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ABSTRACT. Let A,q > 3 be integers. We prove that there exists > 0.002 such that if
q > (2 — n)A, then there exists an open set U c C that contains the interval [0, 1] such that for
each w € U and any graph G = (V, E) of maximum degree at most A, the partition function
of the anti-ferromagnetic g-state Potts model evaluated at w does not vanish. This provides a
(modest) improvement on a result of Liu, Sinclair, and Srivastava, and breaks the g = 2A-barrier
for this problem.

As a direct consequence we obtain via Barvinok’s interpolation method a deterministic
polynomial time algorithm to approximate the number of proper g-colorings of graphs of
maximum degree at most A, provided g > (2 — n)A.

1. Introduction

The algorithmic problem of designing an algorithm to (approximately) compute the number of
g-colorings of a graph G has received a lot of interest in the past thirty years. The main challenge
is to design for each pair of positive integer A, g such that ¢ > A+ 1 an algorithm that on input of
an n-vertex graph G of maximum degree at most A and € > 0 outputs the number of g-colorings
of G within an exp(¢) relative error in time PoLY(11/€). We note that if ¢ < A, approximating
the number of proper g-colorings of a graph of maximum degree A is NP-HARD [18] (provided
q is even), even for triangle-free graphs. Thus far the only nontrivial cases for which such an
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algorithm is known to exist correspond to A = 3 and q > 4 [32]. Below we will say more about
the status of this problem in general.

Over the past thirty years several algorithmic approaches have been developed to approx-
imately count the number of proper colorings (as well as for several other counting problems)
including variations of the celebrated MCMC method [10, 26], the correlation decay approach [2,
20, 41] and the interpolation method [3, 4, 30, 35]. The latter two approaches yield deterministic
algorithms as opposed to the MCMC-based method.

The interpolation method is based on the existence of a zero-free region for an associated
family of polynomials whose evaluations count the number of proper colorings. In the present
paper this role is taken by the partition function of the Potts model, which we will introduce
shortly. The main focus of the present paper is to provide an improved zero-free region for this
polynomial, which, as a direct corollary, yields efficient deterministic approximation algorithms

for counting proper colorings.

The partition function of the Potts model. For a graph G = (V, E), a positive integer q and
w € C, the partition function of the Potts model is defined as

Ze(gw) = Y w"?, (1)
¢:V—lql
where [q] :={1,...,q}, and m(¢) denotes the number of monochromatic edges, i.e., the number

of edges {u, v} such that ¢(u) = ¢(v). We note that Z;(q; 0) equals the number of proper ¢-
colorings of G. In statistical physics, one usually takes w > 0 parameterized as w = e/, where J
denotes the coupling constant, and S the inverse temperature. Here J < 0 corresponds to the
anti-ferromagnetic case, while J > 0 corresponds to the ferromagnetic case.

Partly motivated by the classical Lee-Yang [29] and Fisher [16] approach to phase tran-
sitions, there is an interest in the location of the complex zeros of Z;(q; w), both in terms of
the variable w [4, 14, 30, 31, 36] and in the variable q [5, 6, 8, 9, 13, 15, 23, 25, 38, 39] (for the
latter, one has to extend the partition function of the Potts model to the partition function of the

random cluster model, where g can also take non-integer values).

Absence of zeros in computer science. More recently, there has been an increasing in-
terest in understanding the location of these complex zeros from the perspective of computer
science and probability theory. This interest comes from the fact that zero-free regions for the
partition functions of models, such as the Potts model, yield efficient deterministic approxima-
tion algorithms [3, 35], rapid mixing of the associated Glauber dynamics [1, 12], (local) central
limit theorems for associated random variables [24, 28, 34], and decay of correlations [19, 37].
In particular, open sets U containing the interval [0, 1] such that Zs(q; w) # 0 for all graphs
of maximum degree at most A and w € U are of interest, since via Barvinok’s interpolation

method [3, 35] they yield efficient algorithms for approximately computing the number of
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proper g-colorings of these graphs, a notorious problem in computer science [2, 4, 7, 10, 17, 20,
22,26, 30, 32, 33, 40]. Itis a folklore conjecture that such algorithms exist provided g > A+2 [17].
So far, this has only been proved for q > %A by Vigoda [40] in case one allows the algorithm to
use randomness. This bound on g stood for nearly 20 years until Chen et al. [10] improved this
toq > (% — &)A with € ~ 107>, Very recently, a more substantial improvement due to Carlson
and Vigoda [7] appeared, which states that one can take € > 0.024. For deterministic algorithms,
the existence of such an algorithm is only known' when q > 2A by a result of Liu, Sinclair, and
Srivastava [30].

The 2A bound of Liu, Sinclair, and Srivastava [30]. The deterministic algorithm of Liu, Sin-
clair, and Srivastava [30] is based on Barvinok’s interpolation method. Their main contribution
lies in proving a zero-free region for the partition function of the Potts model. They essentially
prove the following more general statement, allowing them to deduce zero-free regions from

probabilistic statements.

(x) Let G be a class of graphs of maximum degree at most A. Suppose that q is such that for
all w € [0,1] and for any rooted graph (G,v) (G € G) in which some of its vertices are
precolored, when drawing a random coloring from the Potts model with parameter w the
marginal probability that v gets color i (assuming that i is not used on the neighbors of v) is
bounded by ﬁ, where d denotes the number of neighbors of v that are not precolored. Then
there exists an open set U containing [0, 1] such that Zs(q; w) # 0 forallw € U and G € G.

It is not difficult to see that for g > 2A this condition is satisfied for the class of all graphs of
maximum degree at most A, and hence this immediately gives the desired zero-freeness and
approximation algorithm via the interpolation method. For triangle free graphs, the condition
is satisfied provided q > 1.7633A +  where B is an absolute constant, see [30] for the precise
statement. It is easy to see that for g < 2A there are examples of graphs where the condition
in (%) is not satisfied. Unfortunately, the proof of (%) as given in [30] is somewhat technical,
making it difficult to see how to push the bounds on q below 2A.

Our contributions. This brings us to the contributions of the present paper. One of our
contributions is that we give a new proof of the existence of the zero-free region for q > 2A,
which is shorter and arguably more transparent and less technical. Secondly, we are able to
take advantage of the local structure around the root vertex for graphs where the condition in
(%) is not met, and thereby provide a modest improvement on the result of Liu, Sinclair, and
Srivastava [30].

1 After the first posting of the present paper to the arXiv, it was shown in [11] that the randomized algorithm of Carlson
and Vigoda can in fact be derandomized.
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THEOREM 1.1. There exists a constant n > 0.002 such that for all integers A > 3andq > (2—n)A
there exists an open set U C C containing the interval [0, 1] such that for each w € U and graph
G of maximum degree at most A, Zg(q, w) # 0.

As a direct corollary, we have the following result breaking the g = 2A barrier for designing
efficient deterministic approximation algorithms for counting proper colorings based on absence

of zeros.

COROLLARY 1.2. There exists a constant n > 0.002 such that for all integers A > 3 and
q = (2—n)Aandw € [0, 1] there exists a deterministic algorithm which given an n-vertex graph
of maximum degree at most A and € > 0 computes a number & satisfying
e’ < Zalq. w) <e’
3
in time polynomial in n/e.

We note that this is indeed a direct corollary of Theorem 1.1 using Barvinok’s interpolation
method [3] in combination with the improvement due to Patel and the last author of the present
paper [35]. An explanation of how this fits the framework of [35] can be found in the proof
of [4, Corollary 1] and, therefore, we omit a proof here.

Another consequence of Theorem 1.1 is that for g > (2 — n)A and w € (0, 1) the random
variable defined as the number of monochromatic edges in a random sample from the Potts
model (with parameters g and w) on a graph of maximum degree A satisfies a (local) central
limit theorem. This follows almost directly from the results in [34, 24, 27] and we refer the
interested reader to these papers for the relevant details.

Organization and conventions. The remainder of the paper is dedicated to proving The-
orem 1.1, first for n = 0 and later for n > 0. In the next section we give a detailed technical
outline of our approach, at the end of which the reader may find an overview of the remainder
of the paper.

While our arguments can for example be extended to list-coloring, we opt for focusing
on just colorings so as to limit any technical overhead and hopefully making the proof more
transparent. We comment on the extension to list-colorings and other possible extensions in
Section 8.

Although we could slightly improve our lower bound on n, we decided to stick to a bound
with only three decimal places. Our current established bounds do not seem to allow us to re-
place the lower bound of 0.002 by 0.003. We comment on possible approaches for improvement
in Section 8.
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2. Outline of approach and setup

In this section, we give a detailed outline of our approach, which is inspired by [3, 4, 30] and
uses several concepts developed in these papers. The main idea is to use induction to prove
a result about partition functions of graphs with certain pre-colored vertices. To carry out
the induction, we will need good control over how changing the color of a vertex affects the
partition function. We next introduce some definitions that will be used throughout the paper
and that will facilitate the discussion of the proof outline.

2.1 Definitions and expanded theorem statement

Let g > 0 be an integer, let G = (V,E) be a graph,letS c Vandlet¢ :S — [q] :={1,...,q}. We
call the triple (G, S, ¢) a partially g-colored graph. Often we will just say that G is a partially
g-colored graph, omitting the reference to S and ¢. A vertex v € S will be called pinned; any
vertex not contained in S will be called a free vertex. We say that a color j € [q] is blocked at v
for a vertex v € V if either v is pinned, or if v has a neighbor in S which is assigned the color j
by ¢, otherwise color j is called free at v.

The partition function of the Potts model of a partially g-colored graph G = (G, S, ¢) is
defined as

Zg(w) = Z wn), (2)

Y:V(G)—[q]
Yis=¢

Note that we remove the q from the argument of Z; compared to (1) since q is already implicit
in G.

Given a partially g-colored graph (G, S, ¢), we can always assume that each pinned vertex
v € Sis aleaf of G (i.e. has degree 1) without changing the partition function, by iteratively
replacing each pinned vertex v by d = deg(v) copies of it, v4, ..., v4, connecting each of them
to a unique neighbor of v. We denote by Q&q the set of pairs (G, v), where G is a connected
partially g-colored graph of maximum degree A and v is a free vertex of G and where the pinned

vertices of G are all leaves and form an independent set. For such a pair let us define the vector

q
>0’

are colored with color i. We refer to ¢, as the vector of blocked colors at v. As a convention,

ccv € N , where the ith coordinate, cg ,.;, denotes the number of pinned neighbors of v that
we will write vectors in boldface, while entries of vectors are denoted in plain typeface.

