
1 / 83 2023 :4

Fast Symbolic Algorithms for
Omega-Regular Games under
Strong Transition Fairness

Received Feb 16, 2022
Revised Aug 1, 2022
Accepted Nov 21, 2022
Published Feb 23, 2023

Key words and phrases
Symbolic fixpoint algorithm, graph
games, strong transition fairness,
turn-based stochastic games

Tamajit Banerjeea �

Rupak Majumdarb � �

Kaushik Mallikc � �

Anne-Kathrin Schmuckb � �

Sadegh Soudjanid � �

a Department of Computer
Science and Engineering, Indian
Institute of Technology Delhi, India

b Max Planck Institute for
Software Systems, Germany

c Institute of Science and
Technology Austria, Austria

d Newcastle University, UK

ABSTRACT. We consider xpoint algorithms for two-player games on graphs with 𝜔-regular
winning conditions, where the environment is constrained by a strong transition fairness
assumption. Strong transition fairness is a widely occurring special case of strong fairness. It
requires that any execution is strongly fair with respect to a specied set of live edges: whenever
the source vertex of a live edge is visited innitely often along a play, the edge itself is traversed
innitely often along the play as well.

We show that, surprisingly, strong transition fairness retains the algorithmic characteristics
of the xpoint algorithms for 𝜔-regular games—the new algorithms have the same alternation
depth as the classical algorithms but invoke a new type of predecessor operator. For example, for
Rabin games with 𝑘 pairs under strong transition fairness, the complexity of the new algorithm
is 𝑂(𝑛𝑘+2𝑘!) symbolic steps, which is independent of the number of live edges in the strong
transition fairness assumption. In contrast, strong fairness necessarily requires increasing the
alternation depth depending on the number of fairness assumptions.

We get symbolic algorithms for (generalized) Rabin, parity, and GR(1) objectives under
strong transition fairness assumptions as well as a direct symbolic algorithm for qualitative
winning in stochastic 𝜔-regular games that runs in 𝑂(𝑛𝑘+2𝑘!) symbolic steps, improving the
state of the art. Previous approaches for handling fairness assumptions would either increase

A previous version of this paper has appeared in TACAS 2022. Authors ordered alphabetically. T. Banerjee was interning
with MPI-SWS when this research was conducted. R. Majumdar and A.-K. Schmuck are partially supported by DFG project
389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is
supported by the ERC project ERC-2020-AdG 101020093.

Cite as Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck,
Sadegh Soudjani. Fast Symbolic Algorithms for Omega-Regular Games under
Strong Transition Fairness. TheoretiCS, Volume 2 (2023), Article 4, 1-83.

https://theoretics.episciences.org
DOI 10.46298/theoretics.23.4

mailto:cs1190408@iitd.ac.in
mailto:rupak@mpi-sws.org
mailto:kaushik.mallik@ist.ac.at
mailto:akschmuck@mpi-sws.org
mailto:sadegh.soudjani@ncl.ac.uk

2 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

the alternation depth of the xpoint algorithm or require an up-front automata-theoretic
construction that would increase the state space, or both.

We have implemented a BDD-based synthesis engine based on our algorithm. We show
on a set of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and
outperforms previous algorithms by orders of magnitude.

1. Introduction

Symbolic algorithms for two-player graph games are at the heart of many problems in the
automatic synthesis of correct-by-construction hardware, software, and cyber-physical systems
from logical specications. The problem has a rich pedigree, going back to Church [11] and
a sequence of seminal results [5, 43, 25, 41, 19, 20, 50, 29]. A chain of reductions can be used
to reduce the synthesis problem for 𝜔-regular specications to nding winning strategies in
two-player games on graphs, for which (symbolic) algorithms are known (see, e.g., [40, 20, 50,
37]). These reductions and algorithms form the basis for algorithmic reactive synthesis.

In practice, it is often the case that no solution exists to a given synthesis problem, but for
“uninteresting” reasons. For example, consider synthesizing a mutual exclusion protocol from a
specication that requires (1) that at most one of two processes can be in the critical section at
any time and (2) that a process wishing to enter the critical section is eventually allowed to do
so. As stated, there may not be a feasible solution to the problem because a process within the
critical section may decide to stay there forever. Similarly, in a synthesis problem involving
concurrent threads, no solution may exist simply because the scheduler may decide never
to pick a particular thread. Fairness assumptions rule out such uninteresting conditions by
constraining the possible behaviors of the environment. The winning condition under fairness
is of the form

Fairness Assumption ⇒ 𝜔−regular Specification. (1)

For example, a fairness constraint can state that whenever a process is in its critical section, it
must eventually leave it or that, if a thread is enabled innitely often, then it is picked by the
scheduler innitely often. Similarly, a mobile robot can assume that a narrow passage is always
eventually freed by other robots if it is known that all robots have distant goals they need to
reach. These examples, and many other practical instances of fairness, fall into a particular
subclass of fairness assumptions, called strong transition fairness [42, 21, 3]. A strong transition
fairness assumption can be modeled by a set of live environment transitions in the underlying
two-player game graph. Whenever the source vertex of a live transition is visited innitely
often, the transition will be taken innitely often by the environment. Unfortunately, despite the
widespread prevalence of strong transition fairness, current symbolic algorithms for solving

3 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

games do not take advantage of their special structure in the winning condition in (1) and no
algorithm better than those for general (Streett) liveness assumptions is known.

In this paper, we consider 𝜔-regular games under strong transition fairness assumptions,
which we call fair adversarial games. We show a surprisingly simple syntactic transformation
that modies the well-known symbolic xpoint algorithm for Rabin games without fairness
assumptions, such that themodiedxpoint algorithm solves the fair adversarialRabin game. To
appreciate the simplicity of our modication, let us consider the well-known xpoint algorithms
for Büchi and co-Büchi games—particular classes of Rabin games—given by the following
𝜇-calculus formulas:

Büchi: 𝜈𝑌 . 𝜇𝑋. (𝐺 ∩ Cpre(𝑌)) ∪ Cpre(𝑋),
Co-Büchi: 𝜇𝑋. 𝜈𝑌 . (𝐺 ∩ Cpre(𝑌)) ∪ Cpre(𝑋),

(2a)

where Cpre(·) denotes the controllable predecessor operator and 𝐺 denotes the set of states that
should be visited always eventually (Büchi) and eventually always (co-Büchi), respectively. In
the presence of strong transition fairness assumptions on the environment, the new algorithm
becomes

Büchi: 𝜈𝑌 . 𝜇𝑋. (𝐺 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑋),
Co-Büchi: 𝜈𝑊. 𝜇𝑋. 𝜈𝑌 . (𝐺 ∩ Cpre(𝑌)) ∪ Apre(𝑊, 𝑋).

(2b)

The only syntactic change (highlighted in blue) we make is to substitute the controllable prede-
cessor for the 𝜇 variable 𝑋 by a new almost sure predecessor operator Apre(𝑌, 𝑋) incorporating
also the previous 𝜈 variable 𝑌 ; if the xpoint starts with a 𝜇 variable (as for co-Büchi), we add
one outermost 𝜈 variable. For the general class of Rabin games which are solved by a deeply
nested xpoint algorithm, we perform this substitution for every Cpre(·) operator over a 𝜇

variable.
We prove the correctness of the outlined syntactic xpoint transformation for fair adver-

sarial Rabin and generalized Rabin games. This immediately results in correct algorithms for
fair adversarial Safety-, (generalized) Büchi-, (generalized) Co-Büchi-, GR(1)-, and Muller games
as special cases. While all mentioned reductions result in a modied xpoint algorithm which
can be obtained by directly applying the outlined syntactic transformation to the respective
well known xpoint algorithm for normal games (as shown for Büchi and Co-Büchi in (2)),
we show that for fair adversarial parity games, which are also a subclass of Rabin games, the
resulting xpoint algorithm is slightly more complex than the syntactic transformation suggests.
However, the alternation depth of both xpoint algorithms still coincide.

Our syntactic transformation is inspired by the work of [15] on symbolic xpoint algo-
rithms for concurrent two-player games on nite graphs. In concurrent games, both players
simultaneously and independently choose their actions from a given vertex, and the transition
relation denes a probability distribution over the set of successor vertices, given the current
state and the chosen actions. It was shown by [15] that for Büchi games the set of almost-sure

4 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

winning vertices (i.e., vertices from which the system player wins the game with probability
one) can be computed by the symbolic xpoint algorithm in (2b). The reason why the xpoint
algorithms coincide for concurrent and fair adversarial Büchi games is rather subtle. For con-
current games, it is known that optimal winning strategies may require randomization, and it
is this randomization (in winning strategies) that induces strong transition fairness on plays
compliant with the chosen strategies. In contrast, in fair adversarial games the environment
player is constrained by a given strong transition fairness assumption, and computed (determin-
istic) winning strategies condition their moves on this fair behavior. In both cases, the xpoint
algorithm has to take possible transition fairness into account (witnessed by the use of the same
Apre(·) operator), however, the conclusion drawn for the resulting winning regions for the
subsequent strategy construction are substantially dierent in both game types.

This observation also explains why the xpoint algorithms for concurrent and fair adver-
sarial games no longer coincide for co-Büchi games. Here, randomized strategies introduce a
dierent type of co-fairness constraint—now certain transitions are ensured to be taken only
nitely often, leading to yet another pre-operator used in the symbolic xpoint algorithm for
concurrent co-Büchi games. For fair adversarial co-Büchi games, however, we still restrict the
environment player with strong transition fairness constraints (which might not be as helpful
for a co-Büchi objective as for a Büchi objective), and by this, the xpoint algorithm again only
has to utilize the Apre operator.

Our main contribution in this paper is to show that the use of the Apre(·) operator to
incorporate strong transition fairness in symbolic algorithms extends from Büchi games to all
other types of 𝜔-regular games while retaining the algorithmic characteristics of the respective
algorithms. It is this generalization of strong transition fairness to the full class of omega-regular
games, that allows us to obtain direct symbolic algorithms for simple stochastic games as a
byproduct. Simple stochastic games generalize two-player graph games with an additional
category of “random” vertices: whenever the game reaches a random vertex, a random process
picks one of the outgoing edges (uniformly at random, w.l.o.g.). Interestingly, one can replace
random vertices in simple stochastic games by environment vertices constrained by extreme
fairness (Pnueli [39]). However, extreme fairness is a special case of strong transition fairness—a
run is extremely fair if it is strongly transition fair for every outgoing edge from a vertex—
showing that simple stochastic games are a special case of fair adversarial games.

In a nutshell, the new direct symbolic algorithms for fair adversarial games developed in
this paper show that, in contrast to full strong fairness, strong transition fairness retains algo-
rithmic eciency in game solving for all 𝜔-regular objectives. This leads to three, conceptually
rather dierent contributions that substantially improve the state of the art.

(I) In the context of reactive synthesis under environment assumptions, our new fair adver-
sarial game solver enables many expressive fairness assumptions on the environment player
in combination with full LTL objectives for the system player. This extends existing work in

5 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

this context. The GR(1) fragment of LTL, for example, was introduced by Piterman, Pnueli, and
Sa’ar [38] explicitly to rule out strong fairness constraints because of the absence of suitable
low-depth xpoint algorithms. Over the years, the GR(1) fragment has been extensively used
as a useful logical fragment of LTL for reactive synthesis, especially in the cyber-physical and
robotics domains [28, 27, 1, 34, 46]. Our new fair adversarial game solver enables expressive
fairness assumptions for properties that go way beyond the ones expressible in GR(1). On
the other hand, we extend the results of Thistle and Malhamé [48] who showed that extreme
fairness assumptions on the environment allow ecient synthesis of supervisory controllers
for non-terminating processes1 under Rabin specications.

(II) In the context of games with randomized strategies, we show that simple stochastic
two-player games (also known as 21/2-player games) can be reduced to fair adversarial games.
We show that, to solve a qualitative stochastic (generalized) Rabin game, we can equivalently
solve the (generalized) Rabin game under extreme fairness which is a particular fair adversarial
(generalized) Rabin game. This results in a direct symbolic algorithm for this problem. Our
algorithm, which runs in 𝑂(𝑛𝑘+2𝑘!) symbolic steps for an 𝑛-vertex 𝑘-pair stochastic Rabin game,
improves the best known algorithm for such games given in Chatterjee, de Alfaro, andHenzinger
[8]. Their algorithm is based on a reduction to a 𝑂 (𝑛(𝑘 + 1))-vertex (𝑘 + 1)-pair (deterministic)
Rabin game and a simple analysis indicates that it requires 𝑂

(
(𝑛(𝑘 + 1))𝑘+2(𝑘 + 1)!

)
symbolic

steps.
(III) In the context of ecient solutions of 𝜔-regular games, we obtain symbolic algorithms

which solve two-player games by nding the set of states of the underlying game graph from
which the game can be won. The benet of symbolic approaches is that they allow ecient
implementations based on manipulations of formulas (often represented using data structures
such as BDDs). Indeed, these xpoint expressions are the cornerstone ofmany reactive synthesis
tools [4, 17, 35]. Due to the simplicity of our syntactic transformation from the xpoint algorithm
for usual games to the one for fair adversarial games, existing symbolic implementations of
reactive synthesis can be slightly modied to incorporate strong transition fairness assumptions.

We have implemented our algorithm in a symbolic reactive synthesis tool called Fairsyn.
Fairsyn uses a multi-threaded BDD library [49] and implements an acceleration technique for
the xpoints [30]. We show on a number of synthetic benchmarks from the very large transition
systems benchmark suite [22] that our algorithm, with the improvements, can scale to large
Rabin games and the performance scales with the number of cores. Additionally, we evaluate
our tool on two case studies, one from software synthesis [6] and the other from stochastic
control synthesis [16]. We show that Fairsyn scales well on these case studies, and outperforms
a state-of-the-art stochastic game solver by an order of magnitude. In contrast, a solver that
treats transition fairness as Streett fairness does not nish on the considered case studies.

1 Supervisory controller synthesis for non-terminating processes is conceptually similar to reactive synthesis under
environment assumptions but utilizes different solution algorithms [44].

6 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

2. Preliminaries

Notation: We use the notation N0 to denote the set of natural numbers including “0.” Given
𝑎, 𝑏 ∈ N0, we use the notation [𝑎; 𝑏] to denote the set {𝑛 ∈ N0 | 𝑎 ≤ 𝑛 ≤ 𝑏}. Observe that, by
denition, [𝑎; 𝑏] is an empty set if 𝑎 > 𝑏. For any set 𝐴 ⊆ 𝑈 dened on the universe𝑈 , we use
the notation 𝐴 to denote the complement of 𝐴.

Let 𝐴 and 𝐵 be two sets and 𝑅 ⊆ 𝐴× 𝐵 be a relation. We use the notation dom(𝑅) to denote
the domain of 𝑅, which is the set {𝑎 ∈ 𝐴 | ∃𝑏 ∈ 𝐵 . (𝑎, 𝑏) ∈ 𝑅}. For any element 𝑎 ∈ 𝐴, we use
the notation 𝑅(𝑎) to denote the set {𝑏 ∈ 𝐵 | (𝑎, 𝑏) ∈ 𝑅}, and for any element 𝑏 ∈ 𝐵, we use the
notation 𝑅−1(𝑏) to denote the set {𝑎 ∈ 𝐴 | (𝑎, 𝑏) ∈ 𝑅}. We generalize 𝑅(·) to operate on sets in
the following way: for any 𝐴′ ⊆ 𝐴, we write 𝑅(𝐴′) B ∪𝑎∈𝐴′𝑅(𝑎), and for any 𝐵′ ⊆ 𝐵, we write
𝑅−1(𝐵′) B ∪𝑏∈𝐵′𝑅−1(𝑏).

Given an alphabet 𝐴, we use the notation 𝐴∗ and 𝐴𝜔 to denote respectively the set of all
nite words and the set of all innite words formed using the letters of the alphabet 𝐴. We
use 𝐴∞ to denote the set 𝐴∗ ∪ 𝐴𝜔. Given two words 𝑎 ∈ 𝐴∗ and 𝑏 ∈ 𝐴∞, we use 𝑎 · 𝑏 to denote
their concatenation.

2.1 Two-Player Games

Game Graphs: We dene a two-player game graph as a tuple G = 〈𝑉,𝑉0, 𝑉1, 𝐸〉, where (i) 𝑉 =

𝑉0]𝑉1 is a nite set of vertices2 that is partitioned into the sets 𝑉0 and 𝑉1; (ii) 𝐸 ⊆ (𝑉 ×𝑉) is a
relation denoting the set of (directed) edges; The two players are called Player 0 and Player 1,
who control the vertices 𝑉0 and 𝑉1 respectively.

Strategies: A strategy of Player 0 is a function 𝜌0 : 𝑉∗ ·𝑉0 → 𝑉 with the constraint 𝜌0(𝑤 · 𝑣) ∈
𝐸(𝑣) for every 𝑤 · 𝑣 ∈ 𝑉∗ × 𝑉0. Likewise, a strategy of Player 1 is a function 𝜌1 : 𝑉∗ · 𝑉1 → 𝑉

with the constraint 𝜌1(𝑤 · 𝑣) ∈ 𝐸(𝑣) for every 𝑤 · 𝑣 ∈ 𝑉∗ ×𝑉1. Of special interest is the class of
memoryless strategies: a strategy 𝜌0 of Player 0 ismemoryless if for every𝑤1 · 𝑣, 𝑤2 · 𝑣 ∈ 𝑉∗ ×𝑉0,
we have 𝜌0(𝑤1 · 𝑣) = 𝜌0(𝑤2 · 𝑣).

Plays: Consider an innite sequence of vertices 𝜋 = 𝑣0𝑣1𝑣2 . . . ∈ 𝑉𝜔. The sequence 𝜋 is called a
play over G starting at the vertex 𝑣0 if for every 𝑖 ∈ N0, we have 𝑣𝑖 ∈ 𝑉 and (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. In our
convention for denoting vertices, superscripts (ranging over N0) will denote the position of a
vertex within a given play, whereas subscripts, either 0 or 1, will denote the membership of a
vertex in the sets 𝑉0 or 𝑉1 respectively. Let 𝜌0 and 𝜌1 be a given pair of strategies of Player 0
and Player 1, respectively, and let 𝑣0 be a given initial vertex. The play compliant with 𝜌0 and 𝜌1

is the unique play 𝜋 = 𝑣0𝑣1𝑣2 . . . for which for every 𝑖 ∈ N0, if 𝑣𝑖 ∈ 𝑉0 then 𝑣𝑖+1 = 𝜌0(𝑣0 . . . 𝑣𝑖),
and if 𝑣𝑖 ∈ 𝑉1 then 𝑣𝑖+1 = 𝜌1(𝑣0 . . . 𝑣𝑖).

2 We use the terms “vertex” and “state” interchangeably in this paper.

7 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Winning Conditions: A winning condition 𝜑 is a set of innite plays over G, i.e., 𝜑 ⊆ 𝑉𝜔. We
adopt Linear Temporal Logic (LTL) notation for describing winning conditions. The atomic
propositions for the LTL formulae are sets of vertices, i.e., elements of the set 2𝑉 . We use
the standard symbols for the Boolean and the temporal operators: “¬” for negation, “∧” for
conjunction, “∨” for disjunction, “→” for implication, “U” for until (𝐴U 𝐵 means “the play
remains inside the set 𝐴 until it moves to the set 𝐵”), “©” for next (©𝐴means “the next vertex
is in the set 𝐴”), “♦” for eventually (♦𝐴means “the play will eventually visit a vertex from the
set 𝐴”), and “�” for always (�𝐴means “the play will only visit vertices from the set 𝐴”). The
syntax and semantics of LTL can be found in standard textbooks [3]. By slightly abusing notation,
we will use 𝜑 interchangeably to denote both the LTL formula and the set of plays satisfying 𝜑.
Hence, we write 𝜋 ∈ 𝜑 (instead of 𝜋 |= 𝜑) to denote the satisfaction of the formula 𝜑 by the
play 𝜋.

Winning Regions: Player 0 wins a two-player game over the game graph G for a winning
condition 𝜑 from a vertex 𝑣0 ∈ 𝑉 if there is a Player 0 strategy 𝜌0 such that for every Player 1
strategy 𝜌1, the play 𝜋 from 𝑣0 compliant with 𝜌0 and 𝜌1 satises 𝜑, i.e., 𝜋 ∈ 𝜑. The winning
regionW ⊆ 𝑉 for Player 0 is the set of vertices from which Player 0 wins the game.

2.2 Fair Adversarial Games

Let G be a two-player game graph and let 𝐸� ⊆ (𝑉1 × 𝑉) ∩ 𝐸 be a given set of live edges. Let
𝑉 � B dom(𝐸�) denote the set of Player 1 vertices in the domain of 𝐸�. Intuitively, the edges in 𝐸�

represent fairness assumptions on Player 1: for every edge (𝑣, 𝑣′) ∈ 𝐸�, if 𝑣 is visited innitely
often along a play, we expect that the edge (𝑣, 𝑣′) is picked innitely often by Player 1. I.e., if a
vertex 𝑣 is visited innitely often, every outgoing live edge of 𝑣 is expected to be taken innitely
often.

We write G� = 〈G, 𝐸�〉 to denote a game graph with live edges, and extend notions such as
plays, strategies, winning conditions, winning region, etc., from game graphs to those with live
edges. A play 𝜋 over G� is strongly transition fair if it satises the LTL formula:

𝛼 B
∧

(𝑣,𝑣′)∈𝐸� (�♦𝑣 → �♦(𝑣 ∧ ©𝑣′)) . (3)

Given G� and a winning condition 𝜑, Player 0 wins the fair adversarial game over G� for the
winning condition 𝜑 from a vertex 𝑣0 ∈ 𝑉 if Player 0 wins the game over G� for the winning
condition 𝛼 → 𝜑 from 𝑣0.

We have two interesting observations about fair adversarial games. First, live edges allow
to rule out particular strategies of Player 1, making it easier for Player 0 to win in certain
situations. Consider for example a game graph (Figure 1 (top)) with two vertices 𝑝 and 𝑞. Vertex
𝑝 (square) is a Player 1 vertex and vertex 𝑞 is a Player 0 vertex (circle). The edge (𝑝, 𝑞) is a live
edge (dashed). Suppose the specication for Player 0 is 𝜑 = �♦𝑞. If the edge (𝑝, 𝑞) were non-live,

8 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

𝑝 𝑞

𝑝

𝑞

𝑞′

Figure 1. Two fair adversarial games.

Player 0 would not win for this specication from 𝑝, because Player 1 would be able to trap
the game in 𝑝 by always choosing 𝑝 itself as the successor. In contrast, Player 0 wins from 𝑝 in
the fair adversarial game, because the liveness assumption on the edge (𝑝, 𝑞) forces Player 1 to
innitely often choose the transition to 𝑞.

Second, fairness assumptionsmodeled by live edges restrict the strategy choices of Player 1
less than assuming that Player 1 chooses probabilistically between these edges. Consider for
example a fair adversarial game with one Player 1 vertex 𝑝 (square) which has two outgoing
live edges to states 𝑞 and 𝑞′; see Figure 1 (bottom). If Player 1 chooses randomly between edges
(𝑝, 𝑞) and (𝑝, 𝑞′), every nite sequence of visits to states 𝑞 and 𝑞′ will happen innitely often
with probability one. This is not true in the fair adversarial game. Here Player 1 is allowed to
choose a particular sequence of visits to states 𝑞 and 𝑞′ (e.g., only 𝑞𝑞′𝑞𝑞′𝑞𝑞′𝑞𝑞′ . . .), as long as
both are visited innitely often.

2.3 Symbolic Computations over Game Graphs

Set Transformers: Our goal is to develop symbolic xpoint algorithms to characterize the
winning region of a fair adversarial game over a game graph with live edges. As a rst step,
given G�, we dene the required symbolic transformers of sets of states. We dene the existen-
tial, universal, and controllable predecessor operators as follows. For 𝑆 ⊆ 𝑉 , we have

Pre∃0 (𝑆) B {𝑣 ∈ 𝑉0 | 𝐸(𝑣) ∩ 𝑆 ≠ ∅}, (4a)

Pre∀1 (𝑆) B {𝑣 ∈ 𝑉1 | 𝐸(𝑣) ⊆ 𝑆}, and (4b)

Cpre(𝑆) B Pre∃0 (𝑆) ∪ Pre∀1 (𝑆). (4c)

Intuitively, the controllable predecessor operator Cpre(𝑆) computes the set of all states that
can be controlled by Player 0 to stay in 𝑆 after one step regardless of the strategy of Player 1.
Additionally, we dene two operators which take advantage of the fairness assumption on the
live edges. Given two sets 𝑆,𝑇 ⊆ 𝑉 , we dene the live-existential and almost sure predecessor

9 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

operators:

Lpre∃(𝑆) B {𝑣 ∈ 𝑉 � | 𝐸� (𝑣) ∩ 𝑆 ≠ ∅}, and (5a)

Apre(𝑆, 𝑇) B Cpre(𝑇) ∪
(
Lpre∃(𝑇) ∩ Pre∀1 (𝑆)

)
. (5b)

Intuitively, the almost sure predecessor operator3 Apre(𝑆, 𝑇) computes the set of all states that
can be controlled by Player 0 to stay in 𝑇 (via Cpre(𝑇)) as well as all Player 1 states in𝑉 � that (a)
will eventuallymake progress towards 𝑇 if Player 1 obeys its fairness-assumptions encoded in 𝛼

(through Lpre∃(𝑇)) and (b) will never leave 𝑆 in the “meantime” (through Pre∀1 (𝑆)). We see that
all set transformers are monotonic with respect to set inclusion. Further, Cpre(𝑇) ⊆ Apre(𝑆, 𝑇)
always holds, Cpre(𝑇) = Apre(𝑆, 𝑇) if𝑉 � = ∅, and Apre(𝑆,𝑇) ⊆ Cpre(𝑆) if 𝑇 ⊆ 𝑆 (see Lemma B.1
in the appendix for a proof).

Fixpoint Algorithms in the 𝝁-calculus: We use the 𝜇-calculus [26] as a convenient logical
notation used to dene a symbolic algorithm (i.e., an algorithm that manipulates sets of states
rather then individual states) for computing a set of states with a particular property over
a given game graph G. The formulas of the 𝜇-calculus, interpreted over a two-player game
graph G, are given by the grammar

𝜑 F 𝑝 | 𝑋 | 𝜑 ∪ 𝜑 | 𝜑 ∩ 𝜑 | pre(𝜑) | 𝜇𝑋.𝜑 | 𝜈𝑋.𝜑

where 𝑝 ranges over subsets of 𝑉 , 𝑋 ranges over a set of formal variables, pre ranges over
monotone set transformers in {Pre∃0 , Pre∀1, Cpre, Lpre∃,Apre}, and 𝜇 and 𝜈 denote, respectively,
the least and the greatest xed-point of the functional dened as 𝑋 ↦→ 𝜑(𝑋). Since the operations
∪, ∩, and the set transformers pre are all monotonic, the xed-points are guaranteed to exist. A
𝜇-calculus formula evaluates to a set of states over G, and the set can be computed by induction
over the structure of the formula, where the xed-points are evaluated by iteration. We omit
the (standard) semantics of formulas (see [26]).

3. Fair Adversarial Rabin Games

This section presents the main result of this paper, which is a symbolic xpoint algorithm that
computes the winning region of Player 0 in the fair adversarial game over G� with respect to
any 𝜔-regular property formalized as a Rabin winning condition.

Our new xpoint algorithm has multiple unique features.
(I) It works directly overG�, without requiring any pre-processing step to reduceG� to a “normal”
two-player game. This feature allows us to obtain a direct symbolic algorithm for stochastic
games as a by-product (see Section 5).

3 We will justify the naming of this operator later in Remark 3.6.

10 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

(II) Conceptually, our symbolic algorithm is not more complex than the known algorithm
solving Rabin games over “normal” two-player game graphs by Piterman and Pnueli [37] (see
Section 3.3).
(III) Our new xpoint algorithm is obtained from the known algorithm of Piterman and Pnueli
[37] by a simple syntactic change (as previewed in (2)). We simply replace all controllable
predecessor operators over least xpoint variables by the almost sure predecessor operator
invoking the preceding maximal xpoint variable. This makes the proof of our new xpoint
algorithm conceptually simple (see Section 3.2).

At a higher level, our syntactic change is a very simple yet ecient transformation to
incorporate environment assumptions expressible by live edges into reactive synthesis while
retaining computational eciency. Most remarkably, this transformation also works directly for
xpoint algorithms solving reachability, safety, Büchi, (generalized) co-Büchi, Rabin-chain and
parity games, as these can be formalized as particular instances of a Rabin game (see Section 3.4).
Moreover, it also works for generalized Büchi and GR(1) games. However, as these games are
particular instances of a generalized Rabin game, we prove these special cases separately in
Section 4 after formally introducing generalized Rabin games.

3.1 The Symbolic Algorithm

Fair adversarial Rabin Games: A Rabin winning condition is dened by the set
R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉}, where 𝐺𝑖 , 𝑅𝑖 ⊆ 𝑉 for all 𝑖 ∈ [1; 𝑘]. We say that R has index
set 𝑃 = [1; 𝑘]. A play 𝜋 satises the Rabin condition R if 𝜋 satises the LTL formula

𝜑 B
∨

𝑖∈𝑃

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)
. (6)

We now present our new symbolic xpoint algorithm to compute the winning region of Player 0
in the fair adversarial game over G� with respect to a Rabin winning condition R.

THEOREM 3.1. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and R be a Rabin condition
over G with index set 𝑃 = [1; 𝑘]. Further, let 𝑍∗ denote the xed-point of the following 𝜇-calculus
formula:

𝜈𝑌𝑝0 .𝜇𝑋𝑝0 .
⋃
𝑝1∈𝑃

𝜈𝑌𝑝1 .𝜇𝑋𝑝1 .
⋃

𝑝2∈𝑃\{𝑝1}
𝜈𝑌𝑝2 .𝜇𝑋𝑝2

⋃
𝑝𝑘∈𝑃\{𝑝1,...,𝑝𝑘−1}

𝜈𝑌𝑝𝑘 .𝜇𝑋𝑝𝑘 .

𝑘⋃
𝑗=0

C𝑝 𝑗

 , (7a)

where C𝑝 𝑗
B

(⋂ 𝑗
𝑖=0 𝑅𝑝𝑖

)
∩

[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Apre(𝑌𝑝 𝑗

, 𝑋𝑝 𝑗
)
)]

, (7b)

with4 𝑝0 = 0, 𝐺𝑝0 B ∅ and 𝑅𝑝0 B ∅. Then 𝑍∗ is equivalent to the winning regionW of Player 0
in the fair adversarial game over G� for the Rabin winning condition R. Moreover, the xpoint

4 The Rabin pair 〈𝐺𝑝0 , 𝑅𝑝0〉 = 〈∅, ∅〉 in (7) is artificially introduced to make the fixpoint representation more compact. It is
not part of R.

11 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

algorithm runs in 𝑂(𝑛𝑘+2𝑘!) symbolic steps, and a memoryless winning strategy for Player 0 can
be extracted from it.

3.2 Proof Outline

Given a Rabin winning condition over a “normal” two-player game, Piterman and Pnueli [37]

provided a symbolic xpoint algorithm which computes the winning region for Player 0. The
xpoint algorithm in their paper is almost identical to our xpoint algorithm in (7): it only
diers in the last term of the constructed C-terms in (7b). Piterman and Pnueli [37] dene the
term C𝑝 𝑗

as (⋂ 𝑗
𝑖=0 𝑅𝑝𝑖

)
∩

[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Cpre(𝑋𝑝 𝑗

)
)]

.

Intuitively, a single term C𝑝 𝑗
computes the set of states that always remain within𝑄𝑝 𝑗

:=
⋂ 𝑗

𝑖=0 𝑅𝑝𝑖

while always re-visiting 𝐺𝑝 𝑗
. I.e, given the simpler (local) winning condition

𝜓 := �𝑄 ∧ �^𝐺 (8)

for two sets 𝑄, 𝐺 ⊆ 𝑉 , the set

𝜈𝑌 . 𝜇𝑋. 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Cpre(𝑋))] (9)

is known to dene exactly the states of a “normal” two-player game G from which Player 0
has a strategy to win the game with winning condition 𝜓 [33]. Such winning conditions are
typically called Safe Büchi winning conditions, written as 〈𝐺, 𝑄〉. The key insight in the proof
of Theorem 3.1 is to show that the new denition of C-terms in (7b) using the new almost sure
predecessor operator Apre actually computes the winning state sets of fair adversarial safe
Büchi games. Subsequently, we generalize this intuition to the xpoint for the Rabin games.

Fair Adversarial Safe Büchi Games: Solution of a fair adversarial safe Büchi game is formalized
in the following theorem.

THEOREM 3.2. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and 〈𝐺, 𝑄〉 be a safe Büchi
winning condition. Further, let

𝑍∗ B 𝜈𝑌 . 𝜇𝑋. 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Apre(𝑌, 𝑋))] . (10)

Then 𝑍∗ is equivalent to the winning region of Player 0 in the fair adversarial safe Büchi game
overG� with thewinning condition 〈𝐺, 𝑄〉. Moreover, the xpoint algorithm runs in𝑂(𝑛2) symbolic
steps, and a memoryless winning strategy for Player 0 can be extracted from it.

Intuitively, the xpoint algorithms in (9) and (10) consist of two parts: (a) a smallest xpoint
over 𝑋 which computes (for any xed value of𝑌) the set of states that can reach the “target state
set” 𝑇 B 𝑄 ∩ 𝐺 ∩ Cpre(𝑌) while staying inside the safe set 𝑄, and (b) a greatest xpoint over 𝑌

12 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

which ensures that the only states considered in the target 𝑇 are those that allow to re-visit a
state in 𝑇 while staying in 𝑄.

By comparing (9) and (10) we see that our syntactic transformation only changes part (a).
Hence, in order to prove Theorem 3.2 it essentially remains to show that this transformation
works for the even simpler safe reachability games.

Fair Adversarial Safe Reachability Games: A safe reachability condition is a tuple 〈𝑇, 𝑄〉 with
𝑇, 𝑄 ⊆ 𝑉 and a play 𝜋 satises the safe reachability condition 〈𝑇, 𝑄〉 if 𝜋 satises the LTL formula

𝜓 := 𝑄U 𝑇 . (11)

A safe reachability game is often called a reach-avoid game, where the safe sets are specied
by an unsafe set 𝑅 := 𝑄 that needs to be avoided. The solution to fair adversarial reach-avoid
games is formalized in the following theorem, and is proved in Appendix B.2.1.

THEOREM 3.3. LetG� = 〈G, 𝐸�〉 be a game graphwith live edges and 〈𝑇, 𝑄〉 be a safe reachability
winning condition. Further, let

𝑍∗ B 𝜈𝑌 . 𝜇𝑋. 𝑇 ∪ (𝑄 ∩ Apre(𝑌, 𝑋)). (12)

Then 𝑍∗ is equivalent to the winning region of Player 0 in the fair adversarial safe reachability
game over G� with the winning condition 〈𝑇, 𝑄〉. Moreover, the xpoint algorithm runs in 𝑂(𝑛2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

To gain some intuition on the correctness of Theorem 3.3, let us recall that the xpoint
algorithm for safe reachability games without live edges is given by:

𝜇𝑋. 𝑇 ∪ (𝑄 ∩ Cpre(𝑋)). (13)

Intuitively, the xpoint in (13) is initialized with 𝑋0 = ∅ and computes a sequence 𝑋0, 𝑋1, . . . , 𝑋𝑘

of increasingly larger sets until 𝑋𝑘 = 𝑋𝑘+1. We say that 𝑣 has rank 𝑟 if 𝑣 ∈ 𝑋𝑟 \ 𝑋𝑟−1. All states
contained in 𝑋𝑟 allow Player 0 to force the play to reach 𝑇 in at most 𝑟 − 1 steps while staying
in 𝑄. The corresponding Player 0 strategy 𝜌0 is known to be winning w.r.t. (11), and along every
play 𝜋 compliant with 𝜌0, the path 𝜋 remains in 𝑄 and the rank is always decreasing.

