
1 / 41 2026 : 1

Deterministic Approximate
Counting of Colorings with fewer
than 2Δ Colors via Absence of
Zeros

Received Dec 10, 2024
Revised Aug 25, 2025
Accepted Sep 29, 2025
Published Jan 13, 2026

Key words and phrases
Proper colorings,
anti-ferromagnetic Potts model,
partition function, approximate
counting, zero-freeness

Ferenc Bencsa � �

Khallil Berrekkalb � �

Guus Regtsb � �

a Centrum Wiskunde &
Informatica, Netherlands

b University of Amsterdam,
Netherlands

ABSTRACT. Let Δ, 𝑞 ≥ 3 be integers. We prove that there exists 𝜂 ≥ 0.002 such that if
𝑞 ≥ (2 − 𝜂)Δ, then there exists an open set U ⊂ C that contains the interval [0, 1] such that for
each 𝑤 ∈ U and any graph 𝐺 = (𝑉, 𝐸) of maximum degree at most Δ, the partition function
of the anti-ferromagnetic 𝑞-state Potts model evaluated at 𝑤 does not vanish. This provides a
(modest) improvement on a result of Liu, Sinclair, and Srivastava, and breaks the 𝑞 = 2Δ-barrier
for this problem.

As a direct consequence we obtain via Barvinok’s interpolation method a deterministic
polynomial time algorithm to approximate the number of proper 𝑞-colorings of graphs of
maximum degree at most Δ, provided 𝑞 ≥ (2 − 𝜂)Δ.

1. Introduction

The algorithmic problem of designing an algorithm to (approximately) compute the number of
𝑞-colorings of a graph 𝐺 has received a lot of interest in the past thirty years. The main challenge
is to design for each pair of positive integer Δ, 𝑞 such that 𝑞 ≥ Δ+ 1 an algorithm that on input of
an 𝑛-vertex graph 𝐺 of maximum degree at most Δ and 𝜀 > 0 outputs the number of 𝑞-colorings
of 𝐺 within an exp(𝜀) relative error in time poly(𝑛/𝜀). We note that if 𝑞 < Δ, approximating
the number of proper 𝑞-colorings of a graph of maximum degree Δ is NP-hard [18] (provided
𝑞 is even), even for triangle-free graphs. Thus far the only nontrivial cases for which such an
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algorithm is known to exist correspond to Δ = 3 and 𝑞 ≥ 4 [32]. Below we will say more about
the status of this problem in general.

Over the past thirty years several algorithmic approaches have been developed to approx-
imately count the number of proper colorings (as well as for several other counting problems)
including variations of the celebrated MCMC method [10, 26], the correlation decay approach [2,
20, 41] and the interpolation method [3, 4, 30, 35]. The latter two approaches yield deterministic
algorithms as opposed to the MCMC-based method.

The interpolation method is based on the existence of a zero-free region for an associated
family of polynomials whose evaluations count the number of proper colorings. In the present
paper this role is taken by the partition function of the Potts model, which we will introduce
shortly. The main focus of the present paper is to provide an improved zero-free region for this
polynomial, which, as a direct corollary, yields efficient deterministic approximation algorithms
for counting proper colorings.

The partition function of the Potts model. For a graph 𝐺 = (𝑉, 𝐸), a positive integer 𝑞 and
𝑤 ∈ C, the partition function of the Potts model is defined as

𝑍𝐺 (𝑞;𝑤) :=
∑︁

𝜙:𝑉→[𝑞]
𝑤𝑚(𝜙) , (1)

where [𝑞] := {1, . . . , 𝑞}, and 𝑚(𝜙) denotes the number of monochromatic edges, i.e., the number
of edges {𝑢, 𝑣} such that 𝜙(𝑢) = 𝜙(𝑣). We note that 𝑍𝐺 (𝑞; 0) equals the number of proper 𝑞-
colorings of 𝐺. In statistical physics, one usually takes 𝑤 > 0 parameterized as 𝑤 = 𝑒𝛽𝐽 , where 𝐽

denotes the coupling constant, and 𝛽 the inverse temperature. Here 𝐽 < 0 corresponds to the
anti-ferromagnetic case, while 𝐽 > 0 corresponds to the ferromagnetic case.

Partly motivated by the classical Lee-Yang [29] and Fisher [16] approach to phase tran-
sitions, there is an interest in the location of the complex zeros of 𝑍𝐺 (𝑞;𝑤), both in terms of
the variable 𝑤 [4, 14, 30, 31, 36] and in the variable 𝑞 [5, 6, 8, 9, 13, 15, 23, 25, 38, 39] (for the
latter, one has to extend the partition function of the Potts model to the partition function of the
random cluster model, where 𝑞 can also take non-integer values).

Absence of zeros in computer science. More recently, there has been an increasing in-
terest in understanding the location of these complex zeros from the perspective of computer
science and probability theory. This interest comes from the fact that zero-free regions for the
partition functions of models, such as the Potts model, yield efficient deterministic approxima-
tion algorithms [3, 35], rapid mixing of the associated Glauber dynamics [1, 12], (local) central
limit theorems for associated random variables [24, 28, 34], and decay of correlations [19, 37].
In particular, open sets U containing the interval [0, 1] such that 𝑍𝐺 (𝑞;𝑤) ≠ 0 for all graphs
of maximum degree at most Δ and 𝑤 ∈ U are of interest, since via Barvinok’s interpolation
method [3, 35] they yield efficient algorithms for approximately computing the number of
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proper 𝑞-colorings of these graphs, a notorious problem in computer science [2, 4, 7, 10, 17, 20,
22, 26, 30, 32, 33, 40]. It is a folklore conjecture that such algorithms exist provided 𝑞 ≥ Δ+2 [17].
So far, this has only been proved for 𝑞 ≥ 11

6 Δ by Vigoda [40] in case one allows the algorithm to
use randomness. This bound on 𝑞 stood for nearly 20 years until Chen et al. [10] improved this
to 𝑞 ≥ ( 11

6 − 𝜀)Δ with 𝜀 ≈ 10−5. Very recently, a more substantial improvement due to Carlson
and Vigoda [7] appeared, which states that one can take 𝜀 ≥ 0.024. For deterministic algorithms,
the existence of such an algorithm is only known1 when 𝑞 ≥ 2Δ by a result of Liu, Sinclair, and
Srivastava [30].

The 2Δ bound of Liu, Sinclair, and Srivastava [30]. The deterministic algorithm of Liu, Sin-
clair, and Srivastava [30] is based on Barvinok’s interpolation method. Their main contribution
lies in proving a zero-free region for the partition function of the Potts model. They essentially
prove the following more general statement, allowing them to deduce zero-free regions from
probabilistic statements.

(★) Let G be a class of graphs of maximum degree at most Δ. Suppose that 𝑞 is such that for
all 𝑤 ∈ [0, 1] and for any rooted graph (𝐺, 𝑣) (𝐺 ∈ G) in which some of its vertices are
precolored, when drawing a random coloring from the Potts model with parameter 𝑤 the
marginal probability that 𝑣 gets color 𝑖 (assuming that 𝑖 is not used on the neighbors of 𝑣) is
bounded by 1

𝑑+2 , where 𝑑 denotes the number of neighbors of 𝑣 that are not precolored. Then
there exists an open set U containing [0, 1] such that 𝑍𝐺 (𝑞;𝑤) ≠ 0 for all 𝑤 ∈ U and 𝐺 ∈ G.

It is not difficult to see that for 𝑞 ≥ 2Δ this condition is satisfied for the class of all graphs of
maximum degree at most Δ, and hence this immediately gives the desired zero-freeness and
approximation algorithm via the interpolation method. For triangle free graphs, the condition
is satisfied provided 𝑞 ≥ 1.7633Δ + 𝛽 where 𝛽 is an absolute constant, see [30] for the precise
statement. It is easy to see that for 𝑞 < 2Δ there are examples of graphs where the condition
in (★) is not satisfied. Unfortunately, the proof of (★) as given in [30] is somewhat technical,
making it difficult to see how to push the bounds on 𝑞 below 2Δ.

Our contributions. This brings us to the contributions of the present paper. One of our
contributions is that we give a new proof of the existence of the zero-free region for 𝑞 ≥ 2Δ,
which is shorter and arguably more transparent and less technical. Secondly, we are able to
take advantage of the local structure around the root vertex for graphs where the condition in
(★) is not met, and thereby provide a modest improvement on the result of Liu, Sinclair, and
Srivastava [30].

1 After the first posting of the present paper to the arXiv, it was shown in [11] that the randomized algorithm of Carlson
and Vigoda can in fact be derandomized.
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THEOREM 1.1. There exists a constant 𝜂 ≥ 0.002 such that for all integers Δ ≥ 3 and 𝑞 ≥ (2−𝜂)Δ
there exists an open set U ⊂ C containing the interval [0, 1] such that for each 𝑤 ∈ U and graph
𝐺 of maximum degree at most Δ, 𝑍𝐺 (𝑞, 𝑤) ≠ 0.

As a direct corollary, we have the following result breaking the 𝑞 = 2Δ barrier for designing
efficient deterministic approximation algorithms for counting proper colorings based on absence
of zeros.

COROLLARY 1.2. There exists a constant 𝜂 ≥ 0.002 such that for all integers Δ ≥ 3 and
𝑞 ≥ (2 − 𝜂)Δ and 𝑤 ∈ [0, 1] there exists a deterministic algorithm which given an 𝑛-vertex graph
of maximum degree at most Δ and 𝜀 > 0 computes a number 𝜉 satisfying

𝑒−𝜀 ≤ 𝑍𝐺 (𝑞, 𝑤)
𝜉

≤ 𝑒𝜀

in time polynomial in 𝑛/𝜀.

We note that this is indeed a direct corollary of Theorem 1.1 using Barvinok’s interpolation
method [3] in combination with the improvement due to Patel and the last author of the present
paper [35]. An explanation of how this fits the framework of [35] can be found in the proof
of [4, Corollary 1] and, therefore, we omit a proof here.

Another consequence of Theorem 1.1 is that for 𝑞 ≥ (2 − 𝜂)Δ and 𝑤 ∈ (0, 1) the random
variable defined as the number of monochromatic edges in a random sample from the Potts
model (with parameters 𝑞 and 𝑤) on a graph of maximum degree Δ satisfies a (local) central
limit theorem. This follows almost directly from the results in [34, 24, 27] and we refer the
interested reader to these papers for the relevant details.

Organization and conventions. The remainder of the paper is dedicated to proving The-
orem 1.1, first for 𝜂 = 0 and later for 𝜂 > 0. In the next section we give a detailed technical
outline of our approach, at the end of which the reader may find an overview of the remainder
of the paper.

While our arguments can for example be extended to list-coloring, we opt for focusing
on just colorings so as to limit any technical overhead and hopefully making the proof more
transparent. We comment on the extension to list-colorings and other possible extensions in
Section 8.

Although we could slightly improve our lower bound on 𝜂, we decided to stick to a bound
with only three decimal places. Our current established bounds do not seem to allow us to re-
place the lower bound of 0.002 by 0.003. We comment on possible approaches for improvement
in Section 8.
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2. Outline of approach and setup

In this section, we give a detailed outline of our approach, which is inspired by [3, 4, 30] and
uses several concepts developed in these papers. The main idea is to use induction to prove
a result about partition functions of graphs with certain pre-colored vertices. To carry out
the induction, we will need good control over how changing the color of a vertex affects the
partition function. We next introduce some definitions that will be used throughout the paper
and that will facilitate the discussion of the proof outline.

2.1 Definitions and expanded theorem statement

Let 𝑞 > 0 be an integer, let 𝐺 = (𝑉, 𝐸) be a graph, let 𝑆 ⊂ 𝑉 and let 𝜙 : 𝑆 → [𝑞] := {1, . . . , 𝑞}. We
call the triple (𝐺, 𝑆, 𝜙) a partially 𝑞-colored graph. Often we will just say that 𝐺 is a partially
𝑞-colored graph, omitting the reference to 𝑆 and 𝜙. A vertex 𝑣 ∈ 𝑆 will be called pinned; any
vertex not contained in 𝑆 will be called a free vertex. We say that a color 𝑗 ∈ [𝑞] is blocked at 𝑣
for a vertex 𝑣 ∈ 𝑉 if either 𝑣 is pinned, or if 𝑣 has a neighbor in 𝑆 which is assigned the color 𝑗

by 𝜙, otherwise color 𝑗 is called free at 𝑣.
The partition function of the Potts model of a partially 𝑞-colored graph 𝐺 = (𝐺, 𝑆, 𝜙) is

defined as

𝑍𝐺 (𝑤) :=
∑︁

𝜓:𝑉 (𝐺)→[𝑞]
𝜓 |𝑆=𝜙

𝑤𝑚(𝜓) . (2)

Note that we remove the 𝑞 from the argument of 𝑍𝐺 compared to (1) since 𝑞 is already implicit
in 𝐺.

Given a partially 𝑞-colored graph (𝐺, 𝑆, 𝜙), we can always assume that each pinned vertex
𝑣 ∈ 𝑆 is a leaf of 𝐺 (i.e. has degree 1) without changing the partition function, by iteratively
replacing each pinned vertex 𝑣 by 𝑑 = deg(𝑣) copies of it, 𝑣1, . . . , 𝑣𝑑 , connecting each of them
to a unique neighbor of 𝑣. We denote by G•

Δ,𝑞 the set of pairs (𝐺, 𝑣), where 𝐺 is a connected
partially 𝑞-colored graph of maximum degree Δ and 𝑣 is a free vertex of 𝐺 and where the pinned
vertices of 𝐺 are all leaves and form an independent set. For such a pair let us define the vector
c𝐺,𝑣 ∈ N𝑞

≥0, where the 𝑖th coordinate, 𝑐𝐺,𝑣;𝑖 , denotes the number of pinned neighbors of 𝑣 that
are colored with color 𝑖. We refer to c𝐺,𝑣 as the vector of blocked colors at 𝑣. As a convention,
we will write vectors in boldface, while entries of vectors are denoted in plain typeface.

If 𝑤 ≥ 0 and if 𝑍𝐺 (𝑤) ≠ 0 there is an associated probability measure, P𝐺,𝑤, on the collection
of all colorings 𝜓 : 𝑉 → [𝑞] that coincide with 𝜙 on 𝑆, whose probability mass function is
defined by

𝜇𝐺,𝑤(𝜓) :=
𝑤𝑚(𝜓)

𝑍𝐺 (𝑤) .



6 / 41 F. Bencs, K. Berrekkal, G. Regts

We will use capital letters to denote random variables. In particular, we denote the probability
that vertex 𝑣 is assigned color 𝑗 when sampling a coloring from this distribution by P𝐺,𝑤[Φ(𝑣) =
𝑗]. When 𝑤 is clear from the context, we often simply write P𝐺 instead of P𝐺,𝑤.

For 𝑤 ∈ C and a free vertex 𝑣 of a partially 𝑞-colored graph 𝐺 we consider the ratio

𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤) :=
𝑍𝑖
𝐺,𝑣(𝑤)

𝑍 𝑗
𝐺,𝑣(𝑤)

,

as a rational function in 𝑤. Here 𝑍 𝑗
𝐺,𝑣(𝑤) denotes the sum (2) restricted to those 𝜓 that assign

color 𝑗 to the vertex 𝑣. Note that 𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤) only depends on the connected component of 𝐺 that
contains 𝑣.

To prove that 𝑍𝐺 (𝑤) ≠ 0 for some 𝑤 ∈ C and a partially 𝑞-colored graph, it suffices to
inductively show that 𝑍 𝑗

𝐺,𝑣(𝑤) ≠ 0 for some color 𝑗 ∈ [𝑞] and that the ratios 𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤) (𝑖 ∈ [𝑞])
pairwise make a small angle. In [4] this is done via a direct recursive approach, by showing that
these ratios are trapped in a certain set in the complex plane. In [30] this is done via a clever
indirect approach by showing that for fixed 𝑤 ∈ [0, 1] and 𝑤̃ close enough to 𝑤, we have that
the perturbed ratios 𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤̃) are close to the original ratios 𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤) and in particular lie
close to the real axis and hence make a pairwise small angle. This is also the approach we follow
in the present paper. To do so, we will change coordinates and work with log-ratios. Define

𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) := log(𝑅̃𝐺,𝑣;𝑖, 𝑗 (𝑤̃)),

under the implicit assumption that 𝑍𝑖
𝐺,𝑣(𝑤̃) and 𝑍 𝑗

𝐺,𝑣(𝑤̃) are both not equal to 0 and where we
fix the branch of the logarithm that is real valued on the positive real line.

For (𝐺, 𝑣) ∈ G•
Δ,𝑞 we denote by (𝐺, 𝑣) ∈ G•

Δ,𝑞 the rooted partially 𝑞-colored graph obtained
from (𝐺, 𝑣) by removing all pinned neighbors of 𝑣 from 𝐺. We often just write 𝐺 in case 𝑣 is
clear from the context. The free degree of a vertex is the number of free neighbors of that vertex.
We next state an expanded version of our main theorem.

