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ABSTRACT. We devise a polynomial-time algorithm for partitioning a simple polygon P into
a minimum number of star-shaped polygons. The question of whether such an algorithm exists
has been open for more than four decades [Avis and Toussaint, Pattern Recognit., 1981] and it
has been repeated frequently, for example in O’Rourke’s famous book [Art Gallery Theorems and
Algorithms, 1987]. In addition to its strong theoretical motivation, the problem is also motivated
by practical domains such as CNC pocket milling, motion planning, and shape parameterization.

The only previously known algorithm for a non-trivial special case is for P being both
monotone and rectilinear [Liu and Ntafos, Algorithmica, 1991]. For general polygons, an
algorithm was only known for the restricted version in which Steiner points are disallowed
[Keil, SIAM J. Comput., 1985], meaning that each corner of a piece in the partition must also be a
corner of P. Interestingly, the solution size for the restricted version may be linear for instances
where the unrestricted solution has constant size. The covering variant in which the pieces are
star-shaped but allowed to overlap—known as the Art Gallery Problem—was recently shown to
be IR-complete and is thus likely not in NP [Abrahamsen, Adamaszek and Miltzow, STOC 2018
& J. ACM 2022]; this is in stark contrast to our result. Arguably the most related work to ours is
the polynomial-time algorithm to partition a simple polygon into a minimum number of convex
pieces by Chazelle and Dobkin [STOC, 1979 & Comp. Geom., 1985].

A preliminary version of this article appeared at STOC 2024 [3].
Mikkel Abrahamsen and Hanwen Zhang are supported by Independent Research Fund Denmark, grant 1054-00032B, and by
the Carlsberg Foundation, grant CF24-1929.

Cite as Mikkel Abrahamsen, Joakim Blikstad, André Nusser, Hanwen Zhang. https://theoretics.episciences.org
Minimum Star Partitions of Simple Polygons in Polynomial Time. DOI 10.46298/theoretics.26.2
TheoretiCS, Volume 5 (2026), Article 2, 1-68.


mailto:miab@di.ku.dk
https://orcid.org/0000-0003-2734-4690
mailto:joakim.blikstad@cwi.nl
https://orcid.org/0009-0004-0874-2356
mailto:andre.nusser@cnrs.fr
https://orcid.org/0000-0002-6349-869X
mailto:hazh@di.ku.dk
https://orcid.org/0000-0002-3149-7799

2 /68

TheoretiCS M. Abrahamsen, J. Blikstad, A. Nusser, H. Zhang

H

Figure 1. Repeating the patterns, we obtain polygons where star centers and corners of pieces of
arbitrarily high degree are required.

1. Introduction

A simple polygon Q is called star-shaped if there is a point A in Q such that for all points B in Q,
the line segment AB is contained in Q. Such a point A is called a star center of Q. A star partition
of a polygon P is a set of pairwise non-overlapping star-shaped simple polygons whose union
equals P; see Figure 1. The polygons constituting the star partition are called the pieces of the
partition.

Avis and Toussaint [8] described in 1981, an algorithm running in O(nlogn) time to
partition a simple polygon (i.e., a polygon without holes) into at most | n/3] star-shaped pieces—
where n denotes the number of corners of the polygon—based on Fisk’s constructive proof [30]
of Chvatal’s Art Gallery Theorem [22]. Avis and Toussaint [8] wrote: “An interesting open problem
would be to try to find the decomposition into the minimum number of star-shaped polygons.”
This question has been repeated in several other papers [50, 44, 33, 49] and also in O’Rourke’s
well-known book [43]: “Can a variant of Keil’s dynamic programming approach [33] be used to
find star partitions permitting Steiner points'? Chazelle was able to achieve O(n®) for minimum
convex partition with Steiner points via a very complex dynamic programming algorithm [16], but
star partitions seem even more complicated.” Before our work, the problem was not known to
be in NP and not even an exponential-time algorithm was known. In this paper, we resolve the
open problem by providing a polynomial-time algorithm, thereby closing a research question

that has been open for more than four decades.

THEOREM 1.1. There is an algorithm performing O(n'%) arithmetic operations that partitions
a simple polygon with n corners into a minimum number of star-shaped pieces. The number of
bits used to represent each Steiner point in the constructed solution is O(K) where K is the total

number of bits used to represent the corners of P.

1 A Steiner point is a corner of a piece in the partition which is not a corner of the input polygon. We discuss the
challenges and importance of allowing Steiner points later in this section.
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Related work. The minimum star partition problem belongs to the class of decomposition
problems, which forms an old and large sub-field in computational geometry. In all of these
problems, we want to decompose a polygon P into polygonal pieces which are in some sense
simpler than the original polygon P. Here, the union of the pieces should be P, and we usually
seek a decomposition into as few pieces as possible. A decomposition where the pieces may
overlap is called a cover, and a decomposition where the pieces are pairwise interior-disjoint is
called a partition. This leads to a wealth of interesting problems, depending on the assumptions
about the input polygon P and the requirements on the pieces. There is a vast literature about
such decomposition problems, as documented in several highly-cited books and survey papers
that give an overview of the state-of-the-art at the time of publication [35, 15, 43, 49, 21, 34, 45].
Some of the most common variations are

— whether the input polygon P is simple or may have holes,

— whether we seek a cover or a partition,

— whether we allow Steiner points1 or not,

— what shape of pieces we allow; let us mention that for partitioning a simple polygon,
variants have been studied with polygonal pieces that are convex [29, 47,19, 33, 14, 32, 36],
star-shaped [29, 33, 40], monotone [31, 39], spiral-shaped [33], “fat” [51, 23, 12], “small” [5,
24], “circular” [25], triangles [7, 18], quadrilaterals [41, 42] and trapezoids [6].

Closely related to our problem is that of covering a polygon with a minimum number of
star-shaped pieces. This is usually known as the Art Gallery Problem and described equivalently
as the task of placing guards (star centers) so that each point in the polygon can be seen by at
least one guard. Interestingly, the Art Gallery Problem has been shown to be dR-complete [2]
and it is thus not likely to be in NP. This is in stark contrast to our main result, which shows that
the corresponding partitioning problem is in P. Covering a polygon with a minimum number of
convex pieces is likewise dR-complete [1].

If the polygon P can have holes, the minimum star partition problem is known to be
NP-hard, whether or not Steiner points are allowed [43]; again in contrast to our result.

Keil [33] gave polynomial-time algorithms for partitioning simple polygons into various
types of pieces where Steiner points are not allowed. Among these algorithms is an O(n” log n)
time algorithm for finding a minimum star partition of a simple polygon without Steiner points,
but the unrestricted version of the problem (with Steiner points allowed) remained open. Let
us mention that there are polygons where 0(n) pieces are needed when Steiner points are not
allowed, whereas 2 pieces are sufficient when they are allowed; see Figure 2 (left). Therefore,
our algorithm in general constructs partitions that are significantly smaller. This highlights an
interesting difference between minimum star partitions and convex partitions: A minimum
convex partition without Steiner points has at most 4 times as many pieces as when Steiner
points are allowed [32]. Another difference is that an arbitrarily small perturbation of a single
corner can change the size of the minimum star partition between 1 and ©(n), whereas the
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Figure 2. Left: A polygon that is partitioned into two star-shaped pieces using the Steiner point S. A
star center that can see the two middle groups of spikes must be placed at or close to A4, while a star
center that sees the outer groups must be at or close to A,. Without Steiner points we need ©(n) pieces
to partition at least one of the groups of spikes. Right: Moving the bottom corner a bit up changes the
size of a minimum star partition from 1 to ©(n).

change in size of the minimum convex partition is at most 1; see Figure 2 (right). In that sense,
minimum star partitions are much more sensitive to the input.

Unrestricted partitioning problems (that is, allowing Steiner points), are seemingly much
more challenging to design algorithms for. Chazelle and Dobkin [16, 19] proved already in
1979 that a simple polygon can be partitioned into a minimum number of convex pieces in
0(n?®) time, by designing a rather complicated dynamic program. Asano, Asano and Imai [6]
gave an O(n?)-time algorithm for partitioning a simple polygon into a minimum number of
trapezoids, each with a pair of horizontal edges. However, the minimum partitioning problem
has remained open for most other shapes of pieces (e.g. triangles, spiral-shaped, and—until
now—star-shaped).

Liu and Ntafos [40] also studied the minimum star partition problem, but with restric-
tions on the input polygon. They describe an algorithm for partitioning simple monotone and
rectilinear? polygons into a minimum number of star-shaped polygons in O(n) time, and a

6-approximation algorithm for simple rectilinear polygons that are not necessarily monotone.

Challenges. As argued above, star partitions are very sensitive to the input polygon, and
allowing Steiner points is in general necessary to obtain a partition with few pieces (Figure 2).
In order to demonstrate the complicated nature of optimal star partitions, let us also consider
Figure 1, which shows (representatives of) two families of polygons with arbitrarily many
corners and unique optimal star partitions. In both examples, some star centers and Steiner
points depend on as many as ©(n) corners of P. The example to the right shows that star centers
and Steiner points of degree ©(n) are also needed, where points V; of degree i are defined as
follows. The points V, are the corners of P; and V;,; are the intersection points between two
non-parallel lines, each through a pair of points in V;. The size of V; grows as @(n4i), SO we

2 A polygon P is monotone if there is a line ¢ such that the intersection of P with any line orthogonal to ¢ is connected,
and P is rectilinear if all sides are either vertical or horizontal.
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cannot iterate through the possible star centers and Steiner points. This is in contrast to the
problem without Steiner points studied by Keil [33]. Here, by definition, the corners of the
pieces are in Vy and it is not hard to see that the star centers can be chosen from V3, of which
there are “only” O(n*).

Since we cannot iterate through all possible star centers and Steiner points, we devise a
two-phase algorithm, as follows. In the first phase, we find polynomially many relevant points,
so that we are sure that an optimal solution can be constructed using a subset of those points
as star centers and Steiner points. In the second phase, we use dynamic programming to find
optimal solutions to larger and larger subpolygons, using only the constructed points from
the first phase. We note however that the phases are intertwined as the algorithm for the first
phase calls the complete partitioning algorithm recursively on subpolygons. The argument that
the set of points constructed in the first phase is sufficient relies on several structural results

about optimal star partitions which we believe are interesting in their own right.

11 Practical Motivation

Besides being interesting from a theoretical angle, star partitions are useful in various practical
domains; below we mention a few examples. Many of the papers mentioned below describe

algorithms for computing star partitions with no guarantee of finding an optimal one.

CNC pocket milling. Our first motivation comes from the generation of toolpaths for milling
machines. CNC milling is the computer-aided process of cutting some specified shape into a piece
of material—such as steel, wood, ceramics, or plastic—using a milling machine. When milling
a pocket, spirals are a popular choice of toolpath, since the entire pocket can be machined
without retracting the tool and sharp corners on the path can be largely avoided. Some of the
proposed methods to generate spirals require the shape of the pocket to be star-shaped, for
instance because they rely on radial interpolation between curves that morph a single point (a
star center) to the boundary of the pocket [11, 46, 10]. When milling a non-star-shaped pocket,
we therefore seek to first partition the pocket into star-shaped regions, each of which can then
be milled by their own spiral. We want a star partition rather than a star cover, since it is a
waste of time to cover the same area more than once. In order to minimize the number of
retractions (lifting and moving the tool from one spiral to the next), we want a partition into a

minimum number of star-shaped regions.

Motion planning. Star partitions are also useful in the domain of motion planning. Varadhan
and Manocha [52] describe such an approach. They first partition the free space into star-
shaped regions to subsequently construct a route for an agent from one point to another in the
free space using the stars. In each star, we route from the point of entrance to the star center
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Figure 3. Left: A polygon with a star partition and an example of a short (orange) and a long (green)
separator. Right: The dual graph of the partition. The short and long separators of the partition
correspond to vertices, respectively edges, in the graph.

and from there to a common boundary point with the next star. Similar applications of star
partitions are described in [26, 37, 38, 55].

Capturing the shape of a polygon. Star partitions can be used to blend/morph one polygon
into another [48, 27], for shape matching and retrieval [54], and they are also used in shape

parameterization [53].

1.2 Technical Overview

To enable our algorithm, we had to identify a multitude of interesting structural properties
of optimal star partitions, which are interesting in their own right. In this section, we outline
the most important of these properties and explain informally how they are used to derive a
polynomial-time algorithm. Naturally, we sometimes stay vague or glance over complicated
details in order to hide complexity to make the technical overview easily accessible.

Separators. Similar to the algorithms for related partitioning problems [19, 33], we use dy-
namic programming: We compute optimal star partitions of larger and larger subpolygons P’
contained in the input polygon P. For dynamic programming to work, we need an appropriate
type of separator which separates the subpolygon P’ from the rest of P. To this end, a useful
(and non-trivial) property is that there exists an optimal partition in which each piece shares
boundary with P; as we will see in Section 3 (Corollary 3.11). This suggests that we use separators
consisting of two or four segments of the following forms:

— Short separator: B1-A1-B;. A piece with star center A, that shares boundary points B; and
B, with P.

— Longseparator: B1-A1-S-A,-B;. Each A; is the star center of a piece that shares the boundary
point B; with P and the point S is a common point of the boundaries of the two pieces.
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Figure 4. The same polygon and partition as in Figure 3, where the pieces Q4, Q,, Q3 form a tripod with
supports D4, D,, D3 and tripod point C. The star centers are coordinate maximum and the gray segments
show how they are constructed. The tripod is used to construct As.

A state of our dynamic program consists of a separator and is used to calculate how many
pieces we need to partition the associated subpolygon, which is the part of P on one side of the
separator. We start with trivial short separators of two types: (i) degenerate ones of the form
B-A-B for a star center A that can see a boundary point B, and (ii) B1-A-B, where B; and B;
are points on the same edge of P so that the separator encloses a triangle. We describe a few
elementary operations to create partitions of larger subpolygons from smaller ones by merging
two compatible separators into one that covers the union of the two subpolygons.

The main difficulty lies in choosing polynomially many candidates for the star centers A;,
the boundary points B; and the common points S, so that we can be sure that our algorithm
eventually constructs an optimal partition. As already mentioned, our algorithm has two phases,
and in the first phase we compute a set of O(n®) points that are guaranteed to contain the star
centers of an optimal partition. In Section 4, we show that we can use these potential star
centers to also specify polynomially many candidates for the points B; and S. In a second phase,
the algorithm uses the constructed points to iterate through all relevant separators.

Tripods. A structure that plays a crucial role in our characterization of the star centers is that
of a tripod; see Figure 4 for an example of a partition with one tripod. Three pieces Q1, Q2, Q3
with star centers A4, Ay, A3 form a tripod with tripod point C if the following two properties
hold.
— There are concave corners D¢, D,, D3 of P such that D; € A;C for eachi € {1, 2,3}. These
corners are called the supports of the tripod.
— The union Q; U Q2 U Q3 contains a (sufficiently small) disk centered at C.

Note that it follows that the segment D;C is on the boundary of the piece Q;. Such a segment
D;C is called a leg of the tripod. Furthermore, the edges of P incident to the supports D; are
either all to the left or all to the right of the legs (when each leg D;C is oriented from D; to C);
otherwise a disk around C could not be seen by the star centers A;.
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Figure 5. A polygon P with a star partition using ten pieces and four tripods. The legs of the tripods
partition P into nine faces #. The disks are star centers and the squares denote the vertices of the dual
graph G of the faces #. The dashed segments indicate how the star centers are defined or used to
define other centers by tripods. The tripods have consistent orientation towards the root r and the
edges of the tree 7 are shown as dotted curves.

Constructing star centers. We can define a set of points containing the star centers as
follows. Let V; be the corners of P and define recursively V;,; as the intersection points between
any two non-parallel lines each containing two points from V;. It follows that V; C V4. Tripods
cause star centers to depend on each other in complex ways: If two of the participating star
centers A; and A, are in V; \ V;_q, then the tripod point C is in general in V;;; \ V; and the third
star center As will be in V;,,. See for instance Figure 1 for two examples; both with unique
optimal star partitions. Here, all neighbouring pieces form tripods, and in the right figure only
V; with i = Q(n) contains all the star centers of the optimal partition.

We obtain powerful insights about the solution structure by considering a so-called coordi-
nate maximum optimal partition. We can write the star centers Ay, ..., Ax of an optimal partition
in increasing lexicographic order (that is, sorted with respect to x-coordinates and using the
y-coordinates to break ties). We can then consider the vector of star centers (A4, ..., Ax) which
is maximum in lexicographic order among all sets of star centers of optimal partitions. We
show that there exists a partition realizing the maximum, which is our coordinate maximum
partition (Lemma 2.3). The star centers of the partition in Figure 4 have been maximized in this
sense. By analyzing a coordinate maximum partition, we conclude in Section 3 (Lemma 3.2)
that there are essentially only two ways in which a star center A can be restricted. In both
cases, A is forced to be contained in a specific half-plane H bounded by a line ¢, and ¢ is of one
of the following types: (i) € contains two corners of P, (ii) £ contains a tripod point C and one
of the associated supporting concave corners D;. The star center A can then be chosen as the
intersection point between two lines, each of type (i) or (ii). Note that in each tripod, the legs
D,C U D,C U DsC partition P into three parts; since P is a simple polygon, it is thus impossible
that the star centers depend on each other in a cyclic way. It follows that the star centers can be
chosen from V; for a sufficiently high value of i.
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Orientation of tripods. Each tripod is defined from two of the participating star centers, say
Aj and A,, and takes part in defining the third star center, As. Hence, we can consider the tripod
to have an orientation: it is directed from (A, Ay) towards As. The legs of all tripods partition
P into a set of faces 7 ; see Figure 5. One face can contain several pieces, since the tripod legs
are in general only a subset of the piece boundaries. We will denote one of the faces as the
root r. The faces ¥ induce a dual graph G, in which each tripod corresponds to a triangle in
G. Traversing ¥ in breadth-first search order from the root r defines a rooted tree T, which is
a subgraph of G. Each node u in T has an even number of children—two for each tripod for
which u is the face closest to r among the three faces containing the pieces of the tripod. In
order to successfully apply dynamic programming, we need the tripods to have a consistent
orientation in the following sense: If the face u is a parent of v, then the corresponding tripod
should be directed towards the star center in u. As we will see in Section 3 (part of Theorem 3.5),
there exists an optimal partition where the tripods have a consistent orientation. This requires
a modification to the coordinate maximum partition: Whenever a tripod violates the desired
orientation, we choose a subset of the star centers and move them in a specific direction as
much as possible to eliminate the illegal tripod. We describe such a process that must terminate,
and then we are left with tripods of consistent orientation.