Ifw > 0andif Zg(w) # 0 there is an associated probability measure, Pg ,,, on the collection
of all colorings ¥ : V — [q] that coincide with ¢ on S, whose probability mass function is
defined by

)
Zc(w)’

‘UG,w(lp) =
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We will use capital letters to denote random variables. In particular, we denote the probability
that vertex v is assigned color j when sampling a coloring from this distribution by Pg ,, [® (V) =
J1. When w is clear from the context, we often simply write Ps instead of Pg .

For w € C and a free vertex v of a partially g-colored graph G we consider the ratio

Zg’v(w)
Zé’v(w)

ﬁG,v;i,j(W) =

as a rational function in w. Here Zé’v(w) denotes the sum (2) restricted to those ¢ that assign
color j to the vertex v. Note that Rg,.; j(w) only depends on the connected component of G that
contains v.

To prove that Zg(w) # 0 for some w € C and a partially g-colored graph, it suffices to
inductively show that Zé’v(w) # 0 for some color j € [q] and that the ratios Rg . j(w) (i € [q])
pairwise make a small angle. In [4] this is done via a direct recursive approach, by showing that
these ratios are trapped in a certain set in the complex plane. In [30] this is done via a clever
indirect approach by showing that for fixed w € [0, 1] and W close enough to w, we have that
the perturbed ratios Rg y;; j(W) are close to the original ratios Re i, j(w) and in particular lie
close to the real axis and hence make a pairwise small angle. This is also the approach we follow
in the present paper. To do so, we will change coordinates and work with log-ratios. Define

RG,v;i,j (W) = 1Og(ﬁG,v;i,j (W)),

under the implicit assumption that ZE,V(VT/) and Zé)v(ﬁ/) are both not equal to 0 and where we
fix the branch of the logarithm that is real valued on the positive real line.

For (G,v) € Gy g We denote by (G, V) € G, q the rooted partially g-colored graph obtained
from (G, v) by removing all pinned neighbors of v from G. We often just write G in case v is
clear from the context. The free degree of a vertex is the number of free neighbors of that vertex.

We next state an expanded version of our main theorem.

THEOREM 2.1. There exists a constant n > 0.002 such that for all integers A > 3, q > (2 —n)A
there exist &1 > 0 and &; > 0, such that if (G, v) € G, q where v has free degree at most A — 1, then
for any colors i, j € [q], any w € [0,1] and any W € B(w, €1),

Zc(W) #0 and |R (W) =Rz .. .(w)| < &,. (3)

Gvii,j G,vii,j

REMARK 2.2. Itfollows from our proof that we can take &; > CA~* for some constant C > 0. For
n = 0 this improves on the size of the zero-free region given by Liu, Sinclair and Srivastava [30]
who proved a zero-free region around [0, 1] of width C’A~® for some constant C’ > 0.

The consequences of this improvement for the running time for the algorithm in Corol-
lary 1.2 are limited though. The running time can be seen to be bounded by (n/g)°108(A) exp(0(a%))
by combining [3, Lemma 2.2.3] and [35].
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Below, we give an outline of our proof of this result; the actual proof can be found in
Section 7. First, we use it to deduce Theorem 1.1.

PROOF OF THEOREM 1.1. Let &1 be as in the statement of Theorem 2.1, fix w € [0,1] and let
W € B(w, g1). By Theorem 2.1, it suffices to prove that Zs(q; w) # 0 if G is A-regular. To cover
the case where all the vertices of G have degree exactly A, and hence are not pinned, we will
use the symmetry of the model between the colors. We may further assume that G is connected
since the partition function factors over connected components.

First we claim that the partition function Zé,v(q; W) is non-zero. Indeed, Zé’v(q; W) is equal
to the partition function of the partially g-colored graph H obtained from G by replacing v with
vertices v, ..., vp each of them colored with color 1 and where each v; is connected to a unique
neighbor of v in G. We next claim that Zy (W) # 0. Since each component of H has a vertex of
free degree A — 1, namely a neighbor of some v;, and since by construction we have that the
pinned vertices of H form an independent set and are all leaves, by Theorem 2.1 we indeed
have Zy (W) # 0 (because the partition function is multiplicative over the components of H).

Now, since each vertex in G is free, it follows by symmetry that

Zo(@W) = Z5 (GW) = ... = ZL (g W).

Therefore,

Ze(q;W) = Z Ze(@GW) = q-Z¢ (@ W) = qZu (W) # 0.
ie[q]

2.2 Outline of proof and more definitions

To prove Theorem 2.1, we need to show that the difference between R y.¢, ¢, (W) and Rg ¢, ¢, (W)
is smaller than &; for each (G,v) € Gy . and any pair of colors ¢1, £;. We do this by induction
on the number of free vertices, by expanding the log-ratios of (G, v) as a function applied to
log-ratios of partially g-colored graphs obtained from G with fewer free vertices. We will next
describe some of the technical ingredients that were also used in some form in [4, 30] and the
main new ideas of our proof, after which we will give an overview of the remainder of the
paper.

To be able to control the difference between the log-ratios inductively, a certain telescoping
procedure is crucial for us. Fix two distinct colors #1, ¥, € [g]. Choose an ordering of the
neighborhood N (v) of v, vy,. .., Vgeg(v). Let G; be the partially g-colored graph obtained from
G — v by adding a leaf to each vertex v; with j # i such that for j < i that leafis colored with
color ¢, and for j > i it is colored with color #;; the leaf connected to v; is free and is denoted by
V;. Assume that Zéi,f}i (W) #0forall € € [g] andi=1,...,deg(v). Then by standard properties
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Figure 1. Pictorial depiction of how the ratio Z?,V(W)/Zgz,v(w) is expressed as a telescoping product of
the ratios z' _ (w) /22 (w).

A

Figure 2. An illustration of a graph (G, v) and the graphs (G;,?;) and (G;, v;) appearing in the telescoping

B
A

A )

éi G;

procedure.
of the logarithm,
deg(v)
RGv;e,6, = Z Ré s, @)
i=1

See Figure 1 for a proof by pictures of this identity.

Let us denote by G; the partially g-colored graph obtained from G; by removing the vertex
V;. We will say that the graphs G; are obtained from G via the telescoping procedure with respect
to the colors ¢; and ¢; and the ordering of N(v). See Figure 2 for an illustration of this.

For concreteness, we will continue the discussion for the case ¢; = 1 and ¢, = q. By
symmetry, we may of course always relabel the colors so that this is without loss of generality.

Define forc e N? | x e C4 ! and w € C,

>0’
q-1
Pc(W,x) = wrtleX 4+ ) 1woeN + 1w, (5)
j=2
q-1
Qc(W, X) = We + Y Wwed + wetl, (6)
j=2

We tend to omit the subscript c if it is clear from the context. We now define the vectors

R'(W) € CI71 by R;(W) = R, ,.i,W) for j = 1,...,q — 1 (implicitly assuming that these log-



9/ M

TheoretiCS Deterministic Approximate Counting of Colorings

ratios are well-defined), and ¢! = Cg,y;- Then we observe that

ZL (W) z4 (W
~ i~ G,V I Gi,V;
P, R () = 2% and Qu (W, R(9) = 2%

Elvl Ei)Vi

and therefore by equation (4) we have
deg(v) ~ i
PC(W’ Rl)
RG: ’1> = log( ~ 3 * (7)
» ; QC(W) Rl)
Next define the function Fj ¢ : CT1\ {x | Pc(W,X) = 0 or Qc(W,X) = 0} — C by

Fypc(x) =log (%) .

Using this function we can succinctly express (7) as

(8)
deg(v) .
Reu,q(W) = Z Fj i (RY(W)). 9)
i1

We now use (9) to express the difference between Rg v;1,4(w) for w € [0, 1] and its pertur-
bation Rg y;1,q(W) (for w near w) as follows

deg(v)
RGvi1,4(W) — Rgvi1,4(W) = Z (Fw’ci(Ri(W)) — Fw’ci(Ri(]/T})) =
i=1
deg(v)
> (Fw,ci(Ri(W)) - Fw,ci(R"(W))) + (Fw’ci(Ri(W)) — Fp (R (]/T/))) , (10)

i=1
It is not hard to see that we can make |F), . (R{(W)) — Fp i (RY(W))| arbitrarily small by choosing
W close enough to w by continuity of F,, . as a function of w, provided the vectors R!(W) lie in a
bounded set. We will formally verify this in Section 4.

Bounding FW,CI-(R"(W)) - Fw’ci(Ri(W)) is much more work and to do so we will use the
gradient of F), ... We have

Fyei(RY(W)) = Fy, i (RY(1W)) = (11)
1
/ (VF, o (tRi(w) F(1- t)Ri(W)) ,Ri(w) — R(W))dt,
0

where (-, -) denotes the standard inner product on C971,

This motivates us to investigate the gradient of F,, ¢. For this purpose let us define for a
partially g-colored graph H with a free vertex v and a color € € [q] the partially g-colored graph
H* by attaching a pinned leaf of color £ to v. For w € [0, 1] the vector Py ,(w) in R%7! is defined
by

Pi1j(W) = Prpoy [@(V) = J] = Prrea[@(V) = j]. (12)
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The next lemma tells us that the gradient of F,, ¢, , evaluated at a real log-ratio vector is

exactly the vector Py, (w).

LEMMA 2.3. Letw € [0,1]. Let (H,Vv) € ggq and let ¢ = ¢y, be the vector of blocked colors at

v. Let R € R%! be the vector defined by R; = Ry i q(W). Then

VFEy,c(R) =Py y(w).

