , aq,

then with constant probability min;e(q; A; > Q(1/ (d?L)).
The product of the lower bounds Q(1/(d?L)) and Q(1/(d?L)) for the individual quantities
will yield a lower bound for r with good probability. This is included in Section 5.4.

We conclude our main result of the line-to-vertex distance lower bound in Lemma 5.2.
Readers are referred to Section 5 for detailed discussions.

1.3.2 Smoothed Complexity Lower Bound

Our smoothed complexity lower bound (Theorem 6.1) is based on two geometric observations
using the inner and outer radius of the perturbed polytope. For a polytope P and a unit norm
ball B, its outer radius with center x is the smallest R such that there exists P C R - B + x. Its
inner radius with center x is the largest r such thatr - B + x C P.

The first observation is that, if a two-dimensional polygon T has inner ¢;-radius of r and
outer £-radius of (1 + €) - r with respect to the same center, then T has at least Q(&7/?) edges
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(Lemma 6.10). This comes from the fact that every edge of T has length at most O(r+/e), whereas
the perimeter of T is at least 27r.

Second, if two polytopes Q,0 C RY, each with inner radius t, have Hausdorff distance
€ < t/2 to each other, then Q will approximate Q in the way that (Lemma 6.9)

(1-2¢e/t)-QcQcC (1+¢g/t)-Q.
In particular, for any two-dimensional linear subspace W we have
(1-2e/t) - QNW CONWC (1+¢/t)-QNW. (10)

To prove our lower bound, we construct a polytope Q = conv(a,...,a,) < R? and a

two-dimensional linear subspace W such that Q(1) -B‘f C Q € B%, and QNW has outer &-radius

_r
(1+4-9)°

where a; ~ N(a;, 0%I4xq) for each i € [n]. Note that Q C Bf implies that ay, ..., a, satisfy the

r > 0 and inner #;-radius Perturbing the vertices of Q, we obtain Q = conv(ay, ..., a,),
normalization requirement in (1). With high probability the Hausdorff distance in ¢; between
Q and Q is bounded by maXie[n [lai — dill1 < O(od\/@). Using (10), we bound the inner and
outer radius of Q N W. A lower bound on the number of edges of Q N W then follows from
Lemma 6.10 as described above.

We remark that the polytopes Q = conv(ay,...,a,) € R? with n = 0(d) and two-

r
1444

were first obtained by [8] as an extended formulation for a regular 2X-gon with O(k) variables

dimensional subspaces W such that Q N W has inner #;-radius and outer ¢;-radiusr > 0
and O(k) inequalities. Their polytope, however, has an outer and inner radius that differ by a
factor 2% meaning that we cannot apply Lemma 6.9 for o > 27X, We construct an alternative
extended formulation where the ratio between inner and outer #;-radius is only O(1). With an
appropriate scaling to get Q € BY, we find that the perturbed polytope O will have intersection
Q N W with inner radius —=— (1 — 2¢/t) and outer radius (1 + £/t)r, where £ = O(ad+/log n),

1+4-4
and thus has Q(min(%, 29)) edges, with high probability.

2. Preliminaries

We write 1, for the all-ones vector in R", 0,, for the all-zeroes vector in R", and I,x, for the n
by n identity matrix. The standard basis vectors are denoted by e4,...,e, € R". For a linear
subspace W C R™ we denote the orthogonal projection onto W by 7ry,. The subspace of vectors
orthogonal to a given vector w € R" is denoted w*.

For a vector x € R", the ¢; norm is ||x||; = X;cn) [Xil, the &;-normis [|x||2 = | /Zie[n] xl.2 and
the £-norm is ||x || = Max;ec[n) |X;|. A norm without a subscript is always the £;-norm. Given
p>1,de€Z,define Bf = {x e R?: ||x||, < 1} as the d-dimensional unit ball of £, norm.

We write [n] := {1,...,n}. Byconv(ay,...,a,) = conv(a; : i € [n]) we denote the convex
hull of vectors ay, ..., a,, and similarly we write for the affine hull as affhull(a; : i € [n]). For
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sets A, B C RY, the distance between the two is dist(A, B) = infaca pep ||a—b||. For a point x € R?
we write dist(x, A) = dist(A, x) = dist(A4, {x}).

We say a random event happens almost surely if it occurs with probability 1.

For a convex body K € R% we define 8K C span(K) as the boundary of K in the linear
subspace spanned by the vectors in K.

21 Polytopes

DEFINITION 2.1 (Polytope). A convex set P C R¢ is a polyhedron if it can be expressed as
P ={x eR?: Ax < b} for some A € R™4, b € R" where n € Z,. A bounded polyhedron is also

called a polytope.

DEFINITION 2.2 (Valid Condition and Facet). Given a polytope P C RY, vector ¢ € R? and
d € R, we say the linear condition x "¢ < d is valid for P if the condition holds for all x € P.

A subset F C Pis called a face of Pif F = PN {x € R? : x"c = d} # 0 for some valid
condition x "¢ < d. A facet is a d — 1-dimensional face, a ridge is a d — 2-dimensional face, an
edge is a 1-dimensional face and a vertex is a 0-dimensional face.

DEFINITION 2.3 (Polar dual of a convex body). Let P C R be a convex set. Define the polar
dual of P as

P°={yeR?:y"x <1,Vx € P}.
We state some basic facts from duality theory:

FACT 2.4 (Polar dual of polytope). Let P C R? be a polytope given by the linear system
P = {x e R%, Ax < 1,} C R for some A € R™4, Then the polar dual of P equals to

P° :=conv(0g4, ay, ay, ..., an).

where ai,...,a, € R? are the row vectors of A. Moreover, P is bounded if and only if 04 €

int(conv(ay,..., ap)).
FACT 2.5. Let P,Q C RY be two convex sets such that P C Q. Then Q° C P°.

FACT 2.6. Let P C R% be a polytope, and let W C R? be any k < d-dimensional linear subspace.
Then the polar dual of Ty (P), considered as a subset of the linear space W, is equal to P° N W.

2.2 Probability Distributions

All probability distributions considered in this paper will admit a probability density function
with respect to the Lebesgue measure.
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DEFINITION 2.7 (Gaussian distribution). The d-dimensional Gaussian distribution N;(a, c*I)
with support R?, mean a € R%, and standard deviation o is defined by the probability density
function

(272 - exp (~Is - a@l*/ (20%) ).

at every s € R,
A basic property of Gaussian distribution is the following strong tail bound:

LEMMA 2.8 (Gaussian tail bound). Let x € R? be a random vector sampled from Ny (0, 0*I).
Foranyt > 1andany 6 € S*! where S¢1 is the unit sphere in the d-dimensional space, we have

Pr(||Ix|| > toVd] < exp(—(d/2)(t - 1)?).

From this, one can upper-bound the maximum norm over n Gaussian random vectors
with mean 04 and variance o2 by 40+/d log n with dominating probability.

COROLLARY 2.9 (Global diameter of Gaussian random variables). For any n > 2, let

X1, ..., Xn € R4 be random variables where each x; ~ Na(0g, 0%I). Then with probability at least

-1
1-(3) > maxXie[n lIxill < 40+/dlogn.
PROOF. From Lemma 2.8, we have for each i € [n] that

d(4+/logn — 1)?
2

-1
Pr[|ixi|| > 4oy/dlogn] < exp(~ ) < exp(~2dlogn) < n-! - (2) |

Then the statement follows from the union bound over all choices of i € [n]. u

A helpful technical substitute for the Gaussian distribution was introduced by [17]:

DEFINITION 2.10 ((o, r)-Laplace-Gaussian distribution). For any o,r > 0,a € R4, define the
d-dimensional (o, r)-Laplace-Gaussian distribution with mean a, or LG4(aq, g, r), if its density
function is proportional to

—all2 . —
exp (—%) Jif || x —al| < ro

f(x) = 1D

exp (—@ + %) ,if |[x — a|| > ro.

The Laplace-Gaussian random variables satisfies many desirable properties. Like the
Gaussian distribution, the distance to its mean is bounded above with high probability. Moreover;
its probability density is log-Lipschitz throughout its domain (as a contrast, the probability
density of Gaussian distribution is only log-Lipschitz close to the expectation). The definition of
L-log-Lipschitz is as follows:
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DEFINITION 2.11 (L-log-Lipschitz random variable). Given L > 0, we say a random variable
x € R with probability density u is L-log-Lipschitz (or u is L-log-Lipschitz), if for all x, y € RY,

we have

[log(u(x)) —log(u(y))| < Lilx = yI|,

or equivalently, u(x)/u(y) < exp(L||x — y||).

LEMMA 2.12 (Properties of Laplace-Gaussian random variables, Lemmas 3.7 and 3.33 of
[17]). Givenanyn > d, g > 0. Let a4, . .., a, € R? be independent random variables each sampled
form LG4(a, o, 40+/d log n) (see Definition 2.10). Then ay, . . ., a satisfy the follows:
1. (Log-Lipschitzness) For each i € [n], the probability density of a; is (40‘1\/W)-log-
Lipschitz.
2. (Bounded maximum norm) With probability at least 1 — (Z)_l, maX;e, ||a;— a| < 40+/dlogn.
3. (Bounded expected radius of projection) For any k < d, any fixed k-dimensional linear
subspace H € RY, we have E[maxic[n |7ma(a; — ap)l]] < 80\/Wgn.

Most importantly, Laplace-Gaussian perturbations lead to nearly the same shadow size as
Gaussian perturbations.

LEMMA 2.13 (Lemma 3.34 of [17]). Givenany n > d > 2,0 > 0, any two-dimensional linear
subspace W C R% and any ay,...,a, € R% Foreveryi € [n], let a; ~ Ny(a;,0) and a; ~
LGg4(a;, 0,40+/d log n) be independently sampled. Then the following holds

E [edges(conv(ay, ..., a,) NW)] < 1+E [edges(conv(ay, ..., a) NW)].

Although [17] state the above lemma only for d > 3, their proof applies without change to
the case d = 2.

2.3 Change of Variables

We will make use of a specific change of variables, which is a standard tool in stochastic and
integral geometry. It will allow us to investigate, for points ay, ..., ag € RY, the distribution of
these points when conditioning on a specific affine hyperplane affhull(ay, ..., ag). This will
enable us to make conclusions about the shapes of the faces of the convex hull conv(ay,..., a,)

of n vectors.

DEFINITION 2.14 (Change of variables). Let 0 S41t e RbesuchthatVi e [d],07a; =t
and suppose 6" e; > 1 without loss of generality where e; = (1,0,...,0)T € R? is the unit vector
that has nonzero element on the first coordinate.

Fix h as any isometric embedding from R%~! — er. Let Rg : R? — R4 denote the rotation
that rotates e; to 6 in the two-dimensional subspace span(ey, 6), and is the identity transfor-
mation on span(e, 6)*. Define Rg = Rg o h to be the resulting isometric embedding from RA-1
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identified with e7, to 6*. Now define the transformation ¢ from 6 € S, t € R, by,...,bg € R%™
toay,...,ag € R? as follows:

$(6,8,b1,...,ba) = (Ro(by) +16, ..., Ry(bg) + t6). (12)

The choice of the embeddings Ry is largely arbitrary. What matters is that the transforma-

tion ¢ and its inverse are continuous almost everywhere.

LEMMA 2.15 (Jacobian of the transformation, see Theorem 7.2.7 in [46]). Let ¢ : ST™1 x R x
R-Dxd _, RAXd he the transformation defined in Definition 2.14. The transformation ¢ is defined

almost everywhere and has Jacobian determinant that equals to

o
det =C4-(d-1)!-volj_1(conv(by,...,b
(a(e,t,bl,...,bd))‘ a-( ) d-1( (b d))
for some constant C4 depending only on the dimension. As a consequence, if ay,...,aq € RY

are points with probability density u(a,...,aq) and if @ € S* 1t € R,b4,...,bq € RT! have
probability density proportional to

volg_1(conv(by,...,bq)) - u(t0+ Ry(b1),...,t0+ Ry(by))

thenE[f(aq,...,aq)] = E[f(¢(6,t,bq,...,bq))] for any measurable function f.

The interested reader might observe that if (a4, ..., aq) = ¢(0,t,bq,..., bs) then the Jaco-
bian
(d —1)!-volg_1(conv(ay,...,aq)) = (d —1)! - volg_1(conv(bq,...,bq))

is equal to the determinant of the d x d matrix (67, (a; — aq) ", (az — aq) ', ..., (ag_1 — aqg)"),
which is equal to the determinant of the (d — 1) X (d — 1) matrix with rows or columns given by
b1 — bg, by — bg,...,bg_1 — bg.

In particular, we will use this transformation to condition on the value of 0 and consider

events in the variables t, by, . .., bg. For this purpose, we have the following fact.