To see why the same strategy is also sound in the fair adversarial safe reachability game G�,
rst recall that for vertices 𝑣 ∉ 𝑉 � of G�, the almost sure pre-operator Apre(𝑋,𝑌) simplies
to Cpre(𝑋). With this, we see that for every 𝑣 ∉ 𝑉 � a Player 0 winning strategy 𝜌0 in G� can
always force plays to stay in 𝑄 and to decrease their rank, similar to 𝜌0. With this, we see that
plays 𝜋 which are compliant with such a strategy 𝜌0 and visit a vertex in 𝑉 � only nitely often
satisfy (11).

The only interesting case for soundness of Theorem 3.3 are therefore plays 𝜋 that visits
states in 𝑉 � innitely often. However, as the number of vertices is nite, we only have a nite
number of ranks and hence a certain vertex 𝑣 ∈ 𝑉 � with a nite rank 𝑟 needs to get visited by

13 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

1 2 3

4 5

6

7

8

9

Figure 2. Fair adversarial game graph discussed in Examples 3.4 and 3.5 with vertex sets 𝐺 = {6, 9}
(double circled, green), 𝑄 = {1} (red,dotted), and live edges 𝐸� = {(2, 3), (3, 6), (5, 4), (5, 6), (7, 9))} (dashed,
blue). Player 0 and Player 1 vertices are indicated by circles and squares, respectively.

𝜋 innitely often. Due to the denition of Apre we however know that only states 𝑣 ∈ 𝑉 � are
contained in 𝑋𝑟 if 𝑣 has an outgoing live edge reaching 𝑋𝑘 with 𝑘 < 𝑟. With this, reaching 𝑣

innitely often implies that also a state with rank 𝑘 s.t. 𝑘 < 𝑟 will get visited innitely often. As
𝑋1 = 𝑇 we can show by induction that 𝑇 is eventually visited along 𝜋 while 𝜋 always remains in
𝑄 until then.

In order to prove completeness of Theorem 3.3 we need to show that all states in𝑉 \ 𝑍∗ are
loosing for Player 0. Here, again the reasoning is equivalent to the “normal” safe reachability
game with 𝑣 ∉ 𝑉 �. For vertices 𝑣 ∈ 𝑉 �, we see that 𝑣 is not added to 𝑍∗ via Apre if 𝑣 ∉ 𝑇 and
either (i) all its outgoing live transitions do not make progress towards 𝑇 , or (ii) it has some
outgoing edge (not necessarily a live one) that makes it leave 𝑍∗. One can therefore construct a
Player 1 strategy that for (i)-vertices always chooses a live transition and thereby never makes
progress towards 𝑇 (also if 𝑣 is visited innitely often), and for (ii)-vertices ensures that they
are only visited once on plays which remain in 𝑄. This ensures that (ii)-vertices never make
progress towards 𝑇 via their possibly existing rank-decreasing live edges.

A detailed soundness and completeness proof of Theorem 3.3 along with the respec-
tive Player 0 and Player 1 strategy construction is provided in Appendix B.2.1. In addition,
Theorem 3.2 is proven in Section B.2.2 by a reduction to Theorem 3.3 for every iteration over 𝑌 .

EXAMPLE 3.4 (Fair adversarial safe reachability game). We consider a fair adversarial safe
reachability game over the game graph depicted in Figure 2 with target vertex set𝑇 = 𝐺 = {6, 9}
and safe vertex set 𝑄 = 𝑉 \ {1}.

We denote by 𝑌𝑚 the 𝑚-th iteration over the xpoint variable 𝑌 in (12), where 𝑌 0 = 𝑉 .
Further, we denote by 𝑋𝑚𝑖 the set computed in the 𝑖-th iteration over the xpoint variable 𝑋
in (12) during the computation of 𝑌𝑚 where 𝑋𝑚0 = ∅. We further have 𝑋𝑚1 = 𝑇 = {6, 9} as
Apre(·, ∅) = ∅. Now we compute

𝑋12 = 𝑇 ∪ (𝑄 ∩ Apre(𝑌 0, 𝑋11))
= {6, 9} ∪ (𝑉 \ {1} ∩ [Cpre(𝑋11)︸ ︷︷ ︸

{8}

∪ (Lpre∃(𝑋11) ∩ Pre∀1 (𝑉))︸ ︷︷ ︸
{3,5,7}

]) = {5, 6, 7, 8, 9} (14)

14 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

We observe that the only vertex added to 𝑋 via the Cpre term is vertex 8. States {3, 5, 7} are
added due to the existing live edge leading to a target vertex. Here, we note that vertex 7 is
added due to its live edge to vertex 9. The additional requirement Pre∀1 (𝑉) in Apre(𝑌 0, 𝑋11) is
trivially satised for all vertices at this point as 𝑌 0 = 𝑉 and can therefore be ignored. Doing one
more iteration over 𝑋 we see that now vertex 4 gets added via the Cpre term (as it is a Player 0
vertex that allows progress towards 5) and vertex 2 is added via the Apre term (as it allows
progress to 3 via a live edge). The iteration over 𝑋 terminates with 𝑌 1 = 𝑋1∗ = 𝑉 \ {1}.

Re-iterating over 𝑋 for 𝑌 1 gives 𝑋22 = 𝑋12 = {5, 6, 7, 8, 9} as before. However, now vertex 2
does not get added to 𝑋23 because vertex 2 has an edge leading to 𝑉 \ 𝑌 1 = {1}. Therefore the
iteration over 𝑋 terminates with 𝑌 2 = 𝑋2∗ = 𝑉 \ {1, 2}. When we now re-iterate over 𝑋 for 𝑌 2

we see that vertex 3 is not added to 𝑋32 any more, as vertex 3 has a transition to 𝑉 \ 𝑌 2 = {1, 2}.
Therefore the iteration over 𝑋 now terminates with 𝑌 3 = 𝑋3∗ = 𝑉 \ {1, 2, 3}. Now re-iterating
over 𝑋 does not change the vertex set anymore and the xpoint terminates with 𝑌 ∗ = 𝑌 3 =

𝑉 \ {1, 2, 3}.
We note that the 𝜇-calculus formula (13) for “normal” safe reachability games terminates

after two iterations over 𝑋 with 𝑋∗ = {6, 8, 9}, as vertex 8 is the only vertex added via the Cpre
operator in (14). Due to the stricter notion of Cpre requiring that all outgoing edges of Player 0
vertices make process towards the target, (13) does not require an outer largest xed-point
over 𝑌 to “trap” the play in a set of vertices which allow progress when “waiting long enough.”
This “trapping” required in (12) via the outer xed-point over 𝑌 actually fails for vertices 2
and 3 (as they are excluded form the winning set of (12)). Here, Player 1 can enforce to “escape”
to the unsafe vertex 1 in two steps before 2 and 3 are visited innitely often (which would imply
progress towards 6 via the existing live edges).

We see that the winning region in the “normal” game is signicantly smaller than the
winning region for the fair adversarial game, as adding live transitions restricts the strategy
choices of Player 1, making it easier for Player 0 to win the game. �

EXAMPLE 3.5 (Fair adversarial safe Büchi game). We now consider a fair adversarial safe
Büchi game over the game graph depicted in Figure 2 with sets 𝐺 = {6, 9} and 𝑄 = 𝑉 \ {1}.

We rst observe that we can rewrite the xpoint in (10) as

𝜈𝑌 . 𝜇𝑋. [𝑄 ∩ 𝐺 ∩ Cpre(𝑌)] ∪ [𝑄 ∩ (Apre(𝑌, 𝑋))] . (15)

Using (15) we see that for 𝑌 0 = 𝑉 we can dene 𝑇0 := 𝑄 ∩ 𝐺 ∩ Cpre(𝑉) = 𝐺 = {6, 9}. Therefore
the rst iteration over 𝑋 is equivalent to (14) and terminates with 𝑌 1 = 𝑋1∗ = 𝑉 \ {1}.

Now, however, we need to re-compute 𝑇 for the next iteration over 𝑋 and obtain 𝑇1 =

𝑄∩𝐺 ∩ Cpre(𝑌 1) = 𝑉 \ {1} ∩ {6, 9} ∩𝑉 \ {1, 2, 9} = {6}. This re-computation of 𝑇1 checks which
target vertices are re-reachable, as required by the Büchi condition. As vertex 9 has no outgoing
edge it is trivially not re-reachable.

15 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

With this, we see that for the next iteration over 𝑋 we only have one target vertex 𝑇1 = {6}.
If we recall that vertex 7 is added to 𝑋22 due to its live edge to 9, we see that it is now not added
anymore. Intuitively, we have to exclude 7 as Player 1 can always decide to take the live edge
towards 9 from 7 (also if 7 only gets visited once), and therefore prevents to re-visit a target
state.

Now, vertices 2 and 3 get eliminated for the same reason as in the safe reachability game
within the second and third iteration over 𝑌 . The overall xpoint computation therefore
terminates with 𝑌 ∗ = 𝑌 3 = {4, 5, 6, 8}. �

PROOF OF THEOREM 3.1 . With Theorem 3.3 and Theorem 3.2 in place, the proof of
Theorem 3.1 is essentially equivalent to the proof of Piterman and Pnueli [37] while utilizing
Theorem 3.3 and Theorem 3.2 at all suitable places. For completeness, we give the full proof of
Theorem 3.1, including the memoryless strategy construction, in Appendix B.3. In addition, we
illustrate the steps of the xpoint algorithm in (7) with a simple fair adversarial Rabin game
(depicted in Figure 10) which has two acceptance pairs in Appendix A. �

REMARK 3.6. We remark that the xpoint (12), as well as the Apre operator, are similar in
structure to the solution of almost surely winning states in concurrent reachability games [15,
14, 7]. In concurrent games, the xed-point captures the largest set of states in which the game
can be trapped while maintaining a positive probability of reaching the target. In our case,
the xed-point captures the largest set of states in which Player 0 can keep the game while
ensuring a visit to the target either directly or through the live edges. The commonality justies
our notation and terminology for Apre.

However, concurrent games are fundamentally dierent from fair adversarial games. In
concurrent games, the two players simultaneously and independently choose their actions from
a given vertex, and the next vertex is chosen probabilistically (given the current vertex and the
choice of actions). It is known that optimal winning strategies in concurrent games may require
randomization. The randomization in strategies induces progress conditions similar to our live
edges. In contrast, in fair adversarial games, the live edges are given as an assumption on the
environment and are xed once and for all, that is, the set of live edges cannot bemodied based
on particular strategies of the players. To see the dierence from concurrent games, consider
co-Büchi winning conditions. Almost sure winning regions for co-Büchi concurrent games
can be characterized as xpoints [14]; however, the characterization requires an additional
predecessor operator. The additional operator provides a “dual” of live edges, whereby a player
can ensure that some edges are taken nitely often in the long run. Again, the choice of these
edges is based on the strategies chosen by the players. Thus, xpoint algorithms for co-Büchi
(and also Rabin) concurrent games are quite dierent from fair adversarial games, and both
the reasons for their correctness and constructions of optimal strategies are more intricate.

16 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

REMARK 3.7. Aminof, Ball, and Kupferman [2] studied fair CTL and LTLmodel checkingwhere
the fairness condition is given by a transition fairness with all edges of the transition system live.
They show that CTL model checking under this all-live fairness condition, can be syntactically
transformed to non-fair CTL model checking. A similar transformation is possible for fair model
checking of Büchi, Rabin, and Streett formulas. The correctness of their transformation is based
on reasoning similar to our Apre operator. For example, a state satises the CTL formula ∀^𝑝
under fairness i all paths starting from the state either eventually visits 𝑝 or always visits
states from which a visit to 𝑝 is possible.

3.3 Complexity

Complexity Analysis of (7): For Rabin games with 𝑘 Rabin pairs, Piterman and Pnueli [37] show
a xpoint formula with alternation depth 2𝑘 + 1 . Using the accelerated xpoint computation
technique of Long, Browne, Clarke, Jha, and Marrero [30], they deduce a bound of 𝑂(𝑛𝑘+1𝑘!)
symbolic steps. We show in Appendix C that this accelerated xpoint computation can also
be applied to (7) yielding a bound of 𝑂(𝑛𝑘+2𝑘!) symbolic steps. (The additional complexity is
because of an additional outermost 𝜈-xpoint.) Thus our algorithm is almost as ecient as
the original algorithm for Rabin games without environment assumptions—independent of the
number of strong transition fairness assumptions!

Comparison with a Näıve Solution: We show a näıve reduction from fair adversarial Rabin
games to usual Rabin games. Suppose G� = 〈G, 𝐸�〉 is a game graph with live edges, R =

{〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉} is a Rabinwinning condition dened overG�, and 𝜑 is the corresponding
LTL specication as dened in (6). Let Ĝ = 〈𝑉,𝑉0, 𝑉1, 𝐸〉 be a game graph obtained by just
replacing every live edge of G� with a gadget shown in Figure 3 and explained next. For every
live edge (𝑣, 𝑣′) ∈ 𝐸� we introduce a new intermediate vertex named 𝑣𝑣′ ∈ 𝑉 , and without loss
of generality we assume that 𝑣𝑣′ ∈ 𝑉0. (We could have equivalently used the convention that
𝑣𝑣′ ∈ 𝑉1.) Then we replace the edge (𝑣, 𝑣′) with a pair of new edges (𝑣, 𝑣𝑣′) ∈ 𝐸 and (𝑣𝑣′, 𝑣′) ∈ 𝐸;
the rest remains the same as in G. Assuming that |𝐸� | = 𝑙 and |𝑉 | = 𝑛, the number of vertices
of Ĝ is 𝑛 + 𝑙.

Intuitively, the event of the newly introduced vertices being reached in Ĝ simulates the
event of the corresponding live edge being taken in G�, and vice versa. We are now ready to
transfer the specication 𝛼 → 𝜑 to a new Rabin winning condition R̂ for Ĝ. First observe that
𝛼 → 𝜑 is equivalent to ¬𝛼 ∨ 𝜑, and ¬𝛼 can be expressed in LTL as

∨
(𝑣,𝑣′)∈𝐸� (�♦{𝑣} ∧ ♦�{𝑣𝑣′}),

and is therefore equivalent to the Rabin winning condition R� B {〈{𝑣}, {𝑣𝑣′}〉 | (𝑣, 𝑣′) ∈ 𝐸�}.
Since Rabin winning conditions are closed under union, we obtain the new Rabin condition
R̂ B R ∪ R�.

Once Ĝ and R̂ are obtained, one can use the xpoint algorithm of Piterman and Pnueli
[37] for “normal” two-player Rabin games. This whole process yields a symbolic algorithm for

17 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

𝑣 𝑣′ ⇒ 𝑣 𝑣𝑣′ 𝑣′

Figure 3. Left: A live edge (𝑣, 𝑣′) in G�. Right: The gadget used to replace (𝑣, 𝑣′) in Ĝ. The vertex named
𝑣𝑣′ is a newly added vertex in Ĝ; 𝑣 belongs to 𝑉1, 𝑣𝑣′ belongs to 𝑉0, but 𝑣′ may belong to either 𝑉0 or 𝑉1.

𝑎 𝑏 𝑐 𝑑

Figure 4. Counterexample to the equality of strong transition fairness and strong fairness
(compassion).

fair adversarial Rabin games with 2(𝑘 + 𝑙) +1 alternations of xpoint operators on a set of (𝑛+ 𝑙)
vertices that runs in time 𝑂((𝑛 + 𝑙)𝑘+𝑙+1(𝑘 + 𝑙)!). In contrast, our main theorem shows that we
get a symbolic xpoint expression with 2(𝑘 + 1) alternations that runs in 𝑂(𝑛𝑘+2𝑘!) symbolic
steps. In many applications, we expect 𝑙 = Θ(𝑛), for which our algorithm is signicantly faster.

REMARK 3.8. As already mentioned in the introduction, not all strong fairness assumptions
(Streett assumptions) can be translated into live edges (see e.g., [3, p.264]). As an example,
consider the two-player game graph depicted in Figure 4. Player 0 and Player 1 vertices are
indicated by a circle and a box, respectively. Now consider the following one-pair Streett
assumption

𝜑𝐴 B �^{𝑎, 𝑏, 𝑐} → �^{𝑎} = ^�{𝑑} ∨ �^{𝑎}. (16)

This fairness assumption states that it is not possible for a game to innitely stay inside the
set {𝑎, 𝑏, 𝑐} if Player 0 decides to not transition from 𝑏 to 𝑎 anymore from some point onward.
We see that we cannot model this behavior by a fair edge leaving a Player 1 (square) state. If
we mark the edge (𝑐, 𝑑) live, any fair play will transition to 𝑑 no matter if 𝑎 is visited innitely
often or not. Let us call this fair edge assumption 𝛼𝐴. Then we see that 𝛼𝐴 → 𝜑𝐴 but not vice
versa.

3.4 Specialized Rabin Games

This section shows that the known xpoint algorithms for Rabin chain, parity, and generalized
co-Büchi winning conditions allow for the same “syntactic transfomation” as in the Rabin case to
get the right algorithm for their fair adversarial version. We prove these claims by reducing the
xpoint algorithm in (7) to the special cases induced by the aforementioned winning conditions.

We note that the xpoint algorithm for fair adversarial Rabin games in (7) reduces to
the normal xpoint for Rabin games if 𝐸� = ∅. Therefore, our reductions of (7) to xpoint

18 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

algorithms for other winning conditions also proves these reductions in the usual case. We are
not aware of such reductions proved elsewhere in the literature.

Fair Adversarial Rabin Chain Games: A Rabin chainwinning condition [36] is a Rabin condition
R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉}, with the additional chain condition

𝑅1 ⊇ 𝑅2 ⊇ . . . ⊇ 𝑅𝑘 and 𝐺1 ⊇ 𝐺2 ⊇ . . . ⊇ 𝐺𝑘 . (17)

Intuitively, the xpoint algorithm computing 𝑍∗ in (7) simplies to a single permutation se-
quence, namely 𝑝1 = 𝑘, 𝑝2 = 𝑘 − 1, . . ., 𝑝𝑘 = 1, if (17) holds. This is formalized in the following
theorem which is proved in Appendix B.4.1.

THEOREM 3.9. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and R be a Rabin chain
winning condition over G with 𝑘 pairs. Further, let

𝑍∗ B𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 . 𝜈𝑌𝑘−1. . . . 𝜇𝑋1.
⋃𝑘

𝑗=0 C̃𝑗 , (18a)

where C̃𝑗 B𝑅 𝑗 ∩
[(
𝐺 𝑗 ∩ Cpre(𝑌𝑗)

)
∪ Apre(𝑌𝑗 , 𝑋 𝑗)

]
(18b)

with 𝐺𝑝0 B ∅ and 𝑅𝑝0 B ∅. Then 𝑍∗ is equivalent to the winning region W of Player 0 in the
fair adversarial Rabin chain game over G� for the winning condition R. Moreover, the xpoint
algorithm runs in 𝑂(𝑛𝑘+2) symbolic steps, and a memoryless winning strategy for Player 0 can be
extracted from it.

Fair Adversarial Parity Games: A parity winning condition [18] is dened by a set C =

{𝐶1, 𝐶2, . . . 𝐶2𝑘} of colors, where each 𝐶𝑖 ⊆ 𝑉 is the set of vertices of G with color 𝑖. Further, C
partitions the state space, i.e.,

⋃
𝑖∈[1;2𝑘] 𝐶𝑖 = 𝑉 and 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ for all 𝑖, 𝑗 ∈ [1; 2𝑘] with 𝑖 ≠ 𝑗. A

play 𝜋 satises the parity condition C if 𝜋 satises the LTL formula

𝜑 B
∧

𝑖∈[1;𝑘]

(
�♦𝐶2𝑖−1 →

∨
𝑗∈[𝑖;𝑘] �♦𝐶2 𝑗

)
. (19)

That is, the maximal color visited innitely often along 𝜋 is even. A parity winning condition C
with 2𝑘 colors corresponds to the Rabin chain winning condition

{〈𝐹2, 𝐹3〉, . . . , 〈𝐹2𝑘, ∅〉} s.t. 𝐹𝑖 :=
⋃2𝑘

𝑗=𝑖 𝐶 𝑗 , (20)

which has 𝑘 pairs. Due to C forming a partition of the state space one can further simplify
the Rabin chain xpoint algorithm in (18). Interestingly, the resulting xpoint looks slightly
dierent from the one we would obtain by mechanically applying our syntactic transformation.
While the usual xpoint algorithm for parity games is given as

𝑍∗ B𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1 . . . 𝜈𝑌2. 𝜇𝑋1. (21)

(𝐶1 ∩ Cpre(𝑋1)) ∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶3 ∩ Cpre(𝑋3)) . . . ∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)),

the xpoint algorithm for fair adversarial parity games, formalized in the following theorem,
looks slightly dierent.

19 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

4 1 3

Figure 5. Counterexample to the simple syntactic transformation for Parity games. The name of the
vertex indicates its color.

THEOREM 3.10. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and C be a parity condition
over G with 2𝑘 colors. Further, let

𝑍∗ :=𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1. . . . 𝜈𝑌2. 𝜇𝑋1. (22)

∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘−1) ∩ Apre(𝑌2𝑘, 𝑋2𝑘−1))
∪ . . .

∪ (𝐶4 ∩ Cpre(𝑌4)) ∪ ((𝐶1 ∪ 𝐶2 ∪ 𝐶3) ∩ Apre(𝑌4, 𝑋3))
∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶1 ∩ Apre(𝑌2, 𝑋1))

Then 𝑍∗ is equivalent to the winning region W of Player 0 in the fair adversarial parity game
over G� with the set of colors C. Moreover, the xpoint algorithm runs in 𝑂(𝑛𝑘+1) symbolic steps,
and a memoryless winning strategy for Player 0 can be extracted from it.

The intuition why the union of all colors 𝐶1 . . . 𝐶2𝑘−1 are intersected with Apre(𝑌2𝑘, 𝑋2𝑘−1)
in (22) (in comparison to only the matching odd color 𝐶2𝑘−1 being intersected with Cpre(𝑋2𝑘−1)
in (21)) can be illustrated via the example in Figure 5. Here, the names of the vertices coincide
with their color and we see that Player 0 wins as every path visits vertex 1 innitely often
which implies that Player 1 has to take the (dashed) live edge innitely often, resulting in the
maximum color seen innitely often to be even (i.e., 4). We see that in order to infer that color 4
is seen innitely often whenever color 3 is seen innitely often, we need to understand that
a lower color vertex (i.e., vertex 1) enforces visits to vertex 4 via its live edge. If 𝐶1 would not
be intersected with the Apre(𝑌4, 𝑋3) term of the xpoint algorithm, this conclusion cannot be
made. The same reasoning applies if the color of the Player 1 vertex is 2 in Figure 5, which
shows that also lower even color vertex sets need to be intersected with the respective Apre
term.

Fair Adversarial (Generalized) Co-Büchi Games: A co-Büchi winning condition is dened by a
subset 𝐴 ⊆ 𝑉 of vertices of G. A play 𝜋 satises the co-Büchi condition 𝐴 if 𝜋 satises

𝜑 B ♦�𝐴. (23)

20 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

A generalized co-Büchiwinning condition is dened by a setA = {𝐴1, . . . 𝐴𝑟}, where each 𝐴𝑖 ⊆ 𝑉

is a subset of vertices of G. A play 𝜋 satises the generalized co-Büchi conditionA if 𝜋 satises

𝜑 B
∨

𝑎∈[1;𝑟] ♦�𝐴𝑎. (24)

Generalized co-Büchi winning conditions correspond to a Rabin condition R with 𝑟 pairs s.t.

∀ 𝑗 ∈ [1; 𝑟] . 𝑅 𝑗 B 𝐴 𝑗 and 𝐺 𝑗 B 𝑉. (25)

Intuitively, the fact that 𝐺 𝑗 B 𝑉 for all 𝑗 leads to a cancellation of all Apre terms in C𝑗 and all
terms become ordered, i.e., we have C𝑝 𝑗+1 ⊆ C𝑝 𝑗

for every permutation sequence used in (7). As
we take the union over all C𝑝 𝑗

-s in (7a), the term C𝑝1 absorbs all others for every permutation
sequence. Hence, for every permutation sequence we only have two terms left, one for 𝑗 = 0
(over the articially introduced Rabin pairs 𝐺𝑝0 = 𝑅𝑝0 = ∅) and one for the rst choice 𝑝1 made
in this particular permutation. This is formalized in the following theorem which is proved in
Appendix B.4.3.

THEOREM 3.11. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and A be a generalized
co-Büchi winning condition G with 𝑟 pairs. Further, let

𝑍∗ B𝜈𝑌0. 𝜇𝑋0.
⋃

𝑎∈[1;𝑟]
𝜈𝑌𝑎. Apre(𝑌0, 𝑋0) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)). (26)

Then 𝑍∗ is equivalent to the winning region W of Player 0 in the fair adversarial generalized
co-Büchi game over G� for the winning condition A. Moreover, the xpoint algorithm runs in
𝑂(𝑟𝑛2) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

4. Generalized Rabin Games

In this section, we slightly generalize our main result, Theorem 3.1, to fair adversarial general-
ized Rabin games. That is, for each Rabin pair, we allow the goal set 𝐺𝑖 to be a set of goal sets
G 𝑗 = { 1𝐺 𝑗 , . . . ,

𝑚 𝑗𝐺 𝑗}. Then a play fullls the winning condition if there exists one generalized
Rabin pair 〈G𝑖 , 𝑅𝑖〉 such that the play eventually remains in 𝑅𝑖 and visits all sets 𝑙𝐺𝑖 innitely
often.

The motivation of this generalization is to show that our syntactic transformation also
works for fair adversarial games with a generalized reactivity winning condition of rank 1 (GR(1)
games for short) [38]. Generalized Rabin games allow us to see a GR(1) winning condition as a
particularly simple instantiation of a Rabin game as shown in Section 4.3.

4.1 Fair Adversarial Generalized Rabin Games

Generalized Rabin Conditions: A generalized Rabin condition is dened by a set
R̃ = {〈G1, 𝑅1〉, . . . , 〈G𝑘, 𝑅𝑘〉} where each G 𝑗 = { 1𝐺 𝑗 , . . . ,

𝑚 𝑗𝐺 𝑗} is a nite set s.t. 𝑙𝐺 𝑗 ⊆ 𝑉 for

21 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

all 𝑗 ∈ [1; 𝑘] and all 𝑙 ∈ [1;𝑚 𝑗]. We say that R̃ has global index set 𝑃 = [1; 𝑘]. A play 𝜋 satises
the generalized Rabin condition R̃ if 𝜋 satises the LTL formula

𝜑 :=
∨

𝑗∈𝑃

(
^�𝑅 𝑗 ∧

∧
𝑙∈[1;𝑚 𝑗] �^

𝑙𝐺 𝑗

)
. (27)

Recalling the discussion of Section 3.1, we know that the proof of Theorem 3.1 funda-
mentally relies on the correctness of our transformation for safe Büchi (Theorem 3.2) and safe
reachability (Theorem 3.3) games. Similarly, one needs to prove correctness of our syntactic
transformation for safe generalized Büchi games in the case of generalized Rabin games.

Safe Generalized Büchi Games A safe generalized Büchi condition is dened by a tuple 〈F , 𝑄〉
where 𝑄 ⊆ 𝑉 is a set of safe states and F = { 1𝐹, . . . , 𝑠𝐹} is a set of goal sets. A play 𝜋 satises
the safe generalized Büchi condition 〈F , 𝑄〉 if 𝜋 satises the LTL formula

𝜑 := �𝑄 ∧ ∧
𝑙∈[1;𝑠] �^

𝑙𝐹. (28)

Now we can apply our syntactic transformation to the usual xpoint algorithm for solving
safe generalized Büchi games and prove its correctness for all fair adversarial plays. This is
formalized in the next theorem and proved in Appendix B.5.1.

THEOREM 4.1. Let G� = 〈G, 𝐸�〉 be a game graph with live edges, and 〈F , 𝑄〉 with F =

{ 1𝐹, . . . , 𝑠𝐹} be a safe generalized Büchi winning condition. Further, let

𝑍∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋. 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋)

]
. (29)

Then 𝑍∗ is equivalent to the winning regionW of Player 0 in the fair adversarial safe generalized
Büchi game over G� for the winning condition 〈F , 𝑄〉. Moreover, the xpoint algorithm runs in
𝑂(𝑠𝑛2) symbolic steps, and a nite-memory winning strategy for Player 0 can be extracted from it.

Intuitively, the proof of Theorem 4.1 reduces to Theorem 3.2 in a similar manner as the
proof of Theorem 3.2 reduces to Theorem 3.3. However, the challenge in proving Theorem 4.1
is to show that it is indeed sound to use the xpoint variable𝑌 which is actually the intersection
of xpoint variables 𝑋 both within Cpre and Apre. The proof of this correctness essentially
requires to show that upon termination we have 𝑌 ∗ = 𝑏𝑋∗ for all 𝑏 ∈ [1; 𝑠] (see Appendix B.5.1
for a formal proof).

The Symbolic Algorithm: By knowing that (29) allows to correctly solve safe generalized Büchi
games, we can immediately generalize this observation to Rabin games. This is formalized in
the following theorem which is an immediate consequence of Theorem 3.1 and Theorem 4.1.

22 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

THEOREM 4.2. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and R̃ be a generalized Rabin
condition over G with index set 𝑃 = [1; 𝑘]. Further, let

𝑍∗ := 𝜈𝑌0. 𝜇𝑋0.
⋃
𝑝1∈𝑃

𝜈𝑌𝑝1 .
⋂

𝑙1∈[1;𝑚𝑝1]
𝜇 𝑙1𝑋𝑝1

⋃
𝑝𝑘∈𝑃\{𝑝1,...,𝑝𝑘−1}

𝜈𝑌𝑝𝑘 .
⋂

𝑙𝑘∈[1;𝑚𝑝𝑘
]
𝜇 𝑙𝑘𝑋𝑝𝑘 .

𝑘⋃
𝑗=0

𝑙 𝑗C𝑝 𝑗
,

(30a)

where 𝑙 𝑗C𝑝 𝑗
:=

(⋂ 𝑗
𝑖=0 𝑅𝑝𝑖

)
∩

[(
𝑙 𝑗𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪ Apre(𝑌𝑝 𝑗

, 𝑙 𝑗𝑋𝑝 𝑗
)
]

(30b)

with5 𝑝0 = 0, 𝐺𝑝0 B {∅} and 𝑅𝑝0 B ∅. Then 𝑍∗ is equivalent to the winning regionW of Player 0
in the fair adversarial generalized Rabin game over G� for the winning condition R̃. Moreover, the
xpoint algorithm runs in 𝑂(𝑛𝑘+2𝑘!𝑚1 . . . 𝑚𝑘) symbolic steps, and yields a nite-memory winning
strategy for Player 0.

The proof of Theorem 4.2 is almost identical to the proof of Theorem 3.1 in Appendix B.3,
when using Theorem 4.1 instead of Theorem 3.2 in all appropriate places. This, yields a nite
memory winning strategy by suitably “stacking” the individual nite-memory strategies con-
structed in the proof of Theorem 4.1. (See Appendix B.5.2 for a complete proof of Theorem 4.2.)

4.2 Fair Adversarial Muller Games

A Muller winning condition [24] is dened by a set F = {𝐹1, 𝐹2, . . . 𝐹𝑘} and a play 𝜋 satises the
Muller condition F if the set of vertices appearing innitely often along 𝜋 is exactly 𝐹𝑖 for some
𝑖 ∈ {1, . . . , 𝑘}. Equivalently, a play is winning if it satises

𝜑 B
∨

𝑖∈[1;𝑘]

(
^�𝐹𝑖 ∧

∧
𝑞∈𝐹𝑖
�^𝑣

)
. (31)

It is easy to see that a Muller winning condition can be written as the generalized Rabin winning
condition R̃ = {〈G1, 𝑅1〉, . . . , 〈G𝑘, 𝑅𝑘〉} where G𝑖 B {{𝑣} | 𝑣 ∈ 𝐹𝑖} and 𝑅𝑖 B 𝐹𝑖 for 𝑖 ∈ {1, . . . , 𝑘}.
It therefore follows that fair adversarial Muller games can be solved via the xpoint algorithm
in (30).

4.3 Fair Adversarial GR(1) Games

Within this section, we showhow fair adversarial Rabin games can be reduced to fair adversarial
games with GR(1) winning conditions.

GR(1) winning condition: A GR(1) winning condition is dened by two setsA = {𝐴1, . . ., 𝐴𝑟}
and F = {𝐹1, . . ., 𝐹𝑠}, where for every 𝑖 ∈ [1; 𝑟] and 𝑗 ∈ [1; 𝑠], 𝐴𝑖 , 𝐹 𝑗 ⊆ 𝑉 . A play 𝜋 satises the

5 Again, the generalized Rabin pair 〈G𝑝0 , 𝑅𝑝0〉 in (7) is artificially introduced and not part of R̃.

23 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

GR(1) condition (A, F) if it satises the LTL formula

𝜑 B
(∧

𝑎∈[1;𝑟] �^𝐴𝑎

)
→

(∧
𝑏∈[1;𝑠] �^𝐹𝑏

)
=

(∨
𝑎∈[1;𝑟] ^�𝐴𝑎

)
∨

(∧
𝑏∈[1;𝑠] �^𝐹𝑏

)
. (32)

By comparing 𝜑 in (32) with 𝜑 in (27), we see that a GR(1) condition (A, F) can be transformed
into a generalized Rabin condition R̃ with 𝑘 = 𝑟 + 1 pairs, such that

∀ 𝑗 ∈ [1; 𝑟] . 𝑅 𝑗 B 𝐴 𝑗 and G 𝑗 B {𝑉 }, and (33a)

𝑅𝑘 B ∅ and G𝑘 B F . (33b)

Fixpoint Algorithm: We rst observe that the rst 𝑟 Rabin pairs with trivial goal sets actually
correspond to a generalized co-Büchi condition (compare (25)) which can be solved by the
xpoint in Theorem 3.11 (see Section 3.4). Intuitively, the xpoint in Theorem 3.11 only needs to
consider single indices from 𝑃 = [1; 𝑟] rather then full permutation sequences as in Theorem 3.1.
By adding the last tuple 〈G𝑘, 𝑅𝑘〉 to the winning condition, we essentially need to consider two
indices in each conjunct of (18), i.e., 𝑝 𝑗 (with 𝑗 ∈ [1; 𝑟]) and 𝑝𝑘. In principle, we would need to
consider both possible orderings of these two indices (compare (30)). However, by inspecting
(33) we see that the sets corresponding to these indices always fulll a (generalized) chain
condition (compare (17)). That is, we have 𝑅 𝑗 ⊇ 𝑅𝑘 and 𝑉 = 1𝐺 𝑗 ⊇ 𝑏𝐹 for any 𝑗 ∈ [1; 𝑟] and
𝑏 ∈ [1; 𝑠]. Hence, we only need to consider the permutation sequence 𝑝𝑘𝑝 𝑗 (compare (18)). Using
this insight, along with some additional simplications, we indeed yield the xpoint that we
would obtain by simply applying our transformation to the well-known GR(1) xpoint (compare
e.g., [38]). This observation is formalized in the next theorem and proved in Appendix B.5.3.

