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ABSTRACT. The stack number of a directed acyclic graph 𝐺 is the minimum 𝑘 for which
there is a topological ordering of 𝐺 and a 𝑘-coloring of the edges such that no two edges of the
same color cross, i.e., have alternating endpoints along the topological ordering. We prove that
the stack number of directed acyclic outerplanar graphs is bounded by a constant, which gives
a positive answer to a conjecture by Heath, Pemmaraju and Trenk [SIAM J. Computing, 1999].
As an immediate consequence, this shows that all upward outerplanar graphs have constant
stack number, answering a question by Bhore et al. [Eur. J. Comb., 2023] and thereby making
significant progress towards the problem for general upward planar graphs originating from
Nowakowski and Parker [Order, 1989]. As our main tool we develop the novel technique of
directed 𝐻-partitions, which might be of independent interest.

We complement the bounded stack number for directed acyclic outerplanar graphs by
constructing a family of directed acyclic 2-trees that have unbounded stack number, thereby
refuting a conjecture by Nöllenburg and Pupyrev [GD 2023].

1. Introduction

A directed acyclic graph, shortly DAG, is a directed graph with no directed cycles. For an integer
𝑘 ≥ 1 and a directed acyclic graph 𝐺, a 𝑘-stack layout of 𝐺 consists of a topological ordering ≺
of the vertices 𝑉 (𝐺) and a partition of the edges 𝐸(𝐺) into 𝑘 parts such that each part is a stack.
A part is a stack if no two of its edges cross with respect to ≺, where two edges 𝑎𝑏 and 𝑐𝑑 cross
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Figure 1. A planar directedacyclic graph 𝐺𝑘 oftreewidth 3 on 2𝑘 vertices(left) and its uniquetopological ordering ≺containing a 𝑘-twist (right).

if their endpoints are ordered 𝑎 ≺ 𝑐 ≺ 𝑏 ≺ 𝑑 or 𝑐 ≺ 𝑎 ≺ 𝑑 ≺ 𝑏. Now the stack number1 sn(𝐺)
of 𝐺 is the minimum 𝑘 such that there exists a 𝑘-stack layout of 𝐺. It is convenient to interpret
the ordering ≺ as the vertices of 𝐺 being laid out from left to right, i.e., for 𝑎 ≺ 𝑏 we say that 𝑎 is
to the left of 𝑏 (and 𝑏 is to the right of 𝑎) or that 𝑎 comes before 𝑏 in ≺ (and 𝑏 comes after 𝑎 in
≺). Then ≺ being a topological ordering of 𝐺 means that for every edge 𝑎𝑏 directed from 𝑎 to 𝑏,
vertex 𝑎 must come before vertex 𝑏 in ≺, in other words, every edge is directed from its left to
its right endpoint according to ≺.

Given a topological ordering ≺ of 𝐺, a partition of 𝐸(𝐺) into 𝑘 stacks can equivalently be
seen as a 𝑘-edge coloring, such that each color class is crossing-free. The simplest obstruction to
admitting a partition into 𝑘 − 1 stacks is a set of 𝑘 pairwise crossing edges, also called a 𝑘-twist.
For example, consider the 2𝑘-vertex graph 𝐺𝑘, 𝑘 ≥ 2, in the left of Figure 1 consisting of the
directed path 𝑃 = (ℓ1, . . . , ℓ𝑘, 𝑟1, . . . , 𝑟𝑘) and the matching 𝑀 = {ℓ𝑖𝑟𝑖 | 𝑖 = 1, . . . , 𝑘}. This directed
acyclic graph has only one topological ordering ≺ in which the vertices are ordered along the
directed path 𝑃. However with respect to this ordering ≺ the edges in 𝑀 form a 𝑘-twist. It
follows that sn(𝐺𝑘) ≥ 𝑘 for all 𝑘 ≥ 2, which is also tight, as we can easily find a partition of
𝐸(𝐺𝑘) into 𝑘 stacks as indicated in the right of Figure 1.

Evidently, for every 𝑘 the graph 𝐺𝑘 is planar. Moreover, 𝐺𝑘 is 2-degenerate and has
treewidth2 at most 3. So this family of DAGs shows that the stack number is not bounded within
the class of all planar directed acyclic graphs; not even within those that are 2-degenerate and
have treewidth at most 3 (even pathwidth at most 3). On the other hand, as already noted
by Nowakowski and Parker [52] as well as Heath, Pemmaraju and Trenk [39], it is easy to
verify that if 𝐺 is a directed forest (equivalently, if 𝐺 is 1-degenerate, or if 𝐺 has treewidth 1),
then sn(𝐺) = 1. However, determining the largest stack number among the class of DAGs of
treewidth 2, in particular in the special case of outerplanar graphs, has remained an intriguing
open problem for several decades [39, 23, 51, 9, 17]. In fact there was little progress even for the
considerably smaller class of outerplanar DAGs, for which a well-known conjecture of Heath,
Pemmaraju and Trenk [39] from 1999 states that the stack number should be bounded.

1 The stack number is also known as book thickness or page number, especially in the older literature (stacks are calledpages then). In recent years the term stack number seems to be preferred over the others as it explicitly expressesthe first-in-last-out property of every part, in alignment with related concepts like queue layouts.2 We do not need the formal definition of treewidth here but we define related relevant concepts like 2-trees in Section 2.
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Figure 2. An outerplanardirected acyclic graph oneight vertices (left) and atopological ordering ≺ with
𝑎3 to the left of 𝑏1 containinga 3-twist (right).

CONJECTURE 1.1 (Heath, Pemmaraju and Trenk, 1999 [39]). The stack number of the class
of directed acyclic outerplanar graphs is bounded above by a constant.

For the sake of an example, let us argue that the outerplanar DAG 𝐺 in Figure 2 has
sn(𝐺) ≥ 3. In fact, due to symmetry it is enough to consider a topological ordering ≺ with 𝑎3 to
the left of 𝑏1 and to observe that in ≺ the edges 𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3 form a 3-twist. Conjecture 1.1
concerning outerplanar DAGs, but also the more general question about directed acyclic 2-trees,
have received increasing attention over the last years (see Section 1.1 for more details), but it
remained open to this day whether either of these classes contains DAGs of arbitrarily large
stack number.

In addition to Conjecture 1.1, there is a second major open question in the field of directed
linear layouts which we attack. Here, a DAG is called upward planar if it can be drawn in the
plane such that the edges are crossing-free and 𝑦-monotone.

OPEN PROBLEM 1.2 (Nowakowski, Parker, 1989 [52]). Is the stack number of the class of
upward planar graphs bounded above by a constant?

Our results. In this paper, we answer both long-standing open problems connected to Conjec-
ture 1.1, that is whether or not outerplanar graphs and 2-trees have bounded stack number.
We answer the first question in the positive, the second in the negative. Additionally, we attack
Open Problem 1.2 and contribute a significant class of upward planar graphs with bounded
stack number.

In Section 3, we prove that Conjecture 1.1 is true by showing that outerplanar DAGs have
stack number at most 24776. As one of our main tools we introduce directed 𝐻-partitions, which
may be of independent interest for investigations of directed graphs in general. We remark that
while another variant of 𝐻-partitions, so called layered 𝐻-partitions, caused a breakthrough in
the investigation of queue layouts (a notion closely related to stack layouts) [25], this is – to the
best of our knowledge – the first time that 𝐻-partitions are successfully adjusted to work with
stack layouts.

THEOREM 1.3. The stack number of outerplanar DAGs is bounded by a constant. Moreover,
every outerplanar DAG 𝐺 has sn(𝐺) ≤ 24776.
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Our second main result complements the constant upper bound for outerplanar DAGs by

showing that already a just slightly larger subclass of graphs of treewidth 2 has unbounded
stack number.3

THEOREM 1.4. The stack number of DAGs of treewidth 2 is unbounded. Moreover, for every 𝑘 ≥ 1
there exists a monotone 2-tree 𝐺 with sn(𝐺) ≥ 𝑘 in which at most two vertices are stacked onto
each edge.

We remark that Theorems 1.3 and 1.4 together give a quite good understanding of which
2-trees have bounded stack number as stacking at most one vertex onto each edge yields exactly
the maximal outerplanar DAGs. In 2006, Di Giacomo, Didimo, Liotta and Wismath [23] asked
whether or not all DAGs with treewidth 2 admit a 2-stack layout. (The DAG in Figure 2 is already
a counterexample.) ¡Most recently, Nöllenburg and Pupyrev [51] highlight whether or not all
directed acyclic 2-trees have bounded stack number as an important open question. They as
well as a Dagstuhl report by Bekos et al. [9] even conjecture that the stack number of all such
2-trees should indeed be bounded. Our Theorem 1.4 refutes this conjecture.

Let us also emphasize that Theorem 1.3 in particular gives that upward outerplanar
graphs have bounded stack number. This was known only for specific subclasses before, such as
internally triangulated upward outerpaths [17]. As such, Theorem 1.3 provides one of the largest
known classes of upward planar graphs with bounded stack number, while it is a famous open
problem whether or not actually all upward planar graphs have bounded stack number [52].

Organization of the paper. Before proving Theorem 1.3 in Section 3 and Theorem 1.4 in
Section 4, we define in Section 2 all concepts and notions relevant for our proofs. This includes
a quick reminder of 2-trees, outerplanar graphs, stack layouts, and twist numbers, but also
some specialized notions for directed acyclic 2-trees, such as monotone and transitive vertices,
block-monotone DAGs, or transitive subgraphs below monotone vertices. Directed 𝐻-partitions
are introduced in Section 3.2. But first, let us review related work.

1.1 Related Work

Stack layouts are just one type of so-called linear layouts which have been an active field of study
over at least the last forty years. In full generality, a linear layout of an (undirected) graph 𝐺

consists of a total ordering ≺ of the vertices 𝑉 (𝐺) and a partition of the edges 𝐸(𝐺) into parts
such that each part fulfills certain combinatorial properties. For directed acyclic graphs the
vertex ordering ≺ must be a topological ordering. The most prominent types of linear layouts
are stack layouts (no two edges of the same part cross) and queue layouts (no two edges of the

3 We remark that every 2-tree can be constructed by iteratively stacking vertices onto an edge, i.e., by introducing anew vertex that is connected exactly to the endpoints of an edge. A directed 2-tree is called monotone if in each stepthe new vertex is a source or a sink. See also Section 2.
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same part nest, i.e., two edges 𝑎𝑏 and 𝑐𝑑 ordered 𝑎 ≺ 𝑐 ≺ 𝑑 ≺ 𝑏 are forbidden) [40, 36, 25].
These are accompanied by a rich field of further variants like mixed layouts (a combination of
stack and queue layouts) [40, 55, 6, 2, 21, 29], track layouts [26, 8, 54], deque layouts [7, 13, 15],
rique layouts [11, 13, 15], local variants thereof [50, 49, 28, 6] and more [27, 1].

Let us content ourselves with just briefly summarizing below (some of) those previous
results on stack layouts that concern undirected or directed planar graphs.

Stack layouts of undirected planar graphs. Building on the notion of Kainen and Oll-
mann [44, 53], the stack number for undirected graphs was first investigated by Bernhart and
Kainen [16] in 1979. Besides giving bounds for complete and complete bipartite graphs, they
conjecture that there are planar graphs with arbitrarily large stack number. This conjecture
was refuted in [19, 35] leading eventually to an improved upper bound of 4 [63], which has only
recently been shown to be tight [14, 64].

It is well-known that a graph with at least one edge admits a 1-stack layout if and only if it
is outerplanar, and that it admits a 2-stack layout if and only if it is planar sub-Hamiltonian (i.e.,
is a subgraph of a planar graph containing a Hamiltonian cycle) [16]. Testing whether a graph
is planar sub-Hamiltonian is NP-complete [61], but there has been significant effort to identify
planar Hamiltonian and sub-Hamiltonian graph classes: These include (among others) planar
bipartite graphs [22], planar graphs with maximum degree at most 4 [12], planar 4-connected
graphs [59], planar 3-connected graphs with maximum degree 5, and 2-trees [56]. Further, three
stacks are sufficient for planar 3-trees [35] and planar graphs with maximum degree 5 [32].
Recall that four stacks are always sufficient [63] and sometimes necessary [14, 64] for all planar
graphs.

Among the numerous results on non-planar graphs 𝐺, there are bounds on sn(𝐺) depend-
ing on the Euler genus [46], the pathwidth [58] and the treewidth [31, 24, 60] of 𝐺.

