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ABSTRACT. We devise a polynomial-time algorithm for partitioning a simple polygon 𝑃 into
a minimum number of star-shaped polygons. The question of whether such an algorithm exists
has been open for more than four decades [Avis and Toussaint, Pattern Recognit., 1981] and it
has been repeated frequently, for example in O’Rourke’s famous book [Art Gallery Theorems and
Algorithms, 1987]. In addition to its strong theoretical motivation, the problem is also motivated
by practical domains such as CNC pocket milling, motion planning, and shape parameterization.

The only previously known algorithm for a non-trivial special case is for 𝑃 being both
monotone and rectilinear [Liu and Ntafos, Algorithmica, 1991]. For general polygons, an
algorithm was only known for the restricted version in which Steiner points are disallowed
[Keil, SIAM J. Comput., 1985], meaning that each corner of a piece in the partition must also be a
corner of 𝑃. Interestingly, the solution size for the restricted version may be linear for instances
where the unrestricted solution has constant size. The covering variant in which the pieces are
star-shaped but allowed to overlap—known as the Art Gallery Problem—was recently shown to
be ∃R-complete and is thus likely not in NP [Abrahamsen, Adamaszek and Miltzow, STOC 2018
& J. ACM 2022]; this is in stark contrast to our result. Arguably the most related work to ours is
the polynomial-time algorithm to partition a simple polygon into a minimum number of convex
pieces by Chazelle and Dobkin [STOC, 1979 & Comp. Geom., 1985].
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Figure 1. Repeating the patterns, we obtain polygons where star centers and corners of pieces of
arbitrarily high degree are required.

1. Introduction

A simple polygon 𝑄 is called star-shaped if there is a point 𝐴 in 𝑄 such that for all points 𝐵 in 𝑄,
the line segment 𝐴𝐵 is contained in 𝑄. Such a point 𝐴 is called a star center of 𝑄. A star partition
of a polygon 𝑃 is a set of pairwise non-overlapping star-shaped simple polygons whose union
equals 𝑃; see Figure 1. The polygons constituting the star partition are called the pieces of the
partition.

Avis and Toussaint [8] described in 1981, an algorithm running in 𝑂(𝑛 log 𝑛) time to
partition a simple polygon (i.e., a polygon without holes) into at most ⌊𝑛/3⌋ star-shaped pieces—
where 𝑛 denotes the number of corners of the polygon—based on Fisk’s constructive proof [30]
of Chvátal’s Art Gallery Theorem [22]. Avis and Toussaint [8] wrote: “An interesting open problem
would be to try to find the decomposition into the minimum number of star-shaped polygons.”
This question has been repeated in several other papers [50, 44, 33, 49] and also in O’Rourke’s
well-known book [43]: “Can a variant of Keil’s dynamic programming approach [33] be used to
find star partitions permitting Steiner points1? Chazelle was able to achieve 𝑂(𝑛3) for minimum
convex partition with Steiner points via a very complex dynamic programming algorithm [16], but
star partitions seem even more complicated.” Before our work, the problem was not known to
be in NP and not even an exponential-time algorithm was known. In this paper, we resolve the
open problem by providing a polynomial-time algorithm, thereby closing a research question
that has been open for more than four decades.

THEOREM 1.1. There is an algorithm performing 𝑂(𝑛105) arithmetic operations that partitions
a simple polygon with 𝑛 corners into a minimum number of star-shaped pieces. The number of
bits used to represent each Steiner point in the constructed solution is 𝑂(𝐾) where 𝐾 is the total
number of bits used to represent the corners of 𝑃.

1 A Steiner point is a corner of a piece in the partition which is not a corner of the input polygon. We discuss the
challenges and importance of allowing Steiner points later in this section.
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Related work. The minimum star partition problem belongs to the class of decomposition
problems, which forms an old and large sub-field in computational geometry. In all of these
problems, we want to decompose a polygon 𝑃 into polygonal pieces which are in some sense
simpler than the original polygon 𝑃. Here, the union of the pieces should be 𝑃, and we usually
seek a decomposition into as few pieces as possible. A decomposition where the pieces may
overlap is called a cover, and a decomposition where the pieces are pairwise interior-disjoint is
called a partition. This leads to a wealth of interesting problems, depending on the assumptions
about the input polygon 𝑃 and the requirements on the pieces. There is a vast literature about
such decomposition problems, as documented in several highly-cited books and survey papers
that give an overview of the state-of-the-art at the time of publication [35, 15, 43, 49, 21, 34, 45].
Some of the most common variations are

whether the input polygon 𝑃 is simple or may have holes,
whether we seek a cover or a partition,
whether we allow Steiner points1 or not,
what shape of pieces we allow; let us mention that for partitioning a simple polygon,
variants have been studied with polygonal pieces that are convex [29, 47, 19, 33, 14, 32, 36],
star-shaped [29, 33, 40], monotone [31, 39], spiral-shaped [33], “fat” [51, 23, 12], “small” [5,
24], “circular” [25], triangles [7, 18], quadrilaterals [41, 42] and trapezoids [6].

Closely related to our problem is that of covering a polygon with a minimum number of
star-shaped pieces. This is usually known as the Art Gallery Problem and described equivalently
as the task of placing guards (star centers) so that each point in the polygon can be seen by at
least one guard. Interestingly, the Art Gallery Problem has been shown to be ∃R-complete [2]
and it is thus not likely to be in NP. This is in stark contrast to our main result, which shows that
the corresponding partitioning problem is in P. Covering a polygon with a minimum number of
convex pieces is likewise ∃R-complete [1].

If the polygon 𝑃 can have holes, the minimum star partition problem is known to be
NP-hard, whether or not Steiner points are allowed [43]; again in contrast to our result.

Keil [33] gave polynomial-time algorithms for partitioning simple polygons into various
types of pieces where Steiner points are not allowed. Among these algorithms is an 𝑂(𝑛7 log 𝑛)
time algorithm for finding a minimum star partition of a simple polygon without Steiner points,
but the unrestricted version of the problem (with Steiner points allowed) remained open. Let
us mention that there are polygons where Θ(𝑛) pieces are needed when Steiner points are not
allowed, whereas 2 pieces are sufficient when they are allowed; see Figure 2 (left). Therefore,
our algorithm in general constructs partitions that are significantly smaller. This highlights an
interesting difference between minimum star partitions and convex partitions: A minimum
convex partition without Steiner points has at most 4 times as many pieces as when Steiner
points are allowed [32]. Another difference is that an arbitrarily small perturbation of a single
corner can change the size of the minimum star partition between 1 and Θ(𝑛), whereas the
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Figure 2. Left: A polygon that is partitioned into two star-shaped pieces using the Steiner point 𝑆. A
star center that can see the two middle groups of spikes must be placed at or close to 𝐴1, while a star
center that sees the outer groups must be at or close to 𝐴2. Without Steiner points we need Θ(𝑛) pieces
to partition at least one of the groups of spikes. Right: Moving the bottom corner a bit up changes the
size of a minimum star partition from 1 to Θ(𝑛).

change in size of the minimum convex partition is at most 1; see Figure 2 (right). In that sense,
minimum star partitions are much more sensitive to the input.

Unrestricted partitioning problems (that is, allowing Steiner points), are seemingly much
more challenging to design algorithms for. Chazelle and Dobkin [16, 19] proved already in
1979 that a simple polygon can be partitioned into a minimum number of convex pieces in
𝑂(𝑛3) time, by designing a rather complicated dynamic program. Asano, Asano and Imai [6]
gave an 𝑂(𝑛2)-time algorithm for partitioning a simple polygon into a minimum number of
trapezoids, each with a pair of horizontal edges. However, the minimum partitioning problem
has remained open for most other shapes of pieces (e.g. triangles, spiral-shaped, and—until
now—star-shaped).

Liu and Ntafos [40] also studied the minimum star partition problem, but with restric-
tions on the input polygon. They describe an algorithm for partitioning simple monotone and
rectilinear2 polygons into a minimum number of star-shaped polygons in 𝑂(𝑛) time, and a
6-approximation algorithm for simple rectilinear polygons that are not necessarily monotone.

Challenges. As argued above, star partitions are very sensitive to the input polygon, and
allowing Steiner points is in general necessary to obtain a partition with few pieces (Figure 2).
In order to demonstrate the complicated nature of optimal star partitions, let us also consider
Figure 1, which shows (representatives of) two families of polygons with arbitrarily many
corners and unique optimal star partitions. In both examples, some star centers and Steiner
points depend on as many as Θ(𝑛) corners of 𝑃. The example to the right shows that star centers
and Steiner points of degree Θ(𝑛) are also needed, where points 𝑉𝑖 of degree 𝑖 are defined as
follows. The points 𝑉0 are the corners of 𝑃; and 𝑉𝑖+1 are the intersection points between two
non-parallel lines, each through a pair of points in 𝑉𝑖 . The size of 𝑉𝑖 grows as Θ(𝑛4𝑖), so we

2 A polygon 𝑃 is monotone if there is a line ℓ such that the intersection of 𝑃 with any line orthogonal to ℓ is connected,
and 𝑃 is rectilinear if all sides are either vertical or horizontal.
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cannot iterate through the possible star centers and Steiner points. This is in contrast to the
problem without Steiner points studied by Keil [33]. Here, by definition, the corners of the
pieces are in 𝑉0 and it is not hard to see that the star centers can be chosen from 𝑉1, of which
there are “only” 𝑂(𝑛4).

Since we cannot iterate through all possible star centers and Steiner points, we devise a
two-phase algorithm, as follows. In the first phase, we find polynomially many relevant points,
so that we are sure that an optimal solution can be constructed using a subset of those points
as star centers and Steiner points. In the second phase, we use dynamic programming to find
optimal solutions to larger and larger subpolygons, using only the constructed points from
the first phase. We note however that the phases are intertwined as the algorithm for the first
phase calls the complete partitioning algorithm recursively on subpolygons. The argument that
the set of points constructed in the first phase is sufficient relies on several structural results
about optimal star partitions which we believe are interesting in their own right.

1.1 Practical Motivation

Besides being interesting from a theoretical angle, star partitions are useful in various practical
domains; below we mention a few examples. Many of the papers mentioned below describe
algorithms for computing star partitions with no guarantee of finding an optimal one.

CNC pocket milling. Our first motivation comes from the generation of toolpaths for milling
machines. CNC milling is the computer-aided process of cutting some specified shape into a piece
of material—such as steel, wood, ceramics, or plastic—using a milling machine. When milling
a pocket, spirals are a popular choice of toolpath, since the entire pocket can be machined
without retracting the tool and sharp corners on the path can be largely avoided. Some of the
proposed methods to generate spirals require the shape of the pocket to be star-shaped, for
instance because they rely on radial interpolation between curves that morph a single point (a
star center) to the boundary of the pocket [11, 46, 10]. When milling a non-star-shaped pocket,
we therefore seek to first partition the pocket into star-shaped regions, each of which can then
be milled by their own spiral. We want a star partition rather than a star cover, since it is a
waste of time to cover the same area more than once. In order to minimize the number of
retractions (lifting and moving the tool from one spiral to the next), we want a partition into a
minimum number of star-shaped regions.

Motion planning. Star partitions are also useful in the domain of motion planning. Varadhan
and Manocha [52] describe such an approach. They first partition the free space into star-
shaped regions to subsequently construct a route for an agent from one point to another in the
free space using the stars. In each star, we route from the point of entrance to the star center
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Figure 3. Left: A polygon with a star partition and an example of a short (orange) and a long (green)
separator. Right: The dual graph of the partition. The short and long separators of the partition
correspond to vertices, respectively edges, in the graph.

and from there to a common boundary point with the next star. Similar applications of star
partitions are described in [26, 37, 38, 55].

Capturing the shape of a polygon. Star partitions can be used to blend/morph one polygon
into another [48, 27], for shape matching and retrieval [54], and they are also used in shape
parameterization [53].

1.2 Technical Overview

To enable our algorithm, we had to identify a multitude of interesting structural properties
of optimal star partitions, which are interesting in their own right. In this section, we outline
the most important of these properties and explain informally how they are used to derive a
polynomial-time algorithm. Naturally, we sometimes stay vague or glance over complicated
details in order to hide complexity to make the technical overview easily accessible.

Separators. Similar to the algorithms for related partitioning problems [19, 33], we use dy-
namic programming: We compute optimal star partitions of larger and larger subpolygons 𝑃′

contained in the input polygon 𝑃. For dynamic programming to work, we need an appropriate
type of separator which separates the subpolygon 𝑃′ from the rest of 𝑃. To this end, a useful
(and non-trivial) property is that there exists an optimal partition in which each piece shares
boundary with 𝑃; as we will see in Section 3 (Corollary 3.11). This suggests that we use separators
consisting of two or four segments of the following forms:

Short separator: 𝐵1-𝐴1-𝐵2. A piece with star center 𝐴1 that shares boundary points 𝐵1 and
𝐵2 with 𝑃.
Long separator: 𝐵1-𝐴1-𝑆-𝐴2-𝐵2. Each 𝐴𝑖 is the star center of a piece that shares the boundary
point 𝐵𝑖 with 𝑃 and the point 𝑆 is a common point of the boundaries of the two pieces.
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Figure 4. The same polygon and partition as in Figure 3, where the pieces 𝑄1, 𝑄2, 𝑄3 form a tripod with
supports 𝐷1, 𝐷2, 𝐷3 and tripod point 𝐶. The star centers are coordinate maximum and the gray segments
show how they are constructed. The tripod is used to construct 𝐴3.

A state of our dynamic program consists of a separator and is used to calculate how many
pieces we need to partition the associated subpolygon, which is the part of 𝑃 on one side of the
separator. We start with trivial short separators of two types: (i) degenerate ones of the form
𝐵-𝐴-𝐵 for a star center 𝐴 that can see a boundary point 𝐵, and (ii) 𝐵1-𝐴-𝐵2 where 𝐵1 and 𝐵2

are points on the same edge of 𝑃 so that the separator encloses a triangle. We describe a few
elementary operations to create partitions of larger subpolygons from smaller ones by merging
two compatible separators into one that covers the union of the two subpolygons.

The main difficulty lies in choosing polynomially many candidates for the star centers 𝐴𝑖 ,
the boundary points 𝐵𝑖 and the common points 𝑆, so that we can be sure that our algorithm
eventually constructs an optimal partition. As already mentioned, our algorithm has two phases,
and in the first phase we compute a set of 𝑂(𝑛6) points that are guaranteed to contain the star
centers of an optimal partition. In Section 4, we show that we can use these potential star
centers to also specify polynomially many candidates for the points 𝐵𝑖 and 𝑆. In a second phase,
the algorithm uses the constructed points to iterate through all relevant separators.

Tripods. A structure that plays a crucial role in our characterization of the star centers is that
of a tripod; see Figure 4 for an example of a partition with one tripod. Three pieces 𝑄1, 𝑄2, 𝑄3

with star centers 𝐴1, 𝐴2, 𝐴3 form a tripod with tripod point 𝐶 if the following two properties
hold.

There are concave corners 𝐷1, 𝐷2, 𝐷3 of 𝑃 such that 𝐷𝑖 ∈ 𝐴𝑖𝐶 for each 𝑖 ∈ {1, 2, 3}. These
corners are called the supports of the tripod.
The union 𝑄1 ∪ 𝑄2 ∪ 𝑄3 contains a (sufficiently small) disk centered at 𝐶.

Note that it follows that the segment 𝐷𝑖𝐶 is on the boundary of the piece 𝑄𝑖 . Such a segment
𝐷𝑖𝐶 is called a leg of the tripod. Furthermore, the edges of 𝑃 incident to the supports 𝐷𝑖 are
either all to the left or all to the right of the legs (when each leg 𝐷𝑖𝐶 is oriented from 𝐷𝑖 to 𝐶);
otherwise a disk around 𝐶 could not be seen by the star centers 𝐴𝑖 .
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Figure 5. A polygon 𝑃 with a star partition using ten pieces and four tripods. The legs of the tripods
partition 𝑃 into nine faces F . The disks are star centers and the squares denote the vertices of the dual
graph 𝐺 of the faces F . The dashed segments indicate how the star centers are defined or used to
define other centers by tripods. The tripods have consistent orientation towards the root 𝑟 and the
edges of the tree T are shown as dotted curves.

Constructing star centers. We can define a set of points containing the star centers as
follows. Let𝑉0 be the corners of 𝑃 and define recursively𝑉𝑖+1 as the intersection points between
any two non-parallel lines each containing two points from 𝑉𝑖 . It follows that 𝑉𝑖 ⊂ 𝑉𝑖+1. Tripods
cause star centers to depend on each other in complex ways: If two of the participating star
centers 𝐴1 and 𝐴2 are in 𝑉𝑖 \𝑉𝑖−1, then the tripod point 𝐶 is in general in 𝑉𝑖+1 \𝑉𝑖 and the third
star center 𝐴3 will be in 𝑉𝑖+2. See for instance Figure 1 for two examples; both with unique
optimal star partitions. Here, all neighbouring pieces form tripods, and in the right figure only
𝑉𝑖 with 𝑖 = Ω(𝑛) contains all the star centers of the optimal partition.

We obtain powerful insights about the solution structure by considering a so-called coordi-
nate maximum optimal partition. We can write the star centers 𝐴1, . . . , 𝐴𝑘 of an optimal partition
in increasing lexicographic order (that is, sorted with respect to 𝑥-coordinates and using the
𝑦-coordinates to break ties). We can then consider the vector of star centers ⟨𝐴1, . . . , 𝐴𝑘⟩ which
is maximum in lexicographic order among all sets of star centers of optimal partitions. We
show that there exists a partition realizing the maximum, which is our coordinate maximum
partition (Lemma 2.3). The star centers of the partition in Figure 4 have been maximized in this
sense. By analyzing a coordinate maximum partition, we conclude in Section 3 (Lemma 3.2)
that there are essentially only two ways in which a star center 𝐴 can be restricted. In both
cases, 𝐴 is forced to be contained in a specific half-plane 𝐻 bounded by a line ℓ, and ℓ is of one
of the following types: (i) ℓ contains two corners of 𝑃, (ii) ℓ contains a tripod point 𝐶 and one
of the associated supporting concave corners 𝐷𝑖 . The star center 𝐴 can then be chosen as the
intersection point between two lines, each of type (i) or (ii). Note that in each tripod, the legs
𝐷1𝐶 ∪ 𝐷2𝐶 ∪ 𝐷3𝐶 partition 𝑃 into three parts; since 𝑃 is a simple polygon, it is thus impossible
that the star centers depend on each other in a cyclic way. It follows that the star centers can be
chosen from 𝑉𝑖 for a sufficiently high value of 𝑖.
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Orientation of tripods. Each tripod is defined from two of the participating star centers, say
𝐴1 and 𝐴2, and takes part in defining the third star center, 𝐴3. Hence, we can consider the tripod
to have an orientation: it is directed from (𝐴1, 𝐴2) towards 𝐴3. The legs of all tripods partition
𝑃 into a set of faces F ; see Figure 5. One face can contain several pieces, since the tripod legs
are in general only a subset of the piece boundaries. We will denote one of the faces as the
root 𝑟. The faces F induce a dual graph 𝐺, in which each tripod corresponds to a triangle in
𝐺. Traversing F in breadth-first search order from the root 𝑟 defines a rooted tree 𝑇 , which is
a subgraph of 𝐺. Each node 𝑢 in 𝑇 has an even number of children—two for each tripod for
which 𝑢 is the face closest to 𝑟 among the three faces containing the pieces of the tripod. In
order to successfully apply dynamic programming, we need the tripods to have a consistent
orientation in the following sense: If the face 𝑢 is a parent of 𝑣, then the corresponding tripod
should be directed towards the star center in 𝑢. As we will see in Section 3 (part of Theorem 3.5),
there exists an optimal partition where the tripods have a consistent orientation. This requires
a modification to the coordinate maximum partition: Whenever a tripod violates the desired
orientation, we choose a subset of the star centers and move them in a specific direction as
much as possible to eliminate the illegal tripod. We describe such a process that must terminate,
and then we are left with tripods of consistent orientation.

With consistent orientation, the star centers in the leaves of 𝑇 belong to the set 𝑉1 (which
is constructed from lines through the corners of 𝑃), and in general, the star centers in a face 𝑢
can be constructed by tripods involving centers in the children of 𝑢 as well as lines through
the corners of 𝑃 bounding the face 𝑢. The star centers in the root face 𝑟 are constructed at last,
potentially depending on all previously constructed star centers.

Greedy choice. Consider three concave corners 𝐷1, 𝐷2, 𝐷3 of 𝑃 which are the supports of a
tripod in an optimal partition Q. Let the associated star centers be 𝐴1, 𝐴2, 𝐴3 and suppose that
the tripod is directed towards 𝐴3. The three shortest paths in 𝑃 between these supports enclose
a region which we call the pseudo-triangle Δ of the tripod; see Figure 6 (left). As we will see in
Section 3 (part of Lemma 3.2), there is an optimal star partition where no star centers are in the
pseudo-triangle of any tripod, and this is a property we maintain throughout our modifications.
Consider a connected component 𝑃′ of 𝑃− B 𝑃 \ Δ. Note that 𝑃′ is separated from the rest of 𝑃
by a single diagonal of 𝑃 which is part of the boundary of Δ. Since no star centers are in Δ, the
restriction of Q to 𝑃′ is a star partition of 𝑃′. Furthermore, in the optimal star partition we are
working with, we can assume that this restriction is a minimum partition of 𝑃′, since otherwise
we could replace the partition in 𝑃′ by one with less pieces and use an extra piece to cover Δ,
thereby obtaining an equally good partition of 𝑃 without this tripod.

Let 𝑃𝑖 be the connected component of 𝑃− containing 𝐴𝑖 , so that the tripod is used to define
the star center 𝐴3 in 𝑃3 using star centers 𝐴1 and 𝐴2 in 𝑃1 and 𝑃2, respectively; see Figure 6
(right). In all connected components except 𝑃1, 𝑃2, 𝑃3, we can choose an arbitrary optimal
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Figure 6. Left: A partition with a tripod and the pseudo-triangle shown in gray. Right: For a tripod with
supports 𝐷1, 𝐷2, 𝐷3 directed towards 𝑃3, we find the optimal partitions in the subpolygons 𝑃1 and 𝑃2.
There are two choices for the star centers that see 𝐷1 and 𝐷2, leading to four possible sets of legs of
the tripod. We want to choose the combination that minimizes the angle 𝜑 from the edge 𝐷3𝐸 clockwise
to the leg to 𝐷3. The angle is minimized when choosing 𝐴12 and 𝐴22, but this choice is invalid since the
legs 𝐷2𝐶22 and 𝐷3𝐶22 would intersect the boundary of 𝑃. We will therefore choose 𝐴12 and 𝐴21, which
give the second-best option with the tripod point 𝐶21. Curved parts indicate that the details have not
been shown.

partition. There may be several optimal partitions of 𝑃1 and 𝑃2, and any combination of two
partitions may lead to different legs of the tripod (since 𝐴1 and 𝐴2 may be placed differently)
and thus to different restrictions on the center 𝐴3 in 𝑃3. In fact, there can be an exponential
number of possible restrictions on 𝐴3. However, as shown in Section 5.2.1, we can apply a
greedy choice: We can use the combination of partitions of 𝑃1 and 𝑃2 that leads to the mildest
restriction on 𝐴3, in the sense that we want to minimize the angle 𝜑 inside 𝑃 between the leg
𝐷3𝐶 and the edge of 𝑃 incident to 𝐷3 which is also an edge of 𝑃3. Hence, we can use the greedy
choice to restrict our attention to a single pair of optimal partitions of the subpolygons 𝑃1 and
𝑃2.

