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ABSTRACT. A graph 𝐺 is called self-ordered (a.k.a asymmetric) if the identity permutation is
its only automorphism. Equivalently, there is a unique isomorphism from 𝐺 to any graph that
is isomorphic to 𝐺. We say that 𝐺 = (𝑉, 𝐸) is robustly self-ordered if the size of the symmetric
dierence between 𝐸 and the edge-set of the graph obtained by permuting 𝑉 using any per-
mutation 𝜋 : 𝑉 → 𝑉 is proportional to the number of non-xed-points of 𝜋. In this work, we
initiate the study of the structure, construction and utility of robustly self-ordered graphs.

We show that robustly self-ordered bounded-degree graphs exist (in abundance), and that
they can be constructed eciently, in a strong sense. Specically, given the index of a vertex
in such a graph, it is possible to nd all its neighbors in polynomial-time (i.e., in time that is
poly-logarithmic in the size of the graph).

We provide two very dierent constructions, in tools and structure. The rst, a direct
construction, is based on proving a sucient condition for robust self-ordering, which requires
that an auxiliary graph is expanding. The second construction is iterative, boosting the property
of robust self-ordering from smaller to larger graphs. Structurally, the rst construction always
yields expanding graphs, while the second construction may produce graphs that have many
tiny (sub-logarithmic) connected components.

We also consider graphs of unbounded degree, seeking correspondingly unbounded robust-
ness parameters. We again demonstrate that such graphs (of linear degree) exist (in abundance),
and that they can be constructed eciently, in a strong sense. This turns out to require very
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dierent tools. Specically, we show that the construction of such graphs reduces to the con-
struction of non-malleable two-source extractors (with very weak parameters but with some
additional natural features).

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards
obtaining lower bounds on the query complexity of testing graph properties both in the bounded-
degree and the dense graph models. Indeed, their robustness oers ecient, local and distance
preserving reductions from testing problems on ordered structures (like sequences) to the
unordered (eectively unlabeled) graphs. One of the results that we obtain, via such a reduction,
is a subexponential separation between the query complexities of testing and tolerant testing
of graph properties in the bounded-degree graph model.

1. Introduction

For a (labeled) graph 𝐺 = (𝑉, 𝐸), and a bijection 𝜙 : 𝑉 → 𝑉 ′, we denote by 𝜙(𝐺) the graph
𝐺′ = (𝑉 ′, 𝐸′) such that 𝐸′ = {{𝜙(𝑢), 𝜙(𝑣)} : {𝑢, 𝑣} ∈ 𝐸}, and say that 𝐺′ is isomorphic to 𝐺. The
set of automorphisms of the graph 𝐺 = (𝑉, 𝐸), denoted aut(𝐺), is the set of permutations that
preserve the graph 𝐺; that is, 𝜋 ∈ aut(𝐺) if and only if 𝜋(𝐺) = 𝐺. We say that a graph is
asymmetric (equiv., self-ordered) if its set of automorphisms is a singleton, which consists of the
trivial automorphism (i.e., the identity permutation). We actually prefer the term self-ordered,
because we take the perspective that is oered by the following equivalent denition.

DEF IN IT ION 1.1 (Self-ordered (a.k.a asymmetric) graphs). The graph 𝐺 = ( [𝑛], 𝐸) is self-
ordered if for every graph 𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to 𝐺 there exists a unique bijection
𝜙 : 𝑉 ′→ [𝑛] such that 𝜙(𝐺′) = 𝐺.

In other words, given an isomorphic copy 𝐺′ = (𝑉 ′, 𝐸′) of a xed graph 𝐺 = ( [𝑛], 𝐸), there
is a unique bijection 𝜙 : 𝑉 ′→ [𝑛] that orders the vertices of 𝐺′ such that the resulting graph (i.e.,
𝜙(𝐺′)) is identical to 𝐺. Indeed, if 𝐺′ = 𝐺, then this unique bijection is the identity permutation.1

In this work, we consider a feature, whichwe call robust self-ordering, that is a quantitative
version self-ordering. Loosely speaking, a graph 𝐺 = ( [𝑛], 𝐸) is robustly self-ordered if, for
every permutation 𝜋 : [𝑛] → [𝑛], the size of the symmetric dierence between 𝐺 and 𝜋(𝐺) is
proportional to the number of non-xed-points under 𝜋; that is, |𝐸4{{𝜋(𝑢), 𝜋(𝑣)} : {𝑢, 𝑣} ∈𝐸}| is
proportional to |{𝑖 ∈ [𝑛] :𝜋(𝑖) ≠ 𝑖}|. (In contrast, self-ordering only means that the size of the
symmetric dierence is positive if the number of non-xed-points is positive.)

DEF IN IT ION 1.2 (Robustly self-ordered graphs). A graph 𝐺 = (𝑉, 𝐸) is said to be 𝛾-robustly

1 Naturally, we are interested in efficient algorithms that find this unique ordering, whenever it exists; such algorithms
are known when the degree of the graph is bounded [29].
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self-ordered if for every permutation 𝜋 : 𝑉 → 𝑉 it holds that��𝐸4 {{𝜋(𝑢), 𝜋(𝑣)} : {𝑢, 𝑣} ∈𝐸} �� ≥ 𝛾 · |{𝑖 ∈ [𝑛] :𝜋(𝑖) ≠ 𝑖}|, (1)

where 4 denotes the symmetric dierence operation. An innite family of graphs {𝐺𝑛 =

( [𝑛], 𝐸𝑛)}𝑛∈N (such that each 𝐺𝑛 has maximum degree 𝑑) is called robustly self-ordered if there
exists a constant 𝛾 > 0, called the robustness parameter, such that for every 𝑛 the graph 𝐺𝑛 is
𝛾-robustly self-ordered.

Note that |𝐸𝑛4{{𝜋(𝑢), 𝜋(𝑣)} : {𝑢, 𝑣} ∈ 𝐸𝑛}| ≤ 2𝑑 · |{𝑖 ∈ [𝑛] : 𝜋(𝑖) ≠ 𝑖}| always holds (for
families of maximum degree 𝑑). The term “robust” is inspired by the property testing literature
(cf. [31]), where it indicates that some “parametrized violation” is reected proportionally in
some “detection parameter”.

The second part of Denition 1.2 is tailored for bounded-degree graphs, which will be our
focus in Section 2–6. Nevertheless, in Sections 7–10 we consider graphs of unbounded degree
and unbounded robustness parameters. In this case, for a function 𝜌 : N→ R, we say that an
innite family of graphs {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N is 𝜌-robustly self-ordered if for every 𝑛 the graph
𝐺𝑛 is 𝜌(𝑛)-robustly self-ordered. Naturally, in this case, the graphs must have Ω(𝜌(𝑛) ·𝑛) edges.2

In Sections 7–9 we consider the case of 𝜌(𝑛) = Ω(𝑛).

1.1 Robustly self-ordered bounded-degree graphs

The rst part of this paper (i.e., Section 2–6) focuses on the study of robustly self-ordered
bounded-degree graphs.

1.1.1 Our main results and motivation

We show that robustly self-ordered (𝑛-vertex) graphs of bounded-degree not only exist (for all
𝑛 ∈ N), but can be eciently constructed in a strong (or local) sense. Specically, we prove the
following result.

THEOREM 1.3 (Constructing robustly self-ordered bounded-degree graphs). For all su-
ciently large 𝑑 ∈ N, there exist an innite family of 𝑑-regular robustly self-ordered graphs {𝐺𝑛}𝑛∈N
and a polynomial-time algorithm that, given 𝑛 ∈ N and a vertex 𝑣 ∈ [𝑛] in the 𝑛-vertex graph 𝐺𝑛,
nds all neighbors of 𝑣 (in 𝐺𝑛).

We stress that the algorithm runs in time that is polynomial in the description of the vertex;
that is, the algorithm runs in time that is polylogarithmic in the size of the graph. Theorem 1.3
holds both for graphs that consists of connected components of logarithmic size and for “strongly
connected” graphs (i.e., expanders).

2 Actually, all but at most one vertex must have degree at least 𝜌(𝑛)/2.
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Recall that given an isomorphic copy 𝐺′ of such a graph 𝐺𝑛, the original graph 𝐺𝑛 (i.e.,
along with its unique ordering) can be found in polynomial-time [29]. Furthermore, we show
that the pre-image of each vertex of 𝐺′ in the graph 𝐺𝑛 (i.e., its index in the aforementioned
ordering) can be found in time that is polylogarithmic in the size of the graph (see discussion in
Section 4.4, culminating in Theorem 4.7).3

We present two proofs of Theorem 1.3. Loosely speaking, the rst proof reduces to proving
that a 2𝑑-regular 𝑛-vertex graph representing the action of 𝑑 permutations on [𝑛] is robustly
self-ordered if the 2 ·

(𝑛
2
)
-vertex graph representing the action of these permutations on (ordered)

vertex-pairs is an expander.4 The graphs constructed in this proof are expanders, whereas the
graphs constructed via by the second proof can be either expanders or consist of connected
components of logarithmic size. More importantly, the graphs constructed in the second proof
are coupled with local self-ordering and local reversed self-ordering algorithms (see Section 4.4).
The second proof proceeds in three steps, starting from the mere existence of robustly self-
ordered bounded-degree �-vertex graphs, which yields a construction that runs in poly(��)-time.
Next, a poly(𝑛)-time construction of 𝑛-vertex graphs is obtained by using the former graphs as
small subgraphs (of 𝑜(log 𝑛)-size). Lastly, strong (a.k.a local) constructability is obtained in an
analogous manner. For more details, see Section 1.1.2.

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards ob-
taining lower bounds on the query complexity of testing graph properties in the bounded-degree
graph model. Specically, we use these graphs as a key ingredient in a general methodology of
transporting lower bounds regarding testing binary strings to lower bounds regarding testing
graph properties in the bounded-degree graph model. In particular, using the methodology, we
prove the following two results.

1. A subexponential separation between the query complexities of testing and tolerant testing
of graph properties in the bounded-degree graph model; that is, for some constant 𝑐 > 0,
the query complexity of tolerant testing is at least exp(𝑞𝑐), where 𝑞 is the query complexity
of standard testing.
This result, which appears as Theorem 5.5, is obtained by transporting an analogous result
that was known for testing binary strings [14].

2. A linear query complexity lower bound for testing an eciently recognizable graph prop-
erty in the bounded-degree graph model, where the lower bound holds even if the tested
graph is restricted to consist of connected components of logarithmic size (see Theo-
rem 5.2).
As discussed in Section 5, an analogous result was known in the general case (i.e., without

3 The algorithm asserted above is said to perform local self-ordering of𝐺′ according to𝐺𝑛. For 𝜙(𝐺′) = 𝐺𝑛, given a vertex
𝑣 in 𝐺′, this algorithm returns 𝜙(𝑣) in poly(log 𝑛)-time. In contrast, a local reversed self-ordering algorithm is given a
vertex 𝑖 ∈ [𝑛] of 𝐺𝑛 and returns 𝜙−1 (𝑖). The second algorithm is also presented in Section 4.4 (see Theorem 4.9).

4 Here and throughout this paper, by expander we mean families of bounded-degree graphs that have constant ex-
pansion (cf., e.g., [25]).
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the restriction on the size of the connected components), and we consider it interesting
that the result holds also in the special case of graphs with small connected components.

To get a feeling of why robustly self-ordered graphs are relevant to such transportation,
recall that strings are ordered objects, whereas graphs properties are eectively sets of unlabeled
graphs, which are unordered objects. Hence, we need to make the graphs (in the property)
ordered, and furthermore make this ordering robust in the very sense that is reected in
Denition 1.2. We comment that the theme of reducing ordered structures to unordered
structures occurs often in the theory of computation and in logic, and is often coupled with
analogues of query complexity.

Lastly, in Section 6, we prove that random 2𝑑-regular graphs are robustly self-ordered;
see Theorem 6.1. This extends work in probabilistic graph theory, which proves a similar result
for the weaker notion of self-ordering [4, 5].

1.1.2 Techniques

As stated above, we present two dierent constructions that establish Theorem 1.3: A direct
construction and a three-step construction. Both constructions utilize a variant of the notion of
robust self-ordering that refers to edge-colored graphs, which we review rst.

The edge-coloring methodology. At several dierent points, we found it useful to start by
demonstrating the robust self-ordering feature in a relaxed model in which edges are assigned
a constant number of colors, and the symmetric dierence between graphs accounts also for
edges that have dierent colors in the two graphs (see Denition 2.1). This allows us to analyze
dierent sets of edges separately.

For example, we actually analyze the direct construction in the edge-colored model, while
associating each of the underlying 𝑑 permutations with a dierent color. This association allows
for analyzing the eect of each permutation separately (see below). Another example, which
arises in the three-step construction, occurs when we super-impose a robustly self-ordered
graph with an expander graph in order to make the robustly self-ordered graph expanding (as
needed for the second and third step of the aforementioned three-step construction). In this
case, assigning the edges of each of the two graphs a dierent color, allows for easily retaining
the robust self-ordering feature (of the rst graph).

We obtain robustly self-ordered graphs (in the original sense) by replacing all edges that
are assigned a specic color with copies of a constant-sized (asymmetric) gadget, where dierent
(and in fact non-isomorphic) gadgets are used for dierent edge colors. The soundness of this
transformation is proved in Theorem 2.4.

The direct construction. For any 𝑑 permutations, 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛], we consider the
Schreier graph (see [25, Sec. 11.1.2]) dened by the action of these permutation on [𝑛]; that is,
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the edge-set of this graph is {{𝑣, 𝜋𝑖 (𝑣)} :𝑣∈ [𝑛] & 𝑖 ∈ [𝑑]}. Loosely speaking, we prove that this
2𝑑-regular 𝑛-vertex graph is robustly self-ordered if another Schreier graph is an expander. The
second Schreier graph represents the action of the same permutations on pairs of vertices
(in [𝑛]); that is, this graph consisting of the vertex-set {(𝑢, 𝑣) : 𝑢, 𝑣 ∈ [𝑛]} and the edge-set
{{(𝑢, 𝑣), (𝜋𝑖 (𝑢), 𝜋𝑖 (𝑣))} :𝑢, 𝑣∈ [𝑛] & 𝑖 ∈ [𝑑]}.5

The argument is actually made with respect to edge-colored directed graphs (i.e., the edge-
set of the rst graph is {(𝑣, 𝜋𝑖 (𝑣)) :𝑣∈ [𝑛] & 𝑖 ∈ [𝑑]} and the directed edge (𝑣, 𝜋𝑖 (𝑣)) is assigned
the color 𝑖). Hence, we also present a transformation of robustly self-ordered edge-colored
directed graphs to analogous undirected graphs. Specically, we replace the directed edge (𝑢, 𝑣)
colored 𝑗 by a 2-path with a designated auxiliary vertex 𝑎𝑢,𝑣, 𝑗 , while coloring the edge {𝑢, 𝑎𝑢,𝑣, 𝑗}
by 2 𝑗 − 1 and the edge {𝑎𝑢,𝑣, 𝑗 , 𝑣} by 2 𝑗.

We comment that permutations satisfying the foregoing condition can be eciently con-
structed; for example, any set of expanding generators for SL2(𝑝) (e.g., the one used by [28])
yield such permutations on [𝑛] ≡ {(1, 𝑖) : 𝑖 ∈ GF(𝑝)} ∪ {(0, 1)} (see Proposition 3.3).6

The three-stepconstruction. Our alternative construction of robustly self-ordered (bounded-
degree) 𝑛-vertex graphs proceeds in three steps.

1. First, we prove the existence of bounded-degree 𝑛-vertex graphs that are robustly self-
ordered (see Theorem 4.1), while observing that this yields a exp(𝑂(𝑛 log 𝑛))-time algo-
rithm for constructing them.

2. Next (see Theorem 4.2), we use the latter algorithm to construct robustly self-ordered
𝑛-vertex bounded-degree graphs that consist of 2�-sized connected components, where
� =

𝑂(log 𝑛)
log log 𝑛 ; these connected components are far frombeing isomorphic to one another, and

are constructed using robustly self-ordered �-vertex graphs as a building block. This yields
an algorithm that constructs the 𝑛-vertex graph in poly(𝑛)-time, since exp(𝑂(� log �)) =
poly(𝑛).

3. Lastly, we derive Theorem 1.3 (restated as Theorem 4.5) by repeating the same strategy
as in Step 2, but using the construction of Theorem 4.2 for the construction of the small
connected components (and setting � = 𝑂(log 𝑛)). This yields an algorithm that nds the
neighbors of a vertex in the 𝑛-vertex graph in poly(log 𝑛)-time, since poly(�) = poly(log 𝑛).

The foregoing description of Steps 2 and 3 yields graphs that consists of small connected
components. We obtain analogous results for “strongly connected” graphs (i.e., expanders)
by superimposing these graphs with expander graphs (while distinguishing the two types of
edges by using colors (see the foregoing discussion)). In fact, it is essential to perform this

5 Equivalently, we consider only pairs of distinct vertices; that is, the vertex-set {(𝑢, 𝑣) :𝑢, 𝑣∈ [𝑛] &𝑢≠𝑣}.

6 In this case, the primary Schreier graph represents the natural action of the group on the 1-dimensional subspaces
of GF(𝑝)2.
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transformation (on the result of Step 2) before taking Step 3; the transformation itself appears
in the proof of Theorem 2.6.

Using large collections of pairwise far apart permutations. One ingredient in the forego-
ing three-step construction is the use of a single �-vertex robustly self-ordered (bounded-degree)
graph towards obtaining a large collection of 2�-vertex (bounded-degree) graphs such that every
two graphs are far from being isomorphic to one another, where “large” means exp(Ω(� log �))
in one case (i.e., in the proof of Theorem 4.2) and exp(Ω(�)) in another case (i.e., in the proof of
Theorem 4.5). Essentially, this is done by constructing a large collection of permutations of [�]
that are pairwise far-apart, and letting the 𝑖th graph consists of two copies of the �-vertex graph
that are matched according to the 𝑖th permutation (see the aforementioned proofs). (Actually,
we use two robustly self-ordered �-vertex graphs that are far from being isomorphic (e.g., have
dierent degree).)

A collection of 𝐿 = exp(Ω(� log �)) pairwise far-apart permutations over [�] can be con-
structed in poly(𝐿)-time by selecting the permutations one by one, while relying on the existence
of a permutation that augments the current sequence (while preserving the distance condition,
see the proof of Theorem 4.2). A collection of 𝐿 = exp(Ω(�)) pairwise far-apart permutations
over [�] can be locally constructed such that the 𝑖th permutation is constructed in poly(�)-time
by using sequences of disjoint transpositions determined via a good error correcting code (see
the proof of Theorem 4.5).

The foregoing discussion begs the challenge of obtaining a construction of a collection of 𝐿 =

exp(Ω(� log �)) permutations over [�] that are pairwise far-apart along with a polynomial-time
algorithm that, on input 𝑖 ∈ [𝐿], returns a description of the 𝑖th permutation (i.e., the algorithm
should run in poly(log 𝐿)-time). We meet this challenge in [20]. Note that such a collection
constitutes a an asymptotically good code over the alphabet [�], where the permutations are
the codewords (being far-apart corresponds to constant relative distance and log 𝐿 = Ω(log(�!))
corresponds to constant rate).

On the failure of some natural approaches. We mention that natural candidates for ro-
bustly self-ordered bounded-degree graphs fail. In particular, there exist expander graphs
that are not robustly self-ordered. In fact, any Cayley graph is symmetric (i.e., has non-trivial
automorphisms).7

In light of the above, it is interesting that expansion can serve as a sucient condition for
robust self-ordering (as explained in the foregoing review of the direct construction); recall,
however, that this works for Schreier graphs, and expansion needs to hold for the action on

7 Specifically, multiplying the vertex labels (say, on the right) by any non-zero group element yields a non-trivial auto-
morphism (assuming that edges are defined by multiplying with a generator on the left). Such automorphisms cannot
be constructed in general for Schreier graphs, and some Schreier graphs have no automorphisms (e.g., the ones we
construct here).
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vertex-pairs.

On optimization: We made no attempt to minimize the degree bound and maximize the
robustness parameter. Note that we can obtain 3-regular robustly self-ordered graphs by
applying degree reduction; that is, given a 𝑑-regular graph, we replace each vertex by a 𝑑-cycle
and use each of these vertices to “hook” one original edge. To facilitate the analysis, we may
use one color for the edges of the 𝑑-cycles and another color for the other (i.e., original) edges.8

Hence, the issue at hand is actually one of maximizing the robustness parameter of the resulting
3-regular graphs.

Caveat (tedious): Whenever we assert a 𝑑-regular 𝑛-vertex graph, we assume that the trivial
conditions hold; specically, we assume that 𝑛 > 𝑑 and that 𝑛𝑑 is even (or, alternatively, allow
for one exceptional vertex of degree 𝑑 − 1).

1.2 Robustly self-ordered dense graphs

In the second part of this paper (i.e., Sections 7–10) we consider graphs of unbounded degree,
seeking correspondingly unbounded robustness parameters. In particular, we are interested in
𝑛-vertex graphs that are Ω(𝑛)-robustly self-ordered, which means that they must have Ω(𝑛2)
edges.

The construction of Ω(𝑛)-robustly self-ordered graphs oers yet another alternative ap-
proach towards the construction of bounded-degree graphs that are Ω(1)-robustly self-ordered.
Specically, we show that 𝑛-vertex graphs that are Ω(𝑛)-robustly self-ordered can be eciently
transformed into 𝑂(𝑛2)-vertex bounded-degree graphs that are Ω(1)-robustly self-ordered; see
Proposition 7.2, which is essentially proved by the “degree reduction via expanders” technique,
while using a dierent color for the expanders’ edges, and then using gadgets to replace colored
edges (see Theorem 2.4).

1.2.1 Our main results

It is quite easy to show that random 𝑛-vertex graphs are Ω(𝑛)-robustly self-ordered (see Propo-
sition 7.1); in fact, the proof is easier than the proof of the analogous result for bounded-degree
graphs (Theorem 6.1). Unfortunately, constructing 𝑛-vertex graphs that are Ω(𝑛)-robustly self-
ordered seems to be no easier than constructing robustly self-ordered bounded-degree graphs.
In particular, it seems to require completely dierent techniques and tools.

THEOREM 1.4 (ConstructingΩ(𝑛)-robustly self-ordered graphs). There exist an innite fam-
ily of dense Ω(𝑛)-robustly self-ordered graphs {𝐺𝑛}𝑛∈N and a polynomial-time algorithm that,

8 Needless to say, we later replace all colored edges by copies of adequate (3-regular) constant-sized gadgets.



9 / 92 Robustly Self-Ordered Graphs

given 𝑛 ∈ N and a pair of vertices 𝑢, 𝑣 ∈ [𝑛] in the 𝑛-vertex graph 𝐺𝑛, determines whether or not
𝑢 is adjacent to 𝑣 in 𝐺𝑛.

Unlike in the case of bounded-degree graphs, in general, we cannot rely on an ecient
isomorphism test for nding the original ordering of 𝐺𝑛, when given an isomorphic copy of it.
However, we can obtain dense Ω(𝑛)-robustly self-ordered graphs for which this ordering can
be found eciently (see Theorem 8.10).

Our proof of Theorem 1.4 is by a reduction to the construction of non-malleable two-source
extractors, where a suitable construction of the latter was provided by Chattopadhyay, Goyal,
and Li [7].We actually present two dierent reductions (Theorems 8.3 and 8.7), one simpler than
the other but yielding a less ecient constructionwhen combinedwith the known constructions
of extractors. We mention that the rst reduction (Theorem 8.3) is partially reversible (see
Proposition 8.5, which reverses a special case captured in Remark 8.4).

We show that Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs can be used to transport lower
bounds regarding testing binary strings to lower bounds regarding testing graph properties in
the dense graph model. This general methodology, presented in Section 9, is analogous to the
methodology for the bounded-degree graph model, which is presented in Section 5.

We mention that in a follow-up work [21], we employed this methodology in order to
resolve several open problems regarding the relation between adaptive and non-adaptive
testers in the dense graph model. In particular, we proved that there exist graph properties
for which any non-adaptive tester must have query complexity that is almost quadratic in the
query complexity of the best general (i.e., adaptive) tester, whereas it has been known for a
couple of decades that the query complexity of non-adaptive testers is at most quadratic in the
query complexity of adaptive testers.

The case of intermediate degree bounds. Lastly, in Section 10, we consider 𝑛-vertex
graphs of degree bound 𝑑 (𝑛), for every 𝑑 : N → N such that 𝑑 (𝑛) ∈ [Ω(1), 𝑛]. Indeed, the
bounded-degree case (studied in Section 2–6) and the dense graph case (studied in Sections 7–9)
are special cases (which correspond to 𝑑 (𝑛) = 𝑂(1) and 𝑑 (𝑛) = 𝑛). Using results from these
two special cases, we show how to construct Ω(𝑑 (𝑛))-robustly self-ordered 𝑛-vertex graphs of
maximum degree 𝑑 (𝑛), for all 𝑑 : N→ N.

1.2.2 Techniques

As evident from the foregoing description, we reduce the construction of Ω(𝑛)-robustly self-
ordered 𝑛-vertex graphs to the construction of non-malleable two-source extractors.

Non-malleable two-source extractors were introduced in [8], as a variant on seeded (one-
source) non-malleable extractors, which were introduced in [11]. Loosely speaking, we say that
nmE : {0, 1}� × {0, 1}� → {0, 1}𝑚 is a non-malleable two-source extractor for a class of sources C
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if for every two independent sources in C, denoted 𝑋 and 𝑌 , and for every two functions
𝑓 , 𝑔 : {0, 1}� → {0, 1}� that have no xed-point it holds that (nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))) is
close to (𝑈𝑚, nmE( 𝑓 (𝑋), 𝑔 (𝑌 )), where𝑈𝑚 denotes the uniform distribution over {0, 1}𝑚. We show
that a non-malleable two-source extractor for the class of �-bit sources of min-entropy � − 𝑂(1),
with a single output bit (i.e., 𝑚 = 1) and constant error, suces for constructing Ω(𝑛)-robustly
self-ordered 𝑛-vertex graphs. Recall that constructions with much stronger parameters (e.g.,
min-entropy � − �Ω(1) , negligible error, and 𝑚 = �Ω(1)) were provided by Chattopadhyay, Goyal,
and Li [7, Thm. 1]. (These constructions are quite complex. Interestingly, we are not aware of a
simpler way of obtaining the weaker parameters that we need.)

Actually, we show two reductions of the construction of Ω(𝑛)-robustly self-ordered 𝑛-
vertex graphs to the construction of non-malleable two-source extractors. In both cases we
use extractors that operate on pairs of sources of length � = log2 𝑛 − 𝑂(1) that have min-
entropy 𝑘 = � − 𝑂(1), hereafter called (�, 𝑘)-sources. The extractor is used to dene a bipartite
graph with 2� vertices on each side, and a clique is placed on the vertices of one side so that a
permutation that maps vertices from one side to the other side yields a proportional symmetric
dierence (between the original graph and the resulting graph).

The rst reduction, presented in Theorem8.3, requires the extractor to be quasi-orthogonal,
which means that the residual functions obtained by any two dierent xings of one of the
extractor’s two arguments are almost unbiased and uncorrelated. Using the fact that non-
malleable two-source extractors for (�, 𝑘)-sources can be made quasi-orthogonal in exp(�)-time,
we obtain an explicit construction of Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs (i.e., the 𝑛-vertex
graph is constructed in poly(𝑛)-time).

The second reduction, presented in Theorem 8.7, yields a strongly explicit construction as
asserted in Theorem 1.4 (i.e., the adjacency predicate of the 𝑛-vertex graph is computable in
poly(log 𝑛)-time). This reduction uses an arbitrary non-malleable two-source extractor, and
shifts the quasi-orthogonality condition to two auxiliary bipartite graphs.

Both reductions are based on the observation that if the number of non-xed-points (of
the permutation) is very large, then the non-malleability condition implies a large symmetric
dierence (between the original graph and the resulting graph). This holds as long as there are at
least Ω(2�) non-xed-points on each of the two sides of the corresponding bipartite graph (which
corresponds to the extractor). The complementary case is handled by the quasi-orthogonality
condition, and this is where the two reductions dier.

The simpler case, presented in the rst construction (i.e., Theorem 8.3), is that the extractor
itself is quasi-orthogonal. In this case we consider the non-xed-points on the side that has more
of them. The quasi-orthogonality condition gives us a contribution of approximately 0.5 ·2� units
per each non-xed-point, whereas the upper-bound on the number of non-xed-points on the
other side implies that most of these contributions actually count in the symmetric dierence
(between the original graph and the resulting graph).
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In the second construction (i.e., Theorem 8.7), we augment the foregoing 2�-by-2� bipartite
graph, which is now determined by any non-malleable extractor, with an additional 4 ·2�-vertex
clique that is connected to the two original 2�-vertex sets by a bipartite graph that is merely
quasi-orthogonal. The analysis is analogous to the one used in the proof of Theorem 8.3, but is
slightly more complex because we are dealing with a slightly more complex graph.

Errata regarding the original posting. We retract the claims made in our initial posting [22]
regarding the construction of non-malleable two-source extractors (which are quasi-orthogonal)
as well as the claims about the construction of relocation-detecting codes (see Theorems 1.5
and 1.6 in the original version).9 The source of trouble is a fundamental aw in the proof of [22,
Lem. 9.7],which may as well be wrong.

1.3 Perspective

Asymmetric graphs were famously studied by Erdos and Renyi [13],who considered the (ab-
solute) distance of asymmetric graphs from being symmetric (i.e., the number of edges that
should be removed or added to a graph to make it symmetric), calling this quantity the degree
of asymmetry. They studied the extremal question of determining the largest possible degree
of asymmetry of 𝑛-vertex graphs (as a function of 𝑛). We avoided the term “robust asymme-
try” because it could be confused with the degree of asymmetry, which is a very dierent
notion. In particular, the degree of asymmetry cannot exceed twice the degree of the graph
(e.g., by disconnecting two vertices), whereas our focus is on robustly self-ordered graphs of
bounded-degree.

We mention that Bollobas proved that, for every constant 𝑑 ≥ 3, almost all 𝑑-regular
graphs are asymmetric [4, 5]. This result was extended to varying 𝑑 ∈ [3, 𝑛−4] by Kim, Sudakov,
and Vu [26].We also mention that their proof of [26, Thm. 3.1] implies that a random 𝑛-vertex
Erdos–Renyi graph with edge probability 𝑝 is 2𝑝(1 − 𝑝)𝑛-robustly self-ordered.

1.4 Roadmaps

Thiswork consists of two parts. The rst part (Sections 2–6) refers to bounded-degree graphs, and
the second part (Sections 7–10) refers to dense graphs. These parts are practically independent
of one another, except that Theorem 10.3 builds upon Section 6. Even when focusing on one
of these two parts, its contents may attract attention from diverse perspectives. Each such
perspective may benet from a dierent roadmap.

Efficient combinatorial constructions. As mentioned above, in the regime of bounded-
degree graphs we present two dierent constructions that establish Theorem 1.3. Both con-

9 In [22] quasi-orthogonality is called niceness; we prefer the current term, which is less generic.
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structions make use of the edge-colored model and the transformations presented in Section 2.
The direct construction is presented in Section 3, and the three-step construction appears in
Section 4. The three-step construction is augmented by local self-ordering and local reversed
self-ordering algorithms (see Section 4.4).10 In the regime of dense graphs, Sections 7 and 8
refer to the constructability of a couple of combinatorial objects; see roadmap “for the dense
case” below.

Potential applications to property testing. In Section 5 we demonstrate applications of
Theorem 1.3 to proving lower bounds (on the query complexity) for the bounded-degree graph
testing model. Specically, we present a methodology of transporting bounds regarding testing
properties of strings to bounds regarding testing properties of bounded-degree graphs. The spe-
cic applications presented in Section 5 rely on Section 4. For the rst application (Theorem 5.2)
the construction presented in Section 4.2 suces; for the second application (i.e., Theorem 5.5,
which establishes a separation between testing and tolerant testing in the bounded-degree
graph model), the local computation tasks studied in Section 4.4 are needed. An analogous
methodology for the dense graph testing model is presented in Section 9.

Properties of random graphs. As stated above, it turns out that random𝑂(1)-regular graphs
are robustly self-ordered. This result is presented in Section 6, and this section can be read
independently of any other section. (In addition, Section 7 presents a proof that random (dense)
𝑛-vertex graphs are 𝑂(𝑛)-robustly self-ordered.)

The dense case and non-malleable two-source extractors. The regime of dense graphs
is studied in Sections 7–9, where the construction of such graphs is undertaken in Section 8. In
Section 7, we show that Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs provide yet another way
of obtaining Ω(1)-robustly self-ordered bounded-degree graphs. In Section 8, we reduce the
construction of 𝑂(𝑛)-robustly self-ordered 𝑛-vertex graphs to the construction of non-malleable
two-source extractors. As outlined in Section 1.2.2, we actually present two dierent reductions,
where a key issue is the quasi-orthogonality condition.

Lastly, in Section 10, for every 𝑑 : N → N such that 𝑑 (𝑛) ∈ [Ω(1), 𝑛], we show how to
construct 𝑛-vertex graphs of maximum degree 𝑑 (𝑛) that are Ω(𝑑 (𝑛))-robustly self-ordered.
Some of the results and techniques presented in this section are also relevant to the setting of
bounded-degree graphs.

10 For a locally constructable 𝐺𝑛 and 𝐺′ = 𝜙−1 (𝐺𝑛), a local self-ordering algorithm is given a vertex 𝑣 in 𝐺′, and returns
𝜙(𝑣). In contrast, a local reversed self-ordering algorithm is given a vertex 𝑖 ∈ [𝑛] of 𝐺𝑛 and returns 𝜙−1 (𝑖). Both
algorithms run in poly(log 𝑛)-time.



13 / 92 Robustly Self-Ordered Graphs

Part I: The Case of Bounded-Degree Graphs

As stated in Section 1.1.2, a notion of robust self-ordering of edge-colored graphs plays a pivotal
role in our study of robustly self-ordered bounded-degree graphs. This notion as well as a
transformation from it to the uncolored version (of Denition 1.2) is presented in Section 2.

In Section 3, we present a direct construction of 𝑂(1)-regular robustly self-ordered edge-
colored graphs; applying the foregoing transformation, this provides our rst proof of Theo-
rem 1.3. Our second proof of Theorem 1.3 is presented in Section 4, and consists of a three-step
process (as outlined in Section 1.1.2). Sections 3 and 4 can be read independently of one another,
but both rely on Section 2.

In Section 5 we demonstrate the applicability of robustly self-ordered bounded-degree
graphs to property testing; specically, to proving lower bounds (on the query complexity) for the
bounded-degree graph testingmodel. For these applications, the global notion of constructability,
established in Section 4.2, suces. This construction should be preferred over the direct
construction presented in Section 3, because it can also yields graphs with small connected
components. More importantly, the subexponential separation between the complexities of
testing and tolerant testing of graph properties (i.e., Theorem 5.5) relies on the construction of
Section 4 and specically on the local computation tasks studied in Section 4.4.

Lastly, in Section 6, we prove that random 𝑂(1)-regular graphs are robustly self-ordered.
This section may be read independently of any other section.

2. The Edge-Colored Variant

Many of our arguments are easier tomake in amodel of (bounded-degree) graphs inwhich edges
are colored (by a bounded number of colors), and where one counts the number of mismatches
between colored edges. Namely, an edge that appears in one (edge-colored) graph contributes
to the count if it either does not appear in the other (edge-colored) graph or appears in it under
a dierent color. Hence, we dene a notion of robust self-ordering for edge-colored graphs. We
shall then transform robustly self-ordered edge-colored graphs to robustly self-ordered ordinary
(uncolored) graphs, while preserving the degree, the asymptotic number of vertices, and other
features such as expansion and degree-regularity. Specically, the transformation consists
of replacing the colored edges by copies of dierent connected, asymmetric (constant-sized)
gadgets such that dierent colors are reected by dierent gadgets.

We start by providing the denition of the edge-colored model. Actually, for greater
exibility, we will consider multi-graphs; that is, graphs with possible parallel edges and self-
loops. Hence, we shall consider multi-graphs 𝐺 = (𝑉, 𝐸) coupled with an edge-coloring function
𝜒 :𝐸→N, where 𝐸 is a multi-set containing both pairs of vertices and singletons (representing
self-loops). Actually, it will be more convenient to represent self-loops as 2-element multi-sets
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containing two copies of the same vertex.

DEF IN IT ION 2 .1 (Robust self-ordering of edge-colored multi-graphs). Let 𝐺 = (𝑉, 𝐸) be a
multi-graph with colored edges, where 𝜒 : 𝐸→N denotes this coloring, and let 𝐸𝑖 denote the
multi-set of edges colored 𝑖 (i.e., 𝐸𝑖 = {𝑒∈𝐸 :𝜒(𝑒)= 𝑖}). We say that (𝐺, 𝜒) is 𝛾-robustly self-ordered
if for every permutation 𝜇 : 𝑉 → 𝑉 it holds that∑︁

𝑖∈N

���𝐸𝑖 4 {{𝜇(𝑢), 𝜇(𝑣)} : {𝑢, 𝑣} ∈𝐸𝑖} ��� ≥ 𝛾 · |{𝑖 ∈𝑉 :𝜇(𝑖) ≠ 𝑖}|, (2)

where 𝐴4𝐵 denotes the symmetric dierence between the multi-sets 𝐴 and 𝐵; that is 𝐴4𝐵
contains 𝑡 occurrences of 𝑒 if the absolute dierence between the number of occurrences of 𝑒
in 𝐴 and 𝐵 equals 𝑡.

(Denition 1.2 is obtained as a special case when the multi-graph is actually a graph and
all edges are assigned the same color.)

We stress that whenever we consider “edge-colored graphs” we actually refer to edge-
colored multi-graphs (i.e., we explicitly allow parallel edges and self-loops).11 In contrast,
whenever we consider (uncolored) graph, we refer to simple graphs (with no parallel edges
and no self-loops).

Our transformation of robustly self-ordered edge-colored multi-graphs to robustly self-
ordered ordinary graphs depends on the number of colors used by the multi-graph. In partic-
ular, 𝛾-robustness of edge-colored multi-graph that uses 𝑐 colors gets translated to (𝛾/ 𝑓 (𝑐))-
robustness of the resulting graph, where 𝑓 : N → N is an unbounded function. Hence, we
focus on coloring functions that use a constant number of colors, denoted 𝑐. That is, xing
a constant 𝑐 ∈ N, we shall consider multi-graphs 𝐺 = (𝑉, 𝐸) coupled with an edge-coloring
function 𝜒 :𝐸→[𝑐].

2.1 Transformation to standard (uncolored) version

As a preliminary step for the transformation, we add self-loops to all vertices and make sure
that parallel edges are assigned dierent colors. The self-loops make it easy to distinguish
the original vertices from auxiliary vertices that are parts of gadgets introduced in the main
transformation. Dierent colors assigned to parallel edges are essential to the mere asymmetry
of the resulting graph, since we are going to replace edges of the same color by copies of the
same gadget.

11 We comment that a seemingly more appealing definition can be used for edge-colored (simple) graphs. Specifically,
in that case (i.e., 𝐸 ⊆

(𝑉
2
)
), we can extend 𝜒 : 𝐸→ N to non-edges by defining 𝜒({𝑢, 𝑣}) = 0 if {𝑢, 𝑣} ∉ 𝐸, and say that

(𝐺, 𝜒) is 𝛾-robustly self-ordered if for every permutation 𝜇 : 𝑉 → 𝑉 it holds that����{{𝑢, 𝑣} ∈ (
𝑉

2

)
: 𝜒({𝜇(𝑢), 𝜇(𝑣)})≠𝜒({𝑢, 𝑣})

}���� ≥ 𝛾 · |{𝑖 ∈𝑉 : 𝜇(𝑖) ≠ 𝑖}|.
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CONSTRUCT ION 2 .2 (Preliminary step towards Construction 2.3). For a xed 𝑑 ≥ 3, given
a multi-graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑 and an edge-coloring function 𝜒 :𝐸→[𝑐], we
dene a multi-graph 𝐺 = (𝑉, 𝐸′) and an edge-coloring function 𝜒′ :𝐸′→[𝑑 · 𝑐 + 1] as follows.

1. For every pair of vertices 𝑢 and 𝑣 that are connected by few parallel edges, denoted
𝑒
(1)
𝑢,𝑣 , . . . , 𝑒

(𝑑 ′)
𝑢,𝑣 , we change, for each 𝑖 ∈ [𝑑′], the color of 𝑒

(𝑖)
𝑢,𝑣 to 𝜒′(𝑒

(𝑖)
𝑢,𝑣) ← (𝑖 − 1) · 𝑐 + 𝜒(𝑒

(𝑖)
𝑢,𝑣).

This includes also the case 𝑢 = 𝑣.
2. We augment the multi-graph with self-loops colored 𝑑 · 𝑐 + 1; that is, 𝐸′ is the multi-set

𝐸 ∪ {𝑒𝑣 : 𝑣∈𝑉 }, where 𝑒𝑣 is a self-loop added to 𝑣, and 𝜒′(𝑒𝑣) = 𝑑𝑐 + 1.

(Other edges 𝑒∈𝐸 maintain their color; that is, for them 𝜒′(𝑒) = 𝜒(𝑒) holds.)

(For simplicity, we re-color all parallel edges, save the rst one, rather than re-coloring
only parallel edges that have the same color.) Note that rening the coloring may only increase
the robustness parameter of an edge-colored multi-graph. Clearly, 𝐺′ preserves many features
of 𝐺. In particular, it preserves 𝛾-robust self-ordering, expansion, degree-regularity, and the
number of vertices.

As stated above, our transformation of edge-colored multi-graphs to ordinary graphs
uses gadgets, which are constant-size graphs. Specically, when handling a multi-graph of
maximum degree 𝑑 with edges that are colored by 𝑐 colors, we shall use 𝑐 dierent connected
and asymmetric graphs. Furthermore, in order to maintain 𝑑-regularity, we shall use 𝑑-regular
graphs as gadgets; and in order to have better control on the number of vertices in the resulting
graph, each of these gadgets will contain 𝑘 = 𝑘(𝑑, 𝑐) vertices. The existence of such (𝑑-regular)
asymmetric (and connected) graphs is well-known, let alone that it is known that a random
𝑑-regular 𝑘-vertex graph is asymmetric (for any constant 𝑑 ≥ 3) [4, 5].

We stress that the dierent gadgets are each connected and asymmetric, and it follows
that they are not isomorphic to one another. We designate in each gadget an edge {𝑝, 𝑞}, called
the designated edge, such that omitting this edge does not disconnect the gadget. The endpoints
of this edge will be used to connect two vertices of the original multi-graph. Specically, we
replace each edge {𝑢, 𝑣} (of the original multi-graph) that is colored 𝑖 by a copy of the 𝑖th gadget,
while omitting its designated edge {𝑝, 𝑞}, and connecting 𝑢 to 𝑝 and 𝑣 to 𝑞. The construction is
spelled out below.

We say that a (non-simple) multi-graph 𝐺 = (𝑉, 𝐸) coupled with an edge-coloring 𝜒 is
eligible if each of its vertices contains a self-loop, and parallel edges are assigned dierent colors.
Recall that eligibility comes almost for free (by applying Construction 2.2). We shall apply the
following construction only to eligible edge-colored multi-graphs.

CONSTRUCT ION 2 .3 (The main transformation). For a xed 𝑑 ≥ 3 and 𝑐, let 𝑘 = 𝑘(𝑑, 𝑐)
and 𝐺1, . . . , 𝐺𝑐 be dierent asymmetric and connected 𝑑-regular graphs over the vertex-set [𝑘].
Given a multi-graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑 and an edge-coloring function 𝜒 :𝐸→[𝑐],
we construct a graph 𝐺′ = (𝑉 ′, 𝐸′) as follows.
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Suppose that the multi-set 𝐸 has size 𝑚. Then, for each 𝑗 ∈ [𝑚], if the 𝑗th edge of 𝐸
connects vertices 𝑢 and 𝑣, and is colored 𝑖, then we replace it by a copy of 𝐺𝑖 , while
omitting its designated edge and connecting one of its endpoints to 𝑢 and the other
endpoint to 𝑣.

