
1 / 53 2025 :29

Algorithmizing the
Multiplicity
Schwartz-Zippel Lemma

Received Mar 29, 2024
Revised Apr 22, 2025
Accepted May 23, 2025
Published Dec 18, 2025

Key words and phrases
Error-correcting codes, coding
theory, algebraic coding theory,
information theory

Siddharth Bhandaria � �

Prahladh Harshab � �

Mrinal Kumarb � �

Ashutosh Shankarb � �

a Toyota Technological Institute,
Chicago, USA

b Tata Institute of Fundamental
Research, Mumbai, India

ABSTRACT. The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree
polynomial cannot vanish with high multiplicity very often on a sufficiently large product
set. Since its discovery in a work of Dvir, Kopparty, Saraf and Sudan [6], the lemma has found
numerous applications in both math and computer science; in particular, in the definition and
properties of multiplicity codes by Kopparty, Saraf and Yekhanin [15].

In this work, we show how to algorithmize the multiplicity Schwartz-Zippel lemma for
arbitrary product sets over any field. In other words, we give an efficient algorithm for unique
decoding of multivariate multiplicity codes from half their minimum distance on arbitrary
product sets over any field and any constant multiplicity parameter. Previously, such an algo-
rithm was known either when the underlying product set had a nice algebraic structure (for
instance, was a subfield) [14] or when the underlying field had large (or zero) characteristic, the
multiplicity parameter was sufficiently large and the multiplicity code had distance bounded
away from 1 [4].

Our algorithm builds upon a result of Kim & Kopparty [13] who gave an algorithmic version
of the Schwartz-Zippel lemma (without multiplicities) or equivalently, an efficient algorithm for
unique decoding of Reed-Muller codes over arbitrary product sets. We introduce a refined notion
of distance based on the multiplicity Schwartz-Zippel lemma and design a unique decoding

A preliminary version of this article appeared at SODA 2023 [3]. Research of the first, second and fourth authors supported
in part by the Department of Atomic Energy, Government of India, under project 12-R&D-TFR-5.01-0500. Work done when
the first author was a PhD student at TIFR where his research was supported in part by the Google PhD Fellowship, and the
third author was at IIT Bombay. Research of the second author supported by the Swarnajayanti Fellowship.

Cite as Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Ashutosh Shankar.
Algorithmizing the Multiplicity Schwartz-Zippel Lemma. TheoretiCS, Volume 4
(2025), Article 29, 1-53.

https://theoretics.episciences.org
DOI 10.46298/theoretics.25.29

mailto:siddharth@ttic.edu
https://orcid.org/0000-0003-3481-6078
mailto:prahladh@tifr.res.in
https://orcid.org/0000-0002-2739-5642
mailto:mrinal.kumar@tifr.res.in
https://orcid.org/0000-0002-6430-0219
mailto:ashutosh.shankar@tifr.res.in
https://orcid.org/0009-0003-9308-4054

2 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

algorithm for this distance measure. On the way, we give an alternative analysis of Forney’s
classical generalized minimum distance decoder that might be of independent interest.

1. Introduction

The degree-mantra states that any univariate non-zero polynomial 𝑃 ∈ F[𝑥] of degree 𝑑, where
F is a field, has at most 𝑑 zeros even including multiplicities. A generalization of this basic
maxim to the multivariate setting is the well-known Schwartz-Zippel Lemma, also sometimes
referred to as the Polynomial-Identity Lemma, (due to Ore [20], Schwartz [23], Zippel [26] and
DeMillo & Lipton [5]). This Lemma states that if F is a field, and 𝑃 ∈ F[𝑥1, 𝑥2, . . . , 𝑥𝑚] is a non-zero
polynomial of degree 𝑑, and 𝑇 ⊆ F is an arbitrary finite subset of F, then the number of points
on the grid 𝑇𝑚 where 𝑃 is zero is upper bounded by 𝑑 |𝑇 |𝑚−1. A generalization of this lemma
that incorporates the multiplicity aspect of the (univariate) degree-mantra was proved by Dvir,
Kopparty, Saraf and Sudan [6]. This multiplicity Schwartz-Zippel Lemma (henceforth, referred
to as the multiplicity SZ lemma for brevity) states that the number of points on the grid 𝑇𝑚

where 𝑓 is zero with multiplicity1 at least 𝑠 is upper bounded by 𝑑 |𝑇 |𝑚−1

𝑠 .2

This innately basic statement about low degree polynomials is crucial to many applications
in both computer science and math, e.g. see [12]. Of particular interest to this work is the
significance of this lemma and its variants to algebraic error-correcting codes that we now
discuss in more detail.

1.1 The coding theoretic context and main theorem

SZ lemma and its variants play a fundamental role in the study of error-correcting codes. The
univariate version (referred to as the degree mantra in the first paragraph) implies a lower
bound on the distance of Reed-Solomon codes whereas for the general multivariate setting, the
SZ lemma gives the distance of Reed-Muller codes. In its multiplicity avatar (both the univariate
and multivariate settings), the lemma implies a lower bound on the distance of the so-called
multiplicity codes. Informally, multiplicity codes are generalizations of Reed-Muller codes where
in addition to the evaluation of a message polynomial at every point on a sufficiently large grid,
we also have the evaluations of all partial derivatives of the polynomial up to some order at
every point on a grid. Thus, the number of agreements between two distinct codewords of this
linear code is exactly the number of points on a grid where a low-degree polynomial vanishes
with high multiplicity, and thus, is precisely captured by the multiplicity SZ lemma.

1 This means that all the partial derivatives of 𝑃 of order at most 𝑠 − 1 are zero at this point. See Section 3.2 for a formal
definition.

2 This bound is only interesting when |𝑇 | > 𝑑/𝑠 so that 𝑑 |𝑇 |𝑚−1

𝑠 is less than the trivial bound of |𝑇 |𝑚.

3 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

A natural algorithmic question in the context of error-correcting codes is that of decoding:
given a received word that is sufficiently close to a codeword in Hamming distance, can we
efficiently find the codeword (or the message corresponding to the closest codeword). For
Reed-Solomon codes, this decoding question is equivalent to the question of designing efficient
algorithms for recovering a univariate polynomial from its evaluations, with the additional
complication that some of the evaluations might be erroneous. For Reed-Muller codes, this is the
question of multivariate polynomial interpolation with errors over grids, and for multiplicity
codes, this is the question of recovering a multivariate polynomial from its evaluations and
evaluations of all its partial derivatives up to some order on a grid, where some of the data is
erroneous. If the number of coordinates with errors is at most half the minimum distance of the
code, then we know that there is a unique codeword close to any such received word, and what
the minimum distance actually is implied by the SZ lemma or its variants. In particular, the
multiplicity SZ lemma can be restated as the following combinatorial statement about unique
decodability of multiplicity codes.

Unique Decoding (Combinatorial Statement). Let F be a field, and𝑇 ⊆ F, 𝑑 the degree parameter,
𝑚 the dimension and 𝑠 the multiplicity parameter be as above. Given an arbitrary function
𝑓 : 𝑇𝑚 → F<𝑠 [𝑧1, . . . , 𝑧𝑚], where F<𝑠 [𝑧1, . . . , 𝑧𝑚] denotes the set of all polynomials of degree less
than 𝑠 in the variables 𝑧1, 𝑧2, . . . , 𝑧𝑚, there exists at most one polynomial 𝑃 ∈ F[𝑥1, . . . , 𝑥𝑚] of
degree at most 𝑑 such that the function Enc(𝑠) (𝑃) : 𝑇𝑚 → F<𝑠 [𝑧1, . . . , 𝑧𝑚] defined as

Enc(𝑠) (𝑃) (a) := 𝑃(a + z) mod ⟨z⟩𝑠

differs from 𝑓 on less than 1
2

(
1 − 𝑑

𝑠|𝑇 |
)

fraction of points on 𝑇𝑚. Here ⟨z⟩𝑠 denotes the ideal in F[z]
generated by monomials of total degree 𝑠.

REMARK 1.1. We note that the encoding function Enc(𝑠) (𝑃) (a) is sometimes also defined as
being given by the evaluation of all partial derivatives of 𝑃 of order at most 𝑠 − 1 on input a.
These definitions are equivalent as can be seen by looking at the Taylor expansion of 𝑃(a + z)
and truncating the series at monomials of degrees less than 𝑠 in z.

Thus, the unique decoding question for multiplicity codes is equivalent to asking whether
there is an algorithmic equivalent of the multiplicity SZ lemma. More precisely, given a function
𝑓 , can one efficiently find the (unique) polynomial 𝑃 such that Δ(𝑓 , Enc(𝑠) (𝑃)) < 1

2

(
1 − 𝑑

𝑠|𝑇 |
)

(if
one exists).

Given the central role that these polynomial evaluation codes play in coding theory and in
complexity theory, it is not surprising to note that this question of efficient unique decoding
of Reed-Solomon codes and Reed-Muller codes in particular has been widely investigated. For
Reed-Solomon codes, we know multiple algorithms for this task, starting with the result of
Peterson from the 50s [21] and the subsequent algorithms of Berlekamp and Massey [2, 18] and

4 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

Welch and Berlekamp [25]. However, the situation is a bit more complicated for Reed-Muller
and multivariate multiplicity codes.

Till recently, all known efficient decoding algorithms for the multivariate setting (both
Reed-Muller and larger order multiplicity codes), worked only when the underlying set 𝑇 had a
nice algebraic structure (e.g.,𝑇 = F) or when the degree 𝑑 was very small (cf, the Reed-Muller list-
decoding algorithm of Sudan [24] and its multiplicity variant due to Guruswami & Sudan [11]).
In particular, even for Reed-Muller codes (equivalently multiplicity codes with multiplicity
parameter 𝑠 = 1), where the unique decoding question corresponds to an algorithmic version
of the standard SZ lemma, no efficient unique decoding algorithm was known. In fact, the
problem was open even in the bivariate setting! This seems a bit surprising since the distance
of these codes just depends on the non-vanishing of polynomials on arbitrary grids, whereas
the decoding algorithms appear to crucially use some very specific algebraic properties of the
grid. Even beyond the immediate connection to questions in coding theory, this seems like
a very natural algorithmic question in computational algebra that represents a gap in our
understanding of a very fundamental property of low-degree polynomials.

For Reed-Muller codes, this question was resolved in a beautiful work of Kim and Kop-
party [13] who gave an efficient algorithm for this problem of unique decoding Reed-Muller
codes on arbitrary grids. Their algorithm was essentially an algorithmic version of the standard
induction-based proof of the SZ lemma. However, the algorithm of Kim and Kopparty does
not seem to generalize for the case of higher multiplicity (𝑠 > 1), and indeed, this problem is
mentioned as an open problem of interest in [13].

Since the work of Kim and Kopparty, Bhandari, Harsha, Kumar and Sudan [4] made
some partial progress towards this problem for the case of 𝑠 > 1 and 𝑚 > 1. In particular,
they designed an efficient decoding algorithm albeit requiring the following conditions to be
satisfied:

the field F has characteristic zero or is larger than the degree 𝑑
the distance of the code is constant, and
the multiplicity parameter 𝑠 is sufficiently large (in terms of the dimension 𝑚)

Under these special conditions, they in fact obtained a list-decoding algorithm. Yet, the original
algorithmic challenge of obtaining an efficient unique decoding for all dimensions and all
multiplicity parameters remained unresolved. In particular, even unique decoding of bivariate
multiplicity codes with multiplicity two from half their minimum distance was not known over
arbitrary product sets over any field.

Our main result in this work is a generalization of the result of Kim and Kopparty to all
constant multiplicities or equivalently, an algorithmic version of the multiplicity SZ lemma (for
constant multiplicity parameter). More formally, we prove the following theorem.

5 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Main result. Let 𝑠, 𝑑, 𝑚 ∈ N and 𝑇 ⊆ F of size 𝑛 be such that 𝑑 < 𝑠𝑛. Then, there is a deterministic
algorithm that runs in time (𝑠𝑛)𝑂(𝑠+𝑚) · (𝑠−1+𝑚

𝑚

)
and on input 𝑓 : 𝑇𝑚 → F<𝑠 [x] outputs the unique

polynomial 𝑃 ∈ F≤𝑑 [x] (if such a polynomial exists) such that Enc(𝑠) (𝑃) differs from 𝑓 on less than
1
2

(
1 − 𝑑

𝑠|𝑇 |
)

fraction of points on 𝑇𝑚.

We remark that our algorithm is not polynomial-time in the input size for all settings of
the multiplicity parameter 𝑠; our algorithm runs in time (𝑠𝑛)𝑂(𝑠+𝑚) · (𝑠−1+𝑚

𝑚

)
while the input-size

is 𝑛𝑚 · (𝑠−1+𝑚
𝑚

)
. That said, it is polynomial when 𝑠 is a constant, the typical setting for coding-

theoretic applications. While we are chiefly interested in the constant multiplicity parameter
regime, we note that our algorithm is polynomial for certain super-constant settings of 𝑠 also,
which might be useful in some applications. We conjecture that it can be made to run in
polynomial time for all settings of 𝑠.

The main theorem here differs from the results of [4] in the following sense: our main
theorem gives a polynomial-time algorithm for unique decoding multiplicity codes for multi-
plicity parameter 𝑠 being any arbitrary constant and over any underlying field, whereas [4]
give an efficient algorithm for list decoding multiplicity codes up to the list decoding capacity,
provided that the multiplicity parameter is sufficiently large (given by the dimension 𝑚) and
the underlying field has large or zero characteristic.

1.2 Alternative analysis of Forney’s GMD Decoding

Forney designed the Generalized Minimum Distance (GMD) decoding to decode concatenated
codes from half its minimum distance [7, 8]. A key step in our algorithm (as in Kim and
Kopparty’s Reed-Muller decoder) is reminiscent of Forney’s GMD decoding. Forney analysed
the GMD decoding using a convexity argument, which in modern presentations is usually
expressed as a probabilistic or a random threshold argument. Kim and Kopparty used a direct
adaptation of this random threshold argument for their Reed-Muller decoder. This argument
unfortunately fails in our setting. To get around this, we first give an alternative analysis of
Forney’s GMD decoding using a matching argument, which we explain in detail in the next
section. The alternative analysis of Forney’s GMD decoding is given in detail in Section 5.

1.3 Further discussion and open problems

We conclude the introduction with some open problems.

Faster algorithms. Observe that the running time of the main result as stated above depends
polynomially on (𝑠𝑛)𝑠+𝑚. Since the input to the decoding problem has size

(
𝑛𝑚 · (𝑠−1+𝑚

𝑚

))
,

strictly speaking, the running time of the algorithm in the main theorem is not polynomially
bounded in the input size for all choices of the parameters 𝑛, 𝑠, 𝑚. It would be extremely
interesting to obtain an algorithm for this problem which runs in polynomial time in the
input size for all regimes of parameters.

6 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

List-decoding. Another natural question in the context of the main result in this paper is to
obtain efficient algorithms for decoding multiplicity codes on arbitrary grids when the
amount of error exceeds half the minimum distance of the code. The results in [4] provide
such algorithms when 𝑠 is sufficiently large, 𝑚 is a constant and we are over fields of
sufficiently large (or zero) characteristic. However, when 𝑠 is small, for instance, even when
𝑠 = 1 and 𝑚 = 2, we do not have any such list decoding results. In fact, for small 𝑠, we do
not even have a good understanding of the combinatorial limits of list decoding of these
(Reed-Muller/Multiplicity) codes on arbitrary grids.

Polynomial-method-based algorithms. It would also be interesting to understand if the re-
sults in this paper and those in [13] can be proved via a more direct application of the
polynomial method. By this we mean a decoding algorithm along the lines of the classi-
cal Welch-Berlekamp [25] decoding algorithm as presented by Gemmell and Sudan [9]
or the generalizations used for list-decoding: for instance, as in the work of Guruswami
and Sudan [11]. Note that for large 𝑠, constant 𝑚, and fields of sufficiently large or zero
characteristic, the algorithm in [4] is indeed directly based on a clean application of the
polynomial method. It would be aesthetically appealing to have an analogous algorithm for
the case of small 𝑠 (and perhaps over all fields).

1.4 Organization

The rest of the paper is organized as follows.
We begin with an overview of our algorithm in Section 2. In Section 3, we discuss the nec-

essary preliminaries including the definition and properties of multiplicity codes and describe
a fine-grained notion of distance for multiplicity codes that plays a crucial role in our proofs.
We build up the necessary machinery for the analysis of the bivariate decoder in Section 4 and
Section 6 where we describe and analyse efficient decoding algorithms for univariate multiplic-
ity codes with varying multiplicities and weighted univariate multiplicity codes respectively. In
Section 7, we put it all together and describe our algorithm for decoding bivariate multiplicity
codes, and give its proof of correctness. Using a suitable induction on the number of variables,
we generalize the algorithm for the bivariate case to the multivariate case in Section 8. An
alternative analysis of Forney’s generalized minimum distance decoder, which inspires our
analysis of our algorithm, is discussed in Section 5.

2. Overview of algorithm

As one would expect, our multivariate multiplicity code decoder for 𝑠 > 1 is a generalization of
the Kim-Kopparty decoder for Reed-Muller codes (i.e., the 𝑠 = 1 case). However, a straightfor-
ward generalization does not seem to work and several subtle issues arise. Some of these issues

7 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

are definitional and conceptual; for instance, one needs to work with a finer notion of distance
while others are more technical, for instance the need for an alternative analysis of Forney’s
GMD decoding.

To explain these issues and discuss how we circumvent them, we first recall the Kim-
Kopparty decoder and then mention how we generalize it to the 𝑠 > 1 setting, highlighting the
various issues that arise along the way.

2.1 An overview of the Kim-Kopparty Reed-Muller decoder

We begin by recalling the Kim-Kopparty decoder for Reed-Muller codes on arbitrary grids.
Their algorithm is, in some sense, an “algorithmization” of the standard inductive proof of the
classical Schwartz-Zippel lemma (without any multiplicities). For simplicity, we will focus on
the bivariate case (𝑚 = 2) initially.

The setting is as follows: we are given a received word 𝑓 : 𝑇2 → F and have to find the
unique polynomial 𝑃(𝑥, 𝑦) ∈ F[𝑥, 𝑦] (if one exists) such that Δ(𝑓 , 𝑃) < 1

2𝑛
2(1 − 𝑑

𝑛), where Δ is
the standard Hamming distance and 𝑛 = |𝑇 |.

The high-level approach is to write 𝑃 as
∑𝑑
𝑖=0 𝑃𝑖 (𝑥) 𝑦𝑑−𝑖 and iteratively recover the uni-

variate polynomials 𝑃0, 𝑃1, . . . , 𝑃𝑑 in this order. The goal of the ℓ𝑡ℎ iteration is to recover 𝑃ℓ (𝑥)
assuming we have correctly recovered 𝑃0, 𝑃1, . . . , 𝑃ℓ−1 in the previous iterations. For the ℓ𝑡ℎ

iteration, we work with 𝑓ℓ : 𝑇2 → F given by 𝑓ℓ (𝑎, 𝑏) := 𝑓 (𝑎, 𝑏) −∑ℓ−1
𝑖=0 𝑃𝑖 (𝑎) · 𝑏𝑑−𝑖 as the received

word. Clearly, the Hamming distance between 𝑓ℓ and the evaluation of the bivariate polynomial
𝑄ℓ (𝑥, 𝑦) =

∑𝑑
𝑖=ℓ 𝑃𝑖 (𝑥) 𝑦𝑑−𝑖 on the grid is exactly Δ(𝑓 , 𝑃) which is at most 1

2𝑛
2(1 − 𝑑

𝑛).
Very naturally, we view 𝑓ℓ as values written on a two-dimensional grid 𝑇 × 𝑇 , with the

columns indexed by 𝑥 = 𝑎 ∈ 𝑇 and the rows indexed by 𝑦 = 𝑏 ∈ 𝑇 , and each entry on a grid
point of𝑇 ×𝑇 is an element of F. As a first step of the algorithm, for every 𝑎 ∈ 𝑇 , a Reed-Solomon
decoder is used to find a univariate polynomial𝐺 (𝑎) (𝑦) of degree at most 𝑑−ℓ such that the tuple
of evaluations of this polynomial on the set 𝑇 is close to the restriction of 𝑓ℓ on the column 𝑥 = 𝑎.
For columns where 𝑄ℓ and 𝑓ℓ have a high agreement, 𝐺 (𝑎) (𝑦) would be equal to 𝑄ℓ (𝑎, 𝑦) and
hence, the leading coefficient of𝐺 (𝑎) (𝑦)must equal 𝑃ℓ (𝑎). A natural suggestion here would be to
collect the leading coefficients of the polynomials 𝐺 (𝑎) (𝑦)’s, namely 𝑔 (𝑎) := Coeff 𝑦𝑑−ℓ (𝐺 (𝑎) (𝑦))
and try and run another Reed-Solomon decoder on 𝑔 : 𝑇 → F to get 𝑃ℓ (𝑥). Unfortunately, with
Δ(𝑓 , 𝑃) < 1

2𝑛
2(1− 𝑑

𝑛), it can be shown that a lot of these polynomials 𝐺 (𝑎) could be incorrect and
hence, the number of errors in the received word for this second step Reed-Solomon decoding
is too large for it to correctly output 𝑃ℓ.

The key idea of Kim and Kopparty is to observe that at the end of the first step, not only do
we have the decoded column polynomials𝐺 (𝑎) (𝑦) but we also have hitherto unused information
about the function 𝑓ℓ, namely, the Hamming distance between the received word (the restriction
of 𝑓ℓ) on a column 𝑥 = 𝑎 and the evaluation of 𝐺 (𝑎) (𝑦). Formally, for every 𝑎 ∈ 𝑇 , they associate

8 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

a weight

𝑤(𝑎) := min
{
Δ

(
𝑓ℓ (𝑎, ·), 𝐺 (𝑎)

)
,
𝑛 − (𝑑 − ℓ)

2

}
. (1)

Note that if Δ
(
𝑓ℓ (𝑎, ·), 𝐺 (𝑎)

)
> 𝑛−(𝑑−ℓ)

2 , then there is no guarantee that 𝐺 (𝑎) (𝑦) is the closest
codeword to 𝑓ℓ (𝑎, 𝑦) and hence the minimum is taken in the above expression to cap the
distance to 𝑛−(𝑑−ℓ)

2 (this plays a technical reason in the proof, but let us ignore it for now). Based
on these weights, they define a modified distance between the pair (𝑔, 𝑤) : 𝑇 → F × Z≥0, which
they refer to as a “fractional word”, and a regular word ℎ : 𝑇 → F as follows:

Δ((𝑔, 𝑤), ℎ) :=
∑︁

𝑎∈𝐴0(𝑔,ℎ)
(𝑛 − (𝑑 − ℓ) − 𝑤(𝑎)) +

∑︁
𝑎∈𝐴1(𝑔,ℎ)

𝑤(𝑎) , (2)

where 𝑇 = 𝐴0(𝑔, ℎ) ∪ 𝐴1(𝑔, ℎ) is the following partition of 𝑇

𝐴1(𝑔, ℎ) := {𝑎 ∈ 𝑇 : 𝑔 (𝑎) = ℎ(𝑎)} , (agreement points)

𝐴0(𝑔, ℎ) := {𝑎 ∈ 𝑇 : 𝑔 (𝑎) ≠ ℎ(𝑎)} . (disagreement points)

We note that the above is a scaled version of the modified distance used by Kim and Kopparty. We
find it convenient to express it in the above equivalent form for the purpose of this presentation
as this alternate form generalizes to the 𝑠 > 1 setting more naturally.

They then prove that this modified distance satisfies the following two important proper-
ties.