Bounding star centers and Steiner points. There are 𝑂(𝑛3) possible triples of supports
of tripods and using the greedy choice, we can restrict our attention to a specific pair of star
centers that define the third star center for each tripod. Since a star center may be defined from
two tripods, we get a bound of 𝑂(𝑛6) on the number of star centers that we need to consider.

We also need polynomial bounds on the other points defining the separators, namely the
boundary points 𝐵𝑖 that the pieces share with 𝑃 and the points 𝑆 that neighbouring pieces share
with each other. Some of these points may be corners of 𝑃, but the rest will be Steiner points, i.e.,
not corners of 𝑃. Suppose that we know the star centersA = {𝐴1, . . . , 𝐴𝑘} of the pieces in an
optimal partition. We can then consider a partition Q = {𝑄1, . . . , 𝑄𝑘} where 𝐴𝑖 is a star center
of 𝑄𝑖 and we have maximized the vector of areas ⟨𝑎(𝑄1), . . . , 𝑎(𝑄𝑘)⟩ in lexicographic order. As
we will see (Lemma 2.5), such a partition Q exists (for any fixed set of star centersA), and in
Section 4 we show that Q has the property that each Steiner point in the interior of 𝑃 is defined
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by at most five star centers and two corners of 𝑃. Hence, there are at most 𝑂(𝑛6·5 · 𝑛2) = 𝑂(𝑛32)
relevant Steiner points to try out. A Steiner point on the boundary 𝜕𝑃 will be defined by an
edge of 𝑃 and, in the worst case, a line through two star centers, which gives 𝑂(𝑛13) possibilities.
Hence, we can bound the number of possible long separators by𝑂(𝑛13 ·𝑛6 ·𝑛32 ·𝑛6 ·𝑛13) = 𝑂(𝑛70).

In Appendix B, we give an elementary proof of a structural result that reduces the number
of Steiner points needed on the boundary of 𝑃 to only 𝑂(𝑛). It might be possible to use this
result to design a faster algorithm than the one presented here, but the proof relies on many
modifications to the partition, so it is not clear if our algorithm can be modified to find the
resulting partition.

Algorithm. Our algorithm now works as follows. In the first phase, we consider each diagonal
of 𝑃, and we recursively find all relevant optimal partitions of the subpolygon on one side of
the diagonal. Once this has been done for all diagonals, we consider each possible triple of
concave corners of 𝑃 supporting a tripod, and we use the greedy choice to select the pair of star
centers that can be used to define the third star center of the tripod. We then construct 𝑂(𝑛6)
possible star centers by considering all pairs of (i) tripods, (ii) lines through two corners of 𝑃,
and (iii) one tripod and one line through two corners of 𝑃. The set of potential star centers leads
to polynomially many Steiner points and separators as described above. In the second phase,
we use dynamic programming to find out how many pieces we need in the subpolygon defined
by each separator. The total running time turns out to be 𝑂(𝑛107) or within 𝑂(𝑛105) arithmetic
operations.

1.3 Open Problems & Discussion

Although polynomial, our algorithm is too slow to be of much practical use. Our main result is
showing that the problem is polynomial-time solvable, so in order to facilitate understanding
and verification of our work, we decided to give a description of the algorithm that is as simple as
possible, and consequently we did not further optimize the running time. Although we believe
that it is possible to optimize the algorithm significantly (for instance using structural insights
from Appendix B), it seems that our approach will remain impractical. Hence, it is interesting
whether a practical constant-factor approximation algorithm exists. For the minimum convex
partition problem, the following wonderfully simple algorithm produces a partition with at
most twice as many pieces as the minimum [15]: For each concave corner 𝐶 of the input polygon
𝑃, cut 𝑃 along an extension of an edge incident to 𝐶 until we reach the boundary of 𝑃 or a
previously constructed cut. It would be valuable to find a practical and simple algorithm for
star partitions with similar approximation guarantees.

Higher-dimensional versions of the minimum star partition problem are also of great
interest and we are not aware of any work on such problems from a theoretical point of view.
The high-dimensional problems are similarly well-motivated from a practical angle, since in
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motion-planning the configuration space is in general high-dimensional and a star partition of
the free space can then be used to find a path from one configuration to another, as described in
Section 1.1 (in fact, all the cited papers related to motion planning [52, 26, 37, 38, 55] also describe
a high-dimensional setting). We note that the three-dimensional version of the minimum convex
partition problem already received some attention, e.g. [20, 9, 17].

Many interesting partitioning problems of simple polygons with Steiner points are still
open. Surprisingly, one problem that remains open is arguably the most basic of all problems of
this type, namely, that of partitioning a simple polygon 𝑃 into a minimum number of triangles.
If 𝑃 has 𝑛 corners, a maximal set of pairwise interior-disjoint diagonals always partitions 𝑃
into 𝑛 − 2 triangles and finding such a triangulation is a well-understood problem with a long
history, culminating in Chazelle’s famous linear-time algorithm [18]. In general, however, there
exist partitions into fewer than 𝑛 − 2 triangles and it is an open problem whether an optimal
partition can be found in polynomial time. Asano, Asano, and Pinter [7] showed that a minimum
triangulation without Steiner points can be found in polynomial time. When Steiner points
are allowed, they gave examples of polygons in which points from the set 𝑉1 are needed, and
they conjecture that there are instances in which points from the set 𝑉𝑖 for arbitrarily large
values of 𝑖 are needed (i.e. points which have arbitrarily large degrees). Another classical open
problem is to partition a simple polygon into a minimum number of spirals with Steiner points
allowed. A spiral is a polygon where all concave corners appear in succession. The problem of
partitioning into spirals was originally motivated by feature generation for syntactic pattern
recognition [29] and a polynomial-time algorithm finding the optimal solution to the problem
without Steiner points is known [33]. However, no algorithm is known for the unrestricted
problem.

We hope that our techniques may be useful when designing algorithms to solve the above-
mentioned problems. In particular, considering extreme partitions can lead to natural piece
boundaries which in turn can be exploited using a dynamic programming approach. Computing
such partitions in two phases, first computing potential locations of Steiner points that are
subsequently used in guessing separators of pieces in an optimal solution, presents itself as a
general paradigm to attack problems of this type.

1.4 Organization

The remainder of this work is organized as follows. In Section 2, we define various types of
polygons, partitions, and other central concepts. We also give lemmas ensuring the existence of
partitions that are extreme in terms of the coordinates of the star centers or the areas of the
pieces. In Section 3, we study coordinate maximum partitions and the structures arising from
tripods. These structural properties help us find a set of polynomially many potential points to
use as star centers. In Section 4, we study area maximum partitions. The insights gained on
their structure help us characterize all other Steiner points to use as corners in our partition,
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given a set of potential star centers (coming from the previous section). Finally in Section 5,
we show how to use our structural results to design our two-phase dynamic programming
algorithm.

2. Preliminaries

In this section we first cover some basic definitions to then turn towards partitions that are
maximum with respect to either the area of the pieces or the coordinates of the star centers.

2.1 Definitions

We say that a pair of segments cross if their interiors intersect.

Polygons. A simple polygon is a compact region in the plane whose boundary is a simple,
closed curve consisting of finitely many line segments. For technical reasons, we allow the pieces
of a partition to be weakly simple polygons. A weakly simple polygon 𝑄 is a simply-connected
and compact region in the plane whose boundary is a union of finitely many line segments.
In particular, a simple polygon is also a weakly simple polygon, but the opposite is not true
in general. For instance, a weakly simple polygon 𝑄 may have a disconnected or even empty
interior. However, just as for a simple polygon, a weakly simple polygon 𝑄 can be defined by its
edges in counterclockwise order around the boundary. These edges form a closed boundary
curve 𝛾 of 𝑄. Since 𝑄 is weakly simple, some corners may coincide, and edges may overlap. A
perturbation of 𝛾 that is arbitrarily small with respect to the Fréchet distance can turn 𝑄 into a
simple polygon [4, 13]. This perturbation may involve the introduction of more corners. For
instance, if 𝑄 is just a line segment, then 𝑄 has only two corners, and one more is needed to
obtain a simple polygon. We denote the boundary of a (weakly) simple polygon 𝑄 as 𝜕𝑄.

We sometimes consider points that lie on so-called extensions. Given a polygon 𝑃 and a
segment 𝐶𝐷 ⊂ 𝑃, the extension of 𝐶𝐷 is the maximal segment 𝐶′𝐷′ such that 𝐶𝐷 ⊂ 𝐶′𝐷′ ⊂ 𝑃.

Star-Shaped Polygons. A (weakly) simple polygon 𝑄 is called star-shaped if there is a point
𝐴 in 𝑄 such that for all points 𝐵 in 𝑄, the line segment 𝐴𝐵 is contained in 𝑄. Such a point 𝐴 is
called a star center of𝑄. We denote by ker(𝑄) the set of all star centers of𝑄, and it is well-known
that ker(𝑄) is a convex polygonal region in 𝑄. Throughout the paper, we use the symbol “𝑄” to
denote a star-shaped polygon and “𝐴” to denote a fixed star center of such a polygon. When
proving our structural results, we repeatedly use the following lemma to trim some of the pieces
of a star partition.

LEMMA 2.1. Let 𝑄 be a star-shaped polygon with star center 𝐴, and let 𝐻 be an open half-plane
bounded by a line ℎ. Let 𝐶 be a connected component of the intersection 𝑄 ∩ 𝐻 and suppose that
𝐴 ∉ 𝐶. Then 𝐴 ∉ 𝐻 and 𝑄′ B 𝑄 \ 𝐶 is also a star-shaped polygon with star center 𝐴.
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Figure 7. Left: A partition that our algorithm may produce, involving the piece 𝑄2 which is only weakly
simple. Right: We can assign a bit of the neighbouring pieces to 𝑄2 and obtain a partition into simple
polygons.

PROOF . First, if 𝐴 ∈ 𝐻 , then𝑄∩𝐻 consists of a single connected component as𝑄 is star-shaped.
However, this implies 𝐴 ∈ 𝐶, which we assumed not to be the case. Thus, 𝐴 ∉ 𝐻 .

Now consider a point 𝐵 ∈ 𝑄′. If 𝐵 ∉ 𝐻 , then 𝐴𝐵 ∩ 𝐻 = ∅. Hence we also have 𝐴𝐵 ⊂ 𝑄′,
since 𝐴𝐵 ⊂ 𝑄. Otherwise (if 𝐵 ∈ 𝐻), then 𝐵 is in a connected component 𝐷 of 𝑄 ∩ 𝐻 with 𝐷

different from 𝐶. Let 𝑋 be the intersection point of ℎ and 𝐴𝐵. Since 𝐴𝐵 ⊂ 𝑄, we must have
𝑋𝐵 ⊂ 𝐷. As 𝐷 ⊂ 𝑄′, we then have 𝐴𝐵 ⊂ 𝑄′. We therefore conclude that 𝑄′ is star-shaped. ■

Partitions. We will eventually consider star partitions of a modification 𝑃 of the input polygon
𝑃 obtained by making incisions into the interior of 𝑃 from corners. Thus, 𝑃 is a weakly simple
polygon covering the same region as 𝑃, but 𝑃 has some extra edges on top of each other that
stick into the interior of 𝑃. To accommodate this, we define star partitions in a way that allows
both the input polygon 𝑃 and the pieces to be weakly simple polygons. We define a star partition
of a weakly simple polygon 𝑃 to be a set of weakly simple star-shaped polygons 𝑄1, . . . , 𝑄𝑘 such
that after an arbitrarily small perturbation of 𝑃 and 𝑄1, . . . , 𝑄𝑘, we obtain simple polygons 𝑃′

and 𝑄′1, . . . , 𝑄
′
𝑘

with the following properties:

1. The polygons 𝑄′1, . . . , 𝑄
′
𝑘

are pairwise interior-disjoint.
2.

⋃𝑘
𝑖=1𝑄

′
𝑖
= 𝑃′.

Note that this implies that the weakly simple polygons𝑄1, . . . , 𝑄𝑘 must also have properties
1 and 2 (with 𝑃′ replaced by 𝑃 and 𝑄′

𝑖
replaced by 𝑄𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}), since otherwise a

large perturbation would be needed for them to be transformed into simple polygons with
the required properties. However, it would not be sufficient to define a partition as a set of
weakly simple polygons with properties 1 and 2 alone. This would, for instance, allow two
pieces with empty interiors (such as two segments) to properly intersect each other, which is
not intended. Our algorithm may produce weakly simple pieces which are not simple, since
the boundary can meet itself at the star center; see Figure 7. As demonstrated in the figure, by
applying Lemma 2.1, such a piece 𝑄 can “steal” a bit from the neighbouring pieces, which turns
𝑄 into a simple polygon 𝑄′, resulting in a partition consisting of simple polygons.
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(Important) Sight Lines. Given a star-shaped polygon 𝑄 and a star center 𝐴 ∈ ker(𝑄), each
segment that connects a corner of 𝑄 with the center 𝐴 is called a sight line of 𝑄. A sight line ℓ is
called an important sight line if it contains a corner 𝐷 of 𝑃 in its interior. We call 𝐷 the support
of ℓ. If there are multiple candidates, we define the corner farthest from the star center as the
support.

Tripods. In a star partition, three pieces 𝑄1, 𝑄2, 𝑄3 with star centers 𝐴1, 𝐴2, 𝐴3 form a tripod
with tripod point 𝐶 if the following properties hold.

𝐴𝑖𝐶 is an important sight line of 𝑄𝑖 with support 𝐷𝑖 , for each 𝑖 ∈ {1, 2, 3}. These concave
corners 𝐷1, 𝐷2, 𝐷3 of 𝑃 are called the supports of the tripod.
The union 𝑄1 ∪ 𝑄2 ∪ 𝑄3 contains a (sufficiently small) disk centered at 𝐶.
The three pieces 𝑄1, 𝑄2, 𝑄3 have strictly convex corners at 𝐶.

Tripods can be necessary in optimal solutions, see Figure 1 for such an example.
The three segments 𝐷1𝐶, 𝐷2𝐶, 𝐷3𝐶 are called the legs of the tripod. The polygon bounded by

the three shortest paths in 𝑃 between pairs of the supports 𝐷1, 𝐷2, 𝐷3 is called the pseudo-triangle
of the tripod, and these shortest paths are called pseudo-diagonals.

LEMMA 2.2. Let T1,T2 be two distinct tripods in a star partition Q. The interiors of the pseudo-
triangles of T1 and T2 are disjoint.

PROOF . The legs of T1 partition 𝑃 into three regions 𝑅0, 𝑅1, 𝑅2. Since tripod legs are boundary
segment of pieces, they cannot cross each other. Hence, all the tripod legs of T2 must lie in one
of 𝑅0, 𝑅1, 𝑅2; without loss of generality, assume they lie in 𝑅0. Then the pseudo-triangle of T2 is a
subpolygon of 𝑅0. Towards a contradiction, assume that the interiors of the two pseudo-triangles
are not disjoint. It is impossible that T2 is contained in T1, since it would mean that the corners
of T2 are a subset of the corners of one pseudo-diagonal of T1, and a pseudo-triangle cannot be
made from corners on a concave chain. Hence, if T1 and T2 are not interior-disjoint, there is an
edge 𝑒 of the pseudo-triangle of T2 that crosses the boundary of the pseudo-triangle of T1; see
Figure 8. As the pseudo-triangle of T1 in 𝑅0 is bounded by the two tripod legs (which 𝑒 does not
cross) and a concave chain, the segment 𝑒 must have an endpoint inside the pseudo-triangle. As
both endpoints of 𝑒 are supported by a concave corner of 𝑃, we obtain a contradiction with the
fact that no vertex of 𝑃 is contained in the interior of the pseudo-triangle. ■

2.2 Coordinate and Area Maximum Partitions

Coordinate Maximum Partition. We define the lexicographic order ⪯ of vectors 𝑣1, 𝑣2 ∈ R𝑑

so that 𝑣1 ⪯ 𝑣2 iff 𝑣1 = 𝑣2 or 𝑖 is the first dimension that 𝑣1 and 𝑣2 differ in and 𝑣1[𝑖] < 𝑣2[𝑖].
Note that this definition carries over to star centers in a straightforward manner. For a star-
shaped polygon 𝑄, the maximum star center of 𝑄 is the star center (i.e. point in ker(𝑄)) with
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Figure 8. If the interiors of the pseudo-triangles of two tripods intersect, then either a vertex of a
pseudo-triangle is in the other pseudo-triangle, or a pseudo-triangle crosses a tripod leg of another
tripod.

the lexicographically largest value. For a polygon 𝑃, consider an optimal star partition Q with
maximum star centers 𝐴1, . . . , 𝐴𝑘 sorted in lexicographic order, and define 𝑐(Q) = ⟨𝐴1, . . . , 𝐴𝑘⟩
to be the combined coordinate vector. If 𝑐(Q) is maximum in lexicographic order among all
optimal star partitions of 𝑃, we say that Q is a coordinate maximum optimal partition. In other
cases, it is useful to consider a partition with given star centers where the vector of areas of the
pieces has been maximized. In this section, we provide lemmas that ensure the existence of
such partitions. The proofs are deferred to Appendix A.

LEMMA 2.3. For any simple polygon 𝑃, there exists a coordinate maximum optimal star partition.

Restricted Coordinate Maximum Partitions. It will sometimes be necessary to change the
direction in which we maximize a specific subset of star centers, while keeping the remaining
ones fixed. Furthermore, we often have to restrict the star centers that we are optimizing to
a subpolygon 𝐹 ⊆ 𝑃. For this, we use the following generalization of Lemma 2.3, the proof of
which is analogous. Given a vector 𝑑 ∈ R2, we define 𝑑⊥ ∈ R2 to be the vector orthogonal to 𝑑
obtained by rotating 𝑑 counterclockwise by 𝜋/2.

LEMMA 2.4 (Restricted coordinate maximization). Consider a simple polygon 𝑃 and an
optimal star partition with star centers 𝐴1, . . . , 𝐴𝑘. Let 𝑖 ≤ 𝑘 and suppose that 𝐴𝑖 , . . . , 𝐴𝑘 ∈ 𝐹
for a polygon 𝐹 ⊆ 𝑃. Let 𝑑 ∈ R2 \ {(0, 0)} be a vector. There exists a star partition of 𝑃 with
star centers 𝐴1, 𝐴2, . . . , 𝐴𝑖−1, 𝐴

∗
𝑖
, 𝐴∗

𝑖+1, . . . , 𝐴
∗
𝑘

where 𝐴∗
𝑖
, 𝐴∗

𝑖+1, . . . , 𝐴
∗
𝑘
∈ 𝐹 and ⟨𝐴∗

𝑖
· 𝑑, 𝐴∗

𝑖
· 𝑑⊥, 𝐴∗

𝑖+1 ·
𝑑, 𝐴∗

𝑖+1 · 𝑑
⊥, . . . , 𝐴∗

𝑘
· 𝑑, 𝐴∗

𝑘
· 𝑑⊥⟩ is maximum in lexicographic order among all star partitions with

fixed star centers 𝐴1, . . . , 𝐴𝑖−1 and for which the remaining star centers are restricted to 𝐹.

The partition described in Lemma 2.4 is called the restricted coordinate maximum optimal
star partition along 𝑑, within 𝐹 and with fixed star centers 𝐴1, . . . , 𝐴𝑖−1. Note that a coordinate
maximum optimal partition is a restricted coordinate maximum one along 𝑑 = (1, 0), within 𝑃
and with no fixed star center.
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Area Maximum Partition. Consider a polygon 𝑃 and a star partition Q = {𝑄1, . . . , 𝑄𝑘} of 𝑃
with corresponding star centersA = {𝐴1, . . . , 𝐴𝑘}. We say that Q is area maximum with respect
toA if the vector of areas 𝑎(Q) = ⟨𝑎(𝑄1), . . . , 𝑎(𝑄𝑘)⟩ is maximum in lexicographic order among
all partitions of 𝑃 with star centersA.

LEMMA 2.5. Let 𝑃 be a polygon and suppose that there exists a star partition of 𝑃 with star
centersA = {𝐴1, . . . , 𝐴𝑘}. Then there exists a partition which is area maximum with respect to
A.

3. Structural Results on Tripods and Star Centers

In this section, we will present a construction process which can construct all the star centers
and tripods in some optimal solution within linearly many steps. To achieve this goal, we first
need to pick an optimal solution with good properties. We do this by considering restricted
coordinate maximum partitions (see Lemma 2.4).

LEMMA 3.1. Consider a simple polygon 𝑃 and an optimal star partition Q = {𝑄1, . . . , 𝑄𝑘} with
corresponding star centers 𝐴1, . . . , 𝐴𝑘. There exists an optimal star partition consisting of simple
polygons with the same star centers, such that no four pieces meet in the same point and no star
center lies in the interior of a sight line.

PROOF . We first turn the weakly simple star partition into a star partition with simple polygons;
see Section 2. We then modify the partition, not moving the star centers, so that no four pieces
contain the same point. Assume that there exists a point 𝐶 such that 𝐶 ∈ 𝑄1 ∩ · · · ∩ 𝑄𝑚 for some
𝑚 ≥ 4. Without loss of generality, assume 𝑄1, . . . , 𝑄𝑚 appear in clockwise order around 𝐶. Let
𝛼𝑖 be the angle of 𝑄𝑖 at 𝐶. Since

∑𝑚
𝑖=1 𝛼𝑖 ≤ 2𝜋, we have either 𝛼1 +𝛼2 ≤ 𝜋 or 𝛼3 +𝛼4 ≤ 𝜋. Without

loss of generality, assume 𝛼1 + 𝛼2 ≤ 𝜋. We now decrease the number of pieces containing 𝐶,
while not creating an intersection point of four or more pieces. Recall that 𝐴𝑖 is the star center
of 𝑄𝑖 . We consider two cases; see Figure 9:

𝑨1 is not on an extension of the shared boundary with 𝑨2 or vice versa. If 𝐴1 is not on
an extension of the shared boundary with 𝐴2, then 𝑄1 can take a small enough triangle
around 𝐶 from 𝑄2, while the two new Steiner points in the partition are contained in at
most three pieces, namely 𝑄1, 𝑄2, 𝑄3. A similar modification is possible if 𝐴2 is not on an
extension of the shared boundary with 𝐴1.
Both 𝑨1 and 𝑨2 are on an extension of their shared boundary. Without loss of generality,
assume 𝐴1 is closer to 𝐶 than 𝐴2. Then 𝑄1 can take a sufficiently small triangle around the
segment 𝐴1𝐶, while not creating any new point where four pieces meet.