With consistent orientation, the star centers in the leaves of T belong to the set V4 (which
is constructed from lines through the corners of P), and in general, the star centers in a face u
can be constructed by tripods involving centers in the children of u as well as lines through
the corners of P bounding the face u. The star centers in the root face r are constructed at last,
potentially depending on all previously constructed star centers.

Greedy choice. Consider three concave corners Dq, D,, D3 of P which are the supports of a
tripod in an optimal partition Q. Let the associated star centers be Ay, Ay, A3 and suppose that
the tripod is directed towards As. The three shortest paths in P between these supports enclose
a region which we call the pseudo-triangle A of the tripod; see Figure 6 (left). As we will see in
Section 3 (part of Lemma 3.2), there is an optimal star partition where no star centers are in the
pseudo-triangle of any tripod, and this is a property we maintain throughout our modifications.
Consider a connected component P’ of P~ := P \ A. Note that P’ is separated from the rest of P
by a single diagonal of P which is part of the boundary of A. Since no star centers are in A, the
restriction of Q to P’ is a star partition of P’. Furthermore, in the optimal star partition we are
working with, we can assume that this restriction is a minimum partition of P’, since otherwise
we could replace the partition in P’ by one with less pieces and use an extra piece to cover A,
thereby obtaining an equally good partition of P without this tripod.

Let P; be the connected component of P~ containing A;, so that the tripod is used to define
the star center As in Ps using star centers A; and A, in Py and P,, respectively; see Figure 6
(right). In all connected components except P, Py, P35, we can choose an arbitrary optimal
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Figure 6. Left: A partition with a tripod and the pseudo-triangle shown in gray. Right: For a tripod with
supports D4, D,, D3 directed towards Pz, we find the optimal partitions in the subpolygons P, and P,.
There are two choices for the star centers that see D, and D,, leading to four possible sets of legs of
the tripod. We want to choose the combination that minimizes the angle ¢ from the edge DsE clockwise
to the leg to D3. The angle is minimized when choosing A, and A,;, but this choice is invalid since the
legs D,C,, and D3C,; would intersect the boundary of P. We will therefore choose Ay, and A,q, which
give the second-best option with the tripod point C,;. Curved parts indicate that the details have not
been shown.

partition. There may be several optimal partitions of P; and P, and any combination of two
partitions may lead to different legs of the tripod (since A; and A, may be placed differently)
and thus to different restrictions on the center As in Ps. In fact, there can be an exponential
number of possible restrictions on As. However, as shown in Section 5.2.1, we can apply a
greedy choice: We can use the combination of partitions of P; and P, that leads to the mildest
restriction on As, in the sense that we want to minimize the angle ¢ inside P between the leg
DsC and the edge of P incident to D3 which is also an edge of Ps. Hence, we can use the greedy
choice to restrict our attention to a single pair of optimal partitions of the subpolygons P, and
Ps.

Bounding star centers and Steiner points. There are O(n®) possible triples of supports
of tripods and using the greedy choice, we can restrict our attention to a specific pair of star
centers that define the third star center for each tripod. Since a star center may be defined from
two tripods, we get a bound of O(n®) on the number of star centers that we need to consider.
We also need polynomial bounds on the other points defining the separators, namely the
boundary points B; that the pieces share with P and the points S that neighbouring pieces share
with each other. Some of these points may be corners of P, but the rest will be Steiner points, i.e.,

not corners of P. Suppose that we know the star centers A = {Ay,..., Ak} of the pieces in an
optimal partition. We can then consider a partition Q = {Q4, ..., Qx} where A; is a star center
of Q; and we have maximized the vector of areas (a(Q,), ..., a(Qx)) in lexicographic order. As

we will see (Lemma 2.5), such a partition Q exists (for any fixed set of star centers A), and in
Section 4 we show that Q has the property that each Steiner point in the interior of P is defined
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by at most five star centers and two corners of P. Hence, there are at most O(n®> - n?) = 0(n%?)
relevant Steiner points to try out. A Steiner point on the boundary 6P will be defined by an
edge of P and, in the worst case, a line through two star centers, which gives O(n'3) possibilities.
Hence, we can bound the number of possible long separators by O(n'3-n®-n32.n®.n1%) = 0(n").

In Appendix B, we give an elementary proof of a structural result that reduces the number
of Steiner points needed on the boundary of P to only O(n). It might be possible to use this
result to design a faster algorithm than the one presented here, but the proof relies on many
modifications to the partition, so it is not clear if our algorithm can be modified to find the
resulting partition.

Algorithm. Our algorithm now works as follows. In the first phase, we consider each diagonal
of P, and we recursively find all relevant optimal partitions of the subpolygon on one side of
the diagonal. Once this has been done for all diagonals, we consider each possible triple of
concave corners of P supporting a tripod, and we use the greedy choice to select the pair of star
centers that can be used to define the third star center of the tripod. We then construct O(n®)
possible star centers by considering all pairs of (i) tripods, (ii) lines through two corners of P,
and (iii) one tripod and one line through two corners of P. The set of potential star centers leads
to polynomially many Steiner points and separators as described above. In the second phase,
we use dynamic programming to find out how many pieces we need in the subpolygon defined
by each separator. The total running time turns out to be 0(n'%?) or within 0(n!%) arithmetic
operations.

1.3 Open Problems & Discussion

Although polynomial, our algorithm is too slow to be of much practical use. Our main result is
showing that the problem is polynomial-time solvable, so in order to facilitate understanding
and verification of our work, we decided to give a description of the algorithm that is as simple as
possible, and consequently we did not further optimize the running time. Although we believe
that it is possible to optimize the algorithm significantly (for instance using structural insights
from Appendix B), it seems that our approach will remain impractical. Hence, it is interesting
whether a practical constant-factor approximation algorithm exists. For the minimum convex
partition problem, the following wonderfully simple algorithm produces a partition with at
most twice as many pieces as the minimum [15]: For each concave corner C of the input polygon
P, cut P along an extension of an edge incident to C until we reach the boundary of P or a
previously constructed cut. It would be valuable to find a practical and simple algorithm for
star partitions with similar approximation guarantees.

Higher-dimensional versions of the minimum star partition problem are also of great
interest and we are not aware of any work on such problems from a theoretical point of view.
The high-dimensional problems are similarly well-motivated from a practical angle, since in
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motion-planning the configuration space is in general high-dimensional and a star partition of
the free space can then be used to find a path from one configuration to another, as described in
Section 1.1 (in fact, all the cited papers related to motion planning [52, 26, 37, 38, 55] also describe
a high-dimensional setting). We note that the three-dimensional version of the minimum convex
partition problem already received some attention, e.g. [20, 9, 17].

Many interesting partitioning problems of simple polygons with Steiner points are still
open. Surprisingly, one problem that remains open is arguably the most basic of all problems of
this type, namely, that of partitioning a simple polygon P into a minimum number of triangles.
If P has n corners, a maximal set of pairwise interior-disjoint diagonals always partitions P
into n — 2 triangles and finding such a triangulation is a well-understood problem with a long
history, culminating in Chazelle’s famous linear-time algorithm [18]. In general, however, there
exist partitions into fewer than n — 2 triangles and it is an open problem whether an optimal
partition can be found in polynomial time. Asano, Asano, and Pinter [7] showed that a minimum
triangulation without Steiner points can be found in polynomial time. When Steiner points
are allowed, they gave examples of polygons in which points from the set V; are needed, and
they conjecture that there are instances in which points from the set V; for arbitrarily large
values of i are needed (i.e. points which have arbitrarily large degrees). Another classical open
problem is to partition a simple polygon into a minimum number of spirals with Steiner points
allowed. A spiral is a polygon where all concave corners appear in succession. The problem of
partitioning into spirals was originally motivated by feature generation for syntactic pattern
recognition [29] and a polynomial-time algorithm finding the optimal solution to the problem
without Steiner points is known [33]. However, no algorithm is known for the unrestricted
problem.

We hope that our techniques may be useful when designing algorithms to solve the above-
mentioned problems. In particular, considering extreme partitions can lead to natural piece
boundaries which in turn can be exploited using a dynamic programming approach. Computing
such partitions in two phases, first computing potential locations of Steiner points that are
subsequently used in guessing separators of pieces in an optimal solution, presents itself as a
general paradigm to attack problems of this type.

1.4 Organization

The remainder of this work is organized as follows. In Section 2, we define various types of
polygons, partitions, and other central concepts. We also give lemmas ensuring the existence of
partitions that are extreme in terms of the coordinates of the star centers or the areas of the
pieces. In Section 3, we study coordinate maximum partitions and the structures arising from
tripods. These structural properties help us find a set of polynomially many potential points to
use as star centers. In Section 4, we study area maximum partitions. The insights gained on
their structure help us characterize all other Steiner points to use as corners in our partition,
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given a set of potential star centers (coming from the previous section). Finally in Section 5,
we show how to use our structural results to design our two-phase dynamic programming

algorithm.

2. Preliminaries

In this section we first cover some basic definitions to then turn towards partitions that are
maximum with respect to either the area of the pieces or the coordinates of the star centers.

2.1 Definitions

We say that a pair of segments cross if their interiors intersect.

Polygons. A simple polygon is a compact region in the plane whose boundary is a simple,
closed curve consisting of finitely many line segments. For technical reasons, we allow the pieces
of a partition to be weakly simple polygons. A weakly simple polygon Q is a simply-connected
and compact region in the plane whose boundary is a union of finitely many line segments.
In particular, a simple polygon is also a weakly simple polygon, but the opposite is not true
in general. For instance, a weakly simple polygon Q may have a disconnected or even empty
interior. However, just as for a simple polygon, a weakly simple polygon Q can be defined by its
edges in counterclockwise order around the boundary. These edges form a closed boundary
curve y of Q. Since Q is weakly simple, some corners may coincide, and edges may overlap. A
perturbation of y that is arbitrarily small with respect to the Fréchet distance can turn Q into a
simple polygon [4, 13]. This perturbation may involve the introduction of more corners. For
instance, if Q is just a line segment, then Q has only two corners, and one more is needed to
obtain a simple polygon. We denote the boundary of a (weakly) simple polygon Q as 0.

We sometimes consider points that lie on so-called extensions. Given a polygon P and a
segment CD C P, the extension of CD is the maximal segment C'D’ such that CD c C'D’ c P.

Star-Shaped Polygons. A (weakly) simple polygon Q is called star-shaped if there is a point
A in Q such that for all points B in Q, the line segment AB is contained in Q. Such a point A is
called a star center of Q. We denote by ker(Q) the set of all star centers of Q, and it is well-known
that ker(Q) is a convex polygonal region in Q. Throughout the paper, we use the symbol “Q” to
denote a star-shaped polygon and “A” to denote a fixed star center of such a polygon. When
proving our structural results, we repeatedly use the following lemma to trim some of the pieces
of a star partition.

LEMMA 2.1. Let Q be a star-shaped polygon with star center A, and let H be an open half-plane
bounded by a line h. Let C be a connected component of the intersection Q N H and suppose that
A¢C.ThenA ¢ Hand Q' := Q\ C is also a star-shaped polygon with star center A.
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Figure 7. Left: A partition that our algorithm may produce, involving the piece Q, which is only weakly
simple. Right: We can assign a bit of the neighbouring pieces to Q, and obtain a partition into simple
polygons.

PROOF. First,if A € H, then QN H consists of a single connected component as Q is star-shaped.
However, this implies A € C, which we assumed not to be the case. Thus, A ¢ H.

Now consider a point B € Q’. If B ¢ H, then ABN H = (). Hence we also have AB cC Q’,
since AB c Q. Otherwise (if B € H), then B is in a connected component D of Q N H with D
different from C. Let X be the intersection point of h and AB. Since AB C Q, we must have
XB c D.As D c Q’, we then have AB c Q’. We therefore conclude that Q’ is star-shaped. u

Partitions. We will eventually consider star partitions of a modification P of the input polygon
P obtained by making incisions into the interior of P from corners. Thus, P is a weakly simple
polygon covering the same region as P, but P has some extra edges on top of each other that
stick into the interior of P. To accommodate this, we define star partitions in a way that allows
both the input polygon P and the pieces to be weakly simple polygons. We define a star partition
of a weakly simple polygon P to be a set of weakly simple star-shaped polygons Q4, ..., Qx such
that after an arbitrarily small perturbation of P and Qy, . . ., Qkx, we obtain simple polygons P’
and Q7, . .., Q; with the following properties:

1. The polygons Q}, .. ., Q, are pairwise interior-disjoint.
2. UL, Q=P

Note that this implies that the weakly simple polygons Q4, . . ., Qx must also have properties
1 and 2 (with P’ replaced by P and Q] replaced by Q; for alli € {1,..., k}), since otherwise a
large perturbation would be needed for them to be transformed into simple polygons with
the required properties. However, it would not be sufficient to define a partition as a set of
weakly simple polygons with properties 1 and 2 alone. This would, for instance, allow two
pieces with empty interiors (such as two segments) to properly intersect each other, which is
not intended. Our algorithm may produce weakly simple pieces which are not simple, since
the boundary can meet itself at the star center; see Figure 7. As demonstrated in the figure, by
applying Lemma 2.1, such a piece Q can “steal” a bit from the neighbouring pieces, which turns
Q into a simple polygon Q’, resulting in a partition consisting of simple polygons.
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(Important) Sight Lines. Given a star-shaped polygon Q and a star center A € ker(Q), each
segment that connects a corner of Q with the center A is called a sight line of Q. A sight line ¢ is
called an important sight line if it contains a corner D of P in its interior. We call D the support
of ¢. If there are multiple candidates, we define the corner farthest from the star center as the
support.

Tripods. In a star partition, three pieces Q1, Q», Q3 with star centers A, Ay, A3 form a tripod
with tripod point C if the following properties hold.
— A;C is an important sight line of Q; with support D;, for each i € {1, 2,3}. These concave
corners D, Dy, D3 of P are called the supports of the tripod.
— The union Q1 U Q, U Q3 contains a (sufficiently small) disk centered at C.
— The three pieces Q1, Q2, Q3 have strictly convex corners at C.

Tripods can be necessary in optimal solutions, see Figure 1 for such an example.

The three segments D,C, D,C, D3C are called the legs of the tripod. The polygon bounded by
the three shortest paths in P between pairs of the supports D1, Dy, D5 is called the pseudo-triangle
of the tripod, and these shortest paths are called pseudo-diagonals.

LEMMA 2.2. Let 71, 7; be two distinct tripods in a star partition Q. The interiors of the pseudo-
triangles of 71 and 7, are disjoint.

PROOF. The legs of 7; partition P into three regions Ry, Ry, R,. Since tripod legs are boundary
segment of pieces, they cannot cross each other. Hence, all the tripod legs of 7; must lie in one
of Ry, Ry, Ry; without loss of generality, assume they lie in Ry. Then the pseudo-triangle of 7; is a
subpolygon of Ry. Towards a contradiction, assume that the interiors of the two pseudo-triangles
are not disjoint. It is impossible that 73 is contained in 77, since it would mean that the corners
of 7; are a subset of the corners of one pseudo-diagonal of 77, and a pseudo-triangle cannot be
made from corners on a concave chain. Hence, if 7; and 7; are not interior-disjoint, there is an
edge e of the pseudo-triangle of 7, that crosses the boundary of the pseudo-triangle of 77; see
Figure 8. As the pseudo-triangle of 77 in Ry is bounded by the two tripod legs (which e does not
cross) and a concave chain, the segment e must have an endpoint inside the pseudo-triangle. As
both endpoints of e are supported by a concave corner of P, we obtain a contradiction with the
fact that no vertex of P is contained in the interior of the pseudo-triangle. ]

2.2 Coordinate and Area Maximum Partitions

Coordinate Maximum Partition. We define the lexicographic order < of vectors vy, v, € R?
so that v; < v, iff v = v, or i is the first dimension that v; and v, differ in and v, [i] < vq[i].
Note that this definition carries over to star centers in a straightforward manner. For a star-

shaped polygon Q, the maximum star center of Q is the star center (i.e. point in ker(Q)) with
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Ry

Ry

Figure 8. If the interiors of the pseudo-triangles of two tripods intersect, then either a vertex of a
pseudo-triangle is in the other pseudo-triangle, or a pseudo-triangle crosses a tripod leg of another
tripod.

the lexicographically largest value. For a polygon P, consider an optimal star partition Q with
maximum star centers Ay, ..., Ak sorted in lexicographic order, and define c(Q) = (Aq,..., Ax)
to be the combined coordinate vector. If ¢(Q) is maximum in lexicographic order among all
optimal star partitions of P, we say that Q is a coordinate maximum optimal partition. In other
cases, it is useful to consider a partition with given star centers where the vector of areas of the
pieces has been maximized. In this section, we provide lemmas that ensure the existence of

such partitions. The proofs are deferred to Appendix A.

