
1 / 18 2026 :3

Simple Sublinear Algorithms for
(Δ + 1) Vertex Coloring via
Asymmetric Palette Sparsification

Received Feb 26, 2025
Revised Aug 4, 2025
Accepted Sep 1, 2025
Published Jan 29, 2026

Key words and phrases
Sublinear algorithms,
(Δ + 1)-coloring, vertex coloring,
massively parallel computation,
sublinear time, semi-streaming

Sepehr Assadia � �

Helia Yazdanyara � �

a School of Computer Science,
University of Waterloo

ABSTRACT. The palette sparsification theorem (PST) of Assadi, Chen, and Khanna (SODA
2019) states that in every graph 𝐺 with maximum degree Δ, sampling a list of 𝑂(log 𝑛) colors
from {1, . . . , Δ + 1} for every vertex independently and uniformly, with high probability, allows
for finding a (Δ + 1) vertex coloring of 𝐺 by coloring each vertex only from its sampled list.
PST naturally leads to a host of sublinear algorithms for (Δ + 1) vertex coloring, including in
semi-streaming, sublinear time, and MPC models, which are all proven to be nearly optimal,
and in the case of the former two are the only known sublinear algorithms for this problem.

While being a quite natural and simple-to-state theorem, PST suffers from two drawbacks.
Firstly, all its known proofs require technical arguments that rely on sophisticated graph
decompositions and probabilistic arguments. Secondly, finding the coloring of the graph from
the sampled lists efficiently requires a considerably complicated algorithm.

We show that a natural weakening of PST addresses both these drawbacks while still
leading to sublinear algorithms of similar quality (up to polylog factors). In particular, we prove
an asymmetric palette sparsification theorem (APST) that allows for list sizes of the vertices
to have different sizes and only bounds the average size of these lists. The benefit of this weaker
requirement is that we can now easily show the graph can be (Δ + 1) colored from the sampled
lists using the standard greedy coloring algorithm. This way, we can recover nearly-optimal
bounds for (Δ + 1) vertex coloring in all the aforementioned models using algorithms that are
much simpler to implement and analyze.

This article was invited from SOSA 2025. [9]
Part of this work was conducted while the first named author was visiting the Simons Institute for the Theory of Computing
as part of the Sublinear Algorithms program.

Cite as Sepehr Assadi, Helia Yazdanyar. Simple Sublinear Algorithms for (Δ + 1)
Vertex Coloring via Asymmetric Palette Sparsification. TheoretiCS, Volume 5
(2026), Article 3, 1-18.

https://theoretics.episciences.org
DOI 10.46298/theoretics.26.3

mailto:sepehr@assadi.info
https://orcid.org/0009-0006-8914-5995
mailto:hyazdanyar@uwaterloo.ca
https://orcid.org/0009-0007-7194-1878

2 / 18 S. Assadi, H. Yazdanyar

1. Introduction

Let 𝐺 = (𝑉, 𝐸) be any 𝑛-vertex graph with maximum degree Δ. A basic graph theory fact is that
vertices of 𝐺 can be colored with Δ + 1 colors such that no edge is monochromatic. This can
be done using a textbook greedy algorithm: iterate over vertices of 𝐺 in any arbitrary order
and for each vertex greedily find a color that has not been used in its neighborhood, which is
guaranteed to exist by the pigeonhole principle. This algorithm is quite simple and efficient as
it runs in linear time and space. But, can we design even more efficient algorithms?

Assadi, Chen, and Khanna [7] addressed this question by designing various sublinear
algorithms for the (Δ + 1) vertex coloring problem. These are algorithms whose resource
requirements are significantly smaller than their input size. Some canonical examples include
(𝑎) graph streaming algorithms [17] that process graphs by making one pass over their edges
and using a limited space; (𝑏) sublinear time algorithms [14] that process graphs by querying
its adjacency list/matrix and using limited time; or (𝑐) Massively Parallel Computation (MPC)
algorithms [30] that process graphs in synchronous rounds and a distributed manner over
machines with limited communication (see Section 2.1 for definitions).

The key contribution of [7] was proving the following (purely combinatorial) theorem
about (Δ + 1) coloring, termed the palette sparsification theorem (PST).

THEOREM 1.1 (Palette Sparsification Theorem (PST) [7]). For any graph 𝐺 = (𝑉, 𝐸) with
maximum degree Δ, if we sample 𝑂(log 𝑛) colors 𝐿(𝑣) for each vertex 𝑣 ∈ 𝑉 independently and
uniformly at random from the colors {1, 2, . . . , Δ + 1}, then, with high probability, 𝐺 can be colored
so that every vertex 𝑣 chooses its color from its own list 𝐿(𝑣).

The authors in [7] used PST to design sublinear algorithms in all the aforementioned
models using the following “sparsifying” nature of this result: Firstly, it is easy to see that to
color 𝐺 from the sampled lists, we can ignore all edges (𝑢, 𝑣) ∈ 𝐸 where 𝐿(𝑢) ∩ 𝐿(𝑣) = ∅ since
they do not create any conflict under any possible coloring. Secondly, for any edge (𝑢, 𝑣) ∈ 𝐸,
the probability that it still remains conflicting—the probability that two independently chosen
𝑂(log 𝑛)-lists from (Δ + 1) colors intersect—is 𝑂(log2(𝑛)/Δ). Combining these with the upper
bound of 𝑛Δ/2 on the number of edges in 𝐺 implies that in expectation (and even with high
probability) there are only 𝑂(𝑛 log2(𝑛)) “important” edges that the algorithm should consider.
The sublinear algorithms can now be obtained from this in a simple way1.

Since its introduction in [7], PST and its variants and generalizations have been stud-
ied in sublinear algorithms [13, 11, 8, 12, 6], distributed computing [19, 21, 24], and discrete
mathematics [2, 3, 28, 29, 26, 4].

1 For instance, for a streaming algorithm, first sample all the 𝑂(𝑛 log 𝑛) colors, and during the stream whenever an edge
arrives, see if it is an important edge and if so store it. At the end, use Theorem 1.1 to color the graph using these
stored edges. This leads to a single-pass streaming algorithm with 𝑂(𝑛 log3 (𝑛)) bits of space for (Δ + 1) coloring.

3 / 18 Asymmetric Palette Sparsification

Despite its long list of applications, and perhaps even due to its generality, PST suffers
from two drawbacks. Firstly, the proof of PST is considerably complicated and technical; it
goes through the so-called sparse-dense decomposition of graphs due to [33] (and the variant
proved in [7] itself, building on [25]), and then a detailed three-phase approach for coloring
each part in the decomposition differently using various probabilistic and random graph theory
arguments2. Secondly, PST, as stated, is a purely combinatorial theorem and not an algorithmic
one, and thus to obtain the coloring of 𝐺, one needs to run a rather complicated and non-
greedy post-processing algorithm to find the coloring of 𝐺 from the sampled lists (given also the
decomposition of the graph; see [7] for more details).

Our contribution. We show that introducing a simple asymmetry in the definition of PST leads
to the same colorability guarantee but this time using a much simpler proof and algorithm.

Asymmetric Palette Sparsification Theorem (APST). For any graph 𝐺 = (𝑉, 𝐸) with
maximum degree Δ, there is a distribution on list-sizes ℓ : 𝑉 → N (depending only on
vertices𝑉 and not edges 𝐸) such that an average list size is𝑂(log2(𝑛)) and the following
holds. With high probability, if we sample ℓ(𝑣) colors 𝐿(𝑣) for each vertex 𝑣 ∈ 𝑉

independently and uniformly at random from colors {1, 2, . . . , Δ + 1}, then, with high
probability, the greedy coloring algorithm that processes vertices in some fixed order
(determined by vertex degrees and list sizes3) finds a proper coloring of 𝐺 by coloring
each 𝑣 from its own list 𝐿(𝑣).