Hence, eventually we obtain a star partition that has no four pieces meeting in the same point.
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Figure 9. Reduce the number of pieces containing the same point. The two figures on the left show
the modification we perform if none of the star centers are on an extension of the shared boundary with
the other star center. The right figure shows the case when both star centers lie on an extension of the
shared segment. Blue region marks the piece 𝑄1, red regions is the piece 𝑄2, and the gray region is
going to be transferred from 𝑄2 to 𝑄1.
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Figure 10. Redistributing pieces to remove a sight line that contains star centers in its interior.

We now modify the partition to remove all sight lines that contain some star center in
their interior. Let ℓ = 𝐴0𝐶 be a sight line that contains 𝐴1, 𝐴2, . . . , 𝐴𝑚 in its interior. We first
choose a sequence of points 𝐶1, 𝐶2, . . . , 𝐶𝑚 along the next edge of 𝑄0; see Figure 10. We then give
the quadrilateral 𝐴𝑖𝐴𝑖+1𝐶𝑖+1𝐶𝑖 to piece 𝑄𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑚 − 1}. Finally we give 𝐴𝑚𝐶𝐶𝑚 to
𝑄𝑚. This modification removes all star centers from the interior of one sight line while no newly
created sight line contains a star center in its interior. It is easy to check that this modification
of the partition does not make four pieces meet. ■

The main tool in this section is restricted coordinate maximum partitions defined in Sec-
tion 2. The following lemma captures one of our key combinatorial results on a star center in
a restricted coordinate maximum partition from Lemma 2.4. Intuitively, if one moves a star
center 𝐴𝑘 of an optimal star partition in the direction 𝑑 as far as possible without moving other
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star centers (but possibly changing what region of 𝑃 each piece contains), then there are only a
few reasons to get stuck.

LEMMA 3.2. Consider the restricted coordinate maximum optimal star partition consisting of
simple polygons Q = {𝑄1, . . . , 𝑄𝑘} along 𝑑 and with fixed star centers 𝐴1, . . . , 𝐴𝑘−1 (so that only
the coordinates of the last center 𝐴𝑘 have been maximized). Assume 𝐴𝑘 is restricted within a
polygon 𝐹 ⊆ 𝑃. Suppose that no four pieces meet in the same point and no star center is in the
interior of any sight line. Then 𝐴𝑘 lies on the intersection of two non-parallel segments of the
following types:

an edge of 𝐹,
an important sight line of 𝑄𝑘, not containing any other star center, which is

an extension of an edge of 𝑃, or
on the extension of a diagonal of 𝑃 that connects two concave corners, or
an extension of a tripod leg (see Section 2), and no star center is in the interior of the
pseudo-triangle of this tripod.

PROOF . We can choose 𝐴𝑘 freely inside ker(𝑄𝑘) ∩ 𝐹 while all the pieces remain the same. By
coordinate maximization, 𝐴𝑘 must be a corner of ker(𝑄𝑘) ∩ 𝐹. Let S denote the set of edges 𝑒
of 𝑄𝑘 such that 𝐴𝑘 is on the extension of 𝑒. Let S′ denote the set of edges of 𝐹 that 𝐴𝑘 lies on.
Since all edges of ker(𝑄𝑘) come from extensions of edges of 𝑄𝑘, there must be two non-parallel
segments in S ∪ S′.

We call a segment in S good if it is collinear to a segment that is of the described types in
the lemma statement; otherwise, we call it bad. In the remainder of the proof, we modify the
partition Q while not moving any star centers and never creating any new important sight lines
of 𝑄𝑘, which means that the two good segments we find at last are also good segment of the
initial star partition Q. At the same time, we decrease the number of bad segments in S until
all segments in S are good. In the end, either 𝐴𝑘 satisfies the lemma, or else we cannot find two
non-parallel segments in S ∪ S′, which would mean that 𝐴𝑘 is not at a corner of ker(𝑄𝑘) ∩ 𝐹
therefore contradicting that 𝐴𝑘 is optimal with respect to coordinate maximization.

In the remainder of the proof, all star centers and corners of 𝑃 on 𝜕𝑄𝑘 are considered as
corners of 𝑄𝑘, so there can be several collinear consecutive segments of 𝑄𝑘. First, we consider
the case that 𝐴𝑘 is the endpoint of a bad segment in S.

1. 𝑨𝒌 is a corner of 𝑷. Then 𝐴𝑘 must be a corner of 𝐹 as 𝐹 ⊂ 𝑃. Hence 𝐴𝑘 is at two edges of
𝑃 and the lemma holds.

2. 𝑨𝒌 is in the interior of an edge of 𝑷. If 𝐴𝑘 is a corner of 𝐹, then the lemma holds. Otherwise,
𝐴𝑘 is in the interior of an edge of 𝐹 that is collinear to the boundary of 𝑃. We can assign an
arbitrarily small region around 𝐴𝑘 to 𝑄𝑘 such that 𝐴𝑘 is not an endpoint of a bad segment
anymore; see Figure 11. Since we do not create any new important sight line in 𝑄𝑘, we
do not introduce any new good segments in S. The only new bad segment we introduce
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Figure 11. Dealing with the case that 𝐴𝑘 ∈ 𝜕𝑃. The gray region marks the region that we give to 𝑄𝑘.
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Figure 12. Dealing with the case that 𝐴𝑘 ∈ 𝜕𝑄𝑘. The gray region marks the region that we give to 𝑄𝑘.
The first figure shows the case that 𝐴𝑘 is a convex corner for all pieces; the second shows the case that
𝐴𝑘 is a concave corner of 𝑄𝑘; the third shows the case that 𝐴𝑘 is a concave corner of other pieces.

is parallel to the boundary edge of 𝑃 that 𝐴𝑘 lies on, which can also be removed from 𝑆

without breaking the assumption that 𝑆 ∪ 𝑆′ contains two non-parallel segments— since
there must be a parallel edge of 𝐹.

3. 𝑨𝒌 is in the interior of 𝑷. This can happen when 𝐴𝑘 is either a convex corner of all pieces
touching it, a concave corner of the piece 𝑄𝑘, or a concave corner of some other piece. In
all cases, we transfer a sufficiently small area around 𝐴𝑘 to 𝑄𝑘 and thereby make 𝐴𝑘 not
be an endpoint of a bad segment; see Figure 12.

In the following 𝐴𝑘 is not an endpoint of a bad segment in S. Let 𝑒 = 𝐶1𝐶2 be a segment
in S and let 𝐶2 be the farther end of 𝑒 from 𝐴𝑘. Let 𝐶0 be the nearest vertex along 𝐴𝑘𝐶1 to 𝐴𝑘.
Note that 𝐶0𝐶1 ⊂ 𝜕𝑄𝑘. Note that this implies 𝐶0 ≠ 𝐴𝑘, as 𝐴𝑘 is not the endpoint of a bad segment
in S. Furthermore, let 𝐶3 be the farthest point from 𝐴𝑘 in the direction of 𝐶2 on the extension
of 𝐴𝑘𝐶2 such that 𝐶2𝐶3 ⊂ 𝜕𝑄𝑘 (it might be the case that 𝐶3 = 𝐶2). Let 𝐶4 be the next corner of 𝐶3

on 𝜕𝑄𝑘, and let 𝐶−1 be the previous corner of 𝐶0 on 𝜕𝑄𝑘. We again consider multiple cases:
1. Another star center 𝐴𝑖 is on 𝐴𝑘𝐶3. According to our assumptions in the lemma statement,

no star center is in the interior of a sight line, thus we have 𝐴𝑖 = 𝐶3. We can then transfer
the triangle 𝐶0𝐶3𝐶4 from𝑄𝑘 to𝑄𝑖 and the number of bad segments inS is thereby reduced;
see Figure 13.

2. No corner of 𝑷 is in the interior of the sight line 𝑨𝒌𝑪2. Or equivalently, 𝐴𝑘𝐶2 is not an
important sight line. In this case we give a sufficiently small triangle 𝐶′𝐶0𝐶2 to 𝑄𝑘, where
𝐶′ is sufficiently close to 𝐶0 on the segment 𝐶−1𝐶0; see Figure 14. According to Lemma 2.1,
all pieces that are cut by the segment 𝐶′𝐶2 are still star shaped. This way we reduce the
size of S by removing 𝐶1𝐶2.
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Figure 13. If the sight line ends at another star center 𝐴𝑖, we can give the triangle 𝐶0𝐶3𝐶4 to 𝑄𝑖 and
reduce |S|.
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Figure 14. No corners of 𝑃 on 𝐴𝑘𝐶2.

In the remainder we can assume that the sight line 𝐴𝑘𝐶2 is supported by a corner of 𝑃,
i.e., it is an important sight line. Since 𝐴𝑘𝐶2 is covered by 𝐴𝑘𝐶3, 𝐴𝑘𝐶3 is also an important
sight line. Let 𝐷 be the support (Section 2) of 𝐴𝑘𝐶3. In the remainder we try to remove
𝐷𝐶3 from S.

3. 𝑪3 is a convex corner of 𝑷 and not adjacent to 𝑫. Note that if 𝐶3 was a convex corner of
𝑃 adjacent to 𝐷, then 𝐴𝑘𝐶3 would be an extension of an edge 𝐷𝐶3 of 𝑃, which is a good
segment in S. We can remove a sufficiently small triangle 𝐷𝐶3𝐶

′ from 𝑄𝑘 for 𝐶′ close
enough to 𝐶3 on segment 𝐶3𝐶4, and distribute the triangle to the neighboring pieces by
extending the edges that end at 𝐷𝐶3; see Figure 15. Since we do not create concave corners
in any pieces they remain star-shaped. The same argument is also applicable if 𝐷𝐶3 ends
in the interior of an edge of 𝑃 as we can consider the intersection point as a degenerate
convex corner of 𝑃.
In the remainder 𝐶3 is in the interior of 𝑃.

4. 𝑪3 is a concave corner of some piece 𝑸𝒊. Then 𝐶3 is a convex corner of 𝑃 \ 𝑄𝑖 and we can
use a similar modification to remove 𝐷𝐶3 from S as in the previous case; see Figure 16.
In the remainder, 𝐶3 a convex corner of all its adjacent pieces. According to the assumption
of the lemma that no four pieces meet at the same point, 𝐶3 is contained in at most three
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Figure 15. The case when the boundary of 𝑄𝑘 ends at a convex corner of 𝑃.
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Figure 16. 𝐶3 is a concave corner of some piece.

pieces. Since the angle of 𝑄𝑘 at 𝐶3 is strictly less than 𝜋, there actually must be exactly
three pieces containing 𝐶3. With slight abuse of notation, let 𝑄0 = 𝑄𝑘, 𝑄1, 𝑄2 be these three
pieces in clockwise order; let 𝛼𝑖 be the angle of 𝑄𝑖 at 𝐶3; and let 𝐴𝑖 be the star center of 𝑄𝑖 .

5. 𝐶3 is not a tripod point. If an edge at 𝐶3 is not covered by an important sight line, we can
modify the partition and remove 𝐷𝐶3 from S; see Figure 17. Otherwise, all edges at 𝐶3 are
covered by important sight lines. As 𝐶3 is not a tripod point, we have that 𝛼1 = 𝜋 or 𝛼2 = 𝜋.
If 𝛼1 = 𝜋, let 𝐷′ be the support of 𝐴1𝐶3. Now 𝐴𝑘𝐶3 is on the extension of the diagonal 𝐷𝐷′

that connects two concave corners of 𝑃. If 𝛼2 = 𝜋, then 𝐶3 is a convex corner of 𝑃 \𝑄2 and
we can modify the partition similar to case 3.
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Figure 17. The case when an edge at 𝐶3 is not covered by important sight line.
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Figure 18. Three cases of where the star center 𝐴′3 is and how we define the gray triangle to give to 𝐴′3.

In the remainder, 𝐶3 is a tripod point. Note that if the tripod associated with 𝐶3 contains no
star center in its pseudo-triangle, then the edge 𝐶1𝐶2 is a good edge. Hence, the only remaining
case is the following.

6. 𝐶3 is a tripod point and a star center is in the interior of the pseudo-triangle of this
tripod. Let 𝐴3 be any star center inside the pseudo-triangle. The tripod partitions 𝑃 into
three regions 𝑅0, 𝑅1, 𝑅2, where 𝑅𝑖 is the region containing 𝐴𝑖 . Let 𝑅′

𝑖
be the intersection of

𝑅𝑖 and the pseudo-triangle. First we prove that there exists a segment 𝑋𝑌 from one leg of
the tripod to another leg that contains a star center 𝐴′3 and no star center is in the interior
of triangle 𝐶3𝑋𝑌 . Let 𝑅′

𝑗
be the region that contains 𝐴3. Consider the convex hull C of all

corners of this pseudo-triangle and all star centers in 𝑅′
𝑗
. There exists a corner of C that is

a star center 𝐴′3, as 𝐴3 lies in the interior of 𝑅′
𝑗
. Let ℓ be an arbitrary tangent of C at 𝐴′3,

and let 𝑋𝑌 be the subsegment of ℓ that is contained in the pseudo-triangle. Whichever
region 𝐴3 lies in, we can modify the partition so that the tripod is broken and |S| is not
increased; see Figure 18. Since the number of possible tripods is finite, we can apply the
argument a finite number of times and then either the size of S is decreased, or 𝐴𝑘𝐶3

becomes a good segment. ■

3.1 Tripod Trees

We now define what we call the tripod tree—a description of the structure of tripods in an
optimal solution (see also Figure 20). Given a star partition, consider the partition that is induced
by the tripod legs. Note that this partition is simply the star partition but with some pieces
having been merged. We construct a bipartite graph 𝐺 = (𝑋 ∪ 𝑌, 𝐸) as follows:

We add a vertex to 𝑋 for each face of the partition induced by the legs.
We add a vertex to 𝑌 for each tripod.
We add an edge {𝑥, 𝑦} to 𝐸 if and only if a tripod leg of 𝑦 forms part of the boundary of 𝑥.
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Figure 19. Illustration for a tripod tree. A cross represents a star center, a solid circle represents a
tripod point. The left figure shows star partition and the right figure shows the faces splits by all the
tripod legs.

OBSERVAT ION 3.3. Given a star partition, the tripod tree graph 𝐺 is indeed a tree.

PROOF . If the tripods are considered degenerate pieces of the partition, then 𝐺 corresponds
to the dual graph of the partition induced by the legs. Thus, 𝐺 is connected. Furthermore, note
that every tripod cuts the polygon 𝑃 into three disconnected pieces, so the corresponding vertex
in 𝑌 is a cut vertex, which implies that 𝐺 is a tree. ■

We choose the root of the tripod tree to be the face that contains the first edge of 𝑃, merely
for consistency. For every tripod T formed by pieces 𝑄𝑖 , 𝑄 𝑗 , 𝑄𝑘 where 𝑄𝑖 is contained in the
parent face of T , we call the star center 𝐴𝑖 of 𝑄𝑖 the parent star center of T and the star centers
𝐴 𝑗 , 𝐴𝑘 of 𝑄 𝑗 , 𝑄𝑘 are both called child star centers of T . Note that we can directly identify the
parent star center of a tripod without the full tripod tree.

Fake tripod. In a star partition Q, a fake tripod T ′ with tripod point 𝐶 is defined by two
star centers 𝐴1, 𝐴2 of pieces 𝑄1, 𝑄2 and three concave corners 𝐷1, 𝐷2, 𝐷3 of 𝑃 if the following
properties hold.

𝐴𝑖𝐶 is an important sight line of 𝑄𝑖 with support 𝐷𝑖 , for each 𝑖 ∈ {1, 2}.
𝐴𝑖𝐶 ⊂

⋃
𝑄∈Q 𝜕𝑄 for each 𝑖 ∈ {1, 2}.

The three angles 𝐷1𝐶𝐷2, 𝐷2𝐶𝐷3, 𝐷3𝐶𝐷1 are strictly convex.
Let 𝐹1, 𝐹2, 𝐹3 be the three connected components of 𝑃 cut by 𝐷1𝐶 ∪ 𝐷2𝐶 ∪ 𝐷3𝐶, where
𝐴1 ∈ 𝐹1, 𝐴2 ∈ 𝐹2, 𝐹3 contains the first edge of 𝑃. 𝐷3 is a concave corner in 𝐹3. The union
𝑄1 ∪ 𝑄2 ∪ 𝐹3 contains a (sufficiently small) disk at 𝐶.
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Figure 20. The combinatorial structure of tripod tree. We make it rooted by selecting a face to be the
root, for example the one (𝐹4) containing edge 𝑣0𝑣1. Note that we can easily distinguish parent and
children without the full partition.
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Figure 21. Left: a fake tripod defined by star-centers 𝐴1, 𝐴2 and supports 𝐷1, 𝐷2, 𝐷3. Note that 𝐴′3 is not
on the extension of 𝐶𝐷3. Right: a tripod and its associated fake tripod, since there exists the third
star-center 𝐴3 on the extension of 𝐶𝐷3. The fake tripod is the same as the one in the left figure.

Similarly as for tripods, the three segments 𝐷1𝐶, 𝐷2𝐶, 𝐷3𝐶 are called the legs of T ′, 𝐴1, 𝐴2 are
called child star centers of T ′, and the polygon bounded by the shortest paths between pairs of
supports 𝐷1, 𝐷2, 𝐷3 is called the pseudo-triangle of T ′.

Note that for every tripod T , there is exactly one fake tripod T ′with the same tripod point
and legs, which is defined by its supports and the two child star centers of T . We say T ′ is the
associated fake tripod of T .

REMARK 3.4. We introduce the concept of fake tripods (see also Figure 21) to facilitate our
algorithm. The final algorithm will simulate the construction process (described in the following
Section 3.2) and get a full partition in the end. We can not easily decide whether a (real) tripod
exists unless we find both its two child star centers and its parent star center. Algorithmically, it
is much easier to construct the fake tripods in a bottom-up fashion just using the two child star
centers, without knowledge of where (or if) a potential third parent star-center might exist.
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3.2 Construction Process

We now describe an iterative construction process of star centers and fake tripods. We will
show that there exists an optimal star partition for which all star centers can be constructed
using this process in linear steps. The construction process is with respect to a star partition Q
and is a process to “mark” star centers and fake tripods of Q as “constructable”. Formally, we
call a star center or a fake tripod constructable (with respect to Q) if it can be marked by the
following process. At each step in the process, we can do one of the following operations:

Mark a star center 𝐴𝑘 at the intersection of two non-parallel segments of the following
types:

1. An edge of 𝑃;
2. An edge of the pseudo-triangle of a marked fake tripod;
3. An important sight line of a piece 𝑄𝑘, which is on the extension of

an edge of 𝑃;
a diagonal of 𝑃 that connects two concave corners of 𝑃;
a tripod leg of a tripod T whose extension contains the parent star center of T ,
while the corresponding fake tripod T ′ of T is marked.

Mark a fake tripod T ′ defined by two marked star centers 𝐴𝑖 , 𝐴 𝑗 and three concave corners
𝐷𝑖 , 𝐷 𝑗 , 𝐷𝑘 of 𝑃. Additionally, there must be no star center (marked or unmarked) in the
interior of the pseudo-triangle of T ′.

An optimal star partition Q is called constructable if all the star centers in Q is constructable
with respect to Q.

Now comes the major structural result in this section, which gives us a combinatorial way
to describe some optimal star partition.

THEOREM 3.5 (Construction of optimal star partition). There exists a constructable optimal
star partition Q.

REMARK 3.6. We can also define a similar construction process if we can only mark tripod.
In fact, the two definitions agree on whether a partition is constructable or not. When a fake
tripod is used to mark a star center, it must be a tripod; otherwise, there is no need to mark that
fake tripod.

This theorem also implies that the bit complexity of each star center is 𝑂(𝑛).

COROLLARY 3.7. Each star center in a constructable optimal star partition can be encoded by
a sequence of 𝑂(𝑛) corners of 𝑃, which specifies the process to mark it.

REMARK 3.8. Using the same proof strategy, we can also prove𝑂(𝐾) bits are enough to encode
each star center in a constructable optimal star partition, where 𝐾 is the total number of bits to
encode the input polygon 𝑃.
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PROOF . We will prove that we can encode each star center 𝐴𝑖 by 4𝑠(𝐴𝑖) corners, where 𝑠(𝐴𝑖)
is the size of the subtree in the fake tripod tree rooted at the face containing 𝐴𝑖 , and encode
each fake tripod point 𝐶 by 4𝑠(𝐶) corners, where 𝑠(𝐶) is the size of the subtree in the fake tripod
tree rooted at 𝐶.

The proof is by induction on the fake tripod tree from leaf node to root node. For each leaf
node of the fake tripod tree, every star center in the corresponding face can only be marked
by two lines that each of them are defined by two corners of 𝑃, since the face does not have
any fake tripod point as its child. Now consider the internal nodes of the fake tripod tree. If it
corresponds to a fake tripod T , the tripod point 𝐶 can be encoded by its two child star centers
𝐴𝑖 , 𝐴 𝑗 together with two concave corners of 𝑃, so we need 𝑠(𝐴𝑖) + 𝑠(𝐴 𝑗) + 2 = 4𝑠(𝐶) − 2 ≤ 4𝑠(𝐶)
corners to encode 𝐶. If it corresponds to a face 𝐹, then for any star center 𝐴𝑘 in 𝐹, it can be
encoded by two lines, each of them is either defined by two corners of 𝑃 or defined by a child
fake tripod T of 𝐹. In all cases, the star center can be encoded by 4𝑠(𝐴𝑘) corners of 𝑃.

It remains to bound the size of the fake tripod tree. According to Chvátal’s art gallery
theorem, we can partition any polygon into at most ⌊𝑛/3⌋ star-shape pieces. Any leaf face in
the fake tripod tree contains at least one star center, so the fake tripod tree contains at most
⌊𝑛/3⌋ leaves, therefore it has at most 2𝑛/3 nodes. ■

Instead of proving Theorem 3.5 directly, we prove the following stronger lemma, which
allows us to extend a “partially constructable” optimal solution into a constructable one. This
lemma also helps us to prove the correctness of the greedy choice (see Section 5.2.1) used when
choosing tripods, which is the main technique to improve the running time of our dynamic
programming algorithm into polynomial time in Section 5.