LEMMA 2.3. Forany simple polygon P, there exists a coordinate maximum optimal star partition.

Restricted Coordinate Maximum Partitions. It will sometimes be necessary to change the
direction in which we maximize a specific subset of star centers, while keeping the remaining
ones fixed. Furthermore, we often have to restrict the star centers that we are optimizing to
a subpolygon F C P. For this, we use the following generalization of Lemma 2.3, the proof of
which is analogous. Given a vector d € R?, we define d* € R? to be the vector orthogonal to d
obtained by rotating d counterclockwise by 77/2.

LEMMA 2.4 (Restricted coordinate maximization). Consider a simple polygon P and an
optimal star partition with star centers A1, ...,Ax. Leti < k and suppose that A;,...,Ax € F
for a polygon F C P. Let d € R?*\ {(0,0)} be a vector. There exists a star partition of P with
star centers Ay, Ay, ..., Aj_1, A?, A;‘H, e Az*< where A;", A;"H, .. .,A;i € F and (A? -d, A? -d+, A;‘H .

d, A7, - d+, ..., A -d, A d*) is maximum in lexicographic order among all star partitions with

fixed star centers A1, ..., Ai_1 and for which the remaining star centers are restricted to F.

The partition described in Lemma 2.4 is called the restricted coordinate maximum optimal
star partition along d, within F and with fixed star centers A4, ..., A;_1. Note that a coordinate
maximum optimal partition is a restricted coordinate maximum one along d = (1, 0), within P

and with no fixed star center.
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Area Maximum Partition. Consider a polygon P and a star partition Q = {Q4,...,Qx} of P
with corresponding star centers A = {Ay, ..., Ax}. We say that Q is area maximum with respect
to A if the vector of areas a(Q) = (a(Q,), ..., a(Qx)) is maximum in lexicographic order among
all partitions of P with star centers A.

LEMMA 2.5. Let P be a polygon and suppose that there exists a star partition of P with star
centers A = {Ay,...,Ax}. Then there exists a partition which is area maximum with respect to
A.

3. Structural Results on Tripods and Star Centers

In this section, we will present a construction process which can construct all the star centers
and tripods in some optimal solution within linearly many steps. To achieve this goal, we first
need to pick an optimal solution with good properties. We do this by considering restricted
coordinate maximum partitions (see Lemma 2.4).

LEMMA 3.1. Consider a simple polygon P and an optimal star partition Q = {Q4, ..., Qx} with
corresponding star centers A4, ..., Ax. There exists an optimal star partition consisting of simple
polygons with the same star centers, such that no four pieces meet in the same point and no star

center lies in the interior of a sight line.

PROOF. We first turn the weakly simple star partition into a star partition with simple polygons;
see Section 2. We then modify the partition, not moving the star centers, so that no four pieces
contain the same point. Assume that there exists a point C such that C € Q1 N --- N Q, for some
m > 4. Without loss of generality, assume Q4, ..., Q, appear in clockwise order around C. Let
«; be the angle of Q; at C. Since Z{L o; < 27r, we have either a1 + oy < mor a3+ a4 < 7. Without
loss of generality, assume a3 + a; < 7. We now decrease the number of pieces containing C,
while not creating an intersection point of four or more pieces. Recall that A; is the star center

of Q;. We consider two cases; see Figure 9:

— A; is not on an extension of the shared boundary with A, or vice versa. If A is not on
an extension of the shared boundary with A,, then Q1 can take a small enough triangle
around C from Q,, while the two new Steiner points in the partition are contained in at
most three pieces, namely Q1, Q2, Q3. A similar modification is possible if A, is not on an
extension of the shared boundary with Aj;.

— Both A; and A; are on an extension of their shared boundary. Without loss of generality,
assume A is closer to C than A,. Then Q4 can take a sufficiently small triangle around the

segment A,C, while not creating any new point where four pieces meet.

Hence, eventually we obtain a star partition that has no four pieces meeting in the same point.
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Figure 9. Reduce the number of pieces containing the same point. The two figures on the left show
the modification we perform if none of the star centers are on an extension of the shared boundary with
the other star center. The right figure shows the case when both star centers lie on an extension of the
shared segment. Blue region marks the piece Qq, red regions is the piece Q,, and the gray region is
going to be transferred from Q, to Q1.

Ao

>~ - —— — g @]

Figure 10. Redistributing pieces to remove a sight line that contains star centers in its interior.

We now modify the partition to remove all sight lines that contain some star center in
their interior. Let £ = AoC be a sight line that contains A4, Ay,..., A, In its interior. We first
choose a sequence of points Cq, Co, .. ., Cp, along the next edge of Qy; see Figure 10. We then give
the quadrilateral A;A;;1Ci+1C; to piece Q; for alli € {1, 2,..., m — 1}. Finally we give A,,,CCp, to
Qm- This modification removes all star centers from the interior of one sight line while no newly
created sight line contains a star center in its interior. It is easy to check that this modification
of the partition does not make four pieces meet. |

The main tool in this section is restricted coordinate maximum partitions defined in Sec-
tion 2. The following lemma captures one of our key combinatorial results on a star center in
a restricted coordinate maximum partition from Lemma 2.4. Intuitively, if one moves a star

center Ay of an optimal star partition in the direction d as far as possible without moving other
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star centers (but possibly changing what region of P each piece contains), then there are only a
few reasons to get stuck.

LEMMA 3.2. Consider the restricted coordinate maximum optimal star partition consisting of
simple polygons Q = {Q1, ..., Qx} along d and with fixed star centers Ay, ..., Ax-1 (so that only
the coordinates of the last center Ay have been maximized). Assume Ay is restricted within a
polygon F C P. Suppose that no four pieces meet in the same point and no star center is in the
interior of any sight line. Then Ay lies on the intersection of two non-parallel segments of the
following types:
— anedge of F,
— an important sight line of Qk, not containing any other star center, which is
— an extension of an edge of P, or
— on the extension of a diagonal of P that connects two concave corners, or
— an extension of a tripod leg (see Section 2), and no star center is in the interior of the
pseudo-triangle of this tripod.

PROOF. We can choose Ay freely inside ker(Qx) N F while all the pieces remain the same. By
coordinate maximization, Ay must be a corner of ker(Qx) N F. Let S denote the set of edges e
of Qx such that Ay is on the extension of e. Let S’ denote the set of edges of F that Ay lies on.
Since all edges of ker(Qx) come from extensions of edges of Qk, there must be two non-parallel
segmentsin S U §’.

We call a segment in S good if it is collinear to a segment that is of the described types in
the lemma statement; otherwise, we call it bad. In the remainder of the proof, we modify the
partition Q while not moving any star centers and never creating any new important sight lines
of Qx, which means that the two good segments we find at last are also good segment of the
initial star partition Q. At the same time, we decrease the number of bad segments in S until
all segments in S are good. In the end, either Ay satisfies the lemma, or else we cannot find two
non-parallel segments in S U §’, which would mean that Ay is not at a corner of ker(Qx) N F
therefore contradicting that Ay is optimal with respect to coordinate maximization.

In the remainder of the proof, all star centers and corners of P on dQy are considered as
corners of Qy, so there can be several collinear consecutive segments of Q. First, we consider
the case that Ay is the endpoint of a bad segment in S.

1. Ak is acorner of P. Then Ax must be a corner of F as F C P. Hence A is at two edges of
P and the lemma holds.

2. Agisintheinterior of an edge of P. If Ay is a corner of F, then the lemma holds. Otherwise,
Ay is in the interior of an edge of F that is collinear to the boundary of P. We can assign an
arbitrarily small region around Ay to Qx such that Ay is not an endpoint of a bad segment
anymore; see Figure 11. Since we do not create any new important sight line in Qy, we

do not introduce any new good segments in S. The only new bad segment we introduce
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Figure 11. Dealing with the case that A € aP. The gray region marks the region that we give to Q.

e AN
Ay,
Qk
Qk Qk

Figure 12. Dealing with the case that A, € Q. The gray region marks the region that we give to Q.
The first figure shows the case that A, is a convex corner for all pieces; the second shows the case that
Ay is a concave corner of Qx; the third shows the case that A, is a concave corner of other pieces.

is parallel to the boundary edge of P that Ay lies on, which can also be removed from S
without breaking the assumption that S U §’ contains two non-parallel segments— since
there must be a parallel edge of F.

3. Agisin the interior of P. This can happen when Ay is either a convex corner of all pieces
touching it, a concave corner of the piece Qy, or a concave corner of some other piece. In
all cases, we transfer a sufficiently small area around Ay to Qx and thereby make Ay not
be an endpoint of a bad segment; see Figure 12.

In the following Ay is not an endpoint of a bad segment in S. Let e = C1C, be a segment
in § and let C; be the farther end of e from Ay. Let Cy be the nearest vertex along AxC; to Ag.
Note that CoC; C dQk. Note that this implies Cy # A, as A is not the endpoint of a bad segment
in S. Furthermore, let C3 be the farthest point from Ay in the direction of C, on the extension
of AxC, such that C,C3 C 9Qx (it might be the case that C3 = C;). Let C4 be the next corner of Cs
on dQy, and let C_q be the previous corner of Cy on Q. We again consider multiple cases:

1. Another star center A; is on AxCs. According to our assumptions in the lemma statement,
no star center is in the interior of a sight line, thus we have A; = C3. We can then transfer
the triangle CoC3C,4 from Qx to Q; and the number of bad segments in § is thereby reduced;
see Figure 13.

2. No corner of P is in the interior of the sight line AxC». Or equivalently, AxC, is not an
important sight line. In this case we give a sufficiently small triangle C'CoC; to Qk, where
C’ is sufficiently close to Cy on the segment C_1Cy; see Figure 14. According to Lemma 2.1,
all pieces that are cut by the segment C’'C, are still star shaped. This way we reduce the
size of S by removing C,C,.
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Figure 13. If the sight line ends at another star center A;, we can give the triangle CoC3C4 to Q; and
reduce |S|.

Figure 14. No corners of P on A,Cs.

In the remainder we can assume that the sight line AxC, is supported by a corner of P,
i.e, it is an important sight line. Since AxC, is covered by AxCs3, AxCs is also an important
sight line. Let D be the support (Section 2) of AxCs. In the remainder we try to remove
DC; from S.

. Csg is a convex corner of P and not adjacent to D. Note that if C3 was a convex corner of

P adjacent to D, then AxC3; would be an extension of an edge DC; of P, which is a good
segment in S. We can remove a sufficiently small triangle DC3C’ from Qx for C’ close
enough to C3 on segment C3Cy4, and distribute the triangle to the neighboring pieces by
extending the edges that end at DCs; see Figure 15. Since we do not create concave corners
in any pieces they remain star-shaped. The same argument is also applicable if DC3 ends
in the interior of an edge of P as we can consider the intersection point as a degenerate
convex corner of P.

In the remainder Cs is in the interior of P.

. C3is a concave corner of some piece Q;. Then C3 is a convex corner of P \ Q; and we can

use a similar modification to remove DCs from S as in the previous case; see Figure 16.
In the remainder, C3 a convex corner of all its adjacent pieces. According to the assumption
of the lemma that no four pieces meet at the same point, Cs is contained in at most three
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Figure 15. The case when the boundary of Qx ends at a convex corner of P.

\/ v @ \/ . @ 3 Ap----- \/ Cs o

Q2

Figure 16. C; is a concave corner of some piece.

pieces. Since the angle of Qx at Cs is strictly less than 7, there actually must be exactly
three pieces containing C3. With slight abuse of notation, let Qg = Qx, Q1, Q2 be these three
pieces in clockwise order; let o; be the angle of Q; at C3; and let A; be the star center of Q;.
5. Csisnot a tripod point. If an edge at C3 is not covered by an important sight line, we can
modify the partition and remove DCs from S§; see Figure 17. Otherwise, all edges at Cs3 are
covered by important sight lines. As Cs is not a tripod point, we have that oy = 7 or ap = 7.
If oy = m, let D’ be the support of A1C3. Now AxCs is on the extension of the diagonal DD’
that connects two concave corners of P. If ay = 7, then C3 is a convex corner of P \ Q, and

we can modify the partition similar to case 3.

Figure 17. The case when an edge at Cs is not covered by important sight line.
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Figure 18. Three cases of where the star center A} is and how we define the gray triangle to give to A%.

In the remainder, C3 is a tripod point. Note that if the tripod associated with C3 contains no
star center in its pseudo-triangle, then the edge C1C; is a good edge. Hence, the only remaining
case is the following.

6. Csis a tripod point and a star center is in the interior of the pseudo-triangle of this
tripod. Let A3 be any star center inside the pseudo-triangle. The tripod partitions P into
three regions Ry, R1, Ry, where R; is the region containing A;. Let Rg be the intersection of
R; and the pseudo-triangle. First we prove that there exists a segment XY from one leg of
the tripod to another leg that contains a star center A; and no star center is in the interior
of triangle C3XY. Let R;. be the region that contains As. Consider the convex hull C of all
corners of this pseudo-triangle and all star centers in R;.. There exists a corner of C that is
a star center A7, as As lies in the interior of R;.. Let ¢ be an arbitrary tangent of C at A’,
and let XY be the subsegment of ¢ that is contained in the pseudo-triangle. Whichever
region As lies in, we can modify the partition so that the tripod is broken and |S| is not
increased; see Figure 18. Since the number of possible tripods is finite, we can apply the
argument a finite number of times and then either the size of S is decreased, or AxCs
becomes a good segment. u

3.1 Tripod Trees

We now define what we call the tripod tree—a description of the structure of tripods in an
optimal solution (see also Figure 20). Given a star partition, consider the partition that is induced
by the tripod legs. Note that this partition is simply the star partition but with some pieces
having been merged. We construct a bipartite graph G = (X UY, E) as follows:

— We add a vertex to X for each face of the partition induced by the legs.

— We add a vertex to Y for each tripod.

— We add an edge {x, y} to E if and only if a tripod leg of y forms part of the boundary of x.
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Figure 19. lllustration for a tripod tree. A cross represents a star center, a solid circle represents a
tripod point. The left figure shows star partition and the right figure shows the faces splits by all the
tripod legs.

OBSERVATION 3.3. Given a star partition, the tripod tree graph G is indeed a tree.

PROOF. If the tripods are considered degenerate pieces of the partition, then G corresponds
to the dual graph of the partition induced by the legs. Thus, G is connected. Furthermore, note
that every tripod cuts the polygon P into three disconnected pieces, so the corresponding vertex

in Y is a cut vertex, which implies that G is a tree. u

We choose the root of the tripod tree to be the face that contains the first edge of P, merely
for consistency. For every tripod 7 formed by pieces Q;, Q;, Qx where Q; is contained in the
parent face of 7, we call the star center A; of Q; the parent star center of 7 and the star centers
Aj, Ak of Qj, Qx are both called child star centers of 7. Note that we can directly identify the
parent star center of a tripod without the full tripod tree.

Fake tripod. In a star partition Q, a fake tripod 7~ with tripod point C is defined by two
star centers A, A, of pieces Q1, Q, and three concave corners D1, Dy, D3 of P if the following
properties hold.
— A;C is an important sight line of Q; with support D;, for each i € {1, 2}.
— AiC C UgeqdQ foreachi € {1, 2}.
— The three angles D;CD,, D,CD3, D3CD1 are strictly convex.
— Let Fy, Fy, F3 be the three connected components of P cut by D1C U D,C U D3C, where
A, € F1, Ay € Fy, F3 contains the first edge of P. D3 is a concave corner in F3. The union
Q1 U Q2 U F3 contains a (sufficiently small) disk at C.
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Figure 20. The combinatorial structure of tripod tree. We make it rooted by selecting a face to be the
root, for example the one (F4) containing edge vgv,. Note that we can easily distinguish parent and
children without the full partition.

Figure 21. Left: a fake tripod defined by star-centers A;, A; and supports D4, D, D3. Note that A is not
on the extension of CDs. Right: a tripod and its associated fake tripod, since there exists the third
star-center As on the extension of CDs. The fake tripod is the same as the one in the left figure.

Similarly as for tripods, the three segments D1C, D,C, D3C are called the legs of 77, A1, A, are
called child star centers of 7', and the polygon bounded by the shortest paths between pairs of
supports Dy, Do, D3 is called the pseudo-triangle of 7.

Note that for every tripod 77, there is exactly one fake tripod 7 with the same tripod point
and legs, which is defined by its supports and the two child star centers of 7. We say 7 is the
associated fake tripod of 7.

REMARK 3.4. We introduce the concept of fake tripods (see also Figure 21) to facilitate our
algorithm. The final algorithm will simulate the construction process (described in the following
Section 3.2) and get a full partition in the end. We can not easily decide whether a (real) tripod
exists unless we find both its two child star centers and its parent star center. Algorithmically, it
is much easier to construct the fake tripods in a bottom-up fashion just using the two child star
centers, without knowledge of where (or if) a potential third parent star-center might exist.
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3.2 Construction Process

We now describe an iterative construction process of star centers and fake tripods. We will
show that there exists an optimal star partition for which all star centers can be constructed
using this process in linear steps. The construction process is with respect to a star partition Q
and is a process to “mark” star centers and fake tripods of Q as “constructable”. Formally, we
call a star center or a fake tripod constructable (with respect to Q) if it can be marked by the
following process. At each step in the process, we can do one of the following operations:
— Mark a star center Ay at the intersection of two non-parallel segments of the following
types:
1. An edge of P;
2. An edge of the pseudo-triangle of a marked fake tripod;
3. An important sight line of a piece Q, which is on the extension of
— an edge of P;
— adiagonal of P that connects two concave corners of P;
— atripod leg of a tripod 7~ whose extension contains the parent star center of 7,
while the corresponding fake tripod 7 of 7 is marked.
— Mark a fake tripod 7~ defined by two marked star centers A;, A; and three concave corners
D;, Dj, Dy of P. Additionally, there must be no star center (marked or unmarked) in the
interior of the pseudo-triangle of 7.