THEOREM 4.3. Let G� = 〈G, 𝐸�〉 be a game graph with live edges and (A, F) a GR(1) winning
condition. Further, let

𝑍∗ =𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋𝑘 .

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎. (𝐹𝑏 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘, 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)). (34)

Then 𝑍∗ is equivalent to the winning region W of Player 0 in the fair adversarial GR(1) game
over G� for the winning condition (A, F). Moreover, the xpoint algorithm runs in 𝑂(𝑛2𝑟𝑠)
symbolic steps, and a nite-memory winning strategy for Player 0 can be extracted from it.

In particular, the strategy extraction is performed in the same way as by Piterman, Pnueli,
and Sa’ar [38] for a “normal” GR(1) game.

REMARK 4.4. Svoreňová, Křetı́nský, Chmelı́k, Chatterjee, Černá, and Belta [46] presented a
symbolic xpoint algorithm for stochastic games (which can be modeled using fair adversarial
games, see Section 5) with respect to GR(1) winning conditions. While one can show that the
output of their algorithm coincides with the output of our newly derived xpoint algorithm in
(34), their algorithm is structurally more involved. On a conceptual level, we feel our insight

24 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

about simply “swapping” predecessor operators in the right manner is insightful even if one
can also use their algorithm to nd a solution to this problem.

Fair Adversarial vs. Environmentally-Friendly GR(1) Games: The idea of the simple “pre-
decessor operator swapping trick” shares resemblance with environmentally-friendly GR(1)
synthesis, proposed by Majumdar, Piterman, and Schmuck [32]. There, the authors show a
direct symbolic algorithm to compute Player 0 strategies which do not win a given GR(1) game
vacuously, by rendering the assumptions false. More precisely, given a synthesis game for
the specication 𝜑 B (𝜑𝐴 → 𝜑𝐺) with 𝜑𝐴 and 𝜑𝐺 being LTL formulas modeling respectively
environment assumptions and system guarantees, Player 0 can win by violating 𝜑𝐴 and thereby
satisfying 𝜑 vacuously. Environmentally-friendly synthesis rules out such undesired strate-
gies by only computing so called non-conicting winning strategies. Interestingly, the xpoint
algorithm introduced by Majumdar, Piterman, and Schmuck [32] also swaps Cpre and Apre
operators, but in a slightly dierent way.

The GR(1) fragment considered by Majumdar, Piterman, and Schmuck [32] corresponds to
a specication 𝜑𝐴 → 𝜑𝐺 where both 𝜑𝐴 and 𝜑𝐺 can be realized by a deterministic generalized
Büchi automaton. Hence, they provide an algorithm to compute non-conicting winning
strategies in a deterministic generalized Büchi game under deterministic generalized Büchi
assumptions. If the used deterministic Büchi assumptions can be translated into live edges over
the same game graph, the resulting fair adversarial game is a generalized Büchi game (not a
GR(1) game), solvable by the xpoint in (29) for 𝑄 = 𝑉 .

By reducing a GR(1) game to a fair adversarial game, one transforms the given assumption
into one expressed by fair edges which cannot be falsied by Player 0 and therefore yields a sim-
pler algorithm to compute non-conicting strategies. However, the direct relationship between
deterministic generalized Büchi assumptions and live-edge assumptions is not known, i.e., we
do not know if all environmentally-friendly GR(1) games can be reduced to fair adversarial
generalized Büchi games.

Finally, we want to point out that fair adversarial GR(1) games compute winning strategies
that are only non-conicting with respect to the environment assumptions encoded in the live
edges. Player 0 can still win a fair adversarial GR(1) game vacuously by falsifying 𝜑𝐴, i.e., never
visiting any set 𝐴𝑖 inA (see (32)) innitely often.

5. Stochastic Generalized Rabin Games

We present an important application of our xpoint algorithm in solving stochastic two-player
games, commonly known as 21/2-player games. 21/2-player games form an important subclass of
stochastic games, and have been studied quite extensively in the literature [12, 8, 51]. They can
be seen as a generalization of two-player games by additionally capturing the environmental

25 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

randomness inside the game. In order to do so, in addition to Player 0 and Player 1 vertices as
in a two-player game, they include a new set of vertices called the random vertices. Whenever
the game reaches a random vertex, one of the outgoing edges is picked uniformly at random.
Player 0 is said to win a 21/2-player game almost surely if she wins the game with probability 1;
the respective Player 0 strategy is called an almost sure winning strategy. We only consider
stochastic games with a uniform probability distribution over edges which originate from a
random vertex. This is indeed without loss of generality since it is known that stochastic games
with other probability distributions over random edges have exactly the same almost sure
winning sets as 21/2-player games [8].

We present a reduction from the computation of almost sure winning strategies in 21/2-
player generalized Rabin games to the computation of winning strategies in fair adversarial
generalized Rabin games. This yields a direct symbolic algorithm for solving 21/2-player gener-
alized Rabin games.

5.1 Preliminaries: 21/2-player games

We introduce the basic setup of the 21/2-player games.

The game graph: We consider usual 21/2-player games played between Player 0, Player 1, and a
third player representing environmental randomness. Formally, a 21/2-player game graph is a
tuple G = 〈𝑉,𝑉0, 𝑉1, 𝑉𝑟, 𝐸〉 where (i)𝑉 is a nite set of vertices, (ii)𝑉0, 𝑉1, and𝑉𝑟 are subsets of𝑉
which form a partition of𝑉 , and (iii) 𝐸 ⊆ 𝑉 ×𝑉 is the set of directed edges. The vertices in𝑉𝑟 are
called random vertices, and the edges originating in a random vertex are called random edges.
The set of all random edges is denoted by 𝐸𝑟 B 𝐸(𝑉𝑟).
Strategies and plays: We dene strategies for Player 0 and Player 1 in exactly the same way as
the strategies in two-player games. While in principle, we could consider randomized strategies,
it is known that optimal strategies for 𝜔-regular winning conditions are pure [8]. The new part
is when the 21/2-player game reaches a random vertex, the game chooses one of the random
edges uniformly at random. A play is, as usual, an innite sequence of vertices (𝑣0, 𝑣1, . . .)
that satises the edge relation between two consecutive vertices in the sequence. Due to the
presence of random edges, given an initial vertex 𝑣0 ∈ 𝑉 and given a pair of strategies 𝜌0 and 𝜌1

of Player 0 and Player 1 respectively, we will obtain a probability distribution over the set of
plays. We denote the set of strategies of Player 0 and Player 1 by Π0 and Π1, respectively.

Almost sure winning: Let 𝜑 be any 𝜔-regular specication over 𝑉 . Let us denote the event that
the runs of a 21/2-player game graph G satises 𝜑 using the symbol G |= 𝜑 For a given initial
vertex 𝑣0 ∈ 𝑉 and for a given pair of strategies 𝜌0 and 𝜌1 of Player 0 and Player 1, we denote the
probability of the occurrence of the event G |= 𝜑 by 𝑃

𝜌0,𝜌1
𝑣0

(G |= 𝜑). We dene the set of almost
sure winning states of Player 0 for the specication 𝜑 as the set of verticesWa.s. ⊆ 𝑉 such that

26 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

for every 𝑣 ∈ Wa.s.,
sup𝜌0∈Π0

inf𝜌1∈Π1 𝑃
𝜌0,𝜌1
𝑣 (G |= 𝜑) = 1. (35)

5.2 The reduction

Suppose G is a 21/2-player game graph and R̃ is a generalized Rabin winning condition. To obtain
the reduced two-player game graph, we simply reinterpret the random vertices as Player 1
vertices and the random edges as live edges. Let us rst formalize this notion of the reduced
game graph.

DEF IN IT ION 5.1 (Reduction to two-player game with live edges). Let G = 〈𝑉,𝑉0, 𝑉1, 𝑉𝑟, 𝐸〉 be
a 21/2-player game graph. Dene Derand(G) B 〈〈𝑉,𝑉0, 𝑉1, 𝐸〉, 𝐸�〉 as follows:

𝑉 = 𝑉 , 𝑉0 = 𝑉0, 𝑉1 = 𝑉1 ∪𝑉𝑟, 𝐸 = 𝐸, and 𝐸� = 𝐸𝑟.

It remains to show that the almost sure winning set of Player 0 in G for the generalized
Rabin winning condition R̃ is the same as the winning set of Player 0 in the fair adversarial
game over Derand(G) for the winning condition R̃. This is formalized in the following theorem,
which is proved in Appendix B.6. The proof essentially shows that the random edges of G
simulate the live edges of Derand(G), and vice versa.

THEOREM 5.2. Let G be a 21/2-player game graph, R̃ be a generalized Rabin condition, 𝜑 ⊆ 𝑉𝜔

be the corresponding LTL specication (Eq. (27)) over the set of vertices𝑉 of G, and Derand(G) be
the reduced two-player game graph. LetW ⊆ 𝑉 be the set of all the vertices from where Player 0
wins the fair adversarial game over Derand(G) for the winning condition 𝜑, and Wa.s. be the
almost sure winning set of Player 0 in the game graph G for the specication 𝜑. Then,W = Wa.s..
Moreover, a winning strategy in Derand(G) is also a winning strategy in G, and vice versa.

The above theorem generalizes [23, Thmeorem 11.1] from liveness properties to all LTL
specications on 21/2-player games. Together with our symbolic algorithm for fair adversarial
Rabin games, the reduction implies a𝑂(𝑛𝑘+2𝑘!) algorithm for stochastic Rabin games for a game
with 𝑛 vertices and 𝑘 Rabin pairs. This improves the previous best algorithm from [8], which
reduces the problem to a normal two-player game by replacing every random vertex using a
gadget with 𝑂(𝑘) vertices; similar gadgets are used to reduce other classes of stochastic games
to their non-stochastic counterparts as well [9, 10]. The resulting two-player Rabin game has
𝑂(𝑛(𝑘 + 1)) vertices and 𝑘 + 1 Rabin conditions. Plugging in the complexity of Rabin games, the
resulting complexity is 𝑂

(
(𝑛(𝑘 + 1))𝑘+2(𝑘 + 1)!

)
.

REMARK 5.3. The idea underlying this section is to replace random edges with live edges
to compute almost sure winning states. We recall again that probabilistic choice is dierent
from (i.e., stronger than) strong transition fairness studied in our paper. See Section 2.2 for an
illustrative example in Figure 1.

27 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

6. Experimental Evaluation

We have developed a C++-based tool Fairsyn, which implements the symbolic fair adversarial
Rabin xpoint fromEq. (7) using BDDs. Wedeveloped two versions of Fairsyn: A single-threaded
version using the (single-threaded) CUDD library [45], and a multi-threaded version using the
(multi-threaded) Sylvan library [49].

Our tool implements a well-known acceleration technique for xpoint computations [30].
It exploits certain monotonicity properties of the xpoint variables, and “warm-starts” the inner
xpoint iterations by initializing them with earlier computed values for similar congurations
of the leading xpoint variables’ iteration indices (see Appendix C for a formal explanation). The
acceleration procedure tradesmemory for time; it can avoid computations if all the intermediate
values of the xpoint variables for all possible congurations of the xpoint iteration indices are
stored. In practice, this creates an inordinate amount of overhead on the memory requirement:
The original algorithm would already run out of memory when solving the smallest instance of
the case study reported in Table 1 (rst line) on a computer with 1.5 TB of memory. We have
therefore adapted the acceleration technique to achieve a novel (space-)bounded acceleration
algorithm that we utilize within Fairsyn. Our new algorithm takes an acceleration parameter𝑀
as input, which bounds the extent to which intermediate values of xpoint variables are cached
(see Appendix C for details). Whenever no cached value is available during the computation, our
algorithm falls back to the default way of initializing xpoint variables and re-computations.

To show the eectiveness of our proposed symbolic algorithm for fair adversarial Rabin
games, we performed various experiments with Fairsynwhich fall into two dierent categories.
First, in Section 6.1, we demonstrate the merits of utilizing parallelization and acceleration
within Fairsyn. Second, in Section 6.2, we show the practical relevance of our algorithm by
solving two large practical case-studies stemming from the areas of software engineering and
control systems.

The experiments in Section 6.1 and Section 6.2.1 were performed using Sylvan-based
Fairsyn on a computer equipped with a 3 GHz Intel Xeon E7 v2 processor with 48 CPU cores
and 1.5TiB RAM. The experiments in Section 6.2.2 were performed using CUDD-based Fairsyn
on a Macbook Pro (2015) laptop equipped with a 2.7 GHz Dual-Core Intel Core i5 processor with
16GiB RAM.

6.1 Performance Evaluation

This section discusses a benchmark suite used to empirically evaluate the merits of the two
important aspects of Fairsyn, namely the parallelization and the acceleration. Our bench-
mark suite is build on transition systems taken from the Very Large Transition Systems (VLTS)
benchmark suite [22]. For each chosen transition system, we randomly generated benchmark
instances of fair adversarial Rabin games with up to 3 Rabin pairs. To transform a given transi-

28 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

tion systems into a fair adversarial Rabin game, we labeled (i) 50% of randomly chosen vertices
as system vertices, (ii) the remaining vertices as environment vertices, (iii) up to 5% of randomly
selected environment edges as live edges, and (iv) for every set in R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉}
we randomly selected up to 5% of all vertices to be contained. We have summarized the rel-
evant details of all the randomly generated instances of the fair adversarial Rabin games in
Table 3 and Table 4 in Appendix D. In these examples, the number of vertices were 289–566,639,
the number of BDD variables were 9–20, the number of transitions were 1224–3,984,160, and
number of live edges were 1–42,757. For all benchmark instances with more than 4 live edges,
the näıve version of Fairsyn which treats live edges as Streett conditions and transforms them
into additional Rabin pairs as discussed in Section 3.3, did not terminate after 2 hours.

Merits of parallelization.We ranFairsyn on 10 dierent benchmark instanceswith 1 or 2 Rabin
pairs, and varied the number of parallel worker threads used in Fairsyn between 1–48, while
keeping the acceleration enabled. The left scatter plot in Figure 6 plots the computation times
with 48 threads (parallel) versus the computation times with 1 thread (non-parallel). Observe
that in almost all the experiments, the parallelized version outperforms the non-parallelized
version (points above the solid red line). In addition, in many cases the speedup achieved due
to the parallelization was more than one order of magnitude (points above the dashed red line).

A more ne-grained analysis of the benets of parallelization is shown in Figure 7.(a).
Here computation time (in logarithmic scale) is plotted over the number of worker threads
used. We observe that the saving due to parallelization is more signicant for the curves lying
in the top half which correspond to larger examples. This is due to the better utilization of the
available pool of worker threads by the larger examples.

Merits of acceleration. We ran Fairsyn on 10 dierent benchmark instances with 1–3 Rabin
pairs, and varied the acceleration parameter 𝑀 between 2–15, while the number of worker
threads was xed to 48. The right scatter plot in Figure 6 plots the computation times with
𝑀 = 15 versus the computation times with no acceleration. Observe that in almost all the
experiments, the accelerated version outperformed the non-accelerated version (points above
the solid red line), and in many cases the achieved speedup is close to an order of magnitude
(points near the dashed red line). See Figure 11 in Appendix D for a zoomed-in version of
Figure 6.

A more ne-grained analysis of the benets of acceleration is shown in Figure 7.(b)–
(e). Here we have plotted the total computation time (Plots (b),(d)) and the initialization time
(Plots (c),(e)) in logarithmic scale over𝑀 for benchmark instanceswith 2 Rabin pairs (Plots (b),(c))
and 3 Rabin pairs (Plots (d),(e)). Plots for instances with 1 Rabin pair can be found in Figure 12
in Appendix D.

The plotted initialization time is needed by the accelerated algorithm for allocatingmemory
to store intermediate xpoint values. We observe that this initialization time grows exponen-
tially with𝑀 , which is due to the O(𝑀𝑘+1𝑘!) space complexity of the acceleration algorithm. As

29 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

0 500 1,000 1,500 2,000
0

2,000

4,000

6,000

Parallel (s)

N
on

-p
ar
al
le
l(
s)

0 500 1,000 1,500 2,000
0

2,000

4,000

6,000

Accelerated (s)

N
on

-a
cc
el
er
at
ed

(s
)

Figure 6. (Left) Comparison between the computation times for the non-parallel (1 worker thread)
and parallel (48 worker threads) version of Fairsyn, with acceleration being enabled in both cases.
(Right) Comparison between the computation times for the non-accelerated and the accelerated
version of Fairsyn, with parallelization being enabled in both cases. (Both) The points on the solid red
line represent the same computation time. The points on the dashed red line represent an order of
magnitude improvement.

a result, the computational savings due to the use of acceleration get undermined by the high
initialization cost for large 𝑀 . We note that, due to their random generation, the considered
benchmark instances are not well structured. This results in low iteration numbers over in-
volved xpoint variables. Due to this, the allocated memory gets underutilized for large values
of 𝑀 . In the practically relevant examples discussed in Section 6.2 the game graph is naturally
structured, resulting in a large number of xpoint iterations and thereby showing superior
performance for larger values of 𝑀 .

6.2 Practical Benchmarks

This section shows that Fairsyn is able to eciently solve two practical case studies stemming
from the areas of software engineering (Section 6.2.1) and control systems (Section 6.2.2).

6.2.1 Code-Aware Resource Management

We consider a case study introduced by Chatterjee, De Alfaro, Faella, Majumdar, and Raman [6].
It considers the problem of synthesizing a code-aware resource manager for a network protocol,
i.e., multi-threaded program running on a single CPU. The task of the resource manager is
to grant dierent threads access to dierent shared synchronization resources (mutexes and
counting semaphores). The specication is deadlock freedom across all threads at all time while
assuming a fair scheduler (scheduling every thread always eventually) and fair progress in every
thread (i.e., taking every existing execution branch always eventually). By making the resource

30 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

(a)

1 12 24 36 48

10−2

10−1

100

101

102

103

Number of threads
Co
m
pu

ta
tio

n
tim

e
(s
)

(b)

0 5 10 15

100

102

𝑀

Co
m
p.
tim

e
(s
) (c)

2 5 10 15
10−4

10−1

102

𝑀

In
it.
tim

e
(s
)

(d)

0 5 10 1510−1
100
101
102

𝑀

Co
m
p.
tim

e
(s
) (e)

2 5 10 15
10−4

10−1

102

𝑀

In
it.
tim

e
(s
)

Figure 7. (a) Effect of parallelization on computation time, with the acceleration enabled. (b,d) Effect
of variation of the acceleration parameter 𝑀 on the total computation time (parallelization being
enabled) for 2 and 3 Rabin pairs respectively. (c,e) Effect of variation of the acceleration parameter 𝑀
on the initialization time for 2 and 3 Rabin pairs respectively. The computation time (Y-axis) is always
shown in the logarithmic scale.

manager code-aware, it can avoid deadlocks by utilizing its knowledge about the require and
release characteristics of all treads for dierent resources.

Chatterjee, De Alfaro, Faella, Majumdar, and Raman [6] showed that the problem of
synthesizing a code-aware resource manager can be approximated using a 11/2-player game6

generated from the known require and release characteristics of all threads. We used Fairsyn
to synthesize a code-aware resource manager for this problem, where the live edges model the
aforementioned fairness conditions imposed on the scheduler and the threads.

Motivated by the case study conducted by Chatterjee, De Alfaro, Faella, Majumdar, and
Raman [6], we consider a network protocol consisting of 3 threads and 2 queues of bounded
capacity, as depicted in Figure 8. The threads (shown as oval-shaped nodes) are called generator,
sender, and delay, and the queues (shown as rectangular nodes) are called broadcast and output.
The generator generates data packets and dispatches them to either the broadcast queue or

6 A 11/2-player game is a 21/2-player game without any Player 1 vertices.

31 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

generator

sender

broadcast

output

delay

to network

Figure 8. Structure of
network protocol.

the output queue. Packets from the broadcast queue are added to the output queue after a
random delay, introduced by the delay thread. The purpose of this delay is to avoid packet
collisions during broadcasting. The packets in the output queue are in transit and get processed
by the sender process. The sender process attempts to transmit packets from the output queue
via the network, and when the transmission fails, it adds the respective data packet back to
the broadcast queue, so that another transmission attempt can be made after a delay. Access
to all queues is protected by mutexes and semaphores. Each queue has one mutex and two
semaphores, one for counting the number of empty places and another for counting the number
of packets present.

As discussed by Chatterjee, De Alfaro, Faella, Majumdar, and Raman [6], the outlined
network protocol may deadlock when both queues are full, a transmission via sender fails, and
the sender tries to insert the packet back to the broadcast queue. In this case, due to the output
queue being full, the broadcast queue will not be able to make space for the incoming packet,
leading to a deadlock situation. The correct strategy for the resource manager to prevent this
deadlock is to ensure that the generator never adds packets to the broadcast queue if the output
queue is full.

We used the parallel and accelerated version of Fairsynwith𝑀 = 15 to automatically syn-
thesize the resource manager for the outlined network protocol case study. Indeed, Fairsynwas
successful in discovering the outlined managing strategy. To showcase Fairsyn’s performance
on this case study, we report the number of vertices of the problem instance and Fairsyn’s
computation time to solve it for dierent queue capacities in Table 1; an extended version of
the table with more number of cases has been included in Table 5 in Appendix D. In all cases,
Fairsyn was able to provide expected strategies within a reasonable amount of time. Note that
treating the live edges as Streett conditions would result in a game with several million Rabin
pairs, making all these examples go far beyond the scope of any synthesis tool for Rabin games.

6.2.2 Controller Synthesis for Stochastically Perturbed Dynamical Systems

Synthesizing veried symbolic controllers for continuous dynamical systems is an active area
in cyber-physical systems research [47]. Recently, it was shown by Majumdar, Mallik, Schmuck,
and Soudjani [31], that the symbolic controller synthesis problem for stochastic continuous

32 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

Broadcast
Queue
Capacity

Output
Queue
Capac-
ity

Number of
Vertices

Number of
Transitions

Number of
Live edges

Number
of BDD
vari-
ables

Time
(sec-
onds)

1 1 5,307,840 10,135,300 5,124,100 25 7.38
2 1 21,231,400 40,541,200 20,496,400 27 24.90
3 1 21,414,100 42,080,300 21,265,900 27 28.98
1 2 21,340,800 40,879,100 20,834,300 27 38.26
1 3 21,559,400 42,756,100 21,772,800 27 51.56
2 2 85,363,200 163,516,000 83,337,200 29 133.20
3 2 86,061,400 169,673,000 86,415,400 29 144.28
2 3 86,237,400 171,024,000 87,091,200 29 163.62
3 3 86,870,100 177,181,000 90,169,300 29 203.15

Table 1. Performance of Fairsyn on the code-aware resource management benchmark experiment.

dynamical systems can be approximated using a strategy synthesis problem over a (nite)
21/2-player game graph. This result, together with our reduction in Section 5, enables us to use
Fairsyn to synthesize a symbolic controller for stochastic continuous dynamical systems. We
show in this section, that on dierent instances of an established case study for this synthesis
problem, Fairsyn outperforms state-of-the art synthesis techniques bymargins varying between
1 order of magnitude to up to 2.5 orders of magnitude.

In the following, we rst formalize the case study, whichwas proposed byDutreix, Huh, and
Coogan [16]. Consider the dynamic model of a bistable switch which is a tuple Σ = (𝑋,𝑈,𝑊, 𝑓)
with a two-dimensional compact state space 𝑋 = [0, 4] × [0, 4] ∈ R2, a nite input space 𝑈 =

{−0.5, 0, 0.5} × {−0.5, 0, 0.5}, a two-dimensional bounded disturbance space𝑊 = [−0.4,−0.2] ×
[−0.4,−0.2] ∈ R2, and a transition function 𝑓 : 𝑋 ×𝑈 → 𝑋 . Suppose 𝑥 : N→ 𝑋 , 𝑢 : N→ 𝑈 , and
𝑤 : N→𝑊 denote the system’s state, input, and disturbance trajectories, given as functions of
(discrete) time. Note that the functions 𝑥, 𝑢,𝑤, and 𝑓 are vector-valued, and we will denote each
element of vectors using the element index in the sux. For instance, 𝑥1, 𝑥2 are the rst and
the second element of the state trajectory 𝑥 respectively, and 𝑓1(𝑥, 𝑢), 𝑓2(𝑥, 𝑢) are the rst and
the second element of the valuation of the transition function 𝑓 (𝑥, 𝑢) respectively. At each time
step 𝑘, we assume that 𝑤(𝑘) ∈𝑊 is drawn from a probability distribution with the support𝑊 ;
for our purpose, the shape of the distribution is irrelevant. The state evolution of the system is

33 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

𝐴, 𝐶 𝐴

𝐴

𝐵

𝐶

𝐶

𝐶 𝐷

Figure 9. Predicates over 𝑋.

modeled using a set of dierence equations of the following form:

𝑥1(𝑘 + 1) = 𝑓1(𝑥 (𝑘), 𝑢(𝑘)) + 𝑤1(𝑘) = 𝑥1(𝑘) + 0.05 (−1.3𝑥1(𝑘) + 𝑥2(𝑘)) + 𝑢1(𝑘) + 𝑤1(𝑘), (36)

𝑥2(𝑘 + 1) = 𝑓2(𝑥 (𝑘), 𝑢(𝑘)) + 𝑤2(𝑘) = 𝑥2(𝑘) + 0.05
(

(𝑥1(𝑘))2
(𝑥1(𝑘))2 + 1

− 0.25𝑥2(𝑘)
)
+ 𝑢2(𝑘) + 𝑤2(𝑘).

A controller for a dynamical system Σ is a function 𝐶 : 𝑋 → 𝑈 that determines the control
inputs 𝑢1(𝑘) := 𝐶1(𝑥 (𝑘)) and 𝑢2(𝑘) := 𝐶2(𝑥 (𝑘)) in (36) for all time steps 𝑘. Recalling that
𝑤(𝑘) ∈ 𝑊 is drawn from a probability distribution with the support𝑊 in every time step,
we see that, for a given initial state 𝑥 (0) = init ∈ 𝑋 , a xed controller 𝐶 induces a probability
measure 𝑃𝐶

init over all state trajectories starting at 𝑥 (0) = init and evolving in accordance to (36).
In order to formalize a control specication for Σ in (36), the state subsets 𝐴, 𝐵, 𝐶, 𝐷 ⊆ 𝑋

whose shape is illustrated in Figure 9 are considered. Given the LTL formulas over these
predicates

𝜑1 B � ((¬𝐴 ∧ ©𝐴) → (© © 𝐴 ∧ © © ©𝐴)) , and
𝜑2 B (�♦𝐵 → ♦𝐶) ∧ (♦𝐷 → �¬𝐶) ,

the set L(𝜑𝑖) ⊆ 2N→𝑋 collects all state trajectories of Σ that fulll 𝜑𝑖 . With this, we dene the
almost sure winning region of Σ for the specication 𝜑 as the largest (in term of set inclusion)
set of states𝑊in for which there exists a controller 𝐶 s.t. 𝑃𝐶

𝛼 (L(𝜑𝑖)) = 1 for every state 𝛼 ∈𝑊in.
The synthesis task for this case study then amounts to computing controllers 𝐶1 and 𝐶2 which
have the almost sure winning region of Σ w.r.t. 𝜑𝑖 and𝑊in as their initial domain.

It was shown byMajumdar, Mallik, Schmuck, and Soudjani [31] that this synthesis problem
can be approximately solved by lifting the system Σ to a nite 21/2-player game. The almost sure
winning region of the resulting controller obtained by solving the abstract 21/2-player game
under-approximates the almost sure winning region of Σ. We employ our xpoint algorithm
for solving this abstract 21/2-player game, which can be reduced to a fair adversarial game by
following the procedure in Section 5. In Table 2, we compare both the accelerated and the
non-accelerated versions of our xpoint algorithm against the state-of-the-art algorithm for
solving this problem, which is implemented in the tool called StochasticSynthesis (SS) [16].

34 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

Spec.
vertices in
21/2-game
abstraction

Total synthesis time Peak memory footprint

Fairsyn
Fairsyn
w/o accl.

SS Fairsyn
Fairsyn
w/o accl.

SS

𝜑1

(1
Rabin
pair)

3.8 × 103 0.02 s 0.02 s 8 s 65MiB 65MiB 125MiB
2.2 × 104 0.2 s 0.4 s 18 s 68MiB 68MiB 1GiB
1.1 × 105 1.3 s 3.7 s 9min18 s 79MiB 81MiB 80GiB
6.6 × 105 5.4 s 16.8 s OoM 128MiB 126MiB 127GiB
4.3 × 106 35 s 1min32 s OoM 479MiB 478MiB 127GiB

𝜑2

(2
Rabin
pairs)

3.8 × 103 0.4 s 1 s 30 s 66MiB 66MiB 156MiB
2.2 × 104 8.2 s 41 s 55 s 72MiB 69MiB 1GiB
1.1 × 105 1min23 s 12min38 s 16min1 s 108MiB 102MiB 81GiB
6.6 × 105 5min27 s 1h1min OoM 166MiB 237MiB 126GiB
4.3 × 106 41min7 s 6h5min OoM 517MiB 509MiB 127GiB

Table 2. Performance comparison between Fairsyn and StochasticSynthesis (abbreviated as SS) [16]
on a comparable implementation of the abstract fair adversarial game (uniform grid-based abstraction).
Col. 1 shows the specifications considered and the respective numbers of Rabin pairs, Col. 2 shows the
size of the resulting 21/2-player game graph (computed using the algorithm given in [31], Col. 3, 4, and 5
compare the total synthesis times and Col. 6, 7, and 8 compare the peak memory footprint (as
measured using the “time” command) for Fairsyn, Fairsyn w/o acceleration, and SS respectively. “OoM”
stands for out-of-memory.

7. Conclusion

Many practical problems in reactive synthesis give rise to two-player games on graphs with a
winning condition of the form

Fairness Assumption ⇒ 𝜔−regular Specification

The prevalent way to solve games with fairness assumptions is to either “compile” to a new
𝜔-regular specication for the implication or to identify selected fragments for which a “direct”
symbolic algorithm has been devised. The former can handle arbitrary fairness assumptions
(e.g., general Streett conditions) but yields an algorithm of high complexity (e.g., adding the
number of Streett conditions in the exponent). The latter, exemplied by the GR(1) fragment,
can only handle weak fairness (conjunctions of Büchi conditions). Our observation is that
many practical fairness assumptions fall into the category of strong transition liveness, and
for this class, one can construct a symbolic algorithm with a slight additional penalty that is
independent of the size (number of live edges) of the liveness assumption. As a byproduct, our
algorithm improves a previous symbolic algorithm for stochastic Rabin games. We experimen-

35 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

tally demonstrate that a symbolic implementation of our algorithm based on BDDs can scale to
large instances derived from deterministic and stochastic synthesis problems.

Acknowledgements. We thank Daniel Hausmann and Nir Piterman for valuable comments
on an earlier version of this manuscript, in particular for the observation that the parity xpoint
does not allow for a “direct transformation”. We also thank the anonymous reviewers for their
constructive comments.

References
[1] Rajeev Alur, Salar Moarref, and Ufuk Topcu.
Counter-strategy guided refinement of GR(1)
temporal logic specifications. Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013, pages 26–33. IEEE,
2013 (5).

[2] Benjamin Aminof, Thomas Ball, and
Orna Kupferman. Reasoning about systems with
transition fairness. Logic for Programming, Artificial
Intelligence, and Reasoning, 11th International
Conference, LPAR 2004, Montevideo, Uruguay,
March 14-18, 2005, Proceedings, volume 3452 of
Lecture Notes in Computer Science,
pages 194–208. Springer, 2004 DOI (16).

[3] Christel Baier and Joost-Pieter Katoen. Principles
of model checking. MIT press, 2008 (2, 7, 17).

[4] Romain Brenguier, Guillermo A Pérez,
Jean-François Raskin, and Ocan Sankur.
Abssynthe: abstract synthesis from succinct safety
specifications. arXiv preprint arXiv:1407.5961, 2014
(5).

[5] J. Richard Buchi and Lawrence H. Landweber.
Solving sequential conditions by finite-state
strategies. Transactions of the American
Mathematical Society, 138:295–311, 1969 (2).

[6] Krishnendu Chatterjee, Luca De Alfaro,
Marco Faella, Rupak Majumdar, and
Vishwanath Raman. Code aware resource
management. Formal Methods in System Design,
42(2):146–174, 2013 (5, 29–31).

[7] Krishnendu Chatterjee, Luca de Alfaro, and
Thomas A. Henzinger. Qualitative concurrent parity
games. ACM Trans. Comput. Log. 12(4):28:1–28:51,
2011 DOI (15).

[8] Krishnendu Chatterjee, Luca de Alfaro, and
Thomas A. Henzinger. The complexity of
stochastic Rabin and Streett games. Proceedings
of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP), volume 3580
of Lecture Notes in Computer Science,
pages 878–890. Springer, 2005 (5, 24–26, 76).

[9] Krishnendu Chatterjee, Marcin Jurdziński, and
Thomas A Henzinger. Simple stochastic parity
games. Computer Science Logic: 17th International
Workshop CSL 2003, 12th Annual Conference of
the EACSL, 8th Kurt Gödel Colloquium, KGC 2003,
Vienna, Austria, August 25-30, 2003. Proceedings
17, pages 100–113. Springer, 2003 (26).

[10] Krishnendu Chatterjee and Nir Piterman.
Combinations of qualitative winning for stochastic
parity games. 30th International Conference on
Concurrency Theory, CONCUR 2019, August 27-30,
2019, Amsterdam, the Netherlands, volume 140 of
LIPIcs, 6:1–6:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019 DOI (26).

[11] Alonzo Church. Logic, arithmetic, and automata.
Proceedings of the International Congress of
Mathematicians, 1962:23–35, 1963 (2).

[12] Anne Condon. The complexity of stochastic games.
Information and Computation, 96(2):203–224, 1992
(24).

[13] Luca de Alfaro. Formal verification of probabilistic
systems. PhD thesis, Stanford University, USA,
1997 (76).

[14] Luca de Alfaro and Thomas A. Henzinger.
Concurrent omega-regular games. 15th Annual
IEEE Symposium on Logic in Computer Science,
LICS 2000, Santa Barbara, California, USA,
pages 141–154. IEEE Computer Society, 2000 DOI
(15).

[15] Luca de Alfaro, Thomas A. Henzinger, and
Orna Kupferman. Concurrent reachability games.
39th Annual Symposium on Foundations of
Computer Science, FOCS, pages 564–575. IEEE
Computer Society, 1998 (3, 15).

[16] Maxence Dutreix, Jeongmin Huh, and
Samuel Coogan. Abstraction-based synthesis for
stochastic systems with omega-regular objectives.
arXiv preprint arXiv:2001.09236, 2020 (5, 32–34).

[17] Rüdiger Ehlers and Vasumathi Raman. Slugs:
extensible GR(1) synthesis. International
Conference on Computer Aided Verification, CAV
2016, pages 333–339. Springer, 2016 (5).

https://doi.org/10.1007/978-3-540-32275-7_14
https://doi.org/10.1145/1970398.1970404
https://doi.org/10.4230/LIPIcs.CONCUR.2019.6
https://doi.org/10.1109/LICS.2000.855763

36 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

[18] E. Allen Emerson and Charanjit S. Jutla. On
simultaneously determinizing and complementing
omega-automata (extended abstract). Proceedings
of the Fourth Annual Symposium on Logic in
Computer Science, LICS 1989, pages 333–342.
IEEE Computer Society, 1989 (18).