PROOF. Writing P = P.(w,X) and Q = Q.(w, X), we have F, ((x) = log (g) and therefore by
standard rules of partial derivatives,

F % _ pX
8 w,e 9 ) X] aX]
3Xj P Q2
QwoieX + 61;QwieN(w — 1) — PwtieX
= PO
(w—-1)wen we(Q — P)
= 61] +
j2 ’ PQ
(w - 1)wren weiei  weieX
j2 j2 0
7
Noting that w¢e®i = Z””(W) and hence
ZH’V(W)
_ (W) Zq: HV(W) ZH+1,v(W)
z8(w) Szh w) Zh,w)
and similarly, '
Q _ WZZI,V(W) " qz_l Z}—L\)(W) _ ZH+q’\}(W)
ZZI,V(W) Jj=1 Zq V(W) ZZI,V(W) ,
we see that oF
a;”jc (R) = Prot y [@(V) = 1] = Pea[®@(V) = 1]
j
i.e. VF,, ¢(R) = Py, (w), as desired. u

To use (11), we actually need to understand the gradient of F,, . evaluated at the vector

tRE\;]q

to see that for w small enough and g > A + 1, this gradient can be made arbitrarily close to

(W) + (1 - t)REi,vi; j’q(VT/) for some small perturbation w of w. However, it is not difficult

P, v, (w) independent of the graph. We verify this formally in Section 4.
So to bound (11), the essential ingredient is to bound the absolute value of the inner
(w) foreachi =1,...,d.

This motivates us to develop bounds on the marginal probability of the root vertex, which we

product of the vector Pg, ,,(w) with the vector Rz , . q( w) — Rg, Vi
will do in Section 3 and Section 6.

With the bounds from Section 3 and Section 4 we give a proof of Theorem 1.1 for n = 0 in
Section 5. We do this for two reasons. First of all, it makes it easier to see the structure of the
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technically more involved proof for the proof when n > 0, and secondly, it gives an alternative
and arguably more transparent proof of the result of Liu, Sinclair, and Srivastava [30]. The
ingredients that we use are pretty much the same as in [30]; the main difference is that we do
not bound the real part and imaginary part of the log-ratio difference separately as is done
in [30], but our novel contribution is to make use of the symmetry between the colors to bound
the absolute value of the inner product of the vector Pg, (w) with the vector R'(w) — R{(W) in

terms of a marginal probability of the root vertex times the maximum of

|IR (w) — R= (W)| and |R5i’vi;].’1(w) - Ré,v;j,1(w)|’ (13)

Giviojq G.v;j,q
overall j =1,...,q (see Lemma 4.4), which in our proof we show is bounded by &5, by induction.
Since for g > 2A this marginal probability is easily seen to be bounded by 1/A (see Lemma 3.1
below), this allows to conclude that |R¢,y:1,¢(W) —Rg,v:1,¢(W)| is again bounded by &,. See Section 5
for the details.

In Section 7 we finally give a proof of Theorem 2.1 for n > 0. Here we build on the approach
for n = 0 and carefully make use of the structure of the local neighborhood of the vertex v
to show that either both terms in (13) are actually smaller than &, or that we can use sharper
bounds on the marginal probability obtained in Section 6 that are valid in a more restricted
setting.

In an appendix, we collect an alternative proof of a proposition found in Section 4 that
is more hands on, but has the advantage that it gives concrete dependencies on how small &;

should be in terms of A. We conclude with some questions and remarks in Section 8.

3. Basic bounds on marginal probabilities of the root vertex

Let Aand g > A+ 1 be positive integers and let w € [0, 1]. Let G be a partially g-colored graph of
maximum degree at most A and let v be a vertex of G of degree d. To prove our main result we
will need bounds on the marginal probability of the root vertex Pg ,, [®(v) = j]. In this section
we collect upper and lower bounds on this quantity that are well known in the literature, but
we provide proofs for the sake of completeness and because we will build on these proofs later
on. We start with an upper bound.

LEMMA 3.1. Let Aand q > A+1 be positive integers. Assume that G is a partially g-colored graph
of maximum degree at most A and let v be a vertex of G of degree d and free degree f. Denote by b
the number of blocked colors at v. Then for any w € [0, 1] any color j,

Wi

Pewl[®@(v) = j] < q—(f+b)+(f+b)w’
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where cj = Cgv;j. In particular,

Peul®(V) = wo
= < —
cw[®(v) =j] < q—d+dw
PROOF. We can expand P, [®(v) = 1] over the colorings of the neighbors of v. This yields
Pewl®W) =jl= > Pewl®W) =] | ElPewlEl, (14)
K:N(v)—[q]

where E, denotes the event that the random coloring ® agrees with k on the neighbors N (v) of
v. Note that when w > 0, we always have that P ,,[Ex] > 0, while if w = 0 we only sum over
those k for which Pg ,,[Ex] > 0.

Now to bound Pg ,, [®(v) = j], we simply need a bound on Pg ,, [®(v) = j | Ex] for any k
for which P [Ex] > 0. Let us fix such a k and denote by d; for i € [q] the number of neighbors
of v colored with color i. Then by the Markov property and using the convention that w° = 1,

wi w

ST wh g-xL (1-wd)
< Wcj
S 4-A-wb+f)

where ¢; = cgv;; denotes the number of pinned neighbors with color j in G, b denotes the

dj

PG,W[CD(V) :j | EK] = (15)

(16)

number of blocked colors at v, and f the free degree of v. u

REMARK 3.2. Note that the lemma above is essentially tight for w = 0 and j such that ¢; = 0.
Indeed consider a vertex whose neighborhood is a clique of size A—1 such that for each neighbor

color j is blocked.
Next we provide a lower bound on the marginal probability.

LEMMA 3.3. Let A and q be positive integers, and let q > (1 + o)A + 1 for some o > 0. Assume
that G is a partially g-colored graph of maximum degree at most A and let v be a vertex of G. Then,
for any w € [0, 1] and any color j € [q] not appearing on the neighbors of v, we have

Poul[®(4) = ] 2

PROOF. To prove a lower bound on the marginal probability of the root vertex getting a free
color j, we again look at (14) and note that we can lower bound this by

Powl®W) =jl12 > Pouwl®(Wv) =j | ExlPowlExl.
K:N(v)—[q]
JEK(N(v))

Given k : N(v) — [q] such that P; [Ex] # 0 and k does not use color j we can lower bound
Pewl[®(v) = j | Ex] by 1/q by (15). This implies

Pow[®(V) = j] > 3PG,WU ¢ D(N(W))].
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Let uy, ..., uq be the free neighbors of vin G. We can then express
Pewlj € 2(N(v))] = Pcw[l ¢ d({wy, ... ug-1}) | P(uq) # jlPew[®(ua) # jl

-]_[PGW O(w) # j | Ei

d
]_[1 Pow|®(w) = j | Ei), (17)

i=1
where E; denotes the event that the random coloring ® does not assign color j to the vertices
Ui+1, - - -, Ug, which has a nonzero probability since g > A + 1. Arguing as above (regardless of
the event E;, we can expand the marginal probability as a sum over k as in (14), but now we
only sum over those « that do not assign color j to the vertices u;;1, ..., Ug) we can bound

1

Pow|® =J | Ej —_—
@) = | B <

Therefore, assuming g — A > aA + 1 for some a > 0, we obtain the lower bound

1 d an\ 1/
Pe[j ¢ ®(N >1-——| >|[1- > e 1/, 18
clj & O( (V))]—( q—A+AW) —(( aA+1) ) >e (18)
We conclude that Pg,,[®(v) = 1] is lower bounded by ﬁ. m

4. The behaviorofF, and VF,

As indicated in Section 2, we need to show that behavior of F,, . (as defined in (8)) and VF,, ¢ as
a function of w is not too wild.

Let A, q be positive integers such that g > (1 + «)A + 1 for some o > 0. We call a vector
Cce€ Nio a valid color vector if there exists a rooted graph (G, v) € gg’ q such that ¢ = ¢ . Now
fix a valid color vector ¢ and let us define the set

e {(W (RE’W"I(W)) jzl,...,q—l) [ (GV) €Gype=Couwe 0, 1]} : (19)
Define F : R —» R c Cby F(w,R) = Fy,(R) for (w,R) € Re.

LEMMA 4.1. Let A, q be positive integers such that ¢ > (1 + a)A + 1 for some a > 0, and let ¢ be
a valid color vector. Then the set F(R.) is bounded.

PROOF. For any (w,R) € R, j € [q — 1] we have

ZJ W) Pg (@) =]
zq (w)  Pg,[o() =q]

exp(R;) =

and therefore by Lemma 3.1 and Lemma 3.3,
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q —A . qel/a
YR < exp(Rj) < i
Then, since at least ¢ — A entries of ¢ are equal to 0 and w € [0, 1],
_A)2 2p1/a
M SPc(W, R) S q )
qel/™ q-A
_A)2 201/
=87 Ry < T8
qel/a q-A

where we recall that P, and Q. are defined in (5) and (6), respectively. It thus follows that

(q-8)° _
deZ/a -

Pc(w,R)| _ qe?/«
Qc(w,R)| ~ (q - A)B.
Since F. = log(P./Q.), this implies that F(R.) is a bounded set, as desired. u

PROPOSITION 4.2. Let a > 0 and let q, A be positive integers such that q > (1 + a)A+ 1. Then
for any € € (0,1) there exists a § > 0 such that the following holds. Let (G,v) € Gy o and let
w € [0,1]. Let R € RT! be the vector defined by R; = RE’V;j’q(W). Then

() ifx € CT ! and |R — X||e < 6, then

||PG,V(W) - VFW,C(X)HI <&
(i) ifx € CT 1 and |R = X||e < § and |W — w| < &, then

|FW,CG,V (X) - FW,CG,V (X)| < E.

REMARK 4.3. Below we give a concise proof using a compactness argument, but which does
not display how § depends on €. We refer the reader to Appendix A for an explicit proof of
this proposition, where we also show § can be taken of the form min {C(«a)e, C(a)/A} for some
constant C(«) that only depends on a.

PROOF. Let us fix a valid color vector c. Since by the previous lemma we know that F is
bounded on R, we know that there exists an r > 0 such that F is well-defined and bounded on
the compact set

D¢ = B(R¢, 1) € Cx CT,

where we view C x C?"! as the direct sum of the normed space C with the absolute value and
C?1 with the co-norm, and where W denotes the closure of the set of points that have
distance at most r to R..

Now VFy,¢ : D, — Ci7! (defined by (w,x) — VF, (X)) is a continuous function on a
compact set. Therefore, for any € > 0 there existsanr > §; > 0, such that if (w, xX), (w,y) € D,
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and [[x — y[[1 < 81, then
||VFW,C(X) - VFW,C(Y)” < &

Similarly, there exists §, ¢ such that for any (w, x), (W,y) € D, we have

|FW,C(X) - Fw’,c(Y)| <E&.