An optimal star partition Q is called constructable if all the star centers in Q is constructable
with respect to Q.
Now comes the major structural result in this section, which gives us a combinatorial way

to describe some optimal star partition.

THEOREM 3.5 (Construction of optimal star partition). There exists a constructable optimal
star partition Q.

REMARK 3.6. We can also define a similar construction process if we can only mark tripod.
In fact, the two definitions agree on whether a partition is constructable or not. When a fake
tripod is used to mark a star center, it must be a tripod; otherwise, there is no need to mark that
fake tripod.

This theorem also implies that the bit complexity of each star center is O(n).

COROLLARY 3.7. Each star center in a constructable optimal star partition can be encoded by
a sequence of O(n) corners of P, which specifies the process to mark it.

REMARK 3.8. Using the same proof strategy, we can also prove O(K) bits are enough to encode
each star center in a constructable optimal star partition, where K is the total number of bits to
encode the input polygon P.
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PROOF. We will prove that we can encode each star center A; by 4s(A;) corners, where s(A;)
is the size of the subtree in the fake tripod tree rooted at the face containing A;, and encode
each fake tripod point C by 4s(C) corners, where s(C) is the size of the subtree in the fake tripod
tree rooted at C.

The proof is by induction on the fake tripod tree from leaf node to root node. For each leaf
node of the fake tripod tree, every star center in the corresponding face can only be marked
by two lines that each of them are defined by two corners of P, since the face does not have
any fake tripod point as its child. Now consider the internal nodes of the fake tripod tree. If it
corresponds to a fake tripod 7, the tripod point C can be encoded by its two child star centers
Aj;, Aj together with two concave corners of P, so we need s(4;) + s(A4j) +2 =4s(C) — 2 < 4s(C)
corners to encode C. If it corresponds to a face F, then for any star center Ay in F, it can be
encoded by two lines, each of them is either defined by two corners of P or defined by a child
fake tripod 7~ of F. In all cases, the star center can be encoded by 4s(Ak) corners of P.

It remains to bound the size of the fake tripod tree. According to Chvatal’s art gallery
theorem, we can partition any polygon into at most | n/3] star-shape pieces. Any leaf face in
the fake tripod tree contains at least one star center; so the fake tripod tree contains at most
| n/3] leaves, therefore it has at most 2n/3 nodes. u

Instead of proving Theorem 3.5 directly, we prove the following stronger lemma, which
allows us to extend a “partially constructable” optimal solution into a constructable one. This
lemma also helps us to prove the correctness of the greedy choice (see Section 5.2.1) used when
choosing tripods, which is the main technique to improve the running time of our dynamic
programming algorithm into polynomial time in Section 5.

LEMMA 3.9. Let Q be an optimal star partition of P such that some star centers Ay, Ay, ..., Ak
and some fake tripods 7', T, , ..., 7, are constructable with respect to Q. Suppose there exists a
star center in Q which is not constructable with respect to Q, then there exists an optimal solution
Q' containing Ay, Ay, ..., Ay, Aky1 as star centers and 7./, 7,,. .., T " as fake tripods, such that
A, Ay, A A and 7,7, . . 71" are constructable.

PROOF. A star center is called missing if it’s not constructable with respect to Q. Consider
the construction process of all the constructable star centers and fake tripods. Throughout the
construction process we maintain what we call the feasible region, which initially consists of the
whole polygon P. When a fake tripod with center C is marked by two marked star centers A1, Ay
and three concave corners D,, D,, D3, we partition the polygon into three parts (according to
the legs of the fake tripod) and remove the pseudo-triangle of this fake tripod from the feasible
region. Moreover, we add two segments A,D1, A,D, as an incision into the boundary of both
the polygon? and the feasible region. See Figure 22 for illustration. This way, we fix the two

3 Now the polygon becomes only weakly simple, even if it was a initially a simple polygon (see Section 2).
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Figure 22. The figure shows the feasible region and the partition of the polygon where some star
centers and fake tripods are marked. Thick black lines represent how we partition the polygon into three
parts. Red segments mark the boundary of feasible region, and some of them are merely incisions. Blue
region is a weakly connected components of the feasible region in the left part, with some red segments
as incisions. The gray region marks the pseudo-triangle of the marked fake tripod, which is not a part of
the feasible region, but the entire feasible region covers everything else. Each black circle represents a
marked star center or a marked fake tripod, and each cross represents an unmarked star center.

important sight lines A,C and A,C, and make sure that no star centers are in the interior of the
pseudo-triangle of this fake tripod in the following steps. When a star center A; is marked by an
important sight line ¢ of Q;, we also add ¢ as an incision into the boundary of both the polygon
and the feasible region.

Since the constructable fake tripods partition the polygon into disconnected pieces, we
can consider the construction process within each connected part independently. Let P’ be such
a connected part for which at least one star center is not constructable. If there are multiple
choices, we will choose one later. Let F be the feasible region inside P’. We now restrict our
polygon to be P’.

We perform a restricted coordinate maximization along an arbitrary direction d as de-
scribed in Lemma 2.4 within F and with all the constructable star centers fixed. By optimality,
for each missing star center, the partition is also restricted coordinate-maximal along d, within
F and with all the other star centers fixed. Applying Lemma 3.2, we know that all the missing
star centers lie on the intersection of two non-parallel segments of certain types. We call these
segments the crucial segments. The goal of the following discussion is to mark a new star center
using crucial segments. Therefore, we enumerate the types of crucial segments and check
whether they are allowed in the construction process.

Case 1: A crucial segment is an edge of F. Every edge of F is an edge of P, or a segment
on the boundary of a pseudo-triangle, or an important sight line that was used to construct a
constructable star center. Note that all segments on the boundary of a pseudo-triangle must be
diagonals that connect two concave corners of P. Hence, all the edges of F can be used to mark

new star centers.
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Case 2: A crucial segment is an important sight line in P’. Note that all corners of P’ are
either corners of P, or constructable star centers, or tripod points of a constructable fake tripod.
Each tripod point is a convex corner in any connected part separated by the tripod legs, hence
they can only induce convex corners of P’. Consequently, a concave corner of P’ is either a
concave corner of P or a constructable star center. According to Lemma 3.2, no other star center
lies on a crucial segment, so the crucial segment that the star center lies on must be supported
by a concave corner of P, which implies that the crucial segment is also an important sight
line when we consider the full polygon P. If the crucial segment ends at a concave corner of P/,
it must end at a concave corner of P, as crucial segments are not allowed to contain another
star center. Hence, it is contained in an extension of a diagonal of P that connects two concave
corners of P.

Thus, a crucial segment cannot be used to mark star centers only if it is an extension of a
tripod leg, and either the corresponding fake tripod is not constructable, or the star center is
not in the parent face of this tripod.

We now consider the tripod tree of Q. We call a tripod illegal if there exists a missing star
center in its child face. Otherwise, we call a tripod legal. Then, a star center is missing only if
one of its crucial segments end at the tripod point of an illegal tripod. As there exists a missing
star center, there also exists an illegal tripod.

Let 7 be an illegal tripod such that all tripods contained in the subtree rooted at 7 are
legal. Note that there exists a missing star center in at least one of its child faces. Hence, all star
centers in the two child faces of 7, except for the child star centers of 7, are constructable. Let
A be a missing child star center of 7. We choose P’ to be the connected component containing
A.

We perform a restricted coordinate maximization on A, where the polygon we are going
to partition is the part of P’ cut by 7 that A lies in, and the feasible region is F excluding
the pseudo-triangle of 7 restricted to the current polygon. We choose d to be the direction
perpendicular to the important sight line that A ends at the tripod point of 7~ and points to the
unsupported side. The choice of direction d makes it impossible that the new star center A’ lies
on the same important sight lines from 77, unless it is also on other two non-parallel crucial
segments.

By a similar analysis of the types of crucial segments that the new star center A’ lies on, A’
cannot be marked in the next step only if it is a child star center of an illegal tripod contained
in P’, and we resolve this case recursively; see Figure 23. Since the subpolygon cut by the new
illegal tripod has strictly fewer corners, this recursion will finish in finite steps. Eventually,
we can find an optimal partition in which one more star center A’ is constructable by the

intersection of two non-parallel crucial segments. u
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parent face

parent face

Figure 23. lllustration for the proof of Theorem 3.5. A constructable star center is represented by a
solid circle, and the missing star center is represented by a cross. Red segments mark the boundary of
the feasible region, and thick black segments mark how we partition the polygon into parts. The top-left
figure shows the partition Q, and the top-right figure shows the restricted coordinate maximization
problem used in the proof. The bottom-left figure shows the restricted coordinate maximization
partition of this problem. The old illegal tripod 7 is no longer a tripod, but we get a new illegal tripod 77,
which will be resolved recursively. The bottom-right figure shows this new subproblem that we get.
Since the number of vertices on the boundary are strictly fewer, the recursion will eventually terminate.

The following lemma gives us another useful property of constructable optimal star parti-
tion, which will be used to design our dynamic programming algorithm in Section 5.

LEMMA 3.10. Let Q be a star partition of P. If a star center Ay is constructable with respect to
Q, then a corner of P appears on the boundary of the piece Qy.

PROOF. We consider the different cases in the construction process which can lead to the star
center Ak being marked. If Ay is marked by an important sight line € of Qx, then the support D’
of £is a corner of P in Qy, and the lemma holds. If Ay is at the intersection of two edges of P, Ak
must be a corner of P. If A is at the intersection of an edge of P and an edge of a pseudo-triangle,
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Ax must be a corner of P, as the intersection of the pseudo-triangle and the boundary of P is just
a set of concave corners of P. If Ay is at the intersection of two non-parallel edges from the same
pseudo-triangle, Ax must be a corner of this pseudo-triangle, and it therefore is also a concave
corner of P. If Ay is at the intersection of two non-parallel edges from different pseudo-triangles,
according to Lemma 2.2, Ax must be a corner of one pseudo-triangle, therefore Ay is also a
corner of P. n

From this lemma, we directly have the following corollary, which will be used to prove
some combinatorial properties of an optimal partition in Section 5.

COROLLARY 3.11. For any constructable optimal star partition Q = Qy,...,Qk we have
Q; N AP # O, that is, every star-shaped piece touches the boundary of P.

4. Properties of Area Maximum Partitions

The objective of this section is to compute a set of polynomially many points that contains all
the Steiner points for some optimal solutions, given all the star centers of an arbitrary optimal
solution. We will work on a constructable optimal star partition, with all the construction lines
fixed as incisions, and analyze the position of the Steiner points in each connected components
independently, as we did in the proof of Theorem 3.5. Recall Lemma 3.10, all the star-shaped
pieces still touch the outer boundary of the input polygon P.

Consider a weakly simple polygon P’ with potentially some incisions, a sequence of points
A = (A4,...,Ar), and a star partition Q = (Q1, ..., Qk) of the interior of P’ where A; is a star
center of Q;. Recall that Q is called area maximum with respect to A if the vector of areas
a(Q) = (a(Q1),...,a(Qx)) is maximum in lexicographic order among all partitions of P with
star centers A. In Appendix A we argue that this notion of area maximum partition is well-
defined. Note that in the definition of area maximum partitions, the positions of the star centers
are fixed. In this section, we prove some properties of area maximum partitions, in particular
that all corners of pieces (i.e. Steiner points) are in “nice” spots.

Recall that a sight line of a piece Q; is a segment of the form r = A;C, where A; is the star
center of Q; and C is a corner of Q;. Here, the point C is called the end of r.

LEMMA 4.1. Consider an optimal area maximum partition Q with a given set of star centers A.
For any two pieces Q1,Q2 € Q, let y := 3Q1 N 8Q;, be their shared boundary. Then y is

— empty, or

— a single point, or

— a single line segment contained in a sight line of Q1 or Q,, or

— two adjacent line segments, each contained in a sight line of Q1 or Q.
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Figure 24. Situations in the proof of Lemma 4.1. Left: If y is not connected, F must contain a third piece
which can be subsumed by Q4 and Q,, which is a contradiction. Middle: When S and T are convex, we
have y = SA, U A,T. Right: When S is concave, we have y =SS’ US'T.

PROOF. We first prove that y is connected. Otherwise, there exist points Gy, G € y which are
not connected by y; see Figure 24 (left). Let A; € A be the star center of Q;. Since G; and G
are not connected by y, the quadrilateral F = A1G1A,G; is not contained in Q; U Qy, but the
boundary dF is contained. Hence, F contains a third piece from Q. However, the quadrilateral
F can be completely assigned to Q; and Q, (possibly after being split in two), so the partition Q
was not optimal, which is a contradiction. Hence, y is connected.

Let S and T be the endpoints of y. If S = T, the shared boundary is a single point which
must be a corner of at least one of the two pieces Q1, Q», since otherwise their shared boundary
would be longer.

Otherwise, let us traverse y from S to T; see Figure 24 (middle and right). Since Q1 and Q,
are star-shaped, we move around A; in a monotone way, either clockwise or counterclockwise,
and we move in the opposite direction around A,. Hence, y is contained in the quadrilateral
H = A1SA,T. Assume without loss of generality that A, had higher priority than A, when we
maximized the areas of the pieces in Q.

If S and T are both convex corners of H, then all of H can be seen from A;, so we can
assign the quadrilateral H to Q1. Then y is a continuous part of SA, U AT with Ay € y,s0 ) is
contained in two sight lines of Q,.

Otherwise, assume without loss of generality that S is concave and T is convex. Let S’ be
the intersection between the line containing the segment A;S and the segment A,T. Then we
maximize the area of Q1 by assigning the triangle A;S’T to Q; and the rest of H (which is the
triangle A,SS’) to Q,. Hence, we have that y is a continuous part of S§" U ST with S’ € y, so y is
contained in sight lines of Q; and Q,, respectively. Note that it may happen that S’ = T, so that
one of these segments is degenerate. u

We say that a point B is supporting a sight line r = AC from a star center Aif Ber\ {A}.
The following lemma characterizes all edges of pieces of an area maximum partition, using
Lemma 4.1.
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Figure 25. Situations in the proof of Lemma 4.2. In Case 1.1 or Case 1.2, we can increase the area of Q
or Q1,Q,, Q3 by rotating r clockwise or counterclockwise, respectively.

LEMMA 4.2, Consider a piece Q with star center A of an optimal area maximum partition. Let
r = AC be a sight line of Q which contains an edge on the boundary of Q. Then r is of one of the
following types:
(i) ris supported by a corner of P’, which is not a star center; or
(i) r is supported by a star center of another piece, or
(iti) C is the end of two non-parallel sight lines of type (i) in other pieces.

PROOF. Suppose that a sight line r = AC is supported by no corner of P’ and no star center
of another piece. We will prove that the end C must be the end of two sight lines of type (i) of
other pieces. We consider multiple cases.

Case 0: C is a corner of P’. In this case, r is supported by C and of type (i) or (ii).

Case 1: C is an interior point of another sight line or an edge of P’. Let us denote this
sight line or edge by e; see Figure 25. Let f = DC be the edge of Q contained in r. Assume
without loss of generality that r is horizontal with the end C to the right and that the interior of
Q is above f. Then some other pieces Q4, ..., Q; are below f. Recall that in an area maximum
partition, we maximize the vector of areas in a specific lexicographic order; in other words,
each piece has a distinct priority when maximizing the areas. In both of the following cases we
obtain a contradiction.

Case 1.1: Q has higher priority than all of Q4, ..., Q;. In this case, we can expand Q a bit
by rotating r a bit clockwise around A, thus “stealing” some area from the pieces Q1, ..., Q; and
increasing the area vector with respect to the lexicographic order.

Case 1.2: One of the pieces Q4, ..., Q; has higher priority than Q. In this case, we can
rotate r a bit counterclockwise, thus expanding the pieces Q1, ..., Q; and increasing the area
vector. We conclude that C is not an interior point of another sight line or an edge of P.

Note that if r does not fall into case 0 or case 1, C must be in the interior of P’.
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Figure 26. Case 2.1: lllustration of moving point C when none of r; is supported by a corner or a star
center. While moving C, we fix the lines containing the boundary segments that touch r, ..., r;, and slide
the intersection points accordingly. If more than one boundary touches r; at the same point, we might
only extend the one closest to C. Since all the new corners we create are convex, all pieces remain star
shaped. We only need to move C infinitesimally to obtain a contradiction, so no new crossings will be
formed during this process.

Figure 27. Case 2.1: If T is the highest priority piece and T U r; = S is a single point, then one side of
visibility from its star center Ar to S is not blocked, therefore, T take a sufficiently small triangle near S.

Case 2: C is the end of one or more sight lines of other pieces. First, note that according
to Lemma 4.1, if C is on the boundary of a piece, then C is also contained in a sight line of that
piece. Let the sight lines that share the end Cbery, ..., r; in counterclockwise order (one of these
is r), and let the associated set of pieces and star centers be Q = {Q1,...,Q;} and A4,...,Aj,
respectively. We first observe that we must have j > 3: Clearly j > 2, so consider the case j = 2.
If the two sight lines r; and r, are not parallel, then C is a concave corner of one of them that
causes the piece to not be star-shaped. If the two sight lines are parallel, then C is not a corner
of the pieces, so r; and r, are not (complete) sight lines of the pieces. Hence, j > 3.