The fractional word (𝑔, 𝑤) and the “correct” polynomial 𝑃ℓ satisfy

Δ((𝑔, 𝑤), 𝑃ℓ) ≤ Δ(𝑓 , 𝑃) < 1
2
𝑛2

(
1 − 𝑑

𝑛

)
. (3)

For any two distinct polynomials 𝑄ℓ and 𝑅ℓ of degree ℓ, we have

Δ((𝑔, 𝑤), 𝑄ℓ) + Δ((𝑔, 𝑤), 𝑅ℓ) ≥ (𝑛 − (𝑑 − ℓ)) · Δ(𝑄ℓ, 𝑅ℓ)
≥ (𝑛 − (𝑑 − ℓ)) · (𝑛 − ℓ)

≥ 𝑛2
(
1 − 𝑑

𝑛

)
. (4)

These two properties imply that the pair (𝑔, 𝑤) uniquely determines the polynomial 𝑃ℓ since
𝑃ℓ satisfies Δ((𝑔, 𝑤), 𝑃ℓ) < 1

2𝑛
2
(
1 − 𝑑

𝑛

)
(by the first property) while every other polynomial 𝑄ℓ

satisfies Δ((𝑔, 𝑤), 𝑄ℓ) ≥ 𝑛2
(
1 − 𝑑

𝑛

)
− Δ((𝑔, 𝑤), 𝑃ℓ) > 1

2𝑛
2
(
1 − 𝑑

𝑛

)
(by the second property).

We are still left with the problem of efficiently determining 𝑃ℓ from the pair (𝑔, 𝑤). We
will defer that discussion to later, but first show how the above steps can be generalized to the
𝑠 > 1 setting.

9 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

2.2 Generalizing the Kim-Kopparty decoder to 𝒔 > 1

To begin with, we will need to work with a more fine-grained notion of distance which incorpo-
rates the multiplicity information. For two functions 𝑓 , 𝑔 : 𝑇𝑚 → F<𝑠 [z] and a point a ∈ 𝑇𝑚, the
Hamming distance Δ(𝑓 (a), 𝑔 (a)) measures if the polynomials 𝑓 (a) and 𝑔 (a) are different. We
will consider a refined notion of Δ(𝑠)mult(𝑓 (a), 𝑔 (a)), which measures the “multiplicity distance”
at the point a (here 𝑠 is the multiplicity parameter). Formally,

Δ(𝑠)mult(𝑓 (a), 𝑔 (a)) := (𝑠 − 𝑑 (𝑠)min(𝑓 (a) − 𝑔 (a))) ,

where 𝑑 (𝑠)min(𝑅) is defined as follows for any polynomial 𝑅: 𝑑 (𝑠)min(𝑅) is the minimum of 𝑠 and
the degree of the minimum degree monomial with a non-zero coefficient in 𝑅. Note that if 𝑅 is
identically zero, 𝑑 (𝑠)min(𝑅) is set to 𝑠. Recall that here 𝑓 (a) and 𝑔 (a) are both polynomials in z of
degree strictly less than 𝑠. The multiplicity distance between the functions 𝑓 and 𝑔 is defined to
be the sum of the above quantity over all a ∈ 𝑇𝑚. More precisely,

Δ(𝑠)mult(𝑓 , 𝑔) :=
∑︁
a∈𝑇𝑚

Δ(𝑠)mult(𝑓 (a), 𝑔 (a)) .

Observe that for 𝑠 = 1, this matches with the usual notion of Hamming distance. Further-
more, this fine-grained distance lower-bounds the Hamming distance as follows:

Δ(𝑠)mult(𝑓 , 𝑔) ≤ 𝑠 · Δ(𝑓 , 𝑔) .

The multiplicity SZ lemma, in terms of this fine-grained multiplicity distance, states that
for two distinct 𝑚-variate degree 𝑑 polynomials 𝑃, 𝑄, we have

Δ(𝑠)mult(Enc(𝑠) (𝑃), Enc(𝑠) (𝑄)) ≥ 𝑛𝑚 ·
(
𝑠 − 𝑑

𝑛

)
.

The Kim-Kopparty decoder for Reed-Muller codes on a grid required as a basic primitive
a Reed-Solomon decoder. Correspondingly, our algorithm will require as a basic primitive a
univariate multiplicity code decoder. Such a decoder was first obtained by Nielsen [19]. Later on
in the algorithm, we will actually need a generalization of this decoder which can handle the case
when the multiplicity parameters at different evaluation points are not necessarily the same.
Such a decoder can be obtained by a suitable modification of the standard Welch-Berlekamp
decoder for Reed-Solomon codes. This modification is presented in Section 4 (Algorithm 1
specifically).

We are now ready to generalize the Kim-Kopparty decoder to the 𝑠 > 1 setting. To keep
things simple, let us focus on the 𝑠 = 2 and 𝑚 = 2 setting. The problem stated in terms of the
multiplicity-distance is as follows. We are given a received word 𝑓 : 𝑇2 → F<2[𝑢, 𝑣] and have
to find the unique polynomial 𝑃(𝑥, 𝑦) ∈ F[𝑥, 𝑦] (if one exists) such that Δ(2)mult(𝑓 , Enc(2) (𝑃)) <
1
2𝑛

2(2 − 𝑑
𝑛), where 𝑛 = |𝑇 |.

10 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

𝑥 = 𝑎𝑥

𝑦

𝐺 (𝑎,0) , 𝐺 (𝑎,1)

𝑔𝑎

𝑤(𝑎, 0), 𝑤(𝑎, 1)

Figure 1. Bivariate algorithm, visualised

As before we write 𝑃 =
∑𝑑
𝑖=0 𝑃𝑖 (𝑥) 𝑦𝑑−𝑖 and recover the polynomials 𝑃0, . . . , 𝑃𝑑 in successive

iterations. Let us assume we are in the ℓ𝑡ℎ iteration where we have to recover 𝑃ℓ and have
already correctly recovered 𝑃0, . . . , 𝑃ℓ−1 in the previous iterations. Similar to the 𝑠 = 1 setting, we
consider the function 𝑓ℓ : 𝑇2 → F<2[𝑢, 𝑣] given by 𝑓ℓ (𝑎, 𝑏) := 𝑓 (𝑎, 𝑏) − Enc(2)

(∑ℓ−1
𝑖=0 𝑃𝑖 (𝑥) · 𝑦𝑑−𝑖

)
as the received word. Clearly, the distance between 𝑓ℓ and Enc(2)

(∑𝑑
𝑖=ℓ 𝑃𝑖 (𝑥) 𝑦𝑑−𝑖

)
is exactly

Δ(2)mult(𝑓 , Enc(2) (𝑃)) which is at most 1
2𝑛

2(2 − 𝑑
𝑛).

As before, we view 𝑓ℓ as values written on a two-dimensional grid 𝑇 ×𝑇 , with the columns
indexed by 𝑥 = 𝑎 ∈ 𝑇 and the rows indexed by 𝑦 = 𝑏 ∈ 𝑇 , and each entry on a grid point
of 𝑇 × 𝑇 is an element of F<2[𝑢, 𝑣]. It will be convenient to view this degree-one polynomial
𝑓ℓ (𝑎, 𝑏) at the grid point (𝑎, 𝑏) as 𝑓 (0)ℓ (𝑎, 𝑏) (𝑣) + 𝑢 · 𝑓

(1)
ℓ (𝑎, 𝑏) where 𝑓 (0)ℓ (𝑎, 𝑏) ∈ F<2[𝑣] and

𝑓 (1)ℓ (𝑎, 𝑏) ∈ 𝐹<1[𝑣] ≡ F. For every 𝑎 ∈ 𝑇 , we look at the restriction of the functions 𝑓 (0)ℓ

and 𝑓 (1)ℓ to the column 𝑥 = 𝑎. We could use a Reed-Solomon decoder to find the univariate
polynomial𝐺 (𝑎,1) (𝑦) of degree at most 𝑑− ℓ such that the tuple of evaluations of this polynomial
on the set 𝑇 is close to the restriction of 𝑓 (1)ℓ on the column 𝑥 = 𝑎. Similarly, we could use
the univariate multiplicity code decoder (mentioned above) to find the univariate polynomial
𝐺 (𝑎,0) (𝑦) of degree at most 𝑑 − ℓ such that encoding of this polynomial is close to the restriction
of 𝑓 (0)ℓ on the column 𝑥 = 𝑎. We can for each 𝑎, define 𝑔 (𝑎) ∈ F<2[𝑢] to be the polynomial
𝑔 (𝑎) := Coeff 𝑦𝑑−ℓ (𝐺 (𝑎,0)) + 𝑢 · Coeff 𝑦𝑑−ℓ (𝐺 (𝑎,1)).

We also have the corresponding weight functions (similar to (1)) which measure how
close the encodings of the polynomials 𝐺 (𝑎,0) (𝑦) and 𝐺 (𝑎,1) (𝑦) are close to the corresponding
functions 𝑓 (0)ℓ and 𝑓 (1)ℓ respectively. Namely,

𝑤(𝑎, 0) := min
{
Δ(2)mult

(
𝑓 (0)ℓ (𝑎, ·), Enc(2) (𝐺 (𝑎,0))

)
,

2𝑛 − (𝑑 − ℓ)
2

}
,

11 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

𝑤(𝑎, 1) := min
{
Δ(1)mult

(
𝑓 (1)ℓ (𝑎, ·), Enc(1) (𝐺 (𝑎,1))

)
,
𝑛 − (𝑑 − ℓ)

2

}
.

The quantities 2𝑛 − (𝑑 − ℓ) and 𝑛 − (𝑑 − ℓ) are the distances of univariate multiplicity codes of
degree (𝑑 − ℓ) and multiplicity parameters 2 and 1 respectively. We will refer to these pairs of
weight functions as w = (𝑤(·, 0), 𝑤(·, 1)). As in the 𝑠 = 1 setting, we will view the pair (𝑔,w) as a
“fractional word” and would like to define the distance between the fractional word (𝑔,w) and
ℎ. In the 𝑠 = 1 Reed-Muller setting ((2)), the set 𝑇 was partitioned into two sets: the set 𝐴1(𝑔, ℎ)
of agreement points and the set 𝐴0(𝑔, ℎ) of disagreement points. However, for the 𝑠 = 2 case,
agreement/disagreement come in more flavours. We have points in 𝑇 in which 𝑔 and ℎ agree in
both the evaluation and derivative, points in which they agree only in the evaluation but not
the derivative and finally points where they disagree even on the evaluation. Based on this, we
have the following partition of the set 𝑇 = 𝐴0(𝑔, ℎ) ∪ 𝐴1(𝑔, ℎ) ∪ 𝐴2(𝑔, ℎ):

𝐴2(𝑔, ℎ) := {𝑎 ∈ 𝑇 : 𝑔 (𝑎) ≡ ℎ(𝑎)} , (agreement points with multiplicity 2)

𝐴1(𝑔, ℎ) := {𝑎 ∈ 𝑇 : 𝑔 (𝑎) ≡ ℎ(𝑎) mod ⟨𝑢⟩} \ 𝐴2(𝑔, ℎ) ,
(agreement points with multiplicity 1)

𝐴0(𝑔, ℎ) := 𝑇 \ (𝐴2(𝑔, ℎ) ∪ 𝐴1(𝑔, ℎ)) . (disagreement points)

Inspired by the distance definition of Kim and Kopparty between a fraction word and a regular
word (see (2)), we define a similar modified distance between the fractional word (𝑔,w) : 𝑇 →
F<2[𝑢] × (Z≥0 × Z≥0) and and a word ℎ : 𝑇 → F<2[𝑢] as follows.

Γ ((𝑔,w), ℎ) :=
∑︁

𝑎∈𝐴0(𝑔,ℎ)
(2𝑛 − (𝑑 − ℓ) − 𝑤(𝑎, 0)) +

∑︁
𝑎∈𝐴1(𝑔,ℎ)

max {(𝑛 − (𝑑 − ℓ) − 𝑤(𝑎, 1)) , 𝑤(𝑎, 0)}

+
∑︁

𝑎∈𝐴2(𝑔,ℎ)
max {𝑤(𝑎, 0), 𝑤(𝑎, 1)} , (5)

(See Definition 6.1 for the exact definition of this modified distance.) This definition might seem
complicated, however it is chosen so that it satisfies the following two important properties.

[Lemma 7.3] The fractional word (𝑔,w) and the “correct” polynomial 𝑃ℓ satisfy

Γ((𝑔,w), 𝑃ℓ) ≤ Δ(2)mult(𝑓 , Enc(2) (𝑃)) < 1
2
𝑛2

(
2 − 𝑑

𝑛

)
. (6)

[Lemma 6.2] For any two distinct polynomials 𝑄ℓ and 𝑅ℓ of degree ℓ, we have

Γ((𝑔,w), 𝑄ℓ) + Γ((𝑔,w), 𝑅ℓ) ≥ 𝑛2
(
2 − 𝑑

𝑛

)
. (7)

These two properties imply that the pair (𝑔,w) uniquely determines the polynomial 𝑃ℓ, which
is in fact an alternative statement of the multiplicity SZ lemma.

12 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

As in the case 𝑠 = 1, we are now left with the problem of efficiently extracting the polyno-
mial 𝑃ℓ from the fractional word (𝑔,w). In the next section, we describe how this was done by
Kim and Kopparty and our modification of the same.

2.3 Extracting 𝑷ℓ from the fractional word

Let us restate the problem of 𝑃ℓ extraction: we are given a fractional word (𝑔, 𝑤) : 𝑇 → F × Z≥0

that satisfies (3), namely Δ((𝑔, 𝑤), 𝑃ℓ) ≤ 1
2𝑛

2
(
1 − 𝑑

𝑛

)
(note that by (4), this uniquely defines 𝑃ℓ)

and we have to find the polynomial 𝑃ℓ. Kim and Kopparty designed the weighted Reed-Solomon
decoder, inspired by Forney’s generalized minimum distance (GMD) decoder for this purpose.
To see this connection to Forney’s GMD decoding, we first rewrite (3) as follows:

1
2
· (𝑛 − (𝑑 − ℓ)) ·

(∑︁
𝑎∈𝐴1

𝑤(𝑎) +
∑︁
𝑎∈𝐴0

(2 − 𝑤(𝑎))
)
≤ 1

2
𝑛2

(
1 − 𝑑

𝑛

)
,

where 𝑤(𝑎) := 𝑤(𝑎)/(1
2 · (𝑛 − (𝑑 − ℓ))

) ∈ [0, 1]. Or equivalently,

∑︁
𝑎∈𝐴1

𝑤(𝑎) +
∑︁
𝑎∈𝐴0

(2 − 𝑤(𝑎)) ≤
𝑛2

(
1 − 𝑑

𝑛

)
(𝑛 − (𝑑 − ℓ)) ≤ 𝑛

(
1 − ℓ

𝑛

)
.

This can be further rewritten as∑︁
𝑎∈𝑇

𝑤(𝑎) +
∑︁
𝑎∈𝐴0

2(1 − 𝑤(𝑎)) ≤ 𝑛
(
1 − ℓ

𝑛

)
. (8)

The above inequality is very reminiscent of Forney’s analysis of GMD decoding (c.f., [10, Sec-
tion 12.3]). Consider a uniformly random threshold 𝜃 ∈ [0, 1] and erase all coordinates 𝑎 ∈ 𝑇
such that 𝑤(𝑎) ≥ 𝜃. (8) can be now rewritten as

E𝜃 [# erasures(𝜃) + 2 · # errors(𝜃)] ≤ 𝑛
(
1 − ℓ

𝑛

)
. (9)

This implies that there exists a threshold 𝜃 ∈ [0, 1] that satisfies # erasures(𝜃) + 2 · # errors(𝜃) ≤
𝑛

(
1 − ℓ

𝑛

)
. This is precisely the condition under which Reed-Solomon decoding (under erasures

and errors) is feasible. Thus, the weighted Reed-Solomon decoder of Kim and Kopparty is
as follows: consider every possible threshold 𝜃 ∈ [0, 1] and the corresponding erased word
𝑔 |{𝑎∈𝑇 : 𝑤(𝑎)<𝜃}. Observe that there are at most 𝑛 distinct thresholds to consider. We can now run
a standard Reed-Solomon decoder on this partially erased word to extract the polynomial 𝑃ℓ.

This completes the description of the Kim-Kopparty decoder for Reed-Muller codes on
grids.

We would now like to adapt this weighted Reed-Solomon decoder to the multiplicity setting.
We are now given the fractional word (𝑔,w) : 𝑇 → F<2[𝑢] × (Z≥0 ×Z≥0) with the promise of (6),

13 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

𝑇 , increasing order of weight

𝑖 ∈ [𝑠]

Figure 2. Step-threshold in weighted univariate multiplicity decoding

namely Γ((𝑔,w), 𝑃ℓ) ≤ 1
2𝑛

2(2 − 𝑑
𝑛) and we have to find the polynomial 𝑃ℓ. Recall that (7) states

that the promise uniquely determines 𝑃ℓ.
A natural “weighted univariate multiplicity code decoder” would be the following: consider

all possible step-thresholds 𝜽 = (𝜃0, 𝜃1) (or for general 𝑠, (𝜃0, 𝜃1, . . . , 𝜃𝑠−1)) and erase coordinates
of 𝑔 accordingly to obtain a univariate multiplicity received word of varying multiplicities3. If
this step-threshold 𝜽 is indeed correct (i.e., it retains a large fraction of agreements with 𝑃ℓ), we
can show that we can adapt the classical Welch-Berlekamp decoder for Reed-Solomon codes
to decode even in this setting. And we do precisely this in Section 4. We are still left with the
problem of showing that there exists a step-threshold 𝜽 that works.

How did Kim and Kopparty show that such a threshold exists in the 𝑠 = 1 setting? They
showed by scaling the promise (3) by 1

2 (𝑛 − (𝑑 − ℓ)) to obtain (8) which is equivalent to the
statement (9) that a random threshold 𝜃works. Observe that the scaling 1

2 (𝑛−(𝑑−ℓ)) is precisely
the unique-decoding radius of the (𝑑 − ℓ) degree Reed-Solomon code 𝐺 (𝑎) (𝑦). In our setting
(𝑠 > 1), there is not one code 𝐺 (𝑎) (𝑦), but a whole family of them (𝐺 (𝑎,0) (𝑦) and 𝐺 (𝑎,1) (𝑦) for the
𝑠 = 2 case). Recall that these are members of multiplicity codes of degree 𝑑 − ℓ with multiplicity
parameter 2 and 1 respectively. Their corresponding unique-decoding radii are 1

2 (2𝑛 − (𝑑 − ℓ))
and 1

2 (𝑛 − (𝑑 − ℓ)) (in terms of the multiplicity distance). In general, we might have 𝑠 different
unique-decoding radii. It is unclear which of these scalings we should use.

There is a more fundamental reason why one does not expect such a random-threshold
argument to hold. Consider the following instance of the problem. Let 𝑃 be a degree 𝑑 polynomial
for 2𝑛/3 < 𝑑 < 2𝑛 − 2. Let 𝐵 ⊆ 𝑇 be a set of points of size

⌈
𝑛
2

(
1 − 𝑑

2𝑛

)⌉
− 1. Consider a

word 𝑓 : 𝑇2 → F<2[𝑢, 𝑣] formed by corrupting Enc(2) (𝑃) on 𝑇 × 𝐵. The fraction of errors is
|𝐵|/𝑛 < 1

2

(
1 − 𝑑

2𝑛

)
and hence we must be able to uniquely decode 𝑃 from 𝑓 . Let us see how our

suggested algorithm proceeds when it decodes along each column 𝑥 = 𝑎. For each 𝑎 ∈ 𝑇 , the
function 𝑓 (0)ℓ (𝑎, 𝑦) is corrupted on less than 1

2

(
1 − 𝑑

2𝑛

)
and hence the univariate multiplicity code

decoder for multiplicity parameter 2 correctly decodes this column. Furthermore, 𝑤(𝑎, 0) = |𝐵|.
However, while decoding 𝑓 (1)ℓ (𝑎, 𝑦)we observe that the number of errors is |𝐵|while the distance
of the underlying code (multiplicity code with multiplicity parameter 1) is only 𝑛

(
1 − 𝑑

𝑛

)
which

3 We are intentionally vague at this point. For more details, see Section 6.

14 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

is less than |𝐵| for our choice of parameters (since 𝑑 > 2𝑛/3). So we could have corrupted
enough points so that for each 𝑎 ∈ 𝑇 , 𝑓 (1)ℓ (𝑎, 𝑦) is a valid codeword and yet different from the
correct codeword in Enc(2) (𝑃). In this case, all the𝐺 (𝑎,1) (𝑦) polynomials are erroneous, however
𝑤(𝑎, 1) = 0. We thus have for this setting 𝑤(𝑎, 1) = 0 and 𝑤(𝑎, 0) = |𝐵| for all 𝑎 ∈ 𝑇 . Consider
the step-threshold (|𝐵| + 1, 0) (by this we mean that we use the threshold |𝐵| + 1 for 𝑓 (0)ℓ and 0
for 𝑓 (1)ℓ). Then the 𝑓 (1)ℓ level is completely erased, while the 𝑓 (0)ℓ level is completely un-erased.
This object would be a received word for univariate multiplicity code decoding with varying
multiplicities, in general; in this case since the first-derivative level is completely erased, it is
an instance of Reed-Solomon decoding. Then, in fact, it is correctly decoded to obtain 𝑃ℓ, since
each column 𝑥 = 𝑎 was correctly decoded at the 𝑓 (0)ℓ level, the only available level. Yet it is easy
to check that the expected number of erasures plus two times the number of errors is too large
for any reasonable choice of a random threshold.

How do we then show a step-threshold 𝜽 works without resorting to the random-threshold
argument?

For starters, we could ask if we could give an alternative analysis of Forney’s GMD decoding
without appealing to the random-threshold argument. We show that this is indeed true. More
formally, we show that if every threshold fails for Forney’s GMD decoding, then the promise
for GMD decoding is violated (i.e., the received word is more than half the distance of the
concatenated code away from a codeword). We prove this as follows. Assume every threshold
fails. We then construct a matching between agreement points and disagreement points (that is,
correctly and incorrectly decoded blocks, following the inner decoding) such that every matched
agreement-disagreement pair has the property that the weight in the disagreeing coordinate
is at least that in the agreeing coordinate. Such a matching then immediately implies that the
promise for GMD decoding is violated. See Section 5 for further details. This alternative analysis
of Forney’s GMD decoding is not needed for our algorithm. It only serves as an inspiration for
our “weighted univariate multiplicity code decoder” just as the original analysis inspired the
“weighted Reed-Solomon decoder” of Kim and Kopparty.

Equipped with this alternative analysis of Forney’s GMD decoding, we show a similar result
for our setting. For contradiction, let us assume that every step-threshold 𝜽 fails to decode the
polynomial 𝑃ℓ. This lets us construct a matching between “correct” and “incorrect” coordinate-
multiplicity pairs. The construction of this matching is considerably more involved than the
construction of the corresponding matching in Forney’s GMD decoding as we need to respect
the monotonicity of the multiplicity coordinates. The matching is constructed via a delicate
analysis using a generalization of Hall’s Theorem (see Theorem 6.10). As in the Forney analysis,
the matched agreement-disagreement pairs have the property that the multiplicity-distance
of the disagreeing member is at least that of the agreeing member. Once we have constructed
such a matching, it is not hard to show that the promise (6) is violated. Hence, at least one of
the step-thresholds work and our “weighted univariate multiplicity code decoder” works as

15 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

suggested. This part of the analysis happens to be the most technically-challenging part of the
paper and indeed this “weighted univariate multiplicity code decoder” forms the work-horse
of our bivariate decoder (for more details, see Section 6). The factor of 𝑛𝑠 in the running time
comes because this step runs over all possible step-thresholds and there are 𝑂(𝑛𝑠) of them. We
conjecture that this step can be improved to poly(𝑛, 𝑠).

2.4 The multivariate setting for𝒎 > 2

The above presentation gave an outline of both the Kim-Kopparty decoder as well as ours in the
bivariate setting. Kim and Kopparty extended the bivariate Reed-Muller decoder to larger 𝑚 by
designing a weighted version of the Reed-Muller decoder which they then used inductively as
suggested by the proof of the classical SZ Lemma. We however do not have a similar “weighted
multivariate multiplicity code decoder”. In particular, we do not even have a weighted version
of the bivariate decoder. We get around this issue by performing a slightly different proof of the
SZ Lemma from the textbook proof (see Section 8.1). This alternative proof of the SZ Lemma
proceeds by viewing the polynomial as an (𝑚 − 1)-variate polynomial with the coefficients
coming from a univariate polynomial ring F[𝑥𝑚] instead of as a univariate polynomial in 𝑥𝑚
with the coefficients coming from the (𝑚−1)-variate polynomial ring F[𝑥1, . . . , 𝑥𝑚−1]. This slight
modification allows us to work with just a “weighted univariate multiplicity code decoder”. We
note that a similar construction could have been obtained in the Reed-Muller setting too. We
discuss this multivariate generalization in more detail in Section 8.