The benefit of our APST compared to the original PST of [7] (and all its other alternative
variants in [2, 24, 28, 20, 4]) is twofold: it admits a significantly simpler proof, while also allowing
for coloring from the sampled list using the standard greedy algorithm itself. At the same time,
it is also weaker than the original PST on two fronts: it requires 𝑂(log2(𝑛)) list sizes per vertex
as opposed to 𝑂(log 𝑛) (which is similar to [24, 20]) but much more importantly, it allows the
vertices to have much larger list sizes in the worst-case and only bounds the average list sizes
(this is different from all prior work on PST, and was inspired by the recent work of [23] on the
communication complexity of (Δ+ 1) coloring). We note that asymmetric list sizes are necessary
if we would like to color the graph greedily from the sampled colors4.

2 All known proofs of PST for (Δ + 1) coloring (or so-called (deg+1)-(list) coloring) [7, 2, 24, 28, 20, 4] follow this
decomposition plus three-phase approach and it was even pointed out in [28] that: “something of this type [...] seems
more or less unavoidable”.

3 For Δ-regular graphs, this translates to processing vertices in the increasing order of their list sizes.

4 Consider coloring a (Δ + 1)-clique. When coloring the last vertex 𝑣 of the clique in the greedy algorithm, there is only
one color that can be assigned to 𝑣 but to ensure this color is sampled by 𝑣 even with a constant probability, we need
𝐿(𝑣) to have size Ω(Δ). Our APST addresses this by allowing vertices that are colored later in the greedy algorithm to
also sample more colors, while earlier vertices can stick with smaller list sizes.

4 / 18 S. Assadi, H. Yazdanyar

Finally, APST allows for recovering the same type of sublinear algorithms as in [7] with
only an extra polylog(𝑛) overhead in their resources. In particular, we obtain the following
sublinear algorithms for (Δ + 1) vertex coloring:

A randomized graph streaming algorithm with 𝑂(𝑛) space5 and a single pass over the
input.
A randomized sublinear time algorithm with 𝑂(𝑛1.5) time, given (non-adaptive) query
access to both adjacency list and matrix of the input (also called the general query model).
A randomized MPC algorithm with 𝑂(𝑛) memory per machine and 𝑂(1) rounds.

The number of passes in our streaming algorithm is clearly optimal. The number of rounds in
the MPC algorithm is also asymptotically optimal (in fact, it is only two rounds, and even one
round assuming access to public randomness). It was also proven in [7] that the runtime of the
sublinear time algorithm and the space of the streaming algorithm are nearly optimal up to
polylog (𝑛) factors (for the streaming algorithm, storing the coloring itself requires this much
space anyway). These constitute the simplest known sublinear algorithms for (Δ + 1) vertex
coloring.6

In conclusion, we find our APST to be a more “algorithm friendly” version of PST that still
allows for recovering nearly optimal sublinear algorithms for (Δ + 1) coloring. In addition, we
hope that its proof can act as a gentle warm up and introduction to the original PST itself.

Finally, in Appendix A, we also present an even simpler sublinear time algorithm for (Δ+1)
coloring whose proof is inspired by our APST but does not directly use it. While qualitatively
weaker, the benefit of this algorithm is that it is entirely self-contained and only requires
elementary probabilistic arguments (not even concentration inequalities), and thus can be even
more “classroom friendly” than the algorithms obtained from our APST.

2. Preliminaries

Notation. For any integer 𝑡 ⩾ 1, define [𝑡] := {1, 2, . . . , 𝑡}. For a graph 𝐺 = (𝑉, 𝐸), we use 𝑛 to
denote the number of vertices and for each 𝑣 ∈ 𝑉 , use 𝑁 (𝑣) to denote the neighbors of 𝑣 and
deg(𝑣) as its degree.

We say a probabilistic event happens with high probability, if it happens with probability at
least 1 − 1/poly(𝑛), where 𝑛 is the number of vertices in the graph which will be clear from the
context. We also say a probabilistic event happens with certainty, if it happens with probability
1.

5 Throughout, we use 𝑂(𝑓) := 𝑂(𝑓 · poly log (𝑓)) to suppress polylog factors.

6 To our knowledge, no other streaming nor sublinear time algorithms beside [7] have been developed for this problem
but for MPC algorithms, [13, 15] have subsequently presented other algorithms for this problem.

5 / 18 Asymmetric Palette Sparsification

Concentration inequalities. A hypergeometric random variable with parameters 𝑁 , 𝐾 , and
𝑀 is a discrete random variable in N distributed as follows: we have 𝑁 elements, 𝐾 of them are
marked as ‘good’, and we sample 𝑀 elements uniformly at random and without replacement
and count the number of good samples. We use a standard result on the concentration of
hypergeometric random variables.

PROPOS IT ION 2 .1 (cf. [27, Theorem 2.10]). Suppose 𝑋 is a hypergeometric random variable
with parameters 𝑁, 𝐾, 𝑀 and thus the expectation E [𝑋] = 𝑀 · 𝐾/𝑁 . Then, for any 𝑡 ⩾ 0

Pr(𝑋 ⩽ E [𝑋] − 𝑡) ⩽ exp
(
− 𝑡2

2E [𝑋]

)
.

2.1 Sublinear Models Considered in this Paper

For completeness, we present a brief definition of each of the computational models that we
consider.

Graph streaming. In this model, the input graph 𝐺 = (𝑉, 𝐸) is presented to the algorithm as
a stream of its edges ordered in some arbitrary manner. The algorithm makes a single pass
(or sometimes multiple ones) over this stream while using 𝑂(𝑛) memory and at the end of the
stream, outputs a solution to the problem on the input graph 𝐺. See [17] for more details.

Sublinear time. In this model, the input graph 𝐺 = (𝑉, 𝐸) is presented to the algorithm via
query access to its adjacency list and matrix or alternatively speaking, using degree-, neighbor-,
and pair-queries. The algorithm can make its queries adaptively or non-adaptively and then at
the end outputs a solution to the problem on the graph 𝐺. See [14] for more details.

MPC. In this model, the input graph 𝐺 = (𝑉, 𝐸) is originally partitioned across multiple ma-
chines, each with 𝑂(𝑛) memory. Computation happens in synchronous rounds wherein each
machine can send and receive𝑂(𝑛)-size messages. After the last round, one designated machine
outputs a solution to the problem on the graph 𝐺. See [30] for more details.

3. Asymmetric Palette Sparsification

We present our APST in a more general form that allows for coloring vertices from arbitrary
palettes of size proportional to their individual degrees—instead of the same original palette of
{1, 2, . . . , Δ + 1} described earlier— namely, the (deg+1)-list coloring problem. We then obtain
the APST for (Δ + 1) coloring as a simple corollary of this result. Furthermore, we remark that a
PST version of (deg+1)-list coloring (by sampling polylog(𝑛) colors per vertex in the worst-case)
has been previously established in [24]; see also [2].

6 / 18 S. Assadi, H. Yazdanyar

THEOREM 3.1 (Asymmetric Palette Sparsification Theorem (for (deg+1)-list coloring)). Let
𝐺 = (𝑉, 𝐸) be any 𝑛-vertex graph together with lists 𝑆(𝑣) with deg(𝑣) + 1 arbitrary colors for each
vertex 𝑣 ∈ 𝑉 . Sample a random permutation 𝜋 : 𝑉 → [𝑛] uniformly and define

ℓ(𝑣) := min
(
deg(𝑣) + 1 ,

40 𝑛 ln 𝑛
𝜋(𝑣)

)
,

for every 𝑣 ∈ 𝑉 as the size of the list of colors to be sampled for vertex 𝑣. Then,
List sizes:

∑
𝑣∈𝑉 ℓ(𝑣) = 𝑂(𝑛 log2(𝑛)) with certainty; and, for any fixed vertices 𝑢 ≠ 𝑣 ∈ 𝑉 ,

E [ℓ(𝑣)] = 𝑂(log2(𝑛)) and E [ℓ(𝑢) · ℓ(𝑣)] = 𝑂(log4(𝑛)).