LEMMA 3.9. Let Q be an optimal star partition of 𝑃 such that some star centers 𝐴1, 𝐴2, . . . , 𝐴𝑘

and some fake tripods T ′1 ,T ′2 , . . . ,T ′𝑙 are constructable with respect to Q. Suppose there exists a
star center in Q which is not constructable with respect to Q, then there exists an optimal solution
Q′ containing 𝐴1, 𝐴2, . . . , 𝐴𝑘, 𝐴𝑘+1 as star centers and T ′1 ,T ′2 , . . . ,T ′𝑙 as fake tripods, such that
𝐴1, 𝐴2, . . . , 𝐴𝑘, 𝐴𝑘+1 and T ′1 ,T ′2 , . . . ,T ′𝑙 are constructable.

PROOF . A star center is called missing if it’s not constructable with respect to Q. Consider
the construction process of all the constructable star centers and fake tripods. Throughout the
construction process we maintain what we call the feasible region, which initially consists of the
whole polygon 𝑃. When a fake tripod with center 𝐶 is marked by two marked star centers 𝐴1, 𝐴2

and three concave corners 𝐷1, 𝐷2, 𝐷3, we partition the polygon into three parts (according to
the legs of the fake tripod) and remove the pseudo-triangle of this fake tripod from the feasible
region. Moreover, we add two segments 𝐴1𝐷1, 𝐴2𝐷2 as an incision into the boundary of both
the polygon3 and the feasible region. See Figure 22 for illustration. This way, we fix the two

3 Now the polygon becomes only weakly simple, even if it was a initially a simple polygon (see Section 2).
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Figure 22. The figure shows the feasible region and the partition of the polygon where some star
centers and fake tripods are marked. Thick black lines represent how we partition the polygon into three
parts. Red segments mark the boundary of feasible region, and some of them are merely incisions. Blue
region is a weakly connected components of the feasible region in the left part, with some red segments
as incisions. The gray region marks the pseudo-triangle of the marked fake tripod, which is not a part of
the feasible region, but the entire feasible region covers everything else. Each black circle represents a
marked star center or a marked fake tripod, and each cross represents an unmarked star center.

important sight lines 𝐴1𝐶 and 𝐴2𝐶, and make sure that no star centers are in the interior of the
pseudo-triangle of this fake tripod in the following steps. When a star center 𝐴𝑖 is marked by an
important sight line ℓ of 𝑄𝑖 , we also add ℓ as an incision into the boundary of both the polygon
and the feasible region.

Since the constructable fake tripods partition the polygon into disconnected pieces, we
can consider the construction process within each connected part independently. Let 𝑃′ be such
a connected part for which at least one star center is not constructable. If there are multiple
choices, we will choose one later. Let 𝐹 be the feasible region inside 𝑃′. We now restrict our
polygon to be 𝑃′.

We perform a restricted coordinate maximization along an arbitrary direction 𝑑 as de-
scribed in Lemma 2.4 within 𝐹 and with all the constructable star centers fixed. By optimality,
for each missing star center, the partition is also restricted coordinate-maximal along 𝑑, within
𝐹 and with all the other star centers fixed. Applying Lemma 3.2, we know that all the missing
star centers lie on the intersection of two non-parallel segments of certain types. We call these
segments the crucial segments. The goal of the following discussion is to mark a new star center
using crucial segments. Therefore, we enumerate the types of crucial segments and check
whether they are allowed in the construction process.

Case 1: A crucial segment is an edge of 𝑭 . Every edge of 𝐹 is an edge of 𝑃, or a segment
on the boundary of a pseudo-triangle, or an important sight line that was used to construct a
constructable star center. Note that all segments on the boundary of a pseudo-triangle must be
diagonals that connect two concave corners of 𝑃. Hence, all the edges of 𝐹 can be used to mark
new star centers.
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Case 2: A crucial segment is an important sight line in 𝑷′. Note that all corners of 𝑃′ are
either corners of 𝑃, or constructable star centers, or tripod points of a constructable fake tripod.
Each tripod point is a convex corner in any connected part separated by the tripod legs, hence
they can only induce convex corners of 𝑃′. Consequently, a concave corner of 𝑃′ is either a
concave corner of 𝑃 or a constructable star center. According to Lemma 3.2, no other star center
lies on a crucial segment, so the crucial segment that the star center lies on must be supported
by a concave corner of 𝑃, which implies that the crucial segment is also an important sight
line when we consider the full polygon 𝑃. If the crucial segment ends at a concave corner of 𝑃′,
it must end at a concave corner of 𝑃, as crucial segments are not allowed to contain another
star center. Hence, it is contained in an extension of a diagonal of 𝑃 that connects two concave
corners of 𝑃.

Thus, a crucial segment cannot be used to mark star centers only if it is an extension of a
tripod leg, and either the corresponding fake tripod is not constructable, or the star center is
not in the parent face of this tripod.

We now consider the tripod tree of Q. We call a tripod illegal if there exists a missing star
center in its child face. Otherwise, we call a tripod legal. Then, a star center is missing only if
one of its crucial segments end at the tripod point of an illegal tripod. As there exists a missing
star center, there also exists an illegal tripod.

Let T be an illegal tripod such that all tripods contained in the subtree rooted at T are
legal. Note that there exists a missing star center in at least one of its child faces. Hence, all star
centers in the two child faces of T , except for the child star centers of T , are constructable. Let
𝐴 be a missing child star center of T . We choose 𝑃′ to be the connected component containing
𝐴.

We perform a restricted coordinate maximization on 𝐴, where the polygon we are going
to partition is the part of 𝑃′ cut by T that 𝐴 lies in, and the feasible region is 𝐹 excluding
the pseudo-triangle of T restricted to the current polygon. We choose 𝑑 to be the direction
perpendicular to the important sight line that 𝐴 ends at the tripod point of T and points to the
unsupported side. The choice of direction 𝑑 makes it impossible that the new star center 𝐴′ lies
on the same important sight lines from T , unless it is also on other two non-parallel crucial
segments.

By a similar analysis of the types of crucial segments that the new star center 𝐴′ lies on, 𝐴′

cannot be marked in the next step only if it is a child star center of an illegal tripod contained
in 𝑃′, and we resolve this case recursively; see Figure 23. Since the subpolygon cut by the new
illegal tripod has strictly fewer corners, this recursion will finish in finite steps. Eventually,
we can find an optimal partition in which one more star center 𝐴′ is constructable by the
intersection of two non-parallel crucial segments. ■
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Figure 23. Illustration for the proof of Theorem 3.5. A constructable star center is represented by a
solid circle, and the missing star center is represented by a cross. Red segments mark the boundary of
the feasible region, and thick black segments mark how we partition the polygon into parts. The top-left
figure shows the partition Q, and the top-right figure shows the restricted coordinate maximization
problem used in the proof. The bottom-left figure shows the restricted coordinate maximization
partition of this problem. The old illegal tripod T is no longer a tripod, but we get a new illegal tripod T ′,
which will be resolved recursively. The bottom-right figure shows this new subproblem that we get.
Since the number of vertices on the boundary are strictly fewer, the recursion will eventually terminate.

The following lemma gives us another useful property of constructable optimal star parti-
tion, which will be used to design our dynamic programming algorithm in Section 5.

LEMMA 3.10. Let Q be a star partition of 𝑃. If a star center 𝐴𝑘 is constructable with respect to
Q, then a corner of 𝑃 appears on the boundary of the piece 𝑄𝑘.

PROOF . We consider the different cases in the construction process which can lead to the star
center 𝐴𝑘 being marked. If 𝐴𝑘 is marked by an important sight line ℓ of 𝑄𝑘, then the support 𝐷′

of ℓ is a corner of 𝑃 in 𝑄𝑘, and the lemma holds. If 𝐴𝑘 is at the intersection of two edges of 𝑃, 𝐴𝑘
must be a corner of 𝑃. If 𝐴𝑘 is at the intersection of an edge of 𝑃 and an edge of a pseudo-triangle,
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𝐴𝑘 must be a corner of 𝑃, as the intersection of the pseudo-triangle and the boundary of 𝑃 is just
a set of concave corners of 𝑃. If 𝐴𝑘 is at the intersection of two non-parallel edges from the same
pseudo-triangle, 𝐴𝑘 must be a corner of this pseudo-triangle, and it therefore is also a concave
corner of 𝑃. If 𝐴𝑘 is at the intersection of two non-parallel edges from different pseudo-triangles,
according to Lemma 2.2, 𝐴𝑘 must be a corner of one pseudo-triangle, therefore 𝐴𝑘 is also a
corner of 𝑃. ■

From this lemma, we directly have the following corollary, which will be used to prove
some combinatorial properties of an optimal partition in Section 5.

COROLLARY 3.1 1. For any constructable optimal star partition Q = 𝑄1, . . . , 𝑄𝑘, we have
𝑄𝑖 ∩ 𝜕𝑃 ≠ ∅, that is, every star-shaped piece touches the boundary of 𝑃.

4. Properties of AreaMaximumPartitions

The objective of this section is to compute a set of polynomially many points that contains all
the Steiner points for some optimal solutions, given all the star centers of an arbitrary optimal
solution. We will work on a constructable optimal star partition, with all the construction lines
fixed as incisions, and analyze the position of the Steiner points in each connected components
independently, as we did in the proof of Theorem 3.5. Recall Lemma 3.10, all the star-shaped
pieces still touch the outer boundary of the input polygon 𝑃.

Consider a weakly simple polygon 𝑃′ with potentially some incisions, a sequence of points
A = (𝐴1, . . . , 𝐴𝑘), and a star partition Q = (𝑄1, . . . , 𝑄𝑘) of the interior of 𝑃′ where 𝐴 𝑗 is a star
center of 𝑄 𝑗 . Recall that Q is called area maximum with respect to A if the vector of areas
𝑎(Q) = ⟨𝑎(𝑄1), . . . , 𝑎(𝑄𝑘)⟩ is maximum in lexicographic order among all partitions of 𝑃 with
star centers A. In Appendix A we argue that this notion of area maximum partition is well-
defined. Note that in the definition of area maximum partitions, the positions of the star centers
are fixed. In this section, we prove some properties of area maximum partitions, in particular
that all corners of pieces (i.e. Steiner points) are in “nice” spots.

Recall that a sight line of a piece 𝑄𝑖 is a segment of the form 𝑟 = 𝐴𝑖𝐶, where 𝐴𝑖 is the star
center of 𝑄𝑖 and 𝐶 is a corner of 𝑄𝑖 . Here, the point 𝐶 is called the end of 𝑟.

LEMMA 4.1. Consider an optimal area maximum partition Q with a given set of star centersA.
For any two pieces 𝑄1, 𝑄2 ∈ Q, let 𝛾 B 𝜕𝑄1 ∩ 𝜕𝑄2 be their shared boundary. Then 𝛾 is

empty, or
a single point, or
a single line segment contained in a sight line of 𝑄1 or 𝑄2, or
two adjacent line segments, each contained in a sight line of 𝑄1 or 𝑄2.
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Figure 24. Situations in the proof of Lemma 4.1. Left: If 𝛾 is not connected, 𝐹 must contain a third piece
which can be subsumed by 𝑄1 and 𝑄2, which is a contradiction. Middle: When 𝑆 and 𝑇 are convex, we
have 𝛾 = 𝑆𝐴2 ∪ 𝐴2𝑇. Right: When 𝑆 is concave, we have 𝛾 = 𝑆𝑆′ ∪ 𝑆′𝑇.

PROOF . We first prove that 𝛾 is connected. Otherwise, there exist points 𝐺1, 𝐺2 ∈ 𝛾 which are
not connected by 𝛾; see Figure 24 (left). Let 𝐴𝑖 ∈ A be the star center of 𝑄𝑖 . Since 𝐺1 and 𝐺2

are not connected by 𝛾, the quadrilateral 𝐹 = 𝐴1𝐺1𝐴2𝐺2 is not contained in 𝑄1 ∪ 𝑄2, but the
boundary 𝜕𝐹 is contained. Hence, 𝐹 contains a third piece from Q. However, the quadrilateral
𝐹 can be completely assigned to 𝑄1 and 𝑄2 (possibly after being split in two), so the partition Q
was not optimal, which is a contradiction. Hence, 𝛾 is connected.

Let 𝑆 and 𝑇 be the endpoints of 𝛾. If 𝑆 = 𝑇 , the shared boundary is a single point which
must be a corner of at least one of the two pieces 𝑄1, 𝑄2, since otherwise their shared boundary
would be longer.

Otherwise, let us traverse 𝛾 from 𝑆 to 𝑇 ; see Figure 24 (middle and right). Since 𝑄1 and 𝑄2

are star-shaped, we move around 𝐴1 in a monotone way, either clockwise or counterclockwise,
and we move in the opposite direction around 𝐴2. Hence, 𝛾 is contained in the quadrilateral
𝐻 = 𝐴1𝑆𝐴2𝑇 . Assume without loss of generality that 𝐴1 had higher priority than 𝐴2 when we
maximized the areas of the pieces in Q.

If 𝑆 and 𝑇 are both convex corners of 𝐻 , then all of 𝐻 can be seen from 𝐴1, so we can
assign the quadrilateral 𝐻 to 𝑄1. Then 𝛾 is a continuous part of 𝑆𝐴2 ∪ 𝐴2𝑇 with 𝐴2 ∈ 𝛾, so 𝛾 is
contained in two sight lines of 𝑄2.

Otherwise, assume without loss of generality that 𝑆 is concave and 𝑇 is convex. Let 𝑆′ be
the intersection between the line containing the segment 𝐴1𝑆 and the segment 𝐴2𝑇 . Then we
maximize the area of 𝑄1 by assigning the triangle 𝐴1𝑆

′𝑇 to 𝑄1 and the rest of 𝐻 (which is the
triangle 𝐴2𝑆𝑆

′) to 𝑄2. Hence, we have that 𝛾 is a continuous part of 𝑆𝑆′ ∪ 𝑆′𝑇 with 𝑆′ ∈ 𝛾, so 𝛾 is
contained in sight lines of 𝑄1 and 𝑄2, respectively. Note that it may happen that 𝑆′ = 𝑇 , so that
one of these segments is degenerate. ■

We say that a point 𝐵 is supporting a sight line 𝑟 = 𝐴𝐶 from a star center 𝐴 if 𝐵 ∈ 𝑟 \ {𝐴}.
The following lemma characterizes all edges of pieces of an area maximum partition, using
Lemma 4.1.
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Figure 25. Situations in the proof of Lemma 4.2. In Case 1.1 or Case 1.2, we can increase the area of 𝑄
or 𝑄1, 𝑄2, 𝑄3 by rotating 𝑟 clockwise or counterclockwise, respectively.

LEMMA 4.2. Consider a piece 𝑄 with star center 𝐴 of an optimal area maximum partition. Let
𝑟 = 𝐴𝐶 be a sight line of 𝑄 which contains an edge on the boundary of 𝑄. Then 𝑟 is of one of the
following types:

(i) 𝑟 is supported by a corner of 𝑃′, which is not a star center, or
(ii) 𝑟 is supported by a star center of another piece, or

(iii) 𝐶 is the end of two non-parallel sight lines of type (i) in other pieces.

PROOF . Suppose that a sight line 𝑟 = 𝐴𝐶 is supported by no corner of 𝑃′ and no star center
of another piece. We will prove that the end 𝐶 must be the end of two sight lines of type (i) of
other pieces. We consider multiple cases.

Case 0: 𝑪 is a corner of 𝑷′. In this case, 𝑟 is supported by 𝐶 and of type (i) or (ii).
Case 1: 𝑪 is an interior point of another sight line or an edge of 𝑷′. Let us denote this

sight line or edge by 𝑒; see Figure 25. Let 𝑓 = 𝐷𝐶 be the edge of 𝑄 contained in 𝑟. Assume
without loss of generality that 𝑟 is horizontal with the end 𝐶 to the right and that the interior of
𝑄 is above 𝑓 . Then some other pieces 𝑄1, . . . , 𝑄𝑖 are below 𝑓 . Recall that in an area maximum
partition, we maximize the vector of areas in a specific lexicographic order; in other words,
each piece has a distinct priority when maximizing the areas. In both of the following cases we
obtain a contradiction.

Case 1.1: 𝑸 has higher priority than all of 𝑸1, . . . , 𝑸𝒊. In this case, we can expand 𝑄 a bit
by rotating 𝑟 a bit clockwise around 𝐴, thus “stealing” some area from the pieces 𝑄1, . . . , 𝑄𝑖 and
increasing the area vector with respect to the lexicographic order.

Case 1.2: One of the pieces 𝑸1, . . . , 𝑸𝒊 has higher priority than 𝑸. In this case, we can
rotate 𝑟 a bit counterclockwise, thus expanding the pieces 𝑄1, . . . , 𝑄𝑖 and increasing the area
vector. We conclude that 𝐶 is not an interior point of another sight line or an edge of 𝑃.

Note that if 𝑟 does not fall into case 0 or case 1, 𝐶 must be in the interior of 𝑃′.
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Figure 26. Case 2.1: Illustration of moving point 𝐶 when none of 𝑟𝑖 is supported by a corner or a star
center. While moving 𝐶, we fix the lines containing the boundary segments that touch 𝑟1, . . . , 𝑟 𝑗, and slide
the intersection points accordingly. If more than one boundary touches 𝑟𝑖 at the same point, we might
only extend the one closest to 𝐶. Since all the new corners we create are convex, all pieces remain star
shaped. We only need to move 𝐶 infinitesimally to obtain a contradiction, so no new crossings will be
formed during this process.
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Figure 27. Case 2.1: If 𝑇 is the highest priority piece and 𝑇 ∪ 𝑟𝑖 = 𝑆 is a single point, then one side of
visibility from its star center 𝐴𝑇 to 𝑆 is not blocked, therefore, 𝑇 take a sufficiently small triangle near 𝑆.

Case 2: 𝑪 is the end of one or more sight lines of other pieces. First, note that according
to Lemma 4.1, if 𝐶 is on the boundary of a piece, then 𝐶 is also contained in a sight line of that
piece. Let the sight lines that share the end 𝐶 be 𝑟1, . . . , 𝑟 𝑗 in counterclockwise order (one of these
is 𝑟), and let the associated set of pieces and star centers be Q = {𝑄1, . . . , 𝑄 𝑗} and 𝐴1, . . . , 𝐴 𝑗 ,
respectively. We first observe that we must have 𝑗 ≥ 3: Clearly 𝑗 ≥ 2, so consider the case 𝑗 = 2.
If the two sight lines 𝑟1 and 𝑟2 are not parallel, then 𝐶 is a concave corner of one of them that
causes the piece to not be star-shaped. If the two sight lines are parallel, then 𝐶 is not a corner
of the pieces, so 𝑟1 and 𝑟2 are not (complete) sight lines of the pieces. Hence, 𝑗 ≥ 3.

Assume without loss of generality that the interior of each 𝑄𝑖 is to the left of 𝑟𝑖 . This has
the consequence that if 𝑟𝑖 is supported by a corner of 𝑃, then the two incident edges are to the
right of 𝑟𝑖 and likewise, if 𝑟𝑖 is supported by a star center, then the interior of the associated
piece is also to the right. Suppose towards a contradiction that at most one of the sight lines
𝑟1, . . . , 𝑟 𝑗 is supported by a corner of 𝑃 that is not also a star center—note that otherwise 𝑟 is
a sight line of type (iii). Let R be the set of pieces 𝑅 for which 𝑅 ∉ Q but 𝜕𝑅 ∩ 𝑟𝑖 ≠ ∅ for some
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𝑖 ∈ {1, . . . , 𝑗}. The goal is to improve the priority of the area vector by exchanging area between
pieces in Q ∪ R, which leads to a contradiction.

Case 2.1: None of 𝒓1, . . . , 𝒓 𝒋 is supported by a corner or a star center. We will show that
it is always possible to move 𝐶 anywhere within a sufficiently small disk; see Figure 26. We
attach all sight lines 𝑟𝑖 = 𝐴𝑖𝐶 to the flexible point 𝐶. For each boundary segment 𝑠 touching one
of 𝑟𝑖 , we fix it on the same straight line, extending or contracting with respect to the movement
of 𝐶, so the intersection point of 𝑠 and 𝑟𝑖 is flexible. If there are multiple segments touching 𝑟𝑖 at
the same point, we will extend only the one closest to 𝐶 if necessary. Since 𝐶 is a convex corner
in all of 𝑄1, . . . , 𝑄 𝑗 , and all new corners are formed by the intersection of some ray and some
straight line, all pieces remain in star shape with respect to their initial star centers.

Now we will show that we can always improve the priority of the area vector.
If 𝑄𝑖 has the highest priority among Q ∪ R, we can slide 𝐶 along the ray 𝐴𝑖𝐶 and expand
𝑄𝑖 .
Otherwise, a piece 𝑇 ∈ R has the highest priority among Q ∪ R. Without loss of generality,
assume 𝑇 is touching and to the right of 𝑟𝑖 . If 𝑇 only touches 𝑟𝑖 at a single point 𝑆, then we
can expand 𝑇 around 𝑆. See Figure 27. If 𝑇 has a boundary segment along 𝑟𝑖 , we can move
𝐶 to the left of the original ray 𝐴𝑖𝐶 and expand 𝑇 .
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Figure 28. The top two figures illustrate the reduction from case 2.2 to case 2.1. By redistributing a
triangle between pieces, the role of 𝑟𝑖 = 𝐴𝑖𝐶 is replaced by 𝑟′𝑖 = 𝐴𝑘𝐶, which is no longer a sight line of
type (ii). The bottom two figures show how to expand 𝑄𝑖 if 𝑄𝑖 has the highest priority. We can slide 𝐶

along the ray 𝐴𝑖𝐶 to 𝐶′ and give the triangle 𝐴𝑖𝐶
′𝐵′𝑖 back to 𝑄𝑖 afterward.
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Case 2.2: None of 𝒓1, . . . , 𝒓 𝒋 is of type (i), but can be of type (ii). Compared with case 2.1,
each sight line 𝑟𝑖 might be supported by star centers. We will show that it’s always possible to
move 𝐶 infinitesimally so as to increase the area vector. See Figure 28 top. We will make some
local modifications along each sight line of type (ii) and reduce to the previous case. Consider
any sight line 𝑟𝑖 of type (ii). Let 𝐴𝑘 be the farthest star center from 𝐴𝑖 that supports 𝑟𝑖 , 𝐵𝑖𝐶 be an
edge of 𝑄𝑖 along 𝑟𝑖−1. We will give the triangle 𝐴𝑖𝐶𝐵𝑖 from 𝑄𝑖 to 𝑄𝑘. After this exchange, the role
of 𝑟𝑖 is replaced by a new sight line 𝑟′

𝑖
= 𝐴𝑘𝐶, which is not supported by any star centers. After

applying this modification along all the sight lines of type (ii), we reduce to case 2.1, therefore,
we can move 𝐶 anywhere within a sufficiently small disk.