[19] E. Allen Emerson and Charanjit S. Jutla. The
complexity of tree automata and logics of programs
(extended abstract). 29th Annual Symposium on
Foundations of Computer Science, FOCS 1988,
White Plains, New York, USA, pages 328–337. IEEE
Computer Society, 1988 DOI (2).

[20] E. Allen Emerson and Charanjit S. Jutla. Tree
automata, mu-calculus and determinacy (extended
abstract). 32nd Annual Symposium on Foundations
of Computer Science, FOCS 1991, San Juan, Puerto
Rico, pages 368–377. IEEE Computer Society, 1991
DOI (2).

[21] Nissim Francez. Fairness. Springer, Berlin, 1986 (2).

[22] Hubert Garavel, Frédéric Lang, Radu Mateescu,
and Wendelin Serwe. Cadp 2011: a toolbox for the
construction and analysis of distributed processes.
International Journal on Software Tools for
Technology Transfer, 15(2):89–107, 2013 (5, 27).

[23] Rob Van Glabbeek and Peter Höfner. Progress,
justness, and fairness. ACM Comput. Surv. 52(4),
2019 (26).

[24] Erich Gradel and Wolfgang Thomas. Automata,
logics, and infinite games: a guide to current
research, volume 2500. Springer Science &
Business Media, 2002 (22).

[25] Yuri Gurevich and Leo Harrington. Trees, automata,
and games. Proceedings of the fourteenth annual
ACM symposium on Theory of computing, STOC
1982, pages 60–65, 1982 (2).

[26] Dexter Kozen. Results on the propositional
𝜇-calculus. Theoretical Computer Science,
27(3):333–354, 1983. International Colloquium on
Automata, Languages and Programming, ICALP
1983 (9).

[27] Hadas Kress-Gazit, Georgios E Fainekos, and
George J Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE transactions on
robotics, 25(6):1370–1381, 2009 (5).

[28] Hadas Kress-Gazit, Georgios E Fainekos, and
George J Pappas.Where’s waldo? sensor-based
temporal logic motion planning. Proceedings 2007
IEEE International Conference on Robotics and
Automation, ICRA 2007, pages 3116–3121. IEEE,
2007 (5).

[29] Orna Kupferman and Moshe Y Vardi. Safraless
decision procedures. 46th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2005,
pages 531–540. IEEE, 2005 (2).

[30] David E Long, Anca Browne, Edmund M Clarke,
Somesh Jha, and Wilfredo R Marrero. An improved
algorithm for the evaluation of fixpoint expressions.
International Conference on Computer Aided
Verification, CAV 1994, pages 338–350. Springer,
1994 (5, 16, 27, 42, 47, 78, 79).

[31] Rupak Majumdar, Kaushik Mallik,
Anne-Kathrin Schmuck, and Sadegh Soudjani.
Symbolic qualitative control for stochastic systems
via finite parity games. 7th IFAC Conference on
Analysis and Design of Hybrid Systems, ADHS 2021,
Brussels, Belgium, July 7-9, 2021, volume 54 of
number 5 in IFAC-PapersOnLine, pages 127–132.
Elsevier, 2021 DOI (31, 33, 34).

[32] Rupak Majumdar, Nir Piterman, and
Anne-Kathrin Schmuck. Environmentally-friendly
GR(1) synthesis. Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2019,
pages 229–246, Cham. Springer International
Publishing, 2019 (24).

[33] Oded Maler, Amir Pnueli, and Joseph Sifakis. On
the synthesis of discrete controllers for timed
systems. Annual Symposium on Theoretical
Aspects of Computer Science, STACS 1995,
pages 229–242. Springer Berlin Heidelberg, 1995
(11).

[34] Shahar Maoz and Jan Oliver Ringert. Synthesizing
a lego forklift controller in GR(1): A case study.
Proceedings Fourth Workshop on Synthesis, SYNT
2015, San Francisco, CA, USA, 18th July 2015,
volume 202 of EPTCS, pages 58–72, 2015 DOI (5).

[35] Thibaud Michaud and Maximilien Colange.
Reactive synthesis from LTL specification with
Spot. Proceedings of the 7th Workshop on
Synthesis, SYNT@ CAV, 2018 (5).

[36] Andrzej Wlodzimierz Mostowski. Regular
expressions for infinite trees and a standard form
of automata. Symposium on computation theory,
pages 157–168. Springer, 1984 (18).

[37] N. Piterman and A. Pnueli. Faster solutions of Rabin
and Streett games. 21st Annual IEEE Symposium on
Logic in Computer Science, LICS 2006,
pages 275–284, 2006 (2, 10, 11, 15, 16, 49, 78).

[38] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of reactive (1) designs. International
Workshop on Verification, Model Checking, and
Abstract Interpretation, VMCAI 2006,
pages 364–380. Springer, 2006 (5, 20, 23).

[39] Amir Pnueli. On the extremely fair treatment of
probabilistic algorithms. Proceedings of the
fifteenth annual ACM symposium on Theory of
computing, STOC 1983, pages 278–290, 1983 (4).

[40] Amir Pnueli and Roni Rosner. A framework for the
synthesis of reactive modules. International
Conference on Concurrency, Concurrency 1988,
volume 335 of LNCS, pages 4–17. Springer, 1988
(2).

[41] Amir Pnueli and Roni Rosner. On the synthesis of a
reactive module. Annual ACM Symposium on
Principles of Programming Languages, POPL 1989,
pages 179–190. ACM Press, 1989 (2).

[42] Jean-Pierre Queille and Joseph Sifakis. Fairness
and related properties in transition systems–a
temporal logic to deal with fairness. Acta
Informatica, 19(3):195–220, 1983 (2).

[43] Michael O Rabin. Decidability of second-order
theories and automata on infinite trees.
Transactions of the American Mathematical Society,
141:1–35, 1969 (2).

https://doi.org/10.1109/SFCS.1988.21949
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/j.ifacol.2021.08.486
https://doi.org/10.4204/EPTCS.202.5

37 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

[44] Anne-Kathrin Schmuck, Thomas Moor, and
Rupak Majumdar. On the relation between reactive
synthesis and supervisory control of
non-terminating processes. Discrete Event
Dynamic Systems, 30(1):81–124, 2020 (5).

[45] Fabio Somenzi. Cudd 3.0. 0. URL http://vlsi.
colorado. edu/˜ fabio/CUDD/html/. Also available at
https://github. com/ivmai/cudd, 2019 (27).

[46] Mária Svoreňová, Jan Křet́ınský, Martin Chmeĺık,
Krishnendu Chatterjee, Ivana Černá, and
Calin Belta. Temporal logic control for stochastic
linear systems using abstraction refinement of
probabilistic games. Nonlinear Analysis: Hybrid
Systems, 23:230–253, 2017 (5, 23).

[47] Paulo Tabuada. Verification and control of hybrid
systems: a symbolic approach. Springer Science &
Business Media, 2009 (31).

[48] John G Thistle and RP Malhamé. Control of
𝜔-automata under state fairness assumptions.
Systems & control letters, 33(4):265–274, 1998 (5).

[49] Tom van Dijk and Jaco van de Pol. Sylvan:
multi-core decision diagrams. International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2015,
pages 677–691. Springer, 2015 (5, 27).

[50] Wieslaw Zielonka. Infinite games on finitely
coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci. 200(1-2):135–183,
1998 (2).

[51] Wieslaw Zielonka. Perfect-information stochastic
parity games. International Conference on
Foundations of Software Science and Computation
Structures, FOSSACS 2004, volume 2987 of LNCS,
pages 499–513. Springer, 2004 (24).

38 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

A. Example-Computation of the Rabin Fixpoint

Consider the game graph depicted in Figure 10, where circles and squares denote Player 0 and
Player 1 vertices, respectively. We are given a Rabin condition with two pairs R = {〈𝐺1, 𝑅1〉,
〈𝐺2, 𝑅2〉} s.t.

𝑅1 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7} 𝐺1 = {𝑞1, 𝑞4} 𝑅2 = {𝑞2, 𝑞3, 𝑞5, 𝑞6} 𝐺2 = {𝑞3}

which are indicated in green and orange, respectively, in Figure 10. The only live edge in the
game graph is indicated in dashed blue from 𝑞2 to 𝑞3. We assert that Player 0 wins from every
vertex. However, in the absence of the live edge, she wins only from {𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7}. (This is
because Player 1 can force the game to stay forever in 𝑞2 from the remaining states.)

We rst atten the algorithm in (7) for two Rabin pairs. This yields the following algorithm:

𝜈𝑌0. 𝜇𝑋0. (37a){
𝜈𝑌1.𝜇𝑋1. 𝜈𝑌2.𝜇𝑋2. (37b)

Apre(𝑌0, 𝑋0)

∪
(
𝑅1 ∩ [(𝐺1 ∩ Cpre(𝑌1)) ∪ (Apre(𝑌1, 𝑋1))]

)
∪

(
𝑅1 ∩ 𝑅2 ∩ [(𝐺2 ∩ Cpre(𝑌2)) ∪ (Apre(𝑌2, 𝑋2))]

)
∪ 𝜈𝑌 ′

2.𝜇𝑋
′
2. 𝜈𝑌

′
1.𝜇𝑋

′
1. (37c)

Apre(𝑌0, 𝑋0)

∪
(
𝑅2 ∩

[(
𝐺2 ∩ Cpre(𝑌 ′

2)
)
∪

(
Apre(𝑌 ′

2, 𝑋
′
2)

)])
∪

(
𝑅1 ∩ 𝑅2 ∩

[(
𝐺1 ∩ Cpre(𝑌 ′

1)
)
∪

(
Apre(𝑌 ′

1, 𝑋
′
1)

)]) }

R1 R2 R1

q1 q2 q3 q4

q5 q6 q7

Figure 10. Example of a fair adversarial Rabin game with two pairs 〈𝐺1, 𝑅1〉 = 〈{𝑞1, 𝑞4}, {𝑞2, 𝑞5}〉 (𝐺1 and
𝑅1 are indicated in green) and 〈𝐺2, 𝑅2〉 = 〈{𝑞3}, {𝑞1, 𝑞4, 𝑞7}〉 (𝐺2 and 𝑅2 are indicated in orange), and one
live edge 𝐸� = {(𝑞2, 𝑞3)} (dashed blue).

39 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

We rst consider the upper part of (37), i.e., the permutation sequence 𝛿 = 012 (labeled
by (37b)). We rst recall that the computation is initialized with 𝑌 0

𝑖
= 𝑉 and 𝑋0

𝑖
= ∅ and we see

from the structure of the game graph that Cpre(𝑉) = 𝑉 . Further, we see from the denition of
Apre that Apre(·, ∅) = ∅. So, we have

𝑋1
2 = (𝑅1 ∩ 𝐺1) ∪ (𝑅1 ∩ 𝑅2 ∩ 𝐺2) = {𝑞1, 𝑞4} ∪ {𝑞3} = {𝑞1, 𝑞3, 𝑞4}.

As 𝑞6 is the only other state in 𝑅1 ∩ 𝑅2 and 𝑞6 does not have an edge to {𝑞1, 𝑞3, 𝑞4} the iteration
over 𝑋2 terminates and we get 𝑌 1

2 = {𝑞1, 𝑞3, 𝑞4}. As 𝑞3 ∉ Cpre(𝑌 1
2) the last line of the upper part

of (37) becomes the empty set and we terminate with 𝑌 ∗
2 = 𝑋∗

2 = (𝑅1 ∩ 𝐺1) = {𝑞1, 𝑞4}. This gives
𝑋1
1 = {𝑞1, 𝑞4} and resets 𝑌2 and 𝑋2 to 𝑉 and ∅, respectively. Therefore, we now get

𝑋1
2 = (𝑅1 ∩ 𝐺1) ∪ (𝑅1 ∩ Apre(𝑉, 𝑋1

1)) ∪ (𝑅1 ∩ 𝑅2 ∩ 𝐺2) = {𝑞1, 𝑞4} ∪ {𝑞7} ∪ {𝑞3}.

Now, as 𝑞7 ∈ 𝑋1
2 , also 𝑞6 is added before 𝑋2 terminates. This now gives 𝑌 1

2 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}
and hence 𝑞3 ∈ Cpre(𝑌 1

2). As there are no other states in 𝑅1 ∩ 𝑅2 ∩ 𝐺2 that can be added to this
set, the iteration over 𝑋2 terminates and we get 𝑌 2

2 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}, which also terminates
the iteration over 𝑌2, resulting in 𝑋2

1 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}. As there are again no other states
inside 𝑅1 that could be added, this iteration over 𝑋1 terminates, giving 𝑌 1

1 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}.
Now we see that Cpre(𝑌 1

1) = {𝑞3, 𝑞4, 𝑞6, 𝑞7}. As the exclusion of 𝑞1 from 𝑌1 does not inuence
the reasoning about {𝑞3, 𝑞4, 𝑞6, 𝑞7} the iteration terminates with 𝑌 ∗

1 = {𝑞3, 𝑞4, 𝑞6, 𝑞7}.
Now we consider the lower part of (37), i.e., the permutation sequence 𝛿 = 021 (labeled by

(37c)). Here, we get

𝑋′
1
1
= (𝑅2 ∩ 𝐺2) ∪ (𝑅1 ∩ 𝑅2 ∩ 𝐺1) = {𝑞3} ∪ ∅ = {𝑞3}.

For the same reason as before we see again that the last line of the lower part of (37) becomes
the empty set and we terminate with 𝑌 ′

1
∗ = 𝑋′

1
∗ = (𝑅2 ∩ 𝐺2) = {𝑞3}. This gives 𝑋′

2
1 = {𝑞3} and

resets 𝑌 ′
1 and 𝑋′

1 to 𝑉 and ∅, respectively. With this, we now get

𝑋′
1
2
= (𝑅2 ∩ 𝐺2) ∪ Apre(𝑄, 𝑋′

2
1) ∪ (𝑅1 ∩ 𝑅2 ∩ 𝐺1) = {𝑞3} ∪ {𝑞2, 𝑞5} ∪ ∅.

Here, for the rst time, the live edge from 𝑞2 to 𝑞3 comes into play. If this would not be a live
edge, 𝑞2 would not be added to 𝑋′

1, as in this case the environment could trap the game in 𝑞2,
and thereby prevent the second Rabin pair to hold. However, due to the edge from 𝑞2 to 𝑞3

being live, we know that the environment will always eventually transition from 𝑞2 to 𝑞3. With
this, now also 𝑞6 is added to 𝑋′

1, nally leading to a termination of the iteration over 𝑋′
2 with

{𝑞2, 𝑞3, 𝑞5, 𝑞6} and hence 𝑌 ′
2
1 = {𝑞2, 𝑞3, 𝑞5, 𝑞6}. As 𝑞3 ∈ Cpre(𝑌 ′

2
1) the iteration over 𝑌 ′

2 terminates
with 𝑌 ′

2
∗ = {𝑞2, 𝑞3, 𝑞5, 𝑞6}.

With both the upper and the lower part of (37) terminated, we can now take the union
of 𝑌 ∗

1 = {𝑞3, 𝑞4, 𝑞6, 𝑞7} and 𝑌 ′
2
∗ = {𝑞2, 𝑞3, 𝑞5, 𝑞6} to get 𝑋1

0 = {𝑞2 . . . 𝑞7} (reaching the part of the
formula labeled with (37a)). After this update of 𝑋0 all inner xpoint variables (in (37b) and

40 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

(37c)) are reset, and the upper and lower expressions in (37) are re-evaluated. As Apre(𝑄, 𝑋1
0) =

{𝑞2 . . . 𝑞7}, we see that every iteration over 𝑋𝑖 in (37b) and (37c) is essentially initialized with a
set containing {𝑞2 . . . 𝑞7}. This implies that 𝑞1 will actually remain within 𝑌1, leading to 𝑌 ∗

1 = 𝑉 ,
and with this 𝑋2

0 = 𝑉 . As this implies 𝑌 1
0 = 𝑉 = 𝑌 0

0 , the computation terminates with 𝑍∗ = 𝑉 .
Despite all states being winning, we see that Player 0 has to play appropriately to enforce

winning. Intuitively, from state 𝑞5 she must go to 𝑞3 and from 𝑞6 she has to consistently either
(i) always go to 𝑞2 or (ii) always go to 𝑞7. If she picks option (i), the play is won by satisfying
the second Rabin pair, i.e., always eventually visiting 𝑞3 while remaining within 𝑅2. If she
picks option (ii), it is up to the environment whether the game is won by satisfying the rst
or the second Rabin pair. Intuitively, if the environment plays such that either (a) the game
eventually remains in 𝑞4 or (b) the edges (𝑞4, 𝑞3) and (𝑞3, 𝑞6) are taken innitely often, the game
fullls the rst Rabin condition. If, however, (c), the environment decides to trap the game in
𝑞3, the game is won by satisfying the second Rabin pair. This inuence of the environment
on the selection of the satised Rabin pair intuitively requires the evaluation of all possible
permutation sequences in the evaluation of the xpoint algorithm. We will see later that for
Rabin pairs which are ordered by inclusion (corresponding to the special case of a Rabin-chain
condition), no permutation is required.

We comment that the strategy construction outlined in Theorem B.7 provided in Ap-
pendix B.3 chooses to enforce a transition from 𝑞6 to 𝑞7 (see Example B.8 in Appendix B.3 for a
detailed discussion).

B. Detailed Proofs

B.1 General Lemmas

We rst introduce some useful general lemmas.

LEMMA B.1. If 𝑌 ⊇ 𝑋 then Cpre(𝑌) ∪ Apre(𝑌, 𝑋) = Cpre(𝑌).

PROOF . The claim follows from the following derivation

Cpre(𝑌) ∪ Apre(𝑌, 𝑋) = Cpre(𝑌) ∪ Cpre(𝑋) ∪
(
Lpre∃(𝑋) ∩ Pre∀1 (𝑌)

)
= Cpre(𝑌) ∪

(
Lpre∃(𝑋) ∩ Pre∀1 (𝑌)

)
=

(
Cpre(𝑌) ∪ Lpre∃(𝑋)

)
∩

(
Cpre(𝑌) ∪ Pre∀1 (𝑌)

)
=

(
Cpre(𝑌) ∪ Lpre∃(𝑋)

)
∩ Cpre(𝑌)

= Cpre(𝑌)

where the second line follows from Cpre(𝑋) ⊆ Cpre(𝑌) (as 𝑋 ⊆ 𝑌) and the fourth line follows
as Cpre(𝑌) = Pre∃0 (𝑌) ∪ Pre∀1 (𝑌) ⊇ Pre∀1 (𝑌). �

41 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

LEMMA B.2. If 𝑌 ⊆ 𝑋 then Apre(𝑌, 𝑋) = Cpre(𝑋).

PROOF . The claim follows from the following derivation

Apre(𝑌, 𝑋) = Cpre(𝑋) ∪
(
Lpre∃(𝑋) ∩ Pre∀1 (𝑌)

)
=

(
Cpre(𝑋) ∪ Lpre∃(𝑋)

)
∩

(
Cpre(𝑋) ∪ Pre∀1 (𝑌)

)
=

(
Cpre(𝑋) ∪ Lpre∃(𝑋)

)
∩ Cpre(𝑋)

= Cpre(𝑋)

where the fourth line follows as Cpre(𝑋) = Pre∃0 (𝑋) ∪ Pre∀1 (𝑋) ⊇ Pre∀1 (𝑌) as 𝑌 ⊆ 𝑋 . �

LEMMA B.3. Let 𝑓 (𝑋,𝑌) and 𝑔 (𝑋,𝑌) be two functions which are monotone in both 𝑋 ⊆ 𝑉 and
𝑌 ⊆ 𝑉 . Further, let

𝑍𝑎 :=𝜈𝑌𝑎. 𝜇𝑋𝑎. 𝜈𝑌𝑏. 𝜇𝑋𝑏. 𝑓 (𝑋𝑎, 𝑌𝑎) ∪ 𝑔 (𝑋𝑏, 𝑌𝑏)
𝑍𝑏 :=𝜈𝑌𝑎. 𝜇𝑋𝑎. 𝜈𝑌𝑏. 𝜇𝑋𝑏. 𝑔 (𝑋𝑎, 𝑌𝑎) ∪ 𝑓 (𝑋𝑏, 𝑌𝑏)
𝑍𝑐 :=𝜈𝑌𝑐. 𝜇𝑋𝑐. 𝑓 (𝑋𝑐, 𝑌𝑐)

Then it holds that
(i) 𝑍𝑐 ⊆ 𝑍𝑎 and
(ii) 𝑍𝑐 ⊆ 𝑍𝑏.
If, in addition, 𝑔 (𝑋,𝑌) ⊆ 𝑓 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 , then it holds that
(iii) 𝑍𝑎 = 𝑍𝑐 and
(iv) 𝑍𝑏 = 𝑍𝑐.

PROOF . We prove all claims separately:
I (i) “𝑍𝑐 ⊆ 𝑍𝑎” : First, consider a stage of the xpoint evaluation where 𝑌𝑎 and 𝑋𝑎 have their
initialization value 𝑌 0

𝑎 := 𝑉 and 𝑋00
𝑎 := ∅ (here, the notation 𝑋 𝑙𝑘

𝑎 refers to the value of 𝑋𝑎

computed in the 𝑘’th iteration over 𝑋𝑎 using the value for 𝑌𝑎 computed in the 𝑙’th iteration
over 𝑌𝑎). Then we see that 𝑋01

𝑎 = 𝑌 00∗
𝑏

where 𝑌 00∗
𝑏

= 𝑓 (∅, 𝑉) ∪ 𝑔 (𝑌 00∗
𝑏

, 𝑌 00∗
𝑏

). We therefore see
that 𝑋01

𝑎 ⊇ 𝑋01
𝑐 = 𝑓 (∅, 𝑉). With this, it follows from the monotonicity of 𝑓 and 𝑔 that𝑌 01

𝑎 = 𝑋0∗
𝑎 ⊇

𝑋0∗
𝑐 = 𝑌 1

𝑐 . With this, we see that 𝑋𝑚1
𝑎 ⊇ 𝑋𝑚1

𝑐 for all 𝑚 > 0 and therefore 𝑍𝑎 = 𝑌 ∗
𝑎 ⊇ 𝑌 ∗

𝑐 = 𝑍𝑐.
I (ii) “𝑍𝑐 ⊆ 𝑍𝑏” : Consider arbitrary values 𝑌𝑚

𝑎 and 𝑋𝑚𝑛
𝑎 and assume that 𝑌𝑏 and 𝑋𝑏 have their

initialization value, i.e., 𝑌𝑚𝑛0
𝑏

:= 𝑉 and 𝑋𝑚𝑛00
𝑏

:= ∅. Then we have

𝑋𝑚𝑛01
𝑏 = 𝑔 (𝑋𝑚𝑛

𝑎 , 𝑌𝑚
𝑎) ∪ 𝑓 (∅, 𝑉) ⊇ 𝑋01

𝑐 .

Using the same reasoning as in the previous part, we see that this implies 𝑌𝑚𝑛∗
𝑏

⊇ 𝑌 ∗
𝑐 = 𝑍𝑐. As

this holds for any 𝑚 and 𝑛 it also holds when the xed-point over 𝑌𝑎 and 𝑋𝑎 is obtained, i.e.,
when we have 𝑍𝑎 = 𝑌 ∗

𝑎 = 𝑌 ∗∗∗
𝑏

, which proves the statement.
I (iv) “𝑍𝑐 ⊇ 𝑍𝑏” : First, observe that for the initialization values𝑌 0

𝑎 = 𝑌 000
𝑏

= 𝑉 and 𝑋00
𝑎 = 𝑋0000

𝑏
=

42 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

∅ we have 𝑔 (∅, 𝑉) ⊆ 𝑓 (∅, 𝑉). We therefore have

𝑌 00∗
𝑏 = 𝑋00∗∗

𝑏 = 𝑓 (𝑋00∗∗
𝑏 , 𝑌 00∗

𝑏) = 𝑍𝑐

Now it remains to show, that the outer xpoint cannot add any additional states. First, observe
that 𝑋01

𝑎 = 𝑌 00∗
𝑏

and

𝑋0100
𝑏 = 𝑔 (𝑋01

𝑎 , 𝑉) ∪ 𝑓 (∅, 𝑉) ⊆ 𝑓 (𝑋01
𝑎 , 𝑉) ∪ 𝑓 (∅, 𝑉) = 𝑓 (𝑋01

𝑎 , 𝑉)

Now it follows from the famous acceleration result of Long, Browne, Clarke, Jha, and Marrero
[30] that warm-starting the inner xpoint computation with 𝑋01

𝑎 yields the same inner xpoint.
With this, we see that 𝑋0𝑛

𝑎 = 𝑍𝑐 for all 𝑛, implying 𝑌 0
𝑎 = 𝑋0∗

𝑎 = 𝑍𝑐. As 𝑍𝑏 = 𝑌 ∗
𝑎 ⊆ 𝑌 0

𝑎 , this proves
the claim.
I (iii) “𝑍𝑐 ⊇ 𝑍𝑎” : As 𝑔 (𝑋,𝑌) ⊆ 𝑓 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 it follows from the monotonicity of 𝑔
and 𝑓 that

𝑍𝑎 ⊆ 𝜈𝑌𝑎. 𝜇𝑋𝑎. 𝜈𝑌𝑏. 𝜇𝑋𝑏. 𝑓 (𝑋𝑎, 𝑌𝑎) ∪ 𝑓 (𝑋𝑏, 𝑌𝑏)

with this, it follows from (iv) that 𝑍𝑎 ⊆ 𝑍𝑐, what proves the claim. �

B.2 Additional Proofs for Section 3

B.2.1 Proof of Theorem 3.3

Theorem (Theorem 3.3 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and 〈𝑇, 𝑄〉 be a safe reachability winning condition. Further, let

𝑍∗ B 𝜈𝑌 . 𝜇𝑋. 𝑇 ∪ (𝑄 ∩ Apre(𝑌, 𝑋)). (38)

Then 𝑍∗ is equivalent to the winning region of Player 0 in the fair adversarial game over G� for
the winning condition 𝜓 in (11). Moreover, the xpoint algorithm runs in 𝑂(𝑛2) symbolic steps,
and a memoryless winning strategy for Player 0 can be extracted from it.

We denote by 𝑌𝑚 the 𝑚-th iteration over the xpoint variable 𝑌 in (38), where 𝑌 0 = 𝑉 .
Further, we denote by 𝑋𝑚𝑖 the set computed in the 𝑖-th iteration over the xpoint variable 𝑋 in
(38) during the computation of 𝑌𝑚 where 𝑋𝑚0 = ∅. Then it follows form (38) that

𝑋𝑚1 = 𝑋𝑚0 ∪ 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚0)) = ∅ ∪ 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚, ∅)) = 𝑇,

𝑋𝑚2 = 𝑋𝑚1 ∪ 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚1)) = 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚1)) ⊇ 𝑋𝑚1,

and therefore, in general,

𝑋𝑚𝑖+1 = 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚𝑖)) ⊇ 𝑋𝑚𝑖 .

With this, the xed-point over 𝑋 corresponds to the set 𝑋𝑚∗ =
⋃

𝑖>0 𝑋
𝑚𝑖 = 𝑋𝑚𝑖↑, where 𝑖↑ is the

iteration where the xed-point over 𝑋𝑚𝑖 is attained.

43 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Now consider the computation of 𝑌 . Here we have 𝑌 0 = 𝑉 and 𝑌𝑚 = 𝑌𝑚−1 ∩ 𝑋𝑚∗ ⊆ 𝑌𝑚−1

where equality holds when a xed-point is reached. Hence, in particular we have 𝑌 ∗ = 𝑋∗∗ = 𝑍∗.
For simplicity we denote 𝑋∗𝑖 by 𝑋 𝑖 .

Strategy construction. In order to construct a winning strategy for Player 0 from (38), we
construct a ranking over 𝑉 by choosing

rank(𝑣) = 𝑖 ⇔ 𝑣 ∈ 𝑋 𝑖 \ 𝑋 𝑖−1 and rank(𝑣) = ∞ ⇔ 𝑣 ∉ 𝑍∗. (39)

As 𝑋0 = ∅, 𝑋1 = 𝑇 (from above) and 𝑍∗ =
⋃

𝑖>0 𝑋
𝑖 , it follows that rank(𝑣) = 1 i 𝑣 ∈ 𝑇 and

1 < rank(𝑣) < ∞ i 𝑣 ∈ 𝑍∗ \ 𝑇 . Using this ranking we dene a Player 0 strategy 𝜌0 : 𝑉0 → 𝑉 s.t.

𝜌0(𝑣) = min
(𝑣,𝑤)∈𝐸

rank(𝑤) . (40)

We next show that this player 0 strategy is actually winning w.r.t. 𝜓 (in (11)) in every fair
adversarial play over G�.

Soundness. To prove soundness, we need to show 𝑍∗ ⊆ W. That is, we need to show that for all
𝑣 ∈ 𝑍∗ there exists a strategy for player 0 s.t. the goal set 𝑇 is eventually reached along all live
compliant plays 𝜋 starting at 𝑣 while staying in 𝑄. We choose 𝜌0 in (40) and show that the claim
holds.

First, it follows from the denition of Apre that for a vertex 𝑣 ∈ 𝑍∗ exactly one of the
following cases holds:
(a) 𝑣 ∈ 𝑇 and hence rank(𝑣) = 1,
(b) 𝑣 ∈ (𝑉0 ∩ 𝑍∗) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and there exists a 𝑣′ ∈ 𝐸(𝑣) with
rank(𝑣′) < rank(𝑣),
(c) 𝑣 ∈ ((𝑉1 \ 𝑉 �) ∩ 𝑍∗)) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and for all 𝑣′ ∈ 𝐸(𝑣) it holds that
rank(𝑣′) < rank(𝑣), or
(�) 𝑣 ∈ (𝑉 � ∩ 𝑍∗) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and there exists a 𝑣′ ∈ 𝐸� (𝑣) with
rank(𝑣′) < rank(𝑣) and 𝐸(𝑣) ⊆ 𝑍∗.
We see that 𝜌0(𝑣) chooses one existentially quantied edge in (b) vertices. In all other cases
player 1 chooses the successor.

Further, we see that any play 𝜋which starts in 𝜋(0) = 𝑣 ∈ 𝑍∗ and obeys 𝜌0 has the property
that 𝜋(𝑘) ∈ 𝑍∗ \ 𝑇 implies 𝜋(𝑘) ∈ 𝑄 and 𝜋(𝑘 + 1) ∈ 𝑍∗ for all 𝑘 ≥ 0. This, in turn, means that
for any such state 𝑣 = 𝜋(𝑘) ∈ 𝑍∗ \ 𝑇 as well as for its successor 𝜋(𝑘 + 1) a rank is dened, i.e.,
𝜋(𝑘) ∈ 𝑋 𝑖 for some 0 < 𝑖 < ∞ and exactly one of the cases (b)-(�) applies. We call a vertex for
which case (𝛼) applies, an (𝛼) vertex.

Now observe that the above reasoning implies that whenever an (a) vertex is hit along a
play 𝜋 the claim holds. We therefore need to show that any play starting in 𝑣 ∈ 𝑍∗ eventually
reaches an (a) vertex. First, consider a play in which no (�) vertex occurs. Then constantly
hitting (b) and (c) vertices always reduces the rank of visited states (as we assume that 𝜋 obeys 𝜌0

44 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

in (40)). As the maximal rank is nite, we see that we must eventually hit a state with rank 1,
which is an (a) state.

Note that the same argument holds when only a nite number of (�) vertices is visited
along 𝜋. In this case we know that from some time onward no more (�) vertex occurs. As
the last (�) vertex has a nite rank, there can only be a nite sequence of (b) and (c) vertices
afterwards until nally an (a) vertex is reached.

We are therefore left with showing that on every path with an innite number of (�)
vertices, eventually an (a) vertex will be reached. We prove this claim by contradiction. I.e., we
show that there cannot exist a path with innitely many (�) vertices and no (a) vertex.

We rst show that innitely many (�) vertices and no (a) vertices in 𝜋 imply that vertices
with rank 2 can only occur nitely often along 𝜋.
I Recall that the construction of 𝜌0 ensures that whenever we visit a state 𝑣 ∈ 𝑉0 ∩ 𝑍∗ with
rank(𝑣) = 2 we will surely visit a state with rank 1 afterwards, implying the occurrence of a
vertex labeled (a). As no (a) labeled vertices are assumed to occur along 𝜋, no (b) vertices with
rank(𝑣) = 2 occur along 𝜋.
I Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍∗ with rank(𝑣) = 2. If 𝑣 is a (c) vertex all successor states will have
rank 1. With the same reasoning as before, this cannot occur.
I Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍∗ with rank(𝑣) = 2 is labeled with (�). In this case there surely
exists a successor 𝑣′ of 𝑣 s.t. (𝑣, 𝑣′) ∈ 𝐸� and rank(𝑣′) = 1. But there might also exist another
successor 𝑣′′ of 𝑣 (i.e., (𝑣′′ ∈ 𝐸(𝑣)) s.t. rank(𝑣′′) > 1. If there does not exists such a successor 𝑣′′,
all successors have rank 1 and we again cannot visit 𝑣.
I Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍∗ with rank(𝑣) = 2, labeled with (�) and there exists a successor
𝑣′′ ∈ 𝐸(𝑣) s.t. rank(𝑣′′) > 1. Now let us assume that such a state 𝑣 is visited innitely often along
𝜋. As 𝜋 is a fair adversarial play over 𝐺 we know that visiting 𝑣 innitely often along 𝜋 implies
that 𝑣′ with (𝑣, 𝑣′) ∈ 𝐸� and rank(𝑣′) = 1 (which surely exists by the denition of Apre) will also
be visited innitely often along 𝜋. This is again a contradiction to the above hypothesis and
implies that such 𝑣’s can only be visited nitely often.
I As 𝑉 is a nite set, the set of states with rank 2 is nite. Hence, the occurrence of innitely
many states with rank 2 along 𝜋 implies that one of the above cases must occur innitely
often, which gives a contradiction to the above hypothesis. Using the same arguments, we can
inductively show that states with any xed rank can only occur nitely often if states with
rank 1 (i.e., (a)-labeled vertices) never occur. As the maximal rank is nite (due to the niteness
of 𝑉) this contradicts the assumption that 𝜋 is an innite play.

We therefore conclude that along any innite fair adversarial play 𝜋 with innitely many
vertices labeled by (�) we will eventually see a vertex labeled by (a).

Completeness. We now show that the xpoint in (38) is complete, i.e., that every state in
𝑍
∗ := 𝑉 \𝑍∗ is loosing for Player 0. In particular, we show that from every vertex 𝑣 ∈ 𝑍

∗ Player 1

45 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

has a memoryless strategy 𝜌1 s.t. all fair adversarial plays compliant with 𝜌1 satisfy

𝜓 := ¬𝜓 = ¬(𝑄U𝑇) = �¬𝑇 ∨ ¬𝑇U¬𝑄 (41)

and are hence loosing for Player 0.
In order to prove the latter claim we st compute 𝑍∗ := 𝑉 \ 𝑍∗ by negating the xpoint

formula in (38). For this, we dene 𝑋
∗ := 𝑉 \ 𝑋 , 𝑌 ∗ := 𝑉 \ 𝑌 and use the negation rule of the

𝜇-calculus, i.e., ¬(𝜇𝑋. 𝑓 (𝑋)) = 𝜈𝑋.𝑉 \ 𝑓 (𝑋) along with common De-Morgan laws. This results in
the following derivation.