3. Multiplicity codes andmain result

In this section, we give a formal statement of our main result. We start by building up the requi-
site notation and preliminaries including the notion of multiplicity codes and their properties
which provide the key underlying motivation for the results in this paper.

3.1 Notation

We use boldface letters like x, y, z for 𝑚-tuples of variables.
F denotes the underlying field.
For a positive integer ℓ, [ℓ] = {0, . . . , ℓ − 1} (note ℓ ∉ [ℓ]).
For ℓ ∈ N, F≤ℓ [x] (and F<ℓ [x]) denotes the set of polynomials in x, with coefficients in F
of degree at most (strictly less than) ℓ.
For e ∈ Z𝑚≥0, xe denotes the monomial

∏
𝑗∈[𝑚] 𝑥

𝑒 𝑗
𝑗 and |e|1 :=

∑
𝑒𝑖 .

16 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

3.2 Multiplicity code

We now state the definition of multiplicity codes.

DEF IN IT ION 3.1 (Multiplicity code). Let 𝑠, 𝑚 ∈ N, 𝑑 ∈ Z≥0, F be a field and 𝑇 ⊆ F be a
non-empty finite subset of F. The 𝑚-variate order-𝑠 multiplicity code for degree-𝑑 polynomials
over F on the grid 𝑇𝑚 is defined as follows.

Let 𝐸 := {e ∈ Z𝑚≥0 | 0 ≤ |e|1 < 𝑠}. Note that |𝐸 | = (𝑠+𝑚−1
𝑚

)
, which is the number of distinct

monomials in F<𝑠 [z]. Hence, we can identify F𝐸 with F<𝑠 [z].
The code is defined over the alphabet F𝐸 and has block length |𝑇 |𝑚 with the coordinates

being indexed by elements of the grid 𝑇𝑚. The code is an F-linear map from the space of
polynomials F≤𝑑 [x] to (F<𝑠 [z]) |𝑇 |

𝑚
, where for any a ∈ 𝑇𝑚, the a𝑡ℎ coordinate of the codeword

denoted by Enc(𝑠)𝑇𝑚 (𝑃) |a is given by

Enc(𝑠)𝑇𝑚 (𝑃) |a := 𝑃(a + z) mod ⟨z⟩𝑠.

Thus, a codeword of this code can be naturally viewed as a function from 𝑇𝑚 to F<𝑠 [z].

REMARK 3.2. For the ease of notation, we sometimes drop one or both of 𝑠 and 𝑇𝑚 from
Enc(𝑠)𝑇𝑚 (𝑃) when they are clear from the context. Also, we will use 𝑛 to refer to the size of 𝑇 , i.e.,
𝑛 = |𝑇 |.

Univariate multiplicity codes were first studied by Rosenbloom & Tsfasman [22] and
Nielsen [19]. Multiplicity codes for general 𝑚 and 𝑠 were introduced by Kopparty, Saraf and
Yekhanin [15] where they constructed locally decodable codes with high rate and small query
complexity. In the context of local decoding, these codes are typically studied with the set 𝑇
being the entire field F (or a subfield of F). However, in this work, we encourage the reader to
think of 𝑇 being an arbitrary subset of F.

REMARK 3.3. We note that for every a ∈ F𝑚, (𝑃(a + z) mod ⟨z⟩𝑠) is a polynomial in F[z] of
degree at most 𝑠 − 1, and therefore can be viewed as a function from the set 𝐸 to F given by
its coefficient vector. Thus, the alphabet of the code is indeed F𝐸. Moreover, the coefficients
of (𝑃(a + z) mod ⟨z⟩𝑠) are precisely the evaluation of the Hasse derivatives of order at most
(𝑠 − 1) of 𝑃 at the input a. Recall that for a polynomial 𝑃 ∈ F[x], the e𝑡ℎ Hasse derivative of 𝑃,
denoted by 𝜕𝑃

𝜕xe is the coefficient of ze in 𝑃(x+z). Typically, multiplicity codes are defined directly
via Hasse derivatives, however, in this paper, it is notationally more convenient to work with
Definition 3.1. Observe that with this notation, it is natural to think of a received word (an input
to the decoding algorithm for multiplicity codes) as being given as a function 𝑓 : 𝑇𝑚 → F<𝑠 [z].

The distance of multiplicity codes is guaranteed by a higher order generalization of the
Schwartz-Zippel Lemma, that was proved by Dvir, Kopparty, Saraf and Sudan [6]. We need the
following notation for the statement of the lemma.

17 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

DEF IN IT ION 3.4 (multiplicity at a point). For an 𝑚-variate polynomial 𝑃 ∈ F[x] and a
point a ∈ F𝑚, the multiplicity of 𝑃 at a, denoted by mult(𝑃, a) is the largest integer ℓ such that
𝑃(a + z) = 0 mod ⟨z⟩ℓ , or equivalently, the Hasse derivative 𝜕𝑃

𝜕xe (a) is zero for all monomials
xe of degree at most ℓ − 1.

We now state the multiplicity Schwartz-Zippel lemma.

LEMMA 3.5 (multiplicity Schwartz-Zippel lemma [6, Lemma 8]). Let 𝑃 ∈ F[x] be a nonzero
𝑚-variate polynomial of total degree at most 𝑑 and let 𝑇 ⊆ F. Then,∑︁

a∈𝑇𝑚
mult(𝑃, a) ≤ 𝑑 |𝑇 |𝑚−1 .

We note that the lemma immediately implies that the multiplicity codes as defined in
Definition 3.1 have distance at least 𝑛𝑚(1 − 𝑑

𝑛𝑠).

3.3 A fine-grained notion of distance for multiplicity codewords

The multiplicity Schwartz-Zippel lemma states that for two distinct polynomials 𝑃 and 𝑄 of total
degree 𝑑, ∑︁

a∈𝑇𝑚
(𝑠 −mult(𝑃 − 𝑄, a)) > 𝑛𝑚

(
𝑠 − 𝑑

𝑛

)
.

Thus,
∑

a∈𝑇𝑚 (𝑠 −mult(𝑃 − 𝑄, a)) is a candidate measure of distance between the encodings
of 𝑃 and 𝑄. However, it may be the case that mult(𝑃 − 𝑄, a) exceeds 𝑠, making the quantity
negative. To get around this, we “cap” mult(𝑃 − 𝑄, a) at 𝑠. That is, for each a ∈ 𝑇𝑚, we take
𝑠 −min{mult(𝑃 − 𝑄, a), 𝑠}.

We certainly have∑︁
a∈𝑇𝑚
(𝑠 −min {mult(𝑃 − 𝑄, a), 𝑠}) ≥

∑︁
a∈𝑇𝑚
(𝑠 −mult(𝑃 − 𝑄, a)) > 𝑛𝑚

(
𝑠 − 𝑑

𝑛

)
We then naturally extend this measure of distance to a notion of distance between functions

𝑓 , 𝑔 : 𝑇𝑚 → F<𝑠 [z] that might not necessarily be valid codewords of a multiplicity code.

DEF IN IT ION 3.6. Let 𝑇 ⊆ F be any set. For functions 𝑓 , 𝑔 : 𝑇𝑚 → F<𝑠 [z], we define Δ(𝑠)mult(𝑓 , 𝑔)
as

Δ(𝑠)mult(𝑓 , 𝑔) :=
∑︁
a∈𝑇𝑚
(𝑠 − 𝑑 (𝑠)min(𝑓 (a) − 𝑔 (a))) ,

where for a polynomial 𝑅, 𝑑 (𝑠)min(𝑅) is defined to be the minimum of 𝑠 and the degree of the
minimum degree monomial with a non-zero coefficient in 𝑅. Note that if 𝑅 is identically zero,
then 𝑑 (𝑠) (𝑅) is set to 𝑠.

18 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

As indicated above, the quantity 𝑑 (𝑠)min is related to the notion of multiplicity in the following
sense:

𝑑 (𝑠)min(Enc(𝑠)𝑇𝑚 (𝑃) (a) − Enc(𝑠)𝑇𝑚 (𝑄) (a)) = min{mult(𝑃 − 𝑄, a), 𝑠} .

For brevity, we abuse notation slightly and sometimes drop one or more of the parameters
𝑟, 𝑠, 𝑇𝑚 from Δ(𝑠)mult(Enc(𝑟)𝑇𝑚 (𝑃), Enc(𝑟)𝑇𝑚 (𝑄)) when they are clear from the context. Note that the
parameter 𝑟 in the encoding and 𝑠 in the Δmult in Δ(𝑠)mult(Enc(𝑟)𝑇𝑚 (𝑃), Enc(𝑟)𝑇𝑚 (𝑄)) might be different
from each other.

REMARK 3.7. In Definition 3.6, 𝑠 does not depend on a and is constant throughout. However,
in the course of our analysis we will also encounter a scenario (see Algorithm 1) where 𝑚 = 1
and the multiplicity parameter is not constant and is given by a function s : 𝑇 → Z≥0. The
Definition 3.6 naturally extends to this case as follows.

Δ(s)mult,𝑇 (𝑓 , 𝑔) =
∑︁
a∈𝑇
(s(a) − 𝑑 (𝑠)min(𝑓 (a) − 𝑔 (a))) .

The following observation relates Δ(𝑠)mult with the standard definition of Hamming distance
for multiplicity codes of order 𝑠.

OBSERVAT ION 3.8. For any two polynomials 𝑃, 𝑄 ∈ F[x] of degree at most 𝑑,

Δ(𝑠)mult(Enc(𝑠)𝑇𝑚 (𝑃), Enc(𝑠)𝑇𝑚 (𝑄)) ≤ 𝑠 · Δ(Enc(𝑠)𝑇𝑚 (𝑃), Enc(𝑠)𝑇𝑚 (𝑄)) .

Intuitively, if Enc(𝑠)𝑇𝑚 (𝑃) differs from Enc(𝑠)𝑇𝑚 (𝑄) at a point a ∈ 𝑇𝑚, then the standard Hamming
distance Δ(Enc(𝑠)𝑇𝑚 (𝑃), Enc(𝑠)𝑇𝑚 (𝑄)) counts this point with weight one, whereas the new notion of
distance Δ(𝑠)mult(Enc(𝑠)𝑇𝑚 (𝑃), Enc(𝑠)𝑇𝑚 (𝑄)) also takes into account the lowest degree monomial in ze

such that the coefficients of ze in Enc(𝑠)𝑇𝑚 (𝑃) and Enc(𝑠)𝑇𝑚 (𝑄) are not equal to each other. This
fine-grained structure will be crucially used in the analysis of our algorithm.

3.4 Main Result

With these definitions in place, our main technical result can be stated as follows.

THEOREM 3.9. Let 𝑠, 𝑑, 𝑚 ∈ N and 𝑇 ⊆ F be such that 𝑑 < 𝑠|𝑇 |. Then, there is a deterministic
algorithm (Algorithm 4) that runs in time (𝑠𝑛)3𝑚+𝑠+𝑂(1) · (𝑚+𝑠−1

𝑠

)
and on input 𝑓 : 𝑇𝑚 → F<𝑠 [z]

outputs the unique polynomial 𝑃 ∈ F≤𝑑 [x] (if such a polynomial exists) such that

Δ(𝑠)mult(𝑓 , Enc(𝑠)𝑇𝑚 (𝑃)) <
𝑛𝑚

2

(
𝑠 − 𝑑

𝑛

)
,

where 𝑛 = |𝑇 |.

Since this is stated in terms of the fine-grained distance, this is actually a strengthening of
the main result as stated in the introduction.

19 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

4. Decoding univariatemultiplicity codeswith varyingmultiplici-
ties

In this section, we discuss an algorithm for decoding univariate multiplicity codes up to half
their minimum distance based on the standard Welch-Berlekamp decoder4 for Reed-Solomon
codes. While such decoders for univariate multiplicity codes are well known, the decoder
discussed here handles a slightly more general scenario than off-the-shelf decoders of this kind,
namely that the multiplicity parameter at each evaluation point is not necessarily the same.
This slight generalization is necessary for our applications in this paper.

4.1 Description of the generalized univariate multiplicity decoder

We start with a description of the algorithm.

Input: 𝑇 ⊆ F ⊲ set of evaluation points

𝑒 ⊲ degree of the univariate polynomial

s : 𝑇 → Z≥0 ⊲ number of multiplicities

ℎ : 𝑇 → F[𝑧] such that for all 𝑎 ∈ 𝑇, ℎ𝑎 =
∑

𝑖∈[s(𝑎)] ℎ
(𝑖)
𝑎 𝑧𝑖 ⊲ received word

Output: 𝑅 ∈ F≤𝑒[𝑥] such that Δ(s)mult(ℎ, Enc(s) (𝑅)) < 1
2 (

∑
𝑎 s(𝑎) − 𝑒), if such an 𝑅

exists and ⊥ otherwise
1: Set 𝑁← ∑

𝑎∈𝑇 s(𝑎) ;
2: Set 𝐷← ⌊ 1

2 (𝑁 + 𝑒)⌋ + 1 ;
3: Find a non-zero polynomial 𝑄(𝑥, 𝑦) = 𝐵0(𝑥) + 𝑦 · 𝐵1(𝑥) such that

• deg(𝐵0) < 𝐷,
• deg(𝐵1) < 𝐷 − 𝑒, and
• ∀𝑎 ∈ 𝑇, 𝑄(𝑎 + 𝑧, ℎ𝑎) ≡ 0 mod 𝑧s(𝑎) ;

4: if the following three conditions are satisfied
• −𝐵0/𝐵1 is a polynomial,
• −𝐵0/𝐵1 has degree ≤ 𝑒, and
• Δ(s)mult(ℎ, Enc(s) (−𝐵0/𝐵1)) < 1

2 (
∑

𝑎 s(𝑎) − 𝑒)
5: then return −𝐵0/𝐵1 else return ⊥.
Algorithm 1. Generalized Univariate Multiplicity Decoder

4 By the Welch-Berlekamp decoder we refer to the description of the Welch-Berlekamp algorithm [25] provided by
Gemmell and Sudan [9].

20 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

We remark while the overall structure of the algorithm is essentially that of the Welch-
Berlekamp based algorithms, the main point of difference is that the number of linear constraints
imposed in the interpolation step (Line 3) at any 𝑎 ∈ 𝑇 is s(𝑎), and might be different for different
𝑎 ∈ 𝑇 .

4.2 Correctness and running time of Algorithm 1

We first show that the interpolation step (Line 3) is possible, that is, a non-zero polynomial
𝑄(𝑥, 𝑦) satisfying the constraints exists. Then, we argue that if there is a polynomial 𝑅 of degree
at most 𝑒 such that Δ(s)mult(ℎ, Enc(s) (𝑅)) < 1

2 (
∑
𝑎 s(𝑎) −𝑒), then 𝑅 is indeed output by the algorithm.

Moreover, from the check in step 4, it is clear that the algorithm never outputs a polynomial
that is far from the received word. Thus, together, these claims imply the correctness of the
algorithm.

We also note that the algorithm is efficient and runs in polynomial time in its input size,
since all it needs is to solve a linear system of not-too-large size and a call to an off-the-shelf
polynomial division algorithm, both of which can be done efficiently. We now proceed with the
proof of correctness.

CLAIM 4.1. For 𝐷 = ⌊ 1
2 (𝑁 +𝑒)⌋ +1, there exists a non-zero polynomial𝑄(𝑥, 𝑦) = 𝐵0(𝑥) + 𝑦 ·𝐵1(𝑥)

with deg(𝐵0) < 𝐷, deg(𝐵1) < 𝐷 − 𝑒 and ∀𝑎 ∈ 𝑇 , 𝑄(𝑎 + 𝑧, ℎ𝑎) ≡ 0 mod 𝑧s(𝑎) , where 𝑁 =
∑
𝑎 s(𝑎).

Moreover, for any such non-zero solution, 𝐵1(𝑥) is non-zero.

PROOF . As is standard with decoding algorithms for various algebraic codes that are based
on the polynomial method, we think of the constraints as a system of homogeneous linear
equations in the coefficients of the unknown polynomials 𝐵0 and 𝐵1.

The number of variables in the linear system equals the number of coefficients we need to
find across 𝐵0 and 𝐵1, which is 𝐷 + (𝐷 − 𝑒) = 2𝐷 − 𝑒. For every 𝑎 ∈ 𝑇 , the constraint

𝑄(𝑎 + 𝑧, ℎ𝑎) ≡ 0 mod 𝑧s(𝑎)

is really s(𝑎) many homogeneous linear constraints on the coefficients of 𝑄, with there being
one constraint corresponding to the coefficient of 𝑧𝑖 in 𝑄(𝑎 + 𝑧, ℎ𝑎) being 0 for every 𝑖 ∈ [s(𝑎)].
Thus, the total number of homogeneous linear constraints is

∑
𝑎∈𝑇 s(𝑎) = 𝑁 . Hence, setting

2𝐷 − 𝑒 > 𝑁 , e.g., 𝐷 > 1
2 (𝑁 + 𝑒) ensures the existence of a non-zero solution.

For the moreover part, observe that if 𝐵1 is identically zero, then the system of homogeneous
linear constraints imposed on 𝑄 imply that 𝐵0 vanishes with multiplicity at least s(𝑎) for every
𝑎 ∈ 𝑇 . Thus,

∑
𝑎∈𝑇 mult(𝐵0, 𝑎) =

∑
𝑎∈𝑇 s(𝑎) = 𝑁 > 𝐷 ≥ deg(𝐵0). But this implies that 𝐵0 must be

identically zero, and hence 𝑄 must be identically zero, which contradicts the non-zeroness of
the solution. ■

We now observe that any non-zero solution of the linear system, as is guaranteed by
claim 4.1 becomes identically zero when 𝑦 is substituted by the correct message polynomial 𝑅.

21 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

CLAIM 4.2. If 𝑅 ∈ F≤𝑒 [𝑥] is such that Δ(s)mult(ℎ, Enc(s) (𝑅)) < 1
2 (𝑁 − 𝑒) and 𝑄 is a non-zero

polynomial satisfying the set of constraints in the algorithm, then 𝑄(𝑥, 𝑅) ≡ 0.

PROOF . The linear constraints imposed in the interpolation step imply that for every 𝑎 ∈ 𝑇 ,

𝑄(𝑎 + 𝑧, ℎ𝑎) ≡ 0 mod 𝑧s(𝑎) .

Now, if (ℎ𝑎 − Enc(s) (𝑅) (𝑎)) = 0 mod 𝑧𝑢𝑎 , i.e. Enc(s) (𝑅) and ℎ agree with multiplicity at least 𝑢𝑎
at 𝑎 ∈ 𝑇 , then

𝑄(𝑎 + 𝑧, 𝑅(𝑎 + 𝑧)) ≡ 0 mod 𝑧min{𝑢𝑎,s(𝑎)} .

Now, from the definition of Δmult and from the hypothesis of the claim, we know that

Δ(s)mult(ℎ, Enc(s) (𝑅)) =
∑︁
𝑎∈𝑇
(s(𝑎) −min{𝑢𝑎, s(𝑎))} < 1

2
(𝑁 − 𝑒) .

If 𝑄(𝑥, 𝑅(𝑥)) is a non-zero polynomial, then it is a non-zero polynomial of degree strictly
less than 𝐷, by construction of 𝑄. We will now show the sum of multiplicities of zeroes at all
points is at least 𝐷 which implies 𝑄(𝑥, 𝑅(𝑥)) is identically zero.

∑︁
𝑎∈𝑇

mult(𝑄(𝑥, 𝑅(𝑥)), 𝑎) ≥
∑︁
𝑎∈𝑇

min{𝑢𝑎, s(𝑎)}

>
∑︁
𝑎∈𝑇

𝑠(𝑎) − 1
2
(𝑁 − 𝑒)

= 𝑁 − 1
2
(𝑁 − 𝑒)

=
1
2
(𝑁 + 𝑒)

Note that
∑
𝑎∈𝑇 mult(𝑄(𝑥, 𝑅(𝑥)), 𝑎) is an integer. Then we must have∑︁

𝑎∈𝑇
mult(𝑄(𝑥, 𝑅(𝑥)), 𝑎) > ⌊1

2
(𝑁 + 𝑒)⌋ + 1 = 𝐷 ■

We are now ready to complete the proof of correctness of the algorithm.

THEOREM 4.3. If 𝑅 ∈ F≤𝑒 [𝑥] is such that Δ(s)mult(ℎ, Enc(s) (𝑅)) < 1
2 (𝑁 − 𝑒), then 𝑅 is correctly

output by the algorithm and if there is no such close enough 𝑅, then the algorithm outputs ⊥.
Moreover, the algorithm runs in time 𝑁𝑂(1) .

PROOF . From claim 4.1, we know that the linear system solver in the algorithm (Line 3) always
finds a non-zero polynomial 𝐵0(𝑥) + 𝑦𝐵1(𝑥) satisfying the linear constraints imposed in the
algorithm, regardless of the existence of a codeword that is close enough to the received word.
Moreover, in any such non-zero solution, 𝐵1 is a non-zero polynomial.

22 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

We also know from claim 4.2 that any 𝑅 ∈ F≤𝑒 [𝑥] such that Δ(s)mult(ℎ, Enc(s) (𝑅)) < 1/2(𝑁 −𝑒)
satisfies

𝐵0(𝑥) + 𝐵1(𝑥) · 𝑅(𝑥) = 0 ,

or, in other words 𝑅 = −𝐵0/𝐵1, and is correctly output by the algorithm. Since the algorithm
performs a sanity check in the last line to make sure that −𝐵0/𝐵1 is indeed a low-degree
polynomial such that the corresponding codeword is close to ℎ and outputs the computed
solution only if this check is passed; else it outputs ⊥. Thus, it never outputs an incorrect
solution.

Algorithm 1 really only needs to set up and solve a linear system of size 𝑂(𝑁) and perform
some basic univariate polynomial arithmetic involving polynomials of degree at most 𝐷 < 𝑁 .
Thus, it runs in time 𝑁𝑂(1) . ■

5. Forney’s generalizedminimum distance decoding

In this section, we give an alternative analysis of Forney’s algorithm for decoding a concatenated
code from half its minimum distance, assuming that there is an efficient algorithm for decoding
the outer code from errors (scaled by a factor of 2) and erasures up to its minimum distance,
and that the inner code has an efficient maximum likelihood decoder. An example of such a
setting is when the outer code is the Reed-Solomon code and the inner code has block length
logarithmic in the total block length, and is over an alphabet of constant size. In this case,
the outer code can be efficiently decoded from errors and erasures using, for instance, the
Welch-Berlekamp algorithm, as long as

2(#Errors) + (#Erasures) < (Minimum distance) .

For the inner code, one can just do a brute-force iteration over all codewords, and find the
closest one. We recommend the reader to think of this example going forward even though the
discussion here applies to a general concatenated code.

5.1 Concatenated codes

We start with a definition of concatenated codes.

DEF IN IT ION 5.1 (concatenated code). Let 𝑞 ≥ 2, 𝑘 ≥ 1 be natural numbers and let 𝑄 = 𝑞𝑘.
Let 𝐶𝑜𝑢𝑡 : [𝑄]𝐾 → [𝑄]𝑁 be a code of minimum distance 𝐷 and let 𝐶𝑖𝑛 : [𝑞]𝑘 → [𝑞]𝑛 be a code of
minimum distance 𝑑. The concatenated code 𝐶 = 𝐶𝑜𝑢𝑡 ◦ 𝐶𝑖𝑛 : [𝑄]𝐾 → [𝑞]𝑁𝑛 is defined as follows:
Given a message 𝑚 ∈ [𝑄]𝐾 , we first apply 𝐶𝑜𝑢𝑡 to 𝑚 to get a codeword 𝑚′ ∈ [𝑄]𝑁 . Since 𝑄 = 𝑞𝑘,
we identify each symbol of 𝑚′ with a vector of length 𝑘 over [𝑞], or equivalently, an element

23 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

in the message space of 𝐶𝑖𝑛. We now encode each coordinate of 𝑚′ using 𝐶𝑖𝑛 to get a vector in
[𝑞]𝑁𝑛. See Figure 3.