LEMMA 2.16 (Log-Lipschitzness of the Position of Affine Hull). Let a;,...,a4 € R% pe d
independent L-log-Lipschitz random variables, and let (0,t,b1,...,bq) = ¢ (ay, ..., aq), where
¢ : ST x R x R(@-Dxd _, Rdxd js defined in Definition 2.14. Then conditional on the values of

0,b4,...,bg the random variable t is (dL)-log-Lipchitz.

PROOF. By Lemma 2.15, the joint probability density of (aq, ..., aq) is proportional to
d
volg-1(conv(by,...,bq)) - 1_[ ui(Ro(b;) + t0)
i=1

where y; is the probability density of a;. Conditioning on by, ...,bq € R4 and 6 € S%°1, the
volume volg_1(conv(by,...,by)) is fixed. The statement then follows from the fact that for each
i € [d], ui(Ro(b;) + t0) is L-log-Lipschitz in t for any b;. u
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Conditional on 8 and ¢, the points b, ..., bg are not L-log-Lipschitz due to the volume term.
When it becomes relevant, we will show that this factor does not affect the argument in any
negative way.

2.4 Non-Degenerate Conditions

DEFINITION 2.17 (Non-degenerate polytope). A polytope Q = conv(ay, ..., a,) € R%is called
non-degenerate, if it is simplicial (every facet is a simplex) and if, for i € [n], a; € dQ implies
that q; is a vertex of Q.

DEFINITION 2.18 (Non-degenerate intersection with a 2D-plane). Let Q € R be a non-
degenerate polytope and let W C RY be a two-dimensional linear subspace. We say Q has
non-degenerate intersection with W, if
1. the edges of the two-dimensional polygon Q N W have one-to-one correspondence to the
facets of Q that have non-empty intersection with W; and
2. the vertices of Q N W have one-to-one correspondence to the (d — 2)-dimensional faces
(ridges) of Q that have non-empty intersection with W

FACT 2.19 (Non-degenerate conditions of random polytope). Given any n > d > 2 and any
fixed two-dimensional plane W C R%. For ay,...,a, € R% the polytope Q = conv(ay,...,a,)
satisfies the following properties everywhere except for a set of measure 0:

1. Q is non-degenerate;

2. Q has non-degenerate intersection with W;

3. For every normal vector v to any facet of Q, eJ v # 0.

Assume the polytope Q = conv(ay,...,a,) and the two-dimensional linear subspace W C
R4 satisfy the non-degenerate conditions in Fact 2.19. Each edge of the two-dimensional polygon
formed by the intersection W N Q can be described by a set of d vertices, where the edge is
equivalent to the intersection of W with the convex hull of these d vertices. Furthermore, each
vertex of Q N W corresponds to a set of (d — 1) vertices. The following lemma characterizes the
relation of these sets for adjacent vertices and edges:

FACT 2.20 (Properties of neighboring vertices on non-degenerate intersection polygon).
Let W C RY be a two-dimensional linear subspace, Q = conv(ay,...,an) C R? is simplicial
and has non-degeneracy intersection with W. Given J1,J, € (\™), I € (%), suppose (1) v}, =
conv(a; : j € J1) "W and Vy, = conv(a; : j € J,) N W are two adjacent vertices of Q N W, and
(2) conv(a; : i € I) N W is an edge of Q N W that contains Vj, but not contains Vj,. Then we have
J1\Jzl = [J2\J1| =1 and |[I\];| = 2.
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PROOF. Let I’ = J; U J,. Then conv(V},,V;,) = conv(a; : i € I) N W is an edge of the polygon
Q N W. Since Q has non-degenerate intersection with W, we have that |I’| = d. Combining with
[J1l = |J2| = d — 1 gives us that [J1\]2| = |J2\/1] = 1.

Next we consider |I\J;|. Since J; C I and |J;1\/2| = 1, it could only be the case that
II\J2| € {1, 2}. If |I\J2| = 1, then since |I| = |]J2| + 1 we must have J; C I, but this contradicts to
the fact that conv(J,) ¢ conv([l). Therefore we could only have |I\];| = 2. |

3. Smoothed Complexity Upper Bound

In this section, we establish our key theorem for upper bounding the number of edges of
a random polygon conv(ay,...,a,) N W for W a fixed 2-dimensional linear subspace and
ai,...,a, € R We demonstrate that if for any edge on the shadow polygon conv(ay, . . ., a,) "W,
the expected distance between the affine hull of the edge and the next vertex on the shadow is
sufficiently large in expectation, then the expected number of edges of conv(ay,...,a,) N W
can be upper-bounded.

DEFINITION 3.1 (Facet and edge event). For I C [n], we write F; = conv(a; : i € I). Define E;
to be the event that both F; is a facet of conv(ay,...,a,) and F; N W # 0.

REMARK 3.2. Anyedge e of conv(ay,...,a,) "W can be written as e = F;NW for some I C [n]
for which E; holds. Assuming non-degeneracy, this relation between edges and index sets is a
one-to-one correspondence, and moreover every I C [n] for which E; holds satisfies |I| = d.

To state the key theorem’s assumption, we need a concept of ’clockwise’ to characterize

the order of edges and vertices on the shadow polygon.

DEFINITION 3.3 (Clockwise order of edges and vertices). For any given two-dimensional
linear subspace W C R? we denote an arbitrary but fixed rotation as “clockwise”. For the
polygon conv(ay, ..., a,) NW of our interest, let p4, ..., px denote its vertices in clockwise order
and write px+1 = p1, Pxk+2 = p2. Then for any edge e = [ p;_1, pi], we call p; its second vertex in
clockwise order and we call p;,; the next vertex after e in clockwise order. The edge [p;, pi+1] is
the next edge after e in clockwise order.

Note that the above terms are well-defined in the sense that they depend only on the
polygon and the orientation of the subspace, not on the vertex labels. With this definition in
place, we can now state the theorem itself:

THEOREM 3.4 (Smoothed complexity upper bound for continuous perturbations). Fix
any n,d > 2, 0 > 0, and any two-dimensional linear subspace W C RY, Let ay,...,a, € RY be
independently distributed each according to a continuous probability distribution.
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n]
d

F; NW. Fory > 0, suppose that for each I € (") such that Pr[E;] > 10(") ™" we have

Forany I € ([ ), conditional on Ej, define y; € W as the outer unit normal of the edge

Pr(y; po—y;p3 >y | Ef] 0.1,

where we write [p1, p2] = F; N W and ps € conv(ay,...,a,) N W as the next vertex after Ff N W
in clockwise order. Then we have

E[maxie(n) [|l7tw (a;)|l]
)4

o \/E[maXze[n] It ()]
Y

E [edges (conv(ay,...,a,))] <10+ 8071\/

Note that, assuming non-degeneracy, y; is well-defined if and only if E; happens. In this
case, we are guaranteed that y; p, — y; p3 > 0.
To prove the above theorem, we show thatany I € (") with Pr[E;] > (%)~ can be charged

to either a portion of the perimeter of the polygon conv(ay,...,a,) N W or to a portion of its
sum 277 of exterior angles at its vertices.

DEFINITION 3.5 (Exterior angle and length of the next edge). Given any I € ([Z]), we define
two random variables 6;, £;+ > 0. If E; happens, write p1, p, € F; N W for the first and the
second endpoint of F; N W in clockwise order. Let 6; to be the (two-dimensional) exterior angle
of conv(ay,...,a,) N W at py; If E; doesn’t happen then let 6; = 0.

Let ¢+ denote the following random variable: If E; happens, then ¢+ equals to the length
of the next edge after F; N W in clockwise order; i.e., the other edge of conv(ay,...,a,) N W
containing p,. If E; doesn’t happen then let £;+ = 0.

PROOF OF THEOREM 3.4. Since we have non-degeneracy with probability 1, by Fact 2.19
and linearity of expectation we find

E [edges (conv(ay,...,a,) NW)] = Z Pr[E;].
1e('y)
We can give an upper bound on the expected number of edges of conv(ay,...,a,) N W by

[n]
d

later. We consider three different possible upper bounds on Pr[E;], at least one of which will

upper-bounding each Pr[E;]. Fix any I € (') and let t > 0 be a parameter to be determined
always hold:

Case 1: Pr[E;] < 10(%) .

Since Y re(tm 10(2)_1 = 10, one can immediately see that the total contribution of edges
counted in this case is at most 10.

Case 2: Pr[E;] > 10(%) " and Pr[&+ > t | Ef] > .
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In this case, by Markov’s inequality E[ £+ | E;] > %, therefore we obtain from E[#;+] =
E[4+ | Ef] Pr[E;] and E[£;+|ES] = O that

_ B[&] 20
Pr[E]] = m < T . E['EI+]

Case 3: Pr[E[] > 10((']1’)_1 and Pr[¢+ <t | Ef] > %. Readers are referred to Figure 1 for
more illustration of the proof.

Conditional on E;, without loss of generality we write [p1, p2] = F; " W and let p3 denote
the next vertex after F; N W in clockwise direction. From the theorem’s assumption we have
Pr[dist(affhull(p1, p2), p3s) =y | Ef] = 1—10. Then from the union bound,

Pr{ (£~ < t) A (dist(affhull(pq, p2), p3) = y) | E1]
1
> 1—Pr[¢+ > t| E;] — Pr[dist(affhull(py, p2), p3) <y | E1] = 20"

Referring back to Figure 1, we know that 6; > 0 and thus

dist(affthull(p4, p2), p3)
{7+

0; > sin(6;) =

we have E[6; | E[] > % . % Combining this with the fact that 8; = 0 if E; does not hold, we know
that E[6;] = E[6; | E;] Pr[E;] and we can upper bound

E[6;] - 20t
[0r [ E] — vy

Combining the upper bounds for each Pr[E;] for the above three cases, we get that

Pr[E;] = = -E[6].

E [edges (conv(ay,...,a,) NW)] = Z Pr[E;]

1e('3)
-1
n 20 20t
< 10 +—-Elé+]+—-E|[O
_Z( (d) - Blér]+ == B[]
1e('d)
20 20t
:10+T-E[Z €1+]+—-E[Z 0;] (13)
1e('7) 1e('7)
To upper bound the second term of (13), we notice that (tnly {1+ exactly equals the
d
perimeter of conv(ay, ..., a,) N W. Since the shadow polygon conv(ay,...,a,) N W is contained

in the two-dimensional disk of radius max;c[n [|71w (a;) ||, by the monotonicity of surface area
for convex sets we have

Bl ), ] < 2 Blmax|imy (a)]l]
re('y)
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To upper bound the third term of (13), we notice that the sum of exterior angles for any

polygon always equals 277. Thus
E[ Z 0] = 2m (14)
1e('y)
Finally, we combine (13 - 14) and minimize over all t > 0:

40mE[maxie mw ()] | 407t

E [edges (conv(ay,...,a,) N W)] < min (10 +

t>0 t y
E|max; mw (a;
104 80m \/ [maic(n |l (ao) ]
Y
where in the final step, we set t = \/yE[maXl—e[n] ||7rw (ai)||]- u

In the subsequent sections, we will show a lower bound for the edge-to-vertex distance y
assuming the independently distributed vectors ay, - - - , a, follow Laplace-Gaussian distribu-
tions. This allows us to directly apply Theorem 3.4 to derive an upper bound on the expected
number of edges of conv(ay, - - -, a,) N W. Furthermore, by using Lemma 2.13, we can further
reduce our upper bound to the case when ay, . . ., a, are Gaussian distributed vectors.

4. Upper Bound in Two Dimension

In this section, we establish the smoothed complexity upper bound for d = 2. For this scenario,
the shadow plane W encompasses the entire two-dimensional Euclidean space, and P N W
is identical to P = conv(ay, - - -, a,). From Theorem 3.4 and Lemma 2.13, it remains to lower
bound the distance from the affine hull of an edge to its neighboring vertex in clockwise order
(denoted by y in Theorem 3.4), where the vertices of the polygon ay, - - - , a, is sampled from
a Laplace-Gaussian distribution with the center of ay, - - - , a,. We will demonstrate a slightly
stronger result: a lower bound for the distance between the affine hull of an edge to all of the

remaining (n — 2) vertices.