THEOREM 2.1. There exists a constant 𝜂 ≥ 0.002 such that for all integers Δ ≥ 3, 𝑞 ≥ (2 − 𝜂)Δ
there exist 𝜀1 > 0 and 𝜀2 > 0, such that if (𝐺, 𝑣) ∈ G•

Δ,𝑞 where 𝑣 has free degree at most Δ − 1, then
for any colors 𝑖, 𝑗 ∈ [𝑞], any 𝑤 ∈ [0, 1] and any 𝑤̃ ∈ 𝐵(𝑤, 𝜀1),

𝑍𝐺 (𝑤̃) ≠ 0 and |𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) | ≤ 𝜀2. (3)

REMARK 2 .2. It follows from our proof that we can take 𝜀1 ≥ 𝐶Δ−4 for some constant𝐶 > 0. For
𝜂 = 0 this improves on the size of the zero-free region given by Liu, Sinclair and Srivastava [30]
who proved a zero-free region around [0, 1] of width 𝐶′Δ−16 for some constant 𝐶′ > 0.

The consequences of this improvement for the running time for the algorithm in Corol-
lary 1.2 are limited though. The running time can be seen to be bounded by (𝑛/𝜀)𝑂(log(Δ𝑞) exp(𝑂(Δ4)))

by combining [3, Lemma 2.2.3] and [35].
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Below, we give an outline of our proof of this result; the actual proof can be found in
Section 7. First, we use it to deduce Theorem 1.1.

PROOF OF THEOREM 1.1 . Let 𝜀1 be as in the statement of Theorem 2.1, fix 𝑤 ∈ [0, 1] and let
𝑤̃ ∈ 𝐵(𝑤, 𝜀1). By Theorem 2.1, it suffices to prove that 𝑍𝐺 (𝑞; 𝑤̃) ≠ 0 if 𝐺 is Δ-regular. To cover
the case where all the vertices of 𝐺 have degree exactly Δ, and hence are not pinned, we will
use the symmetry of the model between the colors. We may further assume that 𝐺 is connected
since the partition function factors over connected components.

First we claim that the partition function 𝑍1
𝐺,𝑣(𝑞; 𝑤̃) is non-zero. Indeed, 𝑍1

𝐺,𝑣(𝑞; 𝑤̃) is equal
to the partition function of the partially 𝑞-colored graph 𝐻 obtained from 𝐺 by replacing 𝑣 with
vertices 𝑣1, . . . , 𝑣Δ each of them colored with color 1 and where each 𝑣𝑖 is connected to a unique
neighbor of 𝑣 in 𝐺. We next claim that 𝑍𝐻 (𝑤̃) ≠ 0. Since each component of 𝐻 has a vertex of
free degree Δ − 1, namely a neighbor of some 𝑣𝑖 , and since by construction we have that the
pinned vertices of 𝐻 form an independent set and are all leaves, by Theorem 2.1 we indeed
have 𝑍𝐻 (𝑤̃) ≠ 0 (because the partition function is multiplicative over the components of 𝐻).

Now, since each vertex in 𝐺 is free, it follows by symmetry that

𝑍1
𝐺,𝑣(𝑞; 𝑤̃) = 𝑍2

𝐺,𝑣(𝑞; 𝑤̃) = . . . = 𝑍𝑞
𝐺,𝑣(𝑞; 𝑤̃).

Therefore,
𝑍𝐺 (𝑞; 𝑤̃) =

∑︁
𝑖∈[𝑞]

𝑍𝑖
𝐺,𝑣(𝑞; 𝑤̃) = 𝑞 · 𝑍𝑞

𝐺,𝑣(𝑞; 𝑤̃) = 𝑞𝑍𝐻 (𝑤̃) ≠ 0.

■

2.2 Outline of proof and more definitions

To prove Theorem 2.1, we need to show that the difference between 𝑅𝐺,𝑣;ℓ1,ℓ2 (𝑤) and 𝑅𝐺,𝑣;ℓ1,ℓ2 (𝑤̃)
is smaller than 𝜀2 for each (𝐺, 𝑣) ∈ G•

Δ,𝑞 and any pair of colors ℓ1, ℓ2. We do this by induction
on the number of free vertices, by expanding the log-ratios of (𝐺, 𝑣) as a function applied to
log-ratios of partially 𝑞-colored graphs obtained from 𝐺 with fewer free vertices. We will next
describe some of the technical ingredients that were also used in some form in [4, 30] and the
main new ideas of our proof, after which we will give an overview of the remainder of the
paper.

To be able to control the difference between the log-ratios inductively, a certain telescoping
procedure is crucial for us. Fix two distinct colors ℓ1, ℓ2 ∈ [𝑞]. Choose an ordering of the
neighborhood 𝑁 (𝑣) of 𝑣, 𝑣1, . . . , 𝑣deg(𝑣) . Let 𝐺̂𝑖 be the partially 𝑞-colored graph obtained from
𝐺 − 𝑣 by adding a leaf to each vertex 𝑣 𝑗 with 𝑗 ≠ 𝑖 such that for 𝑗 < 𝑖 that leaf is colored with
color ℓ2 and for 𝑗 > 𝑖 it is colored with color ℓ1; the leaf connected to 𝑣𝑖 is free and is denoted by
𝑣̂𝑖 . Assume that 𝑍ℓ

𝐺̂𝑖 ,𝑣̂𝑖
(𝑤̃) ≠ 0 for all ℓ ∈ [𝑞] and 𝑖 = 1, . . . , deg(𝑣). Then by standard properties
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ℓ1

· · ·

=
ℓ2

· · ·

ℓ1 ℓ1 ℓ1

· · ·

=
ℓ2 ℓ2 ℓ2

· · ·

ℓ1 ℓ1 ℓ1ℓ1

· · ·

ℓ2 ℓ1 ℓ1ℓ1

· · ·

ℓ2 ℓ1 ℓ1ℓ1

· · ·

· · ·
ℓ2 ℓ2 ℓ1ℓ1

· · ·

ℓ2 ℓ2 ℓ1ℓ2

· · ·

ℓ2 ℓ2 ℓ2ℓ2

· · ·

Figure 1. Pictorial depiction of how the ratio 𝑍ℓ1
𝐺,𝑣 (𝑤)

/
𝑍ℓ2
𝐺,𝑣 (𝑤) is expressed as a telescoping product of

the ratios 𝑍ℓ1
𝐺̂𝑖 ,𝑣̂𝑖

(𝑤)/𝑍ℓ2
𝐺̂𝑖 ,𝑣̂𝑖

(𝑤).

· · ·

𝑣

𝐺

ℓ2 ℓ2 𝑣̂𝑖 ℓ1 ℓ1

· · · · · ·

𝐺̂𝑖

ℓ2 ℓ2 ℓ1 ℓ1

· · · · · ·𝑣𝑖

𝐺𝑖

Figure 2. An illustration of a graph (𝐺, 𝑣) and the graphs (𝐺̂𝑖 , 𝑣̂𝑖) and (𝐺𝑖 , 𝑣𝑖) appearing in the telescoping
procedure.

of the logarithm,

𝑅𝐺,𝑣;ℓ1,ℓ2 =
deg(𝑣)∑︁
𝑖=1

𝑅𝐺̂𝑖 ,𝑣̂𝑖 ;ℓ1,ℓ2
. (4)

See Figure 1 for a proof by pictures of this identity.
Let us denote by 𝐺𝑖 the partially 𝑞-colored graph obtained from 𝐺̂𝑖 by removing the vertex

𝑣̂𝑖 . We will say that the graphs 𝐺𝑖 are obtained from 𝐺 via the telescoping procedure with respect
to the colors ℓ1 and ℓ2 and the ordering of 𝑁 (𝑣). See Figure 2 for an illustration of this.

For concreteness, we will continue the discussion for the case ℓ1 = 1 and ℓ2 = 𝑞. By
symmetry, we may of course always relabel the colors so that this is without loss of generality.

Define for c ∈ N𝑞
≥0, x ∈ C𝑞−1 and 𝑤̃ ∈ C,

𝑃c(𝑤̃, x) = 𝑤̃𝑐1+1𝑒𝑥1 +
𝑞−1∑︁
𝑗=2

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞 , (5)

𝑄c(𝑤̃, x) = 𝑤̃𝑐1𝑒𝑥1 +
𝑞−1∑︁
𝑗=2

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+1. (6)

We tend to omit the subscript 𝒄 if it is clear from the context. We now define the vectors
R𝑖 (𝑤̃) ∈ C𝑞−1 by 𝑅𝑖

𝑗 (𝑤̃) = 𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃) for 𝑗 = 1, . . . , 𝑞 − 1 (implicitly assuming that these log-
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ratios are well-defined), and c𝑖 = c𝐺,𝑣𝑖 . Then we observe that

𝑃c𝑖 (𝑤̃,R𝑖 (𝑤̃)) =
𝑍1
𝐺̂𝑖 ,𝑣̂𝑖

(𝑤̃)
𝑍𝑞

𝐺𝑖 ,𝑣𝑖
(𝑤̃) and 𝑄c𝑖 (𝑤̃,R𝑖 (𝑤̃)) =

𝑍𝑞

𝐺̂𝑖 ,𝑣̂𝑖
(𝑤̃)

𝑍𝑞

𝐺𝑖 ,𝑣𝑖
(𝑤̃) ,

and therefore by equation (4) we have

𝑅𝐺,𝑣;1,𝑞 =
deg(𝑣)∑︁
𝑖=1

log
(
𝑃c(𝑤̃,R𝑖)
𝑄c(𝑤̃,R𝑖)

)
. (7)

Next define the function 𝐹𝑤̃,c : C𝑞−1 \ {x | 𝑃c(𝑤̃, x) = 0 or 𝑄c(𝑤̃, x) = 0} → C by

𝐹𝑤̃,c(x) = log
(
𝑃c(𝑤̃, x)
𝑄c(𝑤̃, x)

)
. (8)

Using this function we can succinctly express (7) as

𝑅𝐺,𝑣;1,𝑞(𝑤̃) =
deg(𝑣)∑︁
𝑖=1

𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃)). (9)

We now use (9) to express the difference between 𝑅𝐺,𝑣;1,𝑞(𝑤) for 𝑤 ∈ [0, 1] and its pertur-
bation 𝑅𝐺,𝑣;1,𝑞(𝑤̃) (for 𝑤̃ near 𝑤) as follows

𝑅𝐺,𝑣;1,𝑞(𝑤) − 𝑅𝐺,𝑣;1,𝑞(𝑤̃) =
deg(𝑣)∑︁
𝑖=1

(
𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃)

)
=

deg(𝑣)∑︁
𝑖=1

(
𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃))

)
+

(
𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) − 𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃))

)
. (10)

It is not hard to see that we can make |𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) − 𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃)) | arbitrarily small by choosing
𝑤̃ close enough to 𝑤 by continuity of 𝐹𝑤,c𝑖 as a function of 𝑤, provided the vectors R𝑖 (𝑤̃) lie in a
bounded set. We will formally verify this in Section 4.

Bounding 𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) is much more work and to do so we will use the
gradient of 𝐹𝑤,c𝑖 . We have

𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) = (11)∫ 1

0
⟨∇𝐹𝑤,c𝑖

(
𝑡R𝑖 (𝑤) + (1 − 𝑡)R𝑖 (𝑤̃)

)
,R𝑖 (𝑤) − R𝑖 (𝑤̃)⟩𝑑𝑡,

where ⟨·, ·⟩ denotes the standard inner product on C𝑞−1.

This motivates us to investigate the gradient of 𝐹𝑤,c. For this purpose let us define for a
partially 𝑞-colored graph 𝐻 with a free vertex 𝑣 and a color ℓ ∈ [𝑞] the partially 𝑞-colored graph
𝐻+ℓ by attaching a pinned leaf of color ℓ to 𝑣. For 𝑤 ∈ [0, 1] the vector P𝐻,𝑣(𝑤) in R𝑞−1 is defined
by

𝑃𝐻,𝑣; 𝑗 (𝑤) = P𝐻+1,𝑤[Φ(𝑣) = 𝑗] − P𝐻+𝑞,𝑤[Φ(𝑣) = 𝑗] . (12)
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The next lemma tells us that the gradient of 𝐹𝑤,c𝐻,𝑣 evaluated at a real log-ratio vector is
exactly the vector P𝐻,𝑣(𝑤).

LEMMA 2.3. Let 𝑤 ∈ [0, 1]. Let (𝐻, 𝑣) ∈ G•
Δ,𝑞 and let c = c𝐻,𝑣 be the vector of blocked colors at

𝑣. Let R ∈ R𝑞−1 be the vector defined by 𝑅 𝑗 = 𝑅𝐻,𝑣; 𝑗,𝑞(𝑤). Then

∇𝐹𝑤,c(R) = P𝐻,𝑣(𝑤).

PROOF . Writing 𝑃 = 𝑃c(𝑤,x) and 𝑄 = 𝑄c(𝑤,x), we have 𝐹𝑤,c(x) = log
(
𝑃
𝑄

)
and therefore by

standard rules of partial derivatives,

𝜕𝐹𝑤,c
𝜕𝑥 𝑗

=
𝑄

𝑃
·
𝑄𝜕𝑃

𝑥 𝑗
− 𝑃 𝜕𝑄

𝜕𝑥 𝑗

𝑄2

=
𝑄𝑤𝑐 𝑗𝑒𝑥 𝑗 + 𝛿1, 𝑗𝑄𝑤𝑐 𝑗𝑒𝑥 𝑗 (𝑤 − 1) − 𝑃𝑤𝑐 𝑗𝑒𝑥 𝑗

𝑃𝑄

=
(𝑤 − 1)𝑤𝑐1𝑒𝑥1

𝑃
𝛿1, 𝑗 + 𝑤𝑐 𝑗𝑒𝑥 𝑗 (𝑄 − 𝑃)

𝑃𝑄

=
(𝑤 − 1)𝑤𝑐1𝑒𝑥1

𝑃
𝛿1, 𝑗 + 𝑤𝑐 𝑗𝑒𝑥 𝑗

𝑃
− 𝑤𝑐 𝑗𝑒𝑥 𝑗

𝑄
.

Noting that 𝑤𝑐 𝑗𝑒𝑅 𝑗 =
𝑍 𝑗
𝐻,𝑣(𝑤)

𝑍𝑞𝐻,𝑣(𝑤)
and hence

𝑃 = 𝑤
𝑍1
𝐻,𝑣(𝑤)

𝑍𝑞
𝐻,𝑣(𝑤)

+
𝑞∑︁
𝑗=2

𝑍 𝑗
𝐻,𝑣(𝑤)

𝑍𝑞
𝐻,𝑣(𝑤)

=
𝑍𝐻+1,𝑣(𝑤)
𝑍𝑞
𝐻,𝑣(𝑤)

,

and similarly,

𝑄 = 𝑤
𝑍𝑞
𝐻,𝑣(𝑤)

𝑍𝑞
𝐻,𝑣(𝑤)

+
𝑞−1∑︁
𝑗=1

𝑍 𝑗
𝐻,𝑣(𝑤)

𝑍𝑞
𝐻,𝑣(𝑤)

=
𝑍𝐻+𝑞,𝑣(𝑤)
𝑍𝑞
𝐻,𝑣(𝑤)

,

we see that
𝜕𝐹𝑤,c
𝜕𝑥 𝑗

(R) = P𝐻+1,𝑤[Φ(𝑣) = 1] − P𝐻+𝑞,𝑤[Φ(𝑣) = 1]

i.e. ∇𝐹𝑤,c(R) = P𝐻,𝑣(𝑤), as desired. ■

To use (11), we actually need to understand the gradient of 𝐹𝑤,c evaluated at the vector
𝑡𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃) + (1 − 𝑡)𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃) for some small perturbation 𝑤̃ of 𝑤. However, it is not difficult
to see that for 𝑤̃ small enough and 𝑞 > Δ + 1, this gradient can be made arbitrarily close to
P𝐺𝑖 ,𝑣𝑖 (𝑤) independent of the graph. We verify this formally in Section 4.

So to bound (11), the essential ingredient is to bound the absolute value of the inner
product of the vector P𝐺𝑖 ,𝑣𝑖 (𝑤) with the vector R𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤) − R𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃) for each 𝑖 = 1, . . . , 𝑑.
This motivates us to develop bounds on the marginal probability of the root vertex, which we
will do in Section 3 and Section 6.

With the bounds from Section 3 and Section 4 we give a proof of Theorem 1.1 for 𝜂 = 0 in
Section 5. We do this for two reasons. First of all, it makes it easier to see the structure of the
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technically more involved proof for the proof when 𝜂 > 0, and secondly, it gives an alternative
and arguably more transparent proof of the result of Liu, Sinclair, and Srivastava [30]. The
ingredients that we use are pretty much the same as in [30]; the main difference is that we do
not bound the real part and imaginary part of the log-ratio difference separately as is done
in [30], but our novel contribution is to make use of the symmetry between the colors to bound
the absolute value of the inner product of the vector P𝐺,𝑣(𝑤) with the vector R𝑖 (𝑤) − R𝑖 (𝑤̃) in
terms of a marginal probability of the root vertex times the maximum of

|𝑅𝐺𝑖 ,𝑣𝑖 , 𝑗,𝑞
(𝑤) − 𝑅𝐺,𝑣; 𝑗,𝑞(𝑤̃) | and |𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,1(𝑤) − 𝑅𝐺,𝑣; 𝑗,1(𝑤̃) |, (13)

over all 𝑗 = 1, . . . , 𝑞 (see Lemma 4.4), which in our proof we show is bounded by 𝜀2, by induction.
Since for 𝑞 ≥ 2Δ this marginal probability is easily seen to be bounded by 1/Δ (see Lemma 3.1
below), this allows to conclude that |𝑅𝐺,𝑣;1,𝑞(𝑤)−𝑅𝐺,𝑣;1,𝑞(𝑤̃) | is again bounded by 𝜀2. See Section 5
for the details.