Specically, assuming that𝑉 = [𝑛] and recalling that 𝑗 is the index of the edge (colored 𝑖)
that connects 𝑢 and 𝑣, let 𝐺𝑢,𝑣

𝑖
be an isomorphic copy of 𝐺𝑖 that uses the vertex set

{𝑛 + ( 𝑗 − 1) · 𝑘 + 𝑖 : 𝑖 ∈ [𝑘]}. Let {𝑝, 𝑞} be the designated edge in 𝐺𝑢,𝑣
𝑖
, and �̂�𝑢,𝑣

𝑖
be the

graph that results from 𝐺𝑢,𝑣
𝑖

by omitting {𝑝, 𝑞}. Then, we replace the edge {𝑢, 𝑣} by �̂�𝑢,𝑣
𝑖
,

and add the edges {𝑢, 𝑝} and {𝑣, 𝑞}.

Hence, 𝑉 ′ = [𝑛 +𝑚 · 𝑘] and 𝐸′ consists of the edges of all �̂�𝑢,𝑣
𝑖
’s as well as the edges connecting

the endpoint of the corresponding designated edges to the corresponding vertices 𝑢 and 𝑣.

We stress that, although 𝐺 may have parallel edges and self-loops, the graph 𝐺′ has neither
parallel edges nor self-loops. Also note that 𝐺′ preserve various properties of 𝐺 such as degree-
regularity, number of connected components, and expansion (up to a constant factor).

We shall show that if the edge-colored multi-graph 𝐺 = (𝑉, 𝐸) is robustly self-ordered (in
the edge-colored sense), then the resulting graph 𝐺′ = (𝑉 ′, 𝐸′) is robustly self-ordered (in the
ordinary sense). The proof of this fact relies on a correspondence between the colored edges
of 𝐺 and the gadgets in 𝐺′. For starters, suppose that the permutation 𝜇′ : 𝑉 ′→ 𝑉 ′maps 𝑉 to 𝑉
(i.e., 𝜇′(𝑉 ) = 𝑉 ), and gadgets to the corresponding gadgets; that is, if 𝜇′ maps the vertex-pair
(𝑢, 𝑣) ∈ 𝑉2 to (𝜇′(𝑢), 𝜇′(𝑣)) ∈ 𝑉2, then 𝜇′maps the vertices in the possible gadget that connects 𝑢
and 𝑣 to the vertices in the gadget that connects 𝜇′(𝑢) and 𝜇′(𝑣). In such a case, letting 𝜇 be
the restriction of 𝜇′ to 𝑉 , a dierence of 𝐷 colored edges between 𝐺 and 𝜇(𝐺) translates to a
dierence of at least 𝐷 edges between 𝐺′ and 𝜇′(𝐺′), due to the dierence between the gadgets
that replace the corresponding (colored) edges of 𝐺′, whereas the number of non-xed-point
vertices in 𝜇′ is 𝑘 times larger than the number of non-xed-point vertices in 𝜇. Assuming that𝐺
is 𝛾-robustly self-ordered, it follows that 𝜇 has at most 𝐷/𝛾 non-xed-points. Hence, in this case
we have

|𝐺′4 𝜇′(𝐺′) |
|{𝑣 ∈ 𝑉 ′ : 𝜇′(𝑣)≠𝑣}| ≥

𝐷

𝑘 · |{𝑣 ∈ 𝑉 : 𝜇(𝑣)≠𝑣}| ≥
𝐷

𝑘 · 𝐷/𝛾
which equals 𝛾/𝑘. However, in general, 𝜇′ needs not satisfy the foregoing condition. Never-
theless, if 𝜇′ splits some gadget or maps some gadget in a manner that is inconsistent with the
vertices of 𝑉 connected by it, then this gadget contributes at least one unit to the dierence
between 𝐺′ and 𝜇′(𝐺′), whereas the number of non-xed-point vertices in this gadget is at
most 𝑘. Lastly, if 𝜇′maps vertices of a gadget to other vertices in the same gadget, then we get a
contribution of at least one unit due to the asymmetry of the gadget. The foregoing argument is
made rigorous in the proof of the following theorem.
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THEOREM 2.4 (From edge-colored robustness to standard robustness). For constant 𝑑 ≥ 3
and 𝑐 ∈ N, suppose that the multi-graph 𝐺 = (𝑉, 𝐸) coupled with 𝜒 : 𝐸 → [𝑐] is eligible and
𝛾-robustly self-ordered. Then, the graph 𝐺′ = (𝑉 ′, 𝐸′) resulting from Construction 2.3 is (𝛾/3𝑘)-
robustly self-ordered, where 𝑘 = 𝑘(𝑑, 𝑐) > 𝑑 is the number of vertices in a gadget (as determined
above) and 𝛾 ≤ 1.

PROOF. As a warm-up, let us verify that 𝐺′ is asymmetric. We rst observe that the vertices
of 𝐺 are uniquely identied (in 𝐺′), since they are the only vertices that are incident at copies
of the gadget that replaces the self-loops.12 Hence, any automorphism of 𝐺′must map 𝑉 to 𝑉 .
Consequently, for any 𝑖, such an automorphism 𝜇′ must map each copy of 𝐺𝑖 to a copy of 𝐺𝑖 ,
which means that when permuting 𝑉 according to 𝜇′ the edges of 𝐺 as well as their colors are
preserved. By the “colored asymmetry” of 𝐺, this implies that 𝜇′maps each 𝑣 ∈ 𝑉 to itself, and
consequently each copy of 𝐺𝑖 must be mapped (by 𝜇′) to itself. Finally, using the asymmetry of
the 𝐺𝑖 ’s, it follows that each vertex of each copy of 𝐺𝑖 is mapped to itself. Hence, 𝜇′must be the
identity permutation.

We now turn to proving that 𝐺′ is actually robustly self-ordered. Considering an arbitrary
permutation 𝜇′ : 𝑉 ′ → 𝑉 ′, we lower-bound the distance between 𝐺′ and 𝜇′(𝐺′) as a function
of the number of non-xed-points under 𝜇′ (i.e., of 𝑣 ∈ 𝑉 ′ such that 𝜇′(𝑣′) ≠ 𝑣′). We do so by
considering the contribution of each non-xed-point to the distance between 𝐺′ and 𝜇′(𝐺′). We
rst recall the fact that the vertices of 𝑉 (resp., of gadgets) are uniquely identied in 𝜇′(𝐺′) by
virtue of the gadgets that replace self-loops (see the foregoing warm-up).

Case 1: Vertices of some copy of𝐺𝑖 that are notmapped by 𝜇′ to a single copy of𝐺𝑖; that is, vertices
in some 𝐺𝑢,𝑣

𝑖
that are not mapped by 𝜇′ to some 𝐺𝑢

′,𝑣′

𝑖
.

(This includes the case of vertices 𝑤′ and 𝑤′′ of some 𝐺𝑢,𝑣
𝑖

such that 𝜇′(𝑤′) is in 𝐺𝑢
′,𝑣′

𝑖 ′

and 𝜇′(𝑤′′) is in 𝐺𝑢
′′,𝑣′′

𝑖 ′′ , but (𝑖′, 𝑢′, 𝑣′) ≠ (𝑖′′, 𝑢′′, 𝑣′′). It also includes the case of a copy of 𝐺𝑖
that is mapped by 𝜇′ to a copy of 𝐺 𝑗 for 𝑗 ≠ 𝑖, and the case that a vertex 𝑤 in some 𝐺𝑢,𝑣

𝑖
that

is mapped by 𝜇′ to a vertex in 𝑉 .)
The set of vertices 𝑆𝑢,𝑣

𝑖
of each such copy (i.e., 𝐺𝑢,𝑣

𝑖
) contribute at least one unit to the

dierence between 𝐺′ and 𝜇′(𝐺′), since 𝜇′(𝑆𝑢,𝑣
𝑖
) induces a copy of �̂�𝑖 in 𝜇(𝐺′) but not in 𝐺′,

where here we also use the fact that the �̂�𝑖 ’s are connected (and not isomorphic (for the
case of 𝑖′ = 𝑖′′ ≠ 𝑖)). Note that the total contribution of all vertices of the current case equals
at least the number of gadgets in which they reside. Hence, if the current case contains 𝑛1
vertices, then their contribution to the distance between 𝐺′ and 𝜇′(𝐺′) is at least 𝑛1/𝑘.
Ditto for vertices that do not belong to a single copy of 𝐺𝑖 and are mapped by 𝜇′ to a single
copy of 𝐺𝑖 . This also includes 𝑣 ∈ 𝑉 being mapped to some copy of some 𝐺𝑖 , but in this case

12 Indeed, a vertex of 𝐺′ is in 𝑉 if and only if omitting it from 𝐺′ yields several connected components such that (at least)
one of them is a copy of the gadget that replaces the self-loops (with the designated edge missing).
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we get a contribution of one unit (rather than 1/𝑘 amortized units) per each such vertex
(i.e., 𝑣 ∈ 𝑉 such that 𝜇(𝑣) ∉ 𝑉 ).

Case 2: Vertices of some copy of 𝐺𝑖 that are mapped by 𝜇′ to a single copy of 𝐺𝑖 , while not pre-
serving their indices inside 𝐺𝑖 .
(This refers to vertices of some 𝐺𝑢,𝑣

𝑖
that are mapped by 𝜇′ to vertices of 𝐺𝑢

′,𝑣′

𝑖
, where (𝑢′, 𝑣′)

may but need not equal (𝑢, 𝑣), such that for some 𝑗 ∈ [𝑘] the 𝑗th vertex of 𝐺𝑢,𝑣
𝑖

is not mapped
by 𝜇′ to the 𝑗th vertex of 𝐺𝑢

′,𝑣′

𝑖
.)13

By the fact that 𝐺𝑖 is asymmetric, it follows that each such copy contributes at least one unit
to the dierence between 𝐺′ and 𝜇′(𝐺′), and so (again) the total contribution of all these
vertices is proportional to their number; that is, if the number of vertices in this case is 𝑛2,
then their contribution is at least 𝑛2/𝑘.

Case 3: Vertices 𝑣 ∈ 𝑉 such that 𝜇′(𝑣) ∈ 𝑉 \ {𝑣}.
(This is the main case, and here we use the hypothesis that the edge-colored multi-graph 𝐺
is robustly self-ordered.
Intuitively, the hypothesis that the edge-colored 𝐺 is robustly self-ordered implies that such
vertices contribute proportionally to the dierence between the colored versions of the
multi-graphs 𝐺 and 𝜇(𝐺), where 𝜇 is the restriction of 𝜇′ to 𝑉 . Indeed, we rst assume,
for simplicity, that 𝜇′(𝑉 ) = 𝑉 , an assumption we shall have to dispose of later. In this
case, the number of tuples ({𝑢, 𝑤}, 𝑖) such that {𝑢, 𝑤} is colored 𝑖 in exactly one of these
multi-graph (i.e., either in 𝐺 or in 𝜇(𝐺) but not in both) is at least 𝛾 · |{𝑣 ∈𝑉 : 𝜇(𝑣) ≠ 𝑣}|.
Assuming, without loss of generality that 𝜒({𝑢, 𝑤}) = 𝑖 but either {𝜇−1(𝑢), 𝜇−1(𝑤)} ∉ 𝐸 or
𝜒({𝜇−1(𝑢), 𝜇−1(𝑤)}) = 𝑗 ≠ 𝑖, we observe that 𝜇−1(𝑢) and 𝜇−1(𝑤) cannot be connected in 𝐺′

via a copy of 𝐺𝑖 . We consider two sub-cases:
1. 𝜇′maps a copy of 𝐺𝑖 to 𝐺𝑢,𝑤𝑖 , but either 𝜇−1(𝑢) or 𝜇−1(𝑤) is not connected to this copy

in 𝐺′. In this sub-case we get a contribution of at least one unit, since 𝑢 and 𝑤 are
connected to 𝐺𝑢,𝑤

𝑖
in 𝐺′.

2. 𝜇′ does not map a copy of 𝐺𝑖 to 𝐺𝑢,𝑤𝑖 . In this sub-case, it follows that some vertices
that do not belong to a copy of 𝐺𝑖 are mapped by 𝜇′ to 𝐺𝑢,𝑤

𝑖
which means that Case 1

applies for each such a tuple.
Hence, if the number of vertices in the current case is 𝑛3, then the number of tuples (handled
by the two sub-cases) is at least 𝛾 · 𝑛3, and we get a contribution of at least 𝛾 · 𝑛3/𝑘 (since
the second sub-case is handled via Case 1).
The foregoing description is based on the assumption that 𝜇(𝑉 ) = 𝑉 . If this does not hold,
then we redene 𝜇 such that 𝜇(𝑣) ∉ 𝑉 is modied such that 𝜇(𝑣) = 𝑟 if 𝑟 ∈ 𝑉 has no
preimage under 𝜇′. (Of course, each such 𝑟 is only used once.) Indeed, the modied 𝜇 may

13 Recall that 𝐺𝑢,𝑣
𝑖
and 𝐺𝑢′,𝑣′

𝑖
are both copies of the 𝑘-vertex graph 𝐺𝑖 , which is an asymmetric graph, and so the notion

of the 𝑗th vertex in them is well-defined. Formally, the 𝑗th vertex of 𝐺𝑢,𝑣
𝑖
is 𝜙−1 ( 𝑗) such that 𝜙 is the (unique) bijection

satisfying 𝜙(𝐺𝑢,𝑣
𝑖
) = 𝐺𝑖 .
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be cticiously charged with 𝑑 edges per each modication, but each such modication
arises due to 𝑣 ∈ 𝑉 that contributes at least one unit via (the last part of) Case 1. Hence, the
amortized over-counting of 𝑑 · 𝛾/𝑘 units is compansated by the unit contributed in Case 1.

Case 4: Vertices of some copy of 𝐺𝑖 that are mapped by 𝜇′ to a dierent copy of 𝐺𝑖 .
This refers to the case that 𝜇′maps𝐺𝑢,𝑣

𝑖
to𝐺𝑢

′,𝑣′

𝑖
such that (𝑢′, 𝑣′) ≠ (𝑢, 𝑣), which corresponds

to mapping the gadget to a gadget connecting a dierent pair of vertices (but by an edge of
the same color).
For 𝑢, 𝑣, 𝑢′, 𝑣′ and 𝑖 as above, if 𝜇′(𝑢) = 𝑢′ and 𝜇′(𝑣) = 𝑣′, then a gadget that connects 𝑢 and 𝑣
in 𝐺′ is mapped to a gadget that does not connects them in 𝜇′(𝐺′) (but rather connects the
vertices 𝑢′ and 𝑣′, whereas either 𝑢′ ≠ 𝑢 or 𝑣′ ≠ 𝑣). So, due to the gadget-edge incident
at either 𝑢 or 𝑣, we get a contribution of at least one unit to the dierence between 𝐺′

and 𝜇′(𝐺′), whereas the number of vertices in this gadget is 𝑘. Hence, the contribution
is proportional to the number of non-xed-points of the current type. Otherwise (i.e.,
(𝜇′(𝑢), 𝜇′(𝑣)) ≠ (𝑢′, 𝑣′)), we get a vertex as in Case 3, and get a proportional contribution
again.

Hence, the contribution of each of these cases to the dierence between 𝐺′ and 𝜇′(𝐺′) is pro-
portional to the number of vertices involved. Specically, if there are 𝑛𝑖 vertices in Case 𝑖, then
we get a contribution-count of at least 𝛾 ·∑𝑖∈[4] 𝑛𝑖/𝑘, where some of these contributions were
possibly counted thrice. The claim follows. �

REMARK 2 .5 (Fitting any desired number of vertices). Assuming that the hypothesis of
Theorem 2.4 can be met for any suciently large 𝑛 ∈ 𝑆 ⊆ N, Construction 2.3 yields robustly
self-ordered 𝑛′-vertex graphs for any 𝑛′ ∈ {𝑘 · 𝑛 : 𝑛∈𝑆}, where 𝑘 = 𝑘(𝑑, 𝑐) is as in Theorem 2.4.
To obtain such graphs also for 𝑛′ that is not a multiple of 𝑘, we may use two gadgets with a
dierent number of vertices for replacing at least one of the sets of colored edges.

2.2 Application: Making the graph regular and expanding

We view the edge-colored model as an intermediate locus in a two-step methodology for con-
structing robustly self-ordered graphs of bounded-degree. First, one constructs edge-colored
multi-graphs that are robustly self-ordered in the sense of Denition 2.1, and then converts them
to ordinary robustly self-ordered graphs (in the sense of Denition 1.2), by using Construction 2.3
(while relying on Theorem 2.4).

We demonstrate the usefulness of this methodology by showing that it yields a simple way
of making robustly self-ordered graphs be also expanding as well as regular, while maintaining
a bounded degree. We just augment the original graph by super-imposing an expander (on the
same vertex set), while using one color for the edges of the original graph and another color for
the edges of the expander. Note that we do not have to worry about the possibility of creating
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parallel edges (since they are assigned dierent colors). The same method applies in order to
make the graph regular. We combine both transformations in the following result, which we
shall use in the sequel.

THEOREM 2.6 (Making the graph regular and expanding). For constant 𝑑 ≥ 3 and 𝛾, there
exists an ecient algorithm that given a 𝛾-robustly self-ordered graph 𝐺 = (𝑉, 𝐸) of maximum
degree 𝑑, returns a (𝑑+𝑂(1))-regularmulti-graph expander coupled with a 2-coloring of its edges
such that the edge-colored multi-graph is 𝛾-robustly self-ordered (in the sense of Denition 2.1).

The same idea can be applied to edge-colored multi-graphs; in this case, we use one color
more than given. We could have avoided the creation of parallel edges with the same color by
using more colors, but preferred to relegate this task to Construction 2.2, while recalling that it
preserves both the expansion and the degree-regularity. Either way, applying Theorem 2.4 to
the resulting edge-colored multi-graph, we obtain robustly self-ordered (uncolored) graphs.

PROOF. For any 𝑑′′ ≥ 𝑑 + 𝑑′, given a graph 𝐺 = (𝑉, 𝐸) of maximum degree 𝑑 that is 𝛾-robustly
self-ordered and a 𝑑′-regular expander graph 𝐺′ = (𝑉, 𝐸′), we construct the desired 𝑑′′-regular
multi-graph 𝐺′′ by super-imposing the two graphs on the same vertex set, while assigning the
edges of each of these graphs a dierent color. In addition, we add edges to make the graph
regular, and color them using the same color as used for the expander.14 Details follow.

We superimpose 𝐺 and 𝐺′ (i.e., create a multi-graph (𝑉, 𝐸 ∪ 𝐸′)), while coloring the edges
of 𝐺 (resp., 𝐺′) with color 1 (resp., color 2).
Note that this may create parallel edges, but with dierent colors.
Let 𝑑𝑣 ≤ 𝑑 + 𝑑′ denote the degree of vertex 𝑣 in the resulting multi-graph. Then, we add
edges to this multi-graph so that each vertex has degree 𝑑′′. These edges will also be
colored 2.
(Here, unless we are a bit careful, we may introduce parallel edges that are assigned the
same color. This can be avoided by using more colors for these added edges, but in light of
Construction 2.2 (which does essentially the same) there is no reason to worry about this
aspect.)

(Recall that the resulting edge-colored multi-graph is denoted 𝐺′′.)
The crucial observation is that, since the edges of 𝐺 are given a distinct color in 𝐺′′, the

added edges do not harm the robust self-ordering feature of 𝐺. Hence, for any permutation
𝜇 : 𝑉 → 𝑉 , any vertex-pair that contributes to the symmetric dierence between 𝐺 and 𝜇(𝐺),
also contributes to an inequality between colored edges of 𝐺′′ and 𝜇(𝐺′′) (by virtue of the edges
colored 1). �

14 We assume for simplicity that |𝑉 ′ | is even. Alternatively, assuming that 𝐺 contains no isolated vertex, we first augment
it with an isolated vertex and apply the transformation on the resulting graph. Yet another alternative is to consider
only even 𝑑 ′′.
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2.3 Local computability of the transformations

In this subsection, we merely point out that the transformation presented in Constructions 2.2
and 2.3 as well as the one underlying the proof of Theorem 2.6 preserve ecient local com-
putability (e.g., one can determine the neighborhood of a vertex in the resulting multi-graph by
making a polylogarithmic number of neighbor-queries to the original multi-graph). Actually,
this holds provided that we augment the (local) representation of graphs, in a natural manner.

Recall that the standard representation of bounded-degree graphs is by their incidence
functions. Specically, a graph 𝐺 = ( [𝑛], 𝐸) of maximum degree 𝑑 is represented by the incident
function 𝑔 : [𝑛] × [𝑑] → [𝑛] ∪ {0} such that 𝑔 (𝑣, 𝑖) = 𝑢 ∈ [𝑛] if 𝑢 is the 𝑖th neighbor of 𝑣, and
𝑔 (𝑣, 𝑖) = 0 if 𝑣 has less than 𝑖 neighbors. This does not allow us to determined the identity of the
𝑗th edge in 𝐺, nor even to determine the number of edges in 𝐺, by making a polylogarithmic
number of queries to 𝑔, whereas this determination is needed for a local implementation of
Construction 2.3. Nevertheless, ecient local computability is preserved if we use the following
local representation (presented for edge-colored multi-graphs).

DEF IN IT ION 2 .7 (Local representation). For 𝑑, 𝑐 ∈ N, a local representation of a multi-graph
𝐺 = ( [𝑛], 𝐸) of maximum degree 𝑑 that is coupled with a coloring 𝜒 :𝐸→[𝑐] is provided by the
following three functions:

1. An incidence function 𝑔1 : [𝑛] × [𝑑] → N ∪ {0} such that 𝑔1(𝑣, 𝑖) = 𝑗 ∈ N if 𝑗 is the index
of the 𝑖th edge that incident at vertex 𝑣, and 𝑔1(𝑣, 𝑖) = 0 if 𝑣 has less than 𝑖 incident edges.

2. An edge enumeration function 𝑔2 : N→ (
([𝑛]
2
)
× [𝑐]) ∪ {0} such that 𝑔2( 𝑗) = ({𝑢, 𝑣}, 𝜒(𝑒 𝑗))

if the 𝑗th edge, denoted 𝑒 𝑗 , connects the vertices 𝑢 and 𝑣, and 𝑔2( 𝑗) = 0 if the multi-graph
has less than 𝑗 edges.

3. An vertex enumeration (by degree) function 𝑔3 : [𝑑] × [𝑛] → [𝑛] ∪ {0} such that 𝑔3(𝑖, 𝑗) =
𝑣 ∈ [𝑛] if 𝑣 is the 𝑗th vertex of degree 𝑖 in themulti-graph, and 𝑔3(𝑖, 𝑗) = 0 if themulti-graph
has less than 𝑗 vertices of degree 𝑖.

The aforementioned incident function 𝑔 : [𝑛] × [𝑑] → [𝑛] ∪ {0} can be computed by
composing 𝑔1 and 𝑔2; in particular, 𝑔 (𝑣, 𝑖) = 𝑢 ∈ [𝑛] if 𝑔2(𝑔1(𝑣, 𝑖)) = ({𝑢, 𝑣}, 𝑘) for some 𝑘 ∈ [𝑐].
Needless to say, the function 𝑔3 is redundant in the case that we are guaranteed that the multi-
graph is regular. One may augment the foregoing representation by providing also the total
number of edges, but this number can be determined by binary search.

THEOREM 2.8 (The foregoing transformations preserve local computability). The local
representation of the multi-graph that result from Construction 2.2 can be computed by making a
polylogarithmic number of queries to the given multi-graph. The same holds for Construction 2.3
and for the transformation underlying the proof of Theorem 2.6.

PROOF. For Construction 2.2, we mostly need to enumerate all parallel edges that connect 𝑢
and 𝑣. This can be done easily by querying the incidence function on (𝑢, 1), . . . , (𝑢, 𝑑) and
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querying the edge enumeration function on the non-zero answers. (In addition, when adding
a self-loop on vertex 𝑣 ∈ [𝑛], we need to determine the degree of 𝑣 as well as the number of
edges in the multi-graph (in order to know how to index the self-loop in the incidence and edge
enumeration functions, respectively).)

For Construction 2.3, we merely need to determine the color of the 𝑗th edge, its endpoint
(and its index in the incidence list of each of its endpoints), in order to replace this colored edge
by the relevant gadget. Recall that the relevant gadget uses the vertices 𝑛+( 𝑗−1) ·𝑘+1, . . . , 𝑛+ 𝑗 ·𝑘
and its edges are determined by the color of the edge that it replaces.

For the transformation underlying the proof of Theorem 2.6, adding edges to make the
multi-graph regular requires determining the index of a vertex in the list of all vertices of the
same degree (in order to properly index the added edges). Here is where we use the vertex
enumeration (by degree) function. (We also need a local procedure 𝐼 for transforming a sorted
𝑛-long sequence (𝑑1, . . . , 𝑑𝑛) ∈ [𝑑′′] into an all-𝑑′′ sequence by making pairs of increments;
that is, given 𝑗 ∈ [𝐷] such that 𝐷 = (𝑑′′𝑛 − ∑

𝑖∈[𝑛] 𝑑𝑖)/2, we should determine a pair 𝐼 ( 𝑗) =
(𝐼1( 𝑗), 𝐼2( 𝑗)) ∈ [𝑛]2 such that for every 𝑖 ∈ [𝑛] it holds that 𝑑𝑖 + |𝐼−11 (𝑖) | + |𝐼−12 (𝑖) | = 𝑑′′.) �

3. The Direct Construction

We shall make use of the edge-colored variant presented in Section 2, while relying on the fact
that robustly self-ordered colored multi-graphs can be eciently transformed into robustly
self-ordered (uncolored) graphs. Actually, it will be easier to present the construction as a
directed edge-colored multi-graph. Hence, we rst dene a variant of robust self-ordering
for directed edge-colored multi-graph (see Denition 3.1), then show how to construct such
multi-graphs (see Section 3.1), and nally show how to transform the directed variant into an
undirected one (see Section 3.2).

The construction is based on 𝑑 permutations, denoted 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛], and consists
of the directed edge-colored multi-graph that is naturally dened by them. Specically, for
every 𝑣 ∈ [𝑛] and 𝑖 ∈ [𝑑], this multi-graph contains a directed edge, denoted (𝑣, 𝜋𝑖 (𝑣)), that
goes from vertex 𝑣 to vertex 𝜋𝑖 (𝑣), and is colored 𝑖.

We prove that a sucient condition for this edge-colored directed multi-graph, denoted 𝐺1,
to be robustly self-ordered is that a related multi-graph is an expander. Specically, we refer
to the multi-graph 𝐺2 = (𝑉2, 𝐸2) that represents the actions of these permutations on pairs of
vertices of 𝐺1; that is,𝑉2 = {(𝑢, 𝑣) ∈ [𝑛]2 : 𝑢≠𝑣} and 𝐸2 = {{(𝑢, 𝑣), (𝜋𝑖 (𝑢), 𝜋𝑖 (𝑣))} : (𝑢, 𝑣) ∈𝑉2 & 𝑖 ∈
[𝑑]}.

The foregoing requires extending the notion of robustly self-ordered (edge-colored) multi-
graphs to the directed case. The extension is straightforward and is spelled-out next, for sake of
good order.
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DEF IN IT ION 3.1 (Robust self-ordering of edge-coloreddirectedmulti-graphs). Let𝐺 = (𝑉, 𝐸)
be a directed multi-graph with colored edges, where 𝜒 :𝐸→N denotes this coloring, and let 𝐸𝑖
denote the multi-set of directed edges colored 𝑖. We say that (𝐺, 𝜒) is 𝛾-robustly self-ordered if
for every permutation 𝜇 : 𝑉 → 𝑉 it holds that∑︁

𝑖∈N

���𝐸𝑖 4 {(𝜇(𝑢), 𝜇(𝑣)) : (𝑢, 𝑣) ∈𝐸𝑖} ��� ≥ 𝛾 · |{𝑖 ∈𝑉 :𝜇(𝑖) ≠ 𝑖}|, (3)

where 𝐴4𝐵 denotes the symmetric dierence between the multi-sets 𝐴 and 𝐵 (as in Deni-
tion 2.1).

(The only dierence between Denition 3.1 and Denition 2.1 is that (3) refers to the
directed edges of the directed multi-graph, whereas (2) refers to the undirected edges of the
undirected multi-graph.)

In Section 3.1 we present a construction of a directed edge-colored 𝑂(1)-regular multi-
graph that is Ω(1)-robustly self-ordered. We shall actually present a sucient condition and
a specic instantiation that satises it. In Section 3.2 we show how to transform any directed
edge-colored multi-graph into an undirected one while preserving all relevant features; that is,
bounded robustness, bounded degree, regularity, expansion, and local computability.

3.1 A sufficient condition for robust self-ordering of directed colored graphs

For any 𝑑 permutations, 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛], we consider two multi-graphs.
1. The primary multi-graph (of 𝜋1, . . . , 𝜋𝑑) is a directedmulti-graph, denoted 𝐺1 = ( [𝑛], 𝐸1),

such that 𝐸1 = {(𝑣, 𝜋𝑖 (𝑣)) : 𝑣∈ [𝑛] & 𝑖 ∈ [𝑑]}. This directed multi-graph is coupled with an
edge-coloring in which the directed edge from 𝑣 to 𝜋𝑖 (𝑣) is colored 𝑖.

2. The secondary multi-graph (of 𝜋1, . . . , 𝜋𝑑) is an undirected multi-graph, denoted 𝐺2 =

(𝑉2, 𝐸2), such that 𝑉2 = {(𝑢, 𝑣) ∈ [𝑛]2 : 𝑢 ≠ 𝑣} and 𝐸2 = {{(𝑢, 𝑣), (𝜋𝑖 (𝑢), 𝜋𝑖 (𝑣))} : (𝑢, 𝑣) ∈
𝑉2 & 𝑖 ∈ [𝑑]}.

Recalling that we wish the secondary multi-graph to be an expander, we mention that an
archetypical case is when each of the foregoing multi-graphs is a Schreier graph that correspond
to the action of the permutation 𝜋1, . . . , 𝜋𝑑 on the corresponding vertex sets (i.e., [𝑛] and 𝑉2,
respectively). See Proposition 3.3 and a wider perspective at the (paragraph at the) end of this
subsection.

We now state the main result of this section, which asserts that the primary multi-graph 𝐺1

is robustly self-ordered if the secondarymulti-graph𝐺2 is an expander. Weuse the combinatorial
denition of expansion: A multi-graph 𝐺 = (𝑉, 𝐸) is 𝛾-expanding if, for every subset 𝑆 of size at
most |𝑉 |/2, there are at least 𝛾 · |𝑆 | vertices in 𝑉 \ 𝑆 that neighbor some vertex in 𝑆.

THEOREM 3.2 (Expansion of𝐺2 implies robust self-ordering of𝐺1). For any 𝑑 ≥ 2 permuta-
tions, 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛], if the secondarymulti-graph𝐺2 of𝜋1, . . . , 𝜋𝑑 is 𝛾-expanding, then the
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primary directed multi-graph 𝐺1 of 𝜋1, . . . , 𝜋𝑑 coupled with the foregoing edge-coloring is (𝛾/2)-
robustly self-ordered. Furthermore, 𝐺1 (or rather the undirected multi-graph underlying 𝐺1) is
min(0.25, 𝛾/3)-expanding.

PROOF. Let 𝜇 : [𝑛] → [𝑛] be an arbitrary permutation, and let 𝑇 = {𝑣∈ [𝑛] : 𝜇(𝑣)≠𝑣} be its
set of non-xed-points. Then, the size of the symmetric dierence between 𝐺1 and 𝜇(𝐺1) equals
2 ·∑𝑖∈[𝑑] |𝐷𝑖 | such that 𝑣 ∈ 𝐷𝑖 if (𝜇(𝑣), 𝜇(𝜋𝑖 (𝑣))) is either not an edge in 𝐺1 or is not colored 𝑖 in
it, whereas (𝑣, 𝜋𝑖 (𝑣)) is an edge colored 𝑖 in 𝐺1. Note that if (𝜇(𝑣), 𝜇(𝜋𝑖 (𝑣))) is not an 𝑖-colored
edge in 𝐺1, then 𝜋𝑖 (𝜇(𝑣)) ≠ 𝜇(𝜋𝑖 (𝑣)). Hence, 𝐷𝑖 = {𝑣∈ [𝑛] : 𝜇(𝜋𝑖 (𝑣)) ≠ 𝜋𝑖 (𝜇(𝑣))}.

The key observation (proved next) is that if 𝑣 ∈ 𝑇 \ 𝐷𝑖 , then (𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) ∈ 𝑇2, where
𝑇2 = {(𝑣, 𝜇(𝑣)) : 𝑣∈𝑇 } represents the set of replacements performed by 𝜇. This fact implies that
if

∑
𝑖∈[𝑑] |𝐷𝑖 | is small in comparison to |𝑇 |, then the set 𝑇2 (which is a set of vertices in 𝐺2) does

not expand much, in contradiction to the hypothesis. Details follow.

Observation 3.2.1 (Key observation). For 𝑇, 𝐷𝑖 and 𝑇2 as dened above, if 𝑣 ∈ 𝑇 \ 𝐷𝑖 , then
(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣)) ∈ 𝑇2.

Recall that 𝑣 ∈ 𝑇 implies (𝑣, 𝜇(𝑣)) ∈ 𝑇2. Observation 3.2.1 asserts that if (in addition to
𝑣 ∈ 𝑇 ) it holds that 𝑣 ∉ 𝐷𝑖 , then (𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣)) is also in 𝑇2. This means that the vertices in
{(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) : 𝑣∈𝑇 \ 𝐷𝑖} do not contribute to the expansion of the set 𝑇2 in 𝐺2.

Proof. Since 𝑣 ∉ 𝐷𝑖 we have 𝜋𝑖 (𝜇(𝑣)) = 𝜇(𝜋𝑖 (𝑣)), and 𝜇(𝜋𝑖 (𝑣)) ≠ 𝜋𝑖 (𝑣) follows, because other-
wise 𝜋𝑖 (𝜇(𝑣)) = 𝜋𝑖 (𝑣), which implies 𝜇(𝑣) = 𝑣 in contradiction to 𝑣 ∈ 𝑇 . However, 𝜇(𝜋𝑖 (𝑣)) ≠
𝜋𝑖 (𝑣) means that 𝜋𝑖 (𝑣) ∈ 𝑇 , and (𝜋𝑖 (𝑣), 𝜇(𝜋𝑖 (𝑣))) ∈ 𝑇2 follows. Using 𝜇(𝜋𝑖 (𝑣)) = 𝜋𝑖 (𝜇(𝑣)) again,
we get (𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) ∈ 𝑇2. �

Establishing the main claim (i.e., robustness of 𝐺1). Recall that Observation 3.2.1 implies
that {(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) : 𝑣 ∈ 𝑇 \ 𝐷𝑖} ⊆ 𝑇2. On the other hand, assuming that the sequence
of 𝜋𝑖 ’s contains its own inverses (i.e., ∀𝑖 ∈ [𝑑]∃ 𝑗 ∈ [𝑑] such that 𝜋−1

𝑖
= 𝜋 𝑗), we observe

that
⋃
𝑖∈[𝑑]{(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) : 𝑣 ∈ 𝑇 } is the neighborhood of 𝑇2 in the multi-graph 𝐺2 (since

{(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) : 𝑖 ∈ [𝑑]} is the neighbor-set of (𝑣, 𝜇(𝑣)) in 𝐺2). Using the 𝛾-expansion of the
set 𝑇2 in 𝐺2 (while relying on |𝑇2 | ≤ 𝑛 < |𝑉2 |/2), it follows that∑︁

𝑖∈[𝑑]
|{(𝜋𝑖 (𝑣), 𝜋𝑖 (𝜇(𝑣))) : 𝑣∈𝑇 ∩ 𝐷𝑖}| ≥ 𝛾 · |𝑇2 |.

Hence,
∑
𝑖∈[𝑑] |𝐷𝑖 | ≥ 𝛾 · |𝑇 |, and the main claim follows in this case. We reduce the general

case to this special case by augmenting the sequence of 𝜋𝑖 ’s by their inverses (i.e., we add
the permutations 𝜋−11 , . . . , 𝜋−1

𝑑
, which are associated colors 𝑑 + 1, . . . , 2𝑑). Observing that the

corresponding primary graph is 𝛾-robustly self-ordered and that it is twice more robust than
the original 𝐺1, the claim follows.
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Establishing the furthermore claim (i.e., expansion of 𝐺1). The expansion of 𝐺1 is shown
by relating sets of vertices of 𝐺1 to the corresponding sets of pairs in 𝐺2. Specically, for and
𝑆 ⊂ [𝑛] of size at most 𝑛/2, we consider the set 𝑇 = {(𝑢, 𝑣) ∈ 𝑉2 : 𝑢, 𝑣 ∈ 𝑆}, which has size
|𝑆 | · ( |𝑆 | − 1) ≤ 𝑛

2 · (
𝑛
2 − 1) <

|𝑉2 |
2 . Letting 𝑇 ′ denote the set of neighbors of 𝑇 in 𝐺2, and 𝑆′ denote

the set of neighbors of 𝑆 in 𝐺1, on the one hand we have |𝑇 ′ \ 𝑇 | ≥ 𝛾 · |𝑇 | (by expansion of 𝑇
in 𝐺2), and on the other hand |𝑇 ′ \ 𝑇 | ≤ 2 · |𝑆 | · |𝑆′ \ 𝑆 | + |𝑆′ \ 𝑆 | · ( |𝑆′ \ 𝑆 | − 1). This implies
|𝑆′ \ 𝑆 | ≥ (𝛾/3) · |𝑆 | (unless |𝑆 | ≤ 4, which can be handled by using |𝑆′ \ 𝑆 | ≥ 1). �

Primary and secondary multi-graphs based on SL2(𝒑). Recall that SL2(𝑝) is the multi-
plicative group of 2-by-2 matrices over GF(𝑝) that have determinant 1. There are several
dierent explicit constructions of constant-size expanding generating sets for SL2(𝑝), namely
making the associated Cayley graph an expander (see, e.g., [28], [27, Thm. 4.4.2(i)], and [6]). We
use any such generating set to dene a directed (edge-colored) multi-graph 𝐺1 on 𝑝 + 1 vertices,
and show that the associated multi-graph on pairs, 𝐺2, is an expander.

PROPOS IT ION 3.3 (Expanding generators for SL2(𝑝) yield an expanding secondarymulti-
-graph). For any prime 𝑝 > 2, let𝑉 = {(1, 𝑖)> : 𝑖 ∈ GF(𝑝)} ∪ {(0, 1)>}, and𝑀1, . . . , 𝑀𝑑 ∈ SL2(𝑝).
For every 𝑖 ∈ [𝑑], dene 𝜋𝑖 : 𝑉 → 𝑉 such that 𝜋𝑖 (𝑢) = 𝑣 if 𝑣 ∈ 𝑉 is a non-zero multiple of 𝑀𝑖𝑢.
Then:

1. Each 𝜋𝑖 is a bijection.
2. If the Cayley multi-graph C = C(SL2(𝑝), {𝑀1, . . . , 𝑀𝑑}) = (SL2(𝑝), {{𝑀,𝑀𝑖𝑀} : 𝑀 ∈

SL2(𝑝) & 𝑖 ∈ [𝑑]}) is an expander, then the (Schreier) multi-graph 𝐺2 with vertex-set 𝑃 =

{(𝑣, 𝑣′) : 𝑣 ∈ 𝑉 & 𝑣′ ∈ 𝑉 \ {𝑣}} and edge-set {{(𝑣, 𝑣′), (𝜋𝑖 (𝑣), 𝜋𝑖 (𝑣′))} : (𝑣, 𝑣′) ∈ 𝑃} is an
expander.

Part 1 implies that these permutations yield a primary (directed edge-colored) multi-
graph on the vertex-set 𝑉 , whereas Part 2 asserts that the corresponding secondary graph
is an expander (if the corresponding Cayley graph is expanding). Note that |𝑉 | = 𝑝 + 1 and
|𝑃 | = (𝑝 + 1)𝑝, whereas |SL2(𝑝) | = 𝑝3 − 𝑝 = (𝑝 − 1) · |𝑃 |.

PROOF. Part 1 follows by observing that for every 𝑀 ∈ SL2(𝑝) and every vector 𝑣 ∈ GF(𝑝)2

and scalar 𝛼 ∈ GF(𝑝) it holds that𝑀𝛼𝑣 = 𝛼𝑀𝑣. Consequently, if for some non-zero 𝛼, 𝛼′ ∈ GF(𝑝)
it holds that 𝛼𝑀𝑣 = 𝛼′𝑀𝑣′, then 𝑀𝑣 = 𝑀𝛼′′𝑣′ for 𝛼′′ = 𝛼′/𝛼, which implies 𝑣 = 𝛼′′𝑣′ (since 𝑀 is
invertible). Hence, 𝜋𝑖 (𝑣) = 𝜋𝑖 (𝑣′), for 𝑣, 𝑣′ ∈ 𝑉 , implies that𝑀𝑖𝑣 and𝑀𝑖𝑣

′ are non-zero multiples
of the same 𝑤 ∈ 𝑉 , which implies 𝑣 = 𝑣′ (since 𝑉 contains a single non-zero multiple of each
vector in it).

Part 2 follows by observing that the vertices of 𝐺2 correspond to equivalence classes of the
vertices ofC that are preserved by SL2(𝑝), where 𝐴, 𝐵 ∈ SL2(𝑝) are equivalent if the columns of 𝐴
are non-zero multiples of the corresponding columns of 𝐵. That is, we consider an equivalence



26 / 92 O. Goldreich and A. Wigderson

relation, denoted ≡, such that for 𝐴 = [𝐴1 |𝐴2] and 𝐵 = [𝐵1 |𝐵2] in SL2(𝑝) it holds that 𝐴 ≡ 𝐵 if
𝐴𝑖 = 𝛼𝑖𝐵𝑖 for both 𝑖 ∈ {1, 2}, where 𝛼1, 𝛼2 ∈ [𝑝 − 1] (and, in fact, 𝛼2 = 1/𝛼1).15 By saying that
these equivalence classes are preserved by SL2(𝑝), we mean that, for every 𝐴, 𝐵, 𝑀 ∈ SL2(𝑝), if
𝐴 ≡ 𝐵, then 𝑀𝐴 ≡ 𝑀𝐵. Hence, the (combinatorial) expansion of 𝐺2 follows from the expansion
of C, because the neighbors of a vertex-set 𝑆 ⊆ 𝑃 in 𝐺2 are the vertices of 𝐺2 that are equivalent
to 𝑇 ′ such that 𝑇 ′ is the set of vertices of C that neighbor (in C) vertices that are equivalent to
vertices in 𝑆.16 �

A simple construction. Combining Theorem 3.2 with Proposition 3.3, while using a simple
pair of expanding generators (which does not yield a Ramanujan graph), we get

COROLLARY 3.4 (A simple robustly self-ordered primarymulti-graph). For any prime 𝑝 >
2, let 𝑉 = {(1, 𝑖)> : 𝑖 ∈ GF(𝑝)} ∪ {(0, 1)>}, and consider the matrices

𝑀1
def
=

(
1 1
0 1

)
and 𝑀2

def
=

(
0 1
−1 0

)
(4)

Then, for 𝜋1 and 𝜋2 dened as in Proposition 3.3, the corresponding primary (directed edge-
colored)multi-graph is robustly self-ordered.

This follows from the fact that the corresponding Cayley graph C(SL2(𝑝), {𝑀1, 𝑀2}) is an
expander [27, Thm. 4.4.2(i)].

Perspective. The foregoing construction using the group SL2(𝑝) is a special case of a much
more general family of constructions, and the elements of the proof of Proposition 3.3 follow an
established theory (explained, e.g., in [25, Sec. 11.1.2]), which we briey describe.

Let 𝐻 be any nite group, and 𝑆 an expanding generating set of 𝐻 (i.e., the Cayley graph
C(𝐻, 𝑆) is an expander). Assume that 𝐻 acts on a nite set 𝑉 (i.e., each ℎ ∈ 𝐻 is associated with
a permutation on 𝑉 , and ℎ′ℎ(𝑣) = ℎ′(ℎ(𝑣)) for every ℎ, ℎ′ ∈ 𝐻 and 𝑣 ∈ 𝑉 ). Then, the primary
(directed edge-colored) multi-graph 𝐺1 on vertices 𝑉 can be constructed from the permutations
dened by members of 𝑆. The secondary multi-graph 𝐺2 is naturally dened by the action
of 𝑆 on pairs of elements in 𝑉 . Finally, the expansion of C(𝐻, 𝑆) implies that every connected
component of 𝐺2 is an expander.17 Thus, whenever this (Schreier) graph 𝐺2 is connected (as it
is in Proposition 3.3), one may conclude that 𝐺1 is a directed edge-colored robustly self-ordered
multi-graph.