𝑚1 . . . 𝑚𝐾

𝑚′1 . . . 𝑚′𝑁

𝑐1 𝑐𝑁

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

Figure 3. Encoding of a concatenated code

As defined above, the concatenated code 𝐶 has minimum distance at least 𝐷𝑑. Forney
designed an algorithm [7, 8] to uniquely decode 𝐶 when the number of erroneous coordinates
is less than 𝐷𝑑/2. Next, we briefly describe Forney’s algorithm before discussing a slightly
different analysis for it.

Let 𝑓 be the received word (obtained by making less than 𝐷𝑑/2 errors), and let 𝑐 be the
(unique) codeword of the concatenated code 𝐶 such that Δ(𝑓 , 𝑐) < 𝐷𝑑/2 where Δ refers to the
usual Hamming distance.

𝑓1 𝑓𝑁

𝑐′1 𝑐′𝑁

Inner decoding

Figure 4. Inner decoding of a concatenated code

Notice that the received word 𝑓 consists of 𝑁 blocks of length 𝑛 each over [𝑞], which
we denote by 𝑓1, . . . , 𝑓𝑁 . Similarly, let 𝑐1, 𝑐2, . . . , 𝑐𝑁 be the corresponding blocks in the nearest
codeword 𝑐. The decoding algorithm starts by taking each of the blocks 𝑓𝑖 and using the
maximum likelihood decoder for 𝐶𝑖𝑛 to find the codeword 𝑐′𝑖 of 𝐶𝑖𝑛 that is closest to 𝑓𝑖 . This
process is shown in Figure 4. For some of the coordinates 𝑖 ∈ [𝑁], 𝑐′𝑖 equals 𝑐𝑖 and for others
𝑐′𝑖 ≠ 𝑐𝑖 . For each 𝑖 ∈ [𝑁], let 𝑚′𝑖 be such that 𝐶𝑖𝑛(𝑚′𝑖) = 𝑐′𝑖 . The natural next step would be to
use a decoder for the outer code 𝐶𝑜𝑢𝑡 with the input 𝑚′ = (𝑚′1, 𝑚′2, . . . , 𝑚′𝑁) and hope to show

24 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

that the output equals 𝑐 as is intended. When the number of errors in 𝑓 (i.e. Δ(𝑓 , 𝑐)) is less
than 𝐷𝑑/4 then this algorithm can indeed be shown to work and output the correct message 𝑚
corresponding to the codeword 𝑐.

In [7, 8], Forney built upon this simple and natural decoder to design an efficient algorithm
with error tolerance improved from 𝐷𝑑/4 to 𝐷𝑑/2. The key idea was to assign a weight

𝑤(𝑖) B min
{Δ(𝑓𝑖 , 𝑐′𝑖)

𝑑/2 , 1
}

to each block 𝑖; the intuition being that the weight 𝑤(𝑖) is an indicator of the number of errors
in the block 𝑖. Thus, the higher the weight for a coordinate 𝑖, the lower is the confidence in 𝑐′𝑖
being 𝑐𝑖 .

Forney showed that if Δ(𝑓 , 𝑐) < 𝐷𝑑/2, then there is a threshold 𝜃 ∈ Z≥0 such that the
vector 𝑚′′ = (𝑚′′1 , 𝑚′′2 , . . . , 𝑚′′𝑁) ∈ ([𝑄] ∪ {⊥})𝑁 where 𝑚′′𝑖 equals 𝑚′𝑖 if𝑤(𝑖) ≤ 𝜃 and is an erasure
(⊥) otherwise has the property that when compared to the correct codeword 𝑐, the sum of the
number of erased blocks and twice the number or erroneous blocks is less than 𝐷. Thus, given
an error-erasure decoder for 𝐶𝑜𝑢𝑡 from half the minimum distance, we can recover the correct
message 𝑚.5

The key technical task in the correctness of above algorithm is to prove the existence of
such a threshold 𝜃 given that Δ(𝑓 , 𝑐) < 𝐷𝑑/2. Forney proves this using a convexity argument
which shows that if all the thresholds in {𝑤(𝑖) : 𝑖 ∈ [𝑁]} fail, then the number of errors in 𝑓

must be at least 𝐷𝑑/2. This convexity argument has a randomized interpretation, which in turn
shows that a random threshold succeeds (see the manuscript by Guruswami, Rudra and Sudan
[10, Section 12.3] for this randomized interpretation).

In the next section we give an alternative proof of existence of a good threshold, thereby
proving the correctness of Forney’s algorithm. This alternative proof serves as the inspiration
for our proof of Theorem 3.9, and as far as we understand appears to be different from the
above-mentioned proofs.

5.2 An alternative analysis of Forney’s GMD decoding

We now give an alternative proof of the existence of a good threshold.

THEOREM 5.2 (Forney). Let 𝑓 , 𝑐, 𝑐′, 𝑤, 𝐷, 𝑑 be as defined above. If Δ(𝑓 , 𝑐) < 𝐷𝑑/2, then there
exists a 𝜃 ∈ [0, 1] such that

2
��{𝑖 ∈ [𝑁] : 𝑤(𝑖) ≤ 𝜃, 𝑐′𝑖 ≠ 𝑐𝑖

}�� + |{𝑖 ∈ [𝑁] : 𝑤(𝑖) > 𝜃}| < 𝐷 .

5 We remark that just showing the existence of a good threshold 𝜃 is sufficient, since without loss of generality, 𝜃 can
be taken to be equal to one of the weights in the set {𝑤(𝑖) : 𝑖 ∈ [𝑁]}. Thus we can efficiently try all these 𝑁 values and
check if the resulting message gives a codeword close enough to the received word 𝑓 .

25 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

We recall that the condition in the conclusion of the theorem is sufficient for the outer
decoding to be done by our assumption on the outer code 𝐶𝑜𝑢𝑡. For instance, if the outer code is
the Reed-Solomon code, then the Welch-Berlekamp decoder can be used for this.

Notice that all weights 𝑤(𝑖) lie between 0 and 1 and, as mentioned earlier, can be thought
of as representing the uncertainty in that block. Let 𝐴 and 𝐵 be defined as follows:

𝐴 :=
{
𝑖 ∈ [𝑁] : 𝑐𝑖 = 𝑐′𝑖

}
, 𝐵 :=

{
𝑖 ∈ [𝑁] : 𝑐𝑖 ≠ 𝑐′𝑖

}
.

That is, 𝐴 is the set of blocks where the inner decoding is correct, and 𝐵 is those where the
decoding is incorrect. Further, for a threshold 𝜃, we define 𝐴𝜃 = 𝐴 ∩ {𝑖 ∈ [𝑁] : 𝑤(𝑖) ≤ 𝜃}. 𝐵𝜃 is
defined similarly. Notice that the number of erased blocks for a given 𝜃 is 𝑁 − |𝐴𝜃 | − |𝐵𝜃 |.

We say that a threshold 𝜃 is bad if

2
��{𝑖 ∈ [𝑁] : 𝑤(𝑖) ≤ 𝜃, 𝑐′𝑖 ≠ 𝑐𝑖

}�� + |{𝑖 ∈ [𝑁] : 𝑤(𝑖) > 𝜃}| ≥ 𝐷 .

Or, in the new notation, 2|𝐵𝜃 | + (𝑁 − (|𝐴𝜃 | + |𝐵𝜃 |)) ≥ 𝐷, or equivalently,

|𝐵𝜃 | ≥ |𝐴𝜃 | − (𝑁 − 𝐷) .

We note the above in the following observation.

OBSERVAT ION 5.3. For a fixed 𝜃 ∈ [0, 1], if the threshold 𝜃 is bad, then |𝐵𝜃 | ≥ |𝐴𝜃 | − (𝑁 − 𝐷).

PROOF OF THEOREM 5.2 . Suppose for contradiction that all thresholds 𝜃 ∈ [0, 1] are bad.
By observation 5.3, we have |𝐵𝜃 | ≥ |𝐴𝜃 | − (𝑁 − 𝐷) for every 𝜃 ∈ [0, 1].

First, we observe that the size of 𝐴, i.e., the number of correctly decoded blocks, must be
more than (𝑁 −𝐷). Otherwise, since |𝐴| + |𝐵| = 𝑁 , the number of errors |𝐵| is at least 𝐷. Further,
for every 𝑖 ∈ 𝐵, the 𝑖𝑡ℎ block in 𝑓 must have had at least 𝑑/2 errors for the maximum likelihood
decoder for 𝐶𝑖𝑛 to have output a 𝑐′𝑖 ≠ 𝑐𝑖 . But this means that Δ(𝑓 , 𝑐) is at least 𝐷𝑑/2 which is a
contradiction. Therefore, we can write |𝐴| = 𝑁 − 𝐷 + 𝑢 for some positive integer 𝑢.

Now, write the indices in 𝐴 in increasing order of their weights, i.e., according to 𝑤, to get
a sequence 𝑖1, 𝑖2, . . . , 𝑖𝑁−𝐷+𝑢. We do the same with 𝐵 to get a sequence 𝑗1, 𝑗2, . . . , 𝑗𝐷−𝑢. If many
blocks have the same weight, we place them in some arbitrary order.

We first claim that 𝑢 ≤ 𝐷 − 𝑢 and for each 𝑘 ∈ {1, 2, . . . , 𝑢}, 𝑤(𝑗𝑘) ≤ 𝑤(𝑖𝑁−𝐷+𝑘). In other
words, if the indices 𝑖 ∈ {1, 2, . . . , 𝑁 } are written left to right in increasing order of weights𝑤(𝑖),
then for every 𝑘 ∈ {1, 2, . . . , 𝑢}, the index 𝑗𝑘 is to the left of the index 𝑖𝑁−𝐷+𝑘 as indicated in the
picture below.

To see this, let us assume that there is a 𝑘 ∈ {1, 2, . . . , 𝑢}, such that either𝑤(𝑗𝑘) > 𝑤(𝑖𝑁−𝐷+𝑘)
or 𝑗𝑘 does not exist. Consider a threshold 𝜃 which picks up everything including and to the left
of 𝑖𝑁−𝐷+𝑘. Then, we have |𝐴𝜃 | ≥ 𝑁 − 𝐷 + 𝑘 and |𝐵𝜃 | ≤ 𝑘 − 1. This contradicts our assumption
that |𝐵𝜃 | ≥ |𝐴𝜃 | − (𝑁 − 𝐷) for every 𝜃.

26 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

Indices in 𝐴
𝑖1 𝑖𝑁−𝐷 𝑖𝑁−𝐷+1 𝑖𝑁−𝐷+𝑢

Indices in 𝐵
𝑗1 𝑗𝑢 𝑗𝑢+1 𝑗𝐷−𝑢

Figure 5. Pairing of indices in the concatenated code

Using the above claim, we can “pair” each of the last 𝑢 indices in 𝐴 with the first 𝑢 of
𝐵 (ordered by weight). When we pair 𝑖𝑁−𝐷+𝑘 with 𝑗𝑘, we have 𝑤(𝑗𝑘) ≤ 𝑤(𝑖𝑁−𝐷+𝑘). For the
incorrectly decoded index 𝑗𝑘, the distance of the block 𝑓 𝑗𝑘 from 𝑐 𝑗𝑘 is at least 𝑑

2 (2 − 𝑤(𝑗𝑘)).
This follows from the triangle inequality of the Hamming distance: Δ(𝑓 𝑗𝑘 , 𝑐 𝑗𝑘) + Δ(𝑓 𝑗𝑘 , 𝑐′𝑗𝑘) ≥
Δ(𝑐 𝑗𝑘 , 𝑐′𝑗𝑘) ≥ 𝑑.

For a correct index 𝑖𝑁−𝐷+𝑘, the distance between 𝑓 and 𝑐 on this block is by definition
𝑑
2𝑤(𝑖𝑁−𝐷+𝑘). Thus, the total distance between 𝑓 and 𝑐 on the pair (𝑗𝑘, 𝑖𝑁−𝐷+𝑘) of blocks together
is at least

𝑑

2
(2 − 𝑤(𝑗𝑘)) + 𝑑2𝑤(𝑖𝑁−𝐷+𝑘) ≥ 𝑑,

where the inequality follows from the fact that 𝑤(𝑗𝑘) ≤ 𝑤(𝑖𝑁−𝐷+𝑘). We now have 𝑢 pairs
contributing a distance of at least 𝑑 each. In addition, there are still 𝐷 − 2𝑢 incorrectly decoded
blocks with indices in 𝐵, each contributing at least 𝑑/2 to Δ(𝑓 , 𝑐). Thus, we have

Δ(𝑓 , 𝑐) ≥ 𝑑𝑢 + (𝐷 − 2𝑢)𝑑
2
=
𝐷𝑑

2
,

which is a contradiction. ■

As mentioned earlier, Forney’s original proof [7, 8] uses a convexity argument, while more
recent presentations of this argument reinterprets this as a randomized argument (erasing
the block 𝑖 with probability 𝑤(𝑖) for each 𝑖) to show that there is a good threshold 𝜃 (see [10,
Section 12.3]). For the analysis of our bivariate decoder, we adapt the pairing argument used
in the proof of Theorem 5.2 to analyse the weighted univariate multiplicity code decoder in
Section 6. It is unclear to us if the previous convexity-based proofs of Theorem 5.2 can be
adapted for our application.

6. Weighted univariatemultiplicity code decoder

In this section, we describe an algorithm (Algorithm 2) for decoding weighted univariate
multiplicity codes, i.e. given a received word 𝑔 : 𝑇 → F<𝑟 [𝑧], and a weight function𝑤 : 𝑇×[𝑟] →
Z≥0 (indicating the uncertainty in each coordinate), this algorithm finds a low-degree polynomial
𝑅 such that the encoding of 𝑅 as a univariate multiplicity code of order 𝑟 evaluated on 𝑇 is close
enough to the received word ℎ.

27 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

The notion of close enough here is not defined in terms of either the Hamming distance
or the multiplicity distance, but a weighted notion of distance parameterized by the weight
function 𝑤. This notion of distance, denoted by Γ, was previously introduced in Equation (5). It
serves as a proxy for distance in our analysis, turns out to be crucial in the overall analysis of
Algorithm 2 and will be discussed in detail in Section 6.1.

More precisely, this decoder gets as input a function 𝑔 : 𝑇 → F<𝑟 [𝑧] and a set of weights
𝑤 : 𝑇 × [𝑟] → Z≥0. Recall that we referred to this pair (𝑔, 𝑤) as a “fractional word” in the
algorithm overview. It is also given as input a degree parameter ℓ and multiplicity parameter
𝑟 besides the global degree parameter 𝑑, the global dimension 𝑚 and global multiplicity pa-
rameter 𝑠. We have two sets of degree and multiplicity parameters (the local and global) as
the intermediate algorithms will be running decoders on degree and multiplicity parameters
different from the global ones, but they do need to know the global parameters. The weighted
decoder then returns a polynomial 𝑅 ∈ F≤ℓ [𝑥] such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛2

2

(
𝑠 − 𝑑

𝑛

)
.

Algorithm 2 will be used as a subroutine by the final decoder (i.e., Algorithm 3 in the
bivariate 𝑚 = 2 case or Algorithm 4 in the general multivariate case). Ideally, Algorithm 2
should be oblivious of whether it is being used by the bivariate decoder or the multivariate
decoder. Unfortunately, this is not the case for our Algorithm 2 and we need to feed it as input
several global parameters 𝑚, 𝑠, and 𝑑6. In this section we will work with the global dimension
𝑚 being 2 for the sake of analysis, though the algorithm is stated in terms of general 𝑚. The
general 𝑚 setting will be discussed in Section 8.

6.1 A notion of weighted distance and its properties

We start with the following definition of a distance measure between the received word 𝑔 and
the encoding of a polynomial 𝑅, using the weight𝑤. The case for 𝑠 = 2 was discussed in Section 2
(see Equation (5)).

DEF IN IT ION 6.1. Let 𝑑, ℓ, 𝑠 ∈ N be parameters with 𝑑 ≥ ℓ and let 𝑇 ⊆ F be a subset of
size 𝑛. Let 𝑟 := 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋. Let 𝑅 ∈ F[𝑥] be a univariate polynomial of degree at most ℓ,
𝑔 : 𝑇 → F<𝑟 [𝑧] and 𝑤 : 𝑇 × [𝑟] → Z≥0 be functions such that for every (𝑎, 𝑖) ∈ 𝑇 × [𝑟] we have
𝑤(𝑎, 𝑖) ≤ 𝑛

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
.

Then, Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅) is defined as follows.

Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅) := ©­«
𝑟−1∑︁
𝑖=0

∑︁
𝑎∈𝐴𝑖 (𝑔,𝑅)

max
{(
𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤(𝑎, 𝑖)

)
,max
𝑗<𝑖

𝑤(𝑎, 𝑗)
}ª®¬

+
∑︁

𝑎∈𝐴𝑟 (𝑔,𝑅)
max
𝑗<𝑟

𝑤(𝑎, 𝑗)

6 We believe this dependence on global parameters should be removed, but do not know how to do so.

28 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

where for every 𝑖 ∈ [𝑟 + 1]

𝐴𝑖 (𝑔, 𝑅) =
{
𝑎 ∈ 𝑇 : max

{
𝑗 ∈ [𝑟 + 1] : 𝑔 (𝑎) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩ 𝑗} = 𝑖

}
.

Observe that for 𝑖 ∈ [𝑟 + 1], the set 𝐴𝑖 collects those locations in 𝑇 where 𝑔 and 𝑅 agree up
to derivatives of order exactly 𝑖 − 1 and no further. For 𝑖 = 0, 𝐴0 is the set of locations where
they disagree at the 0𝑡ℎ derivative itself, i.e. the evaluation level, and the max 𝑗<𝑖 𝑤(𝑎, 𝑗) term
can be thought of as −∞.

Now, we prove some properties of Γ𝑠,𝑑,ℓ𝑤 . These properties will turn out to be useful in
proving the correctness of Algorithm 2.

Below we prove a triangle-like inequality for Γ which we will use to show uniqueness of
the output of Algorithm 2. This is the point alluded to in Equation (7).

LEMMA 6.2 (Triangle-like inequality for Γ). Let 𝑑, ℓ, 𝑟, 𝑠 ∈ N be parameters with ℓ ≤ 𝑑 < 𝑛,
𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋, and let 𝑇 ⊆ F be a subset of size 𝑛. Let 𝑄, 𝑅 ∈ F[𝑥] be univariate polynomials of
degree at most ℓ, and 𝑔 : 𝑇 → F<𝑟 [𝑧] and 𝑤 : 𝑇 × [𝑟] → Z≥0 be functions such that for every
(𝑎, 𝑖) ∈ 𝑇 × [𝑟], 𝑤(𝑎, 𝑖) ≤ 𝑛

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
.

If 𝑄 ≠ 𝑅, then

Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑄) + Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅) ≥ 𝑛2
(
𝑠 − 𝑑

𝑛

)
.

PROOF . For 𝑖 ∈ [𝑟 + 1], let 𝐴𝑖 (𝑄, 𝑅) be the set of points 𝑎 ∈ 𝑇 such that

𝐴𝑖 (𝑄, 𝑅) =
{
𝑎 ∈ 𝑇 : max

{
𝑗 ∈ [𝑟 + 1] : 𝑄(𝑎 + 𝑧) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩ 𝑗} = 𝑖

}
.

Further, for each 𝑖 ∈ [𝑟 + 1], let 𝜏𝑖 = |𝐴𝑖 (𝑄, 𝑅) |. Since the sets 𝐴𝑖 (𝑄, 𝑅) for each 𝑖 are all
disjoint, we have

∑𝑟
𝑖=0 𝜏𝑖 = |𝑇 | = 𝑛.

In addition, since𝑄 and𝑅 are distinct polynomials of degree at most ℓ, using the multiplicity
SZ lemma we have:

Δ(𝑟)mult(Enc(𝑟)𝑇 (𝑄), Enc(𝑟)𝑇 (𝑅)) ≥ 𝑟𝑛 − ℓ.

Using the definition of Δ(𝑟)mult, this can be re-written as

𝑟−1∑︁
𝑖=0

𝜏𝑖 · (𝑟 − 𝑖) ≥ 𝑟𝑛 − ℓ .

That is,

𝑟
𝑟∑︁
𝑖=0

𝜏𝑖 −
𝑟∑︁
𝑖=0

𝑖 · 𝜏𝑖 ≥ 𝑟𝑛 − ℓ .

Rearranging and using
∑𝑟
𝑖=0 𝜏𝑖 = 𝑛, we obtain

𝑟∑︁
𝑖=0

𝑖 · 𝜏𝑖 ≤ ℓ .

29 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Now, consider an 𝑎 ∈ 𝐴𝑖 (𝑄, 𝑅) for some 𝑖 ∈ [𝑟]. (The case of 𝑎 ∈ 𝐴𝑟 (𝑄, 𝑅) will be explained
shortly.) Hence, 𝑄(𝑎 + 𝑧) ≠ 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩𝑖+1. Therefore, both 𝑔 (𝑎) = 𝑄(𝑎 + 𝑧) mod ⟨𝑧⟩𝑖+1

and 𝑔 (𝑎) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩𝑖+1 can’t simultaneously hold. In other words, there is a 𝑗 ≤ 𝑖 such
that 𝑎 ∈ 𝐴 𝑗 (𝑔, 𝑅) or 𝑎 ∈ 𝐴 𝑗 (𝑔, 𝑄).

Without loss of generality, we assume 𝑎 ∈ 𝐴 𝑗 (𝑔, 𝑄) with 𝑗 ≤ 𝑖. In addition, 𝑎 ∈ 𝐴𝑘 (𝑔, 𝑅) for
some 𝑘. Again we can assume 𝑗 ≤ 𝑘 (otherwise, swap the roles of 𝑄 and 𝑅).

As 𝑎 ∈ 𝐴 𝑗 (𝑔, 𝑄), we claim that the contribution of the term corresponding to 𝑎 to Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑄),
which we denote by Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑄)𝑎 is at least ((𝑠 − 𝑗)𝑛 − (𝑑 − ℓ) − 𝑤(𝑎, 𝑗)), because that is one of
the terms in the maximum, in the definition of Γ𝑠,𝑑,ℓ𝑤 .

As for Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅)𝑎, since 𝑎 is in 𝐴𝑘 (𝑔, 𝑄) with 𝑘 ≥ 𝑗, two cases can happen. If 𝑗 ≠ 𝑘, then
the contribution of 𝑎 is at least 𝑤(𝑎, 𝑗), since that is one of the terms in the maximum. Else, if
𝑘 = 𝑗, then the contribution is at least (𝑠 − 𝑗)𝑛 − (𝑑 − ℓ) − 𝑤(𝑎, 𝑗), which, by the condition on
𝑤(𝑎, 𝑗) in Definition 6.1 is at least 𝑤(𝑎, 𝑗).

Then, the sum of the distances at 𝑎 is at least

Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑄)𝑎 + Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅)𝑎 ≥ (𝑠 − 𝑗)𝑛 − (𝑑 − ℓ) − 𝑤(𝑎, 𝑗) + 𝑤(𝑎, 𝑗)
= (𝑠 − 𝑗)𝑛 − (𝑑 − ℓ)
≥ (𝑠 − 𝑖)𝑛 − (𝑑 − ℓ) .

since 𝑗 ≤ 𝑖.
If 𝑎 ∈ 𝐴𝑟 (𝑄, 𝑅), we cannot get an expression of this form, since its contribution to Γ will be

max 𝑗<𝑟 𝑤(𝑎, 𝑗). Since the contribution from this set is nonnegative, and we are trying to get a
lower bound, it is sufficient to consider the contributions from 𝐴𝑖 (𝑄, 𝑅)’s for 𝑖 < 𝑟.

By the above arguments we arrive at the following.

Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑄) + Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅) ≥
𝑟−1∑︁
𝑖=0

𝜏𝑖 ((𝑠 − 𝑖)𝑛 − (𝑑 − ℓ))

=
𝑟−1∑︁
𝑖=0

𝜏𝑖 (𝑠𝑛 − (𝑑 − ℓ)) − 𝑛
𝑟−1∑︁
𝑖=0

𝑖𝜏𝑖

≥ (𝑠𝑛 − (𝑑 − ℓ)) (𝑛 − 𝜏𝑟) − 𝑛(ℓ − 𝑟𝜏𝑟)
= 𝑛(𝑠𝑛 − 𝑑) + 𝜏𝑟 (𝑟𝑛 + (𝑑 − ℓ) − 𝑠𝑛)
≥ 𝑛2(𝑠 − 𝑑/𝑛) .

using the relations
∑𝑟
𝑖=0 𝜏𝑖 = 𝑛 and

∑𝑟
𝑖=0 𝑖𝜏𝑖 ≤ ℓ, and the definition of 𝑟: since 𝑟 ≥ 𝑠 − 𝑑−ℓ

𝑛 , the
coefficient of 𝜏𝑟 in the penultimate expression is non-negative. ■

6.2 Weighted Univariate Multiplicity Code Decoder

For the Weighted Univariate Multiplicity Code Decoder we are given a word 𝑔 : 𝑇 → F<𝑟 [𝑧]
and a weight function 𝑤 : 𝑇 × [𝑟] → Z≥0 along with parameters 𝑑, ℓ and 𝑠 with ℓ ≤ 𝑑 and

30 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋. Further, for every (𝑎, 𝑖) ∈ 𝑇 × [𝑟]: 𝑤(𝑎, 𝑖) ≤ 𝑛
2 ·

(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
. The algorithm

returns a polynomial 𝑅 of degree at most ℓ such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) is smaller than 𝑛2

2 (𝑠− 𝑑
𝑛). Notice

that by Lemma 6.2 there can only be one such 𝑅.
Recall that higher the value of 𝑤(𝑎, 𝑖), lower is our confidence on the (𝑖 − 1)𝑡ℎ derivative

specified by 𝑔 at 𝑎. For every 𝑎 ∈ 𝑇 , we set 𝜔(𝑎) ← max𝑖∈[𝑟] 𝑤(𝑎, 𝑖), i.e., the maximum distrust
in any derivative specified by 𝑔 at 𝑎. For every step-threshold 𝜽 = (𝜃0, 𝜃1, . . . , 𝜃𝑟−1) ∈ [𝑠𝑛/2]𝑟
with 𝜃0 ≥ 𝜃1 ≥ · · · ≥ 𝜃𝑟−1 and for every 𝑎 ∈ 𝑇 we retain 𝑔 (𝑎) up to degree 𝑖 (equivalently
derivatives up to order 𝑖) such that 𝜔(𝑎) ≤ 𝜃𝑖 . Let the retained set of (𝑎, 𝑖)’s be𝑈𝜽; we then call
Algorithm 1 on 𝑔 restricted to𝑈𝜽. Then, we check whether the polynomial returned by this step
satisfies Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛2

2 (𝑠 − 𝑑
𝑛) and output it if it does.

Input: 𝑇 ⊆ F, |𝑇 | = 𝑛 ⊲ set of evaluation points

𝑑, 𝑠, 𝑚 ⊲ global degree, multiplicity and dimension resp.

ℓ, 𝑟 with ℓ ≤ 𝑑 and 𝑟 = 𝑠 − ⌊𝑑−ℓ𝑛 ⌋ ⊲ actual degree and multiplicity resp.

𝑔 : 𝑇 → F<𝑟 [𝑧] ⊲ received word

𝑤 : 𝑇 × [𝑟] → Z≥0 satisfying 𝑤(𝑎, 𝑖) ≤ 𝑛𝑚−1

2

(
𝑠 − 𝑖 − 𝑑−ℓ

𝑛

)
, ∀(𝑎, 𝑖)

⊲ weight function

Output: 𝑅 ∈ F≤ℓ [𝑥] such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛𝑚

2 (𝑠 − 𝑑
𝑛), if such an 𝑅 exists and

0 otherwise.
1: for 𝑎 ∈ 𝑇 do
2: Set 𝜔(𝑎) ← max𝑖∈[𝑟] 𝑤(𝑎, 𝑖) ;
3: for every step threshold 𝜽 = (𝜃0, 𝜃1, . . . , 𝜃𝑟−1) such that 𝜃0 ≥ · · · ≥ 𝜃𝑟−1 do

⊲ There are at most
(𝑛+𝑟
𝑟

)
step thresholds and the algorithm goes over each one of them.

4: Set 𝑈𝜽 ← {(𝑎, 𝑖) ∈ 𝑇 × [𝑟] : 𝜔(𝑎) ≤ 𝜃𝑖 , 𝑎 ∈ 𝑇, 𝑖 ∈ [𝑟]} ;
5: for 𝑎 ∈ 𝑇 do
6: Set s(𝑎) ← max {𝑖 ≤ 𝑟 − 1 : 𝜔(𝑎) ≤ 𝜃𝑖} + 1;
7: Run Generalized Univariate Multiplicity Code Decoder (Algorithm 1) on

(𝑇, ℓ, s, 𝑔|𝑈𝜽) where 𝑔 |𝑈𝜽 : 𝑇 → F<𝑟 [𝑧] is defined as 𝑔 |𝑈𝜽 (𝑎) = 𝑔(𝑎) mod 𝑧𝑠(𝑎)

to obtain 𝑅 (if 𝑅 = ⊥ set 𝑅← 0);
8: if Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛𝑚

2 (𝑠 − 𝑑
𝑛) then return 𝑅 else return 0.

Algorithm 2. Weighted Univariate Multiplicity Code Decoder

REMARK 6.3. The number of step-thresholds is 𝑂((𝑛+𝑠𝑠)). This can be seen by considering
𝜃0, 𝜃1− 𝜃0, 𝜃2− 𝜃1, . . . , 𝜃𝑟−1− 𝜃𝑟−2, 𝑛− 𝜃𝑟−1. Each of these 𝑟 + 1 quantities is a non-negative integer
and their sum is 𝑛, so the number of solutions is

(𝑛+𝑟
𝑟

)
, and 𝑟 ≤ 𝑠.

31 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

6.3 Proof of correctness of Algorithm 2

The analysis of this decoder is inspired by the alternative analysis of Forney’s GMD decoding
mentioned in the previous section.

Notice that the algorithm proceeds by trying every monotone threshold vector 𝜽. (We
only consider monotone threshold vectors in the algorithm and following analysis.) Hence, it
suffices to show that one 𝜽 exists which can be used to do the decoding. We first characterise
when a threshold vector can be used in the call to Algorithm 1. We then prove that such a
threshold vector exists in Lemma 6.5. For this we need the following notation. Suppose there is
a polynomial 𝑅 ∈ F≤ℓ [𝑥] such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛2

2 (𝑠 − 𝑑
𝑛): Lemma 6.2 implies that there can be

at most one such 𝑅.
Given this polynomial 𝑅, we partition the set 𝑇 × [𝑟 + 1] = 𝐴⊎ 𝐵 as follows. Let 𝐴 be the set

of (𝑎, 𝑖) such that 𝑔 (𝑎) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩ (𝑖): in other words, at the location 𝑎 all derivatives
of 𝑅 till order 𝑖 − 1 match with 𝑔 . And let 𝐵 = (𝑇 × [𝑟 + 1]) \ 𝐴. Let 𝜽 be a vector of thresholds.

Observe that if (𝑎, 𝑖) ∈ 𝐴, then (𝑎, 𝑗) ∈ 𝐴 for all 𝑗 < 𝑖. Then, since 𝐵 = (𝑇 × [𝑟 + 1]) \ 𝐴, if
(𝑏, 𝑗) ∈ 𝐵, then (𝑏, 𝑖) ∈ 𝐵 for all 𝑖 > 𝑗.

Define 𝐴𝜽 := 𝑈𝜽 ∩ 𝐴 and similarly 𝐵𝜽 := 𝑈𝜽 ∩ 𝐵 = 𝑈𝜽 \ 𝐴𝜽.

OBSERVAT ION 6.4. If it holds that |𝐴𝜽 | > |𝐵𝜽 | + ℓ, then Algorithm 1 can decode using 𝜽. We
call such threshold vectors good.

This is because, Algorithm 1 will decode using 𝜽 whenever Δ(s)mult(𝑔 |𝑈𝜽 , Enc(s) (𝑅)) < 1
2 (|𝑈𝜽 | −

ℓ). With our notation, this means |𝐵𝜽 | < |𝑈𝜽 |−ℓ
2 , since Δ(s)mult(𝑔 |𝑈𝜽 , Enc(s) (𝑅)) = |𝐵𝜽 |. Rearranging

this and using |𝑈𝜽 | = |𝐴𝜽 | + |𝐵𝜽 | gives the above characterization.
The following lemma, which we prove in the next section, shows that there is at least one

good step-threshold 𝜽.

LEMMA 6.5. Let 𝑔 be the received word. If 𝑅 is such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛2

2 (𝑠 − 𝑑
𝑛), then there is a

good vector of thresholds 𝜽 such that Algorithm 2 returns 𝑅 in the iteration corresponding to 𝜽.

Armed with the above lemma we are now ready to prove the correctness of Algorithm 2.

THEOREM 6.6. Let 𝑔 : 𝑇 → F<𝑟 [𝑧] be a received word and 𝑅 a degree ℓ polynomial such that
Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛2

2 (𝑠 − 𝑑
𝑛). Then, Algorithm 2 returns the polynomial 𝑅. Further, Algorithm 2 runs in

time (𝑠𝑛)𝑠+𝑂(1) where 𝑛 is the size of the set of evaluation points, 𝑇 .

PROOF . The algorithm proceeds by trying every step-threshold 𝜽. By Lemma 6.5, there is a
good vector of thresholds 𝜽 that can be used to find 𝑅 in the call to Algorithm 1. Hence, the
algorithm finds 𝑅 within the given distance if one exists. Also, the algorithm never outputs an
incorrect 𝑅 due to the check at Line 8 and the fact that if one such 𝑅 exists then it is unique by
Lemma 6.2.

32 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

The running time of the Algorithm is determined by the 𝑂(𝑠𝑛)𝑟 iterations of the for-loop
over all possible step-thresholds. By Theorem 4.3 each such iteration requires (𝑛𝑟)𝑂(1) time. As
𝑟 ≤ 𝑠, the overall running time is (𝑠𝑛)𝑠+𝑂(1) . ■

6.4 Proof of Lemma 6.5

The proof of Lemma 6.5 requires a few claims and definitions. We begin by showing that |𝐴| > ℓ.

CLAIM 6.7. Let 𝑔 be any received word and 𝑅 be a degree ℓ polynomial with Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) <
𝑛2

2 (𝑠 − 𝑑
𝑛). Let 𝐴 be defined as above, that is, the set of locations (𝑎, 𝑖) such that 𝑔 (𝑎) = 𝑅(𝑎 + 𝑧)

mod ⟨𝑧⟩ (𝑖) . Then, |𝐴| > ℓ.

PROOF . Suppose for contradiction that |𝐴| ≤ ℓ. We will show that the error is more than
promised.

Write 𝐴 as a disjoint union, 𝐴 =
⊎𝑟
𝑖=0 𝐴≥𝑖 (𝑔, 𝑅) where 𝐴≥𝑖 (𝑔, 𝑅) = 𝐴 ∩ (𝑇 × {𝑖}).

Informally, 𝐴≥𝑖 (𝑔, 𝑅) is the set of locations where 𝑔 and 𝑅 agree up to derivatives of order
𝑖 − 1. Let the size of 𝐴≥𝑖 (𝑔, 𝑅) be 𝜂𝑖−1, so that we have 𝑛 = 𝜂0 elements which are (trivially)
“correct” up to the “(−1)𝑡ℎ” order derivative, 𝜂1 up to the 0𝑡ℎ order derivative (i.e. evaluation
level), 𝜂2 up to the first-order derivative and so on.

Note that
∑
𝜂𝑖 ≤ ℓ, by our assumption. Additionally, 𝜂0 ≥ 𝜂1 ≥ · · · ≥ 𝜂𝑟 because if (𝑎, 𝑖) ∈ 𝐴

then for all 0 ≤ 𝑗 < 𝑖, (𝑎, 𝑗) ∈ 𝐴. Hence the number of coordinates where 𝑔 and 𝑅 disagree at
the 0𝑡ℎ order derivative is 𝑛− 𝜂1 and the total contribution to Γ from such coordinates is at least
1
2 (𝑛−𝜂1) (𝑛𝑠− (𝑑− ℓ)). This is because the contribution from each term is at least 1

2 (𝑛𝑠− (𝑑− ℓ)).
To observe this, note that in Definition 6.1, in the first term in the maximum, the weight being
subtracted is at most 1

2 (𝑛𝑠 − (𝑑 − ℓ)), so the maximum never dips below this quantity. Further,
there are at least (𝑛 − 𝜂2) − (𝑛 − 𝜂1) = 𝜂1 − 𝜂2 coordinates where 𝑔 and 𝑅 agree at the 0𝑡ℎ order
derivative but disagree at the first order derivative: such coordinates contribute to Γ at least
1
2 (𝜂1 − 𝜂2) (𝑛(𝑠 − 1) − (𝑑 − ℓ)). In this manner, we get the total distance to be

Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) ≥ 1
2
(𝜂0 − 𝜂1) (𝑛𝑠 − (𝑑 − ℓ)) + 1

2
(𝜂1 − 𝜂2) (𝑛(𝑠 − 1) − (𝑑 − ℓ))+

· · · + 1
2
(𝜂𝑟−1 − 𝜂𝑟) (𝑛(𝑠 − 𝑟 + 1) − (𝑑 − ℓ))

=
1
2

𝑟−1∑︁
𝑖=0

𝛿𝑖 (𝑛(𝑠 − 𝑖) − (𝑑 − ℓ))

where 𝛿𝑖 = 𝜂𝑖 − 𝜂1+1. Note that each 𝛿𝑖 ≥ 0 and
∑𝑟−1
𝑖=0 𝛿𝑖 ≤ 𝑛 (by a telescoping sum). In addition,∑𝑟−1

𝑖=0 𝑖𝛿𝑖 = (
∑𝑟−2
𝑖=2 𝜂𝑖) − (𝑟 − 1)𝜂𝑟 ≤ ℓ, by assumption.

33 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

The rest of this proof is identical to the argument in the proof of Lemma 6.2.

Γ𝑠,𝑑,ℓ𝑤 (𝑔, 𝑅) ≥ 1
2

𝑟−1∑︁
𝑖=0

𝛿𝑖 ((𝑠 − 𝑖)𝑛 − (𝑑 − ℓ))

=
1
2

𝑟−1∑︁
𝑖=0

𝛿𝑖 (𝑠𝑛 − (𝑑 − ℓ)) − 𝑛2
𝑟−1∑︁
𝑖=0

𝑖𝛿𝑖

≥ 1
2
(𝑠𝑛 − (𝑑 − ℓ))𝑛 − 𝑛

2
ℓ

≥ 1
2
𝑛2

(
𝑠 − 𝑑

𝑛

)
.

which contradicts the assumption. ■

Now we know |𝐴| > ℓ, so we can write |𝐴| = ℓ + 𝑢 for some positive 𝑢. For 𝑎 ∈ 𝑇 , let 𝑖𝑅(𝑎)
be the 𝑖 such that 𝑎 ∈ 𝐴𝑖 (𝑔, 𝑅). Recall that for every 𝑖 ∈ [𝑟 + 1]

𝐴𝑖 (𝑔, 𝑅) =
{
𝑎 ∈ 𝑇 : max

{
𝑗 ∈ [𝑟 + 1] : 𝑔 (𝑎) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩ 𝑗} = 𝑖

}
.

Informally, 𝑔 and 𝑅 agree up to derivatives of order 𝑖 − 1 at 𝑎, but disagree at the 𝑖𝑡ℎ order
derivative. We construct a pairing as in our reproof of Forney’s result in Section 5.2; however,
we will need it to be a “good” pairing to help in the error analysis. We provide the definition
below.

DEF IN IT ION 6.8 (good pairing). Let 𝑎0, . . . , 𝑎𝑘−1, 𝑏0, . . . , 𝑏𝑘−1 ∈ 𝑇 . We say the 𝑘 pairs given by
(𝑎0, 𝑏0), . . . , (𝑎𝑘−1, 𝑏𝑘−1) is a good pairing if it satisfies the following conditions:

1. |{𝑎𝑖 : 𝑖 ∈ [𝑘]} ∪ {𝑏𝑖 : 𝑖 ∈ [𝑘]}| = 2𝑘. That is, they are all distinct.
2. 𝜔(𝑏 𝑗) ≤ 𝜔(𝑎 𝑗) for all 𝑗 ∈ [𝑘−1] where as before𝜔(𝑎) = max𝑖∈[𝑟] 𝑤(𝑎, 𝑖). This is analogous

to the weight condition in the Forney case.
3. 𝑖𝑅(𝑏 𝑗) < 𝑖𝑅(𝑎 𝑗) for all 𝑗 ∈ [𝑘]. This is analogous to one being correct (from 𝐴) and the

other being corrupted (from 𝐵) - here, we need one to be correct up to more derivatives
than the other. See Figure 6

4.
∑𝑘−1
𝑗=0 (𝑖𝑅(𝑎 𝑗) − 𝑖𝑅(𝑏 𝑗)) ≥ 𝑢. This is analogous to the number of pairs being 𝑢 (that is, |𝐴| − ℓ).

(While there are 2𝑘 locations being paired with each other, the quantity of interest is the
total difference in the derivatives to which 𝑎𝑖 ’s and 𝑏𝑖 ’s are correct. This has to be at least
𝑢).

LEMMA 6.9. If Algorithm 2 fails to find 𝑅 for every threshold vector 𝜽, then there exists a good
pairing among the elements of 𝑇 .

The proof of this lemma requires the following generalization of Hall’s theorem (which
can be found for instance in the textbook on Matching Theory by Lovász and Plummer).

34 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

𝑎𝑏

✓ ✓

✓ ✓

✓ ✓

✓ ✓

×

×

✓

×

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

𝑖 = 5

Figure 6. When 𝑎 and 𝑏 can be in a good pairing, with 𝜔(𝑏) ≤ 𝜔(𝑎)

THEOREM 6.10 (Generalisation of Hall’s theorem [17, Theorem 1.3.1]). In a bipartite graph
𝐺 = (L,R, 𝐸), if the maximum matching has size at most 𝑚, then there is a subset𝑈 ⊆ L such
that

|𝑈 | − |𝑁 (𝑈) | ≥ |L| −𝑚 .

PROOF OF LEMMA 6.9 . Consider the following bipartite graph with left and right partite
setsL = 𝐴 andR = 𝐵, respectively. It will be useful to stratifyL =

⊎𝑟
𝑖=0L𝑖 whereL𝑖 = 𝐴≥𝑖 (𝑔, 𝑅);

recall that 𝐴≥𝑖 (𝑔, 𝑅) = 𝐴∩ (𝑇 × {𝑖}). Similarly, we stratify R =
⊎𝑟
𝑖=0 R𝑖 where R𝑖 = (𝑇 × {𝑖}) \ L𝑖 .

From earlier, (𝑎, 𝑖) ∈ L𝑖 implies that for all 𝑗 < 𝑖, (𝑎, 𝑗) ∈ L 𝑗 , and inversely for R.
The edge set of the graph is given as (See Figure 7):

𝐸 = {((𝑎, 𝑖), (𝑏, 𝑖)) : (𝑎, 𝑖) ∈ L𝑖 , (𝑏, 𝑖) ∈ R𝑖 , 𝜔(𝑎) ≥ 𝜔(𝑏) , 0 ≤ 𝑖 ≤ 𝑟} .

It will be useful to visualise the vertices of L and R, which are of the type (𝑎, 𝑖), ordered
first according to their strata, i.e., 𝑖, and then within each stratum according to the 𝜔(𝑎) values.
See Figure 7.

We first show that this graph has a matching of size 𝑢, using the generalization of Hall’s
theorem from Theorem 6.10. We will then convert this matching into a good pairing using
claim 6.12.

CLAIM 6.1 1. The graph defined above has a matching of size 𝑢, where |L| = ℓ + 𝑢.

Proof. Suppose for contradiction that the maximum matching in the graph has size 𝑢 − 1.
Appealing to Theorem 6.10 with 𝑚 = 𝑢−1, we have a witness set𝑈 ⊆ L such that |𝑈 | − |𝑁 (𝑈) | ≥
|L| − 𝑢 + 1 = ℓ + 1.

Let𝑈𝑖 be the part of𝑈 that lies in each L𝑖 . For each𝑈𝑖 , observe that we may as well take
the first (ordered by weight 𝜔 — observe that this weight is independent of 𝑖) |𝑈𝑖 | elements
in L𝑖 , and this does not increase the neighbourhood. This is because (𝑎, 𝑖) of weight 𝜔(𝑎) is

35 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

L3

L2

L1

L0

R3

R2

R1

R0

(𝑎2, 2)
(𝑎1, 2)

(𝑏2, 2)
(𝑏1, 2)

increasing weight 𝜔

Figure 7. Edge structure of the bipartite graph in Lemma 6.9.

connected only to vertices (𝑏, 𝑖) with 𝜔(𝑏) ≤ 𝜔(𝑎). Hence, we can assume each𝑈𝑖 is a prefix of
L𝑖 (i.e., the first |𝑈𝑖 | elements of L𝑖).

Further, since (𝑎, 𝑖) ∈ L𝑖 implies that for all 𝑗 < 𝑖, (𝑎, 𝑗) ∈ L 𝑗 we can do the following
transformation to𝑈 without increasing the size of 𝑁 (𝑈). If for 𝑖 > 𝑗 we have |𝑈𝑖 | > |𝑈 𝑗 |, then,
we can replace𝑈𝑖 and𝑈 𝑗 with𝑈′𝑖 =

{(𝑎, 𝑖) : (𝑎, 𝑗) ∈ 𝑈 𝑗
}

and𝑈′𝑗 = {(𝑎, 𝑗) : (𝑎, 𝑖) ∈ 𝑈𝑖} respectively.
This does not increase the neighbourhood. Indeed, consider some new neighbour (𝑏, 𝑗) caused
by an edge ((𝑎, 𝑗), (𝑏, 𝑗)). We must have (𝑎, 𝑗) ∈ 𝑈′𝑗 \𝑈 𝑗 . This newly included (𝑎, 𝑗) originated
from some (𝑎, 𝑖) in 𝑈𝑖 \𝑈′𝑖 . Since 𝑗 < 𝑖 and (𝑏, 𝑗) ∈ 𝐵, we must also have (𝑏, 𝑖) ∈ 𝐵. Then, the
edge ((𝑎, 𝑖), (𝑏, 𝑖)) also exists, and (𝑏, 𝑖) was previously in the neighbourhood of𝑈 but no longer
is.

We now have a structure on𝑈 such that for every 𝑖, the first |𝑈𝑖 | elements of 𝐴, ordered
by weight 𝜔, are in 𝑈 . Further, for 𝑖 > 𝑗, if (𝑎, 𝑖) ∈ 𝑈𝑖 then (𝑎, 𝑗) ∈ 𝑈 𝑗 . With this structure on
𝑈 we can now create a valid step-threshold 𝜽 so that 𝐴𝜽 contains 𝑈 (and exactly equals 𝑈 if
the weights 𝜔 are all distinct) : indeed, set 𝜃𝑖 to be max{𝜔(𝑎) : (𝑎, 𝑖) ∈ 𝑈𝑖} (and if𝑈𝑖 is empty,
set 𝜃𝑖 to be −∞). Further, 𝐵𝜽 = 𝑁 (𝑈). To see this, take (𝑏, 𝑖) ∈ R𝑖 with 𝜔(𝑏) ≤ 𝜃𝑖 . Then there
would be an edge ((𝑎, 𝑖), (𝑏, 𝑖)) for the (𝑎, 𝑖) with 𝜔(𝑎) = 𝜃𝑖 and hence (𝑏, 𝑖) ∈ 𝑁 (𝑈). Conversely,
if (𝑏, 𝑖) ∈ 𝑁 (𝑈), there is an edge ((𝑎, 𝑖), (𝑏, 𝑖)) with 𝜔(𝑏) ≤ 𝜔(𝑎) ≤ 𝜃𝑖 and hence (𝑏, 𝑖) ∈ 𝐵𝜽. (See
Figure 8). However, as |𝐴𝜽 | − |𝐵𝜽 | ≥ |𝑈 | − |𝑁 (𝑈) | ≥ ℓ + 1, this contradicts our assumption that
there is no good step-threshold 𝜽. Hence, we must have a matching of size at least 𝑢 in the
bipartite graph. ■

To finish the proof of Lemma 6.9 we will need claim 6.12 which essentially transforms this
matching into a good pairing. ■

Next, we proceed to show how to extract a good pairing from a matching obtained in the
bipartite graph defined above.