Now we will show that we can always improve the priority of the area vector in the end.
Without loss of generality, assume 𝑟𝑖 is the initial sight line that touches the highest priority
piece, and this piece is either 𝑄𝑖 or a piece 𝑇 ∈ R to the right of 𝑟𝑖 . If 𝑟𝑖 is not supported by any
star centers, we can make the same modification as in case 2.1. Therefore, we will only consider
the case that 𝑟𝑖 is of type (ii). Similarly, let 𝐴𝑘 be the farthest star center from 𝐴𝑖 that supports 𝑟𝑖 .
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Figure 29. Case 2.2: When 𝑇 has the highest priority, and 𝑇 touches 𝐴𝑖𝐴𝑘, we can give an sufficiently
small pentagon to 𝑇.

If 𝑄𝑖 has the highest priority, we can slide 𝐶 along the ray 𝐴𝑖𝐶. Let 𝐵𝑖𝐶 be the edge of 𝑄𝑖
along 𝑟𝑖+1. After sliding 𝐶 along the ray 𝐴𝑖𝐶 to 𝐶′, 𝐵𝑖 slides to 𝐵′

𝑖
, we can give the triangle

𝐴𝑖𝐶
′𝐵′
𝑖

back to 𝑄𝑖 and improve the priority of the area vector. See Figure 28 bottom.
If some piece 𝑇 ∈ R touching 𝑟𝑖 has the highest priority. If it touches 𝐴𝑘𝐶, then after
transferring the triangle 𝐴𝑖𝐶𝐵𝑖 from 𝑄𝑖 to 𝑄𝑘, it reduces to case 2.1. Therefore, we only
need to consider the case when 𝑇 touches 𝐴𝑖𝐴𝑘. If 𝜕𝑇 ∩ 𝐴𝑖𝐴𝑘 is a single point, we can apply
the same modification as case 2.1. See Figure 27. If 𝜕𝑇 ∩ 𝐴𝑖𝐴𝑘 is a segment, we can extend
the two boundary segments end in 𝐴𝑖𝐴𝑘 into the triangle 𝐴𝑖𝐶𝐵𝑖 , give a sufficiently small
pentagon 𝑇 , and repartition the triangle 𝐴𝑖𝐶𝐵𝑖 accordingly. See Figure 29.

Case 2.3: Some 𝒓𝒍 is of type (i). Let 𝐷 be the corner of 𝑃 that supports 𝑟𝑙, which is not a
star center. Without loss of generality, assume 𝑟𝑙 is horizontal with 𝐶 to the right. In this case,
we might not be able to move 𝐶 to the right of 𝐴𝑙𝐷, as 𝐷 blocks the visibility from 𝐴𝑙 to 𝐶. But
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Figure 30. Case 2.3: When 𝑟𝑙 = 𝐴𝑙𝐶 is supported by a non-center-corner 𝐷, we treat the segment 𝐷𝐶 as
𝑟𝑙, and make the all the intersection points with 𝐷𝐶 flexible, as in case 2.1. If there are star centers along
𝐷𝐶 or any other 𝑟𝑖, we treat it in the same way as in case 2.2. This modification keeps all the pieces star
shaped as long as 𝐶 is on or to the left of ray 𝐴𝑙𝐷 and within a sufficiently small disk.
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Figure 31. Case 2.3: If there is no star centers along 𝑟𝑖 = 𝐴𝑖𝐶, we can give the triangle 𝐴𝑖𝐶𝐶
′ to 𝑄𝑖.
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Figure 32. Case 2.3: If there are some star centers along 𝑟𝑖 = 𝐴𝑖𝐶, let 𝐴𝑘 be the farthest from 𝐴𝑖. Since 𝐶

is a convex corner at all pieces, there must be a 𝑟𝑚 to the left of 𝑟𝑖. Then we can take a sufficiently close
point 𝐶′′ along 𝑟𝑚 to 𝐶, and redistribute the quadrilateral 𝐴𝑖𝐴𝑘𝐶

′𝐶′′ to 𝑄𝑖 and 𝑄𝑘.



38 / 68 M. Abrahamsen, J. Blikstad, A. Nusser, H. Zhang

A1

A2
A3

A4

A5

Z1

Z2

Figure 33. Examples of the different sight line types of Lemma 4.2 and different Steiner points these
can give rise to, as characterized by Corollary 4.3. The sight lines 𝐴4𝑍1 and 𝐴5𝑍1 are of type (i)
(supported by a corner), meeting in point 𝑍1. The sight line 𝐴2𝑍2 is of type (ii) (supported by star center
𝐴3). The sight line 𝐴1𝑍1 is of type (iii) (ending in the common endpoint of two sight lines of type (i)). We
note that 𝑍2 here is a Steiner point arising from a sight line of type (ii) ending on a sight line of type (iii).
We will later on show the same diagram for the entire partition of the input polygon. There are five star
centers and two corners involved in the definition of Steiner point 𝑍2, which turns out to be the worst
case. In our algorithm, we will have 𝑂(𝑛6) potential star centers, making for a total of 𝑂(𝑛32) potential
such Steiner points.

we can still move 𝐶 to anywhere within a sufficiently small disk while keeping on or to the left
of 𝐴𝑙𝐷. See Figure 30.

In this case, we will fix all the pieces in R touching 𝐴𝑙𝐷, and extend the highest priority
among the others. Let R′ be the set of pieces touching {𝑟1, . . . , 𝑟 𝑗 , 𝐶𝐷} \ {𝑟𝑙} that is not in Q. As
before, assume 𝑟𝑖 is the sight line touching the highest priority piece.

If there is a horizontal 𝑟𝑘 = 𝐴𝑘𝐶 with 𝐴𝑘 to the right of 𝐶, then we can reduce to case 1 by
taking 𝑟𝑘 ∪ 𝑟𝑙 as 𝑒 and consider any other sight line ends at 𝐶;
If 𝑇 ∈ R′ has the highest priority, we can apply the modification in case 2.2 and expand 𝑇 .
Otherwise, some 𝑄𝑖 has the highest priority. If 𝐴𝑖 is on or below the straight line 𝐴𝑙𝐷, we
can slide 𝐶 along the ray 𝐴𝑖𝐶 and expand 𝑄𝑖 . Let us assume 𝐴𝑖 is above the straight line
𝐴𝑙𝐷. If 𝑟𝑖 = 𝐴𝑖𝐶 is not supported by any star centers, then we can take a sufficiently close
point 𝐶′ to 𝐶 on 𝐶𝐷, and give the triangle 𝐴𝑖𝐶𝐶′ to 𝑄𝑖 . See Figure 31. If 𝑟𝑖 is supported by a
star center, let 𝐴𝑘 be the farthest star center that supports 𝑟𝑖 from 𝐴𝑖 , then 𝑄𝑖 and 𝑄𝑘 can
collectively take some region around 𝐴𝑘𝐶. See Figure 32. ■

See Figure 33 for an example of the different types of sight lines and Steiner points (i.e.
corners of the star pieces) needed in the partition. The following corollary, which characterizes
all required Steiner points, is immediate from Lemmas 4.1 and 4.2; indeed, each Steiner point
must be on the beginning or end of a sight line. Together with Corollary 3.7, we can bound the
complexity to encode each Steiner point.

COROLLARY 4.3. In an area maximum partition of 𝑃′, each Steiner point is of one of the
following types:
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1. The end of a sight line of type (i) or (ii) on an edge of 𝑃′,
2. The end of a sight line of type (i) or (ii) on a sight line of type (i)–(iii),
3. The common end of two sight lines of type (i),
4. A star center.

And each Steiner point can be encoded by a sequence of 𝑂(𝑛) corners of 𝑃′.

Combined with the result of Section 3, we can categorize all sight lines and Steiner points
in some optimal constructable star partition.

LEMMA 4.4. There exists an optimal constructable partition of any simple polygon 𝑃, such that
each sight line 𝑟 = 𝐴𝐶 containing a segment on the shared boundary is of one of the following
types:

(a) 𝑟 is supported by a corner of 𝑃;
(b) 𝑟 is supported by another star center;
(c) 𝐶 is the end of two non-parallel lines of type (a).

And each Steiner point is of one of the following types:
(a) The end of a sight line of type (a) or (b) on an edge of 𝑃,
(b) The end of a sight line of type (a) or (b) on a sight line of type (a), (b) or (c),
(c) The common end of two sight lines of type (a).
(d) A star center.

And each Steiner point can be encoded by a sequence of 𝑂(𝑛) corners of 𝑃.

PROOF . Consider each connected components by adding all the construction lines as incisions.
Within each component, we take the area maximum partition.

We will first map the corners and edges in each connected component back to objects
defined by 𝑃 and the star centers. Note that in each connected component, all corners are
either star centers, or tripod points, or a corner of the initial polygon 𝑃. Each edge in the
connected components, is either an edge of 𝑃, or a part of a construction segment. Note that
each construction segment is a sight line supported by a concave corner of 𝑃, which is of type
(a).

Next we will map all the sight lines in each connected component back to objects defined
by 𝑃 and the star centers. Here we will map them back type by type according to Lemma 4.2.

Type (i) sight lines. All non-star-center corners of each connected component 𝑃′, must be
either corners of 𝑃 or tripod points. Since tripod points are convex corners in any connected
components, it can not support any sight line from the interior. Therefore, any sight line of type
(i) must be supported by a corner of 𝑃, which is of type (a).

Type (ii) sight lines. They are still supported by star centers, so all type (ii) sight lines
inside a connected component 𝑃′ are of type (b).
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Type (iii) sight lines. Since all type (i) sight lines are of type (a), 𝐶 must be the end of two
sight lines of type (a), so all type (iii) sight lines inside a connected component are of type (c).

Next we will map all the Steiner points in each connected components to objects defined
by 𝑃 and star centers. Here we will map back class by class according to Corollary 4.3.

Corners of a connected component. They could be Steiner points in the partition of 𝑃 as
well. Note that in each connected component, all corners are either star centers (class (d)), or
tripod points (class (c)), or a corner of the initial polygon 𝑃 (not a Steiner point), so they all fit
into one of the classes.

Steiner points in class 1. Since all type (i) sight lines in each connected component are of
type (a), all type (ii) sight lines in each connected component are of type (b), every Steiner point
𝐶 in class 1 is the end of a sight line of type (a) or (b). Each edge in each connected component
is either an edge of 𝑃, or a part of a sight line of type (a), it falls into class (a) or (b).

Steiner points in class 2. Since the types of sight lines match, all Steiner points in class 2
are in class (b).

Steiner points in class 3. Since the types of sight lines match, all Steiner points in class 3
are in class (c).

Steiner points in class 4. They are in class (d). ■

5. Algorithm

In this section we present our polynomial time algorithm to find a minimum star partition of a
polygon. We restate our main Theorem 1.1 below, that we prove in this section.

THEOREM 1.1. (Restated) There is an algorithm performing 𝑂(𝑛105) arithmetic operations that
partitions a simple polygon with 𝑛 corners into a minimum number of star-shaped pieces. The
number of bits used to represent each Steiner point in the constructed solution is 𝑂(𝐾) where 𝐾 is
the total number of bits used to represent the corners of 𝑃.

REMARK 5.1. Although it is polynomial time, it is not exactly efficient. Since our main result is
that the problem is in P (while previously it was not clear whether the problem was even in NP),
we have not tried optimizing the running time. We believe that it should not be particularly
difficult to significantly improve the exponent something like ≈ 50 by a more refined analysis.
For instance, using a smaller set of potential Steiner points would lead to a smaller state-space of
the dynamic program (see Appendix B). Our aim here is to give the simplest possible description
of an algorithm with polynomial running time. Our techniques alone might not be sufficient to
bring down the exponent to, say, a single digit. We leave it as an open question to optimize the
running time as far as possible, or conversely provide fine-grained lower bounds.



41 / 68 Minimum Star Partitions of Simple Polygons in Polynomial Time

Overview. We begin with a brief overview of our algorithm (see also the technical overview
in Section 1.2). There are two main challenges to overcome when designing a minimum star
partition algorithm:

First, even if we are given a set of potential Steiner points, it is not clear how to construct
an optimal star-partition.
Second, we need a way to find these potential Steiner points.

For the first challenge, we devise a dynamic programming algorithm. For the second, we rely
heavily on our structural results in Section 3 together with a “greedy choice” lemma. In fact,
in order to find the potential Steiner-points, we need to invoke the dynamic programming
algorithm (which assumes that we know all the potential Steiner points already) on many
smaller instances in a recursive fashion.

Dynamic program. We begin by assuming that we know a set 𝑆(centers) of potential star centers.
In Section 5.1 we show a dynamic programming algorithm to find a partition of the polygon into
a minimum number of star-shaped pieces such that the star center of each piece is in 𝑆(centers). The
algorithm runs in 𝑂(poly(𝑛, |𝑆(centers) |)) time. There are a few key properties that we show that
allow us to define this dynamic programming algorithm (details can be found in Section 5.1):

We show that using 𝑆(centers) and the corners of 𝑃, we can find a set of all potential
Steiner points (e.g. internal corners of the star pieces). We do this by invoking our
structural lemmas about area maximum partitions from Section 4. There will only be
𝑂(poly(𝑛, |𝑆(centers) |)) many of these potential Steiner points to consider.
We argue that each star piece touches the boundary in some optimal partition (Corol-
lary 3.11).
The above observation allows us to define a set of natural separators (see also Figure 34)
involving at most two star pieces. For points 𝐵1, 𝐵2 on the boundary of 𝑃, star centers
𝐴1, 𝐴2 ∈ 𝑆(centers) and a potential internal corner 𝑍 on the shared boundary of the two
star pieces, we can define a (“long”) separator 𝐵1-𝐴1-𝑍-𝐴2-𝐵2. We also consider (“short”)
separators of the form 𝐵1-𝐴1-𝐵2. These separators allow us to define a sub-region 𝑃′ of 𝑃
on one side of the separator, that we can recursively solve using a dynamic programming
approach.

Finding potential star centers. Given the above mentioned dynamic programming algorithm,
the ultimate challenge is finding some relatively small (i.e. polynomial-sized) set of points
𝑆(centers) such that some optimal solution only uses star centers from 𝑆(centers). However, this
turns out to be quite challenging and we present how we overcome this, together with the full
algorithm, in Section 5.2.

A first attempt might be to consider 𝑆(centers) to be all the 𝑂(𝑛4) points on the intersections
of pairs of diagonals of the polygon. This turns out to not be sufficient, as can be seen in Figure 1.
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Indeed, the same figure shows that the star center points can have degree as high as Ω(𝑛) (in
particular, the position of some star centers depend on up to Ω(𝑛) corners of the input polygon).

Instead, here we use our crucial structural properties of optimal star partitions proven in
Section 3. Essentially, we show there that the only non-trivial structure in some extreme optimal
partitions must be tripods(see Section 2), e.g., like those in Figures 1, 4 and 6. The tripods must
be supported by three corners of the polygon, so there are only 𝑂(𝑛3) such choices where a
tripod can appear. However, the location of the tripod point might depend on other tripods
(again, see Figure 1 for a recursive construction capturing this). To overcome this, we need a
greedy choice property that allows us to argue that, for each potential tripod, there is only a
single arrangement of this tripod we need to care about: the one that is least restrictive for one
of the involved star centers.

To find this greedy arrangement of the tripod, we need to solve the minimum star partition
problem on a subregion of the polygon. For this we can recursively call our algorithm to
construct potential star centers for this smaller instance, and then use the dynamic programming
algorithm to find the optimal star-partition.

In Section 3, we argue that the tripods of some optimal solution are all oriented in a
consistent way. Indeed, recall that each tripod is constructed by its two child star centers and
used to construct its parent star center, so only one of the three subpolygons fenced off by the
tripod depends on the other two subpolygons. This consistent orientation means that all the
tripods can be oriented towards some arbitrary root face (see Figure 5). This is crucial for our
algorithm since this allows us to bound the number of subproblems to 𝑂(𝑛2) (each diagonal of
𝑃 will define a subproblem on the side not containing this root face, that can be solved first and
must not depend on the other side).

5.1 Dynamic Program

In this section we prove the following theorem.

THEOREM 5.2. Suppose we are given a polygon 𝑃 with 𝑛 corners. Suppose also that we know
some set 𝑆(centers) of potential star centers, such that we are guaranteed that there exists an optimal
partition of 𝑃 into the minimum number of weakly simple star-shaped pieces where: (i) each star
piece’s center is in 𝑆(centers), and (ii) each star piece contains a corner of 𝑃. Then we can find such
an optimal solution in 𝑂(poly(𝑛, |𝑆(centers) |)) arithmetic operations4.

REMARK 5.3. For our purposes, we will have |𝑆(centers) | = 𝑂(𝑛6), and the total running time of
the dynamic programming algorithm in Theorem 5.2 will be 𝑂(𝑛105) under the RAM model.

4 Instead of measuring running time here, we count the number of arithmetic operations. This is since points in 𝑆(centers)

might be complicated to represent exactly. In fact, we will invoke the dynamic programming algorithm with points in
𝑆(centers) of degree (and hence bit-complexity) Ω(𝑛), so we cannot assume that we can perform computation on these
points in 𝑂(1) time.
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5.1.1 Defining Other Steiner Points

Suppose we are given a polygon 𝑃 and a set of potential star centers 𝑆(centers), as in the statement
of Theorem 5.2. Using these, we will be able to identify all potential Steiner points needed for
our dynamic program. The main idea is to consider an optimal partition that is area-maximum,
and use our structural results from Section 4 (in particular Corollary 4.3, that characterizes all
potential Steiner points). We will define the set 𝑆(internal) of potential Steiner points to be used as
corners of the star-shaped pieces. Moreover, we define a smaller set 𝑆(border) ⊆ (𝑆(internal) ∩ 𝜕𝑃)
of potential corners of the star pieces that are also on the boundary of 𝑃.

LEMMA 5.4. Let 𝑃 be a polygon and 𝑆(centers) a set of points satisfying the premise of Theorem 5.2.
Then we can find sets 𝑆(border) and 𝑆(internal) of size poly(𝑛, |𝑆(centers) |) such that some weakly simple
minimum star partition (𝑄1, 𝑄2, . . . 𝑄𝑘) of 𝑃 with corresponding star centers (𝐴1, 𝐴2, . . . , 𝐴𝑘)
satisfies the following properties:

1. Each piece 𝑄𝑖 touches the polygon boundary 𝜕𝑃.
2. All star centers 𝐴𝑖 are contained in 𝑆(centers).
3. All corners of 𝑄𝑖 are contained in 𝑆(internal).
4. All corners of 𝑄𝑖 that are also on the boundary of 𝑃 are contained in 𝑆(border).

Construction of Steiner points. We use the characterization of area maximum partitions
from Section 4 in order to define the sets 𝑆(border) and 𝑆(internal). Figure 33 shows the “worst
case” example where some Steiner point depends on five star centers and two corners of 𝑃. We
begin by constructing the sight line types as in Lemma 4.2.

Let 𝐿(𝑖) be the set of lines passing through a potential star center in 𝑆(centers) and a distinct
corner of 𝑃. Note that |𝐿(𝑖) | = 𝑂(𝑛|𝑆(centers) |), and they correspond to sight lines of type (i).
Similarly, let 𝐿(𝑖𝑖) be the set of lines passing through a pair of distinct potential star center
in 𝑆(centers). Note that |𝐿(𝑖) | = 𝑂( |𝑆(centers) |2), and they correspond to sight lines of type (ii).
To define 𝐿(𝑖𝑖𝑖) , we first define 𝑆(𝑖𝑖𝑖) to be the set of points on the intersection of two
non-parallel lines in 𝐿(𝑖) . Then we define 𝐿(𝑖𝑖𝑖) to be the lines through a potential star
center in 𝑆(centers) and a distinct point in 𝑆(𝑖𝑖𝑖) . Note that |𝑆(𝑖𝑖𝑖) | = 𝑂(𝑛2 |𝑆(centers) |2), so
|𝐿(𝑖𝑖𝑖) | = 𝑂(𝑛2 |𝑆(centers) |3), and that these correspond to sight lines of type (iii).

Now we are ready to use these sight lines to construct all necessary Steiner points, specifi-
cally, the different types specified in Corollary 4.3.

Let 𝑆(1) be the intersections of a segment of 𝑃 and a (non-parallel) line in (𝐿(𝑖) ∪ 𝐿(𝑖𝑖)). Note
that |𝑆(1) | = 𝑂(𝑛|𝑆(centers) |2)
Let 𝑆(2) be the intersections of a line in (𝐿(𝑖) ∪𝐿(𝑖𝑖)) and a (non-parallel) line in (𝐿(𝑖) ∪𝐿(𝑖𝑖) ∪
𝐿(𝑖𝑖𝑖)). Note that |𝑆(2) | = 𝑂(𝑛2 |𝑆(centers) |5)
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Let 𝑆(3) := 𝑆(𝑖𝑖𝑖) be the intersections of two (non-parallel) lines in 𝐿(𝑖) . Note that |𝑆(3) | =
𝑂(𝑛2 |𝑆(centers) |2).

Finally, we can, by Corollary 4.3, define our “small” sets of potential Steiner points to
consider:

𝑆(internal) = corners(𝑃)∪𝑆(1)∪𝑆(2)∪𝑆(3) for internal corners of star pieces, with |𝑆(internal) | =
𝑂(𝑛2 |𝑆(centers) |5).
𝑆(border) = corners(𝑃) ∪ 𝑆(1) for corners of star pieces also on the boundary 𝜕𝑃, with
|𝑆(border) | = 𝑂(𝑛|𝑆(centers) |2).

We additionally note that 𝑆(centers) ⊆ 𝑆(2) ⊆ 𝑆(internal) (since a point 𝐴 ∈ 𝑆(centers) will lie on at
least two lines in 𝐿(𝑖) as 𝑃 has at least three non-collinear corners). Similarly (𝑆(centers) ∩ 𝜕𝑃) ⊆
𝑆(1) ⊆ 𝑆(border).

PROOF OF LEMMA 5.4 . Consider any minimum star partition Q = (𝑄1, 𝑄2, . . . 𝑄𝑘)—with
star centers (𝐴1, 𝐴2, . . . 𝐴𝑘)—of 𝑃 that satisfies the premise of Theorem 5.2: that is each star
center is in 𝑆(centers) and each piece touch the boundary of 𝑃 at some corner.