LEMMA 4.1 (Edge-to-vertex distance in Two Dimension). Let ay,...,a, € R? be n independent
L-log-Lipschitz random variables. Then, for any I € ([g]), the outer unit normal y € W of the edge
conv(a; : i € I) satisfies

1
Pr[y'a;—maxy'a; > = | Ef] > 0.1,
jel L
foranyi e I

By applying Theorem 3.4, Lemma 2.13, and the Laplace-Gaussian tail bound of Lemma 2.12,
we find the following upper bound for two-dimensional polygons under Gaussian perturbation:
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THEOREM 4.2 (Two-Dimensional Upper Bound). Let ay, ..., a, € R? be n > 2 vectors with
norm at most 1. For each i € [n], let a; be independently distributed as N> (a;, 6*I). Then

E [edges (conv(ay,...,a,))] <O ( 413%" + +/log n) .
o

PROOF. For eachi € [n], let @; be independently sampled form the 2-dimensional Laplace-
Gaussian distribution LG, (a;, 6, 45+/2 1og nn). It follows from Lemma 2.12 that ¢; is (46~+/2 log n)-
log-Lipschitz and E[maX;e[y [|di]|] < 1+40+/210g n. We use Lemma 4.1, setting L = 40~'/2logn,
and Theorem 3.4, setting y = % = g __ tofind

B 44/2logn

E [edges (conv(dy,...,q,))] <O \/ ng +logn| <O

o[ i)

Finally, from Lemma 2.13, we conclude that E [edges (conv(ay,...,an))] < 14+0( “\l/?n ++/logn).

PROOF OF LEMMA 4.1. Fix any set I = {i,i’} C [n]. Define z € S! and ¢ to satisfy z"a; =
z"ay =t and z"e; > 0. Both are well-defined with probability 1.

Note that E; is now equivalent to either having z'a; < t forall j ¢ I or having z'a; > t
for all j ¢ I. Write E} for the former case and E; for the latter. The vector z is always defined,
assuming non-degeneracy, and is equal to the outer normal unit vector y conditional on E} and
equal to —y conditional on E;.

We want to apply the principle of deferred decisions to fix the values of a; for each j ¢ I
and z, and now only allow a; and a; to vary while fixing the slope of the line between a; and
ai. Let u : R = R, denote the induced probability density function of t = yTa; = y"ay.
Lemma 2.16 tells us that u is (2L)-log-Lipschitz.

In the first case, for E7, we have, still only considering the randomness over ¢,

1
Pr[(t —-maxz'a; > =) AE}
[( jel ] L) I]

=/ u(t)de
maxjgr Z' aj+1/L

=/oo u(s+1/L)ds

aXjer ZTaj

> / e 2u(s)ds (By (2L)-log-Lipschitzness of u)
m

aXjer ZTaj

=e 2 Pr[E}].
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Similarly for the other case, E;, we find
1
Pr[(minz'a;—t > =) A E;] > e 2Pr[E;].
[(minzTa;~t> 3) A Ef] > e PriEy]
Now observe that, for any i € I, we have
1
Pr[y'a;—maxy'a; >~ AE
[y i el Yy a; I I]
=Pr[(t-maxz'a; > 1) AEf]+Pr[(minz'a; -t > 1) A E7 ]
>e “Pr[Ef] + e *Pr[E;]| = e * Pr[E;].

This finishes the proof since

1 1
Pr(y"a;-maxy'a; > — | Ef] =Pr[y a; —maxy'a; > — A Ef]/Pr[E] > e™* > 0.1.
jel L jel L

5. Multi-Dimensional Upper Bound

In this section, we establish the upper bound for the higher-dimensional case (i.e., d > 3):

THEOREM 5.1 (Multi-dimensional Upper Bound). Letd > 2,n > d, and 6 < ——. Let

16d+/log n
ai, ..., an be nvectors with max;c[,) ||ai|| < 1. For eachi € [n], let a; be independently distributed
as Ni(a;, aI). Then
E[edges(conv(ay,...,a,) NW)] =0 (0_3/2d13/4 log®/4 n) . (15)

Similar to the two-dimensional case (see Section 4), the main technical ingredient of
Theorem 5.1 is a lower-bound of the edge-to-vertex distance (the quantity y in Theorem 3.4) on
the shadow polygon:

LEMMA 5.2 (Edge-to-vertex distance of shadow polygon in multi-dimension). For any d > 3,
let ai, ..., a, € RY be independent L-log-Lipschitz random variables. For any I € ([Z]) that satisfies
Pr(E;] > 10(;’)_1, (where Ej is defined in Definition 3.1), we have

Prly'p-y'p = Q(——=—) | Ef] 2 0.1,
[y’ p-y'p (Lgdslogn) | Ei]
where p is any point in F; N W, and p’ € conv(ay,..., a,) N W is the next vertex after Ff N W in
clockwise direction. Here y € W is the outer unit normal to the edge FNW on conv(ay,. .., a,) NW.

Theorem 5.1 then immediately follows from Lemma 5.2, Theorem 3.4, and Lemma 2.13:

PROOF OF THEOREM 5.1. For each i € [n], let 4; be independently sampled from the
Laplace-Gaussian distribution LG4(a;, 0,40+/d log n). From Lemma 2.12, we know that
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1. Each @; is L = (40~ 1y/d log n)-log-Lipschitz;
2. B[maxc[n llmw(d:)||]] <1+ 80+/2logn < 1.5.

From Lemma 5.2, we get that for any p € F; N W, if p’ is the next vertex after the edge
F; N W in clockwise order, then

Prly;p =y 0 +Q( ) | E7] = 0.1.

L3d°>logn
Here y; € W is the outer unit normal vector of the polygon conv(dy,..., a4, N W on the

edge F; N W. Then we can use Theorem 3.4 by setting L = 40~ 'y/dlogn, y = Q(#logn) and
E[max;c[n [I7tw(ai)||] = 1.5, to find

E[maxie(n) [|l7tw (a;)l]
)4

E [| edges (conv(dy,...,a,))|] <10+ O(\/ )

1.5
<10+ O( —)

L3d3logn
< 10 + O(+/L3d5 log n)

<10+ O(\/a‘?’oll?’/2 log®? n).

Finally, from Lemma 2.13, we conclude that

E [| edges (conv(ay,...,ap) NW)|] <11+ O(\/0—3d13/2 log®/? n)
-0 (0‘3/2d13/4 log®/4 n) _ -

The rest of this section is dedicated to the proof of Lemma 5.2 and will be structured as
follows. In Section 5.1 we define some basic notation that will be used in the proof. In Section 5.2
we establish two sufficient criteria for the conclusion of Lemma 5.2 to hold. In Section 5.3
and Section 5.4, we prove that these conditions hold with good probability conditional on Ej.
Section 5.5 to Section 5.7 include the proof of the auxiliary lemmas. Finally, we finish the proof
of Lemma 5.2 in Section 5.8.

51 Notations

Since we assume that the constraint matrix rows ay, ..., a, each have a continuous probability
density function, conv(ay, ..., a,) and W satisfy the non-degeneracy conditions (see Fact 2.19)
almost surely. In this case, each edge of the polygon conv(ay,...,a,) NWisgivenby F;NW =
conv(a; : i € I) for which I € ([Z]) and E; holds (where F; and E; are defined in Definition 3.1).
In addition, each vertex of the polygon conv(ay, ..., a,) "W is given by the intersection between
W and (d — 2)-dimensional ridges of conv(ay, ..., a,), which are convex hulls of (d — 1) vertices
of conv(ay, ..., a,). We define the following notations for a ridge and its corresponding vertex:
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DEFINITION 5.3 (Ridge and vertex event). For any J C [n], write R; = conv(a; : j € ]).
Define A; to be the event that Ry is a ridge of conv(ay,...,a,) and Ry N W # 0.

REMARK 5.4. Any vertex v of conv(ay, ..., a,) can be written as v = R; N W for some J C [n]
for which A; holds. Assuming non-degeneracy, each J for which A; holds satisfies |J| = d -1 and

nj

the relation between vertices and index sets J € ( 65_1

) with A; is a one-to-one correspondence.

5.2 Deterministic Conditions for a Good Edge-to-Vertex Separator

In this subsection, we present a series of sufficient conditions such that an edge on the polygon
conv(ay,...,a,) N W maintains a significant separation from its next vertex in clockwise order.
When the vertex set {a;}! , is fixed, this edge-to-vertex distance can be decomposed into two
geometric components:
— thedistance from all other vertices of Q to the supporting hyperplane of the facet containing
the edge, and
— the depth at which the intersection point p = R N W lies in the interior of the ridge R.

Lemma 5.5 shows that if these two quantities are bounded below by § and r respectively, then
their product, r§/3, guarantees a significant edge-to-vertex gap in the projected polygon Q N .

LEMMA 5.5. Let W C R? be a two-dimensional linear subspace, Q = conv(ay, ..., a,) C R?bea
non-degenerate polytope with a non-degenerate intersection with W such that max; je(n) ||ai—a;|| <
3and W N Q # 0. Fix any facet F of Q such that FN'W # ( and any ridge R C F of F such that
W N R is a singleton set {p}. Let §,r > 0 be such that

1. (distance between F and other vertices) Yay ¢ F, dist(affhull(F), ax) > §;

2. (Inner radius of R) dist(affhull(F N W), dR) > r.

Then for any p € F N W, the outer unit normal vector 6 € W to the edge F N W satisfies
0" p-0Tp >6r/3,
where p’ € Q N W is the next vertex after F N W in clockwise order.

The reader who desires a more intuitive illustration of the geometry involved may take a
look at Figure 2 from the next lemma, where relevant concepts are depicted as they happen
for d = 4. The simplex is the “next” facet after F, and its bottom face B is the ridge of Q that
is shared with F. The distance from b, to B is large due to the first assumption of Lemma 5.5,
and the distance from g to the boundary of B is large due to the second assumption. To map
the depicted facet to a three-dimensional space for the purpose of the illustration, it has been
projected orthogonally to the subspace perpendicular to F N W.

We remark that Lemma 5.5 gives a sufficient condition assuming that {a; : i € [n]} is
fixed. In later subsections, our goal is to show this sufficient condition actually occurs with high
probability even when {a; : i € [n]} are Laplace-Gaussian distributed random variables.
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To start, we show a lemma about the distance from a point in the simplex to the affine
hull of its neighboring facet.

LEMMA 5.6. Given by,...,bq € R4 such that conv(by,...,bg) is non-degenerate. For any
D > 0, suppose

1. Vi, j € [d], ||bi = bj|| < D;

2. dist(bq, afthull(b,,...,bq)) > &;

3. There exists q € conv(by,...,bg) such that dist(q, d(conv(by,...,bg))) > T.

Then we have dist(q, affhull(b4,...,bs-1)) = r8§/D.

PROOF. For simplicity, write B = conv(by,...,bs) and B’ = conv(by,...,bq-1). Let ¢’ = g (q)
be the point closest to g on affhull(B’), i.e., |q — ¢’|| = dist(q, affthull(b4,...,bg-1)).

Let x = (BN B’) N affhull(b4, q, ¢') be its intersection between the two-dimensional plane
affthull(b4, q, ¢') and the (d — 3)-dimensional ridge B N B’ (which gives a unique point). (See
Figure 2 for an illustration). Consider the triangle conv(b,, g, x) and calculate its area in two

b,
B/
B by
Figure 2. lllustration of Lemma 5.6 when d — 1 = 3. In light green is the intersection between the
two-dimensional plane affhull(bq,q,q’) and conv(bs,...,by). The red triangle is conv(b4,x,q). The bottom

face is B and the left-facing back face is B’.

different ways. On one hand, it has base conv(bq, x) of length ||b; — x|| < D with height
dist(q, affhull(b4, x)) = ||q — ¢’||, which gives that the area of the triangle is at most D||q — q’||/2.
On the other hand, this triangle has base conv(x, q) of length ||x — q|| > dist(q, d(B)) > r with
height dist(bq, affhull(x, q)) > dist(by, affhull(B)) > &, which gives that the area of the triangle
is at least ré/2.

Combining the above two ways of determining the area of triangle conv(by, g, X), we have
D|lq - ¢’||/2 = r&/2. Therefore we have dist(q, afthull(B")) = ||q — ¢'|| = %‘5 as desired. ]
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What Lemma 5.6 tells us is that, if we have sufficiently strong information about the
geometry in base of a simplex (conditions 1 and 2) then we can relate the height of that simplex
to the length of a given chord. In our setting, we let a ridge of the polar polytope play the role of
the base, and take the apex to be one of the vertices a; not contained in the chosen facet.

To prove our main deterministic geometric result (Lemma 5.5), we squash the configuration
by projecting it orthogonally onto the (d — 1)-dimensional subspace s+ orthogonal to the edge
direction. Under this projection, the two neighboring ridges R and R’ become adjacent facets
of a simplex, with the apex corresponding to the first vertex outside the facet F. The bounded
diameter, height, and inner radius conditions in Lemma 5.5 then align precisely with the
assumptions of Lemma 5.6, which allow us to apply it and lift the resulting bound back to the

original two-dimensional slice W.