There are finitely many choices of ¢ for a given q and A, therefore we can choose §' :=
min{&c, 82 | ¢ valid color vector} > 0 and set § = §'/2.
For this choice of § we have for the given (w,R) € R,;, and any x such that ||x — R|[. < 6,

PGy = VFwce, (X) 11 = [IVFw,eq, (R) = VFueq, (X) 11 < &

and similarly, for any (W, X) such that |[W—w| < §and ||R—X|| < §(sothat||(w,R)—(W,X)|| < &)
we have
|Fw,cc;,v (R) - FVT/,CG,V (x)| < e.

This finishes the proof. u

The next lemma allows us in combination with Proposition 4.2 to bound (11).

LEMMA 4.4. Let G be a partially g-colored graph and let v be a free vertex of G. Let w € [0, 1]
and let Pg,, be defined as in (12). Let x € C1™! and let X be defined by x; = —x; and by Xj = X — X1
forj=2,...,q—1. Then

(1 =wW)Pg+y [P(V) =q] - X[l I Pew[P(v) =1] < Pew[P(V) = q]

|<PG,V: X>| < { — . .
(1 =wW)Peraw[®(V) =1] - X[l I Peuw[P(V) =1] > Pg,w[P(V) = q]

PROOF. First of all, note that possibly after multiplication of the coordinates of x by €'’ for
some J € R, we may assume that

|<PG,V’ X>| = <PG,\), X> = <PG,\), Q%(X)%

since Pg ) is real valued. We may therefore restrict to real vectors x.

Next observe that the first coordinate of P, is non-positive, since

wZg ,(w) Zg ,(w)

Ze(w) — (1-w)ZL (W) Zo(w) — (1 - w)Z& (w)
A =-wzg (W) (-wZg (W) - Ze(W) + Zg (W)
" (Zew) — (1 -w)ZL (W) (Ze(w) — (1 - w)ZL ()
3 ~Z¢ ,(w) (1 =w)(w+1)Z{ (W)
" (Zew) - (1-w)ZL (W) (Ze(w) — (1 - w)ZE ,(w))

<0.

PG,V;l (W) =
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Note that with similar reasoning it follows that
Porw[@(V) = q| = Peraw[®(v) =q] 2 0.

Next we distinguish the two cases.
IfPew[®@(v) = 1] < Pew[P(V) = q], then

Zg,(w) < Zg’v(w),

and for j > 1 we have

z, ,(w) zl, ,(w)
= . — : <0
Zew) = (1 =w)Zg (W) Zg(w) - (1 -w)Z, (W)

Pg,v;j
So in this case each entry of Pg, is non-positive and hence

[(Pew, X)| < [IXlleo(Pew,> =1) = [|X][co (P2 [V = q] = Pgra[v = ql).

We next note that since Zé’v(w) < Zg,v(w) we have

q-1 q-1
Zl (W) + wZi  (w) + Zg, (W) < wZ ,(w) + Z ZL (W) + Z¢ (w),
j=2 J=2
and therefore,

Porwl®(V) = q] = Peraw[P(V) = q] < (1 - w)Pg,y, [P(v) = q],

proving the first case.

(20)

(21)

If P w[®(v) = 1] > Peuw[®(v) = ¢, the first entry of Pg,, is non-positive while all other

entries are non-negative. Hence we may assume that x satisfies x; < 0 and x; > 0 for j > 2.

This gives us by definition of X,

q-1
<PG,v; X> = PG’V;1X1 + Z PG,v;j (X1 + 5(\])
j=2

q-1 q-1
= X1 Z Pgy;j + Z Pg v;jX;
j=1 j=2
q-1

= X1 (Pgn[©(v) = q] — Poraw[@(V) = @) + Y Po %)
j=2
-1
= PG,v;jS(\j = <PG,v: §>>
J

=)

Il
[y
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where ﬁc,v is defined by ﬁG,v; j =Pgy;jforj>2and ﬁG,v;l = Pg+1[v =q] — Pg+[Vv = q]). We note
that by construction and (20), ﬁG,v; j = 0for all j. Therefore

(P6,v, X) < Xl llPg,vll1

= ”§||oo|PG,v;1| < ||X||eo (1 = W)Pg+a[v = 1],

where the last inequality follows in the same way as (21). This finishes the proof. ]

5. Proof of main theorem forn =0

In this section we prove Theorem 2.1 for n = 0. For this we will use the following lemma, whose
proof we defer to the end of this section.

LEMMA 5.1. Let a > 1 and let q, A be positive integers such that ¢ > (1 + a)A + 1. Then there
exist constants C(a) > 0 and C1(«) > 0 such that for any €1 € (0,C1(a)/A) and €, € (0,71/8)
the following holds: for any (G,v) € G, a and any w € [0, 1] we have that if w € C and x € C?1
satisfy

Ww-w|<eg and |x; —Rg’v;j,{,(w)l < &, forallj, € € [q]

then for any t € {0,1} and ¢ € [q],

Z woe + Wt > C(a)A, (22)
e

where ¢ = cg .

PROOF OF THEOREM 2.1 FOR 5 = 0. Throughout the proofg,Aand w € [0, 1] are fixed and
whenever we refer to a graph we in fact mean a partially g-colored graph.

We will prove the theorem by induction on the number of free vertices of the graph, the
base case being a connected rooted graph (G, v) € G; where v is the only free vertex of G. Since
the pinned vertices of G form an independent set, (G, v) is just an isolated vertex and hence for
any pair of colors i, j we have Rg .., j(ﬁ/) = log(1) = 0 for any w € C, proving the first part of the
base case. Now for the second part, we apply Lemma 5.1 witha =2/3,R=x=0and 7 =0to
see that provided &; < C1(2/3) and &; < 71/8,

q
Ze(W)| =| ) W| = C(2/3)A > 0,
j=1

and hence in particular, Zg (W) # 0. This finishes the verification of the base case.
Next consider a partially g-colored graph G of maximum degree at most A with more than
one free vertex, all of whose pinned vertices are all leaves and form an independent set. Let

v be a free vertex of free degree d < A — 1. We need to show |R5’V;i’j(vT/) — RE,v;i,j(W)| < & and
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Zs (W) # 0. By symmetry, we may assume thati = 1, j = q. Note that by induction these log-ratios
are well-defined since ZiG)v(vT/) # 0 for all i, because after fixing the color of v in G and replacing
v by d many leaves, each connected to a unique neighbor of v in G, each component of the
resulting partially g-colored graph H has fewer free vertices than G, each original free neighbor
of vnow has free degree at most A —1, its pinned vertices are all leaves and form an independent
set. Therefore, by induction and the fact that the partition function is multiplicative over the
components of H, it follows that ZE’V(VT/) =Zy(w) # 0.

Choose an ordering of the free neighbors v4,...,v4 of vand let G;,i = 1,...,d be the
graphs obtained from the telescoping procedure. Let I C [d] be the set of indices, where
Pe, w[®(vi) = 1] < Pg, w[®(v;i) = q]. By (10) we have that

d
|R5,v;1,q(w) - RE,v;l,q(W” < Z |Fw,ci(Rl(W)) - Fw,ci(Rl(W))|
i=1

A
d . .
+ ) [Fya (RUW)) = Fy (R (W), (23)
=1
i p
where the vectors Ri(W) € C%! are defined by R?(W) = Rg,,.;qW) for j = 1,...,q - 1 (by

induction these are well-defined, since the graphs G; have fewer free vertices), and where
c' = cgy;-

First let us bound the first summation. By (11) for a given i € [d], we know that

A = |Fw,ci(Ri(W)) - Fw,ci(Ri(W))|

< sup [(VF,,«(tRI(w) + (1 — RI(W)), Ri(w) — R{(W))|
te[0,1]

= sup |<VFw,ci(yt)’X>|:
te[0,1]

where x = Ri(w) — R'(W) and y; = tR'(w) + (1 — t)R'(1). By induction we know that
|R5i,vi;£’1,€z (W) ~ Réi,vi;el,gz (w)| < &

for any pair of colors ¢4, ¢;. In particular, taking ¢; = q we have ||X||., < & and taking £, = 1 we
have ||X|| < &2, where X is defined as X; := —x; and X := xj — x; for j = 2,...,q — 1. Moreover,
for any t € [0, 1] the vector y; = tR'(w) + (1 — t)R' (W) satisfies

Iyello <&z and flye = R(W)llw = (1 = O)IXllo < 2.
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Then we can bound A; as follows:

A < sup |<PGi,Vi’ X> + <VFw,ci (Yt) - PGi,Vi’ X>|

te[0,1]
< sup (I(Pgv X)| + [IP6 v = VEy i (¥) 111X ]lo)
te[0,1]
< |<PGi,Vi: X>| + & Sup ”PGi,Vi - VFW,(:i (Yt) ”1 (24)

te[0,1]

By Proposition 4.2, if &, > 0 is sufficiently small (i.e. &, < § that is given by applying
Proposition 4.2(i) with & = 1/(3A%)), then ||Pg, v, — VF,, (Vo) |l1 < 1/(3A%). To bound [(Pg, v, X)|
we distinguish two cases depending on whetheri e I ori € [d] \ I. If i € I, then by Lemma 4.4
and Lemma 3.1 we can further bound A; as

A < (1-w)Pgalvi = q] - [|Xlleo + €255 (25)
1 —
< & ( W) + .
q—A  3A?
Similarly, if i € [d] \ I we can argue the same way, implying that for anyi =1,...,d we have
1 -
A<e (LW, L) (26)
q—A  3A?

Now let us bound B; in (23). By Proposition 4.2 if &1 > 0 is sufficiently small (i.e. &g < §
that is given by applying Proposition 4.2(ii) with € = &,/(3A%)) we have

B; < £5/(3A%). (27)

By substituting (26) and (27) into (23) we obtain

" 1-w 2
|R5"’;1’q(w) B RE,V;LQ(W)| = de, (q —A ¥ W)

<& A_l 2 < &
S&|7h T3 2

This proves the first part of the statement.

To show that Zs (W) # 0 we argue as follows. Choose any color ¢ that is not blocked at
the vertex v. Then Z;, (W) = Zé’v(vT/), since color ¢ is not blocked at v. Therefore, by induction
we have that Zé’v(ﬁ/) # 0, since after replacing v by degz(v) many leaves each connected to a
unique neighbor of v in G each component of the resulting partially g-colored graph is contained
in g& q and has fewer free vertices.