CLAIM 6.12. Given a maximum matching of size 𝑢 in the graph defined in Lemma 6.9, a good
pairing can be extracted from it.

PROOF . The given matching 𝑀 consists of 𝑢 edges of the form ((𝑎, 𝑖), (𝑏, 𝑖)) with 𝜔(𝑏) ≤ 𝜔(𝑎).
We want to extract a good pairing (𝑎0, 𝑏0), . . . , (𝑎𝑘−1, 𝑏𝑘−1).

36 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

𝑈0

𝑈1

𝑈2

𝑈3

𝑁 (𝑈0)

𝑁 (𝑈1)

𝑁 (𝑈2)

𝑁 (𝑈3)L3

L2

L1

L0

R3

R2

R1

R0

Figure 8. Extracting a threshold from the matching

Recall the conditions from Definition 6.8. For Condition 1, we need to be able to read off
the 𝑘 distinct pairs. We will add (𝑎, 𝑏) to the pairing if we have the edges ((𝑎, 𝑗), (𝑏, 𝑗)) for every
𝑖𝑅(𝑏) < 𝑗 ≤ 𝑖𝑅(𝑎) in 𝑀 . This will also take care of Condition 4 since we are given exactly 𝑢 edges
in the matching 𝑀 . Conditions 2 and 3 are guaranteed by the edge structure.

If 𝑀 consists of exactly the edges of this type, we are done. But, 𝑀 is an arbitrary matching
and we have no guarantees on its structure. We will now see how to extract a pairing from it
regardless, by making some modifications to 𝑀 while maintaining its size.

We will now use a visualization as in Figure 6, that is, every 𝑎 ∈ 𝑇 has a tower of height
𝑠. If the matching 𝑀 contains an edge (𝑎, 𝑖), (𝑏, 𝑖), we will think of the 𝑎 and 𝑏 towers being
connected by an edge at level 𝑖.

We need, for every 𝑎 and 𝑏 in 𝑇 , the matching 𝑀 to either match (𝑎, 𝑗) to (𝑏, 𝑗) for every 𝑗

between 𝑖𝑅(𝑏) and 𝑖𝑅(𝑎), or for none of them. (In the first case, (𝑎, 𝑏) is in the pairing; otherwise,
it is not.) The problem case is if they are matched on some levels but not on others — in this
case, we will call 𝑎 and 𝑏 a bad pair of blocks. We will correct this pair by either adding the
missing edges or disconnecting 𝑎 and 𝑏 completely.

Arrange the elements of 𝑇 in increasing order of the weight 𝜔. We will process every pair
in co-lexicographic order, since for (𝑎, 𝑏) to be in a good pairing, we need 𝜔(𝑎) ≥ 𝜔(𝑏). Hence,
when we are trying to correct a pair (𝑎, 𝑏), we can assume there are no bad pairs (𝑎′, 𝑏′) with
𝜔(𝑏′) < 𝜔(𝑏), or 𝜔(𝑏′) = 𝜔(𝑏) and 𝜔(𝑎′) < 𝜔(𝑎).

Now, say we are at the stage of processing a bad pair (𝑎, 𝑏), and say they are matched at
some other levels, but not the level 𝑗, that is, the edge ((𝑎, 𝑗), (𝑏, 𝑗)) is not in the matching 𝑀 .

(𝑎, 𝑗) could be unmatched in 𝑀 , or it could be matched to some (𝑏′, 𝑗). Notice that because
of the order in which we are proceeding, we cannot have 𝜔(𝑏′) < 𝜔(𝑏). Otherwise, (𝑎, 𝑏′)
form a bad pair which we would have encountered earlier. Also, by definition, we cannot have
𝜔(𝑏′) > 𝜔(𝑎). Hence we must have 𝜔(𝑏) ≤ 𝜔(𝑏′) ≤ 𝜔(𝑎).

As for (𝑏, 𝑗), it could be unmatched in 𝑀 , or matched to some other (𝑎′, 𝑗). Again, if
𝜔(𝑎′) < 𝜔(𝑎), there is a bad pair (𝑎′, 𝑏) which would have been encountered before (𝑎, 𝑏), so
we can eliminate this case. So we must have 𝜔(𝑎) ≤ 𝜔(𝑎′).

We will now go through the possibilities one by one.

37 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Case 1: (𝑎, 𝑗) and (𝑏, 𝑗) are both unmatched in 𝑀 . (shown in Figure 9)
Then they can be matched with each other, which increases the size of the matching which

is a contradiction since 𝑀 was a maximum matching.

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

𝑎𝑏

✓ ✓

✓ ✓

× ✓

× ✓

× ✓

𝑎𝑏

✓ ✓

✓ ✓

× ✓

× ✓

× ✓

⇝

Figure 9. Case 1: (𝑎, 3) and (𝑏, 3) both unmatched

Case 2: (𝑏, 𝑗) is matched with some (𝑎′, 𝑗) with 𝜔(𝑎′) ≥ 𝜔(𝑎). (shown in Figure 10)
Then, we can remove that edge from 𝑀 and add the edge ((𝑏, 𝑗), (𝑎, 𝑗)) to the matching.

(If (𝑎, 𝑗) is already matched to (𝑏′, 𝑗) in 𝑀 , we remove it and add an edge between (𝑏′, 𝑗) and
(𝑎′, 𝑗).) This may create a new bad pair of higher weight, which can be dealt with subsequently.

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

𝑎𝑏 𝑎′

✓ ✓ ✓

✓ ✓ ✓

× ✓ ✓

× ✓ ✓

× ✓ ✓

𝑎𝑏 𝑎′

✓ ✓ ✓

✓ ✓ ✓

× ✓ ✓

× ✓✓

× ✓✓

⇝

Figure 10. Case 2: (𝑏, 3) is matched with (𝑐, 3) instead of (𝑎, 3)

Case 3: (𝑏, 𝑗) is unmatched in 𝑀 , and (𝑎, 𝑗) is matched to (𝑏′, 𝑗). (shown in Figure 11)
Then the edge between (𝑎, 𝑗) and (𝑏′, 𝑗) can be removed and the edge between (𝑎, 𝑗) and

(𝑏, 𝑗) added to 𝑀 . Again, any new bad pairs created will be dealt with subsequently.
This process will terminate since 𝑇 is finite. Then, 𝑀 will be of the form we saw above,

and the good pairing can be read off from it. ■

Now, we show that if there is a good pairing in the elements of𝑇 , then, Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) ≥ 𝑛2

2 (𝑠−𝑑𝑛).
This is shown by transforming the received word 𝑔 and the weight function 𝑤 into a different

38 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

𝑏′𝑏 𝑎

✓ ✓ ✓

✓ ✓ ✓

× ✓ ✓

×

×

×

×

✓

✓

𝑏′𝑏 𝑎

✓ ✓ ✓

✓ ✓ ✓

× ✓ ✓

× ✓✓

× ✓✓

⇝

Figure 11. Case 3: (𝑎, 3) is matched with (𝑏′, 3) instead of (𝑏, 3)

𝑖 = 0

𝑖 = 1

𝑖 = 2

𝑖 = 3

𝑖 = 4

𝑎𝑏

✓ ✓

✓ ✓

✓ ✓

×

×

✓

✓

𝑎𝑏

✓ ✓

✓ ✓

✓ ✓

× ×

× ×

⇝

Figure 12. Construction of the new received word

word 𝑔′ and weight function𝑤′, by changing the values of 𝑔 and𝑤 at the locations where the good
pairing exists. In doing so, we ensure Γ(𝑔, 𝑅) is non-increasing. We then reach a scenario where
|𝐴| ≤ ℓ for this new word 𝑔′. Then, by claim 6.7 we get that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) ≥ Γ𝑑,ℓ,𝑠𝑤′ (𝑔′, 𝑅) ≥ 𝑛2

2 (𝑠− 𝑑
𝑛).

CLAIM 6.13. Assume we have a good pairing of size 𝑘, (𝑎0, 𝑏0), . . . , (𝑎𝑘−1, 𝑏𝑘−1), in the received
word 𝑔 . Construct a new received word 𝑔′ as follows: for each 𝑗 in [𝑘] (recall that 𝑖𝑅(𝑎 𝑗) > 𝑖𝑅(𝑏 𝑗))
in the original received word, corrupt the values of

{
𝑔 (𝑎 𝑗 , 𝑖) : 𝑖 ∈

{
𝑖𝑅(𝑏 𝑗) + 1, . . . , 𝑖𝑅(𝑎 𝑗)

}}
such

that 𝑖𝑅(𝑎 𝑗) = 𝑖𝑅(𝑏 𝑗). Further, for all 𝑖 ∈ [𝑟] let

𝑤′(𝑎 𝑗 , 𝑖) = 𝑤′(𝑏 𝑗 , 𝑖) = min
{
𝑛

2
·
(
(𝑠 − 𝑖𝑅(𝑏 𝑗)) − 𝑑 − ℓ

𝑛

)
,
𝑛

2
·
(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)}
.

At all other locations which are not part of the pairing, 𝑔′ and 𝑤′ are exactly the same as 𝑔 and
𝑤. See ?? 12. We note 𝑤′ is a valid weight function.Then, the error as per our measure actually
does not increase, that is Γ𝑑,ℓ,𝑠𝑤′ (𝑔′, 𝑅) ≤ Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅). Furthermore, Γ𝑑,ℓ,𝑠𝑤′ (𝑔′, 𝑅) ≥ 𝑛2

2 (𝑠 − 𝑑
𝑛).

PROOF . Let (𝑎, 𝑏) be one of the pairs in the pairing. We count the contribution of 𝑎 and 𝑏 to Γ
before and after the transformation is applied.

39 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Suppose 𝑖𝑅(𝑎) = 𝑖𝑎 (originally) and 𝑖𝑅(𝑏) = 𝑖𝑏. Since it is a good pairing, 𝑖𝑎 > 𝑖𝑏 and
𝜔(𝑏) ≤ 𝜔(𝑎).

Originally, their contribution to Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) is at least

𝜔(𝑎) + ((𝑠 − 𝑖𝑏)𝑛 − (𝑑 − ℓ) − 𝑤(𝑏, 𝑖𝑏)).

The reason why the contribution from 𝑎 is at least 𝜔(𝑎) is as follows. Let 𝜔(𝑎) = 𝑤(𝑎, 𝑖∗).
That is, let 𝑖∗ = arg max𝑖∈[𝑟] 𝑤(𝑎, 𝑖). If 𝑖∗ < 𝑖𝑎, then max 𝑗<𝑖𝑎 𝑤(𝑎, 𝑖) = 𝜔(𝑎). On the other hand, if
𝑖∗ ≥ 𝑖𝑎, we have that 𝑤(𝑎, 𝑖∗) ≤ 1

2 (𝑛(𝑠 − 𝑖∗) − (𝑑 − ℓ)), as well as 𝑤(𝑎, 𝑖𝑎) ≤ 1
2 (𝑛(𝑠 − 𝑖𝑎) − (𝑑 − ℓ)).

Then the contribution to Γ is at least 𝑛(𝑠− 𝑖𝑎) − (𝑑 − ℓ) −𝑤(𝑎, 𝑖𝑎) ≥ 𝑛(𝑠− 𝑖∗) − (𝑑 − ℓ) −𝑤(𝑎, 𝑖∗) ≥
1
2 (𝑛(𝑠 − 𝑖∗) − (𝑑 − ℓ)) ≥ 𝑤(𝑎, 𝑖∗) = 𝜔(𝑎).

Now, since 𝑤(𝑏, 𝑖𝑏) ≤ 𝜔(𝑏) ≤ 𝜔(𝑎), the total contribution is at least (𝑠 − 𝑖𝑏)𝑛 − (𝑑 − ℓ).
Now, we apply the corruption to 𝑖𝑎 − 𝑖𝑏 levels of 𝑎 and change the weight function 𝑤 at

𝑎 and 𝑏. Then, to Γ𝑑,ℓ,𝑠𝑤′ (𝑔′, 𝑅), 𝑎 and 𝑏 each contribute 1
2 ((𝑠 − 𝑖𝑏)𝑛 − (𝑑 − ℓ)), giving a total of

((𝑠 − 𝑖𝑏)𝑛 − (𝑑 − ℓ)), which is the lower bound for the previous expression.
Notice, that after we have applied this transformation to all the pairs present in the

good pairing we are left with a word 𝑔′ such that |𝐴| ≤ ℓ. This is because by Condition 4 of
Definition 6.8 we have

∑𝑘−1
𝑗=0 (𝑖𝑅(𝑎 𝑗) − 𝑖𝑅(𝑏 𝑗)) ≥ 𝑢: hence, we have corrupted at least 𝑢 locations

(𝑎, 𝑖) of agreement between 𝑔 and 𝑟 to obtain 𝑔′. However, now 𝑔′ and 𝑤′ satisfy the hypothesis
of claim 6.7. Putting everything together we get that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) ≥ Γ𝑑,ℓ,𝑠𝑤′ (𝑔, 𝑅) ≥ 𝑛2

2 (𝑠 − 𝑑
𝑛). ■

We can finally complete the proof of Lemma 6.5.

PROOF OF LEMMA 6.5 . We prove this by contradiction, by assuming that no threshold 𝜽 is
good. By observation 6.4, this means we assume |𝐴𝜽 | ≤ |𝐵𝜽 | + ℓ for all 𝜽.

claim 6.7 shows that 𝐴must have size at least ℓ, or the error is more than promised. Hence,
we can write |𝐴| = ℓ + 𝑢 for some positive 𝑢.

As in our reproof of Forney’s result in Section 5.2, we construct a pairing. Here, the size of
the pairing is 𝑢 - measured not as the number of locations 𝑎 ∈ 𝑇 participating in the pairing but
the total difference in the multiplicity levels summed over each pair. We add some conditions
for it to be a good pairing in definition 6.8: Lemma 6.9 shows that such a pairing exists. Given
such a good pairing claim 6.13 shows that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) ≥ 𝑛2

2 (𝑠 − 𝑑
𝑛), a contradiction. ■

7. Bivariatemultiplicity code decoder

In this section, we describe our decoding algorithm for bivariate multiplicity codes. It relies
on algorithms for decoding two variants of a decoder for univariate multiplicity codes; the
first where the multiplicity parameters varies with the evaluation point (Algorithm 1) and the
second being a decoder for a weighted version of univariate multiplicity codes (Algorithm 2).

40 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

7.1 Description of the bivariate decoder

We start with an informal description of this algorithm, along the lines suggested in the overview
Section 2.

The bivariate decoder takes as input sets 𝑇1, 𝑇2 ⊆ F of size 𝑛, degree and multiplicity
parameters 𝑑 and 𝑠, and the received word 𝑓 : 𝑇1 × 𝑇2 → F<𝑠 [𝑧1, 𝑧2]. The decoder outputs a
polynomial 𝑃 ∈ F≤𝑑 [𝑥1, 𝑥2] such that Δ(𝑠)mult(𝑓 , Enc(𝑠) (𝑃)) < 1

2𝑛
2(𝑠 − 𝑑

𝑛) if one exists. It will be
convenient to write the polynomial 𝑃 in the following form.

𝑃(𝑥1, 𝑥2) =
∑︁

ℓ∈[𝑑+1]
𝑃ℓ (𝑥1)𝑥𝑑−ℓ2 ∈ F≤𝑑 [𝑥1, 𝑥2] .

The decoder proceeds in 𝑑 + 1 iterations numbered 0 to 𝑑 where in the ℓ𝑡ℎ iteration, the de-
coder recovers the univariate polynomial 𝑃ℓ (𝑥1) ∈ F≤ℓ [𝑥1]. Having obtained the polynomials
𝑃0, 𝑃1, . . . , 𝑃ℓ−1 correctly in the previous iterations, the decoder in the ℓ𝑡ℎ iteration peels away
these polynomials from the received word 𝑓 to obtain the word 𝑓ℓ defined as

𝑓ℓ := 𝑓 − Enc(𝑠) ©­«
∑︁
𝑖∈[ℓ]

𝑃𝑖 (𝑥1)𝑥𝑑−𝑖2
ª®¬ .

The appropriate choice of the multiplicity parameter for the ℓ𝑡ℎ iteration is 𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋ (see
Remark 7.1). For each 𝑎 ∈ 𝑇1, the decoder unravels the received word 𝑓ℓ |𝑥1=𝑎 along the column
𝑥1 = 𝑎 into 𝑟 parts

{
𝑓 (𝑖,𝑎)ℓ

}
𝑖∈[𝑟]

in Line 6. It then runs the univariate decoder on each of these

parts to obtain the polynomials 𝐺 (𝑖,𝑎)ℓ (𝑥2) ∈ F𝑑−ℓ [𝑥2] respectively for each 𝑖 ∈ [𝑟]. It then con-
structs the polynomial 𝑔ℓ from the leading coefficients of these polynomials (Line 10) and the
corresponding weights𝑤ℓ (𝑎, 𝑖) which indicate how close the polynomial𝐺 (𝑖,𝑎)ℓ (𝑥2) is to the word
𝑓 (𝑖,𝑎)ℓ (Line 9). Finally it extracts the polynomial 𝑃ℓ from the pair (𝑔ℓ, 𝑤ℓ) using the Weighted
Univariate Multiplicity Code Decoder.

REMARK 7.1. We remark that the number of derivatives 𝑟 we use here (Line 3) is 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋.
This is the value that satisfies a few constraints. For the call to Algorithm 1 (Line 7) to work, it
must be the case that (𝑠 − 𝑖)𝑛 − (𝑑 − ℓ) ≥ 0, for every 𝑖 in [𝑟]. In other words, we must have
𝑟 − 1 ≤ 𝑠 − (𝑑 − ℓ)/𝑛. For the call to Algorithm 2 (Line 11), we must have 𝑟𝑛 − ℓ ≥ 0. Finally, in
the proof of correctness of Algorithm 2 (specifically, Lemma 6.2), we require 𝑟𝑛 − ℓ ≥ 𝑠𝑛 − 𝑑.
(This actually subsumes the previous constraint.) 𝑟 := 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋ satisfies all these (and is the
unique integer that does so unless 𝑑−ℓ

𝑛 is an integer). When ℓ = 0, 𝑟 ≥ 1, and when ℓ = 𝑑, 𝑟 = 𝑠.

41 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Input: 𝑇1, 𝑇2 ⊆ F, |𝑇1 | = |𝑇2 | = 𝑛 ⊲ points of evaluation

𝑑, 𝑠 ⊲ degree and multiplicity resp.

𝑓 : 𝑇1 × 𝑇2 → F<𝑠[𝑧1, 𝑧2]. ⊲ received word

Output: 𝑃 =
∑

ℓ∈[𝑑+1] 𝑃ℓ (𝑥1) 𝑥𝑑−ℓ2 ∈ F≤𝑑[𝑥1, 𝑥2] such that

Δ(𝑠)mult
(
𝑓 , Enc(𝑠) (𝑃)) < 1

2𝑛
2
(
𝑠 − 𝑑

𝑛

)
, if such a 𝑃 exists

1: for ℓ ← 0 to 𝑑 do
2: Define 𝑓ℓ : 𝑇1 × 𝑇2 → F<𝑠[𝑧1, 𝑧2] as ⊲ received word for the ℓ𝑡ℎ iteration

𝑓ℓ ← 𝑓 − Enc(𝑠)
(∑

𝑖∈[ℓ] 𝑃𝑖 (𝑥1) 𝑥𝑑−𝑖2
)
;

∀ (𝑎, 𝑏) ∈ 𝑇1 × 𝑇2, let ⊲ some more notation

𝑓ℓ (𝑎, 𝑏) =
∑

𝑖, 𝑗 𝑓ℓ,(𝑖, 𝑗) (𝑎, 𝑏) 𝑧𝑖1𝑧
𝑗
2 ;

3: Set 𝑟 ← 𝑠 − ⌊𝑑−ℓ𝑛 ⌋ ; ⊲ number of usable derivatives

4: for 𝑖 ← 0 to 𝑟 − 1 do
5: for 𝑎 ∈ 𝑇1 do
6: Define 𝑓

(𝑖,𝑎)
ℓ : 𝑇2 → F<𝑠−𝑖 [𝑧2] as
𝑓
(𝑖,𝑎)
ℓ (𝑏) ← ∑

𝑗∈[𝑠−𝑖] 𝑓ℓ,(𝑖, 𝑗) (𝑎, 𝑏) · 𝑧 𝑗2 ;
7: Run Generalized Univariate Multiplicity Code Decoder

(Algorithm 1) on
(
𝑇2, 𝑑− ℓ, 𝑠 − 𝑖, 𝑓 (𝑖,𝑎)ℓ

)
to obtain 𝐺

(𝑖,𝑎)
ℓ ∈ F≤𝑑−ℓ [𝑥2] ;

8: if 𝐺
(𝑖,𝑎)
ℓ is ⊥ then set 𝐺

(𝑖,𝑎)
ℓ ← 0;

9: Define 𝑤ℓ : 𝑇1 × [𝑟] → Z≥0 as

𝑤ℓ (𝑎, 𝑖) ← min
{
Δ(𝑠−𝑖)mult

(
𝑓
(𝑖,𝑎)
ℓ , Enc(𝑠−𝑖)

(
𝐺
(𝑖,𝑎)
ℓ

))
, 𝑛2 ·

(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)}
;

10: Define 𝑔ℓ : 𝑇1 → F<𝑟 [𝑧1] as

𝑔ℓ (𝑎) ←
∑

𝑖∈[𝑟] Coeff𝑥𝑑−ℓ2

(
𝐺
(𝑖,𝑎)
ℓ

)
𝑧𝑖1 ;

11: Run Weighted Univariate Multiplicity Code Decoder (Algorithm 2) on
(𝑇1, 𝑑, 𝑠, 2, ℓ, 𝑟, 𝑔ℓ, 𝑤ℓ) to get 𝑃ℓ (𝑥1) ;

12: Set 𝑃(𝑥1, 𝑥2) ←
∑

ℓ∈[𝑑+1] 𝑃ℓ (𝑥1) 𝑥𝑑−ℓ2 ;

13: if Δ(𝑠)mult
(
𝑓 , Enc(𝑠) (𝑃)) < 1

2𝑛
2
(
𝑠 − 𝑑

𝑛

)
then return 𝑃 (𝑥1, 𝑥2) else return ⊥.

Algorithm 3. Bivariate Multiplicity Code Decoder

42 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

7.2 Analysis of the bivariate decoder

We now formally state the claim of correctness and the running time of Algorithm 3. It asserts
that Algorithm 3 does indeed decode bivariate multiplicity codes from half their minimum
distance on arbitrary product sets, hence giving us the bivariate version of Theorem 3.9.

THEOREM 7.2 (correctness of bivariate decoder (Algorithm 3)). Let 𝑑, 𝑠, 𝑛 ∈ N be such that
𝑑 < 𝑠𝑛, F be any field and let 𝑇1, 𝑇2 be arbitrary subsets of F of size 𝑛 each. Let 𝑓 : 𝑇1 × 𝑇2 →
F<𝑠 [𝑧1, 𝑧2] be any function.

Then, on input 𝑇1, 𝑇2, 𝑠, 𝑑, 𝑛 and 𝑓 , Algorithm 3 runs in time (𝑠𝑛)𝑠+𝑂(1) and outputs a polyno-
mial 𝑃 ∈ F[𝑥1, 𝑥2] of total degree at most 𝑑 such that

Δ(𝑠)mult(𝑓 , Enc(𝑠)𝑇1×𝑇2
(𝑃)) < 1

2
𝑛2

(
𝑠 − 𝑑

𝑛

)
,

if such a 𝑃 exists.

Algorithm 3 makes calls to Algorithm 1 and Algorithm 2. We have shown the correctness
of both individually.

To prove correctness of Algorithm 2 one of the ingredients we need is that the call on
Line 11 always satisfies the promise Γ𝑑,ℓ,𝑠𝑤ℓ (𝑔ℓ, 𝑅) < 𝑛2

2 (𝑠 − 𝑑
𝑛), which is required for Algorithm 2

to work. We prove this in the lemma below.