Figure 3. lllustration of the variables in Lemma 5.5 for d = 3. The light-green parallelogram is the
two-dimensional plane W. The red arrows are 6 (outward unit normal of F) and 6 = my (8)/|Imw () ||. The
red points p =W nR and p’ =W N R’ are two consecutive points on the polygon Q nW. The red dashed
line demonstrates the edge-to-vertex distance 8" (p — p’).

PROOF OF LEMMA 5.5. Write R’ for the ridge of Q such that {p’} = R"NW. Since p’ e QNW
is adjacent to vertex p and the edge F N W, by Fact 2.20 we may relabel the a; such that R’ =
conv(as,...,aq-1), R =conv(ay,...,aq), and F = conv(ay, ..., as+1) without loss of generality.
Let 0 € S%! denote the outward unit normal to F. This normal vector satisfies

S<min® (p-a;) <0 (p-a).

ie[n]
a;¢F

Let s € S?°! be a unit vector indicating the direction of the (one-dimensional) line F N W. This
vector is unique up to sign. Also, let 6 = 1w (0)/]|7tw (0) || be the outward unit normal to FNW in
the two-dimensional plane W. See Figure 3 for an illustration of the variables for d = 3. Notice
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that 6 and s form an orthonormal basis of W. Therefore we get
0" (p-p) =01 (p~p) = s (p - ) (16)

Here the last equality comes from (p — p’) e W = span(é, $), 80 s (p — p’) = m5(p — P’).

Now we focus on the (d — 1)-dimensional space s*, and consider the orthogonal pro-
jections msi(ay),...,ms1(agq). Since the diameter of conv(ay,...,aq) is at most 3, we have
max; je(aj [17s+ (a;) — 75+ (a;)|| < 3. By definition, 6 is a unit normal of R, so since s € R, we have
0 € s*. It follows that 6 is also a unit normal of 775: (R) = 7. (conv(ay, ..., aq)). This gives

dist(7s: (aq), affhull (775 (R))) = 07 (p — a1) > 6.
Also, since dist(F "W, dR) > r and F N W is one-dimensional, after the projection to s* we have
dist(7s. (p), 0752 (R)) = dist(affhull(F N W), 0R) > r.
Therefore we can use Lemma 5.6 to get
7752 (p) — s (P)|| > dist(sts: (p), affhull(7rs. (R'))) > ré/3,

where the first step comes from 7. (p’) € affhull(7s:(R’)). The lemma then follows from
(16). u

5.3 Randomized Lower-Bound for §: Distance between vertices and facets

In this section, we show that the affine hull of a given facet F of the polytope conv(ay, ..., a,) is
Q(mfw)‘far away to other vertices with good probability, or in other words, the distance §
in Lemma 5.5 is at least Q(Ldllw) with good probability. Our main result of this section is as

follows:

LEMMA 5.7 (Randomized lower-bound for &8). Let ay,...,a, € R? be independent L-log-
Lipschitz random vectors. For any I € (") such that Pr[E;] > 10(%) ™", we have

1
Pr[ min dist(affhull(F;), ax) >
[ke[n]\I ( (F1), ax) 10e3dLlogn

) | E7] > 0.72.

Intuition The proof of this lemma will span this entire subsection. Let us start with some
words on the intuition behind it. Assume affhull(F;) is fixed arbitrarily. Then the quantities
dist(affhull(F;), ax) are determined solely by the points ax, k € [n] \ I. The points are L-
log-Lipschitz, which makes each signed distance |07 ax| = dist(affhull(F;), ax) € R into an
L-log-Lipschitz random variable as well. Any L-log-Lipschitz random variable has its probability
density function pointwise upper bounded by L, and hence the probability that for a given
k € [n] \ I we have Pr[0"ay € [—¢,€]] < 2¢eL. A union bound would then give

Pr[ min dist(affhull(F;), ax) < €] < 2(n— d)eL.
ke[n)\I
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Taking € = % would give us a bound on the probability.

Itis clear that this weaker version of Lemma 5.7 would be relatively easy to prove. However,
it has a linear dependence on n and thus it would add a factor of v/n to our shadow bound. This
is undesirable. To obtain the stronger conclusion, we consider the expected number of points
at close distance to affhull(Fj).

Pr| min dist(affhull(Fy), @) < € | EI] < E[|{i e [K]\I : dist(affhull(F)), a) < €} )E,]. (17)
€eln

If ¢ < 1/L then we can use L-log-Lipschitzness to derive a lower bound on the number of points
ax lying above (or below) the affine subspace affhull(F;). What we prove is that if (17) is large
then (without conditioning on E;) both the expected number of points above affhull(F;) and
the expected number of points below affhull(F;) are at least Q(ﬁ) times as large as (17).

However, recall that the event E; requires all points to lie on the same side of affhull(Fj).
If there is simultaneously a point above affhull(F;) and a point below affhull(F;) then E; does
not hold. Using the Chernoff bound we can show, conditional on some affhull(F;) = H, that
if we have Pr[E; | affhull(F;) = H] > n~% then at least one of the expected number of points
above affhull(F;) or the expected number of points below affhull(F;) must be at most 2d log n.
If one of these is bounded from above, then (17) must be bounded from above. Taking proper
care to observe that those affine subspaces H for which Pr[E; | affhull(F;) = H] > n~¢ together
account for most of the probability mass, this will yield the desired result.

Proving the lemma To show Lemma 5.7, we fix any I € (') of consideration. Without loss of
generality, assume I = [d] and write E = E[4). We define the following event B, indicating that
the distance from affhull(Fj4)) to other vertices is at least ¢.

DEFINITION 5.8 (Separation by the margin of a facet). Let 0 € S?°1,t € R be as in Defini-
tion 2.14. For any € > 0, let B} denote the event that 07a; < t —eforalli € [n] \ [d] and B;
denote the event that 8'a; > t + efor alli € [n] \ [d]. We write B, = Bf V B;.

In the following lemma, we show that for sufficiently small €, Pr[E A B¢] is still a constant
fraction of Pr[E].

1 .
LEMMA 5.9. Forany 0 < € < T0LdTogn it holds that

-1
Pr(E] < (Z) +;Pr[EABg].

PROOF. Writing random variables as subscripts to denote which expectation is over which

variables, we start by using Fubini’s theorem to write

Pr [E]:Eal,...,ad[ Pr [E]]

atig,...,dn ad+1,---,an
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Fix any ay,...,aq € R" subject to conv(ay,...,aq) N W # 0 and the non-degeneracy assump-
tions in Fact 2.19. Define 0 € S ¢t > 0 as described in Definition 2.14, i.e., 87 q; = t for each
i € [d]. Writes; = 07a; for each i € [n] \ [d]. We note that s; is an L-log-Lipschitz random
variable for all i € [n]\[d]. Moreover, over the remaining randomness in ag441, . . ., @n, We have
Pr[E] = Pr[B{] + Pr[B,] and Pr[B.] = Pr[B{] + Pr[B;]. We will show that

1 5
Pr(B{] < —— + — Pr[B; 18
[Bol < oy + 3 PriBe] (18)
and the appropriate statement will follow for B, analogously. Putting together this will prove
the lemma. If Pr[B}] < %(Z)_l then the desired inequality holds directly.
In order to prove (18) we require the following claim:

CLAIM 5.10. Conditionalon 6, t, ifPr[B{ | 0,t] > n~4thenE[#{i € [n]\[d] : s; > t}] < 2dlogn.
IfPr[By | 0,t] > n™% thenE[#{i € [n] \ [d] : s; < t}] < 2dlogn.

PROOF. We prove the first implication, and the second follows analogously. For each i €
[n] \ [d],let X; € {0,1} have value 1 if and only if s; > t. Since 6, t are fixed and depend only

on day,...,dq, the random variables Xg,1, ..., X, are independent. Write X = Z?:d .1 Xi- The
Chernoff bound gives
E[X]
Pr[X =0] <exp —— |

As such, E[X] > 2dlog n would imply Pr[X = 0] < n™¢, contradicting the original assumption
that Pr[X = 0] > n~%. It follows that E[X] < 2d logn. m

Thus, in what remains, we may suppose that Pr[B] > 1/ Z(Z)_l. Fix any i € [n]\[d]
and let u; denote the induced probability density function of s;. We then have a sequence of
inequalities as found below. The first two inequalities above follow from L-log-Lipschitzness of
u;. For the first inequality in particular, note that for any s € [—%, 0], we have |s — eLs| < 1/L

from € < 1/L. This then gives “;l(f(ﬁgs) <exp(L-(1-¢€L)s) <1.

f_iui(t+s)ds
f_(lo i (t + s)ds

eL/_(l/L 1 (t + eLs)ds
B f_ooo ui(t + s)ds
eLf_Ol/L i (t + s)ds

f_(lo i (t + s)ds

eLfol/L ui(t+s—1/L)ds

- f_loiL ui(t+s—1/L)ds

Prisi>t—¢|s;<t]=
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JEL /Ol/L wi(t + s)ds
Se€ I
[ it +s)ds
= e%eLPr[s; > t|s; <t+1/L]
< e3eL Pr[s; > t]. (19)

The third inequality, on the final line, follows from the fact that s; > t + 1/L implies s; > t, and
hence Pr[s; > t|s; > t+1/L] = 1. As such we can, for fixed t, 6, upper-bound the probability
over sy, ..., Sq that, conditional on Bf, there exists a vertex being &e-close to affhull(Fj):

Pr[-B} | Byl =Pr[Jie [n]\ [d] :si >t—¢|B{] (By union bound)
< > Prlsixt-¢|Bg)
ie[n]\[d]

< Z e3eL Pr[s; > t] (By (19))
ie[n]\[d]

=e3eL E[#{i € [n] \ [d] : s; > t}]. (20)

To interpret the last equality above, we observe that #{i € [n] \ [d] : s; > t} = 0if and only
if B} happens. Then by applying (20) to Claim 5.10 (note that we are using the assumption
Pr(Bj] > 1/ 2(3)_1) with our choice of € we conclude that

o 5 . 1n\" 5
PI'[BO] < ZPI'[B ] < E d +ZPI'[BS]. [ |

Now we can prove Lemma 5.7 using Lemma 5.9.

PROOF OF LEMMA 5.7. Fixany I € ([Z]). By Lemma 5.9, we have that Pr[E;] < (Z)_1 +2.
Pr[E; A (8§ > €)] for e = 10e3L1Tgn' This gives that

PriEA (82 8)] 4 n\t 4
Pr[E;] “5 ( )

Moreover, since Pr[E;] > 10(3)_1, we have

Pr[E; A (6 > €)]
Pr[Ef]

4 (n\! 4
> = — e >0.72,
5 \d 5Pr[E]

as desired. -

Pr((6>¢) [ Ef] =

5.4 Randomized Lower-Bound for r: Inner Radius of a Ridge Projected onto
(d — 1)-Dimensional Subspace

In the next sections, we demonstrate that for any ridge R of the polytope P, wherein RN W
is a vertex of P N W, its inner radius—after projection onto the subspace orthogonal to the
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adjacent edge of P N W—is at least Q(d~*L~?) with high probability. Essentially, this establishes
that the parameter r, as referred to in Lemma 5.5, is at least Q(d~*L™2) with good probability.
We remark that Lemma 5.11 does not have an analogue when d = 2. Moreover, it will require
substantially more technical effort. Its proof is similar to Lemma 4.1.1 (Distance bound) in [49],
their main technical result. In an effort to help the ease of understanding the larger structure,

some lemmas will be stated while their proofs will be given in later sections.

LEMMA 5.11 (Randomized Lower-bound for r). Let aj,...,a, € RY be independent L-log-

Lipschitz random vectors. Let D denote the event that Vi, j € [n], |la; — a;]| < 3. Fixany I € ([Z])

and any J € (,',), we have

Pr[dist(Wnaffhull(a; : i € I),dconv(a;: j € J)) < | E;NAj] < 0.14Pr[-D | E;nAg].

1
19200d*L?

Then Lemma 5.11 will quickly from its lower-dimensional equivalent:

LEMMA 5.12 (Randomized lower bound for r after change of variables). Letb,...,bg € R4
be random vectors with joint probability density proportional to

d
volg_1(conv(by,...,bq)) - l_[ ui(b;)
i=1

where u; is L-log-Lipschitz for each i € [d]. Let D’ denote the event that the set {b4,...,bs} has
Euclidean diameter of at most 3. Fox any fixed one-dimensional line £ C R%~1, we have that

Pr

(dist (¢,0conv(by,...,b4-1)) < ) | €N conv(by,...,bg_1) # 0

19200d4L2
<0.1+Pr[=D"| £nconv(by,...,bq_1) # 0].

The proof of Lemma 5.12 will be presented in Section 5.5.