Assume without loss of generality that the interior of each Q; is to the left of r;. This has
the consequence that if r; is supported by a corner of P, then the two incident edges are to the
right of r; and likewise, if r; is supported by a star center, then the interior of the associated
piece is also to the right. Suppose towards a contradiction that at most one of the sight lines
ri,...,rjis supported by a corner of P that is not also a star center—note that otherwise r is
a sight line of type (iii). Let R be the set of pieces R for which R ¢ Q but R N r; # 0 for some
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i €{1,...,j}. The goal is to improve the priority of the area vector by exchanging area between
pieces in Q U R, which leads to a contradiction.

Case 2.1: None of rq, ..., rj is supported by a corner or a star center. We will show that
it is always possible to move C anywhere within a sufficiently small disk; see Figure 26. We
attach all sight lines r; = A;C to the flexible point C. For each boundary segment s touching one
of r;, we fix it on the same straight line, extending or contracting with respect to the movement
of C, so the intersection point of s and r; is flexible. If there are multiple segments touching r; at
the same point, we will extend only the one closest to C if necessary. Since C is a convex corner
in all of Qy, ..., Qj, and all new corners are formed by the intersection of some ray and some
straight line, all pieces remain in star shape with respect to their initial star centers.

Now we will show that we can always improve the priority of the area vector.

— If Q; has the highest priority among Q U R, we can slide C along the ray A;C and expand
Qi.

— Otherwise, a piece T € R has the highest priority among Q U R. Without loss of generality,
assume T is touching and to the right of r;. If T only touches r; at a single point S, then we
can expand T around S. See Figure 27. If T has a boundary segment along r;, we can move
C to the left of the original ray A;C and expand T.

Figure 28. The top two figures illustrate the reduction from case 2.2 to case 2.1. By redistributing a
triangle between pieces, the role of r; = A;C is replaced by r! = A,C, which is no longer a sight line of
type (ii). The bottom two figures show how to expand Q; if Q; has the highest priority. We can slide C
along the ray A;C to C’ and give the triangle A;C’B/ back to Q; afterward.
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Case 2.2: None of ry, .. ., rj is of type (i), but can be of type (ii). Compared with case 2.1,
each sight line r; might be supported by star centers. We will show that it’s always possible to
move C infinitesimally so as to increase the area vector. See Figure 28 top. We will make some
local modifications along each sight line of type (ii) and reduce to the previous case. Consider
any sight line r; of type (i1). Let Ay be the farthest star center from A; that supports r;, B;C be an
edge of Q; along r;_1. We will give the triangle A;CB; from Q; to Q. After this exchange, the role
of r; is replaced by a new sight line r/ = AxC, which is not supported by any star centers. After
applying this modification along all the sight lines of type (ii), we reduce to case 2.1, therefore,
we can move C anywhere within a sufficiently small disk.

Now we will show that we can always improve the priority of the area vector in the end.
Without loss of generality, assume r; is the initial sight line that touches the highest priority
piece, and this piece is either Q; or a piece T € R to the right of r;. If r; is not supported by any
star centers, we can make the same modification as in case 2.1. Therefore, we will only consider

the case that r; is of type (ii). Similarly, let Ax be the farthest star center from A; that supports r;.

Figure 29. Case 2.2: When T has the highest priority, and T touches A;A,, we can give an sufficiently
small pentagon to 7.

— If Q; has the highest priority, we can slide C along the ray A;C. Let B;C be the edge of Q;
along ri,q. After sliding C along the ray A;C to C’, B; slides to B}, we can give the triangle
A;C’B; back to Q; and improve the priority of the area vector. See Figure 28 bottom.

— If some piece T € R touching r; has the highest priority. If it touches AxC, then after
transferring the triangle A;CB; from Q; to Qx, it reduces to case 2.1. Therefore, we only
need to consider the case when T touches A;Ax. If 3T N A; Ak is a single point, we can apply
the same modification as case 2.1. See Figure 27. If 3T N A;Ak is a segment, we can extend
the two boundary segments end in A; Ay into the triangle A;CB;, give a sufficiently small
pentagon T, and repartition the triangle A;CB; accordingly. See Figure 29.

Case 2.3: Some r; is of type (i). Let D be the corner of P that supports r;, which is not a
star center. Without loss of generality, assume r; is horizontal with C to the right. In this case,
we might not be able to move C to the right of A;D, as D blocks the visibility from A; to C. But
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Figure 30. Case 2.3: When r; = A/C is supported by a non-center-corner D, we treat the segment DC as
r;, and make the all the intersection points with DC flexible, as in case 2.1. If there are star centers along
DC or any other r;, we treat it in the same way as in case 2.2. This modification keeps all the pieces star
shaped as long as C is on or to the left of ray A;D and within a sufficiently small disk.

Figure 31. Case 2.3: If there is no star centers along r; = A;C, we can give the triangle A;CC’ to Q;.

Figure 32. Case 2.3: If there are some star centers along r; = A;C, let A; be the farthest from A;. Since C
is a convex corner at all pieces, there must be a r,, to the left of r,. Then we can take a sufficiently close
point C” along rp,, to C, and redistribute the quadrilateral A;A,C’C” t0 Q; and Q.
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Figure 33. Examples of the different sight line types of Lemma 4.2 and different Steiner points these
can give rise to, as characterized by Corollary 4.3. The sight lines A4Z, and AsZ, are of type (i)
(supported by a corner), meeting in point Z;. The sight line A,Z, is of type (ii) (supported by star center
As). The sight line A1z, is of type (iii) (ending in the common endpoint of two sight lines of type (i)). We
note that Z, here is a Steiner point arising from a sight line of type (ii) ending on a sight line of type (iii).
We will later on show the same diagram for the entire partition of the input polygon. There are five star
centers and two corners involved in the definition of Steiner point Z,, which turns out to be the worst
case. In our algorithm, we will have 0(n®) potential star centers, making for a total of 0(n3?) potential
such Steiner points.

we can still move C to anywhere within a sufficiently small disk while keeping on or to the left
of A;D. See Figure 30.

In this case, we will fix all the pieces in R touching A;D, and extend the highest priority
among the others. Let R” be the set of pieces touching {ry,...,r;,CD} \ {r;} thatisnotin Q. As
before, assume r; is the sight line touching the highest priority piece.

— If there is a horizontal ry = AxC with Ak to the right of C, then we can reduce to case 1 by
taking rx U r; as e and consider any other sight line ends at C;

— If T € R’ has the highest priority, we can apply the modification in case 2.2 and expand T.

— Otherwise, some Q; has the highest priority. If A; is on or below the straight line A;D, we
can slide C along the ray A;C and expand Q;. Let us assume A; is above the straight line
A;D. If r; = A;C is not supported by any star centers, then we can take a sufficiently close
point C’ to C on CD, and give the triangle A;CC’ to Q;. See Figure 31. If r; is supported by a
star center, let Ay be the farthest star center that supports r; from A;, then Q; and Qx can
collectively take some region around AxC. See Figure 32. u

See Figure 33 for an example of the different types of sight lines and Steiner points (i.e.
corners of the star pieces) needed in the partition. The following corollary, which characterizes
all required Steiner points, is immediate from Lemmas 4.1 and 4.2; indeed, each Steiner point
must be on the beginning or end of a sight line. Together with Corollary 3.7, we can bound the
complexity to encode each Steiner point.

COROLLARY 4.3. In an area maximum partition of P’, each Steiner point is of one of the
following types:
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1. The end of a sight line of type (i) or (ii) on an edge of P/,

2. The end of a sight line of type (i) or (ii) on a sight line of type (i)-(iii),
3. The common end of two sight lines of type (i),

4. A star center.

And each Steiner point can be encoded by a sequence of O(n) corners of P’.

Combined with the result of Section 3, we can categorize all sight lines and Steiner points
in some optimal constructable star partition.

LEMMA 4.4. There exists an optimal constructable partition of any simple polygon P, such that
each sight line r = AC containing a segment on the shared boundary is of one of the following
types:

(a) ris supported by a corner of P;

(b) ris supported by another star center;

(c) C isthe end of two non-parallel lines of type (a).

And each Steiner point is of one of the following types:
(a) The end of a sight line of type (a) or (b) on an edge of P,
(b) The end of a sight line of type (a) or (b) on a sight line of type (a), (b) or (c),
(c) The common end of two sight lines of type (a).
(d) A star center.

And each Steiner point can be encoded by a sequence of O(n) corners of P.

PROOF. Consider each connected components by adding all the construction lines as incisions.
Within each component, we take the area maximum partition.

We will first map the corners and edges in each connected component back to objects
defined by P and the star centers. Note that in each connected component, all corners are
either star centers, or tripod points, or a corner of the initial polygon P. Each edge in the
connected components, is either an edge of P, or a part of a construction segment. Note that
each construction segment is a sight line supported by a concave corner of P, which is of type
(a).

Next we will map all the sight lines in each connected component back to objects defined
by P and the star centers. Here we will map them back type by type according to Lemma 4.2.

Type (i) sight lines. All non-star-center corners of each connected component P’, must be
either corners of P or tripod points. Since tripod points are convex corners in any connected
components, it can not support any sight line from the interior. Therefore, any sight line of type
(i) must be supported by a corner of P, which is of type (a).

Type (ii) sight lines. They are still supported by star centers, so all type (ii) sight lines
inside a connected component P’ are of type (b).
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Type (iii) sight lines. Since all type (i) sight lines are of type (a), C must be the end of two
sight lines of type (a), so all type (iii) sight lines inside a connected component are of type (c).

Next we will map all the Steiner points in each connected components to objects defined
by P and star centers. Here we will map back class by class according to Corollary 4.3.

Corners of a connected component. They could be Steiner points in the partition of P as
well. Note that in each connected component, all corners are either star centers (class (d)), or
tripod points (class (c)), or a corner of the initial polygon P (not a Steiner point), so they all fit
into one of the classes.

Steiner points in class 1. Since all type (i) sight lines in each connected component are of
type (a), all type (ii) sight lines in each connected component are of type (b), every Steiner point
C in class 1 is the end of a sight line of type (a) or (b). Each edge in each connected component
is either an edge of P, or a part of a sight line of type (a), it falls into class (a) or (b).

Steiner points in class 2. Since the types of sight lines match, all Steiner points in class 2
are in class (b).

Steiner points in class 3. Since the types of sight lines match, all Steiner points in class 3
are in class (c).

Steiner points in class 4. They are in class (d). u

5. Algorithm

In this section we present our polynomial time algorithm to find a minimum star partition of a
polygon. We restate our main Theorem 1.1 below, that we prove in this section.

THEOREM 1.1. (Restated) There is an algorithm performing O(n'%) arithmetic operations that
partitions a simple polygon with n corners into a minimum number of star-shaped pieces. The
number of bits used to represent each Steiner point in the constructed solution is O(K) where K is
the total number of bits used to represent the corners of P.

REMARK 5.1. Although it is polynomial time, it is not exactly efficient. Since our main result is
that the problem is in P (while previously it was not clear whether the problem was even in NP),
we have not tried optimizing the running time. We believe that it should not be particularly
difficult to significantly improve the exponent something like ~ 50 by a more refined analysis.
For instance, using a smaller set of potential Steiner points would lead to a smaller state-space of
the dynamic program (see Appendix B). Our aim here is to give the simplest possible description
of an algorithm with polynomial running time. Our techniques alone might not be sufficient to
bring down the exponent to, say, a single digit. We leave it as an open question to optimize the
running time as far as possible, or conversely provide fine-grained lower bounds.
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Overview. We begin with a brief overview of our algorithm (see also the technical overview
in Section 1.2). There are two main challenges to overcome when designing a minimum star
partition algorithm:
— First, even if we are given a set of potential Steiner points, it is not clear how to construct
an optimal star-partition.

— Second, we need a way to find these potential Steiner points.

For the first challenge, we devise a dynamic programming algorithm. For the second, we rely
heavily on our structural results in Section 3 together with a “greedy choice” lemma. In fact,
in order to find the potential Steiner-points, we need to invoke the dynamic programming
algorithm (which assumes that we know all the potential Steiner points already) on many

smaller instances in a recursive fashion.

Dynamic program. We begin by assuming that we know a set SENTERS of potential star centers.
In Section 5.1 we show a dynamic programming algorithm to find a partition of the polygon into
a minimum number of star-shaped pieces such that the star center of each piece is in S“®" %9 The
algorithm runs in O(poly(n, |SCENTER9)|)) time. There are a few key properties that we show that
allow us to define this dynamic programming algorithm (details can be found in Section 5.1):
— We show that using S*NE® and the corners of P, we can find a set of all potential
Steiner points (e.g. internal corners of the star pieces). We do this by invoking our
structural lemmas about area maximum partitions from Section 4. There will only be
O(poly(n, |[SCENTER)|)) many of these potential Steiner points to consider.
— We argue that each star piece touches the boundary in some optimal partition (Corol-
lary 3.11).
— The above observation allows us to define a set of natural separators (see also Figure 34)
involving at most two star pieces. For points B, B, on the boundary of P, star centers
A1, Ay € SICENTERY and a potential internal corner Z on the shared boundary of the two
star pieces, we can define a (“long”) separator B1-A-Z-A,-B,. We also consider (“short”)
separators of the form B1-A1-B;. These separators allow us to define a sub-region P’ of P
on one side of the separator, that we can recursively solve using a dynamic programming

approach.

Finding potential star centers. Given the above mentioned dynamic programming algorithm,
the ultimate challenge is finding some relatively small (i.e. polynomial-sized) set of points
S(CENTERS) giich that some optimal solution only uses star centers from SENTER9 However, this
turns out to be quite challenging and we present how we overcome this, together with the full
algorithm, in Section 5.2.

A first attempt might be to consider SCENTER tg be all the O(n*) points on the intersections
of pairs of diagonals of the polygon. This turns out to not be sufficient, as can be seen in Figure 1.
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Indeed, the same figure shows that the star center points can have degree as high as Q(n) (in
particular, the position of some star centers depend on up to Q(n) corners of the input polygon).

Instead, here we use our crucial structural properties of optimal star partitions proven in
Section 3. Essentially, we show there that the only non-trivial structure in some extreme optimal
partitions must be tripods(see Section 2), e.g., like those in Figures 1, 4 and 6. The tripods must
be supported by three corners of the polygon, so there are only O(n®) such choices where a
tripod can appear. However, the location of the tripod point might depend on other tripods
(again, see Figure 1 for a recursive construction capturing this). To overcome this, we need a
greedy choice property that allows us to argue that, for each potential tripod, there is only a
single arrangement of this tripod we need to care about: the one that is least restrictive for one
of the involved star centers.

To find this greedy arrangement of the tripod, we need to solve the minimum star partition
problem on a subregion of the polygon. For this we can recursively call our algorithm to
construct potential star centers for this smaller instance, and then use the dynamic programming
algorithm to find the optimal star-partition.

In Section 3, we argue that the tripods of some optimal solution are all oriented in a
consistent way. Indeed, recall that each tripod is constructed by its two child star centers and
used to construct its parent star center, so only one of the three subpolygons fenced off by the
tripod depends on the other two subpolygons. This consistent orientation means that all the
tripods can be oriented towards some arbitrary root face (see Figure 5). This is crucial for our
algorithm since this allows us to bound the number of subproblems to O(n?) (each diagonal of
P will define a subproblem on the side not containing this root face, that can be solved first and
must not depend on the other side).

5.1 Dynamic Program

In this section we prove the following theorem.

THEOREM 5.2. Suppose we are given a polygon P with n corners. Suppose also that we know
some set SCENTERS) of potential star centers, such that we are guaranteed that there exists an optimal
partition of P into the minimum number of weakly simple star-shaped pieces where: (i) each star
piece’s center is in S“® ™R and (ii) each star piece contains a corner of P. Then we can find such
an optimal solution in O(poly(n, |[S“*NER9)|)) arithmetic operations?.

REMARK 5.3. For our purposes, we will have |[SCNTER)| = O(n®), and the total running time of
the dynamic programming algorithm in Theorem 5.2 will be O(n'%) under the RAM model.

4 Instead of measuring running time here, we count the number of arithmetic operations. This is since points in s{centers)
might be complicated to represent exactly. In fact, we will invoke the dynamic programming algorithm with points in
sleenters) of degree (and hence bit-complexity) Q(n), so we cannot assume that we can perform computation on these
points in O(1) time.
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511 Defining Other Steiner Points

Suppose we are given a polygon P and a set of potential star centers S EN ) a5 in the statement
of Theorem 5.2. Using these, we will be able to identify all potential Steiner points needed for
our dynamic program. The main idea is to consider an optimal partition that is area-maximum,
and use our structural results from Section 4 (in particular Corollary 4.3, that characterizes all
potential Steiner points). We will define the set SI™NTERNAD of potential Steiner points to be used as
corners of the star-shaped pieces. Moreover, we define a smaller set S®BORPER C (GUNTERNAL) )
of potential corners of the star pieces that are also on the boundary of P.

LEMMA 5.4. Let P be a polygon and S“™"™®¥ q set of points satisfying the premise of Theorem 5.2.
Then we can find sets SBORPER qnd SINTERNAL) of size poly(n, |SCENTERS)|) such that some weakly simple
minimum star partition (Q1, Qq,...Qx) of P with corresponding star centers (A1, Aa,...,Ak)
satisfies the following properties:

1. Each piece Q; touches the polygon boundary dP.

2. All star centers A; are contained in SCENTERS),

3. All corners of Q; are contained in S™TERNAL,

4. All corners of Q; that are also on the boundary of P are contained in SE*PER,

Construction of Steiner points. We use the characterization of area maximum partitions
from Section 4 in order to define the sets SE°RPER gnd SUNTERNAL  Figyure 33 shows the “worst
case” example where some Steiner point depends on five star centers and two corners of P. We

begin by constructing the sight line types as in Lemma 4.2.

