Tillmann Miltzow ; Reinier F. Schmiermann - On Classifying Continuous Constraint Satisfaction Problems

theoretics:9179 - TheoretiCS, April 16, 2024, Volume 3 - https://doi.org/10.46298/theoretics.24.10
On Classifying Continuous Constraint Satisfaction ProblemsArticle

Authors: Tillmann Miltzow ORCID; Reinier F. Schmiermann ORCID

    A continuous constraint satisfaction problem (CCSP) is a constraint satisfaction problem (CSP) with an interval domain $U \subset \mathbb{R}$. We engage in a systematic study to classify CCSPs that are complete of the Existential Theory of the Reals, i.e., ER-complete. To define this class, we first consider the problem ETR, which also stands for Existential Theory of the Reals. In an instance of this problem we are given some sentence of the form $\exists x_1, \ldots, x_n \in \mathbb{R} : \Phi(x_1, \ldots, x_n)$, where $\Phi$ is a well-formed quantifier-free formula consisting of the symbols $\{0, 1, +, \cdot, \geq, >, \wedge, \vee, \neg\}$, the goal is to check whether this sentence is true. Now the class ER is the family of all problems that admit a polynomial-time many-one reduction to ETR. It is known that NP $\subseteq$ ER $\subseteq$ PSPACE. We restrict our attention on CCSPs with addition constraints ($x + y = z$) and some other mild technical conditions. Previously, it was shown that multiplication constraints ($x \cdot y = z$), squaring constraints ($x^2 = y$), or inversion constraints ($x\cdot y = 1$) are sufficient to establish ER-completeness. We extend this in the strongest possible sense for equality constraints as follows. We show that CCSPs (with addition constraints and some other mild technical conditions) that have any one well-behaved curved equality constraint ($f(x,y) = 0$) are ER-complete. We further extend our results to inequality constraints. We show that any well-behaved convexly curved and any well-behaved concavely curved inequality constraint ($f(x,y) \geq 0$ and $g(x,y) \geq 0$) imply ER-completeness on the class of such CCSPs.


    Volume: Volume 3
    Published on: April 16, 2024
    Accepted on: February 2, 2024
    Submitted on: March 7, 2022
    Keywords: Computer Science - Computational Complexity,Computer Science - Computational Geometry,Computer Science - Computation and Language,Computer Science - Discrete Mathematics,Computer Science - Data Structures and Algorithms

    Classifications

    Mathematics Subject Classification 20201

    Consultation statistics

    This page has been seen 299 times.
    This article's PDF has been downloaded 196 times.