Stack layouts of planar directed acyclic graphs. For directed acyclic graphs we additionally
require the vertex ordering ≺ to be a topological ordering. Nowakowski and Parker [52] were
the first to study this and consider stack layouts of diagrams of posets. Presenting an example
with stack number 3 (which was later improved to 4 by Hung [41] and to 5 by Merker [48]), they
ask whether posets with a planar diagram4 have bounded stack number. Despite significant
effort on different subclasses [57, 4, 38, 37, 39, 5, 3], this question still remains open.

A slight generalization, namely whether all upward planar graphs have bounded stack
number, is considered to be one of the most important open questions in the field of linear
layouts [30, 51, 42]. It is known to hold for upward planar 3-trees [30, 51]. However, this does
not imply the same for upward planar DAGs of treewidth at most 3, since upward planar partial

4 In planar diagrams (generally: upward planar drawings) all edges must be drawn 𝑦-monotone along their edgedirection. For example, the graph in Figure 2 is upward planar, while the graph 𝐺𝑘 in Figure 1 admits no upward planardrawing due to the edge from vertex ℓ𝑘 to vertex 𝑟1.
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3-trees might not have an upward planar 3-tree as a supergraph. (E.g., Figure 2 depicts such an
example.) Superseding previous results [30], Jungeblut, Merker and Ueckerdt [42] recently gave
the first sublinear upper bound for all upward planar graphs by showing that every 𝑛-vertex
upward planar graph 𝐺 has stack number sn(𝐺) ≤ 𝑂((𝑛 log 𝑛)2/3) = 𝑜(𝑛).

For general planar DAGs (that are not necessarily upward planar), Heath, Pemmaraju
and Trenk [39] show that directed trees admit 1-stack layouts and directed unicyclic graphs
admit 2-stack layouts. Other classes of DAGs admitting 2-stack layouts include two-terminal
series-parallel graphs [23], 𝑁 -free graphs [47] or planar graphs whose faces have a special
structure [18]. Recall from the example in Figure 1 that the stack number can be linear in
the number of vertices, already for planar DAGs of treewidth 3. With this in mind, Heath,
Pemmaraju and Trenk [39] formulated Conjecture 1.1 in 1999.

Conjecture 1.1 has received considerable attention, especially in recent years. Bhore,
Da Lozzo, Montecchiani and Nöllenburg [17] confirm Conjecture 1.1 for several subclasses of
outerplanar DAGs, including internally triangulated upward outerpaths or cacti. Subsequently,
Nöllenburg and Pupyrev [51] confirm Conjecture 1.1 for single-source outerplanar DAGs, mono-
tone outerplanar DAGs (to be defined in Section 2) and general outerpath DAGs. In a Dagstuhl
Report [9], Bekos et al. claim that every 𝑛-vertex outerplanar DAG 𝐺 has sn(𝐺) ≤ 𝑂(log 𝑛), while
they conjecture that actually sn(𝐺) = 𝑂(1), even for all directed acyclic 2-trees 𝐺. Theorem 1.3
in the present paper confirms Conjecture 1.1, while Theorem 1.4 refutes the conjecture of Bekos
et al.

Finally, let us mention that the decision problem of whether a given DAG admits a 𝑘-
stack layout is known to be NP-complete for every 𝑘 ≥ 2 [10, 18, 37]. However, there are FPT
algorithms parameterized by the branchwidth [18] or the vertex cover number [17].

2. Preliminaries

All graphs considered here are finite, non-empty, and simple, i.e., have neither loops nor parallel
edges. For a graph 𝐺 and an edge 𝑒, we define 𝐺 + 𝑒, respectively 𝐺 − 𝑒, as the graph obtained
from 𝐺 by adding, respectively removing, the edge 𝑒 if possible. Similarly, vertices, sets of edges
or vertices, and subgraphs can be added or removed with the same notation, where incident
edges are also removed as necessary.

Outerplanar graphs and 2-trees. We start by considering undirected graphs. A graph 𝐺 is
outerplanar if it admits a plane drawing with all vertices incident to the outer face. Further,
𝐺 is maximal outerplanar if no edge 𝑒 can be added to 𝐺 such that 𝐺 + 𝑒 remains outerplanar.
Equivalently, a maximal outerplanar graph is either a single vertex, a single edge, or consists of
𝑛 ≥ 3 vertices and admits a plane drawing whose outer face is bounded by a cycle of length 𝑛

and where every inner face is bounded by a triangle.
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Outerplanar graphs are intimately related to graphs of treewidth 2 and so-called 2-trees. A

2-tree is inductively defined by the following construction sequence:
A single edge 𝑥 𝑦 is a 2-tree5. This first edge in the process is called the base edge.
If 𝐺 is a 2-tree and 𝑣𝑤 an edge of 𝐺, then the graph obtained from 𝐺 by adding a new
vertex 𝑢 and edges 𝑢𝑣 and 𝑢𝑤 is again a 2-tree. In this case we say that vertex 𝑢 is stacked
onto edge 𝑣𝑤.

We remark that 2-trees are exactly the edge-maximal graphs of treewidth 2. Note that the
construction sequence of a 2-tree 𝐺 is not unique. In fact, for every 2-tree 𝐺 and every edge 𝑥 𝑦

of 𝐺 there is a construction sequence of 𝐺 with 𝑥 𝑦 as the base edge. (And even for a fixed base
edge, there can be exponentially many construction sequences of 𝐺.) However, as soon as the
base edge 𝑥 𝑦 is fixed, this uniquely determines for each vertex 𝑢 different from 𝑥 and 𝑦 the
edge 𝑣𝑤 that 𝑢 is stacked onto. In this case we call 𝑣𝑤 the parent edge of 𝑢, vertices 𝑣 and 𝑤 the
parents of 𝑢, and likewise 𝑢 a child of 𝑣 and 𝑤. Note that for each edge 𝑣𝑤 in 𝐺 different from
the base edge, its endpoints 𝑣 and 𝑤 are in a parent/child relationship.

Maximal outerplanar graphs are exactly those 2-trees in which at most one vertex is
stacked onto each edge, except for the base edge onto which up to two vertices can be stacked.
In fact, the base edge 𝑥 𝑦 is an inner edge in every outerplanar drawing if two vertices are
stacked onto 𝑥 𝑦, and otherwise 𝑥 𝑦 is an outer edge. In the literature, maximal outerplanar
graphs are also known as the simple 2-trees [45, 62].

Let 𝐺 be a connected outerplanar graph, see also Figure 3a for an example which is a
subgraph of a simple 2-tree (for now, ignore the edge orientations). A block 𝐵 of 𝐺 is either a
bridge or a maximal 2-connected component, while a vertex 𝑣 of 𝐺 is a cut vertex if 𝐺 − 𝑣 is
disconnected. The block-cut tree of 𝐺 has as vertex set all blocks and all cut vertices of 𝐺 and an
edge between block 𝐵 and cut vertex 𝑣 if and only if 𝑣 ∈ 𝐵. See Figure 3b for a block-cut tree of
the graph in Figure 3a.

Outerplanar DAGs and directed acyclic 2-trees. For the remainder of this paper we will
exclusively consider directed graphs, i.e., every edge 𝑒 between two vertices 𝑣 and 𝑤 shall have
a specified orientation, either from 𝑣 to 𝑤, or from 𝑤 to 𝑣. In the former case we denote 𝑒 = 𝑣𝑤

and in the latter case 𝑒 = 𝑤𝑣. In general, for every two disjoint vertex sets 𝐴 and 𝐵 we refer to
the edges between 𝐴 and 𝐵 as those edges with exactly one endpoint in 𝐴 and one endpoint in 𝐵,
regardless of their orientation. On the other hand, the edges from 𝐴 to 𝐵 are those oriented
from some vertex in 𝐴 to some vertex in 𝐵. Notions like 2-trees and outerplanar graphs are
inherited to directed graphs from their underlying undirected graphs. In particular, the blocks
of a directed graph are exactly the blocks of the underlying undirected graph.

5 Usually this inductive definition of 2-trees starts with a triangle, but for the arguments below it is more convenient tolet a single edge be a 2-tree as well.
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(a) An outerplanar DAG 𝐺.
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(b) The block-cut tree of 𝐺.
Figure 3. An outerplanar DAG 𝐺 with its block-cut tree. The construction sequence of 𝐺 is 1, 2, . . . , 8. Inparticular, the base edge is from 1 to 2. Dotted edges are non-edges of 𝐺 whose addition to 𝐺 gives anouterplanar 2-tree.

A directed acyclic graph (DAG) is a directed graph with no directed cycle, i.e., with no cycle
𝐶 = (𝑣1, . . . , 𝑣ℓ), ℓ ≥ 2, with edges directed from 𝑣𝑖 to 𝑣𝑖+1 for 𝑖 = 1, . . . , ℓ − 1 and from 𝑣ℓ to 𝑣1.
Consider a directed 2-tree 𝐺 with a fixed base edge 𝑥 𝑦 (i.e., oriented from 𝑥 to 𝑦) and a vertex
𝑢 ≠ 𝑥, 𝑦 with parent edge 𝑣𝑤 (i.e., oriented from 𝑣 to 𝑤). There are four possibilities for the
directions of the edges between 𝑢 and its parents 𝑣 and 𝑤 (see Figure 4):

If the edges 𝑤𝑢 and 𝑢𝑣 are in 𝐺, then (𝑣, 𝑤, 𝑢) forms a directed cycle and we call 𝑢 cyclic.
If the edges 𝑣𝑢 and 𝑢𝑤 are in 𝐺, we call 𝑢 transitive.
In the two remaining cases we call 𝑢 monotone. We say that 𝑢 is a left child of 𝑣𝑤 if 𝑢𝑣
and 𝑢𝑤 are in 𝐺, and that 𝑢 is a right child if 𝑣𝑢 and 𝑤𝑢 are in 𝐺. Let us note that a left
(right) child is to the left (right) of its parents in every topological ordering.

𝑣

𝑤

𝑢

(a) Cyclic. 𝑣

𝑤

𝑢

(b) Transitive. 𝑣

𝑤

𝑢

(c) Monotone (left child). 𝑣

𝑤

𝑢

(d) Monotone (right child).
Figure 4. The four possible stackings of a new vertex 𝑢 onto a directed edge 𝑣𝑤.

Observe that the notions of cyclic, transitive and monotone vertices crucially depend on the
choice of the base edge. Further, observe that a directed 2-tree 𝐺 is a DAG if and only if no vertex
is cyclic, independent of the choice of the base edge. So if 𝐺 is a DAG, then every construction
sequence involves only transitive and monotone vertices.
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Figure 5. Ablock-monotone outerplanarDAG 𝐺. Each of the twoblocks of 𝐺 contains a baseedge (𝑥 𝑦 and 𝑢𝑣) such thatall other vertices aremonotone.
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Figure 6. An outerplanargraph with base edge 𝑎𝑏and its construction tree.The transitive subgraphbelow each monotonevertex is highlighted orange.

We say that a directed 2-tree 𝐺 is monotone (respectively transitive) if there exists a choice
for the base edge 𝑥 𝑦 such that every vertex except for 𝑥 and 𝑦 is monotone (respectively
transitive). In particular, a monotone (or transitive) directed outerplanar graph is always a
maximal directed outerplanar graph. A connected outerplanar (but not necessarily maximal
outerplanar) DAG is called block-monotone if every block is monotone, see e.g., Figure 5.

Given a maximal outerplanar DAG 𝐺 with a fixed base edge 𝑥 𝑦, its construction tree with
respect to 𝑥 𝑦 is a rooted, undirected (and unordered) binary tree 𝑇 on the vertices of 𝐺 with
vertex labels M (for “monotone”) and T (for “transitive”) such that6:

The tail 𝑥 of the base edge is the root and has label M.
The head 𝑦 of the base edge is the unique child of the root and also has label M.
Whenever 𝑢 is a child of an edge 𝑣𝑤 or 𝑤𝑣 of 𝐺 with 𝑤 being a child of 𝑣, then in 𝑇 we have
that 𝑢 is a child of 𝑤. Moreover, vertex 𝑢 is labeled M in 𝑇 if 𝑢 is a monotone vertex and T

if 𝑢 is a transitive vertex.

Observe that each vertex in the construction tree has at most two children. For each vertex 𝑣,
the transitive subgraph below 𝑣 is the subgraph of 𝐺 induced by 𝑣 and all its descendants 𝑤 in 𝑇

such that the unique 𝑣-𝑤-path in 𝑇 consists solely of vertices labeled T (except possibly 𝑣 itself).
See Figure 6 for a construction tree and the transitive subgraphs below monotone vertices.