𝑍
∗
= 𝜇𝑌 . 𝜈𝑋. 𝑇 ∩ (𝑄 ∪𝑉 \ Apre(𝑌, 𝑋))

where

𝑉 \ Apre(𝑌, 𝑋)

= 𝑉 \
[
Cpre(𝑋) ∪

(
Lpre∃(𝑋) ∩ Pre∀1 (𝑌)

)]
= [𝑉 \ Cpre(𝑋)] ∩

[
𝑉 \

(
Lpre∃(𝑋) ∩ Pre∀1 (𝑌)

)]
=

[
Pre∃1 (𝑋) ∪ Pre∀0 (𝑋)

]
∩

[
𝑉0 ∪ (𝑉1 \𝑉 �) ∪

(
𝑉 � \

(
Lpre∃(𝑋) ∩ Pre∀� (𝑌)

))]
=

[
Pre∃1 (𝑋) ∪ Pre∀0 (𝑋)

]
∩

[
𝑉0 ∪ (𝑉1 \𝑉 �) ∪

(
Lpre∀(𝑋) ∪ Pre∃� (𝑌)

)]
= Pre∀0 (𝑋) ∪ Pre∃1\� (𝑋) ∪

[
Pre∃1 (𝑋) ∩

(
Lpre∀(𝑋) ∪ Pre∃� (𝑌)

)]
= Pre∀0 (𝑋) ∪ Pre∃1\� (𝑋) ∪

[
Pre∃� (𝑋) ∩

(
Lpre∀(𝑋) ∪ Pre∃� (𝑌)

)]
= Pre∀0 (𝑋) ∪ Pre∃1\� (𝑋) ∪ Lpre∀(𝑋) ∪ Pre∃� (𝑌).

The last line in the above derivation follows from the observation that Lpre∀(𝑋) ⊆ Pre∃
𝑙
(𝑋) and

𝑌 ⊆ 𝑋 for all iterations of the xpoint computation. The additionally introduced pre-operators
are dened in close analogy to (4) and (5) as follows:

Pre∃1 (𝑆) B {𝑣 ∈ 𝑉1 | 𝐸(𝑣) ∩ 𝑆 ≠ ∅},
Pre∀0 (𝑆) B {𝑣 ∈ 𝑉0 | 𝐸(𝑣) ⊆ 𝑆},

Pre∃1\� (𝑆) B {𝑣 ∈ 𝑉1 \𝑉 � | 𝐸(𝑣) ∩ 𝑆 ≠ ∅},

Pre∃� (𝑆) B {𝑣 ∈ 𝑉 � | 𝐸(𝑣) ∩ 𝑆 ≠ ∅},
Pre∀� (𝑆) B {𝑣 ∈ 𝑉 � | 𝐸(𝑣) ⊆ 𝑆},

Lpre∀(𝑆) B {𝑣 ∈ 𝑉 � | 𝐸� (𝑣) ⊆ 𝑆}.

With this, we can conclude that

𝑍
∗
= 𝜇𝑌 . 𝜈𝑋. 𝑇 ∩

(
𝑄 ∪ Pre∀0 (𝑋) ∪ Pre∃1\� (𝑋) ∪ Lpre∀(𝑋) ∪ Pre∃𝑙 (𝑌)

)
. (42)

where 𝑇 = 𝑉 \ 𝑇 and 𝑄 = 𝑉 \ 𝑄.

46 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

Now denote by 𝑌𝑚 the 𝑚-th iteration over the xpoint variable 𝑌 in (42), where 𝑌 0
= ∅.

Further, we denote by 𝑋
𝑚𝑖 the set computed in the 𝑖-th iteration over the xpoint variable 𝑋

in (42) during the computation of 𝑌𝑚 where 𝑋𝑚0
= 𝑉 . After termination of the inner xed-point

over 𝑋𝑚𝑖 we have by construction that 𝑌𝑚
= 𝑋

𝑚∗ and therefore

𝑌
𝑚
= 𝑇 ∩

(
𝑄 ∪ Pre∀0 (𝑌

𝑚) ∪ Pre∃1\� (𝑌
𝑚) ∪ Lpre∀(𝑌𝑚) ∪ Lpre∃(𝑌𝑚−1)

)
. (43)

Similar to the soundness proof, we dene a ranking over 𝑉 induced by the iterations of
the smallest xed-point, which now is 𝑌 :

rank(𝑣) = 𝑚 ↔ 𝑣 ∈ 𝑌
𝑚 \ 𝑌𝑚−1 and rank(𝑣) = ∞ ↔ 𝑣 ∉ 𝑍

∗
.

This ranking can now be used to dene a memoryless Player 1 strategy 𝜌1 : 𝑉1 → 𝑉 s.t.

𝜌1(𝑣) = min
(𝑣,𝑤)∈𝐸

rank(𝑤) . (44)

Towards proving that 𝜌1 is winning for 𝜓 in (41) we rst observe that for every vertex
𝑣 ∈ 𝑍

∗ exactly one of the following cases holds:
(a) 𝑣 ∈ (𝑉0 ∩ 𝑍

∗ ∩ 𝑇), i.e., rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or for all 𝑣′ ∈ 𝐸(𝑣) it holds that rank(𝑣′) ≤
rank(𝑣),
(b) 𝑣 ∈ ((𝑉1 \𝑉 �) ∩ 𝑍

∗ ∩ 𝑇)), i.e., rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or there exists 𝑣′ ∈ 𝐸(𝑣) s.t. rank(𝑣′) ≤
rank(𝑣), or
(�∀) 𝑣 ∈ (𝑉 � ∩ 𝑍∗ ∩ 𝑇) and rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or for all 𝑣′ ∈ 𝐸� (𝑣) holds that rank(𝑣′) ≤
rank(𝑣)
(�∃) 𝑣 ∈ (𝑉 � ∩ 𝑍∗ ∩ 𝑇) and rank(𝑣) > 1 (and rank(𝑣) < ∞), and (�∀) does not hold, but there
exists a 𝑣′ ∈ 𝐸(𝑣) s.t. rank(𝑣′) < rank(𝑣).

Using this observation, we now show that every fair adversarial play 𝜋 compliant with 𝜌1

satises 𝜓 in (41), that is, either stays in 𝑇 forever, or eventually visits 𝑄 before visiting 𝑇 .
First, observe that for every node 𝑣 ∈ 𝑍

∗ one of the cases (a),(b),(�∀), or (�∃) holds. If 𝑣 is
an (a) vertex, we see that either 𝑣 ∈ 𝑄 or for all choices of Player 0 (i.e., for any Player 0 strategy),
the play remains in 𝑍

∗ ⊆ 𝑇 . Further, it is obvious that 𝜌1 ensures, that whenever a (b) vertex
is seen, the play remains in 𝑍

∗ ⊆ 𝑇 if we do not already have 𝑣 ∈ 𝑄. The same is true for (�∀)
vertices.

Now consider a fair adversarial play 𝜋 that is compliant with 𝜌1 and 𝜋(0) ∈ 𝑍
∗ ⊆ 𝑇 . Then

it follows from the above intuition that for all visits to (a),(b),(�∀) we have two cases: (i) Either 𝜓
is immediately true on 𝜋 by visiting 𝑄 (and having been in 𝑍

∗ ⊆ 𝑇 in all previous time steps). In
this case the sux of 𝜋 is irrelevant, because Player 0 has already lost (by visiting 𝑄 without
seeing 𝑇). Or (ii) the play remains in 𝑍

∗ ⊆ 𝑇 . Now observe that this is also true for innite visits
to (a),(b),(�∀) vertices. As 𝜋 is fair adversarial, visiting a (�∀) vertex innitely often, implies that
all live edges are taking innitely often, which all ensure that the play remains in 𝑍

∗ ⊆ 𝑇 or is

47 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

immediately lost by visiting 𝑄. Therefore, the only interesting case occurs if 𝜋 visits (�∃) vertices.
If such a vertex is visited nitely often, 𝜌1 ensures that the play stays in 𝑍

∗ ⊆ 𝑇 . However, if
they are visited innitely often, a live edge that leaves 𝑍∗ will also be taken innitely often.
Hence, in order to ensure that 𝜋 is loosing for Player 0, we need to show that 𝜌1 enforces that
(�∃) vertices are only visited nitely often.

To see this, let 𝑣 be an (�∃) vertex and observe that rank(𝑣) is nite and larger than 1. At
the rst visit of 𝜋 to 𝑣, 𝜌1 decreases the rank as it chooses by denition one of the existentially
quantied successors 𝑣′ ∈ 𝐸� (𝑣) with rank(𝑣′) < rank(𝑣). Now observe that for all other cases
(a),(b),(�∀) either 𝑄 is visited and the play is immediately loosing for Player 0 or the play is kept
in 𝑍

∗ ⊆ 𝑇 and the strategy 𝜌1 never increases the rank. As every vertex has a unique rank, 𝜌1
ensures that every (�∃) vertex is visited at most once along every compliant fair adversarial
play that remains in 𝑍

∗ ⊆ 𝑇 . This proves the claim.

B.2.2 Proof of Theorem 3.2

Theorem (Theorem 3.2 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and 𝑄, 𝐺 ⊆ 𝑉 be two state sets over G. Further, let

𝑍∗ B 𝜈𝑌 . 𝜇𝑋. 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Apre(𝑌, 𝑋))] . (45)

Then 𝑍∗ is equivalent to the winning region of Player 0 in the fair adversarial game over G� for
the winning condition 𝜓 in (8). Moreover, the xpoint algorithm runs in 𝑂(𝑛2) symbolic steps, and
a memoryless winning strategy for Player 0 can be extracted from it.

In order to simplify the proof of Proposition B.2.2, we rst prove the following lemma.

LEMMA B.4. Let 𝑄, 𝐺 ⊆ 𝑉 and

𝑍∗ B𝜈𝑌 .𝜇𝑋.𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑋)] (46a)

𝑍∗ B𝜈𝑌 .𝜈𝑌 .𝜇𝑋.𝑄 ∩
[(
𝐺 ∩ Cpre(𝑌)

)
∪ Apre(𝑌, 𝑋)

]
. (46b)

Then 𝑍∗ = 𝑍∗.

PROOF . To prove the claim we consider a third version of the xpoint algorithm, namely

�̌�∗ B 𝜈𝑌 .𝜈𝑌 .𝜇𝑋.𝑄 ∩
[(
𝐺 ∩ Cpre(𝑌)

)
∪ (𝐺 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑋)

]
.

Then it immediately follows from the monotonicity of all involved functions that 𝑍∗ ⊆ �̌�∗.
It further follows from Lemma B.3 (iv) that 𝑍∗ = �̌�∗. It therefore remains to show that �̌�∗ ⊆ 𝑍∗

to prove the claim. We actually show �̌�∗ ⊆ 𝑍∗.
Let 𝑌 0 = 𝑌 00 = 𝑉 . Then it immediately follows that the computation of 𝑋00∗ returns the

same set for both xed-points. It further follows that𝑌 0𝑛 ⊆ 𝑌 0, which implies (𝐺∩Cpre(𝑌 0𝑛)) ⊆
(𝐺 ∩ Cpre(𝑌 0)) and therefore the set 𝑌 1 coincides for both xed-points. Now recall from [30]

48 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

that warm-starting the inner xpoint computation with the largest xed-point retained from
previous values of outer xpoint variables, does not change the resulting xed-point. With this,
we can use 𝑌 10 = 𝑌 1 and observe that this implies that the computation of 𝑌 2 becomes again
identical for both xed-points. Re-applying this argument until termination shows, that indeed
�̌�∗ ⊆ 𝑍∗. �

With Lemma B.4 in place, we can use (46b) instead of (45) to prove Theorem 3.2. Further,
let us dene 𝑍∗(〈𝑇, 𝑄〉) to be the set of states computed by the xpoint algorithm in (12). Then
we know that upon termination we have

𝑍∗ = 𝑌 ∗ = 𝑍∗(〈𝑄 ∩ 𝐺 ∩ Cpre(𝑌 ∗), 𝑄〉). (47)

Now we will use (47) to prove soundness and completeness of Theorem 3.2.

Soundness Let us now dene 𝑇 := 𝑄 ∩ 𝐺 ∩ Cpre(𝑌 ∗)). Pick any state 𝑣 ∈ 𝑍∗ and the strategy 𝜌0

dened as in (40) over the sets 𝑋 𝑖 computed in the last iteration over 𝑋 when computing
𝑍∗(〈𝑇, 𝑄〉). Further, let 𝜋 be an arbitrary fair adversarial play starting in 𝑣 and being compliant
with 𝜌0. Then we need to show that 𝜋 fullls 𝜓 in (8).

Using (47) and the fact that 𝑣 ∈ 𝑍∗ we know from Theorem 3.3 that 𝜋 fullls 𝑄U𝑇 . That
is, there exists a 𝑘 ∈ N s.t. 𝜋(𝑖) ∈ 𝑄 for all 𝑖 < 𝑘 and 𝜋(𝑘) ∈ 𝑇 = 𝑄 ∩ 𝐺 ∩ Cpre(𝑌 ∗)). With this
we know that (a) 𝜋(𝑘) ∈ 𝑄, (b) 𝜋(𝑘) ∈ 𝐺 and (c) 𝑣 ∈ Cpre(𝑌 ∗). Now we have two cases: (c.1) If
𝜋(𝑘) ∈ 𝑉1, then it follows from the denition of Cpre that 𝐸(𝜋(𝑘)) ⊆ 𝑌 ∗. As 𝑌 ∗ = 𝑍∗, we know
𝜋(𝑘 + 1) ∈ 𝑍∗. (c.2) If 𝜋(𝑘) ∈ 𝑉0 we know that rank(𝜋(𝑘)) = 𝑚𝑖𝑛𝑣′∈𝐸(𝜋(𝑘)) rank(𝑣′). Now recall
that 𝑍∗ = 𝑌 ∗ = 𝑌 ∗ =

⋃
𝑖>0 𝑋

𝑖 . Hence, any state with rank 0 < 𝑛 < ∞ is contained in 𝑍∗ and hence,
we have 𝜋(𝑘 + 1) ∈ 𝑍∗. With this, we can successively re-apply Theorem 3.3 to 𝜋(𝑘 + 1). This
shows that 𝐺 is visited innitely often along 𝜋 while 𝜋 always remains within 𝑄.

Completeness LetW ⊆ 𝑉 be the set of states fromwhich Player 0 has a winning strategy w.r.t. 𝜓
in (8). In order to prove completeness, we need to show thatW ⊆ 𝑍∗.

Recall, that for all states 𝑣 ∈ W there exists a strategy 𝜌0 s.t. all compliant fair adversarial
plays𝜋 fulll𝜓. Now consider theweaker LTL formula𝜓 := 𝑄U(𝑄∩𝐺) and letW̃ be thewinning
state set for 𝜓. Then we know by construction that 𝜓 holds for 𝜋(0) and for every 𝜋(𝑘) ⊆ 𝑄 ∩ 𝐺

while 𝜋 always remains in 𝑄. We can therefore strengthen 𝜓 to 𝜓 := 𝑄U(𝑄 ∩ 𝐺 ∩ Cpre(W̃))
and see that still 𝜓 → 𝜓 and thereforeW ⊆ W̃.

Now observe that it follows from Theorem 3.3 that W̃ = 𝑍∗(〈𝑄 ∩ 𝐺 ∩ Cpre(W̃), 𝑄〉). It
further follows from the monotonicity of the 𝜇-calculus formula that 𝑍∗ is the largest set of
states s.t. equality holds in (47). We therefore have to conclude that W̃ ⊆ 𝑍∗. As we have shown
thatW ⊆ W̃, the claim is proved.

49 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

B.3 Proof of Theorem 3.1

Theorem (Theorem 3.1 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and R be a Rabin condition over G with index set 𝑃 = [1; 𝑘]. Further, let

𝑍∗ B 𝜈𝑌𝑝0 .𝜇𝑋𝑝0 .
⋃

𝑝1∈𝑃 𝜈𝑌𝑝1 .𝜇𝑋𝑝1 .⋃
𝑝2∈𝑃\{𝑝1} 𝜈𝑌𝑝2 .𝜇𝑋𝑝2 .

...⋃
𝑝𝑘∈𝑃\{𝑝1,...,𝑝𝑘−1} 𝜈𝑌𝑝𝑘 .𝜇𝑋𝑝𝑘 .

[⋃𝑘
𝑗=0 C𝑝 𝑗

]
,

where

C𝑝 𝑗
B

𝑗⋂
𝑖=0

𝑅𝑝𝑖 ∩
[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Apre(𝑌𝑝 𝑗

, 𝑋𝑝 𝑗
)
)]

,

with 𝑝0 = 0, 𝐺𝑝0 B ∅ and 𝑅𝑝0 B ∅. Then 𝑍∗ is equivalent to the winning regionW of Player 0
in the fair adversarial game over G� for the winning condition 𝜑 in (6). Moreover, the xpoint
algorithm runs in 𝑂(𝑛𝑘+2𝑘!) symbolic steps, and a memoryless winning strategy for Player 0 can
be extracted from it.

This section contains the proof of Theorem 3.1 which is inspired by the proof of Piterman
and Pnueli [37] for “normal” Rabin games. We rst give a construction of a ranking induced
by the xpoint algorithm in (7) in Section B.3.1, and use this ranking to dene a memoryless
Player 0 strategy. As part of the soundness proof for Theorem 3.1 in Section B.3.2, we then show
that this extracted strategy is indeed a winning strategy of Player 0 in the fair adversarial game
over G� w.r.t. 𝜑. Further, we show in Section B.3.3 that the xpoint algorithm in (7) is also
complete, that isW ⊆ 𝑍∗. Intuitively, completeness shows that if 𝑍∗ is empty, there indeed exists
no live-sucient winning strategy (with arbitrary memory) for the given fair adversarial Rabin
game. Additional lemmas and proofs can be found in Appendix B.3.4. The time complexity of
the algorithm is proven separately in Appendix C.

B.3.1 Strategy Extraction

Our strategy extraction is adapted from the ranking of Piterman and Pnueli [37, Section 3.1].
Recall, that we consider the set of Rabin pairs R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉} with index set 𝑃 =

{1, . . . , 𝑘} and the articial Rabin pair 〈𝐺0, 𝑅0〉 s.t. 𝐺0 = 𝑅0 = ∅. A permutation of the index set
𝑃 is an one-to-one and onto function from 𝑃 to 𝑃; as usual, we write 𝑝1 . . . 𝑝𝑘 to denote the
permutation mapping 𝑖 to 𝑝𝑖 , for 𝑖 = 1, . . . , 𝑘. We dene Π(𝑃) to be the set of all permutations
over 𝑃. The conguration domain of the Rabin condition R is dened as

𝐷(R) :=
{
𝑝0𝑖0𝑝1𝑖1 . . . 𝑝𝑘𝑖𝑘 | 𝑖 𝑗 ∈ [0; 𝑛], 𝑝0 = 0, 𝑝1 . . . 𝑝𝑘 ∈ Π(𝑃)

}
∪ {∞} (49)

50 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

where 𝑛 < ∞ is a natural number which is larger then themaximal number of iterations needed
in any instance of the xpoint computation in (7) which is known to be nite. If R is clear from
the context, we write 𝐷 instead of 𝐷(R).
Intuition:We rst explain the intuition behind the chosen ranking. For this we consider the
denition of ranks for states 𝑣 ∈ 𝑍∗ in an iterative fashion. First, consider the last iteration
over 𝑋𝑝0 converging to the xed-point 𝑍∗ = 𝑌 ∗

𝑝0 =
⋃

𝑖0>0 𝑋
𝑖0
𝑝0 where 𝑋

0
𝑝0 := ∅. By attening (7) we

see that for all 𝑖0 > 0 we have

𝑋 𝑖0
𝑝0 = Apre(𝑌 ∗

𝑝0 , 𝑋
𝑖0−1
𝑝0) ∪ A𝑝0𝑖0 (50a)

whereA𝑝0𝑖0 collects all remaining terms of the xpoint algorithm in (7) and will be specied
later. For now, we want to assign a “minimal rank” to all states added to 𝑍∗ via the rst term in
(50a). Let us assume that the right “minimal rank” for these states is

𝑑 = 𝑝0𝑖0𝑝10 . . . 𝑝𝑘0 with 𝑝1 < 𝑝2 < . . . < 𝑝𝑘 and 𝑖0 > 0.

We assign this rank to 𝑣 i 𝑣 ∈ Apre(𝑌 ∗
𝑝0 , 𝑋

𝑖0−1
𝑝0) \ 𝑋 𝑖0−1

𝑝0 , i.e., if 𝑣 is not already added to the
xed-point in a previous iteration. The intuition behind this rank choice is that we want to
remember that we have added 𝑣 to 𝑍∗ in the 𝑖0’s computation over 𝑋𝑝0 , which sets the counter
for 𝑝0 in 𝑑 to 𝑖0. We keep all other counters at 0 because there is no actual contribution of terms
involving variables 𝑋𝑝𝑖 for 𝑝𝑖 ∈ 𝑃 for the “adding” of 𝑣.

Now recall that
𝑋 𝑖0
𝑝0 =

⋃
𝑝1∈𝑃

𝑌 ∗
𝑝1 =

⋃
𝑝1∈𝑃

⋃
𝑖1>0

𝑋 𝑖1
𝑝1 .

Further, we know that

Apre(𝑌 ∗
𝑝0 , 𝑋

𝑖0−1
𝑝0) ⊆ 𝑋 𝑖1

𝑝1 for all 𝑝1 ∈ 𝑃 and 𝑖1 > 0. (50b)

Hence, any state added to the xed-point via 𝑋 𝑖0
𝑝0 (which is not contained in 𝑋 𝑖0−1

𝑝0) is either added
via Apre(𝑌 ∗

𝑝0 , 𝑋
𝑖0
𝑝0) or via any other remaining term within 𝑋 𝑖1

𝑝1 for at least one 𝑝1 and 𝑖1 > 0. So
let us explore the ranking in the latter case.

For this, let us proceed by going over all 𝑋 𝑖1
𝑝1 in increasing order over 𝑃, i.e, we start with

selecting 𝑝1 = 1. Further, we remember that we compute the next iteration over 𝑋𝑝1 (i.e., 𝑋
𝑖1
𝑝1

given 𝑋 𝑖1−1
𝑝1) as part of computing the set 𝑋 𝑖0

𝑝0 . I.e., we remember the computation-prex 𝛿 = 𝑝0𝑖0

in the computation of 𝑋 𝑖1
𝑝1 . To make 𝛿 explicit, we denote 𝑋 𝑖1

𝑝1 by 𝑋 𝑖1
𝛿𝑝1

. Now, we again consider
the last iteration over 𝑋𝛿𝑝1 converging to the xed-point 𝑌 ∗

𝛿𝑝1
(for the currently considered

computation-prex 𝛿). Then we have

𝑋 𝑖1
𝛿𝑝1

=Apre(𝑌 ∗
𝑝0 , 𝑋

𝑖0−1
𝑝0)︸ ︷︷ ︸

=:𝑆𝛿

∪𝑅𝑝1 ∩
[(
𝐺𝑝1 ∩ Cpre(𝑌 ∗

𝛿𝑝1
)
)
∪ Apre(𝑌 ∗

𝛿𝑝1
, 𝑋 𝑖1−1

𝛿𝑝1
)
]

︸ ︷︷ ︸
=:C𝛿𝑝1𝑖1

∪A𝛿𝑝1𝑖1 .

51 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

We now want to assign the “minimal rank” to all states that are added to the xed-point
via C𝛿𝑝1𝑖1 . The immediate choice of this rank is

𝑑 = 𝑝0𝑖0𝑝1𝑖1𝑝20 . . . 𝑝𝑘0 = 𝛿𝑝1𝑖1𝑝20 . . . 𝑝𝑘0 with 𝑝2 < . . . < 𝑝𝑘 and 𝑖0, 𝑖1 > 0. (50c)

(Note that we do not necessarily have 𝑝1 < 𝑝2!)
We onlywant to assign this rank to states that are actually added to the xed-point viaC𝛿𝑝1𝑖1 ,

i.e., do not already have a rank assigned. First, all states 𝑣 ∈ 𝑆𝛿 already have an assigned rank
(as discussed before). Second, for 𝑖1 > 1 all states in C𝛿𝑝1𝑖1−1 have already an assigned rank.
But, third, also all states that have been added by considering a dierent 𝑋�̃�1 with �̃�1 ∈ 𝑃 being
smaller then the currently considered 𝑝1 also have an already assigned rank.

Now consider the ranking choices suggested in (50b) and (50c). Thenwe see that all already
assigned ranks are smaller (in terms of the lexicographic order over 𝐷) than the one in (50c). To
see this, rst consider a state 𝑣 ∈ 𝑆𝛿. Either, 𝑣 ∈ 𝑋 𝑖0−1

𝑝0 in which case its 0’th counter is smaller
then 𝑖0 (i.e., 𝑖0 − 1 < 𝑖0) or 𝑣 has been added via 𝑆𝛿, in which case the 0’th counter is equivalent
but the rst counter is 0 and therefore smaller then 𝑖1 in (50c) (as, 𝑖1 > 0). Now consider a state
𝑣 ∈ 𝑋�̃�1 with �̃�1 < 𝑝1. In this case we see that 0’th counter is equivalent but the rst permutation
index is smaller (as �̃�1 < 𝑝1).

We can therefore avoid specifying exactly in which set 𝑣 should not be contained to be a
newly added state. We can simply collect all possible rank assignments for every state and then,
post-process this set to select the smallest rank in this set. Let us now generalize this idea to all
possible conguration prexes.

PROPOS IT ION B .5. Let 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 be a conguration prex, 𝑝 𝑗 ∈ 𝑃\{𝑝1, . . . , 𝑝 𝑗−1} the
next permutation index and 𝑖 𝑗 > 0 a counter for 𝑝 𝑗 . Then the attening of (7) for this conguration
prex is given by

𝑋
𝑖 𝑗
𝛿𝑝 𝑗

= 𝑆𝛿 ∪ C𝛿𝑝 𝑗 𝑖 𝑗︸ ︷︷ ︸
𝑆𝛿𝑝 𝑗 𝑖 𝑗

∪A𝛿𝑝 𝑗 𝑖 𝑗 (51a)

where

𝑄𝑝0...𝑝𝑎 :=
𝑎⋂

𝑏=0
𝑅𝑝𝑏 , (51b)

C𝛿𝑝𝑎𝑖𝑎 :=
(
𝑄𝛿𝑝𝑎 ∩ 𝐺𝑝𝑎 ∩ Cpre(𝑌 ∗

𝛿𝑝𝑎
)
)
∪

(
𝑄𝛿𝑝𝑎 ∩ Apre(𝑌 ∗

𝛿𝑝𝑎
, 𝑋 𝑖𝑎−1

𝛿𝑝𝑎
)
)
, (51c)

𝑆𝑝0𝑖0...𝑝𝑎𝑖𝑎 :=
𝑎⋃

𝑏=0
C𝑝0𝑖0...𝑝𝑏𝑖𝑏 , (51d)

A𝛿𝑝 𝑗 𝑖 𝑗 :=
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗}

⋃
𝑖 𝑗+1>0

(
𝑋
𝑖 𝑗+1
𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗

)
(51e)

As this attening follows directly from the structure of the xpoint algorithm in (7) and
the denition of C𝑝 𝑗

in (7b), the proof is omitted.

52 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

Using the attening of (7) in (51) we can dene a ranking function induced by (7) as follows.

DEF IN IT ION B .6. Given the premises of Proposition B.5, we dene 𝛾 := 𝑝 𝑗+10𝑝 𝑗+20 . . . 𝑝𝑘0 with
𝑝 𝑗+1 < 𝑝 𝑗+2 < . . . < 𝑝𝑘 to be the minimal conguration post-x. Then we dene the rank-set
𝑅 : 𝑉 → 2𝐷 s.t. (i)∞ ∈ 𝑅(𝑣) for all 𝑣 ∈ 𝑉 , and (ii) 𝛿𝑝 𝑗𝑖 𝑗𝛾 ∈ 𝑅(𝑣) i 𝑣 ∈ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 . The ranking function
rank : 𝑉 → 𝐷 is dened s.t. rank : 𝑣 ↦→ min{𝑅(𝑣)}.

Based on the ranking in Denition B.6 we dene a memory-less player 0 strategy 𝜌0, s.t.
𝜌0(𝑣) forces progress to a state reachable from 𝑣which has minimal rank compared to all other
successors of 𝑣. We prove Theorem B.7 in Section B.3.2.

THEOREM B.7. Given the premises of Proposition B.5, the memoryless player 0 strategy 𝜌0 :
𝑉0 ∩ 𝑍∗ → 𝑉1 s.t.

𝜌0(𝑣) := min
(𝑣,𝑤)∈𝐸

(rank(𝑤)), (52)

is a winning strategy for player 0 in the fair adversarial game over G� w.r.t. 𝜑.

EXAMPLE B .8. Consider the Rabin game depicted in Figure 10 and discussed in Appendix A.
Here, the strategy construction outlined in Theorem B.7 enforces a transition from 𝑞6 to 𝑞7 and
a transition from 𝑞5 to 𝑞3. This is observed by noting that rank(𝑞2) = 002012 and rank(𝑞7) =
001121 where rank(𝑞7) < rank(𝑞2). In addition, rank(𝑞1) = 011021 and rank(𝑞3) = 001121,
where rank(𝑞3) < rank(𝑞1). �

B.3.2 Soundness

We now show why the xpoint algorithm in (7) is sound, i.e., why 𝑍∗ ⊆ W in Theorem 3.1 holds.
In addition, we also show that Theorem B.7 holds.

We prove soundness by an induction over the nesting of xed-points in (7) from inside to
outside. In particular, we iteratively consider instances of the attening in (51), starting with
𝑗 = 𝑘 as the base case, and doing an induction from “ 𝑗 + 1” to “ 𝑗”. To this end, we consider a
local winning condition which refers to the current conguration-prex 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1

in (51), namely

𝜓𝛿𝑝 𝑗
:=

©«
𝑄𝛿𝑝 𝑗

U𝑆𝛿

∨ �𝑄𝛿𝑝 𝑗
∧ �^𝐺𝑝 𝑗

∨ �𝑄𝛿𝑝 𝑗
∧

(∨
𝑖∈𝑃\{𝑝0,...,𝑝 𝑗}

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)) ª®®®¬ . (53)

Further, we denote byW𝛿𝑝 𝑗
the set of states for which player 0 wins the fair adversarial game

over G� w.r.t. 𝜓𝛿𝑝 𝑗
in (53).

53 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

By recalling that for 𝑝 𝑗 = 𝑝0 = 0 we have 𝑄𝑝0 = 𝑉 , 𝑆𝜀 = ∅ and 𝐺𝑝0 = ∅, we see that for 𝑗 = 0
the condition in (53) simplies to

𝜓𝑝0 =
∨
𝑖∈𝑃

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)
.

This implies that 𝜓𝑝0 is equivalent to 𝜑 in (6). Given this observation, the proof of soundness in
Theorem 3.1 proceeds by inductively showing that

𝑋
𝑖 𝑗
𝛿𝑝 𝑗

⊆ W𝛿𝑝 𝑗
(54)

for any conguration prex 𝛿, next permutation index 𝑝 𝑗 and counter 𝑖 𝑗 > 0. Thereby, we
ultimately also prove this claim for 𝑝 𝑗 = 𝑝0 = 0 where 𝛿 is the empty string and 𝑌 ∗

𝑝0 =
⋃

𝑖0>0 𝑋
𝑖0
𝑝0

coincides with 𝑍∗ in (7), which proves the statement.
With this insight the proof of Theorem B.7 as well as the soundness part of Theorem 3.1

reduce to the following proposition.

PROPOS IT ION B .9. For all 𝑗 ∈ [0, 𝑘], computation-prexes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1, next permuta-
tion index 𝑝 𝑗 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1}, counter 𝑖 𝑗 > 0 and state 𝑣 ∈ 𝑋

𝑖 𝑗
𝛿𝑝 𝑗

the strategy 𝜌0 in (52) wins
the fair adversarial game over G� w.r.t. 𝜓𝛿𝑝 𝑗

in (53).

To seewhy Proposition B.9 holds, we consider the computation of 𝑋 𝑖 𝑗+1
𝛿𝑝 𝑗

in (51a) and observe

that the states in 𝑋
𝑖 𝑗+1
𝛿𝑝 𝑗

can be clustered based on their rank induced via Denition B.6 as follows
(see Section B.3.5 for a full proof).

PROPOS IT ION B .10. Given the premisses of Proposition B.9, let

𝛾 = 𝑝 𝑗+10𝑝 𝑗+20 . . . 𝑝𝑘0 with 𝑝 𝑗+1 < 𝑝 𝑗+2 < . . . < 𝑝𝑘, and

𝛾 = 𝑝 𝑗+1𝑛𝑝 𝑗+2𝑛 . . . 𝑝𝑘𝑛 with 𝑝𝑘 < 𝑝𝑘−1 < . . . < 𝑝 𝑗+1

be the minimal and maximal post-x, respectively. Then, for all 𝑣 ∈ 𝑋 𝑖
𝛿𝑝 𝑗

exactly one of the
following cases holds:
(a) 𝑣 ∈ 𝑆𝛿 and rank(𝑣) ≤ 𝛿𝑝 𝑗0𝛾,
(b) 𝑣 ∈ 𝑄𝛿𝑝 𝑗

∩ 𝐺𝑝 𝑗
∩ Cpre(𝑌 ∗

𝛿𝑝 𝑗
) and rank(𝑣) = 𝛿𝑝 𝑗1𝛾,

(c) 𝑣 ∈ 𝑄𝛿𝑝 𝑗
∩ Apre(𝑌 ∗

𝛿𝑝 𝑗
, 𝑋

𝑖 𝑗−1
𝛿𝑝 𝑗

) and rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾 s.t. 𝑖 𝑗 > 1, or
(d) 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 and there exists 𝛾 < 𝛾′ ≤ 𝛾 s.t. rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾

′.

Using Proposition B.10 we prove Proposition B.9 by an induction over 𝑗.

PROOF OF PROPOS IT ION B .9 . Base case: First, for 𝑗 = 𝑘 the last line of (53) disappears.
Then the proof reduces to Theorem 3.3 and Theorem 3.2 in the following way. First, we x
all xpoint variables 𝑌 ∗

𝑝0...𝑝𝑙
and 𝑋 𝑖𝑙

𝑝0...𝑝𝑙 for 𝑙 < 𝑗 as well as 𝑌 ∗
𝛿𝑝 𝑗

. With this, we see that 𝑇 :=

54 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗
∩ 𝐺𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)) becomes a xed set of states and (51a) reduces to

𝑋
𝑖 𝑗
𝛿𝑝 𝑗

= 𝑇 ∪ (𝑄𝛿𝑝 𝑗
∩ Apre(𝑌 ∗

𝛿𝑝 𝑗
, 𝑋

𝑖 𝑗−1
𝛿𝑝 𝑗

))

where we know that 𝑋 𝑖 𝑗
𝛿𝑝 𝑗

⊆ 𝑌 ∗
𝛿𝑝 𝑗

. Further, it follows form Proposition B.10 that for all 𝑋 𝑖 𝑗
𝛿𝑝 𝑗

the
ranking only diers by the 𝑖 𝑗 count. Hence, we can replace 𝜌0 in (52) by the simpler strategy
𝜌0 in (40) that only considers the 𝑖 𝑗 count as the rank of states in 𝑌 ∗

𝛿𝑝 𝑗
=

⋃
𝑖 𝑗>0 𝑋

𝑖 𝑗
𝛿𝑝 𝑗

. With this
it follows from Theorem 3.3 that for any fair adversarial play 𝜋 compliant with 𝜌0 in (52) and
starting in 𝑋

𝑖 𝑗
𝛿𝑝 𝑗

for some 𝑖 𝑗 ≥ 0 it holds that 𝑄𝛿𝑝 𝑗
U𝑇 . This implies that whenever such a play 𝜋

eventually reaches a state in 𝑆𝛿 ⊆ 𝑇 the rst line of (53) holds.
Now assume that 𝜋 does not reach a state in 𝑆𝛿 ⊆ 𝑇 . Then it reaches a state in 𝑄𝛿𝑝 𝑗

∩ 𝐺𝑝 𝑗
∩

Cpre(𝑌 ∗
𝛿𝑝 𝑗

) and therefore has a successor state 𝑣′ ∈ 𝑌 ∗
𝛿𝑝 𝑗

=
⋃

𝑖 𝑗>0 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

. Hence, 𝑣′ ∈ 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

for some
𝑖 𝑗 ≥ 0. By repeatedly applying this argument we see that 𝜋 either eventually reaches a state in
𝑆𝛿 ⊆ 𝑇 or it remains innitely in C𝛿𝑝 𝑗 ·. In the latter case, it follows from Theorem 3.2 that the
second line of (53) holds.