In Section 7 we finally give a proof of Theorem 2.1 for 𝜂 > 0. Here we build on the approach
for 𝜂 = 0 and carefully make use of the structure of the local neighborhood of the vertex 𝑣

to show that either both terms in (13) are actually smaller than 𝜀2 or that we can use sharper
bounds on the marginal probability obtained in Section 6 that are valid in a more restricted
setting.

In an appendix, we collect an alternative proof of a proposition found in Section 4 that
is more hands on, but has the advantage that it gives concrete dependencies on how small 𝜀1

should be in terms of Δ. We conclude with some questions and remarks in Section 8.

3. Basic bounds onmarginal probabilities of the root vertex

Let Δ and 𝑞 > Δ + 1 be positive integers and let 𝑤 ∈ [0, 1]. Let 𝐺 be a partially 𝑞-colored graph of
maximum degree at most Δ and let 𝑣 be a vertex of 𝐺 of degree 𝑑. To prove our main result we
will need bounds on the marginal probability of the root vertex P𝐺,𝑤[Φ(𝑣) = 𝑗]. In this section
we collect upper and lower bounds on this quantity that are well known in the literature, but
we provide proofs for the sake of completeness and because we will build on these proofs later
on. We start with an upper bound.

LEMMA 3.1. Let Δ and 𝑞 > Δ+1 be positive integers. Assume that 𝐺 is a partially 𝑞-colored graph
of maximum degree at most Δ and let 𝑣 be a vertex of 𝐺 of degree 𝑑 and free degree 𝑓 . Denote by 𝑏

the number of blocked colors at 𝑣. Then for any 𝑤 ∈ [0, 1] any color 𝑗,

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 𝑤𝑐 𝑗

𝑞 − ( 𝑓 + 𝑏) + ( 𝑓 + 𝑏)𝑤,
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where 𝑐 𝑗 = 𝑐𝐺,𝑣; 𝑗 . In particular,

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 𝑤𝑐 𝑗

𝑞 − 𝑑 + 𝑑𝑤
.

PROOF . We can expand P𝐺,𝑤[Φ(𝑣) = 1] over the colorings of the neighbors of 𝑣. This yields

P𝐺,𝑤[Φ(𝑣) = 𝑗] =
∑︁

𝜅:𝑁 (𝑣)→[𝑞]
P𝐺,𝑤[Φ(𝑣) = 𝑗 | 𝐸𝜅]P𝐺,𝑤[𝐸𝜅], (14)

where 𝐸𝜅 denotes the event that the random coloring Φ agrees with 𝜅 on the neighbors 𝑁 (𝑣) of
𝑣. Note that when 𝑤 > 0, we always have that P𝐺,𝑤[𝐸𝜅] > 0, while if 𝑤 = 0 we only sum over
those 𝜅 for which P𝐺,𝑤[𝐸𝜅] > 0.

Now to bound P𝐺,𝑤[Φ(𝑣) = 𝑗], we simply need a bound on P𝐺,𝑤[Φ(𝑣) = 𝑗 | 𝐸𝜅] for any 𝜅

for which P𝐺,𝑤[𝐸𝜅] > 0. Let us fix such a 𝜅 and denote by 𝑑𝑖 for 𝑖 ∈ [𝑞] the number of neighbors
of 𝑣 colored with color 𝑖. Then by the Markov property and using the convention that 𝑤0 = 1,

P𝐺,𝑤[Φ(𝑣) = 𝑗 | 𝐸𝜅] = 𝑤𝑑 𝑗∑𝑞
𝑖=1 𝑤

𝑑𝑖
=

𝑤𝑑 𝑗

𝑞 − ∑𝑞
𝑖=1(1 − 𝑤𝑑𝑖) (15)

≤ 𝑤𝑐 𝑗

𝑞 − (1 − 𝑤) (𝑏 + 𝑓 ) , (16)

where 𝑐 𝑗 = 𝑐𝐺,𝑣; 𝑗 denotes the number of pinned neighbors with color 𝑗 in 𝐺, 𝑏 denotes the
number of blocked colors at 𝑣, and 𝑓 the free degree of 𝑣. ■

REMARK 3.2. Note that the lemma above is essentially tight for 𝑤 = 0 and 𝑗 such that 𝑐 𝑗 = 0.
Indeed consider a vertex whose neighborhood is a clique of size Δ−1 such that for each neighbor
color 𝑗 is blocked.

Next we provide a lower bound on the marginal probability.

LEMMA 3.3. Let Δ and 𝑞 be positive integers, and let 𝑞 ≥ (1 + 𝛼)Δ + 1 for some 𝛼 > 0. Assume
that 𝐺 is a partially 𝑞-colored graph of maximum degree at most Δ and let 𝑣 be a vertex of 𝐺. Then,
for any 𝑤 ∈ [0, 1] and any color 𝑗 ∈ [𝑞] not appearing on the neighbors of 𝑣, we have

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≥ 1
𝑒1/𝛼𝑞

.

PROOF . To prove a lower bound on the marginal probability of the root vertex getting a free
color 𝑗, we again look at (14) and note that we can lower bound this by

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≥
∑︁

𝜅:𝑁 (𝑣)→[𝑞]
𝑗∉𝜅(𝑁 (𝑣))

P𝐺,𝑤[Φ(𝑣) = 𝑗 | 𝐸𝜅]P𝐺,𝑤[𝐸𝜅] .

Given 𝜅 : 𝑁 (𝑣) → [𝑞] such that P𝐺,𝑤[𝐸𝜅] ≠ 0 and 𝜅 does not use color 𝑗 we can lower bound
P𝐺,𝑤[Φ(𝑣) = 𝑗 | 𝐸𝜅] by 1/𝑞 by (15). This implies

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≥ 1
𝑞
P𝐺,𝑤[ 𝑗 ∉ Φ(𝑁 (𝑣))] .
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Let 𝑢1, . . . , 𝑢𝑑 be the free neighbors of 𝑣 in 𝐺. We can then express

P𝐺,𝑤[ 𝑗 ∉ Φ(𝑁 (𝑣))] = P𝐺,𝑤[1 ∉ Φ({𝑢1, . . . 𝑢𝑑−1}) | Φ(𝑢𝑑) ≠ 𝑗]P𝐺,𝑤[Φ(𝑢𝑑) ≠ 𝑗]

=
𝑑∏
𝑖=1
P𝐺,𝑤[Φ(𝑢𝑖) ≠ 𝑗 | 𝐸𝑖]

=
𝑑∏
𝑖=1

(
1 − P𝐺,𝑤[Φ(𝑢𝑖) = 𝑗 | 𝐸𝑖]

)
, (17)

where 𝐸𝑖 denotes the event that the random coloring Φ does not assign color 𝑗 to the vertices
𝑢𝑖+1, . . . , 𝑢𝑑 , which has a nonzero probability since 𝑞 > Δ + 1. Arguing as above (regardless of
the event 𝐸𝑖 , we can expand the marginal probability as a sum over 𝜅 as in (14), but now we
only sum over those 𝜅 that do not assign color 𝑗 to the vertices 𝑢𝑖+1, . . . , 𝑢𝑑) we can bound

P𝐺,𝑤[Φ(𝑢𝑖) = 𝑗 | 𝐸𝑖] ≤ 1
𝑞 − Δ + Δ𝑤

.

Therefore, assuming 𝑞 − Δ ≥ 𝛼Δ + 1 for some 𝛼 > 0, we obtain the lower bound

P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣))] ≥
(
1 − 1

𝑞 − Δ + Δ𝑤

)𝑑
≥

((
1 − 1

𝛼Δ + 1

)𝛼Δ
)1/𝛼

≥ 𝑒−1/𝛼. (18)

We conclude that P𝐺,𝑤[Φ(𝑣) = 1] is lower bounded by 1
𝑒1/𝛼𝑞 . ■

4. The behavior of 𝑭𝒘,c and ∇𝑭𝒘,c

As indicated in Section 2, we need to show that behavior of 𝐹𝑤,c (as defined in (8)) and ∇𝐹𝑤,c as
a function of 𝑤 is not too wild.

Let Δ, 𝑞 be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1 for some 𝛼 > 0. We call a vector
c ∈ N𝑞

≥0 a valid color vector if there exists a rooted graph (𝐺, 𝑣) ∈ G•
Δ,𝑞 such that c = c𝐺,𝑣. Now

fix a valid color vector c and let us define the set

Rc =

{(
𝑤,

(
𝑅𝐺,𝑣; 𝑗,𝑞(𝑤)

)
𝑗=1,...,𝑞−1

)
| (𝐺, 𝑣) ∈ G•

Δ,𝑞, c = c𝐺,𝑣, 𝑤 ∈ [0, 1]
}
. (19)

Define 𝐹 : Rc → R ⊂ C by 𝐹 (𝑤,R) = 𝐹𝑤,c(R) for (𝑤,R) ∈ Rc.

LEMMA 4.1. Let Δ, 𝑞 be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1 for some 𝛼 > 0, and let c be
a valid color vector. Then the set 𝐹 (Rc) is bounded.

PROOF . For any (𝑤,R) ∈ Rc, 𝑗 ∈ [𝑞 − 1] we have

exp(𝑅 𝑗) =
𝑍 𝑗

𝐺,𝑣
(𝑤)

𝑍𝑞

𝐺,𝑣
(𝑤) =

P𝐺,𝑤[Φ(𝑣) = 𝑗]
P𝐺,𝑤[Φ(𝑣) = 𝑞] ,

and therefore by Lemma 3.1 and Lemma 3.3,
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𝑞 − Δ
𝑞𝑒1/𝛼 ≤ exp(𝑅 𝑗) ≤ 𝑞𝑒1/𝛼

𝑞 − Δ
.

Then, since at least 𝑞 − Δ entries of c are equal to 0 and 𝑤 ∈ [0, 1],
(𝑞 − Δ)2

𝑞𝑒1/𝛼 ≤𝑃c(𝑤,R) ≤ 𝑞2𝑒1/𝛼

𝑞 − Δ
,

(𝑞 − Δ)2

𝑞𝑒1/𝛼 ≤𝑄c(𝑤,R) ≤ 𝑞2𝑒1/𝛼

𝑞 − Δ
,

where we recall that 𝑃c and 𝑄c are defined in (5) and (6), respectively. It thus follows that

(𝑞 − Δ)3

𝑞3𝑒2/𝛼 ≤
����𝑃c(𝑤,R)𝑄c(𝑤,R)

���� ≤ 𝑞3𝑒2/𝛼

(𝑞 − Δ)3 .

Since 𝐹𝑐 = log(𝑃c/𝑄c), this implies that 𝐹 (Rc) is a bounded set, as desired. ■

PROPOS IT ION 4.2. Let 𝛼 > 0 and let 𝑞, Δ be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1. Then
for any 𝜀 ∈ (0, 1) there exists a 𝛿 > 0 such that the following holds. Let (𝐺, 𝑣) ∈ G•

Δ,𝑞, and let
𝑤 ∈ [0, 1]. Let R ∈ R𝑞−1 be the vector defined by 𝑅 𝑗 = 𝑅𝐺,𝑣; 𝑗,𝑞(𝑤). Then

(i) if x ∈ C𝑞−1 and ∥R − x∥∞ ≤ 𝛿, then

∥P𝐺,𝑣(𝑤) − ∇𝐹𝑤,c(x)∥1 ≤ 𝜀;

(ii) if x ∈ C𝑞−1 and ∥R − x∥∞ ≤ 𝛿 and |𝑤̃ − 𝑤| ≤ 𝛿, then

|𝐹𝑤,c𝐺,𝑣 (x) − 𝐹𝑤̃,c𝐺,𝑣 (x) | ≤ 𝜀.

REMARK 4.3. Below we give a concise proof using a compactness argument, but which does
not display how 𝛿 depends on 𝜀. We refer the reader to Appendix A for an explicit proof of
this proposition, where we also show 𝛿 can be taken of the form min {𝐶(𝛼)𝜀, 𝐶(𝛼)/Δ} for some
constant 𝐶(𝛼) that only depends on 𝛼.

PROOF . Let us fix a valid color vector c. Since by the previous lemma we know that 𝐹 is
bounded on R𝑐, we know that there exists an 𝑟 > 0 such that 𝐹 is well-defined and bounded on
the compact set

D𝒄 := 𝐵(R𝒄, 𝑟) ⊆ C × C𝑞−1,

where we view C × C𝑞−1 as the direct sum of the normed space C with the absolute value and
C𝑞−1 with the ∞-norm, and where 𝐵(R𝒄, 𝑟) denotes the closure of the set of points that have
distance at most 𝑟 to R𝒄.

Now ∇𝐹𝑤,𝒄 : D𝒄 → C𝑞−1 (defined by (𝑤,x) ↦→ ∇𝐹𝑤,c(x)) is a continuous function on a
compact set. Therefore, for any 𝜀 > 0 there exists an 𝑟 ≥ 𝛿1,c > 0, such that if (𝑤, x), (𝑤, y) ∈ Dc
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and ∥x − y∥1 ≤ 𝛿1,c, then
∥∇𝐹𝑤,c(x) − ∇𝐹𝑤,c(y)∥ ≤ 𝜀.

Similarly, there exists 𝛿2,c such that for any (𝑤, x), (𝑤′, y) ∈ Dc we have

|𝐹𝑤,c(x) − 𝐹𝑤′,c(y) | ≤ 𝜀.

There are finitely many choices of c for a given 𝑞 and Δ, therefore we can choose 𝛿′ :=
min{𝛿1,c, 𝛿2,c | c valid color vector} > 0 and set 𝛿 = 𝛿′/2.

For this choice of 𝛿 we have for the given (𝑤,R) ∈ Rc𝐺,𝑣 and any x such that ∥x − R∥∞ ≤ 𝛿,

∥P𝐺,𝑣 − ∇𝐹𝑤,c𝐺,𝑣 (x)∥1 = ∥∇𝐹𝑤,c𝐺,𝑣 (R) − ∇𝐹𝑤,c𝐺,𝑣 (x)∥1 ≤ 𝜀,

and similarly, for any (𝑤̃, x) such that |𝑤̃−𝑤| ≤ 𝛿 and ∥R−x∥∞ ≤ 𝛿 (so that ∥(𝑤,R)−(𝑤̃, x)∥ ≤ 𝛿′)
we have

|𝐹𝑤,c𝐺,𝑣 (R) − 𝐹𝑤̃,c𝐺,𝑣 (x) | ≤ 𝜀.

This finishes the proof. ■

The next lemma allows us in combination with Proposition 4.2 to bound (11).

LEMMA 4.4. Let 𝐺 be a partially 𝑞-colored graph and let 𝑣 be a free vertex of 𝐺. Let 𝑤 ∈ [0, 1]
and let P𝐺,𝑣 be defined as in (12). Let x ∈ C𝑞−1 and let x̂ be defined by 𝑥̂1 = −𝑥1 and by 𝑥̂ 𝑗 = 𝑥 𝑗 − 𝑥1

for 𝑗 = 2, . . . , 𝑞 − 1. Then

|⟨P𝐺,𝑣, x⟩| ≤
{
(1 − 𝑤)P𝐺+1,𝑤[Φ(𝑣) = 𝑞] · ∥x∥∞ if P𝐺,𝑤[Φ(𝑣) = 1] ≤ P𝐺,𝑤[Φ(𝑣) = 𝑞]
(1 − 𝑤)P𝐺+𝑞,𝑤[Φ(𝑣) = 1] · ∥x̂∥∞ if P𝐺,𝑤[Φ(𝑣) = 1] > P𝐺,𝑤[Φ(𝑣) = 𝑞] .

PROOF . First of all, note that possibly after multiplication of the coordinates of x by 𝑒𝑖𝜗 for
some 𝜗 ∈ R, we may assume that

|⟨P𝐺,𝑣, x⟩| = ⟨P𝐺,𝑣, x⟩ = ⟨P𝐺,𝑣,ℜ(x)⟩,

since P𝐺,𝑣 is real valued. We may therefore restrict to real vectors x.
Next observe that the first coordinate of P𝐺,𝑣 is non-positive, since

𝑃𝐺,𝑣;1(𝑤) =
𝑤𝑍1

𝐺,𝑣(𝑤)
𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍1

𝐺,𝑣(𝑤)
−

𝑍1
𝐺,𝑣(𝑤)

𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍𝑞
𝐺,𝑣(𝑤)

=
(1 − 𝑤)𝑍1

𝐺,𝑣(𝑤) (−𝑤𝑍
𝑞
𝐺,𝑣(𝑤) − 𝑍𝐺 (𝑤) + 𝑍1

𝐺,𝑣(𝑤))
(𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍1

𝐺,𝑣(𝑤)) (𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍𝑞
𝐺,𝑣(𝑤))

≤
−𝑍1

𝐺,𝑣(𝑤) (1 − 𝑤) (𝑤 + 1)𝑍𝑞
𝐺,𝑣(𝑤)

(𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍1
𝐺,𝑣(𝑤)) (𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍𝑞

𝐺,𝑣(𝑤))
≤ 0.
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Note that with similar reasoning it follows that

P𝐺+1,𝑤[Φ(𝑣) = 𝑞] − P𝐺+𝑞,𝑤[Φ(𝑣) = 𝑞] ≥ 0. (20)

Next we distinguish the two cases.
If P𝐺,𝑤[Φ(𝑣) = 1] ≤ P𝐺,𝑤[Φ(𝑣) = 𝑞], then

𝑍1
𝐺,𝑣(𝑤) ≤ 𝑍𝑞

𝐺,𝑣(𝑤),

and for 𝑗 > 1 we have

𝑃𝐺,𝑣; 𝑗 =
𝑍 𝑗
𝐺,𝑣(𝑤)

𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍1
𝐺,𝑣(𝑤)

−
𝑍 𝑗
𝐺,𝑣(𝑤)

𝑍𝐺 (𝑤) − (1 − 𝑤)𝑍𝑞
𝐺,𝑣(𝑤)

≤ 0.