We now consider an area maximum partition Q′ = (𝑄′1, 𝑄′2, . . . 𝑄′𝑘) with the same star
centers (𝐴1, 𝐴2, . . . 𝐴𝑘). By Lemmas 4.2 and 2.5 and Corollary 4.3, this partition must satisfy
that each corner of 𝑄𝑖 is in 𝑆(internal) and if this corner is also on the boundary 𝜕𝑃 it must be in
𝑆(border). Indeed 𝐿(𝑖) , 𝐿(𝑖𝑖) , 𝐿(𝑖𝑖𝑖) must contain all possible sight line types of Lemma 4.2, and so
𝑆(1) , 𝑆(2) , 𝑆(3) must contain all potential Steiner points as specified in Corollary 4.3.

What remains is to argue that each star piece touches the boundary of 𝑃. This is non-trivial,
and unfortunately does not seem to follow directly from area-maximality. Instead we use the
fact that the star pieces in the original partition Q touched the boundary at some corner. For
each piece 𝑄𝑖 we can choose an arbitrary sight line 𝑟𝑖 = 𝐴𝑖𝐵𝑖 to a corner 𝐵𝑖 of 𝑃. Intuitively, we
then “fix” this sight line before doing area-maximality. That is, we instead consider Q′ to be an
area maximum partition where the star centers 𝐴𝑖 are fixed, and the chosen sight lines 𝑟𝑖 must
be contained in piece 𝑄𝑖 .

Formally, we can do this by changing the input polygon 𝑃 into a weakly simple polygon 𝑃′

defined as follows. For each chosen sight line 𝑟𝑖 we add it as an “incision” to 𝑃′ (so now 𝑃′ is a
weakly simple polygon). Note that these incisions cannot intersect except at their endpoints.
The partition Q is also a minimum star-partition of 𝑃′, but now each star center is at a corner
of 𝑃′. If Q′ is chosen to be area maximum in this new polygon 𝑃′, we can then look at Q′ as a
partition of 𝑃 where we assign the “incision” 𝑟𝑖 to piece 𝑄′

𝑖
. This means that each piece must

touch the boundary (perhaps only because of a degenerate ray from the star center to some
corner at 𝑃, but this is acceptable since we allow the pieces to be weakly simple polygons).

What remains is to argue that 𝑆(internal) and 𝑆(border) are still sufficient, i.e. that we did
not introduce any new Steiner points. All new corners of 𝑃′ were star centers, so we did not
introduce any additional sight lines for Lemma 4.2. The additional edges of 𝑃′ are the “incisions”
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Figure 34. A short separator 𝐵′1-𝐴′1-𝐵′2 and a long separator 𝐵1-𝐴1-𝑍-𝐴2-𝐵2 as part of a star partition.

𝑟𝑖 , but these will all be in 𝐿(𝑖) (lines from star centers to corners of 𝑃), so they are considered as
potential endpoints of sight lines in item 2 (instead of item 1) in Corollary 4.3. ■

5.1.2 Dynamic Programming Algorithm

We now provide our dynamic programming algorithm (Algorithm 1) that will consider each
possible star-partition satisfying the properties of Lemma 5.4, and thus will find an optimal
partition given the set 𝑆(centers). Let 𝐵1, 𝐵2 be two points on 𝜕𝑃, 𝑃[𝐵1 : 𝐵2] ⊂ 𝜕𝑃 be the chain from
𝐵1 to 𝐵2 along 𝜕𝑃 in counterclockwise order. We consider the separators (see also Figure 34):

Short separator of the form 𝐵1-𝐴1-𝐵2 for 𝐵1, 𝐵2 ∈ 𝑆(border), and 𝐴1 ∈ 𝑆(centers).
Long separator of the form 𝐵1-𝐴1-𝑍-𝐴2-𝐵2 for 𝐵1, 𝐵2 ∈ 𝑆(border), 𝐴1, 𝐴2 ∈ 𝑆(centers), and
𝑍 ∈ 𝑆(internal).

In the dynamic program, we will, for a given separator, calculate an optimal way to
partition the subpolygon 𝑃′ enclosed by 𝑃[𝐵1 : 𝐵2] and the separator, given that there are
star centers already placed at 𝐴1 (and 𝐴2 in case of a long separator) on the separator. Since
each piece touches the boundary, we will see that it is sufficient to consider separators passing
through at most two star pieces. We describe a few elementary ways to build separators for
larger and larger subpolygons 𝑃′ by e.g. merging two separators or moving the common corner
point 𝑍. In figure Figure 35 and the pseudo-code Algorithm 1 we can see the different cases we
consider for transitions. We also explain the cases here:

Case 0: (Base Case) In the base case we consider trivial short separators, 𝐵1-𝐴1-𝐵2 where either
𝐵1 = 𝐵2, or 𝐵2 is next to 𝐵1 in counterclockwise order. Here 𝐵1𝐴1𝐵2 forms a possibly
degenerate triangle with one side on the boundary 𝜕𝑃, that can be assigned to the star piece
with center 𝐴1

Case 1: (Merge short + short) A short separator 𝐵1-𝐴1-𝐵2 can be seen as the “merge” of two
other short separators 𝐵1-𝐴1-𝐵′ and 𝐵′-𝐴1-𝐵2 for some 𝐵′ ∈ 𝑆(border) ∩ 𝑃[𝐵1 : 𝐵2].

Case 2: (New star center) When a short separator 𝐵1-𝐴1-𝐵2 is neither trivial (Case 0) or the
merge of two short separators (Case 1), some other star center 𝐴′ must be able to see the
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Figure 35. The different transitions we need to consider for the dynamic program algorithm. Cases 0-2
concerns short separators 𝐵1-𝐴1-𝐵2, and Cases 3-5 concerns long separators 𝐵1-𝐴1-𝑍-𝐴2-𝐵2, and we
want to solve the subpolygon “below” these separators. Curve parts indicate that the details have now
been shown.

boundary point 𝐵1 too. This becomes a long separator 𝐵1-𝐴′-𝐵1-𝐴1-𝐵2, where the segment
𝐵1𝐴

′ is a “spike” that occurs twice.
Case 3: (Combine short + short) A long separator 𝐵1-𝐴1-𝑍-𝐴1-𝐵2 where 𝑍 is on the boundary

somewhere between 𝐵1 and 𝐵2 can be decomposed into two short separators 𝐵1-𝐴1-𝑍 and
𝑍-𝐴2-𝐵2.

Case 4: (Move common corner) A long separator 𝐵1-𝐴1-𝑍-𝐴1-𝐵2 can also arise by moving the
common corner 𝑍 from some other point 𝑍′, where 𝐵1-𝐴1-𝑍′-𝐴1-𝐵2 is also a long separator.
Here the triangles 𝐴1𝑍

′𝑍 and 𝐴2𝑍𝑍
′ can be assigned to the star piece with centers 𝐴1 and

𝐴2 respectively.
Case 5: (Merge long + long) For a long separator 𝐵1-𝐴1-𝑍-𝐴1-𝐵2, if neither the common corner

𝑍 can be moved (Case 4), nor it is on the boundary (Case 3), there must exists some other
star center 𝐴′ that can see 𝑍. The star piece with center 𝐴′ must also touch the boundary at
some point, say at 𝐵′. Then our separator is a “merge” of two long ones: 𝐵1-𝐴1-𝑍-𝐴′-𝐵′ and
𝐵′-𝐴′-𝑍-𝐴2-𝐵2.

Note that it is only in Case 0 and Case 4 where we actually assign some positive area of 𝑃 to
some star piece. Whenever we say “𝑋 can see 𝑌” in Algorithm 1, we mean that the segment 𝑋𝑌
is contained within the subpolygon of 𝑃 restricted by the separator.

To use the dynamic programming algorithm to find an optimal star partition, we arbitrarily
pick consecutive points 𝐵1, 𝐵2 ∈ 𝑆(border) on the boundary of 𝑃, where 𝐵2 is next to 𝐵1 in clockwise
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order. There must be some star piece seeing this segment, so we can simply try each possibility
of star centers 𝐴 ∈ 𝑆(centers) and call SolveSeparator(𝐵1, 𝐴, 𝐵2) to find the optimal solution
given that 𝐴 sees the segment 𝐵1𝐵2 (and then just return the best solution we found). Note
that we do not consider 𝐵1 and 𝐵2 to be “adjacent” here for Case 0, as the region enclosed by
𝑃[𝐵1 : 𝐵2] and 𝐵1-𝐴-𝐵2 is 𝑃 \ 𝐵1𝐴𝐵2.

OBSERVAT ION 5.5. Note that the above actually gives us all possible positions, in optimal
solutions, for star centers 𝐴 ∈ 𝑆(centers) that see the segment 𝐵1𝐵2. This will be useful later in the
full algorithm.

Correctness. We now argue that Algorithm 1 is correct, that is that the optimal solution can be
constructed using the transitions (cases) in Figure 35. Suppose we have some optimal partition
satisfying the properties of Lemma 5.4. We will show that the dynamic program will consider
this optimal solution.

Let us first consider the case that we are looking at a short separator 𝐵1-𝐴1-𝐵2 in this
optimal partition. If either 𝐵1 = 𝐵2 or 𝐵1 and 𝐵2 are consecutive points on the border of 𝑃 in
𝑆(border), we are in Case 0. Otherwise, in the optimal partition, either the star piece with center
𝐴1 will also touch the boundary somewhere in between 𝐵1 and 𝐵2, or not. In case it does, it must
touch in a point 𝐵′ ∈ 𝑆(border), where we naturally have two short separators of sub-regions
𝐵1-𝐴1-𝐵′ and 𝐵′-𝐴1-𝐵2, which is handled by Case 1. In case it does not, there must be some other
star piece (say with center 𝐴′) that touches 𝐵1, and then we are in Case 2 with long separator
𝐵1-𝐴′-𝐵1-𝐴1-𝐵2.

Now suppose instead that we are looking at a long separator 𝐵1-𝐴1-𝑍-𝐴2-𝐵2 that is part
of the optimal partition. This means that the two pieces with centers 𝐴1 and 𝐴2 touch. Note
that they will touch in a single contiguous internal boundary (Lemma 4.1 give a complete
characterization of how this boundary can look; it is either a single point or up to two line
segments). Note that 𝑍 must be a point on this contiguous internal boundary. If 𝑍 is not the
last corner on this boundary, we can move it to the next corner 𝑍′, as in Case 4. If 𝑍 instead
was the last corner on this boundary between pieces with centers 𝐴1 and 𝐴2, we have two
sub-cases: (i) either 𝑍 is on the boundary of the polygon 𝑃, or (ii) else there must be some
other star piece touching 𝑍. In sub-case (i) it must be the case that 𝑍 ∈ 𝑆(border), and we have
two natural short separators for sub-regions: 𝐵1-𝐴1-𝑍 and 𝑍-𝐴2-𝐵2, as handled by Case 3. In
sub-case (ii), let 𝐴′ ∈ 𝑆(centers) be the star center of the additional piece touching 𝑍 in the optimal
partition. Note that 𝐴′ must also touch the boundary of 𝑃 somewhere (Lemma 5.4), say in point
𝐵′ ∈ 𝑆(border). Again, we have two natural (long) separators for sub-regions: 𝐵1-𝐴1-𝑍-𝐴′-𝐵′ and
𝐵′-𝐴′-𝑍-𝐴2-𝐵2, which is handled by Case 5.
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1: function SolveSeparator(𝐵1, 𝐴1, 𝐵2):
⊲ returns the minimum number of additional (not counting 𝐴1) star pieces needed to cover the enclosed region of
𝑃 [𝐵1 : 𝐵2] and 𝐵1-𝐴1-𝐵2.

2: Let 𝑃′ be the region enclosed by 𝑃 [𝐵1 : 𝐵2] and 𝐵1-𝐴1-𝑍-𝐴2-𝐵2, compute

visibility of 𝑆(centers) ∪ 𝑆(border) ∪ 𝑆(internal) within 𝑃′

3: opt← 𝑛

4: if 𝐵1 = 𝐵2 or 𝐵2 is next to 𝐵1 in counterclockwise order then ⊲ Case 0: base case

5: opt← 0
6: for 𝐵′ ∈ (𝑆(border) \ {𝐵1, 𝐵2}) ∩ 𝑃 [𝐵1 : 𝐵2] do ⊲ Case 1: merge short + short

7: if 𝐴1 can see 𝐵′ then
8: opt← min(opt, SolveSeparator(𝐵1, 𝐴1, 𝐵

′) + SolveSeparator(𝐵′, 𝐴1, 𝐵2))
9: for 𝐴′ ∈ (𝑆(centers) \ {𝐴1}) ∩ 𝑃′ do ⊲ Case 2: new star center

10: if 𝐴′ can see 𝐵1 then
11: opt← min(opt, 1 + SolveSeparator(𝐵1, 𝐴

′, 𝐵1, 𝐴1, 𝐵2))
12: return opt
13:

14: function SolveSeparator(𝐵1, 𝐴1, 𝑍, 𝐴2, 𝐵2):
⊲ returns the minimum number of additional (not counting 𝐴1 or 𝐴2) star pieces needed to cover the enclosed

region of 𝑃 [𝐵1 : 𝐵2] and 𝐵1-𝐴1-𝑍-𝐴2-𝐵2

15: Let 𝑃′ be the region enclosed by 𝑃 [𝐵1 : 𝐵2] and 𝐵1-𝐴1-𝑍-𝐴2-𝐵2, compute

visibility of 𝑆(centers) ∪ 𝑆(border) ∪ 𝑆(internal) within 𝑃′

16: opt← 𝑛

17: if 𝑍 ∈ 𝑆(border) ∩ 𝑃 [𝐵1 : 𝐵2] then ⊲ Case 3: combine short + short

18: opt← min(opt, SolveSeparator(𝐵1, 𝐴1, 𝑍) + SolveSeparator(𝑍, 𝐴2, 𝐵2))
19: for 𝑍′ ∈ (𝑆(internal) \ {𝑍}) ∩ 𝑃′ do ⊲ Case 4: move common corner

20: if all three of 𝐴1, 𝐴2 and 𝑍 can see 𝑍′ then
21: opt← min(opt, SolveSeparator(𝐵1, 𝐴1, 𝑍

′, 𝐴2, 𝐵2))
22: for 𝐴′ ∈ (𝑆(centers) \ {𝐴1, 𝐴2}) ∩ 𝑃′ do ⊲ Case 5: merge long + long

23: for 𝐵′ ∈ 𝑆(border) ∩ 𝑃 [𝐵1 : 𝐵2] do
24: if 𝐴′ can see 𝐵′ and 𝑍 then
25: opt← min(opt, 1 + SolveSeparator(𝐵1, 𝐴1, 𝑍, 𝐴

′, 𝐵′) +
SolveSeparator(𝐵′, 𝐴′, 𝑍, 𝐴2, 𝐵2))

26: return opt

Algorithm 1. Dynamic programming algorithm

To conclude, any optimal partition satisfying the properties of Lemma 5.4 must be con-
structable by Cases 0-5. Since Algorithm 1 considers all these cases as transitions, it will find an
optimal partition of 𝑃 into star-shaped pieces.
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Running time. To make Algorithm 1 run in polynomial time we assume standard memoization,
i.e. that if SolveSeparator is called several times with the same arguments it only needs to
be solved once. Since 𝑆(border) and 𝑆(internal) are both of size poly(𝑛, |𝑆(centers) |), it is clear that
we have a polynomial many separators and polynomially many transitions, and therefore
Algorithm 1 runs in 𝑂(poly(𝑛, |𝑆(centers) |)) time (proving Theorem 5.2). Below we analyze the
complexity in more detail.

Note that in the 3-parameter function SolveSeparator(𝐵1, 𝐴1, 𝐵2) (short separators), we
have 𝑂( |𝑆(border) |2 · |𝑆(centers) |) states, as 𝐵1, 𝐵2 ∈ 𝑆(border) and 𝐴1 ∈ 𝑆(centers). Similarly, in the 5-
parameter function SolveSeparator(𝐵1, 𝐴1, 𝑍, 𝐴2, 𝐵2) (long separators), we have𝑂( |𝑆(border) |2 ·
|𝑆(centers) |2 · 𝑆(internal)) states, as 𝐵1, 𝐵2 ∈ 𝑆(border), 𝐴1, 𝐴2 ∈ 𝑆(centers), and 𝑍 ∈ 𝑆(internal). We count
the number of transitions in the algorithm for each “Case”:

Case 0: 𝑂(1) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |) many separators.
Case 1: 𝑂( |𝑆(border) |) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |) many separators.
Case 2: 𝑂( |𝑆(centers) |) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |) many separators.
Case 3: 𝑂(1) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |2 · |𝑆(internal) |) many separators.
Case 4: 𝑂( |𝑆(internal) |) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |2 · |𝑆(internal) |) many separators.
Case 5: 𝑂( |𝑆(centers) | · |𝑆(border) |) transitions for 𝑂( |𝑆(border) |2 · |𝑆(centers) |2 · |𝑆(internal) |) many sep-

arators.

We see that Case 4 and Case 5 dominate all other cases, for a total of

𝑂( |𝑆(border) |3 · |𝑆(centers) |3 · |𝑆(internal) | + |𝑆(border) |2 · |𝑆(centers) |2 · |𝑆(internal) |2)

many transitions. For each of these transitions, we might need to go through all 𝑂(𝑛) segments
of the polygon to verify the “𝑋 can see 𝑌” statements, adding another factor of 𝑂(𝑛) to the
running time. Since |𝑆(border) |, |𝑆(internal) | = poly(𝑛, |𝑆(centers) |), we have proved Theorem 5.2.

REMARK 5.6. Plugging in |𝑆(border) | = 𝑂(𝑛|𝑆(centers) |2), |𝑆(internal) | = 𝑂(𝑛2 |𝑆(centers) |5), we see
that the total number of transitions we have is 𝑂(𝑛6 |𝑆(centers) |16), assuming |𝑆(centers) | ≥ 𝑛. In
the final algorithm we will have |𝑆(centers) | = 𝑂(𝑛6), making for a total of 𝑂(𝑛102) transitions!
This means there are a total of 𝑂(𝑛103) arithmetic operations to run the dynamic programming
algorithm (to check the “𝑋 can see 𝑌” statements). According to Corollary 3.7 and Corollary 4.3,
we will consider only points with degree𝑂(𝑛) (i.e. all points can be described by𝑂(𝑛) arithmetic
operations from the input points), so we can perform arithmetic operations in 𝑂(𝑛2) time
naively. Therefore the total running time of Algorithm 1, for our purposes, is 𝑂(𝑛105), as stated
in Remark 5.3.
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5.2 Finding Star Centers & Full Algorithm

Now we turn to show our full polynomial time algorithm, thus proving Theorem 1.1. We note
that if we can find a relatively small set of potential star centers, we can simply use our dynamic
programming algorithm (Algorithm 1 and Theorem 5.2). However, we will see that in order to
find such a sufficient set of potential star centers, we will need to solve smaller instances of the
same problem (where we need to invoke the algorithm recursively).

Constructable partitions. Throughout this section, we will let the root edge 𝑟 be an arbitrary
edge of 𝑃. We will focus our attention to optimal partitions that can be constructed using
the process defined in Section 3—specifically by Theorem 3.5—and call such a star-partition
constructable. In particular, we recall that a constructable partition satisfies the following
properties:

(i) It is optimal, that is it uses a minimum number of star pieces.
(ii) Each star piece touches the boundary of 𝑃 at some corner.

(iii) All tripods in the partition are oriented towards the root face (the face with the root
edge 𝑟).

(iv) All star centers are at the intersection of two lines, each of these lines are either an
edge of 𝑃, a diagonal between two concave corners of 𝑃, or a line through a tripod
point and one of its supporting corners.

Indeed, by Theorem 3.5 (and Lemma 3.10 for item (ii)) there must exist some constructable
partition. However, restricting ourselves to constructable partitions is not enough to get an
efficient algorithm: in general there are a double-exponential number of points that appear as
star centers in some constructable partition. Therefore we seek to restrict our class of optimal
partitions further, and here the greedy choice comes into play (defined below in Section 5.2.1).

Before presenting the greedy choice, we prove a simple lemma saying that the partition
inside the pseudo-triangle of a tripod is not particularly important, and that any partition
outside this pseudo-triangle can always be extended to cover the pseudo-triangle too. This
will be useful for our algorithm, since we can then focus on solving sub-problems defined by
diagonals of 𝑃 (and not defined by the unknown tripod).

LEMMA 5.7. (See Figure 36). Suppose 𝑇 is a tripod supported by corners (𝐷1, 𝐷2, 𝐷3) in some
constructable partition, with tripod point 𝐶. Let 𝑃′ be one of the three sub-polygons 𝑇 splits 𝑃 into
(say between corners 𝐷1 and 𝐷3), and say 𝐴1 ∈ 𝑃′ is the star centers participating in 𝑇 through
corner 𝐷1. Let Δ be the pseudo-triangle of the points (𝐷1, 𝐷2, 𝐷3). Note that 𝑃′ \ Δ consists of
several (at least one) sub-polygons, call them 𝑃1, 𝑃2, . . . , 𝑃𝑘, where 𝐴1 ∈ 𝑃1.

Then any partition of 𝑃1, 𝑃2, . . . , 𝑃𝑘, where 𝐴1 is a star center in 𝑃1 seeing corner 𝐷1, can be
extended to a partition of 𝑃′ (without moving star centers) that 𝐴1 sees 𝐶.
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Figure 36. Modification as in Lemma 5.7. The pseudo-triangle Δ splits the polygon up into multiple
sub-polygons, where we let 𝑃1, 𝑃2, . . . be those on the same “side” as the star-center 𝐴1. Any partitions
of 𝑃1, 𝑃2, 𝑃3, . . . can be extended to the polygonal line 𝐷3-𝐶-𝐷1 in such a way that 𝐴 sees the tripod point
𝐶. We first give the blue region to 𝑄1, then extend all the segments touching the pseudo-diagonal 𝐷1𝐷3

one by one, from right to left, until it meets any existing segment.

PROOF . See Figure 36. Let 𝑠1, . . . , 𝑠𝑚 be the set of segments in the partition of 𝑃1, . . . , 𝑃𝑘 that
touches 𝜕Δ, ordered by the touching point from 𝐷1 to 𝐷3. We simply extend 𝑠1, . . . , 𝑠𝑚 one by
one, until they meet the separator 𝐷3-𝐶-𝐷1 or previous extended boundaries.

We will handle the piece 𝑄1 with star center 𝐴1 in a special manner, since we want it to
see the tripod point 𝐶. So let 𝑍 be the point on 𝜕Δ so that 𝑄1 contains the segment 𝐷1𝑍 on this
boundary. Then we extend the line 𝐴1𝑍 until it meets the line 𝐷3𝐶 first, and assign the blue
region to 𝑄1. This clearly leads to a partition of 𝑃′ while keeping the assignment on 𝑃1 ∪ . . .∪ 𝑃𝑘.
Since 𝐶 is a convex corner of 𝑃′, and all new angles are intersection of a ray and a straight line
(which must be convex), all pieces must remain in star shape.