Colorability: If for every vertex 𝑣 ∈ 𝑉 we sample a list 𝐿(𝑣) of ℓ(𝑣) colors from 𝑆(𝑣) uniformly
and independently, then, with high probability (over the randomness of ℓ and sampled lists)
the greedy algorithm that iterates over vertices 𝑣 ∈ 𝑉 in the decreasing order of 𝜋(𝑣) finds a
proper list-coloring of 𝐺 from the lists {𝐿(𝑣) | 𝑣 ∈ 𝑉 }.

Theorem 3.1 follows immediately from Lemma 3.2 and Lemma 3.4 proven below.

LEMMA 3.2 (List sizes). We have
∑
𝑣∈𝑉 ℓ(𝑣) = 𝑂(𝑛 log2(𝑛)) with certainty; and, for 𝑢 ≠ 𝑣 ∈ 𝑉 ,

E [ℓ(𝑣)] = 𝑂(log2(𝑛)) and E [ℓ(𝑢) · ℓ(𝑣)] = 𝑂(log4(𝑛)).

PROOF . By the definition of ℓ(𝑣),∑︁
𝑣∈𝑉

ℓ(𝑣) ⩽
∑︁
𝑣∈𝑉

40 𝑛 ln 𝑛
𝜋(𝑣) =

𝑛∑︁
𝑖=1

40 𝑛 ln 𝑛
𝑖

= 𝑂(𝑛 log2 𝑛),

by the sum of the harmonic series. This proves the deterministic bound on the total size of the
lists as well as the first inequality for the expected size of each list, given the distribution of list
sizes is symmetric across vertices. For the second inequality, we have

E [ℓ(𝑢) · ℓ(𝑣)] ⩽
∑︁
𝑖≠ 𝑗

Pr(𝜋(𝑣) = 𝑖 ∧ 𝜋(𝑢) = 𝑗) · (40 𝑛 ln (𝑛))2

𝑖 · 𝑗

=
1600 𝑛2 ln2 (𝑛)
𝑛 · (𝑛 − 1) ·

𝑛∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

1
𝑖 · 𝑗

= 𝑂(log4(𝑛)),

again, by the sum of the harmonic series. This concludes the proof. ■

Establishing the colorability property is the main part of the proof. We first need some
notation. For any vertex 𝑣 ∈ 𝑉 , define 𝑁<

𝜋 (𝑣) as the neighbors 𝑢 of 𝑣 with 𝜋(𝑢) < 𝜋(𝑣), namely
the ones that are processed after 𝑣 by the greedy algorithm. Let deg<𝜋 (𝑣) :=

��𝑁<
𝜋 (𝑣)

��.
An easy observation is that when coloring any vertex 𝑣 by the greedy algorithm (using the

palette of Δ + 1 colors), there are still at least deg<𝜋 (𝑣) + 1 colors not used in the neighborhood

7 / 18 Asymmetric Palette Sparsification

of 𝑣. Thus, lower bounding deg<𝜋 (𝑣) allows us to later prove that 𝐿(𝑣) contains an available
color for 𝑣 with high probability. We only need such a bound for the subset of vertices with
ℓ(𝑣) < deg(𝑣) + 1 as captured in the following claim.

CLAIM 3.3. For all 𝑣 ∈ 𝑉 ,

Pr
(
deg<𝜋 (𝑣) <

deg(𝑣) · 𝜋(𝑣)
2𝑛

����𝜋(𝑣) > 40𝑛 ln(𝑛)
deg(𝑣) + 1

)
⩽ 𝑛−2.4.

PROOF . Fix any vertex 𝑣 as above and condition on 𝜋(𝑣) = 𝑖 + 1 for some 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}.
For 𝑗 ∈ [deg(𝑣)], define 𝑋 𝑗 ∈ {0, 1} as the indicator random variable which is 1 iff the 𝑗-th
neighbor of 𝑣 appears in the first 𝑖 vertices of 𝜋, and is therefore processed after 𝑣. For 𝑋 being
the sum of these 𝑋 𝑗-variables (and implicitly conditioned on 𝜋(𝑣) = 𝑖 + 1 to avoid cluttering the
equations),

E
[
deg<𝜋 (𝑣) | 𝜋(𝑣) = 𝑖 + 1

]
= E [𝑋] =

deg(𝑣)∑︁
𝑗=1
E
[
𝑋 𝑗
]
= deg(𝑣) · 𝑖

𝑛 − 1
,

as each neighbor of 𝑣 appears in the first 𝑖 position of 𝜋 with probability 𝑖/(𝑛 − 1) conditioned
on 𝜋(𝑣) = 𝑖 + 1. Random variable 𝑋 is distributed as a hypergeometric random variable with
parameters 𝑁 = 𝑛 − 1, 𝐾 = 𝑖, and 𝑀 = deg(𝑣). Thus, by Proposition 2.1 for the parameter

𝑡 := E [𝑋] − deg(𝑣) · (𝑖 + 1)
2𝑛

=
deg(𝑣) · 𝑖
𝑛 − 1

− deg(𝑣) · (𝑖 + 1)
2𝑛

⩾ (1 − 𝑜(1)) · E [𝑋]
2

(by the value of E [𝑋] calculated above and given 𝑖 = 𝜔(1) in the claim statement)

conditioning on 𝜋(𝑣) > 40𝑛 ln(𝑛)/(deg(𝑣) + 1) we have,

Pr
(
𝑋 ⩽

deg(𝑣) · (𝑖 + 1)
2𝑛

)
= Pr (𝑋 ⩽ E [𝑋] − 𝑡) ⩽ exp

(
− 𝑡2

2E [𝑋]

)
⩽ exp

(
−(1 − 𝑜(1)) · E [𝑋]

8

)
(by the lower bound on 𝑡 established above)

= exp
(
−(1 − 𝑜(1)) · deg(𝑣) · 𝑖

8 · (𝑛 − 1)

)
⩽ exp

(
−(1 − 𝑜(1)) · 40 ln 𝑛

8

)
⩽ 𝑛−2.4,

where in the second line we used the lower bound on 𝑖 = 𝜋(𝑣) − 1 in the condition. Since
deg<𝜋 (𝑣) = 𝑋 and the bound holds for all choices of 𝜋(𝑣), we can conclude the proof. ■

LEMMA 3.4 (Colorability). With high probability, when coloring each vertex 𝑣 ∈ 𝑉 in the greedy
algorithm, at least one of the colors sampled in 𝐿(𝑣) has not been used in the neighborhood of 𝑣;
that is, the greedy algorithm can color this vertex.

PROOF . We condition on the choice of 𝜋 and by union bound obtain that with high probability,
the complement of the event in Claim 3.3 holds for all vertices. For any vertex 𝑣 ∈ 𝑉 , we
say a color in 𝑆(𝑣) is available to 𝑣 iff it is not assigned to any neighbor of 𝑣 by the time we
process 𝑣 in the greedy algorithm. Let 𝑎(𝑣) denote the number of available colors and note that
𝑎(𝑣) ⩾ deg<𝜋 (𝑣) + 1.