PROOF OF LEMMA 5.11. We may assume without loss of generality that I = [d] and | =
[d — 1]. Apply the change of variables ¢ as in Definition 2.14 to {a; : i € [d]} and obtain

(P(Q, t,bl,. ..,bd) = (al,.. .,Cld).

where 0 € S 1t e R,by,...,bg € R¥1. For anyi € [n], let u; denote the probability density
function of a;. Writing the conditioning to (E4) A Ajq-1]) as part of the pdf, we find that the

joint probability density of ¢, 0, b4, ..., bg, ag+1, - . . , n 1S proportional to
d n
volg_1(conv(by,...,ba)) - Hﬁi(t, 0,b;) - l_[ ui(a;i) - 1[Efq) A Afa-111, (21)
i=1 i=d+1

where volg_q () is the volume function of (d—1)-dimensional simplex in its spanning hyperplane,
Ui(t, 0, b;) = ui(t8+ Ry(b;)) is the induced probability density of b;, which is L-log-Lipschitz, and
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1[-] denotes the indicator function. Write S for the event that

1

dist(W n affhull(aq; : i € I),9d 1] € < ——.
ist( affhull(a; :i € I),0conv(a; : j €J])) 19200452

In this language, our goal is to prove that Pr[S] < 0.1 + Pr[—=D].
Let D’ denote the event that ||b; — b;|| < 3foralli, j € [d]. Each of the events E;, A7, S,D’, D

are functions of the random variables 6, t, by, ..., b4, Ag+1, . . ., an. We then use Fubini’s theorem
to write
Pr S| =E Pr [S
G,t,bl,...,bd,ad+1,...,an[ I'=Boraz...an [b1 ..... bd[ 1]
With probability 1 over the choice of 8, t, ag+1, . . . , an, the inner term satisfies all the conditions of

Lemma 5.12. Specifically, since the value of 1[E[4)] is already fixed, the intersection (t6+6+)NW
is a line. Let £ C R%"! be the image of such line under the inverse change of variables ¢!, i.e.,
(t0 + 6+) N W = t0 + Ro(£). Then the event Af4_q7 is equivalent to € N conv(by,...,bg-1) # 0.
From Lemma 2.15, the joint probability distribution of by, ..., bg is thus proportional to

d
volg_1(conv(by,...,bq)) - ]_[ (b)) - 1[£ N conv(by, . .., ba_1 # 0]
i=1

Applying Lemma 5.12 to the term Pry, . 5,[S] we find
r [S1] < Eotag.an[0-1+ [-D']]
ba b

=0.1+Pr[-D’] < 0.1+ Pr[-D],

P P
s

using Fubini’s theorem for the equality and the fact that —=D’ implies =D for the final inequality.
]

5.5 Proof of Lemma 5.12: Randomized lower bound for r after change of variables

In this section, we deliver the proof of Lemma 5.12. We use the following two technical lemmas.
As in from the proof of Lemma 5.12 we define A € Rial to be the unique solution to Z?:‘ll Aib; =
£ N conv(bq,...,bs_1) and Z?‘ll A; = 1. First, we describe Lemma 5.13 which we will use to

show that every convex parameter J; is at least Q(1/d%L) with constant probability.

LEMMA 5.13 (Lower-bound for Convex Parameters of Vertices on the Ridge). Let by, ...,bg €
R4 be random vectors with joint probability density proportional to

d
volg_1(conv(by,...,bq)) - 1_[ ui(b;)
i=1

where each p; : R41 — R, is L-log-Lipschitz. Let one-dimensional line £ C R%~! and conditional
on£nconv(b;:ie€ [d-1]) # 0. Let A € RZ! be the unique solution to Z?:‘ll Aibi € £ N conv(b; :
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i € [d—1]). Let D’ denote the event that Vi, j € [d], |b; — bj|| < 3. Then we have

Pr|Vie[d-1]:A; >

> D'Aenconv(b;:ie[d-1]) # 0| > 0.95.

We will prove Lemma 5.13 in Section 5.6.

Secondly, we present a lemma to lower bound the distance between each vertex b; (wWhere
j € [d —1]) and the (d - 3)-dimensional hyperplane spanned by the other vertices affhull(b; :
j € [d—1],j # i). Specifically, we show the following lemma:

LEMMA 5.14. Leths,...,bg € R berandomvectors with joint probability density proportional
to

d
volg_q1(conv(by,..., b)) - l_l ui(b;)
i=1

where each p; : R — [0,1] is L-log-Lipschitz. Given a one-dimensional line £ C R4, let
w € S92 be any unit direction of €. For any i € [d — 1] we have

1
Pr [dist (1w (by), affhull (e (b)) : j € [d—1],j # 1)) > T60d2L | fnconv(b;:ie[d—-1]) #0
>1 1
N 20d’

We defer the proof of Lemma 5.14 to Section 5.7. In addition to the above two lemmas, we
need the following two basic linear algebraic statements.

FACT 5.15. Let £ C R¥ be an affine line and x € R¥ be a point. Suppose w € Sk=1\ {0} points in
the direction of ¢, i.e., that £ + w = £. Then dist(x, £) = dist(5,,+ (X), T2 (£)).

PROOF. Let {z} = £n(x+w™'). This intersection is non-empty because w points in the direction
along ¢ and so must intersect any affine subspace orthogonal to w. The intersection is a singleton
because if z, z’ were two distinct points in this set then z — z’ € wR N w* = {0}.

Since x — z € w*, we have dist(x, z) = dist(sm,(x),m,.(£)). Also notice that for any

z' etz # z,
Ix = 2'||% = |7 (x = 2)|I* + l7twe (x = 2)|I* = |7 (x = 2)||* = ||x — z||*.
Therefore, dist(x, £) = ||x — z|| = dist(m,L (Xx), T (£)). u

FACT 5.16. Let H C R¥ be a hyperplane, and let p1,. .., px € H and pxs1 € RX, and assume
Ak+1 Z O.

Then
k+1

diSt(Z Aipi, H) = Agsq dist(prsa, H).
i—1

PROOF. Let y e Rt e Rbesuchthat H = {x e R: y"x =t} and || y| = 1.



36 /| 56 TheoretiCS S. Huiberts, Y.T. Lee, X. Zhang

Now we have

k+1 k+1
dist(z Aipi, H) = |t - yT(Z Aipi)|
i=1 i=1
k+1

=1 > At =yTpy)
i=1

= | A1 (t = Y presr)|
= A1 dist(pr+1, H),

using that y"p; =t foralli =1,...,k. |
Assuming Lemma 5.13 and Lemma 5.14, we can prove Lemma 5.12.

PROOF OF LEMMA 5.12. We can bound the distance from ¢ to d conv(b4,...,bs_1). Note
that generically w is not parallel to any direction in affhull(b, ..., bs—1) which makes it so that
mye(conv(by,...,bg-1)) is a simplex of the same dimension as conv(by,...,bg-1).

dist (¢, d conv(by, ..., b4-1))
= dist (172 (£), Ty (3 conv(by, ..., b4-1))) (By Fact 5.15)
= dist (72 (£), d conv (e (by), . . ., Twe (ba-1)))

= min _dist (72 (£), conv(mye(b1), . . ., Twr (bi—1), Twr (biz1), . . ., Twe (ba-1)))

ie[d-1]

> ier&i_nl] dist (e (£), affhull (e (by), . . ., e (bi1), e (bis1), - - -, Twe (Ba—1)))

= _r&inl] A - dist(mmye (by), affhull (7 (b)) @ j € [d — 1], # 1)) (By Fact 5.16)
le|a—

> ier&i_rh A - kg[ldifll] dist(rmye (bx), affhull(my,. (by) @ j € [d = 1], ) # k))

Where in the second step, we use the fact that m,,: is an affine isomorphism restricting to
b1, ...,b4_1, thus taking the boundary of conv (s, (by), ...,y (bs—1)) commutes with the pro-
jection ;5. In the fifth step, A € Rga1 is the unique solution to Zf:_ll Aibi = £nconv(by,...,bq_1)
and Y '4; = 1. Additionally, assume ¢ = wR for a non-zero w € S%2. Abbreviate, for
keld-1],

ri = dist(mmy (by), affhull(mmy, (b)) : j € [d — 1], ] # k)).

Let T denote the event that £ N conv(by,...,bg_1) # 0. We now find using a union bound, for
any o, g > 0,

Pr[dist(¢,8 conv(by,...,bg-1)) < af | T]

<Pr[ min A; <a|T]+Pr[ min ry < T
[ min A; < o| T]+Pr[ min ric < 7]

<Pr[ min A; <o | D' AT]+Pr[ min rx < B|T]+Pr[-D"|T]
ie[d-1] ke[d-1]
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1
120d%L°

we know that Pr[mingejg-1)7x < B | T] < Xkepa-11 Prlrk < B | T] < 0.05 for g = m. This

proves the lemma. u

By Lemma 5.13 we know that Pr[min;c[q-1] Ai < o | D’AT] < 0.05 for o =

By Lemma 5.14,

5.6 Proof of Lemma 5.13

Now we show that, with good probability, the convex multipliers A are not too small.

PROOF OF LEMMA 5.13. By using a union bound, it suffices to prove for each i € [d — 1]
that

Pr[A; < | D’ A€nconv(bj:je[d-1]) # 0]

< —\
120d2L ~20(d -1)

Fix any i € [d — 1], without loss of generality i = 1. Recall that w € S?~!is such that £ = £ + w,
and hence that m,. () is a singleton point. For ease of exposition we assume that the plane
w is coordinatized such that m,.(#) = 0 and hence £ = wR. Thus A is defined to satisfy
297 A7t (b)) = 0.

Using the principle of deferred decision, we fix the values of b1 —bj, j € [d]. This determines
the shape of the simplex conv(b; : j € [d]), including its volume. The remainder of this proof
will use the randomness in the position of the simplex in the subspace orthogonal to the line,
which we represent using 7. (b1). For the remainder of this proof, we can consider all bj, j € [d]
to be functions of b;. The position . (b1) has probability density u’ (- (b1)) o H;Izl uj(bj),
which is dL-log-Lipschitz in 77,1 (b1) with respect to the (d — 2)-dimensional Lebesgue measure
on w.

Define M = conv(m,.(b; — bj) : j € [d —1]) € w" and note that, due to our fixing the
values of by — b; in the previous paragraph, the shape M is fixed and we can see that that
L (b1) € M if and only if A > 0. It remains to show that
120d°L | D" A i (by) € M < ﬁ (22)
Forany j € [d —1],letl; : M — [0, 1] be the function sending any point to its j’th convex

Pr[Al <

coefficient, i.e., the functions satisfy Z?;ll li(x) =1and Z?;ll Lj(x) - mye (by — bj) = x for every
x € M. Forany 1 > a > 0, observe that l; takes values in the interval [, 1] on the set (1 — @) M.
Hence we get

[ 100111 (x) > a]dx
i, 1 (x)dx
f(1_a)M @ (x)dx
S 1 (x)dx
(1= )2 [ ' (1 - o)x)dx
B (0 dx

Pr(A; > o | mye(by) € M] =

>

vVxe(1-a)M,l;(x) > a)
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> (1 _ a)d—Z max e—dL||0(X||
B xeM ’
where in the last inequality, we use dL-log-Lipschitzness of y’ to see that for any s € M we have
1 ((1-a)s)
u(s)
By definition of D’, we know that M has Euclidean diameter at most 3. Thus we can bound

_1_
120d%L’

< maxyey e~ Lllexll,

|lax|| < 3a for any x € M. Now take o = we find

Pri(A; < 120d2L) | D" A mtyi(b;) € M] <1 —-Pr[A; > 120d2L | D" A 111 (bi) € M|
1
<1-(1- d-2,-1/40d - ,
( 120d2L) 20(d - 1)
where the last inequality comes from d > 3 and L > 1. Thus (22) holds as desired. ]

5.7 Proof of Lemma 5.14

To show Lemma 5.14 on the width of the facet, we need the following upper bound about the
mass around zero for a random variable whose density is formed by a log-Lipschitz function
multiplied by a convex function. Its function is to deal with the volume term that we receive

from the Jacobian in Lemma 2.15.

LEMMA 5.17. Assume that h : R — Ry¢ is a K-log-Lipschitz functionand g : R — Rypisa
convex function such that f_ Z g(x)-h(x)dx = 1. Suppose that X € R is distributed with probability
density g(X) - h(X). For any € > 0 we have Pr[X € [—¢,€]] < 8¢K.