— Let L be the set of lines passing through a potential star center in SC*N" ") and a distinct
corner of P. Note that |LY| = O(n|S‘ ™ T*®|)  and they correspond to sight lines of type ().
— Similarly, let L") be the set of lines passing through a pair of distinct potential star center
in SCENTERS Note that || = O(]SCENTER)|2)  and they correspond to sight lines of type (ii).
— To define LU, we first define S{) to be the set of points on the intersection of two
non-parallel lines in L), Then we define L) to be the lines through a potential star
center in SCENTERS and a distinct point in S0, Note that [S(D| = O(n?|SCENTER|2) | 50

|ILWD| = O(n?|SCENTERY|3) "and that these correspond to sight lines of type (iii).

Now we are ready to use these sight lines to construct all necessary Steiner points, specifi-
cally, the different types specified in Corollary 4.3.

— Let S™W be the intersections of a segment of P and a (non-parallel) line in (L) U L), Note
that |S(1)| — O(nls(CENTERS)|2)

— Let S be the intersections of a line in (LY UL() and a (non-parallel) line in (L U L y
L(iii)). Note that |S(2)| — O(n2|s(CENTERS)|5)
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— Let §® := () be the intersections of two (non-parallel) lines in L. Note that |S®| =
) ( nz | G(CENTERS) |2) )

Finally, we can, by Corollary 4.3, define our “small” sets of potential Steiner points to
consider:
— SUNTERNAL _ corpers(P)USDUSZUS®) for internal corners of star pieces, with [SINTERNAD | —
o) ( n | G(CENTERS) | 5) )

— S®ORDER — corners(P) U S for corners of star pieces also on the boundary P, with
|S(BORDER)| — O(n|S(CENTERS) |2) ]

We additionally note that SCENTERS) ¢ §(2) ¢ GUNTERNAL (gince g point A € SCENTERS wil] lie on at

least two lines in LY as P has at least three non-collinear corners). Similarly (SCENTERS) 0 gP) C
8(1) C S(BORDER)

PROOF OF LEMMA 5.4. Consider any minimum star partition Q = (Q1, Q,...Qx)—with
star centers (A, Ay, ... Ax)—of P that satisfies the premise of Theorem 5.2: that is each star
center is in SENTER and each piece touch the boundary of P at some corner.

We now consider an area maximum partition Q = (Q}, Q5,...Q)) with the same star
centers (A1, Ay, ...Ax). By Lemmas 4.2 and 2.5 and Corollary 4.3, this partition must satisfy
that each corner of Q; is in S™NTERNAL an( if this corner is also on the boundary 9P it must be in
S®ORPER Tndeed L, L, LD must contain all possible sight line types of Lemma 4.2, and so
s, 82 sG3) must contain all potential Steiner points as specified in Corollary 4.3.

What remains is to argue that each star piece touches the boundary of P. This is non-trivial,
and unfortunately does not seem to follow directly from area-maximality. Instead we use the
fact that the star pieces in the original partition Q touched the boundary at some corner. For
each piece Q; we can choose an arbitrary sight line r; = A;B; to a corner B; of P. Intuitively, we
then “fix” this sight line before doing area-maximality. That is, we instead consider @’ to be an
area maximum partition where the star centers A; are fixed, and the chosen sight lines r; must
be contained in piece Q;.

Formally, we can do this by changing the input polygon P into a weakly simple polygon P’
defined as follows. For each chosen sight line r; we add it as an “incision” to P’ (so now P’ is a
weakly simple polygon). Note that these incisions cannot intersect except at their endpoints.
The partition Q is also a minimum star-partition of P/, but now each star center is at a corner
of P/. If Q' is chosen to be area maximum in this new polygon P’, we can then look at Q’ as a
partition of P where we assign the “incision” r; to piece Q;. This means that each piece must
touch the boundary (perhaps only because of a degenerate ray from the star center to some
corner at P, but this is acceptable since we allow the pieces to be weakly simple polygons).

What remains is to argue that S™NTERNAL gnd SBORDER are still sufficient, i.e. that we did
not introduce any new Steiner points. All new corners of P’ were star centers, so we did not

introduce any additional sight lines for Lemma 4.2. The additional edges of P’ are the “incisions”
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Figure 34. A short separator B}-A’-B’, and a long separator B;-A;-Z-A,-B; as part of a star partition.

ri, but these will all be in LY (lines from star centers to corners of P), so they are considered as
potential endpoints of sight lines in item 2 (instead of item 1) in Corollary 4.3. ]

51.2 Dynamic Programming Algorithm

We now provide our dynamic programming algorithm (Algorithm 1) that will consider each

possible star-partition satisfying the properties of Lemma 5.4, and thus will find an optimal

partition given the set SC*NTERS) [et By, B, be two points on 6P, P[B1 : B] C 8P be the chain from

B, to B along 9P in counterclockwise order. We consider the separators (see also Figure 34):
— Short separator of the form B1-A{-B, for By, By € S®RPER and A; € SCENTERS),

— Long separator of the form Bq-A1-Z-A,-B, for By, B, € S®RPER A A, € SCENTERY and
7 c S(INTERNAL).

In the dynamic program, we will, for a given separator, calculate an optimal way to
partition the subpolygon P’ enclosed by P[B; : Bz] and the separator, given that there are
star centers already placed at A; (and A; in case of a long separator) on the separator. Since
each piece touches the boundary, we will see that it is sufficient to consider separators passing
through at most two star pieces. We describe a few elementary ways to build separators for
larger and larger subpolygons P’ by e.g. merging two separators or moving the common corner
point Z. In figure Figure 35 and the pseudo-code Algorithm 1 we can see the different cases we
consider for transitions. We also explain the cases here:

Case 0: (Base Case) In the base case we consider trivial short separators, B;-A1-B; where either
B1 = By, or B; is next to B; in counterclockwise order. Here ByA1B; forms a possibly
degenerate triangle with one side on the boundary 6P, that can be assigned to the star piece
with center A,

Case 1: (Merge short + short) A short separator B1-A1-B; can be seen as the “merge” of two
other short separators By-A{-B’ and B’-A-B, for some B’ € S®°’(® N P[B; : By].

Case 2: (New star center) When a short separator B;-A;-B; is neither trivial (Case 0) or the
merge of two short separators (Case 1), some other star center A’ must be able to see the
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Case 3 Case 4 Case 5

Figure 35. The different transitions we need to consider for the dynamic program algorithm. Cases 0-2
concerns short separators B1-A1-B;, and Cases 3-5 concerns long separators B1-A1-Z-A,-B,, and we
want to solve the subpolygon “below” these separators. Curve parts indicate that the details have now
been shown.

boundary point B; too. This becomes a long separator B;-A’-B1-A1-B;, where the segment
B, A’ is a “spike” that occurs twice.

Case 3: (Combine short + short) A long separator B1-A1-Z-A1-B; where Z is on the boundary
somewhere between B; and B, can be decomposed into two short separators B;-A;-Z and
Z-Ay-B;.

Case 4: (Move common corner) A long separator B1-A,-Z-A1-B; can also arise by moving the
common corner Z from some other point Z’, where B1-A1-Z’-A1-B; is also a long separator.
Here the triangles A1Z’Z and A,ZZ’ can be assigned to the star piece with centers A; and
A, respectively.

Case 5: (Merge long + long) For a long separator Bi-A1-Z-A1-By, if neither the common corner
Z can be moved (Case 4), nor it is on the boundary (Case 3), there must exists some other
star center A’ that can see Z. The star piece with center A’ must also touch the boundary at
some point, say at B’. Then our separator is a “merge” of two long ones: B1-A1-Z-A’-B’ and
B’-A’-Z-A;-Bs.

Note that it is only in Case 0 and Case 4 where we actually assign some positive area of P to
some star piece. Whenever we say “X can see Y” in Algorithm 1, we mean that the segment XY
is contained within the subpolygon of P restricted by the separator.

To use the dynamic programming algorithm to find an optimal star partition, we arbitrarily
pick consecutive points By, B, € S®°’PER on the boundary of P, where B, is next to B in clockwise
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order. There must be some star piece seeing this segment, so we can simply try each possibility
of star centers A € SENTER and call SolveSeparator(By, A, By) to find the optimal solution
given that A sees the segment B1B; (and then just return the best solution we found). Note
that we do not consider B; and B; to be “adjacent” here for Case 0, as the region enclosed by
P[B;1 : B;] and B1-A-B; is P \ B1ABy.

OBSERVATION 5.5. Note that the above actually gives us all possible positions, in optimal
solutions, for star centers A € S“NTERS that see the segment B1B,. This will be useful later in the
full algorithm.

Correctness. We now argue that Algorithm 1 is correct, that is that the optimal solution can be
constructed using the transitions (cases) in Figure 35. Suppose we have some optimal partition
satisfying the properties of Lemma 5.4. We will show that the dynamic program will consider
this optimal solution.

Let us first consider the case that we are looking at a short separator B1-A;-B; in this
optimal partition. If either B; = B, or B; and B; are consecutive points on the border of P in
SEORDER) we are in Case 0. Otherwise, in the optimal partition, either the star piece with center
A, will also touch the boundary somewhere in between B; and By, or not. In case it does, it must
touch in a point B’ € S®°*ER where we naturally have two short separators of sub-regions
B1-A1-B’ and B’-A1-B;, which is handled by Case 1. In case it does not, there must be some other
star piece (say with center A’) that touches By, and then we are in Case 2 with long separator
By-A’-B1-A1-Bs.

Now suppose instead that we are looking at a long separator B1-A1-Z-A;-B; that is part
of the optimal partition. This means that the two pieces with centers A; and A; touch. Note
that they will touch in a single contiguous internal boundary (Lemma 4.1 give a complete
characterization of how this boundary can look; it is either a single point or up to two line
segments). Note that Z must be a point on this contiguous internal boundary. If Z is not the
last corner on this boundary, we can move it to the next corner Z’, as in Case 4. If Z instead
was the last corner on this boundary between pieces with centers A; and A;, we have two
sub-cases: (i) either Z is on the boundary of the polygon P, or (ii) else there must be some
other star piece touching Z. In sub-case (i) it must be the case that Z € S®°®"®®_ and we have
two natural short separators for sub-regions: B1-A;1-Z and Z-A;-Bs, as handled by Case 3. In
sub-case (ii), let A’ € SCENTERS) he the star center of the additional piece touching Z in the optimal
partition. Note that A” must also touch the boundary of P somewhere (Lemma 5.4), say in point
B’ € SEORPER Agqin, we have two natural (long) separators for sub-regions: B;-A1-Z-A’-B’ and
B’-A’-Z-A;-Bj, which is handled by Case 5.
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function SolveSeparator(By, Ay, B3):

> returns the minimum number of additional (not counting A;) star pieces needed to cover the enclosed region of
P[B1 : Bz] and B1-A1-B>.

Let P’ be the region enclosed by P[B;:B>] and B1-A-Z-A,-B,, compute
visibility of s(centers)  g(border)  g(internal) \jthin p’

opt «n

if By =B, or B, is next to B;7 in counterclockwise order then > Case 0: base case
opt — 0

for B’ ¢ (s{Porder) \ 1B, B,}) N P[B; : B;] do > Case 1: merge short + short

if A, can see B’ then
opt <« min(opt, SolveSeparator(Bq, A1, B’) + SolveSeparator(B’, Ay, B>))
for A’ € (Sfcenters) \ 1A, 1) N P’ do > Case 2: new star center
if A’ can see B4 then
opt <« min(opt, 1 + SolveSeparator(B4,A’, B1,A1, B2))
return opt

function SolveSeparator(Bi, A1, Z, Ay, B>y):

> returns the minimum number of additional (not counting A, or A,) star pieces needed to cover the enclosed
region of P[Bq : B;] and B1-A-Z-A,-B;

Let P’ be the region enclosed by P[B;:B,] and Bi-A-Z-A,-B,, compute
visibility of s(centers)  g(border) ) glinternal) yjthipn p’

opt «—n

if Z e sorder) N p[B, : B,] then > Case 3: combine short + short
opt <« min(opt, SolveSeparator(Bq,A,Z) + SolveSeparator(Z, A, By))

for 7/ e (stintemabll\ {71y N P’ do > Case 4: move common corner

if all three of Ay, A and Z can see Z’ then
opt < min(opt, SolveSeparator(B1,A,Z’, A2, B>))
for A’ e (S(eenters)\ 14, A,1) NP’ do > Case 5: merge long + long
for B’ e s(Porder) N p[B, : B,y] do
if A’ can see B’ and Z then
opt « min(opt, 1 + SolveSeparator(B4,A,Z,A’,B’) +
SolveSeparator(B’,A’,Z,As, B>))
return opt

Algorithm 1. Dynamic programming algorithm

To conclude, any optimal partition satisfying the properties of Lemma 5.4 must be con-
structable by Cases 0-5. Since Algorithm 1 considers all these cases as transitions, it will find an
optimal partition of P into star-shaped pieces.
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Running time. To make Algorithm 1 run in polynomial time we assume standard memoization,
i.e. that if SolveSeparator is called several times with the same arguments it only needs to
be solved once. Since SEORPER and SUNTERNAL are hoth of size poly(n, |SCENTERY|) it is clear that
we have a polynomial many separators and polynomially many transitions, and therefore
Algorithm 1 runs in O(poly(n, |SCEN®9|)) time (proving Theorem 5.2). Below we analyze the
complexity in more detail.

Note that in the 3-parameter function SolveSeparator(B1, A1, B2) (short separators), we
have O(|S®ORPER|2 . |GCENTERS)|) states, as By, By € SBORPER and A4 € SCENTERS) Similarly, in the 5-
parameter function SolveSeparator(B1, A1, Z, Ay, By) (long separators), we have O(|S®ORPER|2.
| S(CENTERS)|2 . S(INTERNAL)) states, as By, By € S(BORDER)’ A, A, € S(CENTERS), and Z e SUNTERNAL) Y\7e count

the number of transitions in the algorithm for each “Case”:

Case 0: O(1) transitions for O(|S®ORPER |2 . |SCENTERS) ) many separators.

Case 1: O(|S®ORPER)|) transitions for O(|SBORPER |2 . |SCENTERS) |y many separators.

Case 2: O(|SENTERS)|) transitions for O(|S®ORPER|2 . |SCENTERS)|) many separators.

Case 3: O(1) transitions for O(|S®ORPER |2 . |GCENTERS)|2 | GUNTERNAL)|) many separators.

Case 4: O(|SINTERNAL ) transitions for O(|S®ORPER|2 . |GICENTERS)|2 | GUNTERNAL)|) many separators.
Case 5: O(lS(CENTERS)| ) |S(BORDER)|) transitions for O(|S(B0RDER)|2 . |S(CENTERS)|2 . |S(INTERNAL)|) many sep-

arators.

We see that Case 4 and Case 5 dominate all other cases, for a total of

O(l S(BORDER)|3 . | S(CENTERS)|3 . | S(INTERNAL)| + | S(BORDER)|2 . | S(CENTERS)|2 . | S(INTERNAL)|2)

many transitions. For each of these transitions, we might need to go through all O(n) segments
of the polygon to verify the “X can see Y” statements, adding another factor of O(n) to the

running time. Since |S®BORPER) ||| SUNTERNAL)| — o]y (n, |SCENTERY)|) 'we have proved Theorem 5.2.

REMARK 5.6. Plugging in |S(BORDER)| — O(n|s(CENTERS)|2)’ |S(INTERNAL)| — O(n2|S(CENTERS)|5)’ we see
that the total number of transitions we have is O(n8|SCENTER9|16) ' assuming |SCENTERS)| > n, In
the final algorithm we will have |[SCENTERY| = O(n%), making for a total of O(n!%?) transitions!
This means there are a total of O(n'%®) arithmetic operations to run the dynamic programming
algorithm (to check the “X can see Y” statements). According to Corollary 3.7 and Corollary 4.3,
we will consider only points with degree O(n) (i.e. all points can be described by O(n) arithmetic
operations from the input points), so we can perform arithmetic operations in O(n?) time
naively. Therefore the total running time of Algorithm 1, for our purposes, is 0(n'%), as stated
in Remark 5.3.
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5.2 Finding Star Centers & Full Algorithm

Now we turn to show our full polynomial time algorithm, thus proving Theorem 1.1. We note
that if we can find a relatively small set of potential star centers, we can simply use our dynamic
programming algorithm (Algorithm 1 and Theorem 5.2). However, we will see that in order to
find such a sufficient set of potential star centers, we will need to solve smaller instances of the
same problem (where we need to invoke the algorithm recursively).

Constructable partitions. Throughout this section, we will let the root edge r be an arbitrary
edge of P. We will focus our attention to optimal partitions that can be constructed using
the process defined in Section 3—specifically by Theorem 3.5—and call such a star-partition
constructable. In particular, we recall that a constructable partition satisfies the following
properties:
(i) Itisoptimal, thatis it uses a minimum number of star pieces.
(i) Each star piece touches the boundary of P at some corner.
(ii1) All tripods in the partition are oriented towards the root face (the face with the root
edge r).
(iv) All star centers are at the intersection of two lines, each of these lines are either an
edge of P, a diagonal between two concave corners of P, or a line through a tripod
point and one of its supporting corners.

Indeed, by Theorem 3.5 (and Lemma 3.10 for item (ii)) there must exist some constructable
partition. However, restricting ourselves to constructable partitions is not enough to get an
efficient algorithm: in general there are a double-exponential number of points that appear as
star centers in some constructable partition. Therefore we seek to restrict our class of optimal
partitions further, and here the greedy choice comes into play (defined below in Section 5.2.1).

Before presenting the greedy choice, we prove a simple lemma saying that the partition
inside the pseudo-triangle of a tripod is not particularly important, and that any partition
outside this pseudo-triangle can always be extended to cover the pseudo-triangle too. This
will be useful for our algorithm, since we can then focus on solving sub-problems defined by
diagonals of P (and not defined by the unknown tripod).