So in this case each entry of P𝐺,𝑣 is non-positive and hence

|⟨P𝐺,𝑤, x⟩| ≤ ∥x∥∞⟨P𝐺,𝑤,−1⟩ = ∥x∥∞(P𝐺+1 [𝑣 = 𝑞] − P𝐺+𝑞 [𝑣 = 𝑞]).

We next note that since 𝑍1
𝐺,𝑣(𝑤) ≤ 𝑍𝑞

𝐺,𝑣(𝑤) we have

𝑞−1∑︁
𝑗=2

𝑍 𝑗
𝐺,𝑣(𝑤) + 𝑤𝑍𝑞

𝐺,𝑣(𝑤) + 𝑍1
𝐺,𝑣(𝑤) ≤ 𝑤𝑍1

𝐺,𝑣(𝑤) +
𝑞−1∑︁
𝑗=2

𝑍 𝑗
𝐺,𝑣(𝑤) + 𝑍𝑞

𝐺,𝑣(𝑤),

and therefore,

P𝐺+1,𝑤[Φ(𝑣) = 𝑞] − P𝐺+𝑞,𝑤[Φ(𝑣) = 𝑞] ≤ (1 − 𝑤)P𝐺+1,𝑤[Φ(𝑣) = 𝑞], (21)

proving the first case.
If P𝐺,𝑤[Φ(𝑣) = 1] > P𝐺,𝑤[Φ(𝑣) = 𝑞], the first entry of P𝐺,𝑣 is non-positive while all other

entries are non-negative. Hence we may assume that x satisfies 𝑥1 ≤ 0 and 𝑥 𝑗 ≥ 0 for 𝑗 ≥ 2.
This gives us by definition of x̂,

⟨P𝐺,𝑣, x⟩ = 𝑃𝐺,𝑣;1𝑥1 +
𝑞−1∑︁
𝑗=2

𝑃𝐺,𝑣; 𝑗 (𝑥1 + 𝑥̂ 𝑗)

= 𝑥1

𝑞−1∑︁
𝑗=1

𝑃𝐺,𝑣; 𝑗 +
𝑞−1∑︁
𝑗=2

𝑃𝐺,𝑣; 𝑗𝑥̂ 𝑗

= −𝑥1(P𝐺+1,𝑤[Φ(𝑣) = 𝑞] − P𝐺+𝑞,𝑤[Φ(𝑣) = 𝑞]) +
𝑞−1∑︁
𝑗=2

𝑃𝐺,𝑣; 𝑗𝑥̂ 𝑗

=
𝑞−1∑︁
𝑗=1

𝑃𝐺,𝑣; 𝑗𝑥̂ 𝑗 = ⟨P̂𝐺,𝑣, x̂⟩,
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where P̂𝐺,𝑣 is defined by 𝑃𝐺,𝑣; 𝑗 = 𝑃𝐺,𝑣; 𝑗 for 𝑗 ≥ 2 and 𝑃𝐺,𝑣;1 = P𝐺+1 [𝑣 = 𝑞] − P𝐺+𝑞 [𝑣 = 𝑞]). We note
that by construction and (20), 𝑃𝐺,𝑣; 𝑗 ≥ 0 for all 𝑗. Therefore

⟨P̂𝐺,𝑣, x̂⟩ ≤ ∥x̂∥∞∥P̂𝐺,𝑣∥1

= ∥x̂∥∞ |𝑃𝐺,𝑣;1 | ≤ ∥x̂∥∞(1 − 𝑤)P𝐺+𝑞 [𝑣 = 1],

where the last inequality follows in the same way as (21). This finishes the proof. ■

5. Proof of main theorem for 𝜼 = 0

In this section we prove Theorem 2.1 for 𝜂 = 0. For this we will use the following lemma, whose
proof we defer to the end of this section.

LEMMA 5.1. Let 𝛼 > 1 and let 𝑞, Δ be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1. Then there
exist constants 𝐶(𝛼) > 0 and 𝐶1(𝛼) > 0 such that for any 𝜀1 ∈ (0, 𝐶1(𝛼)/Δ) and 𝜀2 ∈ (0, 𝜋/8)
the following holds: for any (𝐺, 𝑣) ∈ G•

Δ,𝑞 and any 𝑤 ∈ [0, 1] we have that if 𝑤̃ ∈ C and x ∈ C𝑞−1

satisfy

|𝑤̃ − 𝑤| < 𝜀1 and |𝑥 𝑗 − 𝑅𝐺,𝑣; 𝑗,ℓ (𝑤) | < 𝜀2, for all 𝑗, ℓ ∈ [𝑞]

then for any 𝜏 ∈ {0, 1} and ℓ ∈ [𝑞],������∑︁𝑗≠ℓ 𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐ℓ+𝜏

������ ≥ 𝐶(𝛼)Δ, (22)

where c = c𝐺,𝑣.

PROOF OF THEOREM 2.1 FOR 𝜼 = 0 . Throughout the proof 𝑞, Δ and 𝑤 ∈ [0, 1] are fixed and
whenever we refer to a graph we in fact mean a partially 𝑞-colored graph.

We will prove the theorem by induction on the number of free vertices of the graph, the
base case being a connected rooted graph (𝐺, 𝑣) ∈ G•

𝑞 where 𝑣 is the only free vertex of 𝐺. Since
the pinned vertices of 𝐺 form an independent set, (𝐺, 𝑣) is just an isolated vertex and hence for
any pair of colors 𝑖, 𝑗 we have 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) = log(1) = 0 for any 𝑤̃ ∈ C, proving the first part of the
base case. Now for the second part, we apply Lemma 5.1 with 𝛼 = 2/3, R = x = 0 and 𝜏 = 0 to
see that provided 𝜀1 ≤ 𝐶1(2/3) and 𝜀2 ≤ 𝜋/8,

|𝑍𝐺 (𝑤̃) | =
������
𝑞∑︁
𝑗=1

𝑤̃𝑐 𝑗

������ ≥ 𝐶(2/3)Δ > 0,

and hence in particular, 𝑍𝐺 (𝑤̃) ≠ 0. This finishes the verification of the base case.
Next consider a partially 𝑞-colored graph 𝐺 of maximum degree at most Δ with more than

one free vertex, all of whose pinned vertices are all leaves and form an independent set. Let
𝑣 be a free vertex of free degree 𝑑 ≤ Δ − 1. We need to show |𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) | ≤ 𝜀2 and
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𝑍𝐺 (𝑤̃) ≠ 0. By symmetry, we may assume that 𝑖 = 1, 𝑗 = 𝑞. Note that by induction these log-ratios
are well-defined since 𝑍𝑖

𝐺,𝑣(𝑤̃) ≠ 0 for all 𝑖, because after fixing the color of 𝑣 in 𝐺 and replacing
𝑣 by 𝑑 many leaves, each connected to a unique neighbor of 𝑣 in 𝐺, each component of the
resulting partially 𝑞-colored graph 𝐻 has fewer free vertices than 𝐺, each original free neighbor
of 𝑣 now has free degree at most Δ−1, its pinned vertices are all leaves and form an independent
set. Therefore, by induction and the fact that the partition function is multiplicative over the
components of 𝐻 , it follows that 𝑍𝑖

𝐺,𝑣(𝑤̃) = 𝑍𝐻 (𝑤̃) ≠ 0.
Choose an ordering of the free neighbors 𝑣1, . . . , 𝑣𝑑 of 𝑣 and let 𝐺𝑖 , 𝑖 = 1, . . . , 𝑑 be the

graphs obtained from the telescoping procedure. Let 𝐼 ⊆ [𝑑] be the set of indices, where
P𝐺𝑖 ,𝑤[Φ(𝑣𝑖) = 1] ≤ P𝐺𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞]. By (10) we have that

|𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) | ≤
𝑑∑︁
𝑖=1

|𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) |︸                                 ︷︷                                 ︸
𝐴𝑖

+
𝑑∑︁
𝑖=1

|𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) − 𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃)) |︸                                 ︷︷                                 ︸
𝐵𝑖

, (23)

where the vectors R𝑖 (𝑤̃) ∈ C𝑞−1 are defined by 𝑅𝑖
𝑗 (𝑤̃) = 𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃) for 𝑗 = 1, . . . , 𝑞 − 1 (by

induction these are well-defined, since the graphs 𝐺𝑖 have fewer free vertices), and where
c𝑖 = c𝐺,𝑣𝑖 .

First let us bound the first summation. By (11) for a given 𝑖 ∈ [𝑑], we know that

𝐴𝑖 = |𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) |
≤ sup

𝑡∈[0,1]
|⟨∇𝐹𝑤,c𝑖 (𝑡R𝑖 (𝑤) + (1 − 𝑡)R𝑖 (𝑤̃)),R𝑖 (𝑤) − R𝑖 (𝑤̃)⟩|

= sup
𝑡∈[0,1]

|⟨∇𝐹𝑤,c𝑖 (y𝑡), x⟩|,

where x = R𝑖 (𝑤) − R𝑖 (𝑤̃) and y𝑡 = 𝑡R𝑖 (𝑤) + (1 − 𝑡)R𝑖 (𝑤̃). By induction we know that

|𝑅𝐺𝑖 ,𝑣𝑖 ;ℓ1,ℓ2
(𝑤̃) − 𝑅𝐺𝑖 ,𝑣𝑖 ;ℓ1,ℓ2

(𝑤) | ≤ 𝜀2

for any pair of colors ℓ1, ℓ2. In particular, taking ℓ2 = 𝑞 we have ∥x∥∞ ≤ 𝜀2 and taking ℓ2 = 1 we
have ∥x̂∥∞ ≤ 𝜀2, where x̂ is defined as 𝑥̂1 := −𝑥1 and 𝑥̂ 𝑗 := 𝑥 𝑗 − 𝑥1 for 𝑗 = 2, . . . , 𝑞 − 1. Moreover,
for any 𝑡 ∈ [0, 1] the vector y𝑡 = 𝑡R𝑖 (𝑤) + (1 − 𝑡)R𝑖 (𝑤̃) satisfies

∥y𝑡∥∞ ≤ 𝜀2 and ∥y𝑡 − R𝑖 (𝑤)∥∞ = (1 − 𝑡)∥x∥∞ ≤ 𝜀2.
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Then we can bound 𝐴𝑖 as follows:

𝐴𝑖 ≤ sup
𝑡∈[0,1]

��⟨P𝐺𝑖 ,𝑣𝑖 , x⟩ + ⟨∇𝐹𝑤,c𝑖 (y𝑡) − P𝐺𝑖 ,𝑣𝑖 , x⟩
��

≤ sup
𝑡∈[0,1]

(|⟨P𝐺𝑖 ,𝑣𝑖 , x⟩| + ∥P𝐺𝑖 ,𝑣𝑖 − ∇𝐹𝑤,c𝑖 (y𝑡)∥1∥x∥∞
)

≤ |⟨P𝐺𝑖 ,𝑣𝑖 , x⟩| + 𝜀2 sup
𝑡∈[0,1]

∥P𝐺𝑖 ,𝑣𝑖 − ∇𝐹𝑤,c𝑖 (y𝑡)∥1. (24)

By Proposition 4.2, if 𝜀2 > 0 is sufficiently small (i.e. 𝜀2 < 𝛿 that is given by applying
Proposition 4.2(i) with 𝜀 = 1/(3Δ2)), then ∥P𝐺𝑖 ,𝑣𝑖 − ∇𝐹𝑤,c𝑖 (y𝑡)∥1 ≤ 1/(3Δ2). To bound |⟨P𝐺𝑖 ,𝑣𝑖 , x⟩|
we distinguish two cases depending on whether 𝑖 ∈ 𝐼 or 𝑖 ∈ [𝑑] \ 𝐼 . If 𝑖 ∈ 𝐼 , then by Lemma 4.4
and Lemma 3.1 we can further bound 𝐴𝑖 as

𝐴𝑖 ≤ (1 − 𝑤)P𝐺+1
𝑖
[𝑣𝑖 = 𝑞] · ∥x∥∞ + 𝜀2

1
3Δ2 (25)

≤ 𝜀2

( (1 − 𝑤)
𝑞 − Δ

+ 1
3Δ2

)
.

Similarly, if 𝑖 ∈ [𝑑] \ 𝐼 we can argue the same way, implying that for any 𝑖 = 1, . . . , 𝑑 we have

𝐴𝑖 ≤ 𝜀2

( (1 − 𝑤)
𝑞 − Δ

+ 1
3Δ2

)
. (26)

Now let us bound 𝐵𝑖 in (23). By Proposition 4.2 if 𝜀1 > 0 is sufficiently small (i.e. 𝜀1 < 𝛿

that is given by applying Proposition 4.2(ii) with 𝜀 = 𝜀2/(3Δ2)) we have

𝐵𝑖 ≤ 𝜀2/(3Δ2). (27)

By substituting (26) and (27) into (23) we obtain

|𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) | ≤ 𝑑𝜀2

(
1 − 𝑤

𝑞 − Δ
+ 2

3Δ2

)
≤ 𝜀2

(
Δ − 1

Δ
+ 2

3Δ

)
< 𝜀2.

This proves the first part of the statement.
To show that 𝑍𝐺 (𝑤̃) ≠ 0 we argue as follows. Choose any color ℓ that is not blocked at

the vertex 𝑣. Then 𝑍ℓ
𝐺,𝑣(𝑤̃) = 𝑍ℓ

𝐺,𝑣
(𝑤̃), since color ℓ is not blocked at 𝑣. Therefore, by induction

we have that 𝑍ℓ
𝐺,𝑣(𝑤̃) ≠ 0, since after replacing 𝑣 by deg𝐺 (𝑣) many leaves each connected to a

unique neighbor of 𝑣 in𝐺 each component of the resulting partially 𝑞-colored graph is contained
in G•

Δ,𝑞 and has fewer free vertices.
Therefore, to prove that 𝑍𝐺 (𝑤̃) ≠ 0, it is sufficient to prove that

0 ≠
𝑍𝐺 (𝑤̃)
𝑍ℓ
𝐺,𝑣(𝑤̃)

=
𝑞∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑅𝐺,𝑣; 𝑗,ℓ (𝑤̃) .

This follows directly from an application of Lemma 5.1 with 𝑥 𝑗 = 𝑅𝐺,𝑣; 𝑗,ℓ (𝑤̃) and 𝛼 = 2/3. ■
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REMARK 5.2. Note that our proof shows that we need 𝜀2 to be smaller than 𝛿 with 𝛿 coming
from Proposition 4.2 with 𝜖 = 1/(3Δ2). Additionally, we need 𝜀1 to be smaller than 𝛿 coming
from Proposition 4.2 with 𝜖 = 𝜀2/(3Δ2).

In the appendix we give an alternative proof of Proposition 4.2 that shows that we can
take 𝛿 ≥ 𝐶𝜀 for a constant 𝐶 > 0 for these choices of 𝜀. Therefore we conclude that 𝜀1 can be
chosen to be 𝐶′Δ−4 for some constant 𝐶′.

REMARK 5.3. Note that the proof actually shows that we can inductively bound the log-ratio
difference by 𝜀2𝑑/Δ, where 𝑑 denotes the free degree of the vertex 𝑣, as the sum in (13) is over
the free neighbors of 𝑣. The crucial part in the proof is to bound 𝐴𝑖 . We do this in (25) using
the marginal probability of the root vertex being colored with color 1, which we bound by
1−𝑤
𝑞−Δ ≤ 1−𝑤

Δ in (26) under the assumption that 𝑞 ≥ 2Δ. It is not hard to see that if for a restricted
family of graphs of maximum degree at most Δ this marginal probability can be bounded by

1
𝑑+𝑐 for some 𝑐 ∈ (0, 1) (where 𝑑 denotes the free degree) under weaker assumptions on 𝑞, then
the entire proof still applies under these weaker assumptions, but with the modified induction
assumption described above. This way we essentially recover the condition from Liu, Sinclair
and Srivastava [30] (as stated in (★) in the introduction.) In fact, our condition is slightly weaker.
In particular for triangle free graphs it is known that such bounds exist under the assumption
that 𝑞 ≥ 1.7633Δ + 𝛽 for some absolute constant 𝛽 > 0, see [21, 30] for details.