8 / 18 S. Assadi, H. Yazdanyar

In the following, we fix a vertex 𝑣 ∈ 𝑉 and further condition on the randomness of 𝐿(𝑢)
for all vertices 𝑢 with 𝜋(𝑢) > 𝜋(𝑣). As we are using a fully deterministic greedy algorithm, the
conditioning so far fix the set of available colors and the values of 𝑎(𝑣) and ℓ(𝑣), but 𝐿(𝑣) is
still a random ℓ(𝑣)-subset of the deg(𝑣) + 1 colors in 𝑆(𝑣). If 𝜋(𝑣) ⩽ 40𝑛 ln(𝑛)/(deg(𝑣) + 1), we
have ℓ(𝑣) = deg(𝑣) + 1 which means 𝐿(𝑣) = 𝑆(𝑣) and thus there exists an available color in
𝐿(𝑣), proving the claim for this vertex.

For the remaining vertices with 𝜋(𝑣) > 40𝑛 ln(𝑛)/(deg(𝑣) + 1), we can apply Claim 3.3 to
have,

Pr (no available color of 𝑣 is sampled in 𝐿(𝑣)) ⩽ (1 − 𝑎(𝑣)
deg(𝑣) + 1

)ℓ(𝑣) ⩽ exp
(
−𝑎(𝑣) · ℓ(𝑣)

deg(𝑣) + 1

)
⩽ exp

(
−deg(𝑣) · 𝜋(𝑣)

2𝑛
· 40𝑛 ln 𝑛

𝜋(𝑣) · 1
deg(𝑣) + 1

)
⩽ 𝑛−5.

Thus, with high probability, we can color 𝑣 from 𝐿(𝑣) in the greedy algorithm. Taking a union
bound over all vertices concludes the proof. ■

We obtain our APST for (Δ + 1) coloring described earlier as a direct corollary of Theo-
rem 3.1.

COROLLARY 3.5 (Asymmetric Palette Sparsification Theorem (for (Δ + 1) coloring)).
Let 𝐺 = (𝑉, 𝐸) be any 𝑛-vertex graph with maximum degree Δ. Sample a random permutation
𝜋 : 𝑉 → [𝑛] uniformly and define

ℓ(𝑣) := min
(
Δ + 1 ,

40 𝑛 ln 𝑛
𝜋(𝑣)

)
,

for every 𝑣 ∈ 𝑉 as the size of the lists of colors to be sampled for vertex 𝑣. Then,
List sizes:

∑
𝑣∈𝑉 ℓ(𝑣) = 𝑂(𝑛 log2(𝑛)) with certainty; and for any fixed vertices 𝑢 ≠ 𝑣 ∈ 𝑉 ,

E [ℓ(𝑣)] = 𝑂(log2(𝑛)) and E [ℓ(𝑢) · ℓ(𝑣)] = 𝑂(log4(𝑛)).

Colorability: If for every vertex 𝑣 ∈ 𝑉 , we sample a list 𝐿(𝑣) of ℓ(𝑣) colors from [Δ + 1]
uniformly and independently, then, with high probability (over the randomness of ℓ and
sampled lists) the greedy algorithm that iterates over vertices 𝑣 ∈ 𝑉 in the decreasing order
of 𝜋(𝑣) finds a proper list-coloring of 𝐺 from the lists {𝐿(𝑣) | 𝑣 ∈ 𝑉 }.

PROOF . The proof of the List Size property is identical to the proof of Lemma 3.2 as we only
use the fact ℓ(𝑣) ⩽ 40 ln 𝑛/𝜋(𝑣) in that proof, which continues to hold here as well. Thus, we
avoid repeating the same arguments.

To prove the Colorability property, consider the following equivalent process of sampling
𝐿(𝑣) in Corollary 3.5 after having picked 𝜋: for each vertex 𝑣 ∈ 𝑉 , first sample deg(𝑣) + 1 colors
from [Δ+1] uniformly and put them in a list 𝑆(𝑣), then pick ℓ′(𝑣) = min{deg(𝑣) +1, ℓ(𝑣)} colors

9 / 18 Asymmetric Palette Sparsification

from 𝑆(𝑣) uniformly and put them in a list 𝐿′(𝑣), and finally, sample ℓ(𝑣) − ℓ′(𝑣) colors from
[Δ + 1] \ 𝐿′(𝑣) and add them to 𝐿′(𝑣) to obtain 𝐿(𝑣).

This way, we have that 𝐿(𝑣) is still a random ℓ(𝑣)-subset of [Δ+1] as desired by Corollary 3.5,
but now, we also have that conditioned on the choice of 𝑆(𝑣), 𝐿′(𝑣) is a random ℓ′(𝑣)-subset
of 𝑆(𝑣) as in Theorem 3.1. Thus, we can apply Theorem 3.1 to 𝐺 and {𝑆(𝑣) | 𝑣 ∈ 𝑉 } and argue
that if we go over vertices of 𝐺 in the decreasing order of 𝜋, the greedy algorithm with high
probability can color the graph from 𝐿′(𝑣) ⊆ 𝐿(𝑣) also, concluding the proof. ■

4. Sublinear Algorithms fromAsymmetric Palette Sparsification

We now show how our asymmetric palette sparsification theorem in Section 3 can be used
to obtain sublinear algorithms for (Δ + 1) vertex coloring. These algorithms are more or
less identical to the (exponential-time) sublinear algorithms of [7] from their original palette
sparsification theorem and we claim no novelty in this part7. Instead, we merely point out
how the “asymmetry” in list-sizes in Corollary 3.5 does not weaken the performance of the
resulting sublinear algorithms beyond some polylog(𝑛)-factors, but instead leads to much
simpler post-processing algorithms for finding the coloring of the graph from the sampled lists.

THEOREM 4.1. There exist randomized sublinear algorithms that given any graph 𝐺 = (𝑉, 𝐸)
with maximum degree Δ with high probability output a (Δ + 1) vertex coloring of 𝐺 using:

Graph streaming: a single pass over the edges of 𝐺 in any order and 𝑂(𝑛) space;
Sublinear time: 𝑂(𝑛1.5) time and non-adaptive queries to adjacency list and matrix of 𝐺;
Massively parallel computation (MPC): 𝑂(1) rounds with machines of 𝑂(𝑛) memory.

As stated earlier, the proof of Theorem 4.1 follows the same exact strategy as the (exponential-
time) sublinear algorithms of [7]. To do so, we need the following definition.

Conflict graphs. Let𝐺 = (𝑉, 𝐸) be any graph with maximum degree Δ and L := {𝐿(𝑣) | 𝑣 ∈ 𝑉 }
be a set of lists of colors sampled for vertices of 𝐺 according to the distribution of Corollary 3.5.
Note the choice of L only depends on Δ and vertices of𝑉 , but not edges 𝐸. We define the conflict
graph 𝐺L = (𝑉, 𝐸L) of 𝐺 and L as the spanning subgraph of 𝐺 consisting of all edges (𝑢, 𝑣) ∈ 𝐸
such that the sampled lists 𝐿(𝑢) and 𝐿(𝑣) intersect with each other.

The following observation allows us to use conflict graphs in our sublinear algorithms as
a proxy to the original graph 𝐺.

OBSERVAT ION 4.2. The greedy algorithm in Corollary 3.5 outputs the same exact coloring
when run over the conflict graph 𝐺L instead of the original graph 𝐺.

7 We do note that however, the time-efficient algorithms of [7] are considerably more complex. They first need to find a
so-called sparse-dense decomposition of the input graph via sublinear algorithms. Then, this decomposition is used
to color the final graph from the sampled colors using an algorithmic version of the proof of their palette sparsification
theorem which in particular requires a non-greedy and not-so-simple approach.