Induction step: For the induction step (from “ 𝑗 + 1” to “ 𝑗”) we rst analyze the assumption. I.e.,
we know that for the longer computation prex 𝛿′ = 𝛿𝑝 𝑗𝑖 𝑗 and any next permutation index 𝑝 𝑗+1

we have that 𝑌 ∗
𝛿′𝑝 𝑗+1

⊆ W𝛿′𝑝 𝑗+1 for all 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝1, . . . , 𝑝 𝑗}. Now recall that (51e) implies

A𝛿𝑝 𝑗 𝑖 𝑗 =
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗} 𝑌
∗
𝛿′𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗

and therefore, we know that for all 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 there exists a 𝑝 𝑗+1 s.t. 𝑣 ∈ W𝛿′𝑝 𝑗+1 . That is, any fair
adversarial play starting in 𝑣 that is compliant with 𝜌0 in (52) fullls (53).

Therefore, whenever a fair adversarial play 𝜋 starting in 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

visits a vertex 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 (i.e.,
case (d) holds), we know that 𝜋 could possibly come back to a state 𝑣 ∈ 𝑆𝛿′𝑝 𝑗+1 = 𝑆𝛿 ∪ C𝛿𝑝 𝑗 𝑖 𝑗 (via
the rst line of 𝜓𝛿′𝑝 𝑗+1).

In this case, Proposition B.10 ensures that the 𝑖 𝑗 count of the rank of states always stays
constant while the play stays inA𝛿𝑝 𝑗 𝑖 𝑗 . Therefore, one can ignore these nite sequences of (d)
vertices in 𝜋 while applying the ranking arguments of Theorem 3.3 and Theorem 3.2. I.e., we
can conclude that in this case either the rst or the second line of (53) holds for 𝜋. It remains to
show that 𝜋 fullls the last line of (53) if 𝜋 eventually stays withinA𝛿𝑝 𝑗 𝑖 𝑗 forever. First, observe
that this is only possible if 𝑆𝛿 is not visited along 𝜋. Hence, we know that 𝑄𝛿𝑝 𝑗

holds along 𝜋
untilA𝛿𝑝 𝑗 𝑖 𝑗 is entered and never left. Further, asA𝛿𝑝 𝑗 𝑖 𝑗 is assumed to be never left after some
time 𝑘 > 0, we know that from that time onward there exists no 𝑝 𝑗+1 s.t. 𝑆𝛿′𝑝 𝑗+1 is visited again
by 𝜋. This implies that for all vertices 𝜋(𝑘′) with 𝑘′ > 𝑘 the last two lines of 𝜓𝛿′𝑝 𝑗+1 (denoted
𝜓′
𝛿′𝑝 𝑗+1

) must be true for at lease one 𝑝 𝑗+1. Hence, 𝜋 fullls the property

Ψ𝛿𝑝 𝑗
:=�𝑄𝛿𝑝 𝑗

∧ ^
(∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗} 𝜓
′
𝛿′𝑝 𝑗+1

)
︸ ︷︷ ︸

Ψ′
𝛿𝑝 𝑗

(55a)

55 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

With this, it remains to show that Ψ𝛿𝑝 𝑗
implies that the last line of (53) is true for 𝜋. In particular,

we can show that both statements are equivalent, i.e.,

Ψ𝛿𝑝 𝑗
=�𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗}

(
^�𝑅𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1

)
(55b)

Equation (55) is proved in Section B.3.6. This conclues the proof. �

B.3.3 Completeness

We now show why the xpoint algorithm in (7) is complete, i.e., whyW ⊆ 𝑍∗ in Theorem 3.1
holds.

We also prove completeness by an induction over the nesting of the xpoints in (7) from
inside to outside. In particular, we iteratively consider the xed-points 𝑌 ∗

𝛿𝑝 𝑗
and show that

𝑌 ∗
𝛿𝑝 𝑗

⊆ W𝛿𝑝 𝑗
. As 𝜓𝛿𝑝 𝑗

simplies to 𝜑 in (6) for 𝑝 𝑗 = 𝑝0 = 0, we ultimately show thatW ⊆ 𝑍∗ in
Theorem 3.1. With this insight the proof of the completeness part of Theorem 3.1 reduces to the
following proposition.

PROPOS IT ION B .1 1. For all 𝑗 ∈ [0, 𝑘], computation-prexes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 and next
permutation index 𝑝 𝑗 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1} it holds thatW𝛿𝑝 𝑗

⊆ 𝑌 ∗
𝛿𝑝 𝑗

.

PROOF . The proof proceeds by a nested induction over 𝑗 starting with 𝑗 = 𝑘.

Base case: Recall that for 𝑗 = 𝑘 the last line of (53) disappears. Hence, for any state 𝑣 ∈ W𝛿𝑝 𝑗

either the rst or the second line of (53) holds. Then the proof reduces to Theorem 3.3 and
Theorem 3.2 in the following way.

First, we x all xpoint variables 𝑌 ∗
𝑝0...𝑝𝑙

and 𝑋 𝑖𝑙
𝑝0...𝑝𝑙 for 𝑙 < 𝑗 as well as 𝑌 ∗

𝛿𝑝 𝑗
. With this, we

see that 𝑇 := 𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗
∩ 𝐺𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)) becomes a xed set of states and (51a) reduces to

𝑌 ∗
𝛿𝑝 𝑗

= 𝑍∗(〈𝑇, 𝑄𝛿𝑝 𝑗
〉)

where 𝑍∗(〈𝑇, 𝑄〉) is the set of states computed by the xpoint algorithm in (12).
Then it follows from Theorem 3.3 that any state 𝑣 ∈ 𝑉 for which there exists a fair adver-

sarial play 𝜋 that is winning for the winning condition 𝑄𝛿𝑝 𝑗
U𝑇 is contained in 𝑌 ∗

𝛿𝑝 𝑗
. If, indeed

the rst line of (53) holds for 𝜋, this ensures that the claim holds.
Now assume that 𝑄𝛿𝑝 𝑗

U𝑇 holds for 𝜋 but 𝑆𝛿 is never reached. Hence, 𝑄𝛿𝑝 𝑗
U(𝑄𝛿𝑝 𝑗

∩ 𝐺𝑝 𝑗
∩

Cpre(𝑌 ∗
𝛿𝑝 𝑗

)) holds for 𝜋. With this, it follows form Theorem 3.2 that any state 𝑣 ∈ 𝑉 for which
there exists a fair adversarial play 𝜋 for which the second line of (53) holds is contained in 𝑌 ∗

𝛿𝑝 𝑗
,

proving the claim in this case.

Induction Step: For the induction from “ 𝑗 + 1” to “ 𝑗” we rst analyze the assumption. I.e., we
know that for the longer computation prex 𝛿′ = 𝛿𝑝 𝑗 and any next permutation index 𝑝 𝑗+1

we have thatW𝛿′𝑝 𝑗+1 ⊆ 𝑌 ∗
𝛿′𝑝 𝑗+1

. Further, observe that Ψ′
𝛿𝑝 𝑗

⊆ ⋃
𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗} W𝛿′𝑝 𝑗+1 \ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 by

56 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

construction. We therefore have

Ψ′
𝛿𝑝 𝑗

⊆
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗}
𝑌 ∗
𝛿′𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 = A𝛿𝑝 𝑗 𝑖 𝑗 .

With this observation, we see that any fair adversarial play 𝜋 which fullls the last line of
(53) also fullls the weaker condition 𝑄𝛿𝑝 𝑗

UA𝛿𝑝 𝑗 𝑖 𝑗 . Therefore, the claim follows from the same
reasoning as in the base case by re-dening 𝑇 to 𝑇 := 𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗

∩𝐺𝑝 𝑗
∩ Cpre(𝑌 ∗

𝛿𝑝 𝑗
)) ∪ A𝛿𝑝 𝑗 𝑖 𝑗 . �

B.3.4 Additional Lemmas and Proofs

In this section we provide additional lemmas and proofs to support the proof of Theorem 3.1
and Theorem B.7.

B.3.5 Proof of Proposition B.10

LEMMA B.12. Given the premisses of Proposition B.10, it holds for all 𝑣 ∈ 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

that
(i) 𝑣 ∈ 𝑆𝛿 i rank(𝑣) ≤ 𝛿𝑝 𝑗0𝛾

(ii) 𝑣 ∈ 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

i rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾

(iii) 𝑣 ∈ 𝑌 ∗
𝛿𝑝 𝑗

i rank(𝑣) ≤ 𝛿𝑝 𝑗𝑛𝛾

(iv) 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 i there exists 𝛾 < 𝛾′ ≤ 𝛾 s.t. rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾
′

PROOF OF LEMMA B.12 . We prove all claims separately.
(i) It immediately follows from Denition B.6 (i) that 𝛿𝑝 𝑗0𝛾 ∈ 𝑅(𝑣) i 𝑣 ∈ 𝑆𝛿. If it is the minimal
element in 𝑅(𝑣) then rank(𝑣) = 𝛿𝑝 𝑗0𝛾, if not, there exists a smaller element in 𝑅(𝑣), and then
rank(𝑣) < 𝛿𝑝 𝑗0𝛾 from the denition of rank.
(ii) First, observe, that for 𝑗 = 𝑘 it follows from (51a) that 𝑋 𝑖𝑘

𝛿𝑝𝑘
= 𝑆𝛿𝑝𝑘𝑖𝑘 and therefore from

(i) that 𝑣 ∈ 𝑋 𝑖𝑘
𝛿𝑝𝑘

i rank(𝑣) ≤ 𝛿𝑝𝑘𝑖𝑘. Now we do an induction, assuming that for any 𝑝 𝑗+1 ∈
𝑃 \ {𝑝0, . . . , 𝑝 𝑗} and 0 < 𝑖 𝑗+1 ≤ 𝑛 it holds that 𝑣 ∈ 𝑋

𝑖 𝑗+1
𝛿𝑝 𝑗+1

i rank(𝑣) ≤ 𝛿′𝑝 𝑗+1𝑖 𝑗+1𝛾′ (where 𝛿′ goes
up to index 𝑗 and 𝛾′ starts only at index 𝑗 + 2. Now recall that

𝑋
𝑖 𝑗
𝛿𝑝 𝑗

=
⋃

𝑝 𝑗+1∈𝑃\{𝑝0,...,𝑝 𝑗}
𝑌 ∗
𝛿𝑝 𝑗+1

=
⋃

𝑝 𝑗+1∈𝑃\{𝑝0,...,𝑝 𝑗}

⋃
𝑖 𝑗+1>0

𝑋
𝑖 𝑗+1
𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

.

Hence, 𝑣 ∈ 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

i there exists 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗} and 0 < 𝑖 𝑗+1 ≤ 𝑛 s.t. 𝑣 ∈ 𝑋
𝑖 𝑗+1
𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

. Now we
know that for any choice of 𝑝 𝑗+1 and 𝑖 𝑗+1 we have rank(𝑣) ≤ 𝛿′𝑝 𝑗𝑖 𝑗𝑝 𝑗+1𝑖 𝑗+1𝛾′. Now the worst case,
in terms of the lexicographic ordering over 𝐷 is that 𝑝 𝑗+1 = max(𝑃 \ {𝑝0, . . . , 𝑝 𝑗}) and 𝑖 𝑗+1 = 𝑛.
Hence, we know that rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾.
(iii) As𝑌 ∗

𝛿𝑝 𝑗
=

⋃
𝑖 𝑗>0 𝑋

𝑖 𝑗
𝛿𝑝 𝑗

it follows that there exists 0 < 𝑖 𝑗 ≤ 𝑛 s.t. 𝑣 ∈ 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

and (from (ii)) therefore
rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾. Again, the worst case is 𝑖 𝑗 = 𝑛, giving rank(𝑣) ≤ 𝛿𝑝 𝑗𝑛𝛾.
(iv) It follows from (51a) that 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 i 𝑣 ∈ 𝑋

𝑖 𝑗
𝛿𝑝 𝑗

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 . Hence, it follows from (i) and

57 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

(ii) that rank(𝑣) > 𝛿𝑝 𝑗0𝛾 and rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 which is true i there exists 𝛾 < 𝛾′ ≤ 𝛾 s.t.
rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾

′, which proves the statement. �

Given these properties of the ranking function, we are ready to prove the suggested case
split in Proposition B.10.

PROOF OF PROPOS IT ION B .10 . We call a vertex 𝑣 ∈ 𝑉 that fullls cases (𝛼) in either
LemmaB.12 or Proposition B.10 an (𝛼)-vertex. First, observe that cases (i) and (iv) in LemmaB.12
coincide with cases (a) and (d), respectively, in Proposition B.10. Further, recall that 𝑋1

𝛿𝑝 𝑗
= ∅.

Therefore, 𝑋1
𝛿𝑝 𝑗

only contains (a)-,(b)- and (d)-vertices, as Apre(·, ∅) = ∅. Now we know from
(ii) that for any 𝑣 ∈ 𝑋1

𝛿𝑝 𝑗
we have rank(𝑣) ≤ 𝛿𝑝 𝑗1𝛾. Now excluding the rankings for (a)- and

(d)-vertices we obtain that (b)-vertices must have rank rank(𝑣) ≤ 𝛿𝑝 𝑗1𝛾. Similarly, for every

𝑖 𝑗 > 1 we know that 𝑋 𝑖 𝑗
𝛿𝑝 𝑗

contains (a)-, (b)-, (c)- and (d)- vertices. Now excluding (a)-, (b)- and (d)-
vertices yields rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 for all (c)-vertices. �

B.3.6 Proof of (55)

Given the notation in Section B.3.2 we prove that the equality in (55) holds.
First recall that

Ψ′
𝛿′𝑝 𝑗+1

:=

(
�𝑄𝛿′𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1

∨ �𝑄𝛿′𝑝 𝑗+1 ∧
(∨

𝑖∈𝑃\ 𝑗+1

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)))
, (56)

where 𝑃\ 𝑗+1 := 𝑃 \ {𝑝1, . . . , 𝑝 𝑗+1}.
For the insertion of (56) into (55a) we have the following observations. First, observe that

^(𝐵∨𝐶) = ^𝐵∨^𝐶, i.e., we can distribute the eventuality operator preceding Ψ′
𝛿′𝑝 𝑗+1

over both
lines. Second, we can re-order the preceding disjunction over 𝑝 𝑗+1 in (55a) and the disjunction
between the two lines of (56). This yields to the following condition

Ψ𝛿𝑝 𝑗
=�𝑄𝛿𝑝 𝑗

∧
(∨

𝑝 𝑗+1∈𝑃\ 𝑗 (^𝜆1) ∨
∨

𝑝 𝑗+1∈𝑃\ 𝑗 (^𝜆2)
)

=

(
�𝑄𝛿𝑝 𝑗

∧ ∨
𝑝 𝑗+1∈𝑃\ 𝑗 (^𝜆1)

)
︸ ︷︷ ︸

=:Ψ1

∨
(
�𝑄𝛿𝑝 𝑗

∧ ∨
𝑝 𝑗+1∈𝑃\ 𝑗 (^𝜆2)

)
︸ ︷︷ ︸

=:Ψ2

, (57)

where 𝜆𝑖 denotes the 𝑖-th line of the conjunction in (56).
Now let us investigate the terms Ψ1 andΨ2 in (57) separately. For Ψ1, observe that ^�^𝐴 =

�^𝐴 and ^(�𝐴 ∧ �𝐵) = ^�𝐴 ∧ ^�𝐵. Further we have 𝑄𝛿′𝑝 𝑗+1 = 𝑄𝛿𝑝 𝑗
∧ 𝑅 𝑗+1 ⊆ 𝑄𝛿𝑝 𝑗

and hence

Ψ1 =�𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\ 𝑗

(
^�(𝑄𝛿𝑝 𝑗

∧ 𝑅𝑝 𝑗+1) ∧ �^𝐺𝑝 𝑗+1

)

58 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

By using the equality ^�(𝐴 ∧ 𝐵) = ^�𝐴 ∧ ^�𝐵 and the fact that 𝑄𝛿𝑝 𝑗
is independent of the

choice of 𝑝 𝑗+1 we get

Ψ1 =�𝑄𝛿𝑝 𝑗
∧ ^�𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\ 𝑗

(
^�𝑅𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1

)
=�𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\ 𝑗

(
^�𝑅𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1

)
. (58)

To analyze Ψ2 in (57), recall that the eventuality operator ^ distributes over disjunctions.
We can therefore move the inner disjunction over 𝑖 outside and get

Ψ2 =�𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\ 𝑗

©«
∨

𝑖∈𝑃\ 𝑗+1

[
^

(
�𝑄𝛿′𝑝 𝑗+1 ∧

(
^�𝑅𝑖 ∧ �^𝐺𝑖

))]ª®®¬
Nowobserve that

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)
= ^

(
�𝑅𝑖 ∧ �^𝐺𝑖

)
and^(�𝐴∧^𝐵) = ^�𝐴∧^𝐵. Additionally

using 𝑄𝛿′𝑝 𝑗+1 = 𝑄𝛿𝑝 𝑗
∧ 𝑅𝑝 𝑗+1 ⊆ 𝑄𝛿𝑝 𝑗

we get

Ψ2 =�𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\ 𝑗

©«
∨

𝑖∈𝑃\ 𝑗+1

[
^�(𝑄𝛿𝑝 𝑗

∧ 𝑅𝑝 𝑗+1) ∧
(
^�𝑅𝑖 ∧ �^𝐺𝑖

)]ª®®¬
Now we can do the same trick as in the simplication of Ψ (see (58)) to remove the 𝑄𝛿𝑝 𝑗

term inside the disjunction and get

Ψ2 =�𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\ 𝑗

©«
∨

𝑖∈𝑃\ 𝑗+1

[
^�𝑅𝑝 𝑗+1 ∧

(
^�𝑅𝑖 ∧ �^𝐺𝑖

)]ª®®¬ (59)

To see how we can simplify (59), let us assume that the set 𝑃\ 𝑗 contains three elements,
e.g., {𝑎, 𝑏, 𝑐}. Then we can expand (59) to

^�𝑅𝑎 ∧
(
^�𝑅𝑏 ∧ �^𝐺𝑏

)
∨ ^�𝑅𝑎 ∧

(
^�𝑅𝑐 ∧ �^𝐺𝑐

)
∨ ^�𝑅𝑏 ∧

(
^�𝑅𝑎 ∧ �^𝐺𝑎

)
∨ ^�𝑅𝑏 ∧

(
^�𝑅𝑐 ∧ �^𝐺𝑐

)
∨ ^�𝑅𝑐 ∧

(
^�𝑅𝑏 ∧ �^𝐺𝑏

)
∨ ^�𝑅𝑐 ∧

(
^�𝑅𝑎 ∧ �^𝐺𝑎

)

59 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Now, we can re-order terms and get(
^�𝑅𝑏 ∧ �^𝐺𝑏

)
∧

(
^�𝑅𝑎 ∨ ^�𝑅𝑐

)
∨

(
^�𝑅𝑐 ∧ �^𝐺𝑐

)
∧

(
^�𝑅𝑎 ∨ ^�𝑅𝑏

)
∨

(
^�𝑅𝑎 ∧ �^𝐺𝑎

)
∧

(
^�𝑅𝑏 ∨ ^�𝑅𝑐

)
Generalizing this observation, we get the following formula equivalent to (59)

Ψ2 = �𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\ 𝑗

©«
(
^�𝑅𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1)

)
∧

∨
𝑗∈𝑃\ 𝑗+1

^�𝑅 𝑗

ª®®¬ (60)

Now recall that 𝐴∧𝐵 ⇒ 𝐴 for any choice of 𝐴 and 𝐵. With this one can verify that Ψ2 ⇒ Ψ1

as the term after the disjuction over 𝑝 𝑗+1 in (60) implies the term after the disjuction over 𝑝 𝑗+1

in (58). Hence, the set of states which fulll Ψ1 in (58) is always larger then the set of states
which fulll Ψ2 (60)). As both terms are connected by a conjunction in (57), we can ignore Ψ2 in
(57) and obtain

Ψ𝛿𝑝 𝑗
= Ψ1 = �𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\ 𝑗

(
^�𝑅𝑝 𝑗+1 ∧ �^𝐺𝑝 𝑗+1

)
. (61)

This concludes the proof of (55) as (61) coincides with (55b).

B.4 Additional Proofs for Section 3.4

B.4.1 Fair Adversarial Rabin Chain Games

Theorem (Theorem 3.9 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and R be a Rabin condition over G with 𝑘 pairs for which the chain condition (17) holds.
Further, let

𝑍∗ B 𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 . 𝜈𝑌𝑘−1. . . . 𝜇𝑋1.
⋃𝑘

𝑗=0 C̃𝑗 , (62a)

where C̃𝑗 B 𝑅 𝑗 ∩
[(
𝐺 𝑗 ∩ Cpre(𝑌𝑗)

)
∪ Apre(𝑌𝑗 , 𝑋 𝑗)

]
with 𝐺𝑝0 B ∅ and 𝑅𝑝0 B ∅.

Then 𝑍∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G� for the winning condition 𝜑 in (6). Moreover, the xpoint algorithm runs in 𝑂(𝑛𝑘+2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

In this section we prove Theorem 3.9. That is, we prove that for Rabin chain conditions,
the xpoint computing 𝑍∗ in (7) simplies to the one in (62). This is formalized in the next
proposition.

60 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

PROPOS IT ION B .13. Given the premisses of Theorem 3.9 let 𝑍∗ be the xed-point of the 𝜇-
calculus expression of (7) and 𝑍∗ the xed-point of (62). Then 𝑍∗ = 𝑍∗.

If Proposition B.13 holds, we immediately see that Theorem 3.9 directly follows from
Theorem 3.1. It therefore remains to prove Proposition B.13.

Similar to the soundness and completeness proof for Theorem 3.1 we prove Proposi-
tion B.13 by an induction over the nesting of xpoints in (7) form inside to outside. Here,
however we do not need to explicitly refer to counters 𝑖 𝑗 as in Proposition 3.9. Hence, we
can look at permutation prexes instead of conguration prexes. We have the following
proposition.

PROPOS IT ION B .14. Let 𝑃 be the index set of the Rabin chain condition R in Theorem 3.9.
Further, for any 𝑗 ∈ [0; 𝑘] let 𝛿 := 𝑝0𝑝1 . . . 𝑝 𝑗−1 be a permutation prex, 𝑃\𝛿 := 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1}
the reduced index set and 𝑞0 := 𝑝 𝑗 ∈ 𝑃\𝛿 the current permutation index. Further, dene7

𝑍∗
𝛿𝑝 𝑗
B𝜈𝑌𝑞0 . 𝜇𝑋𝑞0 .⋃

𝑞1∈𝑃\𝛿𝑝 𝑗
𝜈𝑌𝑞1 . 𝜇𝑋𝑞1 .

... ⋃
𝑞𝑛∈𝑃\𝛿𝑝 𝑗\{𝑞1,...,𝑞𝑛−1}

𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛 . 𝑆𝛿 ∪
[⋃𝑛

�=0 C𝛿𝑞�

]
(63a)

where 𝑛 B 𝑘 − 𝑗,

C𝛿𝑞 𝑗
B 𝑄𝛿 ∩

�⋂
𝑖=0

𝑅𝑞𝑖 ∩
[(
𝐺𝑞� ∩ Cpre(𝑌𝑞�)

)
∪

(
Apre(𝑌𝑞� , 𝑋𝑞�)

)]
, (63b)

𝑄𝛿 B
⋂ 𝑗

𝑖=0 𝑅𝑝𝑖 and 𝑆𝑝0...𝑝 𝑗−1 B
⋃ 𝑗−1

𝑏=0 C𝑝0...𝑝𝑏 .
Then it holds that

𝑍∗
𝛿𝑝 𝑗

=𝜈𝑌𝑟0 . 𝜇𝑋𝑟0 . 𝜈𝑌𝑟1 . 𝜇𝑋𝑟1 𝜈𝑌𝑟𝑛 . 𝜇𝑋𝑟𝑛 . 𝑆𝛿 ∪
[⋃𝑛

�=0 C̃𝛿𝑟�

]
, (64a)

where

C̃𝛿𝑟� := 𝑄𝛿𝑝 𝑗
∩ 𝑅𝑟� ∩

[(
𝐺𝑟� ∩ Cpre(𝑌𝑟�)

)
∪

(
Apre(𝑌𝑟� , 𝑋𝑟�)

)]
(64b)

with 𝑟𝑖 ∈ 𝑃\𝛿𝑝 𝑗
for all 𝑖 ∈ [1; 𝑛] such that 𝑟1 > 𝑟2 > . . . > 𝑟𝑛 and 𝑟0 = 𝑞0 = 𝑝 𝑗 .

It should be noted that Proposition B.14 needs to hold for any choice of 𝑗 and 𝛿. Further, we
have slightly abused notation by not specifying the values of the xpoint parameters usedwithin
𝑆𝛿. This is, however, not relevant for the proof of Proposition B.14 and we should interpret 𝑆𝛿
as a term computed by an arbitrary choice of the involved xpoint parameters.

Now, it should be obvious that for the choice 𝑗 = 0 we get 𝛿 = 𝜀 and 𝑆𝛿 = ∅. Further, we
see that in this case, we have 𝑃\𝛿𝑝0 = 𝑃 which implies that 𝑍∗

𝑝0 in (63) coincides with 𝑍∗ in (7).

7 Observe that 𝛿𝑝 𝑗 = 𝑝0 . . . 𝑝 𝑗−1𝑝 𝑗 is itself a permutation prefix.

61 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Further, as 𝑃\𝛿𝑝0 = 𝑃 we must have 𝑟1 = 𝑘, 𝑟2 = 𝑘 − 1, . . ., 𝑟𝑘 = 1 and 𝑟0 = 𝑝0 = 0 to fulll
the requirements on 𝑟. Further 𝑄𝑝0 = 𝑅0 = 𝑄. Therefore 𝑍∗

𝑝0 in (64) coincides with 𝑍∗ in (62)
in this case. Hence, proving Proposition B.14 for any 𝑗 (including 𝑗 = 0), immediately proves
Proposition B.13.

In the remainder of this section we prove Proposition B.14 by an induction over 𝑗, starting
with 𝑗 = 𝑘 as the base case. Now observe that for 𝑗 = 𝑘wehave 𝑃\𝛿𝑝 𝑗

= ∅ and hence both (63) and
(64) reduce to a two-nested xpoint over the variables 𝑌𝑞0 , 𝑋𝑞0 and 𝑌𝑟0 , 𝑋𝑟0 , respectively, where
𝑟0 = 𝑞0 = 𝑝𝑘 by denition. Further, we see that C𝛿𝑞0 = C̃𝛿𝑟0 by denition, which immediately
proves the claim of Proposition B.14 for the base case.

In the remainder of this section we prove the induction step from “ 𝑗” to “ 𝑗 − 1” in a series
of denitions and lemmas.

DEF IN IT ION B .15. Let 𝑃 ⊆ N be a set of 𝑛 indices and 𝛽 = 𝑞1 . . . 𝑞𝑛 with 𝑞𝑖 ∈ 𝑃 and 𝑞𝑖 ≠ 𝑞 𝑗

for all 𝑗 ≠ 𝑖 a full permutation sequence of the elements from 𝑃. For 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑛 we call
𝛽 𝑗𝑙 = 𝑞 𝑗𝑞 𝑗+1 . . . 𝑞 𝑗 amaximal decreasing sub-sequence of 𝛽 if (i) 𝑞 𝑗 < 𝑞 𝑗+1 < . . . < 𝑞𝑙, (ii) 𝑞 𝑗−1 > 𝑞 𝑗

or 𝑗 = 1, and (iii) 𝑞𝑙 > 𝑞𝑙+1 or 𝑙 = 𝑛.

We see that, by denition, the rst maximally decreasing sub-sequences of a permutation
sequence 𝛽 starts with 𝑞1. Intuitively, decreasing sub-sequences allow to immediately utilize
the properties in (17) to simplify the xpoint expression.

LEMMA B.16. Let 𝛿, 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Proposition B.14, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation
sequence of 𝑃\𝛿𝑝 𝑗

and 𝛽 𝑗𝑙 = 𝑞 𝑗𝑞 𝑗+1 . . . 𝑞 𝑗 amaximal decreasing sub-sequence of 𝛽. Then

𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

. . . . 𝜈𝑌𝑞𝑙 . 𝜇𝑋𝑞𝑙 .
⋃𝑙

𝑖= 𝑗 C𝛿𝑞𝑖 = 𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

. C𝛿𝑞 𝑗
(65)

PROOF . Let 𝛼 := 𝑞0 . . . 𝑞 𝑗−1 and observe that

C𝛿𝑞 𝑗
= 𝑄𝛿𝛼 ∩

[(
𝑅 𝑗 ∩ 𝐺𝑞 𝑗

∩ Cpre(𝑌𝑞 𝑗
)
)
∪

(
𝑅 𝑗 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

C𝛿𝑞 𝑗+1 = 𝑄𝛿𝛼 ∩
[(
𝑅 𝑗 ∩ 𝑅 𝑗+1 ∩ 𝐺𝑞 𝑗+1 ∩ Cpre(𝑌𝑞 𝑗

)
)
∪

(
𝑅 𝑗 ∩ 𝑅 𝑗+1 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

= 𝑄𝛿𝛼 ∩
[(
𝑅 𝑗 ∩ 𝐺𝑞 𝑗+1 ∩ Cpre(𝑌𝑞 𝑗

)
)
∪

(
𝑅 𝑗 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

,

where the simplication of C𝛿𝑞 𝑗+1 follows from 𝑅 𝑗 ⊆ 𝑅 𝑗+1 (see (17)). So C𝛿𝑞 𝑗
and C𝛿𝑞 𝑗+1 really only

dier by the 𝐺𝑞 𝑗
(resp. 𝐺𝑞 𝑗+1) term in the rst term of the disjunct. As 𝐺𝑞 𝑗

⊇ 𝐺𝑞 𝑗+1 (see (17)) and
all terms in the rst part of the disjunct are intersected, we see that C𝛿𝑞 𝑗

⊇ C𝛿𝑞 𝑗+1 . With this it
follows from case (iii) in Lemma B.3 that

𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

.𝜈𝑌𝑞 𝑗+1 . 𝜇𝑋𝑞 𝑗+1 . C𝛿𝑞 𝑗
∪ C𝛿𝑞 𝑗+1 = 𝜈𝑌𝑞 𝑗

. 𝜇𝑋𝑞 𝑗
. C𝛿𝑞 𝑗

.

Applying this argument to all 𝑖 ∈ [𝑗; 𝑙] proves the claim. �

62 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

DEF IN IT ION B .17. We say that a permutation sequence 𝛽 has chain index 𝑚 if it contains
𝑚 maximal decreasing sub-sequences. For 𝛽 = 𝑞1 . . . 𝑞𝑛 with chain index 𝑚 we dene its
reduction 𝛽↓ as 𝛽↓ := 𝑟1...𝑟𝑚 such that 𝑟𝑚 = 𝑞 𝑗 if 𝛽 𝑗𝑙 is the 𝑚’th maximally decreasing sub-
sequence of 𝛽.

LEMMA B.18. Let 𝛿, 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Proposition B.14, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation
sequence of 𝑃\𝛿𝑝 𝑗

with chain index 𝑚 and 𝛽↓ := 𝑟1...𝑟𝑚. Then

𝜈𝑌𝑞0 . 𝜇𝑋𝑞0 . 𝜈𝑌𝑞1 . 𝜇𝑋𝑞1 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0 . 𝜇𝑋𝑟0 . 𝜈𝑌𝑟1 . 𝜇𝑋𝑟1 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C𝛿𝑞𝑙 (66)

where 𝑞0 = 𝑟0 = 𝑝 𝑗 .

PROOF . First, observe that by construction we always have 𝑟1 = 𝑞1. Hence, 𝑄𝛿𝛼 in the proof
of Lemma B.16 reduces to 𝑄𝛿𝑞1 in this case. Further, consider 𝑟2 = 𝑞 𝑗 and observe that in
this case 𝑄𝛿𝛼 = 𝑄𝛿 ∩

⋂ 𝑗−1
𝑖=0 𝑅𝑞𝑖 = 𝑄𝛿𝑞0 ∩ 𝑅𝑞1 = 𝑄𝛿𝑝 𝑗

∩ 𝑅𝑟1 as 𝑞1 . . . 𝑞 𝑗−1 is a maximal decreasing
sub-sequence by construction. Iteratively re-applying this argument along with Lemma B.16
for every 𝑙 ∈ [1, 𝑚] therefore proves the claim. �

Now observe that we can re-apply Lemma B.18 to 𝛽↓ and reduce it even more. That means,
𝛽↓ could now again have maximal decreasing sub-sequences and we therefore can reduce it
to (𝛽↓)↓. This might again be reducible and so forth. We therefore dene themaximal reduced
permutation sequence 𝛽⇓ = (((𝛽↓)↓) . . .)↓ = 𝑟1 . . . 𝑟𝑛 such that 𝑟1 > 𝑟2 > . . . 𝑟𝑛, i.e. the chain index
of 𝛽⇓ is equivalent to its length. With this, we have the following result.

LEMMA B.19. Let 𝛿, 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Proposition B.14, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation
sequence of 𝑃\𝛿𝑝 𝑗

and 𝛽⇓ := 𝑟1...𝑟𝑚 its maximal reduced permutation sequence. Then

𝜈𝑌𝑞0 . 𝜇𝑋𝑞0 . 𝜈𝑌𝑞1 . 𝜇𝑋𝑞1 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0 . 𝜇𝑋𝑟0 . 𝜈𝑌𝑟1 . 𝜇𝑋𝑟1 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C̃𝛿𝑞𝑙 (67)

PROOF . It follows from the denition of 𝛽⇓ and repeatably applying Lemma B.18 that

𝜈𝑌𝑞0 . 𝜇𝑋𝑞0 . 𝜈𝑌𝑞1 . 𝜇𝑋𝑞1 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0 . 𝜇𝑋𝑟0 . 𝜈𝑌𝑟1 . 𝜇𝑋𝑟1 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C𝛿𝑟𝑙

63 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Now we have by denition that 𝑟0 = 𝑞0 and 𝑟1 = 𝑞1 and therefore C𝛿𝑟0 = C̃𝛿𝑟0 and C𝛿𝑟1 = C̃𝛿𝑟1 by
denition. Now recall that 𝑟1 > 𝑟2, hence 𝑅𝑟1 ∩ 𝑅𝑟2 = 𝑅𝑟2 . Iteratively applying this argument
gives C𝛿𝑟𝑙 = C̃𝛿𝑟𝑙 for all 𝑙 ∈ [1, 𝑛], what proves the claim. �

Note that the only full permutation sequence of 𝑃\𝛿𝑝 𝑗
with chain index 𝑛 is the one where

𝑞1 > 𝑞2 > . . . > 𝑞𝑛, giving 𝛽↓ = 𝛽⇓ = 𝛽. Hence, the sequence 𝑟1 . . . 𝑟𝑛 used in (64) is actually
themaximal permutation sequence of 𝑃\𝛿𝑝 𝑗

. We see that all other full permutation sequences 𝛾
of 𝑃\𝛿𝑝 𝑗

have chain index 𝑚 such that 1 ≤ 𝑚 < 𝑛. As the C̃ terms in (18b) do not depend
on the history of permutation sequences from 𝑃\𝛿𝑝 𝑗

, we see that any term constructed for a
non-maximal permutation sequence is contained in the term constructed for the maximal
permutation sequence. This is formalized in the next lemma.