What remains is to argue that everything inside Δ is covered by our extended partition.
This is true as long as the pseudo-diagonal between 𝐷1 and 𝐷3 contains no edge of 𝑃 (i.e. 𝜕Δ∩ 𝜕𝑃
just contains a finite amount of points, and no line segments). To argue this we use that 𝑇 was a
tripod of some constructable solution. In particular this means that there exists some partition
where 𝑇 is a tripod and no star center lies within the pseudo-triangle Δ. Hence, if there was
some edge 𝑒 of 𝑃 contained in 𝜕Δ, then the interior of this edge could not be seen by any star
center in such a constructable partition, which is our desired contradiction. ■

5.2.1 Greedy Choice

Consider three concave corners (𝐷1, 𝐷2, 𝐷3) of 𝑃, that might support a tripod in some con-
structable partition. We now argue that if there are many possibilities for how the legs of
a tripod supported by (𝐷1, 𝐷2, 𝐷3) look like, then it suffices to consider a single one of these
possibilities! We will call this arrangement the greedy choice of this tripod. Recall that the tripod
point is constructed by two of the sub-polygons 𝑃1, 𝑃2, and used to define the third sub-polygon
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Figure 37. Left: Two child star-centers 𝐴1 and 𝐴2 define a (fake) tripod with tripod point 𝐶, splitting the
polygon into three subpolygons: “childs” 𝑃1, 𝑃2, and “parent” 𝑃3. The angle 𝜑 = ∠𝐶𝐷3𝐷

′ of this tripod is a
measure on how “restricted” a potential star-center 𝐴3 defined by this tripod is. Middle: Two other star
centers 𝐴′1 and 𝐴′2 define another fake tripod on the same support, which is less restrictive (i.e., with an
angle 𝜑′ < 𝜑). Inside 𝑃3 (the parent-side of the tripod), the same partition is shown (in red and blue) as
on the left. Right: The star partition of subpolygon 𝑃3 can be adjusted (without moving any star centers)
to also work with the less restrictive tripod.

𝑃3 (see Figures 6 and 37). In particular, 𝑃1 and 𝑃2 are the children in the tripod tree (see Fig-
ure 20), and 𝑃3 the parent. We argue that the greedy choice will be the combination of optimal
solutions in the two subpolygons 𝑃1 and 𝑃2 that give rise to the least restrictive tripod-center
when constructing the optimal solution for 𝑃3. With least restrictive we mean the one that
minimizes the angle 𝜑 = ∠𝐶𝐷3𝐷

′ as in Figure 37, as such a tripod will only impose the mildest
restrictions on where the star center 𝐴3 ∈ 𝑃3 participating in the tripod lies.

We begin by proving that it never hurts replacing a tripod with a less restrictive one, see
also Figure 37.

LEMMA 5.8. Suppose that there is a tripod T with tripod point 𝐶 supported by three corners
(𝐷1, 𝐷2, 𝐷3), part of a constructable partition Q. Let Δ be the pseudo-triangle of the tripod, and
consider the three sub-polygons 𝑃1, 𝑃2, 𝑃3 in 𝑃 \ Δ participating in the tripod, such that the parent
star center of T is contained in 𝑃3, as in Figures 6 and 37.

Suppose now that there is some other constructable sub-partitions of 𝑃1 and 𝑃2 (using the
same number of star pieces as in the original one) giving rise to another fake tripod T ′ (supported
on the same three concave corners 𝐷1, 𝐷2, 𝐷3) with tripod point 𝐶′, that is less restrictive (the angle
𝜑 in Figure 37 is smaller) for 𝑃3. Then there also exists a constructable optimal star partition of 𝑃
that contains these new sub-partitions of 𝑃1 and 𝑃2, and the fake tripod T ′.

PROOF . By Lemma 5.7, there exists an optimal partition Q′ containing the same sub-partition
in 𝑃1 and 𝑃2 that gives T ′. Since no star center is in the pseudo-triangle Δ of T , the pseudo-
triangle T ′ is also constructable with respect to Q′. Our lemma then follows directly from
Lemma 3.9. ■
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Greedy-constructable partitions. By Lemma 5.8, it never hurts to replace a tripod with
a less restrictive one. The next step is to argue that we can assume that all tripods in our
constructable partition can follow such a greedy choice—which is a very useful property when
designing an algorithm. This is a bit subtle, since such an algorithm might not actually find the
least restrictive version of a tripod T , but only the least restrictive version given that all children
tripods also follow the greedy choice. We formalize this by the notion of greedy-constructable
partitions. A greedy-constructable partition is constructable and also satisfies the following extra
property, adding to properties (i)–(iv) of a constructable partition.

(v) Any tripod T in the partition is greedy (see Definition 5.9 below).

DEF IN IT ION 5.9 (Greedy Choice & Less Restrictive Tripods). First, we define the angle of a
fake tripod T as in Figure 37, i.e., the angle 𝜑 = ∠𝐶𝐷3𝐷

′, where 𝐷′ is the next corner of 𝑃 after
𝐷3, in the parent-subpolygon 𝑃3. We say that a fake tripod T is less restrictive than another fake
tripod T ′ (supported by the same three corners) if the angle is smaller for T than for T ′, i.e. if
T imposes a weaker restriction on the potential star center in the parent subpolygon. We break
ties in an arbitrary but consistent manner.

Consider a tripod T supported by corners (𝐷1, 𝐷2, 𝐷3) in some constructable partition.
Suppose this tripod splits the polygon into the three sub-polygons 𝑃1, 𝑃2, 𝑃3 and is oriented
towards 𝑃3. Consider all the pairs of greedy-constructable5 sub-partitions of 𝑃1 and 𝑃2, giving
rise to some (fake) tripods T ′ supported by the same corners (𝐷1, 𝐷2, 𝐷3). Then the tripod 𝑇 is
the greedy choice for (𝐷1, 𝐷2, 𝐷3), or we simply say that T is greedy, if it is the least restrictive
for 𝑃3 among all such (fake) tripods T ′.

LEMMA 5.10. There exists a greedy-constructable partition.

PROOF . The general idea is to start with a constructable partition (which exists by Theorem 3.5),
and replace tripods that are not greedy by their greedy version instead, using Lemma 5.8. At first
it might not be apparent that this will work, since Lemma 5.8 might introduce new tripods that
are not greedy. We overcome this by carefully eliminating bad tripods in a bottom-up fashion,
and continuing in a recursive manner, similar to our proof that there exists constructable
partitions (proof of Theorem 3.5).

Formally, let us consider some polygon 𝑃 together with a constructable partition Q of 𝑃.
Throughout this proof, whenever we say tripod, we also consider fake tripods (see discussion
in Section 3.1 and Remark 3.4)—i.e. those that can be constructed by two children star centers
but might not be used to construct a parent star center. Consider the rooted tripod tree (see
Observation 3.3 and Figures 5 and 20) of this partition. In this tree we mark all tripods that

5 We note that the definition of greedy choice tripods and greedy-constructable partitions are mutually dependent on
each other. With greedy-constructable for a sub-polygon, we mean that all the tripods used in the partition of the
sub-polygon abides the greedy choice. Since the tripods form a rooted tree (see Observation 3.3), this recursive
definition is well-defined, as tripods only depend on other tripods deeper down in the tree.
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Figure 38. The process of replacing a tripod 𝑇 with the greedy one 𝑇′, as described in the proof of
Lemma 5.10. Bad tripods T𝑏𝑎𝑑 are marked in red, good T𝑔𝑜𝑜𝑑 in blue. The dashed lines indicates “fences”
where star centers are not allowed to pass through. The gray area 𝑅(·) goes down, since the bad tripod
𝑇 was replaced with a good one 𝑇′. The partitions (and tripods) inside 𝑃1, 𝑃2 and 𝑃′3 = 𝑅(Q) ∩ 𝑃3 can
change: for example note that the tripods inside 𝑃1 changed, and that a new bad tripod inside 𝑅(Q′)
appeared.

are not greedy as bad, along with all ancestor tripods. Call this set of bad tripods T𝑏𝑎𝑑 (Q),
and let T𝑔𝑜𝑜𝑑 (Q) be all other tripods. That is T𝑔𝑜𝑜𝑑 (Q) is the set of tripods 𝑇 in Q for which
all tripods in the subtree rooted at 𝑇 (including 𝑇 itself) are greedy. If T𝑏𝑎𝑑 (Q) is empty, Q is
greedy-constructable, so we are done; so suppose that this is not the case. Let 𝑅(Q) be the region
in 𝑃 reachable from the root edge 𝑟 without passing through any tripod from T𝑔𝑜𝑜𝑑 (Q) (see also
Figure 38). Note that all tripods in T𝑏𝑎𝑑 (Q) must by definition be in 𝑅(Q). We will argue that
we can find some other (constructable) partition Q′ such that 𝑅(Q′) is smaller. This is enough,
since there are only finitely many possible positions for tripods in constructable solutions, so
𝑅(·) can only decrease a finite number of times.

Consider Figure 38. Let 𝑇 ∈ T𝑏𝑎𝑑 (Q) be some non-greedy tripod. Say it is supported by
corners (𝐷1, 𝐷2, 𝐷3) and splits the polygon into sub-polygons 𝑃1, 𝑃2, 𝑃3 where it is oriented
towards 𝑃3. Without loss of generality, we may assume that, in our partition, the sub-partitions
of 𝑃1 and 𝑃2 are greedy-constructable: that is all tripods in 𝑃1 and 𝑃2 abide the greedy choice
(else we can instead choose 𝑇 to be one of these non-greedy tripods deeper down in the tripod
tree). Since 𝑇 is not greedy, there must exist other sub-partitions of 𝑃1 and 𝑃2 that are also
greedy-constructable and give rise to a better (less restrictive) greedy tripod 𝑇 ′. First note that
these new sub-partitions of 𝑃1 and 𝑃2 must use the same number of pieces as the original
partition used for these sub-polygons (otherwise it was not optimal; note that it never makes
sense to use an extra piece in a sub-partition to get a less restrictive tripod as we might as well
place this extra piece at the tripod point which would make the whole tripod redundant).

Now we want to use Lemma 5.8 to replace the tripod 𝑇 with 𝑇 ′. However, we cannot
directly apply this lemma as it might destroy some greedy tripods and introduce new non-
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greedy tripods inside the region 𝑃3 in an unpredictable manner. Let us define 𝑃′3 = 𝑃3 ∩ 𝑅(Q)
and 𝑃′ = 𝑃1 ∪ 𝑃2 ∪ 𝑃′3. We use Lemma 5.8 on the polygon 𝑃′ instead of 𝑃, which makes sure that
we do not destroy any greedy tripods inside the region 𝑃3. We must be slightly careful also to
not move any star centers into the pseudo-triangles of tripods in 𝑃, whose tripod points might
now be corners of 𝑃′. For this, we note that it is easy to extend Lemma 5.8 to take into account
these pseudo-triangles:

In the first part of the proof of Lemma 5.8 we argued that there is an optimal (not necessarily
constructable) solution without moving any star centers in 𝑃′3, and in the second part we used
Theorem 3.5 (or rather Lemma 3.9) to argue that then there must also exist a constructable one.
When we invoke Lemma 3.9 we can do so on the full polygon 𝑃, but on our partitions where
everything outside 𝑃′3 is already constructable (so these star pieces and tripods will not change,
and no star center will be moved into the pseudo-triangles of the boundary tripods of 𝑃′3). Then
Lemma 3.9 would give us an optimal partition where tripods and star centers inside 𝑃′3 are also
constructable.

To recap, we now have a constructable partition of 𝑃′ where the greedy tripod 𝑇 ′ is used
instead of 𝑇 . We extend this to a partition Q′ of 𝑃 by using all pieces from the original partition
Q which where in 𝑃 \ 𝑃′ = 𝑃3 \ 𝑅(Q). By design we see that Q′ is constructable. Moreover,
𝑅(Q′) = 𝑃′3 = 𝑅(Q) ∩ 𝑃3, since now 𝑇 ′ is a greedy tripod (and still all tripods in the subregions
𝑃1 and 𝑃2 are greedy, although the new partition of these parts can be quite different from the
original one). To conclude, 𝑅(·) must have gone down, as it is now also restricted by the tripod
𝑇 ′ (and the original tripod 𝑇 was completely contained in 𝑅(Q)). Hence, by induction, there
must exist some greedy-constructable partition. ■

5.2.2 Minimum Star Partition Algorithm

We are now ready to present the full algorithm, and thus proving Theorem 1.1. To optimally
partition a polygon 𝑃 into a minimum number of star pieces we employ the following strategy.
We begin by enumerating all possible positions for tripods (that is triples of concave corners
𝐷1, 𝐷2, 𝐷3 of 𝑃 that might support a tripod). Now, for each of these, we can employ the greedy
choice (see Definition 5.9) to only have a single tripod-center we need to consider. By Lemma 5.10,
there must exist some optimal solution in which all tripods follow this greedy choice. For now,
assume we can actually compute these greedy tripod points (we will get back to this later). That
is we have 𝑂(𝑛3) potential tripod-centers in total. By Theorem 3.5 we can now construct a set of
potential star centers 𝑆(centers) by considering all intersections of pairs of lines, where each line
is either (i) an extension of a diagonal of 𝑃, or (ii) a line from a (greedy) tripod-center through the
corresponding concave corner in this tripod. Note that there are only𝑂(𝑛2+𝑛3) such lines, so we
can bound |𝑆(centers) | by 𝑂(𝑛6). Additionally, we note that in (greedy-)constructable partitions,
each piece touches the boundary at some corner. Given 𝑆(centers), we can hence employ the
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dynamic programming algorithm (Algorithm 1, Theorem 5.2) to find a minumum star partition
of the polygon 𝑃.

Resolving the greedy choice. Now, let us return to the issue of actually determining the posi-
tion of the greedy choice tripod point, of some tripod supported on concave corners 𝐷1, 𝐷2, 𝐷3 of
𝑃. Let 𝑃1, 𝑃2, 𝑃3 be the sub-regions (like in Figure 6), such that the tripod is oriented towards 𝑃3.
Note that 𝑃1 and 𝑃2 are defined by a diagonal of 𝑃 and not by the (so far unknown) tripod. Now,
we can find greedy-constructable optimal solutions for 𝑃1 and 𝑃2 separately, by invoking our
algorithm recursively (see also Figure 39): in the subpolygons we again enumerate all potential
tripods, solve using the greedy choice, and invoke the dynamic program to obtain an optimal
solution. Note that there are only 𝑂(𝑛2) subproblems, since each subproblem is defined by
some diagonal between two concave corners of 𝑃 (here we use the fact that the tripods in a
greedy-constructable partition form a rooted tree). Moreover, our dynamic program allows us
to find all possible positions of the star center 𝐴1 in 𝑃1 used to define the tripod. Indeed 𝐴1 is the
star center that sees a prefix of the pseudo-diagonal from 𝐷1 to 𝐷2, so we can find all possible
positions of it by Observation 5.5. Similarly for the star center 𝐴2 in 𝑃2. Therefore we may simply
enumerate over all pairs of possibilities of 𝐴1 and 𝐴2 and choose the best valid one according to
the greedy choice (Definition 5.9, see also Figures 6, 37 and 39). By Lemma 5.7, any partition we
get here can be extended to a partition meeting the tripod legs. Conversely, any constructable
partition with a tripod supported by 𝐷1, 𝐷2 and 𝐷3, is also a partition of 𝑃 \ Δ (as no star center
would be inside the pseudo-triangle Δ; so we can apply Lemma 2.1 to carve out this part). Hence
we do not loose or gain anything by restricting ourselves to finding optimal partitions restricted
by the pseudo-diagonal, instead of restricted by the (so far unknown) tripod.

Full algorithm. The pseudo-code can be found in Algorithm 2, consisting of two mutually recur-
sive functions TripodGreedyChoice() and SolveSubregion(). The function TripodGreedy-

Choice() will find the tripod point of the greedy tripod, and SolveSubregion(𝐷1, 𝐷2) will
optimally solve the sub-polygon enclosed by the diagonal 𝐷1-𝐷2. To obtain the optimal partition
for the full polygon, we can just call SolveSubregion() on some edge of 𝑃. The correctness
follows from the above discussion.

Running time. We now analyze the running time of Algorithm 2, and again we apply memoiza-
tion to not recompute the same subpolygons multiple times. We will see that the total running
time is 𝑂(poly(𝑛))—or, in fact, it takes 𝑂(𝑛105) arithmetic operations or 𝑂(𝑛107) time. According
to Corollary 3.7 and Corollary 4.3, every star center or steiner point can be encoded by 𝑂(𝑛)
corners of 𝑃, therefore each arithmetic operation can be done in 𝑂(𝑛2) time.

TripodGreedyChoice() will be called at most 𝑂(𝑛3) times, since there are only 𝑂(𝑛3)
choices for 3-tuples of corners 𝐷1, 𝐷2, 𝐷3 of 𝑃. Constructing the pseudo-diagonals can
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Figure 39. An illustration of how TripodGreedyChoice(𝐷1, 𝐷2, 𝐷3) works. First the pseudo-triangle Δ
(dashed in red) is computed. Then it calls SolveSubregion() on the yellow and blue subpolygons of 𝑃 \ Δ,
to recursively partition these optimally. Moreover, using Observation 5.5, we find all potential positions
(in greedy-constructable optimal solutions) for star centers 𝐴1 and 𝐴2, whose piece contains a prefix
(marked green in the figure) of the pseudo-diagonals adjacent to 𝐷1 and 𝐷2 (respectively). The pair
which makes for the least restrictive (Definition 5.9) tripod point is chosen, and this point 𝐶 is returned.
Curved parts indicated that details have been omitted.

be done in 𝑂(𝑛) time. There are at most 𝑂(𝑛6) possible positions for star centers, so
only 𝑂(𝑛12) possible combinations for the greedy choice. For each of these combinations,
we might need to go through the full polygon to see that the legs of the tripod does not
intersect the polygon. Hence the computation inside TripodGreedyChoice() need in total
𝑂(𝑛3 · 𝑛12 · 𝑛) = 𝑂(𝑛16) time over the run of the full algorithm.
SolveSubregion() will be called at most 𝑂(𝑛2) times, since there are only 𝑂(𝑛2) choices
for pairs of corners 𝐷1, 𝐷2 of 𝑃. Enumerating valid tripod-positions can be done in 𝑂(𝑛4)
time (𝑂(𝑛3) many possible 3-tuples of corners, and each can be checked in 𝑂(𝑛) time by
going through the polygon and constructing the pseudo-triangle to see if a valid tripod
can be formed there). We then construct the set 𝑆(centers) of size at most 𝑂(𝑛6). Calling
the dynamic programming algorithm on this set takes 𝑂(𝑛103) arithmetic operations and
𝑂(𝑛105) time (see Theorem 5.2 and Remark 5.3). Followed from Observation 5.5, in the
same time, we can find all possible positions of star centers covering the start of the 𝐷1-𝐷2

segment: indeed, we call the dynamic programming algorithm SolveSeparator(𝐷1, 𝐴, 𝑋)
(where 𝑋 ≠ 𝐷1 is the closest point to 𝐷1 in 𝑆(border) on the 𝐷1-𝐷2 segment) for all possible
star centers 𝐴 ∈ 𝑆(centers), to see which ones of these give a partition of minimum size. Note
that between these calls to SolveSeparator, we do not need to reset the dp-cache, so in
total this takes only 𝑂(𝑛103) arithmetic operations and 𝑂(𝑛105) time. Hence, in total, over
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1: function TripodGreedyChoice(𝐷1, 𝐷2, 𝐷3):
⊲ Returns the greedy choice tripod point of the tripod supported by corners 𝐷1, 𝐷2, 𝐷3 of 𝑃. See Figure 39.
⊲ Suppose, w.l.o.g. (other cases are similar), that we are like in Figure 6: that is the tripod should be oriented

towards 𝐷3 and the root is in the face fenced of by the 𝐷2-𝐷3 pseudo-diagonal.

2: Construct the pseudo-diagonal 𝐷1-𝐷2, say it goes through points

𝐷1 = 𝑋1, 𝑋2, ..., 𝑋𝑘 = 𝐷2

3: Calculate the optimal number of star pieces to cover the sub-polygon defined

by separator 𝑋1-𝑋2, by calling SolveSubregion (𝑋1, 𝑋2)

4: Additionally, this finds all possible positions, in greedy constructable

optimal solutions, of star centers that see a small part of the segment 𝑋1-𝑋2

next to 𝐷1

5: Do the same for diagonal 𝐷2-𝐷3

6: Look at all combinations of star centers and return only the single

tripod-center that makes for the greedy choice (if any).

7: function SolveSubregion(𝐷1, 𝐷2):
⊲ Requires that 𝐷1, 𝐷2 is a diagonal of 𝑃. Call the sub-polygon on the right side (when looking from 𝐷1 to 𝐷2) of the

diagonal 𝑃′.
⊲ SolveSubregion (𝐷1, 𝐷2) will optimally partition 𝑃′ into a minimum number of star-shaped pieces. Moreover, it will

consider all possible positions, in greedy constructable solutions, for the star center that sees a small part of
the 𝐷1𝐷2 segment next to 𝐷1.

8: Enumerate all valid positions of tripods (i.e. 3-tuples of concave corners)

inside 𝑃′, and call TripodGreedyChoice() on these.

9: Let 𝐿 be the set of lines that are either (i) the line through two corners of

𝑃, or (ii) the line through some tripod-center and the corresponding concave

corner of 𝑃.

10: Let 𝑆(centers) be the set of intersection points of pairs of lines from 𝐿.

11: Call the dynamic programming algorithm on 𝑃′ and 𝑆(centers) to find an optimal

solution.

12: By Observation 5.5 we can additionally find all possible positions of the

star center seeing a prefix of the 𝐷1-𝐷2 pseudo-diagonal from 𝐷1 to 𝐷2.

Algorithm 2. Minimum Star Partition Algorithm.

the full run of the algorithm, we will spend 𝑂(𝑛2 · 𝑛103) = 𝑂(𝑛105) arithmetic operations
and 𝑂(𝑛2 · 𝑛105) = 𝑂(𝑛107) time in SolveSubregion.