The next section contains refined bounds on the marginal probability of the root vertex
under additional assumptions on the structure of the neighborhood of that vertex that we utilize
in the proof of the main theorem for 𝜂 > 0.

We end this section with a proof of Lemma 5.1. In the proof we will use the following
lemma of Barvinok.

LEMMA 5.4 (Barvinok [3, Lemma 3.6.3] ). Let 𝑢1, . . . , 𝑢𝑘 ∈ R2 be non-zero vectors such that the
angle between any vectors 𝑢𝑖 and 𝑢 𝑗 is at most 𝜑 for some 𝜑 ∈ [0, 2𝜋/3). Then the 𝑢𝑖 all lie in a
cone of angle at most 𝜑 and ������ 𝑘∑︁

𝑗=1
𝑢 𝑗

������ ≥ cos(𝜑/2)
𝑘∑︁
𝑗=1

|𝑢 𝑗 |.

PROOF OF LEMMA 5.1 . For the proof we may without loss of generality assume that ℓ = 𝑞.
Let 𝑤★ = 𝜀1/sin

( 𝜋
8Δ

)
. We distinguish the cases 𝑤 ≤ 𝑤★ and 𝑤 > 𝑤★.

First consider the case 𝑤 ≤ 𝑤★. By Lemma 3.1 and Lemma 3.3, and by noting that 𝑞/(𝑞−Δ)
is decreasing in 𝑞 for 𝑞 > Δ, we have that

𝛼Δ + 1
((1 + 𝛼)Δ + 1) 𝑒1/𝛼 ≤ 𝑞 − Δ

𝑞𝑒1/𝛼 ≤ exp(𝑅 𝑗) ≤ 𝑞𝑒1/𝛼

𝑞 − Δ
≤ ((1 + 𝛼)Δ + 1) 𝑒1/𝛼

𝛼Δ + 1
,

and therefore in particular
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𝛼

(1 + 𝛼)𝑒1/𝛼 ≤ exp(𝑅 𝑗) ≤ (1 + 𝛼)𝑒1/𝛼

𝛼
. (28)

Thus, by assumption we have 𝑀−1𝑒−𝜀2 ≤ 𝑒𝑥 𝑗 ≤ 𝑀𝑒𝜀2 , where 𝑀 = (1+𝛼)𝑒1/𝛼
𝛼 , and that all 𝑒𝑥 𝑗 are

contained in a cone of angle at most 2𝜀2 ≤ 𝜋/4, centered around the real axis. Moreover, we
remark that at least 𝑞 − Δ entries of 𝒄 are zero (including possibly 𝑐𝑞). Let 𝑆0 ⊂ [𝑞 − 1] denote
the indices for which this is the case. We obtain������

𝑞−1∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+𝜏

������ ≥
������∑︁𝑗∈𝑆0

𝑤̃𝑐 𝑗𝑒𝑥 𝑗

������ −
������ ∑︁
𝑗∈[𝑞−1]\𝑆0

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+𝜏

������
≥ cos(𝜀2)

∑︁
𝑗∈𝑆0

|𝑒𝑥 𝑗 | −
∑︁

𝑗∈[𝑞−1]\𝑆0

|𝑤̃|𝑐 𝑗 |𝑒𝑥 𝑗 | − |𝑤̃𝑐𝑞+𝜏 |

≥ cos(𝜀2) (𝑞 − Δ − 1)
𝑀𝑒𝜀2

− Δ𝑒𝜀2𝑀 (𝜀1 + 𝑤★)

≥ (𝑞 − Δ − 1)
2𝑀

− 2Δ𝑀 (𝜀1 + 𝑤★).

In the second step we used Lemma 5.4, and in the last step we used the fact that 𝜀2 ≤ 𝜋/8 < 1
2

thus cos(𝜀2)𝑒−𝜀2 ≥ 1/2.
For the case 𝑤 > 𝑤★, we find that

| arg(𝑤̃𝑐 𝑗+𝜏𝑒𝑥 𝑗) | ≤ (𝑐 𝑗 + 𝜏) | arg 𝑤̃| + 𝜀2 ≤ (𝑐 𝑗 + 𝜏) arcsin
( 𝜀1

𝑤★

)
+ 𝜀2 ≤ Δ

𝜋

8Δ
+ 𝜋

8
≤ 𝜋

4
.

Using Lemma 5.4 again, we obtain������
𝑞−1∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+𝜏

������ ≥ cos
(𝜋

4

) 𝑞−1∑︁
𝑗=1

��𝑤̃𝑐 𝑗𝑒𝑥 𝑗
�� + cos

(𝜋
4

) ��𝑤̃𝑐𝑞+𝜏��
≥ cos

(𝜋
4

) ∑︁
𝑗∈𝑆0

��𝑤̃𝑐 𝑗𝑒𝑥 𝑗
��

≥ (𝑞 − Δ − 1)
𝑀

cos
(𝜋

4
)

𝑒𝜀2
.

≥ (𝑞 − Δ − 1)
3𝑀

.

Combining the two cases, we may conclude that������
𝑞−1∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+𝜏

������ ≥ (𝑞 − Δ − 1)
3𝑀

− 2Δ𝑀𝜀1

(
1 + 1

sin
( 𝜋

8Δ
) ) .

Let us further bound this by observing that

𝑞 − Δ − 1
𝑀

≥ 𝛼2

(1 + 𝛼)𝑒1/𝛼Δ,
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and

1 + 1
sin

( 𝜋
8Δ

) =
sin

( 𝜋
8Δ

) + 1
sin

( 𝜋
8Δ

) ≤ 2
sin

( 𝜋
8Δ

) ≤ 2( 𝜋
8Δ

) /2
=

32Δ
𝜋

≤ 11Δ.

This yields us

������
𝑞−1∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+𝜏

������ ≥
©­­­­­­«

𝛼2

3(1 + 𝛼)𝑒1/𝛼︸          ︷︷          ︸
𝑓 (𝛼)

− 22
𝑒1/𝛼(1 + 𝛼)

𝛼︸            ︷︷            ︸
𝑔 (𝛼)

𝜀1Δ

ª®®®®®®¬
Δ.

Rewriting the right-hand side as ( 𝑓 (𝛼) − 𝑔 (𝛼)𝜀1Δ)Δ, we see that if 0 ≤ 𝜀1 ≤ 𝑓 (𝛼)
2𝑔 (𝛼)Δ , then

( 𝑓 (𝛼) − 𝑔 (𝛼)𝜀1Δ)Δ ≥ 1
2 𝑓 (𝛼)Δ.

This means that the choice 𝐶(𝛼) = 1
2 𝑓 (𝛼) and 𝐶1(𝛼) = 𝑓 (𝛼)

2𝑔 (𝛼) satisfies the condition of the
lemma. ■

6. Refined bounds onmarginal probabilities of the root vertex

We collect here some results that improve on the bounds on the marginal probability of the root
vertex from Lemma 3.1, under additional assumptions on the local structure of the neighborhood
of the root vertex that we will utilize in the proof of the main theorem for 𝜂 > 0 in the next
section. For the proof of Theorem 2.1 one only needs the conclusions of Corollaries 6.2 and 6.5.
Apart from that, this section can be read independently of the next section.

6.1 Local influences on the probabilities

Our first lemma shows how to improve the bound from Lemma 3.1 under the additional
assumption that not all neighbors of the root vertex have color 𝑗 blocked.

LEMMA 6.1. Let 𝑞 and Δ be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1 for some 𝛼 > 0 and let 𝐺
be a partially 𝑞-colored graph of maximum degree at most Δ and let 𝑣 ∈ 𝑉 (𝐺) be a free vertex of
degree 𝑑 and with free-degree 𝑓 . Let 𝛾 ∈ [0, 1] and let 𝑗 ∈ {1, . . . , 𝑞} be a free color at 𝑣. Suppose
that color 𝑗 is blocked for at most (1 − 𝛾) 𝑓 of the free neighbors of 𝑣 Then for any 𝑤 ∈ [0, 1],

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤
(1 − 𝑤) exp

( −𝛾 𝑓
𝑞𝑒1/𝛼

)
+ 𝑤

𝑞 − 𝑑 + 𝑑𝑤
.

PROOF . Throughout we will fix 𝑤 and just write P𝐺 instead of P𝐺,𝑤. By (14) we have

P𝐺 [Φ(𝑣) = 𝑗] =
∑︁
𝜅

P𝐺 [Φ(𝑣) = 𝑗 | 𝐸𝜅]P𝐺 [𝐸𝜅],
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where 𝐸𝜅 denotes the event that the random coloring Φ agrees with 𝜅 on 𝑁 (𝑣), and we sum
over all colorings 𝜅 of the neighbors of 𝑣 for which P𝐺 [𝐸𝜅] ≠ 0. By (16), for a given 𝜅 that does
not use color 𝑗, we can bound P𝐺 [𝑣 = 𝑗 | 𝐸𝜅] by 1

𝑞−𝑑+𝑑𝑤 , and if 𝜅 does use color 𝑗, then we bound
this probability by 𝑤

𝑞−𝑑+𝑑𝑤 . So we can bound P𝐺 [Φ(𝑣) = 𝑗] by

1 − 𝑤

𝑞 − 𝑑 + 𝑑𝑤
P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣))] + 𝑤

𝑞 − 𝑑 + 𝑑𝑤
.

Our next step is to bound P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣))]. Let 𝑢1, . . . , 𝑢𝑡 be the free neighbors of 𝑣 for
which color 𝑗 is not blocked. Note that 𝑡 ≥ 𝛾 𝑓 . Then as in (17), we can write

P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣)] ≤ P𝐺 [ 𝑗 ∉ Φ{𝑢1, . . . , 𝑢𝑡}] =
𝑡∏

𝑖=1
P𝐺 [Φ(𝑢𝑖) ≠ 𝑗 | 𝐸𝑖], (29)

where 𝐸𝑖 denotes the event that the random coloring Φ does not use color 𝑗 on the vertices
𝑢𝑖+1, . . . , 𝑢𝑡.

We next claim that for each 𝑖 = 1, . . . , 𝑡 we have the following the lower bound

P𝐺 [Φ(𝑢𝑖) = 𝑗 | 𝐸𝑖] ≥ 1
𝑞𝑒1/𝛼 . (30)

We prove (30) below, but first we plug this into (29) to obtain

P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣)] ≤
(
1 − 1

𝑞𝑒1/𝛼

) 𝑡
≤

(
1 − 1

𝑞𝑒1/𝛼

)𝛾 𝑓
≤ exp

( −𝛾 𝑓
𝑞𝑒1/𝛼

)
.

It thus remains to show (30). If it were not for the event 𝐸𝑖 , this would be a direct conse-
quence of Lemma 3.3. We follow the proof of that lemma to show that the same bound still
applies. We again expand

P𝐺 [Φ(𝑢𝑖) = 𝑗 | 𝐸𝑖] =
∑︁
𝜅

P𝐺 [Φ(𝑣) = 𝑗 | 𝐸𝜅 ∩ 𝐸𝑖]P𝐺 [𝐸𝜅 | 𝐸𝑖],

where the sum is over 𝜅 for which Pr𝐺 [𝐸𝜅 ∩ 𝐸𝑖] > 0. By (16), we can lower bound P𝐺 [Φ(𝑣) = 𝑗 |
𝐸𝜅 ∩ 𝐸𝑖] for any such 𝜅 that additionally does not assign color 𝑗 to the neighbors of 𝑢𝑖 by 1/𝑞. It
thus suffices to lower bound P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑢𝑖)) | 𝐸𝑖] by 𝑒−1/𝛼. To this end denote by 𝑣1, . . . , 𝑣𝑑 the
neighbors of 𝑢𝑖 , and note that by assumption none of them is pinned to color 𝑗. Then as in (17)
we have

P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑣)) | 𝐸𝑖] =
𝑑∏

𝑘=1
P𝐺 [Φ(𝑣𝑘) ≠ 𝑗 | 𝐸̂𝑘]

=
𝑑∏

𝑘=1

(
1 − P𝐺 [Φ(𝑣𝑘) = 𝑗 | 𝐸̂𝑘]

)
,

where 𝐸̂𝑘 denotes the event that Φ does not use color 𝑗 on 𝑣𝑘+1, . . . , 𝑣𝑑 and not on 𝑢𝑖+1, . . . , 𝑢𝑡.
Now since 𝑞 > Δ+1, we can again use the Markov property (cf. (16)) to bound P𝐺 [Φ(𝑣𝑘) = 𝑗 | 𝐸̂𝑘]
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by 1
𝑞−Δ+Δ𝑤 . It then follows as in (18) that P𝐺 [ 𝑗 ∉ Φ(𝑁 (𝑢𝑖)) | 𝐸𝑖] is at least 𝑒−1/𝛼 and therefore (30)

holds. ■

We record here some concrete applications of the previous lemma that will be used in the
proof of Theorem 2.1 in the next section.

COROLLARY 6.2. Let 𝑞 and Δ ≥ 500 be positive integers such that 𝑞 ≥ (2 − 𝜂)Δ for some
0 ≤ 𝜂 ≤ 0.002, let 𝐺 be a partially 𝑞-colored graph of maximum degree Δ, and let 𝑣 ∈ 𝑉 (𝐺) be a
free vertex of degree 𝑑 and with free-degree 𝑓 ≤ Δ − 1. Let 𝛾 ∈ [0, 1] and let 𝑗 ∈ {1, . . . , 𝑞} be a
free color at 𝑣. Suppose that color 𝑗 is blocked for at most (1 − 𝛾) 𝑓 of the neighbors of 𝑣. Then, if
𝑤 ∈ [0, 1] and

𝛾 ≥ 0.02, then P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 1
𝑓 +1 ,

𝛾 ≥ 0.14, then P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 0.977
𝑓 +1 .

PROOF . Let 𝑑 be the degree of 𝑣 and apply Lemma 6.1 with 𝛼 = 1 − 𝜂 − 1/Δ ≥ 0.996. Now the
bound on P𝐺,𝑤[Φ(𝑣) = 𝑗] from Lemma 6.1 is clearly decreasing in terms of 𝛼, 𝑤 and increasing
in terms of 𝑑. Therefore, we may assume that 𝑤 = 0, 𝛼 = 0.996 and 𝑑 = Δ. Then

P𝐺 [Φ(𝑣) = 𝑗] ≤
exp

( −𝛾 𝑓
𝑞𝑒1000/996

)
𝑞 − Δ

.

Let us denote 𝑔 : [0, Δ − 1] → R to be the function defined by 𝑔 ( 𝑓 ) = ( 𝑓 + 1) exp
(
− 𝛾 𝑓
𝑞𝑒1000/996

)
.

This function is increasing on [0, Δ − 1], therefore we have

( 𝑓 + 1)P𝐺 [Φ(𝑣) = 𝑗] ≤
Δ exp

( −𝛾(Δ−1)
𝑞𝑒1000/996

)
𝑞 − Δ

,

that is decreasing in 𝑞 for 𝛾 ∈ [0, 1]. Thus choosing 𝑞 = 1.998Δ we have

( 𝑓 + 1)P𝐺 [Φ(𝑣) = 𝑗] ≤
Δ exp

( −𝛾(1−1/Δ)
1.998𝑒1000/996

)
0.998

≤
exp

( −0.998𝛾
1.998𝑒1000/996

)
0.998

.

As this bound is decreasing in 𝛾, by choosing 𝛾 = 0.02 and 𝛾 = 0.14 we obtain the desired
statement, as can be numerically verified. ■

The next lemma is well known, variations have for example been used in [21, 32]. We give
a proof for completeness.

LEMMA 6.3. Let 𝑞 be a positive integer. Let 𝐺 be partially 𝑞-colored graph of maximum degree
Δ ≤ 𝑞 − 1 and let 𝑣 ∈ 𝑉 (𝐺) be a free vertex. Then for any 𝑤 ≥ 0,

P𝐺,𝑤[Φ(𝑣) = 𝑞] = E𝐺−𝑣,𝑤[𝑤𝑐𝑞(Φ|𝑁 (𝑣))]∑𝑞
𝑖=1 E𝐺−𝑣,𝑤[𝑤𝑐𝑖 (Φ|𝑁 (𝑣))]

. (31)
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PROOF . Since 𝑞 ≥ Δ + 1, we know that 𝐺 − 𝑣 can be properly colored, i.e. 𝑍𝐺−𝑣(𝑤) ≠ 0. Then
we have the following identity:

𝑍 𝑗
𝐺,𝑣(𝑤)

𝑍𝐺−𝑣(𝑤) =
∑︁

𝜓:𝑉\{𝑣}→𝑞
𝜓|𝑆=𝜙

𝑤𝑐 𝑗 (𝜓|𝑁 (𝑣))𝑤𝑚(𝜓)

𝑍𝐺−𝑣(𝑤) = E𝐺−𝑣,𝑤[𝑤𝑐 𝑗 (Φ|𝑁 (𝑣))] .