15 Recall that det(𝐴) = 1 = det(𝐵), whereas det( [𝛼1𝐵1 |𝛼2𝐵2]) = 𝛼1𝛼2 · det(𝐵). Note that each equivalence class contains a
single element of 𝑃.

16 Specifically, let 𝑆 have density at most half in 𝑃, and let 𝑇 be the set of vertices of C that are equivalent to 𝑆. Note that
|𝑇 | = (𝑝 − 1) · |𝑆 |, since each equivalence class contains a single element of 𝑃. By the foregoing, the set of neighbors
of 𝑇 in C, denoted 𝑇 ′, is a collection of equivalence classes of vertices of 𝐺2, and |𝑇 ′ \ 𝑇 | = Ω( |𝑇 |) by the expansion
of C. It follows that the set of neighbors of 𝑆 in 𝐺2, denoted 𝑆′, is the set of vertices that are equivalent to 𝑇 ′, which
implies that |𝑆′ \ 𝑆 | = |𝑇 ′\𝑇 |

𝑝−1 =
Ω( |𝑇 |)
𝑝−1 = Ω( |𝑆 |).

17 Indeed, this was easy to demonstrate directly in the case of Proposition 3.3.
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3.2 From the directed variant to the undirected one

In this section we show how to transform directed (edge-colored) multi-graphs, of the type
constructed in Section 3.1, into undirected ones, while preserving all relevant features (i.e.,
bounded robustness, bounded degree, regularity, expansion, and local computability). The
transformation is extremely simple and natural: We replace the directed edge (𝑢, 𝑣) colored 𝑗
by a 2-path with a designated auxiliary vertex 𝑎𝑢,𝑣, 𝑗 , while coloring the edge {𝑢, 𝑎𝑢,𝑣, 𝑗} by 2 𝑗 − 1
and the edge {𝑎𝑢,𝑣, 𝑗 , 𝑣} by 2 𝑗. Evidently, this colored 2-path encodes the direction of the original
edge (as well as the original color).

Note that the foregoing transformation works well provided that there are no parallel
edges that are colored with the same color, a condition which is satised by the construction
presented in Section 3.1. Furthermore, since the latter construction has no vertices of (in+out)
degree less that 2𝑑 ≥ 4, there is no need to mark the original vertices by self-loops. Hence, a
preliminary step akin to Construction 2.2 is unnecessary here, although it can be performed in
general.

PROPOS IT ION 3.5 (From directed robust self-ordering to undirected robust self-order-
ing). For constants 𝑑 ≥ 3 and 𝑐 ∈ N, let 𝐺 = (𝑉, 𝐸) be a directed multi-graph in which each
vertex has between three and 𝑑 incident edges (in both directions), and suppose that 𝐺 is coupled
with an edge-coloring function 𝜒 :𝐸→[𝑐] such that no parallel edges (in the same direction) are
assigned the same color. Letting 𝐸𝑖 = {𝑒 ∈ 𝐸 : 𝜒(𝑒) = 𝑖} denote the set of directed edges colored 𝑖
in 𝐺, consider the undirected multi-graph 𝐺′ = (𝑉 ′, 𝐸′) such that 𝑉 ′ = 𝑉 ∪ {𝑎𝑢,𝑣,𝑖 : (𝑢, 𝑣) ∈𝐸𝑖} and
𝐸′ =

⋃
𝑗∈[2𝑐] 𝐸

′
𝑗
where

𝐸′2𝑖−1 = {{𝑢, 𝑎𝑢,𝑣,𝑖} : (𝑢, 𝑣) ∈𝐸𝑖},
𝐸′2𝑖 = {{𝑎𝑢,𝑣,𝑖 , 𝑣} : (𝑢, 𝑣) ∈𝐸𝑖},

and the edge-coloring function 𝜒′ :𝐸′→[2𝑐] that assigns the edges of 𝐸′
𝑗
the color 𝑗 (i.e., 𝜒′(𝑒) = 𝑗

for every 𝑒 ∈ 𝐸′
𝑗
). Then, if (𝐺, 𝜒) is 𝛾-robustly self-ordered (in the sense of Denition 3.1), then

(𝐺′, 𝜒′) is (𝛾/2𝑑)-robustly self-ordered (in the sense of Denition 2.1), provided 𝛾 ≤ 1.

We comment that the transformation of (𝐺, 𝜒) to (𝐺′, 𝜒′) preserves bounded robustness,
bounded degree, regularity, expansion, and local computability (cf. Theorem 2.8).

PROOF. The proof is analogous to the proof of Theorem 2.4, but it is much simpler because the
gadgets used in the current transformation (i.e., the auxiliary vertices 𝑎𝑢,𝑣,𝑖) are much simpler.

Considering an arbitrary permutation 𝜇′ : 𝑉 ′ → 𝑉 ′, we lower-bound the distance be-
tween 𝐺′ and 𝜇′(𝐺′) as a function of the number of non-xed-points under 𝜇′. We do so by
considering the contribution of each non-xed-point to the distance between 𝐺′ and 𝜇′(𝐺′). We
rst recall the fact that the vertices of 𝑉 (resp., the auxiliary vertices) are uniquely identied



28 / 92 O. Goldreich and A. Wigderson

in 𝜇′(𝐺′) by virtue of the their degree, since each vertex of 𝑉 has degree at least three (in 𝐺′)
whereas the auxiliary vertices have degree 2.

Case 1: Auxiliary vertices of the form 𝑎𝑢,𝑣,𝑖 that are not mapped by 𝜇′ to auxiliary vertices of the
form 𝑎𝑢′,𝑣′,𝑖; that is, 𝜇′(𝑎𝑢,𝑣,𝑖) ∈ (𝑉 ∪

⋃
𝑗≠𝑖{𝑎𝑢′,𝑣′, 𝑗 : (𝑢′, 𝑣′) ∈𝐸}).

Each such vertex 𝑎𝑢,𝑣,𝑖 contributes at least one unit to the dierence between 𝐺′ and 𝜇′(𝐺′),
since the two edges incident at 𝑎𝑢,𝑣,𝑖 (in 𝐺′) are colored 2𝑖 − 1 and 2𝑖 respectively, whereas
𝜇(𝑎𝑢,𝑣,𝑖) has either more than two edges (in 𝐺′) or its two edges are colored 2 𝑗 − 1 and 2 𝑗,
respectively, where for 𝑗 ≠ 𝑖. Hence, if the current case contains 𝑛1 vertices, then their
contribution to the distance between 𝐺′ and 𝜇′(𝐺′) is at least 𝑛1.
Ditto for vertices of 𝑉 that are mapped by 𝜇′ to an auxiliary vertex.

Case 2: Vertices 𝑣 ∈ 𝑉 such that 𝜇′(𝑣) ∈ 𝑉 \ {𝑣}.
Intuitively, the hypothesis that the edge-colored directed 𝐺 is robustly self-ordered, implies
that such vertices contribute proportionally to the dierence between the colored versions
of the directed multi-graphs 𝐺 and 𝜇(𝐺), where 𝜇 is the restriction of 𝜇′ to 𝑉 . Indeed, we
rst assume, for simplicity, that 𝜇′(𝑉 ) = 𝑉 , an assumption we shall have to dispose of later.
In this case, the number of tuples ((𝑢, 𝑤), 𝑖) such that (𝑢, 𝑤) is colored 𝑖 in exactly one of
these multi-graph (i.e., either in𝐺 or in 𝜇(𝐺) but not in both) is at least 𝛾 · |{𝑣∈𝑉 : 𝜇(𝑣) ≠ 𝑣}|.
Assume, without loss of generality that (𝑢, 𝑤) ∈ 𝐸𝑖 but either (𝜇−1(𝑢), 𝜇−1(𝑤)) ∉ 𝐸 (which
includes the case that 𝜇−1(𝑢), 𝜇−1(𝑤) ∈ 𝑉 does not hold) or (𝜇−1(𝑢), 𝜇−1(𝑤)) ∈ 𝐸 𝑗 for 𝑗 ≠ 𝑖.
We consider two sub-cases:

1. 𝜇′ maps some 𝑎𝑢′,𝑤′,𝑖 to 𝑎𝑢,𝑤,𝑖 , but either 𝑢 or 𝑤 is not connected in 𝐺′ to this 𝑎𝑢′,𝑤′,𝑖
via an edge with the relevant color (i.e., either 2𝑖 − 1 or 2𝑖). In this sub-case we get a
contribution of at least one unit, since 𝑢 and 𝑤 are connected to 𝑎𝑢,𝑤,𝑖 in 𝐺′.

2. A vertex not in {𝑎𝑢′,𝑤′,𝑖 : (𝑢′, 𝑤′) ∈𝐸𝑖} is mapped by 𝜇′ to 𝑎𝑢,𝑤,𝑖 , whichmeans that Case 1
applies for each such a tuple.

Hence, if the number of vertices in the current case is 𝑛2, then the number of tuples (handled
by the two sub-cases) is at least 𝛾 · 𝑛2, and we get a contribution of at least 𝛾 · 𝑛2.
The foregoing description is based on the assumption that 𝜇(𝑉 ) = 𝑉 . If this does not hold,
then we redene 𝜇 such that 𝜇(𝑣) ∉ 𝑉 is modied such that 𝜇(𝑣) = 𝑟 if 𝑟 ∈ 𝑉 has no
preimage under 𝜇′. (Of course, each such 𝑟 is only used once.) Indeed, the modied 𝜇 may
be cticiously chargedwith 𝑑 edges per eachmodication, but each suchmodication arises
due to 𝑣 ∈ 𝑉 that contributes at least one unit in Case 1. Hence, the amortized over-counting
of 𝑑 · 𝛾 units is partially compansated by the unit contributed in Case 1.

Case 3: Auxiliary vertices of the form 𝑎𝑢,𝑣,𝑖 that are mapped by 𝜇′ to auxiliary vertices of the
form 𝑎𝑢′,𝑣′,𝑖 for (𝑢′𝑣′) ≠ (𝑢, 𝑣); that is, 𝜇′(𝑎𝑢,𝑣,𝑖) ∈ {𝑎𝑢′,𝑣′,𝑖 : (𝑢′, 𝑣′) ∈𝐸𝑖 \ {(𝑢, 𝑣)}}.
For 𝑢, 𝑣, 𝑢′, 𝑣′ and 𝑖 as above, if 𝜇′(𝑢) = 𝑢′ and 𝜇′(𝑣) = 𝑣′, then an auxiliary vertex that
connects 𝑢 and 𝑣 in 𝐺′ is mapped to an auxiliary vertex that does not connects them
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in 𝜇′(𝐺′) (but rather connects the vertices 𝑢′ and 𝑣′, whereas either 𝑢′ ≠ 𝑢 or 𝑣′ ≠ 𝑣). So
we get a contribution of at least one unit to the dierence between 𝐺′ and 𝜇′(𝐺′) (i.e., the
edge incident at either 𝑢 or 𝑣). Hence, the contribution is proportional to the number of
non-xed-points of the current type. Otherwise (i.e., (𝜇′(𝑢), 𝜇′(𝑣)) ≠ (𝑢′, 𝑣′)), we get a vertex
as in either Case 1 or Case 2, and get a proportional contribution again.

Hence, the contribution of each of these cases to the dierence between 𝐺′ and 𝜇′(𝐺′) is pro-
portional to the number of vertices involved. Specically, if there are 𝑛𝑖 vertices in Case 𝑖, then
we get a contribution-count of at least 𝛾 · ∑𝑖∈[3] 𝑛1, where some of these contributions were
possibly counted twice. The claim follows. �

4. The Three-Step Construction

In this section we present a dierent construction of bounded-degree graphs that are robustly
self-ordered. It uses totally dierent techniques than the ones utilized in the construction
presented in Section 3. Furthermore, the current construction oers the exibility of obtaining
either graphs that have small connected components (i.e., of logarithmic size) or graphs that
are highly connected (i.e., are expanders). Actually, one can obtain anything in-between (i.e.,
𝑛-vertex graphs that consist of 𝑠(𝑛)-sized connected components that are each an expander, for
any 𝑠(𝑛) = Ω((log 𝑛)/log log 𝑛)). We mention that robustly self-ordered bounded-degree graphs
with small connected components are used in the proof of Theorem 5.2.

As stated in Section 1.1.2, the current construction proceeds in three steps. First, in
Section 4.1, we prove the existence of robustly self-ordered bounded-degree graphs, and observe
that such �-vertex graphs can actually be found in poly(�!)-time (i.e., exp(𝑂(�))-time). Next,
setting � = Ω((log 𝑛)/log log 𝑛), we use these graphs as part of 2�-vertex connected components
in an 𝑛-vertex (robustly self-ordered bounded-degree) graph that is constructed in poly(𝑛)-time
(see Section 4.2). Lastly, in Section 4.3, we repeat this strategy using the graphs constructed in
Section 4.2, and obtain exponentially larger graphs that are locally constructible.

In addition, in Section 4.4, we show that the foregoing graphs can be locally self-ordered.
That is, given a vertex 𝑣 in any graph 𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to the foregoing 𝑛-vertex
graph and oracle access to the incidence function of 𝐺′, we can nd in poly(log 𝑛))-time the
vertex to which this unique isomorphism maps 𝑣.

4.1 Existence

As stated above, we start with establishing the mere existence of bounded-degree graphs that
are robustly self-ordered.

THEOREM 4.1 (Robustly self-ordered graphs exist). For any suciently large constant 𝑑,
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there exists a family {𝐺𝑛}𝑛∈N of robustly self-ordered 𝑑-regular graphs. Furthermore, these graphs
are expanders.

Actually, it turns out that random 𝑑-regular graphs are robustly self-ordered; see Theo-
rem 6.1. Either way, given the existence of such 𝑛-vertex graphs, they can actually be found in
poly(𝑛!)-time, by an exhaustive search. Specically, for each of the possible 𝑜((𝑑𝑛)!) graphs,
we check the robust self-ordering condition by checking all 𝑛! − 1 relevant permutation. (The
expansion condition can be checked similarly, by trying all (0.5 + 𝑜(1)) · 2𝑛 relevant subsets
of [𝑛].)

The proof of Theorem 4.1 utilizes a simpler probabilistic argument than the one used
in the proof of Theorem 6.1. This argument (captured by Claim 4.1.1) refers to the auxiliary
model of edge-colored multi-graphs (see Denition 2.1) and is combined with a transformation
of this model to the original model of uncolored graphs (provided in Construction 2.3 and
analyzed in Theorem 2.4). Indeed, the relative simplicity of Claim 4.1.1 is mainly due to using
the edge-colored model (see digest at the end of Section 6).

PROOF. To facilitate the proof, we present the construction while referring to the edge-colored
model presented in Section 2. We shall then apply Theorem 2.4 and obtain a result for the
original model (of uncolored simple graphs).

For 𝑚 = 𝑛/𝑂(1), we shall consider 2𝑚-vertex multi-graphs that consists of two 𝑚-vertex
cycles, using a dierent color for the edges of each cycle, that are connected by 𝑑′ = 𝑂(1) random
perfect matching, which are also each assigned a dierent color. (Hence, we use 2 + 𝑑′ colors
in total.) We shall show that (w.h.p.) a random multi-graph constructed in this way is robustly
self-ordered (in the colored sense). (Note that parallel edges, if they exist, will be assigned
dierent colors.) Specically, we consider a generic 2𝑚-vertex multi-graph that is determined
by 𝑑′ perfectmatchings of [𝑚] with {𝑚+1, . . . , 2𝑚}. Denoting this sequence of perfectmatchings
by 𝑀 = (𝑀1, . . . , 𝑀𝑑 ′), we consider the (edge-colored) multi-graph 𝐺𝑀 ( [2𝑚], 𝐸𝑀) given by

𝐸𝑀 = 𝐶1 ∪ 𝐶2 ∪
⋃
𝑗∈[𝑑 ′]

𝑀 𝑗

where 𝐶1 = {{𝑖, 𝑖 + 1} : 𝑖 ∈ [𝑚 − 1]} ∪ {{𝑚, 1}}
and 𝐶2 = {{𝑚 + 𝑖, 𝑚 + 𝑖 + 1} : 𝑖 ∈ [𝑚 − 1]} ∪ {{2𝑚,𝑚 + 1}}

and a coloring 𝜒 in which the edges of 𝐶 𝑗 are colored 𝑗 and the edges of 𝑀 𝑗 are colored 𝑗 + 2.
(That is, for 𝑖 ∈ {1, 2}, the set 𝐶𝑖 forms a cycle of the form ((𝑖 − 1)𝑚 + 1, (𝑖 − 1)𝑚 + 2, . . . ,
(𝑖 − 1)𝑚 + 𝑚, (𝑖 − 1)𝑚 + 1) and its edges are colored 𝑖.) Note that the 𝑑′ + 1 edges incident at
each vertex are assigned 𝑑′ + 1 dierent colors.

Claim 4.1.1. (W.h.p.,𝐺𝑀 is robustly self-ordered): For some constant 𝛾 > 0, with high probability
over the choice of𝑀 , the edge-colored multi-graph 𝐺𝑀 is 𝛾-robustly self-ordered. Furthermore, it
is also an expander.
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Proof. Consider an arbitrary permutation 𝜇 : [2𝑚] → [2𝑚], and let 𝑡 = |{𝑖 ∈ [2𝑚] :𝜇(𝑖) ≠ 𝑖}|.
We shall show that, with probability 1 − exp(−Ω(𝑑𝑡 log𝑚)) over the choice of𝑀 , the dierence
between the colored versions of 𝐺𝑀 and 𝜇(𝐺𝑀) is Ω(𝑡). Towards this end, we consider two
cases.

Case 1: |{𝑖 ∈ [𝑚] : 𝜇(𝑖) ∉ [𝑚]}| > 𝑡/4. Equivalently, |{𝑖 ∈ [2𝑚] : d𝜇(𝑖)/𝑚e ≠ d𝑖/𝑚e}| > 𝑡/2.
The vertices in the set {𝑖 ∈ [𝑚] : 𝜇(𝑖) ∉ [𝑚]} are mapped from the rst cycle to the second
cycle, and so rather than having two incident edges that are colored 1 they have two incident
edges colored 2. Hence, each such vertex contributes two units to the dierence (between
the colored versions of 𝐺𝑀 and 𝜇(𝐺𝑀)), and the total contribution is greater than 2 · (𝑡/4) · 2,
where the rst factor of 2 accounts also for vertices that are mapped from 𝐶2 to 𝐶1.

Case 2: |{𝑖 ∈ [𝑚] : 𝜇(𝑖) ∉ [𝑚]}| ≤ 𝑡/4. Equivalently, |{𝑖 ∈ [2𝑚] : d𝜇(𝑖)/𝑚e ≠ d𝑖/𝑚e}| ≤ 𝑡/2.
We focus on the non-xed-points of 𝜇 that stay on their original cycle (i.e., those not con-
sidered in Case 1). Let 𝐴 def

= {𝑖 ∈ [𝑚] : 𝜇(𝑖) ≠ 𝑖 ∧ 𝜇(𝑖) ∈ [𝑚]} and 𝐵 def
= {𝑖 ∈ {𝑚 + 1, ...., 2𝑚} :

𝜇(𝑖)≠ 𝑖∧ 𝜇(𝑖) ∈ {𝑚+1, . . . , 2𝑚}}. By the case hypothesis, |𝐴| + |𝐵| ≥ 𝑡/2, and wemay assume
(without loss of generality) that |𝐴| ≥ 𝑡/4. As a warm-up, we rst show that each element
of 𝐴 contributes a non-zero number of units to the dierence (between the colored versions
of 𝐺𝑀 and 𝜇(𝐺𝑀)) with probability 1 − 𝑂(1/𝑚)𝑑

′, over the choice of 𝑀 .
To see this, let 𝜋 𝑗 : [𝑚] → {𝑚 + 1, . . . , 2𝑚} be the mapping used in the 𝑗th matching; that is,
𝑀 𝑗 = {{𝑖, 𝜋 𝑗 (𝑖)} : 𝑖 ∈ [𝑚]}, which means that 𝜋 𝑗 (𝑖) is the 𝑗th match of 𝑖 in 𝐺𝑀 (i.e., the vertex
matched to 𝑖 by 𝑀 𝑗). Then, we consider the event that for some 𝑗 ∈ [𝑑′], the 𝑗th match of
𝑖 ∈ [𝑚] in 𝜇(𝐺𝑀) is dierent from the 𝑗th match of 𝑖 in 𝐺𝑀 , and note that when this event
occurs 𝑖 contributes to the dierence (between the colored versions of𝐺𝑀 and 𝜇(𝐺𝑀)). Note
that 𝑥 is the 𝑗th match of 𝑖 in 𝜇(𝐺𝑀) if and only if 𝜇−1(𝑥) is the 𝑗th match of 𝜇−1(𝑖) in 𝐺𝑀 ,
which holds if and only if 𝜇−1(𝑥) = 𝜋 𝑗 (𝜇−1(𝑖)) (equiv., 𝑥 = 𝜇(𝜋 𝑗 (𝜇−1(𝑖)))). Hence, 𝑖 ∈ [𝑚]
contributes to the dierence if and only if for some 𝑗 it holds that 𝜋 𝑗 (𝑖) ≠ 𝜇(𝜋 𝑗 (𝜇−1(𝑖))),
because 𝜋 𝑗 (𝑖) ≠ 𝜇(𝜋 𝑗 (𝜇−1(𝑖))) means that the edge {𝑖, 𝜋 𝑗 (𝑖)} is colored 𝑗 + 2 in 𝐺𝑀 but is not
colored 𝑗 + 2 in 𝜇(𝐺𝑀) (since a dierent edge incident at 𝑖 in 𝜇(𝐺𝑀) is colored 𝑗 + 2). Letting
𝜋 = (𝜋1, . . . , 𝜋𝑑 ′), the probability of the complementary event (i.e., 𝑖 does not contribute to
the dierence) is given by

Pr𝜋
[
(∀ 𝑗 ∈ [𝑑′]) 𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖)))

]
=

∏
𝑗∈[𝑑 ′]

Pr𝜋 𝑗
[
𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖)))

]
≤ (𝑚 − 1)−𝑑 ′,

where the inequality uses the hypothesis that 𝜇(𝑖) ≠ 𝑖 and 𝑖, 𝜇(𝑖) ∈ [𝑚]; specically, xing the
value of 𝜋 𝑗 (𝜇−1(𝑖)), leaves 𝜋 𝑗 (𝑖) uniformly distributed in 𝑆 def

= {𝑚+1, . . . , 2𝑚} \ {𝜋 𝑗 (𝜇−1(𝑖))},
which means that Pr𝜋 𝑗 [𝜋 𝑗 (𝑖)=𝜇(𝑣) | 𝑣=𝜋 𝑗 (𝜇−1(𝑖))] ≤ 1/|𝑆 | (where equality holds if 𝜇(𝑣) ∈
𝑆).
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The same argument generalises to any set 𝐼 ⊆ 𝐴 such that 𝐼 ∩ 𝜇(𝐼) = ∅. In such a case,
letting 𝐼 = {𝑖1, . . . , 𝑖𝑡′}, we get

Pr𝜋
[
(∀𝑖 ∈ 𝐼) (∀ 𝑗 ∈ [𝑑′]) 𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖)))

]
=

∏
𝑘∈[𝑡′]

∏
𝑗∈[𝑑 ′]

Pr𝜋 𝑗
[
𝜋 𝑗 (𝑖𝑘) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖𝑘)))

��(∀𝑘′∈ [𝑘 − 1]) 𝜋 𝑗 (𝑖𝑘′) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖𝑘′))) ]
≤ (𝑚 − 2𝑡′ + 1)−𝑡′𝑑 ′,

where the inequality uses the hypothesis that 𝐼 ∩ 𝜇(𝐼) = ∅; specically, for each 𝑘 ∈ [𝑡′],
we use the fact that 𝑖𝑘 ∉ {𝑖1, . . . , 𝑖𝑘−1, 𝜇−1(𝑖1), . . . , 𝜇−1(𝑖𝑘)}. Hence, xing the values of
𝜋 𝑗 (𝑖𝑘′) for all 𝑘′ ∈ [𝑘 − 1] and the values of 𝜋 𝑗 (𝜇−1(𝑖𝑘′)) for all 𝑘′ ∈ [𝑘], and denot-
ing these values by 𝑢1, . . . , 𝑢𝑘−1 and 𝑣1, . . . , 𝑣𝑘 respectively, leaves 𝜋 𝑗 (𝑖𝑘) uniformly dis-
tributed in 𝑆 def

= {𝑚 + 1, . . . , 2𝑚} \ {𝑢1, . . . , 𝑢𝑘−1, 𝑣1, . . . , 𝑣𝑘}, which means that Pr𝜋 𝑗 [𝜋 𝑗 (𝑖) =
𝜇(𝑣𝑘) | foregoing xing] ≤ 1/|𝑆 | (where equality holds if 𝜇(𝑣𝑘) ∈ 𝑆).
Recalling that |𝐴| ≥ 𝑡/4 and 𝑡 ≤ 2𝑚, we upper-bound the probability (over the choice
of 𝑀) that 𝐴 contains a 𝑡/8-subset 𝐴′ such that (∀𝑖 ∈ 𝐴′) (∀ 𝑗 ∈ [𝑑′]) 𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖))),
by taking a union bound over all possible 𝐴′ and using for each such 𝐴′ a subset 𝐼 ⊂ 𝐴′

such that 𝐼 ∩ 𝜇(𝐼) = ∅. (So we actually take a union bound over the 𝐼 ’s and derive a
conclusion regarding the 𝑡/8-subsets 𝐴′.) Observing that |𝐼 | ≥ |𝐴′|/3 ≥ 𝑡/24, we conclude
that, with probability at most

( 𝑡
𝑡/24

)
· (𝑚/2)𝑑 ′·𝑡/24 = exp(−Ω(𝑑′𝑡 log𝑚)) over the choice of𝑀 ,

the set 𝐴 contains no 𝑡/8-subset 𝐴′ as above. This means that, with probability at most
exp(−Ω(𝑑′𝑡 log𝑚)), less than 𝑡/8 of the indices 𝑖 ∈ 𝐴 contribute a non-zero number of units
to the dierence (between the colored versions of 𝐺𝑀 and 𝜇(𝐺𝑀)).

Hence, we have shown that, for every permutations 𝜇 : [2𝑚] → [2𝑚], the probability (over the
choice of 𝑀) that the size of the symmetric dierence between the colored versions of 𝐺𝑀 and
𝜇(𝐺𝑀) is smaller than 𝑡/8 is exp(−Ω(𝑑′𝑡 log𝑚)), where 𝑡 is the number of non-xed-points of 𝜇.
Letting 𝛾 = 1/8 and taking a union bound over all (non-trivial) permutations 𝜇 : [2𝑚] → [2𝑚],
we conclude that the probability, over the choice of 𝑀 , that 𝐺𝑀 is not 𝛾-robustly self-ordered is
at most ∑︁

𝑡∈[2𝑚]

(
2𝑚
𝑡

)
· exp(−Ω(𝑑′𝑡 log𝑚)) =

∑︁
𝑡∈[2𝑚]

exp(−Ω((𝑑′ − 𝑂(1)) · 𝑡 log𝑚))

= exp(−Ω((𝑑′ − 𝑂(1)) · log𝑚)),

and the claim follows (for any suciently large 𝑑′), while observing that, with very high
probability, these multi-graphs are expanders. �

Back to the non-colored version. We now convert the edge-colored multi-graphs 𝐺 = 𝐺𝑀
that are 𝛾-robustly self-ordered into standard graphs 𝐺′ that are robustly self-ordered in the
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original sense. This is done by using Construction 2.3 (while relying on Theorem 2.4). Recall
that this transformation also preserves expansion. Actually, before invoking Construction 2.3,
we augment the multi-graph 𝐺 by adding a self-loop to each vertex, and color all these self-loops
using a special color. Combining Claim 4.1.1 and Theorem 2.4, the current theorem follows. �

4.2 Constructions

Having established the existence of bounded-degree graphs that are robustly self-ordered,
we now turn to actually construct them. We shall use the fact that the proof of existence
yields a construction that runs in time that is polynomial in the number of possible graphs.
Specically, for � = 𝑂(log 𝑛)

log log 𝑛 , we shall construct �-vertex graphs in poly(�
�)-time and use them in

our construction of 𝑛-vertex graphs, while noting that poly(��) = poly(𝑛).

THEOREM 4.2 (Constructing robustly self-ordered graphs). For any suciently large con-
stant 𝑑, there exists an eciently constructable family {𝐺𝑛}𝑛∈N of robustly self-ordered graphs of
maximum degree 𝑑. That is, there exists a polynomial-time algorithm that on input 1𝑛 outputs
the 𝑛-vertex graph 𝐺𝑛 = ( [𝑛], 𝐸𝑛). Furthermore, 𝐺𝑛 consists of connected components of size
𝑂(log 𝑛)
log log 𝑛 = 𝑜(log 𝑛).

Note that the connected components of 𝐺𝑛 cannot be any smaller (than 𝑂(log 𝑛)
log log 𝑛). This is the

case because an asymmetric 𝑛-vertex bounded-degree graph, let alone a robustly self-ordered
one, cannot have connected components of size 𝑜(log 𝑛)

log log 𝑛 (because the number of 𝑡-vertex graphs
of bounded-degree is 𝑡𝑂(𝑡)).

PROOF. The proof proceeds in two steps. We rst use the existence of �-vertex (𝑑′-regular)
expander graphs that are robustly self-ordered towards constructing a sequence of 𝑚 =

exp(Ω(� log �)) bounded-degree 2�-vertex graphs that are robustly self-ordered, expanding,
and far from being isomorphic to one another. We construct this sequence of 2�-vertex graphs
in poly(𝑚)-time, using the fact that (�!)𝑂(1) = poly(𝑚). In the second step, we show that the
(𝑚 · 2�)-vertex graph that consists of these 2�-vertex graphs (as its connected components) is
robustly self-ordered. Note that this graph is constructed in time that is polynomial in its size,
since its size is Ω(𝑚), whereas it is constructed in poly(𝑚)-time.18

Given a generic 𝑛, let � =
𝑂(log 𝑛)
log log 𝑛 , which implies that �� = poly(𝑛). By Theorem 4.1, for

all suciently large 𝑑′, there exist �-vertex 𝑑′-regular expander graphs that are robustly self-
ordered (with respect to the robustness parameter 𝑐′). Furthermore, we can nd such a graph,
denoted 𝐺′�, in time poly(��) = poly(𝑛), by scanning all �-vertex 𝑑′-regular graphs and checking

18 We mention that a slightly different construction can be based on the fact that random �-vertex (𝑑 ′-regular) graphs
are robustly self-ordered expanders (see Theorem 6.1). In this alternative construction we find a sequence of 𝑚 such
graphs that are pairwise far from being isomorphic to one another. As further detailed in Remark 6.2, the analysis of
the alternative construction is somewhat easier than the analysis of the construction presented below, but we need
the current construction for the proof of Theorem 4.5.
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both the expansion and the robustness (w.r.t parameter 𝑐′) conditions for each of them. Actually,
for 𝑑′′ = 𝑑′ + 1, we shall also nd an �-vertex 𝑑′′-regular expander, denoted 𝐺′′� , that is robustly
self-ordered.

The construction of 𝐺𝑛. Using 𝐺′� and 𝐺′′� , we construct an 𝑛-vertex robustly self-ordered
graph, denoted 𝐺𝑛, that consists of 𝑛/2� connected components that are pairwise far from
being isomorphic to one another. This is done by picking 𝑚 = 𝑛/2� permutations, denoted
𝜋1, . . . , 𝜋𝑚 : [�] → [�], that are pairwise far-apart and constructing 2�-vertex graphs such that
the 𝑖th such graph consist of a copy of 𝐺′� and a copy of 𝐺

′′
� that are connected by a matching

as determined by the permutation 𝜋𝑖 . Specically, for 𝐺′� = ( [�], 𝐸
′
�) and 𝐺

′′
� = ( [�], 𝐸′′� ), the 𝑖

th

connected component is isomorphic to a graph with the vertex set [2�] and the edge set

𝐸′� ∪ {{� + 𝑢, � + 𝑣} : {𝑢, 𝑣} ∈ 𝐸
′′
� } ∪ {{𝑣, � + 𝜋𝑖 (𝑣)} : 𝑣∈ [�]}. (5)

(The rst two sets correspond to the copies of 𝐺′� and 𝐺
′′
� , and the third set corresponds to the

matching between these copies. Note that the vertices in [�] have degree 𝑑′+1, whereas vertices
in {� + 1, . . . , 2�} have degree 𝑑′′ + 1 ≠ 𝑑′ + 1.)

To see that this construction can be carried out in poly(𝑛)-time, we need to show that
the sequence of 𝑚 pairwise far-apart permutations can be determined in poly(𝑛)-time, let
alone that such a sequence exists. This is the case, because we can pick the permutation
sequentially (one after the other) by scanning the symmetric group on [�] and relying on the
fact that for (𝑖 < 𝑛 and) any xed sequence of permutations 𝜋1, . . . , 𝜋𝑖−1 : [�] → [�] it holds
that a random permutation 𝜋𝑖 is far-apart from each of the xed 𝑖 − 1 permutations; that is,
Pr𝜋𝑖 [|{𝑣 ∈ [�] : 𝜋𝑖 (𝑣) ≠ 𝜋 𝑗 (𝑣)}| = Ω(�)] = 1 − 𝑜(1/𝑛) for every 𝑗 ∈ [𝑖 − 1].19

Towards proving that𝐺𝑛 is robustly self-ordered. Wenowprove that the resulting graph𝐺𝑛,
which consists of these 𝑚 connected components, is 𝑐-robustly self-ordered, where 𝑐 is a uni-
versal constant (which is independent of the generic 𝑛). For starters, let’s verify that 𝐺𝑛 is
self-ordered. We rst note that any automorphism of 𝐺𝑛 must map the vertices of copies of 𝐺′�
(resp., 𝐺′′� ) to vertices of copies of 𝐺

′
� (resp., 𝐺

′′
� ), since these are the only vertices of degree 𝑑

′ + 1
(resp., 𝑑′′ + 1). The connectivity of these copies implies that the automorphism must map
each connected component to some connected component, which determines the 𝑚 connected
components. The self-ordered feature of 𝐺′� and 𝐺

′′
� determines a unique ordering on each

copy, whereas the fact the permutations (i.e., 𝜋𝑖 ’s) are dierent imposes that each connected
component is mapped to itself (i.e., the order of the connected components is preserved). Hence,
the automorphism must be trivial (and it follows that 𝐺𝑛 is self-ordered).

19 Specifically, for some �′ = Ω(�), we upper-bound Pr𝜋 [|{𝑣 ∈ [�] : 𝜋(𝑣) = 𝑣)}| ≥ � − �′], where 𝜋 : [�] → [�] is a random
permutation. We do so by observing that the number of permutations that have at least � − �′ fixed-points is at most( �
�′
)
· (�′!) = �!

(�−�′)! , whereas (� − �′)! = exp(Ω(� log �)) = 𝜔(𝑛) for any �′ such that � − �′ = Ω(�).
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An analogous argument establishes the robust self-ordering of 𝐺𝑛, where we use the
hypothesis that 𝐺′� and 𝐺

′′
� are expanders (rather than merely connected), the choice of the 𝜋𝑖 ’s

as being far-apart (rather than merely dierent), and the robust self-ordering of 𝐺′� and 𝐺
′′
�

(rather than their mere self-ordering). Considering an arbitrary permutation 𝜇 : [𝑛] → [𝑛],
these stronger features are used to establish a lower bound on the size of the symmetric
dierence between 𝐺𝑛 and 𝜇(𝐺𝑛) as follows:

The fact that 𝐺′� is an expander implies that if 𝜇 splits the vertices of a copy of 𝐺′� such that
�′ vertices are mapped to copies that are dierent than the other � − �′ ≥ �′ vertices, then
this contributes Ω(�′) units to the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛). Ditto for 𝐺′′� , whereas
mapping a copy of 𝐺′� to a copy of 𝐺

′′
� contributes Ω(�) units (per the dierence in the

degrees).
The robust self-ordering of 𝐺′� and 𝐺

′′
� implies that if 𝜇 changes the index of vertices inside

a component, then this yields a proportional dierence between 𝐺𝑛 and 𝜇(𝐺𝑛).
The distance between the 𝜋𝑖 ’s (along with the aforementioned robustness) implies that
if 𝜇 changes the indices of the connected components, then each such change contributes
Ω(�) units to the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛).

The actual implementation of this sketch requires a careful accounting of the various con-
tributions. As a rst step in this direction we provide a more explicit description of 𝐺𝑛. We
denote the set of vertices of the copy of 𝐺′� (resp., 𝐺

′′
� ) in the 𝑖th connected component of 𝐺𝑛 by

𝐹𝑖 = {2(𝑖 − 1)� + 𝑗 : 𝑗 ∈ [�]} (resp., 𝑆𝑖 = {2(𝑖 − 1)� + � + 𝑗 : 𝑗 ∈ [�]}). Recall that 𝐹𝑖 and 𝑆𝑖 are
connected by the edge-set

{{2(𝑖 − 1)� + 𝑗, 2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗)} : 𝑗 ∈ [�]} (6)

whereas the subgraph of 𝐺𝑛 induced by 𝐹𝑖 (resp., 𝑆𝑖) has the edge-set {{2(𝑖 −1)�+𝑢, 2(𝑖 −1) + 𝑣} :
{𝑢, 𝑣} ∈𝐸′�} (resp., {{2(𝑖 − 1)� + � + 𝑢, 2(𝑖 − 1) + � + 𝑣} : {𝑢, 𝑣} ∈𝐸

′′
� }). In addition, let 𝐹 =

⋃
𝑖∈[𝑚] 𝐹𝑖

(resp., 𝑆 =
⋃
𝑖∈[𝑚] 𝑆𝑖).

The actual proof (that 𝐺𝑛 is robustly self-ordered). Considering an arbitrary permutation
𝜇 : [𝑛] → [𝑛], we lower-bound the distance (i.e., size of the symmetric dierence) between 𝐺𝑛
and 𝜇(𝐺𝑛) as a function of the number of non-xed-points under 𝜇 (i.e., the number of 𝑣 ∈ [𝑛]
such that 𝜇(𝑣) ≠ 𝑣). We do so by considering the (average) contribution of every non-xed-point
to the distance between 𝐺𝑛 and 𝜇(𝐺𝑛) (i.e., number of pairs of vertices that form an edge in one
graph but not in the other). Wemay include the same contribution in few of the following (seven)
cases, but this only means that we are double-counting the contribution by a constant factor.
We rst consider the set of vertices that switch sides (under 𝜇) in the connected components.

Case 1: Vertices 𝑣 ∈ 𝐹 such that 𝜇−1(𝑣) ∈ 𝑆. Ditto for 𝑣 ∈ 𝑆 such that 𝜇−1(𝑣) ∈ 𝐹.
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Each such vertex contributes at least one unit to the distance (between 𝐺𝑛 and 𝜇(𝐺)) by
virtue of 𝑣 having degree 𝑑′ + 1 in 𝐺𝑛 and strictly higher degree in 𝜇(𝐺𝑛), since vertices in 𝐹
have degree 𝑑′ + 1 (in 𝐺𝑛) whereas vertices in 𝑆 have higher degree (in 𝐺𝑛).20

In light of Case 1, wemay focus on vertices whose “type” (or “side”) is preserved by 𝜇−1. Actually,
it will be more convenient to consider the set of vertices whose “type” is preserved by 𝜇; that
is, the set {𝑣 ∈ 𝐹 : 𝜇(𝑣) ∈ 𝐹} ∪ {𝑣 ∈ 𝑆 : 𝜇(𝑣) ∈ 𝑆}. Next, for each 𝑖 ∈ [𝑚], we dene 𝜇′(𝑖) to be
the index of the connected component that takes the plurality of 𝜇(𝐹𝑖); that is, 𝜇′(𝑖)

def
= 𝑗 if

|{𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∈ 𝐹 𝑗}| ≥ |{𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∈ 𝐹𝑘}| for all 𝑘 ∈ [𝑚] (breaking ties arbitrarily). Next,
we consider the set of vertices that are not mapped according to the plurality vote.

Case 2: Vertices 𝑣 ∈ 𝐹𝑖 such that 𝜇(𝑣) ∈ 𝐹 \ 𝐹𝜇′(𝑖) .
For starters, suppose that |{𝑣∈𝐹𝑖 :𝜇(𝑣) ∈𝐹𝜇′(𝑖)}| ≥ �/2; that is, a majority of the vertices of
𝐹𝑖 are mapped by 𝜇 to 𝐹𝜇′(𝑖) . In this case, by the expansion of 𝐺′�, we get a contribution that
is proportional to the size of the set 𝐹′

𝑖

def
= {𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∉ 𝐹𝜇′(𝑖)}, because (in 𝐺𝑛) there are

Ω( |𝐹′
𝑖
|) edges between 𝐹′

𝑖
and the rest of 𝐹𝑖 but there are no edges between 𝐹′𝑖 and 𝐹𝑖 \ 𝐹

′
𝑖
in

𝜇(𝐺𝑛). In the general case, we have to be more careful since expansion is guaranteed only
for sets that have size at most �/2. In such a case we use an adequate subset of 𝐹′

𝑖
. Details

follow.
Let 𝑅𝑖

def
= {𝑣∈𝐹𝑖 :𝜇(𝑣) ∈𝐹 \ 𝐹𝜇′(𝑖)}. We rst note that there exists a set 𝐽 ⊆ [𝑚] \ {𝜇′(𝑖)} such

that 𝐹′
𝑖

def
=

⋃
𝑗∈𝐽{𝑣∈𝐹𝑖 :𝜇(𝑣) ∈𝐹 𝑗} satises |𝑅𝑖 |/4 ≤ |𝐹′𝑖 | ≤ �/2. Recall that the subgraph of 𝐺𝑛

induced by 𝐹𝑖 is an expander, and consider the edges in𝐺𝑛 that cross the cut between 𝐹′𝑖 and
the rest of 𝐹𝑖 . Then, this cut has Ω( |𝐹′𝑖 |) edges in 𝐺𝑛, but there are no edges between 𝐹

′
𝑖
and

𝐹𝑖 \ 𝐹′𝑖 in 𝜇(𝐺𝑛), because 𝜇
−1(𝐹′

𝑖
) ⊆ ⋃

𝑗∈𝐽 𝐹 𝑗 and 𝜇−1(𝐹𝑖 \ 𝐹′𝑖 ) ⊆
⋃

𝑗∈[𝑚]\𝐽 𝐹 𝑗 are not connected
in 𝐺𝑛. Hence, the total contribution of the vertices in {𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∈ 𝐹 \ 𝐹𝜇′(𝑖)} = 𝑅𝑖 to the
distance (between 𝐺𝑛 and 𝜇(𝐺)) is Ω( |𝐹′𝑖 |), which is proportional to their number (i.e., it is
Ω( |𝑅𝑖 |)).

Dening 𝜇′′(𝑖) in an analogous manner with respect to 𝜇(𝑆𝑖), we get an analogous contribution
by the expander induced by 𝑆𝑖 . Specically, for each 𝑖 ∈ [𝑚], we dene 𝜇′′(𝑖) to be the index of
the connected component that takes the plurality of 𝜇(𝑆𝑖); that is, 𝜇′′(𝑖)

def
= 𝑗 if |{𝑣∈𝑆𝑖 :𝜇(𝑣) ∈

𝑆 𝑗}| ≥ |{𝑣∈𝑆𝑖 :𝜇(𝑣) ∈𝑆𝑘}| for all 𝑘 ∈ [𝑚] (breaking ties arbitrarily). Analogously to Case 2, we
consider the following vertices.

Case 3: Vertices 𝑣 ∈ 𝑆𝑖 such that 𝜇(𝑣) ∈ 𝑆 \ 𝑆𝜇′′(𝑖) .
Here we get a contribution of Ω( |{𝑣∈𝑆𝑖 :𝜇(𝑣) ∈𝑆 \ 𝑆𝜇′′(𝑖)}|), where the analysis is analogous
to Case 2.