Stack number versus twist number. Recall that if in a given vertex ordering ≺ of 𝐺 we
have a set of 𝑘 pairwise crossing edges, we call this a 𝑘-twist in ≺. The maximum 𝑘 such that
there is a 𝑘-twist in ≺ is called the twist number of ≺. Then clearly with respect to this vertex

6 We remark that the construction tree (unrooted and without the labels) is exactly the tree of a nice tree-decompositionof width 2 of 𝐺, but we do not use this fact here.
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ordering, 𝐸(𝐺) cannot be partitioned into fewer than 𝑘 stacks. The minimum twist number
over all (topological) vertex orderings ≺ of 𝐺 is called the twist number tn(𝐺) of 𝐺. Hence it
follows that sn(𝐺) ≥ tn(𝐺) for every DAG 𝐺, i.e., having large twists in every topological vertex
ordering is a simple reason for having a large stack number. Somewhat surprisingly, a large
twist number is the only reason for a large stack number, up to a polynomial function.

THEOREM 2.1 (Davies, 2022 [20]). For every vertex ordering ≺ of 𝐺 with twist number 𝑘, we
can partition 𝐸(𝐺) into 2𝑘 log2(𝑘) + 2𝑘 log2(log2(𝑘)) + 10𝑘 stacks.

In fact, Davies [20] gives an upper bound on the chromatic number 𝜒(𝐻) of a circle graph 𝐻

in terms of its clique number 𝜔(𝐻). (Gyárfás [33] was the first to show that circle graphs are
𝜒-bounded, but Davies gives the first asymptotically tight bound.) To obtain Theorem 2.1, simply
consider the circle graph 𝐻 with 𝑉 (𝐻) = 𝐸(𝐺) whose edges correspond to crossing edges in ≺.
Then 𝜔(𝐻) is the twist number of ≺ and a proper 𝑘-coloring of 𝐻 is a partition of 𝐸(𝐺) into 𝑘

stacks with respect to ≺.

3. Outerplanar DAGs have Constant Stack Number

In this section we prove Theorem 1.3, our first main result. One key ingredient is a recent
result by Nöllenburg and Pupyrev [51] stating that the stack number of monotone outerplanar
graphs is bounded. The idea behind our approach is to partition a given outerplanar DAG 𝐺

into “transitive parts”, such that the contraction of each part into a single vertex yields a block-
monotone DAG 𝐻 . Then the result from [51] can be applied to the blocks of 𝐻 individually.
Two things are left to do: First we show that the many stack layouts for the blocks of 𝐻 can be
combined into a single stack layout of 𝐻 without requiring too many additional stacks. Then we
show that each transitive part can be “decontracted” to yield a stack layout of 𝐺, again without
requiring too many additional stacks.

We formalize all this by introducing a novel structural tool called directed 𝐻-partitions.

3.1 Monotone and Block-Monotone Outerplanar DAGs

Nöllenburg and Pupyrev [51] analyzed the stack number of different subclasses of outerplanar
DAGs. One of their results is that monotone outerplanar DAGs with at most one vertex stacked
on the base edge7 have bounded twist number (and therefore also bounded stack number).

THEOREM 3.1 (Nöllenburg, Pupyrev [51]). Every monotone outerplanar DAG 𝐺 with at most
one vertex stacked on the base edge has twist number tn(𝐺) ≤ 4.

COROLLARY 3.2. Every monotone outerplanar DAG 𝐺 has stack number sn(𝐺) ≤ 128.

7 The definition ofmonotone in [51] allows only one vertex stacked on the base edge. This is in contrast to our definitionwhere the base edge is (the only edge) allowed to have two vertices stacked onto it.
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PROOF . Let 𝐺 = (𝑉, 𝐸) be a monotone outerplanar DAG with base edge 𝑒. Recall that the
base edge of 𝐺 may have two children so 𝐺 is the union of at most two monotone outerplanar
DAGs 𝐺1 and 𝐺2 such that both use 𝑒 as their base edge, both have at most one vertex stacked
on 𝑒, and their intersection is exactly 𝑒. By Theorem 3.1 for 𝑖 = 1, 2 graph 𝐺𝑖 admits a topological
ordering ≺𝑖 with twist number at most 4. Thus by Theorem 2.1 we have

sn(𝐺𝑖) ≤ 2 · 4 · log2(4) + 2 · 4 · log2(log2(4)) + 10 · 4 = 64.

As the endpoints of 𝑒 appear in the same order in ≺1 and ≺2, the corresponding 64-stack layouts
of 𝐺1 and 𝐺2 can be combined into a 128-stack layout of 𝐺. ■

The next lemma and the following corollary extend the bound for monotone DAGs to those
that are block-monotone. This will be important later, as block-monotonicity plays a crucial
role in our proof that outerplanar DAGs have constant stack number.

LEMMA 3.3. Let 𝐺 be a DAG and B be the set of its blocks. Then we have

sn(𝐺) ≤ 2 + 2 · max
𝐵∈B

sn(𝐵).

PROOF . We may assume that 𝐺 is connected. Let 𝑇 be the block-cut tree of 𝐺 rooted at an
arbitrary block of 𝐺 and let 𝑠 = max{sn(𝐵) | 𝐵 ∈ B} be the maximum stack number among
all blocks of 𝐺. We incrementally construct a stack layout of 𝐺 by processing the blocks of
𝐺 according to their level in 𝑇 one after another; the level of a block 𝐵 being the number of
cut vertices on the path from 𝐵 to the root in 𝑇 . In doing so, we maintain the following two
invariants:

(I1) At most 2(𝑠 + 1) stacks are used in total.
(I2) At most 𝑠 + 1 stacks are used for each block.

We start with the root block, which (like all other blocks) admits an 𝑠-stack layout by
assumption. This fulfills the invariants (I1) and (I2) trivially.

Now consider a block 𝐵 in level ℓ ≥ 0. We assume that 𝐵 is already laid out and insert its
children 𝐵1, . . . , 𝐵𝑘 into the layout. For this, repeat the following for every cut vertex 𝑣 that 𝐵
shares with blocks 𝐵1, . . . , 𝐵𝑘 in level ℓ + 1. For 𝑖 = 1, . . . , 𝑘 take an 𝑠-stack layout of 𝐵𝑖 (which
exists by assumption) and let 𝐿𝑖 and 𝑅𝑖 denote the sets of vertices to the left of 𝑣 and to the right
of 𝑣 in the 𝑠-stack layout for 𝐵𝑖 , respectively. We insert the layouts of 𝐵1, . . . , 𝐵𝑘 directly to the
left and directly to the right of 𝑣 such that the vertices appear in the following order (see also
Figure 7):

𝐿1 ≺ · · · ≺ 𝐿𝑘 ≺ 𝑣 ≺ 𝑅𝑘 ≺ · · · ≺ 𝑅1

Let 𝐸′ denote the set of all edges that are in 𝐵1, . . . , 𝐵𝑘. An edge from 𝐸′ and an edge 𝑒 from
a smaller level can cross only if 𝑒 is incident to 𝑣 and therefore belongs to 𝐵. As the edges of 𝐵
use at most 𝑠 + 1 stacks by invariant (I2), there are another 𝑠 + 1 stacks available for the edges
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𝐿1 · · · 𝐿𝑘 𝑣 𝑅𝑘 · · · 𝑅1

Figure 7. Integration of thestack layouts ofblocks 𝐵1, . . . , 𝐵𝑘 around thecut vertex 𝑣 in the currentpartial stack layout.Blocks 𝐵1, . . . , 𝐵𝑘 can use thesame set of 𝑠 stacks exceptfor all edges incident to 𝑣which are on the (𝑠 + 1)-thstack.

in 𝐸′. To assign the edges of 𝐸′ to stacks we start with the 𝑠-stack layouts of each block and
then move all edges incident to 𝑣 to the (𝑠 + 1)-th stack. Observe that edges in 𝐸′ belonging to
different blocks can only cross if exactly one of them is incident to 𝑣. As the edges incident to 𝑣

form a star centered at 𝑣, we conclude that all stacks are crossing-free and 𝑠 + 1 stacks indeed
suffice for 𝐸′, maintaining (I2).

Finally, obverse that children of different cut vertices are separated in the layout and thus
their edges do not cross. Therefore, we have a (2𝑠+2)-stack layout for all blocks that are already
completed, maintaining (I1). ■

Now Corollary 3.2 and Lemma 3.3 immediately imply the following.

COROLLARY 3.4. Every block-monotone outerplanar DAG admits a 258-stack layout.

3.2 Directed 𝑯-Partitions

We introduce directed 𝐻-partitions as a new structural tool and explore how they can be applied
to reason about stack layouts of DAGs. They are not limited to DAGs nor to treewidth 2, and
we believe they may be applicable also for other graph classes in the future. A related tool
known as layered 𝐻-partitions was introduced in [25] to establish that undirected planar graphs
have bounded queue number and has since been used widely. Thus, we state and prove the
lemmas in this section in a more general form than we actually need them. The construction of
a directed 𝐻-partition for outerplanar DAGs is deferred to Section 3.3. The definition of directed
𝐻-partitions is illustrated in Figure 8.
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𝑃

𝐺 : 𝐻 :

Figure 8. A directed 𝐻-partition (orange) of a directed graph 𝐺 (left) and the quotient 𝐻 (right). The cutcover number of the part 𝑃 is 2 as the two vertices marked in red cover all edges with exactly oneendpoint in 𝑃.

DEF IN IT ION 3.5 (Directed 𝐻-Partition, Cut Cover Number). Let 𝐺 and 𝐻 be directed graphs.
A directed 𝐻-partition of 𝐺 is a partition P of 𝑉 (𝐺) such that the following holds:

For every two parts 𝑃, 𝑄 ∈ P the edges of 𝐺 between 𝑃 and 𝑄 are oriented either all from 𝑃

to 𝑄 or all from 𝑄 to 𝑃.
The quotient 𝐺/P is isomorphic to 𝐻 . Here 𝐺/P is obtained from 𝐺 by contracting each
part 𝑃 ∈ P into a single vertex 𝑣𝑃 and directing an edge from 𝑣𝑃 to 𝑣𝑄 in 𝐻 whenever in 𝐺

there is some edge from 𝑃 to 𝑄. (This orientation is well-defined by the first property.)

For a part 𝑃 ∈ P its cut cover number is the smallest number of vertices of 𝐺 required to cover
(i.e., be incident to) all edges of 𝐺 with exactly one endpoint in 𝑃. The cut cover number of P is
the maximum cut cover number among all its parts.

So each vertex 𝑣𝑃 in 𝐻 corresponds to a part in 𝑃 ∈ P and a subgraph of 𝐺, denoted by
𝐺[𝑣𝑃] = 𝐺[𝑃], that is induced by the vertices in 𝑃. More generally, every induced subgraph 𝐵 of
𝐻 corresponds to a subset P𝐵 ⊆ P of parts, and we let 𝐺[𝐵] denote the corresponding subgraph
of 𝐺 that is induced by all vertices of 𝐺 contained in parts in P𝐵.

The definition of directed 𝐻-partitions is very similar to the well-known concept of (undi-
rected) 𝐻-partitions. The main difference and difficulty is that we need to ensure that the
quotient is well-defined, i.e., the orientation of the edges between two parts is consistent. Nev-
ertheless, many useful properties of the undirected version are inherited. In particular, if every
part is connected, then the quotient is a minor of the underlying graph, which implies that
treewidth and planarity are preserved. Although not used here, we remark that the success-
ful idea of Dujmović et al. [25] to combine 𝐻-partitions with layerings to so-called layered
𝐻-partitions is also feasible in the directed setting.
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Given directed graphs8 𝐺 and 𝐻 and a directed 𝐻-partition P of 𝐺, we say that a vertex

ordering ≺𝐺 of 𝐺 expands a vertex ordering ≺𝐻 of 𝐻 if all vertices of 𝐺 belonging to the same
part of P appear consecutively in ≺𝐺 and whenever 𝑃 ∈ P lies to the left of 𝑄 ∈ P in ≺𝐺, then
𝑣𝑃 ∈ 𝑉 (𝐻) lies to the left of 𝑣𝑄 ∈ 𝑉 (𝐻) in ≺𝐻 .

LEMMA 3.6. Let 𝐺 and 𝐻 be DAGs and P be a directed 𝐻-partition of 𝐺 with cut cover number
at most 𝑤. Further, let sn(𝐺[𝑃]) ≤ 𝑠 for each 𝑃 ∈ P. Then for every ℎ-stack layout ≺𝐻 of 𝐻 , there
is a (3𝑤ℎ + 𝑠)-stack layout ≺𝐺 of 𝐺 expanding ≺𝐻 .