Now the claim follows from this identity:

P𝐺,𝑤[Φ(𝑣) = 𝑞] =
𝑍𝑞
𝐺,𝑣(𝑤)
𝑍𝐺 (𝑤) =

𝑍𝑞
𝐺,𝑣(𝑤)∑𝑞

𝑗=1 𝑍
𝑗
𝐺,𝑣(𝑤)

=
𝑍𝑞
𝐺,𝑣(𝑤)/𝑍𝐺−𝑣(𝑤)∑𝑞

𝑗=1 𝑍
𝑗
𝐺,𝑣(𝑤)/𝑍𝐺−𝑣(𝑤)

=
E𝐺−𝑣,𝑤[𝑤𝑐𝑞(Φ|𝑁 (𝑣))]∑𝑞
𝑖=1 E𝐺−𝑣,𝑤[𝑤𝑐𝑖 (Φ|𝑁 (𝑣))]

.

■

Our next lemma shows how to improve the bound from Lemma 3.1 under the additional
assumption that the graph induced by the neighbors of the root vertex is not ‘close to’ a clique.

LEMMA 6.4. Let 𝑞 and Δ be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1 for some 𝛼 > 0 and let
𝐺 be a partially 𝑞-colored graph of maximum degree Δ such that the pinned vertices of 𝐺 are all
leaves and let 𝑣 ∈ 𝑉 (𝐺) be a vertex of free degree 𝑓 . Let 𝐻 be the graph induced by 𝑁𝐺 (𝑣) and let
𝐿 be the collection of free colors at 𝑣. Then for any 𝑗 ∈ 𝐿, and 𝑤 ∈ [0, 1],

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 1

|𝐿|
(
1 − 1−𝑤

𝑞−Δ+1−𝑤
) ((𝑞−Δ) 𝑓 +2𝑒(𝐻)+ 𝑓 )/|𝐿| (

1 − 𝑤
𝑞−Δ+1

) 𝑓 𝑞/|𝐿| .
PROOF . In the proof we will fix 𝑤 and just write P𝐺 instead of P𝐺,𝑤. We will apply Lemma 6.3.
We can just upper bound the numerator in (31) by 1. We thus need a lower bound on

𝑞∑︁
ℓ=1
E𝐺−𝑣[𝑤𝑐ℓ(Φ|𝑁 (𝑣))] .

Let c = c𝐺,𝑣 and let us denote the free neighbors of 𝑣 by 𝑣1, . . . , 𝑣 𝑓 . We have
𝑞∑︁

ℓ=1
E𝐺−𝑣[𝑤𝑐ℓ(Φ|𝑁 (𝑣))] ≥

∑︁
ℓ∈𝐿
E𝐺−𝑣[𝑤𝑐ℓ(Φ|𝑁 (𝑣))],

which we can lower bound by AM-GM by

|𝐿|
∏
ℓ∈𝐿
E𝐺−𝑣[𝑤𝑐ℓ(Φ|𝑁 (𝑣))]1/|𝐿| ≥ |𝐿|

∏
ℓ∈𝐿
P𝐺−𝑣[ℓ ∉ Φ(𝑁)]1/|𝐿|

= |𝐿|
∏
ℓ∈𝐿

𝑓∏
𝑖=1

(
1 − P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ

𝑖 ]
)1/|𝐿|

= |𝐿|
𝑓∏

𝑖=1

∏
ℓ∈𝐿

(
1 − P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ

𝑖 ]
)1/|𝐿|

,
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where 𝐸ℓ
𝑖 is the event that 𝑣𝑖+1, . . . , 𝑣 𝑓 do not use color ℓ. Let 𝑄𝑖 ⊆ [𝑞] be the set of colors

appearing in the neighborhood of 𝑣𝑖 (in 𝐺), and let 𝑑𝐻 (𝑣𝑖) denote deg𝐻 (𝑣𝑖). Note that |𝑄𝑖 | +
𝑑𝐻 (𝑣𝑖) ≤ Δ−1, since the pinned neighbors of 𝑣 are isolated vertices of 𝐻 . By Lemma 3.1 if ℓ ∉ 𝑄𝑖 ,
then

P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ
𝑖 ] ≤

1
𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

and if ℓ ∈ 𝑄𝑖 , then
P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ

𝑖 ] ≤
𝑤

𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖) .

Hence, for a fixed 𝑖, we obtain that
∏

ℓ∈𝐿
(
1 − P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ

𝑖 ]
)

is at least(
1 − 1

𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

) |𝐿\𝑄𝑖 | (
1 − 𝑤

𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

) |𝐿∩𝑄𝑖 |
. (32)

We next show how to bound both factors in (32).
Since 𝑞 − |𝑄𝑖 | ≥ |𝐿 \ 𝑄𝑖 | and 𝑞 − |𝑄𝑖 | ≥ 𝑞 − (Δ − 1) + 𝑑𝐻 (𝑣𝑖) we have(

1 − 1
𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

) |𝐿\𝑄𝑖 |
≥

(
1 − 1

𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

)𝑞−|𝑄𝑖 |

=

(
1 − 1

𝑞 − |𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

) (𝑞−|𝑄𝑖 |−𝑑𝐻 (𝑣𝑖 ) )
𝑞−(Δ−1)

(𝑞−|𝑄𝑖 | ) (𝑞−(Δ−1) )
(𝑞−|𝑄𝑖 |−𝑑𝐻 (𝑣𝑖 ) )

≥
(
1 − 1

𝑞 − (Δ − 1)

) (𝑞−|𝑄𝑖 | ) (𝑞−(Δ−1)
𝑞−|𝑄𝑖 |−𝑑𝐻 (𝑣𝑖 ) ≥

(
1 − 1

𝑞 − (Δ − 1)

)𝑞−Δ+𝑑𝐻 (𝑣𝑖)+1

.

where in the second inequality we use Bernoulli inequality, and in the last inequality we used
the fact that 𝑥 ↦→ 𝑥

𝑥−𝑑𝐻 (𝑣𝑖) is decreasing in 𝑥 for 𝑥 > 𝑑𝐻 (𝑣𝑖).
Since the function 𝑥 ↦→ (1 − 𝑤

𝑞−𝑥−𝑑𝐻 (𝑣𝑖) )𝑥 is monotonically decreasing in 𝑥 for 0 ≤ 𝑥 <

𝑞 − 𝑑𝐻 (𝑣𝑖) − 𝑤, we have(
1 − 𝑤

𝑞 − |𝐿 ∩ 𝑄𝑖 | − 𝑑𝐻 (𝑣𝑖)

) |𝐿∩𝑄𝑖 |
≥

(
1 − 𝑤

𝑞 − Δ + 1

)Δ−1−𝑑𝐻 (𝑣𝑖)
.

Together this implies that
∏

ℓ∈𝐿
(
1 − P𝐺−𝑣[Φ(𝑣𝑖) = ℓ | 𝐸ℓ

𝑖 ]
)

is lower bounded by(
1 − 1

𝑞 − Δ + 1

)𝑞−Δ+1+𝑑𝐻 (𝑣𝑖) (
1 − 𝑤

𝑞 − Δ + 1

)Δ−1−𝑑𝐻 (𝑣𝑖)

=

(
1 − 1

𝑞 − Δ + 1

)𝑞−Δ+1+𝑑𝐻 (𝑣𝑖) (
1 − 𝑤

𝑞 − Δ + 1

) (Δ−1−𝑑𝐻 (𝑣𝑖)−𝑞)+𝑞

=

(
1 − 1 − 𝑤

𝑞 − Δ + 1 − 𝑤

)𝑞−Δ+1+𝑑𝐻 (𝑣𝑖) (
1 − 𝑤

𝑞 − Δ + 1

)𝑞
.

Taking the product over the free vertices and realizing that 2𝑒(𝐻) is the sum of the degree of
the vertices in 𝐻 , as 𝑑𝐻 (𝑣𝑖) = 0 for a pinned vertex 𝑣𝑖 , gives us the desired lower bound for∑𝑞

ℓ=1 E𝐺−𝑣[𝑤𝑐ℓ (Φ|𝑁 (𝑣) )] and this finishes the proof. ■
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We record as a corollary of this lemma a version with explicit bounds on some of the
parameters involved, making it easier to apply in our proof of Theorem 2.1.

COROLLARY 6.5. Let 𝑞 and Δ be positive integers such that 𝑞 ≥ (2−𝜂)Δ for some 0 ≤ 𝜂 ≤ 0.002
and Δ ≥ 500. Let 𝐺 be a partially 𝑞-colored graph of maximum degree Δ whose pinned vertices
are all leaves and let 𝑣 ∈ 𝑉 (𝐺) be a vertex of free degree 𝑓 ≥ (1 − 𝜂)Δ − 2/3. Let 𝐻 be the graph
induced by 𝑁𝐺 (𝑣) and let 𝐿 be the collection of free colors at 𝑣 and assume that 𝐻 has average
degree 𝑑 ≤ 0.36 𝑓 . Then for any 𝑗 ∈ 𝐿, and 𝑤 ∈ [0, 0.002],

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 1
𝑓 +1 .

PROOF . First note that the number of free colors |𝐿| ≥ 𝑞− Δ+ 𝑓 , thus 𝑓
|𝐿| ≤

𝑓 +1
|𝐿| ≤ Δ

𝑞−1 ≤ 1
2−𝜂−1/Δ

and
(𝑞 − Δ + 𝑑 + 1) 𝑓

|𝐿| ≤ 𝑞 − Δ + 0.36Δ + 1
2 − 𝜂 − 1/Δ

.

Now let us apply Lemma 6.4 and use the previous bounds to bound the exponents in the
denominator. Thus, we obtain

P𝐺,𝑤[Φ(𝑣) = 𝑗] ≤ 1

|𝐿|
(
1 − 1−𝑤

𝑞−Δ+1−𝑤
) (𝑞−Δ+0.36Δ+1)/(2−𝜂−1/Δ) (

1 − 𝑤
𝑞−Δ+1

)𝑞/(2−𝜂−1/Δ) .

Now let us bound the functions appearing in the denominator. Using the Bernoulli inequality
we have (

1 − 1 − 𝑤

𝑞 − Δ + 1 − 𝑤

) (𝑞−Δ+0.36Δ+1)/(2−𝜂−1/Δ)
≥

(
1 − 1 − 𝑤

(1 − 𝜂)Δ

) (𝑞−Δ+0.36Δ+1) (1−𝜂)Δ
(𝑞−Δ+1−𝑤) (2−𝜂−1/Δ)

,

where the exponent is decreasing in 𝑞, therefore we could further bound it by(
1 − 1 − 𝑤

(1 − 𝜂)Δ

) ( (1−𝜂)Δ+0.36Δ+1) (1−𝜂)Δ
( (1−𝜂)Δ+1−𝑤) (2−𝜂−1/Δ)

≥
(
1 − 1 − 𝑤

(1 − 𝜂)Δ

) ( (1−𝜂)Δ+0.36Δ)
(2−𝜂−1/Δ)

≥
(
1 − 1 − 𝑤

(1 − 𝜂)Δ

) 1.358Δ
(1.996)

≥ 0.5053,

where in the last inequality we plugged in Δ = 500 using the fact that the function is increasing
in Δ. Similarly we obtain,(

1 − 𝑤

𝑞 − Δ + 1

) 𝑞
(2−𝜂−1/Δ)

≥
(
1 − 𝑤

(1 − 𝜂)Δ

) 𝑞(1−𝜂)Δ
(2−𝜂−1/Δ) (𝑞−Δ+1)

≥
(
1 − 𝑤

(1 − 𝜂)Δ

) (2−𝜂) (1−𝜂)Δ2
(2−𝜂−1/Δ) ( (1−𝜂)Δ+1)

≥
(
1 − 𝑤

(1 − 𝜂)Δ

) (2−𝜂)Δ
(2−𝜂−1/Δ)

≥
(
1 − 𝑤

(1 − 𝜂)Δ

) 1.998Δ
1.996

≥ 0.9979.
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Therefore, we obtain that

( 𝑓 + 1)P𝐺 [Φ(𝑣) = 𝑗] ≤ 𝑓 + 1
0.504|𝐿| ≤

1
0.504(2 − 𝜂 − 1/Δ) < 1

using that Δ ≥ 500 and 𝜂 ≤ 0.002, as desired. ■

7. Proof of Theorem 2.1 for 𝜼 > 0

PROOF OF THEOREM 2.1 FOR 𝜼 > 0 . Our goal is to expand on the proof for 𝜂 = 0 given in
the previous section. To this end let us fix 𝜂 ∈ [0, 0.002], positive integers Δ and 𝑞 ≥ (2 − 𝜂)Δ
and 𝑤 ∈ [0, 1]. By the proof for the case 𝜂 = 0, we may assume that Δ ≥ 500 since 𝑞 is an integer.

The proof is again by induction on the number of free vertices; however, we add one more
statement. We claim that there exists 𝜀1, 𝜀2 > 0 such that for any (𝐺, 𝑣) ∈ G•

Δ,𝑞 with free degree
𝑑 := deg𝐺 (𝑣) ≤ Δ − 1, any 𝑖, 𝑗, 𝑘 ∈ [𝑞] and 𝑤̃ ∈ 𝐵(𝑤, 𝜀1) we have

(i) |𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) | ≤
(1−𝑤) deg𝐺 (𝑣)+2/3

Δ 𝜀2,
(ii) P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑗] · |𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) | ≤ 𝜀2/Δ,

(iii) 𝑍𝐺 (𝑤̃) ≠ 0.

The proofs of (i) and (iii) are very similar to the proof for 𝜂 = 0. Moreover, the choice of 𝜀1 and
𝜀2 only depends on these parts. The more technical part will be the proof of (ii), where we will
exploit local information around the vertex 𝑣 to show that either P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑗] is small or
|𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) | is small.

The base case follows in exactly the same way as in the proof for 𝜂 = 0. In other words, if
𝜀1 is sufficiently small, then all three statements hold when there is exactly 1 free vertex.

Next, let (𝐺, 𝑣) ∈ G•
Δ,𝑞 with 𝑣 of free degree 𝑑 ≤ Δ − 1 with more than one free vertex. To

prove statements (i) and (ii), we may of course assume by symmetry that 𝑖 = 1 and 𝑗 = 𝑞.
Choose any ordering of the free neighbors of 𝑣 (to be specified further later). Let 𝑣1, . . . , 𝑣𝑑

be the free neighbors of 𝑣 (in this order). Let for 𝑖 ∈ [𝑑] 𝐺𝑖 be the graph obtained from 𝐺

via the telescoping procedure and recall that (𝐺𝑖 , 𝑣𝑖) denotes the graph obtained from (𝐺𝑖 , 𝑣𝑖)
by removing the pinned neighbors of 𝑣𝑖 in 𝐺𝑖 . Let 𝐼 ⊆ [𝑑] be the set of indices for which
P𝐺+1

𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] > P𝐺+𝑞
𝑖 ,𝑤[Φ(𝑣𝑖) = 1]. Also let c𝑖 = c𝐺𝑖 ,𝑣𝑖 the vector of blocked colors at 𝑣𝑖 in 𝐺𝑖

and 𝑅𝑖
𝑗 (𝑤̃) = 𝑅𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞(𝑤̃), which by induction is well-defined.

We now prove all three statements, assuming they hold for partially 𝑞-colored graphs with
fewer free vertices.
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Proof of (i). Following the same steps in the proof for 𝜂 = 0 we arrive at (23), which states

|𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) | ≤
𝑑∑︁
𝑖=1

|𝐹𝑤,c𝑖 (R𝑖 (𝑤)) − 𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) |︸                                 ︷︷                                 ︸
𝐴𝑖

+
𝑑∑︁
𝑖=1

|𝐹𝑤,c𝑖 (R𝑖 (𝑤̃)) − 𝐹𝑤̃,c𝑖 (R𝑖 (𝑤̃)) |︸                                 ︷︷                                 ︸
𝐵𝑖

.

Continuing the proof for 𝜂 = 0 we arrive at (24), which states

𝐴𝑖 ≤ |⟨P𝐺𝑖 ,𝑣𝑖 , x⟩| + 𝜀2 sup
𝑡∈[0,1]

∥P𝐺𝑖 ,𝑣𝑖 − ∇𝐹𝑤,c𝑖 (y𝑡)∥1,

where x = R𝑖 (𝑤) −R𝑖 (𝑤̃) and y𝑡 = 𝑡R𝑖 (𝑤) + (1− 𝑡)R𝑖 (𝑤̃), whose infinity norms are both bounded
by 𝜀2 by induction statement (i). Thus, if 𝑖 ∈ 𝐼 , and if 𝜀2 is smaller than the 𝛿 from Proposition 4.2
with 𝜀 = 1

3Δ2 , we can apply Proposition 4.2 and Lemma 4.4 to see that we have

𝐴𝑖 ≤ (1 − 𝑤)P𝐺+1
𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] · max

𝑗=1...𝑞−1
|𝑅𝑖

𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞
(𝑤) − 𝑅𝑖

𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞
(𝑤̃) | + 𝜀2

1
3Δ2 ,

which by induction statement (ii) is bounded by (1 − 𝑤)𝜀2/Δ + 𝜀2
3Δ2 . The same reasoning gives us

the same bound on 𝐴𝑖 when 𝑖 ∈ [𝑑] \ 𝐼 .
To bound 𝐵𝑖 we use Proposition 4.2 once more, to conclude that if 𝜀1 is smaller than the 𝛿

from Proposition 4.2 with 𝜀 = 𝜀2
3Δ2 to conclude that for each 𝑖 = 1, . . . , 𝑑, |𝐵𝑖 | ≤ 𝜀2

3Δ2 . Putting these
bounds together we see that we obtain

|𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤̃) − 𝑅𝐺,𝑣;𝑖, 𝑗 (𝑤) | ≤
( (1 − 𝑤)𝑑 + 2/3

Δ

)
𝜀2,

thereby proving statement (i).