Therefore, to prove that Zg(w) # 0, it is sufficient to prove that

q
O ZG(W) Z VT/Cj eRav;j)g(l/T/)-
er(W) o

This follows directly from an application of Lemma 5.1 with x; = JWw)anda=2/3. =

Gv1
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REMARK 5.2. Note that our proof shows that we need &, to be smaller than § with § coming
from Proposition 4.2 with e = 1/(3A?). Additionally, we need &; to be smaller than § coming
from Proposition 4.2 with € = £,/(3A%).

In the appendix we give an alternative proof of Proposition 4.2 that shows that we can
take § > Ce for a constant C > 0 for these choices of €. Therefore we conclude that £, can be
chosen to be C’A~* for some constant C’.

REMARK 5.3. Note that the proof actually shows that we can inductively bound the log-ratio
difference by e,d /A, where d denotes the free degree of the vertex v, as the sum in (13) is over
the free neighbors of v. The crucial part in the proof is to bound A;. We do this in (25) using
the marginal probability of the root vertex being colored with color 1, which we bound by

Z_TIX < 1‘TW in (26) under the assumption that g > 2A. It is not hard to see that if for a restricted

family of graphs of maximum degree at most A this marginal probability can be bounded by

1
d+c

the entire proof still applies under these weaker assumptions, but with the modified induction

for some ¢ € (0,1) (where d denotes the free degree) under weaker assumptions on g, then

assumption described above. This way we essentially recover the condition from Liu, Sinclair
and Srivastava [30] (as stated in (%) in the introduction.) In fact, our condition is slightly weaker.
In particular for triangle free graphs it is known that such bounds exist under the assumption
that ¢ > 1.7633A + B for some absolute constant § > 0, see [21, 30] for details.

The next section contains refined bounds on the marginal probability of the root vertex
under additional assumptions on the structure of the neighborhood of that vertex that we utilize
in the proof of the main theorem for n > 0.

We end this section with a proof of Lemma 5.1. In the proof we will use the following

lemma of Barvinok.

LEMMA 5.4 (Barvinok [3, Lemma 3.6.3] ). Let uq, ..., Uux € R? be non-zero vectors such that the
angle between any vectors u; and u; is at most ¢ for some ¢ € [0, 277/3). Then the u; all lie in a

cone of angle at most ¢ and
k

k
Z uj| > cos(@/2) Z |uj.
j=1 J=1
PROOF OF LEMMA 5.1. For the proof we may without loss of generality assume that ¢ = q.
Let w* = g;/sin (g%). We distinguish the cases w < w* and w > w*.
First consider the case w < w*. By Lemma 3.1 and Lemma 3.3, and by noting that q/(q — A)
is decreasing in q for g > A, we have that

oA +1 q-—A

3 qel/® L (A+oa+1) ella
((1+a)A+1)el/e ™ gella

< R:) <
< exp( ])_q—A_ alA+1

’

and therefore in particular
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(1+a)el/®
—— < exp(Rj) £ ———. (28)
(1+ a)el/ P(R)) o4
(1+a)et/®

Thus, by assumption we have M~1e % < ¢% < Me®2, where M = , and that all e* are

o
contained in a cone of angle at most 2e, < /4, centered around the real axis. Moreover, we
remark that at least g — A entries of ¢ are zero (including possibly ¢,). Let So C [q — 1] denote

the indices for which this is the case. We obtain

q-1
Z ]eX] +WCq+’Z' Z Zijer _ Z WCjer +qu+T
j=1 J€So Jelq—-11\So
> cos(ez) ) 1€ > |W|9]eY] - W]
J€So Jelg-11\So
(q - A - 1) &2 *
> COS(EZ)M—eEZ — Ne“*M (&1 + W)
-A-1
> lg=2-1) _ 2AM (g1 + w™).

2M

In the second step we used Lemma 5.4, and in the last step we used the fact that e, < 71/8 < %
thus cos(gp)e %2 > 1/2.
For the case w > w*, we find that
€1 T T T
arg(w*eM)| < (c;+7)|argw| + e, < (¢;+ 7 arcsm( )+e <SA—+—-<—.
|arg(W1*e )| < (¢ + ) arg | + ez < (¢ +7) ) re<ag o<

Using Lemma 5.4 again, we obtain

MQ

ieXi + Wt > cos (Z) Z W< e¥| + cos ( ) wee*|

T -
> cos( ) Z [Weie|

J€So
(q—A-1)cos (7)
- M ez
L g-4-1
3M

Combining the two cases, we may conclude that

- 3M

“MQ
|
—_

A1 1
it et s =8 onre (1+ , )

Let us further bound this by observing that
A 2
q—-A-1 S o

> A,
M (1+ a)el/a
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and
1 sin (Z5) + 1 2 2 32A
1+ ——=—"—-—5 — < — = < 11A.
sin (g5)  sin (&% sin (%)~ (&%) /2 =

This yields us

q-1 2 1/«

Z we + wrt| > £ gt (¥ €14 | A.

— 3(1+ a)el/a x

J= [ S—-4

f(a) g(a) /

Rewriting the right-hand side as (f(a) — g(a)&1A)A, we see thatif 0 < g < ZQZ; 5, then

(f(0) — g(a)e18)d > 3 f(a)A.
This means that the choice C(a) = % f(a) and C1(a) = f;

lemma. [

5 ((02) satisfies the condition of the

6. Refined bounds on marginal probabilities of the root vertex

We collect here some results that improve on the bounds on the marginal probability of the root
vertex from Lemma 3.1, under additional assumptions on the local structure of the neighborhood
of the root vertex that we will utilize in the proof of the main theorem for n > 0 in the next
section. For the proof of Theorem 2.1 one only needs the conclusions of Corollaries 6.2 and 6.5.
Apart from that, this section can be read independently of the next section.

6.1 Local influences on the probabilities

Our first lemma shows how to improve the bound from Lemma 3.1 under the additional
assumption that not all neighbors of the root vertex have color j blocked.

LEMMA 6.1. Let q and A be positive integers such that ¢ > (1 + a)A + 1 for some o > 0 and let G
be a partially g-colored graph of maximum degree at most A and let v € V(G) be a free vertex of
degree d and with free-degree f. Lety € [0,1] and let j € {1,...,q} be a free color at v. Suppose
that color j is blocked for at most (1 — y) f of the free neighbors of v Then for any w € [0, 1],

(1—W)exp(_”f)+w

qel/(x

=7j] <
Paul®(V) = J] < —— —— o

PROOF. Throughout we will fix w and just write P; instead of P ,,. By (14) we have

Po[®(v) = j1 = ) P[®(v) = j | EclPglEx],
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where E, denotes the event that the random coloring ® agrees with k on N(v), and we sum
over all colorings k of the neighbors of v for which Pg[E«] # 0. By (16), for a given k that does
not use color j, we can bound Pg[v = j | Ex] by q_dﬁ, and if k does use color j, then we bound

this probability by — . S0 we can bound Pg[®(v) = j] by
1-w w
——Pglj ¢ (N —,
J—d+dw clJ & O (V))]+q_d+dW

Our next step is to bound Pg[j ¢ ®(N(v))]. Let uy, ..., us be the free neighbors of v for
which color j is not blocked. Note that t > yf. Then as in (17), we can write

t
Polj ¢ Q(N(W)] < Pglj ¢ ®{us, ..., u}] = | | Pol®(u) # j | Ed, (29)
i=1
where E; denotes the event that the random coloring ® does not use color j on the vertices
Uit1, ..., Ut
We next claim that for each i =1,...,t we have the following the lower bound

, 1
Po[®(w) =j | Ei] 2 —. (30)

qe

We prove (30) below, but first we plug this into (29) to obtain

)yf < exp ( eff;) .

It thus remains to show (30). If it were not for the event E;, this would be a direct conse-

t
Pelj ¢ 2(N(v)] < (1 - qell/a) = (1 ~ gella

quence of Lemma 3.3. We follow the proof of that lemma to show that the same bound still
applies. We again expand

Po[®(w) = j | Eil = > Pe[®(v) = j | Ex N EPg[Ex | El,

where the sum is over k for which Prg[Ex N E;] > 0. By (16), we can lower bound P [®(v) = j |
Ex N E;] for any such k that additionally does not assign color j to the neighbors of u; by 1/q. It
thus suffices to lower bound Pg[j ¢ ®(N(w;)) | Ei] by e”/%. To this end denote by vy, ..., vq the
neighbors of u;, and note that by assumption none of them is pinned to color j. Then as in (17)

we have
d
Polj ¢ ®(N(v) | Eil = | | Pel@(vi) # j | Ex]
k=1
d
=| [ -relom) =j | £),
k=1
where Ej denotes the event that ® does not use color J ON V41, ..., Vg and not on Ujyq, - . ., Us.

Now since ¢ > A+1, we can again use the Markov property (cf. (16)) to bound Pg [®(vk) = j | Ex]
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by = A1+AW. It then follows as in (18) that Pg[j ¢ ®(N(w;)) | E;] is at least e~¥/* and therefore (30)

holds. =

We record here some concrete applications of the previous lemma that will be used in the
proof of Theorem 2.1 in the next section.

COROLLARY 6.2. Let g and A > 500 be positive integers such that q > (2 — n)A for some
0 < n <£0.002, let G be a partially g-colored graph of maximum degree A, and let v € V(G) be a
free vertex of degree d and with free-degree f < A—1. Lety € [0,1] and let j € {1,...,q} bea
free color at v. Suppose that color j is blocked for at most (1 — y) f of the neighbors of v. Then, if
w € [0,1] and
— y > 0.02, then Pg , [®(v) = j] <
— Y > 0.14, then Pg 1, [P(v) = J]

[~

+1°
.977
f+1°

IA
o,

PROOF. Let d be the degree of v and apply Lemma 6.1 witha =1 -1 —1/A > 0.996. Now the
bound on Pg , [®(v) = j] from Lemma 6.1 is clearly decreasing in terms of a, w and increasing

in terms of d. Therefore, we may assume that w = 0, a« = 0.996 and d = A. Then

-¥f
exp (bt

Polow) = jl < — "5

Let us denote g : [0,A — 1] — R to be the function defined by g(f) = (f + 1) exp (—W{;g%).
This function is increasing on [0, A — 1], therefore we have

_p(A-1
A exp (%)

(f +DPg[®(v) =j] < P

b

that is decreasing in q for y € [0, 1]. Thus choosing g = 1.998A we have

Aexp( —y(1-1/A) ) exp( -0.998y )
<

1.998¢1000/996 1.998¢1000/996

0.998 - 0.998
As this bound is decreasing in y, by choosing y = 0.02 and y = 0.14 we obtain the desired

(f +DPc[®(v) =j] <

statement, as can be numerically verified. [ ]

The next lemma is well known, variations have for example been used in [21, 32]. We give
a proof for completeness.