LEMMA B.20. Let 𝛿, 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Proposition B.14 and let 𝛽 = 𝑟1...𝑟𝑛 be the maximal
permutation sequence of 𝑃\𝛿𝑝 𝑗

, that its 𝛽 = 𝛽⇓. Further, let 𝛾 ≠ 𝛽 be a full permutation sequence
of 𝑃\𝛿𝑝 𝑗

such that 𝛾⇓ = 𝑠1 . . . 𝑠𝑚 with 𝑚 < 𝑛. Then

𝜈𝑌𝑟1 . 𝜇𝑋𝑟1 𝜈𝑌𝑟𝑛 . 𝜇𝑋𝑟𝑛

𝑛⋃
𝑙=1

C̃𝛿𝑟𝑙 (68)

⊆ 𝜈𝑌𝑠1 . 𝜇𝑋𝑠1 𝜈𝑌𝑠𝑚 . 𝜇𝑋𝑠𝑚

𝑚⋃
𝑙=1

C̃𝛿𝑠𝑙 (69)

PROOF . As 𝛽 is a full permutation sequence of 𝑃\𝛿𝑝 𝑗
we know that for any 𝑖 ∈ [1;𝑚] there

exists one 𝑗 ∈ [1; 𝑛] such that 𝑠𝑖 = 𝑟 𝑗 . Further, as C̃ does not depend on the history of the
permutation sequence 𝛽 and 𝛾 we see that C̃𝛿𝑠𝑖 = C̃𝛿𝑟 𝑗 in this case. As 𝑚 < 𝑛 we see that the
rst line of (69) contains the xpoint variables and C̃ terms of the second line of (69). We can
therefore apply Lemma B.3 (i) and (ii) which immediately proves the claim. �

Using this result, we are nally ready to prove the induction step of Proposition B.14.

PROOF OF PROPOS IT ION B .14 . Recall that Proposition B.14 trivially holds for 𝑗 = 𝑘 which
constitutes the base case of an induction over 𝑗. Now let us prove the induction step. Hence, let
us assume that Proposition B.14 holds for 𝑗. Now consider “ 𝑗 − 1”, i.e., consider the permutation
prex 𝛿′ = 𝑝0 . . . 𝑝 𝑗−2 and pick any 𝑝 𝑗−1 ∈ 𝑃𝛿′. By the induction hypothesis, we know that
Proposition B.14 holds for 𝛿 = 𝑝0 . . . 𝑝 𝑗−1 and any choice of 𝑝 𝑗 ∈ 𝑃\𝛿. That is, 𝑍∗

𝛿𝑝 𝑗
can be

computed using (64). With this, the xpoint algorithm in (63) for 𝛿′ and 𝑝 𝑗−1 simplies to

𝑍∗
𝛿′𝑝 𝑗−1

= 𝑍∗
𝛿
=𝜈𝑌𝑝 𝑗−1 . 𝜇𝑋𝑝 𝑗−1 .

⋃
𝑝 𝑗∈𝑃\𝛿 𝑍

∗
𝛿𝑝 𝑗

.

Here, for any choice 𝑝 𝑗 ∈ 𝑃\𝛿, the term 𝑍∗
𝛿𝑝 𝑗

is given by (64) where 𝑟0 = 𝑝 𝑗 and 𝛽𝑝 𝑗
= 𝑟1 . . . 𝑟𝑛

being themaximal permutation sequence of 𝑃\𝛿𝑝 𝑗
. Now observe that for 𝑗 > 0 and any choice

of 𝑝 𝑗 we see that 𝛾 = 𝑟0 . . . 𝑟𝑛 is actually a permutation sequence of 𝑃\𝛿, but not necessarily
the maximal one. However, observe that the maximal permutation sequence 𝛽 of 𝑃\𝛿 (that is

64 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

𝛽 = 𝛽⇓) is actually dened by 𝛽 = �̃� 𝑗𝛽�̃� 𝑗
for �̃� 𝑗 := max(𝑃\𝛿). With this, we can apply Lemma B.20

to see that 𝑍∗
𝛿𝑝 𝑗

⊆ 𝑍∗
𝛿�̃� 𝑗

for all 𝑝 𝑗 ∈ 𝑃\𝛿. With this we obtain

𝑍∗
𝛿′𝑝 𝑗−1

= 𝑍∗
𝛿
=𝜈𝑌𝑝 𝑗−1 . 𝜇𝑋𝑝 𝑗−1 . 𝑍

∗
𝛿�̃� 𝑗

.

One can now verify that this allows us to choose 𝑟0 = 𝑝 𝑗−1, 𝑟1 = �̃� 𝑗 and 𝑟2 . . . 𝑟𝑛+1 = 𝛽�̃� 𝑗
and

have 𝑟1 > 𝑟2 > . . . 𝑟𝑛+1. Hence, 𝑍∗
𝛿′𝑝 𝑗−1

can be written in the form of (64), which proves the
statement. �

B.4.2 Fair Adversarial Parity Games

Wenow consider a paritywinning condition with a set C = {𝐶1, 𝐶2, . . . 𝐶2𝑘}, where each 𝐶𝑖 ⊆ 𝑉 is
the set of vertices of G with color 𝑖. Further, C partition’s the set of vertices, i.e.,

⋃
𝑖∈[1,2𝑘] 𝐶𝑖 = 𝑉

and 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ for all 𝑖, 𝑗 ∈ [0, 2𝑘 − 1] such that 𝑖 ≠ 𝑗.

Theorem (Theorem 3.10 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and C be a parity condition over G with 2𝑘 colors. Further, let

𝑍∗ B𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1. . . . 𝜈𝑌2. 𝜇𝑋1. (70)

∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘−1) ∩ Apre(𝑌2𝑘, 𝑋2𝑘−1))
∪ . . .

∪ (𝐶4 ∩ Cpre(𝑌4)) ∪ ((𝐶1 ∪ 𝐶2 ∪ 𝐶3) ∩ Apre(𝑌4, 𝑋3))
∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶1 ∩ Apre(𝑌2, 𝑋1))

Then 𝑍∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over G�

for the winning condition 𝜑 in (19). Moreover, the xpoint algorithm runs in 𝑂(𝑛𝑘+1) symbolic
steps, and a memoryless winning strategy for Player 0 can be extracted from it.

PROOF . A parity winning condition C with 2𝑘 colors corresponds to the Rabin chain winning
condition

{〈𝐹2, 𝐹3〉, . . . , 〈𝐹2𝑘, ∅〉} s.t. 𝐹𝑖 :=
2𝑘⋃
𝑗=𝑖

𝐶 𝑗 , (71)

which has 𝑘 pairs. Translating the Rabin chain condition induced by C in (71) into a Rabin
condition as in Theorem 3.1 we get the tuple R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉} such that

𝑅𝑖 =𝐹2𝑖+1 =
⋃2𝑘

𝑗=2𝑖+1 𝐶 𝑗 (72a)

𝑅𝑖 =
⋃2𝑖

𝑗=1 𝐶 𝑗 (72b)

𝐺𝑖 =𝐹2𝑖 =
⋃2𝑘

𝑗=2𝑖 𝐶 𝑗 (72c)

𝑅𝑖 ∩ 𝐺𝑖 =𝐶2𝑖 (72d)

65 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

First, observe that 𝑅0 = 𝐺0 = ∅ have been articially introduced, and result in C̃0 =

Apre(𝑌0, 𝑋0). Further, as we have assumed that C is such that
⋃

𝑖∈[1,2𝑘] 𝐶𝑖 = 𝑉 , we can equiva-
lently write

C̃0 =
©«
2𝑘⋃
𝑗=1

𝐶 𝑗
ª®¬ ∪ Apre(𝑌0, 𝑋0) = ((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌0, 𝑋0))

For 𝑗 > 0, by using (72) we observe that the denition of C̃𝑗 in (18b) can be written as

C̃𝑗 =
(
𝐶2 𝑗 ∩ Cpre(𝑌𝑗)

)
∪

((⋃2 𝑗
𝑙=1 𝐶𝑙

)
∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
=

(
𝐶2 𝑗 ∩ Cpre(𝑌𝑗)

)
∪

(
𝐶1 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
∪ . . . ∪

(
𝐶2 𝑗 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
.

With this, we obtain the following xpoint equation

𝑍∗ :=𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 𝜈𝑌1. 𝜇𝑋1. (73)

((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌0, 𝑋0))
∪ (𝐶2𝑘 ∩ Cpre(𝑌𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌𝑘, 𝑋𝑘))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌1)) ∪ ((𝐶1 ∪ 𝐶2) ∩ Apre(𝑌1, 𝑋1))

Now consider Lemma B.3 and let us dene

𝑔 (𝑋0, 𝑌0) :=((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌0, 𝑋0))
𝑓 (𝑋𝑘, 𝑌𝑘) := (𝐶2𝑘 ∩ Cpre(𝑌𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌𝑘, 𝑋𝑘)).

It is immediately obvious that 𝑔 (𝑋,𝑌) ⊆ 𝑓 (𝑋,𝑌) for all 𝑋 and 𝑌 . We can therefore apply
Lemma B.3 (iv) and observe that the computation remains unchanged if we remove the xpoint
variables 𝑋0 and 𝑌0.

Now changing subscripts of iteration variables gives the following FP equation.

𝑍∗ :=𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1. . . . 𝜈𝑌2. 𝜇𝑋1. (74)

∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘) ∩ Apre(𝑌2𝑘, 𝑋2𝑘−1))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ ((𝐶1 ∪ 𝐶2) ∩ Apre(𝑌2, 𝑋1))

Now we recall from Lemma B.1 and Lemma B.2 that for all 𝑗 such that 𝑘 ≥ 𝑗 ≥ 1 we have

(𝐶2 𝑗 ∩ Cpre(𝑌𝑗)) ∪ (𝐶2 𝑗 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)) = (𝐶2 𝑗 ∩ Cpre(𝑌𝑗)).

66 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

This yields

𝑍∗ :=𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1. . . . 𝜈𝑌2. 𝜇𝑋1. (75)

∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) ∪ ((𝐶1 ∪ . . . ∪ 𝐶2𝑘−1) ∩ Apre(𝑌2𝑘, 𝑋2𝑘−1))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶1 ∩ Apre(𝑌2, 𝑋1))

�

REMARK B .21. For the reduction of “normal” Rabin chain games to parity games we would
need to further simplify (75) for the special case where all Apre(𝑌, 𝑋) are substituted by with
Cpre(𝑌). In this case, however, we observe that in any valid iteration it always holds that
𝑋𝑖+1 ⊆ 𝑌𝑖 for all even 𝑖 and 𝑋 𝑗+2 ⊆ 𝑋 𝑗 for all odd 𝑗. We can therefore remove all terms for
particular colors that have already appeared in inner xpoint computations. Doing this yields
the normal xpoint for parity games presented in (21). For fair-adversarial parity games, this
simplication is not possible due to the dependence of Apre on both 𝑌 and 𝑋 .

B.4.3 Fair Adversarial Generalized Co-Büchi Games

Theorem (Theorem 3.11 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges andA be a generalized Co-Büchi winning condition G with 𝑟 pairs. Further, let

𝑍∗ B𝜈𝑌0. 𝜇𝑋0.
⋃

𝑎∈[1;𝑟]
𝜈𝑌𝑎. Apre(𝑌0, 𝑋0) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)). (76)

Then 𝑍∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over G� for
the winning condition 𝜑 in (24). Moreover, the xpoint algorithm runs in 𝑂(𝑟𝑛2) symbolic steps,
and a memoryless winning strategy for Player 0 can be extracted from it.

In this section we prove Theorem 3.11. That is, we prove that for generalized Co-Büchi
conditions, the xpoint computing 𝑍∗ in (7) simplies to the one in (76). This is formalized in
the next proposition.

PROPOS IT ION B .22. Let R = {〈𝐺1, 𝑅1〉, . . . , 〈𝐺𝑘, 𝑅𝑘〉} be a Rabin condition such that (25) holds.
Further let 𝑍∗ be the xed-point of the 𝜇-calculus formula (7) and 𝑍∗ the xed-point of (76). Then
𝑍∗ = 𝑍∗.

PROOF . Now consider the attening of (7) in (51) for R̃. Then we see that for all 𝑗 > 0 we have

C𝛿𝑝 𝑗 𝑖 𝑗 :=
(
𝑄𝛿𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)
)
∪

(
𝑄𝛿𝑝 𝑗

∩ Apre(𝑌 ∗
𝛿𝑝 𝑗

, 𝑋
𝑖 𝑗−1
𝛿𝑝 𝑗

)
)

= 𝑄𝛿𝑝 𝑗
∩

(
Cpre(𝑌 ∗

𝛿𝑝 𝑗
) ∪ Apre(𝑌 ∗

𝛿𝑝 𝑗
, 𝑋

𝑖 𝑗−1
𝛿𝑝 𝑗

)
)

67 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

and we always have 𝑋 𝑖 𝑗−1
𝛿𝑝 𝑗

⊆ 𝑌 ∗
𝛿𝑝 𝑗

. With this, it follows from Lemma B.1 that

C𝛿𝑝 𝑗 𝑖 𝑗 = 𝑄𝛿𝑝 𝑗
∩ Cpre(𝑌 ∗

𝛿𝑝 𝑗
) (77)

for all 𝛿, 𝑝 𝑗 and 𝑖 𝑗 with 𝑗 > 0.
Now observe that for 𝛿′ = 𝛿𝑝 𝑗𝑖 𝑗 and all 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗} we have

𝑄𝛿′𝑝 𝑗+1 = 𝑄𝛿𝑝 𝑗
∩ 𝑅𝑝 𝑗+1 ⊆ 𝑄𝛿𝑝 𝑗

.

It further follows from the structure of the xpoint in (7) that

𝑌 ∗
𝛿𝑝 𝑗

=
⋃
𝑖 𝑗>0

𝑋
𝑖 𝑗
𝛿𝑝 𝑗

=
⋃
𝑖 𝑗>0

⋃
𝑝 𝑗+1∈𝑃\𝑝0,...,𝑝 𝑗

𝑌 ∗
𝛿′𝑝 𝑗+1

and therefore
𝑌 ∗
𝛿′𝑝 𝑗+1

⊆ 𝑌 ∗
𝛿𝑝 𝑗

.

With this we get
C𝛿′𝑝 𝑗+1𝑖 𝑗+1 ⊆ C𝛿𝑝 𝑗 𝑖 𝑗

for all 𝛿, 𝑝 𝑗 and 𝑖 𝑗 with 𝑗 > 0. Then it follows from Lemma B.3 (iii) that for every permutation
sequence 𝛿 = 𝑝0𝑝1 . . . 𝑝𝑘 the union over all C′𝑠 terms simplies to two terms, one for 𝑗 = 0 and
one for 𝑗 = 1. Using this insight, we see that for the particular Rabin condition R̃ the xpoint
algorithm in (7) simplies to

𝜈𝑌0. 𝜇𝑋0.
⋃
𝑝1∈𝑃

𝜈𝑌𝑝1 . 𝜇𝑋𝑝1 . C𝑝0 ∪ C𝑝1 . (78)

Now recalling that C𝑝1 simplies to 𝐴𝑎 ∩ Cpre(𝑌𝑎) for 𝑎 = 𝑝1 (see (77)) if (25) holds, and that
C𝑝0 = Apre(𝑌0, 𝑋0) as 𝑅0 = 𝑄0 = ∅, we see that (78) coincides with (76). �

B.5 Additional Proofs for Section 4

B.5.1 Proof of Theorem 4.1

Theorem (Theorem 4.1 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and 〈F , 𝑄〉 with F = { 1𝐹, . . . , 𝑠𝐹} a safe generalized Büchi winning condition. Further, let

𝑍∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋. 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋)

]
. (79)

Then 𝑍∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over G� for
the winning condition 𝜑 in (28). Moreover, the xpoint algorithm runs in 𝑂(𝑠𝑛2) symbolic steps,
and a nite-memory winning strategy for Player 0 can be extracted from it.

Our goal is to prove Theorem 4.1 by a reduction to Theorem 3.2 and Theorem 3.3. We
therefore rst show that a similar construction of an extended xpoint 𝑍 as in (46) within the

68 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

proof of Theorem 3.2 also works for the generalized case. This is formalized in the following
proposition.

PROPOS IT ION B .23. Given the premises of Theorem 4.1, let

𝑍∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋. 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋)

]
(80a)

and

𝑍∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜈 𝑏𝑌 . 𝜇 𝑏𝑋. 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑏𝑌, 𝑏𝑋)

]
. (80b)

Then 𝑍∗ = 𝑍∗.

However, as in (80) a conjunction is used to update 𝑌 , the proof is not as straight forward
as for (46). We rst show for both equations (80a) and (80b) that, upon termination, we have
𝑌 ∗ = 𝑏𝑋∗ for all 𝑏 ∈ [1; 𝑠]. Both claims are formalized in Lemma B.24 and Lemma B.25,
respectively.

LEMMA B.24. Given the premises of Proposition B.23, let 𝑏𝑋 𝑖 be the set computed in the 𝑖-th
iteration over the xpoint variable 𝑏𝑋 in (80a) during the last iteration over 𝑌 , i.e., 𝑌 = 𝑍∗ already.
Further, we dene 𝑏𝑋0 = ∅ and 𝑏𝑋∗ :=

⋃
𝑖>0

𝑏𝑋 𝑖 . Then it holds that 𝑍∗ = 𝑏𝑋∗ for all 𝑏 ∈ [1; 𝑠].

PROOF . We x 𝑌 = 𝑍∗ and 𝑏 ⊆ [1; 𝑠] and observe from (80a) that

𝑏𝑋0 = (𝑏𝐹 ∩ Cpre(𝑍∗))

and therefore

𝑏𝑋1 = 𝑏𝑋0 ∪ (𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋0)
= (𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋0) ⊇ 𝑏𝑋0

With this, we have in general that

𝑏𝑋 𝑖+1 = 𝑏𝑋 𝑖 ∪ (𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋 𝑖)
=(𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋 𝑖)

which implies 𝑏𝑋 𝑖+1 ⊇ 𝑏𝑋 𝑖 . Hence, 𝑏𝑋∗ :=
⋃

𝑖∈[0,𝑖𝑚𝑎𝑥]
𝑏𝑋 𝑖 = 𝑏𝑋 𝑖𝑚𝑎𝑥 , and therefore, in particular

𝑏𝑋∗ = (𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋∗). (81)

By recalling that 𝑍∗ =
⋂

𝑏
𝑏𝑋∗ we see that 𝑍∗ ⊆ 𝑏𝑋∗.

For the inverse direction, we use the observation 𝑍∗ ⊆ 𝑏𝑋∗ together with Lemma B.2 to
see that Apre(𝑍∗, 𝑏𝑋∗) = Cpre(𝑏𝑋∗). With this (𝑏𝐹 ∩ Cpre(𝑍∗)) ⊆ Cpre(𝑍∗) ⊆ Cpre(𝑏𝑋∗) =

69 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Apre(𝑍∗, 𝑏𝑋∗) and hence (81) reduces to

𝑏𝑋∗ = Cpre(𝑏𝑋∗) ⊇ Cpre(𝑍∗).

As the last equality holds for all 𝑏 ⊆ [1; 𝑠] we see that

𝑍∗ =
⋂
𝑏

𝑏𝑋∗ =
⋂
𝑏

Cpre(𝑏𝑋∗) ⊇ Cpre(𝑍∗). (82)

We cannowuse (82) to proof that 𝑍∗ ⊇ 𝑏𝑋∗ also holds. To show this, we pick a vertex 𝑣 ∈ 𝑏𝑋∗

and prove that 𝑣 ∈ 𝑍∗. To that end, observe that either (i) 𝑣 ∈ (𝑏𝐹 ∩ Cpre(𝑍∗)) ⊆ Cpre(𝑍∗) ⊆ 𝑍∗

which immediately proves the statement, or (ii) 𝑣 ∈ Apre(𝑍∗, 𝑏𝑋∗). If (ii) holds we again
have two cases. Either (a) 𝑣 ∈ Cpre(𝑏𝑋∗) which implies that there exists a nite sequence
Cpre(Cpre(. . . Cpre(𝑏𝑋1) . . .)) where 𝑏𝑋1 = 𝑏𝐹 ∩ Cpre(𝑍∗) ⊆ Cpre(𝑍∗) ⊆ 𝑍∗ and therefore
𝑣 ∈ Cpre(Cpre(. . . Cpre(𝑍∗) . . .)) ⊆ 𝑍∗. Finally we could have (b) that 𝑣 ∈ Pre∃

𝑙
(𝑏𝑋∗)∩Pre∀1 (𝑍∗) ⊆

Pre∀1 (𝑍∗) ⊆ Cpre(𝑍∗) ⊆ 𝑍∗, which again proves the statement. �

LEMMA B.25. Given the premises of Proposition B.23, let 𝑏𝑌 𝑖 be the set computed in the 𝑖-th
iteration over the xpoint variable 𝑏𝑌 in (80b) during the last iteration over 𝑌 , i.e., 𝑌 = 𝑍∗ already.
Further, we dene 𝑏𝑌 0 = 𝑉 and 𝑏𝑌 ∗ :=

⋂
𝑖>0

𝑏𝑌 𝑖 . Then it holds that 𝑍∗ = 𝑏𝑌 ∗ for all 𝑏 ∈ [1; 𝑠].

PROOF . Recall that 𝑍∗ =
⋂

𝑏
𝑏𝑌 ∗ from the structure of the xpoint algorithm in (80b). To prove

𝑍∗ = 𝑏𝑌 ∗ for all 𝑏 ∈ [1; 𝑠] it therefore suces to show that 𝑏𝑌 ∗ = 𝑏′𝑌 ∗ for any two 𝑏, 𝑏′ ∈ [1; 𝑠]
s.t. 𝑏 ≠ 𝑏′.

Towards this goal, recall from Theorem 3.3 that 𝑏𝑌 ∗ is exactly the set of states from which
player 0 can win a fair adversarial reachability game with target 𝑏𝑇 := 𝑏𝐹 ∩ Cpre(𝑍∗). However,
every state 𝑣 ∈ 𝑏𝑇 allows player 0 to force the game to a state 𝑣′ ∈ 𝑍∗ =

⋂
𝑏′

𝑏′𝑌 ∗. Therefore,
by denition player 0 has a strategy to reach a state 𝑣′ ∈ 𝑏′𝑌 ∗ from any state 𝑣 ∈ 𝑏𝑌 ∗ for any
𝑏′ ∈ [1; 𝑠] s.t. 𝑏 ≠ 𝑏′. As, however 𝑏′𝑌 ∗ is dened as the winning region of player 0 w.r.t. the
goal set 𝑏′𝑇 := 𝑏′𝐹 ∩ Cpre(𝑍∗), we know that there actually exists a player 0 strategy to drive the
game from any 𝑣 ∈ 𝑏𝑌 ∗ to 𝑏′𝑇 , and therefore, by denition 𝑏𝑌 ∗ ⊆ 𝑏′𝑌 ∗. As this inclusion holds
mutually for all 𝑏, 𝑏′ ∈ [1; 𝑠] s.t. 𝑏 ≠ 𝑏′ we have that 𝑏𝑌 ∗ = 𝑏′𝑌 ∗. With this, it immediately follows
that 𝑍∗ = 𝑏𝑌 ∗ for all 𝑏 ∈ [1; 𝑠]. �

With Lemma B.24 and Lemma B.25 in place, it remains to show that the retained xpoints
are indeed equivalent, which is achieved by the following lemma.

LEMMA B.26. Given the premises of Proposition B.23 it holds that
(i) 𝑍∗ ⊄ 𝑍∗, and
(i) 𝑍∗ ⊄ 𝑍∗

PROOF . We show both claims by contradiction.
I (i) Assume 𝑍∗ ⊂ 𝑍∗. As 𝑌 0 = 𝑉 and 𝑍∗ = 𝑌 𝑘 for some 𝑘 > 0 this implies that there exists an

70 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

𝑖 > 0 s.t. 𝑌 𝑖 ⊇ 𝑍∗ ⊃ 𝑌 𝑖+1. As𝑌 𝑖+1 =
⋂

𝑏
𝑏𝑋 𝑖∗, this implies the existence of a 𝑏 ∈ [1; 𝑠] s.t. 𝑍∗ ⊃ 𝑏𝑋 𝑖∗,

where
𝑏𝑋 𝑖∗ = 𝜇 𝑏𝑋.𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌 𝑖)) ∪ Apre(𝑌 𝑖 , 𝑏𝑋)

]
On the other hand,

𝑍∗ = 𝑏𝑌 ∗∗ = 𝑏𝑋∗∗∗ = 𝜇 𝑏𝑋.𝑄 ∩
[
(𝑏𝐹 ∩ Cpre(𝑍∗)) ∪ Apre(𝑍∗, 𝑏𝑋)

]
As 𝑌 𝑖 ⊇ 𝑍∗ it follows from monotonicity of all involved functions that 𝑏𝑋 𝑖∗ ⊇ 𝑏𝑋∗∗∗ which yields
a contradiction.
I (ii) Now we assume 𝑍∗ ⊂ 𝑍∗. As 𝑌 0 = 𝑉 and 𝑍∗ = 𝑌 𝑘 for some 𝑘 > 0 this implies that there
exists an 𝑖 > 0 s.t. 𝑌 𝑖 ⊇ 𝑍∗ ⊃ 𝑌 𝑖+1.

As 𝑌 𝑖+1 =
⋂

𝑏
𝑏𝑌 𝑖∗, this implies the existence of 𝑏 ∈ [1; 𝑠] s.t. 𝑍∗ ⊃ 𝑏𝑌 𝑖∗. We recall that

𝑏𝑌 𝑖∗ = 𝜈 𝑏𝑌 .𝜇 𝑏𝑋.𝑄 ∩
[
(𝑏𝐹 ∩ Cpre(𝑌 𝑖)) ∪ Apre(𝑏𝑌 𝑖 , 𝑏𝑋)

]
Now observe that 𝑏𝑌 𝑖0 = 𝑉 ⊇ 𝑍∗. Hence, for 𝑍∗ ⊃ 𝑏𝑌 𝑖∗ to be true there must exists a 𝑗 s.t.
𝑌 𝑖 𝑗 ⊇ 𝑍∗ ⊃ 𝑌 𝑖 𝑗+1, where

𝑏𝑌 𝑖 𝑗+1 = 𝑏𝑋 𝑖 𝑗∗ = 𝜇 𝑏𝑋.𝑄 ∩
[
(𝑏𝐹 ∩ Cpre(𝑌 𝑖)) ∪ Apre(𝑏𝑌 𝑖 𝑗 , 𝑏𝑋)

]
.

Now it is however easy to see that it follows from monotonicity again that we have 𝑌 𝑖 𝑗 ⊇ 𝑍∗

whenever 𝑌 𝑖 𝑗 ⊇ 𝑍∗, which yields the intended contradiction. �

Using Proposition B.23 we know that (80a) and (80b) compute the same set. Hence, we
can use (80b) instead of (79) to prove Theorem 4.1. This allows us to simply reduce the proof of
Theorem 4.1 to Theorem 3.2 and Theorem 3.3 as formalized below.

PROOF OF THEOREM 4.1 . Soundness & Completeness: Let us dene 𝑍∗(〈𝑇, 𝑄〉) to be the
set of states computed by the xpoint algorithm in (12). Then it follows from (80b) that

𝑍∗ = 𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝑍∗(〈𝑄 ∩ 𝑏𝐹 ∩ Cpre(𝑌), 𝑄〉).

In particular, it follows from Lemma B.25 that

𝑍∗ = 𝑍∗(〈𝑄 ∩ 𝑏𝐹 ∩ Cpre(𝑍∗), 𝑄〉) ∀𝑏 ∈ [1; 𝑠] .

Now let us dene 𝑏W to be the fair adversarial winning state set for

𝑏𝜓 = �𝑄 ∧ �^ 𝑏𝐹.

With this, it follows from Theorem 3.2 that 𝑍∗ = 𝑏W for all 𝑏 ∈ [1; 𝑠]. Therefore, we obviously
have

⋂
𝑏∈[1;𝑠]

𝑏W = 𝑍∗. Now letW be the fair adversarial winning set w.r.t.

𝜓 = �𝑄 ∧
∧

𝑏∈[1;𝑠]
�^(𝑏𝐹).

71 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

(compare (27)). Then we always haveW ⊆ ⋂
𝑏∈[1;𝑠]

𝑏W which immediately impliesW ⊆ 𝑍∗.
However, as 𝑎W = 𝑏W for all 𝑎, 𝑏 ∈ [1; 𝑠], we know that 𝜓 holds for all 𝑣 ∈ 𝑍∗, hence 𝑍∗ ⊆ W.

Strategy construction: We can dene a rank function for every 𝑏 as in (40) within the proof of
Theorem 3.3 (see Appendix B.2.1), i.e.,

𝑏rank(𝑣) = 𝑖 i 𝑣 ∈ 𝑏𝑋 𝑖 \ 𝑏𝑋 𝑖−1. (83)

Then, we have a dierent strategy, 𝑏𝜌0, which is dened via (40) (see Appendix B.2.1) using the
corresponding 𝑏rank function. With this, we dene a new strategy 𝜌which circles through all
possible goal sets in a pre-dened order. That is

𝜌0(𝑣, 𝑏) =

𝑏𝜌0(𝑣) 𝑣 ∉ 𝑏𝐹

𝑏+𝜌0(𝑣) 𝑣 ∈ 𝑏𝐹
(84)

where 𝑏+ = 𝑏 + 1 if 𝑏 < 𝑠 and 𝑏+ = 1 if 𝑏 = 𝑠.
The strategy in (84) is obviously winning for 𝜓 in (27) as every 𝑏𝜌0 is a winning strat-

egy for 𝑏𝜓 (from Theorem 3.2) and upon reaching 𝑏𝐹 we know that the respective state 𝑣 is
also contained in Cpre(𝑍∗) where 𝑍∗ = 𝑏+𝑌 ∗. Now it follows from the denition of Cpre that
Cpre(𝑏+𝑌 ∗) ⊆ 𝑏+𝑌 ∗, hence, allowing to apply 𝑏+𝜌0 upon reaching 𝑏𝐹. �

B.5.2 Proof for Theorem 4.2

Theorem (Theorem 4.2 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and R̃ be a generalized Rabin condition over G with index set 𝑃 = [1; 𝑘]. Further, let

𝑍∗ :=𝜈𝑌0. 𝜇𝑋0.⋃
𝑝1∈𝑃

𝜈𝑌𝑝1 .
⋂

𝑙1∈[1;𝑚𝑝1]
𝜇 𝑙1𝑋𝑝1 . (85a)

. . . ⋃
𝑝𝑘∈𝑃\{𝑝1,...,𝑝𝑘−1}

𝜈𝑌𝑝𝑘 .
⋂

𝑙𝑘∈[1;𝑚𝑝𝑘
]
𝜇 𝑙𝑘𝑋𝑝𝑘 .

𝑘⋃
𝑗=0

𝑙 𝑗C𝑝 𝑗
,

where

𝑙 𝑗C𝑝 𝑗
:=

(
𝑗⋂

𝑖=0
𝑅𝑝𝑖

)
∩

[(
𝑙 𝑗𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪ Apre(𝑌𝑝 𝑗

, 𝑙 𝑗𝑋𝑝 𝑗
)
]

with 𝑝0 = 0, 𝐺𝑝0 B {∅} and 𝑅𝑝0 B ∅. Then 𝑍∗ is equivalent to the winning regionW of Player 0
in the fair adversarial game over G� for the winning condition 𝜑 in (27). Moreover, the xpoint
algorithm runs in 𝑂(𝑛𝑘+2𝑘!𝑚1 . . . 𝑚𝑘) symbolic steps, and a nite-memory winning strategy for
Player 0 can be extracted from it.

72 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

We show how the proof of Theorem 3.1 in Appendix B.3 needs to be adapted in order to
prove the generalized version of Theorem 3.1, namely Theorem 4.2, instead.

Strategy Construction: Similar to the nite-memory strategy constructed for generalized Büchi
games in Appendix B.5.1, the strategy for generalized Rabin games needs to remember the
index of all the goal sets currently “chased” for each permutation index up to 𝑝 𝑗 . To formalize
this, we dene the set of full goal chain sequences for a given generalized Rabin specication R̃
by

Φ(R̃) := {�0�1 . . . �𝑘 | �0 = 1, � 𝑗 ∈ [0;𝑚 𝑗]}. (86)

If R̃ is clear from the context we simply write Φ. Given a goal chain prex 𝜙 := �0�1 . . . � 𝑗−1 we
can now construct a ranking for each such prex, using the attening of (85) instead of (7). This
yields the following proposition which follows from Proposition B.5 by simply annotating all
terms with the goal chain prex 𝜙.