10 / 18 S. Assadi, H. Yazdanyar

PROOF . The only edges that affect the greedy algorithm of Corollary 3.5 are edges (𝑢, 𝑣) ∈ 𝐸
such that 𝐿(𝑢) ∩ 𝐿(𝑣) is non-empty. These edges are identical in 𝐺 and 𝐺L . ■

The following easy claim also allows us to bound the size of the conflict graphs.

CLAIM 4.3. The list of colors L consists of 𝑂(𝑛 log2 𝑛) colors with certainty and the expected
number of edges in 𝐺L = (𝑉, 𝐸L) is E |𝐸L | = 𝑂(𝑛 log4 𝑛).

PROOF . By the list sizes property of Corollary 3.5, we already know thatL consists of𝑂(𝑛 log2 𝑛)
colors with certainty. For the second part, for any edge (𝑢, 𝑣), we have,

Pr ((𝑢, 𝑣) is in 𝐸L) ⩽ E
ℓ(𝑢),ℓ(𝑣)

[Pr (𝐿(𝑢) ∩ 𝐿(𝑣) ≠ ∅ | ℓ(𝑢), ℓ(𝑣))] ⩽ E
[
ℓ(𝑢) · ℓ(𝑣)

Δ + 1

]
=
𝑂(log4 (𝑛))

Δ
,

where the first inequality is by the law of conditional expectation (by conditioning on list-sizes
first), the second is by union bound, and the third is by the list-size properties of Corollary 3.5.
Since the total number of edges in 𝐺 is at most 𝑛Δ/2, we can conclude the proof. ■

We now prove Theorem 4.1 for each family of sublinear algorithms separately. In the
following, we prove the resource guarantees of the algorithms only in expectation instead of a
worst-case bound that happens with certainty. However, using the standard trick of running
𝑂(log 𝑛) copies of the algorithm in parallel, terminating any copy that uses more than twice
the expected resources, and returning the answer of any of the remaining ones, we obtain the
desired algorithms in Theorem 4.1 as well (this reduction only increases space/query/memory
of algorithms with an 𝑂(log 𝑛) multiplicative factor and the error probability with a 1/poly(𝑛)
additive factor).

Graph streaming. At the beginning of the stream, sample the colors L using Corollary 3.5 and
during the stream, only store the edges that belong to 𝐺L . This is possible as we only need a
random permutation and maximum degree Δ in order to provide list sizes of Corollary 3.5 and
sample the colors L. In the end, run the greedy algorithm on 𝐺L and return the coloring. Corol-
lary 3.5 ensures that with high probability 𝐺 is (list-)colorable from the sampled lists which
leads to a (Δ + 1) coloring of the entire graph. Observation 4.2 ensures that we only need to
work with 𝐺L at the end of the stream and not all of 𝐺, and Claim 4.3 bounds the space of the
algorithm with 𝑂(𝑛) space in expectation.

We can also implement this algorithm in dynamic streams by recovering the conflict graph
using a sparse recovery sketch instead of explicitly storing each of its edges in the stream. See [1]
for more on dynamic streams.

Finally, the knowledge of Δ is not necessary for this algorithm and can be removed using
the same argument as in [7].

11 / 18 Asymmetric Palette Sparsification

Sublinear time. By the same argument as in our graph streaming algorithm, we can sample the
colors L using Corollary 3.5 and query all pairs of vertices 𝑢 ≠ 𝑣 ∈ 𝑉 where 𝐿(𝑢) ∩ 𝐿(𝑣) is non-
empty to find the edges of 𝐺L . The same analysis as in Claim 4.3 applied to the

(𝑛
2
)

vertex-pairs
(instead of ⩽ 𝑛Δ/2 edges), ensures that the expected number of queries is 𝑂(𝑛2/Δ). We can then
color 𝐺L using the greedy algorithm in 𝑂(𝑛) time. The correctness follows from Corollary 3.5
and Observation 4.2 as before. This algorithm only requires adjacency matrix access to 𝐺 and
we run it when Δ ⩾

√
𝑛 to obtain an 𝑂(𝑛

√
𝑛) time/query algorithm. When Δ ⩽

√
𝑛, we instead

run the standard greedy algorithm using 𝑂(𝑛Δ) = 𝑂(𝑛
√
𝑛) time using the adjacency list access

to 𝐺.

MPC. The algorithm is almost identical to the semi-streaming one. Suppose we have access
to public randomness. Then, we can sample the lists L publicly, and each machine that has
an edge in 𝐺L can send it to a designated machine. This way, a single machine receives all of
𝐺L and can color it greedily. The correctness follows from Corollary 3.5 and Observation 4.2
and the memory needed for this designated machine will be 𝑂(𝑛) in expectation by Claim 4.3.
Finally, we can remove the public randomness by having one machine do the sampling first on
its own and share it with all the remaining machines in 𝑂(1) rounds using the standard MPC
primitives of search and sort.

5. Concluding Remarks

In this paper, we simplified the sublinear algorithms of [7] for (Δ + 1) vertex coloring of graphs
with maximum degree Δ. This was achieved by weakening the palette sparsification theorem
(PST) of [7] to our asymmetric palette sparsification theorem (APST), which we show admits
a much simpler proof and coloring algorithm, without limiting its applicability to sublinear
algorithms. At this point, there are several natural questions for future work, which we elaborate
on below.

Since its introduction in [7], PST has found various applications in designing sublinear
algorithms for other graph coloring problems as well. It will be interesting to examine to
what extent APST is tailored to (Δ + 1) coloring and whether, similar to PST, APST can also be
extended to other graph coloring problems. For instance, [2] developed sublinear algorithms
for 𝑂(Δ/log(Δ)) coloring of triangle-free graphs using a different PST targeted to this problem.
Can we also design an APST for this problem?

Another set of questions are regarding “white-box” applications of PST. For instance, [8]
showed how to use ideas from PST, plus various other tools, to design a graph streaming
algorithm for Δ-coloring. Can we use APST to obtain a similar result but without the complicated
algorithms and elaborate case analyzes in [8]? Taking this even further, can one obtain sublinear
algorithms for (Δ−1) coloring [34] or even less colors as in [31] wherein the barrier to colorability

12 / 18 S. Assadi, H. Yazdanyar

are “small” subgraphs8. Another example of these white-box applications is in designing Local
Computation Algorithms (LCA) for (Δ+1) coloring [13]; again, can APST lead to simpler and more
efficient LCAs for (Δ+1) coloring, e.g., one with only𝑂(Δ·log (𝑛)) query time (existing algorithms
in [13] have some unspecified poly(Δ) dependence)? Yet another example, is designing dynamic
graph algorithms for (Δ+1) coloring, against adaptive adversaries [10, 22] that use sparse-dense
decompositions and somewhat similar coloring steps as in the PST. Again, can ideas from APST
simplify and further improve these bounds? It is worth mentioning that already some tools
developed in this paper are used in [10] for addressing this problem.

Finally, beside its applicability to sublinear algorithms, PST has also been studied exten-
sively from a purely combinatorial point of view [2, 3, 28, 29, 26, 4]. It thus is natural to consider
APST through the same lens as well; for instance, in the same vein as in [26], we can ask the
following question: suppose we sample lists of average size only two (or some other larger
constant) colors on vertices chosen from some range {1, . . . , 𝑞}; then, what is a (asymptotically)
minimal choice for 𝑞 so that the greedy algorithm that colors the vertices in the increasing order
of their list sizes finds a proper coloring of any given graph from its sampled lists with high
probability? For instance, does 𝑞 = Θ(Δ2) work in this case (perhaps for Δ sufficiently large or
even 𝜔(log 𝑛))? An alternative version of this question, which to our knowledge is not studied
even for PST, is to fix a choice of 𝑞 to be, say, Δ + 1, and instead determines what fraction of
vertices can be properly colored this way?