Proof of (ii). Now let us prove the second statement. Recall that we may assume that 𝑖 = 1 and
𝑗 = 𝑞. Note that by Lemma 3.1 and the already proven item (i) we have

P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑞]·|𝑅𝐺,𝑣;1,𝑞(𝑤) − 𝑅𝐺,𝑣;1,𝑞(𝑤̃) | ≤
𝑤𝑐𝑞

(1 − 𝜂)Δ ·
( (1 − 𝑤)𝑑 + 2/3

Δ

)
𝜀2. (33)

This implies that we may assume the following statements:
(A1) 𝑤 ≤ 𝜂,
(A2) 𝑣 has no pinned neighbor of color 𝑞,
(A3) the free degree, 𝑑, of 𝑣 satisfies 𝑑 ≥ (1 − 𝜂)Δ − 2/3 ≥ 0.9966Δ.

Indeed, if any of (A1), (A2), (A3) does not hold, then we have that (33) is bounded by 𝜀2/Δ, and
we are done.
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q q q q q q q q

𝑉0 𝑉1

≤ 𝛾𝑑

𝑉2

Figure 3. Illustration of the vertices in the neighborhood 𝐻 of vertex 𝑣, without the (possible) induced
edges. The set 𝑉0 consists of the pinned vertices in 𝐻, 𝑉1 consists of the vertices that do not have color
𝑞 blocked, and 𝑉2 consists of the vertices where 𝑞 is blocked. The vertices in 𝑉2 are ordered from left to
right, increasing in their degree in 𝐻.

Let 𝐻 be the graph induced by 𝑁𝐺 (𝑣). Next we claim that we may assume that the following
statements hold:

(A4) for (1 − 𝛾)𝑑 ≥ 0.98𝑑 neighbors of 𝑣 the color 𝑞 is blocked,
(A5) the average degree of 𝐻 , 𝑑𝐻 , satisfies 𝑑𝐻 = 𝛽𝑑 ≥ 0.36𝑑.

Indeed, statements (A4) and (A5) follow because otherwise by Corollary 6.2 and Corol-
lary 6.5 (which we can apply since by (A1) we may assume that 𝑤 ∈ [0, 0.002]) we would have
P𝐺+𝑘 [Φ(𝑣) = 𝑞] ≤ 1/Δ and by the already proven item (i) we would obtain

P𝐺+𝑘 [Φ(𝑣) = 𝑞] · |𝑅𝐺,𝑣;1,𝑞(𝑤) − 𝑅𝐺,𝑣;1,𝑞(𝑤̃) | ≤
1

𝑑 + 1
(1 − 𝑤)𝑑 + 2/3

Δ
𝜀2 < 1

Δ𝜀2.

To proceed we will argue that these assumptions allow us to show the ratio difference
|𝑅𝐺,𝑣;1,𝑞(𝑤) − 𝑅𝐺,𝑣;1,𝑞(𝑤̃) | has to be small. To do so we will take a closer look at the proof of item
(i) of the induction hypothesis.

We now specify the ordering of all the neighbors of 𝑣 as follows: first we have the pinned
neighbors (𝑉0), then the vertices where 𝑞 is not blocked (𝑉1), and then the vertices where 𝑞 is
blocked and not pinned (𝑉2). Within each group the vertices are ordered increasingly with
respect to their degree in 𝐻 . We identify the labels of the vertices in 𝑉1 ∪ 𝑉2 (in an order
preserving manner) with [𝑑]. Note that by (A3) we have |𝑉0 | ≤ 0.0034Δ and by (A4) we have
|𝑉1 | ≤ 𝛾𝑑. See Figure 3 for an illustration.

As before, let 𝐼 ⊆ [𝑑] be the set of indices of free vertices 𝑣𝑖 ∈ 𝑉 (𝐻), where 𝑍𝑞
𝐺𝑖 ,𝑣𝑖

(𝑤) >
𝑍1
𝐺𝑖 ,𝑣𝑖

(𝑤) (equivalently where P𝐺𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] > P𝐺𝑖 ,𝑤[Φ(𝑣𝑖) = 1]). Recall from the proof of item
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q q q q q q q q

𝑉0 𝑉1

≤ 𝛾𝑑

𝐼

≤ 𝜂𝑑

𝑉2

Figure 4. Illustration as in Figure 3, with the additional detail that the set 𝐼 consists of the vertices 𝑣𝑖

such that P𝐺+1
𝑖 ,𝑤 [Φ(𝑣𝑖) = 𝑞] > P𝐺+𝑞

𝑖 ,𝑤 [Φ(𝑣𝑖) = 1]. Note that the set 𝐼 is shown on the right for illustrative
purposes, but it could be located anywhere and does not have to be concentrated on the right.

(i) that

|𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) |
≤

∑︁
𝑖∈𝐼

(1 − 𝑤)P𝐺+1
𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] · max

𝑗∈[𝑞]
|𝑅𝑖

𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞
(𝑤) − 𝑅𝑖

𝐺𝑖 ,𝑣𝑖 ; 𝑗,𝑞
(𝑤̃) |

+
∑︁

𝑖∈[𝑑]\𝐼
(1 − 𝑤)P𝐺+𝑞

𝑖 ,𝑤[Φ(𝑣𝑖) = 1] · max
𝑗∈[𝑞]

|𝑅𝑖
𝐺𝑖 ,𝑣𝑖 ; 𝑗,1

(𝑤) − 𝑅𝑖
𝐺𝑖 ,𝑣𝑖 ; 𝑗,1

(𝑤̃) |

+ 𝜀2
2

3Δ . (34)

Suppose that there are at least 𝜂𝑑 indices 𝑖 in 𝐼 such that 𝑞 is blocked at 𝑣𝑖 (or at least 𝜂𝑑
vertices in 𝑉1 ∪𝑉2 where 1 and 𝑞 are blocked). Note that for these vertices P𝐺+1

𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] ≤
𝑤

𝑞−Δ(1−𝑤) (resp. P𝐺+𝑞
𝑖 ,𝑤[Φ(𝑣𝑖) = 1] ≤ 𝑤

𝑞−Δ(1−𝑤) and P𝐺+1
𝑖 ,𝑤[Φ(𝑣𝑖) = 𝑞] ≤ 𝑤

𝑞−Δ(1−𝑤) ). Then using that
𝑤 ≤ 𝜂 ≤ 0.002 by (A1), induction item (i) for these 𝜂𝑑 vertices and item (ii) for the remaining
vertices in (34) and Lemma 3.1 to bound P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑞] by 1

𝑞−Δ , we obtain that

P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑞]·|𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) |

≤ 1
𝑞 − Δ

(
𝜂(1 − 𝑤)𝑑 𝑤

(1 − 𝜂 + 𝑤)Δ + (1 − 𝜂)𝑑1 − 𝑤

Δ
+ 2

3Δ

)
𝜀2

≤ 1
𝑞 − Δ

(
𝜂(1 − 𝑤) 𝑤

(1 − 𝜂 + 𝑤) + (1 − 𝜂) (Δ − 1)1 − 𝑤

Δ
+ 2

3Δ

)
𝜀2

≤ 1
(1 − 𝜂)Δ

(
𝜂

𝑤

1 − 𝜂
+ (1 − 𝜂) (1 − 𝑤)

)
𝜀2

≤ 𝜀2

Δ

((
𝜂

(1 − 𝜂)2 − 1
)
𝑤 + 1

)
≤ 𝜀2

Δ
.

So we may assume further that
(A6) at most 𝜂𝑑 vertices in 𝐼 have color 𝑞 blocked, that is |𝐼 ∩𝑉2 | ≤ 𝜂𝑑,
(A7) at most 𝜂𝑑 free neighbors of 𝑣 have both color 1 and color 𝑞 blocked.

See Figure 4 for an illustration.
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Now let us choose the largest index 𝑖★ such that 𝑣𝑖★ ∈ [𝑑] \ 𝐼 and such that 𝑣𝑖★ has
(1 − 𝛾′) deg𝐺𝑖★

(𝑣𝑖★) ≥ 0.86 deg𝐺𝑖★
(𝑣𝑖★) neighbors with 1 blocked in 𝐺𝑖★ if this exists, otherwise

let 𝑖★ = 0. We then have the following claim.

CLAIM 7.1. Under assumptions (A1)–(A7), there are 𝜌𝑑 ≥ 0.1𝑑 indices in 𝑁𝐺 (𝑣) \ 𝐼 that are larger
than 𝑖★.

Before proving the claim, let us first show that it concludes the proof. Indeed, if 𝑗 > 𝑖★

such that 𝑣 𝑗 ∈ 𝑁𝐺 (𝑣) \ 𝐼 , then 𝑣 𝑗 has at most 0.86 deg𝐺 𝑗
(𝑣 𝑗) neighbors with color 1 blocked in

𝐺
+𝑞
𝑗 and therefore by Corollary 6.2 we have

P𝐺+𝑞
𝑗 ,𝑤[Φ(𝑣 𝑗) = 1] ≤ 0.977

deg𝐺 𝑗
(𝑣 𝑗) + 1

. (35)

This implies that by bounding P𝐺+𝑘 ,𝑤[Φ(𝑣) = 𝑞] with 1
𝑞−Δ using Lemma 3.1 and plugging (35)

into (34) for these 𝜌𝑑 ≥ .1𝑑 vertices 𝑗 > 𝑖★ in combination with induction item (i) and item (ii)
for the remaining vertices, we obtain

P𝐺+𝑘 ,𝑣[Φ(𝑣) = 𝑞] · |𝑅𝐺,𝑣;1,𝑞(𝑤̃) − 𝑅𝐺,𝑣;1,𝑞(𝑤) | ≤
1

𝑞 − Δ

(
0.1𝑑 (1 − 𝑤) 0.977

Δ 𝜀2 + 0.9𝑑 𝜀2
Δ + 2𝜀2

3Δ

)
≤ 1

𝑞 − Δ

(
0.0977𝜀2 + 0.9(Δ − 1) 𝜀2

Δ + 2𝜀2
3Δ

)
≤ 1

(1 − 𝜂)Δ (0.9977𝜀2)

<
𝜀2

Δ
,

finishing the proof of item (ii).

Proof of Claim 7.1. To prove the claim we argue by contraction and suppose that it is not true,
that is we assume

(A8) the number of indices in 𝑁𝐺 (𝑣) \ 𝐼 that are larger than 𝑖★, 𝜌𝑑, is smaller than 0.1𝑑

See Figure 5 for an illustration.
Our plan is to show that this leads to a contradiction with assumption (A7). First we show

that (A8) (in combination with some of the previous assumptions) implies that
(A9) the degree of 𝑣𝑖★ inside 𝐻 is at least 0.27Δ.

This follows by a density argument. Since there are at most 𝜂𝑑 indices in 𝐼 where 𝑞 is
blocked by (A6), this implies that there are at most (𝜌 + 𝜂)𝑑 ≤ 0.102𝑑 indices in 𝑉2 that are
larger than 𝑖★.

To proceed let the degree of 𝑣𝑖★ in 𝐻 be denoted by 𝑑𝑖★ ≤ 𝑑 − 1. Then 𝑑𝑖★ is an upper bound
on the degree of the vertices in 𝑉2, whose index is at most 𝑖★ since inside 𝑉2 the vertices are
ordered by their degree in 𝐻 . In what follows we will upper bound the number of edges inside
𝐻 . Recall that by (A3) we have 𝑑 ≥ 0.9966Δ. Note that the free neighbors of 𝑣 are the only
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𝑣𝑖★

𝑞 𝑞 𝑞 𝑞 𝑞 𝑞 𝑞 𝑞

𝑉0 𝑉1

≤ 𝛾𝑑

𝐼

≤ 𝜌𝑑 ≤ 𝜂𝑑

𝑉2

1 1 1 1

𝑁 (𝑣𝑖★)

≥ (1 − 𝛾′)𝑑𝑖★

Figure 5. Illustration as in Figure 4, with the further detail that vertex 𝑣𝑖★ is the vertex in 𝑉2 \ 𝐼 with the
largest degree, such that at least (1 − 𝛾′) deg𝐺𝑖★

of its neighbors have color 1 blocked. For illustrative
purposes, 𝑁(𝑣𝑖★) has been drawn as disjoint from 𝐻. However, note that 𝑁(𝑣𝑖★) could intersect with 𝐻.

vertices that can have a positive degree inside 𝐻 . For the vertices inside 𝑉1 and those inside
𝑉2 that have a larger index than 𝑖★ we bound their degree in 𝐻 by 𝑑 − 1. We have at most
𝛾𝑑 + (𝜌 + 𝜂)𝑑 of these vertices. For the remaining vertices we have an upper bound of 𝑑𝑖★ on
their degree. Therefore by (A5),

1
2
𝛽𝑑2 ≤ 𝑒(𝐻) ≤ 1

2
((𝛾 + 𝜌 + 𝜂)𝑑 (𝑑 − 1) + (1 − 𝛾 − 𝜌 − 𝜂)𝑑 · 𝑑𝑖★) ,

and hence
𝑑𝑖★ ≥ 𝛽𝑑 − (𝛾 + 𝜌 + 𝜂) (𝑑 − 1)

1 − (𝛾 + 𝜌 + 𝜂) ≥ 0.238
0.878

𝑑 ≥ 0.27Δ,

since 𝛽 ≥ 0.36, 𝛾 ≤ 0.02, 𝜌 ≤ 0.1 (by (A8)), 𝜂 ≤ 0.002 and 𝑑 ≥ 0.9966Δ. This shows that (A9)
holds.

The fact that the degree of 𝑣𝑖★ inside 𝐻 is large in combination with the telescoping
procedure gives us information about how many neighbors of 𝑣 must have had color 1 pinned
before the telescoping procedure. Indeed, by the telescoping procedure only the neighbors of 𝑣
with an index larger than 𝑖★ will obtain a pinned neighbor with color 1 in 𝐺𝑖★ (the others will
receive a pinned neighbor with color 𝑞). The idea is that since 𝑣𝑖★ has many neighbors inside
𝐻 (which we recall to be the graph induced by the free neighbors of 𝑣) and many neighbors
inside 𝐺𝑖★ for which color 1 is blocked, there must be an overlap of these two sets that does not
include neighbors of 𝑣 with a larger index than 𝑖★ and hence these vertices must have had color
1 blocked before applying the telescoping procedure to (𝐺, 𝑣).
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We will now make this formal. Let 𝐴 = 𝑁𝐻 (𝑣𝑖★) and 𝐵 = {𝑢 ∈ 𝑁𝐺𝑖★
(𝑣𝑖★) | 1 is blocked at 𝑢}.

Then by (A9),

|𝐴 ∩ 𝐵| ≥ 𝑑𝑖★ + |𝐵| − deg𝐺𝑖★
(𝑣𝑖★)

≥ 0.27Δ − 𝛾′Δ + 1 ≥ 0.13Δ.

since 𝛾′ ≤ 0.14 by our choice of 𝑖★. This implies that 𝑣𝑖★ has at least 0.13Δ neighbors inside
𝐻 = 𝑁𝐺 (𝑣) where color 1 is blocked in the partially 𝑞-colored graph𝐺𝑖★. The only pinned vertices
of color 1 in 𝐺𝑖★ that arose from the telescoping procedure are the new neighbors of the 𝑣𝑖 with
𝑖 > 𝑖★. Since there are at most 0.102Δ vertices 𝑣𝑖 with 𝑖 > 𝑖★, at least 0.028Δ vertices inside 𝐻

must already have had color 1 blocked before the telescoping procedure was applied to (𝐺, 𝑣).
Therefore, since |𝑉2 | ≥ (1− 𝛾)𝑑 > 0.976Δ there are at least 0.004Δ ≥ 0.004𝑑 free neighbors

of 𝑣 where both color 1 and color 𝑞 is blocked. This contradicts (A7) (since 𝜂 ≤ 0.002) and
concludes the proof of the claim. ■

Statement (iii) follows from statement (i) via Lemma 5.1 in an identical manner as in our
proof for the 𝜂 = 0 case. This finishes the proof. ■

REMARK 7.2. As in Remark 5.2 we note that by the alternative proof of Proposition 4.2 given
in the appendix we have that 𝜀1 can be chosen to be 𝐶′Δ−4 for some constant 𝐶′ > 0.

8. Further remarks and conclusions

The main conceptual ingredient that allowed us to break the 𝑞 = 2Δ barrier is to carefully use
the local structure of the neighborhood of a vertex to bound the marginal probability of the root
vertex in combination with information about the log-ratios of vertices at distance at most 2 of
the root vertex. It is tempting to do a more systematic analysis of the behavior of the log-ratios
at the vertex 𝑣 in terms of the log-ratios at distance 2 of 𝑣, but it is not clear to us how to make
use of this extra information.