PROPOS IT ION B .27. Let 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 be a conguration prex, 𝜙 := �0�1 . . . � 𝑗−1 a goal
chain prex, 𝑝 𝑗 ∈ 𝑃 \ {𝑝1, . . . , 𝑝 𝑗−1} the next permutation index, � 𝑗 ∈ [1;𝑚𝑝 𝑗

] the next goal set
and 𝑖 𝑗 > 0 a counter for 𝑝 𝑗 . Then the attening of (85) for this conguration and goal prex is
given by

𝜙� 𝑗𝑋
𝑖 𝑗

𝛿𝑝 𝑗

= 𝜙𝑆𝛿 ∪ � 𝑗C𝛿𝑝 𝑗 𝑖 𝑗︸ ︷︷ ︸
𝜙�𝑗𝑆𝛿𝑝 𝑗 𝑖 𝑗

∪ 𝜙� 𝑗A𝛿𝑝 𝑗 𝑖 𝑗 (87a)

where

𝑄𝑝0...𝑝𝑎 :=
𝑎⋂

𝑏=0
𝑅𝑝𝑏 , (87b)

�𝑎C𝛿𝑝𝑎𝑖𝑎 :=
(
𝑄𝛿𝑝𝑎 ∩ �𝑎𝐺𝑝𝑎 ∩ Cpre(𝑌 ∗

𝛿𝑝𝑎
)
)
∪

(
𝑄𝛿𝑝𝑎 ∩ Apre(𝑌 ∗

𝛿𝑝𝑎
, �𝑎𝑋 𝑖𝑎−1

𝛿𝑝𝑎
)
)

�0...�𝑎𝑆𝑝0𝑖0...𝑝𝑎𝑖𝑎 :=
𝑎⋃

𝑏=0

�𝑏C𝑝0𝑖0...𝑝𝑏𝑖𝑏 , (87c)

𝜙�𝑖𝐴𝛿𝑝 𝑗 𝑖 𝑗 :=
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗}

(⋂
� 𝑗+1∈[1;𝑚𝑝 𝑗+1]

(⋃
𝑖 𝑗+1>0

(
𝜙� 𝑗� 𝑗+1𝑋

𝑖 𝑗+1
𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

\ 𝜙�𝑖𝑆𝛿𝑝 𝑗 𝑖 𝑗

)))
. (87d)

Againwe see that this attening follows directly from the structure of the xpoint algorithm
in (85) and the denition of 𝑙 𝑗C𝑝 𝑗

in (30b). Using the attening of (85) in (87) we can dene
a ranking function for each goal chain prex 𝜙 identical to Denition B.6. That is, given the
premises of Proposition B.27, we dene 𝜙� 𝑗𝑅 : 𝑉 → 2𝐷 s.t. (i) ∞ ∈ 𝜙� 𝑗𝑅(𝑣) for all 𝑣 ∈ 𝑉 , and
(ii) 𝛿𝑝 𝑗𝑖 𝑗𝛾 ∈ 𝜙� 𝑗𝑅(𝑣) i 𝑣 ∈ 𝜙� 𝑗𝑆𝛿𝑝 𝑗 𝑖 𝑗 . The ranking function 𝜙rank : 𝑉 → 𝐷 is then again dened as
in Denition B.6 s.t. 𝜙rank : 𝑣 ↦→ min{ 𝜙𝑅(𝑣)}. Similarly, we can dene a memoryless winning
strategy for every xed goal sequence 𝜙 as in (52). That is,

𝜙𝜌0(𝑣) := min
(𝑣,𝑤)∈𝐸

(𝜙rank(𝑤)). (88)

73 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Now, similar to the proof of Theorem 4.1 (see Section 4.1) we can “stack” these memoryless
winning strategies to dene a new strategywith nitememorywhich circles through all possible
goal sets in a pre-dened order. That is

𝜌0(𝑣, 𝜙� 𝑗) :=

𝜙� 𝑗𝜌0(𝑣) 𝑣 ∉ � 𝑗𝐹

𝜙�+
𝑗𝜌0(𝑣) 𝑣 ∈ � 𝑗𝐹

(89)

where �+
𝑗
:= � 𝑗 + 1 if � 𝑗 < 𝑚𝑝 𝑗

and �+
𝑗
:= 1 if � 𝑗 = 𝑚𝑝 𝑗

.
Using this goal chain dependent ranking function, the proof of soundness and completeness

of (85) along with the proof that 𝜌0 in (89) is indeed a winning strategy for player 0 in the fair
adversarial generalized Rabin game, follows exactly the same lines as the proof in Appendix B.3.
That is, we iteratively consider instances of the attening in (87), starting with 𝑗 = 𝑘 as the base
case, and doing an induction from “ 𝑗 + 1” to “ 𝑗”. To this end, we consider a generalized local
winning condition which refers not only to the current conguration-prex 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1

but also to the current goal chain prex 𝜙 := �0 . . . � 𝑗−1. Hence, (53) gets modied to

𝜙𝜓𝛿𝑝 𝑗
:=

©«

𝑄𝛿𝑝 𝑗
U 𝜙𝑆𝛿

∨ �𝑄𝛿𝑝 𝑗
∧ ∧

� 𝑗∈[1;𝑚𝑝 𝑗
] �^

� 𝑗𝐺𝑝 𝑗

∨ �𝑄𝛿𝑝 𝑗
∧

©«
∨
𝑖∈𝑃\ 𝑗

©«^�𝑅𝑖 ∧
∧

𝑏∈[1;𝑚𝑖]
�^ 𝑏𝐺𝑖

ª®¬
ª®®¬

ª®®®®®®®¬
(90)

where 𝑃\ 𝑗 = 𝑃 \ {𝑝0, . . . , 𝑝 𝑗}. With this, it becomes obvious that the proof of soundness, com-
pleteness and the winning strategy for Theorem 4.2 follows exactly the same reasoning as in
Appendix B.3 while additionally using Theorem 4.1 to reason about the conjunction over goal
sets.

The only remaining part to be shown concerns the last line of 𝜙𝜓𝛿𝑝 𝑗
. For this, we recall

from Appendix B.3.2 that the induction step from “ 𝑗 + 1” to “ 𝑗” relies on the fact that

𝜙� 𝑗Ψ𝛿𝑝 𝑗
:=�𝑄𝛿𝑝 𝑗

∧ ^
(∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗}
𝜙′
𝜓′
𝛿′𝑝 𝑗+1

)
(91)

is indeed equivalent to the last line of 𝜙𝜓𝛿𝑝 𝑗
, where 𝜙′

𝜓′
𝛿′𝑝 𝑗+1

denotes the last two lines of 𝜙′
𝜓𝛿′𝑝 𝑗+1

with 𝜙′ := 𝜙� 𝑗 and 𝛿′ := 𝛿𝑝 𝑗 .
For (non-generalized) Rabin games this equivalence is proved in Appendix B.3.6. It can be

seen by inspection within this proof, that using a conjunction over goal sets instead of a single
goal set within the second and third line of 𝜙𝜓𝛿𝑝 𝑗

does not change any step in the derivation.
Therefore, the same derivation can be used in the generalized case and is therefore omitted.
This concludes the proof of Theorem 4.2.

74 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

B.5.3 Proof of Theorem 4.3

Theorem (Theorem 4.3 restated for convenience). Let G� = 〈G, 𝐸�〉 be a game graph with live
edges and (A, F) a GR(1) winning condition. Further, let

𝑍∗ =𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋𝑘 .

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎. (𝐹𝑏 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘, 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)).

Then 𝑍∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over G�

for the winning condition 𝜑 in (32). Moreover, the xpoint algorithm runs in 𝑂(𝑛2𝑟𝑠) symbolic
steps, and a nite-memory winning strategy for Player 0 can be extracted from it.

Within this section we proof Theorem 4.3. That is, we prove that for GR(1) winning
conditions, the xpoint computing 𝑍∗ in (85) simplies to the one in (34). This is formalized in
the next proposition.

PROPOS IT ION B .28. Let R̃ be a generalized Rabin condition with 𝑘 pairs s.t. (33) holds for
𝑟 := 𝑘 − 1. Further let 𝑍∗ be the xed-point of the 𝜇-calculus formula (85) and �̃�∗ be the xed-point
of (34). Then 𝑍∗ = �̃�∗.

If Proposition B.28 holds, we immediately see that Theorem 4.3 directly follows from
Theorem 4.2. It therefore remains to prove that Proposition B.28 holds.

PROOF . First, consider an arbitrary permutation sequence 𝛿 = 𝑝0 . . . 𝑝𝑘. Then we know that
there exists exactly one 𝑗 > 0 s.t. 𝑝 𝑗 = 𝑘 and all other indices come from the set [1; 𝑟]. We can
therefore dene 𝛾′ = 𝑝1 . . . 𝑝 𝑗+1 and 𝛾′′ = 𝑝 𝑗+1 . . . 𝑝𝑘 s.t. 𝑝𝑖 ∈ [1; 𝑟] for all 𝑖 ≠ 𝑗. We note that
𝛾′ = 𝜀 if 𝑗 = 1 and 𝛾′′ = 𝜀 if 𝑗 = 𝑘. With this we have 𝛿 = 𝑝0𝛾

′𝑝 𝑗𝛾
′′.

By inspecting (33) we see that the rst 𝑟 pairs of the generalized Rabin condition induced
by the GR(1) specication actually form a Generalized Co-Büchi condition (compare (25) in
Section 3.4). Hence, given a permutation sequence 𝛿 = 𝑝0𝛾

′𝑝 𝑗𝛾
′′ we can use the same reasoning

as in the proof of Theorem 3.11 in Appendix B.4.3 to see that

C𝑝1 ⊇ . . . ⊇ C𝑝 𝑗−1 and C𝑝 𝑗+1 ⊇ . . . ⊇ C𝑝𝑘 . (92)

Now recall from the proof of Theorem 3.9 in Appendix B.4.1 that these inclusions allow
to recursively apply Lemma B.3 to delete all C terms which are included in either C𝑝1 or C𝑝 𝑗+1

along with the xpoint variables used within these terms (compare Lemma B.16 where now
𝛾′ and 𝛾′′ are interpreted as decreasing sub-sequences). Applying these simplications to
(85) (in exactly the same manner as these simplications where applied to (7) in the proof of
Theorem 3.9) results in a simpler xpoint algorithm where all permutation sequences have the
form 𝛿 = 0𝑞1𝑘𝑞2 with 𝑞1 ≠ 𝑞2 and 𝑞1, 𝑞2 ∈ [1; 𝑟] (here 𝑞1 and 𝑞2 correspond to 𝑝1 and 𝑝 𝑗+1 in
(92), and 𝑘 corresponds to 𝑝 𝑗).

75 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Now we can inspect (33) again to see that 𝑅𝑖 ⊇ 𝑅𝑘 and 𝐺𝑖 ⊇ 𝑏𝐺𝑝 𝑗
for all 𝑖 ∈ [1; 𝑟] and

𝑏 ∈ [1; 𝑠]. This can be understood as a “generalized Rabin chain condition” (compare (17) in
Section 3.4). Hence, we can apply Lemma B.16 one more time, now to the “decreasing sub-
sequence” 𝑞1𝑘 within every permutation sequence. Again, utilizing this argument iteratively in
(85) yields a simpler xpoint algorithm which only contains permutation sequences 𝛿 = 0𝑘𝑎
with 𝑎 ∈ [1; 𝑟]. This proves that 𝑍∗ is equivalent to the set

𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋0.

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎. 𝜇𝑋𝑎. C𝑝0 ∪ 𝑏C𝑘 ∪ C𝑎.

Now inserting the simplications for terms from the generalized Co-Büchi part (see (77) in
Appendix B.4.3) and using 𝑅0 = 𝐺0 = ∅, we obtain

𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋0.

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎.

Apre(𝑌0, 𝑋0) ∪ (𝑏𝐹 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘, 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)).

Now we can apply Lemma B.3 (iii) again to remove the rst occurrence of the Apre term to
obtain the same expression as in (34). This concludes the proof. �

B.6 Additional Proofs for Section 5

B.6.1 Preliminaries

11/2-player game: A special case of 21/2-player game graphs is aMarkov Decision Process (MDP)
or 11/2-player game, which is obtained by assuming that every Player 0 vertex in𝑉0 has only one
outgoing edge.8 Analogously to the 21/2-player games, for a given 11/2-player game graph G, we
use the notation 𝑃

𝜌1
𝑣0
(G |= 𝜑) to denote the probability of occurrence of the event G |= 𝜑 when

the runs initiate at 𝑣0 and when Player 1 uses the strategy 𝜌1.

Role of end components in 11/2-player game: Limiting behaviors in a 11/2-player game can
be characterized using the structure of the underlying game graph. We summarize one key
technical argument in the following.

Let G = 〈𝑉,𝑉0, 𝑉1, 𝑉𝑟, 𝐸〉 be a 11/2-player game graph. A set of vertices𝑈 ⊆ 𝑉 is called closed
if (1) for every 𝑣 ∈ 𝑈 ∩𝑉𝑟, 𝐸(𝑣) ⊆ 𝑈 , and (2) for every 𝑣 ∈ 𝑈 ∩ (𝑉0 ∪𝑉1), 𝐸(𝑣) ∩𝑈 ≠ ∅. A closed
set of vertices𝑈 induces a subgame graph (𝑉 ′, 𝑉 ′

0, 𝑉
′
1, 𝑉

′
𝑟 , 𝐸

′), denoted by G ↓ 𝑈 , which is itself a
11/2-player game graph and is dened as follows:

𝑉 ′ = 𝑈 ,
𝑉 ′
0 = 𝑈 ∩𝑉0,

𝑉 ′
1 = 𝑈 ∩𝑉1,

𝑉 ′
𝑟 = 𝑈 ∩𝑉𝑟, and

8 Alternatively, we could also define 11/2-player game graphs by restricting the outgoing edges from the Player 1 vertices;
our choice is actually tailored for the content of the rest of the section.

76 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

𝐸′ = 𝐸 ∩ (𝑈 ×𝑈).

A set of vertices𝑈 ⊂ 𝑉 of a 11/2-player game graph G is an end component if (a)𝑈 is closed, and
(b) the subgame graph G ↓ 𝑈 is strongly connected.

Denote the set of all end components of G by E ⊂ 2𝑉 . The next lemma states that under
every strategy 𝜌1 (being memoryless or not) of Player 1 in the 11/2-player game, the set of states
visited innitely often along a play is an end component with probability one.

LEMMA B.29. [13, Thmeorem 3.2] For every 11/2-player game graph, for every vertex 𝑣 ∈ 𝑉 , and
every Player 1 strategy 𝜌1,

𝑃
𝜌1
𝑣

(
G |=

∨
𝑈∈E

(
♦�𝑈 ∧

∧
𝑢∈𝑈
�♦𝑢

))
= 1. (93)

This lemma implies the following corollary, which is motivated by similar claim for Rabin
winning conditions in the literature [8].

COROLLARY B .30. For a given 11/2-player game, for a given vertex 𝑣 ∈ 𝑉 , and for a given
Player 1 strategy 𝜌1, a generalized Rabin condition R̃ = {〈G1, 𝑅1〉, . . . , 〈G𝑘, 𝑅𝑘〉} is satised almost
surely if and only if for every end component𝑈 reachable from 𝑣0, there is a 𝑗 ∈ {1, 2, . . . , 𝑘} such
that𝑈 ∩ 𝑅 𝑗 = ∅ and for every 𝑙 ∈ [1;𝑚 𝑗],𝑈 ∩ 𝑙𝐺 𝑗 ≠ ∅.

B.6.2 Proof of Theorem 5.2

Theorem (Theorem 5.2 restated for convenience). Let G be a 21/2-player game graph, R̃ be a
generalized Rabin condition, 𝜑 ⊆ 𝑉𝜔 be the corresponding LTL specication (Eq. (27)) over the
set of vertices 𝑉 of G, and Derand(G) be the reduced two-player game graph. LetW ⊆ 𝑉 be the
set of all the vertices from where Player 0 wins the fair adversarial game over Derand(G) for the
winning condition 𝜑, andWa.s. be the almost sure winning set of Player 0 in the game graph G
for the specication 𝜑. Then,W = Wa.s.. Moreover, a winning strategy in Derand(G) is also a
winning strategy in G, and vice versa.

We dene the fairness constraint on the random edges of G as per Eq. (3):

𝜑� := ∧(𝑣,𝑣′)∈𝐸𝑟�♦𝑣 → �♦(𝑣 ∧ ©𝑣′).

We rst show thatW ⊆ Wa.s.. Consider an arbitrary initial vertex 𝑣0 ∈ W and an arbitrary
strategy 𝜌1 of Player 1 in G. Let 𝜌∗0 be a corresponding winning strategy for Player 0 from 𝑣0

for the fair adversarial game over Derand(G) for the winning condition 𝜑. By denition, 𝜌∗0
realizes the specication 𝜑, whenever the adversary satises the strong fairness condition on
the live edges in Derand(G). On the other hand, the live edges in Derand(G) are exactly the
random edges in G. In other words, we already know that if we apply the same strategy 𝜌∗0 to G,
then inf𝜌1∈𝑅1 𝑃

𝜌∗0,𝜌1
𝑣0

(G |= 𝜑� → 𝜑) = 1.

77 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

We rst show that the random edges 𝐸𝑟 also satisfy the strong fairness condition 𝜑� almost
surely; actually we show that the probability of violation of 𝜑� in G is 0. Consider the following:

𝑃
𝜌∗0,𝜌1
𝑣0

(
G |= ¬𝜑�

)
= 𝑃

𝜌∗0,𝜌1
𝑣0

©«G |= ¬
∧

(𝑣,𝑣′)∈𝐸𝑟

�♦𝑣 → �♦(𝑣 ∧ ©𝑣′)ª®¬
= 𝑃

𝜌∗0,𝜌1
𝑣0

©«G |=
∨

(𝑣,𝑣′)∈𝐸𝑟

�♦𝑣 ∧ ♦�¬(𝑣 ∧ ©𝑣′)ª®¬
≤

∑︁
(𝑣,𝑣′)∈𝐸𝑟

𝑃
𝜌∗0,𝜌1
𝑣0

(G |= �♦𝑣 ∧ ♦�¬(𝑣 ∧ ©𝑣′)) .

We show that the right-hand side of the last inequality equals to 0 by proving that for every
(𝑣, 𝑣′) ∈ 𝐸𝑟,

𝑃
𝜌∗0,𝜌1
𝑣0

(G |= �♦𝑣 ∧ ♦�¬(𝑣 ∧ ©𝑣′)) = 0.

Consider any arbitrary (𝑣, 𝑣′) ∈ 𝐸𝑟 and assume that the probability of taking the edge (𝑣, 𝑣′)
from 𝑣 is 𝑝1. Let 𝜋 be a play on G and (𝑖0, 𝑖1, 𝑖2, . . .) be the innite sequence of time indices
when the vertex 𝑣 is visited. For every 𝑖𝑘, the probability of not visiting 𝑣′ for the next 𝑙 time
steps (𝑖𝑘+1 + 1, . . . , 𝑖𝑘+𝑙 + 1) is given by (1 − 𝑝)𝑙, which converges to 0 as 𝑙 approaches ∞.
This proves that for every 𝑖𝑘, eventually there will be a 𝑣′ at (𝑖𝑘 + 1) with probability 1;
in other words 𝑣′ will be visited innitely often with probability 1. Hence, it follows that∑

(𝑣,𝑣′)∈𝐸𝑟 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= �♦𝑣 ∧ ♦�¬(𝑣 ∧ ©𝑣′)) = 0, which in turn establishes that 𝑃𝜌∗0,𝜌1
𝑣0

(
G |= ¬𝜑�

)
=

0.
Now consider the following derivation:

𝑃
𝜌∗0,𝜌1
𝑣0

(G |= 𝜑� → 𝜑) = 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= ¬𝜑� ∨ 𝜑) ≤ 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= ¬𝜑�) + 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= 𝜑)

= 0 + 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= 𝜑) = 𝑃
𝜌∗0,𝜌1
𝑣0

(G |= 𝜑).

Since we know that 𝑃𝜌∗0,𝜌1
𝑣0

(G |= 𝜑� → 𝜑) = 1, hence it follows that 𝑃𝜌∗0,𝜌1
𝑣0

(G |= 𝜑) = 1.
Next, we show thatW ⊇ Wa.s.. Consider an arbitrary initial vertex 𝑣0 ∈ Wa.s.. Let 𝜌∗0 be

a corresponding almost sure winning strategy for Player 0 from 𝑣0 in the 21/2-player game G
with the specication 𝜑. We show that Player 0 wins the fair adversarial game over Derand(G)
for the winning condition 𝜑 from vertex 𝑣0 using the strategy 𝜌∗0.

Let 𝜌1 ∈ 𝑅1 be any arbitrary Player 1 strategy in the game Derand(G) such that the
unique resultant play 𝜋 = (𝑣0, 𝑣1, . . .) due to 𝜌∗0 and 𝜌1 satises the fairness assumption. We
use the notation Inf (𝜋) to denote the set of innitely occurring vertices along the play 𝜋, i.e.,
Inf (𝜋) B {𝑤 ∈ 𝑉 | ∀𝑚 ∈ N0 . ∃𝑛 > 𝑚 . 𝑣𝑛 = 𝑤}. First we show that (i) the set of vertices
Inf (𝜋) forms an end component in G, and moreover (ii) there exists a Player 1 strategy 𝜌′1 in
the game G such that 𝑃𝜌∗0,𝜌

′
1

𝑣0
(G |= Inf (𝜋)) > 0. Claim (i) follows by observing the following:

78 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

For all 𝑣 ∈ Inf (𝜋) ∩𝑉𝑟, 𝑉𝑟 (𝑣) ⊆ Inf (𝜋), as otherwise in Derand(G) there would be a vertex
in 𝐸� (𝑣) and outside Inf (𝜋) which would be visited innitely many times due to innitely
many visits to 𝑣.
For every 𝑣 ∈ Inf (𝜋) ∩ (𝑉0 ∪ 𝑉1), 𝐸(𝑣) ≠ ∅, as otherwise in Derand(G) the play 𝜋 would
reach a dead-end.
The subgame graph G ↓ Inf (𝜋) is strongly connected, as otherwise in Derand(G) there
would be two vertices 𝑢, 𝑣 ∈ Inf (𝜋) so that 𝑣 would not be reachable from 𝑢, contradicting
the assumption that both 𝑢 and 𝑣 are visited innitely often by 𝜋.

Claim (ii) follows by dening a strategy 𝜌′1 ≡ 𝜌1 on G. Now observe that for every edge (𝑣, 𝑣′)
chosen by Player 1 from a vertex 𝑣 ∈ dom(𝐸�) in Derand(G), there exists a corresponding
positive probability edge (𝑣, 𝑣′) in G. Since Inf (𝜋) is entered by 𝜋 after nite time steps, hence
the Claim (ii) follows.

Now, from Cor. B.30 it follows that there is a 𝑗 ∈ {1, 2, . . . , 𝑘} such that Inf (𝜋) ∩ 𝑅 𝑗 = ∅
and for every 𝑙 ∈ {1, . . . , 𝑚 𝑗}, Inf (𝜋) ∩ 𝑙𝐺 𝑗 ≠ ∅. Thus the play 𝜋 satises the generalized Rabin
condition R̃. Since this holds for any arbitrary Player 1 strategy, henceW ⊇ Wa.s. and 𝜌∗ is the
corresponding winning strategy for Player 0.

C. The Accelerated Fixpoint Algorithm

Consider the xpoint algorithm in (7). In the correctness proof of Theorem 3.1 discussed in
Appendix B.3, we have been remembering so called conguration prexes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1

for some 𝑗 ≤ 𝑘 for every xpoint variable 𝑋 (see Eq. (49)). We denoted by 𝑋
𝑖 𝑗
𝛿𝑝 𝑗

the set of states
computed in the 𝑖 𝑗 ’th iteration of the xpoint computation over 𝑋𝑝 𝑗

after the xpoint over 𝑌𝑝 𝑗

has already terminated within the 𝑖 𝑗−1th iteration over 𝑋𝑝 𝑗−1 after the xed-point over 𝑌𝑝 𝑗−1 has
terminated in the 𝑖 𝑗−2th iteration over 𝑋𝑝 𝑗−2 and so forth.

In order to describe the accelerated implementation of (7), we do not assume that the
xpoints over𝑌 -variables have already terminated, but additionally remember their counters𝑚.
This leads to conguration prexes 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 and lets us dene that 𝑋

𝑚 𝑗 𝑖 𝑗
𝛿𝑝 𝑗

is
the set of states computed in the 𝑖 𝑗th iteration of the xpoint computation over 𝑋𝑝 𝑗

during the
𝑚 𝑗th iteration over 𝑌𝑝 𝑗

, computing the set 𝑌𝑚 𝑗

𝛿𝑝 𝑗
and so forth.

Given two conguration prexes 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 and
𝛿′ = 𝑝′0𝑚

′
0𝑖
′
0 . . . 𝑝

′
𝑗−1𝑚

′
𝑗−1𝑖

′
𝑗−1 we dene 𝛿 <𝑚 𝛿′ if 𝑝0 . . . 𝑝 𝑗−1 = 𝑝′0 . . . 𝑝

′
𝑗−1 and 𝑚0 . . . 𝑚 𝑗−1 <

𝑚′
0 . . . 𝑚

′
𝑗−1 (using the induced lexicographic order) and 𝑖0 . . . 𝑖 𝑗−1 = 𝑖′0 . . . 𝑖

′
𝑗−1. We dene 𝛿 <𝑖 𝛿

′

similarly.
Now Piterman and Pnueli [37] showed, based on a result of Long, Browne, Clarke, Jha,

and Marrero [30], that for every conguration prex 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 the compu-
tation of 𝑌 0

𝛿𝑝 𝑗
can start from theminimal set 𝑌𝑚 𝑗

𝛿′𝑝 𝑗
(instead of the entire set of vertices 𝑉) such

that 𝛿′𝑝 𝑗𝑚 𝑗 <𝑚 𝛿𝑝 𝑗0. Dually, for every conguration prex 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 the

79 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

computation of 𝑋𝑚 𝑗0
𝛿𝑝 𝑗

can start from themaximal set 𝑋𝑚 𝑗 𝑖 𝑗
𝛿′𝑝 𝑗

(instead of the empty set) such that
𝛿′𝑝 𝑗𝑚 𝑗𝑖 𝑗 <𝑖 𝛿𝑝 𝑗𝑚 𝑗0.

Further, we see that for the innermost xpoint, i.e. when 𝑗 = 𝑘, it follows that for every
computation prex 𝛿 , there can be at most 𝑛 iterations over both 𝑌𝑝𝑘 and 𝑋𝑝𝑘 , where 𝑛 is the
total number of vertices. I.e., 𝑛 dierent sets 𝑌𝑚𝑘

𝛿𝑝𝑘
and 𝑋𝑚𝑘𝑖𝑘

𝛿𝑝𝑘
have to be freshly computed for

each 𝛿𝑝𝑘 and 𝛿𝑝𝑘𝑚𝑘 respectively. We see that there are O(𝑛𝑘+1𝑘!) dierent such permutation
sequences. As the computation of the innermost xpoint dominates the computation time, it is
shown by Long, Browne, Clarke, Jha, and Marrero [30] that this results in an overall worst-case
computation time of O(𝑛(𝑘+1)+1𝑘!) = O(𝑛𝑘+2𝑘!) (where 𝑛 is the total number of vertices and 𝑘 is
the number of Rabin pairs).

Unfortunately, the memory requirement of this acceleration algorithm is enormous. To see
this, observe that in order to warm-start the computation of𝑌 0

𝛿𝑝 𝑗
with 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1

we need to store the current minimal set w.r.t. the 𝑚-prex for every combination of 𝑝- and 𝑖-
prexes that can occur in 𝛿, which areO(𝑛𝑘+1𝑘!)many. Similarly, to warm-start the computation
of 𝑋𝑚 𝑗 𝑖 𝑗

𝛿𝑝 𝑗
we need to store the current minimal set w.r.t. the 𝑖-prex for every combination of 𝑝-

and 𝑚-prexes that can occur in 𝛿. This means that the memory required by the algorithm is
O(𝑛𝑘+1𝑘!), which is prohibitively large for large values of 𝑛 and 𝑘.

We implemented a space-bounded version of the acceleration algorithm, where for any
given parameter 𝑀 (chosen by the user), we stored only up to 𝑀 values for each counter.
Whenever the values of all the counters are less than 𝑀 , we use the regular acceleration
algorithm as outlined above. Otherwise, if any of the counters exceeds 𝑀 , then we fall back to
the regular initialization procedure of xpoint algorithms, i.e. depending on whether it is an 𝑌
or an 𝑋 variable, initialize it with 𝑉 or ∅ respectively. As a result, the memory requirement
of our accelerated xpoint algorithm is given by O(𝑀𝑘+1𝑘!). This space-bounded acceleration
algorithm made our implementation much faster and yet practically feasible, as has been
demonstrated in Section 6.

80 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

D. Supplementary Results for the Experiments

0 200 400
0

2,000

4,000

Parallel (s)

N
on

-p
ar
al
le
l(
s)

0 200 400
0

500

1,000

Accelerated (s)

N
on

-a
cc
el
er
at
ed

(s
)

Figure 11. Zoomed-in version of Figure 6. (Left) Comparison between the computation times for the
non-parallel (1 worker thread) and parallel (48 worker threads) version of Fairsyn, with acceleration
being enabled in both cases. (Right) Comparison between the computation times for the
non-accelerated and the accelerated version of Fairsyn, with parallelization being enabled in both
cases. (Both) The points on the solid red line represent the same computation time. The points on the
dashed red line represent an order of magnitude improvement.

0 5 10 15
10−2

100

102

𝑀

Co
m
p.
tim

e
(s
)

2 5 10 15
10−5

100

𝑀

In
it.
tim

e
(s
)

Figure 12. (Left) Effect of variation of the acceleration parameter 𝑀 on the total computation time
(parallelization being enabled) for the VLTS benchmark examples with 1 Rabin pair. (Right) Effect of
variation of the acceleration parameter 𝑀 on the initialization time for the VLTS benchmark examples
with 1 Rabin pair. The computation time (Y-axis) in both the plots are shown in the logarithmic scale.

81 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Number of
Vertices

Number of
Transitions

Number of
Live Edges

Number of
BDD

Variables
289 1224 17 9
289 1224 25 9
289 1224 13 9
1952 2387 1 11
1952 2387 5 11
1952 2387 25 11
1183 4464 16 11
1183 4464 49 11
1183 4464 9 11
3995 14,552 39 12
3995 14,552 139 12
3995 14,552 153 12
5121 9392 1 13
5121 9392 54 13
5121 9392 73 13
8879 24,411 473 14
8879 24,411 397 14
7119 38,424 626 14
7119 38,424 835 14
7119 38,424 597 14

10,849 56,156 241 14
10,849 56,156 482 14
18,746 73,043 1585 15
18,746 73,043 1729 15
18,746 73,043 575 15
25,216 25,216 137 15
25,216 25,216 595 15
25,216 25,216 373 15
40,006 60,007 1130 16
40,006 60,007 865 16
52,268 292,823 107 16
52,268 292,823 3254 16
65,537 524,293 13,727 17
65,537 524,293 25,229 17
66,929 569,322 23,290 17
66,929 569,322 13,698 17
69,753 359,575 11,071 17
69,753 359,575 5058 17
83,435 259,488 1682 17
83,435 259,488 2707 17
96,878 282,880 6225 18
96,878 282,880 585 18

Table 3. Details of the fair adversarial Rabin games randomly generated from the VLTS benchmark
suite. Continued to Table 4.

82 / 83 T. Banerjee, R. Majumdar, K. Mallik, A. Schmuck, S. Soudjani

Number of
Vertices

Number of
Transitions

Number of
Live Edges

Number of
BDD

Variables
116,456 364,596 8316 17
116,456 364,596 7774 17
142,471 925,429 19,259 18
142,471 925,429 3304 18
164,865 1,619,200 13,407 18
164,865 1,619,200 24,868 18
166,463 518,976 13,633 18
166,463 518,976 4155 18
214,140 683,205 13,588 18
214,140 683,205 12,113 18
371,804 641,565 3413 19
371,804 641,565 12,151 19
386,496 1,171,870 26,247 19
386,496 1,171,870 17,823 19
566,639 3,984,160 7109 20
566,639 3,984,160 42,757 20

Table 4. Continued from Table 3. Details of the fair adversarial Rabin games randomly generated from
the VLTS benchmark suite.

83 / 83 Symbolic Algorithms for 𝜔-Regular Games under Strong Transition Fairness

Broadcast
Queue
Capacity

Output
Queue
Capacity

Number of
Vertices

Number of
Transitions

Number of
Live Edges

Number
of BDD
Variables

Time
(seconds)

1 1 5,307,840 10,135,300 5,124,100 25 7.37
2 1 21,231,400 40,541,200 20,496,400 27 24.90
3 1 21,414,100 42,080,300 21,265,900 27 28.97
1 2 21,340,800 40,879,100 20,834,300 27 38.25
1 3 21,559,400 42,756,100 21,772,800 27 51.55
4 1 84,925,400 162,165,000 81,985,500 29 57.70
5 1 85,295,700 165,243,000 83,524,600 29 65.01
6 1 85,656,300 168,321,000 85,063,700 29 73.19
7 1 86,007,400 171,399,000 86,602,800 29 77.97
1 4 85,363,200 163,516,000 83,337,200 29 92.56
1 5 85,808,000 167,270,000 85,214,200 29 113.18
2 2 85,363,200 163,516,000 83,337,200 29 133.20
1 6 86,237,400 171,024,000 87,091,200 29 135.67
3 2 86,061,400 169,673,000 86,415,400 29 144.27
1 7 86,651,500 174,778,000 88,968,200 29 145.76
8 1 339,702,000 648,659,000 327,942,000 31 149.68
2 3 86,237,400 171,024,000 87,091,200 29 163.62
9 1 340,447,000 654,815,000 331,020,000 31 174.29
10 1 341,183,000 660,972,000 334,098,000 31 197.02
3 3 86,870,100 177,181,000 90,169,300 29 203.15
1 8 341,453,000 654,066,000 333,349,000 31 248.38
1 9 342,350,000 661,574,000 337,103,000 31 283.85
1 10 343,232,000 669,082,000 340,857,000 31 331.78
7 2 345,587,000 691,003,000 351,818,000 31 567.26
4 2 341,453,000 654,066,000 333,349,000 31 710.78
2 4 341,453,000 654,066,000 333,349,000 31 806.74
5 2 342,868,000 666,378,000 339,505,000 31 852.37
6 2 344,246,000 678,691,000 345,661,000 31 936.04
2 5 343,232,000 669,082,000 340,857,000 31 1034.57
4 3 344,950,000 684,098,000 348,365,000 31 1071.52
2 7 346,606,000 699,113,000 355,873,000 31 1111.64
7 3 348,693,000 721,035,000 366,834,000 31 1312.88
2 6 344,950,000 684,098,000 348,365,000 31 1336.35
5 3 346,233,000 696,410,000 354,521,000 31 1351.31
3 4 344,246,000 678,691,000 345,661,000 31 1632.63
6 3 347,480,000 708,723,000 360,677,000 31 1667.54
8 2 1,365,810,000 2,616,260,000 1,333,400,000 33 2478.13
9 2 1,368,660,000 2,640,890,000 1,345,710,000 33 2783.77

Table 5. Experimental evaluation for the code-aware resource management case study (extended
table).

2023 :4
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, Sadegh Soudjani.

	1 Introduction
	2 Preliminaries
	2.1 Two-Player Games
	2.2 Fair Adversarial Games
	2.3 Symbolic Computations over Game Graphs

	3 Fair Adversarial Rabin Games
	3.1 The Symbolic Algorithm
	3.2 Proof Outline
	3.3 Complexity
	3.4 Specialized Rabin Games

	4 Generalized Rabin Games
	4.1 Fair Adversarial Generalized Rabin Games
	4.2 Fair Adversarial Muller Games
	4.3 Fair Adversarial GR(1) Games

	5 Stochastic Generalized Rabin Games
	5.1 Preliminaries: 2.5-player games
	5.2 The reduction

	6 Experimental Evaluation
	6.1 Performance Evaluation
	6.2 Practical Benchmarks
	6.2.1 Code-Aware Resource Management
	6.2.2 Controller Synthesis for Stochastically Perturbed Dynamical Systems

	7 Conclusion
	A Example-Computation of the Rabin Fixpoint
	B Detailed Proofs
	B.1 General Lemmas
	B.2 Additional Proofs for Section 3
	B.2.1 Proof of Theorem 3.3
	B.2.2 Proof of Theorem 3.2

	B.3 Proof of Theorem 3.1
	B.3.1 Strategy Extraction
	B.3.2 Soundness
	B.3.3 Completeness
	B.3.4 Additional Lemmas and Proofs
	B.3.5 Proof of Proposition B.10
	B.3.6 Proof of (55)

	B.4 Additional Proofs for Section 3.4
	B.4.1 Fair Adversarial Rabin Chain Games
	B.4.2 Fair Adversarial Parity Games
	B.4.3 Fair Adversarial Generalized Co-Büchi Games

	B.5 Additional Proofs for Section 4
	B.5.1 Proof of Theorem 4.1
	B.5.2 Proof for Theorem 4.2
	B.5.3 Proof of Theorem 4.3

	B.6 Additional Proofs for Section 5
	B.6.1 Preliminaries
	B.6.2 Proof of Theorem 5.2

	C The Accelerated Fixpoint Algorithm
	D Supplementary Results for the Experiments