In particular, we have sn(𝐺) ≤ 3𝑤 · sn(𝐻) + 𝑠.

PROOF . We expand a given ℎ-stack layout ≺𝐻 of 𝐻 to a (3𝑤ℎ + 𝑠)-stack layout ≺𝐺 of 𝐺. For
each part 𝑃 ∈ P consider an 𝑠-stack layout ≺𝑃 of 𝐺[𝑃], which exists by assumption, and replace
in ≺𝐻 vertex 𝑣𝑃 corresponding to 𝑃 by the vertices in 𝑃 ordered as in ≺𝑃. As in the resulting
vertex ordering ≺𝐺 of 𝐺 all vertices from the same part appear consecutively (in other words,
≺𝐺 expands ≺𝐻), it follows that no two edges 𝑒1, 𝑒2 in 𝐺 belonging to different parts in P cross.
Therefore, we may assign all edges with both endpoints in the same part to the same set of 𝑠
stacks.

It remains to assign the edges of 𝐺 with endpoints in two different parts to the remain-
ing 3𝑤ℎ stacks. For this we consider each stack 𝑆 in the ℎ-stack layout of 𝐻 separately and show
that all edges of 𝐺 corresponding to edges in 𝑆 can be assigned to 3𝑤 stacks. (An edge 𝑣𝑤 ∈ 𝐸(𝐺)
with 𝑣 ∈ 𝑃 and 𝑤 ∈ 𝑄 corresponds to the edge 𝑣𝑃𝑣𝑄 ∈ 𝐸(𝐻).) First, we note that the edges in 𝑆

form an outerplanar subgraph of 𝐻 . As such, it can be partitioned into three star forests [34].
Again, we can treat each star forest separately, and we are left with assigning the edges in 𝐺

corresponding to the same star forest 𝐹 in 𝐻 to at most 𝑤 stacks.
For this, consider two edges 𝑒1, 𝑒2 of 𝐺 corresponding to the same star forest 𝐹 that cross in

our chosen vertex ordering ≺𝐺 of 𝐺. If their endpoints are in four different parts in P, then their
corresponding edges in 𝐻 cross, which is impossible. Therefore, the endpoints of 𝑒1 and 𝑒2 lie in
at most three different parts. Hence, there is one part containing at least two of the endpoints,
and we conclude that 𝑒1 and 𝑒2 actually correspond to the same star in 𝐹. Thus it suffices to
consider the stars of 𝐹 separately and reuse the same set of 𝑤 stacks for all stars from 𝐹. Now
consider all edges of 𝐺 corresponding to the same star 𝑋 of 𝐹. As the cut cover number of P is
at most 𝑤, there is a set𝑉 ′ ⊆ 𝑉 (𝐺) with |𝑉 ′| ≤ 𝑤 such that every edge of 𝐺 corresponding to 𝑋 is
incident to (at least) one vertex in 𝑉 ′. For each vertex 𝑣′ ∈ 𝑉 ′ its incident edges form a star in 𝐺

and are therefore non-crossing in ≺𝐺. Thus, we can assign all incident edges at 𝑣′ corresponding
to 𝑋 to the same stack.

8 Neither Definition 3.5 nor the definition of expanding vertex orderings requires 𝐺 or 𝐻 to be acyclic. However, in thispaper we shall consider solely constellations where 𝐺 and 𝐻 are both DAGs.
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𝐺[𝑥]𝐺[𝑣]

𝐺[𝑤] 𝑤

𝑥
𝑣

𝐵
𝐶1

𝐶2
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𝐶5

𝐷 𝐵
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𝑤
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𝐻𝑣𝐺[𝐻𝑣]

Figure 9. Left: A DAG 𝐺 with a directed 𝐻-partition as in Lemma 3.7 with 𝑝 = 2 and 𝑡 = 3. Some edgedirections are omitted for better readability. Middle: 𝐻 and its blocks. Right: The block-cut tree of 𝐻.

This requires at most 𝑤 stacks for each star 𝑋 in 𝐹, hence also at most 𝑤 stacks for each
star forest 𝐹 of 𝑆. To sum up, we have at most 3𝑤 stacks for each stack 𝑆 of the ℎ-stack layout of
𝐻 . Including the 𝑠 stacks from the beginning, this yields at most 3𝑤ℎ + 𝑠 stacks in total. ■

Lemma 3.6 gives a good stack layout of 𝐺, provided 𝐺 admits a directed 𝐻-partition with
small cut cover number for some 𝐻 with small stack number. The notion of the cut cover
number enables us to give the bound on the stack number independently of the size of the parts.
We remark that without a bound on the cut cover number, there may be a twist between the
vertices of two parts that is as large as the smaller of the two parts. For the next lemma, we
loosen the prerequisites by considering the blocks of 𝐻 separately. First, we require for each
block 𝐵 of 𝐻 that the corresponding subgraph 𝐺[𝐵] has a good stack layout (for example, due
to a small cut cover number of the inherited directed 𝐻-partition of 𝐺[𝐵]). And second, the
interactions between the blocks of 𝐻 sharing a common cut vertex 𝑣 are restricted.

LEMMA 3.7. Let 𝐺 be a DAG with a directed 𝐻-partition P such that
for every block 𝐵 of 𝐻 the subgraph 𝐺[𝐵] of 𝐺 admits an 𝑠-stack layout expanding some
vertex ordering of 𝐻 .

Moreover, let𝑇 be the block-cut tree of 𝐻 rooted at some block of 𝐻 , such that for every cut vertex 𝑣

of 𝐻 with child blocks 𝐶1, . . . , 𝐶𝑘 in 𝑇 the following holds:
For 𝑖 = 1, . . . , 𝑘, the intersection of 𝐺[𝑣] with the neighborhood of 𝐺[𝐶𝑖 − 𝑣] consists of a
single edge 𝑒𝑖 ∈ 𝐸(𝐺[𝑣]).
Edges 𝑒1, . . . , 𝑒𝑘 can be covered with at most 𝑝 directed paths in 𝐺[𝑣].
For each edge 𝑒 ∈ 𝐸(𝐺[𝑣]) we have 𝑒 = 𝑒𝑖 for at most 𝑡 indices 𝑖 ∈ {1, . . . , 𝑘}.

Then sn(𝐺) ≤ 4𝑠𝑝𝑡.

We refer to Figure 9 for an illustration of the situation in Lemma 3.7. In the following
proof, we denote the neighborhood of a subgraph 𝐺′ of some graph 𝐺 by 𝑁 (𝐺′).

PROOF . Let 𝑣 be a vertex in 𝐻 . Recall that 𝑣 = 𝑣𝑃 represents a part 𝑃 ∈ P in the directed
𝐻-partition and 𝐺[𝑣] ⊆ 𝐺 is an induced subgraph of 𝐺. If 𝑣 is a cut vertex of 𝐻 , we associate to 𝑣

also another subgraph of 𝐺 by considering everything below 𝑣 in the block-cut tree 𝑇 . Formally,
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let 𝑇𝑣 denote the subtree of 𝑇 with root 𝑣 and let 𝐻𝑣 denote the subgraph of 𝐻 that is the union
of all blocks in 𝑇𝑣. Then the corresponding subgraph 𝐺[𝐻𝑣] is the subgraph of 𝐺 induced by the
union of all parts 𝑃 ∈ P for which the vertex 𝑣𝑃 in 𝐻 appears in some block 𝐵 in 𝑇𝑣. See again
Figure 9 for an illustration of the notation.

We shall find a 4𝑠𝑝𝑡-stack layout of 𝐺 whose vertex ordering ≺𝐺 has the following proper-
ties:

(I1) For every cut vertex 𝑣 of 𝐻 the vertices in 𝐺[𝐻𝑣] appear consecutively in ≺𝐺.
(I2) For every non-cut vertex 𝑣 of 𝐻 the vertices in 𝐺[𝑣] appear consecutively in ≺𝐺.

Assuming ≺𝐺 satisfies (I1), the following holds:

CLAIM 3.8. For every two vertex-disjoint blocks 𝐵1, 𝐵2 of 𝐻 , no edge in 𝐺[𝐵1] crosses an edge
in 𝐺[𝐵2] with respect to ≺𝐺.

Proof. Let 𝑇1 and 𝑇2 be the subtrees of 𝑇 rooted at 𝐵1 and 𝐵2, respectively. First assume that 𝑇1

and 𝑇2 are disjoint, which in particular means that neither 𝐵1 nor 𝐵2 is the root of 𝑇 . With 𝑣1, 𝑣2

being the parents of 𝐵1, 𝐵2 in 𝑇 , respectively, we have 𝑣1 ≠ 𝑣2 since 𝐵1 and 𝐵2 are vertex-disjoint.
Then (I1) gives that vertices of 𝐺[𝐵1] ⊆ 𝐺[𝐻𝑣1] and 𝐺[𝐵2] ⊆ 𝐺[𝐻𝑣2] appear in ≺𝐺 in disjoint
intervals. Thus no edge in 𝐺[𝐵1] crosses an edge in 𝐺[𝐵2].

If 𝑇1 and 𝑇2 are not vertex-disjoint, assume without loss of generality that 𝑇1 ⊂ 𝑇2; in
particular that 𝐵1 is not the root of𝑇 . Then by (I1) the vertices of 𝐺[𝐻𝑣1] form in ≺𝐺 a contiguous
interval 𝐼 . In particular, every edge in 𝐺[𝐵1] ⊆ 𝐺[𝐻𝑣1] has both endpoints in 𝐼 . As 𝐵1 and 𝐵2

are vertex-disjoint, we have 𝐺[𝐵2] ∩ 𝐺[𝐻𝑣1] = ∅ and every edge in 𝐺[𝐵2] has neither endpoint
in 𝐼 . Thus no edge in 𝐺[𝐵1] crosses an edge in 𝐺[𝐵2]. ■

Claim 3.8 allows us to reuse the same set of stacks for vertex-disjoint blocks. With this in
mind, we partition the blocks of 𝐻 into two sets Bodd and Beven containing the blocks with an
odd, respectively even number of cut vertices on their path to the root in 𝑇 . Then it is enough to
use a set of 2𝑠𝑝𝑡 stacks for blocks in Bodd and a set of 2𝑠𝑝𝑡 different stacks for Beven, giving the
desired 4𝑠𝑝𝑡 stacks in total. Observe that within the same set of blocks, say Bodd, two blocks are
either again vertex-disjoint (and thus non-crossing by Claim 3.8) or have a common parent in 𝑇 .
Thus it is left to consider a single cut vertex and its child blocks.

We now construct the desired 4𝑠𝑝𝑡-stack layout ≺𝐺 of 𝐺 by processing the block-cut tree 𝑇
from the root to the leaves. After initializing the root block, in each step we consider a cut vertex
𝑣 whose parent block 𝐵 is already processed and process all child blocks of 𝑣 simultaneously. In
doing so, we maintain after each step (I1) and (I2) for the already processed subgraph of 𝐺. To
initialize, the root of𝑇 is a single block of 𝐻 and admits an 𝑠-stack layout expanding some vertex
ordering ≺𝐻 of 𝐻 by assumption. This fulfills (I1) trivially and (I2) since the layout expands ≺𝐻 .