LEMMA 5.7. (See Figure 36). Suppose T is a tripod supported by corners (Dq, Dy, D3) in some
constructable partition, with tripod point C. Let P’ be one of the three sub-polygons T splits P into
(say between corners D1 and Ds), and say A, € P’ is the star centers participating in T through
corner Dy. Let A be the pseudo-triangle of the points (D1, Dy, D3). Note that P’ \ A consists of
several (at least one) sub-polygons, call them P4, P,, ..., Py, where A, € P;.

Then any partition of P, Py, ..., Py, where A1 is a star center in P, seeing corner D1, can be
extended to a partition of P’ (without moving star centers) that A, sees C.
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Figure 36. Modification as in Lemma 5.7. The pseudo-triangle A splits the polygon up into multiple
sub-polygons, where we let P4, P,,... be those on the same “side” as the star-center A;. Any partitions
of Py, Py, P3,... can be extended to the polygonal line D3-C-D¢ in such a way that A sees the tripod point
C. We first give the blue region to Q,, then extend all the segments touching the pseudo-diagonal D1D3
one by one, from right to left, until it meets any existing segment.

PROOF. See Figure 36. Let s4, ..., S, be the set of segments in the partition of Py, ..., Py that
touches A, ordered by the touching point from D, to D3. We simply extend sy, ..., S, one by
one, until they meet the separator D3;-C-D; or previous extended boundaries.

We will handle the piece Q; with star center A; in a special manner, since we want it to
see the tripod point C. So let Z be the point on dA so that Q; contains the segment D1Z on this
boundary. Then we extend the line A1Z until it meets the line DsC first, and assign the blue
region to Qq. This clearly leads to a partition of P’ while keeping the assignment on P; U...U Pg.
Since C is a convex corner of P/, and all new angles are intersection of a ray and a straight line
(which must be convex), all pieces must remain in star shape.

What remains is to argue that everything inside A is covered by our extended partition.
This is true as long as the pseudo-diagonal between D; and D3 contains no edge of P (i.e. JA N 9P
just contains a finite amount of points, and no line segments). To argue this we use that T was a
tripod of some constructable solution. In particular this means that there exists some partition
where T is a tripod and no star center lies within the pseudo-triangle A. Hence, if there was
some edge e of P contained in dA, then the interior of this edge could not be seen by any star

center in such a constructable partition, which is our desired contradiction. [}

5.21 Greedy Choice

Consider three concave corners (D4, D2, D3) of P, that might support a tripod in some con-
structable partition. We now argue that if there are many possibilities for how the legs of
a tripod supported by (D1, D,, D3) look like, then it suffices to consider a single one of these
possibilities! We will call this arrangement the greedy choice of this tripod. Recall that the tripod
point is constructed by two of the sub-polygons P1, P,, and used to define the third sub-polygon
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Figure 37. Left: Two child star-centers A, and A, define a (fake) tripod with tripod point C, splitting the
polygon into three subpolygons: “childs” P4, P, and “parent” Ps. The angle ¢ = 2CD3D’ of this tripod is a
measure on how “restricted” a potential star-center As; defined by this tripod is. Middle: Two other star
centers A} and A, define another fake tripod on the same support, which is less restrictive (i.e., with an
angle ¢’ < ¢). Inside P3 (the parent-side of the tripod), the same partition is shown (in red and blue) as
on the left. Right: The star partition of subpolygon P3; can be adjusted (without moving any star centers)
to also work with the less restrictive tripod.

P; (see Figures 6 and 37). In particular, P, and P, are the children in the tripod tree (see Fig-
ure 20), and Pj the parent. We argue that the greedy choice will be the combination of optimal
solutions in the two subpolygons P; and P, that give rise to the least restrictive tripod-center
when constructing the optimal solution for P3. With least restrictive we mean the one that
minimizes the angle ¢ = /CD3D’ as in Figure 37, as such a tripod will only impose the mildest
restrictions on where the star center As € P3 participating in the tripod lies.

We begin by proving that it never hurts replacing a tripod with a less restrictive one, see
also Figure 37.

LEMMA 5.8. Suppose that there is a tripod 7 with tripod point C supported by three corners
(D1, Do, D3), part of a constructable partition Q. Let A be the pseudo-triangle of the tripod, and
consider the three sub-polygons P1, P, P3 in P \ A participating in the tripod, such that the parent
star center of T is contained in Ps, as in Figures 6 and 37.

Suppose now that there is some other constructable sub-partitions of P, and P, (using the
same number of star pieces as in the original one) giving rise to another fake tripod 7' (supported
on the same three concave corners D, D,, D3) with tripod point C’, that is less restrictive (the angle
¢ in Figure 37 is smaller) for Ps. Then there also exists a constructable optimal star partition of P
that contains these new sub-partitions of P1 and P,, and the fake tripod 7.

PROOF. By Lemma 5.7, there exists an optimal partition Q" containing the same sub-partition
in P; and P, that gives 7. Since no star center is in the pseudo-triangle A of 7, the pseudo-
triangle 7 is also constructable with respect to Q. Our lemma then follows directly from
Lemma 3.9. u



53 / 68 TheoretiCS Minimum Star Partitions of Simple Polygons in Polynomial Time

Greedy-constructable partitions. By Lemma 5.8, it never hurts to replace a tripod with
a less restrictive one. The next step is to argue that we can assume that all tripods in our
constructable partition can follow such a greedy choice—which is a very useful property when
designing an algorithm. This is a bit subtle, since such an algorithm might not actually find the
least restrictive version of a tripod 7, but only the least restrictive version given that all children
tripods also follow the greedy choice. We formalize this by the notion of greedy-constructable
partitions. A greedy-constructable partition is constructable and also satisfies the following extra
property, adding to properties (i)—(iv) of a constructable partition.
(v) Any tripod 7 in the partition is greedy (see Definition 5.9 below).

DEFINITION 5.9 (Greedy Choice & Less Restrictive Tripods). First, we define the angle of a
fake tripod 7 as in Figure 37, i.e., the angle ¢ = Z/CD3sD’, where D’ is the next corner of P after
Ds, in the parent-subpolygon P3;. We say that a fake tripod 7 is less restrictive than another fake
tripod 7 (supported by the same three corners) if the angle is smaller for 7 than for 77, i.e. if
7 imposes a weaker restriction on the potential star center in the parent subpolygon. We break
ties in an arbitrary but consistent manner.

Consider a tripod 7 supported by corners (D;, D2, D3) in some constructable partition.
Suppose this tripod splits the polygon into the three sub-polygons P4, Py, P35 and is oriented
towards Ps. Consider all the pairs of greedy-constructable® sub-partitions of P; and P,, giving
rise to some (fake) tripods 7 supported by the same corners (D1, Dy, D3). Then the tripod T is
the greedy choice for (D1, Dy, D3), or we simply say that 7 is greedy, if it is the least restrictive
for P; among all such (fake) tripods 7.

LEMMA 5.10. There exists a greedy-constructable partition.

PROOF. The generalidea is to start with a constructable partition (which exists by Theorem 3.5),
and replace tripods that are not greedy by their greedy version instead, using Lemma 5.8. At first
it might not be apparent that this will work, since Lemma 5.8 might introduce new tripods that
are not greedy. We overcome this by carefully eliminating bad tripods in a bottom-up fashion,
and continuing in a recursive manner, similar to our proof that there exists constructable
partitions (proof of Theorem 3.5).

Formally, let us consider some polygon P together with a constructable partition Q of P.
Throughout this proof, whenever we say tripod, we also consider fake tripods (see discussion
in Section 3.1 and Remark 3.4)—i.e. those that can be constructed by two children star centers
but might not be used to construct a parent star center. Consider the rooted tripod tree (see
Observation 3.3 and Figures 5 and 20) of this partition. In this tree we mark all tripods that

5 We note that the definition of greedy choice tripods and greedy-constructable partitions are mutually dependent on
each other. With greedy-constructable for a sub-polygon, we mean that all the tripods used in the partition of the
sub-polygon abides the greedy choice. Since the tripods form a rooted tree (see Observation 3.3), this recursive
definition is well-defined, as tripods only depend on other tripods deeper down in the tree.
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Figure 38. The process of replacing a tripod T with the greedy one T/, as described in the proof of
Lemma 5.10. Bad tripods 7,44 are marked in red, good 74004 in blue. The dashed lines indicates “fences”
where star centers are not allowed to pass through. The gray area R(-) goes down, since the bad tripod
T was replaced with a good one T’. The partitions (and tripods) inside P4, P, and P} = R(Q) N P3 can
change: for example note that the tripods inside P, changed, and that a new bad tripod inside R(Q’)
appeared.

are not greedy as bad, along with all ancestor tripods. Call this set of bad tripods 75q4(Q),
and let 7g004(Q) be all other tripods. That is 74004(Q) is the set of tripods T in Q for which
all tripods in the subtree rooted at T (including T itself) are greedy. If 7544(Q) is empty, Q is
greedy-constructable, so we are done; so suppose that this is not the case. Let R(Q) be the region
in P reachable from the root edge r without passing through any tripod from 7g,04(Q) (see also
Figure 38). Note that all tripods in 7,44(Q) must by definition be in R(Q). We will argue that
we can find some other (constructable) partition Q" such that R(Q’) is smaller. This is enough,
since there are only finitely many possible positions for tripods in constructable solutions, so
R(+) can only decrease a finite number of times.

Consider Figure 38. Let T € 7pq4q(Q) be some non-greedy tripod. Say it is supported by
corners (Dy, D2, D3) and splits the polygon into sub-polygons P, Py, P3 where it is oriented
towards Ps. Without loss of generality, we may assume that, in our partition, the sub-partitions
of P, and P, are greedy-constructable: that is all tripods in P; and P, abide the greedy choice
(else we can instead choose T to be one of these non-greedy tripods deeper down in the tripod
tree). Since T is not greedy, there must exist other sub-partitions of P; and P, that are also
greedy-constructable and give rise to a better (less restrictive) greedy tripod T’. First note that
these new sub-partitions of P; and P, must use the same number of pieces as the original
partition used for these sub-polygons (otherwise it was not optimal; note that it never makes
sense to use an extra piece in a sub-partition to get a less restrictive tripod as we might as well
place this extra piece at the tripod point which would make the whole tripod redundant).

Now we want to use Lemma 5.8 to replace the tripod T with T’. However, we cannot
directly apply this lemma as it might destroy some greedy tripods and introduce new non-
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greedy tripods inside the region P3 in an unpredictable manner. Let us define P; = P3 N R(Q)
and P’ = P1 U P, U P;. We use Lemma 5.8 on the polygon P’ instead of P, which makes sure that
we do not destroy any greedy tripods inside the region P3. We must be slightly careful also to
not move any star centers into the pseudo-triangles of tripods in P, whose tripod points might
now be corners of P’. For this, we note that it is easy to extend Lemma 5.8 to take into account
these pseudo-triangles:

In the first part of the proof of Lemma 5.8 we argued that there is an optimal (not necessarily
constructable) solution without moving any star centers in P7, and in the second part we used
Theorem 3.5 (or rather Lemma 3.9) to argue that then there must also exist a constructable one.
When we invoke Lemma 3.9 we can do so on the full polygon P, but on our partitions where
everything outside Pj is already constructable (so these star pieces and tripods will not change,
and no star center will be moved into the pseudo-triangles of the boundary tripods of P3). Then
Lemma 3.9 would give us an optimal partition where tripods and star centers inside P; are also
constructable.

To recap, we now have a constructable partition of P’ where the greedy tripod T’ is used
instead of T. We extend this to a partition Q' of P by using all pieces from the original partition
Q which where in P \ P’ = P3 \ R(Q). By design we see that Q’ is constructable. Moreover,
R(Q') = P; = R(Q) N P3, since now T” is a greedy tripod (and still all tripods in the subregions
P; and P, are greedy, although the new partition of these parts can be quite different from the
original one). To conclude, R(-) must have gone down, as it is now also restricted by the tripod
T’ (and the original tripod T was completely contained in R(Q)). Hence, by induction, there
must exist some greedy-constructable partition. u

5.2.2 Minimum Star Partition Algorithm

We are now ready to present the full algorithm, and thus proving Theorem 1.1. To optimally
partition a polygon P into a minimum number of star pieces we employ the following strategy.
We begin by enumerating all possible positions for tripods (that is triples of concave corners
D4, Dy, D3 of P that might support a tripod). Now, for each of these, we can employ the greedy
choice (see Definition 5.9) to only have a single tripod-center we need to consider. By Lemma 5.10,
there must exist some optimal solution in which all tripods follow this greedy choice. For now,
assume we can actually compute these greedy tripod points (we will get back to this later). That
is we have O(n®) potential tripod-centers in total. By Theorem 3.5 we can now construct a set of
potential star centers SENTERS) by considering all intersections of pairs of lines, where each line
is either (i) an extension of a diagonal of P, or (ii) a line from a (greedy) tripod-center through the
corresponding concave corner in this tripod. Note that there are only O(n?+n?) such lines, so we
can bound |SNTER9)| by O(n®). Additionally, we note that in (greedy-)constructable partitions,
each piece touches the boundary at some corner. Given SN2 we can hence employ the
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dynamic programming algorithm (Algorithm 1, Theorem 5.2) to find a minumum star partition
of the polygon P.

Resolving the greedy choice. Now, let us return to the issue of actually determining the posi-
tion of the greedy choice tripod point, of some tripod supported on concave corners D1, Dy, D3 of
P. Let P4, Py, P5 be the sub-regions (like in Figure 6), such that the tripod is oriented towards Ps.
Note that P, and P, are defined by a diagonal of P and not by the (so far unknown) tripod. Now,
we can find greedy-constructable optimal solutions for P; and P, separately, by invoking our
algorithm recursively (see also Figure 39): in the subpolygons we again enumerate all potential
tripods, solve using the greedy choice, and invoke the dynamic program to obtain an optimal
solution. Note that there are only O(n?) subproblems, since each subproblem is defined by
some diagonal between two concave corners of P (here we use the fact that the tripods in a
greedy-constructable partition form a rooted tree). Moreover, our dynamic program allows us
to find all possible positions of the star center A; in P; used to define the tripod. Indeed A, is the
star center that sees a prefix of the pseudo-diagonal from D to D,, so we can find all possible
positions of it by Observation 5.5. Similarly for the star center A, in P,. Therefore we may simply
enumerate over all pairs of possibilities of A; and A, and choose the best valid one according to
the greedy choice (Definition 5.9, see also Figures 6, 37 and 39). By Lemma 5.7, any partition we
get here can be extended to a partition meeting the tripod legs. Conversely, any constructable
partition with a tripod supported by D, D, and Ds, is also a partition of P \ A (as no star center
would be inside the pseudo-triangle A; so we can apply Lemma 2.1 to carve out this part). Hence
we do not loose or gain anything by restricting ourselves to finding optimal partitions restricted
by the pseudo-diagonal, instead of restricted by the (so far unknown) tripod.

Full algorithm. The pseudo-code can be found in Algorithm 2, consisting of two mutually recur-
sive functions TripodGreedyChoice() and SolveSubregion(). The function TripodGreedy-
Choice() will find the tripod point of the greedy tripod, and SolveSubregion (D4, Dy) will
optimally solve the sub-polygon enclosed by the diagonal D;-D,. To obtain the optimal partition
for the full polygon, we can just call SolveSubregion() on some edge of P. The correctness
follows from the above discussion.

Running time. We now analyze the running time of Algorithm 2, and again we apply memoiza-
tion to not recompute the same subpolygons multiple times. We will see that the total running
time is O(poly(n))—or, in fact, it takes O(n'%) arithmetic operations or O(n'%?) time. According
to Corollary 3.7 and Corollary 4.3, every star center or steiner point can be encoded by O(n)
corners of P, therefore each arithmetic operation can be done in O(n?) time.

— TripodGreedyChoice() will be called at most O(n®) times, since there are only O(n®)
choices for 3-tuples of corners D1, Dy, D3 of P. Constructing the pseudo-diagonals can
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Figure 39. An illustration of how TripodGreedyChoice(D+, D,, D3) works. First the pseudo-triangle A
(dashed in red) is computed. Then it calls SolveSubregion() on the yellow and blue subpolygons of P\ A,
to recursively partition these optimally. Moreover, using Observation 5.5, we find all potential positions
(in greedy-constructable optimal solutions) for star centers A, and A,, whose piece contains a prefix
(marked green in the figure) of the pseudo-diagonals adjacent to D, and D, (respectively). The pair
which makes for the least restrictive (Definition 5.9) tripod point is chosen, and this point C is returned.
Curved parts indicated that details have been omitted.

be done in O(n) time. There are at most O(n®) possible positions for star centers, so
only O(n'?) possible combinations for the greedy choice. For each of these combinations,
we might need to go through the full polygon to see that the legs of the tripod does not
intersect the polygon. Hence the computation inside TripodGreedyChoice() need in total
0(n® - n'? . n) = 0(n'%) time over the run of the full algorithm.