20 Note that 𝑣 neighbors 𝑢 in 𝜇(𝐺𝑛) if and only if 𝜇−1 (𝑣) neighbors 𝜇−1 (𝑢) in 𝐺𝑛.
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Recall that if 𝑣 ∈ 𝐹𝑖 then it holds that 𝑣 = 2(𝑖 − 1)� + 𝑗 for some 𝑗 ∈ [�], and that (in 𝐺𝑛)
vertex 𝑣 has a unique neighbor in 𝑆, which is 2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗) ∈ 𝑆𝑖 . It will be convinient
to denote this neighbor by 𝜙𝑖 (𝑣); that is, for 𝑣 ∈ 𝐹𝑖 such that 𝑣 = 2(𝑖 − 1)� + 𝑗, we have
𝜙𝑖 (𝑣) = 2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗) ∈ 𝑆𝑖 . The next two cases refer to vertices that are mapped by 𝜇
according to the plurality vote (e.g., 𝑣 ∈ 𝐹𝑖 is mapped to 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖)), but their match is not
mapped accordingly (i.e., 𝜙𝑖 (𝑣) ∈ 𝑆𝑖 is not mapped to 𝑆𝜇′(𝑖)).

Case 4: Vertices 𝑣 ∈ 𝐹𝑖 such that 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) but 𝜇(𝜙𝑖 (𝑣)) ∉ 𝑆𝜇′(𝑖) .
(Note that the condition 𝑣 ∈ 𝐹𝑖 and 𝜇(𝑣) ∈ 𝐹𝜋′(𝑖) means that vertex 𝑣 is not covered in Case 2.
If 𝜇′′(𝑖) = 𝜇′(𝑖), then 𝜇(𝜙𝑖 (𝑣)) ∉ 𝑆𝜇′(𝑖) means that 𝑣 is covered in Case 3, since 𝜙𝑖 (𝑣) ∈ 𝑆𝑖 .
Hence, the current case is of interest only when 𝜇′′(𝑖) ≠ 𝜇′(𝑖). In particular, it is of interest
when referring to vertices in the 𝑖th connected component of 𝐺𝑛 that reside in the copies
of 𝐺′� and 𝐺

′′
� and are mapped according to the plurality votes of these copies, whereas these

two plurality votes are inconsistent.)
We focus on the case that a vast majority of the vertices in both 𝐹𝑖 and 𝑆𝑖 are mapped
according to the plurality votes (i.e., 𝜇′(𝑖) and 𝜇′′(𝑖)), since the complementary cases are
covered by Cases 2 and 3, respectively. Specically, if either |{𝑣∈𝐹𝑖 :𝜇(𝑣) ∈ [𝑛] \𝐹𝜇′(𝑖)}| > �/3
or |{𝑢∈𝑆𝑖 :𝜇(𝑢) ∈ [𝑛] \ 𝑆𝜇′′(𝑖)}| > �/3, then we get a contribution of Ω(�) either by Cases 1&2
or by Cases 1&3. Otherwise, it follows that

|{𝑣∈𝐹𝑖 :𝜇(𝑣) ∈𝐹𝜇′(𝑖) ∧ 𝜇(𝜙𝑖 (𝑣)) ∈𝑆𝜇′′(𝑖)}| ≥ � − 2 · �/3

which implies that, if 𝜇′(𝑖) ≠ 𝜇′′(𝑖), then the 𝑖th connected component of 𝐺𝑛 contributes
�/3 units to the dierence (between 𝐺𝑛 and 𝜇(𝐺𝑛)), since 𝑣 and 𝜙𝑖 (𝑣) are connected in 𝐺𝑛,
but 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) and 𝜇(𝜙𝑖 (𝑣)) ∈ 𝑆𝜇′′(𝑖) reside in dierent connected components of 𝜇(𝐺𝑛).
(That is, the contribution is due to vertices 𝑣 of 𝐹𝑖 that are mapped by 𝜇 to 𝐹𝜇′(𝑖) , while the
corresponding vertices 𝜙𝑖 (𝑣) of 𝑆𝑖 (which are connected to them in 𝐺𝑛) are mapped by 𝜇 to
𝑆𝜇′′(𝑖) ⊂ 𝑆 \ 𝑆𝜇′(𝑖) , whereas 𝐹𝜇′(𝑖) and 𝑆𝜇′′(𝑖) are not connected in 𝐺𝑛, assuming 𝜇′(𝑖) ≠ 𝜇′′(𝑖).)
To conclude: The contribution of the vertices of Case 4 (to the dierence between 𝐺𝑛 and
𝜇(𝐺𝑛)) is proportional to the number of these vertices (where this contributionmight have
been counted already in Cases 1, 2 and 3).

Case 5: Vertices 𝑣 ∈ 𝐹𝑖 such that 𝜇(𝑣) ∉ 𝐹𝜇′′(𝑖) but 𝜇(𝜙𝑖 (𝑣)) ∈ 𝑆𝜇′′(𝑖) .
(Equiv., vertices 𝑣 ∈ 𝑆𝑖 such that 𝜇(𝑣) ∈ 𝑆𝜇′′(𝑖) but 𝜇(𝜙−1𝑖 (𝑣)) ∉ 𝐹𝜇′′(𝑖) .)
Analogously to Case 4, the contribution of these vertices is proportional to their number.
(Analogously, this augments Case 2 only in case 𝜇′′(𝑖) ≠ 𝜇′(𝑖).)

In light of Cases 2–5, we may focus on indices 𝑖 ∈ [𝑚] such that 𝜇′(𝑖) = 𝜇′′(𝑖) and on vertices in
the 𝑖th connected component that are mapped by 𝜇 to the 𝜇′(𝑖)th connected component (and the
same ”type” per Case 1). The following case refers to such vertices that do not maintain their
position in this connected component.
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Case 6: Vertices 𝑣=2(𝑖 − 1)� + 𝑗 ∈ 𝐹𝑖 such that 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) \ {2(𝜇′(𝑖) − 1)� + 𝑗}.
Ditto for 𝑣=2(𝑖 − 1)� + � + 𝑗 ∈ 𝑆𝑖 such that 𝜇(𝑣) ∈ 𝑆𝜇′′(𝑖) \ {2(𝜇′′(𝑖) − 1)� + � + 𝑗}.
(This case refers to vertices in 𝐹𝑖 that are mapped to 𝐹𝜇′(𝑖) but do not maintain their index
in the relevant copy of 𝐺′�; indeed, 𝑣=2(𝑖 − 1)� + 𝑗 is the 𝑗

th vertex of 𝐹𝑖 , but it is mapped
by 𝜇 to the 𝑘th vertex of 𝐹𝜇′(𝑖) (i.e., 𝜇(𝑣)=2(𝜇′(𝑖) − 1)� + 𝑘) such that 𝑘 ≠ 𝑗.)
Fixing 𝑖, let 𝐶 def

= {𝑣=2(𝑖 − 1)� + 𝑗 ∈ 𝐹𝑖 : 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) \ {2(𝜇′(𝑖) − 1)� + 𝑗}} denote the set of
vertices considered in this case, and 𝐷 = {𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∉ 𝐹𝜇′(𝑖)} denote the set of vertices
that we are going to discount for. As a warm-up, consider rst the case that 𝐷 = ∅. In this
case, by the robust self-ordering of 𝐺′�, the contribution of the vertices in 𝐶 to the dierence
between 𝐺𝑛 and 𝜇(𝐺𝑛) is Ω( |𝐶 |).
In the general case (i.e., where 𝐷may not be empty), we get a contribution of Ω( |𝐶 |) −𝑑′ · |𝐷|,
where the second term compensates for the fact that the vertices of 𝐷 were moved outside
of this copy of 𝐺′� and replaced by dierent vertices that may have dierent incidences.
Letting 𝑐′ be the constant hidden in the Ω-notation, we get a contribution of at least 𝑐′ · |𝐶 | −
𝑑′ · |𝐷|, which is at least 𝑐′ · |𝐶 |/2 if |𝐷| ≤ 𝑐′ · |𝐶 |/2𝑑′. On the other hand, if |𝐷| > 𝑐′ · |𝐶 |/2𝑑′,
then we get a contribution of Ω( |𝐷|) = Ω( |𝐶 |) by Cases 1–2.
Hence, in both sub-cases we have a contribution of Ω( |𝐶 |) to the dierence between 𝐺𝑛 and
𝜇(𝐺𝑛).
The same analysis applies to {𝑣=2(𝑖 − 1)� + � + 𝑗 ∈ 𝑆𝑖 : 𝜇(𝑣) ∈ 𝑆𝜇′′(𝑖) \ {2(𝜇′′(𝑖) − 1)� + � + 𝑗}},
where we use the robust self-ordering of 𝐺′′� and Cases 1&3.

Lastly, we consider vertices that do not fall into any of the prior cases. Such vertices maintain
their type, are mapped with the plurality vote of their connected component, which is consistent
among its two parts (i.e., 𝜇′ and 𝜇′′), and maintain their position in that component. Hence, the
hypothesis that they are not xed-points of 𝜇 can only be attributed to the fact that these vertices
are mapped to a connected component with a dierent index.

Case 7: Vertices 𝑣 ∈ 𝐹𝑖 such that both 𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) \ 𝐹𝑖 and 𝜇(𝜙𝑖 (𝑣)) ∈ 𝑆𝜇′′(𝑖) \ 𝑆𝑖 hold.
(We may assume that 𝜇′(𝑖) ≠ 𝑖 and 𝜇′′(𝑖) ≠ 𝑖, since otherwise this set is empty. We may
also assume that 𝜇′(𝑖) = 𝜇′′(𝑖), since the complementary case was covered by Cases 4 and 5.
Hence, we focus on pairs of vertices that are matched in the 𝑖th connected component of 𝐺𝑛
and are mapped by 𝜇 to the 𝑘th component of 𝐺𝑛 such that 𝑘 ≠ 𝑖.)
For every 𝑖 ≠ 𝑘, let Δ𝑖,𝑘 = { 𝑗 ∈ [�] : 𝜋𝑖 ( 𝑗) ≠ 𝜋𝑘 ( 𝑗)} be the sets on which 𝜋𝑖 and 𝜋𝑘
dier. (Note that if for every 𝑣 = 2(𝑖 − 1)� + 𝑗 ∈ 𝐹𝑖 it holds that 𝜇(𝑣) = 2(𝑘 − 1)� + 𝑗 and
𝜇(𝜙𝑖 (𝑣)) = 2(𝑘 − 1)� + 𝜋𝑖 ( 𝑗) (equiv., 𝜇(2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗)) = 2(𝑘 − 1)� + 𝜋𝑖 ( 𝑗)), then we get
a contribution of |Δ𝑖,𝑘 | to the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛).)



39 / 92 Robustly Self-Ordered Graphs

Fixing 𝑖, let 𝐷 = 𝐷1 ∪ 𝐷2 such that

𝐷1 = {𝑣 ∈ 𝐹𝑖 : 𝜇(𝑣) ∉ 𝐹𝜇′(𝑖) ∨ 𝜇(𝑣 + �) ∉ 𝑆𝜇′′(𝑖)}

𝐷2 =

{
𝑣=2(𝑖 − 1)� + 𝑗 ∈ 𝐹𝑖 :

𝜇(𝑣) ∈ 𝐹𝜇′(𝑖) \ {2(𝜇′(𝑖) − 1)� + 𝑗}
∨ 𝜇(𝜙𝑖 (𝑣)) ∈ 𝑆𝜇′′(𝑖) \ {2(𝜇′′(𝑖) − 1)� + � + 𝜋𝑖 ( 𝑗)}

}
(Recall that 𝜙𝑖 (2(𝑖 − 1)� + 𝑗) = 2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗). The set 𝐷1 accounts for the vertices
covered in Cases 2&3, whereas 𝐷2 accounts for the vertices covered in (the two sub-cases
of) Case 6.)
As a warm-up, consider rst the case that 𝐷 = ∅. In this case, assuming 𝜇′(𝑖) = 𝜇′′(𝑖) ≠ 𝑖,
we get a contribution of |Δ𝑖,𝜇′(𝑖) | = Ω(�) (to the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛)). This
contribution is due to the dierence in the edges that match 𝐹𝜇′(𝑖) and 𝑆𝜇′(𝑖) in 𝐺𝑛 and
the edges that match 𝐹𝑖 and 𝑆𝑖 in 𝐺𝑛, where |Δ𝑖,𝜇′(𝑖) | = Ω(�) is due to the fact that the
permutations (i.e., 𝜋𝑘’s) are far-apart. The hypothesis 𝐷1 = ∅means that all vertices of 𝐹𝑖
(resp., of 𝑆𝑖) are mapped to 𝐹𝜇′(𝑖) (resp., to 𝑆𝜇′′(𝑖) = 𝑆𝜇′(𝑖)), whereas 𝐷2 = ∅means that these
vertices preserves their order within the two parts of the connected component.
The general case (i.e., where 𝐷may not be empty) requires a bit more care. Suppose that
the 𝜋𝑘’s are 𝛾-apart; that is, |Δ𝑘′,𝑘 | > 𝛾 · � for every 𝑘′ ≠ 𝑘. We focus on the case that
a vast majority of the vertices in both 𝐹𝑖 and 𝑆𝑖 are mapped according to the plurality
votes (i.e., 𝜇′(𝑖) and 𝜇′′(𝑖)), since the complementary cases are covered by Cases 2 and 3,
respectively. Specically, if |𝐷1 | > 𝛾�/3, then we get a contribution of Ω(�) by either Case 2
or Case 3. Likewise, if |𝐷2 | > 𝛾�/3, thenwe get a contribution of Ω(�) by Case 6. So, assuming
𝜇′(𝑖) = 𝜇′′(𝑖) ≠ 𝑖, we are left with the case that

|{𝑣=2(𝑖 − 1)� + 𝑗 ∈ 𝐹𝑖 \ 𝐷 : 𝑗 ∈ Δ𝑖,𝜇′(𝑖)}| ≥ 𝛾� − 2𝛾�/3.

In this case, we get a contribution of at least 𝛾�/3 to the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛).
This contribution is due to the dierence in the edges that match 𝐹𝜇′(𝑖) and 𝑆𝜇′(𝑖) in 𝐺𝑛
and the edges that match 𝐹𝑖 and 𝑆𝑖 in 𝐺𝑛, where edges that have an endpoint (or its 𝜙𝑖-
mate) in 𝐷 were discarded. Specically, letting 𝑘 = 𝜇′(𝑖) = 𝜇′′(𝑖) ≠ 𝑖, the pair (𝑣, 𝑤) =
(2(𝑖 − 1)� + 𝑗, 2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗)) ∈ 𝐹𝑖 × 𝑆𝑖 contributes to the dierence if 𝑗 ∈ Δ𝑖,𝑘 and
both 𝜇(𝑣) = 2(𝑘 − 1)� + 𝑗 ∈ 𝐹𝑘 and 𝜇(𝑤) = 2(𝑘 − 1)� + � + 𝜋𝑖 ( 𝑗) ∈ 𝑆𝑘 hold (i.e., 𝑣 ∉ 𝐷1 and
𝑣, 𝜙−1

𝑖
(𝑤) ∉ 𝐷2).21 Indeed, in this case {𝑣, 𝑤} is an edge in 𝐺𝑛 but {𝑣, 𝑤} is not an edge in

𝜇−1(𝐺𝑛). (Hence, if the number of vertices of this case is Ω( |{𝑢 ∈ [𝑛] : 𝜇(𝑢) ≠ 𝑢}|), then the
dierence between 𝐺𝑛 and 𝜇−1(𝐺𝑛) is Ω( |{𝑢 ∈ [𝑛] : 𝜇(𝑢) ≠ 𝑢}|), and the same holds with
respect to the dierence between 𝜇(𝐺𝑛) and 𝐺𝑛.)

21 Recall that 𝜙−1
𝑖
(𝑤) = 𝜙−1 ((2(𝑖 − 1)� + � + 𝜋𝑖 ( 𝑗))) = 2(𝑖 − 1)� + 𝑗 = 𝑣.



40 / 92 O. Goldreich and A. Wigderson

Combining all these cases, we get a total contribution that is proportional to |{𝑣 ∈ [𝑛] : 𝜇(𝑣) ≠
𝑣}|, where we might have counted the same contribution in several dierent cases. Since the
number of cases is a constant, the theorem follows. �

Digest: Using large collections of pairwise far apart permutations. The construction
presented in the proof of Theorem 4.2 utilizes a collection of (�!)Ω(1) permutations over [�] that
are pairwise far-apart (i.e., every two permutations dier on Ω(�) inputs). Such a collection is
constructed in𝑂(�!)-time by an iterative exhaustive search, where the permutations are selected
iteratively such that in each iteration we nd a permutation that is far from permutations that
were included in previous iterations. We mention that in Section 4.3 we shall use a collection of
exp(Ω(�)) such permutations that is locally computable (i.e., given the index of a permutation
we nd its explicit description in polynomial time). We alsomention that, in follow-upwork [20],
we provided a locally computable collection of (�!)Ω(1) that are pairwise far-apart.

Digest: Combining two robustly self-ordered graphs. One ingredient in the proof of
Theorem 4.2 is forming connected components that consist of two robustly self-ordered graphs
that have dierent vertex degrees and are connected by a bounded-degree bipartite graph.
Implicit in the proof is the fact that the resulting graph is robustly self-ordered graph.

CLAIM 4.3 (Combining two Ω(1)-robustly self-ordered graphs). For 𝑖 ∈ {1, 2} and constant
𝛾 > 0, let𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) be an 𝛾-robustly self-ordered graph, and consider a graph𝐺 = (𝑉1∪𝑉2, 𝐸1∪
𝐸2 ∪ 𝐸) of maximum degree 𝑑 such that 𝐸 contain edges with a single vertex in each 𝑉𝑖; that is,
𝐺 consists of 𝐺1 and 𝐺2 and an arbitrary bipartite graph that connects them. If the maximum
degree in 𝐺 of each vertex in 𝑉1 is strictly smaller than the minimum degree of each vertex in 𝑉2,
then 𝐺 is 𝛾/(4𝑑 + 1)-robustly self-ordered.

PROOF SKETCH. For an arbitrary permutation 𝜇 : 𝑉 → 𝑉 , let 𝑇 denote the set of its non-
xed-points, and consider the following two cases.

Case 1: More than 𝑡 = 𝛾′ · |𝑇 | vertices are mapped by 𝜇 from 𝐺1 to 𝐺2, where 𝛾′ = 𝛾/(4𝑑 + 1).
In this case, we get a contribution of at least one unit per each such vertex, due to the
dierence in the degrees between 𝑉1 and 𝑉2.

Case 2: at most 𝑡 vertices are mapped by 𝜇 from 𝐺1 to 𝐺2.
In this case, letting 𝑇𝑖 denote the set of non-xed vertices in 𝐺𝑖 that are mapped by 𝜇 to 𝐺𝑖 ,
we get a contribution of at least

∑
𝑖=1,2(𝛾 · |𝑇𝑖 | − 𝑑 · 𝑡) units, where the negative term is due

to possible change in the incidence with vertices in 𝑇 \ 𝑇𝑖 . Hence, the total contribution in
this case is at least 𝛾 · ( |𝑇 | − 2𝑡) − 2𝑑 · 𝑡 ≥ 𝛾 · |𝑇 | − 4𝑑𝑡 = 𝛾′ · |𝑇 |.

The claim follows. �
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Regaining regularity and expansion. While Theorem 4.2 achieves our main objective, it
useful towards some applications (see, e.g., the proof of Theorem 4.5) to obtain this objective
with graphs that are both regular and expanding. This is achieved by applying Theorem 2.6.
Hence, we have.

THEOREM 4.4 (Theorem 4.2, revised). For any suciently large constant 𝑑, there exists an
eciently constructable family {𝐺𝑛}𝑛∈N of robustly self-ordered 𝑑-regular expander graphs. That
is, there exists a polynomial-time algorithm that on input 1𝑛 outputs the 𝑛-vertex graph 𝐺𝑛.

4.3 Strong (i.e., local) constructions

While Theorem 4.4 provides an ecient construction of robustly self-ordered 𝑑-regular ex-
pander graphs, we seek a stronger notion of constructability. Specically, rather than requiring
that the graph be constructed in time that is polynomial in its size, we require that the neighbors
of each given vertex can be found in time that is polynomial in the vertex’s name (i.e., time
that is polylogarithmic in the size of the graph). We call such graphs locally constructable (and
comment that the term “strongly explicit” is often used in the literature).

THEOREM 4.5 (Locally constructing robustly self-ordered graphs). For any suciently large
constant 𝑑, there exists a locally constructable family {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N of robustly self-ordered
𝑑-regular graphs. That is, there exists a polynomial-time algorithm that on input 𝑛 and 𝑣 ∈ [𝑛]
outputs the list of neighbours of vertex 𝑣 in 𝐺𝑛. Furthermore, the graphs are either expanders or
consist of connected components of logarithmic size.

(Indeed, this establishes Theorem 1.3.) We comment that using the result of [20],we can
also get connected components of sub-logarithmic size, as in Theorem 4.2.22

PROOF. We employ the idea that underlies the proof of Theorem 4.2, while starting with an
eciently constructable family of robustly self-ordered graphs (as provided by Theorem 4.4)
rather than with the mere existence of a family of such graphs (equiv., with �-vertex graphs
that can be constructed in poly(�!)-time). We use a slightly larger setting of �, which allows us
to use a collection of exp(Ω(�)) pairwise-far-apart permutations (rather than a collection of
exp(Ω(� log �)) such permutations). Lastly, we apply the same transformation as in the proof of
Theorem 4.4 (so to regain regularity and expansion). Details follow.

Given a generic 𝑛, let � = 𝑂(log 𝑛), which implies that exp(�) = poly(𝑛). By Theorem 4.4,
for all suciently large 𝑑′, we can construct �-vertex 𝑑′-regular expander graphs that are
robustly self-ordered (with respect to the robustness parameter 𝑐) in poly(�)-time. Again, we

22 Specifically, the result of [20] provides a construction of a collection of 𝐿 = exp(Ω(� log �)) permutations over [�] that
are pairwise far-apart along with a polynomial-time algorithm that, on input 𝑖 ∈ [𝐿], returns a description of the 𝑖th
permutation (i.e., the algorithm should run in poly(log 𝐿)-time). Using this algorithm, we can afford to set � =

𝑂(log 𝑛)
log log 𝑛

as in Theorem 4.2.
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shall use two such graphs: a 𝑑′-regular graph, denoted 𝐺′� = ( [�], 𝐸
′
�), and a 𝑑

′′-regular graph,
denoted 𝐺′′� = ( [�], 𝐸′′� ), where 𝑑

′′ = 𝑑′ + 1.
Using 𝐺′� and 𝐺

′′
� , we construct an 𝑛-vertex robustly self-ordered graph, denoted 𝐺𝑛, that

consists of 𝑛/2� connected components that are pairwise far from being isomorphic to one
another. This is done by picking 𝑚 = 𝑛/2� permutations, denoted 𝜋1, . . . , 𝜋𝑚 : [�] → [�],
that are pairwise far-apart, and constructing 2�-vertex graphs such that the 𝑖th such graph
consist of a copy of 𝐺′� and a copy of 𝐺

′′
� that are connected by a matching as determined by the

permutation 𝜋𝑖 (as detailed in (7)).
Using the fact that 𝑚 < 2� (rather that 𝑚 = exp(Θ(� log �))), we can construct each of

these permutations in poly(�)-time by using sequences of disjoint traspositions determined via
a good error correcting code. Specically, for 𝑘 = log2𝑚 < log2 𝑛, we use an error correcting
code 𝐶 : {0, 1}𝑘 → {0, 1}� of constant rate (i.e., � = 𝑂(𝑘)) and linear distance (i.e., the codewords
are Ω(�) bits apart from each other), and let 𝜋𝑖 (2 𝑗 − 1) = 2 𝑗 − 1 + 𝐶(𝑖) 𝑗 and 𝜋𝑖 (2 𝑗) = 2 𝑗 − 𝐶(𝑖) 𝑗 ,
where 𝑖 ∈ [𝑚] = [2𝑘] ≡ {0, 1}𝑘 and 𝑗 ∈ [�/2]. (That is, the 𝑖th permutation switches the pair
(2 𝑗 − 1, 2 𝑗) ∈ [�]2 if and only if the 𝑗th bit in the 𝑖th codeword is 1, where 𝐶(𝑖) is considered
the 𝑖th codeword.)

Like in the proof of Theorem 4.2, the 𝑖th connected component of 𝐺𝑛 is isomorphic to a
graph with the vertex set [2�] and the edge set

𝐸′� ∪ {{� + 𝑢, � + 𝑣} : {𝑢, 𝑣} ∈ 𝐸
′′
� } ∪ {{𝑣, � + 𝜋𝑖 (𝑣)} : 𝑣∈ [�]}. (7)

The key observation is that, for every 𝑖 ∈ [𝑚] and 𝑗 ∈ [�], the neighborhood of the 𝑗th (resp.,
(� + 𝑗)th) vertex in the 𝑖th connected component of the 𝑛-vertex graph 𝐺𝑛 is determined by 𝐺′�
and 𝜋𝑖 ( 𝑗) (resp., by 𝐺′′� and 𝜋

−1
𝑖
( 𝑗)), which in turn are constructible in poly(�)-time. Hence,

the neighborhood of each vertex in 𝐺𝑛 can be found in poly(�)-time. This implies local con-
structability, since � = 𝑂(log 𝑛).

The fact that𝐺𝑛 is robustly self-orderedwas already established in the proof of Theorem4.2,
which is oblivious of the permutations used as long as any pair of permutations disagrees on
Ω(�) points. Lastly, we may obtain regularity and expansion by applying Theorem 2.6. �

4.4 Local self-ordering

Recall that, by Denition 1.1, a graph 𝐺 = ( [𝑛], 𝐸) is called self-ordered if for every graph
𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to 𝐺 there exists a unique bijection 𝜙 : 𝑉 ′ → [𝑛] such that
𝜙(𝐺′) = 𝐺. One reason for our preferring the term “self-ordered” over the classical term
“asymmetric” is that we envision being given such an isomorphic copy 𝐺′ = (𝑉 ′, 𝐸′) and asked to
nd its unique isomorphism to 𝐺, which may be viewed as ordering the vertices of 𝐺′ according
to (their index in) 𝐺. The task of nding this unique isomorphism will be called self-ordering 𝐺′

according to 𝐺 or self-ordering 𝐺′ (when 𝐺 is clear from the context).
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Evidently, the task of self-ordering a given graph 𝐺′ according to a (self-ordered) graph 𝐺
that can be eciently constructed reduces to testing isomorphism. When the graphs have
bounded-degree the latter task can be performed in polynomial-time [29].These are general facts
that do apply also to the robustly self-ordered graph 𝐺𝑛 constructed in the proof of Theorem 4.5.
However, in light of the fact that the graph 𝐺𝑛 is locally constructable, we can hope for more.
Specically, it is natural to ask if we can perform self-ordering of a graph 𝐺′ that is isomorphic
to 𝐺𝑛 in a localmanner; that is, given a vertex in 𝐺′ (and oracle access to the incidence function
of 𝐺′), can we nd the corresponding vertex in 𝐺𝑛 in poly(log 𝑛)-time? Let us dene this notion
formally.

DEF IN IT ION 4.6 (Locally self-ordering a self-ordered graph). We say that a self-ordered
graph 𝐺 = ( [𝑛], 𝐸) is locally self-ordered if there exists a polynomial-time algorithm that, given
a vertex 𝑣 in any graph 𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to 𝐺 and oracle access to the incidence
function of 𝐺′, nds 𝜙(𝑣) ∈ [𝑛] for the unique bijection 𝜙 : 𝑉 ′→ [𝑛] such that 𝜙(𝐺′) = 𝐺 (i.e.,
the unique isomorphism of 𝐺′ to 𝐺).

Indeed, the isomorphism 𝜙 orders the vertices of 𝐺′ in accordance with the original (or
target) graph 𝐺. We stress that the foregoing algorithm works in time that is polynomial in
the description of a vertex (i.e., poly(log 𝑛))-time), which is polylogarithmic in the size of the
graph (i.e., 𝑛). We show that such algorithms exist for the graphs constructed in the proof of
Theorem 4.5.

THEOREM 4.7 (Locally self-ordering the graphs of Theorem 4.5). For any suciently large
constant 𝑑, there exists a locally constructable family {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N of robustly self-ordered
𝑑-regular graphs that are locally self-ordered. Furthermore, the graphs are either expanders or
consist of connected components of logarithmic size.

As in Theorem 4.5, we can obtain connected components of sub-logarithmic size by us-
ing [20].

PROOF. We rst consider the version that yields 𝑛-vertex graphs that consist of connected
components of logarithmic size. The basic idea is that it we can aord reconstructing the
connected component in which the input vertex reside, and this allows us both to determine
the index of the vertex in this connected component as well as the index of the component in
the graph. Specically, on input a vertex 𝑣 in a graph 𝐺′ that is isomorphic to 𝐺𝑛, we proceed as
follows.

1. Using queries to the incidence function of 𝐺′, we explore and retrieve the entire 2�-vertex
connected component in which 𝑣 resides, where � = log2 𝑛.
Recall that this connected component consists of (copies of) two �-vertex regular graphs,
denoted 𝐺′� and 𝐺

′′
� , that are connected by a matching. Furthermore, these graphs have

dierent degrees and are each (robustly) self-ordered.
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2. Relying on the dierent degrees, we identify the foregoing partition of this 2�-vertex
component into two �-vertex (self-ordered) graphs, denoted 𝐴𝑣 and 𝐵𝑣, where 𝐴𝑣 (resp.,
𝐵𝑣) is isomorphic to 𝐺′� (resp., 𝐺

′′
� ).

3. Relying on the self-ordering of 𝐺′� (resp., 𝐺
′′
� ), we order the vertices of 𝐴𝑣 (resp., 𝐵𝑣). This

is done by constructing 𝐺′� (resp., 𝐺
′′
� ), and using an isomorphism tester. The order of the

vertices in 𝐴𝑣 and 𝐵𝑣 also determines the permutation that denes the matching between
the two graphs.

4. Relying on the correspondence between the permutations used in the construction and
codewords of a good error-correcting code, we decode the relevant codeword (i.e., this is
decoding without error). This yields the index of the permutation in the collection, which
equals the index of the connected component.

Note that this refers to the basic construction that was presented in the proof of Theorem 4.5,
before it was transformed to an expander and made regular. Recall that both transformations
are performed by augmenting the graph with auxiliary edges that are assigned a dierent color
than the original edges, and that edges with dierent colors are later replaced by copies of
dierent (constant-size) gadgets. These transformations do not hinder the local self-ordering
procedure described above, since it may identify the original graph (and ignore the gadgets
that replace other edges). The claim follows. �

Local reversed self-ordering. While local self-ordering a (self-ordered) graph seems the
natural local version of self-ordering the graph, an alternative notion called local reversed self-
ordering will be dened and studied next (and used in Section 5). Both notions refer to a
self-ordered graph, denoted 𝐺 = ( [𝑛], 𝐸), and to an isomorphic copy of it, denoted 𝐺′ = (𝑉 ′, 𝐸′);
that is, 𝐺 = 𝜙(𝐺′) for a (unique) bijection 𝜙 : 𝑉 ′→ [𝑛]. While local self-ordering is the task of
nding the index of a given vertex of 𝐺′ according to 𝐺 (i.e., given 𝑣 ∈ 𝑉 ′, nd 𝜙(𝑣) ∈ [𝑛]), local
reversed self-ordering is the task of nding the vertex of 𝐺′ that has a given index in 𝐺 (i.e.,
given 𝑖 ∈ [𝑛], nd 𝜙−1(𝑖) ∈ 𝑉 ′). In both cases, the graph 𝐺 is locally constructible and we are
given oracle access to the incidence function of 𝐺′. In addition, in the reversed task, we assume
that the algorithm is given an arbitrary vertex in 𝐺′, since otherwise there is no hope to hit any
element of 𝑉 ′.23

DEF IN IT ION 4.8 (Locally reversed self-ordering). We say that a self-ordered graph 𝐺 =

( [𝑛], 𝐸) is locally reversed self-ordered if there exists a polynomial-time algorithm that, given
𝑖 ∈ [𝑛] and oracle access to the incidence function of a graph 𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic
to 𝐺 and an arbitrary vertex 𝑠 ∈ 𝑉 ′, nds 𝜙−1(𝑖) ∈ 𝑉 ′ for the unique bijection 𝜙 : 𝑉 ′→ [𝑛] such
that 𝜙(𝐺′) = 𝐺 (i.e., the unique isomorphism of 𝐺′ to 𝐺).

23 Needless to say, this is not needed in case 𝑉 ′ = [𝑛], which is the case that is used in Section 5.



45 / 92 Robustly Self-Ordered Graphs

We stress that the foregoing algorithm works in time that is polynomial in the description
of a vertex (i.e., poly(log 𝑛))-time), which is polylogarithmic in the size of the graph (i.e., 𝑛).
We show that such algorithms exist for variants of the graphs constructed in the proof of
Theorem 4.5. In fact, we show a more general result that refers to any graph that is locally
self-ordered and for which short paths can be locally found between any given pair of vertices.

THEOREM 4.9 (Sucient conditions for locally reversed self-ordering of graphs). Suppose
that {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N is a family of bounded degree graphs that is locally self-ordered. Further
suppose that given 𝑣, 𝑢 ∈ [𝑛], one can nd in polynomial-time a path from 𝑢 to 𝑣 in 𝐺𝑛. Then,
{𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N is locally reversed self-ordered.

We mention that any family of robustly self-ordered graphs that is locally self-ordered
can be transformed into one that also supports locally nding short paths. This is done by
superimposing the graphs of this family with graphs that supports locally nding short paths,
while using dierent colors for the edges of the two graphs and later replacing these colored
edges by gadgets (as done in Section 2.1). We also mention that applying degree reduction to the
hyper-cube (i.e., replacing the original vertices with simple cycles) yields a graph that supports
locally nding short paths.24

PROOF. On input 𝑖 ∈ [𝑛] and 𝑠 ∈ 𝑉 ′, and oracle access to the incidence function of a graph
𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to 𝐺𝑛, we proceeds as follows.

1. Using the local self-ordering algorithm, we nd 𝑖0 = 𝜙(𝑠), where 𝜙 : 𝑉 ′→ [𝑛] is the unique
bijection satisfying 𝜙(𝐺′) = 𝐺.

2. Using the path-nding algorithm for 𝐺, we nd a poly(log 𝑛)-long path from 𝑖0 to 𝑖 in 𝐺.
Let � denote the length of the path, and denote its intermediate vertices by 𝑖1, . . . , 𝑖�−1; that
is, the full path is 𝑖0, 𝑖1, . . . , 𝑖�−1, 𝑖� = 𝑖.

3. Using the local self-ordering algorithm (and our oracle access to 𝐺′), we iteratively nd
the corresponding vertices in 𝐺′, denoted 𝑣1, ...., 𝑣�, where 𝑣 𝑗 = 𝜙−1(𝑖 𝑗).
For 𝑗 = 1, . . . , �, we nd 𝑣 𝑗

def
= 𝜙−1(𝑖 𝑗) as follows. First, using queries to the incidence

function of𝐺′, we nd all neighbors (in𝐺′) of 𝑣 𝑗−1, where 𝑣0
def
= 𝑠 (and, indeed, 𝑣0 = 𝜙−1(𝑖0)).

Next, using the local self-ordering algorithm, we nd the indices of all these vertices in 𝐺;
that is, for every vertex 𝑤 that neighbors 𝑣 𝑗−1, we nd 𝜙(𝑤). Last, we set 𝑣 𝑗 to be the
neighbor that has index 𝑖 𝑗 in 𝐺; that is, 𝑣 𝑗 satises 𝜙(𝑣 𝑗) = 𝑖 𝑗 .

Hence, 𝑣� is the desired vertex; that is, 𝑣� satises 𝜙(𝑣�) = 𝑖� = 𝑖.
Assuming that the local self-ordering algorithm has query complexity 𝑞(𝑛), that the paths

found in 𝐺 have length at most �(𝑛), and that 𝑑 is the degree bound, the query complexity of

24 For any � ∈ N, the resulting graph consists of the vertex-set {〈𝑥, 𝑖〉 : 𝑥 ∈ {0, 1}� & 𝑖∈ [�]} and edges that connect 〈𝑥, 𝑖〉
to 〈𝑥 ⊕ 0𝑖−110�−𝑖 , 𝑖〉 and to 〈𝑥, 𝑖 + 1〉, where � + 1 stands for 1. For simplicity of exposition, we also add self-loops on all
vertices. Then, given 〈𝑥, 𝑖〉 and 〈𝑦, 𝑗〉, we can combine the 2�-path that goes from 〈𝑥, 𝑖〉 to 〈𝑦, 𝑖〉 with the | 𝑗 − 𝑖 |-path
that goes from 〈𝑦, 𝑖〉 to 〈𝑦, 𝑗〉, where the odd steps on the first path move from 〈𝑧, 𝑘〉 to 〈𝑧 ⊕ 0𝑖−110�−𝑖 , 𝑘〉 (or stay in
place) and the even steps (on this path) move from 〈𝑧, 𝑘〉 to 〈𝑧, 𝑘 + 1〉.
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our reversed self-ordering algorithm is (1+ �(𝑛) · 𝑑) · (𝑞(𝑛) + 1), where we count both our direct
queries to the incidence function of 𝐺 and the queries performed by the local self-ordering
algorithm. Similar considerations apply to the time complexity. �

COROLLARY 4.10 (A version of Theorem4.7 supporting local reversed self-ordering). For
any suciently large constant 𝑑, there exists a locally constructable family {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N of
robustly self-ordered graphs of maximum degree 𝑑 that are both locally self-ordered and locally
reversed self-ordered.

The corollary follows by combining Theorem 4.7 with Theorem 4.9, while using the aug-
mentation outlined following the statement of Theorem 4.9. We mention that Corollary 4.10
will be used in Section 5.

5. Application to Testing Bounded-Degree Graph Properties

Our interest in eciently constructable bounded-degree graphs that are robustly self-ordered
was triggered by an application to property testing. Specically, we observed that such con-
structions can be used for proving a linear lower bound on the query complexity of testing an
eciently recognizable graph property in the bounded-degree graph model.

It is well known that 3-Colorability has such a lower bound [3], but this set is NP-complete.
On the other hand, linear lower bounds on the query complexity of testing eciently recog-
nizable properties of functions (equiv., sequences) are well known (see [17, Sec. 10.2.3]). So the
idea was to transport the latter lower bounds from the domain of functions to the domain
of bounded-degree graphs, and this is where ecient constructions of robustly self-ordered
bounded-degree graphs come into play. (We mention that an alternative way of obtaining the
desired lower bound was outlined in [15, Sec. 1], see details below.)

More generally, the foregoing transportation demonstrates a general methodology of
transporting lower bounds that refer to testing binary strings to lower bounds regarding testing
graph properties in the bounded-degree graph model. The point is that strings are ordered
objects, whereas graphs properties are eectively sets of unlabeled graphs, which are unordered
objects. Hence, we need to make the graphs (in the property) ordered, and furthermore make
this ordering robust in the very sense that is reected in Denition 1.2. Essentially, we provide
a reduction of testing a property of strings to testing a (related) property of graphs.

We apply thismethodology to obtain a subexponential separation between the complexities
of testing and tolerant testing of graph properties in the bounded-degree graphmodel. This result
is obtained by transporting an analogous result that was known for testing binary strings [14].
In addition to using a reduction from tolerantly testing a property of strings to tolerantly testing
a property of graphs, this transportation also uses a reduction in the opposite direction, which
relies on the local computation features asserted in Corollary 4.10.
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Organization of this section. We start with a brief review of the bounded-degree graph
model for testing graph properties. Next, we prove the aforementioned linear lower bound
on the query complexity of testing an eciently recognizable property, and later we abstract
the reduction that underlies this proof. Observing that this reduction applies also to tolerant
testing, and presenting a reduction in the opposite direction, we derive the aforementioned
separation between testing and tolerant testing.

5.1 Background

Property testing refers to algorithms of sublinear query complexity for approximate decision;
that is, given oracle access to an object, these algorithms (called testers) distinguish objects that
have a predetermined property from objects that are far from the property. Dierent models of
property testing arise from dierent query access and dierent distance measures.

In the last couple of decades, the area of property testing has attracted signicant attention
(see, e.g., [23]). Much of this attention was devoted to testing graph properties in a variety
of models including the dense graph model [17], and the bounded-degree graph model [19]
(surveyed in [23, Chap. 8] and [23, Chap. 9], resp.). In this section, we refer to the bounded-
degree graph model, in which graphs are represented by their incidence function and distances
are measured as the ratio of the number of diering incidences to the maximal number of
edges.

Specically, for a degree bound 𝑑 ∈ N, we represent a graph 𝐺 = ( [𝑛], 𝐸) of maximum
degree 𝑑 by the incidence function 𝑔 : [𝑛] × [𝑑] → [𝑛] ∪ {0} such that 𝑔 (𝑣, 𝑖) indicates the 𝑖th

neighbor of 𝑣 (where 𝑔 (𝑣, 𝑖) = 0 indicates that 𝑣 has less than 𝑖 neighbors). The distance between
the graphs 𝐺 = ( [𝑛], 𝐸) and 𝐺′ = ( [𝑛], 𝐸′) is dened as the size of the symmetric dierence
between 𝐸 and 𝐸′ over 𝑑𝑛/2.

A tester for a property Π is given oracle access to the tested object, where here oracle
access to a graph means oracle access to its incidence function. In addition, such a tester is
given a size parameter 𝑛 (i.e., the number of vertices in the graph), and a proximity parameter,
denoted 𝜖 > 0. Tolerant testers, introduced in [30] (and briey surveyed in [23, Sec. 12.1]), are
given an additional parameter, 𝜂 < 𝜖, which is called the tolerance parameter.

DEF IN IT ION 5.1 (Testing and tolerant testing graphproperties in thebounded-degree graph
model). For a xed degree bound 𝑑, a tester for a graph property Π is a probabilistic oracle
machine that, on input parameters 𝑛 and 𝜖, and oracle access to an 𝑛-vertex graph 𝐺 = ( [𝑛], 𝐸)
of maximum degree 𝑑, outputs a binary verdict that satises the following two conditions.

1. If 𝐺 ∈ Π, then the tester accepts with probability at least 2/3.
2. If 𝐺 is 𝜖-far from Π, then the tester accepts with probability at most 1/3, where 𝐺 is 𝜖-far

from Π if for every 𝑛-vertex graph 𝐺′ = ( [𝑛], 𝐸′) ∈ Π of maximum degree 𝑑 it holds that
the size of the symmetric dierence between 𝐸 and 𝐸′ has cardinality that is greater than
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𝜖 · 𝑑𝑛/2.

A tolerant tester is also given a tolerance parameter 𝜂, and is required to accept with probability
at least 2/3 any graph that is 𝜂-close to Π (i.e., not 𝜂-far from Π).25

We stress that a graph property is dened as a property that is preserved under isomor-
phism; that is, if 𝐺 = ( [𝑛], 𝐸) is in the graph property Π, then all its isomorphic copies are in
the property (i.e., 𝜋(𝐺) ∈ Π for every permutation 𝜋 : [𝑛] → [𝑛]). The fact that we deal with
graph properties (rather than with properties of functions) is the source of the diculty (of
transporting results from the domain of functions to the domain of graphs) and the reason that
robust self-ordering is relevant.26

The query complexity of a tester for Π is a function (of the parameters 𝑑, 𝑛 and 𝜖) that
represents the number of queries made by the tester on the worst-case 𝑛-vertex graph of
maximum degree 𝑑, when given the proximity parameter 𝜖. Fixing 𝑑, we typically ignore its
eect on the complexity (equiv., treat 𝑑 as a hidden constant). Also, when stating that the query
complexity is Ω(𝑞(𝑛)), we mean that this bound holds for all suciently small 𝜖 > 0; that
is, there exists a constant 𝜖0 > 0 such that distinguishing between 𝑛-vertex graphs in Π and
𝑛-vertex graphs that are 𝜖0-far from Π requires Ω(𝑞(𝑛)) queries.

5.2 Our first result and the general methodology

With the foregoing preliminaries in place, we state the rst result of this section, which is proved
using Theorem 4.2.

THEOREM 5.2 (Linear query complexity lower bound for testing an eciently recogniz-
able graphproperty in thebounded-degree graphmodel). For any suciently large constant 𝑑,
there exists an eciently recognizable graph propertyΠ such that testingΠ in the bounded-degree
graph model (with degree bound 𝑑) has query complexity Ω(𝑛). Furthermore, each 𝑛-vertex
graph in Π consists of connected components of size 𝑜(log 𝑛).