Now for a step, consider a cut vertex 𝑣 whose parent block is already processed and let
𝐶1, . . . , 𝐶𝑘 be the child blocks of 𝑣 in 𝑇 . By the assumptions of the lemma, for each 𝑖 = 1, . . . , 𝑘
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𝑥0 𝑥1 𝑥2 𝑥3 𝑥4

𝑋1 𝑋3

𝑄

𝑋2 𝑋4

Figure 10. The situation of Lemma 3.7 (see Figure 9, in particular the three blocks 𝐶1, 𝐶2, 𝐶3 attached tothe same edge in 𝐺[𝑣]) simplified in two ways: We only consider one directed path 𝑄 ⊆ 𝐺[𝑣] and wehave exactly one block 𝑋 𝑗 at each edge 𝑥 𝑗−1𝑥 𝑗, instead of at most 𝑡 (which is paid for by a factor of 𝑡) ornone (for which the respective 𝑋 𝑗 can simply be ignored). That is, each block 𝑋 𝑗 represents at most onechild block 𝐶𝑖 of 𝑣, where 𝑒𝑖 = 𝑥 𝑗−1𝑥 𝑗. Note that the colors match those used in the layout in Figure 11.

the intersection 𝐺[𝑣] ∩ 𝑁 (𝐺[𝐶𝑖 − 𝑣]) consists of a single edge 𝑒𝑖 ∈ 𝐸(𝐺[𝑣]), the edges 𝑒1, . . . , 𝑒𝑘

are covered with at most 𝑝 directed paths 𝑄1, . . . , 𝑄𝑝 in 𝐺[𝑣], and for each edge 𝑒 ∈ 𝐸(𝐺[𝑣]) we
have 𝑒 = 𝑒𝑖 for at most 𝑡 indices 𝑖 ∈ {1, . . . , 𝑘}. Since all of 𝐶1, . . . , 𝐶𝑘 are in Beven or all in Bodd,
we have a set of 2𝑠𝑝𝑡 stacks at our disposal. Reserve 𝑝 pairwise disjoint sets of stacks of size 2𝑠𝑡,
one per path. For a fixed path 𝑄, group these 2𝑠𝑡 stacks further into 𝑡 disjoint subsets of size 2𝑠,
such that for each subset each edge 𝑒 of 𝑄 corresponds to at most one index 𝑖 ∈ {1, . . . , 𝑘} with
𝑒 = 𝑒𝑖 . It is left to show that we can find a 2𝑠-stack layout for a fixed path 𝑄 = (𝑥0, . . . , 𝑥ℓ) of
length ℓ and a set of blocks 𝑋1, . . . , 𝑋ℓ, where 𝐺[𝑣] ∩ 𝑁 (𝐺[𝑋 𝑗 − 𝑣]) is exactly the edge 𝑥 𝑗−1𝑥 𝑗

with 𝑗 = 1, . . . , ℓ (having one block per edge is the most difficult case, having less only makes it
easier), refer to Figure 10. Note that each child 𝐶𝑖 is dealt with: It is either in Beven or Bodd, it is
attached to one of the 𝑝 paths, and it is contained in one of the 𝑡 subsets for the path within
which 𝐶𝑖 does not share the edge 𝑒𝑖 with some other child. That is, each of the 𝑋 𝑗 ’s takes care of
at most one 𝐶𝑖 .

We are now in the situation illustrated in Figure 10 and by the assumptions of the lemma,
for each block 𝑋 𝑗 the corresponding 𝐺[𝑋 𝑗] admits an 𝑠-stack layout ≺ 𝑗 expanding some vertex
ordering of 𝐻 . For every vertex 𝑤 in 𝑋 𝑗 the vertices of 𝐺[𝑤] appear consecutively in ≺ 𝑗 , and
this holds in particular for 𝑤 = 𝑣. We remove from ≺ 𝑗 all vertices in 𝐺[𝑣] except for 𝑥 𝑗−1 and 𝑥 𝑗 .
As 𝐺[𝑣] and 𝐺[𝑋 𝑗 − 𝑣] are connected only via 𝑥 𝑗−1 and 𝑥 𝑗 , this does not remove any edge of 𝐺
corresponding to an edge in 𝑋 𝑗 − 𝑣.

Let 𝐿 𝑗 and 𝑅 𝑗 denote the sets of vertices that are to the left of 𝑥 𝑗−1 respectively to the
right of 𝑥 𝑗 in the remaining ≺ 𝑗 . Recall that there are no vertices between 𝑥 𝑗−1 and 𝑥 𝑗 as the
vertices of 𝐺[𝑣] appear consecutively in ≺ 𝑗 . We now insert 𝐿 𝑗 immediately before 𝑥 𝑗−1 and 𝑅 𝑗

immediately after 𝑥 𝑗 in the vertex ordering of the already processed graph. See also Figure 11
for a visualization. We observe that the edges of 𝑋 𝑗 and 𝑋 𝑗′ do not cross for | 𝑗 − 𝑗′| > 1. Thus,
2𝑠 stacks indeed suffice for all 𝑋1, . . . , 𝑋ℓ by reusing the same 𝑠 stacks for even indices 𝑗 and
another 𝑠 stacks for odd indices 𝑗.



18 / 33 P. Jungeblut, L. Merker, T. Ueckerdt

𝐿1 𝑥0 𝑅1𝐿2 𝑥1 𝑅2𝐿3 𝑥2 𝑅3𝐿4 𝑥3 𝑅4𝑥4

𝑋1 𝑋2 𝑋3 𝑋4

𝑄

Figure 11. Incorporating the 𝑠-stack layouts of 𝐺[𝑋1], . . . , 𝐺[𝑋4] (compare Figure 10) into the intervalcontaining 𝐺[𝑣], where 𝐺[𝑣] ∩ 𝑁(𝐺[𝑋𝑖 − 𝑣]) = {𝑥𝑖−1, 𝑥𝑖} and 𝑄 = (𝑥0, . . . , 𝑥4) is a directed path in 𝐺[𝑣]. Both,the red and the blue edges represent 𝑠-stack layouts of respective 𝐺[𝑋𝑖].

To finish the proof, recall that we maintain (I1) and (I2) after each step for the already
processed subgraph of 𝐺. For this, note that by processing its child blocks, 𝑣 is turned from
a non-cut vertex to a cut vertex, and thus we may assume (I2) but need to satisfy (I1) for 𝑣.
As, by (I2), the vertices of 𝐺[𝑣] were consecutive in the vertex ordering before, it follows that
the vertices of 𝐺[𝐻𝑣] are consecutive in the vertex ordering after those insertions, i.e., (I1)
is fulfilled. Moreover, since each vertex ordering ≺ 𝑗 expands some vertex ordering of 𝐻 , we
conclude that for each newly processed vertex 𝑤 of 𝐻 , its corresponding subgraph 𝐺[𝑤] lies
consecutively inside 𝐿 𝑗 or inside 𝑅 𝑗 for some 𝑗. Thus also (I2) is fulfilled. ■

REMARK 3.9. The assumption in Lemma 3.7 that the edges 𝑒1, . . . , 𝑒𝑘 can be covered with at
most 𝑝 directed paths in 𝐺[𝑣] can be easily relaxed. Indeed, if 𝐵 is the parent block of 𝑣 in the
block-cut tree of 𝐻 , it is enough that the 𝑠-stack layout of 𝐺[𝑣] as part of the 𝑠-stack layout of
𝐺[𝐵] in the statement of the lemma contains a set of at most 𝑚 non-crossing matchings that
cover 𝑒1, . . . , 𝑒𝑘. Then the above proof can be easily adapted to show sn(𝐺) ≤ 2𝑠𝑚𝑡. Having
at most 𝑝 directed paths is clearly enough to have 𝑚 ≤ 2𝑝 non-crossing matchings in every
topological vertex ordering of 𝐺[𝑣].

3.3 Directed 𝑯-Partitions of Acyclic Outerplanar Graphs

The goal of this section is to construct directed 𝐻-partitions P for every outerplanar DAG 𝐺,
such that we can apply Lemma 3.6 from the previous section to reason that sn(𝐺) is bounded
by a constant. In particular, we aim for a block-monotone 𝐻 , with each part 𝑃 ∈ P inducing a
relatively simple subgraph in 𝐺, as well as small cut cover numbers. Instead of bounding the
cut cover number globally, it suffices to have it constant for each block of 𝐻 locally. Formally,
if 𝐵 is a block of 𝐻 , then P𝐵 = {𝑃 ∈ P | 𝑣𝑃 ∈ 𝐵} is a directed 𝐵-partition of the corresponding
subgraph 𝐺[𝐵] of 𝐺, and we want that the cut cover number of P𝐵 is constant. This is enough
to apply Lemma 3.7 from the previous section. These properties of the following lemma are
illustrated in Figure 12 and then combined in Figure 13.

LEMMA 3.10. Let 𝐺 be a maximal outerplanar DAG with fixed base edge and 𝑇 be its (rooted)
construction tree. Then 𝐺 admits a directed 𝐻-partition P with the following properties:
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𝑑

𝑒
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𝑎

𝑏

𝑢
𝑣

𝑤 𝑃

𝑄+
1

𝑄+
2

𝑧

(P2)

(P3) (P4)

𝑃

Figure 12. The properties guaranteed by Lemma 3.10. Figure 13 shows a larger example combing allproperties. (P1) Each monotone vertex (thick) has its own part (orange) including all transitive verticesuntil the next monotone vertex, i.e., the transitive subgraph below it (right). (P2) Two paths 𝑄+
1 , 𝑄

+
2 coverall outer edges of part 𝑃. Adding another transitive vertex 𝑧 extends the path (dashed). Removing 𝑣 and

𝑤 yields 𝑄1 and 𝑄2. (P3) Each block of the quotient (right) consists of a base edge (thick) and monotonevertices corresponding to the monotone vertices in 𝐺 (left). (P4) Inside each block, the cut covernumber is bounded, i.e., for each part 𝑃 there are four vertices (circled red) that cover all edges leaving
𝑃.

(P1) P contains exactly one part 𝑃 for each monotone vertex 𝑢 of 𝐺 and 𝑃 contains exactly the
vertices of the transitive subgraph9 below 𝑢.

(P2) For each 𝑃 ∈ P the graph 𝐺[𝑃] contains two directed paths 𝑄1, 𝑄2 such that every vertex
of 𝐺 − 𝑃 that is stacked onto an edge in 𝐺[𝑃] is stacked onto an edge of 𝑄1 or 𝑄2.

(P3) 𝐻 is a block-monotone outerplanar DAG.
(P4) For each block 𝐵 of 𝐻 the directed 𝐵-partition P𝐵 of 𝐺[𝐵] has cut cover number at most 4.

PROOF . We divide the proof into five parts. First we define P according to property (P1).
Second, we analyze the subgraph of 𝐺 induced by the vertices of each part 𝑃 ∈ P and thereby
verify property (P2). Third, we show that P is indeed a directed 𝐻-partition, i.e., the quotient 𝐻 :=
𝐺/P is a well-defined directed graph. Then we show (P3), i.e., that 𝐻 is block-monotone. At last,
we prove that the cut cover number for each block of 𝐻 is at most 4, verifying property (P4).

9 See Section 2 to recall the definition.
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𝑢
𝑣 = 𝑥

𝑤 = 𝑦

𝑃(𝑢)

𝑎

𝑏

𝑧′′
𝑃(𝑢)𝑃(𝑥)

𝑃( 𝑦)

𝑄+
1

𝑄+
2

𝑧′

Figure 13. Full example for the proof of Lemma 3.10. For better readability, each step is shownseparately in Figure 12. Left: An outerplanar DAG with base edge 𝑥 𝑦 and a directed 𝐻-partition P(orange). The vertex 𝑢 is stacked onto the edge 𝑣𝑤 and is the unique monotone vertex in 𝑃(𝑢). Thepaths 𝑄+
1 (darkblue from 𝑣 to 𝑢) and 𝑄+

2 (lightblue from 𝑤 to 𝑢) for 𝑃(𝑢) are drawn thick. The verticesmarked with red circles certify that the cut cover number within the large block (all parts except for therightmost) of the part 𝑃(𝑢) is at most 4. In a later step, 𝑧′′ is stacked onto 𝑎𝑏, introducing a bridge that isa new block in 𝐻. Right: The quotient 𝐻 = 𝐺/P, where each part of P is contracted to a single vertex.The vertices resulting from the parts 𝑃(𝑥), 𝑃( 𝑦), and 𝑃(𝑢) are labeled.

Construction of P. For each monotone vertex 𝑢 of 𝐺, let 𝑃(𝑢) be the set of vertices in the
transitive subgraph below 𝑢. By definition, we have 𝑢 ∈ 𝑃(𝑢) and that 𝑢 is the only monotone
vertex in 𝑃(𝑢). Moreover recall that the root of the construction tree 𝑇 is a monotone vertex
and thus every transitive vertex of 𝐺 lies in 𝑃(𝑢) for some monotone 𝑢. Hence P = {𝑃(𝑢) |
𝑢 monotone vertex of 𝐺} is indeed a partition of 𝑉 (𝐺) satisfying (P1). ■

For the remainder of the proof it will be convenient to consider a construction sequence
of 𝐺 in which every monotone vertex 𝑢 is immediately followed by the vertices in the transitive
subgraph below 𝑢. We consider such a sequence vertex by vertex and argue about intermediate
versions of 𝐺 and P (and thus of 𝐻 = 𝐺/P). At the beginning we have only the base edge 𝑥 𝑦

directed from 𝑥 to 𝑦, which are both labeled M. Then P = {𝑃(𝑥), 𝑃( 𝑦)} with 𝑃(𝑥) = {𝑥} and
𝑃( 𝑦) = { 𝑦}. In each subsequent step, a vertex 𝑢 is stacked onto an edge 𝑣𝑤, where 𝑣, 𝑤 are
the parents of 𝑢. Recall, however, that the parent of 𝑢 in the construction tree 𝑇 is the younger
among 𝑣, 𝑤.10 If 𝑢 is a transitive vertex (i.e., labeled T in 𝑇 ), then 𝑢 is simply added to the part 𝑃
in P that contains the parent of 𝑢 in 𝑇 . Otherwise, if 𝑢 is a monotone vertex (i.e., labeled M in 𝑇 ),
then a new part 𝑃(𝑢) is added to P consisting of only 𝑢. Figures 12 and 13 show an example of
the resulting partition. Note that this iterative process indeed eventually results in the partition
P = {𝑃(𝑢) | 𝑢 monotone vertex of 𝐺} of 𝐺 as described above.