LEMMA 7.3 (Relationship between Γ and multiplicity distance). Suppose we are in the ℓ𝑡ℎ

iteration of the for-loop at Line 1 of Algorithm 2. To recall, we have subsets 𝑇1, 𝑇2 ⊆ F sets of size 𝑛
each, and natural numbers 𝑑, ℓ, 𝑠, 𝑟 with 𝑑 ≥ ℓ and 𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋. Let 𝑃ℓ =

∑𝑑
𝑖=ℓ 𝑃𝑖 (𝑥1)𝑥𝑑−𝑖2 be the

polynomial of degree at most 𝑑 with Δ(𝑠)mult(𝑓ℓ, Enc(𝑠)𝑇1×𝑇2
(𝑃ℓ)) < 1

2𝑛
2(𝑠 − 𝑑

𝑛), that is, the “remaining”
portion of 𝑃 after 𝑃0, . . . , 𝑃ℓ−1 have been peeled off.

If 𝑔ℓ : 𝑇1 → F<𝑟 [𝑧1] and 𝑤ℓ : 𝑇1 × [𝑟] → Z≥0 are as defined in Algorithm 3, i.e., for 𝑎 ∈ 𝑇1,
𝑔ℓ (𝑎) is the guess for (𝑃ℓ (𝑎 + 𝑧1) mod ⟨𝑧1⟩𝑟) that comes from using Algorithm 1 on 𝑓ℓ at 𝑥1 = 𝑎

and 𝑤ℓ (𝑎, 𝑖) represents the confidence we have in the (𝑖 − 1)𝑡ℎ derivative of 𝑃ℓ (𝑎 + 𝑧1) at 𝑎 as
specified by 𝑔ℓ, then

Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ) ≤ Δ(𝑠)mult(𝑓ℓ, Enc(𝑠)𝑇1×𝑇2
(𝑃ℓ)) < 1

2
𝑛2

(
𝑠 − 𝑑

𝑛

)
.

PROOF . It will be helpful to recall the definition of Γ𝑠,𝑑,ℓ𝑤ℓ from Definition 6.1:

Γ𝑠,𝑑,ℓ𝑤ℓ (𝑔ℓ, 𝑃ℓ) :=
𝑟−1∑︁
𝑖=0

∑︁
𝑎∈𝐴𝑖 (𝑔ℓ,𝑃ℓ)

max
{(
𝑛 ·

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤ℓ (𝑎, 𝑖)

)
,max
𝑗<𝑖

𝑤ℓ (𝑎, 𝑗)
}

+
∑︁

𝑎∈𝐴𝑟 (𝑔ℓ,𝑃ℓ)
max
𝑗<𝑟

𝑤ℓ (𝑎, 𝑗) ,

43 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

where for every 𝑖 ∈ [𝑟 + 1]

𝐴𝑖 (𝑔ℓ, 𝑃ℓ) =
{
𝑎 ∈ 𝑇1 : max

{
𝑗 ∈ [𝑟 + 1] : 𝑔ℓ (𝑎) = 𝑃ℓ (𝑎 + 𝑧1) mod ⟨𝑧1⟩ 𝑗

}
= 𝑖

}
.

We also recall the definition of the weights. In short, for every column 𝑎 ∈ 𝑇1 and level 𝑖,
𝑓 (𝑖,𝑎)ℓ is the received word and 𝐺 (𝑖,𝑎)ℓ is the result of univariate multiplicity decoding. The weight
is their multiplicity distance, capped at 𝑛

2 · ((𝑠 − 𝑖) − 𝑑−ℓ
𝑛).

Formally, 𝑓 (𝑖,𝑎)ℓ : 𝑇2 → F<𝑠−𝑖 [𝑧2] refers to

𝑓 (𝑖,𝑎)ℓ (𝑏) =
∑︁
𝑗∈[𝑠−𝑖]

𝑓ℓ,(𝑖, 𝑗) (𝑎, 𝑏) · 𝑧 𝑗2,

while 𝐺 (𝑖,𝑎)ℓ is the output of Algorithm 1 on input
(
𝑇2, 𝑑 − ℓ, 𝑠 − 𝑖, 𝑓 (𝑖,𝑎)ℓ

)
.

Then, the weights 𝑤ℓ are defined as

𝑤ℓ (𝑎, 𝑖) := min
{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
,
𝑛

2
·
(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)}
.

Having found 𝐺 (𝑖,𝑎)ℓ for each 𝑎 ∈ 𝑇 and 𝑖 ∈ [𝑠], we extract our guess for 𝑃ℓ for each 𝑎 ∈ 𝑇 ,
as the function 𝑔ℓ : 𝑇1 → F<𝑟 [𝑧1].

𝑔ℓ (𝑎) :=
∑︁
𝑖∈[𝑟]

Coeff𝑥𝑑−ℓ2

(
𝐺 (𝑖,𝑎)ℓ

)
𝑧𝑖1.

It follows from the definition that 𝐴𝑖 (𝑔ℓ, 𝑃ℓ) refers to the set of 𝑎’s in 𝑇1 such that 𝑔ℓ and
𝑃ℓ agree up to the (𝑖 − 1)𝑡ℎ-derivative at 𝑎 but not at the 𝑖𝑡ℎ-derivative for 𝑖 < 𝑟 while 𝐴𝑟 (𝑔ℓ, 𝑃ℓ)
refers to the set of 𝑎’s in 𝑇1 such that 𝑔ℓ and 𝑃ℓ agree up to the (𝑟 − 1)𝑡ℎ-derivative. Further,
as mentioned earlier, 𝑤ℓ (𝑎, 𝑖) represents the confidence we have in the (𝑖 − 1)𝑡ℎ derivative of
𝑃ℓ (𝑎 + 𝑧1) at 𝑎 as specified by 𝑔ℓ.

Also, define the polynomial 𝑃 (𝑖,𝑎)ℓ (𝑥2) ∈ F≤𝑑−ℓ [𝑥2] as

𝑃 (𝑖,𝑎)ℓ (𝑥2) B Coeff𝑧𝑖1

©­«
𝑑∑︁
𝑗=ℓ

𝑃 𝑗 (𝑎 + 𝑧1) 𝑥𝑑− 𝑗2
ª®¬ .

That is, the 𝑖𝑡ℎ Hasse derivative with respect to 𝑥1, of 𝑃ℓ at 𝑎.
Hence, if the received word 𝑓ℓ and the polynomial 𝑃ℓ =

∑𝑑
𝑗=ℓ 𝑃 𝑗 agree completely, then the

following three conditions are met
𝑓 (𝑖,𝑎)ℓ (𝑏) =

(
Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
(𝑏) = 𝑃 (𝑖,𝑎)ℓ (𝑏 + 𝑧2) mod ⟨𝑧2⟩ (𝑠−𝑖) ,∀𝑖, 𝑎, 𝑏.

The polynomials 𝐺 (𝑖,𝑎)ℓ and 𝑃 (𝑖,𝑎)ℓ are identical, for all 𝑖, 𝑎.
𝑔ℓ = Enc(𝑟) (𝑃ℓ).
Our ultimate goal is to prove Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ) ≤ Δ(𝑠)mult(𝑓ℓ, Enc(𝑠)𝑇1×𝑇2

(𝑃ℓ)). We will first show

Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ) ≤
∑︁
𝑎∈𝑇1

max
𝑖∈[𝑠]

{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))}

44 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

and then ∑︁
𝑎∈𝑇1

max
𝑖∈[𝑠]

{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))}
≤ Δ(𝑠)mult

(
𝑓ℓ, Enc(𝑠)

(
𝑃ℓ

))
First, fix some 𝑎 ∈ 𝑇1 and let 𝑎 ∈ 𝐴𝑖 (𝑔ℓ, 𝑃ℓ) for some 𝑖 ∈ [𝑟 + 1]. Recall that its contribution

to Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ) is at least 𝑛
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
− 𝑤ℓ (𝑎, 𝑖). We will show an upper bound on this

quantity.
For every 𝑗 ∈ [𝑟 + 1], since the decoded polynomial 𝐺 (𝑗,𝑎) is the closest, it is no further than

the encoding of 𝑃 (𝑗,𝑎)ℓ .

Δ(𝑠− 𝑗)mult

(
𝑓 (𝑗,𝑎)ℓ , Enc(𝑠− 𝑗)

(
𝑃 (𝑗,𝑎)ℓ

))
≥ Δ(𝑠− 𝑗)mult

(
𝑓 (𝑗,𝑎)ℓ , Enc(𝑠− 𝑗)

(
𝐺 (𝑗,𝑎)ℓ

))
.

Further if 𝑖 < 𝑟, we can now apply the triangle inequality to get

Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
+ Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
≥ Δ(𝑠−𝑖)mult

(
Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

)
, Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
.

Since 𝑖 < 𝑟 and 𝑎 ∈ 𝐴𝑖 (𝑔ℓ, 𝑃ℓ), we have 𝑔ℓ (𝑎) ≠ 𝑃ℓ (𝑎+ 𝑧1) mod ⟨𝑧1⟩𝑖 . Hence, 𝑃 (𝑖,𝑎)ℓ ≠ 𝐺 (𝑖,𝑎)ℓ

are two distinct polynomials of degree at most 𝑑 − ℓ and by the distance of the (𝑠 − 𝑖)𝑡ℎ order
multiplicity code, we have

Δ(𝑠−𝑖)mult

(
Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

)
, Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
≥ 𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
,

which in turn yields, combining with the triangle inequality from above,

Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
≥ 𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
.

Recall that

𝑤ℓ (𝑎, 𝑖) = min
{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
,
𝑛

2
·
(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)}
First we consider the case that the minimum is attained at the first term. That is,

Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
≤ 𝑛

2
·
(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
.

In that case,

𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
= 𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤ℓ (𝑎, 𝑖)

Otherwise, if Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝐺 (𝑖,𝑎)ℓ

))
> 𝑛

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
, then,

Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
>
𝑛

2
·
(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
.

45 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

In both cases, we get that if 𝑖 < 𝑟, then

Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
≥ 𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤ℓ (𝑎, 𝑖).

Now, by the definition of Γ and 𝑤,

Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ) =
𝑟−1∑︁
𝑖=0

∑︁
𝑎∈𝐴𝑖 (𝑔ℓ,𝑃ℓ)

max
{(
𝑛

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤ℓ (𝑎, 𝑖)

)
,max
𝑗<𝑖

𝑤ℓ (𝑎, 𝑗)
}

+
∑︁

𝑎∈𝐴𝑟 (𝑔ℓ,𝑃ℓ)
max
𝑗<𝑟

𝑤ℓ (𝑎, 𝑗)

≤
∑︁
𝑎∈𝑇1

max
𝑖∈[𝑠]

{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))}
.

This proves the first inequality indicated above. We now prove the second:∑︁
𝑎∈𝑇1

max
𝑖∈[𝑠]

{
Δ(𝑠−𝑖)mult

(
𝑓 (𝑖,𝑎)ℓ , Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))}
≤ Δ(𝑠)mult

(
𝑓ℓ, Enc(𝑠)

(
𝑃ℓ

))
.

To see this, note that the right-hand side is
∑
𝑎∈𝑇1

∑
𝑏∈𝑇2

(
𝑠 − 𝑑 (𝑠)min

(
𝑓ℓ (𝑎, 𝑏) −

(
Enc(𝑠)

(
𝑃ℓ

))
(𝑎, 𝑏)

))
and the left-hand side is

∑
𝑎∈𝑇1 max𝑖∈[𝑠]

∑
𝑏∈𝑇2

(
(𝑠 − 𝑖) − 𝑑 (𝑠−𝑖)min

(
𝑓 (𝑖,𝑎)ℓ (𝑏) −

(
Enc(𝑠−𝑖)

(
𝑃 (𝑖,𝑎)ℓ

))
(𝑏)

))
.

Since both have a summation over 𝑎 ∈ 𝑇1, we will show the inequality holds term by term for
each 𝑎 ∈ 𝑇1.

Hence, fix an 𝑎 ∈ 𝑇1. Let 𝑑 (𝑠)min

(
𝑓ℓ (𝑎, 𝑏) −

(
Enc(𝑠)𝑃ℓ

)
(𝑎, 𝑏)

)
= 𝑑0. Then the right-hand side

is 𝑠 − 𝑑0.
Say the maximum on the left-hand side is attained at some 𝑖0. Then the left-hand side is∑︁

𝑏∈𝑇2

(𝑠 − 𝑖0) − 𝑑 (𝑠−𝑖0)min

(
𝑓 (𝑖0,𝑎)ℓ (𝑏) −

(
Enc(𝑠−𝑖0)𝑃 (𝑖0,𝑎)ℓ

)
(𝑏)

)
.

Note that 𝑑0 ≤ 𝑖0 + 𝑑 (𝑠−𝑖0)min

(
𝑓 (𝑖0,𝑎)ℓ (𝑏) −

(
Enc(𝑠−𝑖0)𝑃 (𝑖0,𝑎)ℓ

)
(𝑏)

)
, and hence

𝑠 − 𝑑0 ≥ (𝑠 − 𝑖0) − 𝑑 (𝑠−𝑖0)min

(
𝑓 (𝑖0,𝑎)ℓ (𝑏) −

(
Enc(𝑠−𝑖0)𝑃 (𝑖0,𝑎)ℓ

)
(𝑏)

)
.

This completes the proof. ■

Now that we have all the necessary ingredients, we complete the proof of Theorem 7.2.

PROOF OF THEOREM 7.2 . We first observe that Algorithm 3 never outputs an incorrect
answer, since towards the end of the algorithm we always check whether the polynomial 𝑃 that
is the potential output indeed satisfies

Δ(𝑠)mult(𝑓 , Enc(𝑠)𝑇1×𝑇2
(𝑃)) < 1

2
𝑛2

(
𝑠 − 𝑑

𝑛

)
,

and 𝑃 is output only if the check passes. In particular, Algorithm 3 does not output a polynomial
if there is no codeword close enough to the received word.

46 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

Thus, to show the correctness of the algorithm, it suffices to assume that there exists a
polynomial 𝑄 of degree at most 𝑑 that is close to the received word 𝑓 and argue that in this case
the polynomial 𝑃 output by the algorithm equals 𝑄. Let 𝑄(𝑥1, 𝑥2) =

∑𝑑
ℓ=0𝑄ℓ (𝑥1)𝑥𝑑−ℓ2 with the

polynomials 𝑄ℓ satisfying deg(𝑄ℓ) ≤ ℓ.
Algorithm 3 proceeds in 𝑑 + 1 iterations and we now claim that at the end of iteration ℓ,

we have correctly recovered 𝑄0, 𝑄1, . . . , 𝑄ℓ. More formally, we have the following claim.

CLAIM 7.4. Let ℓ be any element in {0, 1, . . . , 𝑑}. Then, at the end of the iteration ℓ of the for
loop in line 2 of Algorithm 3, we have that the polynomial 𝑃ℓ (𝑥1) equals 𝑄ℓ (𝑥1).

Clearly, the claim proves the correctness of Algorithm 3. We now prove this claim by a
strong induction on ℓ. The argument for the base case of the algorithm, i.e. ℓ = 0 is essentially
the same as the in the induction step. So, we just sketch the argument for the induction step.

To this end, we assume that for every 𝑖 ∈ {0, 1, . . . , ℓ − 1}, 𝑃𝑖 (𝑥1) = 𝑄𝑖 (𝑥1) and prove that
𝑃ℓ (𝑥1) = 𝑄ℓ (𝑥1). To start with, let

𝑄ℓ := 𝑄 −
ℓ−1∑︁
𝑖=0

𝑄𝑖 (𝑥1)𝑥𝑑−𝑖2 .

From the induction hypothesis, note that

𝑄ℓ = 𝑄 −
ℓ−1∑︁
𝑖=0

𝑃𝑖 (𝑥1)𝑥𝑑−𝑖2 .

Thus, from the definition of the function 𝑓ℓ : 𝑇1 × 𝑇2 → F<𝑠 [𝑧1, 𝑧2] in Line 2 of Algorithm 3 as

𝑓ℓ := 𝑓 − Enc(𝑠)
(
ℓ−1∑︁
𝑖=0

𝑃𝑖 (𝑥1)𝑥𝑑−𝑖2

)
,

and the linearity of the encoding map for multiplicity codes, we have

Δ(𝑠)mult

(
𝑓ℓ, Enc(𝑠)𝑇1×𝑇2

(
𝑄ℓ

))
= Δ(𝑠)mult

(
𝑓 − Enc(𝑠)

(
ℓ−1∑︁
𝑖=0

𝑃𝑖 (𝑥1) 𝑥𝑑−𝑖2

)
, Enc(𝑠)𝑇1×𝑇2

(
𝑄 −

ℓ−1∑︁
𝑖=0

𝑄𝑖 (𝑥1) 𝑥𝑑−𝑖2

))
= Δ(𝑠)mult

(
𝑓 , Enc(𝑠)𝑇1×𝑇2

(𝑄)
)

<
1
2
𝑛2

(
𝑠 − 𝑑

𝑛

)
With this guarantee in hand, we now proceed with the analysis of the ℓ𝑡ℎ iteration.

Now, for every 𝑎 ∈ 𝑇1, and 𝑖 ∈ {0, 1, . . . , 𝑟 − 1} for 𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋, the function 𝑓 (𝑖,𝑎)ℓ : 𝑇2 →
F<𝑠−𝑖 [𝑧2] defined as

𝑓 (𝑖,𝑎)ℓ (𝑏) =
∑︁
𝑗∈[𝑠−𝑖]

𝑓ℓ,(𝑖, 𝑗) (𝑎, 𝑏) · 𝑧 𝑗2

can be viewed as a received word for a univariate multiplicity code with multiplicity (𝑠 − 𝑖)
and degree 𝑑 − ℓ on the set 𝑇2 of evaluation points. Indeed, if the original received word 𝑓 had

47 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

no errors, and was in fact the encoding of 𝑄, then 𝑓 (𝑖,𝑎)ℓ must be equal to the encoding of the
univariate polynomial obtained by taking the 𝑖𝑡ℎ order (Hasse) derivative of 𝑄ℓ with respect to
𝑥1 and setting 𝑥1 to 𝑎. Since the degree of 𝑄ℓ in 𝑥2 was at most 𝑑 − ℓ, the resulting 𝐺 (𝑖,𝑎)ℓ also has
degree at most 𝑑 − ℓ.

By combining the output of various calls to Algorithm 1, we obtain the function 𝑔ℓ and the
weight function 𝑤ℓ which together are part of an input to the Weighted Univariate Multiplicity
Code Decoder (Algorithm 2). Now Lemma 7.3 shows that Δ(𝑠)mult

(
𝑓ℓ, Enc(𝑠)

(
𝑃ℓ

))
< 1

2𝑛
2
(
𝑠 − 𝑑

𝑛

)
.

This is the promise needed to invoke Theorem 6.6, which states that Algorithm 2 returns 𝑃ℓ.
Since Δ(𝑠)mult(𝑓ℓ, Enc(𝑠)𝑇1×𝑇2

(𝑃ℓ)) and Δ(𝑠)mult(𝑓ℓ, Enc(𝑠)𝑇1×𝑇2
(𝑄ℓ)) are both upper-bounded by half the

minimum distance between polynomials, 𝑃ℓ must equal 𝑄ℓ (𝑥1), which completes the induction
step.

The upper bound on the running time follows immediately from the time complexity of
Algorithm 1 (Theorem 4.3) and Algorithm 2 (Theorem 6.6). ■

8. Multivariatemultiplicity code decoder

In this section, we extend the bivariate decoder (Algorithm 3) constructed in Section 7 to
the multivariate setting with 𝑚 > 2. The extension to larger 𝑚 proceeds as suggested by the
inductive proof of the multiplicity SZ Lemma. If we perform the induction following the standard
textbook proof of the SZ Lemma (e.g., in [1] and the proof in Kim and Kopparty’s work [13]), we
need a “weighted multivariate multiplicity code decoder”. However, we do not even have a
weighted version of the bivariate decoder. We get around this issue by performing a slightly
different proof of the SZ Lemma. This alternative proof of the SZ Lemma proceeds by viewing
the polynomial as an (𝑚 − 1)-variate polynomial with the coefficients coming from a univariate
polynomial ring F[𝑥𝑚] instead of as a univariate polynomial in 𝑥𝑚 with the coefficients coming
from the (𝑚− 1)-variate polynomial ring F[𝑥1, . . . , 𝑥𝑚−1]. We first present this alternative proof
of the classical SZ Lemma (without multiplicities) in Section 8.1 and in the subsequent sections,
extend the bivariate decoder (Algorithm 3) to the multivariate decoder (Algorithm 4).

8.1 Multivariate Schwartz-Zippel Lemma

LEMMA 8.1 (Schwartz-Zippel Lemma). Let 𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ F[x] be a non-zero 𝑚 variate
polynomial of total degree at most 𝑑 and let 𝑇1, 𝑇2, . . . , 𝑇𝑚 be subsets of 𝐹 of size 𝑛 each. Then, the
number of zeroes of 𝑃 on the product set 𝑇1 × 𝑇2 × · · · × 𝑇𝑚 is at most 𝑑𝑛𝑚−1.

PROOF . The proof is via induction on 𝑚 as usual. The base case, where 𝑚 = 1 is clear. For the
induction step, we view 𝑃 as a polynomial in the variables 𝑥1, 𝑥2, . . . , 𝑥𝑚−1, with the coefficients

48 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

being from the polynomial ring F[𝑥𝑚].

𝑃(x) =
ℓ∑︁
𝑖=0

𝑃𝑖 (x) ,

where the polynomial 𝑃𝑖 (x) is homogeneous and degree 𝑖 when viewed as a polynomial in the
variables 𝑥1, . . . , 𝑥𝑚−1 with coefficients in F[𝑥𝑚]. Note that ℓ is equal to the total degree of 𝑃 in
𝑥1, . . . , 𝑥𝑚−1 and is at most 𝑑, and the degree of 𝑃𝑖 in the variable 𝑥𝑚 is at most 𝑑 − 𝑖. Now, for
any setting 𝑎𝑚 of 𝑥𝑚 in 𝑇𝑚, we consider two cases based on whether 𝑃ℓ (𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑎𝑚) is
zero or non-zero.

Let 𝑇 ′𝑚 ⊂ 𝑇𝑚 be the set of 𝑎𝑚 ∈ 𝑇𝑚 such that 𝑃ℓ (𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑎𝑚) is identically zero.
Viewing 𝑃ℓ (𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑥𝑚) as a univariate polynomial in 𝑥𝑚 of degree at most 𝑑 − ℓ with
coefficients from F(𝑥1, . . . , 𝑥𝑚−1), we get that |𝑇 ′𝑚 | ≤ 𝑑 − ℓ. For every each 𝑎𝑚 ∈ 𝑇 ′𝑚, the total
number of (𝑎1, . . . , 𝑎𝑚−1) ∈ 𝑇1 × · · · × 𝑇𝑚−1 such that 𝑃(𝑎1, . . . , 𝑎𝑚−1, 𝑎𝑚) equals zero is trivially
at most 𝑛𝑚−1.

On the other hand for every 𝑎𝑚 ∈ 𝑇𝑚 \ 𝑇 ′𝑚, 𝑃ℓ (𝑥1, . . . , 𝑥𝑚−1, 𝑎𝑚) is not identically zero, and
thus 𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑚−1, 𝑎𝑚) is a non-zero (𝑚 − 1) variate polynomial of degree ℓ. Thus, for each
𝑎𝑚 ∈ 𝑇𝑚 \ 𝑇 ′𝑚 by the induction hypothesis, the total number of (𝑎1, . . . , 𝑎𝑚−1) ∈ 𝑇1 × · · · × 𝑇𝑚−1

such that 𝑃(𝑎1, . . . , 𝑎𝑚−1, 𝑎𝑚) equals zero is at most ℓ · 𝑛𝑚−2.
Therefore, the total number of zeroes of 𝑃 on the product set 𝑇1 × 𝑇2 × · · · × 𝑇𝑚 is at most

|𝑇 ′𝑚 | · 𝑛𝑚−1 + (𝑛 − |𝑇 ′𝑚 |) · ℓ · 𝑛𝑚−2 ≤ (|𝑇 ′𝑚 | + ℓ)𝑛𝑚−1 ,

which is at most 𝑑𝑛𝑚−1, since 𝑇 ′𝑚 is of size at most 𝑑 − ℓ. ■

We do remark that the way induction is set up in the above proof is different from the way
it proceeds in a typical proof of this lemma, where 𝑃 is viewed as a univariate polynomial in
𝑥𝑚 with the coefficients coming from the (𝑚 − 1)-variate polynomial ring F[𝑥1, . . . , 𝑥𝑚−1] (as
opposed to being viewed as an (𝑚 − 1)-variate polynomial with the coefficients coming from a
univariate polynomial ring F[𝑥𝑚].). This subtle difference also shows up in the way induction is
done in our decoding algorithm for the multivariate case when compared to how Kim-Kopparty
proceed in the decoding algorithm for multivariate Reed-Muller codes [13]. In fact, it is not clear
to us that the results in this paper can be obtained if we set up the induction as in the work
of Kim and Kopparty [13]. The main technical difficulty is that we do not have an analogue of
Algorithm 3 when the received word comes with weights.