Acknowledgement

We would like to thank Soheil Behnezhad, Yannic Maus, and Ronitt Rubinfeld for helpful
discussions and their encouragement toward finding a simpler sublinear algorithms for (Δ +
1) vertex coloring. We are also thankful to Chris Trevisan for pointing out a shorter proof
of Lemma A.6 included in this version of the paper. Sepehr Assadi is additionally grateful to Yu
Chen and Sanjeev Khanna for their prior collaboration in [7] that formed the backbone of this
work. Finally, we are grateful to the anonymous reviewers of TheoretiCS for many invaluable
comments and suggestions that helped tremendously with the presentation of the paper.

8 These results are known in the graph theory literature as strengthening of Brook’s theorem for Δ-coloring which
identifies having a (Δ + 1)-clique as the only barrier to Δ colorability for Δ ⩾ 3. A highly general form of these results is
that of [31] that shows the only barriers to Δ − 𝑘 + 1 coloring, for large enough Δ, are 𝑂(Δ)-size subgraphs that are not
(Δ − 𝑘 + 1) colorable, as long as 𝑘 satisfies (𝑘 + 1) · (𝑘 + 2) ⩽ Δ, and that this threshold is tight [16].

13 / 18 Asymmetric Palette Sparsification

References
[1] Kook Jin Ahn, Sudipto Guha, and

Andrew McGregor. Analyzing graph structure via
linear measurements. Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 459–467. SIAM, 2012.
DOI (10)

[2] Noga Alon and Sepehr Assadi. Palette
sparsification beyond (Δ+1) vertex coloring.
Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques,
APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, 6:1–6:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. DOI (2, 3, 5, 11, 12)

[3] James Anderson, Anton Bernshteyn, and
Abhishek Dhawan. Coloring graphs with forbidden
almost bipartite subgraphs. Random Struct.
Algorithms, 66(4), 2025. DOI (2, 12)

[4] Vikrant Ashvinkumar and Charles Kenney. Palette
sparsification via FKNP. arXiv preprint
arXiv:2408.12835, 2024. URL (2, 3, 12)

[5] Sepehr Assadi. Advanced algorithms course
(cs466) at University of Waterloo, Fall 2024.
Lecture 1. 2024. Accessed on February 21, 2025.
URL (15)

[6] Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh,
and Manuel Stoeckl. Coloring in graph streams via
deterministic and adversarially robust algorithms.
Proceedings of the 42nd ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2023, Seattle, WA, USA,
June 18-23, 2023, pages 141–153. ACM, 2023. DOI
(2)

[7] Sepehr Assadi, Yu Chen, and Sanjeev Khanna.
Sublinear algorithms for (Δ + 1) vertex coloring.
Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019,
pages 767–786. SIAM, 2019. DOI (2–4, 9–12)

[8] Sepehr Assadi, Pankaj Kumar, and Parth Mittal.
Brooks’ theorem in graph streams: A single-pass
semi-streaming algorithm for Δ-coloring.
TheoretiCS, 2, 2023. DOI (2, 11)

[9] Sepehr Assadi and Helia Yazdanyar. Simple
sublinear algorithms for (Δ + 1) vertex coloring via
asymmetric palette sparsification. 2025
Symposium on Simplicity in Algorithms, SOSA 2025,
New Orleans, LA, USA, January 13-15, 2025,
pages 1–8. SIAM, 2025. DOI (1)

[10] Soheil Behnezhad, Rajmohan Rajaraman, and
Omer Wasim. Fully dynamic (Δ + 1)-coloring
against adaptive adversaries. Proceedings of the
2025 Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2025, New Orleans, LA, USA,
January 12-15, 2025, pages 4983–5026. SIAM,
2025. DOI (12)

[11] Suman K. Bera, Amit Chakrabarti, and
Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. 47th
International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, 11:1–11:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. DOI (2)

[12] Amit Chakrabarti, Prantar Ghosh, and
Manuel Stoeckl. Adversarially robust coloring for
graph streams. 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, 37:1–37:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. DOI (2)

[13] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari,
Jara Uitto, and Yufan Zheng. The complexity of
(Δ+1) coloring in congested clique, massively
parallel computation, and centralized local
computation. Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019, pages 471–480. ACM, 2019. DOI (2, 4,
12)

[14] Bernard Chazelle, Ronitt Rubinfeld, and
Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J.
Comput. 34(6):1370–1379, 2005. DOI (2, 5)

[15] Artur Czumaj, Peter Davies, and Merav Parter.
Simple, deterministic, constant-round coloring in
congested clique and MPC. SIAM J. Comput.
50(5):1603–1626, 2021. DOI (4)

[16] Thomas Emden-Weinert, Stefan Hougardy, and
Bernd Kreuter. Uniquely colourable graphs and the
hardness of colouring graphs of large girth. Comb.
Probab. Comput. 7(4):375–386, 1998. URL (12)

[17] Joan Feigenbaum, Sampath Kannan,
Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model.
Theor. Comput. Sci. 348(2-3):207–216, 2005. DOI
(2, 5)

[18] Asaf Ferber, Liam Hardiman, and Xiaonan Chen.
Improved sublinear algorithms for classical and
quantum graph coloring. CoRR, abs/2502.06024,
2025. DOI (15)

[19] Manuela Fischer, Magnús M. Halldórsson, and
Yannic Maus. Fast distributed brooks’ theorem.
Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 2567–2588. SIAM,
2023. DOI (2)

[20] Maxime Flin, Mohsen Ghaffari,
Magnús M. Halldórsson, Fabian Kuhn, and
Alexandre Nolin. A distributed palette
sparsification theorem. Proceedings of the 2024
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2024, Alexandria, VA, USA, January 7-10,
2024, pages 4083–4123. SIAM, 2024. DOI (3)

https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.6
https://doi.org/10.1002/RSA.70012
https://arxiv.org/abs/2408.12835
https://sepehr.assadi.info/courses/cs466(6)-f24/Lectures/lec1.pdf
https://sepehr.assadi.info/courses/cs466(6)-f24/Lectures/lec1.pdf
https://doi.org/10.1145/3584372.3588681
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.46298/THEORETICS.23.9
https://doi.org/10.1137/1.9781611978315.1
https://doi.org/10.1137/1.9781611978322.169
https://doi.org/10.4230/LIPICS.ICALP.2020.11
https://doi.org/10.4230/LIPICS.ITCS.2022.37
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1137/S0097539702403244
https://doi.org/10.1137/20M1366502
http://journals.cambridge.org/action/displayAbstract?aid=46667
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.48550/ARXIV.2502.06024
https://doi.org/10.1137/1.9781611977554.CH98
https://doi.org/10.1137/1.9781611977912.142

14 / 18 S. Assadi, H. Yazdanyar

[21] Maxime Flin, Mohsen Ghaffari,
Magnús M. Halldórsson, Fabian Kuhn, and
Alexandre Nolin. Coloring fast with broadcasts.
Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA
2023, Orlando, FL, USA, June 17-19, 2023,
pages 455–465. ACM, 2023. DOI (2)

[22] Maxime Flin and Magnús M. Halldórsson. Faster
dynamic (Δ+1)-coloring against adaptive
adversaries. 52nd International Colloquium on
Automata, Languages, and Programming, ICALP
2025, July 8-11, 2025, Aarhus, Denmark,
volume 334 of LIPIcs, 79:1–79:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2025. DOI (12)

[23] Maxime Flin and Parth Mittal. (Δ + 1) vertex
coloring in o(n) communication. Distributed
Comput. 38(1):19–29, 2025. DOI (3)