The main part of the theorem was known before: As observed in [15, Sec. 1], there exists
graph properties that are recognizable in polynomial-time and yet are extremely hard to test
in the bounded-degree graph model. This follows from the fact that the local reduction from
testing 3LIN (mod 2) to testing 3-Colorability used by Bogdanov, Obata, and Trevisan [3] is
invertible in polynomial-time (which is a common feature of reductions used in the context
of NP-completeness proofs).27 Indeed, their reduction actually demonstrates that the set of

25 Of course, a tolerant tester is also required to reject with probability at least 2/3 any graph that is 𝜖-far from Π.

26 As noted in Section 1.1.1, this is a special case of the general phenomenon pivoted at the difference between ordered
and unordered structures, which arises in many contexts (in complexity and logic).

27 Of course, 3LIN (i.e., the satisfiability of linear equations (with three variables each) over GF(2)) is easily solvable in
polynomial-time. Nevertheless, Bogdanov et al. [3] use a reduction of 3LIN to 3-Colorability (via 3SAT) that originates
in the theory of NP-completeness in order to reduce between the testing problems.



49 / 92 Robustly Self-Ordered Graphs

(3-colorable) graphs that are obtained by applying this reduction to satisable 3LIN (mod 2)
instances is hard to test (i.e., requires linear query complexity in the bounded-degree graph
model).28 Wemention that the resulting property contains only connected graphs, whichmeans
that Theorem 5.2 has some added value: The fact that it applies to graphs with tiny connected
components is interesting, since testing properties of such graphs may seem easy (or at least
not extremely hard) at rst thought.

PROOF. Our starting point is a property Φ of (binary) strings (equiv., Boolean functions) that
is recognizable in polynomial-time but has a linear query complexity lower bound (see, e.g., [18,
Sec. 7]). This refers to a model in which one makes queries to bits of the tested string, and
the distance between strings is the (relative) Hamming distance. Such lower bounds were
transported to the dense graph model in [17, page 10.2.3] (see also [18]), but – to the best of own
knowledge – no such transportation were performed before in the context of the bounded-
degree graph model. Using robustly self-ordered graphs of bounded degree, we present such a
transportation.

Construction 5.2.1. (From properties of strings to properties of bounded-degree graphs): Sup-
pose that {𝐺𝑛 = ( [𝑛], 𝐸𝑛)}𝑛∈N is a family of robustly self-ordered graphs of maximum degree 𝑑−2.

For every 𝑛 ∈ N and 𝑠 ∈ {0, 1}𝑛, we dene the graph 𝐺′𝑠 = ( [3𝑛], 𝐸′𝑠) such that

𝐸′𝑠 = 𝐸𝑛 ∪ {{𝑖, 𝑛 + 𝑖}, {𝑖, 2𝑛 + 𝑖} : 𝑖 ∈ [𝑛]} ∪ {{𝑛 + 𝑖, 2𝑛 + 𝑖} : 𝑖 ∈ [𝑛] ∧ 𝑠𝑖 = 1} (8)

That is, 𝐺′𝑠 consists of a copy of 𝐺𝑛 augmented by 2𝑛 vertices such that vertex 𝑖 ∈ [𝑛] forms
a triangle with 𝑛 + 𝑖 and 2𝑛 + 𝑖 if 𝑠𝑖 = 1, and forms a wedge with 𝑛 + 𝑖 and 2𝑛 + 𝑖 otherwise.
For a set of strings Φ, we dene Π =

⋃
𝑛∈NΠ𝑛 as the set of all graphs that are isomorphic to

some graph 𝐺′𝑠 such that 𝑠 ∈ Φ; that is,

Π𝑛 = {𝜋(𝐺′𝑠) : 𝑠 ∈ (Φ ∩ {0, 1}𝑛) ∧ 𝜋 ∈ Sym3𝑛} (9)

where Sym3𝑛 denote the set of all permutations over [3𝑛].

Wemay assume, without loss of generality, that 𝐺𝑛 has no isolated vertices. Hence, given a
graph of the form 𝜋(𝐺′𝑠), the vertices of 𝐺𝑛 are easily identiable as having degree at least three
(since vertices outside 𝐺𝑛 have degree at most two). The foregoing construction yields a local
reduction of Φ to Π, where locality means that each query to 𝐺′𝑠 can be answered by making a
constant number of queries to 𝑠, and the (standard) validity of the reduction is based on the
fact that 𝐺𝑛 is asymmetric.29

28 Like almost all reductions of this type, the analysis of the reduction actually refers to the promise problem induced
by the image of the reduction (i.e., the image of both the yes- and no-instances).

29 Standard validity means that 𝑠 ∈ Φ if and only if 𝐺′𝑠 ∈ Π. Evidently, 𝑠 ∈ Φ is mapped to 𝐺′𝑠 ∈ Π; the asymmetry of 𝐺𝑛 is
used to show that 𝑠 ∉ Φ is mapped to 𝐺′𝑠 ∉ Π, since 𝐺′𝑠 can not be isomorphic to any graph 𝐺′𝑤 such that 𝑤 ≠ 𝑠. This,
by itself, does not mean that if 𝑠 is far from Φ then 𝐺′𝑠 is far from Π.
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In order to be useful towards proving lower bounds on the query complexity of testing Π,
we need to show that the foregoing reduction is “distance preserving” (i.e., strings that are far
from Φ are transformed into graphs that are far from Π). The hypothesis that 𝐺𝑛 is robustly
self-ordered is pivotal to showing that if the string 𝑠 is far from Φ, then the graph 𝐺′𝑠 is far
from Π.

Claim 5.2.2. (Preserving distances): If 𝑠 ∈ {0, 1}𝑛 is 𝜖-far from Φ, then the 3𝑛-vertex graph 𝐺′𝑠 (as
dened in Construction 5.2.1) is Ω(𝜖)-far from Π.

Proof. We prove the contrapositive. Suppose that 𝐺′𝑠 is 𝛿-close to Π. Then, for some 𝑟 ∈ Φ
and a permutation 𝜋 : [3𝑛] → [3𝑛], it holds that 𝐺′𝑠 is 𝛿-close to 𝜋(𝐺′𝑟). (The possible use of a
non-trivial permutation arises from the fact that Π is closed under isomorphism.) If 𝜋(𝑖) = 𝑖 for
every 𝑖 ∈ [𝑛], then 𝑠 must be (3𝑑𝛿/2)-close to 𝑟, where 𝑑 is the degree bound (of the model),
since 𝑠𝑖 = 1 (resp., 𝑟𝑖 = 1) if and only if 𝑖 forms a triangle with 𝑛 + 𝑖 and 2𝑛 + 𝑖 in 𝐺′𝑠 (resp., in
𝜋(𝐺′𝑟) = 𝐺′𝑟).30 Unfortunately, the foregoing condition (i.e., 𝜋(𝑖) = 𝑖 for every 𝑖 ∈ [𝑛]) need not
hold in general.

In general, the hypothesis that 𝜋(𝐺′𝑟) is 𝛿-close to 𝐺′𝑠 implies that 𝜋maps at most 3𝛿𝑑𝑛/2
vertices of [𝑛] to {𝑛 + 1, . . . , 3𝑛}. This is the case since each vertex of [𝑛] has degree at least
three in 𝐺′𝑟, whereas the other vertices have degree at most two in 𝐺′𝑠 (or in any other graph 𝐺′𝑠′).
Hence, if 𝑡 = |{𝑖 ∈ [𝑛] :𝜋(𝑖) ∈ {𝑛+ 1, . . . , 3𝑛}|, then 𝜋(𝐺′𝑟) and 𝐺′𝑠 dier on at least 𝑡 edges, whereas
the hypothesis is that the dierence is at most 𝛿 · 3𝑑𝑛/2. It follows that 𝑡 ≤ 𝛿 · 3𝑑𝑛/2.

Turning to the vertices 𝑖 ∈ [𝑛] that 𝜋maps to [𝑛] \ {𝑖}, we upper-bound their number by
𝑂(𝛿𝑑2𝑛), since the dierence between 𝜋(𝐺′𝑟) and 𝐺′𝑠 is at most 𝛿 · 3𝑑𝑛/2, whereas the hypothesis
that 𝐺𝑛 is 𝑐-robustly self-ordered implies that the dierence between 𝜋(𝐺′𝑟) and 𝐺′𝑠 (or any other
graph 𝐺′𝑤) is at least

Δ = 𝑐 · |{𝑖 ∈ [𝑛] :𝜋(𝑖) ≠ 𝑖}| − 𝑑 · |{𝑖 ∈ [𝑛] :𝜋(𝑖) ∉ [𝑛]}|.

(Compare Case 6 in the proof of Theorem 4.2.)31

Letting 𝐼 = {𝑖 ∈ [𝑛] :𝜋(𝑖) = 𝑖}|, observe that 𝐷 def
= |{𝑖 ∈ 𝐼 : 𝑟𝑖 ≠ 𝑠𝑖}| ≤ 3𝛿𝑑𝑛/2, since 𝑟𝑖 ≠ 𝑠𝑖

implies that, for every 𝑖 ∈ 𝐼 , the subgraph induced by {𝑖, 𝑛+ 𝑖, 2𝑛+ 𝑖} is dierent in 𝜋(𝐺′𝑟) and 𝐺′𝑠
(i.e., it is a triangle in one graph and contains two edges in the other), whereas by the hypothesis
𝜋(𝐺′𝑟) and 𝐺′𝑠 dier on at most 𝛿 · 3𝑑𝑛/2 edges. Recalling that |𝐼 | = 𝑛 − 𝑂(𝛿𝑑2𝑛), it follows that
|{𝑖 ∈ [𝑛] : 𝑟𝑖 ≠ 𝑠𝑖}| ≤ (𝑛 − |𝐼 |) + 𝐷 = 𝑂(𝛿𝑑2𝑛). Recalling that 𝑑 is a constant, we infer that 𝑠 is
𝑂(𝛿)-close to 𝑟 ∈ Φ, and the claims follows. �

30 Hence, 𝐺′𝑠 is 𝛿-close to 𝐺′𝑟 implies that |{𝑖 ∈ [𝑛] : 𝑠𝑖 ≠ 𝑟𝑖}| ≤ 𝛿 · 3𝑑𝑛/2, which means that 𝑠 is 3𝛿𝑑𝑛/2
𝑛 -close to 𝑟.

31 Hence, Δ ≤ 𝛿 · 3𝑑𝑛/2 implies that
|{𝑖 ∈ [𝑛] : 𝜋(𝑖) ≠ 𝑖}| =

Δ + 𝑑 · |{𝑖 ∈ [𝑛] : 𝜋(𝑖) ∉ [𝑛]}|
𝑐

≤ 3𝛿𝑑𝑛/2 + 𝑑 · 3𝛿𝑑𝑛/2
𝑐

which is 𝑂(𝛿𝑑2𝑛).
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Conclusion. Starting with Theorem 4.2 (i.e., an ecient construction of robustly self-ordered
graphs of bounded degree), using Construction 5.2.1, and applying Claim 5.2.2, the theorem
follows. Specically, we need to verify the following facts.

The set Π is polynomial-time recognizable.
Given an 3𝑛-vertex graph 𝐺′, an adequate algorithm rst tries to identify and order the
vertices of the corresponding graph 𝐺𝑛, which means that it nds 𝑠 ∈ {0, 1}𝑛 such that 𝐺′

is isomorphic to 𝐺′𝑠 (or determines that no such 𝑠 exists). Having found 𝑠, the algorithm
accepts if and only if 𝑠 ∈ Φ𝑛, where Φ is polynomial-time recognizable by our starting
hypothesis.
The rst step relies on the hypothesis that 𝐺𝑛 can be constructed in polynomial-time, and
proceeds as follows.

1. Identies a set of 𝑛 vertices, denoted 𝐼 , in 𝐺′ such that each vertex in 𝐼 has degree
greater than 2, rejecting if the number of such vertices is dierent from 𝑛.

2. Finds the unique isomorphism between𝐺𝑛 and subgraph of𝐺′ induced by 𝐼 , rejecting
if no such isomorphism is found.
(Here we rely on the fact that isomorphism between graphs of bounded-degree can
be found in polynomial-time [29]).

3. The foregoing isomoprophism determines the ordering of the vertices in 𝐼 , which in
turn determines 𝑠 (or indicates that 𝐺′ is not isomoprophic to any 𝐺′𝑠).

Testing Π requires linear query complexity.
This is shown by reducing testing Φ to testing Π, while recalling that testing Φ requires
linear query complexity. Given (proximity parameter 𝜖 and) oracle access to a string
𝑠 ∈ {0, 1}𝑛, we invoke the tester for Π (with proximity parameter Ω(𝜖)) while emulating
oracle access to 𝐺′𝑠 in a straightforward manner (i.e., each query to 𝐺′𝑠 is answered by
making at most one query to 𝑠). Recall that 𝑠 ∈ Φ implies 𝐺′𝑠 ∈ Π, whereas by Claim 5.2.2
if 𝑠 is 𝜖-far from Φ then 𝐺′𝑠 is Ω(𝜖)-far from Π.

This completes the proof, since the 𝑛-vertex graphs of Theorem 4.2 have connected components
of size 𝑜(log 𝑛). �

Digest: Reducing testing properties of strings to testing graph properties. We wish
to highlight the fact that the proof of Theorem 5.2 is based on a general reduction of testing
any property Φ of strings to testing a corresponding (bounded-degree) graph property Π. This
reduction is described in Construction 5.2.1 and its validity is proved in Claim 5.2.2. Recall that,
for any 𝑛, the graph property Π consists of 3𝑛-vertex graphs (of bounded-degree) that encode
the dierent 𝑛-bit long strings in Φ. This reduction is local and preserves distances:

Locality: Each string 𝑠 ∈ {0, 1}𝑛 is encoded by a graph 𝐺′𝑠 such that each query to 𝐺′𝑠 can be
answered by making at most one query to 𝑠.
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Preserving distances: If 𝑠 ∈ Φ then 𝐺′𝑠 ∈ Π, whereas if 𝑠 is 𝜖-far from Φ then 𝐺′𝑠 is Ω(𝜖)-far
from Π.

Recall that 𝐺′𝑠 consists of a xed robustly self-ordered 𝑛-vertex graph 𝐺𝑛 augmented by (𝑛
two-vertex) gadgets that encode 𝑠. Let us spell out the eect of this reduction.

COROLLARY 5.3 (Implicit in the proof of Theorem5.2). ForΦ andΠ as in Construction 5.2.1,
let 𝑄Φ and 𝑄Π denote the query complexities of testing Φ and Π, respectively. Then, 𝑄Φ(𝑛, 𝜖) ≤
𝑄Π(3𝑛,Ω(𝜖)). Likewise, letting 𝑄′Φ (resp., 𝑄′Π) denote the query complexity of tolerantly testing Φ
(resp., Π), it holds that 𝑄′Φ(𝑛, 𝜂, 𝜖) ≤ 𝑄′Π(3𝑛, 𝜂/3,Ω(𝜖)).

The tolerant testing part requires an additional justication. Specically, we observe that
strings 𝑠 that are 𝜂-close to Φ yield graphs 𝐺′𝑠 that are 𝜂/3-close to Π. This is the case because, if
the 𝑛-bit long strings 𝑠 and 𝑟 dier on 𝑘 bits, then the 3𝑛-vertex graphs 𝐺′𝑠 and 𝐺′𝑟 dier on 𝑘
vertex pairs.

In preparation to proving the separation between the complexities of testing and tolerant
testing, we show a reduction in the opposite direction. This reduction holds provided that the
robustly self-ordered graphs used in the denition of Π are locally reversed self-ordered (see
Denition 4.8).

PROPOS IT ION 5.4 (Reducing testing Π to testing Φ). Suppose that the graphs used in Con-
struction 5.2.1 are locally self-ordered and locally reversed self-ordered, and letΦ,Π and𝑄Φ, 𝑄Π be
as in Corollary 5.3. Then, 𝑄Π(3𝑛, 𝜖) ≤ poly(log 𝑛) · (𝑄Φ(𝑛, 2𝜖) +𝑂(1/𝜖)). Furthermore, one-sided
error probability is preserved.32

Recall that the hypothesis can be met by using Corollary 4.10.

PROOF. Given oracle access to a graph 𝐺′ = ( [3𝑛], 𝐸′), we rst test that 𝐺′ is isomorphic to 𝐺′𝑠,
for some 𝑠 ∈ {0, 1}𝑛, and then invoke the tester for Φ while providing it with oracle access
to 𝑠. Specically, when the latter tester queries the bit 𝑖, we use the local reversed self-order
algorithm in order to locate the 𝑖th vertex of 𝐺𝑛 in 𝐺′, and then determine the bit 𝑠𝑖 accordingly.
Details follow.

Let𝑉 denote the set of vertices of the graph 𝐺′ = ( [3𝑛], 𝐸′) that have degree greater than 2
and neighbor two vertices that have degree at most 2 and neighbor each other if they have
degree 2. Evidently, the vertices of𝑉 are easy to identify by querying 𝐺′ for their neighbors and
their neighbors’ neighbors. Furthermore, |𝑉 | ≤ 𝑛, since each vertex in𝑉 has two neighbors that
are not connected to any other vertex in 𝑉 , and equality holds in case 𝐺′ ∈ Π. We try to nd a
(“pivot”) vertex 𝑝 ∈ 𝑉 by picking an arbitrary vertex in 𝐺′ and checking it and its neighbors. If

32 A tester is said to have one-sided error probability if it always accepts objects that have the property.
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none of these is in𝑉 , then we reject. Otherwise, we continue; we shall be using 𝑝 as an auxiliary
input in all (future) invocations of the local reversed self-ordering algorithm, denoted 𝐴.

Intuitively, xing the pivot 𝑝, allow to locate, for each 𝑖 ∈ [𝑛], the 𝑖th vertex of 𝐺𝑛 in 𝐺′; that
is, this vertex is 𝐴𝐺′ (𝑝, 𝑖). Indeed, this holds when 𝐺′ is in Π, but all bets are o otherwise. In
particular, when 𝐺′ ∉ Π, the answer 𝐴𝐺′ (𝑝, 𝑖) may not be a vertex in 𝑉 , or may equal 𝐴𝐺′ (𝑝, 𝑗)
for some 𝑗 ≠ 𝑖. We avoid these cases by checking that 𝐴𝐺′ (𝑝, 𝑖) ∈ 𝑉 and that the vertex in 𝐺𝑛
that corresponds to 𝐴𝐺′ (𝑝, 𝑖) is indeed indexed 𝑖 (by using the local self-ordering algorithm).
In particular, we dene 𝐴′(𝑖) def= 𝐴𝐺

′ (𝑝, 𝑖) if both conditions hold, and let 𝐴′(𝑖) be undened
otherwise. Hence, 𝑖 ↦→ 𝐴′(𝑖) is always a bijection from a subset of [𝑛] to a subset of 𝑉 . This
strategy is detailed next.

Using the foregoing algorithm 𝐴 and the pivot 𝑝 ∈ 𝑉 , we dene 𝐴′(𝑖) = 𝐴𝐺
′ (𝑝, 𝑖) if

𝐴𝐺
′ (𝑝, 𝑖) ∈ 𝑉 and invoking the local self-ordering algorithm on input 𝐴𝐺′ (𝑝, 𝑖) yields 𝑖. Otherwise

𝐴′(𝑖) is undened. Hence, evaluating 𝐴′ amounts to evaluating 𝐴 as well as evaluating the local
self-ordering algorithm. Letting 𝐼′ ⊆ [𝑛] denote the set of “indices” (i.e., vertices of 𝐺𝑛) on which
𝐴′ is dened, we note that 𝐴′ is a bijection from 𝐼′ to 𝑉 ′ def= {𝐴′(𝑖) : 𝑖 ∈ 𝐼′} ⊆ 𝑉 , and that 𝐼′ = [𝑛]
(and𝑉 ′ = 𝑉 ) if 𝐺′ ∈ Π. Hence, our rst test is testing whether 𝐼′ = [𝑛], which is done by selecting
at random 𝑂(1/𝜖) elements of [𝑛], and rejecting if 𝐴′ is undened on any of them. Otherwise,
we proceed, while assuming that |𝐼′| ≥ (1 − 0.1𝜖) · 𝑛.

Next, we test whether the subgraph of 𝐺𝑛 induced by 𝐼′ is isomorphic to the subgraph
of 𝐺′ induced by 𝑉 ′, where the isomorphism is provided by 𝐴′ (which maps 𝐼′ to 𝑉 ′). In other
words, we actually test whether the 𝐴′-image of the subgraph of 𝐺𝑛 induced by 𝐼′ equals the
subgraph of𝐺′ induced by𝑉 ′. This can be done by sampling𝑂(1/𝜖) vertices of𝐺𝑛 and comparing
their neighbors to the neighbors of the corresponding vertices in 𝐺′, which are found by 𝐴′.
Specically, for every sampled vertex 𝑖 ∈ [𝑛], we determine its set of neighbors 𝑆𝑖 in 𝐺𝑛, obtain
both 𝐴′(𝑖) and 𝐴′(𝑆𝑖)

def
= {𝐴′( 𝑗) : 𝑗 ∈𝑆𝑖}, which are supposedly the corresponding vertices in 𝐺′,

and check whether 𝐴′(𝑆𝑖) is the set of neighbors of 𝐴′(𝑖) in 𝐺′. We reject if 𝐴′ is undened on
any of these vertices (i.e., on sampled vertices or their neighbors in 𝐺𝑛). Needless to say, we also
reject if any of the foregoing neighborhood checks fails.

Assuming that we did not reject so far, we may assume that 𝐺′ is 𝜖/2-close to being isomor-
phic to some 𝐺′𝑠, where the isomorphism is consistent with the inverse of 𝐴′. At this point, we
invoke the tester for Φ, denoted 𝑇 , in order to test whether 𝑠 ∈ Φ. This is done by providing 𝑇
with oracle access to 𝑠 as follows. When 𝑇 makes a query 𝑖 ∈ [𝑛], we determine 𝐴′(𝑖), and
use our query access to 𝐺′ in order to determine the two neighbors of 𝐴′(𝑖) that have degree
at most 2 (and are either connected or have degree 1). If this fails, we reject. Otherwise, we
answer 1 if and only if these two neighbors are connected in 𝐺′.

To summarize, we employ three tests to 𝐺′: An initial test of the size 𝐼′ (which also includes
nding a pivot 𝑝 ∈ 𝑉 ), an equality test between the 𝐴′-image of the subgraph of 𝐺′ induced by 𝐼′

and the subgraph of 𝐺𝑛 induced by 𝑉 ′, and an emulation of the testing of Φ. (In all tests, if we
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encounter an index in [𝑛] \ 𝐼′, we suspend the execution and reject.) For simplicity and without
loss of generality, we may assume that 𝑇 is correct with high (constant) probability.

Note that if 𝐺′ ∈ Π, then it holds that 𝐺′ = 𝜋(𝐺′𝑠) for some 𝑠 ∈ Φ and some permutation 𝜋 ∈
Sym3𝑛. In this case, it holds that |𝐼′| = 𝑛 andwe always nd a pivot 𝑝 ∈ 𝑉 . Furthermore, 𝐴′ equals
the restriction of 𝜋 to [𝑛], the “equality (between induced subgraphs) test” always succeeds,
and the emulation of oracle access to 𝑠 is perfect. Hence, we accept with high probability (or
always, if 𝑇 has one-sided error probability).

On the other hand, suppose that 𝐺′ is 𝜖-far from Π. If either |𝐼′| < (1 − 0.1𝜖) · 𝑛 or the
subgraph of 𝐺′ induced by 𝑉 ′ is 0.1𝜖-far from the 𝐴′-image of the subgraph of 𝐺𝑛 induced by 𝐼′,
then we reject with high probability due to one of the rst two tests. Otherwise, letting 𝜋 be an
arbitrary bijection of [3𝑛] to [3𝑛] that extends 𝐴′, it follows that for some 𝑠 ∈ {0, 1}𝑛 the graph𝐺′

is 0.2𝜖-close to 𝜋(𝐺′𝑠), since wemay obtain 𝜋(𝐺′𝑠) from 𝐺′ by modifying the neighborhood of 0.1𝑛
vertices in 𝐼′ as well as of the vertices in [𝑛] \ 𝐼′. Furthermore, for every 𝑖 ∈ [𝑛] on which 𝐴′ is
dened, it holds that 𝑠𝑖 = 1 if and only if the two neighbors of 𝐴′(𝑖) that have degree at most 2
are connected. By the hypothesis regarding 𝐺′, the string 𝑠must be 0.8𝜖·3𝑑𝑛/2

𝑛 -far from Φ, and
𝐴′(𝑖) = 𝜋(𝑖) whenever 𝐴′ is dened on 𝑖 ∈ [𝑛]. It follows that either the emulation of 𝑇 was
abruptly terminated (leading to rejection) or the answers provided to 𝑇 are according to 𝑠.
Hence, we reject with high probability. �

Digest: Tightly reducing testing properties of strings to testing graph properties. In
continuation to (the main part of) Corollary 5.3, we highlight the fact that Construction 5.2.1
not only reduces testing the string property Φ to testing the graph property Π, but rather does
so in a rather tight manner. Specically, for Φ,Π and 𝑄Φ, 𝑄Π as in Corollary 5.3, it holds that
𝑄Φ(𝑛, 𝜖) and 𝑄Π(Θ(𝑛),Θ(𝜖)) agree up to a poly(log 𝑛) factor. In other words, for any property
of strings Φ, there exists a property of bounded-degree graphs Π such that the (query and time)
complexity of testing Φ is reected in the (query and time) complexity of testing Π, where our
notion of reection allows for a polylogarithmic slackness. Recall that the transformation of
strings in Φ to graphs in Π is (strongly/locally) ecient.

5.3 Separating tolerant testing from testing

Using Corollary 5.3 and Proposition 5.4, we transport the separation between tolerant testing
and testing, from the domain of testing strings, where it has been established by [14], to the
domain of testing graph properties in the bounded-degree graph model.

THEOREM 5.5 (In the bounded-degree graph model, tolerant testing is harder than test-
ing). For any suciently large constant 𝑑 and any constant 𝑐 ∈ (0, 1), there exists a graph prop-
erty Π such that testing Π in the bounded-degree graph model (with degree bound 𝑑) has query
complexity 𝑂(poly(log 𝑛)/𝜖), but tolerantly testing Π has query complexity Ω(𝑛Ω(1−𝑐)), provided



55 / 92 Robustly Self-Ordered Graphs

that the tolerance parameter is not smaller than 𝑛−𝑐. Furthermore, Π is eciently recognizable.

PROOF. A small variant on the proof of [14, Thm. 1.3] yields an eciently recognizable set of
strings Φ that is testable in𝑂(1/𝜖) queries but tolerantly testing it requires Ω(𝑛Ω(1−𝑐)) queries.33

Using Construction 5.2.1 with graphs that are locally self-ordered and locally reversed self-
ordered (as provided by Corollary 4.10), we obtain the desired graph property Π. By Corollary 5.3
tolerantly testingΠ requiresΩ(𝑛Ω(1)) queries, whereas by Proposition 5.4 (non-tolerant) testingΠ
has query complexity poly(log 𝑛) · 𝑂(1/𝜖). The claim follows. �

6. RandomRegular Graphs are Robustly Self-Ordered

While Theorem 4.1 only asserts the existence of robustly self-ordered 𝑑-regular graphs, we
next show that almost all 𝑑-regular graphs are robustly self-ordered. This extends work in
probabilistic graph theory, which proves a similar result for the weaker notion of self-ordered
(a.k.a asymmetric) graphs [4, 5].

THEOREM 6.1 (Random 𝑑-regular graphs are robustly self-ordered). For any suciently
large constant 𝑑, a random 2𝑑-regular 𝑛-vertex graph is robustly self-ordered with probability
1 − 𝑜(1).

Recall that, with very high probability, these graphs are expanders. We mention that the
proof of Theorem 4.1 actually established that 𝑛-vertex graphs drawn from a weird distribution
(which has min-entropy Ω(𝑛)) are robustly self-ordered with probability 1− 𝑜(1). However, this
is established by using the edge-coloring variant, and requires employing the transformation
presented in Section 2.1. In contrast, the following proof works directly with the original
(uncolored) variant, and is completely self-contained.

PROOF. The proof is quite similar to the proof Claim 4.1.1, but it faces complications that
were avoided in the prior proof by using edge-colors and implicitly directed edges. Specically,
for candidate permutations 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛] (to be used in the construction) and all
(non-trivial) permutations 𝜇 : [𝑛] → [𝑛], the proof of Claim 4.1.1 considered events of the form
(∀ 𝑗 ∈ [𝑑]) 𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖))), whereas here we shall consider events of the form {𝜋𝑏𝑗 (𝑖) :
𝑗 ∈ [𝑑] & 𝑏 ∈ {±1}} = {𝜇(𝜋𝑐

𝑘
(𝜇−1(𝑖))) : 𝑘 ∈ [𝑑] & 𝑐 ∈ {±1}}. That is, rather than considering a

sequence of equations that refers to single 𝜋 𝑗 ’s, we consider a sequence of equations that refer to
the set of all 𝜋 𝑗 ’s, which were expressed above in terms of equations between multi-sets. These

33 Basically, the construction of [14] consists of repeating some 𝑚-bit long string poly(𝑚) times and augmenting it
with a PCP of Proximity (PCPP) [2, 10] of membership in some polynomial-time recognizable set that is hard to test.
Essentially, the PCPP helps the tester, but it may be totally useless (when corrupted) in the tolerant testing setting.
While [14] lets the PCPP occupy an 𝑜(1/log log 𝑛) fraction of the final 𝑛-bit string, we let it occupy just a 𝑛−𝑐 fraction
(and use 𝑚 = 𝑛Ω(1−𝑐)). This requires using a different PCPP than the one used in [14]; e.g., using a strong PCPP with
linear detection probability [9, Def. 2.2] will do, and such a PCPP is available [9, Thm. 3.3].
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multi-set equations will be reduced to equations among sequences by considering all possible
ordering of these multi-sets. This amounts to taking a union bound over all possible ordering
and results in a more complicated analysis (due to the 𝜋−1

𝑗
’s) and much more cumbersome

notation.
To facilitate the proof, we use the standard methodology (cf. [12, Apdx. 2]) of rst proving

the result in the random permutation model, then transporting it to the conguration model
(by using a general result of [24]), and nally conditioning on the event that the generated
graph is simple (which occurs with positive constant probability). Indeed, both models generate
multi-graphs that are not necessarily simple graphs (i.e., these multi-graphs may have self-loops
and parallel edges). We also use the fact that the simple graphs that are generated by the
conguration model (for degree 𝑑′) are uniformly distributed among all 𝑑′-regular graphs.

Recall that in the randompermutationmodel a 2𝑑-regular 𝑛-vertexmulti-graph is generated
by selecting uniformly and independently 𝑑 permutations 𝜋1, . . . , 𝜋𝑑 : [𝑛] → [𝑛]. The multi-
graph, denoted 𝐺(𝜋1,...,𝜋𝑑) , consists of the edge multi-set

⋃
𝑗∈[𝑑]{{𝑖, 𝜋 𝑗 (𝑖)} : 𝑖 ∈ [𝑛]}, where the

2 𝑗th (resp., (2 𝑗 − 1)st) neighbor of vertex 𝑖 is 𝜋 𝑗 (𝑖) (resp., 𝜋−1𝑗 (𝑖)). Note that this multi-graph may
have self-loops (due to 𝜋 𝑗 (𝑖) = 𝑖), which contributed two units to the degree of a vertex, as well
as parallel edges (due to 𝜋 𝑗 (𝑖) = 𝜋𝑘 (𝑖) for 𝑗 ≠ 𝑘 and 𝜋 𝑗 (𝑖) = 𝜋−1𝑘 (𝑖) for any 𝑗, 𝑘). We denote the 𝑗th

neighbor of vertex 𝑖 by 𝑔 𝑗 (𝑖); that is, 𝑔 𝑗 (𝑖) = 𝜋 𝑗/2(𝑖) if 𝑗 is even, and 𝑔 𝑗 (𝑖) = 𝜋−1( 𝑗+1)/2(𝑖) otherwise.
Consider an arbitrary permutation 𝜇 : [𝑛] → [𝑛], and let 𝑇 = {𝑖 ∈ [𝑛] : 𝜇(𝑖) ≠ 𝑖} be its

set of non-xed-point. We shall show that, with probability 1 − exp(−Ω(𝑑 · |𝑇 | · log 𝑛)) over
the choice of 𝜋 = (𝜋1, . . . , 𝜋𝑑), the size of the symmetric dierence between 𝐺𝜋 and 𝜇(𝐺𝜋) is
Ω( |𝑇 |). Note that this dierence is (half) the sum over 𝑖 ∈ [𝑛] of the size of the symmetric
dierence between the multi-set of neighbors of vertex 𝑖 in 𝐺𝜋 and the multi-set of neighbors of
vertex 𝑖 in 𝜇(𝐺𝜋). We refer to the latter dierence by the phrase the contribution of vertex 𝑖 to
the dierence between 𝐺𝜋 and 𝜇(𝐺𝜋).

As a warm-up, we rst show that each element of𝑇 contributes a non-zero number of units
to the dierence (between 𝐺𝜋 and 𝜇(𝐺𝜋)) with probability 1 − 𝑂(poly(𝑑)/𝑛)𝑑/6 over the choice
of 𝜋. Recalling that 𝑖 ∈ 𝑇 contributes to the dierence (between𝐺𝜋 and 𝜇(𝐺𝜋)) if the multi-sets of
its neighbors in𝐺𝜋 and 𝜇(𝐺𝜋) dier, it follows that 𝑖 ∈ 𝑇 contributes to the dierence if for every
permutation 𝜎 : [2𝑑] → [2𝑑] there exists 𝑗 ∈ [2𝑑] such that 𝑔 𝑗 (𝑖) ≠ 𝜇(𝑔𝜎( 𝑗) (𝜇−1(𝑖))). Hence, the
complementary event holds (i.e., 𝑖 does not contribute to the dierence) if and only if there exists
permutation 𝜎 : [2𝑑] → [2𝑑] such that for every 𝑗 ∈ [2𝑑] it holds that 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎( 𝑗) (𝜇−1(𝑖))).
Thus, the probability that 𝑖 does not contribute to the dierence is given by

Pr𝜋
[
∃𝜎 ∈Sym2𝑑 (∀ 𝑗 ∈ [2𝑑]) 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎( 𝑗) (𝜇−1(𝑖)))

]
≤ (2𝑑)! · max

𝜎∈Sym2𝑑

{
Pr𝜋

[
(∀ 𝑗 ∈ [2𝑑]) 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎( 𝑗) (𝜇−1(𝑖)))

]}
. (10)

Fixing 𝜎 that maximizes the probability, and denoting it 𝜎𝑖 , consider any 𝐽𝑖 ⊆ [𝑑] such that for
the 𝑗’s in 𝐽𝑖 the multi-sets { 𝑗, d𝜎𝑖 (2 𝑗)/2e}’s are disjoint (i.e., { 𝑗, d𝜎𝑖 (2 𝑗)/2e} ∩ {𝑘, d𝜎𝑖 (2𝑘)/2e} = ∅
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for any 𝑗 ≠ 𝑘 ∈ 𝐽𝑖). Note that we may select 𝐽𝑖 such that | 𝐽𝑖 | ≥ 𝑑/6, since taking 𝑗 to 𝐽𝑖 rules out
taking (to 𝐽𝑖) at most ve other values (i.e., letting 𝑣 def

= d𝜎𝑖 (2 𝑗)/2e, the value 𝑘 is ruled out if
either 𝑘 ∈ { 𝑗, 𝑣} or 𝜎𝑖 (2𝑘) ∈ {2 𝑗 − 1, 2 𝑗, 2𝑣 − 1, 2𝑣}). Using this feature of 𝐽𝑖 , we prove –

Claim 6.1.1. (Warm-up):34 (10) is upper-bounded by (2𝑑)2𝑑 · (3/𝑛) | 𝐽𝑖 |.

Proof. Recalling that 𝜎𝑖 maximizes (10), we upper-bound (10) by

(2𝑑)! · Pr𝜋
[
(∀ 𝑗 ∈ 𝐽𝑖) 𝑔2 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 (2 𝑗) (𝜇−1(𝑖)))

]
= (2𝑑)! ·

∏
𝑗∈𝐽𝑖

Pr𝜋 𝑗 ,𝜋 d𝜎𝑖 (2 𝑗)/2e
[
𝑔2 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 (2 𝑗) (𝜇−1(𝑖)))

]
(11)

where the equality uses the disjointness of the multi-sets { 𝑗, d𝜎𝑖 (2 𝑗)/2e} for the 𝑗’s in 𝐽𝑖 . Next,
letting 𝜎′

𝑖
(2 𝑗) def

= d𝜎𝑖 (2 𝑗)/2e, and 𝜎′′𝑖 (2 𝑗)
def
= (−1)𝜎𝑖 (2 𝑗) mod 2 (so that 𝜎𝑖 (2 𝑗) = 2𝜎′

𝑖
(2 𝑗) − 0.5(1 −

𝜎′′
𝑖
(2 𝑗))), we upper-bound (11) by

(2𝑑)! ·
∏
𝑗∈𝐽𝑖

Pr𝜋 𝑗 ,𝜋𝜎′
𝑖
(2 𝑗)

[
𝜋 𝑗 (𝑖) = 𝜇(𝜋

𝜎′′
𝑖
(2 𝑗)

𝜎′
𝑖
(2 𝑗) (𝜇

−1(𝑖)))
]
< (2𝑑)2𝑑 · (3/𝑛) | 𝐽𝑖 |, (12)

where Pr𝜋 𝑗 ,𝜋 𝑗 [·] stands for Pr𝜋 𝑗 [·] and 𝜋1 stands for 𝜋, while the inequality is justied by consid-
ering the following three cases (w.r.t each 𝑗 ∈ 𝐽𝑖).

1. If 𝑘 def
= 𝜎′

𝑖
(2 𝑗) ≠ 𝑗 (equiv., 𝜎𝑖 (2 𝑗) ∉ {2 𝑗 − 1, 2 𝑗}), then, letting 𝑏 = 𝜎′′

𝑖
(2 𝑗), the corresponding

factor in the l.h.s of (12) is

Pr𝜋 𝑗 ,𝜋𝑘
[
𝜋 𝑗 (𝑖) = 𝜇(𝜋𝑏𝑘 (𝜇

−1(𝑖)))
]

which equals 1/𝑛 by xing 𝜋𝑘, letting 𝑣 = 𝜇(𝜋𝑏𝑘 (𝜇
−1(𝑖))), and using Pr𝜋 𝑗 [𝜋 𝑗 (𝑖)=𝑣] = 1/𝑛.

2. If 𝜎𝑖 (2 𝑗) = 2 𝑗, then the corresponding factor in the l.h.s of (12) is

Pr𝜋 𝑗
[
𝜋 𝑗 (𝑖) = 𝜇(𝜋 𝑗 (𝜇−1(𝑖)))

]
which is at most 1/(𝑛 − 1) since 𝜇(𝑖) ≠ 𝑖; specically, xing the value of 𝜋 𝑗 (𝜇−1(𝑖)), and
denoting this value by 𝑣, leaves 𝜋 𝑗 (𝑖) uniformly distributed in [𝑛] \ {𝑣}, which means that
Pr𝜋 𝑗 [𝜋 𝑗 (𝑖)=𝜇(𝑣) | 𝑣=𝜋 𝑗 (𝜇−1(𝑖))] ≤ 1/(𝑛 − 1) (where equality holds if 𝜇(𝑣) ≠ 𝑣).

3. If 𝜎𝑖 (2 𝑗) = 2 𝑗 − 1, then the corresponding factor in the l.h.s of (12) is

Pr𝜋 𝑗
[
𝜋 𝑗 (𝑖) = 𝜇(𝜋−1𝑗 (𝜇

−1(𝑖)))
]

which is shown to be less than 3/𝑛. In this case, we consider two sub-cases depending on
whether or not 𝜋 𝑗 (𝑖) = 𝜇−1(𝑖), while noting that the rst case occurs with probability 1/𝑛
whereas Pr𝜋 𝑗 [𝜋 𝑗 (𝑖) = 𝜇(𝜋−1𝑗 (𝜇

−1(𝑖))) |𝜋 𝑗 (𝑖) ≠ 𝜇−1(𝑖)] ≤ 1/(𝑛 − 1).

Hence, each of the factors in the l.h.s of (12) is upper-bounded by 3/𝑛, and the claim follows. �

34 One may obtain a better bound of 𝑂(𝑑/𝑛)2𝑑 by analyzing (10) directly, by considering all the 2𝑑 events and accounting
for their small dependency. On the other hand, we can obtain higher robustness parameter by considering smaller
sets 𝐽𝑖 ’s (say of size 𝑑/12), which suffice for counting vertices that contribute (say) 𝑑/2 units to the difference between
𝐺𝜋 and 𝜇(𝐺𝜋).
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The general case. The same argument generalizes to any set 𝐼 ⊆ 𝑇 such that 𝐼 ∩ 𝜇(𝐼) = ∅. In
such a case we get

Pr𝜋
[
(∀𝑖 ∈ 𝐼) (∃𝜎𝑖 ∈Sym2𝑑) (∀ 𝑗 ∈ [2𝑑]) 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 ( 𝑗) (𝜇−1(𝑖)))

]
≤ (2𝑑)!|𝐼 | · max

𝜎1,...,𝜎𝑛

{
Pr𝜋

[
(∀𝑖 ∈ 𝐼) (∀ 𝑗 ∈ [2𝑑]) 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 ( 𝑗) (𝜇−1(𝑖)))

]}
(13)

Claim 6.1.2. (Actual analysis): (13) is upper-bounded by

(2𝑑)2𝑑·|𝐼 | · (3/(𝑛 − 2( |𝐼 | − 1))) |𝐼 |·𝑑/6. (14)

Proof. Fixing 𝜎1, ...., 𝜎𝑛 that maximize (13), we proceed as in the proof of Claim 6.1.1. For every
𝑖 ∈ 𝐼 = {𝑖1, . . . , 𝑖𝑚}, we x a set 𝐽𝑖 of size at least 𝑑/6 such that the multi-sets { 𝑗, d𝜎𝑖 (2 𝑗)/2e}’s are
disjoint, and refer to the events 𝐸 𝑗,𝑘 (𝜋1, . . . , 𝜋2𝑑) that depend only on the value of 𝜋 𝑗 and 𝜋

𝜎′′
𝑖𝑘
(2 𝑗)

𝜎′
𝑖𝑘
(2 𝑗)

on the points 𝑖1, . . . , 𝑖𝑘−1 and 𝜇−1(𝑖1), . . . , 𝜇−1(𝑖𝑘−1), respectively, where 𝜎′𝑖 (2 𝑗)
def
= d𝜎𝑖 (2 𝑗)/2e,

and 𝜎′′
𝑖
(2 𝑗) def= (−1)𝜎𝑖 (2 𝑗) mod 2 (as in the proof of Claim 6.1.1). Specically, 𝐸 𝑗,𝑘 (𝜋1, . . . , 𝜋2𝑑) is the

event
(∀𝑘′∈ [𝑘 − 1]) 𝑔2 𝑗 (𝑖𝑘′) = 𝜇(𝑔𝜎𝑖𝑘′(2 𝑗) (𝜇

−1(𝑖𝑘′)))

which can be written as

(∀𝑘′∈ [𝑘 − 1]) 𝜋 𝑗 (𝑖𝑘′) = 𝜇(𝜋
𝜎′′
𝑖𝑘′
(2 𝑗)

𝜎′
𝑖𝑘′
(2 𝑗) (𝜇

−1(𝑖𝑘′))).