LEMMA 6.3. Let q be a positive integer. Let G be partially g-colored graph of maximum degree
A <q-1andletv € V(G) be a free vertex. Then for any w > 0,

EG-vw [ch(d)IN(v))]

2?21 Eg—vw[w" (¢|N(V))] .

Pow[®(v) =q] = (31)
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PROOF. Since q > A+ 1, we know that G — v can be properly colored, i.e. Zg_,(w) # 0. Then

we have the following identity:

Z; ,(w) B Z
Zev(W) 4yl
Pls=9

wCi (Bl w) yym)
ZG—V(W)

= Eg_vw[w" (q)lN(v))] .

Now the claim follows from this identity:

Zg’V(W) Zg,v(w)
Fawl®W) =ql =7 5 = =1, 2L, w)

) ZE (W)/Zgy(w) B Eg_yw[w(Pvem)]
2L ZL (W)/Zew(w) L, By [w(Plve) ]

Our next lemma shows how to improve the bound from Lemma 3.1 under the additional
assumption that the graph induced by the neighbors of the root vertex is not ‘close to’ a clique.

LEMMA 6.4. Let q and A be positive integers such that q > (1 + a)A + 1 for some a > 0 and let
G be a partially g-colored graph of maximum degree A such that the pinned vertices of G are all
leaves and let v € V(G) be a vertex of free degree f. Let H be the graph induced by Ng(v) and let
L be the collection of free colors at v. Then for any j € L,and w € [0, 1],

1
)((q—A)f+2€(H)+f)/ILI (

Pewl®(v) =] <

)fQ/ILI'

|L| (1_ 1-w

q—-A+1-w T g-A+1

PROOF. In the proof we will fix w and just write P¢ instead of P¢ . We will apply Lemma 6.3.
We can just upper bound the numerator in (31) by 1. We thus need a lower bound on

=1

Let ¢ = ¢g,y and let us denote the free neighbors of v by vy, ..., vs. We have
q
Z EG—V [WC{Z(‘I)|N(V))] > Z EG—V [WC€(¢)|N(V))]’
=1 el

which we can lower bound by AM-GM by

LI | Bomo[woE e > L [ T Booy [ ¢ @]

el el
! /1Ll
=z ][ ](1-2o-vl@mo = €1 E1)
el i=1

b

f
L[] (1~ Pemloo = £ 1 1)

i=1 ¢eL
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where Ef is the event that v,4,..., Vs do not use color £. Let Q; C [q] be the set of colors
appearing in the neighborhood of v; (in G), and let dg(v;) denote deg; (v;). Note that |Q;| +
dg(vi) < A—-1,since the pinned neighbors of v are isolated vertices of H. By Lemma 3.1if £ ¢ Q;,

then

1
Pe_y[®(v;) = £ | Ef] <
ce[®lv) = 1] q —|Qil — dg(vi)
and if € € Q;, then
w
Po_y[®(v;) = £ | E] < :
sv[®lv) = £ E] q - |Qil — du(v)
Hence, for a fixed i, we obtain that [],; (1 — Pg_v[®(v;) = £ | Ef]) is at least
) 1 )|L\Qi (1 w )ILﬂQiI 32)
q - |Qil — du(vi) q - |Qil — du(vi) '

We next show how to bound both factors in (32).
Since q — |Qi| = |[L \ Q;| and q — |Q;| > q — (A — 1) + dg(v;) we have

1 |L\Ql| 1 q_|Qi|
1 - ) > (1 _ )
q — Qi — dg(vy) q—1Qi| — dg(vy)
(q-1Q;1-dg (v;)) (q-10Q;1)(q—(A-1))
1 1 q-(8-1) (q—1Q;1-dg (v;))
U q-1Qid —da(v)
1 (‘;—Jl%ii\ |)_(Z;I((AV;)1) 1 q—A+dp (vi)+1
- —2 > (1 - —)
q-(A-1) qg-(A-1)

where in the second inequality we use Bernoulli inequality, and in the last inequality we used

the fact that x — is decreasing in x for x > dg(v;).

X
X—dg (vi)
Since the function x — (1 — q_x_—V;H(Vi))X is monotonically decreasing in x for 0 < x <
q — dg(vi) — w, we have

( w ) ILNQ;| ( W )A—l—dH(Vi)
1- >1-—- )
q—|LNQi| —dg(v) q-A+1

Together this implies that [],c; (1 — Po_y[®(v;) = £ | Ef]) is lower bounded by

1 q—A+1+dy (vy) w A-1-dg(v;)
1-—— 1-——
q—-A+ 1) ( q—-A+ 1)
1 q—A+1+dg (v;) (A-1-dg(vi)-q)+q
=11-— 1- —
q-A+ 1) ( q-A+ 1)
_(4 1—w q—-A+1+dg (vy) ) w q
B q-A+1-w q-A+1]

Taking the product over the free vertices and realizing that 2e(H) is the sum of the degree of
the vertices in H, as dg(v;) = 0 for a pinned vertex v;, gives us the desired lower bound for
3 Eg_y[we®Ivv)] and this finishes the proof. n
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We record as a corollary of this lemma a version with explicit bounds on some of the
parameters involved, making it easier to apply in our proof of Theorem 2.1.

COROLLARY 6.5. Let g and A be positive integers such that q > (2—n)A for some 0 < n < 0.002
and A > 500. Let G be a partially g-colored graph of maximum degree A whose pinned vertices
are all leaves and let v € V(G) be a vertex of free degree f > (1 —n)A —2/3. Let H be the graph
induced by Ng(v) and let L be the collection of free colors at v and assume that H has average
degree d < 0.36f. Then for any j € L, and w € [0, 0.002],
Pew[®(v) = j] < %
: f o [+ A 1

PROOF. First note that the number of free colors |L| > q— A+ f, thus ST <51 S ok

and —
(q-A+d+1)f - q—A+0.36A+1

IL| = 2-n-1/A

Now let us apply Lemma 6.4 and use the previous bounds to bound the exponents in the
denominator. Thus, we obtain

1

Pewl®(v) =] <

(q—0+0.36A+1)/(2—n—1/A) q/(2-n-1/b)"
(1 ) e
q—A+1-w q-A+1
Now let us bound the functions appearing in the denominator. Using the Bernoulli inequality
we have
1w )\ (@B+0.368+1)/(2-n-1/8) {ow \CETw
1- >(1- ——— ,
q-A+1-w (1-n)A

where the exponent is decreasing in ¢, therefore we could further bound it by

((1-1)A+0.36A+1) (1-1)A ((1-17)A+0.36A)

1—w \({@nd1-w)Z-n-1/8) 1—w \ G/

1- - >(1- —
(1-n)A (1-n)A

1.358A

1-w |09
> (1 - —) > 0.5053,
(1-n)A

where in the last inequality we plugged in A = 500 using the fact that the function is increasing

in A. Similarly we obtain,

q(1-n)A (2-n) (1-n)a?

q
w (2—n-1/4) w (2-n-1/8)(q—2+1) w (2-n-1/8)((1-n)A+1)
1-—— > (1 - —— > [(1- ——

q-A+1 (1-n)A (1-n)A

(2-n)A 1.998A

> (1 w m> 1 w 1.996
‘( _(1—n)A) ‘( _(1—n)A)

> 0.9979.




28 | M

TheoretiCS F. Bencs, K. Berrekkal, G. Regts

Therefore, we obtain that

, f+1 1
+ 1)Pg [P (V) = ] < < <1
(J+DFsl@() =] < 0.504|L| ~ 0.504(2 —n — 1/A)
using that A > 500 and n < 0.002, as desired. u

7. Proof of Theorem21forn >0

PROOF OF THEOREM 2.1 FOR 5 > 0. Our goal is to expand on the proof for n = 0 given in
the previous section. To this end let us fix € [0, 0.002], positive integers Aand q > (2 — n)A
and w € [0, 1]. By the proof for the case n = 0, we may assume that A > 500 since q is an integer.
The proof is again by induction on the number of free vertices; however, we add one more
statement. We claim that there exists €1, &, > 0 such that for any (G, v) € Q& q with free degree
d :=degz(v) <A-1,anyi,j,k € [q] and W € B(w, &1) we have
() [Rgyy; (W) = Ry ()] < 500,
(i) Pgrty[@(V) = 1 - |Rg i (W) = Rg g ,(W)] < &2/,
(iii) Zg(w) # 0.

The proofs of (i) and (iii) are very similar to the proof for n = 0. Moreover, the choice of &; and
&, only depends on these parts. The more technical part will be the proof of (ii), where we will
exploit local information around the vertex v to show that either P, [®(v) = j] is small or

|R (w) — Rz .. .(W)| is small.

Gvii,j Gvii,j

"1{he base casé follows in exactly the same way as in the proof for n = 0. In other words, if
€ is sufficiently small, then all three statements hold when there is exactly 1 free vertex.

Next, let (G,v) € G, . with v of free degree d < A — 1 with more than one free vertex. To
prove statements (i) and (ii), we may of course assume by symmetry thati =1 and j = q.