[24] Magnús M. Halldórsson, Fabian Kuhn,
Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of
Computing, Rome, Italy, June 20 - 24, 2022,
pages 450–463. ACM, 2022. DOI (2, 3, 5)

[25] David G. Harris, Johannes Schneider, and
Hsin-Hao Su. Distributed (Δ +1)-coloring in
sublogarithmic rounds. J. ACM, 65(4):19:1–19:21,
2018. DOI (3)

[26] Dan Hefetz and Michael Krivelevich. Colouring
graphs from random lists. arXiv preprint
arXiv:2402.09998, 2024. URL (2, 12)

[27] Svante Janson, Tomasz Luczak, and
Andrzej Rucinski. Random graphs. John Wiley &
Sons, 2011. (5)

[28] Jeff Kahn and Charles Kenney. Asymptotics for
palette sparsification. arXiv preprint
arXiv:2306.00171, 2023. URL (2, 3, 12)

[29] Jeff Kahn and Charles Kenney. Asymptotics for
palette sparsification from variable lists. arXiv
preprint arXiv:2407.07928, 2024. URL (2, 12)

[30] Howard J. Karloff, Siddharth Suri, and
Sergei Vassilvitskii. A model of computation for
mapreduce. Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 938–948. SIAM, 2010.
DOI (2, 5)

[31] Michael Molloy and Bruce A. Reed. Colouring
graphs when the number of colours is almost the
maximum degree. J. Comb. Theory B, 109:134–195,
2014. DOI (11, 12)

[32] Jackson Morris and Fang Song. Simple vertex
coloring algorithms. CoRR, abs/2102.07089, 2021.
URL (15)

[33] Bruce Reed. 𝜔, Δ, and 𝜒. Journal of Graph Theory,
27(4):177–212, 1998. DOI (3)

[34] Bruce A. Reed. A strengthening of Brooks’ Theorem.
J. Comb. Theory B, 76(2):136–149, 1999. DOI (11)

[35] Ronitt Rubinfeld. Sublinear time algorithms course
(6.5240) at MIT. Homework 2, 2024. Accessed on
February 21, 2025. URL (15)

https://doi.org/10.1145/3558481.3591095
https://doi.org/10.4230/LIPICS.ICALP.2025.79
https://doi.org/10.1007/S00446-024-00475-3
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1145/3178120
https://arxiv.org/abs/2402.09998
https://arxiv.org/abs/2306.00171
https://arxiv.org/abs/2407.07928
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1016/J.JCTB.2014.06.004
https://arxiv.org/abs/2102.07089
https://arxiv.org/abs/2102.07089
https://doi.org/10.1002/(SICI)1097-0118(199804)27:4\<177::AID-JGT1\>3.0.CO;2-K
https://doi.org/10.1006/JCTB.1998.1891
https://people.csail.mit.edu/ronitt/COURSE/F24/HW/hw2.pdf

15 / 18 Asymmetric Palette Sparsification

A. Appendix: A Self-contained Sublinear Time Algorithm

In addition to our main result, we also present a very simple sublinear time algorithm for
(Δ + 1) coloring in the following theorem. This algorithm has recently and independently been
discovered in [18] and has also appeared as part of lecture notes for different courses [5, 35] at
this point. Finally, this algorithm can also be seen as a simple adjustment to the sublinear time
(Δ + 𝑜(Δ)) coloring algorithm of [32].

THEOREM A.1. There is a randomized algorithm that given any graph 𝐺 with maximum degree
Δ via adjacency list and matrix access, outputs a (Δ + 1) coloring of 𝐺 in 𝑂(𝑛 ·

√︁
𝑛 log 𝑛) expected

time.

We note that unlike our sublinear time algorithm in Theorem 4.1 which was non-adaptive,
namely made all its queries in advance before seeing the answer to them, the current algorithm
is adaptive and needs to receive the answer to each query before deciding its next query.

The algorithm in Theorem A.1 is quite similar to the standard greedy algorithm for (Δ + 1)
coloring. It iterates over the vertices and colors each one greedily by finding a color not used
among the neighbors of this vertex yet (which exists by pigeonhole principle). However, unlike
the greedy algorithm, (𝑖) it crucially needs to iterate over the vertices in a random order, and,
(𝑖𝑖) instead of iterating over the neighbors of the current vertex to find an available color, it
samples a color randomly for this vertex and then iterates over all vertices with this color to
make sure they are not neighbor to the current vertex. Formally, the algorithm is as follows.

1: Let 𝐶1, 𝐶2, . . . , 𝐶Δ+1 be the color classes to be output at the end,
initially set to empty.

2: Pick a permutation 𝜋 of vertices in 𝑉 uniformly at random.
3: For 𝑣 ∈ 𝑉 in the order of the permutation 𝜋:
4: Sample 𝑐 ∈ [Δ + 1] uniformly at random.
5: For every vertex 𝑢 ∈ 𝐶𝑐, check if (𝑢, 𝑣) is an edge in 𝐺; if Yes,

restart from Line (4).
6: If the algorithm reaches this step, color the vertex 𝑣 with 𝑐

and add 𝑣 to 𝐶𝑐.

Algorithm 1. An (adaptive) sublinear time algorithm for (Δ + 1) vertex coloring.

It is easy to see that this algorithm never outputs a wrong coloring (namely if it ever
terminates, its answer is always correct). Any new vertex colored does not create a conflict

16 / 18 S. Assadi, H. Yazdanyar

with previously colored vertices (given the algorithm explicitly checks to not color 𝑣 with a
color 𝑐 if one of its neighbors is already colored 𝑐) and thus at the end, there cannot be any
monochromatic edge in the graph. The interesting part of the analysis is to show that the
algorithm terminates quickly enough, which is captured by the following lemma.

LEMMA A.2. For any input graph 𝐺 = (𝑉, 𝐸), the expected runtime of Line 1 is

𝑂

(
𝑛2

Δ
· log Δ

)
time.

To continue, we need to set up some notation. For any vertex 𝑣 ∈ 𝑉 , we define the random
variable 𝑋𝑣 as the number of (𝑢, 𝑣) queries checked by the algorithm in the for-loop of coloring
𝑣. Additionally, for any 𝑣 ∈ 𝑉 and permutation 𝜋 picked over 𝑉 , define 𝑁<

𝜋 (𝑣) as the neighbors
𝑢 of 𝑣 with 𝜋(𝑢) < 𝜋(𝑣), namely the ones that are colored before 𝑣 by Algorithm Line 1. Let
deg<𝜋 (𝑣) :=

��𝑁<
𝜋 (𝑣)

��. We start with the basic observation that the runtime of Line 1 can be stated
in terms of the variables {𝑋𝑣}𝑣∈𝑉 .

OBSERVAT ION A.3. The expected runtime of Line 1 is 𝑂(∑𝑣∈𝑉 E [𝑋𝑣]).

PROOF . By definition, 𝑋𝑣 is the number of queries checked in the for-loop of coloring 𝑣. The
algorithm repeats this for-loop for all 𝑣 ∈ 𝑉 , so the expected runtime is the number of all queries
checked in this algorithm which is proportional to E [∑𝑣∈𝑉 𝑋𝑣]. Applying linearity of expectation
concludes the proof. ■

Our task is now to bound each of E [𝑋𝑣] for 𝑣 ∈ 𝑉 to bound the runtime of the algorithm
using Observation A.3.

LEMMA A.4. For any vertex 𝑣 ∈ 𝑉 and any choice of the permutation 𝜋:

E [𝑋𝑣 | 𝜋] ⩽
𝑛

Δ + 1 − deg<𝜋 (𝑣)
.

To prove Lemma A.4, we first need the following claim.