PROOF. We can assume that € < 1/(8K), for otherwise the bound is trivial. First, we use the
rudimentary upper bound

Pr|X e[-g¢]| <Pr[Xe[-¢ge] | Xe[-1/K,1/K]| = fl‘/“;{g(x) - hix)dx :
g(x) - h(x)dx

-1/K

Log-Lipschitzness implies that for any y > 0 we have

e "Xn(0) /Vg(x)dx < /Vg(x) -h(x)dx < e”®h(0) /Vg(x)dx,
-y -y -y

and hence we get

&
Pr(X € [-¢,¢]] < eV/K+OK /—sg(X)dX < el+eK28 - MaXye[-g¢ §(X)
1/K 1/K
_1/Kg(X)dX _1/Kg(X)d_X

Since g(x) is convex, at least one of

max g(x) < min X) or max g(x) < min X
xe[—e,s]g( ) xe[—l/K,—e]g( ) xe[—s,e]g( ) xe[s,l/K]g( )
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holds. Without loss of generality, assume the second case holds. Then we bound

MaXye[-¢e] g(x) < MaXye[-¢e] g(x) < 1

astoar [ s VR

To summarize, we find Pr[X € [-¢,¢€]] < eM*K. - ﬁf_ . Since € < 1/(8K) this implies

8
Pr(X € [-¢ ¢€]] S269/8-§-EKS88K. m
Now we show Lemma 5.14.

PROOF OF LEMMA 5.14. In the following arguments, we condition on € N conv(b; : i €
[d — 1]) # 0. Without loss of generality, set i = d — 1 and assume that ¢ is a linear subspace, i.e.,
w1 (€) = 0.

We start with a coordinate transformation. Let ¢ € w* N $9°2 denote the unit vector
satisfying ¢ "'by = ¢'b; > Oforall j = 1,...,d — 1. Note that ¢ is uniquely defined almost
surely: w' is a (d — 2)-dimensional linear space and we impose (d — 3) linear constraints
{¢"h1 =¢"b;,Vj € [d—2]}. Almost surely, these give a one-dimensional linear subspace which,
after adding the unit norm and b; ¢ > 0 constraint, leaves a unique choice of ¢.

Now defineh € Rby h = ¢ by and define a € R by ah = —¢"by_1. Since 0 € conv (7, (b;) :
ie[d-1])but¢™b; > 0foralli € [d — 2], we must have o > 0 for otherwise ¢ would separate
conv(myL(b;) : i € [d —1]) from 0. Again from almost-sure non-degeneracy we get o > 0 and
h # 0. We define the following coordinate transformation:

bj=h¢+cj, Vjeld-2]
bd_1 = —O(h¢ + Ca-1
where for each j € [d — 1], ¢; € ¢~ naffhull(by, ..., bg-1) has (d — 3) degrees of freedom. From

here on out, we consider the vertices (b4, ..., b4—1) to be a function of (h, o, @, ¢y, . . ., C4—1). Again
by Lemma 2.15, the induced joint probability density on (h, «, ¢, c1, . . ., C4-1, bq), is proportional

to
d
volg-1(conv(by,...,bgq)) - volg-3(conv(cy, ..., C4-2)) - ]—[ uj(bj)
j=1
Using the principle of deferred decision, fix the exact values of (a, ¢, ¢4, ..., C4-1, bg). When this

is the case we find that

d
volg-1(conv(by,...,bq)) - volg-3(conv(cy, ..., C4-2)) - 1_[ uj(bj)
j=1

d
o volg_i(conv(by,...,bq)) - volg_s(conv(smy:(cy), ..., TwL(Cq-2))) - 1—[ uj(bj).
j=1
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To see why vol;_s(conv(cy,..., cq—2)) and volz_3(conv(smy:(C1), ..., TywL(C4—2)) are proportional,
consider the following. Note that m,. is a fixed projection. Generically we know that w ¢
span(b, — by,...,bq_1 — by), this is a non-degeneracy condition that holds true with probability
1. This implies that 77,,+ is a bijection between the affine hyperplane affhull(b, ..., bs—1) and its
image . (affhull(bq,...,b4-1)), and also a bijection between the subsets

¢+ N affhull(by, ..., bs_1) and m,. (¢ N affhull(by, ..., b4-1)).

This is the space where cy,...,cq—2 live. It follows that conv(cy,...,c4—2) has the same di-
mension as its projection conv(m,.(c1),...,mw(C4-2)). The ratio between their volumes de-
pends only on w and ¢+ N span(b; — by, ...,bs_1 — by). Note that h = ¢+b, and so, after fixing
(o, ¢,€1,...,C4q-1,bq) the ratio between the volumes is constant.

Note that the event 0 € conv(sm,:(b;) : i € [d — 1]) depends only on these variables and
not on h, and the same is true for volg_s(conv(smy:(cy),...,TwL(Cq—2))). We are looking only
at the randomness in h, and so we can ignore any constant factors in the probability density
function. The induced probability density on h is now proportional to

d—1
voly_1(conv(by, . ..,ba)) - ]_[ i;(h),
j=1
where fij(h) := uj(h¢ +cj), j € [d — 2] and fig_1(h) = pg-1(ah¢ + cq-1). Since each u; is L-log-
Lipschitz, it follows that the product H?:‘f fij(h)is (d — 2+ o)L < d(1 + o) L-log-Lipschitz in
h.
Next, consider the volume term. We can write volg_q(conv(b4,...,bq)) as a constant
depending on d times the absolute value of the determinant of the following (d — 1) X (d — 1)

matrix 1 - 1 [
(by — ba)” (he + 1= ba)T (c1—ba)" 1
1 —bg : : :
: — ) = ' + h ° . ¢T:
(bg-1 —ba)" (h¢ + ca—2 = ba)" (Ca-2=ba)" 1
d-1 — ba
[(—ah¢ +ca1-ba)"| |[(ca-1—Dba)7]| |~
Define
(ci-b)T ] [1]
B = ) B V.=
(cg—2 —ba)" 1
[ (Ca-1=ba) "] |~

Recall that both B and v are fixed and we are only interested in the distribution of h. Then by
the matrix determinant lemma, we can write the volume as the absolute value of an affine

function of h (which is a convex function):

k(h) := volg_1(conv(by,. .., b)) o |det(B + hvg")|
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= |det(B)(1 + j¢ B~ 'v)|

Hence, we have found a convex function k : R — Ry and a d(1 + «)L-log-Lipschitz function
v : R — Ry such that h has probability density proportional to k(h) - v(h).

To finalize the argument, we write dist(szy+ (b;), affhull(7,1 (bj) : j € [d=1],] # 1)) = [(1+
o)h|. It follows that the signed distance (1 + a)h has a probability density function proportional

to the product of a dL-log-Lipschitz function and a convex function. The result follows from

1
160d2L"

Lemma 5.17 by plugging in the signed distance (1 + a)h, K = dL, and € = ]

5.8 Combining Together and Proof of Lemma 5.2

In this section, we combine the deterministic argument in Lemma 5.5 with the probabilistic
arguments in Lemma 5.7 and Lemma 5.11. We can finally show the main technical lemma

(Lemma 5.2).

PROOF OF LEMMA 5.2. Without loss of generality, let I = [d] and write E = E;. Suppose
p' = Ay = conv(a; : j € J) N W is the next vertex after the edge F; N W. Here J € (éf]l) and
R; is the (d — 2)-dimensional ridge. With probability 1, the polytope conv(ay, ..., ay) is non-
degenerate and W N R’ is a single point for any ridge R’ of conv(ay, ..., a,) that intersects with
W. We will show that conditional on E, each of the following conditions in the deterministic
argument (Lemma 5.5) is satisfied with good probability:

1. (Bounded diameter) Vi, j € [n], ||a; — aj|| < 3;

2. (Lower bound of 8) mingen\; dist(affhull(Fy), ax) > Q(Wlogn);

3. (Lower bound of r) VJ € (,,) for which the ridge R; = conv(a; : j € J) has nonempty

intersection with W, we have dist(F; N W, 0R)) > Q(zi).

Note for the last point that Lemma 5.5 only requires this for the set ] which indexes the second
vertex of FFNW in clockwise direction, but we prove it for both of the sets J for which R; "W # 0.

First, we write D as the event that Vi, j € [n] for which ||a; —a;|| < 3. From Lemma 2.12, for
any 0 < ———, with probability at least 1 — (Z)_1, we have maX;c[n |||l < 1+40+/dlogn < 3,

8+/dlog n

ie,Pr[D] >1- (Z)_l. Using the assumption that Pr[E;] > 10(2)_1, we have

Pr [—lD]
Pr[E]

Pr[-D | E] = Pr[-D A E]/Pr[E] <

< 0.1,

This immediately implies Pr[D | E] > 0.9.
Next, we consider § := dist(affthull(ay, ..., aq), {d4+1, - - ., an}). Using Lemma 5.7, we have

1
PI’[6 > 10e3Ldlogn | E] > 0.72.

Finally, we consider r := max; dist(affhull(ay, ..., aq) N W, dR;) subjectto all J € (,",)

such that Ay happens (in other words, Ry = conv(a; : j € J) is aridge of Fy such that R; "W # ().
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By a union bound,

Pr | E

I
3 € ,A; A dist(affhull(F N W), 0R; > —————
J (d—l) y A dist(afthull(F W), 9Ry > Jo950 772

>1- »  Pr[A; Adist(afthull(F 0 W),dR; < | E]
Je(aly)

=1 - Z Pr[dist(affhull(F N W), dR; <
Je(aly)

From Lemma 5.11, for each J € (dfl), we know that

19200d4L?

Pr[dist(affhull(F N W), dR; < | EAA;] <0.1+Pr[-D | EAA;],

19200d4L?
Notice that when E happens, there are exactly two distinct ridges R;, R;» that has nonempty
intersection with W (or Ay happens), thus e, Pr[A; | E] = 2. Therefore

> Pr[dist(afthull(F N W), 8R; < | EAAf| Pr[A] | E]

19200d4L2
Je(aly)
< > (01+Pr[-D | EAAf]) Pr[A; | E]
Je(aly)

<0.1-2-2-Pr[-D | E],
and (23) becomes

I
Pr [3] € (d 1),A] A dist(affhull(F N W), Ry > | E

19200d4L.2
>1-0.1-2—-2-Pr[-D | E] > 0.6.

Therefore, by a union bound, the three conditions hold with probability at least 1 — (1 — 0.9) —
(1-0.72) - (1-0.6) > 0.1, and the lemma directly follows from Lemma 5.5. |

6. Smoothed Complexity Lower Bound

In this section, we present the lower bound of the smoothed complexity of the shadow vertex sim-
plex method by studying the intersection of the smoothed polar polytope conv(ay, ..., a,) C R?
(where each q; is a Gaussian perturbation from a a;), and the two-dimensional shadow plane

W < R4, Our main result is as follows:

THEOREM 6.1. For any d > 5,n = 4d — 13, there exists a two-dimensional linear subspace
W c R%andvectors ai, . . ., an € R% maxen ||ai||1 < 1 such that the following holds. Let a4, . . ., a,

be independent Gaussian random variables where each a; ~ Ny (a;, a’I),0 < m. Then
ogn
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with probability at least 1 — (Z)_1 we have

1
edges(conv(ay,...,ap) NW) > Q| min (—, 24

do+/logn

Theorem 6.1 is a direct consequence of the next theorem, which is a lower bound for

adversarial perturbations of bounded magnitude:

THEOREM 6.2. Forany d > 5,n = 4d — 13, there exists a two-dimensional linear subspace

W C R% and vectors ay, ..., a, € R% maxic, ||ai|l1 < 1 such that the following holds. For any
€ < 55 f a1, ..., an € R% satisfy |la; — a;|l1 < € for alli € [n] then we have

edges(conv(ay,...,a,) NW) > Q (min (%, Zd)) .
€

The rest of this section is organized as follows. In Section 6.1, we construct an auxiliary
polytope P € R? and a two-dimensional shadow plane W. In Section 6.2, we show that the
projection sty (P) approximates the unit disk B%. In Section 6.3, we analyse the largest £..-ball
contained in P and the smallest £.,-ball containing P. Section 6.4 investigates the polar polytope
Q = (P — x)° of a shift of P, such that we may choose aj, ..., a, to satisfy Q = conv(ay,..., a,).
The largest contained ¢;-ball in Q is derived from the smallest £.,-ball containing P, and the
smallest ¢;-ball containing Q is derived from the largest £.,-ball contained in P. Similarly, the
section Q N W approximates a circular disk because the projection my,(P) approximates a
circular disk. Finally, Section 6.5 shows that the bounded ratio between the inner and outer
radii implies that any sufficiently small perturbation Q still has Q N W approximate the unit
disk B well and uses this to prove Theorem 6.1.

6.1 Construction of the Auxiliary Polytope

In this subsection, we construct the auxiliary polytope P and the two-dimensional plane W. For
k € N, we construct a (k + 5)-dimensional polytope. We will use the following vectors in the

definition:
1 ) 0
— Define e, = e R°and e; = .
0 1
. . : cos(rr/2*?)
— Foreveryi € {0,1,...,k}, define the pair of orthogonal unit vectors w; = | . €
sin(rr/212)

sin(7r/2t+2
Rzandvi:[ (rf )]eRz.