The above discussion concludes the proof of Theorem 1.1.
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Csaba D. Tóth. Recognizing weakly simple
polygons. Discret. Comput. Geom. 58(4):785–821,
2017. DOI (13)

[5] Esther M. Arkin, Rathish Das, Jie Gao,
Mayank Goswami, Joseph S. B. Mitchell,
Valentin Polishchuk, and Csaba D. Tóth. Cutting
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A. Existence of Coordinate and AreaMaximumPartitions

PROOF OF LEMMA 2.3 . Recall that the Hausdorff distance between two compact sets 𝐴, 𝐵 ⊂
R2 is defined as 𝑑𝐻 (𝐴, 𝐵) B inf{𝑟 ≥ 0 | 𝐴 ⊂ 𝐵 ⊕ 𝐷(𝑟) and 𝐵 ⊂ 𝐴 ⊕ 𝐷(𝑟)}, where ⊕ is the
Minkowski sum and 𝐷(𝑟) is the disk of radius 𝑟 centered at the origin. We will use the fact that
(𝑀 (R2), 𝑑𝐻) is a compact metric space, where 𝑀 (R2) denotes the set of all non-empty closed
subsets of R2; see for instance [28, Theorem 4.5].

Let 𝑐∗ = sup 𝑐(Q), where the supremum is taken over all optimal star partitions Q of 𝑃. We
claim there exists a star partition which realizes the coordinate vector 𝑐∗. Consider a sequence of
optimal star partitions (Q𝑖)𝑖∈N so that 𝑐(Q𝑖) converges to 𝑐∗ as 𝑖 −→ ∞. Let 𝑐(Q𝑖) = ⟨𝐴1𝑖 , . . . , 𝐴𝑘𝑖⟩
and let the pieces of Q𝑖 be 𝑄1𝑖 , . . . , 𝑄𝑘𝑖 so that the maximum star center of 𝑄 𝑗𝑖 is 𝐴 𝑗𝑖 . Be passing
to a subsequence, we can assume that the sequence (𝑄1𝑖)𝑖∈N converges to a compact set 𝑄∗1 with
respect to Hausdorff distance. Similarly, we can assume that (𝑄 𝑗𝑖)𝑖∈N converges to 𝑄∗

𝑗
for each

𝑗 ∈ {1, . . . , 𝑘}. Let Q∗ = {𝑄∗1, . . . , 𝑄∗𝑘} and 𝑐∗ = ⟨𝐴∗1, . . . , 𝐴∗𝑘⟩. We claim that Q∗ is a star partition
of 𝑃 where 𝐴∗

𝑗
is the star center of 𝑄∗

𝑗
.

To see that 𝑄∗
𝑗

is star-shaped with star center 𝐴∗
𝑗
, we first observe that 𝐴∗

𝑗
∈ 𝑄∗

𝑗
. Otherwise,

the star center 𝐴 𝑗𝑖 would not be in 𝑄 𝑗𝑖 for sufficiently large values of 𝑖. Suppose now that 𝐴∗
𝑗

is not a star center of 𝑄∗
𝑗
. This means that there is a point 𝐵 ∈ 𝑄∗

𝑗
so that the line segment

𝐴∗
𝑗
𝐵 is not in 𝑄∗

𝑗
. For each 𝑖 ∈ N, we can choose 𝐵𝑖 ∈ 𝑄 𝑗𝑖 so that 𝐵𝑖 −→ 𝐵 for 𝑖 −→ ∞. Since

𝐴 𝑗𝑖 −→ 𝐴∗
𝑗
, 𝐵𝑖 −→ 𝐵 and 𝐴∗

𝑗
𝐵 is not in 𝑄∗

𝑗
, it follows that 𝐴 𝑗𝑖𝐵𝑖 is not in 𝑄 𝑗𝑖 for sufficiently high

values of 𝑖, which contradicts that 𝐴 𝑗𝑖 is a star center of 𝑄 𝑗𝑖 . In a similar way, we can argue
that the sets in Q∗ are interior-disjoint; otherwise, the sets in Q𝑖 could not be interior-disjoint
for sufficiently high values of 𝑖. Likewise, we get that

⋃Q∗ = 𝑃, and we conclude that Q∗ is a
coordinate maximum optimal star partition of 𝑃. ■

PROOF SKETCH OF LEMMA 2.4 . The proof is analogous to that of Lemma 2.3. Without loss
of generality, we can assume that 𝑑 = (1, 0), so that for any set of points 𝐴′

𝑖
, . . . , 𝐴′

𝑘
, we have

⟨𝐴′𝑖 · 𝑑, 𝐴
′
𝑖 · 𝑑

⊥, 𝐴′𝑖+1 · 𝑑, 𝐴
′
𝑖+1 · 𝑑

⊥, . . . , 𝐴′𝑘 · 𝑑, 𝐴
′
𝑘 · 𝑑

⊥⟩ = ⟨𝐴′𝑖 , 𝐴
′
𝑖+1, . . . , 𝐴

′
𝑘⟩.

Define the supremum ⟨𝐴∗
𝑖
, 𝐴∗

𝑖+1, . . . , 𝐴
∗
𝑘
⟩ = sup⟨𝐴′

𝑖
, 𝐴′

𝑖+1, . . . , 𝐴
′
𝑘
⟩ over all partitions with star

centers 𝐴′
𝑖
, 𝐴′

𝑖+1, . . . , 𝐴
′
𝑘

in the region 𝐹 and the rest fixed at the points 𝐴1, . . . , 𝐴𝑖−1. We then
consider a convergent sequence of star partitions with fixed star centers 𝐴1, . . . , 𝐴𝑖−1 and the
rest converging to 𝐴∗

𝑖
, . . . , 𝐴∗

𝑘
, and it follows that the limit of the pieces constitute a partition

realizing the supremum. ■

PROOF OF LEMMA 2.5 . The proof is similar to that of Lemma 2.3. Namely, let 𝑎∗ = sup 𝑎(Q),
where the supremum is taken over all star partitions Q of 𝑃 with star centers A. We then
consider a sequence of partitions (Q𝑖)𝑖∈N with star centersA so that 𝑎(Q𝑖) −→ 𝑎∗ as 𝑖 −→ ∞.
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Let the pieces of Q𝑖 be 𝑄1𝑖 , . . . , 𝑄𝑘𝑖 so that 𝐴 𝑗 is a star center of 𝑄 𝑗𝑖 . By passing to a subsequence,
we can assume that (𝑄 𝑗𝑖)𝑖∈N converges to a compact set 𝑄∗

𝑗
for each 𝑗 ∈ {1, . . . , 𝑘}.

As in the proof of Lemma 2.3, we can conclude that Q∗ = {𝑄∗1, . . . , 𝑄∗𝑘} is a star partition of
𝑃 with star centersA and that 𝑎(Q∗) = 𝑎∗, so Q∗ is area maximum. ■

B. Structural Theorem

In this section, we give an elementary and independent proof of a structural theorem about
optimal star partitions, which is not used in the rest of the paper. A point on the boundary of
the polygon 𝑃 is canonical if it is a corner of 𝑃 or the endpoint of an extension of an edge of 𝑃;
see Figure 40 (left).

THEOREM B.1. Let 𝑘 be minimum such that there exists a star partition of 𝑃 consisting of 𝑘
polygons and assume 𝑘 ≥ 2. There exists a star partition 𝑄1, . . . , 𝑄𝑘 of 𝑃, where each piece 𝑄𝑖 has
the following properties:

1. 𝜕𝑄𝑖 contains a concave corner of 𝑃, and
2. for each connected component of the shared boundary 𝜕𝑃∩𝜕𝑄𝑖 , both endpoints are canonical.

C
D

Figure 40. Left: A polygon with the extensions of the edges and the canonical points shown. Right:
Using only canonical points as corners of pieces on the boundary of 𝑃, one of the points 𝐶 and 𝐷 must
be used.

Before going into the proof, let us first make a few remarks. Note that there are at most 3𝑛
canonical points, since each edge of 𝑃 creates at most 2 canonical points that are not corners of
𝑃. The algorithm described in this paper considers 𝑂(𝑛13) Steiner points on the boundary of
𝑃, so it might be possible to use property 2 to obtain a faster algorithm. However, in the proof
of the theorem, we change the partition in order to only use canonical Steiner points on the
boundary. It does therefore not follow immediately that our algorithm can also be modified to
find the resulting partition, but we are confident that the result can be used to create a faster
algorithm.

We find it somewhat surprising that canonical Steiner points suffice on the boundary of 𝑃,
since, as shown in Figure 1, it is sometimes necessary to use Steiner points in the interior of 𝑃
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Figure 41. The process simplifying the shared boundary between 𝑄𝑖 and 𝑄 𝑗 in order to satisfy
Claim B.2. The gray region is the quadrilateral 𝐹.

of degree Ω(𝑛), whereas the canonical points have degree at most 1 (as defined in Section 1).
Figure 40 (right) proves that it is necessary to have least some Steiner points on the boundary
of 𝑃: In any partition into two star-shaped pieces, we must have a Steiner point on the segment
𝐶𝐷.

PROOF . Let 𝑄1, . . . , 𝑄𝑘 be a minimum star partition of 𝑃. Let us fix a star center 𝐴𝑖 in each
piece 𝑄𝑖 . If 𝜕𝑄𝑖 ∩ 𝜕𝑄 𝑗 ≠ ∅ and 𝑖 ≠ 𝑗, we say that 𝑄𝑖 and 𝑄 𝑗 are neighbours. The shared boundary
𝜕𝑄𝑖 ∩ 𝜕𝑄 𝑗 of two neighbours 𝑄𝑖 and 𝑄 𝑗 is a collection of open polygonal curves. An interior point
of an open curve is a point on the curve which is not an endpoint.

CLAIM B .2. Let 𝛾 be an open curve in the shared boundary 𝜕𝑄𝑖 ∩ 𝜕𝑄 𝑗 of two neighbours 𝑄𝑖 and
𝑄 𝑗 . We can assume that 𝛾 is either a line segment or two line segments that have one of the star
centers 𝐴𝑖 and 𝐴 𝑗 as a common endpoint. If a star center of one piece is a corner of 𝛾, the corner
is convex with respect to that piece and concave with respect to the other piece.

Proof. Let the endpoints of 𝛾 be 𝐶 and 𝐷; see Figure 41. Since the segments 𝐴𝑖𝐶 and 𝐴𝑖𝐷 are in
𝑄𝑖 , and 𝐴 𝑗𝐶 and 𝐴 𝑗𝐷 are in 𝑄 𝑗 , we have a well-defined quadrilateral 𝐹 = 𝐴𝑖𝐶𝐴 𝑗𝐷. If 𝐴𝑖 and 𝐴 𝑗

are both convex corners of 𝐹, we replace 𝛾 by the segment 𝐶𝐷, which must be a diagonal of 𝐹.
Otherwise, consider without loss of generality the case that 𝐴𝑖 is a concave corner of 𝐹. We then
replace 𝛾 by 𝐶𝐴𝑖 ∪ 𝐴𝑖𝐷. In either case, the modification clearly leaves 𝑄𝑖 and 𝑄 𝑗 star-shaped,
and we are left with a shared boundary of the claimed type. ■

Property 1. In order to prove that there is a partition satisfying Property 1, suppose that 𝜕𝑄𝑖 does
not contain a concave corner of 𝑃. We show how to modify the partition so that the property is
eventually satisfied. In essence, we expand the piece 𝑄𝑖 until Property 1 is eventually satisfied.
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CLAIM B .3. We can assume that each concave corner 𝐷 of 𝑄𝑖 is a concave corner of 𝑃 or a star
center 𝐴 𝑗 of a neighbour 𝑄 𝑗 of 𝑄𝑖 .

Proof. We describe a way to expand 𝑄𝑖 so that we eliminate concave corners of 𝑄𝑖 which are
neither corners of 𝑃 nor star centers of neighbours (note that if a concave corner of 𝑄𝑖 touches
𝑃, then it touches 𝑃 at a concave corner). Let 𝐶𝐷 and 𝐷𝐸 be maximal segments on the boundary
of 𝑄𝑖 such that 𝐷 is a concave corner of 𝑄𝑖 and no corner of 𝑃 and no star center of a neighbour
is an interior point of 𝐶𝐷 ∪ 𝐷𝐸. It follows by Claim B.2 that this point 𝐷 can be assumed to
lie on the boundary of two polygons 𝑄 𝑗 and 𝑄𝑙 whose boundaries share a line segment 𝐷𝐹.
Informally, we now move 𝐷 towards 𝐹. This will expand 𝑄𝑖 and shrink 𝑄 𝑗 and 𝑄𝑙 and possibly
also other neighbours of 𝑄𝑖 whose boundaries contain segments or points on 𝐶𝐷 ∪ 𝐷𝐸. To be
precise, define 𝐷′ to be the first point on 𝐷𝐹 from 𝐷 such that one of the following cases holds:
(i) one of the segments 𝐶𝐷′ or 𝐷′𝐸 contains a corner of 𝑃, (ii) 𝐷′ is the intersection of 𝐷𝐹 and
𝐶𝐸 (if it exists), (iii) one of the segments 𝐶𝐷′ or 𝐷′𝐸 contains a star center 𝐴𝑚, 𝑚 ≠ 𝑖, (iv) 𝐷′ = 𝐹.
The cases are shown in Figure 42. We then assign the quadrilateral 𝐶𝐷′𝐸𝐷 to 𝑄𝑖 , which will
increase 𝑄𝑖 , decrease the pieces intersected by 𝐶𝐷′ ∪ 𝐷′𝐸 and, by Lemma 2.1, all the involved
pieces remain star-shaped. We repeat this operation, and it remains to argue that the process
eventually terminates.
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Figure 42. The process of eliminating concave corners of 𝑄𝑖 that are not star centers of neighbouring
pieces.
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In case (i), 𝑄𝑖 now touches 𝑃 at a corner which clearly must be concave. In case (ii), we
have eliminated a concave corner of 𝑄𝑖 . In case (iii), we have increased the number of star
centers on the boundary of 𝑄𝑖 , which can happen at most 𝑘 − 1 times. In case (iv), we eliminated
a segment 𝐷𝐹 of 𝑄 𝑗 and 𝑄𝑙, which decreases the total number of segments of the pieces. We
conclude that the operation can be repeated at most a finite number of times and the process
therefore eventually terminates. ■

A star neighbour of 𝑄𝑖 is a neighbour 𝑄 𝑗 whose star center 𝐴 𝑗 is on 𝜕𝑄𝑖 . Recall that we
assume 𝜕𝑄𝑖 does not contain a concave corner of 𝑃. Now, additionally assume that 𝑄𝑖 is non-
convex, i.e., 𝑄𝑖 has a concave corner. As 𝜕𝑄𝑖 does not contain a concave corner of 𝑃, we can
assume that this concave corner is the star center of a star neighbour by Claim B.3. To obtain
a contradiction with the minimality of the start partition, we show that 𝑄𝑖 can be subsumed
by the star neighbours. To this end, we consider a triangulation of 𝑄𝑖 . The diagonals of the
triangulation that have an endpoint at a concave corner of 𝑄𝑖 partition 𝑄𝑖 into convex polygons
𝑅1, . . . , 𝑅𝑚, as illustrated in Figure 43 (left), where solid diagonals have an endpoint at a concave
corner. We assign a polygon 𝑅𝑝 to 𝑄 𝑗 if 𝐴 𝑗 is on the boundary of 𝑅𝑝 and 𝑅𝑝 has not already been
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Figure 43. Left: We reassign the piece 𝑄𝑖 to the pieces of the concave star neighbours. Right: We
expand the convex piece 𝑄𝑖 by adding the triangle 𝐴 𝑗𝐶𝐷.

assigned to another star neighbour, as shown by the arrows in the figure. Thus, the considered
star partition did not consist of a minimum number of polygons, which is a contradiction.
Consequently, 𝑄𝑖 must be convex.

As we assume 𝑘 ≥ 2, there has to be a piece𝑄 𝑗 that is a neighbour of𝑄𝑖 so that the common
boundary 𝜕𝑄𝑖 ∩ 𝜕𝑄 𝑗 contains a segment 𝐶𝐷. We expand 𝑄𝑖 and shrink 𝑄 𝑗 by adding the triangle
𝐴 𝑗𝐶𝐷 to 𝑄𝑖 , as shown in Figure 43 (right), which keeps 𝑄𝑖 as well as 𝑄 𝑗 star-shaped. This can
introduce concave corners 𝐶 and 𝐷 on 𝑄𝑖 , but we can proceed as in the proof of Claim B.3 and
expand 𝑄𝑖 until we hit a concave corner of 𝑃 or obtain that all concave corners are star centers.
If we do not hit a concave corner of 𝑃, we can again argue that 𝑄𝑖 can be subsumed by 𝑄 𝑗 and
potentially other star neighbours, contradicting the minimality of the star partition.
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Note that if a concave corner of 𝑃 appears on the boundary of a piece before the changes
described above (including in the proof of Claim B.3), then the corner also appears on the
piece afterwards. We conclude that we can expand each polygon 𝑄𝑖 that does not contain a
concave corner of 𝑃 until it eventually does. In the end, we obtain a minimum star partition
with Property 1.

Property 2. We now prove that we can obtain Property 2. Consider an edge 𝐶𝐷 of 𝑃. For each
piece 𝑄𝑖 , it holds by the optimality of the partition that the intersection 𝐶𝐷 ∩ 𝜕𝑄𝑖 is either empty
or a single segment 𝐸𝐹 (which may be a single point); see Figure 44. We call such a segment 𝐸𝐹 a
shared segment, and we say that a shared segment is canonical if both endpoints are canonical.
We define the canonical prefix of 𝐶𝐷 to be all the shared segments from 𝐶 to (and excluding)
the first non-canonical shared segment. We show that we can modify the partition such that
the number of segments in the canonical prefix increases. It therefore holds that the process
must stop, so that all shared segments on 𝐶𝐷 have canonical endpoints in the end. The process
does not change whether shared segments on other edges of 𝑃 are canonical, so repeating the
process for all edges yields a star partition with Property 2.

CD

Q1

Q2

Q3Q4Q5

EFG

Figure 44. The fat segments are edges of 𝑃 and the thin black segments indicate the boundaries of
pieces in the interior of 𝑃. The corners 𝐶 and 𝐷 as well as the interior points 𝐸 and 𝐹 are canonical, but 𝐺
is not. There are three segments in the canonical prefix of 𝐶𝐷, namely the intersections of 𝐶𝐷 with each
of 𝜕𝑄1, 𝜕𝑄2, 𝜕𝑄3.

Consider the first non-canonical segment 𝐸𝐹, where 𝐸 is canonical but 𝐹 is not. Let 𝐹′ be
the first point on 𝐹𝐷 from 𝐹 such that either (i) 𝐹′ is canonical, (ii) 𝐴𝑖𝐹′ contains another star
center 𝐴 𝑗 , or (iii) 𝐴𝑖𝐹′ contains a corner 𝐺 of 𝑃. Since the endpoint 𝐷 is canonical, the point 𝐹′ is
well-defined. The cases are illustrated in Figures 45 and 47 and Figure 46.

In case (i), we assign the triangle 𝐴𝑖𝐹𝐹′ to 𝑄𝑖 , which according to Lemma 2.1 keeps all
pieces star-shaped as the triangle does not contain any star centers of other pieces than 𝑄𝑖 . We
have then increased the number of segments in the canonical prefix.

In case (ii), we assign the triangle 𝐴𝑖𝐸𝐹′ to the piece 𝑄 𝑗 . The shared segment 𝑠 = 𝐶𝐷 ∩ 𝜕𝑄 𝑗

of the piece 𝑄 𝑗 now starts at the point 𝐸. The other endpoint of 𝑠 is either 𝐹′ (as in Figure 45)
or a later point. In the latter case, it is possible that 𝑠 is canonical, and we have increased the
number of segments in the canonical prefix. If 𝑠 is not canonical, we repeat the process of
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repairing the non-canonical endpoint of 𝑠. Since the star center 𝐴 𝑗 must be closer to the edge
𝐶𝐷 than 𝐴𝑖 , we encounter case (ii) less than 𝑘 times before we end in case (i) or (iii).
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Figure 45. Case (i). We expand 𝑄𝑖 with the triangle 𝐴𝑖𝐹𝐹
′.
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Figure 46. Case (ii). We expand 𝑄 𝑗 with the triangle 𝐴𝑖𝐹𝐹
′.

It remains to consider case (iii), namely that 𝐴𝑖𝐹′ contains a corner 𝐺 of 𝑃. We know that
𝐺 ≠ 𝐷, since otherwise, we would have been in case (i). Let 𝐹′′ be the first canonical point on the
segment 𝐹′𝐸 from 𝐹′, which is well-defined as 𝐸 is canonical. Furthermore, we know that 𝐹′′ is
on the segment 𝐸𝐹, since otherwise, we should have been in case (i). LetQ′ = {𝑄′1, . . . , 𝑄′𝑓 ′}\{𝑄𝑖}
be the set of pieces intersected by the interior of 𝐺𝐹′ in order from 𝐺 and excluding 𝑄𝑖 .

In a first step, we assign the triangle 𝐴𝑖𝐹′′𝐹′ to the piece𝑄𝑖 . This can reduce pieces intersect-
ing 𝐴𝑖𝐹′, but Lemma 2.1 ensures that they remain star-shaped. However, the point 𝐹′ need not
be canonical. In a second step, we therefore remove the triangle Δ = 𝐺𝐹′′𝐹′ from 𝐴𝑖 and instead
distribute Δ among the pieces Q′, as follows. For each 𝑗 = 1, . . . , 𝑓 ′ − 1, we consider the segment
𝑠 on the shared boundary of 𝑄′

𝑗
and 𝑄′

𝑗+1 with an endpoint on 𝐺𝐹′. We then extend 𝑠 into Δ
until we reach one of the other segments 𝐺𝐹′′ or 𝐹′′𝐹′ bounding Δ, or we meet an extension that
was already added for a smaller value of 𝑗. Since 𝐹′′ was chosen as the first canonical point on
𝐹′𝐸, this results in a star partition of 𝑃. Furthermore, the shared segment of 𝑄𝑖 on 𝐶𝐷 has now
become the segment 𝐸𝐹′′ (which might just be a single point), which is canonical, so we have
increased the number of segments in the canonical prefix. Recall that we consider the number
of segments in the prefix here and not the geometric length of the prefix; the geometric length
of the prefix indeed can decrease.
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Figure 47. Case (iii). In two steps, we distribute the triangle 𝐴𝑖𝐹
′′𝐹′ among 𝑄𝑖 and the pieces 𝑄′′1 , 𝑄

′′
2 , 𝑄

′′
3

intersected by 𝐺𝐹′.

Finally, note that none of the above modifications of the star partition cause a piece 𝑄 to
become non-adjacent to a concave corner 𝐻 of 𝑃 if 𝑄 was adjacent to 𝐻 before. More precisely,
only the modifications in case (iii) changes the neighbourhood of a corner 𝐺 of 𝑃. However, as
there are no star centers in the triangle 𝐴𝑖𝐸𝐹′, the modifications will not remove 𝐺 from the
boundary of any piece. ■
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