Choose any ordering of the free neighbors of v (to be specified further later). Let vy,...,vq
be the free neighbors of v (in this order). Let for i € [d] G; be the graph obtained from G
via the telescoping procedure and recall that (G;, v;) denotes the graph obtained from (G;, v;)
by removing the pinned neighbors of v; in G;. Let I C [d] be the set of indices for which
PG?,W[(D(VI-) =q] > PG:q’W[dD(vi) = 1]. Also let ¢! = cg,,, the vector of blocked colors at v; in G;
and R;'.(VT/) =R5. 1.
We now prove all three statements, assuming they hold for partially g-colored graphs with

(W), which by induction is well-defined.

fewer free vertices.
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Proof of (i). Following the same steps in the proof for n = 0 we arrive at (23), which states

|R5,v;1,q(w) - RE,v;l,q(W)l < Z |Fw,ci (Ri(W)) - Fw,ci (Ri(w))l
i=1

A;

d
+ 3 [Fya (RE(WW)) = Fy (R (W)
i=1

B;

Continuing the proof for n = 0 we arrive at (24), which states

Ai S |<PGi,Vi: X>| + 82 Sup ||PGi,Vl' - VF‘W,Ci (YI) ||1:
te[0,1]

where x = R (w) —R{(W) and y; = tR'(w) + (1 — t)R' (1), whose infinity norms are both bounded
by &, by induction statement (i). Thus, if i € I, and if &, is smaller than the § from Proposition 4.2

with € = AZ, we can apply Proposition 4.2 and Lemma 4.4 to see that we have
. _ N — . i _ pi ~ 1
Ai < (1=w)Pgn, [®(vi) = q] max, RS g~ Re W+ €235,

which by induction statement (ii) is bounded by (1 — w)ey /A + The same reasoning gives us

Ve
the same bound on A; wheni € [d] \ I. SA

To bound B; we use Proposition 4.2 once more, to conclude that if &; is smaller than the §
BEAZZ to conclude that for eachi =1,...,d, |B;| <
bounds together we see that we obtain

from Proposition 4.2 with € = Putting these

3A2

A

| GVl](W) RGVLJ(W)|S((1_W)d+2/3)829

thereby proving statement (i).

Proof of (ii). Now let us prove the second statement. Recall that we may assume thati = 1 and
J = q. Note that by Lemma 3.1 and the already proven item (i) we have

IED)G”‘, [(I)(V) ]l leq(W) Rleq(W)| <

€q 1-w)d+2/3
wr (A= wd+2/3) (33)
(1-nA A
This implies that we may assume the following statements:
(A1) w<n,

(A2) v has no pinned neighbor of color ¢,
(A3) the free degree, d, of v satisfiesd > (1 —n)A —2/3 > 0.9966A.

Indeed, if any of (A1), (A2), (A3) does not hold, then we have that (33) is bounded by &;/A, and
we are done.
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Vo 1 £
‘e ° ) ‘o o) <l o5
R/_/
<yd

Figure 3. lllustration of the vertices in the neighborhood H of vertex v, without the (possible) induced
edges. The set V, consists of the pinned vertices in H, V; consists of the vertices that do not have color
g blocked, and V, consists of the vertices where g is blocked. The vertices in V, are ordered from left to
right, increasing in their degree in H.

Let H be the graph induced by Ng(v). Next we claim that we may assume that the following
statements hold:

(A4) for (1 —y)d > 0.98d neighbors of v the color q is blocked,

(A5) the average degree of H, dy, satisfies dy = Bd > 0.36d.

Indeed, statements (A4) and (A5) follow because otherwise by Corollary 6.2 and Corol-
lary 6.5 (which we can apply since by (A1) we may assume that w € [0,0.002]) we would have
Pewk[®(v) = q] < 1/A and by the already proven item (i) we would obtain

1 (1-w)d+2/3

_ x 1
Pou[@(V) = q] - IRz, o(W) — Rg g ((W)] < 71 A & < 3&.

To proceed we will argue that these assumptions allow us to show the ratio difference

|R5,V;1’q(w) - Rz, q(vT/)l has to be small. To do so we will take a closer look at the proof of item
(i) of the induction hypothesis.

We now specify the ordering of all the neighbors of v as follows: first we have the pinned
neighbors (Vp), then the vertices where q is not blocked (V4), and then the vertices where q is
blocked and not pinned (V;). Within each group the vertices are ordered increasingly with
respect to their degree in H. We identify the labels of the vertices in V; U V; (in an order
preserving manner) with [d]. Note that by (A3) we have |V| < 0.0034A and by (A4) we have
|V1| < yd. See Figure 3 for an illustration.

As before, let I C [d] be the set of indices of free vertices v; € V(H), where Zgi’vi(w) >
Zéi’vi(w) (equivalently where Pg, v [® (Vi) = q] > Pg, w[®(vi) = 1]). Recall from the proof of item
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Figure 4. lllustration as in Figure 3, with the additional detail that the set I consists of the vertices v;
such that Pg+ , [®(v;) = q] > Pga , [P(v;) = 1]. Note that the set I is shown on the right for illustrative
purposes, but it could be located anywhere and does not have to be concentrated on the right.

(1) that

|R5,v;1,q(w) - RE,V;LCI(W) |

N — AT i _ pi .
< ;(1 - W)PG;l’W[CD(Vz) =q] I;Iel?q)]( |R5i,vi;j,q(w) REi,vi;j,q(W”
' Z (1 ) W)PG:q’W[q)(Vi) B 1] . ?Glﬁl)]( |Rl§i;\)i;j,1(w) B R%i,Vi;j,l(W)|
ic[d]\I
+ 82%. 3

Suppose that there are at least nd indices i in I such that q is blocked at v; (or at least nd
vertices in V; U V;, where 1 and q are blocked). Note that for these vertices PGI_+1,W [@(v;) =q] <
q—Tq—W) (resp. PG:q,W[tb(vi) =1] < m and PGz-l’W[q)(Vi) =q] < CI_TVK_W))' Then using that
w < n < 0.002 by (A1), induction item (i) for these nd vertices and item (ii) for the remaining
vertices in (34) and Lemma 3.1 to bound Pg.« , [®(v) = q] by q_LA, we obtain that

Pt [P(V) = 1+ Rg 11 s (W) = Rz g /(W)

1 —
< q_A(n(l—w)d(l_nW+W)A+(1—n)d AW+%)£‘2
1 1 —
< q_A(r](l_W)WM}_'_VV)'F(l—rI)(A—1)TW+3AA)£2
< oo (1 A= - w e

) n €2

So we may assume further that
(A6) at most nd vertices in I have color g blocked, thatis |I N V3| < nd,
(A7) atmost nd free neighbors of v have both color 1 and color g blocked.

See Figure 4 for an illustration.
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Now let us choose the largest index i* such that v;x € [d] \ I and such that v;= has
(1-y’)degz (vix) > 0.86degz (vix) neighbors with 1 blocked in G~ if this exists, otherwise
let i* = 0. We then have the following claim.

CLAIM 7.1. Under assumptions (A1)-(A7), there are pd > 0.1d indices in Ng(v) \ I that are larger
than i*.

Before proving the claim, let us first show that it concludes the proof. Indeed, if j > i*
such that v; € Nz(v) \ I, then v; has at most 0.86 deggj(vj) neighbors with color 1 blocked in

qu and therefore by Corollary 6.2 we have
0.977
P.q. [D(Vvi) =1] < ) 35

This implies that by bounding P« ,,[®(v) = q] with q_iA using Lemma 3.1 and plugging (35)
into (34) for these pd > .1d vertices j > i* in combination with induction item (i) and item (ii)

for the remaining vertices, we obtain

Bty [ 9(0) = 4] R 1,0 9) = R0 < i - (o.1d(1 —w) %%, 1 0.9d2 + 23%)
<z ! ~ (009778, +09(a - % + %)
<1 (0.9977¢y)

(1-n)A
€2
K:

finishing the proof of item (ii).

Proof of Claim 7.1. To prove the claim we argue by contraction and suppose that it is not true,
that is we assume

(A8) the number of indices in Nz(v) \ I that are larger than i*, pd, is smaller than 0.1d

See Figure 5 for an illustration.

Our plan is to show that this leads to a contradiction with assumption (A7). First we show
that (A8) (in combination with some of the previous assumptions) implies that

(A9) the degree of v;x inside H is at least 0.27A.

This follows by a density argument. Since there are at most nd indices in I where q is
blocked by (A6), this implies that there are at most (p + n)d < 0.102d indices in V, that are
larger than i*.

To proceed let the degree of v;x in H be denoted by d;jx < d — 1. Then d;» is an upper bound
on the degree of the vertices in V,, whose index is at most i* since inside V, the vertices are
ordered by their degree in H. In what follows we will upper bound the number of edges inside
H. Recall that by (A3) we have d > 0.9966A. Note that the free neighbors of v are the only
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> (1 — )/’)di*

Figure 5. lllustration as in Figure 4, with the further detail that vertex v;» is the vertex in V, \ I with the
largest degree, such that at least (1 - y’) deg , of its neighbors have color 1 blocked. For illustrative
purposes, N(v;x) has been drawn as disjoint from H. However, note that N(v;x) could intersect with H.

vertices that can have a positive degree inside H. For the vertices inside V; and those inside
V, that have a larger index than i* we bound their degree in H by d — 1. We have at most
yd + (p + n)d of these vertices. For the remaining vertices we have an upper bound of d;x on
their degree. Therefore by (A5),

%,de < e(H) S%((y+p+n)d(d—1)+(1—V—P—'7)d'di*):

and hence p p

d > Bd-(y+p+n)(d-1) 5 0238
1-(y+p+n) 0.878

since p > 0.36, y < 0.02, p < 0.1 (by (A8)), n < 0.002 and d > 0.9966A. This shows that (A9)

holds.

The fact that the degree of v;x inside H is large in combination with the telescoping

d > 0.27A,

procedure gives us information about how many neighbors of v must have had color 1 pinned
before the telescoping procedure. Indeed, by the telescoping procedure only the neighbors of v
with an index larger than i* will obtain a pinned neighbor with color 1 in G;+ (the others will
receive a pinned neighbor with color q). The idea is that since v;» has many neighbors inside
H (which we recall to be the graph induced by the free neighbors of v) and many neighbors
inside G;» for which color 1 is blocked, there must be an overlap of these two sets that does not
include neighbors of v with a larger index than i* and hence these vertices must have had color
1 blocked before applying the telescoping procedure to (G, v).



34 /| 41

TheoretiCS F. Bencs, K. Berrekkal, G. Regts

We will now make this formal. Let A = Ny(vi») and B = {u € Nz _(vi») | 1is blocked at u}.
Then by (A9),

|A N B| > di* + |B| — degai* (Vi*)
> 0.27A - y’'A+1 > 0.13A.

since y’ < 0.14 by our choice of i*. This implies that v;« has at least 0.13A neighbors inside
H = Ng(v) where color 1 is blocked in the partially g-colored graph G;+. The only pinned vertices
of color 1 in G« that arose from the telescoping procedure are the new neighbors of the v; with
i > i*. Since there are at most 0.102A vertices v; with i > i*, at least 0.028A vertices inside H
must already have had color 1 blocked before the telescoping procedure was applied to (G, v).