10 We remark that, unless stated otherwise, parent/child refers to the construction sequence.
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P fulfills (P2). We shall argue that each part 𝑃 ∈ P fulfills (P2) by showing this for the moment
when 𝑃 is created in the construction sequence and maintaining (P2) for 𝑃 whenever 𝑃 is
augmented with a new vertex thereafter. So fix a monotone vertex 𝑢 and consider the step in
the construction sequence when the part 𝑃 = 𝑃(𝑢) is created. As 𝑃 is created with just the single
vertex 𝑢, property (P2) holds vacuously immediately after its creation. Moreover, if 𝑢 = 𝑥, i.e.,
the tail of the base edge 𝑥 𝑦, then 𝑃 = 𝑃(𝑢) will never be augmented with a new vertex and (P2)
holds throughout. To show that (P2) is maintained for 𝑃 = 𝑃(𝑢) for 𝑢 ≠ 𝑥 with each step of the
construction sequence, we maintain two directed paths 𝑄+

1 , 𝑄
+
2 associated to 𝑃 and containing

all edges of the subgraph induced by 𝑃 onto which a vertex can be stacked (see again Figures 12
and 13). If 𝑢 = 𝑦, we initialize both 𝑄+

1 and 𝑄+
2 with (𝑥, 𝑦). If 𝑢 ≠ 𝑥, 𝑦 and the monotone vertex

𝑢 is stacked onto edge 𝑣𝑤, we initialize 𝑄+
1 := (𝑣, 𝑢) and 𝑄+

2 := (𝑤, 𝑢). In any case, we have a
𝑢-𝑣-path 𝑄+

1 and a 𝑢-𝑤-path 𝑄+
2 (taking 𝑣 = 𝑤 = 𝑥 if 𝑢 = 𝑦), where in 𝐺 both paths are either

consistently oriented towards 𝑢 or both consistently oriented away from 𝑢. It holds that the
next vertex in the construction sequence with a parent in 𝑃 is stacked onto an edge of 𝑄+

1 or an
edge of 𝑄+

2 . Moreover, the subpaths 𝑄1 := 𝑄+
1 − {𝑣} and 𝑄2 := 𝑄+

2 − {𝑤} are contained in 𝐺[𝑃]
and trivially fulfill (P2) for 𝑃 = 𝑃(𝑢).

Now consider the next step with a transitive vertex 𝑧 added to 𝑃 = 𝑃(𝑢). (If the next vertex
is monotone, then 𝑃 is final and we are done.) Then 𝑧 is stacked onto an edge 𝑎𝑏 of 𝑄+

1 or 𝑄+
2

(gray/dashed in Figure 12). We replace edge 𝑎𝑏 in 𝑄+
1 (or 𝑄+

2) by the path (𝑎, 𝑧, 𝑏). This way, 𝑄+
1

and 𝑄+
2 are still oriented in 𝐺 consistently towards 𝑢 or away from 𝑢. Since 𝐺 is outerplanar, no

future vertex is also stacked onto 𝑎𝑏. Hence, the next vertex with a parent in 𝑃 is again stacked
onto an edge of𝑄+

1 or an edge of𝑄+
2 . It follows that the subpaths𝑄1 := 𝑄+

1−{𝑣} and𝑄2 := 𝑄+
2−{𝑤}

are contained in 𝐺[𝑃] and again fulfill (P2) for 𝑃 = 𝑃(𝑢). ■

P is a directed 𝑯-partition. We show that in each step of the construction sequence P is
indeed a directed 𝐻-partition, i.e., all edges between any two parts 𝑃(𝑢1), 𝑃(𝑢2) ∈ P are oriented
in the same direction. Assume without loss of generality that monotone vertex 𝑢1 appears before
monotone vertex 𝑢2 in the construction sequence. Thus at the time 𝑢2 is stacked onto some edge,
𝑃(𝑢1) is already in P and contains at least one parent of 𝑢2. If 𝑢2 is a right (left) child, we show
that all edges are oriented from 𝑃(𝑢1) to 𝑃(𝑢2), respectively from 𝑃(𝑢2) to 𝑃(𝑢1). This clearly
holds immediately after the construction step for 𝑢2.

By symmetry, assume that 𝑢2 is a right child. Then the paths 𝑄+
1 and 𝑄+

2 for 𝑃(𝑢2) are both
in 𝐺 directed towards 𝑢2 and away from the parents of 𝑢2. Now consider the next step with
a transitive vertex 𝑧 added to 𝑃(𝑢2) such that 𝑧 also has one of its parents in 𝑃(𝑢1). Then 𝑧 is
stacked onto the first edge of 𝑄+

1 or the first edge of 𝑄+
2 . As 𝑧 is transitive, the edge between

𝑃(𝑢1) and 𝑧 is oriented towards 𝑧 ∈ 𝑃(𝑢2), as desired. ■

𝑯 is a block-monotone DAG. To show that (P3) holds, we start by observing that 𝐻 = 𝐺/P is
a DAG. By the previous paragraph, 𝐻 is a well-defined directed graph, but we need to argue that
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it is acyclic11. Since all edges between two parts of P are oriented consistently, it is sufficient to
verify that 𝐻 remains acyclic whenever a new part 𝑃 is created. So we have 𝑃 = 𝑃(𝑢) for some
monotone vertex 𝑢 and either both edges incident to 𝑢 are oriented towards 𝑢 or both edges are
oriented away from 𝑢. Thus, 𝑣𝑃 is not on any cycle in 𝐻 .

Further observe that each part in P induces a connected subgraph of 𝐺. Thus, the quotient
graph 𝐻 = 𝐺/P is a minor of 𝐺. In particular, 𝐻 is outerplanar and every block of 𝐻 is maximal
outerplanar. We refer to Figures 12 and 13 for examples of quotients.

It remains to show for (P3) that 𝐻 is block-monotone. Again we do this using the construc-
tion sequence of 𝐺. Initially, there is only the base edge 𝑥 𝑦, and we have P = {𝑃(𝑥), 𝑃( 𝑦)} with
𝑃(𝑥) = {𝑥} and 𝑃( 𝑦) = { 𝑦}. We declare the currently only edge of 𝐻 to be the base edge for the
currently only block of 𝐻 .

Now assume again that vertex 𝑢 is stacked onto an edge 𝑣𝑤 in 𝐺. If 𝑢 is a transitive vertex,
nothing needs to be done as 𝐻 does not change. If 𝑢 is a monotone vertex and 𝑣, 𝑤 are in
different parts in P, then some block 𝐵 of 𝐻 is extended by a new vertex 𝑣𝑃 for 𝑃 = 𝑃(𝑢). Since
the stacking is monotone, the enlarged block 𝐵 of 𝐻 remains monotone with respect to the same
base edge. Lastly, if 𝑢 is a monotone vertex and 𝑣, 𝑤 are in the same part 𝑃′ ∈ P, then 𝐻 gets
extended by a bridge 𝑒 between 𝑣𝑃′ and the new vertex 𝑣𝑃 for 𝑃 = 𝑃(𝑢). This bridge 𝑒 forms a
new block of 𝐻 , which is monotone with base edge 𝑒. ■

Each block has cut cover number at most 4. Let 𝐵 be a block of 𝐻 and 𝐺[𝐵] ⊆ 𝐺 be the
corresponding subgraph of 𝐺. Further, let 𝑃 be a part of P𝐵, i.e., such that 𝑣𝑃 lies in 𝐵. The
goal is to show that part 𝑃 has cut cover number at most 4 within the block 𝐵, i.e., to find a
set 𝑆 of at most four vertices in 𝐺[𝐵] that cover all edges of 𝐺[𝐵] with one endpoint in 𝑃 and
the other endpoint in 𝐵 but in another part of P𝐵. Recall that the endpoints of every edge in
𝐺 are in a parent/child relation by construction of the outerplanar graph, where each child
has two parents independent of the edge directions. In particular, we shall consider edges
𝑒 ∈ 𝐸(𝐺[𝐵]) whose parent-endpoint lies in 𝑃 while the child-endpoint does not, and edges
whose child-endpoint is in 𝑃 while the parent-endpoint is not.

Let 𝑢 be the monotone vertex of 𝐺 with 𝑃 = 𝑃(𝑢). Clearly, if 𝑢 = 𝑥, then 𝑃(𝑢) = {𝑢} and it
is enough to take 𝑆 = {𝑢}. If 𝑢 ≠ 𝑥, let 𝑄+

1 and 𝑄+
2 be the paths associated to 𝑃(𝑢) as constructed

above. By symmetry assume that 𝑄+
1 is a directed 𝑣-to-𝑢-path and 𝑄+

2 is a directed 𝑤-to-𝑢-path in
𝐺 (either because 𝑢 = 𝑦 or 𝑢 ≠ 𝑦 is some right child). Let us first assume that 𝐺[𝐵] contains 𝑣
and 𝑤. In this case let 𝑆 be the set consisting of 𝑣, 𝑤, the neighbor 𝑞1 of 𝑣 in 𝑄+

1 , and the neighbor
𝑞2 of 𝑤 in 𝑄+

2 , see Figures 13 and 14. (Several of these vertices might coincide.) Then |𝑆 | ≤ 4
and we claim that 𝑆 covers every edge in 𝐺[𝐵] with exactly one endpoint in 𝑃. Indeed, every
edge in 𝐺[𝐵] with child-endpoint in 𝑃 but parent-endpoint outside 𝑃 has as parent-endpoint

11 The quotient of an outerplanar DAG obtained by contracting some edges might be cyclic. For example consider a
6-cycle with alternating edge orientations. Contracting a maximum matching results in a directed 3-cycle.
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(a) All edges with the child-endpoint in
𝑃 but the parent-endpoint not areincident to 𝑣 or 𝑤.
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(b) All edges with the parent-endpoint in 𝑃 but thechild-endpoint not are incident to 𝑞1 or 𝑞2. Note thatstacking onto any edge with both endpoints in 𝑃 yields anew block and thus is not considered here, whilestacking onto an edge with both endpoints not in 𝑃creates only edges that do not intersect 𝑃.

𝑣

𝑤

𝑃

𝑎

𝑏

𝑧′′

𝐺[𝐵]
𝐵

(c) Left: If 𝐺[𝐵] does not contain 𝑣, 𝑤, we choose 𝑆 = {𝑎, 𝑏}. Again, recall that stacking onto any edge inpart 𝑃 opens a new block. Right: The quotient with block 𝐵
Figure 14. Bounding the cut cover number in the proof of Lemma 3.10. Each subfigure refines Figure 13to show the details in the different cases of the proof. Recall that the cut cover number is bounded foreach block separately.
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Figure 15. An outerplanarDAG with its constructiontree and a 1-stack layout ofthe transitive subgraphbelow 𝑤

either 𝑣 or 𝑤 (Figure 14a). So let 𝑒 be an edge with parent-endpoint 𝑝 in 𝑃 but child-endpoint
𝑧′ in 𝐺[𝐵] − 𝑃, see Figure 14b. Hence the part 𝑃′ in P𝐵 containing 𝑧′ was created later in the
construction sequence than 𝑃. To show that 𝑝 is either 𝑞1 or 𝑞2 and therefore in 𝑆, we make two
observations: First, recall that every monotone vertex that is stacked onto an edge with both
endpoints in 𝑃 creates a new block. And second, observe that immediately after finishing 𝑃

in the construction sequence, the only two edges with exactly one endpoint in 𝑃 are 𝑣𝑞1 and
𝑤𝑞2, i.e., the first edge in each of 𝑄+

1 and 𝑄+
2 . Together, it follows that whenever a new monotone

vertex is introduced in the construction sequence, either it has both parents in 𝑃 and creates a
new block, or it has exactly one parent in 𝑃, namely 𝑞1 or 𝑞2, or it has no parent in 𝑃. Since we
only consider the block 𝐵, we conclude that all vertices introduced after finishing 𝑃 that have
at least one parent in 𝑃 actually have exactly one parent in 𝑃, namely 𝑞1 or 𝑞2.