— cos(mr/2M?)
With these definitions in mind, construct an auxiliary P’ € R3*5 as the set of points
(X, ¥, Do, ., P> t,s) where x, y € R, po, p1,. .., Px € R%,t € RfKands e R satisfy the following

system of linear inequalities:
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polytope for k = 4 projected onto x,y

0.25 Figure 4. Vertices of the
projected auxiliary polytope
w (P) (see (30)) without
~0.25 1 perturbation for k = 4.

0.00 1

—0.50 1

—0.75

—1.00 A

T T T T T T T T T
—-1.00 —-0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00

e1 po > |x|,e; po > |yl (24)

w] pi = w/ pi_1, Vi € [K] (25)

ti +1is = v pi > |v] pi_1|, Vi € [K] (26)
e;pk <1 27)

0 <t <1 (28)
0<s<l1. (29)

We remark that po, t, s uniquely define the values of pq, py, ..., px via (25) and (26). As
such, define the polytope P € R**> as the projection of P’ onto the subspace spanned by the

variables (x, y, po, t, S):

P={(x,y,po,t,S) : A P1,..., Pr>S:t. (X, ¥, Po, ..., Pr>t,S) € P'}. (30)

We choose the plane W to be the one that is spanned by the unit vectors in the x and y directions.

An illustration of the vertices of the projected polytope 7y (P) can be found in Figure 4
for k = 4. Note that the figure appears to depict a regular polygon with 2%*! vertices. Our
construction of P’ is similar to those of [8, 28]. The primary difference lies in the addition of the
variables t and s in (26). This change is made to ensure that the projected polytope P has its
largest contained and smallest containing ¢..-ball be of similar sizes.
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6.2 Projected Auxiliary Polytope Approximates Two-Dimensional Unit Disk

In this subsection, we will show that the polytope P we constructed in (30) has a projection
7w (P) which approximates the two-dimensional unit disk B; = {x, y € R : x* + y* < 1} within

exponentially small error:

LEMMA 6.3 (Projected auxiliary polytope approximates the two-dimensional disk). For
any k € N, let P C R¥*5 pe the polytope defined by the linear system (30) with variables x, y, s €
R, po € R?,t € RX. Let W be the two-dimensional subspace spanned by the directions of x and y.
Then we have

B2 C mw (P) C cos(rr/25%)71B2,

Lemma 6.3 directly follows from the next two lemmas. First, we show that the two-

dimensional unit disk is contained in sy, (P):

LEMMA 6.4 (Inner ¢;-radius of the projected auxiliary polytope). For every x, y € R with
x? + y% < 1 there exist py € R% t € R and s € R such that (x, y, po, t,s) € P.

PROOF. Suppose x, y € R with x> + y? < 1. We want to exhibit py € R?, t € RX, and s € R such
that (x, y, po, t,s) € P. We proceed as follows:
First, set s = 0 and define py = (x, y). Then define p; inductively by the recurrence

B [|v:1pl—_1|]
WiT_lpi—1 ’
with the base case being po = (|x|, |y|). Finally, for each i € [k] define t; = v p; = |v p;_1|.
Then (24), (25), (26) and (29) follow by definition. It remains to argue that (27) and (28)

v’
are satisfied. Since v; and w; are orthogonal and defined to have norm 1, the matrix [ ’T

.
v;

T

bi =

is
w,
l

an isometry. Thus, it preserves norms, meaning that each of the p; have #,-norm +/x% + y2.
Since t; = |[v/ pi-1| < |lvill - lIpi-1ll < 1, we know that (28) is satisfied. Furthermore, we have
e/ pr < lle1]l - Ipkll = llexll - vx? + y? < 1, which ensures that (27) is satisfied. u

In the next lemma, we show that the projection sty (P) is contained in the two-dimensional
disk cos(7r/2%*2) "' B2:

LEMMA 6.5 (Outer ¢,-radius of the projected auxiliary polytope). Forevery x, y € R such that
VX2 + y2 > cos(mr/2K+?)~1 | there exist no py € R%,t € RX and s € R such that (x, y, po, t, s) € P.

PROOF. Fix any (x,y) € R? and p, € R? such that x2+ y2 > cos(r/2¥*?)~! and py >
[|x|, |y|] T. Also fix any p4, ..., px € R? satisfying (25) and (26). We will show that such py, ..., px
would violate (27), i.e., elT px > 1. To simplify our notation, for alli € {0,1,...,k}, let (p;)y =
v/ pi € Rand (pi)w = w/ p; € R. Then p; = (pi)yvi + (Pi)wwi.
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Notice that for all i € [k], the increment of the first coordinate from p;_; to p; is

el pi — e{ pi-1 = e] ((p)wwi + (pi)vvi — (W] pim))wi — (V] pi—1)vi)

=e; ((p)vwvi — (V{ pic1)vi) (By (25))
> e vi (|v] pi-1] — v/ pi-1) (By e; v; > 0 and (26)) (31)
>0

where the inequality in (31) is tight when v/ p; = [v] pi_1|. Let p;, p5, ..., p; € R? be the (unique)

sequence defined by
Py = Po
w/ pi =w/ pl Vi € [k] (Tight for (25))
v/ pi = v pil, Vi € [K] (Tight for (26))

Then e p;—e pi-1 > e/ p; —e/ p; , foreachi € [k]. Also, notice that e] py = e] p;, therefore for

eachi € [k], e/ p; > e/ p;.
It remains to show that elT p;; > 1.Foralli € {0,1,...,k},let 6; € [—m, r] denote the angle
between p? € R? and e;. Then since e py > 0 and e, pp > 0, we have 0 < 6y < 7. Forany i € [k],

notice that p; equals to p; | (if 6;-1 < 2%), or equals to the mirror of p; , with respect to the

T

line spanned by w; (if 6;_1 > 7). By induction, this gives

P
Ip;ll2 = lIp;_{ll2 = ... = lIpollz = lIpoll2s
and
JT JT JT
1= i+2 - |6i_1 - 2i+2| < 2i+2'

Therefore, we get
ey D = |Ipyll - cos(6k) > || poll - cos (—2k+2) >

Thus we have shown x* + y* > cos(7/2¥*%)~! implies that e px > e] p; > 1 as desired. u

6.3 Inner and Outer ¢.,-Radius of the Auxiliary Polytope

In this subsection, we will show that the auxiliary polytope P has large inner ¢.,-radius and

small outer ¢.,-radius.

LEMMA 6.6 (Inner and Outer £..-Radius of the Auxiliary Polytope). For k € N, let P C R*3
be the polytope defined by the linear system (30). Then fororx =y = 0,py = (1/6,1/6)7,t =
1,/30, s = 3, it holds that

1 _ _ _ - 3
— B cP—(X,y, Dot 5 C —BK,
30 Beo (X, ¥, Po, t,5) 5B
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The following lemma is the key to show Lemma 6.6, where we construct a point in B such
that the ¢, ball with radius % centered at that point is contained in P. Obtaining a large inner
ball is relatively easy using linear programming. In this exposition we demonstrate the large
inner ball by hand, which will require a somewhat tedious calculation to 3 significant digits.

LEMMA 6.7 (Inner 4.,-Radius of the Polytope). Forx =y =0, po = (1/6,1/6)7,t = 1;/30,5 =
3, we have (X, y, Do, t,5) +1-BX® C P forr = .

PROOF. Fix any (X, y, po, t,s) € R<*5 such that ||[(x =X, y — ¥, po — Po, t = t,5 — ) ||eo < 7. We set
D1, -, Dk € R* inductively by (25) and the equations in (26), i.e., w] p; = w] p;_1 and t;+is = v/ p;
start from the base case of po, s and t.

We will show that (x, y, po, t, s) € P by verifying the conditions in (24 - 29). To simplify our
notation, we define (p;)y = v p; € R and (p;)» = w; p; € Rforalli € {0,1,...,k}. Note that v;
and w; are orthogonal, p; = (p;)vv; + (p;)wWw;.

First, observe thate/po > § —r >r > |x|and e, po > ¢ —r > r > |y|, confirming that (24)
holds. Also, notice thatt; € [t; —r,t;+r] € [0,1] ands € [s—r,5+71] C [0,1]. Thus (28) and
(29) hold. The equality constraint (25) holds directly by definition of p4, ..., px. It remains to
show (26) and (27), i.e., (p;)y = |vl.Tpi_1| foralli € [k] and e/ px < 1.

To aid in the remaining steps of the proof, we show the claim that (p;),, > 0 for all
i € {0,1,...,k} by induction. Observe that w, po > w, po — [lwoll - [P0 — Poll > % —V2r > 0.
Also, for all i € [k],

(P)w = W, pica (By (25))
=w; ((pi-1)wWi-1 + (Pi=1)vVi-1)

= (Pi—l)wWiTWi—l + (Pi—l)le-TVi—1
T T

= (Pi-t)w - COS(5) + (Pica)y - SIn(573) (32)
> (pi-t)u - c0s(55), (BY (Pit)y = ti1 + (i = 1)s > 0)

where (32) follows from Wl.TW,-_l = ||willllwi-1]| cos(8) = cos(0) where 6 = /212 is the angle
between w; and w;_q; similarly, we have Wl.TVi_l = ||wi||||vi—1]| cos(rt/2—6) = sin(0) = sin(rr/21*?).
It then follows by induction that (p;),, > 0 foralli € {0,1,...,k}.

Verify (26): To verify the inequality listed in (26), i.e., (p;)v > |v] pi—1| for all i € [k], we upper-

bound the right-hand-side by expanding it into the inner product with v;_; and the inner product
with w;_4. Notice that for all i € [k],

V] pical = [V ((Pi—1)vVic1 + (Pic1)wWi1)]

< |(Pic)vlV{ Viet + [(Pic)wl - [V wia] (Triangle inequality)

- T ) By@6)and (pi)w =0 (33)

= (tisa + (I = 1)5) - cos(55) + (Pi-1)w - sin(

2i+2 2i+2
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Next, we require an upper bound on (p;_1),. For alli € [k], from (32)

T ) T
(Pi)w = (Pi-1)w - €08(575) + (Pica)y - SIn(575)
< (pi-dw + (i + (I = 1)s) - Sin(zgz) (BY (pi-1)w > 0 and (26))

Let to = vy po and to = vj po = 0. By applying the above inequality to 1,2, ,i — 1, we have

i-1
(P)w < Wgpo+ ) (tj+js) - sin(
j=0
i-1 - ‘
< wy po + Z(tj +js) -sin(=) -1.97/
. 8
j=0
i-1 - _
< Wy Po+ Z(tj +7r+js) - sin(g) -1.97/

JT
2j+3

)

j=0
V2 .G : = _ V2 7
—_— in(— - i) -1.97/ T =2 7. 1
< ( c +\/§r)+sm(8)jzz(;(30+r+]s) 1.9 (By wy po = ¢ tj = 35)
V2 7. 1 <« : e - T, o :
22 isin(Z) - — . -J in(— =J in(= ; -J
< 5 +sm(8) 30 21.9 +r \/§+sm(8)21.9 +s 31n(8)Z](1.9)
j=0 j=0 j=0
< 0.263 + 2.226r + 0.898s. (34)

Here the second inequality uses the fact that for every x € [0, ] one has sin(x)/1.9 > sin(x/2).

1—cos(x)
2

This is because by the half angle formula, sin(x/2) = + , thus

sin(x)> 1 - cos(x)?
sin(x/2)2 (1 - cos(x))/2

Plugging (34) back into (33), we have for all i € [k],

=2 +2cos(x) > 2+ 2cos(rr/8) > 1.9%

. by . T
|viTp,-_1| < (tisr+(i—-1)s) - cos(ﬁ) + (0.263 + 2.226r + 0.898s) - sm(zi+2

)
1 TT _
< (% +7r+(i—1)s)+(0.263 + 2.226r + 0.898s) - sin(g) By ti_1 = 31—0 andi > 1)

< 0.134 + 1.852r + (i — 0.656)s
< 0.134 + 1.852r + is — 0.656(5 — )

IA

is (By s =
(pi)v-

IA

Therefore, v p; > |v/ p;_1| for all i € [k] and (26) holds.