— SolveSubregion() will be called at most O(n?) times, since there are only O(n?) choices
for pairs of corners D1, D, of P. Enumerating valid tripod-positions can be done in O(n*)
time (O(n®) many possible 3-tuples of corners, and each can be checked in O(n) time by
going through the polygon and constructing the pseudo-triangle to see if a valid tripod
can be formed there). We then construct the set S5 of size at most O(n®). Calling
the dynamic programming algorithm on this set takes O(n'%®) arithmetic operations and
0(n'%) time (see Theorem 5.2 and Remark 5.3). Followed from Observation 5.5, in the
same time, we can find all possible positions of star centers covering the start of the D1-D,
segment: indeed, we call the dynamic programming algorithm SolveSeparator (D, A, X)
(where X # D is the closest point to D; in S®°*"®® on the D,-D, segment) for all possible
star centers A € SCENTERY tg see which ones of these give a partition of minimum size. Note
that between these calls to SolveSeparator, we do not need to reset the dp-cache, so in
total this takes only O(n!%) arithmetic operations and 0(n'%) time. Hence, in total, over
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10:

11:

12:

function TripodGreedyChoice(D4, D5, D3):

> Returns the greedy choice tripod point of the tripod supported by corners D4, D, D3 of P. See Figure 39.
> Suppose, w.l.0.g. (other cases are similar), that we are like in Figure 6: that is the tripod should be oriented
towards D3 and the root is in the face fenced of by the D,-D3; pseudo-diagonal.

Construct the pseudo-diagonal Dq-D,, say it goes through points

D1 =X1,X2, ... Xk = D>

Calculate the optimal number of star pieces to cover the sub-polygon defined
by separator Xi-X,, by calling SolveSubregion (Xj,X2)

Additionally, this finds all possible positions, in greedy constructable
optimal solutions, of star centers that see a small part of the segment X;-X;
next to D;

Do the same for diagonal D,-Dj3

Look at all combinations of star centers and return only the single

tripod-center that makes for the greedy choice (if any).

function SolveSubregion(D,, Dj):

> Requires that D4, D, is a diagonal of P. Call the sub-polygon on the right side (when looking from D; to D,) of the
diagonal P’.

> SolveSubregion (D4, D;) will optimally partition P’ into a minimum number of star-shaped pieces. Moreover, it will
consider all possible positions, in greedy constructable solutions, for the star center that sees a small part of
the DD, segment next to D;.

Enumerate all valid positions of tripods (i.e. 3-tuples of concave corners)
inside P’, and call TripodGreedyChoice() on these.

Let L be the set of lines that are either (i) the line through two corners of
P, or (ii) the line through some tripod-center and the corresponding concave
corner of P.

Let S(centers) he the set of intersection points of pairs of lines from L.

Call the dynamic programming algorithm on P’ and S{ce"ters) to find an optimal
solution.

By Observation 5.5 we can additionally find all possible positions of the
star center seeing a prefix of the D;-D, pseudo-diagonal from D; to D,.

Algorithm 2. Minimum Star Partition Algorithm.

the full run of the algorithm, we will spend O(n? - n'%) = 0(n'%) arithmetic operations
and O(n? - n'%) = 0(n'%) time in SolveSubregion.

The above discussion concludes the proof of Theorem 1.1.
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A. Existence of Coordinate and Area Maximum Partitions

PROOF OF LEMMA 2.3. Recall that the Hausdorff distance between two compact sets A, B C
R? is defined as dg(A,B) = inf{r > 0 | A c B® D(r)and B c A ® D(r)}, where & is the
Minkowski sum and D(r) is the disk of radius r centered at the origin. We will use the fact that
(M (R?), dy) is a compact metric space, where M (R?) denotes the set of all non-empty closed
subsets of R?; see for instance [28, Theorem 4.5].

Let ¢* = sup ¢(Q), where the supremum is taken over all optimal star partitions Q of P. We
claim there exists a star partition which realizes the coordinate vector c*. Consider a sequence of
optimal star partitions (Q;);cn S0 that c(Q;) convergesto ¢* asi — oo. Let ¢(Q;) = (A1i, ..., Aki)
and let the pieces of Q; be Q4 . .., Qx; so that the maximum star center of Q;; is Aj;. Be passing
to a subsequence, we can assume that the sequence (Q1;);cn converges to a compact set Q7 with
respect to Hausdorff distance. Similarly, we can assume that (Q;;);ex converges to Q;f for each
je{l,...,k}. LetQ" ={Q7,...,Q;} and ¢* = (A],..., A;). We claim that Q" is a star partition
of P where A}? is the star center of Q}T.

To see that Q’]‘f is star-shaped with star center A;f, we first observe that A;‘. € Q;?. Otherwise,
the star center Aj; would not be in Qj; for sufficiently large values of i. Suppose now that A;
is not a star center of Q}k.. This means that there is a point B € Q}k. so that the line segment
A;TB is not in Q’]‘f. For each i € N, we can choose B; € Qj; so that B; — B for i — oo. Since
Aji — A;, B; — B and A}TB isnotin Q;f, it follows that A;; B; is not in Qj; for sufficiently high
values of i, which contradicts that Aj; is a star center of Q;;. In a similar way, we can argue
that the sets in @ are interior-disjoint; otherwise, the sets in @; could not be interior-disjoint
for sufficiently high values of i. Likewise, we get that | Q" = P, and we conclude that Q* is a
coordinate maximum optimal star partition of P. u

PROOF SKETCH OF LEMMA 2.4. The proofis analogous to that of Lemma 2.3. Without loss

of generality, we can assume that d = (1, 0), so that for any set of points A;, cee, A;<, we have
L 1 Ly
(Al -d,A;-d~ AL -d, Al -d, .. AL - d AL -dT) =(ALAL, ..., Ap).
Define the supremum (A?,A;l, .. .,AZ) = sup(A;,A; i .,A}() over all partitions with star
centers Ag, A;H, . ,A;{ in the region F and the rest fixed at the points Ay,...,A;—1. We then
consider a convergent sequence of star partitions with fixed star centers A4, ..., A;_1 and the
rest converging to A7, ..., A;, and it follows that the limit of the pieces constitute a partition
realizing the supremum. u

PROOF OF LEMMA 2.5. The proof is similar to that of Lemma 2.3. Namely, let a* = sup a(Q),
where the supremum is taken over all star partitions Q of P with star centers A. We then
consider a sequence of partitions (Q;);cy with star centers A so that a(Q;) — a* asi — oo.
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Let the pieces of Q; be Q1;, ..., Qk; so that A; is a star center of Qj;. By passing to a subsequence,
we can assume that (Qj;)iciy converges to a compact set Qj. for each j € {1,...,k}.

As in the proof of Lemma 2.3, we can conclude that Q* = {Q7, ..., Q, } is a star partition of
P with star centers ‘A and that a(Q*) = a*, so Q* is area maximum. n

B. Structural Theorem

In this section, we give an elementary and independent proof of a structural theorem about
optimal star partitions, which is not used in the rest of the paper. A point on the boundary of
the polygon P is canonical if it is a corner of P or the endpoint of an extension of an edge of P;
see Figure 40 (left).

THEOREM B.1. Let k be minimum such that there exists a star partition of P consisting of k
polygons and assume k > 2. There exists a star partition Q1, . .., Qx of P, where each piece Q; has
the following properties:

1. 8Q; contains a concave corner of P, and

2. for each connected component of the shared boundary 8P N9Q;, both endpoints are canonical.

S Q

Figure 40. Left: A polygon with the extensions of the edges and the canonical points shown. Right:
Using only canonical points as corners of pieces on the boundary of P, one of the points C and D must
be used.

Before going into the proof, let us first make a few remarks. Note that there are at most 3n
canonical points, since each edge of P creates at most 2 canonical points that are not corners of
P. The algorithm described in this paper considers O(n'%) Steiner points on the boundary of
P, so it might be possible to use property 2 to obtain a faster algorithm. However, in the proof
of the theorem, we change the partition in order to only use canonical Steiner points on the
boundary. It does therefore not follow immediately that our algorithm can also be modified to
find the resulting partition, but we are confident that the result can be used to create a faster
algorithm.

We find it somewhat surprising that canonical Steiner points suffice on the boundary of P,

since, as shown in Figure 1, it is sometimes necessary to use Steiner points in the interior of P
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Figure 41. The process simplifying the shared boundary between Q; and Q; in order to satisfy
Claim B.2. The gray region is the quadrilateral F.

of degree Q(n), whereas the canonical points have degree at most 1 (as defined in Section 1).
Figure 40 (right) proves that it is necessary to have least some Steiner points on the boundary
of P: In any partition into two star-shaped pieces, we must have a Steiner point on the segment
CD.

PROOF. Let Qy,...,Qk be a minimum star partition of P. Let us fix a star center A; in each
piece Q;. If 9Q; N 3dQ; # ® and i # j, we say that Q; and Q; are neighbours. The shared boundary
0Q; N Q; of two neighbours Q; and Q; is a collection of open polygonal curves. An interior point

of an open curve is a point on the curve which is not an endpoint.

CLAIM B.2. Lety be an open curve in the shared boundary 8Q; N dQ; of two neighbours Q; and
Qj. We can assume that y is either a line segment or two line segments that have one of the star
centers A; and A; as a common endpoint. If a star center of one piece is a corner of y, the corner
IS convex with respect to that piece and concave with respect to the other piece.

Proof. Let the endpoints of y be C and D; see Figure 41. Since the segments A;C and A;D are in
Qi, and A;C and A;D are in Q;, we have a well-defined quadrilateral F = A;CA;D. If A; and A;
are both convex corners of F, we replace y by the segment CD, which must be a diagonal of F.
Otherwise, consider without loss of generality the case that A; is a concave corner of F. We then
replace y by CA; U A;D. In either case, the modification clearly leaves Q; and Q; star-shaped,

and we are left with a shared boundary of the claimed type. ¢

Property 1. In order to prove that there is a partition satisfying Property 1, suppose that Q; does
not contain a concave corner of P. We show how to modify the partition so that the property is
eventually satisfied. In essence, we expand the piece Q; until Property 1 is eventually satisfied.



64 /| 68 TheoretiCS M. Abrahamsen, J. Blikstad, A. Nusser, H. Zhang

CLAIM B.3. We can assume that each concave corner D of Q; is a concave corner of P or a star
center A; of a neighbour Q; of Q;.

Proof. We describe a way to expand Q; so that we eliminate concave corners of Q; which are
neither corners of P nor star centers of neighbours (note that if a concave corner of Q; touches
P, then it touches P at a concave corner). Let CD and DE be maximal segments on the boundary
of Q; such that D is a concave corner of Q; and no corner of P and no star center of a neighbour
is an interior point of CD U DE. It follows by Claim B.2 that this point D can be assumed to
lie on the boundary of two polygons Q; and Q; whose boundaries share a line segment DF.
Informally, we now move D towards F. This will expand Q; and shrink Q; and Q; and possibly
also other neighbours of Q; whose boundaries contain segments or points on CD U DE. To be
precise, define D’ to be the first point on DF from D such that one of the following cases holds:
(i) one of the segments CD’ or D’E contains a corner of P, (ii) D’ is the intersection of DF and
CE (if it exists), (iii) one of the segments CD’ or D’E contains a star center Ay, m # i, (iv) D’ = F.
The cases are shown in Figure 42. We then assign the quadrilateral CD’ED to Q;, which will
increase Q;, decrease the pieces intersected by CD’ U D’E and, by Lemma 2.1, all the involved
pieces remain star-shaped. We repeat this operation, and it remains to argue that the process

eventually terminates.

(ii) (iv)

Figure 42. The process of eliminating concave corners of Q; that are not star centers of neighbouring
pieces.
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In case (1), Q; now touches P at a corner which clearly must be concave. In case (ii), we
have eliminated a concave corner of Q;. In case (iii), we have increased the number of star
centers on the boundary of Q;, which can happen at most k — 1 times. In case (iv), we eliminated
a segment DF of Q; and Q;, which decreases the total number of segments of the pieces. We
conclude that the operation can be repeated at most a finite number of times and the process
therefore eventually terminates. L

A star neighbour of Q; is a neighbour Q; whose star center A; is on dQ;. Recall that we
assume 9Q; does not contain a concave corner of P. Now, additionally assume that Q; is non-
convex, i.e., Q; has a concave corner. As Q; does not contain a concave corner of P, we can
assume that this concave corner is the star center of a star neighbour by Claim B.3. To obtain
a contradiction with the minimality of the start partition, we show that Q; can be subsumed
by the star neighbours. To this end, we consider a triangulation of Q;. The diagonals of the
triangulation that have an endpoint at a concave corner of Q; partition Q; into convex polygons
R4,...,Rp, asillustrated in Figure 43 (left), where solid diagonals have an endpoint at a concave
corner. We assign a polygon R, to Q; if A; is on the boundary of R, and R, has not already been

Figure 43. Left: We reassign the piece Q; to the pieces of the concave star neighbours. Right: We
expand the convex piece Q; by adding the triangle A;CD.

assigned to another star neighbour, as shown by the arrows in the figure. Thus, the considered
star partition did not consist of a minimum number of polygons, which is a contradiction.
Consequently, Q; must be convex.

As we assume k > 2, there has to be a piece Q; that is a neighbour of Q; so that the common
boundary dQ; N dQ; contains a segment CD. We expand Q; and shrink Q; by adding the triangle
A;CD to Q;, as shown in Figure 43 (right), which keeps Q; as well as Q; star-shaped. This can
introduce concave corners C and D on Q;, but we can proceed as in the proof of Claim B.3 and
expand Q; until we hit a concave corner of P or obtain that all concave corners are star centers.
If we do not hit a concave corner of P, we can again argue that Q; can be subsumed by Q; and
potentially other star neighbours, contradicting the minimality of the star partition.
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Note that if a concave corner of P appears on the boundary of a piece before the changes
described above (including in the proof of Claim B.3), then the corner also appears on the
piece afterwards. We conclude that we can expand each polygon Q; that does not contain a
concave corner of P until it eventually does. In the end, we obtain a minimum star partition

with Property 1.

Property 2. We now prove that we can obtain Property 2. Consider an edge CD of P. For each
piece Q;, it holds by the optimality of the partition that the intersection CD N 8Q; is either empty
or a single segment EF (which may be a single point); see Figure 44. We call such a segment EF a
shared segment, and we say that a shared segment is canonical if both endpoints are canonical.
We define the canonical prefix of CD to be all the shared segments from C to (and excluding)
the first non-canonical shared segment. We show that we can modify the partition such that
the number of segments in the canonical prefix increases. It therefore holds that the process
must stop, so that all shared segments on CD have canonical endpoints in the end. The process
does not change whether shared segments on other edges of P are canonical, so repeating the
process for all edges yields a star partition with Property 2.

D G E B ¢
Qs Q4 Q3 Q1
Q2

Figure 44. The fat segments are edges of P and the thin black segments indicate the boundaries of
pieces in the interior of P. The corners C and D as well as the interior points £ and F are canonical, but G
is not. There are three segments in the canonical prefix of CD, namely the intersections of CD with each

of 8Q4,0Q2,0Qs.

Consider the first non-canonical segment EF, where E is canonical but F is not. Let F’ be
the first point on FD from F such that either (i) F’ is canonical, (ii) A;F’ contains another star
center Aj, or (iii) A;F’ contains a corner G of P. Since the endpoint D is canonical, the point F’ is
well-defined. The cases are illustrated in Figures 45 and 47 and Figure 46.

In case (i), we assign the triangle A;FF’ to Q;, which according to Lemma 2.1 keeps all
pieces star-shaped as the triangle does not contain any star centers of other pieces than Q;. We
have then increased the number of segments in the canonical prefix.

In case (ii), we assign the triangle A;EF’ to the piece Q;. The shared segment s = CD N 9Q;
of the piece Q; now starts at the point E. The other endpoint of s is either F’ (as in Figure 45)
or a later point. In the latter case, it is possible that s is canonical, and we have increased the
number of segments in the canonical prefix. If s is not canonical, we repeat the process of
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repairing the non-canonical endpoint of s. Since the star center A; must be closer to the edge
CD than A;, we encounter case (ii) less than k times before we end in case (i) or (iii).

D F’ F E C D F’ F FE c
Qp N QP
Qm . @ _— Qm @
QuiN Qi)
\.Ai \. Al
Figure 45. Case (i). We expand Q; with the triangle A;FF’.
D c

Figure 46. Case (ii). We expand Q; with the triangle A;FF’.

It remains to consider case (iii), namely that A;F’ contains a corner G of P. We know that
G # D, since otherwise, we would have been in case (i). Let F” be the first canonical point on the
segment F'E from F’, which is well-defined as E is canonical. Furthermore, we know that F” is
on the segment EF, since otherwise, we should have been in case (i). Let Q = {Q7, ..., Q},} \{0Qi}
be the set of pieces intersected by the interior of GF’ in order from G and excluding Q;.

In a first step, we assign the triangle A;F”F’ to the piece Q;. This can reduce pieces intersect-
ing A;F’, but Lemma 2.1 ensures that they remain star-shaped. However, the point F’ need not
be canonical. In a second step, we therefore remove the triangle A = GF”F’ from A; and instead
distribute A among the pieces Q’, as follows. For each j =1,..., f" — 1, we consider the segment
s on the shared boundary of Q;. and Q;. ., With an endpoint on GF’. We then extend s into A
until we reach one of the other segments GF” or F”F’ bounding A, or we meet an extension that
was already added for a smaller value of j. Since F” was chosen as the first canonical point on
F’E, this results in a star partition of P. Furthermore, the shared segment of Q; on CD has now
become the segment EF” (which might just be a single point), which is canonical, so we have
increased the number of segments in the canonical prefix. Recall that we consider the number
of segments in the prefix here and not the geometric length of the prefix; the geometric length

of the prefix indeed can decrease.
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Figure 47. Case (iii). In two steps, we distribute the triangle A;F”F’ among Q; and the pieces Q7, Q7, Q%
intersected by GF'.

Finally, note that none of the above modifications of the star partition cause a piece Q to
become non-adjacent to a concave corner H of P if Q was adjacent to H before. More precisely,
only the modifications in case (iii) changes the neighbourhood of a corner G of P. However, as
there are no star centers in the triangle A;EF’, the modifications will not remove G from the

boundary of any piece. ]
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