Finally, assume that 𝐺[𝐵] does not contain 𝑣 and 𝑤 (e.g., Figure 14c or if 𝐵 is the bridge in
Figure 13). Then 𝑣𝑃 is a cut vertex of 𝐻 and 𝐵 is a child block of 𝑣𝑃 in the block-cut tree of 𝐻 . In
particular, 𝑃 is the first part in 𝐺[𝐵] according to the construction sequence, and thus every
edge in 𝐺[𝐵] with exactly one endpoint in 𝑃 has the parent-endpoint in 𝑃 and the child-endpoint
in 𝐺[𝐵] − 𝑃. Recall that block 𝐵 was initialized as a bridge when a monotone vertex 𝑧′′ was
stacked onto an edge 𝑎𝑏 of 𝑄1 or 𝑄2. In this case let 𝑆 = {𝑎, 𝑏}. Then |𝑆 | = 2 and 𝑆 clearly contains
the parent-endpoint of every edge in 𝐺[𝐵] with exactly one vertex in 𝑃. Since we only need to
bound the cut cover number of the partition restricted to some block 𝐵, this finishes (P4). ■

We conclude that P is indeed a directed 𝐻-partition satisfying all four properties, which
concludes the proof. ■

3.4 A Constant Upper Bound

By Property (P1) of Lemma 3.10, each part of the constructed directed 𝐻-partition induces the
transitive subgraph below a monotone vertex. Bounding the stack number of these subgraphs
is the last missing piece before we prove Theorem 1.3.

LEMMA 3.11. Let 𝐺 be a maximal outerplanar DAG with a fixed base edge and let𝑇 be its (rooted)
construction tree. Then the transitive subgraph below every monotone vertex 𝑤 admits a 1-stack
layout.
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PROOF . Let 𝑢𝑣 denote the parent edge of 𝑤. By symmetry, we assume that 𝑤 is a right child.
First recall that 𝑤 has at most two children 𝑎 and 𝑏 in 𝑇 , corresponding to the children of 𝑢𝑤,
respectively 𝑣𝑤, in𝐺. Let𝐺𝑎 (𝐺𝑏) denote the subgraph of𝐺 induced by 𝑢 (𝑣), 𝑤, and the transitive
subgraph below 𝑎 (𝑏), see Figure 15. Note that the union of 𝐺𝑎 and 𝐺𝑏 contains the transitive
subgraph below 𝑤. Now observe that 𝐺𝑎 and 𝐺𝑏 are transitive outerplanar DAGs, i.e., obtained
from 𝑢𝑤, respectively 𝑣𝑤, by repeatedly stacking transitive children. Therefore, they have a
unique topological ordering which coincides with the ordering of the vertices around the outer
face, starting with the tail of their base edge and ending with its head. It is well known that one
stack suffices for outerplanar graphs with this vertex ordering. A 1-stack layout for 𝐺𝑎 ∪ 𝐺𝑏 is
now obtained by concatenating the layouts of 𝐺𝑎 −𝑤 and 𝐺𝑏, which in particular gives a 1-stack
layout for the transitive subgraph below 𝑤. ■

Finally, we are ready to prove the first main result of this paper. This includes verifying
the premises of Lemma 3.7, which we restate here for convenience.

LEMMA 3.7. (Restated) Let 𝐺 be a DAG with a directed 𝐻-partition P such that
for every block 𝐵 of 𝐻 the subgraph 𝐺[𝐵] of 𝐺 admits an 𝑠-stack layout expanding some
vertex ordering of 𝐻 .

Moreover, let𝑇 be the block-cut tree of 𝐻 rooted at some block of 𝐻 , such that for every cut vertex 𝑣

of 𝐻 with child blocks 𝐶1, . . . , 𝐶𝑘 in 𝑇 the following holds:
For 𝑖 = 1, . . . , 𝑘, the intersection of 𝐺[𝑣] with the neighborhood of 𝐺[𝐶𝑖 − 𝑣] consists of a
single edge 𝑒𝑖 ∈ 𝐸(𝐺[𝑣]).
Edges 𝑒1, . . . , 𝑒𝑘 can be covered with at most 𝑝 directed paths in 𝐺[𝑣].
For each edge 𝑒 ∈ 𝐸(𝐺[𝑣]) we have 𝑒 = 𝑒𝑖 for at most 𝑡 indices 𝑖 ∈ {1, . . . , 𝑘}.

Then sn(𝐺) ≤ 4𝑠𝑝𝑡.

THEOREM 1.3. (Restated) The stack number of outerplanar DAGs is bounded by a constant.
Moreover, every outerplanar DAG 𝐺 has sn(𝐺) ≤ 24776.

PROOF . Without loss of generality we assume that 𝐺 is a maximal outerplanar DAG. This is
justified as the stack number is monotone under taking subgraphs and because a non-maximal
outerplanar DAG 𝐺 can easily be extended into a maximal one: Add (undirected) edges to 𝐺

as long as the underlying undirected graph remains outerplanar. Then take any topological
ordering ≺ of 𝐺 and orient each added edge from its left endpoint in ≺ to its right endpoint in ≺.

Fix a base edge for 𝐺 and hence the corresponding construction tree. By Lemma 3.10 there
is a directed 𝐻-partition P of 𝐺 satisfying properties (P1)–(P4). In particular, by property (P3) the
DAG 𝐻 is block-monotone. Thus by Corollary 3.4 there is an ℎ-stack layout ≺𝐻 of 𝐻 with ℎ ≤ 258.
Further, by property (P1), every part of P induces a transitive subgraph below some monotone
vertex of 𝐺 and as such admits a 1-stack layout by Lemma 3.11.
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Now we seek to apply Lemma 3.7, for which we have to check its premises:
By property (P4), for every block 𝐵 of 𝐻 the directed 𝐵-partition P𝐵 of 𝐺[𝐵] has cut cover
number at most 𝑤 = 4. Thus, by Lemma 3.6, graph 𝐺[𝐵] admits an 𝐻-expanding stack
layout using at most 𝑠 ≤ 3𝑤ℎ + 1 = 3 · 4 · 258 + 1 = 3097 stacks.
By property (P2), in each part 𝑃 ∈ P there are 𝑝 = 2 directed paths 𝑄1, 𝑄2 in 𝐺[𝑃] such
that all vertices stacked onto edges of 𝐺[𝑃] are stacked onto an edge of 𝑄1 or 𝑄2. As 𝐺 is
outerplanar, we additionally get that at most 𝑡 = 1 vertex is stacked onto each of those
edges.

Seeing all premises fulfilled, Lemma 3.7 yields that the stack number of 𝐺 is at most sn(𝐺) ≤
4𝑠𝑝𝑡 ≤ 4 · 3097 · 2 · 1 = 24776. ■

4. Directed Acyclic 2-Trees have Unbounded Stack Number

We construct a directed acyclic 2-tree 𝐺 with arbitrarily large twist number (hence arbitrarily
large stack number) in every topological vertex ordering ≺. Somewhat surprisingly, we first
consider rainbows, which can be seen as the counterpart to twists and are defined as follows. A
𝑘-rainbow, 𝑘 ≥ 1, is a set of 𝑘 edges that pairwise nest with respect to ≺. While in general, vertex
orderings with small stack number (hence small twist number) are allowed to have arbitrarily
large rainbows, we first argue that there is a very large rainbow in ≺ for our constructed 2-tree𝐺,
and then use that rainbow as a lever to slowly find larger and larger twists in ≺.

We start with a straightforward auxiliary lemma. For this consider a triangle with vertices
𝑢 ≺ 𝑣 ≺ 𝑤 with vertex ordering ≺. Then we call 𝑢 the left vertex, 𝑣 the middle vertex, and
𝑤 the right vertex. We further call a set of pairwise vertex-disjoint triangles well-interleaved
with respect to some vertex ordering if we first have all left vertices, then all middle vertices,
and finally all right vertices. Note that the ordering of the vertices within each group is not
determined.

For the proof, we use the Erdős-Szekeres theorem which states that every sequence of
length 𝑝 ·𝑞 consisting of pairwise distinct integers contains a monotonically increasing sequence
of length 𝑝 or a monotonically decreasing sequence of length 𝑞.

LEMMA 4.1. If 𝑘3 triangles are well-interleaved with respect to a vertex ordering ≺, then there is
a 𝑘-twist.

PROOF . Consider well-interleaved triangles 𝑇𝑖 = (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) for 𝑖 = 1, . . . , 𝑘3. Without loss of
generality we have 𝑢1 ≺ · · · ≺ 𝑢𝑘3 ≺ 𝑣1, . . . , 𝑣𝑘3 ≺ 𝑤1, . . . , 𝑤𝑘3 , that is, only the ordering within
the 𝑣-vertices and within the 𝑤-vertices is unknown. Among the 𝑣-vertices, the Erdős-Szekeres
theorem with 𝑝 = 𝑘 and 𝑞 = 𝑘2 yields an increasing sequence of 𝑘 indices, i.e., a 𝑘-twist between
𝑢- and 𝑣-vertices with which we are done, or a decreasing sequence of 𝑘2 indices with which
we continue. From now on, we only consider these 𝑘2 indices. Again, by Erdős-Szekeres, there
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Figure 16. Construction of
𝑇 (𝑎𝑏) with the edge set
𝐸(𝑎𝑏) (orange)

either is an increasing sequence of length 𝑘 among the 𝑘2 considered 𝑤-vertices yielding a
𝑘-twist with the corresponding 𝑢-vertices. Or there is a decreasing sequence of length 𝑘 giving
a 𝑘-twist between the 𝑣- and 𝑤-vertices. ■

THEOREM 1.4. (Restated) The stack number of DAGs of treewidth 2 is unbounded. Moreover,
for every 𝑘 ≥ 1 there exists a monotone 2-tree 𝐺 with sn(𝐺) ≥ 𝑘 in which at most two vertices are
stacked onto each edge.

We remark that we actually prove a slightly stronger statement, namely that the twist
number is at least 𝑘, which in turn is a lower bound on the stack number.

PROOF . Let 𝑘 ≥ 1 be fixed. Below we construct a 2-tree 𝐺 with twist number tn(𝐺) ≥ 𝑘. The
proof is split into two parts. First we construct the 2-tree 𝐺 before proving that every topological
vertex ordering contains a 𝑘-twist.

Construction of 𝑮. We define the desired 2-tree𝐺 via a sequence of 2-trees𝐺0 ⊂ 𝐺1 ⊂ · · · ⊂ 𝐺𝑘

with 𝐺𝑘 = 𝐺. For each 𝑡 = 0, . . . , 𝑘 we shall have a matching 𝐸𝑡 ⊂ 𝐸(𝐺𝑡) such that in 𝐺𝑡 no vertex
is stacked onto any edge in 𝐸𝑡, and 𝐸0, . . . , 𝐸𝑘 are pairwise disjoint.

We start with 𝐺0 being a single edge 𝑎𝑏 oriented from 𝑎 to 𝑏, and 𝐸0 = {𝑎𝑏}. Having
defined 𝐺𝑡 and 𝐸𝑡 for some 0 ≤ 𝑡 < 𝑘, we define 𝐺𝑡+1 and 𝐸𝑡+1 as follows: We use each edge 𝑎𝑏 ∈
𝐸𝑡 (directed from 𝑎 to 𝑏) as the base edge for a particular 2-tree that we denote by 𝑇 (𝑎𝑏) and
that is constructed as follows: Let 𝑁 be a large enough integer (to be specified below).

Add a sequence 𝑏1, . . . , 𝑏𝑁 of vertices, where 𝑏 𝑗 is stacked as a right child onto the edge
𝑎𝑏 𝑗−1 (putting 𝑏0 = 𝑏).
Add a sequence 𝑎1, . . . , 𝑎𝑁 of vertices, where 𝑎 𝑗 is stacked as a left child onto the edge 𝑎𝑏 𝑗 .
Denote by 𝐸(𝑎𝑏) the matching 𝐸(𝑎𝑏) = {𝑎 𝑗𝑏 𝑗 | 𝑗 ∈ {1, . . . , 𝑁}}.

See Figure 16 for an illustration. Observe that 𝑇 (𝑎𝑏) involves no transitive stackings, that at
most two vertices are stacked onto each edge of 𝑇 (𝑎𝑏), and that in 𝑇 (𝑎𝑏) no vertex is stacked
onto an edge in 𝐸(𝑎𝑏). Further observe that in every vertex ordering of 𝑇 (𝑎𝑏) the vertices
𝑏1, . . . , 𝑏𝑁 come (actually in that order) to the right of 𝑎 and 𝑏, while the vertices 𝑎1, . . . , 𝑎𝑁 come
(not necessarily in that order) to the left of 𝑎 and 𝑏. In particular, 𝑎 and 𝑏 are consecutive in
every vertex ordering of 𝑇 (𝑎𝑏).