Using the disjointness of the { 𝑗, d𝜎𝑖 (2 𝑗)/2e}’s in 𝐽𝑖 , we upper-bound (13) by

(2𝑑)!𝑚 ·
∏
𝑘∈[𝑚]

∏
𝑗∈𝐽𝑖𝑘

Pr𝜋1,...,𝜋2𝑑
[
𝑔2 𝑗 (𝑖𝑘) = 𝜇(𝑔𝜎𝑖𝑘(2 𝑗) (𝜇

−1(𝑖𝑘)))
��𝐸 𝑗,𝑘 (𝜋1, ...., 𝜋2𝑑) ]

= (2𝑑)!𝑚 ·
∏
𝑘∈[𝑚]

∏
𝑗∈𝐽𝑖𝑘

Pr𝜋1,...,𝜋2𝑑

[
𝜋 𝑗 (𝑖𝑘) = 𝜇(𝜋

𝜎′′
𝑖𝑘
(2 𝑗)

𝜎′
𝑖𝑘
(2 𝑗) (𝜇

−1(𝑖𝑘)))
��𝐸 𝑗,𝑘 (𝜋1, ...., 𝜋2𝑑) ] . (15)

Now, when analyzing the foregoing conditional probability in (15), we consider two cases for
each 𝑘 ∈ [𝑚] and 𝑗 ∈ 𝐽𝑖𝑘 . If 𝑗 ≠ 𝜎′

𝑖𝑘
(2 𝑗), then we x the value of each of these two permutations

(i.e., 𝜋 𝑗 and 𝜋𝜎′
𝑖𝑘
(2 𝑗)) on the corresponding 𝑘 − 1 points that occur in the condition 𝐸 𝑗,𝑘, and the

value of these permutations on the 𝑘th points (i.e., 𝑖𝑘 and 𝜇−1(𝑖𝑘)) is restricted accordingly (i.e.,
to the remaining 𝑛 − (𝑘 − 1) values). Otherwise (i.e., 𝑗 = 𝜎′

𝑖𝑘
(2 𝑗)), we x the value of 𝜋 𝑗 on these

2(𝑘 − 1) points. Hence, the argument in the warm-up analysis applies with 𝑛 replaces by either
𝑛 − (𝑘 − 1) or 𝑛 − 2(𝑘 − 1). It follows that (15) is upper-bounded by

(2𝑑)!𝑚 ·
∏
𝑘∈[𝑚]

(3/(𝑛 − 2(𝑚 − 1))) | 𝐽𝑖𝑘 | .

Using | 𝐽𝑖𝑘 | ≥ 𝑑/6 for every 𝑘 ∈ [𝑚], the claim follows. �
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Recall that (14) refers to a xed set 𝐼 ⊆ 𝑇 such that 𝐼 ∩ 𝜇(𝐼) = ∅, and that it constitutes
an upper bound on the probability (over the choice of 𝜋) that, for each 𝑖 ∈ 𝐼 there exists a
permutation 𝜎𝑖 : [2𝑑] → [2𝑑] such that 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 ( 𝑗) (𝜇−1(𝑖))) holds for all 𝑗 ∈ [2𝑑]. This
upper bound (i.e., (2𝑑)2𝑑·|𝐼 | · (3/(𝑛−2( |𝐼 | −1))) |𝐼 |·𝑑/6) simplies to (2𝑑)2𝑑·|𝐼 | · (5/𝑛) |𝐼 |·𝑑/6, provided
that |𝐼 | ≤ d𝑛/6e.

Recalling that 𝑡 def
= |𝑇 | ∈ [𝑛], we shall upper-bound the probability (over the choice

of 𝜋) that 𝑇 contains a d𝑡/2e-subset 𝑇 ′ such that for each 𝑖 ∈ 𝑇 ′ there exists a permutation
𝜎𝑖 : [2𝑑] → [2𝑑] such that 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 ( 𝑗) (𝜇−1(𝑖))) holds for all 𝑗 ∈ [2𝑑]. We do so by taking
a union bound over all d𝑡/6e-subsets 𝐼 such that 𝐼 ∩ 𝜇(𝐼) = ∅ and for each 𝑖 ∈ 𝐼 there exists
a permutation 𝜎𝑖 : [2𝑑] → [2𝑑] such that 𝑔 𝑗 (𝑖) = 𝜇(𝑔𝜎𝑖 ( 𝑗) (𝜇−1(𝑖))) holds for all 𝑗 ∈ [2𝑑].
(Note that such a d𝑡/6e-subset 𝐼 exists in each d𝑡/2e-subset 𝑇 ′, and that d𝑡/6e < 𝑛/3.) Using the
aforementioned simplied form of (14), we conclude that, with probability at most(

𝑡

d𝑡/6e

)
· (2𝑑)2𝑑·d𝑡/6e · (5/𝑛) d𝑡/6e·𝑑/6 < 2𝑡 · (5 · (2𝑑)12/𝑛) d𝑡/6e·𝑑/6 = exp(−Ω(𝑑𝑡 log 𝑛))

over the choice of 𝜋, the set 𝑇 contains no d𝑡/6e-subset 𝐼 as above. This means that, with
probability at most exp(−Ω(𝑑𝑡 log 𝑛)), less than 𝑡/2 of the indices 𝑖 ∈ 𝑇 contribute a non-zero
number of units to the dierence (between 𝐺𝜋 and 𝜇(𝐺𝜋)).

Letting 𝑐′ = 1/2 and considering all (non-trivial) permutations 𝜇 : [𝑛] → [𝑛], we conclude
that the probability, over the choice of 𝜋, that 𝐺𝜋 is not 𝑐′-robustly self-ordered is at most∑︁

𝑡∈[𝑛]

(
𝑛

𝑡

)
· exp(−Ω(𝑑𝑡 log 𝑛)) =

∑︁
𝑡∈[𝑛]

exp(−Ω((𝑑 − 𝑂(1)) · 𝑡 log 𝑛))

= exp(−Ω((𝑑 − 𝑂(1)) · log 𝑛)),

and the claim follows for the permutation model (and for any suciently large 𝑑).
As stated upfront, using the general result of [24, Thm. 1.3], we infer that a uniformly

distributed 2𝑑-regular 𝑛-vertex multi-graph fails to be 𝑐′-robustly self-ordered with probabil-
ity 𝑜(1). Lastly, recalling that such a 2𝑑-regular multi-graph is actually a simple graph with
probability exp(−((2𝑑)2 − 1)/4), the theorem follows. �

Digest. The proof of Theorem 6.1 is quite similar to the proof Claim 4.1.1, but it faces two
complications that were avoided in the prior proof (by using edge-colors and implicitly directed
edges). Most importantly, the current proof has to handle equality between multi-sets instead
of equality between sequences. This is done by considering all possible ordering of these multi-
sets, which amounts to taking a union bound over all possible ordering and results in more
complicated analysis and notation. (Specically, see the introduction of 𝜎𝑖 ’s and 𝐽𝑖 ’s and the
three cases analyzed in the warm-up.) In addition, since edges are dened by permutations
over the vertex-set rather than by perfect matching, we have to consider both the forward and
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backward direction of each permutation, which results in further complicating the analysis
and the notation. (Specically, see the introduction of 𝜎′

𝑖
’s and 𝜎′′

𝑖
’s and the three cases analyzed

in the warm-up.)

An alternative proof of Theorem 4.2. We mention that combining an extension of Theo-
rem 6.1 with some of the ideas underlying the proof of Theorem 4.2 yields an alternative proof of
Theorem 4.2 (i.e., an alternative construction of robustly self-ordered bounded-degree graphs).

REMARK 6.2 (An alternative construction of 𝑑-regular robustly self-ordered graphs). On
input 1𝑛, we set � = 𝑂(log 𝑛)

log log 𝑛 , and proceeds in three steps.
1. Extending the proof of Theorem 6.1, we show that for all suciently large constant 𝑑, for

any set G of 𝑡 = 𝑡(�) < 𝑛 = �Ω(�) (2𝑑-regular) �-vertex graphs, with probability 1 − 𝑜(1),
a random 2𝑑-regular �-vertex graph is both robustly self-ordered and far from being
isomorphic to any graph in G. Note that, with probability 1 − 𝑜(1), such a graph is also
expanding.
Here two �-vertex graphs are said to be far apart if they disagree on Ω(�) vertex-pairs.
The proof of Theorem 6.1 is extended by considering, for a random graph, the event that
it is either not robustly self-ordered or is not far from an isomorphic copy of one of the 𝑡
(xed) graphs. The later event (i.e., being close to isomorphic to one of these graphs) occurs
with probability 𝑜(𝑡/𝑛).

2. Relying on Step 1, we nd a sequence of 𝑛/� robustly self-ordered 2𝑑-regular �-vertex
graphs that are expanding and pairwise far from being isomorphic to one another.
This is done by iteratively nding robustly self-ordered 2𝑑-regular �-vertex expanding
graphs that are far from being isomorphic to all prior ones, where scanning all possible
graphs and checking the condition can be done in time 𝑛 · �𝑑�/2 · (�!) = poly(𝑛).

3. Using the sequence of 𝑛/� graphs found in Step 2, we consider the 𝑛-vertex graph that
consists of these �-vertex graphs as its connected components, and use parts of the proof
of Theorem 4.2 to show that this graph is robustly self-ordered. Specically, we only need
to consider cases that are analogous to Cases 2, 6 and 7. The treatment of the analogous
cases is slightly simpler than in the proof of Theorem 4.2, since the graphs are somewhat
simpler.

Note that the resulting graphs are not locally constructable.

Part II: The Case of Dense Graphs

Recall that when considering graphs of unbounded degree, we ask whether we can obtain
unbounded robustness parameters. In particular, we are interested in 𝑛-vertex graphs that are
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Ω(𝑛)-robustly self-ordered, which means that they must have Ω(𝑛2) edges.
In Section 7we prove the existence of Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs, and show

that they imply Ω(1)-robustly self-ordered bounded-degree 𝑂(𝑛2)-vertex graphs. In Section 8,
we reduce the construction of the former (dense) 𝑛-vertex graphs to the construction of non-
malleable two-source extractors (with very mild parameters). We actually show two reductions:
The rst reduction (presented in Section 8.1) requires the extractors to have an additional
natural feature, called quasi-orthogonality, and yields a construction of such 𝑛-vertex graphs
that runs in poly(𝑛)-time. The second reduction (presented in Section 8.2) does not make this
additional requirement, and yields an algorithm that computes the adjacency predicate of such
𝑛-vertex graphs in poly(log 𝑛)-time.

In Section 9 we demonstrate the applicability of Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs
to property testing; specically, to proving lower bounds (on the query complexity) for the
dense graph testing model. Lastly, in Section 10, we consider the construction of Ω(𝑑 (𝑛))-
robustly self-ordered 𝑛-vertex graphs of maximum degree 𝑑 (𝑛), for every 𝑑 : N→ N such that
𝑑 (𝑛) ∈ [Ω(1), 𝑛].

7. Existence and Transformation to Bounded-Degree Graphs

It seems easier to prove that random 𝑛-vertex graphs are Ω(𝑛)-robustly self-ordered (see Propo-
sition 7.1) than to prove that random bounded-degree graphs are Ω(1)-robustly self-ordered
(or even just prove that such bounded-degree graphs exist). In contrast, it seems harder to con-
struct Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs than to construct Ω(1)-robustly self-ordered
bounded-degree graphs. In particular, we show that Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs
can be easily transformed into 𝑂(𝑛2)-vertex bounded-degree graphs that are Ω(1)-robustly
self-ordered (see Proposition 7.2). We stress that the construction of robustly self-ordered
bounded-degree graphs that is obtained by combining the foregoing transformation with Theo-
rem 1.4 is entirely dierent from the constructions presented in the rst part of the paper.

Random graphs are robustly self-ordered. We rst show that, with very high probability,
a random 𝑛-vertex graph 𝐺𝑛 = ( [𝑛], 𝐸𝑛), where 𝐸𝑛 is a uniformly distributed subset of

([𝑛]
2
)
, is

Ω(𝑛)-robustly self-ordered.

PROPOS IT ION 7.1 (Robustness analysis of a random graph). A random 𝑛-vertex graph𝐺𝑛 =
( [𝑛], 𝐸𝑛) is Ω(𝑛)-robustly self-ordered with probability 1 − exp(−Ω(𝑛)).

As stated above, the following proof is signicantly easier than the proof provided for the
bounded-degree analogue (i.e., Theorem 6.1).

PROOF. For each (non-trivial) permutation 𝜇 : [𝑛] → [𝑛], letting 𝑇 def
= {𝑖 ∈ [𝑛] : 𝜇(𝑖) ≠ 𝑖}

denote its (non-empty) set of non-xed-points, we show that, with probability 1−exp(−Ω(𝑛· |𝑇 |)),
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the size of the symmetric dierent between a random 𝑛-vertex graph 𝐺𝑛 = ( [𝑛], 𝐸𝑛) and 𝜇(𝐺𝑛)
is Ω(𝑛 · |𝑇 |).

For every 𝑢, 𝑣 ∈ [𝑛] such that 𝑢 < 𝑣, let 𝜒𝑢,𝑣 = 𝜒
𝜇
𝑢,𝑣(𝐺𝑛) represent the event that the pair

(𝜇(𝑢), 𝜇(𝑣)) contributes to the symmetric dierence between 𝐺𝑛 and 𝜇(𝐺𝑛); that is, 𝜒𝑢,𝑣 = 1 if
exactly one of the edges {𝜇(𝑢), 𝜇(𝑣)} and {𝑢, 𝑣} is in 𝐺𝑛, since {𝑢, 𝑣} is an edge of 𝐺𝑛 if and only
if {𝜇(𝑢), 𝜇(𝑣)} is an edge of 𝜇(𝐺𝑛). Note that Pr[𝜒𝑢,𝑣(𝐺𝑛) = 1] = 1/2 if {𝑢, 𝑣} ≠ {𝜇(𝑢), 𝜇(𝑣)},
because xing the adjacency relation of the pair (𝜇(𝑢), 𝜇(𝑣)) leaves the adjacency relation of
pair (𝑢, 𝑣) totally random. We shall prove that

Pr𝐺𝑛


∑︁

𝑢<𝑣∈[𝑛]
𝜒
𝜇
𝑢,𝑣(𝐺𝑛) <

𝑛 · |𝑇 |
20

 = exp(−Ω(𝑛 · |𝑇 |)). (16)

We prove (16) by identifying a set 𝑆 of Ω(𝑛 · |𝑇 |) vertex pairs such that the random variables in
{𝜒𝜇𝑢,𝑣(𝐺𝑛) : {𝑢, 𝑣} ∈ 𝑆} are totally independent and uniformly distributed in {0, 1}. Specically
if 𝑆 and 𝑆′ = {{𝜇(𝑢), 𝜇(𝑣)} : {𝑢, 𝑣} ∈ 𝑆} are disjoint, then xing the adjacencies of the pairs in 𝑆′

leaves the adjacency of pairs in 𝑆 totally random.
Fixing a d|𝑇 |/3e-subset 𝐼 ⊆ 𝑇 such that 𝐼 ∩ 𝜇(𝐼) = ∅, let 𝐽 = [𝑛] \ (𝐼 ∪ 𝜇−1(𝐼)). Note that

𝜇(𝐼 ∪ 𝐽) ⊆ [𝑛] \ 𝐼 and that | 𝐽 | = 𝑛− 2 · d|𝑇 |/3e) ≥ (𝑛/3) − 2. Observe that, for every (𝑢, 𝑣) ∈ 𝐽 × 𝐼 ,
it holds that 𝑢 ≠ 𝑣 and Pr[𝜒𝑢,𝑣 = 1] = 1/2, where the equality is due to {𝑢, 𝑣} ≠ {𝜇(𝑢), 𝜇(𝑣)},
which holds since (𝑢, 𝑣) ∈ 𝐽 × 𝐼 but 𝜇(𝑢), 𝜇(𝑣) ∈ [𝑛] \ 𝐼 . Furthermore, the events the correspond
to the pairs in 𝐽 × 𝐼 are independent, because the sets {{𝑢, 𝑣} : (𝑢, 𝑣) ∈ 𝐽 × 𝐼} and {{𝜇(𝑢), 𝜇(𝑣)} :
(𝑢, 𝑣) ∈ 𝐽 × 𝐼} are disjoint; that is, (𝑢, 𝑣) ∈ 𝐽 × 𝐼 implies (𝜇(𝑢), 𝜇(𝑣)) ∈ ([𝑛] \ 𝐼) × ([𝑛] \ 𝐼). Hence
(using 𝑛 ≤ 3( | 𝐽 | + 2) and |𝑇 | ≤ 3|𝐼 | (as well as 3( | 𝐽 | + 2) · 3|𝐼 | < 9.9 · | 𝐽 | · |𝐼 |)), the l.h.s. of (16) is
upper-bounded by

Pr𝐺𝑛


∑︁

(𝑢,𝑣)∈𝐽×𝐼
𝜒
𝜇
𝑢,𝑣(𝐺𝑛) <

3( | 𝐽 | + 2) · 3|𝐼 |
20

 ≤ Pr𝐺𝑛


∑︁

(𝑢,𝑣)∈𝐽×𝐼
𝜒
𝜇
𝑢,𝑣(𝐺𝑛) <

0.99 · | 𝐽 | · |𝐼 |
2


= exp(−Ω( | 𝐽 | · |𝐼 |))

which is exp(−Ω(𝑛 · |𝑇 |)). Having established (16), the claim follows by a union bound (over all
non-trivial permutations 𝜇 : [𝑛] → [𝑛]); specically, denoting the set of non-trivial permuta-
tions by 𝑃𝑛, we upper-bound the probability that 𝐺𝑛 is not 𝑛

20-robust by∑︁
𝜇∈𝑃𝑛

Pr𝐺𝑛 [𝜇 violates the condition in (16)]

≤
∑︁
𝑡∈[𝑛]

(
𝑛

𝑡

)
· (𝑡!) · exp(−Ω(𝑛 · 𝑡))

< 𝑛 ·max
𝑡∈[𝑛]
{𝑛𝑡 · exp(−Ω(𝑛 · 𝑡))}

= exp(−Ω(𝑛))

where 𝑡 represents the size of the set of non-xed-points (w.r.t 𝜇). �
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Obtaining bounded-degree robustly self-ordered graphs. We next show how to trans-
form Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs to 𝑂(𝑛2)-vertex bounded-degree graphs that
are Ω(1)-robustly self-ordered. Essentially, we show that the standard “degree reduction via
expanders” technique works (when using a dierent color for the expanders’ edges, and then
using gadgets to replace colored edges). Specically, we replace each vertex in 𝐺𝑛 = ( [𝑛], 𝐸𝑛)
by an (𝑛 − 1)-vertex expander graph and connect each of these vertices to at most one vertex
in a dierent expander, while coloring the edges of the expanders with 1, and coloring the
other edges by 2. Actually, the vertex 𝑣 is replaced by the vertex-set 𝐶𝑣 = {〈𝑣, 𝑢〉 : 𝑢∈ [𝑛] \ {𝑣}}
and in addition to the edges of the expander, colored 1, we connect each vertex 〈𝑣, 𝑢〉 ∈ 𝐶𝑣
to the vertex 〈𝑢, 𝑣〉 ∈ 𝐶𝑢 and color this edge 2 if {𝑢, 𝑣} ∈ 𝐸𝑛 and 0 otherwise.35 This yields an
𝑛 · (𝑛 − 1)-vertex 𝑂(1)-regular graph, denoted 𝐺′𝑛, coupled with an edge-coloring, denoted 𝜒′,
which uses three colors. We stress that each vertex in𝐺′𝑛 is incident to a single even-colored edge.
Using the hypothesis that𝐺𝑛 is Ω(𝑛)-robustly self-ordered, we prove that (𝐺′𝑛, 𝜒′) is Ω(1)-robustly
self-ordered (in the colored sense).

PROPOS IT ION 7.2 (Robustness analysis of the degree reduction). If𝐺𝑛 isΩ(𝑛)-robustly self-
ordered, then (𝐺′𝑛, 𝜒′) is Ω(1)-robustly self-ordered (in the colored sense of Denition 2.1).

Using Theorem 2.4 (after adding self-loops), we obtain a 𝑂(1)-regular 𝑂(𝑛2)-vertex graph
that is Ω(1)-robustly self-ordered (in the standard sense).

PROOF. Denoting the vertex-set of 𝐺′𝑛 by 𝑉 =
⋃
𝑣∈[𝑛] 𝐶𝑣, we consider an arbitrary (non-trivial)

permutation 𝜇′ : 𝑉 → 𝑉 , and the corresponding set of non-xed-points 𝑇 ′. Intuitively, if 𝜇′

maps vertices of 𝐶𝑣 to several 𝐶𝑤’s, then we get a proportional contribution to the dierence
between 𝐺′𝑛 and 𝜇′(𝐺′𝑛) by the (1-colored) edges of the expander. Otherwise, 𝜇′ induces a
permutation 𝜇 over the vertices of 𝐺𝑛, and we get a corresponding contribution via the (2-
colored) edges of 𝐺𝑛. Lastly, non-identity mappings inside the individual 𝐶𝑣’s are charged using
the (even-colored) edges that connect dierent 𝐶𝑣’s, while relying on the fact each vertex in 𝐺′𝑛
is incident to a single even-colored edge. Details follow.

For a permutation 𝜇′ : 𝑉 → 𝑉 as above, let 𝜇 : [𝑛] → [𝑛] be a permutation that maximizes
the (average over 𝑣 ∈ [𝑛] of the) number of vertices in 𝐶𝑣 that are mapped by 𝜇′ to vertices
in 𝐶𝜇(𝑣); that is, for every permutation 𝜈 : [𝑛] → [𝑛], it holds that��{〈𝑣, 𝑢〉 ∈𝑉 : 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝜇(𝑣)

}�� ≥ ��{〈𝑣, 𝑢〉 ∈𝑉 : 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝜈(𝑣)
}�� . (17)

We consider the following three cases.

Case 1:
∑
𝑣∈[𝑛] |𝐵𝑣 | = Ω( |𝑇 ′|), where 𝐵𝑣

def
= {〈𝑣, 𝑢〉 ∈𝐶𝑣 : 𝜇′(〈𝑣, 𝑢〉) ∉ 𝐶𝜇(𝑣)}.

35 This is equivalent to first converting 𝐺𝑛 into a 𝑛-vertex clique while coloring an edge 2 if and only if it is in 𝐸𝑛.
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(This refers to the case that many vertices are mapped by 𝜇′ to an expander that is dier-
ent from the one designated by 𝜇, which represents the best possible mapping of whole
expanders.)
Letting 𝐶𝑣,𝑤

def
= {〈𝑣, 𝑢〉 : 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝑤}, we rst observe that for every 𝑣 it holds that

max𝑤≠𝜇(𝑣){|𝐶𝑣,𝑤 |} ≤ 2
3 · (𝑛−1), because otherwisewe reach a contradiction to themaximality

of 𝜇 by dening 𝜈(𝑣) = 𝑤 and 𝜈(𝜇−1(𝑤)) = 𝜇(𝑣), where 𝑤 is the element obtaining the
maximum, and 𝜈(𝑥) = 𝜇(𝑥) otherwise.
Next, observe that there exists𝑊𝑣 ⊆ [𝑛] \ {𝜇(𝑣)} such that 𝐵′𝑣 =

⋃
𝑤∈𝑊𝑣

𝐶𝑣,𝑤 satises both
|𝐵′𝑣 | ≤ 2

3 · (𝑛 − 1) and |𝐵
′
𝑣 | ≥ |𝐵𝑣 |/3. Now, consider the sets 𝐵′𝑣 and 𝐶𝑣 \ 𝐵′𝑣: On the one hand,

in 𝜇′(𝐺′𝑛) there are Ω( |𝐵′𝑣 |) 1-colored edges connecting 𝜇′(𝐵′𝑣) and 𝜇′(𝐶𝑣 \ 𝐵′𝑣), due to the
subgraph of 𝜇′(𝐺′𝑛) induced by 𝜇′(𝐶𝑣) which equals subgraph of 𝐺′𝑛 induced by 𝐶𝑣 (which,
in turn, is an expander). On the other hand, in 𝐺′𝑛 there are no 1-colored edges between
𝜇′(𝐵′𝑣) and 𝜇′(𝐶𝑣 \ 𝐵′𝑣), since 𝜇′(𝐵′𝑣) ⊆

⋃
𝑤∈𝑊𝑣

𝐶𝑤 and 𝜇′(𝐶𝑣 \ 𝐵′𝑣) ⊆
⋃
𝑤∈[𝑛]\𝑊𝑣

𝐶𝑤.
We conclude that, in this case, the dierence between 𝐺′𝑛 and 𝜇′(𝐺𝑛) is

∑
𝑣Ω( |𝐵′𝑣 |) =∑

𝑣Ω( |𝐵𝑣 |) = Ω( |𝑇 ′|).
Case 2:

∑
𝑣∈[𝑛]:𝜇(𝑣)≠𝑣 |𝐶′𝑣 | = Ω( |𝑇 ′|), where 𝐶′𝑣

def
= {〈𝑣, 𝑢〉 ∈𝐶𝑣 : 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝜇(𝑣)}.

(This refers to the case thatmany vertices aremapped by 𝜇′ to an expander that is designated
by 𝜇, but this expander is not the one inwhich they reside (i.e., 𝜇 hasmanynon-xed-points).)
Letting 𝛾 > 0 be a constant such that 𝐺𝑛 is 𝛾 · 𝑛-robustly self-ordered, we may assume that∑
𝑣∈[𝑛]:𝜇(𝑣)≠𝑣 |𝐶′𝑣 | ≥ (1 − 0.5 · 𝛾) ·

∑
𝑣∈[𝑛]:𝜇(𝑣)≠𝑣 |𝐶𝑣 |, since otherwise we are done by Case 1.

By the 𝛾𝑛-robust self-ordering of 𝐺𝑛, the dierence between 𝐺𝑛 and 𝜇(𝐺𝑛) is at least Δ
def
=

𝛾𝑛 · |{𝑣 ∈ [𝑛] : 𝜇(𝑣) ≠ 𝑣}|. Assuming, for a moment, that 𝜇′(𝐶𝑣) = 𝐶𝑣 for every 𝑣 such that
𝜇(𝑣) ≠ 𝑣, the dierence between 𝐺′𝑛 and 𝜇′(𝐺′𝑛) is Δ, where the dierence is due to edges
colored 2 (i.e., the edges inherited from 𝐺𝑛). This amount is prorotional to the number of
vertices in the current case, since

Δ =
𝛾𝑛

𝑛 − 1 ·
∑︁

𝑣:𝜇(𝑣)≠𝑣
|𝐶𝑣 | > 𝛾 ·

∑︁
𝑣:𝜇(𝑣)≠𝑣

|𝐶𝑣 |.

In general, 𝜇′(𝐶𝑣) = 𝐶𝑣maynot hold for some 𝑣, and in this casewemay loss the contribution
of the 2-colored edges incident at vertices in

⋃
𝑣∈[𝑛]:𝜇(𝑣)≠𝑣(𝐶𝑣 \ 𝐶′𝑣). Recalling that (by our

hypothesis) the size of this set is at most 0.5 · 𝛾 ·∑𝑣:𝜇(𝑣)≠𝑣 |𝐶𝑣 |, we are left with a contribution
of at least 0.5𝛾 ·∑𝑣:𝜇(𝑣)≠𝑣 |𝐶′𝑣 |.
We conclude that, in this case, the dierence between 𝐺′𝑛 and 𝜇′(𝐺𝑛) is Ω(

∑
𝑣:𝜇(𝑣)≠𝑣 |𝐶′𝑣 |) =

Ω( |𝑇 ′|).
Case 3:

∑
𝑣∈[𝑛] |𝐶′′𝑣 | = Ω( |𝑇 ′|), where 𝐶′′𝑣

def
= {〈𝑣, 𝑢〉 ∈𝐶𝑣 : 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝑣 \ {〈𝑣, 𝑢〉}}.

(This refers to the case that many vertices are mapped by 𝜇′ to a dierent vertex in the
same expander in which they reside.)36

36 Note that if 〈𝑣, 𝑢〉 ∈ 𝐶𝑣 is not mapped by 𝜇′ to 𝐶𝑣, then either 𝜇′(〈𝑣, 𝑢〉) ∉ 𝐶𝜇 (𝑣) holds (i.e., Case 1) or 𝜇′(〈𝑣, 𝑢〉) ∈ 𝐶𝜇 (𝑣) such
that 𝜇(𝑣) ≠ 𝑣 (i.e., Case 2). Hence, if 〈𝑢, 𝑣〉 ∈ 𝑇 ′ is not counted in Cases 1 and 2, then it must be counted in Case 3.
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(This case would have been easy to handle if the expanders used on the 𝐶𝑣’s were robustly
self-ordered. Needless to say, we want to avoid such an assumption. Instead, we rely on the
fact that in 𝐺′𝑛 dierent vertices in 𝐶𝑣 are connected to dierent 𝐶𝑢’s.)
We may assume that

∑
𝑣∈[𝑛] |𝐶′′𝑣 | ≥ 2 ·∑𝑣∈[𝑛] |{〈𝑣, 𝑢〉 ∈𝐶𝑣 : 𝜇′(〈𝑣, 𝑢〉) ∉ 𝐶𝑣}|, since otherwise

we are done by either Case 1 or Case 2 (see Footnote 36). Now, consider a generic 〈𝑣, 𝑢〉 ∈ 𝐶′′𝑣 ,
and let 𝑤 ≠ 𝑢 be such that 𝜇′(〈𝑣, 𝑢〉) = 〈𝑣, 𝑤〉. Then, in 𝜇′(𝐺′𝑛) an edge colored either 0
or 2 connects 〈𝑣, 𝑤〉 = 𝜇′(〈𝑣, 𝑢〉) to 𝜇′(〈𝑢, 𝑣〉), since 〈𝑣, 𝑢〉 and 〈𝑢, 𝑣〉 are so connected in 𝐺′𝑛,
whereas in 𝐺′𝑛 an even-colored edge connects 〈𝑣, 𝑤〉 to 〈𝑤, 𝑣〉 ∈ 𝐶𝑤. Recall, however, that
〈𝑣, 𝑤〉 is incident to a single even-colored edge. We consider two sub-cases.

If 𝜇′(〈𝑢, 𝑣〉) ∈ 𝐶𝑢, then 〈𝑣, 𝑤〉 contributes to the dierence between 𝜇′(𝐺′𝑛) and 𝐺′𝑛,
because in 𝜇′(𝐺′𝑛) vertex 〈𝑣, 𝑤〉 is connected (by its unique even-colored edge) to a
vertex in 𝐶𝑢 whereas in 𝐺′𝑛 vertex 〈𝑣, 𝑤〉 is connected (by its unique even-colored edge)
to a vertex in 𝐶𝑤.
(Recall that 𝑤 is uniquely determined by 〈𝑣, 𝑢〉 ∈ 𝐶′′𝑛 , since 𝜇′(〈𝑣, 𝑢〉) = 〈𝑣, 𝑤〉, and so
this contribution can be charged to 〈𝑣, 𝑢〉.)
If 𝜇′(〈𝑢, 𝑣〉) ∉ 𝐶𝑢, then 〈𝑢, 𝑣〉 resides in the set

⋃
𝑥∈[𝑛]{〈𝑥, 𝑦〉 ∈ 𝐶𝑥 : 𝜇′(〈𝑥, 𝑦〉) ∉ 𝐶𝑥},

which (by the hypothesis) has size at most 0.5 ·∑𝑣∈[𝑛] |𝐶′′𝑣 |
Hence, at least half of

⋃
𝑣∈[𝑛] 𝐶

′′
𝑣 appears in the rst sub-case, which implies that, in this

case, the dierence between 𝐺′𝑛 and 𝜇′(𝐺𝑛) is at least 1
2 ·

∑
𝑣∈[𝑛] |𝐶′′𝑣 | = Ω( |𝑇 ′|).

Hence, the dierence between 𝐺′𝑛 and 𝜇′(𝐺𝑛) is Ω( |𝑇 ′|). �

8. Relation to Non-Malleable Two-Source Extractors

For 𝑛 = 2�, we reduce the construction of Ω(𝑛)-robustly self-ordered (dense) 𝑛-vertex graphs to
the construction of non-malleable two-source extractors for (�, � − 𝑂(1))-sources. Recall that a
random variable 𝑋 is called an (�, 𝑘)-source if 𝑋 is distributed over [2�] and has min-entropy at
least 𝑘 (i.e., Pr[𝑋 = 𝑖] ≤ 2−𝑘 for every 𝑖 ∈ [2�]).37 A function E : [2�] × [2�] → {0, 1}𝑚 is called a
(standard) two-source (𝑘, 𝜖)-extractor if, for every two independent (�, 𝑘)-sources 𝑋 and 𝑌 , it
holds that E(𝑋,𝑌 ) is 𝜖-close to the uniform distribution over {0, 1}𝑚, denoted𝑈𝑚. Our notion of
a non-malleable two-source extractor, presented next, is one of (the weakest of) the notions
considered in [8, 7].

DEF IN IT ION 8.1 (Non-malleable two-source extractors [7, Def. 1.3]). A function nmE : [2�] ×
[2�] → {0, 1}𝑚 is called a non-malleable two-source (𝑘, 𝜖)-extractor if, for every two indepen-
dent (�, 𝑘)-sources 𝑋 and 𝑌 , and for every two functions 𝑓 , 𝑔 : [2�] → [2�] such that at

37 Indeed, for the sake of simplicity (of our arguments), we do not require that � ∈ N, but rather only that 2� ∈ N;
consequently, we consider distributions over [2�] rather than over {0, 1}�.
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least one of them has no xed-points, it holds that (nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))) is 𝜖-close to
(𝑈𝑚, nmE( 𝑓 (𝑋), 𝑔 (𝑌 )); that is,

1
2
·
∑︁
𝛼,𝛽

��Pr[(nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 )))= (𝛼, 𝛽)] − 2−𝑚 · Pr[nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))= 𝛽]�� ≤ 𝜖. (18)

The parameter 𝜖 is called the error of the extractor.

We shall be interested in the special case in which 𝑓 and 𝑔 are permutations. In this case,
the foregoing condition (i.e., (18)) can be replaced by requiring that (nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 )))
is 2𝜖-close to the uniform distribution over {0, 1}𝑚+𝑚.38 Furthermore, we shall focus on non-
malleable two-source (𝑘, 𝜖)-extractors that output a single bit (i.e., 𝑚 = 1), and in this case
non-triviality mandates 𝜖 < 0.5. In general, we view 𝜖 as a constant, but view � and 𝑘 as varying
(or generic) parameters, and focus on the case of 𝑘 = � − 𝑂(1).

Recall that constructions of non-malleable two-source (𝑘, 𝜖)-extractors with much better
parameters are known [7, Thm. 1]. In particular, these constructions support 𝑘 = � − �Ω(1) ,
negligible error (i.e., 𝜖 = exp(−�Ω(1))), and 𝑚 = �Ω(1) . We stress that, as is the norm in the
context of randomness extraction, the extracting function is computable in polynomial-time
(i.e., in poly(�)-time).

We shall show that any non-malleable two-source (� − 𝑂(1), 0.49)-extractor (for sources
over [2�]) yields Ω(2�)-robustly self-ordered 𝑂(2�)-vertex graphs. Actually, we shall show two
such constructions: The rst construction runs in poly(2�)-time, and the second construction
provides strong constructability (a.k.a local computability) as claimed in Theorem 1.4. Both
constructions use a similar underlying reasoning, which is more transparent in the rst con-
struction.

8.1 The first construction

For the rst construction, we need the extractor to satisfy the following natural (and quite
minimal) requirement, which we call quasi-orthogonality. We say that an extractor nmE :
[2�] × [2�] → {0, 1} is quasi-orthogonal (with error 𝜖) if the following conditions hold:
1. The residual function obtained from nmE by any xing of one of its two arguments is almost

unbiased: For every 𝑥 ∈ [2�] and every 𝜎 ∈ {0, 1} it holds that |{ 𝑦 ∈ [2�] : nmE(𝑥, 𝑦)=𝜎}| ≤
(0.5 + 𝜖) · 2�; ditto for every 𝑦 ∈ [2�] and the corresponding set {𝑥 ∈ [2�] : nmE(𝑥, 𝑦)=𝜎]}.

2. The residual functions obtained from nmE by any two dierent xings of one of its two ar-
guments are almost uncorrelated: For every {𝑥, 𝑥′} ∈

([2�]
2

)
it holds that |{ 𝑦 ∈ [2�] :

nmE(𝑥, 𝑦) ≠ nmE(𝑥′, 𝑦)}| ≥ (0.5 − 𝜖) · 2�; ditto for every { 𝑦, 𝑦′} ∈
([2�]
2

)
and the corre-

sponding set {𝑥 ∈ [2�] : nmE(𝑥, 𝑦)≠nmE(𝑥, 𝑦′)]}.

38 In this case, 𝑓 (𝑋) and 𝑔 (𝑌 ) have min-entropy at least 𝑘, which implies that nmE( 𝑓 (𝑋), 𝑔 (𝑌 )) is 𝜖-close to the uniform
distribution over {0, 1}𝑚.
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As shown in Proposition 8.2, any non-malleable two-source (𝑘, 𝜖)-extractor can be transformed
(in poly(2�)-time) to a quasi-orthogonal one at a cost of a small degradation in the parameters
(i.e., 𝜖 increases by an additive term of 𝑂(2−(�−𝑘)) and 2� decreases by an additive term of
𝑂(2𝑘)). Note that poly(2�)-time is acceptablewhen one aims at constructing𝑂(2�)-vertex graphs;
however, aiming at strong/local constructability (as in Theorem 1.4), we shall avoid such a
transformation in the second construction (presented in Section 8.2).

PROPOS IT ION 8.2 (Transforming non-malleable two-source extractors into ones that are
quasi-orthogonal). For every 𝑘 ≤ � − 3, there exists a poly(2�)-time transformation that given
a non-malleable two-source (𝑘, 𝜖)-extractor nmE : [2�] × [2�] → {0, 1}, returns a non-malleable
two-source (𝑘, 𝜖′)-extractor nmE′ : [𝑛′] × [𝑛′] → {0, 1} such that 𝑛′ ≥ 2� − 𝑂(2𝑘) and nmE′ is
quasi-orthogonal with error 𝜖′ = 𝜖 + 𝑂(2𝑘/𝑛′).

PROOF. Essentially, nmE′ is obtained from nmE by simply discarding inputs that violate the
quasi-orthogonality conditions. Letting 𝑛 = 2�, rst note that the number of 𝑥’s that violate the
rst condition is at most 2𝑘+1, because otherwise we obtain a contradiction to the hypothesis
that nmE is a two-source (𝑘, 𝜖)-extractor (by letting 𝑋 be uniform on the 𝑥’s that satisfy |{ 𝑦 ∈
[𝑛] : nmE(𝑥, 𝑦) = 𝜎}| > (0.5 + 𝜖) · 𝑛 for either 𝜎 = 0 or 𝜎 = 1, and 𝑌 be uniform on [𝑛]). Next,
consider the residual (𝑘, 𝜖)-extractor nmE1 : [𝑛1] × [𝑛1] → {0, 1}, where 𝑛1 ≥ 𝑛 − 2𝑘+1, obtained
by omitting the exceptional 𝑥’s. Note that nmE1 satises the rst quasi-orthogonality condition
with respect to the rst argument with error 𝜖. Doing the same for the second argument yields
a residual (𝑘, 𝜖)-extractor nmE2 : [𝑛2] × [𝑛2] → {0, 1}, where 𝑛2 ≥ 𝑛1 − 2𝑘+1 and nmE2 satises
the rst quasi-orthogonality condition (for both arguments) with error 𝜖 + 2𝑘+1

𝑛1
. Likewise,

we claim that there are at most 2𝑘 disjoint pairs {𝑥, 𝑥′}’s that violate the second condition
(i.e., |{ 𝑦 ∈ [𝑛2] : nmE2(𝑥, 𝑦) ≠ nmE2(𝑥′, 𝑦)}| ≥ (0.5 − 𝜖) · 𝑛2), because otherwise we obtain a
contradiction to the hypothesis that nmE2 is a non-malleable two-source (𝑘, 𝜖)-extractor (by using
a function 𝑓 that maps each such 𝑥 to its matched 𝑥′, and the identity permutation 𝑔).39 And,
again, we consider a residual extractor obtained by omitting the exceptional pairs. Doing the
same for the 𝑦’s, we obtained the desired extractor. �

Recall that non-malleable two-source extractors with much stronger parameters than we
need (i.e., min-entropy � − �Ω(1) , negligible error, and �Ω(1) bits of output), were constructed
in [7, Thm. 1], but these extractors are not quasi-orthogonal. Employing Proposition 8.2, we
obtain a quasi-orthogonal non-malleable two-source (� − 4, 0.1)-extractor that can be used
in the construction of the following Theorem 8.3. Essentially, the construction consists of a
bipartite graph, with 2� vertices on each side, such that the edges between the two sides are

39 Formally, denoting the exceptional pairs by (𝑥𝑖 , 𝑥 ′𝑖 ), where 𝑖 ∈ [2𝑘], we define 𝑓 such that 𝑓 (𝑥𝑖) = 𝑥 ′
𝑖
for each 𝑖 ∈ [2𝑘],

and let 𝑋 be uniform on {𝑥𝑖 : 𝑖 ∈ [2𝑘]} and 𝑌 be uniform on [𝑛2]. Then, Pr[nmE2 (𝑋,𝑌 ) ≠ nmE2 ( 𝑓 (𝑋), 𝑔 (𝑌 ))] < 0.5 − 𝜖, in
contradiction to the hypothesis regarding nmE2.
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Figure 1. Illustrating the construction of Theorem 8.3.

determined by the extractor. In addition, we add a clique on one of the two sides so that the two
sides are (robustly) distinguishable (see Figure 1). We stress that the resulting 2�+1-vertex graph
is Ω(2�)-robustly self-ordered as long as the non-malleable extractor is quasi-orthogonal and
works for very mild parameters; that is, we only require error that is bounded away from 1/2
with respect to min-entropy � − 𝑂(1).

THEOREM 8.3 (Using a quasi-orthogonal non-malleable two-source extractor to obtain a
Ω(2�)-robustly self-ordered 𝑂(2�)-vertex graph). For a constant 𝜖 ∈ (0, 0.5) varying � ≥ 𝑘

such that 𝑘 ≤ � − 2 + log2(0.5 − 𝜖) = � − 𝑂(1), suppose that nmE : [2�] × [2�] → {0, 1} is a
quasi-orthogonal (with error 𝜖) non-malleable two-source (𝑘, 𝜖)-extractor. Then, the 2�+1-vertex
graph 𝐺 = (𝑉1 ∪𝑉0, 𝐸) such that 𝑉𝜎 = {〈𝜎, 𝑖〉 : 𝑖 ∈ [2�]} and

𝐸 = {{〈1, 𝑖〉, 〈0, 𝑗〉} :nmE(𝑖, 𝑗)=1} ∪
(
𝑉1
2

)
(19)

is Ω( |𝑉1 ∪ 𝑉0 |)-robustly self-ordered. Furthermore, the claim holds even if the non-malleability
condition (i.e., (18)) holds only for permutations 𝑓 and 𝑔 that have no xed-points.

Indeed, the rst set of edges, denoted 𝐸′, corresponds to a bipartite graph between 𝑉1
and 𝑉0 that is determined by nmE, and the second set corresponds to a 2�-vertex clique (see
Figure 1). Note that the extraction parameters are extremely weak; that is, the min-entropy
may be very high (i.e., 𝑘 = � − 𝑂(1)), the error may be an arbitrary non-trivial constant (i.e.,
𝜖 < 1/2), and we only extract one bit (i.e., 𝑚 = 1).

PROOF. Let 𝑉 = 𝑉1 ∪ 𝑉0, and consider an arbitrary (non-trivial) permutation 𝜇 : 𝑉 → 𝑉 .
Intuitively, if 𝜇 maps a vertex of 𝑉1 to 𝑉0, then the dierence in degrees of vertices in the two
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sets (caused by the clique edges) contributes at least (2� − 1) − 2𝜖 · 2� units to the symmetric
dierence between 𝐺 and 𝜇(𝐺), where here we use the rst quasi-orthogonality condition. On
the other hand, if 𝜇 maps 〈1, 𝑖〉 ∈ 𝑉1 to 𝑉1 \ {〈1, 𝑖〉}, then the dierence in the neighborhoods
caused by the bipartite graph contributes at least (0.5 − 𝜖) · 2� units to the symmetric dierence
between 𝐺 and 𝜇(𝐺). To prove this, we distinguish between the case that 𝜇 has relatively few
non-xed-points (in either 𝑉0 or 𝑉1), which is analyzed using the second quasi-orthogonality
condition, and the case that 𝜇 has relatively many non-xed-points (in both𝑉0 and𝑉1), which is
analyzed using the non-malleability condition. Details follow.