8.2 Multivariate decoder: description

We now describe our main algorithm for the multivariate case. For this case, the message space
consists of 𝑚-variate degree 𝑑 polynomials. For our algorithm, it will be helpful to think of the

49 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

decomposition of such a polynomial 𝑃 as follows. For brevity, we use e−1 = (𝑒2, 𝑒3, . . . , 𝑒𝑚) to
denote an 𝑚 − 1 tuple, whose coordinates are indexed from 2 up to 𝑚.

𝑃(x) =
∑︁

ℓ∈[𝑑+1]

©­­­­«
∑︁

e−1∈Z𝑚−1
≥0

|e−1 |1=𝑑−ℓ

𝑃ℓ,e−1 (𝑥1) ·
𝑚∏
𝑗=2

𝑥
𝑒 𝑗
𝑗

ª®®®®¬
.

Since the total degree of 𝑃 is at most 𝑑, the degree of the univariate polynomial 𝑃ℓ,e−1 (𝑥1) is at
most ℓ.

Multivariate Multiplicity Code Decoder

To prove the correctness of Algorithm 4 we will generalize the analysis of Algorithm 2. Since,
all the proofs are direct extensions of the corresponding proofs in the bivariate case, we have
skipped them for the sake of brevity.

8.3 Weighted Univariate Multiplicity Code Decoder (multivariate case)

We give the general versions of the statements in Section 6 for the bivariate case. The proofs are
identical, except for the new bounds on distances and weights. Accordingly, 𝑛2 in the distance
statements is replaced by 𝑛𝑚, and 𝑛 in the weight bounds after column decoding is replaced by
𝑛𝑚−1 (since a column is now replaced by recursive decoding over a grid of lower dimension).
There is no change in the matching argument.

8.3.1 Properties of weighted distance

The following is the general definition of the distance Γ between a polynomial and a received
word. The only difference from Definition 6.1 is in the weight bounds (𝑛 is replaced by 𝑛𝑚−1)
and in the contribution of each element 𝑎, the quantity 𝑛(𝑠 − 𝑖) is replaced by 𝑛𝑚−1(𝑠 − 𝑖).

DEF IN IT ION 8.2. Let 𝑑, ℓ, 𝑠, 𝑚 ∈ N be parameters with 𝑑 ≥ ℓ, 𝑇 ⊆ F be a subset of size 𝑛. Let
𝑅 ∈ F[𝑥] be a univariate polynomial of degree at most ℓ, ℎ : 𝑇 → F<𝑟 [𝑧] and 𝑤 : 𝑇 × [𝑟] → Z≥0

be functions such that for every (𝑎, 𝑖) ∈ 𝑇 × [𝑟], 𝑤(𝑎, 𝑖) ≤ 𝑛𝑚−1

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
.

Then, Γ𝑠,𝑑,ℓ𝑤 (ℎ, 𝑅) is defined as follows.

Γ𝑠,𝑑,ℓ𝑤 (ℎ, 𝑅) = ©­«
𝑟−1∑︁
𝑖=0

∑︁
𝑎∈𝐴𝑖 (ℎ,𝑅)

max
{(
𝑛𝑚−1

(
(𝑠 − 𝑖) − 𝑑 − ℓ

𝑛

)
− 𝑤(𝑎, 𝑖)

)
,max
𝑗<𝑖

𝑤(𝑎, 𝑗)
}ª®¬

+
∑︁

𝑎∈𝐴𝑟 (ℎ,𝑅)
max
𝑗<𝑟

𝑤(𝑎, 𝑗)

where for every 𝑖 ∈ [𝑟 + 1]

𝐴𝑖 (ℎ, 𝑅) =
{
𝑎 ∈ 𝑇 : max

{
𝑗 ∈ [𝑟 + 1] : ℎ(𝑎) = 𝑅(𝑎 + 𝑧) mod ⟨𝑧⟩ 𝑗} = 𝑖

}
.

50 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

Input: 𝑚;𝑇1, 𝑇2, . . . , 𝑇𝑚 ⊆ F, |𝑇1 | = · · · = |𝑇𝑚| = 𝑛 ⊲ #variables & points of evaluation

𝑑, 𝑠 ⊲ degree and multiplicity resp.

𝑓 : 𝑇1 × 𝑇2 × · · · × 𝑇𝑚→ F<𝑠[𝑧1, 𝑧2, . . . , 𝑧𝑚]. ⊲ received word

Output: 𝑃 =
∑

ℓ∈[𝑑+1]
∑

e∈Z𝑚−1
≥0 ,|e|1=𝑑−ℓ 𝑃ℓ,e (𝑥1) ·

∏𝑚
𝑗=2 𝑥

𝑒 𝑗
𝑗 ∈ F≤𝑑[𝑥1, 𝑥2, . . . , 𝑥𝑚] such that

Δ(𝑠)mult
(
𝑓 , Enc(𝑠) (𝑃)) < 1

2𝑛
𝑚

(
𝑠 − 𝑑

𝑛

)
, if such a 𝑃 exists.

1: if m = 2 then
2: Run Bivariate Multiplicity Code Decoder (Algorithm 3) on (𝑇1, 𝑇2, 𝑑, 𝑠, 𝑓)

to obtain 𝑃 ;
3: else
4: Set 𝑇 ← 𝑇2 × · · · × 𝑇𝑚;
5: for ℓ ← 0 to 𝑑 do
6: Define 𝑓ℓ : 𝑇1 × 𝑇 → F<𝑠[z] as ⊲ received word for the ℓ𝑡ℎ iteration

𝑓ℓ ← 𝑓 − Enc(𝑠)
(∑

𝑖∈[ℓ]
(∑

e−1∈Z𝑚−1
≥0 ,|e−1 |1=𝑑−𝑖 𝑃ℓ,e−1 (𝑥1) ·

∏𝑚
𝑗=2 𝑥

𝑒 𝑗
𝑗

))
;

∀a ∈ 𝑇1 × 𝑇, let 𝑓ℓ (a) =
∑

i 𝑓ℓ,i (a) zi ; ⊲ some more notation

7: Set 𝑟 ← 𝑠 − ⌊𝑑−ℓ𝑛 ⌋ ; ⊲ number of usable derivatives

8: for 𝑎 ∈ 𝑇1 do
9: for 𝑖 ← 0 to 𝑟 − 1 do

10: Define 𝑓
(𝑖,𝑎)
ℓ : 𝑇 → F<𝑠−𝑖 [𝑧2, . . . , 𝑧𝑚] as
𝑓
(𝑖,𝑎)
ℓ (a−1) =

∑
i−1∈[𝑠−𝑖] 𝑓ℓ,(𝑖,i−1) (𝑎, a−1) · zi−1

−1, where
z−1 = (𝑧2, . . . , 𝑧𝑚), a−1 = (𝑎2, . . . , 𝑎𝑚) and
i−1 = (𝑖2, . . . , 𝑖𝑚) ;

11: (Recursively) run Multivariate Multiplicity Code Decoder

(Algorithm 4) on
(
𝑚− 1, 𝑇, 𝑑− ℓ, 𝑠 − 𝑖, 𝑓 (𝑖,𝑎)ℓ

)
to obtain

𝐺
(𝑖,𝑎)
ℓ ∈ F≤𝑑−ℓ [𝑥2, 𝑥3, . . . , 𝑥𝑚] ;

12: if 𝐺
(𝑖,𝑎)
ℓ is ⊥ then set 𝐺

(𝑖,𝑎)
ℓ ← 0;

13: Define 𝑤ℓ : 𝑇1 × [𝑟] → Z≥0 as
𝑤ℓ (𝑎, 𝑖) ←
min

{
Δ(𝑠−𝑖)mult

(
𝑓
(𝑖,𝑎)
ℓ , Enc(𝑠−𝑖)

(
𝐺
(𝑖,𝑎)
ℓ

))
, 𝑛

𝑚−1

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)}
;

14: For every e−1 ∈ Z𝑚−1
≥0 , |e−1 |1 = 𝑑− ℓ, define 𝑔ℓ,e−1 : 𝑇1 → F<𝑟 [𝑧1] as

𝑔ℓ,e−1 (𝑎) ←
∑

𝑖∈[𝑟] Coeffxe−1
−1

(
𝐺
(𝑖,𝑎)
ℓ

)
𝑧𝑖1 , where

x−1 = (𝑥2, 𝑥3, . . . , 𝑥𝑚), e−1 = (𝑒2, . . . , 𝑒𝑚), and
xe−1
−1 = 𝑥𝑒2

2 · 𝑥𝑒3
3 · · · 𝑥𝑒𝑚𝑚 ;

15: For every e−1 ∈ Z𝑚−1
≥0 , |e−1 |1 = 𝑑− ℓ, run Weighted Univariate

Multiplicity Code Decoder (Algorithm 2) on
(
𝑇1, 𝑑, 𝑠, 𝑚, ℓ, 𝑟, 𝑔ℓ,e−1 , 𝑤ℓ

)
to get 𝑃ℓ,e−1 ;

16: Set 𝑃(𝑥1, . . . , 𝑥𝑚) ←
∑

ℓ∈[𝑑+1]
∑

e∈Z𝑚−1
≥0 ,|e|1=𝑑−ℓ 𝑃ℓ,e (𝑥1) ·

∏𝑚
𝑗=2 𝑥

𝑒 𝑗
𝑗 ;

17: if Δ(𝑠)mult
(
𝑓 , Enc(𝑠) (𝑃)) < 1

2𝑛
𝑚

(
𝑠 − 𝑑

𝑛

)
then return 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑚) else return ⊥.

Algorithm 4. Multivariate Multiplicity Code Decoder

51 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

The following is a triangle-inequality-type statement for the general definition of Γ.

LEMMA 8.3 (Triangle-like inequality for Γ). Let 𝑑, ℓ, 𝑠, 𝑚 ∈ N be parameters with 𝑑 ≥ ℓ,
𝑇 ⊆ F be a subset of size 𝑛. Let 𝑄, 𝑅 ∈ F[𝑥] be univariate polynomials of degree at most ℓ,
ℎ : 𝑇 → F<𝑟 [𝑧] and 𝑤 : 𝑇 × [𝑟] → Z≥0 be functions such that for every (𝑎, 𝑖) ∈ 𝑇 × [𝑟], 𝑤(𝑎, 𝑖) ≤
𝑛𝑚−1

2 ·
(
(𝑠 − 𝑖) − 𝑑−ℓ

𝑛

)
.

If 𝑄 ≠ 𝑅, then

Γ𝑠,𝑑,ℓ𝑤 (ℎ, 𝑄) + Γ𝑠,𝑑,ℓ𝑤 (ℎ, 𝑅) ≥ 𝑛𝑚
(
𝑠 − 𝑑

𝑛

)
.

PROOF SKETCH. The proof is identical to that of Lemma 6.2, with the following one difference:
where we count a contribution of the form (𝑠 − 𝑖)𝑛 − (𝑑 − ℓ), that is replaced by 𝑛𝑚−1((𝑠 − 𝑖) −
(𝑑 − ℓ)/𝑛) (in accordance with the new weight bound). ■

The following is the relationship between the distance we work with, Γ, and the multiplicity
distance Δ.

LEMMA 8.4 (Relationship between Γ and multiplicity distance). Let 𝑇1, 𝑇2, . . . , 𝑇𝑚 ⊆ F be sets
of size 𝑛 each, and 𝑑, ℓ, 𝑠, 𝑟 be natural numbers with 𝑑 ≥ ℓ and 𝑟 = 𝑠 − ⌊ 𝑑−ℓ𝑛 ⌋. Let

𝑃 =
𝑑∑︁
𝑖=0

∑︁
x−1 : monomials of degree 𝑑−𝑖

𝑃𝑖,x−1 (𝑥1)x−1

be a polynomial of degree at most 𝑑 with Δ(𝑠)mult(Enc(𝑠)𝑇1×𝑇2×···×𝑇𝑚 (𝑃), 𝑓) <
1
2𝑛

𝑚(𝑠 − 𝑑
𝑛). If 𝑔ℓ : 𝑇1 →

F<𝑟 [𝑧] and 𝑤ℓ : 𝑇1 × [𝑟] → Z≥0 are as defined in the main multivariate algorithm, then for every
fixed monomial x−1 of degree 𝑑 − ℓ,

Γ𝑠,𝑑,ℓ𝑤 (𝑔ℓ, 𝑃ℓ,𝑥−1) ≤ Δ(𝑠)mult(𝑓 , Enc(𝑠)𝑇1×𝑇2×···×𝑇𝑚 (𝑃)) <
1
2
𝑛𝑚

(
𝑠 − 𝑑

𝑛

)
.

PROOF SKETCH. The proof is identical to that of Lemma 7.3, with instances of (𝑠 − 𝑖)𝑛 being
once again replaced by (𝑠 − 𝑖)𝑛𝑚−1. ■

8.3.2 Proof of Theorem 3.9 (correctness of Algorithm 4)

Recall that the algorithm proceeds by trying every possible vector of thresholds 𝜽. The following
lemma asserts that one of the thresholds can be used to carry out the decoding.

LEMMA 8.5. Let 𝑔 be the received word. If 𝑅 is such that Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) < 𝑛𝑚

2 (𝑠 − 𝑑
𝑛), then there is a

vector of thresholds 𝜽 that can be used to find 𝑅.

PROOF SKETCH. The proof is identical to that of Lemma 6.5: it proceeds by contradiction,
assuming that no such vector exists. We start by making a claim on the size of 𝐴, the set of
points where the received word 𝑔 agrees with the desired polynomial 𝑅.

52 / 53 S. Bhandari, P. Harsha, M. Kumar, A. Shankar

CLAIM 8.6. Let 𝑔 be any received word and 𝑅 be a degree ℓ polynomial with Γ𝑑,ℓ,𝑠𝑤 (𝑔, 𝑅) <
𝑛𝑚

2 (𝑠 − 𝑑
𝑛). Let 𝐴 be the set of points where 𝑔 and 𝑅 agree. Then, |𝐴| > ℓ.

Proof sketch. The proof is identical to that of claim 6.7, with instances of (𝑠 − 𝑖)𝑛 being once
again replaced by (𝑠 − 𝑖)𝑛𝑚−1. ■

We then define a good pairing as before, the same as Definition 6.8. Lemma 6.9 and
claim 6.12 which assert that such a good pairing exists, remain the same, word for word.

Finally, we use this pairing to compute the error, and show it is more than promised, under
the contradiction assumption that no threshold vector works. The statement of claim 6.13
remains the same. In its proof, in the error calculation, as expected (𝑠 − 𝑖)𝑛 is replaced by
(𝑠 − 𝑖)𝑛𝑚−1. ■

The remainder of the proof is similar to the proof of Theorem 7.2 presented in Section 7.

Running time: Let𝑊 (𝑚) denote the running time of the 𝑚-variate decoder. Then, by Theo-
rem 7.2, 𝑊 (2) = (𝑠𝑛)𝑠+𝑂(1) . From the structure of Algorithm 4, 𝑊 (𝑚) satisfies the following
recurrence:

𝑊 (𝑚) ≤ (𝑠𝑛)𝑠+𝑂(1) ·
(
𝑚 + 𝑠 − 1

𝑠

)
+ (𝑠𝑛)2 ·𝑊 (𝑚 − 1).

From this we conclude that𝑊 (𝑚) is upper bounded by (𝑠𝑛)3𝑚+𝑠+𝑂(1) · (𝑚+𝑠−1
𝑠

)
.

Acknowledgements

We are thankful to Swastik Kopparty, Ramprasad Saptharishi and Madhu Sudan for many
helpful discussions and much encouragement. A special thanks to Madhu for sitting through
many long presentations of the preliminary versions of the proofs and his comments.

53 / 53 Algorithmizing the Multiplicity Schwartz-Zippel Lemma

References
[1] Sanjeev Arora and Boaz Barak. Computational
Complexity: A Modern Approach. Cambridge
University Press, 2009. DOI (47)

[2] Elwyn R. Berlekamp. Algebraic Coding Theory.
World Scientific, revised edition, 2015. DOI (3)

[3] Siddharth Bhandari, Prahladh Harsha,
Mrinal Kumar, and Ashutosh Shankar.
Algorithmizing the Multiplicity Schwartz-Zippel
lemma. Proc. 34th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 2816–2835,
2023. DOI ePrint (1)

[4] Siddharth Bhandari, Prahladh Harsha,
Mrinal Kumar, and Madhu Sudan. Decoding
multivariate multiplicity codes over product sets.
IEEE Trans. Inform. Theory, 70(1):154–169, 2024.
(Preliminary version in 53rd STOC, 2021). DOI
ePrint (1, 4–6)

[5] Richard A. DeMillo and Richard J. Lipton. A
probabilistic remark on algebraic program testing.
Inform. Process. Lett. 7(4):193–195, 1978. DOI (2)

[6] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf,
and Madhu Sudan. Extensions to the method of
multiplicities, with applications to Kakeya sets and
mergers. SIAM J. Comput. 42(6):2305–2328, 2013.
(Preliminary version in 50th FOCS, 2009). DOI
ePrint (1, 2, 16, 17)

[7] George David Forney Jr. Concatenated Codes.
PhD thesis, Massachusetts Institute of Technology,
1965. URL (5, 23, 24, 26)

[8] George David Forney Jr. Generalized minimum
distance decoding. IEEE Trans. Inform. Theory,
12(2):125–131, 1966. DOI (5, 23, 24, 26)

[9] Peter Gemmell and Madhu Sudan. Highly resilient
correctors for polynomials. Inform. Process. Lett.
43(4):169–174, 1992. DOI (6, 19)

[10] Venkatesan Guruswami, Atri Rudra, and
Madhu Sudan. Essential coding theory. 2025.
(draft of book). URL (12, 24, 26)

[11] Venkatesan Guruswami and Madhu Sudan.
Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Trans. Inform.
Theory, 45(6):1757–1767, 1999. (Preliminary version
in 39th FOCS, 1998). DOI ePrint (4, 6)

[12] Larry Guth. Polynomial Methods in Combinatorics,
volume 64 of University Lecture Series. Amer. Math.
Soc., 2016. URL (2)

[13] John Y. Kim and Swastik Kopparty. Decoding
Reed-Muller codes over product sets. Theory
Comput. 13(1):1–38, 2017. (Preliminary version in
31st IEEE Conference on Computational Complexity,
2016). DOI ePrint (1, 4, 6, 47, 48)

[14] Swastik Kopparty. List-decoding multiplicity codes.
Theory of Computing, 11:149–182, 2015. DOI
ePrint (1)

[15] Swastik Kopparty, Shubhangi Saraf, and
Sergey Yekhanin. High-rate codes with
sublinear-time decoding. J. ACM, 61(5):28:1–28:20,
2014. (Preliminary version in 43rd STOC, 2011).
DOI ePrint (1, 16)

[16] Rudolf Lidl and Harald Niederreiter. Finite Fields,
volume 2 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press,
2nd edition, 1996. DOI (53)

[17] László Lovász and Michael D. Plummer. Matchings
in bipartite graphs, Matching Theory. Volume 121,
North-Holland Mathematics Studies, chapter 1,
pages 1–40. North-Holland, 1986. DOI (34)

[18] James L. Massey. Shift-register synthesis and BCH
decoding. IEEE Trans. Inform. Theory,
15(1):122–127, 1969. DOI (3)

[19] Rasmus Refslund Nielsen. List decoding of linear
block codes. PhD thesis, Technical University of
Denmark, 2001. URL (9, 16)

[20] Øystein Ore. Über höhere kongruenzen (German)
[About higher congruences]. Norsk Mat. Forenings
Skrifter, 1(7):15, 1922. (see [16, Theorem 6.13]) (2)

[21] W.Wesley Peterson. Encoding and error-correction
procedures for the Bose-Chaudhuri codes. IRE
Trans. Inf. Theory, 6(4):459–470, 1960. DOI (3)

[22] M. Yu Rosenbloom and
Michael Anatolévich Tsfasman. Коды для
m-метрики (Russian) [Codes for the 𝑚-metric].
Probl. Peredachi Inf. 33(1):55–63, 1997. (English
translation in Problems Inform. Transmission,
33(1):45–52, 1997). URL (16)

[23] Jacob T. Schwartz. Fast probabilistic algorithms
for verification of polynomial identities. J. ACM,
27(4):701–717, 1980. DOI (2)

[24] Madhu Sudan. Decoding of Reed-Solomon codes
beyond the error-correction bound. J. Complexity,
13(1):180–193, 1997. (Preliminary version in 37th
FOCS, 1996). DOI (4)

[25] Lloyd R. Welch and Elwyn R. Berlekamp. Error
correction of algebraic block codes. (U.S. Patent 4
633 470). 1986. URL (4, 6, 19)

[26] Richard Zippel. Probabilistic algorithms for sparse
polynomials. Proc. International Symp. of Symbolic
and Algebraic Computation (EUROSAM), volume 72
of LNCS, pages 216–226. Springer, 1979. DOI (2)

2025 :29
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Ashutosh Shankar.

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1142/9407
https://doi.org/10.1137/1.9781611977554.ch106
https://arxiv.org/abs/2111.11072
https://doi.org/10.1109/TIT.2023.3306849
https://arxiv.org/abs/2012.01530
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1137/100783704
https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-004
http://hdl.handle.net/1721.1/13449
https://doi.org/10.1109/TIT.1966.1053873
https://doi.org/10.1016/0020-0190(92)90195-2
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://doi.org/10.1109/18.782097
https://eccc.weizmann.ac.il/eccc-reports/2009/TR09-0041998/TR98-043
https://bookstore.ams.org/ulect-64/
https://doi.org/10.4086/toc.2017.v013a021
https://arxiv.org/abs/1511.07488
https://doi.org/10.4086/toc.2015.v011a005
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-044
https://doi.org/10.1145/2629416
https://doi.org/10.1145/2629416
https://eccc.weizmann.ac.il/eccc-reports/2010/TR10-148
https://doi.org/10.1017/CBO9780511525926
https://doi.org/10.1016/S0304-0208(08)73637-5
https://doi.org/10.1109/TIT.1969.1054260
https://orbit.dtu.dk/en/publications/list-decoding-of-linear-block-codes
https://doi.org/10.1109/TIT.1960.1057586
https://www.mathnet.ru/eng/ppi359
https://doi.org/10.1145/322217.322225
https://doi.org/10.1006/jcom.1997.0439
https://patents.google.com/patent/US4633470A/
https://doi.org/10.1007/3-540-09519-5_73

	Introduction
	The coding theoretic context and main theorem
	Alternative analysis of Forney's GMD Decoding
	Further discussion and open problems
	Organization

	Overview of algorithm
	An overview of the Kim-Kopparty Reed-Muller decoder
	Generalizing the Kim-Kopparty decoder to s > 1
	Extracting P l from the fractional word
	The multivariate setting for m > 2

	Multiplicity codes and main result
	Notation
	Multiplicity code
	A fine-grained notion of distance for multiplicity codewords
	Main Result

	Decoding univariate multiplicity codes with varying multiplicities
	Description of the generalized univariate multiplicity decoder
	Correctness and running time of Algorithm 1

	Forney's generalized minimum distance decoding
	Concatenated codes
	An alternative analysis of Forney's GMD decoding

	Weighted univariate multiplicity code decoder
	A notion of weighted distance and its properties
	Weighted Univariate Multiplicity Code Decoder
	Proof of correctness of Algorithm 2
	Proof of Lemma 6.5

	Bivariate multiplicity code decoder
	Description of the bivariate decoder
	Analysis of the bivariate decoder

	Multivariate multiplicity code decoder
	Multivariate Schwartz-Zippel Lemma
	Multivariate decoder: description
	Weighted Univariate Multiplicity Code Decoder (multivariate case)
	Properties of weighted distance
	Proof of Theorem 3.9 (correctness of Algorithm 4)

	References