Verify (27): To verify (27), notice that increment of the first coordinate from p;_; to p; is

e1 pi — e pi-1 = ey ((Po)wi — (V] pi—1)Vi) By w,' p; = w/ pi_1)
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= sin(=— ) (ti +1is — v, pi-1) (By e] v; = sin(5%) and (26))

2+2

= sin(ﬁ) - (ti + is = v ((Pi—1)wWi-1 + (Pi-1)vVi-1))

. Tt . .
= sin(57) - (t+ is+ (it - sin(5z) = (ot + (i - ) 69
where the last step comes from v.'v; 1 = cos(sz) and v/ w;_1 = —sin(zﬁz) Foralli > 2,

we can show that in (35), the third term in the brackets is at most the fourth term, thus the
right-hand-side of (35) is at most sin(7r/2*2) - (t; + is):

. Tt . T
(Pi-1)w - sm(ﬁ) < (0.263 + 2.226r + 0.898s) - sm(ﬁ) (By (34))
T T
< (0.263 + 2.226r + 0.898s) - tan(.—) : cos(2i+2)
< (0.263 + 2.226r + 0.898s) - tan(—= ) COS(21+2) By 77z < )
§0277C03(ﬁ) (Byrsﬁand8§§+r:%)

_ _ b
< (tizy—r+(i—1)s)-cos 2

Bytii—r=0and(i—1)s>s>5—-r=0.3)

< (tiq + (i —1)s) - cos(%).

Plugging back into (35), we have for all i > 2 that

ej pi — e pi-1 < sin( ) (4 +is)

2 i+2

< sin(ﬁ) (ti+is+(i+1)r)

. 1 i
<sin(2) 190D (4 S+ (i+1)r)  Bysin(:L) < sin(Z) - 1.9-(-D)
8 30 3 2

For i = 1 we recall from above that (p;_1)w - sin(sz) < 0.277 - cos(sz) Now take (35) and
observe e/ p; —e{ po = sin(1r/8)(t1 + s+ (po)w - Sin(71/8) — to - cos(;r/8)) < sin(m/8)(11/30+ 2r +
0.277 - cos(rr/8)). Hence we find that e] p; — e po < 0.239 + 0.766r and therefore,

T T T T
€ Pk =€ po+ 2(91 Di — €4 Pi-1)
i=1

k i
1 T . 1
< (=+71)+0.239+0.766r +sin(=) - > 1.9, +—+(i+1
_(6 r) r Sm(8) E: (30 3 (i+1)r)

1
< (E +71)+0.239 + 0.766r + 0.456 + 1.749r
< 0.862 + 3.515r < 1.
where the last inequality holds for any r < 55. Therefore (27) holds and (x, y, po,t,s) € P. ®

PROOF OF LEMMA 6.6. In Lemma 6.7 we construct a point (X, ¥, Po, t, §) such that 5B
- ()?) y: 1301 ?9 Sj
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For the second inclusion, we show that P C (cos(rr/252)~1.BX*S, Suppose (x, v, po, t,S) € P
is arbitrary. From Lemma 6.5 we know that ||(X, y)||ec < J)ﬁy2 < |Ipollz < cos(m/2K2)1,
Since 0 < t < 1k we get ||t||o < 1, and lastly we have 0 < s < 1. Put together, we find
that ||(X, y, Do, t, S) |l < cos(rr/2K*2)71, Since (x, y, po, t, s) € P was arbitrary, we find that P C
cos(rr/2K+2)~1 . BX+5, By the triangle inequality we find that P — (X, y, po, t,5) C (cos(rr/2k+2)~1 4
(X, ¥, Do» £, S)||eo) - BX*> and we see in Lemma 6.7 that ||(X, ¥, Po, t, S) |l = 1/3. Finally, note that
cos(rr/2k*%)~1 < cos(7r/8)~! < 1.1, we have

JT
2k+2

1 m._4 1 3
cos <cos(¢) +- =< u
(o) S cos(m) g < 2

6.4 Properties of the Polar Polytope

In this section, we will analyse the scaled polar polytope Q = ?,l_o(P — (X, ¥, po,t,5))°. From
well-known duality properties, we will find that Q satisfies the following desirable properties:
1. Q N W approximates a two-dimensional disk;
2. The inner ¢;-radius of Q is at least 41—5 when centered at 0;
3. The outer #;-radius of Q is at most 1 when centered at 0.

LEMMA 6.8. For any k € N, there exists a two-dimensional linear subspace W C R¥*> and
n =4k + 7 points ay, ..., a, € B’f*s such that Q := conv(ay,..., a,) satisfies
cos(7r/2x+2 1
M-BI;*SOWQQOWQ — B nw
30 30
and

1 k+5 k+5
E'B1+ CQCBy"

PROOF. Let P C R¥* be the polytope defined by the linear system in (30), and let
P=P-(X,Y,Pot5)
denote the polytope obtained from shifting its center (X, y, po, t, S) to 04. Here, as in Lemma 6.7,
X=y=0,po=(1/6,1/6)",t =1;/30,5 = %

By applying row rescalings we transform the constraints (24 - 29) into a matrix A € R#+7)x(k+5)
such that
P={zeR: Az <1)}.

Let O = (P)° c R denote the polar body of P. Since P is bounded, 0 is the convex hull of the
rows of the matrix A, i.e.

4k+7
O={ATA: 1€ [0,1]* st > A =1).
i=1
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Then by Lemma 6.6 and Fact 2.5, the inner and outer ball of 0 satisfy
2 N
g-B’fS c Q 30 BMS,
Also, by Lemma 6.3, Fact 2.6 and Fact 2.5, the inner and outer ball of ONnw satisfy
cos(rr/2K2) B nw c g nw Cc BEP nw.

The lemma then follows from taking Q = %O u

6.5 Perturbation Analysis and Proof of the Lower Bound

In this subsection, we study the number of edges of the intersection polygon Q N W after
perturbation and prove our main lower bound theorem (Theorem 6.1). To show that our
construction has many edges even after perturbation, we require the following two statements:

LEMMA 6.9. Let a;,...,an, € R? be points with rB{ C conv(ay,...,an) for somer > 0. If

€ <r/2and points ay, ..., a, € R satisfy ||a; — a;||1 < e for alli € [n] then it follows that
2¢€ _ _ £ _ _
(1- 7) conv(ay,...,a,) C conv(as,...,a,) C (1+ ;) conv(ay,...,dn).
PROOF. Write Q = conv(ay, ..., a,) and Q = conv(ay, ..., a,). The second inclusion follows by

Q C Q+¢eBY C Q + £Q. For the first inclusion, we observe that rBY € Q € Q + B¢ C Q + IBY.
This implies that %B‘f C Q, for if there were to exist x € %Bf such that x ¢ Q then, since Q is
closed and convex, then we could find y € R? such that y"x > yTz for all z € Q. Writing
f(S) = max,es ¥y z for S C RY, this would give

FOBY 2 foc+ 2BY = yTx+ FCBD > £(Q) + FCBY 2 0+ 2B 2 F(BY).

By contradiction it follows that B? C Q.
Note that 1 —x% < 1,501 —x < 1/(1+x) for any 1+ x > 0. Combining with Q C Q+8Bf C
Q+ r/LZQ we conclude the desired result. u

LEMMA 6.10. Ifapolygon T C R? satisfies - B5 C T C B - B for some o, B > 0 then T has at
least \Ja/ (B — a) edges.

PROOF. If § > 2a then the bound is trivially true, so assume that g < 2a.

Without loss of generality, re-scale T so that B% CTC(l+¢) - B%, where e = f/a—1 > 0.
Note that since B < 2a we have € < 1.

Consider any edge [q1,q2] € T and let p € [¢1, 2] denote the minimum-norm point in this
edge. Then we have ||q1 — pl|? = ||q1||? + ||p||> = 2{q1, p). Since p is the minimum-norm point, we
have (q1, p) > [Ipll*, and hence |lq1 - p|I* < [l@1]I* - [IplI* < (1 +¢)* — [|p||*. Since p lies on the
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boundary of T we have ||p|| > 1, which implies that ||q;—p||> < (1+€)?—1 = 2e+£%. The analogous
argument for ||q; — p|| and the triangle inequality tell us that ||g; — q2|| < 2V2e + €2 < 4/,
where we use € < 1 at the second step. The choice of the edge [q1, q2] was arbitrary, hence
every edge of T has length as most 4+v/c.

But T has perimeter at least 277. Since the perimeter of a polygon is equal to the sum of the

lengths of its edges, this implies that T has at least 42—\’/% > % edges. u

Now, we can prove the generic lower bound claimed in Theorem 6.2 on the shadow size
under adversarial ¢;-perturbations.

PROOF OF THEOREM 6.2. Fixany d > 5,let k = d — 5 and observe that n = 4k + 7. Let
ai, ..., a, be as constructed in Lemma 6.8. Then we have

cos(7r/2k+2 = 7 !

cos(r/2™) -BY* N W C conv(ay,...,an) NW C — -BsP nw,
20 5 30 2

and

1 k+5 p a k+5

E'Bl C conv(ay,...,a,) € B;™.

For any set of points ay, ..., a, such that ||a; — a;|]|1 < € for each i € [n]. By Lemma 6.9 and
setting r = 1/45, we have

conv(ay, ..., dy) conv(ay,...,dn) =

cC ———— = conv(ay,...,Qan).
1-2¢e/r 1 - 90¢ (@ )

Therefore,

cos(r/2k+2 — —
% ‘B N W C conv(ay,...,a,) NW € (1-90e)" conv(ay,...,an) N W,

and
1+ 45¢

conv(ay,...,a,) NW C (1 +45¢) conv(ay,...,a,) NW C . BIZHS NnNw.

Therefore, we can bound the inner and outer ¢;-radius of conv(as, ..., a,) N W by

(1 — 90¢) - cos(rr/2k*2) 1+ 45¢

30
It then follows from Lemma 6.10 that the polygon conv(ay,..., a,) N W has at least

.B12<+50WQconv(al,...,an)mwg. _B12<+50W.

(1 — 90¢) - cos(rr/2k*2) )1/2
(1 +45¢) — (1 — 90¢) - cos(5r/2k*2)

2 1/2
(1-90¢) - (1~ Z)
(1+45¢) — (1 —90¢) - (1 - Z ))

4k+2
2 1/2
1-90¢ - /5 )
72
4k+2 )

\%

(By cos(x) > 1—x*forx < %)

A%

(1 +45¢) — (1 — 90 —
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edges. u
Finally, we can prove our main result using Gaussian tail bound:

PROOF OF THEOREM 6.1. Using concentration of Gaussian distribution in Corollary 2.9, we
find that if 0 < 1/(360d+/log n), then with probability at least 1 — (Z)_l, we have maxie[y |lai —
ai|l2 < 40+/dlogn < —L-. The result follows from Theorem 6.2 and the fact that ||x||; < Vd||x||2

90Vd
for every x € R%. n

6.6 Experimental Results

measured quality of lower bound

10° 3
] R 073/4

@® measurements for k£ = 10
7

107 5 measurements for k = 15

] oo o ® measurements for k = 20

108 3

105 +

shadow size

10%

103 3

102

101 T T T T
10—2 10-7 10—° 10—3

Figure 5. Measured shadow sizes for sampled perturbations of our construction, for different values of
k and o.

To measure whether the analysis in Theorem 6.1 is tight or not, we ran numerical experi-
ments. Using Python and Gurobi 10.0.3, we constructed a matrix A such that

P—(X,¥,P0,1,5) ={z € R : Az < 1gpur},

as described earlier in this section. Writing R as the maximum Euclidean norm among the
row vectors of A, we sampled A with independent Gaussian distributed entries with standard
deviation oR and E[A] = A. To approximate the shadow size, we optimized the objective vectors
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(i+0.3)m
2k+4

(i+0.3)m
2k+4

)y, withi=0,...,2%> — 1, over the polyhedron {z € R¥*> : Az < 1}
and counted the number of distinct values (x, y) found among the solutions. Two consecutive

cos( )X + sin(
solutions were counted as distinct if their x, y coordinates differed in £; norm by at least 10711,3
Note that the number of vertices of this projection of the perturbed auxiliary polytope is equal
to the number of vertices of the section of the perturbed polar polytope, which then describes
the shadow size.

When o = 0, our code found 25*! such distinct points. For ¢ > 0, Theorem 6.1 shows that
1

,/da\/@’

For k = 10,15, 20, we measured the shadow size for 20 different values of o ranging

we expect to find at least Q( min ( 2")) distinct pairs (x, y).

from 0.01 to 0.0001/2%. The resulting data is depicted in Figure 5 along with a graph of the
function o — 0~%/%. We observe that for each k, the measured shadow size appears to follow
the graphed function up to a point, plateauing slightly above 2! when o is small. The fact that
some measurements come out higher than 2k+1 the shadow size for o = 0, is not unexpected:
the polytope P is highly degenerate, whereas the perturbed polytope is simple and can thus
have many more vertices.

The measured shadow sizes appear to grow much faster than 1/+/o as o gets small, closer
to the 6~3/4 line that we plotted. These results suggest that the behaviour of the shadow size

is substantially different in d = 2, where we have an upper bound of O (—'lf/_i(m + +/log n), and

d > 3, where one might expect a lower bound with a higher dependence on o.
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