Let 𝑇 = {𝑣∈𝑉 :𝜇(𝑣) ≠ 𝑣} denote the set of non-xed-points of 𝜇. Then, we consider two
types of vertices: Those that belong to the set 𝑇 ′ =

⋃
𝜎∈{0,1}{𝑣∈𝑉𝜎 :𝜇(𝑣) ∉ 𝑉𝜎} ⊆ 𝑇 and those that

belong to𝑇 \𝑇 ′. The threshold for distinguishing these cases is set to 𝐾 = (0.5− 𝜖) · 2�−2 = Ω( |𝑉 |).

Case 1: |𝑇 ′| ≥ 𝐾 .
(This refers to the case that many vertices are mapped by 𝜇 to the opposite side of the
bipartite graph (𝑉, 𝐸′), where ‘many’ means Ω( |𝑉 |).)
Each vertex in 𝑇 ′ contributes (1 − 2𝜖) · 2� − 1 units to the symmetric dierence between 𝐺
and 𝜇(𝐺), because the degree of each vertex in𝑉1 is at least (2�−1)+ (0.5−𝜖) ·2�, whereas the
degree of each vertex in𝑉0 is at most (0.5+𝜖) ·2�, where we use the rst quasi-orthogonality
condition, which implies that the number of bipartite edges incident at each vertex is at
least (0.5 − 𝜖) · 2� and at most (0.5 + 𝜖) · 2�.
Hence, the symmetric dierence between 𝐺 and 𝜇(𝐺) is at least ((1 − 2𝜖) · 2� − 1) · |𝑇 ′| =
Ω( |𝑉 |) · |𝑇 ′|, since 2� = Ω( |𝑉 |). Using the case’s hypothesis, we have |𝑇 ′| = Ω( |𝑉 |) = Ω( |𝑇 |),
which means that in this case the dierence between 𝐺 and 𝜇(𝐺) is Ω( |𝑉 |) · |𝑇 |.
We stress that the dierence between 𝐺 and 𝜇(𝐺) is at least Ω( |𝑉 |) · |𝑇 ′| also if the case
hypothesis does not hold.

Case 2: |𝑇 ′| < 𝐾 .
(This refers to the case that few vertices are mapped by 𝜇 to the opposite side of the bipartite
graph (𝑉, 𝐸′), where ‘few’ means less than 𝐾 ≤ |𝑉 |/20 (assuming 𝜖 ≤ 0.1).)
For every 𝜎 ∈ {0, 1}, let 𝑉 ′𝜎 = 𝑉𝜎 ∩ 𝜇−1(𝑉𝜎) and 𝑇𝜎 = 𝑉 ′𝜎 ∩ 𝑇 . Indeed, (𝑇 ′, 𝑇0, 𝑇1) is a three-
way partition of 𝑇 . Note that the size of the symmetric dierence between 𝐺 and 𝜇(𝐺) is
lower-bounded by ��{(𝑣, 𝑢) ∈ 𝑉 ′1 ×𝑉 ′0 : nmE(𝜇(𝑣), 𝜇(𝑢)) ≠ nmE(𝑣, 𝑢)}

�� , (20)

since, for any (𝑣, 𝑢) ∈ 𝑉 ′1 ×𝑉 ′0, it holds that 𝜇(𝑣) neighbors 𝜇(𝑢) in 𝐺 if and only if nmE(𝜇(𝑣),
𝜇(𝑢)) = 1, whereas 𝜇(𝑣) neighbors 𝜇(𝑢) in 𝜇(𝐺) if and only if 𝑣 neighbors 𝑢 in 𝐺 which
holds if and only if nmE(𝑣, 𝑢) = 1.
We consider two sub-cases according to whether or not min( |𝑇0 |, |𝑇1 |) is relatively large.
The threshold for distinguishing these sub-cases is also set to 𝐾 = (0.5 − 𝜖) · 2�−2; note that
𝐾 = Ω( |𝑉 |) and 𝐾 ≥ 2𝑘.
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Case 2.1: min( |𝑇0 |, |𝑇1 |) < 𝐾 .
In this case we shall use the (second condition of) quasi-orthogonality of nmE.
Suppose, without loss of generality, that |𝑇0 | ≤ |𝑇1 |, which implies |𝑇0 | < 𝐾 . Then, the
contribution of each vertex 𝑣 ∈ 𝑇1 to (20) equals

|{𝑢 ∈ 𝑉 ′0 : nmE(𝜇(𝑣), 𝜇(𝑢)) ≠ nmE(𝑣, 𝑢)}|
≥ |{𝑢 ∈ 𝑉 ′0 : nmE(𝜇(𝑣), 𝑢) ≠ nmE(𝑣, 𝑢)}| − |𝑇0 |
≥ |{𝑢 ∈ 𝑉0 : nmE(𝜇(𝑣), 𝑢) ≠ nmE(𝑣, 𝑢)}| − |𝑇 ′| − |𝑇0 |
≥ (0.5 − 𝜖) · 2� − 2 · 𝐾
= (0.5 − 𝜖) · 2�−1

where the rst inequality uses 𝜇(𝑢) = 𝑢 for 𝑢 ∈ 𝑉 ′0 \ 𝑇0, the second inequality uses
|𝑉 ′0 | ≥ |𝑉0 | − |𝑇 ′|, the third inequality uses 𝜇(𝑣) ≠ 𝑣 along with the (second condition of)
quasi-orthogonality of nmE (and the hypotheses regarding |𝑇 ′| and |𝑇0 |), and the equality
is due to 𝐾 = (0.5 − 𝜖) · 2�−2.
Hence, in this case, the total contribution to (20) is (0.5 − 𝜖) · 2�−1 · |𝑇1 |, which is Ω( |𝑉 |) ·
( |𝑇 | − |𝑇 ′|), since |𝑇1 | ≥ (|𝑇 | − |𝑇 ′|)/2.

Case 2.2: min( |𝑇0 |, |𝑇1 |) ≥ 𝐾 .
In this case we shall use the non-malleable feature of nmE.
Specically, for each 𝜎 ∈ {0, 1}, let 𝜇𝜎 denote the restriction of 𝜇 to 𝑇𝜎. Essentially, using
𝐾 ≥ 2𝑘, the non-malleability condition of the (𝑘, 𝜖)-extractor nmE implies

|{(𝑖, 𝑗) ∈ 𝑇0 × 𝑇1 : nmE(𝑖, 𝑗) ≠ nmE(𝜇0(𝑖), 𝜇1( 𝑗))}| ≥ (0.5 − 𝜖) · |𝑇0 | · |𝑇1 |.

This can be seen by letting 𝑋 and𝑌 be uniform over𝑇0 and𝑇1, respectively. (Also, for sake
of formality, we extend 𝜇0 and 𝜇1 (which have no xed-points) to (arbitrary) derange-
ments 𝑓 and 𝑔 , respectively.)40 In this case, the non-malleability condition implies that
the distribution (nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))) is 𝜖-close to (𝑈1, nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))), which
implies that Pr[nmE(𝑋,𝑌 ) ≠ nmE(𝜇0(𝑋), 𝜇1(𝑌 ))] is at least Pr[𝑈1 ≠ nmE(𝜇0(𝑋), 𝜇1(𝑌 ))] −
𝜖 = 0.5 − 𝜖.
Hence, in this case, the total contribution to (20) is (0.5−𝜖) · |𝑇0 | · |𝑇1 | = Ω( |𝑉 |) · ( |𝑇 | − |𝑇 ′|),
where we use min( |𝑇0 |, |𝑇1 |) = Ω( |𝑉 |) and |𝑇0 | + |𝑇1 | = |𝑇 | − |𝑇 ′|.

Hence, in both sub-cases, the dierence between 𝐺 and 𝜇(𝐺) is Ω( |𝑉 |) · ( |𝑇 | − |𝑇 ′|).

Recall that (by the last comment at Case 1) the dierence between 𝐺 and 𝜇(𝐺) is Ω( |𝑉 |) · |𝑇 ′|.
Combining this lower-bound with the conclusion of Case 2, the dierence between 𝐺 and 𝜇(𝐺)
is Ω( |𝑉 |) · |𝑇 |. �

40 Note that we may assume, w.l.o.g., that |𝑇𝜎 ∪ 𝜇(𝑇𝜎) | ≤ |𝑉𝜎 | − 2.
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Digest: Note that the quasi-orthogonality of nmE was used in Cases 1 and 2.1, whereas the non-
malleability of nmE (w.r.t derangements) was used in Case 2.2. In particular, Case 1 only uses the
rst condition of quasi-orthogonality, and does so in order to infer that the degrees of all vertices
in the bipartite graph are approximately equal. In Case 2.1 the second quasi-orthogonality
condition is used in order to assert that the neighborhoods of two dierent vertices in 𝑉𝜎
are signicantly dierent. This is useful only when the number of non-xed-points in 𝑉1−𝜎 is
relatively small. When the number of non-xed-points in both 𝑉𝜎’s is large but few vertices
are mapped to the other side (i.e., |𝑇 ′| � |𝑇 |), we only use Case 2.2, which does not refer to
quasi-orthogonality at all. Hence, we have the following –

REMARK 8.4 (A special case of Theorem 8.3). For bipartite graphs 𝐺 = (𝑉, 𝐸) such that
𝑉 = 𝑉0 ∪ 𝑉1 and 𝐸 ⊆ 𝑉0 × 𝑉1, we consider the special case of robust self-ordering that refers
only to permutations 𝜇 : 𝑉 → 𝑉 that are derangements that preserve the bipartition of𝑉 (i.e., 𝜇
has no xed-points and 𝜇(𝑉0) = 𝑉0).41 In this case, assuming (only) that nmE is a non-malleable
two-source (�, 𝜖)-extractor (i.e., the case of 𝑘 = �), implies that, for any such 𝜇, the size of
the symmetric dierence between 𝐺 and 𝜇(𝐺) is (0.5 ± 𝜖) · |𝑉0 | · |𝑉1 |. Furthermore, the claim
holds even if the non-malleability condition holds only for permutations 𝑓 and 𝑔 that have no
xed-points (i.e., derangements), and the quasi-orthogonality condition is not necessary. Note
that the proof of Theorem 8.3 simplies, since 𝑇 ′ = ∅ and 𝑇𝜎 = 𝑉𝜎 = 𝑉 ′𝜎 hold, and the size of the
symmetric dierence between 𝐺 and 𝜇(𝐺) equal the quantity in (20).

Interestingly, the special case of Theorem 8.3 asserted in Remark 8.4 can be reversed in
the sense that a bipartite graph that is robustly self-ordered in the foregoing restricted sense
is actually a non-malleable two-source (�, 0.5 − Ω(1))-extractor (w.r.t derangement). In the
following result 𝜖 is an arbitrary constant (in (0, 0.5)), whereas 𝐺 varies and 𝑜(1) vanishes
with |𝑉 |.

PROPOS IT ION 8.5 (A reversal of the special case of Theorem 8.3 (i.e., of Remark 8.4)). Let
𝐺 = (𝑉0 ∪ 𝑉1, 𝐸) be a bipartite graph such that |𝑉0 | = |𝑉1 | and 𝐸 ⊆ 𝑉0 × 𝑉1. Let 𝑉 = 𝑉0 ∪ 𝑉1, and
suppose that for every derangement 𝜇 : 𝑉 → 𝑉 such that 𝜇(𝑉0) = 𝑉0 it holds that the size of the
symmetric dierence between 𝐺 and 𝜇(𝐺) is (0.5 ± 𝜖) · |𝑉0 | · |𝑉1 |. Then, 𝐹 : 𝑉0 ×𝑉1 → {0, 1} such
that 𝐹 (𝑥, 𝑦) = 1 if and only if {𝑥, 𝑦} ∈ 𝐸 is a non-malleable two-source (�, 𝜖+

√
2𝜖+𝑜(1))-extractor

w.r.t derangement.42

Needless to say, the claim holds also if 𝐺 is augmented by complete graph on the vertex-
set 𝑉1. Note that we lose a

√
2𝜖 + 𝑜(1) term in the reversal.

41 That is, the requirement regarding the symmetric difference between 𝐺 and 𝜇(𝐺) is made only for permutations 𝜇
that have no fixed-points and satisfy 𝜇(𝑉0) = 𝑉0.

42 That is, the non-malleability condition (i.e., (18)) is guaranteed only for permutations 𝑓 and 𝑔 that have no fixed-points.
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PROOF. Let ( 𝑓 , 𝑔) and (𝑋,𝑌 ) be as in Denition 8.1, and note that in this case 𝑋 and 𝑌 are
independent distributions that are each uniformly distributed on [2�]. Dene 𝜇 : 𝑉 → 𝑉 such
that 𝜇(𝑧) = 𝑓 (𝑧) if 𝑧 ∈ 𝑉0 and 𝜇(𝑧) = 𝑔 (𝑧) otherwise, and note that 𝜇 is a derangement that
preserves the partition of 𝑉 . Recall that (𝜇(𝑥), 𝜇( 𝑦)) contributes to the symmetric dierence
between 𝐺 and 𝜇(𝐺) if and only if 𝐹 (𝜇(𝑥), 𝜇( 𝑦)) ≠ 𝐹 (𝑥, 𝑦), since 𝜇(𝑥) is connected to 𝜇( 𝑦)
in 𝜇(𝐺) if and only if 𝑥 is connected to 𝑦 in 𝐺. Hence, by the hypothesis, we have

Pr[𝐹 (𝑋,𝑌 ) ≠ 𝐹 (𝜇(𝑋), 𝜇(𝑌 ))] = 0.5 ± 𝜖. (21)

Letting 𝑝𝜇𝜎,𝜏
def
= Pr[(𝐹 (𝑋,𝑌 ), 𝐹 (𝜇(𝑋), 𝜇(𝑌 ))) = (𝜎, 𝜏)], we have 𝑝𝜇0,1 + 𝑝

𝜇
1,0 = 0.5 ± 𝜖, and using

the fact that (𝑋,𝑌 ) and (𝜇(𝑋), 𝜇(𝑌 )) are identically distributed we have 𝑝𝜇1,0 = 𝑝
𝜇
0,1 (since

𝑝
𝜇
1,1+𝑝

𝜇
1,0 = 𝑝

𝜇
1,1+𝑝

𝜇
0,1). Hence, 𝑝

𝜇
0,1 = 0.25±0.5𝜖. Lastly, we show that 𝑝𝜇1,1+𝑝

𝜇
1,0 = 0.5±

√︁
𝜖/2+𝑜(1),

and conclude that 𝑝𝜇1,1 = 0.25 ± (0.5𝜖 +
√︁
𝜖/2 + 𝑜(1)); it follows that 𝐹 is a non-malleable (two-

source) (�, 𝜖 +
√
2𝜖 + 𝑜(1))-extractor.

To show that 𝑝𝜇1,1+𝑝
𝜇
1,0 = 0.5±

√︁
𝜖/2+𝑜(1), we rst note that 𝑝 def

= 𝑝
𝜇
1,1+𝑝

𝜇
1,0 = Pr[𝐹 (𝑋,𝑌 )=1]

is actually oblivious of 𝜇. Hence, by considering a random derangement 𝜇 that preserves 𝑉0
(i.e., 𝜇(𝑉0) = 𝑉0), we observe that, with overwhelmingly high probability (over the choice of 𝜇),
it holds that {(𝑥, 𝑦) ∈𝑉0 × 𝑉1 : 𝐹 (𝑥, 𝑦) ≠ 𝐹 (𝜇(𝑥), 𝜇( 𝑦))} has size (2𝑝(1 − 𝑝) ± 𝑜(1)) · |𝑉0 | · |𝑉1 |.
Confronting this with (21), we infer that 𝑝 = 0.5 ± (

√︁
𝜖/2 + 𝑜(1)). �

Corollary. Combining Theorem 8.3 with the non-malleable two-source extractors of [7, Thm. 1],
while using Proposition 8.2, we obtain an ecient construction of Ω(𝑛)-robustly self-ordered
graphs (alas not a strongly explicit (aka locally computable) one).

THEOREM 8.6 (Constructing Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs). There exist an
algorithm that, on input 𝑛, works in poly(𝑛)-time and outputs an explicit description of an Ω(𝑛)-
robustly self-ordered 𝑂(𝑛)-vertex graph. Furthermore, each vertex in this graph has degree at
least 0.24 · 𝑛 and at most 0.76 · 𝑛.

The degree bounds follow by observing that the vertices in the graph described in Theo-
rem 8.3 have degree at least (0.5−𝜖) ·𝑛/2 and at most (1.5+𝜖) ·𝑛/2, whereas [7, Thm. 1] provides
for 𝜖 = 𝑜(1).

8.2 The second construction

Combining Theorem 8.3 with the non-malleable two-source extractors of [7, Thm. 1], while
using Proposition 8.2, we obtained an ecient construction of Ω(𝑛)-robustly self-ordered 𝑛-
vertex graphs (see Theorem 8.6). Unfortunately, this construction is not locally computable (as
postulated in Theorem 1.4), because the non-malleable two-source extractors of [7, Thm. 1] are
not quasi-orthogonal and the transformation of Proposition 8.2 runs in time that is polynomial
in the size of the resulting graph.
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To avoid the foregoing transformation and prove Theorem 1.4, we employ a variant on
the construction presented in Theorem 8.3. Rather than connecting two sets of vertices using a
bipartite graph that corresponds to a quasi-orthogonal non-malleable two-source extractor, we
connect three sets of vertices such that one pair of vertex-sets is connected by a (not necessarily
quasi-orthogonal) non-malleable two-source extractor, whereas the other two pairs are con-
nected by bipartite graphs that are merely quasi-orthogonal. In analogy to the denition of a
quasi-orthogonal (two-source) extractor, we say that a bipartite graph on the vertex-set 𝑋 ∪ 𝑌
is quasi-orthogonal (with error 𝜖) if the following two conditions hold regarding its adjacency
predicate 𝐵 : 𝑋 × 𝑌 → {0, 1}:

1. The degree of each vertex is approximately half the number of the vertices on the other side:
For each 𝑥 ∈ 𝑋 (resp., 𝑦 ∈ 𝑌 ), it holds that |{ 𝑦 ∈ 𝑌 : 𝐵(𝑥, 𝑦) = 1}| = (0.5 ± 𝜖) · |𝑌 | (resp.,
|{𝑥 ∈𝑋 :𝐵(𝑥, 𝑦)=1}| = (0.5 ± 𝜖) · |𝑋 |).

2. For each pair of vertices on one side, approximately half the vertices on the other side
neighbor exactly one of the vertices in the pair: For every 𝑥 ≠ 𝑥′ ∈ 𝑋 , it holds that
|{ 𝑦 ∈𝑌 :𝐵(𝑥, 𝑦)≠𝐵(𝑥′, 𝑦)}| = (0.5 ± 𝜖) · |𝑌 |. Similarly, for 𝑦 ≠ 𝑦′ ∈ 𝑌 .

We note that inner-product (mod 2) extractor, denoted 𝐸2 : {0, 1}�×{0, 1}� → {0, 1}, corresponds
to a quasi-orthogonal bipartite graph for the case 𝑋 = 𝑌 = {0, 1}� \ {0�}. We will however
need quasi-orthogonal bipartite graphs with dierent-sized sides, which can be obtained by
a simple variant. Specically, for the case of 𝑋 = {0, 1}� \ {0�} and 𝑌 = {0, 1}�+2 \ {0�+2}, we
use the function 𝐵(𝑥, 𝑦) = 𝐸2(𝐺(𝑥), 𝑦), where 𝐺 : {0, 1}� → {0, 1}�+2 is a small-bias generator
that satises 𝐺(𝑥) ≠ 0�+2 and 𝐺(𝑥) ≠ 𝐺(𝑥′) for every 𝑥 ≠ 0� and 𝑥′ ≠ 𝑥 (see Proposition 8.8,
and note that 𝐺(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎, 𝑏, 𝑐, 𝑑, 𝐸2(𝑎, 𝑏), 𝐸2(𝑐, 𝑑)) will do). We stress that the foregoing
construction is strongly explicit (i.e., locally computable).

We shall also assume that the (bipartite graph corresponding to the) non-malleable ex-
tractor nmE : [2� − 1] × [2� − 1] → {0, 1} has linear degrees in the sense that for every 𝑥 it holds
that |{ 𝑦 ∈ [2� − 1] : nmE(𝑥, 𝑦) = 1}| ≥ 𝜖′ · 2� for some constant 𝜖′ > 0. This can be enforced by
starting with an arbitrary non-malleable two-source (𝑘, 𝜖′)-extractor (e.g., the one of [7, Thm. 1])
and resetting pairs in𝑚 = 𝜖′ · 2� xed perfect matchings to 1 (i.e., for each (𝑥, 𝑦) in one of these
matching, we reset nmE(𝑥, 𝑦) ← 1).43 This increases the error of the extractor by an additive
term of 𝑚/2𝑘 = 2�−𝑘 · 𝜖′, which we can aord (e.g., 𝜖′ = 0.01 and 𝑘 = � − 4, yields extraction
error 𝜖 < 0.2). We stress that this transformation preserves polynomial-time computability of
the extracting function.

THEOREM 8.7 (Using a non-malleable two-source extractorwith linear degrees to obtain a
Ω(2�)-robustly self-ordered𝑂(2�)-vertex graph). For any constants 𝜖, 𝜖′ ∈ (0, 0.5) and varying

43 For example, we may use the matchings {(𝑧, 𝑧 + 𝑖) : 𝑧 ∈ [2� − 1]} for 𝑖 ∈ [𝑚], where addition is mod 2� − 1. Furthermore,
starting from an extractor that is defined over �-bit strings, we may omit one of these strings (and obtain an extractor
defined over [2� − 1]).
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Figure 2. Illustrating the construction of Theorem 8.7.

𝑘 ≤ � − 4, where � ∈ N, suppose that nmE : [2� − 1] × [2� − 1] → {0, 1} is a non-malleable two-
source (𝑘, 𝜖)-extractor such that for every 𝑥 it holds that |{ 𝑦 ∈ [2� − 1] :nmE(𝑥, 𝑦) =1}| > 𝜖′ · 2�.
Further suppose that 𝐵 : [2� − 1] × [2�+2 − 1] → {0, 1} is quasi-orthogonal with error 0.1 · 𝜖′.
Then, the (6 · 2� − 3)-vertex graph 𝐺 = (𝑉0∪𝑉1∪𝑉2, 𝐸) such that𝑉𝜎 = {〈𝜎, 𝑖〉 : 𝑖 ∈ [2�𝜎 − 1]}, where
�0 = �1 = � and �2 = � + 2, and

𝐸 = {{〈1, 𝑖〉, 〈0, 𝑗〉} :nmE(𝑖, 𝑗)=1} ∪ {{〈𝜎, 𝑖〉, 〈2, 𝑗〉} :𝐵(𝑖, 𝑗)=1, 𝜎 ∈ {0, 1}} ∪
(
𝑉1
2

)
∪

(
𝑉2
2

)
(22)

isΩ( |𝑉 |)-robustly self-ordered, where𝑉 = 𝑉0∪𝑉1∪𝑉2. Furthermore, each vertex in this graph has
degree at least 0.3 · |𝑉 | and at most 0.9 · |𝑉 |. Moreover, the claim holds even if the non-malleability
condition (i.e., (18)) holds only for permutations 𝑓 and 𝑔 that have no xed-points.

Using the foregoing ingredients (including the non-malleable extractor of [7, Thm. 1]),
Theorem 1.4 follows (see also Remark 8.9). Looking at (22), note that the rst set of edges
corresponds to a bipartite graph between 𝑉1 and 𝑉0 that is determined by nmE, the second set
corresponds the bipartite graphs between 𝑉𝜎 (for 𝜎 ∈ {0, 1}) and 𝑉2 that are determined by 𝐵,
and the other two sets correspond to cliques on 𝑉1 and on 𝑉2 (see Figure 2).

PROOF. Recall that 𝑉 = 𝑉0 ∪ 𝑉1 ∪ 𝑉2, and consider an arbitrary (non-trivial) permutation
𝜇 : 𝑉 → 𝑉 . Intuitively, if 𝜇 maps a vertex of 𝑉0 (or 𝑉1) to 𝑉2, then the dierence in the degrees
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of the vertices in the two sets (caused by the |𝑉2 |-clique edges) contributes Ω( |𝑉 |) units to the
symmetric dierence between 𝐺 and 𝜇(𝐺), where here we use the rst quasi-orthogonality
condition of 𝐵. A similar argument, which uses the 𝑉1-clique edges and relies on the linear
degrees of nmE, applies to a vertex of 𝑉𝜎 mapped to 𝑉1−𝜎 for any 𝜎 ∈ {0, 1}. On the other hand,
if for some 𝜎 ∈ {0, 1, 2} the bijection 𝜇 maps 〈𝜎, 𝑖〉 ∈ 𝑉𝜎 to 𝑉𝜎 \ {〈𝜎, 𝑖〉}, then the dierence in
the neighborhoods caused by one of the two relevant bipartite graphs contributes Ω( |𝑉 |) units
to the symmetric dierence between 𝐺 and 𝜇(𝐺). Here, we distinguishes between the case
that 𝜇 has relatively few non-xed-points in either 𝑉0 or 𝑉1, which is analyzed using the second
quasi-orthogonality condition of 𝐵, and the case that 𝜇 has relatively many non-xed-points
in both 𝑉0 and 𝑉1, which is analyzed using the non-malleability condition of nmE. Indeed, the
structure of the proof is similar to the one of Theorem 8.3, but the details are dierent in many
aspects, and so we provide them below.

Let 𝑇 = {𝑣∈𝑉 :𝜇(𝑣) ≠ 𝑣} denote the set of non-xed-points of 𝜇. Then, we consider two
types of vertices: Those that belong to the set𝑇 ′ =

⋃
𝜎∈{0,1,2}{𝑣∈𝑉𝜎 :𝜇(𝑣) ∉ 𝑉𝜎} ⊆ 𝑇 and those that

belong to 𝑇 \𝑇 ′. The threshold for distinguishing these cases is set to 𝐾 = (0.5− 0.1 · 𝜖′) · |𝑉0 |/4 =

Ω( |𝑉 |).44 Recall that 𝜖 denotes the extraction error of nmE, whereas 𝜖′ is the fractional degree
bound associated with its linear degrees feature, and 0.1 · 𝜖′ is the quasi-orthogonality error
of 𝐵.

Case 1: |𝑇 ′| ≥ 𝐾 .
(This refers to the case that many vertices are mapped by 𝜇 to a dierent part of the
three-way partition (𝑉0, 𝑉1, 𝑉2) of 𝑉 , where ‘many’ means Ω( |𝑉 |).)
Each vertex in 𝑇 ′ contributes Ω( |𝑉 |) units to the symmetric dierence between 𝐺 and 𝜇(𝐺),
because of the dierences in the degrees of vertices in the three parts. Specically:

Vertices in 𝑉2 have degree at least ( |𝑉2 | − 1) + (0.5 − 0.1𝜖′) · ( |𝑉0 | + |𝑉1 |) > (5 − 0.2𝜖′) ·
|𝑉0 | − 𝑂(1), where the rst term is due to the clique edges and the second term is
due to the bipartite graphs connecting 𝑉2 to 𝑉0 and to 𝑉1 (and relies on the rst quasi-
orthogonality condition of 𝐵).
Vertices in 𝑉0 have degree at most |𝑉1 | + (0.5 + 0.1𝜖′) · |𝑉2 | < (3 + 0.4𝜖′) · |𝑉0 | + 𝑂(1),
where the rst term is due to the edges (determined by nmE) connecting 𝑉0 to 𝑉1 and
the second term is due to the bipartite graph connecting 𝑉0 to 𝑉2.
Vertices in𝑉1 have degree at least ( |𝑉1 | − 1) + 𝜖′ · |𝑉0 | + (0.5 − 0.1𝜖′) · |𝑉2 | > (3 + 0.6𝜖′) ·
|𝑉0 | −𝑂(1) and at most ( |𝑉1 | −1) + |𝑉0 | + (0.5+0.1𝜖′) · |𝑉2 | < (4+0.4𝜖′) · |𝑉0 |. In both cases,
the rst term is due to clique edges, the second term is due to the edges connecting 𝑉1
to 𝑉0 (as determined by nmE), and the third term is due to the edges connecting 𝑉1 to
𝑉2 (as determined by 𝐵). The crucial fact is that the linear degrees of nmE provides a

44 The threshold is set depending on the quasi-orthogonality error of 𝐵. In the proof of Theorem 8.3, the threshold was
set depending on the quasi-orthogonality error of nmE (which equaled its extraction error).
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non-trivial lower bound (of 𝜖′ · |𝑉0 |) on the second term.
Hence, the dierence in the degrees of vertices in the dierent parts is at least 0.2𝜖′ · |𝑉0 | −
𝑂(1), where the minimum is due to the dierence between the degrees of vertices in𝑉1 and
the degrees of vertices in 𝑉0.
It follows that the symmetric dierence between 𝐺 and 𝜇(𝐺) is at least (0.2𝜖′ · |𝑉0 | −𝑂(1)) ·
|𝑇 ′| = Ω( |𝑉 |) · |𝑇 ′|, since |𝑉0 | = Ω( |𝑉 |) and 𝜖′ = Ω(1). Using the case’s hypothesis, we have
|𝑇 ′| = Ω( |𝑉 |) = Ω( |𝑇 |), which means that in this case the dierence between 𝐺 and 𝜇(𝐺) is
Ω( |𝑉 |) · |𝑇 |.
We stress that the dierence between 𝐺 and 𝜇(𝐺) is at least Ω( |𝑉 |) · |𝑇 ′| also if the case
hypothesis does not hold.

Case 2: |𝑇 ′| < 𝐾 .
(This refers to the case that few vertices are mapped by 𝜇 to a dierent part of the three-way
partition (𝑉0, 𝑉1, 𝑉2) of 𝑉 .)
For every 𝜎 ∈ {0, 1, 2}, let 𝑉 ′𝜎 = 𝑉𝜎 ∩ 𝜇−1(𝑉𝜎) and 𝑇𝜎 = 𝑉 ′𝜎 ∩ 𝑇 . Indeed, (𝑇 ′, 𝑇0, 𝑇1, 𝑇2) is a
four-way partition of 𝑇 . Note that the size of the symmetric dierence between 𝐺 and 𝜇(𝐺)
is lower-bounded by ��{(𝑣, 𝑢) ∈ 𝑉 ′1 ×𝑉 ′0 : nmE(𝜇(𝑣), 𝜇(𝑢)) ≠ nmE(𝑣, 𝑢)}

��
+

��{(𝑣, 𝑢) ∈ 𝑉 ′1 ×𝑉 ′2 : 𝐵(𝜇(𝑣), 𝜇(𝑢)) ≠ 𝐵(𝑣, 𝑢)}
��

+
��{(𝑣, 𝑢) ∈ 𝑉 ′0 ×𝑉 ′2 : 𝐵(𝜇(𝑣), 𝜇(𝑢)) ≠ 𝐵(𝑣, 𝑢)}

�� , (23)

since, for any (𝑣, 𝑢) ∈ 𝑉 ′1 ×𝑉 ′0, it holds that 𝜇(𝑣) neighbors 𝜇(𝑢) in 𝐺 if and only if nmE(𝜇(𝑣),
𝜇(𝑢)) = 1, whereas 𝜇(𝑣) neighbors 𝜇(𝑢) in 𝜇(𝐺) if and only if 𝑣 neighbors 𝑢 in 𝐺 which
holds if and only if nmE(𝑣, 𝑢) = 1. Ditto for the other two cases.
We consider two sub-cases according to whether or not min( |𝑇0 |, |𝑇1 |) is relatively large.
The threshold for distinguishing these sub-cases is also set to 𝐾 = (0.5 − 0.1 · 𝜖′) · |𝑉0 |/4;
note that 𝐾 = Ω( |𝑉 |) and 𝐾 > 0.1 · |𝑉0 | > 2�−4 ≥ 2𝑘.

Case 2.1: min( |𝑇0 |, |𝑇1 |) < 𝐾 .
In this case we shall use the quasi-orthogonality of 𝐵.
Suppose, without loss of generality, that |𝑇0 | ≤ |𝑇1 |, which implies |𝑇0 | < 𝐾 .
Depending on the relative sizes of 𝑇1 and 𝑇2, we shall use either the quasi-orthogonal
bipartite graph between 𝑉1 and 𝑉2 or the quasi-orthogonal bipartite graph between 𝑉2
and 𝑉0.

1. If |𝑇1 | > |𝑇2 |, then we consider the quasi-orthogonal bipartite graph between 𝑉1
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and 𝑉2. The contribution of each vertex 𝑣 ∈ 𝑇1 to (23) equals

|{𝑢 ∈ 𝑉 ′2 : 𝐵(𝜇(𝑣), 𝜇(𝑢)) ≠ 𝐵(𝑣, 𝑢)}|
≥ |{𝑢 ∈ 𝑉 ′2 : 𝐵(𝜇(𝑣), 𝑢) ≠ 𝐵(𝑣, 𝑢)}| − |𝑇2 |
> |{𝑢 ∈ 𝑉2 : 𝐵(𝜇(𝑣), 𝑢) ≠ 𝐵(𝑣, 𝑢)}| − |𝑇 ′| − |𝑇1 |
≥ (0.5 − 0.1 · 𝜖′) · |𝑉2 | − 𝐾 − |𝑉0 |
≥ (4 − 0.25) · (0.5 − 0.1𝜖′) · |𝑉0 | − |𝑉0 |
> 0.6 · |𝑉0 |

where the rst inequality uses 𝜇(𝑢) = 𝑢 for 𝑢 ∈ 𝑉 ′2 \ 𝑇2, the second inequality uses
|𝑉 ′2 | ≥ |𝑉2 | − |𝑇 ′| and the hypothesis |𝑇2 | < |𝑇1 |, the third inequality uses 𝜇(𝑣) ≠ 𝑣

along with the (second condition of) quasi-orthogonality of 𝐵 (and the hypotheses
|𝑇 ′| < 𝐾 and the fact that |𝑇1 | ≤ |𝑉1 | = |𝑉0 |), the fourth inequality uses |𝑉2 | > 4 · |𝑉0 |
and the denition of 𝐾 , and the last inequality uses 𝜖′ < 0.5.
So the total contribution in this sub-case is |𝑇1 | · Ω( |𝑉 |) ≥ (|𝑇 | − |𝑇 ′|) · Ω( |𝑉 |), since
|𝑇1 | ≥ max( |𝑇0 |, |𝑇2 |) and |𝑇0 | + |𝑇1 | + |𝑇2 | = |𝑇 | − |𝑇 ′|.

2. If |𝑇1 | ≤ |𝑇2 |, then we consider the quasi-orthogonal bipartite graph between 𝑉2
and 𝑉0. The contribution of each vertex 𝑣 ∈ 𝑇2 to (23) equals

|{𝑢 ∈ 𝑉 ′0 : 𝐵(𝜇(𝑢), 𝜇(𝑣)) ≠ 𝐵(𝑢, 𝑣)}|
≥ |{𝑢 ∈ 𝑉 ′0 : 𝐵(𝑢, 𝜇(𝑣)) ≠ 𝐵(𝑢, 𝑣)}| − |𝑇0 |
≥ |{𝑢 ∈ 𝑉0 : 𝐵(𝑢, 𝜇(𝑣)) ≠ 𝐵(𝑢, 𝑣)}| − |𝑇 ′| − |𝑇0 |
≥ (0.5 − 0.1 · 𝜖′) · |𝑉0 | − 2 · 𝐾
= (0.5 − 0.1 · 𝜖′) · |𝑉0 |/2

where the rst inequality uses 𝜇(𝑢) = 𝑢 for 𝑢 ∈ 𝑉 ′0 \ 𝑇0, the second inequality
uses |𝑉 ′0 | ≥ |𝑉0 | − |𝑇 ′|, the third inequality uses 𝜇(𝑣) ≠ 𝑣 along with the (second
condition of) quasi-orthogonality of 𝐵 (and the hypotheses regarding |𝑇 ′| and |𝑇0 |),
and the equality is due to 𝐾 = (0.5 − 0.1 · 𝜖′) · |𝑉0 |/4.
So the total contribution in this sub-case is |𝑇2 | · Ω( |𝑉 |) ≥ (|𝑇 | − |𝑇 ′|) · Ω( |𝑉 |), since
|𝑇2 | ≥ |𝑇1 | ≥ |𝑇0 |.

Hence, the total contribution (of Case 2.1) to (23) is Ω( |𝑉 |) · ( |𝑇 | − |𝑇 ′|).
Case 2.2: min( |𝑇0 |, |𝑇1 |) ≥ 𝐾 .

In this case we shall use the non-malleable feature of nmE.
Specically, for each 𝜎 ∈ {0, 1}, let 𝜇𝜎 denote the restriction of 𝜇 to 𝑇𝜎. Essentially, using
𝐾 ≥ 2𝑘, the non-malleability condition of the (𝑘, 𝜖)-extractor nmE implies

|{(𝑖, 𝑗) ∈ 𝑇0 × 𝑇1 : nmE(𝑖, 𝑗) ≠ nmE(𝜇0(𝑖), 𝜇1( 𝑗))}| ≥ (0.5 − 𝜖) · |𝑇0 | · |𝑇1 |.
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As in (Case 2.2 of) the proof of Theorem 8.3, this can be seen by letting 𝑋 and 𝑌 be
uniform over 𝑇0 and 𝑇1, respectively.45

Hence, in this case, the total contribution to (23) is (0.5 − 𝜖) · |𝑇0 | · |𝑇1 | = Ω( |𝑉 |2), where
we use min( |𝑇0 |, |𝑇1 |) = Ω( |𝑉 |).

Hence, in both sub-cases, the dierence between 𝐺 and 𝜇(𝐺) is Ω( |𝑉 |) · ( |𝑇 | − |𝑇 ′|).

Recall that (by the last comment at Case 1) the dierence between 𝐺 and 𝜇(𝐺) is Ω( |𝑉 |) · |𝑇 ′|.
Combining this lower-bound with the conclusion of Case 2, the dierence between 𝐺 and 𝜇(𝐺)
is Ω( |𝑉 |) · |𝑇 |. As for the degree bounds, note that each vertex has degree at most ( |𝑉2 | − 1) +
(0.5 + 0.1𝜖′) · ( |𝑉0 | + |𝑉1 |) = 5+0.2𝜖′

6 · |𝑉 | +𝑂(1), and at least (0.5 − 0.1𝜖′) · |𝑉2 | = 2−0.4𝜖′
6 · |𝑉 | −𝑂(1),

where maximum (resp., minimum) is obtained by vertices in 𝑉2 (resp., 𝑉0). �

Digest: Compared to the construction used in Theorem 8.3, the construction in Theorem 8.7
decouples the non-malleable feature from the quasi-orthogonality feature, using non-malleable
extractors for connecting one pair of vertex-sets and quasi-orthogonal functions to connect the
other two pairs. The current analysis is slightly more complex because it has to handle the fact
that these features hold for dierent pairs. Specically, the quasi-orthogonality of 𝐵 is used in
Cases 1 and 2.1, whereas the non-malleability of nmE is used in Case 2.2. In particular, Case 1
only uses the rst condition of quasi-orthogonality, and does so in order to infer that the degrees
of all vertices in the bipartite graph determined by 𝐵 are approximately equal. In Case 2.1 the
second quasi-orthogonality condition is used in order to assert that the neighborhoods of two
dierent vertices in 𝑉𝜎 (for every 𝜎 ∈ {0, 1, 2}) are signicantly dierent. This is useful only
when the number of non-xed-points in the other side of the graph 𝐵 is relatively small.

In light of the key role that quasi-orthogonal unbalanced bipartite graphs play in Theo-
rem 8.7 and given their natural appeal, it feel adequate to provide a general construction of
these graphs, which generalizes the construction outlined before Theorem 8.7 (for the case of
�′ = � + 2).

PROPOS IT ION 8.8 (Quasi-orthogonal unbalanced bipartite graphs). For � ≤ �′ and 𝑆�
def
=

{0, 1}�\{0�} let𝐺 : 𝑆� → 𝑆�′ be a small-bias generatorwith bias 𝜖 such that𝐺(𝑠) ≠ 𝐺(𝑠′) for every
𝑠 ≠ 𝑠′, and let 𝐸2 denote the inner-product mod 2 function. Then, the bipartite graph described by
the adjacency predicate 𝐵 : 𝑆� × 𝑆�′ → {0, 1} such that 𝐵(𝑥, 𝑦) = 𝐸2(𝐺(𝑥), 𝑦) is quasi-orthogonal
with error 𝜖.

(Note that the hypothesis implies that 𝜖 > 1/|𝑆�′ |. The denition of quasi-orthogonal
bipartite graphs appears before Theorem 8.7.)

45 Recall that, formally, we also extend 𝜇0 and 𝜇1 (which have no fixed-points) to (arbitrary) derangements 𝑓
and 𝑔, respectively. Then, the non-malleability condition implies that (nmE(𝑋,𝑌 ), nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))) is 𝜖-close to
(𝑈1, nmE( 𝑓 (𝑋), 𝑔 (𝑌 ))), which implies that Pr[nmE(𝑋,𝑌 ) ≠ nmE(𝜇0 (𝑋), 𝜇1 (𝑌 ))] is at least Pr[𝑈1 ≠ nmE(𝜇0 (𝑋), 𝜇1 (𝑌 ))]−𝜖 = 0.5−𝜖.
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PROOF SKETCH. Our starting point is the fact that 𝐸2 : 𝑆�′ × 𝑆�′ → {0, 1} is quasi-orthogonal
with error 1/|𝑆�′ |. The quasi-orthogonality feature of the rst argument of 𝐵 follows as a
special case of the corresponding feature of 𝐸2. Turning to xings of the second argument of 𝐸2
and letting 𝑋 be uniform over 𝑆�, we observe that, for every 𝑦 ∈ 𝑆�′, the bit 𝐵(𝐺(𝑋), 𝑦) is a
linear combination of the bits of 𝐺(𝑋), and hence Pr[𝐵(𝐺(𝑋), 𝑦) =1] = 0.5 ± 𝜖. Similarly, for
𝑦 ≠ 𝑦′, it holds that 𝐵(𝐺(𝑋), 𝑦) ⊕ 𝐵(𝐺(𝑋), 𝑦′) = 𝐵(𝐺(𝑋), 𝑦 ⊕ 𝑦′) is linear combination of the
bits of 𝐺(𝑋). �

REMARK 8.9 (Obtaining Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs, for every 𝑛). Theo-
rem 8.7 provides a construction of Ω(𝑛)-robustly self-ordered 𝑛-vertex graphs, for every 𝑛 of
the form 6 · 2� − 3, where � ∈ N. A construction for every 𝑛 ∈ N can be obtained by using a few
minor modications.

Rather than using |𝑉2 | = 2�+2 − 1 = 4 · ( |𝑉0 | + 1) − 3, we may use |𝑉2 | = 𝑛 − 2 · |𝑉0 | such
that |𝑉0 | = Ω(𝑛). Specically, we still use |𝑉0 | = 2� − 1, for � = log2 𝑛 − Θ(1), along with
|𝑉2 | ∈ [4 · |𝑉0 |, 10 · |𝑉0 |]. Doing so requires decreasing the quasi-orthogonality error of 𝐵 to
0.04𝜖′ so that 0.04𝜖′ · |𝑉2 | ≤ 0.4 · |𝑉0 | still holds.
More importantly, we need a construction of a quasi-orthogonal bipartite graph with an
adjacency predicate 𝐵 : [2� − 1] × [𝑛′] → {0, 1} such that 𝑛′ = 𝑛 − 2 · (2� − 1) ≥ 2𝑛/3. The
solution is to associated [𝑛′] with an easily enumerable small-bias space 𝑆 ⊆ {0, 1}�+4 \
{0�+4} and use 𝐵(𝑥, 𝑦) = 𝐸2(𝐺(𝑥), 𝑦), where 𝐸2 and 𝐺 are as in Proposition 8.8. Specically,
for 𝑡 = log2 log2 � and 𝐷 = d𝑛′ · 2𝑡/2�+4e = Θ(2𝑡), we let 𝑆 contain the 𝑛′ lexicographically
rst strings in 𝑆′ × {0, 1}�+4−𝑡, where 𝑆′ is a small-bias sample space of size 𝐷 over {0, 1}𝑡

that is found by exhaustive search.46

8.3 Obtaining efficient self-ordering

Wesay that a self-ordered graph𝐺 = ( [𝑛], 𝐸) is eciently self-ordered if there exists a polynomial-
time algorithm that, given any graph 𝐺′ = (𝑉 ′, 𝐸′) that is isomorphic to 𝐺, nds the unique
bijection 𝜙 : 𝑉 ′→ [𝑛] such that 𝜙(𝐺′) = 𝐺 (i.e., the unique isomorphism of 𝐺′ and 𝐺). Indeed,
this isomorphism orders the vertices of 𝐺′ in accordance with the original (or target) graph 𝐺.