CLAIM A.5. Fix any vertex 𝑣 ∈ 𝑉 , any choice of the permutation 𝜋, and any assignment of colors
𝐶(𝑢1), 𝐶(𝑢2), . . . by Line 1 to all vertices that appear before 𝑣 in 𝜋. Then,

E [𝑋𝑣 | 𝜋] =
E [|𝐶𝑐 | | 𝜋]

Pr
(
𝑐 does not appear in 𝑁<

𝜋 (𝑣) | 𝜋, 𝐶(𝑢1), 𝐶(𝑢2), . . .
) ,

where in the RHS, both the expectation and the probability are taken with respect to a color 𝑐
chosen uniformly at random from [Δ + 1].

PROOF . Define the colors 𝐵(𝑣) as the set of colors that appear in 𝑁<
𝜋 (𝑣), that is

𝐵(𝑣) :=
{
𝑐 ∈ [Δ + 1] | there exists 𝑢 ∈ 𝑁<

𝜋 (𝑣) with 𝑐(𝑢) = 𝑐
}
.

17 / 18 Asymmetric Palette Sparsification

For every color 𝑐, if 𝑐 is in 𝐵(𝑣) then 𝑣 cannot be colored by 𝑐, and otherwise it can. The
probability of picking each color 𝑐 is 1/(Δ + 1). For 𝑐 ∉ 𝐵(𝑣), the number of needed queries
before coloring 𝑣 is |𝐶𝑐 |. For 𝑐 ∈ 𝐵(𝑣), the algorithm first needs to check up to |𝐶𝑐 | queries to
know this color is not available to 𝑣, and then it simply needs to repeat the same exact process.
As such,

E [𝑋𝑣 | 𝜋] =
∑︁
𝑐∉𝐵(𝑣)

1
Δ + 1

|𝐶𝑐 | +
∑︁
𝑐∈𝐵(𝑣)

1
Δ + 1

(|𝐶𝑐 | + E [𝑋𝑣 | 𝜋]) = E [|𝐶𝑐 | | 𝜋] +
|𝐵(𝑣) |
Δ + 1

· E [𝑋𝑣 | 𝜋] .

We can also define the probability of 𝑐 not appearing in 𝑁<
𝜋 (𝑣) in terms of |𝐵(𝑣) | as below:

Pr
(
𝑐 does not appear in 𝑁<

𝜋 (𝑣) | 𝜋, 𝐶(𝑢1), 𝐶(𝑢2), . . .
)
= 1 − |𝐵(𝑣) |

Δ + 1
.

By solving the recursive equation above, we get that

E [𝑋𝑣 | 𝜋] =
E [|𝐶𝑐 | | 𝜋]

Pr
(
𝑐 does not appear in 𝑁<

𝜋 (𝑣) | 𝜋, 𝐶(𝑢1), 𝐶(𝑢2), . . .
) . ■

Using Claim A.5, we can conclude the proof of Lemma A.4.

PROOF OF LEMMA A.4 . Each color 𝑐′ ∈ [Δ+1] is chosen with probability 1/(Δ+1) in Line (4)
of the algorithm. Thus,

E [|𝐶𝑐 | | 𝜋] =
∑︁

𝑐′∈[Δ+1]
Pr (𝑐 = 𝑐′ | 𝜋) · |𝐶𝑐′ | ⩽

𝑛

Δ + 1
,

as the sets {𝐶𝑐′ | 𝑐′ ∈ [Δ + 1]} are disjoint and partition the already-colored vertices which are
at most 𝑛 vertices. At this point, at most deg<𝜋 (𝑣) colors have been used in the neighborhood of
𝑣 and thus cannot be used to color 𝑣. As such,

Pr
(
𝑐 does not appear in 𝑁<

𝜋 (𝑣) | 𝜋, 𝐶(𝑢1), 𝐶(𝑢2), . . .
)
⩾ 1 −

deg<𝜋 (𝑣)
Δ + 1

.

Using Claim A.5 and the above bounds, we conclude

E [𝑋𝑣 | 𝜋] =
E [|𝐶𝑐 | | 𝜋]

Pr
(
𝑐 does not appear in 𝑁<

𝜋 (𝑣) | 𝜋, 𝐶(𝑢1), 𝐶(𝑢2), . . .
)

⩽
𝑛

Δ + 1 − deg<𝜋 (𝑣)
. ■

By Lemma A.4 (and Observation A.3), for any choice of the permutation 𝜋 in Line 1,

E [runtime of Line 1 | 𝜋] = 𝑂(1) ·
∑︁
𝑣∈𝑉

𝑛

Δ + 1 − deg<𝜋 (𝑣)
. (1)

We now consider the randomness of 𝜋 to bound the RHS above in expectation over 𝜋.

LEMMA A.6. We have,

E
𝜋

[∑︁
𝑣∈𝑉

𝑛

Δ + 1 − deg<𝜋 (𝑣)

]
= 𝑂

(
𝑛2

Δ
· log Δ

)
.

18 / 18 S. Assadi, H. Yazdanyar

PROOF . Using the linearity of expectation, we have

E
𝜋

[∑︁
𝑣∈𝑉

𝑛

Δ + 1 − deg<𝜋 (𝑣)

]
= 𝑛 ·

∑︁
𝑣∈𝑉
E
𝜋

[
1

Δ + 1 − deg<𝜋 (𝑣)

]
.

For each permutation 𝜋, deg<𝜋 (𝑣) depends on 𝑣’s relative position in the permutation 𝜋

with respect to its neighbors and it can vary from 0 to deg(𝑣). Each of these positions happens
with the same probability 1/(deg(𝑣) + 1). Hence, for every vertex 𝑣 ∈ 𝑉 ,

E
𝜋

[
1

Δ + 1 − deg<𝜋 (𝑣)

]
=

deg(𝑣)∑︁
𝑑=0

1
deg(𝑣) + 1

· 1
Δ + 1 − 𝑑 ⩽

Δ∑︁
𝑑=0

1
Δ + 1

· 1
Δ + 1 − 𝑑 = 𝑂

(
log Δ

Δ

)
,

where the inequality holds because if we let 𝐴 := {𝑛/(Δ + 1 − 𝑑)}Δ
𝑑=0, then, in the LHS, we are

taking the average of the smallest deg(𝑣) + 1 numbers in 𝐴, whereas in the RHS we are taking
the average of all of 𝐴. Plugging in this bound in the equation above concludes the proof. ■

Lemma A.2 now follows immediately from Equation (1) and Lemma A.6. We can now use
this to wrap up the proof of Theorem A.1.

PROOF OF THEOREM A.1 . First, we consider the case Δ ⩾
√︁
𝑛 log 𝑛. In this case, we use

Line 1, which relies on the adjacency matrix to access the input graph. By Lemma A.2 we know
that this algorithm has expected runtime 𝑂(𝑛2

Δ · log Δ) which is 𝑂(𝑛
√︁
𝑛 · log(𝑛)) by the lower

bound on Δ.
If Δ <

√︁
𝑛 log 𝑛we can use the standard deterministic greedy algorithm for vertex coloring

which has linear runtime of 𝑂(𝑛Δ). This algorithm uses an adjacency list to access the graph.
This is again 𝑂(𝑛

√︁
𝑛 log 𝑛) by the upper bound on Δ in this case, concluding the proof. ■

2026 :3
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Sepehr Assadi, Helia Yazdanyar.

	Introduction
	Preliminaries
	Sublinear Models Considered in this Paper

	Asymmetric Palette Sparsification
	Sublinear Algorithms from Asymmetric Palette Sparsification
	Concluding Remarks
	References
	Appendix: A Self-contained Sublinear Time Algorithm