Clearly, our bound on 𝜂 can be improved once one has better bounds in Corollaries 6.2
and 6.5. It is not unlikely that these corollaries can be somewhat improved, but we leave this for
possible future work. We suspect that a more substantial improvement on our bound on 𝜂 could
be obtained if instead of controlling the ℓ∞ norm of the vector

(
𝑅𝐺,𝑣; 𝑗,𝑞(𝑤̃) − 𝑅𝐺,𝑣; 𝑗,𝑞(𝑤)

)
𝑗∈[𝑞−1]

one can perhaps simultaneously control its ℓ1- and ℓ∞ norm.
As remarked in the introduction for reasons of clarity we focused on the Potts model

on bounded degree graphs. We next collect some remarks about extending our approach to
different settings, that we didn’t pursue here, because it would distract the focus from the main
ideas presented in the current paper.
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Multivariate Potts model. One possible extension is to allow for a graph 𝐺 = (𝑉, 𝐸) of
maximum degree Δ a vector of edge weights (𝑤𝑒)𝑒∈𝐸 and thereby transform the associated
partition function to the multiaffine polynomial

𝑍𝐺 (𝑞, (𝑤𝑒)𝑒∈𝐸) =
∑︁

𝜙:𝑉→[𝑞]

∏
𝑒=𝑢𝑣∈𝐸

𝜙(𝑢)=𝜙(𝑣)

𝑤𝑒.

Following the approach from [4] for the multivariate setting, it should not be difficult to extend
our main result to this setting.

List coloring. Another natural extension to consider is list colorings, i.e. equipping for a graph
𝐺 = (𝑉, 𝐸) each vertex 𝑣 ∈ 𝑉 with a list of colors 𝐿(𝑣) ⊂ N and defining

𝑍𝐺 ((𝐿𝑣)𝑣∈𝑉 , 𝑤) =
∑︁

𝜙∈∏𝑣∈𝑉 𝐿(𝑣)

∏
𝑒=𝑢𝑣∈𝐸
𝜙𝑢=𝜙𝑣

𝑤.

Since all of our bounds only really depend on the number of available colors, it should again
not be difficult to extend our main result to list coloring setting, provided each list 𝐿(𝑣) satisfies
|𝐿(𝑣) | ≥ (2 − 𝜂)Δ(𝐺).

Triangle free graphs. As remarked in Remark 5.3, our proof for the 𝜂 = 0 case can recover
the result of Liu, Sinclair, and Srivastava for triangle free graphs [30]. It would be interesting
to see if the ideas that we employed for the 𝜂 > 0 case can somehow be used to also improve
their bounds for triangle free graphs. It is not immediately clear how to do that, since the
neighborhood of a vertex in a triangle free graphs is always an independent set, which has
already been taken into account in bounds on the marginal probabilities. Possibly one has to
take into account vertices at larger distance from the root vertex. Another interesting question
is to see if better bounds can be obtained if one assumes stronger bounds on the girth of the
graph.

Small Δ. For small values of Δ, we can obtain better bound for the marginal probabilities of
the root vertex by examining all possible neighborhood structure. In combination with our
inductive proof this may lead to improved zero-free regions. For example, when Δ = 3 the
free-neighbors of a vertex 𝑣 of free degree at most 2 could form an independent set of size
at most 2 or induces an edge. Examining the exact marginal bounds one can easily obtain a
zero-free region containing the interval [0, 1] for the anti-ferromagnetic Potts model when
𝑞 ≥ 5. We suspect that with sufficient additional effort it should be possible to extend this to
𝑞 = 4, but it would involve investigation of local neighborhoods of size bigger than 1. We note
that [32] has bounds on these marginal probabilities in the 𝑞 = 4 and Δ = 3 case. However,
in their setting they don’t have an additional pinned neighbor of the root, and as such their
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bounds cannot be used directly in our setting. Additional effort is needed to see if their bounds
could be helpful in our setting.
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A. A direct proof of Proposition 4.2

We restate an updated version of the proposition here for convenience.

PROPOS IT ION A.1. Let 𝛼 > 0 and let 𝑞, Δ be positive integers such that 𝑞 ≥ (1 + 𝛼)Δ + 1. Let
𝐶1(𝛼) be as in Lemma 5.1. There is a constant 𝐶2(𝛼) > 0, such that for any 𝜀 ∈ (0, 1) there exists a
𝛿 = min

{
𝜋
8 ,

𝐶1(𝛼)
Δ , 𝐶2(𝛼)𝜀, 𝜀

8𝐶2(𝛼)
}

such that the following holds. Let (𝐺, 𝑣) ∈ G•
Δ,𝑞, and let 𝑤 ∈ [0, 1].

Let R ∈ R𝑞−1 be the vector defined by

𝑅 𝑗 = 𝑅𝐺,𝑣; 𝑗,𝑞(𝑤).

Then
(i) if x ∈ C𝑞−1 and ∥R − x∥∞ ≤ 𝛿

∥P𝐺,𝑣(𝑤) − ∇𝐹𝑤,c(x)∥1 ≤ 𝜀;

(ii) if x ∈ C𝑞−1 and ∥R − x∥∞ ≤ 𝛿 and |𝑤̃ − 𝑤| ≤ 𝛿, then

|𝐹𝑤,c𝐺,𝑣 (x) − 𝐹𝑤̃,c𝐺,𝑣 (x) | ≤ 𝜀.

PROOF . Let 𝑀 = (1+𝛼)𝑒1/𝛼
𝛼 . Recall that by Lemma 3.1 and Lemma 3.3, and by the fact that

𝑞/(𝑞 − Δ) and (𝑞 − Δ)/𝑞 are respectively decreasing and increasing for 𝑞 > Δ, we have that

𝛼Δ + 1
((1 + 𝛼)Δ + 1) 𝑒1/𝛼 ≤ 𝑞 − Δ

𝑞𝑒1/𝛼 ≤ exp(𝑅 𝑗) ≤ 𝑞𝑒1/𝛼

𝑞 − Δ
≤ ((1 + 𝛼)Δ + 1) 𝑒1/𝛼

𝛼Δ + 1
,

and therefore in particular
𝑀−1 ≤ exp(𝑅 𝑗) ≤ 𝑀.

Next, let 𝐶2(𝛼) = 𝛼3

16(1+𝛼)3𝑒2/𝛼 and note that

𝛿 ≤ 𝐶2(𝛼)𝜀 ≤ 𝜀
𝛼

16𝑀2(1 + 𝛼) ≤ 𝜀
𝛼Δ

16𝑀2(1 + 𝛼)Δ ≤ (𝑞 − Δ − 1)𝜀
16𝑀2(𝑞 − 1) .

We will now show that the conclusion of the proposition holds with our choice of 𝛿.
Let R be as defined in the proposition, and let 𝒙 ∈ C𝑞−1 such that ∥𝑹 − 𝒙∥∞ < 𝛿. We use

shorthand notation 𝑃 and 𝑄 for 𝑃𝒄(𝑤,𝑹) and 𝑄𝒄(𝑤,𝑹), which are defined in Section 2.2. Since
𝑒𝑥 𝑗 is contained in a cone of angle at most 2𝛿 centered at the real axis for all 𝑗 ∈ [𝑞 − 1], and
since 𝛿 is small enough, it follows by Lemma 5.4 that

|𝑃(𝒙) | ≥ cos(𝛿) ©­«𝑤𝑐1+1 |𝑒𝑥1 | +
𝑞−1∑︁
𝑗=2

𝑤𝑐 𝑗 |𝑒𝑥 𝑗 |ª®¬ .



39 / 41 Deterministic Approximate Counting of Colorings

Here 𝑃(𝒙) is shorthand for 𝑃𝒄(𝑤, 𝒙). Note that

|𝑒𝑥 𝑗 | = |𝑒𝑅 𝑗𝑒𝑥 𝑗−𝑅 𝑗 | = |𝑒𝑅 𝑗 | |𝑒ℜ(𝑥 𝑗)−ℜ(𝑅 𝑗) | ≥ 𝑒𝑅 𝑗𝑒−𝛿,

and thus

|𝑃(𝒙) | ≥ cos(𝛿)𝑒−𝛿 ©­«𝑤𝑐1+1𝑒𝑅1 +
𝑞−1∑︁
𝑗=2

𝑤𝑐 𝑗𝑒𝑅 𝑗ª®¬ = cos(𝛿)𝑒−𝛿𝑃.

Simply by applying the triangle inequality and observing that |𝑒𝑥 𝑗 | ≤ 𝑒𝑅 𝑗𝑒𝛿, we can also
conclude that

|𝑃(𝒙) | ≤ 𝑒𝛿𝑃.

There exists a complex number 𝜉 𝑗 of absolute value at most 𝛿 such that 𝑒𝑅 𝑗 (𝑡) = 𝑒𝜉 𝑗𝑒𝑅 𝑗 for all
𝑗 = 1, . . . 𝑞−1. Using this and the assumption that 𝑒𝛿 ≤ 1+2𝛿, which is true since 𝛿 < 0.5 < log(2),
we see that ���� 𝑒𝑥 𝑗

𝑃(𝒙) −
𝑒𝑅 𝑗

𝑃

���� = |𝑃𝑒𝑥 𝑗 − 𝑒𝑅 𝑗𝑃(𝒙) |
|𝑃(𝒙) |𝑃 ≤ 𝑒𝑅 𝑗 |𝑃𝑒𝜉 𝑗 − 𝑃(𝒙) |

𝑃 |𝑃(𝒙) |
≤ 𝑒𝑅 𝑗𝑃 max𝑘 |𝑒𝜉 𝑗 − 𝑒𝜉𝑘 |

𝑃 |𝑃(𝒙) | ≤ 𝑒𝑅 𝑗𝑒𝛿2 max𝑘 |𝑒𝜉𝑘 − 1|
cos(𝛿)𝑃

≤ 𝑒𝑅 𝑗𝑒𝛿2(𝑒𝛿 − 1)
𝑃

≤ 4𝛿𝑒𝛿

cos(𝛿)
𝑒𝑅 𝑗

𝑃
≤ 8𝛿𝑀2

(𝑞 − Δ − 1) <
𝜀

2(𝑞 − 1) .

In the penultimate inequality, we use 𝑒𝛿/cos(𝛿) ≤ 2 for 𝛿 smaller than 0.5. Furthermore, the
𝑞 − Δ − 1 comes from the fact that we have at least 𝑞 − Δ zero entries for the 𝒄 vector, but the
first term of 𝑃 has a factor 𝑤𝑐1+1.

In an analogous way, we obtain for the same choice of 𝛿 that���� 𝑒𝑥 𝑗

𝑄(𝒙) −
𝑒𝑅 𝑗

𝑄

���� < 𝜀

2(𝑞 − 1) .

Combining everything gives us the following:

∥𝑷𝐺,𝑣 − ∇𝐹𝑤,𝑐(𝒙)∥1 ≤ ∥𝑷𝐺,𝑣 − ∇𝐹𝑤,𝑐(𝑹)∥1 + ∥∇𝐹𝑤,𝑐(𝑹) − ∇𝐹𝑤,𝑐(𝒙)∥1

= ∥∇𝐹 (𝑹) − ∇𝐹 (𝒙)∥1

≤
����𝑤𝑐1+1𝑒

𝑅1

𝑃
− 𝑤𝑐1+1 𝑒𝑥1

𝑃(𝒙)

���� + ����𝑤𝑐1
𝑒𝑅1

𝑄
− 𝑤𝑐1

𝑒𝑥1

𝑄(𝒙)

����
+

𝑞−1∑︁
𝑗=2

(����𝑤𝑐 𝑗 𝑒
𝑅 𝑗

𝑃
− 𝑤𝑐 𝑗 𝑒𝑥 𝑗

𝑃(𝒙)

���� + ����𝑤𝑐 𝑗 𝑒
𝑅 𝑗

𝑄
− 𝑤𝑐 𝑗 𝑒𝑥 𝑗

𝑄(𝒙)

����)
<

𝑤𝑐1+1𝜀

2(𝑞 − 1) +
𝑤𝑐1𝜀

2(𝑞 − 1) +
𝑞−1∑︁
𝑗=2

𝑤𝑐 𝑗

(
𝜀

2(𝑞 − 1) +
𝜀

2(𝑞 − 1)

)
≤ 𝜀,

proving (i).
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For (ii), we consider the following

|𝐹𝑤,c𝐺,𝑣 (x) − 𝐹𝑤̃,c𝐺,𝑣 (x) | =
����log

(
𝑃(𝑤, 𝒙)
𝑄(𝑤, 𝒙)

)
− log

(
𝑃(𝑤̃, 𝒙)
𝑄(𝑤̃, 𝒙)

)����
=

����log
(
𝑃(𝑤̃, 𝒙)
𝑃(𝑤, 𝒙) ·

𝑄(𝑤, 𝒙)
𝑄(𝑤̃, 𝒙)

)����
≤

����log
(
𝑃(𝑤̃, 𝒙)
𝑃(𝑤, 𝒙)

)���� + ����log
(
𝑄(𝑤, 𝒙)
𝑄(𝑤̃, 𝒙)

)���� .
Since log(𝑧) = log |𝑧 | + 𝑖 arg(𝑧), our goal is to bound the absolute value and arguments of
𝑃(𝑤̃,𝒙)
𝑃(𝑤,𝒙) ,

𝑄(𝑤,𝒙)
𝑄(𝑤̃,𝒙) .

By remarking that

|𝑤̃𝑐 𝑗 − 𝑤𝑐 𝑗 | ≤ |𝑤̃ − 𝑤| |𝑐 𝑗 | max( |𝑤|, |𝑤̃|𝑐 𝑗) < 𝛿(1 + 𝛿)𝑐 𝑗𝑐 𝑗 ,

we obtain

|𝑄(𝑤, 𝒙) − 𝑄(𝑤̃, 𝒙) | =
������
𝑞−1∑︁
𝑗=1

𝑤̃𝑐 𝑗𝑒𝑥 𝑗 + 𝑤̃𝑐𝑞+1 −
𝑞−1∑︁
𝑗=1

𝑤𝑐 𝑗𝑒𝑥 𝑗 − 𝑤𝑐𝑞+1

������
=

������
𝑞−1∑︁
𝑗=1

(𝑤̃𝑐 𝑗 − 𝑤𝑐 𝑗)𝑒𝑥 𝑗 + (𝑤̃𝑐𝑞+1 − 𝑤𝑐𝑞+1)
������

<
𝑞−1∑︁
𝑗=1

𝑐 𝑗𝛿(1 + 𝛿)𝑐 𝑗𝑒𝛿𝑀 + (𝑐𝑞 + 1)𝛿(1 + 𝛿)𝑐𝑞+1𝑒𝛿𝑀

≤ Δ𝛿(1 + 𝛿)Δ𝑀𝑒𝛿 ≤ 2Δ𝛿𝑀𝑒𝐶1(𝛼) ,

since 𝛿 ≤ 𝐶1(𝛼)
Δ . Since by Lemma 5.1 it follows that |𝑄(𝑤̃, 𝒙) | ≥ 𝐶(𝛼)Δ, we obtain����𝑄(𝑤, 𝒙) − 𝑄(𝑤̃, 𝒙)

𝑄(𝑤̃, 𝒙)

���� ≤ 2𝛿𝑀𝑒𝐶1(𝛼)

𝐶(𝛼) ≤ 2𝛿𝑒𝐶1(𝛼)𝑒1/𝛼

𝐶(𝛼)
1 + 𝛼

𝛼
= 𝐶2(𝛼)𝛿.

Let us write 𝑧 = 𝑄(𝑤,𝒙)−𝑄(𝑤̃,𝒙)
𝑄(𝑤̃,𝒙) . Then, since

| arg(1 + 𝑧) | =
����arctan

( ℑ(𝑧)
1 + ℜ(𝑧)

)���� ≤ ���� ℑ(𝑧)
1 + ℜ(𝑧)

���� ≤ |𝑧 |
1 − |𝑧 | ,

it follows that����log
(
𝑄(𝑤, 𝒙)
𝑄(𝑤̃, 𝒙)

)���� ≤ |log |1 + 𝑧 | | + |𝑧 |
1 − |𝑧 | ≤ log(1 + 𝐶2(𝛼)𝛿) + 𝐶2(𝛼)𝛿

1 − 𝐶2(𝛼)𝛿.

It follows in a similar fashion that,����log
(
𝑃(𝑤̃, 𝒙)
𝑃(𝑤, 𝒙)

)���� ≤ log(1 + 𝐶2(𝛼)𝛿) + 𝐶2(𝛼)𝛿
1 − 𝐶2(𝛼)𝛿.
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Since 𝐶2(𝛼)𝛿 ≤ 𝜀
8 , we have 𝐶2(𝛼)𝛿/(1 − 𝐶2(𝛼)𝛿) ≤ 2𝐶2(𝛼)𝛿. Thus, we may conclude

|𝐹𝑤,c𝐺,𝑣 (x) − 𝐹𝑤̃,c𝐺,𝑣 (x) | ≤
����log

(
𝑃(𝑤̃, 𝒙)
𝑃(𝑤, 𝒙)

)���� + ����log
(
𝑄(𝑤, 𝒙)
𝑄(𝑤̃, 𝒙)

)����
≤ 2 log(1 + 𝐶2(𝛼)𝛿) + 4𝐶2(𝛼)𝛿
≤ 2 log(exp(𝜀/8)) + 𝜀

4
< 𝜀,

as desired. ■
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