Recall that in the case of bounded-degree graphs, we relied on the existence of a polynomial-
time isomorphism test (see [29]) for eciently self-ordering the robustly self-ordered graphs
that we constructed. We cannot do so in the dense graph case, since a general polynomial-
time isomorphism test is not known (see [1]). Instead, we augment the construction asserted

46 Note that for every 𝑧 = (𝑧′, 𝑧′′) ∈ {0, 1}�+4 \ {0�+4} and 𝑌 = (𝑌 ′, 𝑌 ′′) that is uniformly distributed over 𝑆 such that
|𝑧′ | = |𝑌 ′ | = 𝑡 it holds that

E[(−1)𝐸2 (𝑧,𝑌 ) ] = E[(−1)𝐸2 (𝑧′,𝑌 ′) ] · E[(−1)𝐸2 (𝑧′′,𝑌 ′′) ]

where the absolute value of each of the factors is 𝑜(1) if the corresponding fixed string (i.e., 𝑧′ or 𝑧′′) is non-zero.
Specifically, note that 𝑌 ′ (resp., 𝑌 ′′) is 𝑜(1)-close to being uniformly distributed over 𝑆′ (resp., {0, 1}�+4−𝑡).
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Figure 3. The construction of Theorem 8.10.

in Theorem 1.4 so to obtain dense Ω(𝑛)-robustly self-ordered graphs that are eciently self-
ordered.47

THEOREM 8.10 (Strengthening Theorem 1.4). There exist an innite family of dense Ω(𝑛)-
robustly self-ordered graphs {𝐺𝑛}𝑛∈N and a polynomial-time algorithm that, given 𝑛 ∈ N and a
pair of vertices 𝑢, 𝑣 ∈ [𝑛] in the 𝑛-vertex graph 𝐺𝑛, determines whether or not 𝑢 is adjacent to 𝑣
in 𝐺𝑛. Furthermore, these graphs are eciently self-ordered, and the degrees of vertices in 𝐺𝑛
reside in [0.06𝑛, 0.73𝑛].

PROOF. Our starting point is the construction of 𝑚-vertex graphs that are Ω(𝑚)-robustly self-
ordered (see Theorem 1.4, which uses Theorem 8.7). Recall that the vertices in these graphs
have degree that ranges between 0.3 · 𝑚 and 0.9 · 𝑚 (see Theorem 8.7).

The idea is to use two such graphs, 𝐺1 and 𝐺2, one with 𝑚 vertices and the other with
4 · 𝑚 vertices, where 𝑚 = 𝑛/5, and connect them in a way that assists nding the ordering of
vertices in each of these two graphs. Specically, we designate a set, denoted 𝑆1, of 𝑠

def
= 2

√︁
log2 𝑛

vertices in 𝐺1 = ( [𝑚], 𝐸1), and a set, denoted 𝑆2, of �
def
=

(𝑠
2
)
∈ [1.5 · log2 𝑛, 2 · log2 𝑛] vertices in

𝐺2 = ({𝑚 + 1, . . . , 5𝑚}, 𝐸2), and use them as follows (see Figure 3):

Connect each vertex in 𝑆2 to two dierent vertices in 𝑆1, while noting that each vertex in 𝑆1
is connected to 2�/𝑠 = 𝑜(�) vertices of 𝑆2.
Connect each vertex in 𝑅1

def
= [𝑚] \ 𝑆1 to a dierent set of neighbors in 𝑆2 such that each

vertex in 𝑅1 has at least �/2 neighbors in 𝑆2. (Note that
( �
�/2

)
> 𝑛.)

47 Unlike in the bounded degree case (see Section 4.4), at the time of writing this paper, we did not know how to con-
struct Ω(𝑛)-robustly self-ordered graphs that support local self-ordering, but such constructions were presented in
subsequent works. Specifically, Ω(𝑛)-robustly self-ordered graphs with information-theoretically local self-ordering
were presented in our follow-up work [21], and a construction that supports (full-fledged) local self-ordering was pre-
sented by the first author [16].We mention that the latter work provides a general study of the relationship between
robust self-ordering and local self-ordering (in both regimes).
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Connect each vertex in 𝑅2
def
= {𝑚 + 1, . . . , 5𝑚} \ 𝑆2 to a dierent set of neighbors in 𝑅1 such

that each vertex in 𝑅2 has two neighbors in 𝑅1 and each vertex in 𝑅1 has at most eight
neighbors in 𝑅2.

Denote the resulting graph by 𝐺 = ( [𝑛], 𝐸), and note that the vertices of 𝐺1 have degree at most
0.9 ·𝑚 + �, whereas the vertices of 𝐺2 have degree at least 0.3 · 4𝑚. Given an isomorphic copy of
the 𝐺, we can nd the unique isomorphism (i.e., its ordering) as follows:

1. Identify the vertices that belong to 𝐺1 by virtue of their lower degree.
2. Identify the set 𝑆1 as the set of vertices that belong to 𝐺1 and have 2�/𝑠 = 𝑜(�) neighbors

in 𝐺2.
(Recall that each vertex in 𝑅1 has at least �/2 neighbors in 𝑆2.)

3. Identify the set 𝑆2 as the set of vertices that belong to 𝐺2 and have (two) neighbors in 𝑆1.
4. For each possible ordering of 𝑆1, order the vertices of 𝑆2 by their neighborhood in 𝑆1, and

order the vertices of 𝑅1 according to their neighborhood in 𝑆2.
(Recall that the index of each 𝑠 ∈ 𝑆2 is determined by its (two) neighbors in 𝑆1, whereas
the index of each 𝑣 ∈ 𝑅1 is determined by its neighbors in 𝑆2.)
If the resulting ordering (of 𝑆1∪𝑅1) yields an isomorphism to𝐺1, them continue. Otherwise,
try the next ordering of 𝑆1.

5. Order the vertices of 𝑅2 according to their neighborhood in 𝑅1.

Note that by the asymmetry of 𝐺1, there exists a unique ordering of its vertices, and a unique
ordering of 𝑆1 that ts it and leads the procedure to successful termination. One the other hand,
the number of possible ordering of 𝑆1 is 𝑠! = 𝑛𝑜(1) , which means that the procedure is ecient.

It is left to show that the graph 𝐺 is Ω(𝑛)-robustly self-ordered. Let 𝛾 ∈ (0, 1] be a constant
such that that 𝐺1 (resp., 𝐺2) is 𝛾 ·𝑚-robustly self-ordered (resp., 𝛾 · 4𝑚-robustly self-ordered).
Then, xing an arbitrary permutation 𝜇 : [𝑛] → [𝑛], and letting 𝑇 = {𝑣 ∈ [𝑛] : 𝜇(𝑣) ≠ 𝑣}, we
consider the following cases.

Case 1: 𝑡 def= |{𝑣 ∈ [𝑚] : 𝜇(𝑣) ∉ [𝑚]}| > 𝛾 · |𝑇 |/10.
In this case, we get a contribution of 𝑡 · Ω(𝑚) = Ω(𝑚 · |𝑇 |) units to the symmetric dierence
between 𝐺 and 𝜇(𝐺), because of the dierence in degree between vertices in [𝑚] and
outside [𝑚]. (Recall that the former have degree at most 0.9 ·𝑚 + � < 𝑚, whereas the latter
have degree at least 0.3 · 4𝑚 = 1.2 · 𝑚.)

Case 2: 𝑡 = |{𝑣 ∈ [𝑚] : 𝜇(𝑣) ∉ [𝑚]}| ≤ 𝛾 · |𝑇 |/10.
In this case, at least (1 − 0.1𝛾) · |𝑇 | vertices in 𝑇 are mapped by 𝜇 to the side in which
they belong (i.e., each of these vertices 𝑣 satises 𝑣 ∈ [𝑚] if and only if 𝜇(𝑣) ∈ [𝑚]).
Let 𝑇1

def
= {𝑣 ∈ 𝑇 ∩ [𝑚] : 𝜇(𝑣) ∈ [𝑚]} and 𝑇2

def
= {𝑣 ∈ 𝑇 \ [𝑚] : 𝜇(𝑣) ∉ [𝑚]}. Then,

the vertices in 𝑇1 contribute at least |𝑇1 | · 𝛾 · 𝑚 − 𝑡 · 𝑚 units to the symmetric dierence
between 𝐺 and 𝜇(𝐺), where the negative term is due to possible change in the incidence
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with vertices that did not maintain their side. Similarly, the vertices in 𝑇2 contribute at least
|𝑇2 | · 𝛾 · 4𝑚 − 𝑡 · 4𝑚 units to the symmetric dierence. Hence, it total, we get a contribution
of at least ( |𝑇 | − 2𝑡) · 𝛾 · 𝑚 − 𝑡 · 5𝑚 = Ω(𝑚 · |𝑇 |).

The main claims follows. As for the degree bounds, note that the degree of each vertex in 𝐺1 is
at least 0.3𝑚 = 0.06𝑛, whereas the degree of each vertex in 𝐺2 is at most 0.9 · 4𝑚 + 𝑠 < 0.73𝑛. �

Digest. The 𝑛-vertex graph constructed in the proof of Theorem 8.10 is proved to be Ω(𝑛)-
robustly self-ordered by implicitly using the following claim.

CLAIM 8.1 1 (Combining two Ω(𝑛)-robustly self-ordered graphs). For 𝑖 ∈ {1, 2}, let 𝐺𝑖 =

(𝑉𝑖 , 𝐸𝑖) be an Ω(𝑛)-robustly self-ordered graph, and consider a graph 𝐺 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2 ∪ 𝐸)
such that 𝐸 contains edges with a single vertex in each𝑉𝑖; that is, 𝐺 consists of 𝐺1 and 𝐺2 and an
arbitrary bipartite graph that connects them. If the maximum degree in 𝐺 of each vertex in 𝑉1 is
smaller by an Ω(𝑛) term from the minimum degree of each vertex in 𝑉2, then 𝐺 is Ω(𝑛)-robustly
self-ordered.

Indeed, Claim 8.11 is analogous to Claim 4.3 (which refers to bounded-degree graphs).
We also comment that Ω(𝑛)-robustly self-ordered graph maintain this feature also when

𝑜(𝑛) edges are added (and/or removed) from the incidence of each vertex. A related statement
appears as Theorem 10.4.

9. Application to Testing Dense Graph Properties

In Section 5, we demonstrated the applicability of robustly self-ordered bounded-degree graphs
to the study of testing graph properties in the bounded-degree graph model. In the current
section, we provide an analogous demonstration for the regime of dense graphs. Hence, we
refer to testing graph properties in the dense graph model, which was introduced in [17] and is
surveyed in [23, Chap. 8]. In this model, graphs are represented by their adjacency predicate,
and distances are measured as the ratio of the number of diering adjacencies to the maximal
number of edges.

Background. We represent a graph 𝐺 = ( [𝑛], 𝐸), by the adjacency predicate 𝑔 : [𝑛] × [𝑛] →
{0, 1} such that 𝑔 (𝑢, 𝑣) = 1 if and only if {𝑢, 𝑣} ∈ 𝐸, and oracle access to a graph means oracle
access to its adjacency predicate (equiv., adjacency matrix). The distance between the graphs
𝐺 = ( [𝑛], 𝐸) and 𝐺′ = ( [𝑛], 𝐸′) is dened as the fraction of entries (in the adjacency matrix) on
which the two graphs disagree.

DEF IN IT ION 9.1 (Testing graph properties in the dense graph model). A tester for a graph
property Π is a probabilistic oracle machine that, on input parameters 𝑛 and 𝜖, and oracle
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access to an 𝑛-vertex graph 𝐺 = ( [𝑛], 𝐸) outputs a binary verdict that satises the following two
conditions.

1. If 𝐺 ∈ Π, then the tester accepts with probability at least 2/3.
2. If 𝐺 is 𝜖-far from Π, then the tester accepts with probability at most 1/3, where 𝐺 is 𝜖-far

from Π if for every 𝑛-vertex graph 𝐺′ = ( [𝑛], 𝐸′) ∈ Π the adjacency matrices of 𝐺 and 𝐺′

disagree on more than 𝜖 · 𝑛2 entries.

The query complexity of a tester for Π is a function (of the parameters 𝑛 and 𝜖) that repre-
sents the number of queries made by the tester on the worst-case 𝑛-vertex graph, when given
the proximity parameter 𝜖.

Our result. We present a general reduction of testing any property Φ of (bit) strings to testing
a corresponding graph property Π. Loosely speaking, 𝑛-bit long strings will be encoded as
part of an 𝑂(

√
𝑛)-vertex graph, which is constructed using Ω(

√
𝑛)-robustly self-ordered Θ(

√
𝑛)-

vertex graphs. This reduction is described in Construction 9.2 and its validity is proved in
Lemma 9.3. Denoting the query complexities of Φ and Π by 𝑄Φ and 𝑄Π, respectively, we get
𝑄Φ(𝑛, 𝜖) ≤ 𝑄Π(𝑂(𝑛1/2),Ω(𝜖)). Thus, lower bounds on the query complexity of testing Φ, which
is a property of “ordered objects” (i.e., bit strings), imply lower bounds on the query complexity
of testing Π, which is a property of “unordered objects” (i.e., graphs).

Our starting point is the construction of 𝑚-vertex graphs that are Ω(𝑚)-robustly self-
ordered. Actually, wishing Π to preserve the computational complexity of Φ, we use a construc-
tion of graphs that are eciently self-ordered, as provided by Theorem 8.10. Recall that the
vertices in these graphs have degree that ranges between 0.06 · 𝑚 and 0.73 · 𝑚.

The idea is to use two such graphs, 𝐺1 and 𝐺2, one with 𝑚 vertices and the other with
49 · 𝑚 vertices, where 𝑚 =

√
𝑛, and encode an 𝑛-bit string in the connection between them.

Specically, we view the latter string as a 𝑚-by-𝑚matrix, denoted (𝑠𝑖, 𝑗)𝑖, 𝑗∈[𝑚] , and connect the
𝑖th vertex of 𝐺1 to the 𝑗th vertex of 𝐺2 if and only if 𝑠𝑖, 𝑗 = 1.

CONSTRUCT ION 9.2 (From properties of strings to properties of dense graphs). Suppose
that {𝐺𝑚 = ( [𝑚], 𝐸𝑚)}𝑚∈N is a family of Ω(𝑚)-robustly self-ordered 𝑚-vertex graphs. For every
𝑛 ∈ N, we let 𝑚 =

√
𝑛, and proceed as follows.

For every 𝑠 ∈ {0, 1}𝑛 views as (𝑠𝑖, 𝑗)𝑖, 𝑗∈[𝑚] ∈ {0, 1}𝑚×𝑚, we dene the graph𝐺′𝑠 = ( [50𝑚], 𝐸′𝑠)
such that

𝐸′𝑠 = 𝐸𝑚 ∪ {{𝑚 + 𝑖, 𝑚 + 𝑗} : {𝑖, 𝑗} ∈ 𝐸49𝑚} ∪ {{𝑖, 𝑚 + 𝑗} : 𝑖, 𝑗 ∈ [𝑚] ∧ 𝑠𝑖, 𝑗 = 1} (24)

That is, 𝐺′𝑠 consists of a copy of 𝐺𝑚 and a copy of 𝐺49𝑚 that are connected by a bipartite
graph that is determined by 𝑠.
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For a set of strings Φ, we dene Π =
⋃
𝑛∈NΠ𝑛 as the set of all graphs that are isomorphic to

some graph 𝐺′𝑠 such that 𝑠 ∈ Φ; that is,

Π𝑛 = {𝜋(𝐺′𝑠) : 𝑠 ∈ (Φ ∩ {0, 1}𝑛) ∧ 𝜋 ∈ Sym50𝑚} (25)

where Sym50𝑚 denote the set of all permutations over [50𝑚].

Note that, given a graph of the form 𝜋(𝐺′𝑠), the vertices of 𝐺𝑚 are easily identiable (as
having degree at most 0.73𝑚+𝑚 < 1.8𝑚).48 The foregoing construction yields a local reduction
of Φ to Π, where locality means that each query to 𝐺′𝑠 can be answered by making a constant
number of queries to 𝑠. The (standard) validity of the reduction (i.e., 𝑠 ∈ Φ if and only if 𝐺′𝑠 ∈ Π)
is based on the fact that 𝐺𝑚 and 𝐺49𝑚 are asymmetric.

In order to be useful towards proving lower bounds on the query complexity of testing Π,
we need to show that the foregoing reduction is “distance preserving” (i.e., strings that are far
from Φ are transformed into graphs that are far from Π). The hypothesis that 𝐺𝑚 and 𝐺49𝑚 are
Ω(𝑚)-robustly self-ordered is pivotal to showing that if the string 𝑠 is far from Φ, then the graph
𝐺′𝑠 is far from Π.

LEMMA 9.3 (Preserving distances). If 𝑠 ∈ {0, 1}𝑛 is 𝜖-far from Φ, then the 50𝑚-vertex graph
𝐺′𝑠 (as dened in Construction 9.2) is Ω(𝜖)-far from Π.

PROOF. We prove the contrapositive. Suppose that 𝐺′𝑠 is 𝛿-close to Π. Then, for some 𝑟 ∈ Φ
and a permutation 𝜋 : [50𝑚] → [50𝑚], it holds that 𝐺′𝑠 is 𝛿-close to 𝜋(𝐺′𝑟), which means that
these two graphs dier on at most 𝛿 · (50𝑚)2 vertex pairs. If 𝜋(𝑖) = 𝑖 for every 𝑖 ∈ [2𝑚], then 𝑠
must be 𝑂(𝛿)-close to 𝑟, since 𝑠𝑖, 𝑗 = 1 (resp., 𝑟𝑖, 𝑗 = 1) if and only if 𝑖 is connected to 𝑚 + 𝑗 in 𝐺′𝑠
(resp., in 𝜋(𝐺′𝑟) = 𝐺′𝑟).49 Unfortunately, the foregoing condition (i.e., 𝜋(𝑖) = 𝑖 for every 𝑖 ∈ [2𝑚])
need not hold in general.

In general, the hypothesis that 𝜋(𝐺′𝑟) is 𝛿-close to 𝐺′𝑠 implies that 𝜋 maps at most 𝑂(𝛿𝑚)
vertices of [𝑚] to {𝑚 + 1, . . . , 2𝑚}, and maps to [𝑚] at most 𝑂(𝛿𝑚) vertices that are outside it.
This is the case because each vertex of [𝑚] has degree smaller than 0.73𝑚 +𝑚 < 1.8𝑚, whereas
the other vertices have degree at least 0.06 · 49𝑚 > 2.9𝑚.

Turning to the vertices 𝑖 ∈ [𝑚] that 𝜋 maps to [𝑚] \ {𝑖}, we upper-bound their number by
𝑂(𝛿𝑚), since the dierence between 𝜋(𝐺′𝑟) and 𝐺′𝑠 is at most 𝛿 · (50𝑚)2, whereas the hypothesis
that 𝐺𝑚 is 𝑐 ·𝑚-robustly self-ordered implies that the dierence between 𝜋(𝐺′𝑟) and 𝐺′𝑠 (or any
other graph 𝐺′𝑤) is at least

Δ = 𝑐 · 𝑚 · |{𝑖 ∈ [𝑚] :𝜋(𝑖) ≠ 𝑖}| −𝑚 · |{𝑖 ∈ [𝑚] :𝜋(𝑖) ∉ [𝑛]}|.

48 In contrast, the vertices of 𝐺49𝑚 have degree at least 0.06 · 49𝑚 > 2.9𝑚.

49 Hence, 𝐺′𝑠 is 𝛿-close to 𝐺′𝑟 implies that |{𝑖, 𝑗 ∈ [𝑛] : 𝑠𝑖, 𝑗 ≠ 𝑟𝑖, 𝑗}| ≤ 𝛿 · (50𝑚)2, which means that 𝑠 is (50𝑚)
2𝛿

𝑛 -close to 𝑟. (Recall
that 𝑚 =

√
𝑛.)
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(Hence, |{𝑖 ∈ [𝑚] :𝜋(𝑖) ≠ 𝑖}| ≤ Δ+𝑚·𝑂(𝛿𝑚)
𝑐𝑚 = 𝑂(𝛿𝑚).) The same considerations apply to the vertices

𝑖 ∈ {𝑚 + 1, . . . , 2𝑚} that 𝜋maps to {𝑚 + 1, . . . , 2𝑚} \ {𝑖}; their number is also upper-bounded
by 𝑂(𝛿𝑚).

For every 𝑘 ∈ {1, 2}, letting 𝐼𝑘 = {𝑖 ∈ [𝑚] :𝜋((𝑘 − 1) · 𝑚 + 𝑖)= (𝑘 − 1) · 𝑚 + 𝑖}, observe that
𝐷

def
= |{(𝑖, 𝑗) ∈ 𝐼0 × 𝐼1 : 𝑟𝑖, 𝑗 ≠ 𝑠𝑖, 𝑗}| ≤ 𝛿 · (50𝑚)2, since 𝑟𝑖, 𝑗 ≠ 𝑠𝑖, 𝑗 implies that 𝜋(𝐺′𝑟) and 𝐺′𝑠 dier

on the vertex-pair (𝑖, 𝑚 + 𝑗). Recalling that 𝑚 − |𝐼𝑘 | = 𝑂(𝛿𝑚), it follows that

|{(𝑖, 𝑗) ∈ [𝑚] : 𝑟𝑖, 𝑗 ≠ 𝑠𝑖, 𝑗}| ≤ ((𝑚 − |𝐼1 |) − (𝑚 − |𝐼2 |)) · 𝑚 + 𝐷 = 𝑂(𝛿𝑚2).

Hence, 𝑠 is 𝑂(𝛿)-close to 𝑟 ∈ Φ, and the claims follows. �

10. The Case of Intermediate Degree Bounds

While Section 2–6 study bounded-degree graphs and Sections 7–9 study dense graphs (i.e.,
constant edge density), in this section we shall consider graphs of intermediate degree bounds.
That is, for every 𝑑 : N→ N such that 𝑑 (𝑛) ∈ [Ω(1), 𝑛], we consider 𝑛-vertex graphs of degree
bound 𝑑 (𝑛). In this case, the best robustness we can hope for is Ω(𝑑 (𝑛)), and we shall actually
achieve it for all functions 𝑑.

THEOREM 10.1 (Robustly self-ordered graphs for intermediate degree bounds). For every
𝑑 : N→ N such that 𝑑 (𝑛) is computable in poly(𝑛)-time, there exists an eciently constructable
family of graphs {𝐺𝑛}𝑛∈N such that 𝐺𝑛 has maximal degree 𝑑 (𝑛) and is Ω(𝑑 (𝑛))-robustly self-
ordered.

We prove Theorem 10.1 in three parts, each covering a dierent range of degree-bounds
(i.e., 𝑑 (𝑛)’s). Most of the range (i.e., 𝑑 (𝑛) = Ω(log 𝑛)0.5) is covered by Theorem 10.2, whereas
Theorem 10.3 handles small degree-bounds (i.e., 𝑑 (𝑛) = 𝑂(log 𝑛)0.499) and Theorem 10.5 handles
the degree-bounds that are in-between. One ingredient in the proof of Theorem 10.5 is a
transformation of graphs that makes them expanding, while preserving their degree and
robustness parameters up to a constant factor. This transformation, which is a special case of
Theorem 10.4, is of independent interest.

THEOREM 10.2 (Robustly self-ordered graphs for large degree bounds). For every 𝑑 : N→
N such that 𝑑 (𝑛) ≥ 𝑂(

√︁
log 𝑛) is computable in poly(𝑛)-time, there exists an eciently con-

structable family of graphs {𝐺𝑛}𝑛∈N such that 𝐺𝑛 has maximal degree 0.79 · 𝑑 (𝑛) and is Ω(𝑑 (𝑛))-
robustly self-ordered. Furthermore, the minimal vertex degree is 0.02 · 𝑑 (𝑛).

The graphs will consist of connected components of size 𝑑 (𝑛), and in this case 𝑑 (𝑛) =
Ω(

√︁
log 𝑛) is necessary, since these connected components must be dierent.
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PROOF SKETCH. We combine ideas from Construction 9.2 with elements of the proof of
Theorem 4.2. Specically, as in Construction 9.2, we shall use constructions of 𝑚-vertex and
9𝑚-vertex graphs that are Ω(𝑚)-robustly self-ordered, but here we set 𝑚 = 𝑑 (𝑛)/10 (rather
than 𝑚 =

√
𝑛) and use 𝑛/𝑑 (𝑛) dierent 𝑑 (𝑛)-vertex graphs that are based on the foregoing

two graphs. As in the proof of Theorem 4.2, these (𝑑 (𝑛)-vertex) graphs will be far from being
isomorphic to one another and will form the connected components of the nal 𝑛-vertex graph.

Our starting point is the construction of 𝑚-vertex graphs that are Ω(𝑚)-robustly self-
ordered. Specically, we may use Theorem 8.6 and note that in this case the vertices in these
𝑚-vertex graph have degree that ranges between 0.24 · 𝑚 and 0.76 · 𝑚. Furthermore, these
graphs have extremely high conductance; that is, in each of these graphs, the number of edges
crossing each cut (in the graph) is at least Ω(𝑚) times the number of vertices in the smaller side
(of the cut).

The idea is to use two such graphs, 𝐺1 and 𝐺2, one with 𝑚
def
= 0.1 · 𝑑 (𝑛) vertices and the

other with 0.9 · 𝑑 (𝑛) = 9 ·𝑚 vertices, and connect them in various ways as done in Section 4.2.
Specically, using an error correcting code with constant rate and constant relative distance and
weight, denoted 𝐶 : [2𝑘] → {0, 1}𝑚2 , we obtain a collection of 2𝑘 ≥ 𝑛/𝑑 (𝑛) strongly connected
𝑑 (𝑛)-vertex graphs such that the 𝑖th graph consists of copies of 𝐺1 and 𝐺2 that are connected
according to the codeword 𝐶(𝑖); more specically, we use the codeword 𝐶(𝑖) (viewed as an
𝑚-by-𝑚matrix) in order to determine the connections between the vertices of 𝐺1 and the rst
0.1 · 𝑑 (𝑛) vertices of 𝐺2. The nal 𝑛-vertex graph, denoted 𝐺, consists of 𝑛/𝑑 (𝑛) connected
components that are the rst 𝑛/𝑑 (𝑛) graphs in this collection.50

The analysis adapts the analysis of the construction presented in the proof of Theorem 4.2.
Towards this analysis, we let𝐺 (𝑖)

𝑗
denote the 𝑖th copy of𝐺 𝑗; that is, the copy of𝐺 𝑗 that is part of the

𝑖th connected component of 𝐺. Hence, for each 𝑖 ∈ [𝑛/𝑑 (𝑛)], the 𝑖th connected component of 𝐺
is isomorphic to a graph that consists of copies of 𝐺1 = ( [𝑚], 𝐸1) and 𝐺2 = ({𝑚+1, . . . , 10𝑚}, 𝐸2)
such that for every 𝑢, 𝑣 ∈ [𝑚] the vertex 𝑢 (of 𝐺 (𝑖)1 ) is connected to the vertex 𝑚 + 𝑣 (of 𝐺 (𝑖)2 ) if
and only if 𝐶(𝑖)𝑢,𝑣 = 1. Loosely speaking, considering an arbitrary permutation 𝜇 : [𝑛] → [𝑛],
we proceed as follows.51

The discrepancy between the degrees of vertices in copies of 𝐺1 and 𝐺2 (i.e., degree smaller
than 0.76𝑚 +𝑚 versus degree at least 0.24 · 9𝑚) implies that each vertex that resides in a
copy of 𝐺1 and is mapped by 𝜇 to a copy of 𝐺2 yields a contribution of Ω(𝑑 (𝑛)) units to the
symmetric dierence between 𝐺 and 𝜇(𝐺).
Let 𝜇′(𝑖) (resp., 𝜇′′(𝑖)) denote the index of the connected component to which 𝜇 maps
a plurality of the vertices that reside in 𝐺 (𝑖)1 (resp., of 𝐺 (𝑖)2 ). Then, the extremely high

50 Note that we used 2𝑘 ≥ 𝑛/𝑑 (𝑛) and 𝑚2 = 𝑂(𝑘), where 𝑚 = 0.1 · 𝑑 (𝑛) >
√
𝑘. This setting allows for handling any

𝑑 (𝑛) ≥ 𝑂(
√︁
log 𝑛).

51 These cases are analogous to the cases treated in the proof of Theorem 4.2, with the difference that we merged
Cases 2&3 (resp., Cases 4&5) into our second (resp., third) case.
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conductance of 𝐺1 (resp., 𝐺2) implies that the vertices that resides in 𝐺 (𝑖)1 (resp., of 𝐺 (𝑖)2 )
and are mapped by 𝜇 to a connected component dierent from 𝜇′(𝑖) (resp., 𝜇′′(𝑖)) yields
an average contribution of Ω(𝑑 (𝑛)) units per each of these vertices.
The lower bound on the weight of the codewords of 𝐶, which implies that there are
Ω(𝑑 (𝑛)2) edges between 𝐺 (𝑖)1 and 𝐺 (𝑖)2 , implies that every 𝑖 such that 𝜇′(𝑖) ≠ 𝜇′′(𝑖) yields a
contribution of Ω(𝑑 (𝑛)2) units, since there are no edges between 𝐺 (𝜇

′(𝑖))
1 and 𝐺 (𝜇

′′(𝑖))
2 . Here

we assume that few vertices fell to the previous case (i.e., are mapped by 𝜇 in disagreement
with the relevant plurality vote); analogously to the proof of Theorem 4.2, each of these
few exceptional vertices reduces the contribution by at most 𝑑 (𝑛) units.
The Ω(𝑑 (𝑛))-robust self-ordering of 𝐺1 (resp., 𝐺2) implies that each vertex that reside
in 𝐺 (𝑖)1 (resp., of 𝐺 (𝑖)2 ) and is mapped by 𝜇 to a dierent location in 𝐺 (𝜇

′(𝑖))
1 (resp., in 𝐺 (𝜇

′′(𝑖))
2 )

yields a contribution of Ω(𝑑 (𝑛)) units. Again, this assumes that few vertices fell to the
penultimate case, whereas each of these few vertices reduces the contribution by one unit
(per each vertex in the current case).
The distance between the codewords of 𝐶 implies that every 𝑖 such that 𝜇′(𝑖) = 𝜇′′(𝑖) ≠ 𝑖

yields a contribution of Ω(𝑑 (𝑛)2), where we assume that few vertices fell to the previous
cases.

As in the proof of Theorem 4.2, there may be a double counting across the dierent cases, but
this only means that we overestimate the contribution by a constant factor. Overall the size of
the symmetric dierence is Ω(𝑑 (𝑛)) times the number of non-xed-points of 𝜇. �

Handling small degree bounds. Theorem 10.2 is applicable only for degree bounds that are
at least 𝑂(log 𝑛)0.5. A dierent construction allows handling degree bounds up to 𝑂(log 𝑛)0.499,
which leaves a small gap (which we shall close in Theorem 10.5).

THEOREM 10.3 (Robustly self-ordered graphs for small degree bounds). For every constant
𝜖 > 0, and every 𝑑 : N → N such that 𝑑 (𝑛) ∈ [Ω(1), (log 𝑛)0.5−𝜖] is computable in poly(𝑛)-time,
there exists an eciently constructable family of graphs {𝐺𝑛}𝑛∈N such that𝐺𝑛 hasmaximal degree
𝑑 (𝑛) and is Ω(𝑑 (𝑛))-robustly self-ordered.

In this case, the graphs will consist of connected components of size Θ(log 𝑛)
𝑑 (𝑛)·log log 𝑛 > 𝑑 (𝑛).

PROOF SKETCH. Setting 𝑚(𝑛) def= Θ(log 𝑛)
𝑑 (𝑛)·log log 𝑛 > 𝑑 (𝑛) · (log 𝑛)𝜖, we proceed in two main steps.

The rst main step amounts to showing that, with probability at least 1 − exp(−Ω(𝑑 (𝑛) ·
log𝑚(𝑛)) = 1−𝑜(1), a 𝑑 (𝑛)-regular𝑚(𝑛)-vertexmulti-graph (generated by the randompermuta-
tion model) is Ω(𝑑 (𝑛))-robustly self-ordered and expanding. This is a tightening of Theorem 6.1
(where 𝑚(𝑛) = 𝑛 and 𝑑 (𝑛) = 𝑂(1)) and it is proved by observing that the original proof (as is)
extends to a varying degree bound and that higher robustness can obtained as indicated in
Footnote 34. Specically, we can show that each non-xed-point 𝑖 contributes at least 𝑑 (𝑛)/2
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units (rather than one) to the symmetric dierence, by considering smaller sets of indices
𝑗 ∈ [2𝑑 (𝑛)] for which equalities hold (i.e., we use | 𝐽𝑖 | ≥ 𝑑 (𝑛)/12 instead of | 𝐽𝑖 | ≥ 𝑑 (𝑛)/6). The
second main step consists of mimicking the construction outlined in Remark 6.2; specically,
we use the following three steps.

1. First, we extend the argument of the foregoing main step and show that, for any set G of
𝑡 < 𝑛multi-graphs (which is each 𝑑 (𝑛)-regular and has 𝑚(𝑛) vertices), with probability
at least 1 − exp(−Ω(𝑑 (𝑛) · log𝑚(𝑛)) − 𝑡 · exp(Ω(𝑑 (𝑛) ·𝑚(𝑛) · log(𝑚(𝑛)/𝑑 (𝑛)))) = 1 − 𝑜(1),
a random 𝑑 (𝑛)-regular 𝑚(𝑛)-vertex multi-graph (as generated above) is both Ω(𝑑 (𝑛))-
robustly self-ordered (and expanding) and far from being isomorphic to any multi-graph
in G. Here two 𝑑 (𝑛)-regular 𝑚(𝑛)-vertex multi-graphs are said to be far apart if they
disagree on Ω(𝑑 (𝑛) · 𝑚(𝑛)) vertex-pairs. As in Step 1 of Remark 6.2, this amounts to
obserting that the probability that such a randommulti-graph is close to being isomorphic
to a xed multi-graph is at most exp(−Ω(𝑑 (𝑛) ·𝑚(𝑛) · log(𝑚(𝑛)/𝑑 (𝑛)))) = 𝑜(1/𝑛2), where
the last inequality is due to the setting of 𝑚(𝑛).)52

(Note that this multi-graph may have parallel edges and self-loops, but their number can
be upper-bounded with high probability. Specically, for 𝑡 = 1/𝜖, with probability at least
1−𝑂(𝑑 (𝑛)𝑡/𝑚(𝑛)𝑡−1), no vertex has 𝑡 (or more) self-loops and no vertex is incident to 𝑡 + 1
(or more) parallel edges. Hence, omitting all self-loops and all parallel edges leaves us
with a simple graph that is both Ω(𝑑 (𝑛))-robustly self-ordered (and expanding) and far
from being isomorphic to any graph in G.)

2. Next, using Step 1, we show that one can construct in poly(𝑛)-time a collection of 𝑛/𝑚(𝑛)
graphs such that each graph is 𝑑 (𝑛)-regular, has 𝑚(𝑛) vertices, is Ω(𝑑 (𝑛))-robustly self-
ordered and expanding, and the graphs are pairwise far from being isomorphic to one
another.
As in Step 2 of Remark 6.2, this is done by iteratively nding Ω(𝑑 (𝑛))-robustly self-ordered
𝑑 (𝑛)-regular𝑚(𝑛)-vertex expanding graphs that are far from being isomorphic to all prior
ones, while relying on the fact that 𝑚(𝑛)𝑑 (𝑛)·𝑚(𝑛) = poly(𝑛) (by the setting of 𝑚(𝑛)).

3. Lastly, we use the graphs constructed in Step 2 as connected components of an 𝑛-vertex
graph, and obtain the desired graph.

Note that we have used 𝑚(𝑛) > (log 𝑛)𝜖 · 𝑑 (𝑛) and 𝑑 (𝑛) · 𝑚(𝑛) · log(𝑚(𝑛)/𝑑 (𝑛)) = Θ(log 𝑛),
which is possible if (and only if) 𝑑 (𝑛) ≤ (log 𝑛)0.5−Θ(𝜖) . �

Obtainingstrongly connectedgraphs. The graphs constructed in the proofs of Theorems 10.2
and 10.3 consists of many small connected components; specically, we obtain 𝑛-vertex graphs

52 For starters, the probability that an edge that appears in the fixed multi-graph appears in the random graph is
𝑑 (𝑛)/𝑚(𝑛). Intuitively, these events are sufficiently independent so to prove the claim; for example, we may con-
sider the neighborhoods of the first 𝑚(𝑛)/2 vertices in the random graph, and use an iterative process in which their
incidences are determined at random conditioned on all prior choices.
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of maximum degree 𝑑 (𝑛) with connected components of size max(𝑂(𝑑 (𝑛)), 𝑜(log 𝑛)) that are
Ω(𝑑 (𝑛))-robustly self-ordered. We point out that the latter graphs can be transformed into ones
with asymptotically maximal expansion (under any reasonable denition of this term), while
preserving their maximal degree and robustness parameter (up to a constant factor). This is a
consequence of the following general transformation (applied to a Ω(𝑑 (𝑛))-robustly self-ordered
graph 𝐺 of maximal degree 𝑑 (𝑛) and a 𝑑′(𝑛)-regular graph 𝐺′ of maximal expansion).

THEOREM 10.4 (The eect of super-imposing two graphs). For every 𝑑, 𝑑′ : N → N and
𝜌 : N → R, let 𝐺 and 𝐺′ be 𝑛-vertex graphs such that 𝐺 is 𝜌(𝑛)-robustly self-ordered and has
maximum degree 𝑑 (𝑛), and 𝐺′ has maximum degree 𝑑′(𝑛). Then, the graph obtained by super-
imposing 𝐺 and 𝐺′ is (𝜌(𝑛) − 𝑑′(𝑛))-robustly self-ordered and has maximum degree 𝑑 (𝑛) + 𝑑′(𝑛).

Note that Theorem 10.4 is not applicable to the constructions of bounded-degree graphs ob-
tained in the rst part of this paper, because their robustness parameter was a constant smaller
than 1. (This is due mostly to Construction 2.3, but also occurs in the proof of Theorem 4.2.)53

A typical application of Theorem 10.4 may use 𝑑′(𝑛) = 𝜌(𝑛)/2 ≥ 3. (Recall that 𝜌(𝑛) ≤ 𝑑 (𝑛)
always holds.)

PROOF. Fixing any permutation 𝜇 of the vertex set, note that the contribution of each non-
xed-point of 𝜇 to the symmetric dierence between 𝐺 ∪ 𝐺′ and 𝜇(𝐺 ∪ 𝐺′) may decrease by at
most 𝑑′(𝑛) units due to 𝐺′. �

Closing the gap between Theorems 10.2 and 10.3. Recall that these theorems left few
bounding functions untreated; essentially, these were functions 𝑑 : N → N such that 𝑑 (𝑛) ∈
[(log 𝑛)0.499, 𝑂(log 𝑛)0.5]. We close this gap now.

THEOREM 10.5 (Robustly self-ordered graphs for the remainingdegreebounds). For every
𝑑 : N→ N such that 𝑑 (𝑛) ∈ [(log 𝑛)1/3, (log 𝑛)2/3] is computable in poly(𝑛)-time, there exists an
eciently constructable family of graphs {𝐺𝑛}𝑛∈N such that 𝐺𝑛 has maximal degree 𝑑 (𝑛) and is
Ω(𝑑 (𝑛))-robustly self-ordered.

In this case, the graphs will consist of connected components of size 𝑂(log 𝑛).

PROOF SKETCH. We apply the proof strategy of Theorem 10.2, while setting � = log2 𝑛 and
using as building blocks �-vertex Ω(𝑑 (𝑛))-robustly self-ordered graphs of degree bound 𝑑 (𝑛)/2
obtained from Theorem 10.2 itself (while relying on 𝑑 (𝑛) ∈ [𝜔(log �)1/2, 𝑜(�)]). Actually, we
shall use two versions of the foregoing �-vertex graphs that have suciently dierent degree
ranges and transform them to obtain maximal expansion (using Theorem 10.4). Furthermore,

53 In contrast, the construction of Theorem 10.3, which builds upon the proof of Theorem 6.1, does yield Ω(𝑑)-robustly
self-ordered graphs of maximum degree 𝑑, for sufficiently large constant 𝑑.
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we shall connect pairs of copies of these graphs by subgraphs of a xed 𝑑 (𝑛)/2-regular bipartite
graph (rather than by subgraphs of the complete �-by-� bipartite graph). As in the proof of
Theorem 10.2, using suciently dierent bipartite subgraphs, we shall obtain 2�-vertex graphs
that are far from being isomorphic to one another. Our nal 𝑛-vertex graph will consist of these
2�-vertex graphs as its connected components. Details follow.

Our starting point is a construction of �-vertex graphs that, for some constant 𝛾 ∈ (0, 0.01),
are 𝛾 · 𝑑 (𝑛)-robustly self-ordered and have maximum degree 0.79 · 𝑑 (𝑛) and minimum degree
0.02 · 𝑑 (𝑛). Such graphs are obtained by Theorem 10.2, while relying on 𝑑 (𝑛) ≥ �1/3 = 𝜔(log �)
and 𝑑 (𝑛) < �. Using Theorem 10.4 (with 𝑑′(𝑛) = 𝛾 · 𝑑 (𝑛)/2) we transform these graphs to
ones of maximum degree 0.8𝑑 (𝑛) and asymptotically maximal conductance (i.e., in each of
these graphs, the number of edges crossing each cut (in the graph) is at least Ω(𝑑 (𝑛)) times the
number of vertices in the smaller side (of the cut)). Note that the resulting graph, denoted 𝐺1,
is Ω(𝑑 (𝑛))-robustly self-ordered and has minimum degree 0.02 · 𝑑 (𝑛). Using the same process
with degree bound 𝑑2(𝑛) = 0.01 · 𝑑 (𝑛), we obtain an analogous graph, denoted 𝐺2, that is also
Ω(𝑑 (𝑛))-robustly self-ordered and has maximum degree 0.8 · 𝑑2(𝑛) < 0.01 · 𝑑 (𝑛). We stress that
both 𝐺1 and 𝐺2 have asymptotically maximal conductance (w.r.t degree bound Θ(𝑑 (𝑛))).

Next, we connect 𝐺1 and 𝐺2 in various ways so to obtain 𝑛/2� graphs that are far from
being isomorphic to one another. This is done by a small variation on the construction used in
the proof of Theorem 10.2. Specically, we x 𝑑 (𝑛)/200 disjoint perfect matchings between the
vertices of 𝐺1 and the vertices 𝐺2, and use the error correcting code to determine which of the
corresponding � · 𝑑 (𝑛)/200 = 𝜔(log 𝑛) edges to include in the graph. More specically, using an
error correcting code with constant rate and constant relative distance and weight, denoted
𝐶 : [2𝑘] → {0, 1}�·𝑑 (𝑛)/200, we obtain a collection of 𝑛/2� < 2𝑘 strongly connected 2�-vertex
graphs such that the 𝑖th graph consists of copies of 𝐺1 and 𝐺2 that are connected according to the
codeword 𝐶(𝑖); that is, the ( 𝑗, 𝑣)th bit of the codeword 𝐶(𝑖) (viewed as an 𝑑 (𝑛)/200-by-� matrix)
determines whether the edge of the 𝑗th matching that is incident at vertex 𝑣 ∈ [�] (of 𝐺1) is
included in the 𝑖th graph. The nal 𝑛-vertex graph, denoted 𝐺, consists of these 𝑛/2� graphs as
its connected components.

The analysis is almost identical to the analysis provided in the proof of Theorem 10.2, since
the key facts used there hold here too (although the construction is somewhat dierent). The
key facts are that the degrees of vertices in 𝐺1 and 𝐺2 dier in Ω(𝑑 (𝑛)) units, that the relative
conductance of the connected components is Ω(𝑑 (𝑛)), that 𝐺1 and 𝐺2 are both Ω(𝑑 (𝑛))-robustly
self-ordered, and that the bipartite graphs (used in the dierent connected components) are far
away from one another. �
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