28 / 33 P. Jungeblut, L. Merker, T. Ueckerdt
Now let 𝐺𝑡+1 be the 2-tree obtained from 𝐺𝑡 by adding the 2-tree 𝑇 (𝑎𝑏) onto all edges

𝑎𝑏 ∈ 𝐸𝑡. Further let 𝐸𝑡+1 be the union of the matchings 𝐸(𝑎𝑏) for all edges 𝑎𝑏 ∈ 𝐸𝑡. Apart from
the exact value of 𝑁 , this completes the definition of 𝐺𝑡+1 on the basis of 𝐺𝑡, and hence the
definition of 𝐺 = 𝐺𝑘.

For our proof below to work, we require that 𝑁 is an enormous (but constant) number in
terms of 𝑘. We set 𝑁 = 𝑟1𝑘, where 𝑟1, . . . , 𝑟𝑘 is a sequence of integers defined recursively by

𝑟𝑘 = 1 and

𝑟𝑡 = 2 · 𝑘3(2𝑘3)1+𝑟𝑡+1𝑘 for 𝑡 = 𝑘 − 1, . . . , 1. ■

Twist number of 𝑮. Let ≺ be an arbitrary vertex ordering of 𝐺. We give an inductive proof of
a slightly stronger statement than the existence of a 𝑘-twist, for which we need the following
definition. For positive integers 𝑟, 𝑡 we call a matching a 𝑡-twist with an 𝑟-thick edge if it is
obtained from a 𝑡-twist by replacing one edge by an 𝑟-rainbow. In particular, the 𝑟-rainbow is
vertex-disjoint from the remaining (𝑡 − 1)-twist and each rainbow-edge crosses each twist-edge.
Our long-term goal is to find such a 𝑡-twist with a thick edge in 𝐺𝑡. However, we may also find a
𝑘-twist along the way, in which case we can stop immediately. Thus, throughout the proof we
always assume that we do not find a 𝑘-twist. Under this assumption, we now give our stronger
statement that we prove by induction: For every 𝑡 = 1, . . . , 𝑘, the subgraph 𝐺𝑡 of 𝐺 contains a
𝑡-twist with an 𝑟𝑡-thick edge, where the 𝑟𝑡-rainbow consists of edges in 𝐸𝑡. We start with a huge
rainbow, which rapidly decreases while increasing the size of the twist by 1 in each step until
we obtain a 𝑘-twist for 𝑡 = 𝑘. ■

For 𝑡 = 1, a 1-twist with an 𝑟1-thick edge is simply an 𝑟1-rainbow. Recall that 𝐺1 = 𝑇 (𝑎𝑏)
for the only edge 𝑎𝑏 ∈ 𝐸0 = 𝐸(𝐺0). As mentioned above, we have 𝑎1, . . . , 𝑎𝑁 ≺ 𝑎 ≺ 𝑏 ≺ 𝑏1 ≺
𝑏2 ≺ · · · ≺ 𝑏𝑁 . By the Erdős-Szekeres theorem, the ordering of 𝑁 such 𝑎-vertices according to ≺
contains a 𝑘-element subsequence with monotonically increasing indices or an 𝑁/𝑘-element
subsequence with monotonically decreasing indices. The former case gives a 𝑘-twist from the
corresponding 𝑎-vertices to the 𝑏-vertices, so we can stop. Otherwise, the latter case gives a
rainbow formed by 𝑁/𝑘 = 𝑟1 edges of 𝐸1, as desired.

Now, for 𝑡 ≥ 1, assume that we have a 𝑡-twist𝑇 with an 𝑟𝑡-thick edge, where 𝑅 ⊆ 𝐸𝑡 denotes
the 𝑟𝑡-rainbow. We aim to find an entirely new rainbow 𝑅′ ⊆ 𝐸𝑡+1 of size 𝑟𝑡+1 and an edge 𝑒′

crossing all edges of 𝑅′, where all these edges start in the region spanned by the starting points
of 𝑅 and end in the region spanned by the endpoints of 𝑅. Together with the 𝑡 − 1 edges of
𝑇 − 𝑅, this forms a (𝑡 + 1)-twist with an 𝑟𝑡+1-thick edge, see Figure 17. For this, recall that in
the construction of 𝐺, the 2-tree 𝑇 (𝑎𝑏) is added to each edge 𝑎𝑏 ∈ 𝑅 ⊆ 𝐸𝑡. To find 𝑅′ and 𝑒′, we
follow two steps: First, we analyze the edges 𝑎𝑏 ∈ 𝑅 and their right children. Here, we either
find a large subset of edges having their children far to the right (Figure 18 left), which yields
well-interleaved triangles and thus a 𝑘-twist by Lemma 4.1. Or we have the other extreme that
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𝑒′
𝑅′

Figure 17. Left: A 4-twist with a 3-thick edge. Right: A 2-rainbow 𝑅′ crossed by an edge 𝑒′ resulting ina 5-twist with a 2-thick edge.

Figure 18. Left: Three consecutive edges of the rainbow 𝑅 with their first right children (blue vertices)skipping sufficiently many vertices of 𝑅 such that three well-interleaved triangles are formed. (Note thatfor simplification of the proof, all children are required to skip at least 𝑘3 vertices of 𝑅, although this isnot necessary and not shown here for better readability, e.g., the child of the outermost edge.) Right:Two edges of the form 𝑎𝑏 ∈ 𝑆𝑠 ⊆ 𝑅 with the right children of 𝑇 (𝑎𝑏) immediately following 𝑏.

many edges of 𝑅 have their children close to their right endpoint (Figure 18 right). In the second
step, we find 𝑅′ and 𝑒′ in the 2-tree 𝑇 (𝑎𝑏) of such an edge 𝑎𝑏.

For the first part, consider an edge 𝑎𝑏 ∈ 𝑅 and the first right child 𝑏1 in 𝑇 (𝑎𝑏), and count
the number of vertices of 𝑅 that are skipped, i.e., the number of endpoints of edges of 𝑅 between
𝑏 and 𝑏1. If there are 𝑘3 (along the nesting order) consecutive edges 𝑎𝑏 in 𝑅 such that each
𝑏1 skips at least 𝑘3 vertices of 𝑅, then we obtain 𝑘3 well-interleaved triangles (Figure 18 left)
and therefore a 𝑘-twist by Lemma 4.1. As we are done in this case, we assume the other case
in which we have a set 𝑆 ⊆ 𝑅 with the following two properties: First, 𝑆 consists of at least
𝑟𝑡/𝑘3 edges whose first right child skips less than 𝑘3 vertices of 𝑅. And second, among each 𝑘3

consecutive edges of 𝑅 at least one belongs to 𝑆. It follows that among the edges of 𝑆, there is
a subset 𝑆1 ⊆ 𝑆 of 𝑟𝑡/(2𝑘3) edges 𝑎𝑏 such that the right child 𝑏1 does not skip any vertex of 𝑆1;
choose one in each block of 2𝑘3 consecutive edges in 𝑅 (Figure 19).

Next, consider the second right children, i.e., the vertex 𝑏2 for edges 𝑎𝑏 ∈ 𝑆1. With the
same argument as above, we have one of the two extremes in Figure 18: Either 𝑘3 consecutive

Figure 19. Five consecutive edges of 𝑅 with their first right children, edges to the left parent areomitted for readability. Edges to children skipping more than one vertex of 𝑅 are drawn dashed. Eachblock of two consecutive edges of 𝑅 contains an edge whose child skips at most one vertex. Thechosen subrainbow 𝑆1 is highlighted thick.
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𝑅′

𝑒′

𝑎3 𝑎2 𝑎1 𝑎 𝑏 𝑏1 𝑏2 𝑏3 𝑏4

Figure 20. The new rainbow 𝑅′ and the edge 𝑒′ = 𝑎𝑏𝑠 crossing 𝑅′

edges of 𝑆2 have their second right children far to the right forming well-interleaved triangles.
Or there is a subrainbow 𝑆2 ⊆ 𝑆1 ⊆ 𝑆 ⊆ 𝑅 of size 𝑟𝑡/(2𝑘3)2 such that for every edge 𝑎𝑏 ∈ 𝑆2,
its second right child 𝑏2 does not skip any vertex of 𝑆2. Repeating the argument 𝑠 times, we
obtain a subrainbow of 𝑆𝑠 ⊆ · · · ⊆ 𝑆2 ⊆ 𝑆1 ⊆ 𝑅 such that each edge 𝑎𝑏 has many right children
𝑏1, 𝑏2, . . . , 𝑏𝑠 not skipping any vertex of 𝑆𝑠. Note that the size of the subrainbow shrinks by a
factor of 2𝑘3 in each step. Since 𝑟𝑡 = 𝑘3(2𝑘3)𝑠 for 𝑠 = 1 + 𝑟𝑡+1𝑘, after 𝑠 steps we are left with a
set 𝑆𝑠 ⊆ 𝑅 of 𝑘3 edges of the form 𝑎𝑏 such that 𝑏1 ≺ · · · ≺ 𝑏𝑠 immediately follow 𝑏, i.e., no other
vertex of 𝑆𝑠 or the considered right children is between 𝑏 and 𝑏𝑠, which concludes the first part.

The second part considers the left children of the 2-trees 𝑇 (𝑎𝑏) to find 𝑅′ and 𝑒′. Observe
that if all 𝑘3 edges of 𝑆𝑠 ⊆ 𝑅 have a left child outside the region spanned by 𝑅, then these
children together with their parents form 𝑘3 well-interleaved triangles. As this yields a 𝑘-twist
by Lemma 4.1, we may assume that there is an edge 𝑎𝑏 ∈ 𝑆𝑠 with the children 𝑎1, . . . , 𝑎𝑠−1 below
the outermost edge of 𝑅, where again 𝑠 = 1 + 𝑟𝑡+1𝑘. Among these children, we find the starting
points of the new rainbow 𝑅′ using the Erdős-Szekeres theorem: Either we find a sequence of 𝑘
increasing indices, then the respective 𝑎𝑖𝑏𝑖-edges form a 𝑘-twist and we are done. Or we find a
sequence of 𝑟𝑡+1 decreasing indices, then the respective 𝑎𝑖𝑏𝑖-edges form our desired 𝑟𝑡+1-rainbow
𝑅′. Finally, we choose 𝑒′ = 𝑎𝑏𝑠 as an edge that crosses all edges of 𝑅′, see Figure 20. Combing
the (𝑡 − 1)-twist 𝑇 − 𝑅 with the edge 𝑒′ and the rainbow 𝑅′ ⊆ 𝐸𝑡+1, and recalling that the 2-tree
𝑇 (𝑎𝑏) including 𝑅′ and 𝑒′ is below the outermost edge of 𝑅, we obtain a (𝑡 + 1)-twist with an
𝑟𝑡+1-thick edge. ■

5. Conclusion and Open Problems

We proved that outerplanar DAGs have bounded stack number (Theorem 1.3) and that mono-
tone 2-trees with at most two vertices stacked on every edge have unbounded stack number
(Theorem 1.4). In both cases we solved long-standing open problems or conjectures. In doing
so we got pretty close to pinpointing the boundary between bounded and unbounded stack
number of directed acyclic 2-trees, hence DAGs of treewidth 2. However, several interesting
questions worth to be considered remain open.
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Our first open problem is about the exact upper bound for the stack number of outerplanar

DAGs. We are certain that the number of 24776 stacks required by our approach can be lowered.
The best known lower bound is an outerplanar DAG (that is even upward planar) presented by
Nöllenburg and Pupyrev [51] that requires four stacks.

OPEN PROBLEM 5.1. What is the largest stack number of outerplanar DAGs exactly?

Our family of 2-trees constructed to prove Theorem 1.4 is not upward planar. This motivates
the following open problem to further narrow the gap between bounded and unbounded stack
number.

OPEN PROBLEM 5.2. Is the stack number of upward planar 2-trees bounded?

In fact, this is just a special case of the same question for general upward planar graphs.
Here the best lower bound is an upward planar graph requiring five stacks compared to an
𝑂((𝑛 log 𝑛)2/3) upper bound, where 𝑛 is the number of vertices [42].

OPEN PROBLEM 5.3. Is the stack number of upward planar graphs bounded?
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