Therefore, since |Vz| > (1 —y)d > 0.976A there are at least 0.004A > 0.004d free neighbors
of v where both color 1 and color g is blocked. This contradicts (A7) (since n < 0.002) and
concludes the proof of the claim. L

Statement (iii) follows from statement (i) via Lemma 5.1 in an identical manner as in our

proof for the n = 0 case. This finishes the proof. ]

REMARK 7.2. As in Remark 5.2 we note that by the alternative proof of Proposition 4.2 given
in the appendix we have that £; can be chosen to be C’A™* for some constant C’ > 0.

8. Further remarks and conclusions

The main conceptual ingredient that allowed us to break the g = 2A barrier is to carefully use
the local structure of the neighborhood of a vertex to bound the marginal probability of the root
vertex in combination with information about the log-ratios of vertices at distance at most 2 of
the root vertex. It is tempting to do a more systematic analysis of the behavior of the log-ratios
at the vertex v in terms of the log-ratios at distance 2 of v, but it is not clear to us how to make
use of this extra information.

Clearly, our bound on n can be improved once one has better bounds in Corollaries 6.2
and 6.5. It is not unlikely that these corollaries can be somewhat improved, but we leave this for
possible future work. We suspect that a more substantial improvement on our bound on 1 could
be obtained if instead of controlling the £, norm of the vector (R v;jq(W) — Rgv:j,q(W)) ielq-1]
one can perhaps simultaneously control its ¢;- and €., norm.

As remarked in the introduction for reasons of clarity we focused on the Potts model
on bounded degree graphs. We next collect some remarks about extending our approach to
different settings, that we didn’t pursue here, because it would distract the focus from the main

ideas presented in the current paper.
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Multivariate Potts model. One possible extension is to allow for a graph G = (V,E) of
maximum degree A a vector of edge weights (w,)e.cp and thereby transform the associated
partition function to the multiaffine polynomial

ZG(q’(We)eeE): Z 1_[ We.

V- = E
PVl et

Following the approach from [4] for the multivariate setting, it should not be difficult to extend
our main result to this setting.

List coloring. Another natural extension to consider is list colorings, i.e. equipping for a graph
G = (V,E) each vertex v € V with a list of colors L(v) C N and defining

Z6((Lv)vev, W) = Z 1—[ w.
o€l 1yey L(v) e=uvekE

Since all of our bounds only really depend on the number of available colors, it should again
not be difficult to extend our main result to list coloring setting, provided each list L(v) satisfies
ILW)| = (2 - n)A(G).

Triangle free graphs. As remarked in Remark 5.3, our proof for the n = 0 case can recover
the result of Liu, Sinclair, and Srivastava for triangle free graphs [30]. It would be interesting
to see if the ideas that we employed for the n > 0 case can somehow be used to also improve
their bounds for triangle free graphs. It is not immediately clear how to do that, since the
neighborhood of a vertex in a triangle free graphs is always an independent set, which has
already been taken into account in bounds on the marginal probabilities. Possibly one has to
take into account vertices at larger distance from the root vertex. Another interesting question
is to see if better bounds can be obtained if one assumes stronger bounds on the girth of the
graph.

Small A. For small values of A, we can obtain better bound for the marginal probabilities of
the root vertex by examining all possible neighborhood structure. In combination with our
inductive proof this may lead to improved zero-free regions. For example, when A = 3 the
free-neighbors of a vertex v of free degree at most 2 could form an independent set of size
at most 2 or induces an edge. Examining the exact marginal bounds one can easily obtain a
zero-free region containing the interval [0, 1] for the anti-ferromagnetic Potts model when
q > 5. We suspect that with sufficient additional effort it should be possible to extend this to
q = 4, but it would involve investigation of local neighborhoods of size bigger than 1. We note
that [32] has bounds on these marginal probabilities in the g = 4 and A = 3 case. However,
in their setting they don’t have an additional pinned neighbor of the root, and as such their
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bounds cannot be used directly in our setting. Additional effort is needed to see if their bounds

could be helpful in our setting.
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A. Adirect proof of Proposition 4.2

We restate an updated version of the proposition here for convenience.

PROPOSITION A.1. Let a > 0 and let q, A be positive integers such that q > (1 + a)A + 1. Let
C1(a) be as in Lemma 5.1. There is a constant Co(a) > 0, such that for any € € (0, 1) there exists a
§ = min {%, Clga), Cy (e, Scj(a)} such that the following holds. Let (G, V) € Q&q, and letw € [0, 1].
Let R € R77! be the vector defined by

Rj = Rav;j’q(W).

Then
() ifxeClland |IR-X|lew <8

IPcv(w) = VFyc(X)]l1 < &
(i) ifx € CT 1 and |R - X||e < S and |W — w| < &, then

|Fuw,cq, (X) = Fyeg, (X)]| < €.

PROOF. Let M = w Recall that by Lemma 3.1 and Lemma 3.3, and by the fact that
q/(q—A) and (q — A)/q are respectively decreasing and increasing for ¢ > A, we have that

al + 1 q-A qel/* L (A+oa+1) ella

< < exp(R;) < < )
((1+0)A+1)el/a ~ gella P(Rj) q-A ol + 1
and therefore in particular
M™ < exp(R)) < M.
Next, let Ca (&) = W and note that
§<Cya)e<e a <e ol cla-A-Ve
16M2(1+a) ~—  16M2%(1+a)A ~ 16M2(q—-1)

We will now show that the conclusion of the proposition holds with our choice of §.

Let R be as defined in the proposition, and let x € C4! such that ||R — X||c < §. We use
shorthand notation P and Q for P.(w, R) and Q.(w, R), which are defined in Section 2.2. Since
e’ is contained in a cone of angle at most 26 centered at the real axis for all j € [q — 1], and
since § is small enough, it follows by Lemma 5.4 that

q-1

X)| > cos w el + w-ile'||.
[P(x)| = cos(8) [w* e+ " wleY]
j=2
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Here P(x) is shorthand for P.(w, x). Note that

|er| _ |eRjer—Rj| — |eRj||e‘K(Xj)—%(Rj)| > eRje—S,

and thus

q-1
|P(x)| > cos(8)e~% [wrtlef 4 Z wSieli | = cos(8)e°P.
Jj=2

S we can also

Simply by applying the triangle inequality and observing that |e¥i| < efie
conclude that

IP(x)| < €°P.

There exists a complex number ¢; of absolute value at most § such that eRi(0) = ebjek; for all
j=1,...q-1. Using this and the assumption that €4 < 1+28, which s true since § < 0.5 < log(2),

we see that
ei efi| |PeYi - eRiP(x)| § eRi|Peéi — P(x)|
P(x) P |P(x)|P - PlP(x)|
eRiP maxy |e% — e%| B eRied2 maxy e — 1|
P|P(x)| - cos(S8)P
eRie®2(e® —1)  46eS eRi 85M? £
< < < < .
P cos(8) P (q—A-1) 2(qg-1)

In the penultimate inequality, we use e®/cos(8) < 2 for § smaller than 0.5. Furthermore, the
q — A — 1 comes from the fact that we have at least g — A zero entries for the ¢ vector, but the
first term of P has a factor we*L,

In an analogous way, we obtain for the same choice of § that
eXi el

Qx) ©Q

Combining everything gives us the following:

< E
2(q-1)

I1PGy = VEw,c(X)|l1 < IP6y — VEw,c(R)|l1 + [[VEw,c(R) — VEw,c(X)[l1
= |IVF(R) = VF(X)|l1

R X R X
< Wcl+1e_1 _ cl+1e_1 + Wcle_l — e
p P(x) Q Q(x)
S et e eRi e
+Z W — — w + W — — wY
S\ P T P 0 " e

q-1

< worrle + whe +chj( . )
20q-1)  2(q-1) 4H 2(q-1) 2(q-1)

<ég

b

proving (i).
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For (ii), we consider the following

~ P(w,x) P(W,x)
|Fuw,c,(X) = Fiveg,(X)| = |log (Q(W, X)) ~log (Q(vT/, x))‘
gy (P20 Q(W,X))'
P(w,x) Q(W,x)

P(W,X) Qw,x)
< 1 .
- ' %8 (P(mx))‘ +‘ 8 (Q(W,X)
Since log(z) = log|z| + iarg(z), our goal is to bound the absolute value and arguments of

P(W,x) Q(w,x)
P(w,x)’ Q(W,x) "

By remarking that

W5 — wei| < [ - wlle;| max(jwl, W]%) < 8(1 +8)%c;,

we obtain
q-1 q-1
0w, x) —Q(W,x)| =| Y We +wt! — Z weieX — weat
j=1 j=1
q-1
— (]/T/Cj _ Wcj)exf + (ch+1 _ ch+1)
=

T
=R

<Y ¢;j8(1+8)e’M + (cg+1)8(1 + 8)“*leSM
j:
< AS(1+68)*Me® < 206M e (@,

[y

since § < %. Since by Lemma 5.1 it follows that |Q(W, x)| > C(a)A, we obtain

Q(w,x) — Q(W,x)|  28Mec1(@  28eC1(@el/aq 4 o

< < =C 8.
0wx | @ S @ a2
Let us write z = % Then, since
J(z) J(z) |z|
1 = t — < ;
|arg(1 +2)] = jarc an(1+%(z)) =T3RS 1-7]
it follows that
Q(w, x) |z| C2(a)$
1 < |log |1 <log(1+C S+ ————.
Og(Q(sz,x) < llog |1+ 2l] + = < 10g(1+ G (@)8) + =
It follows in a similar fashion that,
P(W, x) C2()6
1 <log(1+C S) + ————.
0 (P(W,x)) < log(1 + Cal@)d) + 370 705
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Since C2(a)$ < ¢, we have Ca(a)§/(1 — C2(a)8) < 2C2(a)S. Thus, we may conclude
P(W, x) Q(w, x)
o )| * o€ (x)
< 21og(1+ Cy(a)8) +4C2 ()8

|Fw,cG,v (X) - FVT/,CG,V (x)] <

< 2log(exp(e/8)) + Z

<eg,

as desired. [
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